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Abstract

During recent two decades, functional data commonly arise from many scientific

fields such as transportation flow, climatology, neurological science and human mor-

tality among others. The corresponding data recorded may be in the form of curves,

shapes, images and functions that may be correlated, multivariate, or both. The

intrinsic infinite dimensionality of functional data poses challenges in the develop-

ment of theory, methodology and computation for functional data analysis. Tests of

significance are essential statistical problems and are challenging for functional data

due to the demands coming from real world applications. Motivated by requirements

in real-world data analysis, we have focused on two topics of study. 1) Multivari-

ate functional data have received considerable attention. It is natural to validate

whether two mean surfaces are homogeneous but existing work is few. 2) In exist-

ing literature, most testing methods were designed for validity of dense and regular

functional data samples, whereas in practice, functional samples may be sparse and

irregular or even partly dense. In such functional data setting, there is rare work for

testing equality of covariance functions or mean curves. To address these problems,

we aim to two targets: 1) We propose novel sequential and parallel projection testing

procedures that can detect the difference in mean surfaces powerfully. Furthermore,

we apply the idea to present testing statistics for test of equality of mean curves for

two functional data samples irrespective of the data type. Furthermore, the other

related work takes auxiliary information into consideration. We propose a new func-
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tional regression model to characterize the conditional mean of functional response

given covariates. 2) We derive a novel test procedure for test of equality of covariance

functions that can deal with any functional data type, even irregular or sparse data.

In addition, by using the stringing technique, once a high-dimensional data can map

into functional data, we excogitate a testing procedure for comparison of covariance

matrices under the high-dimensional data setting. Our method outperforms the ex-

isting testing methods in high-dimensional data testing procedures. Almost all work

mentioned above include asymptotic theory and rigorous theorem proof, intensive

numerical experiments and real-world data analysis.
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Chapter 1

Introduction

During recent two decades, functional data commonly arise from many scientific fields

such as transportation flow, climatology, neurological science and human mortality,

among others. The corresponding data recorded may be in the form of curve, shape,

image and functions that may be correlated, multivariate, or both. Wang et al.

(2015a) presented the so-called first and next generation functional data by the cri-

terion that the random sample of real-valued functions are random trajectory/curve

data (Gasser et al., 1984; Rice and Silverman, 1991; Gasser and Kneip, 1995) or part

of complex data objects like hypersurface data. For instance, the neuroimage data

stated on page 23 of the report for the London workshop on the topic the Future

of Statistical Sciences held in November 2013, refer to http://www.worldofstati

stics.org/wos/pdfs/Statistics&Science-TheLondonWorkshopReport.pdf. In a

word, functional data has already established itself as an important and dynamic area

of statistics.

The term “functional data analysis” was coined by Ramsay (1982) and Ram-

say and Dalzell (1991), and the related history of this field can be tracked back to

Grenander (1950) and Rao (1958). It offers new effective tools and has stimulated

new theoretical and methodological development. The book by Ramsay and Sil-

verman (2005) gives a clear account of the basic considerations of FDA. The first

1
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advances in nonparametric FDA are described by Ferraty and Vieu (2006). Other

monographs include Bosq (2000), Ramsay and Silverman (2002), Ferraty and Vieu

(2006), Ramsay et al. (2009), Ferraty and Romain (2011), Shi and Choi (2011),

Horváth and Kokoszka (2012), and Kokoszka and Reimherr (2017). Comprehensive

reviewing papers include Hall and Hosseini-Nasab (2006), Müller (2014) and Müller

(2016), among others. For functional data analysis, when it comes to the com-

parison between two samples, two natural yet essential questions are to check the

heterogeneity and heteroscedasticity. In the past decade, much effort has been made

in developing powerful testing procedures to detect the difference in mean functions

or deviations in covariance structure for two- or multiple- sample functional data.

The related reference regarding tests of significance may go to the introduction parts

in Chapters 2, 3 and 5 under functional data setting. In this thesis, we concentrate

on 1) testing the equality of mean surface functions for hypersurface functional sam-

ples; and 2) testing covariance functions for two functional data samples that are no

necessary dense and regular. Next we introduce the original practical motivation for

the theme in this thesis. It has come from exploration of two data sets.

Testing equality of two mean surfaces is motivated from detecting change in

precipitation affected by both the spatial and temporal effects in the Midwest of the

United States. The data is collected in cohort for climate monitoring and stored

in Global historical climatological network database, refer to the National Oceanic

and Atmospheric Administration: “ (https://www.ncdc.noaa.gov/oa/climate/g

hcn-daily/)”, which collects main climate parameters such as daily maximum and

minimum temperature, amount of precipitation (liquid equivalent), amount of snow

fall and snow depth, and so on. We investigate into daily precipitation amounts

recorded at 59 terrestrial observatories spread over 12 states during the period 1941-

2000, refer to Fig. 2.1 in Chapter 2.

Gromenko et al. (2017) detected the annual patten change along the temporal

— 2 —
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domain by a spatially indexed way. Their method could detect annual change point

when precipitation amount is looked as if observed on the curve with observations

on all 59 spatial locations. Extremely Berkes et al. (2009) fixed their test on an

individual station and thus detected no significance for any pair year segments during

the time course 60 years. Unfortunately, due to purpose of detection, such existing

methods can neither test the significance affected by the joint affects from both

spatial and temporal domains nor test treatment effect impacted by the marginal

spacial domain. However, both questions are important for climate monitoring. This

inspires our study in Chapter 2.

Testing the equality of covariance functions of two functional data samples is

motivated by investigation of CD4 cell measurements in an AIDS clinical study by

the AIDS clinical trials group (ACTG) monitored for 2.1 years, say the data from

Fischl et al. (2003). There are CD4 cell responses collected after three different

treatment arms. Such functional data is sparse and irregularly spaced due to various

reasons. It is important to provide solid and reliable statistical support to justify

whether the covariance functions are identical instead of a naive visualization of

sample covariance function surfaces. This drives our study in Chapter 5.

After testing the mean surfaces for multivariate functional data, we have exten-

sion research in two aspects. On one hand, employing the idea of mean surface

testing, we also present testing procedures to detect change in two mean curve func-

tions in univariate functional data scenario. Our method performs well regardless

dense, sparse or mixed functional samples. On the other hand, we notice that in anal-

ysis of the aforementioned daily precipitation in the Midwest of the United States,

there are quite a lot of auxiliary information such as temperature, pressure normal,

wind, cloudiness and other climate indexes. Naturally, we may use mean regression

to investigate how the auxiliary information affects the mean surface or curve. This

brings us considering new modeling of functional regression models where conditional

— 3 —
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mean response involves both main and interaction effects.

Furthermore, notice the stringing technique by Chen et al. (2011b) which may

transform high-dimensional vectors into functional data under some assumptions.

This motivates us to extend the method in testing equality of covariance functions

for functional data samples into the method to test the covariance matrices for high-

dimensional data samples provided that the high-dimensional data can map into

functional data.

Literature review for each piece of work are depicted in each chapter. Chapters

2, 3 and 4 are based on the work Zhang et al. (2017b), Yang and Zhang (2017) and

Zhang et al. (2017a). Chapters 5 and 6 are based on our work: Yang et al. (2017).

For the contribution of the thesis, we summarize into trifold. First, our test-

ing procedure for mean surface detection may be the very early work on equality

test in hypersurface functional data. Second, our proposed testing procedures for

checking equality of mean curve or covariance functions perform well in both size

and power not only for sparse and irregular random curves but also apply well for

dense and regular functional trajectories. Third, borrowing the strength of stringing

perception, we develop powerful testing statistic to detect the equality of covariance

matrices in high-dimensional setting. This will enlighten more effective transplanting

of methodology between functional data and high-dimensional data.

The rest of the thesis covers three parts. Chapters 2 and 3 attribute to part I.

Chapter 2 discusses how we develop two sequential and parallel projection testing

procedures to detect change of the joint effects impacted by both domains. Chapters

3 and 4 are extension work on test equality of mean curves and new modeling of

functional mean regression with auxiliary information. Chapters 5 and 6 composes

part II discussing testing equality of covariance functions for functional data and its

extension in high-dimensional setting to test equality of covariance matrices. Part

III includes Chapter 7 which has a brief discussion in ongoing work and future work.

— 4 —



Chapter 2

Testing Equality of Mean Surface

for Two-sample Functional Data

2.1 Introduction

In the multivariate functional stochastic process Xpuq, there has increasing research

interest in data type that is both functional and multidimentional. That is, u “ ps, tq

has two arguments where s P S Ă Rd1 and t P T Ă Rd2 with d1 and d2 being positive

integers. Here s and t inherently belong to distinct domains S and T in terms of

scientific meaning or research design. For example, Xps, tq may be the mortality rate

of age s during year t in a given country. A typical example of such data comes from

neuroimaging studies using functional magnetic resonance imaging (fMRI), in which

the so-called voxels data, i.e. brain activity like blood flow changes are discrepantly

recorded at a large number of locations at irregular time units (Lindquist, 2008; Aston

and Kirch, 2012). Spatiotemporal study is no doubt another important application

of this kind of data where t is defined on a temporal domain and s is defined on a

spatial domain. Although functional data of afore structure are encountered in many

applications, there is rare progress in inferential aspect for such data (Gromenko

et al., 2017; Aston et al., 2017). In the present work, we plan to investigate the

profile and globe tests of mean surfaces for two bivariate functional samples.

5
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A practical motivation for this research comes from precipitation data in Midwest

of the United States, where the daily data of precipitation from 1941 to 2000 are

collected at 59 spatial locations scattered over 12 states in the Midwest of USA. For

ease of reference, we provide a map of Midwest states with the locations of the climate

monitoring stations in Fig. 2.1. The Midwest is a breadbasket of the United States

and its agriculture has continued to play a major role in the economy of the region

(Pryor, 2013). The agriculture in the Midwest is vulnerably affected by the climate,

of which precipitation is a vital component. To monitoring the future agricultural

activities, it therefore has long been recognized as an important problem to reveal

how the change of precipitation takes place for different locations, different regions,

or different years in the same region.

KS

NE

SD

ND

MN WI

IL IN OH

Figure 2.1: Light green region: 4 states from the Great Plains; Blue circle ˝ indicates
location of a station; Yellow region: 5 states from the Great Lakes; Red triangle 4
indicates location of a station.

The study of the precipitation data has led to several interesting findings. For
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DATA

instance, Berkes et al. (2009) detected no changes during the period 1941-2000 for

only individual station. However, it is difficult to implement if we sequently tested

for every station when the number of stations were large. Gromenko et al. (2017)

used cumulative sum paradigm to expose the fact that, the mean precipitation curves

before and after 1966 were different over the whole region. Nevertheless their method

was particularly designed to detect the temporal change but not applicable to detect

the difference in spatio domain, not to mention the joint spatiotemporal effect on

the precipitation. Looking into analysis of heatmaps of yearly sample mean surfaces

where Xips, tq, i “ 1941, ¨ ¨ ¨ , 1967, corresponds to the precipitation of the tth day in

the ith year at the sth station, intuitively we have observed that the yearly sample

mean surface of precipitation in the Great Plains is different from that in the Great

Lakes, refer to Fig. 2.2. Also, we can recognize from Fig. 2.2 that some profiles

of mean surface are same but others are different. These motivate us to develop

more powerful inferential procedures to detect if mean surfaces or its profiles have

significant difference for either different regions or different individual stations.

Location

D
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1 31
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100

200
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1.5

Figure 2.2: The heatmap of sample mean surface of precipitation during the time
1941-1967 in the Midwest, where the first 31 stations are located in the Great Plains
and the latter 28 stations are located in the Great Lakes.

Tracking back testing procedures for the equality of mean functions in the func-

tional data setting, existing works mainly focus on detecting the curve equality for

— 7 —
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univariate functional data. In the two-sample testing scenario, Benko et al. (2009)

presented bootstrap procedures for testing the equality of mean curves through the

eigenelements for two independent functional samples. Under the Gaussian assump-

tion, Zhang et al. (2010) considered the two-sample test based on L2-norm. Fremdt

et al. (2014) derived mean functions comparison through a normal approximation

method but only applicable to dense functional data samples. Pomann et al. (2016)

still solved testing the curve equality problem though in bivariate (two-dimensional

by their words) functional data setting and for distribution function testing. Regard-

ing the k-sample testing or the one-way ANOVA for functional data, works include

HANOVA (Fan and Lin, 1998), Cramér-von Mises type test (Cuevas et al., 2004;

Estévez-Pérez and Vilar, 2013), F -type test (Ramsay and Silverman, 2005; Zhang,

2013; Zhang and Liang, 2014), B-spline test (Górecki and Smaga, 2015), and Maha-

lanobis distance (Ghiglietti et al., 2017), among others. In the case of within-curve

dependence in each sample, Aston and Kirch (2012) detected the mean curve vari-

ation using L2-norm criterion. Staicu et al. (2014) and its multiple group extension

Staicu et al. (2015) worked on parametric testing relying on quite strong assumptions.

Notice that, throughout our literature review, since our awareness concentrates on

testing the equality of mean functions, we leave out other inferential topics such as

testing the equality of coefficient operators or testing independency within a sample,

and etc.

It has series of work in functional time series literature on testing the equality of

mean functions, where weak dependence between or within two samples are accom-

modated in reality. Testing mean function difference in such functional time series

study had still been on comparison of mean curve functions (Zhang et al., 2011;

Horváth et al., 2013, 2014; Horváth and Rice, 2015a,b; Torgovitski, 2015, among

others).

Aforementioned literature in both functional curve samples and functional time
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series have all inclined to testing the equality of mean curve functions, i.e. the

inferential target is on univariate functional data. However, for comparison between

samples of multivariate functional data, there have been few works by far. Only

Gromenko et al. (2017) raised testing the equality of the mean surfaces of bivariate

functional data, but eventually the equality of mean curves indexed at all locations

were tested. Also to the best of our knowledge, the profile test of mean surfaces has

not been considered for two bivariate functional data samples. Although the profile

test of mean surfaces may belong to the curve test scope, it attributes to two different

topics due to the different subjects. Above dire need in real-world data analysis and

literature review motivates us to develop valid tests for equality of means surfaces

and the corresponding profile test for bivariate functional data samples.

To address the problem in demand, firstly, we obtain the marginal eigen-function

of the pooled sample by marginal functional principal component analysis (FPCA)

and project the profiles of mean surfaces on marginal eigenfunctions. The profile

testing statistic measures the distance of the profile of mean surfaces for two bivariate

functional samples. Once the marginal eigenfunctions are obtained, the eigensurfaces

of the pooled sample can be constructed by further FPCA. The distance between

mean surfaces for two samples can be measured by the globe test statistic using the

analogous projection ideas. Consequently, our proposed profile testing procedures

can be implemented for every profile of the mean surface, which corresponds to

simultaneously test whether mean precipitation curves have significant difference for

every station. The globe test performs well in terms of both the size and the power

in that it includes the information of two domains effectively.

The major contribution of this paper is threefold. Firstly, the presented method-

ology may be the first one to detect difference of mean surfaces and its profile for

two-sample bivariate functional data. In contrast to the literature that we can search

out by far, of which the focus has almost all been on testing the equality of mean
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curves as a matter of fact. When one argument is fixed, our profile test methodology

can also simultaneously detect the mean difference in the other domain. Secondly,

our testing procedures are interpretable and easily implemented. This will help fill

out some theoretical gaps in functional inference and facilitate the real application

and interpretation in statistical perspective. Finally, asymptotic distributions of the

test statistics under null hypotheses has been derived. The consistency of test proce-

dure has been proved. In addition, simulation studies show that the proposed tests

have a good control of the type I error by the size and can detect difference in mean

surfaces and its profile effectively in terms of power in finite samples.

The rest of the paper is organized as follows. In Section 2.2, we describe the

model and data structure. The profile test procedure of mean surfaces for two bi-

variate functional data samples is presented in Section 2.3, while globe test procedure

is proposed in Section 2.4. The finite sample performance for several representative

scenarios is investigated in Section 2.5. In Section 2.6, we demonstrate two applica-

tions associated with the precipitation changes affected jointly by time and locations

in the Midwest of USA, and the trends in human mortality from European period

life tables. Theory proofs are included in Section 2.7.

2.2 Model and data structure

Let L2pS ˆ T q be the separable Hilbert space. tXpmqps, tq : ps, tq P S ˆ T u is a

square integrable stochastic process on L2pS ˆ T q with mean function µmps, tq “

EtXpmqps, tqu and covariance function

Cpmqtps, vq, pu, tqu “ EtXpmqc
ps, vqXpmqc

pu, tqu,

where Xpmqcps, tq “ Xpmqps, tq ´ µmps, tq, for m “ 1, 2, respectively. With this

notation, we can decompose Xpmqps, tq into

Xpmq
ps, tq “ µmps, tq ` ε

pmq
ps, tq, m “ 1, 2,
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where εpmqps, tq is the stochastic part of Xpmqps, tq with Etεpmqps, tqu “ 0 and covari-

ance function Cpmqtps, vq, pu, tqu.

Functional samples tX
pmq
i ps, tq,m “ 1, 2; i “ 1, ¨ ¨ ¨ , nmu may usually be modeled

as independent realizations of the underlying stochastic process Xpmqps, tq. In prac-

tice, tX
pmq
i ps, tq,m “ 1, 2; i “ 1, ¨ ¨ ¨ , nmu can not be observed, but rather, measure-

ments are taken at discrete time points. In this paper, we assume tX
pmq
i ps, tq,m “

1, 2; i “ 1, ¨ ¨ ¨ , nmu are recorded on a regular and dense grid of time points as follows,

X
pmq
i psil1 , til2q “ µmpsil1 , til2q ` ε

pmq
i psil1 , til2q;

m “ 1, 2; i “ 1, ¨ ¨ ¨ , nm; l1 “ 1, ¨ ¨ ¨ , N ; l2 “ 1, ¨ ¨ ¨ ,M.

In this paper, we are firstly interested in profile test of bivariate functional data

samples, i.e. for every fixed t˚ P T ,

HS
0 : µ1ps, t

˚
q “ µ2ps, t

˚
q vs. HS

1 : µ1ps, t
˚
q ‰ µ2ps, t

˚
q, s P S, (2.1)

or for every fixed s˚ P S,

HT
0 : µ1ps

˚, tq “ µ2ps
˚, tq vs. HT

1 : µ1ps
˚, tq ‰ µ2ps

˚, tq, t P T . (2.2)

Then we go to the second target to present a globe test procedure for bivariate

functional data samples with hypothesis below,

H0 : µ1ps, tq “ µ2ps, tq vs. H1 : µ1ps, tq ‰ µ2ps, tq, s P S, t P T . (2.3)

The equality in hypothesis (2.1) means that
ş

Stµ1ps, t
˚q ´ µ2ps, t

˚qu2ds “ 0 for

every fixed t˚ P T , and the alternative means that
ş

Stµ1ps, t
˚q ´ µ2ps, t

˚qu2ds ą

0. Analogously meaning can be interpreted for (2.2). However, null hypothesis of

(2.3) implies
ş

S

ş

T tµ1ps, tq ´ µ2ps, tqu
2dtds “ 0 while the alternative means that

ş

S

ş

T tµ1ps, tq ´ µ2ps, tqu
2dtds ą 0. For statistical inference of bivariate functional

data, marginal FPCA is a widely used tool, which often assumes that bivariate

— 11 —



CHAPTER 2. MEAN SURFACE TEST FOR TWO-SAMPLE FUNCTIONAL
DATA PhD Thesis

functional data can project onto finite-dimensional eigensurfaces (Li and Guan, 2014;

Park and Staicu, 2015; Aston et al., 2017). It is our start point for the proposed

profile and globe test procedures.

2.3 Profile test of bivariate functional data

Profile test of bivariate functional data is an important problem, as it allows to

provide multiple insight from multiple angles, and also is of interest in many applica-

tions. For example, in analysis of precipitation, the testing problem (2.2) corresponds

to test whether mean precipitation curves have significant difference before and after

1966 for every station, while the testing problem (2.1) means to test whether differ-

ent stations have significant difference for every day. Berkes et al. (2009) considered

detection the difference only on an individual station. However, it is difficult to im-

plement when the number of stations is large if we sequentially test for every station

by their method. So, we propose the profile test of mean functions which is easy to

implement and can simultaneously detect difference of all stations. In this section,

we address the test problem (2.1) only as (2.2) can be analogously implemented.

As a first step, the marginal covariance function is denoted to be G
pmq
S ps, uq “

ş

T C
pmqtps, tq, pu, tqudt, as the form of (5) in Chen et al. (2017), and may be estimated

by

pG
pmq
S psh, slq “

1

nmM

nm
ÿ

i“1

M
ÿ

k2“1

pX
pmqc
i psh, tik2q pX

pmqc
i psl, tik2q, (2.4)

where pX
pmqc
i ps, tq “ X

pmq
i ps, tq ´X

pmq
ps, tq with X

pmq
ps, tq “

1

nm

nm
ř

i“1

X
pmq
i ps, tq.

Denote

pGSps, uq “
n2

n1 ` n2

pG
p1q
S ps, uq `

n1

n1 ` n2

pG
p2q
S ps, uq, s, u P S.
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It is easy to see pGSps, uq
p
ÝÑ p1´ θqG

p1q
S ps, uq` θG

p2q
S ps, uq ” GSps, uq, where θ is

defined in Assumption 6 stated in next section and GSps, uq is the pooled covariance

function. Consequently, it has orthogonal eigenfunctions tψjujě1 and non-negative

eigenvalues tνjujě1 satisfying

ż

S
GSps, uqψjpuqdu “ νjψjpsq, s, u P S, j “ 1, 2, . . . .

Such eigencomponents can be numerically estimated by suitably discretized eigenequa-

tions,

ż

S

pGSps, uq pψjpuqdu “ pνj pψjpsq, j “ 1, 2, . . . , (2.5)

with orthogonal constraints on t pψjujě1.

Once the estimators of marginal eigen-functions pψjpsq, j “ 1, 2, . . . , are obtained,

we project the observations onto the marginal eigenfunctions and obtain the profile

estimators of mean functions as follows: for every fixed t˚ P T ,

pµmps, t
˚q “

J
ř

j“1

pη
pmq
j pt˚q pψjpsq, m “ 1, 2, (2.6)

with

pη
pmq
j pt˚q “

1

nm

nm
ÿ

i“1

pη
pmq
ij pt

˚
q, pη

pmq
ij pt

˚
q “

1

N

N
ÿ

l1“1

X
pmq
i psil1 , t

˚
q pψjpsil1q.

For practical implementation, one has to decide the magnitude of J . A practical

strategy is J “ mintj : pν1`pν2`¨¨¨`pνk
pνl`pν2`¨¨¨

ą qu, where pνl, l “ 1, 2, ¨ ¨ ¨ are defined in (2.5).

We find that q “ 90% threshold works well for our numerical examples.

Based on above discussion, we propose the following profile test statistic

xTPpt˚q “
n1n2

n1 ` n2

J
ÿ

j“1

´

pη
p1q
j pt

˚q ´ pη
p2q
j pt

˚q

¯2

pλjpt˚q
,
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where pλjpt
˚q “ n2

n1`n2

pλ
p1q
j pt

˚q` n1

n1`n2

pλ
p2q
j pt

˚q with pλ
pmq
j pt˚q “ n´1

m

řnm

i“1

!

pη
pmq
ij pt

˚q ´ pη
pmq
j pt˚q

)2

,

m “ 1, 2.

Remark 2.1. It is easy to see that n1n2

n1`n2

ş

rpµ1ps, t
˚q ´ pµ2ps, t

˚qs2dt
p
ÝÑ Un1,n2 “

n1n2

n1`n2

řK
l“1ppηlpt

˚q ´ pη2pt
˚qq2. However, the variance of Un1,n2 may be unnecessarily

inflated by the presence of, possibly many, very small estimates pµ1ps, t
˚q ´ pµ2ps, t

˚q.

This drawback can be remedied by giving a divisor to pλjpt
˚q.

We then establish asymptotic behaviors of the test statistic xTPpt˚q under the null

hypothesis HS
0 and the alternative one HS

1 . To derive the asymptotic properties of

profile test statistic, we make the following assumptions.

Assumption 2.1. ν1 ą ν2 ą ¨ ¨ ¨ where tνjuj“1,2,... are the eigenvalues of covariance

operates GSps, uq.

Assumption 2.2. For every fixed t˚, µmps, t
˚q,m “ 1, 2 may be written as µmps, t

˚q “

ř8

j“1 η
pmq
j pt˚qψjpsq, where η

pmq
j pt˚q “

ş1

0
µmps, t

˚qψjpsqds.

Assumption 2.3. Assume supps,tqPSˆT µ
2
mps, tq,m “ 1, 2 are bounded and Epsup |εmps, tq|4q,

m “ 1, 2 are bounded.

Assumption 2.4. The grid point ttil1 : l1 “ 1, . . . , Nu and tsil2 : l2 “ 1, . . . ,Mu

are equidistant. We assume n1{N
2 “ op1q, n1{M

2 “ op1q, n2{N
2 “ op1q and

n2{M
2 “ op1q.

Assumption 2.5. mintn1, n2u Ñ 8, n1{pn1`n2q Ñ θ for a fixed constant θ P p0, 1q.

Assumptions 2.1 and 2.3 are regular conditions. One needs these conditions to

uniquely (up to signs) choose ψjpsq and obtain the bound of pψjpsq´ψjpsq. Assump-

tion 2.2 means that the profiles of mean surface are projected onto a space that
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is generated by a large set of basis functions. Assumption 2.4 requires that func-

tional data are recorded on dense grid. Assumption 2.5 is of standard for two-sample

asymptotic inference.

Theorem 2.1. Under Assumptions 2.1-2.5 and HS
0 , we have xTPpt˚q

d
ÝÑ χ2

J , where

χ2
J stands for a χ2 -distributed random variable with J degrees of freedom. Under

HS
1 and 0 ă θ ă 1, we have xTPpt˚q

p
ÝÑ 8.

From the expression of xTPpt˚q and remark 2.1, we can see that xTPpt˚q depends on

sample sizes n1, n2, and pη
p1q
j pt

˚q´pη
p2q
j pt

˚q, j “ 1, ¨ ¨ ¨ , J , which reflects the difference of

profile mean functions µ1ps, t
˚q and µ2ps, t

˚q. Intuitively,
b

n1n2

n1`n2
ppη
p1q
j pt

˚q ´ pη
p2q
j pt

˚qqpλ
´1{2
j

has a limiting standard normal distribution under HS
0 . Theorem 2.1 shows that

xTPpt˚q asymptotically follows the chi-square distribution with J degrees of freedom

if HS
0 holds. Furthermore, xTPpt˚q is consistent under HS

1 . The proof of this theorem

is provided in Section 2.7.

2.4 Globe test of bivariate functional data

Compared with the profile test, the globe test of bivariate functional data attempts

to detect the joint effects impacted by both domains. In this section, we develop a

globe test method for bivariate functional data which aims to detect whether mean

surfaces of precipitation have significant difference over a specific time window and/or

a specific area, or whether two regions exist significant difference during different time

windows.

Based on the estimated marginal eigenfunctions pψjpsq in Section 2.3, we next

estimate the marginal functional principal component scores rξ
pmq
j,i ptq. The traditional
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integral estimates of rξ
pmq
j,i ptq based on the definition

rξ
pmq
j,i ptq “

ż

S
X
pmqc
i ps, tq pψjpsqds, i “ 1, . . . , nm; j “ 1, 2, . . . .

are

pξ
pmq
j,i ptq “

N
ÿ

l“2

X
pmqc
i psl, tq pψjpslqpsl ´ sl´1q,

i “ 1, . . . , nm; j “ 1, 2, . . . .

(2.7)

where N is the number of measurements for X
pmqc
i ps, tq in the direction S.

Notice that each score function pξ
pmq
j,i ptq is a centered new random curve. De-

note the covariance function of ξ
pmq
j,i ptq by G

pmq
T ,j pv, tq “ Etξ

pmq
j,i pvqξ

pmq
j,i ptqu. Then, the

estimator of G
pmq
T ,j is denoted as,

pG
pmq
T ,j pth, tlq “

1

nm

nm
ÿ

i“1

pξ
pmq
j,i pthq

pξ
pmq
j,i ptlq, th, tl P T ; j “ 1, 2, . . . .

Let

pGT ,jpv, tq “
n2

n1 ` n2

pG
p1q
T ,jpv, tq `

n1

n1 ` n2

pG
p2q
T ,jpv, tq, v, t P T ; j “ 1, 2, . . . .

It is easy to see pGT ,jpv, tq
p
ÝÑ p1 ´ θqG

p1q
T ,jpv, tq ` θG

p2q
T ,jpv, tq ” GT ,jpv, tq where

GT ,jpv, tq is the covariance function and has orthogonal eigenfunctions tφjkukě1 and

non-negative eigenvalues tνjkukě1 satisfying

ż

T
GT ,jpv, tqφjkpvqdv “ νjkφjkptq, v, t P T ; k, j “ 1, 2, . . . .

Then estimators of eigenvalues and eigenfunctions tpνjk, φjkptqq : j, k ě 1u are

obtained by the following equations,

ż

T

pGT ,jpv, tqpφjkpvqdv “ pνjkpφjkptq, k, j “ 1, 2, . . . , (2.8)
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with orthogonal constraints on tpφjkukě1.

Denote ϕjkps, tq ” φjkptqψjpsq and its consistent estimator by pϕjkps, tq “ pφjkptq pψjpsq.

We propose estimators of the mean surfaces which are projection of observations onto

a hyperspace spanned from the pooled eigensurfaces tpϕjkps, tq : j, k ě 1u, written as

pµmps, tq “
J
ÿ

j“1

Kj
ÿ

k“1

pη
pmq
jk pϕjkps, tq, m “ 1, 2, (2.9)

with

pη
pmq
jk “ 1

nm

nm
ř

i“1

pη
pmq
ijk , pη

pmq
ijk “

1
MN

M
ř

l2“1

N
ř

l1“1

X
pmq
i psil1 , til2qpϕjkpsil1 , til2q,

where selection of J is the same to in Section 2.3 and Kj can be decided by analogous

procedure. In details, we select Kj “ mintk :
pνj1`pνj2`¨¨¨`pνjk

pνj1`pνj2`¨¨¨
ą 0.9u, where pνjl,

l “ 1, 2, ¨ ¨ ¨ are defined in (2.8).

It is natural to take into consideration the term ĂTC ”
ş

S

ş

T tµ1ps, tq´µ2ps, tqu
2dtds

to measure the distance between two estimated mean surfaces.

It is readily seen that ĂTC
p
ÝÑ

J
ř

j“1

Kj
ř

k“1

´

pη
p1q
jk ´ pη

p2q
jk

¯2

. Therefore, H0 will be rejected

if ĂTC is large. Similarly, the variance of ĂTC may be unnecessarily inflated by the

presence of, possibly many, very small estimates pη
p1q
jk ´ pη

p2q
jk . This drawback can also

be remedied by giving a divisor to their variance.

Based on the above steps, we propose the following test statistic

yTM “
n1n2

n1 ` n2

J
ÿ

j“1

Kj
ÿ

k“1

´

pη
p1q
jk ´ pη

p2q
jk

¯2

pλjk
,

where pλjk “ n2pn1`n2q
´1
pλ
p1q
jk `n1pn1`n2q

´1
pλ
p2q
jk with pλ

pmq
jk “ pnm´1q´1

řnm

i“1

´

pη
pmq
ijk ´ pη

pmq
jk

¯2

,

m “ 1, 2.
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From (2.9), we can see that X
p1q
i p¨, ¨q and X

p2q
i p¨, ¨q are directly projected on the

common basis surface and obtain pη
p1q
ijk and pη

p2q
ijk. pη

p1q
jk and pη

p2q
jk , which are the average of

such projection, and hence can be viewed as the scores of projection that two mean

surfaces µ1ps, tq and µ2ps, tq project on the same basis function space, respectively.

The representation of yTM measures the total such deviation between two samples.

Therefore, the proposed method has a nice explanation and easy to implement.

Next we establish asymptotic behavior of the test statistic yTM under hypotheses

(2.3). Additionally, we need the following assumptions.

Assumption 2.6. νj1 ą νj2 ą ¨ ¨ ¨ where tνjkuk“1,2,...;j“1,2,... are the eigenvalues of

the covariance function GT pv, tq.

Assumption 2.7. Assume µmps, tq,m “ 1, 2 may be written as µmps, tq “
ř8

j“1

ř8

k“1 η
pmq
jk ϕjkps, tq,

where η
pmq
jk “

ş1

0

ş1

0
µmps, tqϕjkps, tqdsdt.

Assumption 2.6 along with Assumption 2.3 in Section 2.3 ensures the bound of

pφjkptq ´ pφjkptq. The interpretation of Assumption 2.7 is similar to Assumption 2.2

in Section 2.3.

Theorem 2.2. Under Assumptions 2.1-2.7 and H0, we have

yTM
d
ÝÑ χ2

J
ř

j“1
Kj

,

where χ2
řJ

j“1Kj
stands for a χ2-distributed random variable with

řJ
j“1Kj degrees of

freedom. Under H1 and 0 ă θ ă 1, we have yTM
p
ÝÑ 8.

Intuitively
b

n1n2

n1`n2

´

pη
p1q
jk ´ pη

p2q
jk

¯

pλ
´1{2
jk has a limiting standard normal distribution

under H0. Theorem 2.2 shows that yTM asymptotically follows the chi-square dis-

tribution with
J
ř

j“1

Kj degrees of freedom under H0. The consistency of yTM is also
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illustrated under H1, which together provides clear theoretical justification of the

empirical properties of the proposed test. The proof of this theorem is provided in

2.7.

2.5 Simulation studies

We conduct extensive simulation studies and report two representative examples

here. Examples 2.1 and 2.2 evaluate two proposed testing procedures in terms of

empirical size and power when covariance functions of two samples are identical or

distinct, separately. The data grid for argument s consists of 100 equispaced points

on r0, 1s, and the grids for argument s consists of 50 equispaced points on r0, 1s.

Each pair of data-generated processes was replicated 1000 times.

Example 2.1. Identical covariance functions.

In this example, we consider the following model

X
p1q
i ps, tq “ ε

p1q
i ps, tq, i “ 1, . . . , n1,

X
p2q
i ps, tq “ δps` tq ` ε

p2q
i ps, tq, i “ 1, . . . , n2,

(2.10)

where ε
p1q
i ps, tq and ε

p2q
i ps, tq are independently generated from

εps, tq “
2
ÿ

j“1

ξjptqψjpsq, s P r0, 1s, t P r0, 1s,

with ψ1psq “ s2 and ψ2psq “ s3, s P r0, 1s. ξjptq is generated from

ξjptq “
2
ř

k“1

χjkφjkptq, j “ 1, 2,

with φ11ptq “ φ21ptq “ ´
‘

2 cosp2πtq, φ12ptq “ φ22ptq “
‘

2 sinp2πtq, t P r0, 1s;

χ11 „ Np0, 3q, χ12 „ Np0, 1.5q, χ21 „ Np0, 2q, and χ22 „ Np0, 1q.
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Example 2.2. Distinct covariance functions.

To compare with Example 2.1, we consider the following model

X
p1q
i ps, tq “ ε

p1q
i ps, tq, i “ 1, . . . , n1,

X
p2q
i ps, tq “ δps` tq ` ε

p2q
i ps, tq, i “ 1, . . . , n2,

(2.11)

where ε
p1q
i ps, tq is generated from

εp1qps, tq “
ř2
j“1 ξjptqψjpsq, s P r0, 1s, t P r0, 1s,

and ε
p2q
i ps, tq from

εp2qps, tq “ ξ1ptqψ1psq, s P r0, 1s, t P r0, 1s,

with ψ1psq “ s2 and ψ2psq “ s3, s P r0, 1s. ξjptq is generated from

ξjptq “
2
ř

k“1

χjkφjkptq, j “ 1, 2,

with φ11ptq “
‘

2 cosp2πtq, φ21ptq “
‘

2 sinp2πtq, φ12ptq “ 2 cosp4πtq, φ22ptq “

2 sinp4πtq, t P r0, 1s; χ11 „ Np0, 3q, χ12 „ Np0, 1.5q, χ21 „ Np0, 2q, and χ22 „

Np0, 1q.

Example 2.1 can be seen as two-sample tests where covariance functions are

identical, while covariance functions of Example 2.2 are distinct. The sample size

pair is taken to be pn1, n2q “ p25, 75q, p50, 150q, p100, 300q, p50, 50q, p100, 100q, and

p200, 200q, respectively. The empirical sizes of profile test are computed for different

s and t. To save space, we here only present the results of different s for pn1, n2q “

p100, 100q in Fig. 2.3. Next, we can also compute the empirical sizes of the globe

test. The results are reported in Table 2.1. The empirical power can be evaluated

when δ ‰ 0. The empirical power at δ “ 0.4, 0.6, 0.8 of profile tests are displayed
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in Fig. 2.4 while the results of globe tests at δ “ 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 are scatter

plotted in Fig. 2.5.
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Figure 2.3: The results of empirical size when covariance functions of two samples
are identical (left column) and distinct (right column).

Table 2.1: Empirical sizes of two proposed test procedures in Examples 2.1 and 2.2.

pn1, n2q (50,50) (100,100) (200,200) (25,75) (50,150) (100,300)
Example 2.1 0.079 0.060 0.050 0.111 0.085 0.061
Example 2.2 0.074 0.064 0.048 0.080 0.062 0.048

Several observations can be concluded from Fig. 2.3 and Fig. 2.4. Firstly, the

profile tests have a good control of the type I error. The empirical sizes of identical

covariance scenarios are better than that of distinct covariance cases. Secondly, the

empirical power of the test becomes larger when δ increases from 0.4 to 0.8, which is

expected. Lastly, the empirical power for the same covariance case is slightly larger

than that of the different covariance function cases.
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Figure 2.4: The results of empirical power when covariance functions of two samples
are identical (left column) and distinct (right column).
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Figure 2.5: The results of empirical power when covariance functions of two samples
are identical (left column) and distinct (right column). Top: The results of empirical
power of pn1, n2q “ p25, 75q (red), p50, 150q (green) and p100, 300q (blue). Bottom:
The results of empirical power of pn1, n2q “ p50, 50q (red), p100, 100q (green) and
p200, 200q (blue).

We may observe from Table 2.1 and Fig. 2.5 that the globe test approach can

keep steady empirical size even at pairs of small sample sizes pn1, n2q “ p25, 75q
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or p50, 50q. The empirical power of two test methods increases as the sample size

increases. When δ increases from 0.2 to 1.2, the empirical power of the test becomes

more and more large, which is evidence of the consistency of the testing procedures.

Also the empirical power of equal sample size scenario is slightly better than that of

unequal sample size one.

2.6 Real data examples

To illustrate profile and globe tests methods, we analyse the historical precipitation

data in the Midwest of USA and the period lifetables in Europe for human mortality

trend analysis.

2.6.1 Precipitation data

The first example is used to analyze the changes of precipitation during 1941-2000

or in different regions in the Midwest of USA. Berkes et al. (2009) detected no

changes during the period 1941-2000 for only one station while Gromenko et al.

(2017) detected the change of precipitation during 1941-2000 over the whole region.

The precipitation data is available from the global historical climatological net-

work database. The comprehensive U.S. Climate Normals dataset includes various

derived products including daily air temperature normals, precipitation normals and

hourly normals. The dataset that we analyzed in this paper can be downloaded

directly from GHCN (Global Historical Climatology Network)-Daily, an integrated

public database of NOAA (https://www.ncdc.noaa.gov/oa/climate/ghcn-dai

ly/) by an R interface. Our interest is daily precipitation records from Midwest-

ern states including Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri,

Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. In Fig. 2.1, totally

59 locations of the climate monitoring stations are indicated with blue circles ˝ in 4

states from the Great Plains (light green region), and with red triangles4 in 5 states
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from the Great Lakes (yellow region). Notice that there is no climate monitoring

stations in Iowa, Michigan, and Missouri. We target to detect whether the changes

of average precipitation took place for different time phases or regions.

Let Yips, tq be the precipitation of the tth day in the ith year of the sth station.

Before we apply the proposed method, we need to do registration with the data. To

remove the effects due to the heavy tail distribution, we apply the transformation

Zips, tq “ log10tYips, tq ` 1u,

where tYips, tqu are original records. After the transformation, we pre-smooth data by

using the cubic splines function. It is noted that the data of every climate monitoring

stations from 1941 to 2000 can be constituted into a time series with length 21900(365

day by 60 year). Then, the data of the 59 climate monitoring stations can be seen

as a sample with sample size being 21900 and variables being 59. According to the

empirical Pearson correlation of 59 variables, the 59 climate monitoring stations is

stringed into a function by the stringing method in Chen et al. (2011b). Consequently

the spatiotemporal data tYips, tqu are converted into the bivariate functional data

tXips, tqu. Notice that the difference between the spatiotemporal data Yips, tq and

the bivariate functional data Xips, tq is that the argument s in the former expression

has no order but it is ranked in the latter.

Gromenko et al. (2017) studied the data Yips, tq and detected out the change

of the average precipitation at about 1967. In this subsection, we firstly apply the

profile test to check if the profile of mean surfaces are equal during the periods 1941-

1967 and 1968-2000. It corresponds to test whether the average precipitation of

every station has changes during these periods. The p-values of the profile tests are

computed and results are displayed in Fig. 2.6. As can be seen from Fig. 2.6, most of

the p-values are less than 0.05 or significant except 11 stations. For ease of reference,

we list the latitude and longitude in Table 2.2 for 11 stations. This displays that the
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Table 2.2: The latitude and longitude of stations where the p-value of profile test
are more than 0.1.

Code latitude longitude
USC00148235 38.4661 -101.7758
USC00250050 42.5522 -99.8556
USC00252145 41.4086 -102.9661
USC00255090 40.8508 -101.5428
USC00325479 46.8128 -100.9097
USC00394007 43.4378 -103.4739
USC00398307 45.4283 -101.0764
USC00394007 43.4378 -103.4739
USC00392797 45.7644 -99.6353
USC00321871 48.9075 -103.2944
USC00327530 46.8886 -102.3192

average precipitation of most locations had changed during the periods 1941-1967

and 1968-2000.
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Figure 2.6: The p-value of the profile tests for every station.
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Next, we implement the following globe test

HMidwest
0 : µ1ps, tq “ µ2ps, tq vs. HMidwest

1 : µ1ps, tq ‰ µ2ps, tq, s P R59, t P R365.

From the globe test procedure presented in Section 2.4 together with the asymptotic

distribution of the test statistic yTM, we calculate the corresponding p-value to be

0.001. This result is consistent with the conclusion of Gromenko, Kokoszka and

Reimherr. That is, the patterns of mean surfaces are different over the whole Midwest

region between before 1967 and after 1967. Intuitively, according to the results of

the profile test, the precipitation had changed in most of locations which lead to the

variations of whole region.

The heatmaps in Fig. 2.2 leak the information that sample mean values of annual

precipitation in the Great Lakes (GL) based on 28 stations are more than that in

the Great Plains (GP). This motivates us to further explore how the mean functions

of bivariate functional data tXips, tqu was affected by temporal and spatial effects

from both domains. It is natural to test the equality of two mean surfaces of the

precipitation for the 31 stations located in the GP and the 28 stations located in the

GL during the periods 1941-1967 and 1968-2000, respectively by

H1967´
0 : µGP

“ µGL vs. H1967´
1 : µGP

‰ µGL,

and

H1967`
0 : µGP

“ µGL vs. H1967`
1 : µGP

‰ µGL.

All the p-values by globe test procedures for above two hypotheses are tiny approach-

ing to zero indicating rejecting the null hypotheses but in favor of the alternative

one. It is consistent with the intuition that the mean patterns of precipitation at

Great Plains and at Great Lakes are different.

Furthermore, for the 28 stations located in the GL, we test the mean surfaces of
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Table 2.3: Results of the tests based on statistics yTM.

statistic the observed value of a statistic p-value
HMidwest

0 : µ1967´ps, tq “ µ1967`ps, tq
yTM 123.6 0.001

HGP
0 : µ1967´ps, tq “ µ1967`ps, tq

yTM 59.7175 0.5677

HGL
0 : µ1967´ps, tq “ µ1967`ps, tq

yTM 108.20 0.0163

H1967´
0 : µGPps, tq “ µGLps, tq

yTM 973.11 0.0000

H1967`
0 : µGPps, tq “ µGLps, tq

yTM 1116.4 0.0000

precipitation before and after 1967, denoted by

HGL
0 : µ1967´

“ µ1967` vs. HGL
1 : µ1967´

‰ µ1967`.

The p-value is 0.0163. The null hypothesis would be rejected at 0.05 significance

level. Testing equality of the mean surfaces of precipitation before and after 1967 is

also implemented for the 31 stations located in the GP, denoted by

HGP
0 : µ1967´

“ µ1967` vs. HGP
1 : µ1967´

‰ µ1967`.

The p-values by globe testing method are 0.5677. The null hypothesis would not be

rejected at 0.05 significance level. That is, averagely speaking, the precipitation in

the Great Lakes changed before 1967 and after 1967, whereas the mean pattern of

precipitation in the Great Plains had no change before 1967 and after 1967. There-

fore, our analysis provides evidence that change in the mean function of precipitation

was mainly due to the Great Lakes but the Great Plains may be affected little. By

looking up the map, we find that all the stations in Table 2.2 are located in the Great

Plains. It further verify the reliability of the proposed methods. All testing results

are presented in Table 2.3.
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2.6.2 European human mortality rate data

In the second example, we will analyse the trends in human mortality based on the

records in the period life tables during the calendar years 1960-2006 for Europe coun-

tries. A period life table represents the mortality conditions at a specific moment in

time. It is approachable from the Human Mortality Database via the website link-

age www.mortality.org (Wilmoth et al., 2007). The analysis of trends in human

mortality is important to recover the demographic impacts. Results of such research

will benefit the prediction and forecasting of future cohort mortality (Vaupel et al.,

1998; Oeppen and Vaupel, 2002). We focus on comparison of different countries or

genders, specifically on the older ages over 50 years old.

There are 32 countries included in the European period life tables. It contains five

Eastern European countries, Belarus, Bulgaria, Russia, Ukraine and Lithuania, and

the remaining 27 Western European countries. Following the notation introduced

in Section 2.3, X
p1q
i ps, tq, i “ 1, . . . , 5, denotes the mortality rate of the five Eastern

European countries for subjects at age s and calendar year t, where 50 ď s ď 90,

focusing on the death rates of older individuals, and on a recent block of 47 years,

1960 ď t ď 2006. Similarly, X
p2q
i ps, tq, i “ 1, . . . , 27, denotes the mortality rate for

other countries. The sample mean function pµ1ps, tq “
ř5
i“1X

p1q
i ps, tq and pµ2ps, tq “

ř27
i“1X

p2q
i ps, tq for two clusters of countries are visualized in Fig. 2.7. The heatmaps

and sample mean surfaces show obvious opposite trend of mortality rates particularly

for very aged people in Eastern and Western European countries as the calendar year

passed 1980 or so. We apply the profile and globe test procedures to test if the two

underlying mean surfaces and its profile are different.
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Figure 2.7: The heatmap of sample mean surface of precipitation during the time
1941-1967 in the Midwest, where the first 31 stations are located in the Great Plains
and the latter 28 stations are located in the Great Lakes.

According to profile test method introduced in Section 2.3, we implement the

tests (2.1) and (2.2). The p-values for fixed s˚ or t˚ are calculated, respectively.

The results are presented in Fig. 2.8. For every fixed age s˚, we find that all of

p-values are approaching to zero. This indicates that the mean mortality rates of

the Eastern and Western European is different for every age s˚ “ 50, ¨ ¨ ¨ , 90. For

every fixed year t˚, almost all p-values are less than 0.05 except for years t˚ “ 1978

and 1986. Sequentially, we implement the globe test for the mean mortality rates

of the Eastern and Western European. The numbers of included components is
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J “ 2, K1 “ 2, K2 “ 2 are chosen by the fraction of variance explained (FVE)

criterion with the threshold 0.90. Based on the asymptotic distribution of the test

statistic yTM, the p-value is calculated to be 0. It coincides with the intuition on

images in Fig. 2.7 and is evidence that the mean surfaces of the mortality rates are

different between the Eastern and Western European countries. Also, it is consistent

with the conclusion of the profile test because almost of HS
0 and HT

0 are rejected for

fixed s˚ and t˚.
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Figure 2.8: The p-value of the profile tests for every age (left) and year (right).

Next we examine the equality of mean surfaces and its profile between female

and male clusters in West Europe. The heatmaps and sample mean surfaces for

male and female clusters are displayed in Fig. 2.9. Intuitively it does not show

obvious difference. However, all the p-values of profile tests are zero for fixed s˚

and t˚. Furthermore, we also implement globe test and obtain the p-value that is 0.

Therefore, the mean surface and its profile are different in Western Europe for aged

people in different gender type.

— 30 —



PhD Thesis
CHAPTER 2. MEAN SURFACE TEST FOR TWO-SAMPLE FUNCTIONAL

DATA

50

60

70

80

90

1960

1980

2000

2020

0

0.1

0.2

0.3

0.4

50

60

70

80

90

1960

1980

2000

2020

0

0.1

0.2

0.3

0.4

Figure 2.9: Top: Sample means of the mortality rate of male. Bottom: Sample
means of the mortality rate of female.

2.7 Proof of the theorems

In order to prove the Theorems 2.1 and 2.2, we first introduce several lemmas.

Lemma 2.1. Under Assumptions 2.1 and 2.3, we have

max
1ďjďJ

} pψjpsq ´ ĉjψjpsq} “ Optpn1 ` n2q
´1{2u,

where pcj “ signp pψj, ψjq.
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Lemma 2.2. Under Assumptions 2.3 and 2.6, we have

max
1ďjďJ ;1ďkďKj

}pφjkptq ´ d̂jkφjkptq} “ Optpn1 ` n2q
´1{2u,

where pdjk “ signppφjk, φjkq.

The proof of Lemmas 2.1 and 2.2 can easily be obtained by the Lemma 4.3 of

Bosq (2000).

Lemma 2.3. Under Assumptions 2.1, 2.3 and 2.6, we have

max
1ďjďJ ;1ďkďKj

}pϕjkps, tq ´ ϕjkps, tq} “ Optpn1 ` n2q
´1{2u

The proof of Lemma 2.3 can easily be obtained by Lemmas 2.1 and 2.2.

Proof of Theorem 2.1

Firstly, we prove

n1
1{2

´

pη
p1q
j pt

˚
q ´ η

p1q
j pt

˚
q

¯

d
ÝÑ N

´

0, λ
p1q
j pt

˚
q

¯

,

n2
1{2

´

pη
p2q
j pt

˚
q ´ η

p2q
j pt

˚
q

¯

d
ÝÑ N

´

0, λ
p2q
j pt

˚
q

¯

,

(2.12)

where

λ
p1q
j pt

˚
q “

ż 1

0

ż 1

0

ψjpsqC
p1q
tps, t˚q, pu, t˚quψjpuqdsdu,

λ
p2q
j pt

˚
q “

ż 1

0

ż 1

0

ψjpsqC
p2q
tps, t˚q, pu, t˚quψjpuqdsdu,
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For the term n1
1{2

´

pη
p1q
j pt

˚q ´ η
p1q
j pt

˚q

¯

, it can be observed that

pη
p1q
j pt

˚
q “

1

n1

n1
ÿ

i“1

1

N

N
ÿ

l1“1

X
p1q
i psil1 , t

˚
qψjpsil1q

`

#

1

n1

n1
ÿ

i“1

1

N

N
ÿ

l1“1

X
p1q
i psil1 , t

˚
q pψjpsil1q

´
1

n1

n1
ÿ

i“1

1

N

N
ÿ

l1“1

X
p1q
i psil1 , t

˚
qψjpsil1q

+

” A1 ` A2.

(2.13)

For A1, we have

A1 “
1

n1

n1
ÿ

i“1

1

N

N
ÿ

l1“1

ε
p1q
i psil1 , t

˚
qψjpsil1q

`
1

n1

n1
ÿ

i“1

1

N

N
ÿ

l1“1

µ1psil1 , t
˚
qψjpsil1q

” A11 ` A12.

(2.14)

It is easy to see that A11 is the average of independent and identically distributed

random variables with mean EpA11q “ 0 and variance varpA11q “ λ
p1q
j pt

˚q. By the

central limit theorem, we obtain

n1
1{2A11

d
ÝÑ N

´

0, λ
p1q
j pt

˚
q

¯

. (2.15)

For A12, according to Assumption 2.2, we have

A12 ´ η
p1q
j pt

˚
q “

1

n1

n1
ÿ

i“1

1

N

N
ÿ

l1“1

µ1psil1 , t
˚
qψjpsil1q ´

ż 1

0

µ1ps, t
˚
qψjpsqds

” O

ˆ

1

N

˙

.

(2.16)

— 33 —



CHAPTER 2. MEAN SURFACE TEST FOR TWO-SAMPLE FUNCTIONAL
DATA PhD Thesis

Combing (2.13), (2.14), (2.15), (2.16) and Assumption 2.4, we obtain

n1
1{2

´

A1 ´ η
p1q
jk

¯

d
ÝÑ N

´

0, λ
p1q
j pt

˚
q

¯

. (2.17)

For A2, we have

A2 “
1

n1

n1
ÿ

i“1

1

N

N
ÿ

l1“1

µ1psil1 , t
˚
qt pψjpsil1q ´ ψjpsil1qu

`
1

n1

n1
ÿ

i“1

1

N

N
ÿ

l1“1

ε
p1q
i psil1 , t

˚
qt pψjpsil1q ´ ψjpsil1qu

” A21 ` A22.

(2.18)

It is easy to see

EpA2
21q ď

c

n2
1

n1
ÿ

i“1

1

N2

N
ÿ

l1“1

tµ2
1psil1 , t

˚
qEr pψjpsil1q ´ ψjpsil1qs

2
u

`
c

n2
1

n1
ÿ

i“1

1

NpN ´ 1q

ÿ

l1‰l
1

1

tµ1psil1 , t
˚
qµ1psil11

, t˚q

ˆ Er pψjpsil1q ´ ψjpsil1qsr
pψjpsil11

q ´ ψjpsil11
qsu

” A211 ` A212

For A211, by Assumption 2.3 and Lemma 2.1, we have

A211 ď sup
ps,tqPSˆT

µ2
1ps, tq

c

n2
1

n1
ÿ

i“1

1

N2

N
ÿ

l1“1

Er pψjpsil1q ´ ψjpsil1qs
2
u

“ O

ˆ

1

n1N

˙

(2.19)

According to Cauchy-Schwarz inequality, we obtain

A212 “ O

ˆ

1

n1N

˙

(2.20)

— 34 —



PhD Thesis
CHAPTER 2. MEAN SURFACE TEST FOR TWO-SAMPLE FUNCTIONAL

DATA

By (2.18), (2.19), (2.20) and Assumption 2.4, we have A21 “ oppn
´1{2
1 q. Similarity,

we can obtain A22 “ oppn
´1{2
1 q.

Combing above discussion, we have

A2 “ op

´

n
´1{2
1

¯

. (2.21)

By (2.13), (2.17) and (2.21), we obtain n
1{2
1

´

pη
p1q
j pt

˚q ´ η
p1q
j pt

˚q

¯

d
ÝÑ N

´

0, λ
p1q
j pt

˚q

¯

.

Similarly, we can prove n
1{2
2

´

pη
p2q
j pt

˚q ´ η
p2q
jk pt

˚q

¯

d
ÝÑ N

´

0, λ
p2q
j pt

˚q

¯

. The proof of

(2.12) is completed.

Secondly, we prove

pλ
p1q
j pt

˚
q

p
ÝÑ λ

p1q
j pt

˚
q pλ

p2q
j pt

˚
q

p
ÝÑ λ

p2q
j pt

˚
q. (2.22)

It can be observed that

pλ
p1q
j pt

˚
q “

1

n1

n1
ÿ

i“1

1

N2

N
ÿ

l1“1

rXipsl1 , t
˚
q pψjpsl1q ´ pη

p1q
j pt

˚
qs

N
ÿ

l1“1

rXipsl1 , t
˚
q pψjpsl1q ´ pη

p1q
j pt

˚
qs

“
1

n1

n1
ÿ

i“1

řN
l1“1

řN
l
1

1“1 εipsl1 , t
˚qεipsl11

, t˚q pψjpsl1q
pψjpsl11

q

N2

`
1

n1

n1
ÿ

i“1

$

&

%

1

N

N
ÿ

l1“1

εipsl1 , t
˚
qpφjpsl1q

»

–

1

N

N
ÿ

l
1

1“1

µpsl11
, t˚q pψjpsl11

q ´ pη
p1q
j pt

˚
q

fi

fl

,

.

-

`
1

n1

n
ÿ

i“1

$

&

%

1

N

N
ÿ

l
1

1“1

εipsl11
, t˚q pψjpsl11

qr
1

N

N
ÿ

l1“1

µpsl1 , t
˚
q pψjpsl1q ´ pη

p1q
j pt

˚
qs

,

.

-

`
1

n1

n1
ÿ

i“1

$

&

%

1

N2

»

–

N
ÿ

l1“1

lµpsl1 , t
˚
q pψjpsl1q ´ pη

p1q
j pt

˚
qsr

N
ÿ

l
1

1“1

µpsl11
, t˚q pψl1 psl11

q ´ pη
p1q
j pt

˚
q

fi

fl

,

.

-

” B1 `B2 `B3 `B4.
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It is easy to see that B1
p
ÝÑ λ

p1q
j pt

˚q. Next, we analyze the term B2. In fact, by

(2.12) and Lemma 2.1, we have

1

N

N
ÿ

l
1

1“1

µpsl11
, t˚q pψjpsl11

q ´ pη
p1q
j pt

˚
q “ opp1q

According to (2.15) and Lemma 2.1, we have

1

n1

n1
ÿ

i“1

1

N

N
ÿ

l1“1

εipsl1 , t
˚
qpφjpsl1q “ Opp1q.

Then, we have B2 “ opp1q. Using the arguments similar to that of B2, we have

B3 “ opp1q.

Similarity, we can prove

B4 “ opp1q.

So, the proof of (2.22) is completed. By (2.12) and (2.22), together with Slutsky’s

lemma, the firstly part of Theorem 2.1 have been proved.

Next, we prove yTP pt˚q
p
ÝÑ 8 under HS

A. According to the results in the above

proof, we have for j “ 1, . . . , J ,

pη
p1q
j pt

˚
q

p
ÝÑ η

p1q
j pt

˚
q, pη

p2q
j pt

˚
q

p
ÝÑ η

p2q
j pt

˚
q.

Then it yields that

J
ÿ

j“1

rpη
p1q
j pt

˚q ´ pη
p2q
j pt

˚q

pλjpt˚q
´

J
ÿ

j“1

rη
p1q
j pt

˚q ´ η
p1q
j pt

˚qs2

λjpt˚q

p
ÝÑ 0.

Therefore, under HS
A and Assumption 2.5, we have

yTP pt˚q “
n1n2

n1 ` n2

J
ÿ

j“1

ppη
p1q
j pt

˚q ´ pη
p2q
j pt

˚qq2

pλjpt˚q

p
ÝÑ

n1n2

n1 ` n2

J
ÿ

j“1

pη
p1q
j pt

˚q ´ η
p2q
j pt

˚qq2

λjpt˚q
Ñ 8.

Then, Theorem 2.1 is proved.
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Proof of Theorem 2

The proof of Theorem 2.2 is similar to that of Theorem 2.1, and so we only outline

the main section. If we can prove

n1
1{2

´

pη
p1q
jk ´ η

p1q
jk

¯

d
ÝÑ N

´

0, λ
p1q
jk

¯

, n2
1{2

´

pη
p2q
jk ´ η

p2q
jk

¯

d
ÝÑ N

´

0, λ
p2q
jk

¯

, (2.23)

where

λ
p1q
jk “

ż 1

0

ż 1

0

ż 1

0

ż 1

0

ϕjkps, vqC
p1q
tps, uq, pv, tquϕjkpu, tqdsdudvdt,

λ
p2q
jk “

ż 1

0

ż 1

0

ż 1

0

ż 1

0

ϕjkps, vqC
p2q
tps, uq, pv, tquϕjkpu, tqdsdudvdt,

then together with Slutsky’s lemma, Theorem 2.2 can be easily proved.

For the term n1
1{2

´

pη
p1q
jk ´ η

p1q
jk

¯

, it can be observed that

pη
p1q
jk “

1

n1

n1
ÿ

i“1

1

MN

M
ÿ

l2“1

N
ÿ

l1“1

X
p1q
i psil1 , til2qϕjkpsil1 , til2q

`

#

1

n1

n1
ÿ

i“1

1

MN

M
ÿ

l2“1

N
ÿ

l1“1

X
p1q
i psil1 , til2qpϕjkpsil1 , til2q

´
1

n1

n1
ÿ

i“1

1

MN

M
ÿ

l2“1

N
ÿ

l1“1

X
p1q
i psil1 , til2qϕjkpsil1 , til2q

+

” D1 `D2.

(2.24)

For D1, we have

D1 “
1

n1

n1
ÿ

i“1

1

MN

M
ÿ

l2“1

N
ÿ

l1“1

ε
p1q
i psil1 , til2qϕjkpsil1 , til2q

`
1

n1

n1
ÿ

i“1

1

MN

M
ÿ

l2“1

N
ÿ

l1“1

µ1psil1 , til2qϕjkpsil1 , til2q

” D11 `D12.

(2.25)
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It is easy to see that D11 is the average of independent and identically distributed

random variables with mean EpD11q “ 0 and variance varpD11q “ λ
p1q
jk . By the

central limit theorem, we obtain

n1
1{2D11

d
ÝÑ N

´

0, λ
p1q
jk

¯

. (2.26)

For D12, according to Assumption 2.7, we have

D12 ´ η
p1q
jk “

1

n1

n1
ÿ

i“1

1

MN

M
ÿ

l2“1

N
ÿ

l1“1

µ1psil1 , til2qϕjkpsil1 , til2q ´

ż 1

0

ż 1

0

µ1ps, tqϕjkps, tqdsdt

” O

ˆ

1

MN

˙

.

(2.27)

Combing (2.25), (2.26), (2.27) and Assumption 2.4, we obtain

n1
1{2

´

D1 ´ η
p1q
jk

¯

d
ÝÑ N

´

0, λ
p1q
jk

¯

. (2.28)

For D2, we have

A2 “
1

n1

n1
ÿ

i“1

1

MN

M
ÿ

l2“1

N
ÿ

l1“1

µ1psil1 , til2qtϕ̂jkpsil1 , til2q ´ ϕjkpsil1 , til2qu

`
1

n1

n1
ÿ

i“1

1

MN

M
ÿ

l2“1

N
ÿ

l1“1

ε
p1q
i psil1 , til2qtϕ̂jkpsil1 , til2q ´ ϕjkpsil1 , til2qu

” A21 ` A22.

(2.29)

It is easy to see

EpA2
21q ď

c

n2
1

n1
ÿ

i“1

1

M2N2

M
ÿ

l2“1

N
ÿ

l1“1

tµ2
1psil1 , til2qErϕ̂jkpsil1 , til2q ´ ϕjkpsil1 , til2qs

2
u

`
c

n2
1

n1
ÿ

i“1

1

MpM ´ 1qNpN ´ 1q

ÿ

l2‰l
1

2

ÿ

l1‰l
1

1

tµ1psil1 , til2qµ1psil11
, til12

q

ˆ Erϕ̂jkpsil1 , til2q ´ ϕjkpsil1 , til2qsrϕ̂jkpsil11
, til12

q ´ ϕjkpsil11
, til12

qsu

” A211 ` A212

(2.30)
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For A211, by Assumption 2.4 and Lemma 2.3, we have

A211 ď sup
ps,tqPSˆT

µ2
1ps, tq

c

n2
1

n1
ÿ

i“1

1

M2N2

M
ÿ

l2“1

N
ÿ

l1“1

Erϕ̂jkpsil1 , til2q ´ ϕjkpsil1 , til2qs
2
u

“ O

ˆ

1

n1MN

˙

(2.31)

According to Cauchy-Schwarz inequality, we obtain

A212 “ O

ˆ

1

n1MN

˙

(2.32)

By (2.30), (2.31), (2.32) and Assumption 2.4, we have A21 “ oppn
´1{2
1 q. Similarly, we

can obtain A22 “ oppn
´1{2
1 q.

Combing the above discussions, we have

A2 “ op

´

n
´1{2
1

¯

. (2.33)

By (2.24), (2.28) and (2.33), we obtain n
1{2
1

´

pη
p1q
jk ´ η

p1q
jk

¯

d
ÝÑ N

´

0, λ
p1q
jk

¯

. Similarly,

we can prove n
1{2
2

´

pη
p2q
jk ´ η

p2q
jk

¯

d
ÝÑ N

´

0, λ
p2q
jk

¯

. The proof of (2.23) is then com-

pleted.

According to (2.23), we have

η̂
p1q
jk

p
ÝÑ η

p1q
jk , η̂

p2q
jk

p
ÝÑ η

p2q
jk .

Under H1, we obtain

yTM
p
ÝÑ

n1n2

n1 ` n2

J
ř

j“1

Kj
ř

k“1

´

η
p1q
jk ´ η

p2q
jk

¯2

λjk

p
ÝÑ 8.

Then, Theorem 2.2 is proved.
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Chapter 3

Testing Equality of Mean Curve

for Two-sample Functional Data

3.1 Introduction

Over the last two decades, functional data analysis has established itself as an impor-

tant and dynamic area of statistics. It offers effective new tools and has stimulated

new methodological and theoretical developments. The field has become very broad

and specialized directions of research. Many areas of functional data analysis have

been developing rapidly over the last decade. For a summary of some of these de-

velopments, we refer to Ramsay and Silverman (2005) and Ferraty and Vieu (2006).

More recently, see Ferraty and Romain (2011) and Horváth and Kokoszka (2012).

Functional data which are referred to as curve data in the early days was pi-

oneered by Castro et al. (1986) and was further developed in Rice and Silverman

(1991). Functional Data Analysis (FDA) dealing with curve data is concerned for

the data that are repeated measurements of the same subject. The repeated mea-

surements are often recorded over a period of time, say on an interval T . Generally,

there exist two different approaches to treating them, depending on whether the mea-

surements are available on a dense grid of time points, or whether they are recorded

relatively sparsely. Dense functional data allow the number of observations for every
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subject tending to infinity and a conventional estimation approach is to smooth each

individual curve and then infer. For a summary of some of these development, we

refer to Hall et al. (2006) and Zhang and Chen (2007). In the case of sparse func-

tional data, every subject is often observed at a small number of time points, and

often irregularly, spaced measurements on human or other biological subjects, they

are typically termed longitudinal data. For an introduction to this area, see Yao

et al. (2005), Hall et al. (2006), Yao (2007), and Ma et al. (2012).

For dense or sparse functional data, a lot of regression models have been ex-

tensively studied. For example, functional linear model (Yuan and Cai, 2010; He

et al., 2010; Hall and Horowitz, 2007; Lee and Park, 2012), functional nonparametric

model (Ferraty and Vieu, 2002, 2006; Ferraty et al., 2012), Semiparametric functional

model (Chen et al., 2011a; Chiou et al., 2003; Jiang and Wang, 2011). However, most

of inferential procedures based on it assume that mean function is the same for all

subjects. If, in fact, mean functions are different, the results of inference may be con-

founded. So, it is important to consider the two-sample or multi-sample problems of

functional data. Despite the above problem are important for functional data, they

have received little attention.

In the setting of dense functional data, Horváth et al. (2009) compared linear

operators in two functional regression models. Horváth et al. (2013) developed and

asymptotically justified testing procedures for the equality of means in two functional

samples exhibiting temporal dependence. Fremdt et al. (2014) considered a normal

approximation method to derive statistics that used segments of observations and

segments of the FPC’s and then applied results to derive inferential procedures for

the mean function. However, all these research are based on the assumption which

the repeated measurements take place on the dense and regular time points for each

subject. In the setting of sparse functional data, less attention has been paid to this

area.
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In practice, it is hard to decide when the observations are dense or sparse. In some

functional studies it is possible that we have dense observations on some subjects

and sparse observations on the others. It is thus useful to develop a unified method-

ology which can test if two sample or multi-sample have the same mean function

for functional data no matter they are dense or sparse. A direct motivation for the

research of this chapter comes from a two-sample problem in which we wish to test

whether the mean functions of two functional observation sample are equal without

the information that the data are dense or sparse.

We propose a significance test for testing the null hypothesis of having the same

mean function against the alternative of different mean functions. One particular

advantage of the proposed method is that we do not have to discern data type: dense

or sparse.

This chapter is organized as follows. In Section 3.2, we present the proposed

testing method. Asymptotic theory of the proposed procedures are also developed

in this section. While Section 3.3 is devoted to a report on simulation results. In

Section 3.4, we analyze two real data sets to illustrate the proposed procedures. All

proofs are displayed to Section 3.5.

3.2 Methodology and main results

Consider two independent samples:

Y
pmq
i ptilmq “ µmptilmq ` v

pmq
i ptilmq ` ε

pmq
ilm
,

m “ 1, 2; i “ 1, ¨ ¨ ¨ , nm; lm “ 1, ¨ ¨ ¨ , Ni; t P T ,
(3.1)

where µmptq, m “ 1, 2, are the fixed population means of Y
pmq
i ptq, m “ 1, 2.

v
pmq
i ptq, m “ 1, 2, are the subject-specific random trajectories of Y

pmq
i ptq with Etv

pmq
i ptqu “

0 and covariance function γmpt, sq “ covtv
pmq
i ptq, v

pmq
i psqu. Nn1 and Nn2 are the num-
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ber of measurements collected from two subjects, refer to Horváth et al. (2013).

εiptqs are i.i.d. random error process independent of viptq, refer to Shi et al. (1996),

Zhang and Chen (2007), and Horváth and Kokoszka (2012), among others.

In this chapter, we want to test if two samples have the same mean function.

Thus, we are interested in testing

H0 : µ1ptq “ µ2ptq vs. H1 : µ1ptq ‰ µ2ptq, t P T .

To perform the test, we first estimate the mean functions. The following is the

procedure to obtain the estimators.

Step 3.1. Obtain initial estimators of mean functions µ1ptq and µ2ptq.

To estimate the mean function µ1ptq by local linear scatterplot smoothers, one

minimizes

n1
ÿ

i“1

Ni
ÿ

l1“1

Kp1q

ˆ

til1 ´ t

b˚0

˙

!

Y
p1q
i ptil1q ´ d0 ´ d1ptil1 ´ tq

)2

,

with respect to d0 and d1 to obtain µ̂0
1ptq “ d̂0ptq, where the kernel Kp1qp¨q is assumed

to be a smooth symmetric density function and b˚0 is a bandwidth. Analogously, one

may define the estimator of the mean function µ2ptq, say µ̂0
2ptq.

Step 3.2. Obtain the estimation of covariances functions γ1pt, sq and γ2pt, sq.

Let G1,iptil11 , til12q “ tY
p1q
i ptil11q´ µ̂

0
1ptil11qutY

p1q
i ptil12q´ µ̂

0
1ptil12qu. Define the local

linear surface smoother for γ1pt, sq by minimizing

n1
ÿ

i“1

ÿ

1ďl11‰l12ďNi

Kp2q

ˆ

til11 ´ t

h˚Y
,
til12 ´ s

h˚Y

˙

tG1,iptil11 , til12q ´ fpα, pt, sq, ptil11 , til12qqu
2 ,

with respect to α “ pα0, α11, α12q where fpα, pt, sq, ptil11 , til12qq “ α0 ` α11pt´ til11q `

α12ps ´ til12q, yielding γ̂0
1pt, sq “ α̂0pt, sq. Here, the kernel Kp2q is a two-dimensional
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smooth density with zero mean and finite covariance and h˚Y is a bandwidth. An

essential feature is the omission of the diagonal elements l11 “ l12 which are contami-

nated with the measurement errors. Analogously, we can obtain the estimator of the

covariance function γ2pt, sq, say γ̂0
2pt, sq. Let γ̂0pt, sq “ n2

n1`n2
γ̂0

1pt, sq `
n1

n1`n2
γ̂0

2pt, sq.

It is easy to see γ̂0pt, sq
p
ÝÑ γpt, sq ” p1´ θqγ1pt, sq ` θγ2pt, sq and γpt, sq is a covari-

ance function where θ is defined in the following assumption 3.5. Consequently, it has

orthonormal eigenfunctions tφjujě1 and non-negative eigenvalues tνjujě1 satisfying:

ż

T
γpt, sqφjpsqds “ νjφjptq.

Step 3.3. Estimates the eigenvalues and eigenfunctions tνj, φjujě1 of γpt, sq.

Estimation of eigenvalues and eigenfunctions tνj, φjujě1 are obtained by numeri-

cal solutions tν̂j, φ̂jujě1 of the following suitably discretized eigenequations,

ż

T
γ̂0
pt, sqφ̂jpsqds “ ν̂jφ̂jptq,

with orthonormal constraints on tφ̂jujě1.

In order to obtain final estimators of µmptq, m “ 1, 2, we make the following

assumption.

Assumption 3.1. Assume
ş1

0
µ2
mptqdt ă 8, m “ 1, 2 and µmptq may be written as

µmptq “
ř8

j“1 η
pmq
j φjptq where η

pmq
j “

ş1

0
µmptqφjptqdt.

Step 3.4. Obtain the projection estimator onto eigenfunctions.

Estimator of the mean function is a projection estimator onto a space that is

generated by a set of eigenfunctions,

µ̂1ptq “
J
ÿ

j“1

η̂
p1q
j φ̂jptq,
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where

η̂
p1q
j “

1

n1

n1
ÿ

i“1

η̂
p1q
ij , η̂

p1q
ij “

1

Ni

Ni
ÿ

l1“1

Y
p1q
i ptil1qφ̂jptil1q,

with φ̂jptq, j “ 1, ¨ ¨ ¨ , J are the eigenfunctions. The number J is a tuning parameter.

A practical strategy to select J will be discussed in Section 3.3.

Similarly, we can define

µ̂2ptq “
J
ÿ

j“1

η̂
p2q
j φ̂jptq,

where

η̂
p2q
j “

1

n2

n2
ÿ

i“1

η̂
p2q
ij , η̂

p2q
ij “

1

Ni

Ni
ÿ

l2“1

Y
p2q
i ptil2qφ̂jptil2q.

The difference between our estimating approach and that of Fremdt et al. (2014)

is typically that every curve of the proposed method is directly projected on the

common basis function space and obtain η̂
p1q
j and η̂

p2q
j which are the means of projec-

tion. η̂
p1q
j and η̂

p2q
j can be viewed as the scores of projection that two mean functions

µ1ptq and µ2ptq project on the basis function space, respectively. Advantages of this

method lies in two aspects. On the one hand, global statistics can be provided from

the expression of µ1ptq and µ2ptq. On the other hand, whatever functional data is

sparse or dense, regular or irregular, the means of projection can be always obtained

from the expressions of η̂
p1q
j and η̂

p2q
j which lead to the wide applicability of our tests.

It is natural to take an empirical version of the integrated square deviation be-

tween two mean curves
ş

T tµ1ptq ´ µ2ptqu
2dt to measure the distance between two

estimated mean curves. Consider the statistic

TM “
n1n2

n1 ` n2

ż

T
tµ̂1ptq ´ µ̂2ptqu

2 dt, (3.2)
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H0 will be rejected if TM is large.

From lemma 3.1 in Section 3.5, it is easy to see that

TM “
n1n2

n1 ` n2

ż

T

#

J
ÿ

j“1

η̂
p1q
j φ̂jptq ´

J
ÿ

j“1

η̂
p2q
j φ̂jptq

+2

dt

“
n1n2

n1 ` n2

ż

T

«

J
ÿ

j“1

!

η̂
p1q
j ´ η̂

p2q
j

)

ff2

φ2
jptqdt

`
n1n2

n1 ` n2

ż

T

«

J
ÿ

j“1

!

η̂
p1q
j ´ η̂

p2q
j

)

ff2
!

φ̂2
jptq ´ φ

2
jptq

)

dt

”
n1n2

n1 ` n2

J
ÿ

j“1

!

η̂
p1q
j ´ η̂

p2q
j

)2

` opp1q.

We consider the following test statistic for testing the hypothesis H0 : µ1ptq “

µ2ptq, t P T ,

yTM “

»

—

–

n1n2

n1 ` n2

J
ÿ

j“1

!

η̂
p1q
j ´ η̂

p2q
j

)2

λ̂j
´ J

fi

ffi

fl

O

?
2J

where λ̂j “
n2

n1`n2
λ̂
p1q
j ` n1

n1`n2
λ̂
p2q
j with

λ̂
p1q
j “

1

n1 ´ 1

n1
ÿ

i“1

!

η̂
p1q
ij ´ η̂

p1q
j

)2

λ̂
p2q
j “

1

n2 ´ 1

n2
ÿ

i“1

!

η̂
p2q
ij ´ η̂

p2q
j

)2

.

We demand the following assumptions before showing the theorems 3.1 and 3.2.

Assumption 3.2. There exists positive constant C and α ą 1 such that

νj ´ νj`1 ě Cj´α´1,

where tνjujď1 are the eigenvalues of covariance function γpt, sq.
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Assumption 3.3. n´1
m J4α`4 Ñ 0, where m “ 1, 2.

Assumption 3.4. tv
p1q
i p¨qui, ttil1ui,l1 and tεil1ui,l1 are independent and identically

distributed and mutually independent. So are tv
p2q
i p¨qui, ttil2ui,l2 and tεil2ui,l2.

Assumption 3.5. We assume τ “ Ep1{n1q “ Ep1{n2q and n1

n1`n2
Ñ θ for some

0 ă θ ă 1 as minpn1, n2q Ñ 8.

Assumption 3.2 requires that the spacings between the eigenvalues are not too

small. It implies that each νj is greater than a constant multiple of j´α. One

needs this condition to get the bound of φ̂jptq ´ φjptq. Assumption 3.3 requires

that the number of principle component for two samples are not too large since

J “ maxpJ1, J2q, where J1 and J2 will be described in Section 3.3. Assumption 3.4

is a regular condition and assumption 3.5 requires that the type of the observations

for two samples are same.

Theorems 3.1 and 3.2 shown below establish the asymptotic behaviors of the

statistic yTM under hypotheses H0 and H1, respectively. The proofs of these theorems

are provided in Section 3.5.

Theorem 3.1. Under assumptions 3.1-3.5 and H0, we have

yTM
d
ÝÑ Np0, 1q

The null hypothesis H0 : µ1ptq “ µ2ptq, t P T is rejected if |yTM| ą qα, where qα is

the upper-α quantile of Np0, 1q.

Theorem 3.2. Under assumptions 3.1-3.5 and H1, we have

yTM
p
ÝÑ 8.

Both Theorems 3.1 and 3.2 provide clear theoretical justification of the empirical

properties of the proposed test.
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3.3 Simulation studies

To evaluate the finite sample performances of the proposed test method, we con-

ducted some simulation studies.

3.3.1 Tuning parameter selection

For practical implementation, one has to decide the values of the tuning parameters

J . We can select J using the following method, Firstly, we select J1 as the minimum

number of FPCs that explain 99% of the total variation for the sample one by the

PACE (principal analysis by conditional estimation) package and J2 for sample two.

In detail, we refer to Yao et al. (2005) for a complete description. Then, we select

J “ maxpJ1, J2q. Using the asymptotic developed in this chapter, selecting J is

not essential. We can observe that different J gives the similarly conclusion on the

empirical size and power in the following simulation.

The choice of bandwidth is a very important topic in nonparametric regression

estimation for our Steps 3.1 and 3.2. The popular method such as cross-validation,

generalized cross-validation (GCV) and the rule of thumb can be used to select the

optimal bandwidth for the estimators of µmptq and γmpt, sq, m “ 1, 2. Here, we

recommend using GCV to determine the optimal bandwidth.

3.3.2 Test of mean function

We consider combinations of sample sizes pn1, n2q “ p100, 100q and p200, 200q, each

pair of data-generated processes was replicated 1000 times. In this section, vptq was

generated from

vptq “
2
ÿ

j“1

ξjφjptq,
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with φ1ptq “ ´
?

2 cosp2πtq, φ2ptq “
?

2 sinp2πtq, t P r0, 1s. ξj, j “ 1, 2 were gener-

ated from Np0, νkq with ν1 “ 1 and ν2 “ 0.5.

Example 3.1. Sparse design with the same covariance function.

To illustrate the adaptivity of our test method to sparse design, we firstly consider

the following model

Y
p1q
i ptil1q “ v

p1q
i ptil1q ` ε

p1q
il1
, i “ 1, ¨ ¨ ¨ , n1; l1 “ 1, ¨ ¨ ¨ , Ni,

Y
p2q
i ptil2q “ atil2 ` v

p2q
i ptil2q ` ε

p2q
il2
, i “ 1, ¨ ¨ ¨ , n2; l2 “ 1, ¨ ¨ ¨ , Ni,

(3.3)

where v
pmq
i ptq, m “ 1, 2 were generated from vptq. The parameter a regulates the

difference between the means of two samples. The number Nnm , m “ 1, 2 of measure-

ments for each curve were selected from t5, ¨ ¨ ¨ , 9u with equal probability in r0, 1s.

The measurement error is ε
p1q
il1
„ Np0, 1q, so is ε

p2q
il2
s. Model (3.3) can be seen to

be sparse design with the same covariance function γ1pt, sq “ covpv
p1q
i ptq, v

p1q
i psqq “

covpv
p2q
i ptq, v

p2q
i psqq “ γ2pt, sq in this example. The empirical sizes can be calculated

when a “ 0 and the empirical power can be calculated when a ‰ 0. The empirical

size and power of the test are reported in Tables 3.1-3.3.

Example 3.2. Sparse design with different covariance functions.

In this example, we consider the sparse design with different covariance func-

tions for comparing with Example 3.1. We consider Model (3.3) except v
p2q
i ptq was

generated from

vp2qptq “
2
ÿ

j“1

ξ
p2q
j φjpsq,

with ξ
p2q
j generated from Np0, νjq for j “ 1 and 2 with ν1 “ 2 and ν2 “ 1. The

number of measurements for each subject and the measurement error are the same
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Table 3.1: The empirical sizes of the test in Examples 3.1 and 3.2.

J pn1, n2q “ p100,100q pn1, n2q “ p200,200q
α “ 0.01 α “ 0.05 α “ 0.10 α “ 0.01 α “ 0.05 α “ 0.10

Example 3.1
2
3
4
5
6
7
8

0.031
0.017
0.023
0.02
0.018
0.022
0.019

0.049
0.039
0.043
0.049
0.038
0.044
0.052

0.067
0.060
0.063
0.066
0.053
0.068
0.084

0.025
0.026
0.020
0.015
0.021
0.018
0.023

0.039
0.049
0.043
0.041
0.045
0.044
0.039

0.062
0.068
0.061
0.056
0.061
0.071
0.064

Example 3.2
2
3
4
5
6
7
8

0.027
0.019
0.015
0.016
0.023
0.018
0.014

0.049
0.035
0.039
0.040
0.042
0.036
0.038

0.066
0.056
0.057
0.056
0.065
0.076
0.055

0.031
0.019
0.019
0.013
0.024
0.020
0.015

0.063
0.040
0.039
0.034
0.048
0.045
0.037

0.082
0.064
0.063
0.059
0.073
0.066
0.065

as in Example 3.1. This example can be seen to be the sparse design with the different

covariance functions r1pt, sq “ covpv
p1q
i ptq, v

p1q
i psqq and r2pt, sq “ covpv

p2q
i ptq, v

p2q
i psqq.

The empirical size and power of the test are also reported in Tables 3.1-3.3.

Several observations can be made from Tables 3.1-3.3. Firstly, the empirical size

does not depend on J at all level from Table 3.1. The test based on proposed method

has asymptotically correct empirical size at the 5% level, overrejects by about 3% at

the 10% level and slightly higher than nominal (about 1% at 1% level). Secondly,

when a increases from 1 to 1.5 and J ą 3, the empirical power of the test does not

depend on J at all level and become large from Tables 3.2 and 3.3, which is expected.

Thirdly, from the simulations of Examples 3.1 and 3.2, we find that the empirical

power of the test increases as the sample size increases. Lastly, the empirical power

for the same covariance case is slightly larger than that for the case of different

covariance functions. All in all, the proposed method work well for the sparse design

even in the case of different covariance functions.

Example 3.3. Dense design with same/different covariance functions.
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Table 3.2: The empirical power of the test for a “ 1.

J pn1, n2q “ p100,100q pn1, n2q “ p200,200q
α “ 0.01 α “ 0.05 α “ 0.10 α “ 0.01 α “ 0.05 α “ 0.10

Example 3.1
2
3
4
5
6
7
8

0.311
0.682
0.797
0.780
0.770
0.760
0.738

0.417
0.762
0.845
0.841
0.822
0.812
0.802

0.477
0.794
0.879
0.858
0.846
0.839
0.830

0.619
0.887
0.946
0.930
0.936
0.926
0.936

0.717
0.914
0.962
0.954
0.960
0.952
0.960

0.756
0.929
0.971
0.965
0.972
0.964
0.970

Example 3.2
2
3
4
5
6
7
8

0.229
0.557
0.691
0.649
0.639
0.634
0.586

0.297
0.638
0.765
0.730
0.729
0.710
0.673

0.340
0.679
0.809
0.772
0.763
0.756
0.721

0.456
0.807
0.876
0.892
0.887
0.865
0.851

0.550
0.857
0.908
0.929
0.921
0.894
0.908

0.595
0.875
0.924
0.946
0.940
0.911
0.923

In order to compare the proposed method (denoted by yTM) with the testing method

xTF due to Fremdt et al. (2014) and evaluate the influence of the number of measure-

ments for testing, we consider the following model

Y
p1q
i ptil1q “ v

p1q
i ptil1q ` ε

p1q
il1
, i “ 1, ¨ ¨ ¨ , n1; l1 “ 1, ¨ ¨ ¨ , Ni,

Y
p2q
i ptil2q “ atil2p1´ til2q ` v

p2q
i ptil2q ` ε

p2q
il2
, i “ 1, ¨ ¨ ¨ , n2; l2 “ 1, ¨ ¨ ¨ , Ni,

(3.4)

where v
pmq
i ptq, m “ 1, 2 were generated from standard Brownian motions. The

locations of measurements for each curve were selected at 100 equidistant time points

in r0, 1s. We compute the empirical size (a “ 0) and power (a “ 1 and a “ 1.5) of

the test for sample sizes pn1, n2q “ p100, 100q and p200, 200q in Tables 3.4-3.6.
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Table 3.3: The empirical power of the test for a “ 1.5.

J pn1, n2q “ p100,100q pn1, n2q “ p200,200q
α “ 0.01 α “ 0.05 α “ 0.10 α “ 0.01 α “ 0.05 α “ 0.10

Example 3.1
2
3
4
5
6
7
8

0.642
0.889
0.928
0.940
0.945
0.934
0.922

0.718
0.920
0.950
0.959
0.967
0.959
0.952

0.752
0.932
0.959
0.965
0.972
0.971
0.960

0.916
0.986
0.991
0.994
0.991
0.992
0.990

0.949
0.994
0.995
0.999
0.994
0.995
0.996

0.964
0.994
0.997
0.999
0.996
0.996
0.996

Example 3.2
2
3
4
5
6
7
8

0.492
0.810
0.879
0.896
0.870
0.861
0.859

0.597
0.848
0.902
0.919
0.909
0.907
0.903

0.649
0.875
0.915
0.938
0.931
0.930
0.922

0.802
0.958
0.976
0.978
0.969
0.977
0.964

0.848
0.977
0.984
0.984
0.982
0.985
0.977

0.875
0.984
0.986
0.988
0.987
0.988
0.983

Table 3.4: The empirical sizes of the test in Example 3.3.

J yTM xTF
α “ 0.01 α “ 0.05 α “ 0.10 α “ 0.01 α “ 0.05 α “ 0.10

pn1, n2q “ p100,100q
2
3
4
5
6
7
8

0.030
0.033
0.018
0.023
0.020
0.024
0.019

0.054
0.063
0.042
0.052
0.043
0.046
0.038

0.074
0.083
0.070
0.071
0.071
0.073
0.075

0.032
0.035
0.020
0.025
0.020
0.025
0.019

0.058
0.063
0.042
0.056
0.044
0.050
0.043

0.075
0.086
0.072
0.074
0.073
0.076
0.074

pn1, n2q “ p200,200q
2
3
4
5
6
7
8

0.036
0.017
0.022
0.018
0.021
0.020
0.019

0.057
0.047
0.047
0.041
0.050
0.051
0.056

0.069
0.066
0.075
0.066
0.071
0.076
0.081

0.038
0.018
0.022
0.018
0.021
0.024
0.021

0.058
0.047
0.049
0.043
0.051
0.054
0.060

0.073
0.067
0.078
0.068
0.074
0.079
0.083

From Tables 3.4-3.6, we can see that both the tests based on yTM and xTF can

control the type I error and do not depend on J . We can also see that the empirical

powers based on yTM and xTF are comparable in the setting of dense design. In a
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word, the proposed method works well for the case of the dense design.

Table 3.5: The empirical power of the test for a “ 1 in Example 3.3.

J yTM xTF
α “ 0.01 α “ 0.05 α “ 0.10 α “ 0.01 α “ 0.05 α “ 0.10

pn1, n2q “ p100,100q
2
3
4
5
6
7
8

0.841
0.826
0.807
0.763
0.762
0.735
0.749

0.884
0.883
0.872
0.841
0.848
0.814
0.836

0.911
0.899
0.900
0.881
0.883
0.852
0.877

0.843
0.826
0.813
0.766
0.771
0.745
0.756

0.886
0.884
0.875
0.845
0.852
0.819
0.840

0.917
0.899
0.902
0.885
0.886
0.853
0.881

pn1, n2q “ p200,200q
2
3
4
5
6
7
8

0.991
0.992
0.990
0.984
0.992
0.982
0.972

0.996
0.997
0.994
0.992
0.998
0.989
0.990

0.997
0.999
0.996
0.996
0.999
0.993
0.996

0.991
0.992
0.990
0.984
0.992
0.984
0.973

0.996
0.998
0.994
0.992
0.998
0.989
0.991

0.999
0.999
0.996
0.997
0.999
0.993
0.998

Table 3.6: The empirical power of the test for a “ 1.5 in Example 3.3.

J yTM xTF
α “ 0.01 α “ 0.05 α “ 0.10 α “ 0.01 α “ 0.05 α “ 0.10

pn1, n2q “ p100,100q
2
3
4
5
6
7
8

0.996
0.996
0.996
0.996
0.993
0.993
0.993

0.998
1.000
0.998
0.999
0.996
0.997
0.996

0.998
1.000
0.999
1.000
0.999
0.998
0.997

0.997
0.996
0.996
0.996
0.993
0.993
0.995

0.998
1.000
0.998
0.999
0.997
0.997
0.996

0.998
1.000
0.999
1.000
0.999
0.999
0.998

pn1, n2q “ p200,200q
2
3
4
5
6
7
8

0.996
0.996
0.996
0.996
0.993
0.993
0.993

0.998
1.000
0.998
0.999
0.996
0.997
0.996

0.998
1.000
0.999
1.000
0.999
0.998
0.997

0.997
0.996
0.996
0.996
0.993
0.993
0.995

0.998
1.000
0.998
0.999
0.997
0.997
0.996

0.998
1.000
0.999
1.000
0.999
0.999
0.998
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3.4 Real data examples

In this section, we analyzed two real data sets to illustrate the proposed method.

The first example is the longitudinal CD4 data set for samples of AIDs patients, and

we analyzed it to illustrate the application of the proposed method to the sparse

and irregular function data. The second example is the Nitrogen Oxide Emission

Level data set, which is analyzed to illustrate the proposed method for the case of

the dense and regular functional data.

3.4.1 CD4 data

We applied the proposed test to an AIDS clinical study developed by the AIDS clin-

ical trials group (ACTG) that can be found at http://www.urmc.rochester.edu

/biostat/people/\faculty/wusite/datasets/ACTG388.cfm. The study enrolled

517 HIV-1-infected patients in three antiviral treatments, denote as A, B and C,

respectively. Every group has 166, 171 and 176 patients, respectively. Patients were

treated with an highly active antiretroviral therapy (HAART) for 128 weeks during

which CD4 cell counts were monitored at weeks 4, 8 and every 8 weeks thereafter.

However, each individual patient might not exactly follow the designed schedule and

missing clinical visits for CD4 cell measurements frequently occurred which made

the data set to be a typical longitudinal data set. The CD4 cell count data during

128 weeks of treatment are plotted for three groups in Fig. 3.1.
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Figure 3.1: The CD4 cell count data during 128 weeks for group A, B and C,
respectively.

We wanted to test if the two underlying mean functions of pA,Bq, pA,Cq and

pB,Cq are different, which motivated a two-sample mean function testing problem.
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Three combinations of the estimated mean functions were displayed in Fig. 3.2 for

group A, B and C.
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Estimated mean function for the  group A (solid) and the group B  (dash)
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Estimated mean function for the  group A (solid) and the group C  (dash)
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Estimated mean function for the  group B (solid) and the group C  (dash)

Figure 3.2: Three combination of the estimated mean functions for group A, B and
C.
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We firstly considered the combination pA,Bq and computed the p-value of test

from J “ 2 to J “ 6 and obtained which all of value are 0. This indicates that

the mean function of group A and B is different. For the combinations pA,Cq and

pB,Cq, we obtained the same conclusion as the combination pA,Bq.

3.4.2 Nitrogen oxide emission level data

Nitrogen Oxides (NOx) are known to be among the most major pollutants, precursors

of ozone formation, and contributors to global warming (Febrero et al., 2008). NOx

is primarily caused by combustion processes in sources that burn fuels such as motor

vehicles, electric utilities, and industries, among others. Fig. 3.3 shows NOx emission

levels for seventy-six working days and thirty-nine non-working days, respectively,

which were measured by an environmental control station close to an industrial area

in Poblenou, Barcelona, Spain. The control station measured NOx emission levels

in g/m3 every hour per day from February 23 to June 26 in 2005. The hourly

measurements in one day (24 hours) formed a natural NOx emission level curve of

the day. It is seen that within one day, the NOx levels increased in morning, attained

0 5 10 15 20 25
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200

250

300

NOx emission levels  of non−working days 
0 5 10 15 20 25

0

50

100

150

200

250

300

350

400

NOx emission levels  of working days 

Figure 3.3: NOx emission levels for seventy-six working days and thirty-nine non-
working days.

their extreme values around 8 a.m., then decreased until 2 p.m. and increased again

— 57 —



CHAPTER 3. MEAN CURVE TEST FOR TWO-SAMPLE FUNCTIONAL
DATA PhD Thesis

in the evening. The influence of traffic on the NOx emission levels is not ignorable as

the control station is located at the city center. It is not difficult to notice that the

NOx emission levels of working days are generally higher than those of non-working

days. This is why these NOx emission level curves were divided into two groups as

pointed out by Febrero et al. (2008). Of interest is to test if the mean NOx emission

level curves of working and non-working days are significantly different.

The fitted sample mean functions of two groups were displayed in Fig. 3.4. Using

0 5 10 15 20 25
0

20

40

60

80

100

120

140
mean  functions of non−working days (solid) and working days (dash)

Figure 3.4: The estimated mean functions for seventy-six working days and thirty-
nine non-working days.

the method similar in Subsection 3.4.1, the p-value is 0. This implies that the

mean functions of the NOx levels are significantly different between working and

non-working days.

3.5 Proofs of main results

Lemma 3.1. Under assumptions 3.2-3.5, we have

}φ̂jpsq ´ φjpsq} “ Op

ˆ

J2α`2

n

˙

.
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Using assumption 3.2 and equation (5.2) in Hall and Horowitz (2007), we can

obtain proof of Lemma 3.1.

Lemma 3.2. Under assumptions 3.1-3.5, We have

?
n1

´

η̂
p1q
j ´ η

p1q
j

¯

d
ÝÑ N

´

0, λ
p1q
j

¯

,

?
n2

´

η̂
p2q
j ´ η

p2q
j

¯

d
ÝÑ N

´

0, λ
p2q
j

¯

.

Proof of Lemma 3.2

It can be observed

η̂
p1q
j ´ η

p1q
j

“

#

1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

Y
p1q
i ptil1qφjptil1q ´ η

p1q
j

+

`

#

1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

Y
p1q
i ptil1qφ̂jptil1q ´

1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

Y
p1q
i ptil1qφjptil1q

+

” A1 ` A2.

(3.5)

For A1, we have

A1 “
1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

!

v
p1q
i ptil1q ` ε

p1q
il1

)

φjptil1q

`

#

1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

µ1ptil1qφjptil1q ´ η
p1q
j

+

” A11 ` A12.

(3.6)

It is easy to see that A11 is the average of independent and identically distributed

random variables with mean EpA11q “ 0 and variance varpA11q “ λ
p1q
j {n1 where

λ
p1q
j “ p1´ τqΓ

p1q
j ` τ

"
ż 1

0

γ1pt, tqφ
2
jptqdt` σ

2

*
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with

Γ
p1q
j “

ż 1

0

ż 1

0

φjptqγ1pt, sqφjpsqdtds.

By the central limit theorem, we obtain

A11
d
ÝÑ N

ˆ

0,
1

n1

λ
p1q
j

˙

. (3.7)

For A12, according to assumption 3.5, we have

A12 “ opn
´1{2
1 q. (3.8)

By (3.6), (3.7) and (3.8), we obtain

A1
d
ÝÑ N

ˆ

0,
1

n
λ
p1q
j

˙

. (3.9)

For A2, we have

A2 “
1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

µ1ptil1q
!

φ̂jptil1q ´ φjptil1q
)

`
1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

v
p1q
i ptil1q

!

φ̂jptil1q ´ φjptil1q
)

`
1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

ε
p1q
il1

!

φ̂jptil1q ´ φjptil1q
)

” A21 ` A22 ` A23.

(3.10)

According to Cauchy-Schwarz inequality, Assumption 3.1 and lemma 3.1, we have

A21 ď
1

n1

n1
ÿ

i“1

1

Ni

«

Ni
ÿ

l1“1

µ2
1ptil1q

Ni
ÿ

l1“1

!

φ̂jptil1q ´ φjptil1q
)2

ff1{2

“ op

´

n
´1{2
1

¯

.

(3.11)
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For A22, we have

EpA2
22q

“
1

n2
1

n1
ÿ

i“1

1

N2
i

Ni
ÿ

l1“1

”!

φ̂jptil1q ´ φjptil1q
)ı2

Ev
p1q2
i ptil1q

`
1

n2
1

n1
ÿ

i“1

1

N2
i

ÿ

1ďl11‰l12ďNi

!

φ̂jptil11q ´ φjptil11q
)!

φ̂jptil12q ´ φjptil12q
)

E
!

v
p1q
i ptil11qv

p1q
i ptil12q

)

“ opn´1
1 q.

(3.12)

Using the arguments similar to that of (3.12), it can be shown

EpA2
23q “ o

`

n´1
1

˘

. (3.13)

By (3.10), (3.11), (3.12), and (3.13), we have

A2 “ op

´

n
´1{2
1

¯

. (3.14)

By (3.5), (3.9) and (3.14), we obtain
?
n1pη̂

p1q
j ´ η

p1q
j q

d
ÝÑ Np0, λ

p1q
j q. Similarly, we

can prove
?
n2pη̂

p2q
j ´ η

p2q
j q

d
ÝÑ Np0, λ

p2q
j q. The proof is then completed.

Proof of theorem 3.1 According to lemma 3.1 and Slutsky theory, we can easy

obtain the the conclusion of theorem 3.1. The proof is then completed.

Proof of theorem 3.2 According to lemma 3.1, we have

η̂
p1q
j

p
ÝÑ η

p1q
j , η̂

p2q
j

p
ÝÑ η

p2q
j .

Under H1, we obtain

yTM
p
ÝÑ

n1n2

n1 ` n2

J
ÿ

j“1

!

η
p1q
j ´ η

p2q
j

)2

λj
Ñ 8.
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Chapter 4

Interaction Models with Nonlinear
Link for Functional Regression

4.1 Introduction

Functional regression is modeled by allowing functional random trajectories of either

response or covariate or both. It has attracted more and more research interest raised

from real data analysis, among which one class of modeling extensively investigated

is the scenario with scalar response and functional covariates, refer to Ramsay and

Silverman (2005), Li and Hsing (2007), Ma (2016), Usset et al. (2016), among others.

For this kind of functional regression model, in practice there used to involve mul-

tiple functional covariates. A motivating example is the daily precipitation which is

affected by temperature curve, pressure normals curve, wind curve, cloudiness curve,

and other climate indices, etc.

Existing literature tends to model the association between scalar response and

functional covariate in two ways. One just considers the main effects of functional

covariates additively but rarely take into consideration of the interaction effects,

refer to Cardot et al. (2003) and Ramsay and Silverman (2005). This intuitively

will lead to inappropriate conclusions due to biased or even inaccurate estimation of

the model parameters. The other is to directly assume a nonparametric link on the
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mean regression, refer to Yao et al. (2005), Cai and Hall (2006), Hall and Horowitz

(2007), and Li and Hsing (2007). This is robust but bit of losing information. Usset

et al. (2016) might be the first one to incorporate the interaction effect besides the

individual main effect of functional covariates. Their estimation procedure conducted

the inference for main effects using penalized regression splines and for the interaction

effect by a tensor product basis. However, it is idealistic that the interaction part

in the model of Usset et al. (2016) is assumed to be linear. This motivates us to

consider a more general model with non-linear interaction part instead. This is

implemented mathematically by adding an unknown link function structure on the

interaction part. Consequently it makes the corresponding statistical inference much

more complicated. We address the statistical problem via the widely used functional

principal components (FPC) and the minimum average variance estimation (MAVE)

methods by Xia and Härdle (2006).

The remaining of this chapter is as follows. In Section 4.2, we introduce the

conditional mean regression models with nonparametric single-index interaction, all

of the estimation procedures are discussed in Section 4.3. We describe the asymptotic

theory of the procedure in Section 4.4, while Section 4.5 is devoted to a report

on simulation results, followed by a description of one application to regression for

climate data in Section 4.6. Some details of estimation, assumptions and all proofs

are included in Supplementary material.

4.2 Model alternative based on K-L representa-

tion

The data observed is tpYi, Xi, Ziq, i “ 1, ¨ ¨ ¨ , n}, where Yi is a scalar response, Xip¨q

and Zip¨q are independent non-stationary smooth random functions in L2r0, 1s. The

conditional mean regression given the covariates is described as follows when taking
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interaction effects into account,

ErY |X,Zs “ α `

ż

T
βXpsqX

c
psqds`

ż

T
βZptqZ

c
ptqdt

` g

ˆ
ż

T

ż

T
γps, tqXc

psqZc
ptqdtds

˙

,

(4.1)

where α is an intercept and gp¨q is an unknown link function, Xcpsq “ Xpsq ´ µXpsq

and Zcptq “ Zptq ´ µZptq denote the centered predictor processes. The regression

parameter function βXpsq and βZptq are assumed to be smooth and square integrable.

γps, tq is a real valued bi-variate function defined on T 2. It is quite general to include

many other important models as special examples. For instance, if γps, tq ” 0 in

(4.1), it reduces to the conditional mean regression models, refer to Ait-Säıdi et al.

(2008). If Xpsq ” Zpsq and gp¨q is an identity function, (4.1) becomes the functional

quadratic regression model which has been studied by Yao and Müller (2010). When

βXpsq ” 0, βZptq ” 0 and Zcptq ” constant, (4.1) becomes the functional single-

index regression model which has been investigated by Chen et al. (2011a). In

addition, if βXpsq ” 0, βZptq ” 0 and γps, tqZcptq is a semiparametric function with a

single-index structure, (4.1) reduces to the generalized functional linear model with

semiparametric single-index interaction considered by Li et al. (2010) as a special

case. It is noted that the proposed model (4.1) included also the model of Usset et al.

(2016) as the special situation when gp¨q is an identity function. However, our model

distinguishes from model of Ma (2016) where interaction of two functional data are

not considered.

Denote mean and auto-covariance functions of two predictor processes are smooth.

EtXpsqu “ µXpsq, EtZptqu “ µZptq;

covtXps1q, Xps2qu “ GXps1, s2q, covtZpt1q, Zpt2qu “ GZpt1, t2q.

For prediction processes Xp¨q and Zp¨q, their Karhunen-Loève expansions (Ash and
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Gardner, 1975) are

Xpsq “ µXpsq `
8
ÿ

j“1

ξjφjpsq, Zptq “ µZptq `
8
ÿ

k“1

ζkψkptq,

where φj and ψk are sequences of orthonormal eigenfunctions of associated auto-

covariance operators that form a basis of the function space and are associated with

sequences of non-increasing eigenvalues λj and τk, satisfying
ř

j λj ă 8,
ř

k τk ă 8,

GXps1, s2q “
ř

j λjφjps1qφjps2q, s1, s2 P T andGZpt1, t2q “
ř

k τkψkpt1qψkpt2q, t1, t2 P

T , and the coefficients ξj and ζk are referred to as functional principal component

(FPC) score. They are sequences of uncorrelated random variables, respectively,

with means Epξjq “ 0, Epζkq “ 0 and variances Varpξjq “ λj, Varpζkq “ τk.

Since the eigenfunctions φj, j “ 1, 2, . . . and ψk, k “ 1, 2, . . . of the processes X

and Z form a complete basis, the regression parameter functions in (4.1) can be

represented in this basis,

βXpsq “
8
ÿ

j“1

βjXφjpsq, βZptq “
8
ÿ

k“1

βkZψkptq, γps, tq “
8
ÿ

j“1

8
ÿ

k“1

γjkφjpsqψkptq, (4.2)

for suitable sequences tβjXuj“1,2,¨¨¨, tβ
k
Zuk“1,2,¨¨¨ and tγjkuj,k“1,2,¨¨¨ with

ř

j β
j
X ă 8,

ř

k β
k
Z ă 8 and

ř

j,k γjk ă 8.

Substituting (4.2) into (4.1) and applying the orthonormality property of the

eigenfunctions, one finds that model (4.1) can be alternatively expressed as a function

of the scores ξj and ζk of predictor processes X and Z,

ErY |X,Zs “ α `
8
ÿ

j“1

βjXξj `
8
ÿ

k“1

βkZζk ` g

˜

8
ÿ

k“1

8
ÿ

j“1

γjkξjζk

¸

. (4.3)

Model (4.3) can be alternatively expressed as a function of a finite number of the

scores ξj and ζk of predictor processes X and Z, if we skip the intercept or let α “ 0
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for identifiability purposes,

ErY |X,Zs “
K1
ÿ

j“1

βjXξj `
K2
ÿ

k“1

βkZζk ` g

˜

K2
ÿ

k“1

K1
ÿ

j“1

γjkξjζk

¸

” βJU ` g
`

θJW
˘

, (4.4)

where βJ “ pβ1
X , ¨ ¨ ¨ , β

K1
X , β1

Z , ¨ ¨ ¨ , β
K2
Z q, θ

J “ pγ1,1, ¨ ¨ ¨ , γ1,K2 , ¨ ¨ ¨ , γK1,K2q, U
J “

pξ1, ¨ ¨ ¨ , ξK1 , ζ1, ¨ ¨ ¨ , ζK2q and WJ “ pξ1ζ1, ¨ ¨ ¨ , ξ1ζK2 , ¨ ¨ ¨ , ξK1ζK2q. The first equiva-

lence indicates that Y mainly depends on the leading K1 principal components in

Xp¨q and the leading K2 principal components in Zp¨q. The justification lies on in

the fact that estimation of high order principal components is highly unstable and

difficult to interpret in functional data analysis, refer to the comments in Rice and

Silverman (1991) and Hall and Hosseini-Nasab (2006). The second equivalence is in

the form of classical partially linear single-index model. For model identification, let

θ satisfy }θ} “ 1 and γ1,1 ą 0.

4.3 Estimation of coefficient functions of all func-

tional covariates

Since the scores ξj and ζk are unknown, we cannot estimate β, θ and γ based on

the model (4.4) directly. Thus, to estimate functional principal component scores is

necessary. Our starting point for modeling are the actual observations, which consist

either of densely spaced and non-random measurement (dense design) or alternatively

of sparse and randomly (irregularly) spaced repeated measurements (sparse design)

of the predictor trajectories Xi and Zi. Let Rij and Vik denote the observations

of the random trajectories Xi and Zi at fixed or random time points Sij and Tik

contaminated with measurement errors εij and εik, respectively. The errors εij and

εik are assumed to be independent and identically distributed with zero means and

variances σ2
X and σ2

Z , respectively. Meanwhile, the errors are independent of Xipsq
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and Ziptq.

Rij “ XipSijq ` εij “ µXpSijq `
8
ÿ

j“1

ξijφjpSijq ` εij,

Vik “ ZipTikq ` εik “ µZpTikq `
8
ÿ

k“1

ζikψkpTikq ` εik,

(4.5)

where Etξiju “ Etζiku “ 0, Etξijξij1u “ Etζikζik1u “ 0 (j ‰ j
1

, k ‰ k
1

), Etξ2
iju “ λj

and Etζ2
iku “ τk. Estimates µ̂X , ĜX , λ̂j, φ̂j and σ̂2

X (respectively, µ̂Z , ĜZ , τ̂k, ψ̂k

and σ̂2
Z) of the underlying population mean function µX , covariance function GX ,

eigenvalues λj, eigenfunctions φj and error variance σ2
X (respectively, mean function

µZ , covariance function GZ , eigenvalues τk, eigenfunctions ψk and error variance σ2
Z)

are easily obtained by applying a nonparametric functional approach. Estimates

ξ̂j and ζ̂k of the FPC scores ξj and ζk can be obtained by the traditional integral

estimates for the dense design case or the conditional expectation approach of Yao

et al. (2005) for the sparse design case. Some additional details are given in Part a

of Section 4.7.

Once these preliminary estimates are in hand, we adopt the minimum average

variance estimation (MAVE) method by Xia and Härdle (2006) to estimate β and θ.

We briefly describe the method as following. Let

Ûi “
´

ξ̂i1, ¨ ¨ ¨ , ξ̂iK1 , ζ̂i1, ¨ ¨ ¨ , ζ̂iK2

¯J

,

and

Ŵi “

´

ξ̂i1ζ̂i1, ¨ ¨ ¨ , ξ̂i1ζ̂iK2 , ¨ ¨ ¨ , ξ̂iK1 ζ̂iK2

¯J

, i “ 1, ¨ ¨ ¨ , n.

For Ŵi which are close to w, we have the following local linear approximation

Yi ´ β
JÛi ´ g

´

θJŴi

¯

« Yi ´ β
JÛi ´ g

`

θJw
˘

´ g
1 `

θJw
˘

ŴJ
i0θ,
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where Ŵi0 “ Ŵi ´w. Following the idea of local linear smoothing, we may estimate

gpθJwq and g
1

pθJwq by the argument pa, dqJ that minimizes

n
ÿ

i“1

!

Yi ´
´

βJÛi ` a` dŴ
J
i0θ

¯)2

Ĥi0, (4.6)

where Ĥi0 ě 0, i “ 1, ¨ ¨ ¨ , n, are some weights with
řn
i“1 Ĥi0 “ 1, typically centering

at w. Let aj and dj be the estimate of gpθJŴjq and g
1

pθJŴjq, respectively. Our

estimating procedure is to minimize

n
ÿ

j“1

G
´

θJŴj

¯

In

´

Ŵj

¯

n
ÿ

i“1

!

Yi ´
´

βJÛi ` aj ` djŴ
J
ij θ

¯)2

Ĥij, (4.7)

with respect to paj, djq and pβ, θq, where Gp¨q is another weight function that controls

the contribution of pÛi, Ŵi, Yiq, i “ 1, ¨ ¨ ¨ , n to the estimation of pβ, θq, Inp¨q is

employed here for technical purpose to handle the boundary points, and Ĥij is local

weight function and Ŵij “ Ŵi ´ Ŵj.

We use two sets of weights. In the initial stage, let Ĥij “ Ĥb,ipŴjq{
řn
l“1 Ĥb,lpŴjq,

where Ĥb,ipŴjq “ b´K1K2HpŴi,j{bq, with Hp¨q is a K1K2-dimensional kernel func-

tion and b is a bandwidth. This will enable us to find a consistent estimator pβ̌, θ̌q

based on (4.7). We then switch to a set of refined weights to gain more effi-

ciency. In the second stage, we carry out the same iteration steps but let Ĥ θ̌
ij “

K̂ θ̌
b1,i
pθ̌JŴjq{

řn
l“1 K̂

θ̌
b1,l
pθ̌JŴjq, where K̂ θ̌

b1,i
pwq “ b´1

1 Ktpθ̌JŴi´wq{b1u, with Kp¨q is

an univariate kernel function, b1 is the bandwidth and θ̌ is the estimated value of θ

from the previous iteration. Denote the final value by p ˆ̃β, ˆ̃θq, where

ˆ̃β “
´

ˆ̃β1
X , ¨ ¨ ¨ ,

ˆ̃βK1
X , ˆ̃β1

Z , ¨ ¨ ¨ ,
ˆ̃βK2
Z

¯J

, ˆ̃θ “
´

ˆ̃γ1,1, ¨ ¨ ¨ , ˆ̃γ1,K2 , ¨ ¨ ¨ , ˆ̃γK1,K2

¯J

. (4.8)
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The estimator of βXp¨q, βZp¨q and γp¨, ¨q are then given by

β̂Xpsq “
K1
ÿ

j“1

ˆ̃β
pjq
X φ̂jpsq, β̂Zptq “

K2
ÿ

k“1

ˆ̃β
pkq
Z ψ̂jpsq, γ̂ps, tq “

K1
ÿ

j“1

K2
ÿ

k“1

ˆ̃γjkφ̂jpsqψ̂kptq. (4.9)

Meanwhile, we can also estimate gpvq by the solution of aj in (4.7) with ˆ̃θJŴj replaced

by v and denote its estimate by ĝpvq.

4.4 Asymptotic theory

To establish the relevant asymptotic results, we require studying the relationship

between the true FPC scores ξij and ηik with their estimates ξ̂ij and η̂ik since the

estimates of the conditional mean regression models with single-index interaction

need to be based on the estimated scores. A key step in the mathematical analysis is

to establish exact upper bounds of |ξ̂ij´ξij| and |η̂ik´ηik|. The convergence properties

of the estimated conditional mean regression models follow from those upper bounds

since these estimates are obtained by applying MAVE method to tξ̂ij, η̂ik, Yiu for

i “ 1, ¨ ¨ ¨ , n, j “ 1, . . . , K1 and k “ 1, . . . , K2.

We consider the consistency rate of the estimated regression functions in a func-

tional setting where the number of FPCs depends on the sample size n, i.e. K1 “

K1pnq and K2 “ K2pnq, and tends to infinity as n Ñ 8. In practice the choice of

K1 “ K1pnq and K2 “ K2pnq depends on the intrinsic structural complexity and

estimating accuracy of the covariance structure.

We are ready to present the asymptotic results of the proposed estimators. The-

orems 4.1 and 4.2 below establish the consistency of the estimators of the parameter

function and the nonparametric function, respectively. The proofs of these theorems

are provided in Part c of Section 4.7.
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Theorem 4.1. Under all the assumptions listed in Part b of Section 4.7, we have

}β̂X ´ βX}
p
ÝÑ 0, }β̂Z ´ βZ}

p
ÝÑ 0, }γ̂ ´ γ}

p
ÝÑ 0

where β̂X , β̂Z and γ̂ are defined in (4.9).

The rates of convergence of }β̂X ´ βX}, }β̂Z ´ βZ}, and }γ̂ ´ γ} can be found in

the (4.29) of Part b of Section 4.7.

Theorem 4.2. Under all the assumptions listed in Part b of Section 4.7, if the

density function fθpvq of θJW is positive, the derivative of Erε2|θJW “ vs exists,

b1 „ nδ with 1{6 ă δ ă 1{4, and Erεi|Uj,Wj, Yj, j ă is “ 0 almost surely, we then

have

|ĝpvq ´ gpvq|
p
ÝÑ 0.

Additional results on the rates of convergence of |ĝpvq´gpvq| can be found in the

(4.30) of Part b of Section 4.7. The proof of Theorems 4.1 and 4.2 is in Section 4.7

4.5 Simulation studies

We conducted some Monte Carlo simulation studies to evaluate the performance of

our proposed estimators for finite samples.

Simulation 1. Additive model for functional data has been studied by Ferraty

and Vieu (2009). We used the same model as that of Ferraty and Vieu (2009) in the

simulation. The predictor functions were generated by

X1
i ptq “ exp

 

sin2
pωitq

(

` pai ` 2πq t3 ` bi,

X2
i ptq “ cos pωitq ` pci ` 2πq t2 ` di,

where i “ 1, ¨ ¨ ¨ , 100, t P r´1, 1s. ωi are random real numbers generated from

uniform distributions on r0, 2πs and ai, bi, ci and di are generated from U r0, 1s.
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The responses have been generated according to different regression models of

the form

Yi “ α1pai ` 2πq `
p1´ cosωi ` α2| sinωi|q

ωi
` α2di ` εi,

where εi simulated from a Np0, 1q distribution.

These models have been chosen to contain three terms, one depending only on

the first covariate (this is controlled by the parameter α1), one depending only on the

second covariate (this is controlled by the parameter α2) and the third one depends

on both covariates. Indeed, just by changing the values of the parameters α1 and α2

one can change significantly the structure of the model.

For each model we simulated two samples: a learning sample of size 100 from

which the estimates are computed and a testing sample of size 50 on which the pre-

diction errors are calculated. For each predictor function, we sampled through 50

equidistantly spaced measurements in r´1, 1s. To show the usefulness of the condi-

tional mean regression models with single-index interaction, we have also computed

the predicted values on the testing sample by means of procedures in Section 4.3 and

compared the proposed model with various nonparametric models:

• Method M1
Np: kernel estimate based on the single covariate X1;

• Method M2
Np: kernel estimate based on the single covariate X2;

• Method M
p1,2q
Np : kernel estimate based on the pair of pX1, X2q;

• Method M
p1,2q
Add : two-step additive estimate starting with variable X1;

• Method M
p2,1q
Add : two-step additive estimate starting with variable X2;

• Method Mauto
Add : two-step additive estimate with automatic order choice;
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• Method Minter: the estimate based on the conditional mean regression models

with single-index interaction.

The results are summarized in Table 4.1 which gives, for various values of α1 and α2,

the comparative Mean of Square Residuals (MSR)

MSR “
1

n

n
ÿ

i“1

´

Yi ´ Ŷi

¯2

,

where Ŷi is the prediction described just before.

Table 4.1: MSR for different method.

α1 α2 M1
Np M2

Np M
p1,2q
Np M

p1,2q
Add M

p2,1q
Add Mauto

Add Minter

α1 “ 1

α2 “ 1
α2 “ 3
α2 “ 5
α2 “ 7
α2 “ 9

1.76
2.98
4.26
7.09
10.92

1.57
1.56
1.60
1.73
1.98

1.69
1.95
2.22
2.89
3.85

1.64
1.63
1.67
1.81
2.07

1.64
1.63
1.67
1.81
2.07

1.62
1.58
1.88
2.39
3.17

1.38
1.34
1.57
1.72
1.97

α1 “ 3

α2 “ 1
α2 “ 3
α2 “ 5
α2 “ 7
α2 “ 9

2.76
3.08
4.88
7.67
11.47

2.58
2.76
2.64
2.77
3.01

2.67
2.62
2.86
3.52
4.44

2.62
2.74
2.66
2.81
3.05

2.62
2.74
2.66
2.81
3.05

2.63
2.50
2.73
3.24
4.02

2.00
2.43
2.52
2.57
2.63

α1 “ 5

α2 “ 1
α2 “ 3
α2 “ 5
α2 “ 7
α2 “ 9

3.42
4.18
5.95
8.71
12.48

4.29
4.72
4.90
5.15
4.90

3.45
3.81
4.43
4.71
5.66

3.32
3.43
3.55
3.77
3.70

3.45
3.81
3.55
3.77
3.70

4.29
4.09
4.22
4.71
5.48

3.04
3.42
3.53
3.59
3.66

α1 “ 7

α2 “ 1
α2 “ 3
α2 “ 5
α2 “ 7
α2 “ 9

5.00
5.73
7.76
10.20
13.94

6.70
7.27
7.76
8.06
8.36

5.08
5.47
6.27
7.10
7.33

4.90
5.04
5.33
5.57
5.90

5.08
5.04
5.33
5.57
5.90

6.62
6.29
6.30
6.78
7.55

4.88
4.95
5.27
5.29
5.49

α1 “ 9

α2 “ 1
α2 “ 3
α2 “ 5
α2 “ 7
α2 “ 9

7.03
7.28
9.43
12.14
15.85

9.81
10.46
11.27
11.67
12.22

7.18
7.57
8.40
9.28
9.98

6.95
7.09
7.50
7.80
8.29

7.18
7.57
8.40
9.28
9.98

9.65
10.23
9.12
8.99
9.51

6.75
6.93
7.30
7.52
8.36

From Table 4.1, it is observed that the conditional mean regression n models with
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single-index interaction give very nice results compared with nonparametric methods

based on one or two variables. Indeed, the conditional mean regression models with

single-index interaction lead to the smallest prediction error in all situations.

Simulation 2. In this study, we consider functional data generated from the

process

Xipsq “
2
ÿ

j“1

ξijφjpsq, Ziptq “
3
ÿ

k“1

ζikφkptq, i “ 1, ¨ ¨ ¨ , 100,

where φ1psq “ ´
?

2 cosp2πsq, φ2psq “
?

2 sinp2πsq, φ3psq “ ´
?

2 cosp4πsq, s P r0, 1s,

and ξij „ Np0, λjq with λ1 “ 4, λ2 “ 1{2 and ζik „ Np0, τkq with τ1 “ 1, τ2 “ 1{2

and τ3 “ 1{4. Responses Yi were obtained as:

ModelpAq : Yi “

ż

T
βXpsqXipsqds`

ż

T
βZptqZiptqdt` exp

"
ż

T

ż

T
γps, tqXipsqZiptqdtds

*

` ei,

ModelpBq : Yi “

ż

T
βXpsqXipsqds` ei,

ModelpCq : Yi “

ż

T
βZptqZiptqdt` ei,

ModelpDq : Yi “

ż

T
βXpsqXipsqds`

ż

T
βZptqZiptqdt` ei,

where

βXpsq “ ´2φ1psq ` φ2psq, βZptq “ 2φ1ptq ´ φ2ptq ` 3φ3ptq,

γps, tq “
1
?

3
φ1psqφ1ptq `

1
?

6
φ1psqφ2ptq `

1

3
φ1psqφ3ptq `

1

3
φ2psqφ2ptq `

1

3
φ2psqφ3ptq

and ei were simulated as Np0, 0.01q. The measurement error in (4.5) is εij „

Np0, 0.25q and εij „ Np0, 0.25q, respectively.

The number of measurements where each trajectory was sampled was selected

100 equi-distant point in r0, 1s for dense cases. We compared the performance with
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various models. The performance measure tabulated in Table 4.2 is Mean of Square

Residuals MSR “
ř100
i“1pYi ´ Ŷiq

2{100.

Table 4.2: MSR for different model.

True Model Fitted Model 25th 50th 75th

A

A
B
C
D

1.2424
19.6825
19.7162
19.2137

2.8452
41.3847
41.6527
40.8378

29.5848
126.0650
125.8314
125.5848

B
A
B

0.3868
0.4030

0.3952
0.4153

0.4042
0.4268

C
A
C

5.00
5.73

6.70
7.27

5.08
5.47

D

A
B
C
D

0.4106
2.5623
3.9933
0.4508

0.4190
2.6141
4.0696
0.4508

0.4268
2.6665
4.1604
0.4791

Our conclusion is that the conditional mean regression with single-index inter-

action leads to similar prediction errors with functional linear regression when the

underlying regression model is linear, while the conditional mean regression with

single-index interaction performs better than the linear model in situations when the

underlying regression relationship is nonlinear.

4.6 Real data example: Climate data

We now focus on the analysis of climate data from NOAA ( www.ncdc.noaa.gov)

to illustrate functional data regression procedures. The source-datasets directory

contain all normals derived from hourly data, including temperature, dew point

temperature, heat index, wind chill, wind, cloudiness, heating and cooling degree

hours, and pressure normals, also contains all precipitation, snowfall, and snow depth

normals files including percentiles, frequencies, and averages.
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Figure 4.1: The four functional covariates for learning samples.

The scalar response Y is the precipitation every day. In order to study the

possible influence, four functional covariates (temperature normals X1ptq, wind chill

X2ptq, pressure X3ptq, and cloudiness X4ptq) which are daily curves each hour are

studied. We select the climate data of one station over a period of 180 days. The 180

days have been split (randomly) into two subsamples: a learning one (of size n “ 90)

from which the various predictors are computed and a testing one (of size n “ 90) on

which the prediction errors are computed. The four functional covariates for learning

samples are plotted in Fig. 4.1. According to method which is introduced in Part

a, the numbers of included components K1 “ 2, K2 “ 2, K3 “ 1 and K4 “ 2 were

chosen by the fraction of variance explained (FVE) with threshold 0.85, respectively.

Table 4.3: MSR of uni-functional linear model for different functional covariates.

Covariates X1 X2 X3 X4

MSR 4.7510 12.5386 205.5929 344.8723
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We firstly consider the functional linear model with only one functional covariate

and compute the MSR in Table 4.3. Table 4.3 shows that the most influent functional

variable is the temperature curve and wind chill while the others covariates have

quite bad predictive power. However, even if these variables contain just a little

information on the target Y it could be interesting to use them in order to improve

the results given by the main explanatory variable. From Table 4.3, we can also seen,

even the most influent variable (the temperature curve) has also a large MSR using

simply linear model, this shows that uni-functional linear model can not reveal such

a regression information.

To illustrate the performance of the proposed model, we compute the MSR in

Table 4.4 based on model (4.1) for different functional covariates with or without

interaction. In the case of with interaction, the best regression modeling is composed

by the two covariates: wind chill and pressure curve, which is also consistent with the

meteorological knowledge, i.e. the main factors affecting precipitation are wind band

and pressure zone. For this regression model, the estimated univariate linear function

β1ptq and β2ptq are plotted in Fig. 4.2 and Fig. 4.3 displays the estimated bivariate

surface γpt, sq. Meanwhile, we compare the regression models with and without the

interaction effects by according to the MSR. In result, a large improvement has been

obtained when regression models with interaction have been used.

Table 4.4: MSR of the proposed model and the functional linear model with two
functional covariates for different functional covariates.

Covariates With interaction Without interaction
X1 and X2 17.6832 70.5021
X1 and X3 41.3530 126.0087
X1 and X4 40.6600 97.3201
X2 and X3 3.7300 387.3311
X2 and X4 66.7202 306.0660
X3 and X4 292.7686 744.1033
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Figure 4.2: The estimated univariate linear function β̂1ptq and β̂2ptq.
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Figure 4.3: The estimated bivariate surface γ̂pt, sq.

To conclude, the results of Tables 4.3 and 4.4 confirm that the wind chill is

the most influent variable, while temperature (X1ptq), pressure normals (X3ptq) and

cloudiness (X4ptq) can lead to big and interesting additional information.
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4.7 Some additional details and proofs of main re-

sults

4.7.1 Part a

To estimate the predictor mean function µXpsq by local linear scatterplot smoothers,

one minimizes

n
ÿ

i“1

Ni
ÿ

j“1

Kp1q

ˆ

sij ´ s

b˚X

˙

tRij ´ d0 ´ d1psij ´ squ
2 (4.10)

with respect to d0 and d1 to obtain µ̂Xpsq “ d0psq, where the kernel Kp1q is assumed

to be a smooth symmetric density function and b˚X is a bandwidth. Analogously, one

may define the estimator of the mean function µZptq.

Let GX,ipSij, Silq “ tRij ´ µ̂XpSijqutRil ´ µ̂XpSilqu, and define the local linear

surface smoother for GXps, tq by minimizing

n
ÿ

i“1

ÿ

1ďj‰lďNi

Kp2q

ˆ

Sij ´ s

h˚X
,
Sil ´ u

h˚X

˙

rGX,i pSij, Silq ´ f tα, ps, tq, pSij, Silqus
2 (4.11)

where fpα, ps, uq, pSij, Silqq “ α0 ` α11ps ´ Sijq ` α12pu ´ Silq, with respect to

α “ pα0, α11, α12q, yielding ĜXps, tq “ α̂0ps, tq. Here, the kernel Kp2q is a two-

dimensional smooth density with zero mean and finite covariances and h˚X is a band-

width. An essential feature is the omission of the diagonal elements j “ l which

are contaminated with the measurement errors. Analogously, we can obtain the

estimator of the covariance function GZps, tq.

Estimates of eigenvalues and eigenfunctions tλk, φkukě1 are obtained by numerical

solutions tλ̂k, φ̂kukě1 of suitably discretized eigenequations,

ż

T
ĜXps1, s2qφ̂kps2qds2 “ λ̂kφ̂kps1q (4.12)
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with orthonormal constraints on tφ̂kukě1. Analogously the estimates of tτk, ψkukě1

can be obtained.

For the dense design case, the traditional integral estimates of the functional

principal components ξj and ζk defined by

ξij “

ż

tXipsq ´ µXpsquφjpsqds, ζik “

ż

tZiptq ´ µZptquψkptqdt

are

ξ̂ij “
Mi
ÿ

m“2

tRim ´ µ̂Xpsimquφ̂jpsimqpsim ´ si,m´1q, j “ 1, 2, ¨ ¨ ¨ ,

ζ̂ik “
N
ÿ

q“2

tViq ´ µ̂Zptiqquψ̂kptiqqptiq ´ ti,q´1q, k “ 1, 2, ¨ ¨ ¨ ,

(4.13)

For the sparse design case, to estimate ξij and ζik, we must first estimate σ2
X

and σ2
Z . To estimate σ2

X , we first estimate VXpsq “ GXps, sq ` tµXpsqu
2 ` σ2

X , by

minimizing

n
ÿ

i“1

Ni
ÿ

j“1

K1

ˆ

sij ´ s

h̃X

˙

tR2
ij ´ g0 ´ g1psij ´ squ

2 (4.14)

with respect to g “ pg0, g1q, yielding V̂Xpsq “ ĝ0psq. Analogously we can obtain the

estimator of VZptq.

We then estimate σ2
X by

σ̂2
X “

1

|T |

ż

T

”

V̂Xpsq ´ ĜXps, sq ´ tµ̂Xpsqu
2
ı

ds (4.15)

where |T | denote the length of interval T . Analogously we can obtain the estimator

of σ2
Z .

Under the sparse design case, the best predictions of functional principal com-

ponents ξij and ζik given observations Ri “ pri1, ¨ ¨ ¨ , riNi
qJ and Vi “ pvi1, ¨ ¨ ¨ , viLi

qJ
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are the conditional expectation Epξij|Riq and Epζik|Viq, respectively, which under

Gaussian assumptions are found to be

ξ̂ij “ λ̂jφ̂
T
ijΣ̂

´1
Ri
pRi ´ µ̂Xi

q (4.16)

and

ζ̂ik “ τ̂kψ̂
T
ikΣ̂

´1
Vi
pVi ´ µ̂Zi

q, (4.17)

where

µ̂Xi
“ rµ̂Xi

pri1q, ¨ ¨ ¨ , µ̂Xi
prNi

qs
T , µ̂Zi

“ rµ̂Zi
pvi1q, ¨ ¨ ¨ , µ̂Zi

pvLi
qs
T ,

φ̂ij “
”

φ̂jpri1q, ¨ ¨ ¨ , φ̂jpriNi
q

ıJ

, ψ̂ik “
”

ψ̂kpvi1q, ¨ ¨ ¨ , ψ̂kpviLi
q

ıJ

,

´

Σ̂Ri

¯

m,l
“ ĜXprim, rilq ` σ̂

2
Xδml,

´

Σ̂Vi

¯

m,l
“ ĜZpvim, vilq ` σ̂

2
Zδml,

and pΣ̂Ri
qm,l and pΣ̂Viqm,l are the (m,l)th elements of Σ̂Ri

and Σ̂Vi , respectively.

For the choice of the number of included components K1 and K2, one may use

cross-validation or model selection criteria such as pseudo-BIC (Bayesian information

criterion); we adopt the latter, i.e. we may take K1 and K2 by minimizing

BICpK1q “

n
ÿ

i“1

Ni
ÿ

j“1

«

´
1

2σ̂X

2
#

Rij ´ µ̂Xpsijq ´
K1
ÿ

k1“1

ξ̂ik1φ̂k1psijq

+ff2

`K1log

˜

n
ÿ

i“1

Ni

¸

,(4.18)

and

BICpK2q “

n
ÿ

i“1

Li
ÿ

k“1

«

´
1

2σ̂Z

2
#

Vij ´ µ̂Zptikq ´
K2
ÿ

k2“1

ζ̂ik2ψ̂k2ptikq

+ff2

`K2log

˜

n
ÿ

i“1

Li

¸

,(4.19)

respectively.
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4.7.2 Part b

We require the following conditions for predictor processes.

Let b˚X “ b˚Xpnq and b˚Z “ b˚Zpnq denote the bandwidths for estimators µ̂X and

µ̂Z respectively. h˚X “ h˚Xpnq and h˚Z “ h˚Zpnq denote the bandwidths for estimators

ĜX and ĜZ respectively. h̃X “ h̃Xpnq and h̃Z “ h̃Zpnq denote the bandwidths for

estimators σ̂X and σ̂Z respectively. The following assumptions are needed.

(A1.1) b˚X Ñ 0, h˚X Ñ 0, nb˚4
X Ñ 8, nh˚4

X Ñ 8, nb˚6
X ă 8 and nh˚6

X ă 8,

(A1.2) h̃X Ñ 0, nh̃X Ñ 8 and nh˚8
X ă 8.

For processes Z, analogous requirements are

(B1.1) b˚Z Ñ 0, h˚Z Ñ 0, nb˚4
Z Ñ 8, nh˚4

Z Ñ 8, nb˚6
Z ă 8 and nh˚6

Z ă 8,

(B1.2) h̃Z Ñ 0, nh̃Z Ñ 8 and nh˚8
Z ă 8.

To obtain consistent functional principal component estimates for dense designs, we

require both the pooled data across all subjects and the data from each subject to be

dense in T . For random process X, denote the sorted time points across all subjects

by a0 ď S1 ď S2 ď ¨ ¨ ¨ ď SÑ ď b0, and ∆X “ maxtSpmq´Spm´1q : m “ 1, . . . , Ñ`1u,

where Ñ “
řn
i“1Ni, T “ ra0, bos, S0 “ a0 and SpÑ`1q “ b0. For the ith subject,

suppose that the time points Sij have been ordered non-decreasingly. Let ∆X
i “

maxtSi,j ´Si,j´1 : j “ 1, . . . , Ni` 1u, ∆X˚ “ maxt∆X
i : i “ 1, . . . , nu and N̄ “ Ñ{n.

Put NX
max “ maxtNi : i “ 1, . . . , nu and NX

min “ mintNi : i “ 1, . . . , nu. Assume

that

(A2.1) ∆X “ Opmintn´1{2b˚´1
X , n´1{2h̃´1

X , n´1{4h˚´1
X uq,

(A2.2) N̄ Ñ 8, NX
max ď c2N̄ , ∆X˚ “ Op1{Ñq, for some c2 ą 0.
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For processes Z, we analogously define the quantities ∆Z , L̃,∆Z
i ,∆

Z˚, L̄Z , L
Z
max, L

Z
min,

and assume that

(B2.1) ∆Z “ Opmintn´1{2b˚´1
Z , n´1{2h̃´1

Z , n´1{4h˚´1
Z uq,

(B2.2) L̄Ñ 8, LZmax ď c1L̄,∆
Z˚ “ Op1{L̃q, for some c1 ą 0.

Denote the distribution that generates Rij the ith subject at Sij by Ripsq „ Rpsq with

density gRpr; sq. LetgRpr1, r2; s1, s2q be the density of pRps1q, Rps2qq. Analogously

for random process Z, denote the distribution that generates Vij, the ith subject

at Tij by Viptq „ V ptq with density fV pv; tq. LetfV pv1, v2; t1, t2q be the density of

pV pt1q, V pt2qq. The following assumptions are for the case of dense designs. Let

fW pwq and fUpuq be the densities of W and U , respectively.

(A3) supsPS ErR
4psqs ă 8,

(B3) suptPT ErV
4ptqs ă 8,

and

(C2,1) d2{ds2gRpr, sq is uniformly continuous on R1ˆ T ; d2{dsl11 ds
l2
2 gRpr1, r2; s1, s2q is

uniformly continuous on R2 ˆ T 2 for l1 ` l2 “ 2, 0 ď l1, l2 ď 2.

(C2,2) d2{dt2fV pv, tq is uniformly continuous on R1ˆT ; d2{dtl11 dt
l2
2 fV ˚pv1, v2; t1, t2q is

uniformly continuous on R2 ˆ T 2 for l1 ` l2 “ 2, 0 ď l1, l2 ď 2.

(C2,3) The second derivatives f
p2q
W pwq exist and are continuous on R, and

fW pwqb
´K1K2 “ otminpn1{2b˚X , n

1{2b˚Z , N̄
1{2
qu, fW pwqb1 “ otminpn1{2b˚X , n

1{2b˚Z , N̄
1{2
qu.

The Fourier transforms of κ1 and κ2 are given by κF1 puq “
ş

expp´iutqκ1ptqdt,

κF1 pu, vq “
ş

expp´iut´ ivsqκ2ps, tqdsdt respectively.
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(C2.4) κF1 and κF2 are absolutely integrable,
ş

|κF1 puq|du ă 8,
ş

|κF2 pu, vq|dudv ă 8.

Let }f}8 “ suptPτ |fptq| for any function with support T , and }g} “
b

ş

A g
2ptqdt for

any g P L2pAq. The following assumptions are needed for Theorem 1.

(A4) Ep}X
1

}28q ă 8, Ep}X
12}28q “ opN̄q, and Epξ4

j q ă 8 for any fixed j.

(B4) Ep}Z
1

}28q ă 8, Ep}Z
12}28q “ opL̄Zq, and Epη4

kq ă 8 for any fixed k.

(D1) tpUi,Wi, Yiqu are a strongly mixing and stationary sequence with geometric

decaying mixing rate αpkq.

(D2) With Probability 1, W lies in a compact set Θ. Density functions fθ of θJW

for any }θ} “ 1 have bounded derivatives. Regions tW : fpW q ě c0u and

tW : fθpθ
JW q ě c0u for all θ : }θ} “ 1 are non-empty.

(D3) For any perpendicular unit norm vectors θ and ϑ, the joint density function

fpu1;u2q of pθJW,ϑJW q satisfies fpu1;u2qq ă cfθJW pu1qfϑJW pu2q, where c is a

constant.

(D4) Let M “ pUJ,WJqJ, g has bounded, continuous third order derivative. The

conditional expectations ErU |W “ ws, ErUUJ|W “ ws, ErM |θJW “ vs and

ErMMJ|θJW “ vs have bounded derivatives. ErY r|W “ ws, Er|U |r|W “ ws,

Er|Ul||U1||W1 “ w1,Wl “ wls and Er|Ul||U1||θ
JW1 “ a, θJWl “ bs are bounded

by a constant for all l ą 0, w1, wl, w, a, b, where r ą 3.

(D5) H is a density function with bounded derivative and compact support t|w| ď du

for some d ą 0. K is a symmetric density function with bounded derivative

and compact support r´e0, e0s for some e0 ą 0.

(D6) Matrix ErtU ´ EpU |W qutU ´ EpU |W quJs is a positive definite matrix.
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4.7.3 Part c

Define

DX “

ż

T 2

rĜXps, tq ´GXps, tqs
2dsdt, DZ “

ż

T 2

rĜZps, tq ´GZps, tqs
2dsdt,

δXk “ min1ďjďkpλj ´ λj`1q, δ
Z
k “ min1ďjďkpτj ´ τj`1q,

πXj “ 1{λj ` 1{δXk , π
Z
k “ 1{τk ` 1{δZk .

(4.20)

The following lemmas give the weak uniform convergence rates for the estimators

of the FPCs, setting the stage for the subsequent developments.

Lemma 4.1. Suppose that Assumptions (A1.1)-(A3), (B1.1)-(B3) and (C2.1), (C2.2),

and (C2.4) hold, we have

sup
tPT
|µ̂Xptq ´ µXptq| “ Op

ˆ

1

n1{2b˚X

˙

, sup
tPT
|µ̂Zptq ´ µZptq| “ Op

ˆ

1

n1{2b˚Z

˙

,

sup
s,tPT

|ĜXps, tq ´GXps, tq| “ Op

ˆ

1

n1{2h˚2
X

˙

, sup
s,tPT

|ĜZps, tq ´GZps, tq| “ Op

ˆ

1

n1{2h˚2
Z

˙

,

and as a consequence, σ̂2
X ´ σ2

X “ Opp
1

n1{2h˚2X

` 1
n1{2h̃X

q and σ̂2
Z ´ σ2

Z “ Opp
1

n1{2h˚2Z

`

1
n1{2h̃Z

q. Considering eigenvalues λj, τk of multiplicity one, φ̂j and ψ̂k can be chosen

such that

P p sup
1ďjďK̃1

|λ̂j ´ λj| ď DXq “ 1, sup
tPT
|φ̂jptq ´ φjptq| “ Op

˜

πXj
n1{2h˚X

¸

,

P p sup
1ďkďK̃2

|τ̂k ´ τk| ď DZq “ 1, sup
tPT
|ψ̂kptq ´ ψkptq| “ Op

ˆ

πZk
n1{2h˚Z

˙

.

The proof of Lemma 4.1 can be found in Müller and Yao (2008).
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Recall that }f}8 “ suptPτ |fptq| for any function with support T , and }g} “
b

ş

A
g2ptqdt for any g P L2pAq and define

ρ
p1q
i “ c1}Xi} ` c2}XiX

1

i}8 ` c3, F p1q “ supsPS,1ďjďK1
p|φ̂jpsq ´ φjpsq|q,

ρ
p2q
i “ 1` sup1ďjďK1

}φjφ
1

j}8∆X˚, F p2q “ supsPS |µ̂Xpsq ´ µXpsq|,

ρ
p3q
i “ c4}Xi}8 ` c5}X

1

i}8 ` c6, F p3q “ sup1ďjďK1
p}φ

1

j}q8∆X˚,

ρ
p4q
i “ |

řNi

r“2 εir sup1ďjďK1
}φj}8psi,r ´ si,r´1q|, F

p4q
j ” 1,

ρ
p5q
i “ |

řNi

r“2 |εir|psi,r ´ si,r´1q, F p5q ” F
p1q
j ,

(4.21)

for some positive constants c1, ¨ ¨ ¨ , c6 that do not depend on i or j. Similarly, define

corresponding quantities for the process Z as follows

%
p1q
i “ d1}Zi} ` d2}ZiZ

1

i}8 ` d3, Gp1q “ suptPT,1ďkďK2
p|ψ̂kptq ´ ψkptq|q,

%
p2q
i “ 1` sup1ďkďK2

p}ψkψ
1

k}8q∆
Z˚, Gp2q “ suptPT |µ̂Zptq ´ µZptq|,

%
p3q
i “ d4}Zi}8 ` d5}Z

1

i}8 ` d6, Gp3q “ sup1ďkďK2
p}ψ

1

k}8q∆
Z˚,

%
p4q
i “ |

řLi

r“2 εir sup1ďkďK2
p}ψk}8qpti,r ´ ti,r´1q|, Gp4q ” 1,

%
p5q
i “ |

řLi

r“2 |εir|pti,r ´ ti,r´1q, Gp5q ” Gp1q,

(4.22)

for some positive constants d1, ¨ ¨ ¨ , d6 that do not depend on i or k.

The next lemma is critical for the subsequent developments, providing exact

upper bounds for the estimation errors |ξ̂ij´ξij| and |ζ̂ik´ζik| for the FPC estimates

ξ̂ij and ζ̂ik in 4.13.

Lemma 4.2. For ρ
p`q
ij , %

p`q
ik , F

p`q
j and G

p`q
k as defined in (12) and (13), suppose that

Assumptions (A1.1)-(A3), (B1.1)-(B3) and (C2.1), (C2.2), and (C2.4) hold, then

|ξ̂ij ´ ξij| ď
5
ÿ

`“1

ρ
p`q
i F

p`q, |ζ̂ik ´ ζik| ď
5
ÿ

`“1

%
p`q
i G

p`q.

|ξ̂ij ζ̂ik ´ ξijζik| ď
5
ÿ

`“1

ρ
p`q
i F

p`q
`

5
ÿ

`“1

%
p`q
i G

p`q.

The proof of Lemma 4.2 can be found in Müller and Yao (2008).
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Define

ρ “ fW pxq
!

max1ďjďK1
πX
j

?
nh˚X

` 1?
nb˚X

`
?

∆X˚
)

, % “ fW pwq
!

max1ďjďK1
πZ
k?

nh˚Z
` 1?

nb˚Z
`
?

∆Z˚
)

,

Wi “ pξi1ζi1, ¨ ¨ ¨ , ξi1ζKi2
, ¨ ¨ ¨ , ξKi1

ζKi2
q
J , Ŵi “

´

ξ̂i1ζ̂i1, ¨ ¨ ¨ , ξ̂i1ζ̂Ki2
, ¨ ¨ ¨ , ξ̂Ki1

ζ̂Ki2

¯J

,

p “ K1K2,

(4.23)

where ∆X˚ is defined in Part b.

Recall that

Hb,i “ Htpw ´Wi{bu{pb
pq, Ĥb,i “ Htpw ´ Ŵi{bu{pb

pq,

Kθ
b1,i
“ Ktpv ´ θJWiq{b1u{pb1q, K̂θ

b1,i
“ Ktpv ´ θJŴiq{b1u{pb1q,

To evaluate |β̂ ´ β| and |θ̂ ´ θ|, one has to quantify the order of the differences

D1 “
řn
i“1pĤb,i ´Hb,iq, D2 “

řn
i“1pĤb,i ´Hb,iqYi,

D3 “
řn
i“1pĤb,iξ̂ij ´Hb,iξijq, D4 “

řn
i“1pĤb,iη̂ik ´Hb,iηikq

D5 “
řn
i“1pĤb,iξ̂ij η̂ik ´Hb,iξijηikq, D6 “

řn
i“1pĤb,iξ̂

2
ij ´Hb,iξ

2
ijq.

Lemma 4.3. Suppose that Assumptions (A1.1)-(A4), (B1.1)-(B4) and (C2.1)- (C2.4)hold,

then

D1 “ Oppnpρ` %qb
´pq, D2 “ Oppnpρ` %qb

´pq,
D3 “ Oppnpρ` %qb

´pq, D4 “ Oppnpρ` %qb
´pq

D5 “ Oppnpρ` %qb
´pq, D6 “ Oppnpρ` %qb

´pq.

Proof of Lemma 4.3 Considering D1, without loss of generality, assume the

compact support of H is r´1, 1sp. Since H is Lipschitz continuous on its support

D1 ď
c

b2p

n
ÿ

i“1

ˇ

ˇ

ˇ
Ŵi ´Wi

ˇ

ˇ

ˇ

!

Ip|w ´Wi| ď bpq ` Ip|w ´ Ŵi| ď bpq
)

,

for some c ą 0, where Ip¨q is an indicator function. We then have

c

b2p

n
ÿ

i“1

ˇ

ˇ

ˇ
Ŵi ´Wi

ˇ

ˇ

ˇ
I p|w ´Wi| ď bpq

ď

5
ÿ

`“1

Gp`q
c

b2p

n
ÿ

i“1

%
p`q
i I p|w ´Wi| ď bpq `

5
ÿ

`“1

F p`q
c

b2p

n
ÿ

i“1

ρ
p`q
i I p|w ´Wi| ď bpq .
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By the central limit theorem for a random number of summands (Billingsley (1995),

page 380), observing
řn
i“1 Ip|w ´Wi| ď bpq{nbp

p
ÝÑ 2fW pwq, we have

c

nbp

n
ÿ

i“1

ρ
p`q
i Ip|w ´Wi| ď bpq

p
ÝÑ 2fW pwqE

´

ρ
p`q
i

¯

,

provided that Epρ
p`q
i q ă 8 for ` “ 1, ¨ ¨ ¨ , 5. Note that Epρ

p1q
i q ă 8, Epρ

p3q
i q ă 8 by

(A4), Epρ
p4q
i q ď 2σX

a

∆˚
X and Epρ

p5q
i q ă |S|σX by the Cauchy-Schwarz inequality.

Then

F p1q
1

nb2p

n
ÿ

i“1

ρ
p1q
i Ip|w ´Wi| ď bpq “ Op

˜

max1ďjďK1 π
X
j

n1{2h˚2
X b

p

¸

fW pwq,

F p2q
1

nb2p

n
ÿ

i“1

ρ
p2q
i Ip|w ´Wi| ď bpq “ Op

ˆ

1

n1{2bXbp

˙

fW pwq,

F p3q
1

nb2p

n
ÿ

i“1

ρ
p3q
i Ip|w ´Wi| ď bpq “ Op

ˆ

sup1ďjďK1
}φj}8∆˚

X

bp

˙

fW pwq,

F p4q
1

nb2p

n
ÿ

i“1

ρ
p4q
i Ip|w ´Wi| ď bpq “ Op

˜

a

∆˚
X

bp

¸

fW pwq,

F p5q
1

nb2p

n
ÿ

i“1

ρ
p5q
i Ip|w ´Wi| ď bpq “ Op

ˆ

max1ďjďK1 π
X
k

n1{2h˚2
X b

p

˙

fW pwq.

We now obtain
ř5
`“1 F

p`q c
nbp

řn
i“1 ρ

p`q
i Ip|w ´ Wi| ď bpq “ Oppρb

´pq, using simi-

lar arguments, we have
ř5
`“1G

p`q c
nbp

řn
i“1 %

p`q
i Ip|w ´ Wi| ď bpq “ Opp%b

´pq, then

1
nb2p

řn
i“1 |ŵi ´Wi|Ip|w ´Wi| ď bpq “ Opppρ ` %qb´pq. The asymptotic rate of the

second term can be derived analogously. Observing

1

nbp

n
ÿ

i“1

I
´

|w ´ Ŵi| ď bp
¯

ď
1

nbp

n
ÿ

i“1

«

I p|w ´Wi| ď 2bpq ` I

˜

5
ÿ

`“1

!

ρ
p`q
i F

p`q
` %

p`q
i G

p`q
)

ą bp

¸ff

p
ÝÑ 4fW pwq.
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This implies 1
nb2p

řn
i“1 |Ŵi ´ wi|Ip|w ´ Ŵi| ď bpq “ Opppρ ` %qb´pq. Then D1 “

Opppρ` %qb
´pq.

Analogously, one can show D2 “ Opppρ`%qb
´pq by the Cauchy-Schwarz inequality

for ρ
p`q
i and %

p`q
i , ` “ 1, 3 and observing the independence between Yi and ρ

p`q
i , %

p`q
i ,

` “ 1, 3, given the moment condition (A4). For D3, we have

D3 “

n
ÿ

i“1

!´

Ĥb,i ´Hb,i

¯

ξij `
´

Ĥb,i ´Hb,i

¯´

ξ̂ij ´ ξij

¯

`Wi

´

ξ̂ij ´ ξij

¯)

“ D31 `D32 `D33.

We have D31 “ Opppρ ` %qb´pq, using the arguments similar to D1. It is easy to

see that D32 “ oppD31q. Since D33 ď c
ř5
`“1 F

p`q
j

1
nbp

řn
i“1 ρ

p`q
ij Ip|w ´ Wi| ď bpq `

ř5
`“1G

p`q
k

řn
i“1 %

p`q
ik Ip|w ´wi| ď bpq for some c ą 0, one also has D33 “ oppD31q. This

results in D3 “ Opppρ ` %qb´pq. Analogously, one shows D4 “ Opppρ ` %kqb
´pq, and

D5 “ Opppρ` %qb
´pq. Observing |ξ̂2

ij ´ ξ
2
ij| ď |ξ̂ij ´ ξij||ξij| ` pξ̂ij ´ ξijq

2, one can show

D6 “ Opppρ` %qb
´pq, using similar arguments to that of D3.

Lemma 4.4. Suppose that Assumptions (A1.1)-(A4), (B1.1)-(B4) and (C2.1)-(C2.4)
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hold, then

E1 “

n
ÿ

i“1

´

K̂θ
b1,i
´Kθ

b1,i

¯

“ Op ppρ` %qb1q ,

E2 “

n
ÿ

i“1

´

K̂θ
b1,i
´Kθ

b1,i

¯

Yi “ Op ppρ` %qb1q ,

E3 “

n
ÿ

i“1

´

K̂θ
b1,i
ξ̂ij ´K

θ
b1,i
ξij

¯

“ Op ppρ` %qb1q ,

E4 “

n
ÿ

i“1

´

K̂θ
b1,i
η̂ik ´K

θ
b1,i
ηik

¯

“ Op ppρ` %qb1q ,

E5 “

n
ÿ

i“1

´

K̂θ
b1,i
ξ̂ij η̂ik ´K

θ
b1,i
ξijηik

¯

“ Op ppρ` %qb1q ,

E6 “

n
ÿ

i“1

´

K̂θ
b1,i
ξ̂2
ij ´K

θ
b1,i
ξ2
ij

¯

“ Op ppρ` %qb1q .

The proof of Lemma 4.4 is similar to that of Lemma 4.3.

Let δθ “ |θ ´ θ0|, δβ “ |β ´ β0|, δχ “ δθ ` δβ, p “ K1K2, δpn “ tlogn{pnb
pqu1{2,

τpn “ b2 ` δpn, δn “ tlogn{pnb1qu
1{2, τn “ b2

1 ` δn, Θ “ tθ : |θ| “ 1u. Suppose

An is a matrix. An “ Opanq (or opanq ) means every element in An is Opanq (or

opanq ) almost surely. We abbreviateKhpθ
JWi0q and HbpWi0q as Kθ

h,ipwq (or Kθ
h,i)

and Hb,ipwq (or Hb,i ) respectively in the following context. We take Gp¨q ” 1 in

the proofs for simplicity. We further assume that κ2 ”
ş

Kpvqv2 “ 1 and H2 ”

ş

HpUqUUJdU “ Ipˆp.

In the following context, we abbreviate L for any function Lpxq, and Lθ or Lθpxq

for any function Lθpθ
Jxq. Let

ς̂0 “
1
n

řn
i“1 Ĥb,i, Ŝ1 “

1
n

řn
i“1 Ĥb,iŴi,0, Ŝ2 “

1
n

řn
i“1 Ĥb,iŴi,0Ŵ

J
i,0

T̂1 “
1
n

řn
i“1 Ĥb,iÛi, T̂2 “

1
n

řn
i“1 Ĥb,iÛiÛ

J
i , Ĉ2 “

1
n

řn
i“1 Ĥb,iŴiÛ

J
i ,

Ê1 “
1
n

řn
i“1 Ĥb,iÛiYi, D̂1 “

1
n

řn
i“1 Ĥb,iŴi,0Yi, L̂n “ ς̂0Ŝ2 ´ Ŝ1Ŝ

J
1 .
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and

ˆ̄ωθa,ipwq “
!

θJŜ2θ
)

Ĥb,i ´ θ
JŜ1Ĥb,iθ

JŴi,0, ˆ̄ωθd,ipwq “ ς̂0Ĥb,iθ
JŴi,0.

We can obtain initial estimators of θ0 and β0 as follows. Choose a vector θ with norm

1 and any vector β. Let ˆ̄ωθj “ θJL̂npŴjqθ and calculate

ˆ̄aθj “ t ˆ̄ω
θ
j u
´1

n
ÿ

i“1

ˆ̄ωθa,ipŴjqtYi ´ β
JÛiu,

ˆ̄dθj “ t ˆ̄ω
θ
j u
´1

n
ÿ

i“1

ˆ̄ωθd,ipŴjqtYi ´ β
JÛiu,

(4.24)

˜

ˆ̄β
ˆ̄θ

¸

“ t ˆ̄Dθ
nu
´1

n
ÿ

j“1

InpŴjq

˜

Ê1pŴjq ´ ˆ̄aθj T̂1pŴjq

ˆ̄dθjD̂1pŴjq ´ ˆ̄aθj
ˆ̄dθj Ŝ1pŴjq

¸O

ς̂0pŴjq,

θ̌ :“ sgn1θ̌{|θ̌|.

(4.25)

where sgn1 is the sign of first entry of ˆ̄θ and

ˆ̄Dθ
n “

řn
j“1 InpŴjq

ˆ

T̂2pŴjq d̄θj Ĉ2pŴjq

d̄θj Ĉ
J
2 pŴjq pd̄θjq

2Ŝ2pŴjq

˙

O

ς̂0pŴjq,

and A´1 denotes the Moore-Penrose inverse of matrix A. Repeat the calculations in

(4.24) and (4.25) with pθ, βq replaced by p ˆ̄θ, ˆ̄βq until convergence. Denote the final

value by (pθ̌, β̌q.

Lemma 4.5. Under all the Assumptions listed in Part b, as bÑ 0 and nbK1K2`2 Ñ

8, if we start the estimation procedure with θ such that θJθ0 ‰ 0, then

θ̌ ´ θ0 “ Op

`

b` b´1δpn ` pρ` %qb
´p
˘

and

β̌ ´ β0 “ Op

`

b` b´1δpn ` pρ` %qb
´p
˘

,

where ρ, % are defined in (4.23), p “ K1K2 and δpn “ tlog n{pnbpqu1{2.
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Proof of Lemma 4.5 Let ˆ̄4ipwq “ Yi ´ ǎ´ β
J
0 Ui ´ ďW

J
i0θ0. We have

ˆ

β̌

θ̌

˙

“

ˆ

β0

θ0

˙

` ˆ̄D´1
n pθq

řn
j“1 In

´

Ŵj

¯

řn
i“1 Ĥb,i

´

Ŵj

¯

˜

Ûi

Ŵij
ˆ̄dj

¸

ˆ̄4i

´

Ŵj

¯

O

ς̂0

´

Ŵj

¯

,

By Lemma 4.3, we can obtain

ˆ̄Dθ
n ´ D̄

θ
n “ Op

`

pρ` %qb´p
˘

,

ς̂0pŴjq ´ ς0pWjq “ Op

`

pρ` %qb´p
˘

,

n
ÿ

i“1

Ĥb,i

˜

Ûi

Ŵij
ˆ̄dj

¸

ˆ̄4i

´

Ŵj

¯

´

n
ÿ

i“1

Hb,i

ˆ

Ui
Wij d̄j

˙

4̄i pWjq “ Op

`

pρ` %qb´p
˘

,

where D̄θ
n, d̄j, 4̄i and ς0pWjq are defined in Xia and Härdle (2006). It is easy to show

ˆ

β̌

θ̌

˙

“

ˆ

β0

θ0

˙

` D̄´1
n pθq

n
ÿ

j“1

InpWjq

n
ÿ

i“1

Hb,ipWjq

ˆ

Ui
Wij d̄j

˙

4̄ipWjq

O

ς0pWjq

`Op ppρ` %qbq .

Applying the method similar to Xia and Härdle (2006), we can obtain

θ̌ ´ θ0 “ Oppb` b
´1
` pρ` %qbq, β̌ ´ β0 “ Oppb` b

´1
` pρ` %qbq.

The proof is completed.

Next, we shall improve the efficiency of the estimators using a univariate kernel.

Let

ς̂θk “
1
n

řn
i“1 K̂

θ
h,itθ

JŴi0u
k, k “ 0, 1, 2, 3,

ω̂θa,i “ ς̂θ2K̂
θ
h,i ´ ς̂

θ
1K̂

θ
h,iθ

JŴi0, ω̂θd,i “ ς̂θ0K
θ
h,iθ

JŴi0 ´ ς̂
θ
1K̂

θ
h,i,

ω̂θ “ 1
n

řn
i“1 ω̂

θ
a,i, Ŝθ1 “

1
n

řn
i“1 K̂

θ
h,iŴi0,

Ŝθ2 “
1
n

řn
i“1 K̂

θ
h,iŴi0Ŵ

J
i0 , T̂ θ1 “

1
n

řn
i“1 K̂

θ
h,iÛi,

Êθ
1 “

1
n

řn
i“1 K̂

θ
h,iÛiYi, D̂θ

1 “
1
n

řn
i“1 K̂

θ
h,iŴi0Yi,

T̂ θ2 “
1
n

řn
i“1 K̂

θ
h,iÛiU

J
i , Ĉθ

2 “
1
n

řn
i“1 K̂

θ
h,iθ

JŴi0Û
J
i ,

Ŝθ1,1 “
1
n

řn
i“1 K̂

θ
h,itθ

JŴi0uŴi0, Ŝθ2,1 “
1
n

řn
i“1 K̂

θ
h,itθ

JŴi0u
2Ŵi0,

Ŝθ1,2 “
1
n

řn
i“1 K̂

θ
h,itθ

JŴi0uŴi0Ŵ
J
i0 , Ŝθ3 “

1
n

řn
i“1 K̂

θ
h,iŴi0tpθ ´ θ0q

JŴi0u
2.
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We improve the estimators θ̌ and β̌ as follows. Let ˆ̄ωθj “ ω̂θpŴjq. Starting with

pθ, βq “ pθ̌, β̌q, calculate

9̃aθj “ t ˆ̄ω
θ
j u
´1

n
ÿ

i“1

ˆ̄ωθa,ipŴjqtYi ´ β
JÛiu,

9̃dθj “ t ˆ̄ω
θ
j u
´1

n
ÿ

i“1

ˆ̄ωθd,ipŴjqtYi ´ β
JÛiu,

(4.26)

˜

9̃β
9̃θ

¸

“ t
ˆ̃Dθ
nu
´1

n
ÿ

j“1

InpŴjq

˜

Êθ
1pŴjq ´ 9̃aθjT

θ
1 pŴjq

9̃dθjD̂
θ
1pŴjq ´ 9̃aθj

9̃dθj Ŝ
θ
1pŴjq

¸

ς̂θ0

O

pŴjq,

θ̃ :“ sgn1θ̃{|θ̃|,

(4.27)

where sgn1 is the sign of first entry of 9̃θ and

ˆ̃Dθ
n “

řn
j“1 InpŴjq

ˆ

T̂ θ2 pŴjq d̃θj Ĉ
θ
2pŴjq

d̃θjtC
θ
2pŴjq

Ju pd̃θjq
2Ŝθ2pŴjq

˙

O

ς̂θ0 pŴjq.

Repeat the procedure (4.26) and (4.27) with pθ, βq replaced by p 9̃θ, 9̃βq until conver-

gence. Denote the final value by p ˆ̃θ, ˆ̃βq and denote the final value of 9̃aθj by ˆ̃aθj .

Lemma 4.6. Let p ˆ̃β, ˆ̃θq be the estimators based on the single-index kernel weight

starting with pβ, θq “ pβ̌, θ̌q. Under all the assumptions listed in Part b, as b1 „ nδ

with 1{6 ă δ ă 1{4 and that Epεi|Uj,Wj, Yj, j ă iq “ 0 almost surely, we have

ˆ̃θ ´ θ0 “ Op ppρ` %qb1q ,

ˆ̃β ´ β0 “ Op ppρ` %qb1q .

Proof of Lemma 4.6 Let ˆ̃4ipwq “ Yi ´ 9̃a´ βJ0 Ûi ´
9̃dŴJ

i0θ0, we have

˜

ˆ̃β
ˆ̃θ

¸

“

ˆ

β0

θ0

˙

`
ˆ̃D´1
n pθq

řn
j“1 In

´

Ŵj

¯

řn
i“1 K̂

θ
h,i

´

θJŴj

¯

˜

Ûi

Ŵij
9̃dj

¸

ˆ̃4i

´

Ŵj

¯

O

ς̂θ0

´

Ŵj

¯

.
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By Lemma 4.4, we can obtain

ˆ̃Dθ
n ´ D̃

θ
n “ Op ppρ` %qb1q ,

ς̂θ0 pŴjq ´ ς
θ
0 pWjq “ Op ppρ` %qb1q ,

n
ÿ

i“1

K̂θ
h,ipŴjq

˜

Ûi

Ŵij
9̃dj

¸

ˆ̃4ipŴjq ´

n
ÿ

i“1

Kθ
h,ipWjq

ˆ

Ui
Wij d̃j

˙

4̃ipWjq “ Op ppρ` %qb1q ,

where D̃θ
n, 4̃i, d̃j and ςθ0 pWjq are defined in Xia and Härdle (2006)

By Assumption (A2.2) and (B2.2), applying the method similar to Xia and Härdle

(2006), we can obtain

ˆ̃θ ´ θ0 “ Op ppρ` %qb1q `Op

`

n´1{2
˘

“ Op ppρ` %qb1q ,

ˆ̃β ´ β0 “ Op ppρ` %qb1q `Op

`

n´1{2
˘

“ Op ppρ` %qb1q .

(4.28)

Proofs of Theorems

Let

}βX}
2 “

ş

T
β2
Xpsqds, }βZ}

2 “
ş

T
β2
Zptqdt,

βK1
X psq “

řK1

j“1 β
j
Xφjpsq, βK2

Z ptq “
řK2

k“1 β
k
Zψkptq,

}γ}2 “
ş

T

ş

T
γ2ps, tqdsdt, γps, tq “

řK1

j“1

řK2

k“1 γjkφjψk

We note that the square integrability properties imply, as nÑ 8,

RβX ,K1 “ }βX ´ β
K1
X } Ñ 0,

RβZ ,K2 “ }βZ ´ β
K2
Z } Ñ 0,

Rγ “ }γ ´ γK1,K2} Ñ 0.
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The weak convergence rates ΨβX , ΨβZ and Ψγ of the regression function estimators

β̂X , β̂Z and γ̂ are as follows,

ΨβX “

K1
ÿ

j“1

πXj
n1{2h˚X

` pρ` %qb1 `RβX ,K1 ,

ΨβZ “

K2
ÿ

k“1

πZj
n1{2h˚Z

` pρ` %qb1 `RβZ ,K2 ,

Ψγ “

K1
ÿ

j“1

K2
ÿ

k“1

˜

πXj
n1{2h˚X

`
πZk

n1{2h˚Z

¸

` pρ` %qb1q `Rγ,

(4.29)

respectively, where h˚X and h˚Z are the bandwidths for estimating GX and GZ respec-

tively. πXj and πZk are defined in Part b.

Proof of Theorem 1 Using Lemmas 4.1 and 4.6, it is easy to see

›

›

›
β̂X ´ βX

›

›

›

ď

K1
ÿ

j“1

›

›

›

ˆ̃βjX φ̂jpsq ´ β
j
Xφjpsq

›

›

›
`

›

›

›

›

›

K1
ÿ

j“1

βjXφjpsq

›

›

›

›

›

ď

K1
ÿ

j“1

”
ˇ

ˇ

ˇ

ˆ̃βjX ´ β
j
X

ˇ

ˇ

ˇ
}φjpsq} `

ˇ

ˇ

ˇ

ˆ̃βjX ´ β
j
X

ˇ

ˇ

ˇ

›

›

›
φ̂jpsq ´ φjpsq

›

›

›
`
ˇ

ˇβjX
ˇ

ˇ

›

›

›
φ̂jpsq ´ φjpsq

›

›

›

ı

`

›

›

›

›

›

K1
ÿ

j“1

βjXφjpsq

›

›

›

›

›

“ Op

˜

K1
ÿ

j“1

πXj
n1{2h˚X

` pρ` %qb1 `RβX ,K1

¸

Analogously, one shows }β̂Z ´ βZ} “ Opp
řK2

k“1

πZ
j

n1{2h˚Z
` pρ` %qb1 `RβZ ,K2q.
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It can also be observed

}γ̂ps, tq ´ γps, tq}

ď

K1
ÿ

j“1

K2
ÿ

k“1

”ˇ

ˇ

ˇ

ˆ̃γj,k ´ γj,k

ˇ

ˇ

ˇ
}φjpsqψkptq} `

ˇ

ˇ

ˇ

ˆ̃γj,k ´ γj,k

ˇ

ˇ

ˇ

›

›

›
φ̂jpsqψ̂kptq ´ φjpsqψkptq

›

›

›

` |γj,k|
›

›

›
φ̂jpsqψ̂kptq ´ φjpsqψkptq

›

›

›

ı

`

›

›

›

›

›

K1
ÿ

j“1

K2
ÿ

k“1

γj,kφjpsqψkptq

›

›

›

›

›

“ Op

˜

K1
ÿ

j“1

πXj
n1{2h˚X

`

K2
ÿ

k“1

πZk
n1{2h˚Z

` pρ` %qb1 `Rγ

¸

.

The proof is completed.

The weak convergence rates Ψg of the nonparametric function estimator ĝp¨q is

as follows,

Ψg “ 1{2κ2g
2

pvq ` 1{
a

nb1 ` pρ` %qb1. (4.30)

Proof of Theorem 2 Let âθj is the final estimator of aj and ĝ˚pvq is the estimator

of gpvq in Xia and Härdle (2006), we have

ĝpvq ´ ĝ˚pvq

“

řn
i“1

ˆ̃aθjK
!´

v ´ ˆ̃θŴi

¯

L

b1

)

řn
i“1K

!´

v ´ ˆ̃θŴi

¯

L

b1

) ´

řn
i“1 â

θ
jK

!´

v ´ θ̂Wi

¯

L

b1

)

řn
i“1K

!´

v ´ θ̂Wi

¯

{b1

)

“

»

–

řn
i“1

ˆ̃aθjK
!´

v ´ ˆ̃θŴi

¯

L

b1

)

řn
i“1K

!´

v ´ ˆ̃θŴi

¯

L

b1

) ´

řn
i“1

ˆ̃aθjK
!´

v ´ θ̂Wi

¯

L

b1

)

řn
i“1K

!´

v ´ θ̂Wi

¯

L

b1

)

fi

fl

`

»

–

řn
i“1

ˆ̃aθjK
!´

v ´ θ̂Wi

¯

L

b1

)

řn
i“1K

!´

v ´ θ̂Wi

¯

L

b1

) ´

řn
i“1 â

θ
jK

!´

v ´ θ̂WiWi

¯

L

b1

)

řn
i“1K

!´

v ´ θ̂Wi

¯

L

b1

)

fi

fl

” A1 ` A2.

(4.31)
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By Assumption (D5) and (4.28), we obtain

A1 ď c
ˇ

ˇ

ˇ

ˆ̃θŴi ´ θ̂Wi

ˇ

ˇ

ˇ

“ Op ppρ` %qb1q .

(4.32)

According to Lemma 4.4, we have

A2 ď c
ˇ

ˇ

ˇ

ˆ̃aθj ´ â
θ
j

ˇ

ˇ

ˇ

“ Op ppρ` %qb1q .

(4.33)

By(4.31), (4.32) and (4.33), we obtain ĝpvq ´ ĝ˚pvq “ Opppρ` %qb1q.

According to Theorem 1 of Xia and Härdle (2006), we can obtain

ĝpvq ´ gpvq “ 1
L

2κ2g
2

pvq `Op

`

1
L?

nb1 ` pρ` %qb1

˘

.

The proof is completed.

The weak convergence rates ΦE of the predictions ÊrY |X,Zs is as follows,

ΦE “ 1{2κ2g
2

˜

K1
ÿ

j“1

K2
ÿ

k“1

γjkξ
˚I
j ζ

˚I
k

¸

`

K1
ÿ

j“1

πXj
n1{2h˚X

`

K2
ÿ

k“1

πZj
n1{2h˚Z

`K1N
´1{2

`K2M
´1{2

` pρ` %qb1 `RβX ,K1 `RβZ ,K2 `Rγ ` 1{
?
nh.

(4.34)
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Chapter 5

Testing Equality of Covariance

Operator for Two-sample

Functional Data

5.1 Introduction

Tests of significance are essential statistical problems and are challenging particularly

for functional data analysis drawing accumulated research attention, see Ledoit and

Wolf (2002), Berkes et al. (2009), Benko et al. (2009), Panaretos et al. (2010), Arias-

Castro et al. (2011), Horváth and Kokoszka (2012), and Horváth et al. (2013), among

others. It is natural to validate whether covariance operators or matrices of two

populations are equal or not before further analysis, see pp.49-53 in Ferraty (2011)

and Fremdt et al. (2013), among others. Thereafter, we use the word covariance

operator as was named in Ferraty and Vieu (2006). The term covariance function is

also used in other monograph for functional data analysis. In this chapter, we address

new methodology for significance testing of covariance operators for the stochastic

process in functional data analysis. Our methodology is specifically designed for the

situations where the timing of recordings is sparse and irregularly spaced, say some

longitudinal data studies, refer to Zhao et al. (2004), Zhu et al. (2011), and Chen

et al. (2013), but it works well also for the cases where the recordings of the curves
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are scheduled on a regular and dense grid.

A primary motivation for this part of this research comes from a study on compar-

ison of emission levels of SO2 and PM2.5, two well-known main air pollutant indices,

detected in some southwestern industrial area of China in 2013. In industrial area,

SO2 is primarily caused by combustion procedure such as burning fuels, electric util-

ities, and other industrial activities. The dirty air in China, known as smog, has

been blamed by World Health Organization(WHO) and the public. More policies

and studies have been conducted to do against the air pollution for public health.

The afore city governmental bureau invigilated and monitored the arising issue of

environmental detection and protection. Therefore, by an environmental detection

station in the center of the city, hourly and daily in the whole year of 2013, there are

official records of emission levels of SO2 and PM2.5. The hourly measurements in a

day(24 hours) form natural emission level curves of the day. However, in some days,

all hourly data could be observed, whereas in other days, the data recorders could

only gain incompletely observed hourly data because of detecting machines out of

run or meter burst by high pollutant levels. This incurred the recorded functional

data containing multiple types: sometimes it is regular and dense, but sometimes

it is irregular and sparse. The scatterplot of 3 selected days for SO2 levels and 50

incompletely observed PM2.5 levels are displayed in Fig. 5.1. One of our interest in

studying this air pollutant data is to test the equality of covariance operators of SO2

and PM2.5 in working days and in non-working days or varying seasonally. More

details will be stated and analyzed in the first application in this chapter.

For testing equality of covariance operators in functional data samples, although

this problem is important, it is challenging and related research progress is quite

limited. Benko et al. (2009) developed bootstrap procedures for testing the equality

of specific functional principal components which was equivalent to testing if covari-

ance operators were equal. Horváth et al. (2009) compared linear operators in two
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Figure 5.1: Left: SO2 emission levels for 3 selected days; Right: PM2.5 emission
levels for 3 selected days.

functional regression models. Panaretos et al. (2010) focused on testing the equality

of the covariance operators in two samples of independent and identically distributed

Gaussian functional observations. Fremdt et al. (2013) proposed a non-parametric

test for the equality of the covariance structures in two functional samples. However,

all aforementioned research had assumed that repeated measurements took place

on the dense and regular time points for each subject. For samples with sparse

and irregularly spaced observations, to the best of our knowledge, rare work could

be searched. Furthermore, it is hard to decide when the observations are dense or

sparse. In some functional data studies, it is possible that we have dense observations

on some subjects and sparse observations on the others. It hence deserves developing

unified methodologies for testing equality of two covariance operators regardless of

whatever types of functional data, dense or sparse, and regular or imbalanced.

5.2 Methodology and main results

Functional data may usually be modeled as independent realizations of an underlying

second-order effect stochastic process

Yiptq “ µptq ` viptq ` εiptq, i “ 1, ¨ ¨ ¨ , n, t P T
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where T “ r0, 1s in most literature, or any compact domain T Ă R, tYiptqu is the

ith response process, µptq denotes the population mean function of afore stochastic

process, tviptqu models random effect process or between-subject variation, and εiptqs

are i.i.d. random error process independent of viptq, refer to Shi et al. (1996), Zhang

and Chen (2007), and Horváth and Kokoszka (2012), among others.

Consider two independent samples:

Y
pmq
i ptilmq “ µmptilmq ` v

pmq
i ptilmq ` ε

pmq
ilm
,

m “ 1, 2; i “ 1, ¨ ¨ ¨ , nm; lm “ 1, ¨ ¨ ¨ , Ni.
(5.1)

where Y
p1q
i ptil1q and Y

p2q
i ptil2q are the measurements taken at time til1 and til2 from two

samples with Nn1 and Nn2 the number of measurements, respectively. Without loss

of generality, the ε
p1q
il1

s are zero-mean errors with Epε
p1q2
il1
q “ σ2, so are ε

p2q
il2

s. For the

subject-specific random trajectory process v
p1q
i and v

p2q
i , denote covariance operators

γ1pt, sq “ covtv
p1q
i ptq, v

p1q
i psqu and γ2pt, sq “ covtv

p2q
i ptq, v

p2q
i psqu, respectively. In

this section, we focus on testing if two functional samples have the same covariance

operator structure, i.e.

H0 : γ1pt, sq “ γ2pt, sq vs. H1 : γ1pt, sq ‰ γ2pt, sq, t, s P T .

5.2.1 Estimation of covariance operator

The estimation of the covariance operator in functional data has drawn arising at-

tention because of the importance of covariance operators in functional data analy-

sis. Based on the functional principle component analysis, Hall and Hosseini-Nasab

(2006) and Zhang and Chen (2007) considered a smooth-first-then-estimate strat-

egy. Cai and Yuan (2010) proposed a nonparametric estimation method within a

reproducing kernel Hilbert space frame. Li and Hsing (2010) estimated the covari-

ance operator based on the local linear smoother and made it statistical inference.
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Kraus (2015) presented an estimation method by looking irregular functional data

as missing data, among others.

Here our estimation of covariance operator of individual and pooled sample can be

conducted following the procedures below.

Step 5.1. Estimate the eigenfunctions of the pooled samples.

Step 1a: Obtain the initial estimations of mean functions µ1ptq and µ2ptq.

It is direct application of (A.2) and (A.3) of Yao et al. (2005). The local linear

scatterplot smoother µ̂0
1ptq “ d̂0ptq is obtained by optimizing

arg min
d0,d1

n1
ÿ

i“1

Ni
ÿ

l1“1

Kp1q

ˆ

til1 ´ t

b1

˙

rYiptil1q ´ d0 ´ d1ptil1 ´ tqs
2 ,

where Kp1qp¨q is a smooth symmetric kernel density function and b1 is a bandwidth.

Analogously, one may define µ̂0
2ptq using the bandwidth b2, the estimator of the mean

function µ2ptq.

Step 1b: Obtain the initial estimators of covariance operators γmpt, sq, m “ 1, 2.

Denote G1,iptil11 , til12q “ tYiptil11q ´ µ̂1ptil11qutYiptil12q ´ µ̂1ptil12qu. The local linear

surface smoother γ̂0
1pt, sq “ α̂0pt, sq can be obtained by optimizing

arg min
α

n1
ÿ

i“1

ÿ

1ďl11‰l12ďNi

Kp2q

ˆ

til11 ´ t

h1

,
til12 ´ s

h1

˙

tG1,iptil11 , til12q ´ fpα, pt, sq, ptil11 , til12qqu
2 ,

where Kp2qp¨, ¨q is a bivariate smooth kernel density with zero mean and finite covari-

ance, h1 is a bandwidth, and fpα, pt, sq, ptil11 , til12qq “ α0`α11pt´ til11q`α12ps´ til12q

with α “ pα0, α11, α12q. An essential feature is the omission of the diagonal elements

l11 “ l12 which are contaminated with the measurement errors. Analogously, we

can obtain γ̂0
2pt, sq using the bandwidth h2, the initial estimator of the covariance

function γ2pt, sq.
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Denote γ̂0pt, sq “ n2

n1`n2
γ̂0

1pt, sq `
n1

n1`n2
γ̂0

2pt, sq. It is easy to see γ̂0pt, sq
p
ÝÑ

γpt, sq ” p1 ´ θqγ1pt, sq ` θγ2pt, sq where γpt, sq is an asymptotic pooled covariance

operator of the two given samples and θ is defined at assumption 5.8 in Subsection

5.2.2. Consequently, it has functional principal components, also known as orthonor-

mal eigenfunctions tφkukě1, as well as corresponding non-negative eigenvalues tνkukě1

with ν1 ě ν2 ě ¨ ¨ ¨ satisfying:

ż

T
γpt, sqφkpsqds “ νkφkptq.

Step 1c: Estimate the set of orthonormal basis tνk, φkukě1 of γpt, sq.

Estimation of eigenvalues and eigenfunctions tνk, φkukě1 are obtained by numerical

solutions tν̂k, φ̂kukě1 of suitably discretized eigenequations,

ż

T
γ̂0
pt, sqφ̂kpsqds “ ν̂kφ̂kptq

with orthonormal constraints on tφ̂kukě1.

Step 5.2. Obtain the projection estimators of covariance operators.

Estimators of the covariance operators are projection estimators onto a space gen-

erated based on the orthonormal basis tφ̂kukě1. We propose the following estimators

of the covariance functions

γ̂1pt, sq “
K
ÿ

k“1

K
ÿ

k1“1

ρ̂
p1q

kk1
φ̂kptqφ̂k1 psq; γ̂2pt, sq “

K
ÿ

k“1

K
ÿ

k1“1

ρ̂
p2q

kk1
φ̂kptqφ̂k1 psq,
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where

ρ̂
p1q

kk1
“

1

n1

n1
ÿ

i“1

”

η̂
p1q
ik ´ η̂

p1q
k

ı ”

η̂
p1q

ik1
´ η̂

p1q

k1

ı

, ρ̂
p2q

kk1
“

1

n2

n2
ÿ

i“1

”

η̂
p2q
ik ´ η̂

p2q
k

ı ”

η̂
p2q

ik1
´ η̂

p2q

k1

ı

;

η̂
p1q
k “

1

n1

n1
ÿ

i“1

η̂
p1q
ik , η̂

p1q
ik “

1

Ni

Ni
ÿ

l1“1

Y
p1q
i ptil1qφ̂kptil1q;

η̂
p2q
k “

1

n2

n2
ÿ

i“1

η̂
p2q
ik , η̂

p2q
ik “

1

Ni

Ni
ÿ

l2“1

Y
p2q
i psil2qφ̂kpsil2q,

where K is a tuning parameter. We propose a concise and practical method to select

K by K “ maxtK1, K2u, where K1 and K2 are minimum numbers of functional

principal components that explain 95% of the total variation for sample 1 and sam-

ple 2, respectively. The Matlab package PACE is a tool to calculate K1 and K2

conveniently, refer to Yao et al. (2005).

Remark 5.1. The difference between our estimating approach and that of Panaretos

et al. (2010) and Fremdt et al. (2013) is typically to project the curves Y p1qptq and

Y p2qptq on the common basis function space and obtain η̂
p1q
ik and η̂

p2q
ik , and hence ρ̂

p1q

kk1

and ρ̂
p2q

kk1
, which are the covariance of projection. The covariances ρ̂

p1q

kk1
and ρ̂

p2q

kk1
reflect

the volatility of two functional samples on direction φ̂kptqφ̂k1 psq. Advantages of our

method lies in three aspects. Firstly, unlike the method proposed by Panaretos et al.

(2010) and Fremdt et al. (2013), our method has a better explanation and easier to

implement. Secondly, one obvious advantage of such a method is that we can always

define estimators of η̂
p1q
ik and η̂

p2q
ik , and hence γ̂1pt, sq and γ̂2pt, sq, no matter functional

data is sparse and irregular, dense and irregular, or dense and regular, which leads

to wide applicability of the proposed test. Lastly, the distance of covariance operators

of two samples can be transformed into that of the variances ρ̂
p1q

kk1
and ρ̂

p2q

kk1
from the

expression of γ̂1pt, sq and γ̂2pt, sq and (5.2). This directly leads to a global statistic.
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5.2.2 Asymptotic distributions

Next we propose a testing statistic by measuring the integrated square discrep-

ancy of the covariance operators of two functional data samples. Denote TC “

n1n2

n1`n2

ş ş

rγ̂1pt, sq ´ γ̂2pt, sqs
2dtds. It is readily seen that

TC “
n1n2

n1 ` n2

ż

S

ż

T

#

K
ÿ

k“1

K
ÿ

k1“1

ρ̂
p1q

kk1
φ̂kptqφ̂k1 psq ´

K
ÿ

k“1

K
ÿ

k1“1

ρ̂
p2q

kk1
φ̂kptqφ̂k1 psq

+2

dtds

“
n1n2

n1 ` n2

ż

S

ż

T

«

K
ÿ

k“1

K
ÿ

k1“1

!

ρ̂
p1q

kk1
´ ρ̂

p2q

kk1

)

ff2

φ2
kptqφ

2
k1
psqdtds

`
n1n2

n1 ` n2

ż

S

ż

T

«

K
ÿ

k“1

K
ÿ

k1“1

!

ρ̂
p1q

kk1
´ ρ̂

p2q

kk1

)

ff2
”

φ̂2
kptqφ̂

2
k1
psq ´ φ2

kptqφ
2
k1
psq

ı

dtds

”
n1n2

n1 ` n2

«

K
ÿ

k“1

K
ÿ

k1“1

!

ρ̂
p1q

kk1
´ ρ̂

p2q

kk1

)

ff2

` opp1q.

(5.2)

The decomposition in equation (5.2) shows that the statistic TC is equivalent to

the square error of two sample variances of the orthonormal basis except a subtle

residual. Therefore, H0 will be rejected if TC is large.

We demand the following assumptions in order to derive the asymptotic properties

of statistic yTC.

Assumption 5.1. For the estimators of mean functions µ1psq and the initial es-

timators of covariance operators γ1ps, tq, We require b1 Ñ 0, h1 Ñ 0, nb4
1 Ñ 8,

nh6
1 Ñ 8, nb6

1 ă 8 and nh8
1 ă 8. For the estimators of mean functions µ2psq

and the initial estimators of covariance operators γ2pt, sq, analogous conditions are

required.

Assumption 5.2. suptPT ErY
p1q4ptqs ă 8 and suptPT rY

p2q4ptqs ă 8.
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Assumption 5.3. Kpmq is absolutely integrable, that is,
ş

|Kpmqpuq|du ă 8, for

m “ 1, 2.

Assumption 5.4. Let δY
p1q

k “ min1ďjďkpν
p1q
j ´ν

p1q
j`1q and δY

p2q

k “ min1ďjďkpν
p2q
j ´ν

p2q
j`1q

where ν
p1q
j and ν

p2q
j are the eigenvalues of covariance operators γ1pt, sq and γ2pt, sq,

respectively. Denote πY
p1q

k “ 1{ν
p1q
k `1{δY

p1q

k and πY
p2q

k “ 1{ν
p2q
k `1{δY

p2q

k . We demand

πY
p1q

k {h2
1 ă 8 and πY

p2q

k {h2
2 ă 8.

Assumption 5.5. For sample tY
p1q

1 , ¨ ¨ ¨ , Y
p1q
n1 u, denote the sorted time points across

all subjects by 0 ď t1 ď ¨ ¨ ¨ ď tÑ ď 1, and ∆X “ maxttpn2q´ tpn2´1q : n2 “ 1, . . . , Ñ`

1u, where Ñ “
řn1

i“1Ni. For the ith subject, suppose that the time points tij have been

ordered non-decreasingly. Let ∆Y p1q

i “ maxtti,j ´ ti,j´1 : j “ 1, . . . , Ni ` 1u, ∆Y p2q

i “

maxt∆Y p1q

i : i “ 1, . . . , n1u and N̄ “ Ñ{n1. Put NY p1q

max “ maxtNi : i “ 1, . . . , n1u and

NY p1q

min “ mintNi : i “ 1, . . . , n1u. Assume that ∆Y p1q “ Opmintn
´1{2
1 b´1

1 , n
´1{2
1 h´1

1 uq,

and N̄ Ñ 8, NY p1q

max ď c2N̄ , ∆Y p2q “ Op1{N̄q, for some c2 ą 0. For sample

tY
p2q

1 , ¨ ¨ ¨ , Y
p2q
n2 u, analogous conditions are required.

Assumption 5.6. tv
p1q
i p¨qui, ttil1ui,l1 and tε

p1q
il1
ui,l1 are independent and identically

distributed and mutually independent. Similarly, tv
p2q
i p¨qui, tsil2ui,l2 and tε

p2q
il2
ui,l2 are

independent and identically distributed and mutually independent.

Assumption 5.7. Assume
ş1

0
µ2
mptqdt ă 8, m “ 1, 2 and µmptq may be written as

µmptq “
ř8

k“1 η
pmq
k φk where η

pmq
k “

ş1

0
µmptqφkptqdt.

Assumption 5.8. mintn1, n2u Ñ 8, n1

n1`n2
Ñ θ for a fixed constant θ P p0, 1q.

Remark 5.2. Assumptions 5.1 and 5.3 are similar to that of Yao et al. (2005) which

are also regular condition for unbalance functional data analysis. Assumptions 5.2

and 5.6 are regular conditions in functional data analysis. Assumption 5.4 requires
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that the spacings between the eigenvalues are not too small. Assumption 5.5 was

adopted by Müller and Yao (2008). This assumption implies the dense observation

which is easier to use in our theoretical justifications. Assumption 5.8 is a regular

condition in two sample test. Assumptions 5.1-5.5 and 5.8 are used to get the bound

of φ̂jptq ´ φjptq. Assumption 5.8 is a regular condition in two sample test.

In order to present our testing statistic, we need to use of the below asymptotic

result.

Lemma 5.1. Under assumptions 5.1-5.5 and 5.8, we have

sup
tPT

ˇ

ˇ

ˇ
φ̂iptq ´ φiptq

ˇ

ˇ

ˇ
“ Op

`

Apn1,n2q

˘

.

where Apn1,n2q “ maxp
πY p1q

k?
n1h21

,
πY p2q

k?
n2h22

q and πY
p1q

l and πY
p2q

l are stated in assumption 5.4.

Lemma 5.2. Under assumptions 5.1-5.8 and H0, we have

ρ̂
p1q

kk1
´ ρ̂

p2q

kk1
b

1
n1
ω
p1q

kk1
` 1

n2
ω
p2q

kk1

d
ÝÑ Np0, 1q, mintn1, n2u Ñ 8.

where

ω
p1q

kk1
“ σ4

`

"
ż 1

0

µ1ptqφkptqdt

*2 "ż 1

0

µ1psqφk1 psqds

*2

`

"
ż 1

0

µ1ptqφk1 ptqdt

*2 ż 1

0

ż 1

0

φkps1qγ1ps1, s2qφkps2qds1ds2

`

"
ż 1

0

µ1ptqφkptqdt

*2 ż 1

0

ż 1

0

φk1 ps1qγ1ps1, s2qφk1 ps2qds1ds2

`

ż 1

0

ż 1

0

φ2
kptq

”

E
!

v
p1q2
i ptqv

p1q2
i psq

)ı

φ2
k1
psqdtds

´

"
ż 1

0

ż 1

0

φkptqγ1pt, sqφk1 psqdtds

*2
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and

ω
p2q

kk1
“σ4

`

"
ż 1

0

µ2ptqφkptqdt

*2 "ż 1

0

µ2psqφk1 psqds

*2

`

"
ż 1

0

µ2ptqφk1 ptqdt

*2 ż 1

0

ż 1

0

φkps1qγ2ps1, s2qφk1 ps2qds1ds2

`

"
ż 1

0

µ2ptqφkptqdt

*2 ż 1

0

ż 1

0

φk1 ps1qγ2ps1, s2qφk1 ps2qds1ds2

`

ż 1

0

ż 1

0

φ2
kptq

”

E
!

v
p2q2
i ptqv

p2q2
i psq

)ı

φ2
k1
psqdtds

´

"
ż 1

0

ż 1

0

φkptqγ2pt, sqφk1 psqdtds

*2

Based on lemma 5.1 and symmetry of ρ̂
p1q

kk1
´ ρ̂

p2q

kk1
for subscripts k and k

1

, we

suggest the following statistic:

xTC “

n1n2

n1`n2

K
ř

k“1

K
ř

k1“1

!

ρ̂
p1q

kk
1´ρ̂

p2q

kk
1

)2

ω̂
kk
1

´
KpK´1q

2

a

KpK ´ 1q
,

where ω̂kk1 “
n2

n1`n2
ω̂
p1q

kk1
` n1

n1`n2
ω̂
p2q

kk1
and ω̂

pmq

kk1
, m “ 1, 2 are the estimators of

ω
pmq

kk1
, m “ 1, 2, respectively. In fact, ω

pmq

kk1
, m “ 1, 2 are unknown but can be

substituted by their consistent estimators 1
n1´1

řn1

i“1trη̂
p1q
ik ´ η̂

p1q
k srη̂

p1q

ik1
´ η̂

p1q

k1
s ´ Φ1u

2

and 1
n2´1

řn2

i“1trη̂
p2q
ik ´ η̂

p2q
k srη̂

p2q

ik1
´ η̂

p2q

k1
s´Φ2u

2, respectively, where Φ1 “
1
n1

řn1

i“1rη̂
p1q
ik ´

η̂
p1q
k srη̂

p1q

ik1
´ η̂

p1q

k1
s and Φ2 “

1
n2

řn2

i“1rη̂
p2q
ik ´ η̂

p2q
k srη̂

p2q

ik1
´ η̂

p2q

k1
s.

We are ready to present the asymptotic results of the proposed test. Theorems 5.1

and 5.2 below establish the asymptotic behaviors of the statistic xTC under hypotheses

H0 and H1, respectively. The proofs of these theorems are shown in Section 5.5.

Theorem 5.1. Under assumptions 5.1-5.8 and H0, we have

xTC
d
ÝÑ Np0, 1q, mintn1, n2u Ñ 8.
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The null hypothesis H0 : γ1pt, sq “ γ2pt, sq, t, s P T is rejected if |xTC| ą qα, where

qα is the upper-α quantile of Np0, 1q.

Theorem 5.2. Under assumptions 5.1-5.8 and H1, we have

xTC
p
ÝÑ 8, mintn1, n2u Ñ 8.

Remark 5.3. From the expression of xTC, we can see that xTC depends on two sample

sizes and distance between ρ̂
p1q

kk1
and ρ̂

p2q

kk1
for k “ 1, ¨ ¨ ¨ , K and k

1

“ 1, ¨ ¨ ¨ , K , which

reflect the difference of covariance operators γ1pt, sq and γ2pt, sq. On the one hand,

with the larger difference of covariance operators, xTC will become bigger and bigger

when the sample size is fixed. On the other hand, xTC will grow with n1 and n2

when the difference of covariance operators are fixed. Theorems 5.1 and 5.2 thus

provide clear theoretical justification of the empirical properties discussed in Section

5.3. Theorem 5.2 also shows that the behavior of the test is consistent.

5.3 Simulation studies

The random effect function viptq was generated from

viptq “ Ai sinpπtq `Bi sinp2πtq ` Ci sinp4πtq,

where Ai “ 5W1, Bi “ 3W2, Ci “ W3, and W1, W2 and W3 were independent t-

distributed random variables. All the simulation results reported were based on 1000

simulations.

Case 5.1. Sparse design with identical mean functions.

To illustrate the adaptivity of our test method to sparse design, we first considered

the following model,

Y
p1q
i ptq “ v

p1q
i ptq ` ε

p1q
i ptq,

Y
p2q
i ptq “ v

p2q
i ptq ` ε

p2q
i ptq.

(5.3)
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The number of measurements was selected from t5, ¨ ¨ ¨ , 9u with equal probability in

r0, 1s. The measurement errors were ε
p1q
i ptq „ Np0, σ2q for t P ttil1ui“1,¨¨¨ ,n1;l1“1,¨¨¨ ,Ni

and ε
p2q
i ptq „ Np0, σ2q for t P ttil2ui“1,¨¨¨ ,n2;l2“1,¨¨¨ ,Ni

. In order to study the empirical

size and power of the test, we set v
p2q
i ptq “ av

p1q
i ptq, a “ 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6,

where the parameter a regulated the difference in the covariance function in two

samples. The empirical size can be reached when a “ 1 and the empirical power can

be reached when a ‰ 1. This can be viewed as a sparse design with the identical

mean functions µ1ptq “ µ2ptq “ 0. We considered combinations of sample sizes

pn1, n2q “ p50, 50q, p100, 100q and p200, 200q. The empirical size and power of the

test are reported in Table 5.1 for the setting of σ2 “ 0.5 and σ2 “ 4, respectively.

Case 5.2. Sparse design with distinct mean functions.

To illustrate whether mean functions has influence for the test of covariance function,

we considered the following model,

Y
p1q
i ptq “ v

p1q
i ptq ` ε

p1q
i ptq,

Y
p2q
i ptq “ t` v

p2q
i ptq ` ε

p2q
i ptq,

(5.4)

where v
p1q
i ptq, v

p2q
i ptq, ε

p1q
i ptq, and ε

p2q
i ptq followed the Case 5.1. This can be viewed

as a sparse design with the different mean functions µ1ptq “ 0 and µ2ptq “ t. The

empirical size and power of the test are also reported in Table 5.1 for the setting of

σ2 “ 0.5 and σ2 “ 4, respectively.
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Table 5.1: The empirical size and power of the test in Cases 5.1 and 5.2.

Case a pn1, n2q “ p50, 50q pn1, n2q “ p100, 100q pn1, n2q “ p200, 200q
α “ 0.01 α “ 0.05 α “ 0.01 α “ 0.05 α “ 0.01 α “ 0.05

σ2 “ 0.5

Case 1 0.4 0.957 0.992 0.993 0.999 0.999 1.000
0.6 0.551 0.762 0.845 0.955 0.974 0.992
0.8 0.083 0.219 0.191 0.398 0.394 0.619
1.0 0.010 0.046 0.011 0.047 0.014 0.058
1.2 0.058 0.172 0.120 0.293 0.249 0.460
1.4 0.261 0.481 0.460 0.707 0.784 0.889
1.6 0.476 0.695 0.792 0.914 0.977 0.994

Case 2 0.4 0.952 0.987 0.998 0.999 1.000 1.000
0.6 0.521 0.741 0.846 0.947 0.986 0.996
0.8 0.103 0.232 0.165 0.354 0.381 0.617
1.0 0.009 0.056 0.012 0.047 0.010 0.042
1.2 0.055 0.150 0.112 0.278 0.249 0.475
1.4 0.250 0.451 0.475 0.707 0.803 0.911
1.6 0.478 0.704 0.796 0.916 0.967 0.991

σ2 “ 4

Case 1 0.4 0.937 0.984 0.993 0.998 0.999 1.000
0.6 0.513 0.731 0.830 0.940 0.981 0.994
0.8 0.070 0.209 0.182 0.377 0.389 0.622
1.0 0.006 0.050 0.007 0.057 0.014 0.059
1.2 0.052 0.157 0.132 0.287 0.231 0.463
1.4 0.225 0.458 0.464 0.670 0.763 0.911
1.6 0.492 0.706 0.775 0.917 0.969 0.993

Case 2 0.4 0.937 0.982 0.991 0.996 0.999 1.000
0.6 0.488 0.716 0.817 0.928 0.975 0.993
0.8 0.073 0.226 0.163 0.355 0.350 0.563
1.0 0.015 0.061 0.008 0.050 0.010 0.051
1.2 0.057 0.179 0.113 0.273 0.244 0.468
1.4 0.223 0.407 0.451 0.684 0.791 0.905
1.6 0.488 0.717 0.774 0.903 0.973 0.988

Several phenomenon can be observed from Table 5.1. First, the test based on the

proposed method has correct empirical size at all levels. Second, as expected from

the theory results, when a increases from 1.2 to 1.6 or decreases from 0.8 to 0.4, the

power of the test becomes larger and larger. Third, from the simulations of Cases
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5.1 and 5.2, we find that the power of the test increases as the sample size increases.

For example, the empirical power for sample sizes pn1, n2q “ p200, 200q is better than

that of pn1, n2q “ p100, 100q, whereas the sample sizes are equal. Last, the empirical

size and power in Case 5.1 are comparable with that in Case 5.2. This shows that

mean functions have no significant influence on our testing procedure in the setting

of sparse design.

Case 5.3. Dense design with identical mean functions.

In order to compare the proposed method, denoted by xTC, with that of Fremdt et al.

(2013), denoted by Fremdt, we considered the dense design where v
p1q
i ptq and v

p2q
i ptq

follow (5.3) in Case 5.1 except that the locations of measurements for each v
p1q
i ptq

and v
p2q
i ptq were selected at 50 equidistant time points in r0, 1s. We computed the

empirical size and power of the test for sample sizes pn1, n2q “ p50, 50q, p100, 100q

and p200, 200q in Table 5.2 for the setting of σ2 “ 0.5 and σ2 “ 4, respectively.

Case 5.4. Dense design with distinct mean functions.

This experiment is to compare with case 5.3 and case 5.2 separately. Therefore, we

used (5.4) to model the functional data but the locations of measurements for each

v
p1q
i ptq and v

p2q
i ptq were selected at 50 equidistant time points in r0, 1s. The empirical

size and power of the test are also reported in Table 5.2 (right side) for the setting

of σ2 “ 0.5 and σ2 “ 4, respectively.
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Table 5.2: Empirical sizes and power of test in Cases 5.3 and 5.4.

identical mean non-identical mean

Sample sizes a yTC Fremdt a yTC Fremdt

σ2 “ 0.5 σ2 “ 0.5

0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
pn1, n2q “ 0.7 0.448 0.554 0.131 0.388 0.7 0.477 0.605 0.157 0.428
p50, 50q 0.8 0.183 0.272 0.041 0.171 0.8 0.173 0.261 0.031 0.148

0.9 0.046 0.087 0.013 0.069 0.9 0.054 0.097 0.004 0.042
1.0 0.023 0.050 0.001 0.041 1.0 0.025 0.053 0.006 0.041
1.1 0.044 0.091 0.009 0.056 1.1 0.053 0.088 0.006 0.057
1.2 0.126 0.192 0.015 0.127 1.2 0.109 0.180 0.024 0.118
1.3 0.255 0.362 0.052 0.215 1.3 0.278 0.376 0.065 0.231

pn1, n2q “ 0.7 0.778 0.843 0.488 0.762 0.7 0.762 0.851 0.491 0.761
p100, 100q 0.8 0.340 0.449 0.109 0.326 0.8 0.359 0.464 0.123 0.353

0.9 0.078 0.132 0.015 0.088 0.9 0.076 0.134 0.014 0.094
1.0 0.034 0.054 0.004 0.038 1.0 0.019 0.045 0.003 0.040
1.1 0.077 0.128 0.013 0.070 1.1 0.067 0.107 0.010 0.073
1.2 0.222 0.318 0.072 0.226 1.2 0.222 0.325 0.067 0.233
1.3 0.750 0.836 0.487 0.745 1.3 0.474 0.572 0.199 0.466

pn1, n2q “ 0.7 0.967 0.983 0.876 0.970 0.7 0.974 0.988 0.876 0.971
p200, 200q 0.8 0.630 0.707 0.370 0.650 0.8 0.627 0.709 0.384 0.645

0.9 0.124 0.193 0.042 0.142 0.9 0.133 0.218 0.033 0.154
1.0 0.031 0.063 0.004 0.044 1.0 0.020 0.044 0.007 0.046
1.1 0.132 0.197 0.035 0.154 1.1 0.114 0.168 0.031 0.125
1.2 0.419 0.545 0.196 0.439 1.2 0.431 0.542 0.203 0.444
1.3 0.768 0.845 0.552 0.774 1.3 0.789 0.866 0.536 0.793

σ2 “ 4 σ2 “ 4

0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
pn1, n2q “ 0.7 0.338 0.482 0.124 0.412 0.7 0.471 0.600 0.148 0.413
p50, 50q 0.8 0.103 0.192 0.032 0.147 0.8 0.170 0.244 0.032 0.152

0.9 0.051 0.088 0.007 0.067 0.9 0.051 0.090 0.006 0.048
1.0 0.031 0.059 0.011 0.046 1.0 0.022 0.048 0.004 0.030
1.1 0.036 0.072 0.010 0.059 1.1 0.048 0.087 0.008 0.056
1.2 0.090 0.160 0.018 0.114 1.2 0.115 0.183 0.025 0.109
1.3 0.156 0.265 0.060 0.205 1.3 0.241 0.350 0.053 0.209

pn1, n2q “ 0.7 0.695 0.801 0.494 0.745 0.7 0.759 0.857 0.457 0.736
p100, 100q 0.8 0.242 0.358 0.112 0.349 0.8 0.360 0.471 0.117 0.354

0.9 0.049 0.106 0.013 0.088 0.9 0.067 0.133 0.014 0.088
1.0 0.028 0.048 0.002 0.033 1.0 0.024 0.050 0.003 0.039
1.1 0.048 0.088 0.012 0.082 1.1 0.076 0.128 0.016 0.087
1.2 0.172 0.264 0.005 0.224 1.2 0.221 0.315 0.056 0.214
1.3 0.359 0.496 0.205 0.466 1.3 0.488 0.599 0.212 0.476

pn1, n2q “ 0.7 0.940 0.967 0.878 0.973 0.7 0.961 0.976 0.859 0.956
p200, 200q 0.8 0.539 0.647 0.365 0.622 0.8 0.614 0.707 0.347 0.633

0.9 0.094 0.154 0.046 0.167 0.9 0.133 0.216 0.044 0.184
1.0 0.021 0.048 0.003 0.038 1.0 0.033 0.054 0.005 0.041
1.1 0.101 0.164 0.028 0.134 1.1 0.108 0.180 0.044 0.136
1.2 0.338 0.445 0.195 0.452 1.2 0.439 0.543 0.220 0.454
1.3 0.711 0.793 0.556 0.788 1.3 0.794 0.861 0.549 0.795
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From Table 5.2, we can see that the tests based on xTC and Fremdt have correct

empirical size at all levels which imply that both tests can control the type I error

well. However, the test based on statistic xTC has a higher power than that of

Fremdt. Comparing Tables 5.1 with 5.2 when a “ 0.8 and 1.2, we find that dense

design performs better than sparse design.

5.4 Real data example: Environmental pollution

data

We applied the proposed test method to an environmental pollution data recorded in

a southwestern city of China which is an industrial zone. A primary motivation for

the first part of this research comes from a study of the comparison of air pollutants

SO2 and PM2.5 recorded in some southwestern areas of China two years ago. In

industrial area, SO2 is primarily caused by combustion procedure such as burning

fuels, electric utilities, and other industrial activities. The dirty air in China, known

as smog, has been blamed by World Health Organization (WHO) and the public.

More policies and studies have been conducted to do against the air pollution for

public health. In one southwestern city, the emission levels of SO2 and PM2.5

were measured per hour in several workstations each day during the whole year in

2013. Fig. 5.2 shows SO2 and PM2.5 emission levels for 365 days in 2013 which

were measured by an environmental control station close to an industrial area in the

center of the city. The hourly measurements in a day (24 hours) formed natural

emission level curves of the day. One of our interest in studying this air pollutant

data is to test the equality of covariance operators of SO2 and PM2.5 in working

days and in non-working days or varying seasonally. It happened that all hourly

data could be observed, or just incompletely observed in a day sometimes because

— 113 —



CHAPTER 5. COVARIANCE OPERATOR TEST FOR TWO-SAMPLE
FUNCTIONAL DATA PhD Thesis

of machine out of run or meter burst by high pollutant levels.
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Figure 5.2: Top: SO2 emission levels for 365 days in 2013. Bottom: PM2.5 emission
levels for 365 days in 2013.

Example 5.1. Testing equality of covariance operators for working day and non-

working day.

For PM2.5, 3 days of 250 working days and 4 days of 115 non-working days were

completely unobserved. The total number of samples of working days was 247 where

38 curves had incompletely observations and 111 for non-working days where 12

curves had incompletely observations. A subsample of 20 randomly selected curves

for working days and non-working days are plotted in Fig. 5.3. The numbers A
p1q
ij and

A
p2q
ij of observation per day for working days and non-working days varied from 1 to

24, and two histograms of A
p1q
ij and A

p2q
ij are shown in Fig. 5.4. The initial estimated

covariance operators were displayed in Fig. 5.5 for working days and non-working

days. From the initial estimated covariance operators, it is seen that the volatility
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of PM2.5 levels in non-working days is higher than that of working days from 0

to 18 o’clock. However, more volatility is appeared in working days from 19 to 23

o’clock. Our interest is to test if the covariance operators of PM2.5 emission level

curves of working and non-working days are significantly different. This motivates a

two-sample covariance operators testing problem.
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Figure 5.3: Left: A subsample of 20 randomly selected curves for working days;
Right: A subsample of 20 randomly selected curves for non-working days.
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Figure 5.4: Frequency distributions of the number of observation for PM2.5. Left:
234 working days; Right: 106 non-working days.
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Figure 5.5: The initial estimated covariance operators. Left: working days; Right:
non-working days.

According to method introduced in Section 5.2, K “ 4 is selected. Based on

the asymptotic distribution of the test statistic xTC, the p-value was calculated to be

0.8982. We also computed the p-value of different K in Table 5.3. All the results

indicate that there is little evidence that the covariance operators are different for

working and non-working days.

In reality, industrial pollution and automobile exhaust are the main sources of

PM2.5 in the city. For the factory, production was business as usual in the non-

working days. Therefore, the main factor that cause different manifestations is au-

tomobile exhaust. The number of workers in non-working days may be have more

choices to stay at home or outdoor than that of working days at night. This leads

to more volatility of PM2.5 levels in non-working days from 20 to 23 o’clock. On

the contrary, there are so many more options of transport to consider for workers

in working days in the daytime. Thus, it shows that the volatility of PM2.5 levels

in working days is more larger than that of non-working days from 0 to 19 o’clock.

Therefore, this leads to different modes for workdays and non-workdays. Generally

speaking, we think that PM2.5 emission level curves of workdays and non-workdays
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are not different.

Table 5.3: p-values of the test for the SO2 and PM2.5 data.

K 2 3 4 5

working day and non-workday
PM2.5
SO2

0.3926
0.5711

0.3858
0.6756

0.8982
0.1721

0.8145
0.2377

Spring and Summer
PM2.5
SO2

0.0000
0.4724

0.0000
0.7541

0.0000
0.7009

0.0000
0.6036

Spring and Autumn
PM2.5
SO2

0.0124
0.8168

0.0342
0.7888

0.0524
0.9480

0.1769
0.8459

Spring and Winter
PM2.5
SO2

0.2319
0.0352

0.6014
0.3589

0.1885
0.4358

0.4104
0.9459

Summer and Autumn
PM2.5
SO2

0.0000
0.7714

0.0000
0.4188

0.0000
0.2401

0.0000
0.1657

Summer and Winter
PM2.5
SO2

0.0000
0.0348

0.0000
0.0101

0.0000
0.0021

0.0000
0.0000

Autumn and Winter
PM2.5
SO2

0.0000
0.0187

0.0671
0.0000

0.1066
0.0094

0.3173
0.0133

For SO2, we considered 234 workdays where 100 days have incomplete observations

and 106 non-workdays where 47 days have incompletely observations because some

days it could not be recorded. Using the method similar to that of PM2.5, the

p-value is 0.1721 by the proposed test method. Also, the p-values of different K

are listed in Table 5.3. This implies that there is little evidence that the covariance

operators of the SO2 levels are different for working and non-working days.
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Example 5.2. Testing the covariance operators for Spring, Summer, Autumn and

Winter.

In this example, we firstly consider the covariance operators testing of PM2.5 level

for Spring, Summer, Autumn and Winter where the days are 91, 94, 90, and 90,

respectively. But we only obtain the number of curves are 90, 94, 84, and 90 because

some days can not be recorded. Among of curves, some are fully recorded and

others have incompletely record. The curves of four seasons are plotted in Fig. 5.6,

respectively. Four histograms of the number of observation per day for four seasons

are shown in Fig. 5.7.

The initial estimated covariance operators were displayed in Fig. 5.8 for four

seasons. For the initial estimated covariance operators, we can see that PM2.5

levels in Spring and Winter jumped by the biggest amount but it can be reduced

to a minimum in Summer and Autumn. We are interested in whether the curves

have the same covariance operators for the combinations (Spring, Summer), (Spring,

Autumn), (Spring, Winter), (Summer, Autumn), (Summer, Winter), and (Autumn,

Winter).
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Figure 5.7: Four histograms of the number of observation per day for four seasons.
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Figure 5.6: The curves of four seasons: Spring, Summer, Autumn, and Winter.
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Figure 5.8: The initial estimated covariance operators for four seasons.

The p-values for different combinations were computed and collected in Table 5.3

using the proposed test method. From Table 5.3, we can see that the hypothesis

γ1pt, sq “ γ2pt, sq is not reasonable except for the combination (Spring, Autumn),

(Spring, Winter) and (Autumn, Winter). For the test of covariance operators of

above three combinations, the p-value using the proposed test method were computed
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to be 0.0524, 0.1885 and 0.1066, respectively. Thus, there is little evidence that the

covariance operators are different for the combination (Spring, Autumn), (Spring,

Winter) and (Autumn, Winter).

By the similar method to that of PM2.5, we test the mean function of SO2 for

the combination (Spring, Summer), (Spring, Autumn), (Spring, Winter), (Summer,

Autumn), (Summer, Winter), and (Autumn, Winter). The results are also display in

Table 5.3, Different conclusions are drawn from Table 5.3. Almost of the combination

can not reject the null hypothesis H0 : γ1pt, sq “ γ2pt, sq except for the combination

(Summer, Winter) and (Autumn, Winter).
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5.5 Proofs of main results

Proof of lemma 5.1

ˇ

ˇ

ˇ
ν̂kφ̂kptq ´ νkφkptq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

γ̂0pt, sqφ̂kpsqds´

ż 1

0

γpt, sqφkpsqds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

"

n2

n1 ` n2

γ̂1pt, sq `
n1

n1 ` n2

γ̂2pt, sq

*

φ̂kpsqds

´

ż 1

0

tp1´ θqγ1pt, sq ` θγ2pt, squφkpsqds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

"

n2

n1 ` n2

γ̂1pt, sq ´ p1´ θqγ1pt, sq

*

φ̂kpsqds

`

ż 1

0

"

n1

n1 ` n2

γ̂2pt, sq ´ θγ2pt, sq

*

φkpsqds

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż 1

0

"

n2

n1 ` n2

γ̂1pt, sq ´ p1´ θqγ̂1pt, sq

*

φ̂kpsqds

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż 1

0

tp1´ θqγ̂1pt, sq ´ p1´ θqγ1pt, squ φ̂kpsqds

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż 1

0

"

n1

n1 ` n2

γ̂2pt, sq ´ θγ̂2pt, sq

*

φkpsqds

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż 1

0

tγ̂2pt, sq ´ θγ2pt, squφkpsqds

ˇ

ˇ

ˇ

ˇ

” G1 `G2 `G3 `G4

According to assumption 5.8, we have G1 Ñ 0 and G3 Ñ 0.
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For G2, we have

G2 ď p1´ θq

ż 1

0

|γ̂1pt, sq ´ γ1pt, sq|
ˇ

ˇ

ˇ
φ̂kpsq

ˇ

ˇ

ˇ
ds` p1´ θq

ż 1

0

|γ1pt, sq|
ˇ

ˇ

ˇ
φ̂kpsq ´ φkpsq

ˇ

ˇ

ˇ
ds

ď p1´ θq

d

ż 1

0

tγ̂1pt, sq ´ γ1pt, squ
2 ds

›

›

›
φ̂kpsq

›

›

›

` p1´ θq

d

ż 1

0

tγ1pt, squ
2 ds

›

›

›
φ̂kpsq ´ φkpsq

›

›

›

According to assumptions 5.1-5.5, we can obtain G2 “ Opp
πY p1q

k?
n1h21

q. Analogously,

G4 “ Opp
πY p2q

k?
n2h22

q can be obtained.

Proof of lemma 5.2

Under assumptions 5.1-5.6, if we can prove

η̂
p1q
k ´ η

p1q
k “ Op

´

n
´1{2
1

¯

, η̂
p2q
k ´ η

p2q
k “ Op

´

n
´1{2
2

¯

.

then lemma 5.2 can be easily proved. It can be observed

η̂
p1q
k ´ η

p1q
k

“

#

1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

Y
p1q
il1
φkptil1q ´ η

p1q
k

+

`

#

1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

Y
p1q
il1
φ̂kptil1q ´

1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

Y
p1q
il1
φkptil1q

+

” A1 ` A2.

(5.5)
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For A1, we have

A1 “
1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

!

v
p1q
i ptil1q ` ε

p1q
il1

)

φlptil1q

`

#

1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

µ1ptil1qφlptil1q ´ η
p1q
k

+

” A11 ` A12.

(5.6)

It is easy to see that A11 is the average of independent identically distributed random

variables. By the central limit theorem, we obtain

A11 “ Op

´

n
´1{2
1

¯

. (5.7)

For A12, according to assumption 5.7, we have

A12 “ o
´

n
´1{2
1

¯

. (5.8)

By (5.6), (5.7) and (5.8), we obtain

A1 “ Op

´

n
´1{2
1

¯

. (5.9)

For A2, we have

A2 “
1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

µ1ptil1q
!

φ̂kptil1q ´ φkptil1q
)

`
1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

v
p1q
i ptil1q

!

φ̂kptil1q ´ φkptil1q
)

`
1

n1

n1
ÿ

i“1

1

Ni

Ni
ÿ

l1“1

ε
p1q
ik

!

φ̂kptil1q ´ φkptil1q
)

” A21 ` A22 ` A23.

(5.10)
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According to Cauchy-Schwarz inequality, assumption 5.2 and lemma 5.1, we have

A21 ď
1

n1

n1
ÿ

i“1

1

Ni

«

Ni
ÿ

l1“1

µ2
1ptil1q

Ni
ÿ

l1“1

!

φ̂kptil1q ´ φkptil1q
)2

ff1{2

“
1

n1

n1
ÿ

i“1

g

f

f

e

1

Ni

Ni
ÿ

l1“1

µ2
1ptil1q

g

f

f

e

1

Ni

Ni
ÿ

l1“1

!

φ̂kptil1q ´ φkptil1q
)2

“ Op

´

n
´1{2
1

¯

.

(5.11)

For A22, according to Cauchy-Schwarz inequality, assumption 5.2 and lemma 5.1, we

have

A22 ď
1

n1

n1
ÿ

i“1

1

Ni

«

Ni
ÿ

l1“1

v
p1q2
i ptil1q

Ni
ÿ

l1“1

!

φ̂kptil1q ´ φkptil1q
)2

ff1{2

“
1

n1

n1
ÿ

i“1

g

f

f

e

1

Ni

Ni
ÿ

l1“1

v
p1q2
i ptil1q

g

f

f

e

1

Ni

Ni
ÿ

l1“1

!

φ̂kptil1q ´ φkptil1q
)2

“ Op

´

n
´1{2
1

¯

.

(5.12)

Using the arguments similar to that of (5.12), it can be shown that

A23 “ Op

´

n
´1{2
1

¯

. (5.13)

By (5.10), (5.11), (5.12), and (5.13), we have

A2 “ Op

´

n
´1{2
1

¯

. (5.14)

By (5.5), (5.9) and (5.14), we obtain η̂
p1q
k ´ η

p1q
k “ Oppn

´1{2
1 q. Similarly, we can prove

η̂
p2q
k ´ η

p2q
k “ Oppn

´1{2
2 q.
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Now we proof lemma 5.2. It can be observed that

ρ̂
p1q

kk1
“

1

n1

n1
ÿ

i“1

!

η̂
p1q
ik ´ η̂

p1q
k

)!

η̂
p1q

ik1
´ η̂

p1q

k1

)

“
1

n1

n1
ÿ

i“1

η̂
p1q
ik η̂

p1q

ik1
´ η̂

p1q
k η̂

p1q

k1

” B1 ´B2.

B1 can be decomposed as

B1 “
1

n1

n1
ÿ

i“1

#

1

Ni

Ni
ÿ

l1“1

Y
p1q
i ptil1qφ̂kptil1q

+#

1

Ni

Ni
ÿ

l1“1

Y
p1q
i ptil1qφ̂k1 ptil1q

+

“
1

n1

n1
ÿ

i“1

#

1

N2
i

Ni
ÿ

l1“1

Y
p1q
i ptil1q

2φ̂kptil1qφ̂k1 ptil1q `
1

N2
i

ÿ

l11‰l12

Y
p1q
i ptil11qY

p1q
i ptil12qφ̂kptil11qφ̂k1 ptil12q

+

“
1

n1

n1
ÿ

i“1

„

1

N2
i

Ni
ÿ

l1“1

!

µ1ptil1q ` v
p1q
i ptil1q ` ε

p1q
il1

)2

φ̂kptil1qφ̂k1 ptil1q

`
1

N2
i

ÿ

l11‰l12

!

µ1ptil11q ` v
p1q
i ptil11q ` ε

p1q
il11

)!

µ1ptil12q ` v
p1q
i ptil12q ` ε

p1q
il12

)

φ̂kptil11qφ̂k1 ptil12q



“
1

n1

n1
ÿ

i“1

1

N2
i

Ni
ÿ

l1“1

!

µ1ptil1q ` v
p1q
i ptil1q ` ε

p1q
il1

)2

φkptil1qφk1 ptil1q

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

!

µ1ptil11q ` v
p1q
i ptil11q ` ε

p1q
il11

)!

µ1ptil12q ` v
p1q
i ptil12q ` ε

p1q
il12

)

φkptil11qφk1 ptil12q

`
1

n1

n
ÿ

i“1

1

N2
i

Ni
ÿ

l1“1

!

µ1ptil1q ` v
p1q
i ptil1q ` ε

p1q
il1

)2 !

φ̂kptil1qφ̂k1 ptil1q ´ φkptil1qφk1 ptil1q
)

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

!

µ1ptil11q ` v
p1q
i ptil11q ` ε

p1q
il11

)!

µ1ptil12q ` v
p1q
i ptil12q ` ε

p1q
il12

)

ˆ

!

φ̂kptil11qφ̂k1 ptil12q ´ φkptil11qφk1 ptil12q
)

” B11 `B12 `B13 `B14.
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For B11, we have

B11 “
1

n1

n1
ÿ

i“1

1

N2
i

Ni
ÿ

l1“1

tµ1ptil1qu
2 φkptil1qφk1 ptil1q

`
1

n1

n1
ÿ

i“1

1

N2
i

Ni
ÿ

l1“1

!

v
p1q
i ptil1q

)2

φkptil1qφk1 ptil1q

`
1

n1

n1
ÿ
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1

N2
i

Ni
ÿ
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!

ε
p1q
il1

)2

φkptil1qφk1 ptil1q
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2
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1
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ÿ
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!

µ1ptil1qv
p1q
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φkptil1qφk1 ptil1q
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2
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n1
ÿ

i“1

1

N2
i
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ÿ
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µ1ptil1qε
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φkptil1qφk1 ptil1q
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1
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i
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ÿ
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φkptil1qφk1 ptil1q

” B111 `B112 `B113 `B114 `B115 `B116.
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For B12, we have

B12 “
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

µ1ptil11qµ1ptil12qφkptil11qφk1 ptil12q

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

µ1ptil11qv
p1q
i ptil12qφkptil11qφk1 ptil12q

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

µ1ptil11qε
p1q
il12
φkptil11qφk1 ptil12q

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

v
p1q
i ptil11qµ1ptil12qφkptil11qφk1 ptil12q

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

v
p1q
i ptil11qv

p1q
i ptil12qφkptil11qφk1 ptil12q

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

v
p1q
i ptil11qε

p1q
il12
φkptil11qφk1 ptil12q

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

ε
p1q
il11
µ1ptil12qφkptil11qφk1 ptil12q

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

ε
p1q
il11
v
p1q
i ptil12qφkptil11qφk1 ptil12q

`
1

n1

n1
ÿ

i“1

1

N2
i

ÿ

l11‰l12

ε
p1q
il11
ε
p1q
il12
φkptil11qφk1 ptil12q

” B121 `B122 `B123 `B124 `B125 `B126 `B127 `B128 `B129.

For B125, we have

B125
d
ÝÑ N

´

ι1, π
p1q
1k

¯

where ι1 “
ş1

0

ş1

0
φkptqγ1pt, sqφk1 psqdtds and π

p1q
1k “

ş1

0

ş1

0
φ2
kptqrEtv

p1q2
i ptqv

p2q2
i psqusφ2

k1
psqdtds´

t
ş1

0

ş1

0
φkptqγ1pt, sqφk1 psqdtdsu

2.
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By assumption 5.7, we may obtain

B121 ´ η̂
p1q
k η̂

p1q

k1
“ op

´

n
´1{2
1

¯

.

By assumptions 5.2 and 5.5, we have

B11g “ op

´

n
´1{2
1

¯

, g “ 1, 2.

Analogously, we have B11g “ oppn
´1{2
1 q, g “ 3, 4, 5, 6. Because B122 ` B123 ` B124 `

B126 ` B127 ` B128 ` B129 are the average of independent identically distributed

random variables with mean zeros and variance π
p2q
1k , where

π
p2q
1k “

"
ż 1

0

µ1ptqφkptqdt

*2 „ż 1

0

µ1psqφk1 psqds

2

`

"
ż 1

0

µ1ptqφk1 ptqdt

*2 ż 1

0

ż 1

0

φkps1qγ1ps1, s2qφkps2qds1ds2

`

"
ż 1

0

µ1ptqφkptqdt

*2 ż 1

0

ż 1

0

φk1 ps1qγ1ps1, s2qφk1 ps2qds1ds2 ` σ
4.

So, we obtain

B122 `B123 `B124 `B126 `B127 `B128 `B129
d
ÝÑ N

´

0, π
p2q
1k

¯

.

According to Cauchy-Schwarz inequality and lemma 5.1, we have

B1g “ op

´

n
´1{2
1

¯

, g “ 3, 4.

By the central limit theorem, we obtain

?
n1

´

ρ̂
p1q

kk1
´ ρ

p1q

kk1

¯

d
ÝÑ N

´

ι1, ω
p1q

kk1

¯

,

where ι1 “
ş1

0

ş1

0
φkptqγ1pt, sqφk1 psqdtds and ω

p1q

kk1
“ π

p1q
1k ` π

p2q
1k .
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Similarly, we can prove
?
n2pρ̂

p2q

kk1
´ρ

p2q

kk1
q

d
ÝÑ Npι2, ω

p2q

kk1
q, where ι2 “

ş1

0

ş1

0
φkptqγ2pt, sqφk1 psqdtds

and ω
p2q

kk1
is defined in Section 5.2.

Under H0, we obtain the conclusion of lemma 5.2. The proof is then completed.

Proof of theorem 5.1 According to lemma 5.1, lemma 5.2 and Slutsky theory,

we can easily obtain the the conclusion of theorem 5.1. The proof is then completed.

Proof of theorem 5.2 According to lemma 5.2, we have

ρ̂
p1q

kk1
p
ÝÑ

ż 1

0

ż 1

0

φkptqγ1pt, sqφk1 psqdtds, ρ̂
p2q

kk1
p
ÝÑ

ż 1

0

ż 1

0

φkptqγ2pt, sqφk1 psqdtds.

Under H1, we obtain

yTC
p
ÝÑ

n1n2

n1`n2

řK
k“1

řK
k1“1

r
ş1
0

ş1
0 φkptqtγ1pt,sq´γ2pt,squφk1

psqdtdss
2

1
n1
ω
p1q

kk
1`

1
n2
ω
p2q

kk
1

´
KpK´1q

2

a

KpK ´ 1q
Ñ 8,

the proof is then completed.
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Chapter 6

Testing Equality of Covariance

Matrix for High-dimensional Data

6.1 Introduction

Initiating from functional data analysis, we gain much insight in presenting a novel

two-sample testing procedure on high-dimensional covariance matrices under the

non-normality assumption and “large p, small n” paradigm.

Testing the equality of two covariance matrices Σ1 and Σ2 is an significant prob-

lem in multivariate analysis. Many statistical procedures including the classical

Fisher’s linear discriminant analysis depend on the assumption of equal covariance

matrices has been studied, see Sugiura and Nagao (1968), Gupta and Giri (1973),

Perlman (1980), Gupta and Tang (1984), O’Brien (1992), and Anderson (2003). In

particular, the likelihood ratio test (LRT) is commonly used and enjoys certain op-

timality under regular conditions. However, the abovementioned work are based on

the low-dimensional data.

High-dimensional data are increasingly encountered in many statistical appli-

cations with the most prominently in biological and financial studies. A common

feature of high-dimensional data is that the data dimension is much larger than the

sample size, namely the “large p, small n”. Tests of significance are challenging
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for high-dimensional data analysis arisen accumulated research interest. Chen and

Qin (2010) proposed a two-sample test for the means without requiring explicit con-

ditions in the relationship between the data dimension p and sample size n under

the data structure of i.i.d. within each sample. Zhong and Chen (2011) intro-

duced simultaneous test for coefficients in high-dimensional linear regression models

with factorial designs. Qiu and Chen (2012) introduced a test for bandedness of

high-dimensional covariance matrices and bandwidth estimation without assuming a

specific parametric distribution. Zhong et al. (2013) considered two alternative tests

to the Higher Criticism test of Donoho and Jin (2004) for high-dimensional means

under the sparsity of the nonzero means for sub-Gaussian distributed data with un-

known column-wise dependence. Under dependence assumption, Cai et al. (2014)

developed a test for testing the equality of two mean vectors based on a linear trans-

formation of the data by the precision matrix which incorporates the correlations

between the variables. Wang et al. (2015b) concerned with testing the population

mean vector of nonnormal high-dimensional multivariate data and proposed a test

statistic based on the spatial sign function of the observed data.

The conventional testing procedures such as the LRT for covariance matrices

either perform poorly or are not even well defined under such high-dimensional data

setting. Several tests for the equality of two large covariance matrices have been

proposed, Ledoit and Wolf (2002) showed the locally best invariant test based on

John’s U statistic to be pn, pq-consistent when p{n Ñ 0 ă 8, where c is a constant

known as the concentration. Srivastava (2005) proposed a test based on the first

and second arithmetic means of the eigenvalues of the sample covariance but only

requires the more general condition n “ Oppδq, 0 ă δ ď 1. Schott (2005) introduced

a simple statistic for testing the complete independence of random variable under

a multivariate normal distribution and compared the finite sample size performance

with the Likelihood ratio test. Schott (2006) proposed a testing procedure for the test
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that the smallest eigenvalues of a covariance matrix are equal based on Ledoit and

Wolf (2002). Schott (2007) introduced a test for the equality of several covariance

matrices based on the Frobenius norm of the deviation of any two covariance matrices.

Srivastava and Yanagihara (2010) constructed a test that relied on a measure of

distance by trpΣ2
1q{ptrpΣ1qq

2´ trpΣ2
2q{ptrpΣ2qq

2. Both of these two tests are designed

for the multivariate normal populations. Without the strong assumption of Gaussian

distribution of two vector samples, Chen et al. (2010) resented nonparametric testing

statistics for sphericity and identity of the covariance matrix based on estimators for

traces of covariance matrix and its square when p may be a larger order of n. Fisher

et al. (2010) developed a new test procedure of the covariance matrix based on

Cauchy-Schwarz inequality utilizing the ratio of the second and fourth arithmetic

means of the sample eigenvalues. Fisher (2012) explored the problem of testing

the covariance matrix is an identity matrix when the dimensionality is equal to the

sample size or larger. Li and Chen (2012) constructed a testing statistic based on

an unbiased estimator of the Frobenius norm of the difference of two covariance

matrices allowing the dimension to be much larger than the sample sizes, whereas

their empirical size and power do not perform well when n is comparatively smaller

than p. Cai and Ma (2013) proposed a covariance matrix test based on U -statistics

in the high-dimensional setting under the data structure of i.i.d. within each sample.

Cai et al. (2013) developed a whole variance-covariance matrices test based on the

maximum of the standardized differences between the entries of the two sample

covariance matrices Σ1 and Σ@ under the data structure of independence between

the two samples and i.i.d. within each sample. Also, they considered the support

recovery of difference between two covariance matrices under the null hypothesis is

rejected as well as testing them row by row. Li and Qin (2014) proposed tests for an

identity matrix and for the equality of two covariance matrices based on empirical

spectral distributions (SD) when the data dimension and the sample size are both
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large.

The novelty lies in the fact that high-dimensional data could be converted into a

stochastic process by stringing via existed methods and software packages, refer to

Chen et al. (2011b).

Stimulation for this part of this research comes from the close relationship be-

tween functional data and high-dimensional data. Chen et al. (2011b) constructed

stringing as a tool to reorder the components of high-dimensional vector data by

multi-dimensional scaling (MDS), thus transforming the high-dimensional vectors

into functional data. MDS projects data into a low-dimensional target space, where

the configuration in the target space aims to reproduce the proximity relations in

the original space, by minimizing a cost function. as well as transformed Pear-

son correlation as proximity measures in the original high-dimensional predictor

space (Cox and Cox, 2001). The configuration obtained by MDS projection into

one dimension provides an ordering of the predictors and assigns a location to each

predictor, aligning the predictors within a one-dimensional interval like pearls on

a string. Predictors with high proximity will tend to be positioned closely to-

gether after MDS projection, enabling the construction of smooth trajectories in

function space. Once the data have been converted into a smooth stochastic pro-

cess by stringing, functional principal component analysis (FPCA) can be used to

summarize and further analyze the high-dimensional data. Its implementation is

readily conducted by the option PACE-Stringing from PACE 2.15 package in Mat-

lab, see http://anson.ucdavis.edu/~mueller/data/pace.html. This motivates

us to take advantage of methodologies from functional data analysis by mapping

high-dimensional predict vectors into infinite-dimensional smooth random functions

(stochastic process).
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6.2 Methodology and main results

Now we come to develop testing procedure on equality of covariance matrices from

two high-dimensional data samples. Let X
p1q
1 , ¨ ¨ ¨ , X

p1q
n1 and X

p2q
1 , ¨ ¨ ¨ , X

p2q
n2 be in-

dependent and identically distributed samples drawn from two p-dimensional ran-

dom vectors with variance-covariance matrices Σ
p0q
1 and Σ

p0q
2 , respectively, where

p{n1 Ñ 8 and p{n2 Ñ 8 within a large p, small n setting. Our objective is to test

Hr
0 : Σ

p0q
1 “ Σ

p0q
2 vs. Hr

1 : Σ
p0q
1 ‰ Σ

p0q
2 . (6.1)

Similar to Section 5.2, we propose a three-step algorithm below.

Step 6.1. String high-dimensional data into functional data type.

In stringing, every high-dimensional vector is thought of as being generated by a

hidden smooth stochastic process tZptq, t P r0, 1su, where each element of a grid of

support points ti P r0, 1s indices one possible predictor, si being the position of the

corresponding predictor and Zptiq its value. The distance between predictor posi-

tions which can be derived from proximities such as empirical Pearson correlation is

interpreted as a measure of the relatedness of the predictors. Once a distance matrix

has been determined, the predictors are stringed into the real line by minimizing

the stress function, and the detail can be seen in Chen et al. (2011b). So, each p-

dimensional random vector is converted into a random function where the recordings

of every random function are scheduled on a regular and dense grid on interval r0, 1s.

Denote Y
p1q

1 , ¨ ¨ ¨ , Y
p1q
n1 and Y

p2q
1 , ¨ ¨ ¨ , Y

p2q
n2 to be the reordered random vectors with

covariance matrices Σ1 and Σ2, respectively. Then test (6.1) is equivalent to test

Hr
0 : Σ1 “ Σ2 vs. Hr

1 : Σ1 ‰ Σ2.

Step 6.2. Obtain a pooling covariance matrix and spectrum decomposition.
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Let pΣ
p0q
1 “ 1

n1

řn1

i“1pY
p1q
i ´Y

p1q

n1
qJpY

p1q
i ´Y

p1q

n1
q and pΣ

p0q
2 “ 1

n2

řn2

i“1pY
p2q
i ´Y

p2q

n2
qJpY

p2q
i ´

Y
p2q

n2
q be the sample covariance matrices of two sample where Y

p1q

n1
“ 1

n1

řn1

i“1 Y
p1q
i and

Y
p2q

n2
“ 1

n2

řn2

i“1 Y
p2q
i , respectively. Denote pΣp0q ” n2

n1`n2

pΣ
p0q
1 ` n1

n1`n2

pΣ
p0q
2 . It is readily

seen that pΣp0q
p
ÝÑ Σ ” p1´αqΣ1`αΣ2, where α is defined at assumption 6.5 and Σ is

an asymptotic pooled covariance matrices. Consequently, it has orthonormal eigen-

vector tekukě1 and corresponding decreasing sequence of non-negative eigenvalues

tλkukě1 such that,

Σ “ λke
J
k ek.

Estimation of eigenvalues and eigenvectors tpλk, ekqukě1 is obtained by eigenequa-

tions,

pΣp0qêk “ λ̂kêk,

with orthonormal constraints on têkukě1.

Step 6.3. Obtain the projection estimators of covariance matrices. We propose the

following estimators of covariance matrices.

pΣ1 “

Kr
ÿ

k“1

Kr
ÿ

k1“1

ϑ̂
p1q

kk1
êJk êk1 ,

pΣ2 “

Kr
ÿ

k“1

Kr
ÿ

k1“1

ϑ̂
p2q

kk1
êJk êk1 ,

where

ϑ̂
p1q

kk1
“

1

n1

n1
ÿ

i“1

!

ξ̂
p1q
ik ´ ξ̂

p1q
k

)!

ξ̂
p1q

ik1
´ ξ̂

p1q

k1

)

, ξ̂
p1q
k “

1

n1

n1
ÿ

i“1

ξ̂
p1q
ik , ξ̂

p1q
ik “

1

p
Y
p1qJ
i êk;

ϑ̂
p2q

kk1
“

1

n2

n2
ÿ

i“1

!

ξ̂
p2q
ik ´ ξ̂

p2q
k

)!

ξ̂
p2q

ik1
´ ξ̂

p2q

k1

)

, ξ̂
p2q
k “

1

n2

n2
ÿ

i“1

ξ̂
p2q
ik , ξ̂

p2q
ik “

1

p
Y
p2qJ
i êk.

Here the tuning parameter Kr can be selected by Kr “ maxtKr
1 , K

r
2 u, with Kr

m

being the minimum number of the eigenvalues of Σ̂m, m “ 1, 2, which explains 95% of
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the total variation for the transformed random function sequences Y
p1q
i , i “ 1, ¨ ¨ ¨ , n1

and Y
p2q
i , i “ 1, ¨ ¨ ¨ , n2. However, it is noted that it is time consuming when p is

too large in our simulation. To overcome this problem, we adopt a practical way

to select Kr in the simulation: we conduct a pilot 50 trials to select tKr
i u

50
i“1, the

median of which is employed as our Kr in all simulated trials.

Remark 6.1. In fact, it is easy to extend the above method to the two sample test of

high-dimensional vector with partial missing and partial completely observation. We

can rearrange the high-dimensional data using the completely observed subsample.

So, random vectors are converted into partial densely and partial sparsely random

functions. According to the remark 5.1, the proposed method can also be applied for

this kind of data.

We demand the following assumptions in order to derive the asymptotic properties

of statistic yTC
r

.

Assumption 6.1. Y
p1q
i “ µ1`w

p1q
i and Y

p2q
i “ µ2`w

p2q
i where Epw

p1q
i q “ Epw

p2q
i q “

0, covpw
p1q
i , w

p1q
i q “ Σ1 and covpw

p2q
i , w

p2q
i q “ Σ2.

Assumption 6.2. The eigenvalues of covariance matrices Σ such that λ1 ą λ2 ą

¨ ¨ ¨ .

Assumption 6.3. µm, m “ 1, 2 may be written as µm “
ř8

l“1 ξ
pmq
l el, where ξ

pmq
l “

1
p
µme

J
l .

Assumption 6.4. mintn1, n2u Ñ 8, n1

n1`n2
Ñ α for a fixed constant α P p0, 1q.

Assumption 6.5. Assume the condition of Chen et al. (2011b) satisfies.

Remark 6.2. Assumption 6.1 is the slightly weaker than that of Li and Chen (2012)

where w
p1q
i and w

p2q
i are divided into the product of two factor. Assumption 6.2 is
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used to guarantee the consistency of the estimators for eigenvector. Assumption

6.3 is used to prove the asymptotic normality of ϑ̂
p1q

ll1
. Assumption 6.4 is a regular

condition in two sample test. Assumption 6.5 is useful to guarantee high dimensional

data which can be converted into a random function.

In order to present our testing statistic, we need to use of the below asymptotic

result.

Lemma 6.1. Under assumptions 6.1-6.5 and Hr
0 , we have

ϑ̂
p1q

kk1
´ ϑ̂

p2q

kk1
b

1
n1
$
p1q

kk1
` 1

n2
$
p2q

kk1

d
ÝÑ Np0, 1q,

where

$
p1q
kk1 “

 

uJ1 ek1
(2  

eJk Σ1ek
(

`
 

µJ1 ek
(2  

eJ
k1

Σ1ek1
(

` E

„

!

eJkw
p1q
i

)2 !

eJ
k1
w
p1q
i

)2


´
 

eJk Σ1ek1
(2
,

$
p2q
kk1 “

 

µJ2 ek1
(2  

eJk Σ2ek
(

`
 

µJ2 ek
(2  

eJ
k1

Σ2ek1
(

` E

„

!

eJkw
p2q
i

)2 !

eJ
k1
w
p2q
i

)2


´
 

eJk Σ2ek1
(2
,

where w
p1q
i and w

p2q
i are stated in assumption 6.1.

Based on lemma 6.1, we then propose the following statistic:

yTC
r
“

n1n2

n1`n2

řKr

k“1

řKr

k1“1

!

ϑ̂
p1q

kk
1´ϑ̂

p2q

kk
1

)2

$̂
kk
1

´
KrpKr´1q

2
a

KrpKr ´ 1q
,

where $̂kk1 “
n2

n1`n2
$̂
p1q

kk1
` n1

n1`n2
$̂
p2q

kk1
with $̂

pmq

kk1
, m “ 1, 2 being the consistent

estimators of $
pmq

kk1
, m “ 1, 2, respectively. In fact, $

pmq

kk1
, m “ 1, 2 are unknown and

can be substituted by their consistent estimators 1
n1

řn1

i“1rtξ̂
p1q
ik ´ξ̂

p1q
k utξ̂

p1q

ik1
´ξ̂

p1q

k1
u´Ψ1s

2

and 1
n2

řn2

i“1rtξ̂
p2q
ik ´ ξ̂

p2q
k utξ̂

p2q

ik1
´ ξ̂

p2q

k1
u ´Ψ2s

2, respectively, where Ψ1 “
1
n1

řn1

i“1tξ̂
p1q
ik ´

ξ̂
p1q
k utξ̂

p1q

ik1
´ ξ̂

p1q

k1
u and Ψ2 “

1
n2

řn2

i“1tξ̂
p2q
ik ´ ξ̂

p2q
k utξ̂

p2q

ik1
´ ξ̂

p2q

k1
u.
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We are ready to present the asymptotic results of the proposed test. Theorems

6.1 and 6.2 below establish the asymptotic behaviors of the statistic yTC
r

under

hypotheses Hr
0 and Hr

1 , respectively. The proofs of these theorems are provided in

Section 6.5.

Theorem 6.1. Under assumptions 6.1-6.5 and Hr
0 , we have

yTC
r d
ÝÑ Np0, 1q, mintn1, n2u Ñ 8.

Theorem 6.2. Under assumptions 6.1-6.5 and Hr
1 , we have

yTC
r p
ÝÑ 8, mintn1, n2u Ñ 8.

6.3 Simulation studies

To compare the proposed method, denoted by yTC
r

, with Li and Chen (2012), de-

noted by Li ´ Chen, we carry out simulations for scenarios where p is much larger

than n. We choose a set of data with p ranging from 32 to 700 and n ranging from

20 to 100, respectively. We consider a moving average model

Y
p1q
il1
“ Z

p1q
il1
` 2Z

p1q
i,l1`1, (6.2)

as the null model of both populations for size evaluation. To assess the power per-

formance, the first population is generated according to (6.2), while the second is

from

Y
p2q
il2
“ Z

p2q
il2
` 2Z

p2q
i,l2`1 ` Z

p2q
i,l2`2, (6.3)

where tZ
p1q
il1
ui“1,¨¨¨ ,n1;k“1,¨¨¨ ,p and tZ

p2q
il2
ui“1,¨¨¨ ,n2;q“1,¨¨¨ ,p`2 are i.i.d sequences. Three

combinations of distributions are experimented in models (6.2) and (6.3), respec-

tively. They are: (i) both sequences are standard normal; (ii) centralized Gamma(4,
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0.5) for Sample 1 and centralized Gamma(0.5,
?

2) for Sample 2; (iii) standard normal

for Sample 1 and centralized Gamma(0.5,
?

2) for Sample 2. The last two combina-

tions are designed to assess the performance under nonnormality. All the simulation

results reported are based on 1000 simulations with the nominal significance level to

be 5%. The empirical size and power of the test are reported in Table 6.1.

From Table 6.1, we can see when yTC
r

and Li´Chen have controllable empirical

size. It is noticeable that yTC
r

has higher power than that of Li´Chen. A significant

improvement can be obtained particularly when n1 is relatively smaller, say n1 “ 20,

and p is large. This indicates that the proposed test is especially adaptive to the

problem of “large p, small n”. There are two reasons that might explain why our

method performs better. On one hand, stringing method itself works better when

dimension p is larger. On the other hand, observation on interval r0, 1s means that

it becomes denser when dimension p is increasing. This result is consistent with that

in Section 5.3, i.e. dense design performs better than sparse design.

6.4 Real data example: Mitochondrial calcium con-

centration data

Mitochondrial Calcium Concentration Data has been studied by some authors. For

example, Ruiz-Meana et al. (2003) investigated whether cariporide could inhibit

mitochondrial Na+/H+ exchanger during ischemia, delaying H+ gradient dissipa-

tion and ATP exhaustion. Gregory et al. (2015) analyzed Mitochondrial Calcium

Concentration Data to illustrate the test of two population mean vectors in the

“large p, small n” setting. The mitochondrial calcium was measured in two groups

(control and treatment). To a treatment group, a dose of cariporide was adminis-

tered, which is believed to inhibit cell death due to oxidative stress. The investiga-
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Table 6.1: Empirical size and power of test based on statistics yTC
r

and Li´Chen.

64 128 256 512 700
n1, n2 Test Statistics Size

Sample 1„ 20
yTC

r

Li´ Chen

0.026
0.054

0.031
0.051

0.015
0.048

0.022
0.051

0.031
0.038

Np0, 1q 50
yTC

r

Li´ Chen

0.037
0.060

0.029
0.033

0.017
0.043

0.022
0.054

0.032
0.049

Sample 2„ 80
yTC

r

Li´ Chen

0.035
0.060

0.029
0.047

0.031
0.048

0.023
0.052

0.024
0.053

Np0, 1q 100
yTC

r

Li´ Chen

0.029
0.049

0.034
0.052

0.028
0.046

0.023
0.049

0.023
0.048

Power

20
yTC

r

Li´ Chen

0.352
0.256

0.470
0.267

0.683
0.277

0.863
0.282

0.933
0.291

50
yTC

r

Li´ Chen

0.927
0.821

0.988
0.830

0.999
0.837

1.000
0.832

1.000
0.849

80
yTC

r

Li´ Chen

0.996
0.992

1.000
0.991

1.000
0.998

1.000
0.999

1.000
0.998

100
yTC

r

Li´ Chen

1.000
1.000

1.000
0.999

1.000
1.000

1.000
1.000

1.000
1.000

Size

Sample 1„ 20
yTC

r

Li´ Chen

0.045
0.117

0.025
0.069

0.026
0.063

0.019
0.051

0.020
0.040

Gammap4, 0.5q 50
yTC

r

Li´ Chen

0.033
0.110

0.031
0.094

0.021
0.052

0.029
0.053

0.020
0.051

Sample 2„ 80
yTC

r

Li´ Chen

0.041
0.111

0.036
0.093

0.027
0.067

0.038
0.064

0.033
0.044

Gammap0.5,
?

2q 100
yTC

r

Li´ Chen

0.050
0.120

0.050
0.084

0.042
0.056

0.055
0.058

0.043
0.053

Power

20
yTC

r

Li´ Chen

0.183
0.282

0.311
0.290

0.464
0.309

0.628
0.265

0.697
0.277

50
yTC

r

Li´ Chen

0.770
0.665

0.914
0.693

0.981
0.750

0.996
0.801

0.997
0.828

80
yTC

r

Li´ Chen

0.974
0.886

0.996
0.942

1.000
0.968

1.000
0.991

1.000
0.986

100
yTC

r

Li´ Chen

0.995
0.945

1.000
0.986

1.000
0.995

1.000
0.998

1.000
1.000

Size

Sample 1„ 20
yTC

r

Li´ Chen

0.040
0.099

0.025
0.076

0.021
0.059

0.019
0.070

0.023
0.050

Np0, 1q 50
yTC

r

Li´ Chen

0.029
0.111

0.021
0.069

0.038
0.068

0.026
0.057

0.017
0.053

Sample 2„ 80
yTC

r

Li´ Chen

0.046
0.099

0.052
0.091

0.035
0.065

0.029
0.064

0.044
0.060

Gammap0.5,
?

2q 100
yTC

r

Li´ Chen

0.047
0.122

0.042
0.085

0.049
0.069

0.041
0.056

0.044
0.047

Power

20
yTC

r

Li´ Chen

0.213
0.296

0.305
0.278

0.467
0.297

0.635
0.276

0.727
0.295

50
yTC

r

Li´ Chen

0.794
0.659

0.924
0.724

0.982
0.766

0.997
0.824

0.999
0.823

80
yTC

r

Li´ Chen

0.979
0.890

1.000
0.950

1.000
0.977

1.000
0.989

1.000
0.992

100
yTC

r

Li´ Chen

1.000
0.958

1.000
0.982

1.000
0.996

1.000
0.999

1.000
1.000
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Table 6.2: The p-values of the test for the intact cells and permeabilized cells data.

K 2 3 4 5
intact cells data

permeabilized cells data
0.0011
0.9645

0.0041
0.8103

0.0000
0.1922

0.0000
0.1440

tors measured the mitochondrial concentration of Ca2+ every ten seconds during the

hour. In fact, due to technical reasons, the original experiment was performed twice,

using both the intact, original cells and permeabilized cells (a condition related to the

mitochondrial membrane), see Ruiz-Meana et al. (2003). The data have been made

available by Febrero-Bande and Oviedo de la Fuente (2012) in the R package. The

first 180 seconds of the data are removed, given the erratic behavior of the curves,

leaving p = 342 time points. The tests were applied to both the intact and perme-

abilized data to test for equality between the true treatment and control covariance

matrices.

For the intact cells data, the sample sizes are 89 where the sample sizes of control

group and treatment group are 44 and 45, respectively. Let Σ1 and Σ2 be, respec-

tively, the covariance matrices of control group and treatment group. We apply the

test procedure in Section 6.2 to check the hypotheses H0 : Σ1 “ Σ2 vs H1 : Σ1 ‰ Σ2.

K “ 2 is selected by our method. Based on the asymptotic distribution of the test

statistic yTC
r

, the p-value is calculated to be 0.0011. At the standard significant level

α “ 0.05, the null hypothesis H0 : Σ1 “ Σ2 is thus rejected. For more illustration, we

also compute the p-values under different K values in Table 6.2. Such results show

that it is not reasonable to assume Σ1 “ Σ2 in applying a classifier to this data set.

The equality testing of covariance matrices is also conducted for permeabilized

cells data, where the sample sizes of control group and treatment group are 45. The

p-values under different Ks are also included in Table 6.2. We can see that there

is little evidence that the covariance structures for the permeabilized cells data are

different for the control group and the treatment group.
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6.5 Proofs of main results

Proof of lemma 6.1 Under assumptions 6.1-6.3, if we can prove

ξ̂
p1q
k ´ ξ

p1q
k “ Oppn

´1{2
1 q,

ξ̂
p2q
k ´ ξ

p2q
k “ Oppn

´1{2
2 q,

then lemma 6.1 can be easily proved. It can be observed

ξ̂
p1q
k ´ ξ

p1q
k

“

#

1

n1p

n1
ÿ

i“1

Y
p1q
i eJk ´ ξ

p1q
k

+

`

#

1

n1p

n1
ÿ

i“1

Y
p1q
i êJk ´

1

n1p

n1
ÿ

i“1

Y
p1q
i eJk

+

” C1 ` C2.

(6.4)

For C1, we have

C1 “
1
n1

n1
ř

i“1

1
p
Y
p1qJ
i ek ´

1
p
µJ1 ek. (6.5)

It is easy to see that C1 is the average of independent and identically distributed

random variables. By the central limit theorem, we obtain

C1 “ Op

´

n
´1{2
1

¯

. (6.6)

For C2, we have

C2 “
1

n1p

n1
ÿ

i“1

Y
p1qJ
i têk ´ eku . (6.7)

It is easy to see that pΣ
p0q
1 ´ Σ1 “ Oppn

´1{2
1 q and pΣ

p0q
2 ´ Σ2 “ Oppn

´1{2
1 q, so we

have pΣp0q ´ Σ “ Oppn
´1{2
1 q and êJk ´ eJk “ Oppn

´1{2
1 q. According to Cauchy-Schwarz

inequality, we have

C2 ď
1

n1

n1
ÿ

i“1

1

p

"

›

›

›
Y
p1q
i

›

›

›

2
›

›êJk ´ e
J
k

›

›

2
*1{2

“ Op

´

n
´1{2
1

¯

. (6.8)
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By (6.4), (6.6) and (6.8), we obtain ξ̂
p1q
k ´ ξ

p1q
k “ Oppn

´1{2
1 q. Similarly, we can prove

ξ̂
p2q
k ´ ξ

p2q
k “ Oppn

´1{2
2 q.

Now we proof lemma 6.1. It can be observed

ϑ̂
p1q

kk1
“

1

n1

n1
ÿ

i“1

!

ξ̂
p1q
ik ´ ξ̂

p1q
k

)!

ξ̂
p1q

ik1
´ ξ̂

p1q

k1

)

“
1

n1

n1
ÿ

i“1

ξ̂
p1q
ik ξ̂

p1q

ik1
´ ξ̂

p1q
k ξ̂

p1q

k1

” D1 ´D2.

D1 can be decomposed as

D1 “
1

n1

n1
ÿ

i“1

1

p
Y
p1qJ
i êk

1

p
Y
p1qJ
i êk1

“
1

n1

n1
ÿ

i“1

"

1

p
Y
p1qJ
i ek

*"

1

p
Y
p1qJ
i ek1

*

`
1

p2
eJk

#

1

n1

n1
ÿ

i“1

Y
p1qJ
i Y

p1q
i

+

pêk1 ´ ek1 q

`
1

p2
pêk ´ ekq

J

#

1

n1

n1
ÿ

i“1

Y
p1qJ
i Y

p1q
i

+

ek1 `
1

p2
pêk ´ ekq

J

#

1

n1

n1
ÿ

i“1

Y
p1q
i Y

p1qJ
i

+

pêk1 ´ ek1 q

” D11 `D12 `D13 `D14.

(6.9)

It is easy to show that D12, D13 and D14 equal to oppn
´1{2q. For D11, we have

D11 “
1

n1

n1
ÿ

i“1

„

1

p

!

w
p1q
i ` µ1

)J

ek

 „

1

p

!

w
p1q
i ` µ1

)J

ek1



“
1

n1p2

n1
ÿ

i“1

!

w
p1qJ
i ek

)!

w
p1qJ
i ek1

)

`
1

n1p2

n1
ÿ

i“1

`

µJ1 ek
˘ `

µJ1 ek1
˘

`
1

n1p2

n1
ÿ

i“1

eJk

!

w
p1q
i µJ1

)

ek `
1

n1p2

n1
ÿ

i“1

eJk

!

µ1w
p1qJ
i

)

ek

” D111 `D112 `D113 `D114.

(6.10)
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According to assumption 6.4, we have

D111
d
ÝÑ N

ˆ

eJk Σ1ek1 , E

„

!

eJkw
p1q
i

)2 !

eJ
k1
w
p1q
i

)2


´
`

eJk Σ1ek1
˘2
˙

.

By assumption 6.3, we can obtain

D112 ´D2 “ op

´

n
´1{2
1

¯

.

Because D113`D114 is the average of independent and identically distributed random

variables with mean 0 and variance pµJ1 ek1 q
2peJk Σ1ekq ` pµ

J
1 ekq

2peJ
k1

Σ1ek1 q. By the

central limit theorem, we can obtain

?
n1

!

ϑ̂
p1q

kk1
´ ϑ

p1q

kk1

)

d
ÝÑ N

´

eJk Σ1ek1 , $
p1q

kk1

¯

,

where$
p1q

kk1
“ pµJ1 ek1 q

2peJk Σ1ekq`pµ
J
1 ekq

2peJ
k1

Σ1ek1 q`Etpe
J
kw

p1q
i q

2peJ
k1
w
p1q
i q

2u´peJk Σ1ek1 q
2.

Similarly, we can prove
?
n2tϑ̂

p2q

kk1
´ ϑ

p2q

kk1
u

d
ÝÑ NpeJk Σ2ek1 , $

p2q

kk1
q, where $

p2q

kk1
“

pµJ2 ek1 q
2peJk Σ2ekq ` pµ

J
2 ekq

2peJ
k1

Σ2ek1 q ` ErteJkw
p2q
i u

2teJ
k1
w
p2q
i u

2s ´ peJk Σ2ek1 q
2. Under

Hr
0 , we obtain the conclusion of lemma 6.1. The proof is then completed.

Proof of theorem 6.1 According to lemma 6.1 and the Slutsky theorem, we can

easily obtain the the conclusion of theorem 6.1. The proof is then completed.

Proof of theorem 6.2 According to lemma 6.1, we have

ϑ̂
p1q

kk1
p
ÝÑ eJk Σ1ek1 , ϑ̂

p2q

kk1
p
ÝÑ eJk Σ2ek1 .

Under Hr
1 , we obtain

yTC
r p
ÝÑ

n1n2

n1`n2

řKr

k“1

řKr

k1“1

teJk pΣ1´Σ2qek1u
2

1
n1
$
p1q

kk
1`

1
n2
$
p2q

kk
1

´
KrpKr´1q

2

a

Kr pKr ´ 1q
Ñ 8,

the proof is then completed.
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Chapter 7

Conclusions & Future Work

The title name contains the term longitudinal has three reasons: First, in Chapter 2,

data are collected by repeated measurements which can be regarded as longitudinal

data. For the random curve samples, we considered the two-sample mean curve

test and covariance function test in sparse and irregular data. It also can be seen

as longitudinal study. In addition, in real data analysis, precipitation and CD4

study are also longitudinal studies. Therefore, When functional data are observed

at irregular time points, perhaps just a few time points per subject, they are usually

referred as longitudinal data since they often arise from longitudinal studies.

The thesis has motivated further research in hands. Here we mainly report two

ongoing pieces of work.

The first one is to extend two-sample test of equality of covariance functions to

multiple sample scenarios. Suppose we have G independent samples

Yg,i,k “ µptg,i,kq ` vg,iptg,i,kq ` εg,i,k,

where g “ 1, ¨ ¨ ¨ , G, i “ 1, ¨ ¨ ¨ , ng, and k “ 1, ¨ ¨ ¨ , ng,i. The hypotheses are

H0 : γ1ps, tq “ ¨ ¨ ¨ “ γgps, tq vs. H1 : Dj ‰ k such that γips, tq ‰ γjps, tq.
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Let n be the whole sample size, i.e. n “
řG
g“1 nG. When G “ 2, it is easy to see that

TC ”
n1n2

n1 ` n2

||γ̂1 ´ γ̂2||
2
2 “

1

G

G
ÿ

g“1

ng||γ̂0 ´ γ̂g||
2
2,

where γ̂0 “
1
n

G
ř

g“1

ngγ̂g and ||f ´ g||22 “
ť

tfps, tq ´ gps, tqu2dsdt. Therefore, a natural

extension to G populations framework of the proposed test statistic is to consider

TCG ”
1

G

G
ÿ

g“1

ng||γ̂0 ´ γ̂g||
2
2.

In this new setting, one should expect

TCG “
1

G

G
ÿ

g“1

ng

$

&

%

K
ÿ

l“1

«

1

n

G
ÿ

g1“1,g1‰g

ng1 ρ̂
pgq
l

ff2
,

.

-

` opp1q,

where ρ̂
pgq
l ’s are similarly defined by involving tYg1,i,k; i “ 1, ¨ ¨ ¨ , ng1 , k “ 1, ¨ ¨ ¨ , ng1,iu.

The next one is to consider the partial derivative of hypersurface functional data.

In practice, one may be more interested in the rate of change of function instead

of the function values themselves. Here by term ”rate of change” of a function we

mean the derivatives of a function, and in multivariate case the partial derivatives.

Therefore, developing new methods for estimating the partial derivatives of functional

data will also be an interesting topic. In addition, appropriate mean regression that

can predict multivariate functional response deserves further investigation.
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Xia, Y. and Härdle (2006) Semi-parametric estimation of partially linear single-index
models. J. Multiv. Anal., 97(5), 1162–1184.

Yang, J. and Zhang, T. (2017) Unified two-sample testing of mean functions for
sparse or dense functional data. Comput. Stat. Data Anal., Submitted.

Yang, J., Zhang, T., Liu, C. and Ferraty, F. (2017) Testing equality of covariance
operators/matrices for two-sample functional/high-dimensional data. Journal of
the Royal Statistical Society, Series B.

Yao, F. (2007) Asymptotic distributions of nonparametric regression estimators for
longitudinal or functional data. J. Multi. Anal., 98(1), 40–56.

Yao, F. and Müller, H.-G. (2010) Functional quadratic regression. Biometrika, 97,
49–64.

Yao, F., Müller, H.-G. and Wang, J.-L. (2005) Functional data analysis for sparse
longitudinal data. J. Am. Statist. Assoc., 100, 577–590.

Yuan, M. and Cai, T. (2010) A reproducing kernel Hilbert space approach to func-
tional linear regression. Ann. Statist., 38(6), 3412–3444.

Zhang, J.-T. (2013) Analysis of Variance for Functional Data. CRC press.

Zhang, J.-T. and Chen, J. (2007) Statistical inferences for functional data. Ann.
Statist., 35(3), 1052–1079.

— 154 —



PhD Thesis BIBLIOGRAPHY

Zhang, J.-T. and Liang, X. (2014) One-way ANOVA for functional data via global-
izing the pointwise F-test. Scand. J. Statist., 41(1), 51–71.

Zhang, J.-T., Liang, X. and Xiao, S. (2010) On the two-sample Behrens-Fisher prob-
lem for functional data. J. Stat. Theory Pract., 4, 571–587.

Zhang, T., Liu, C. and Yang, J. (2017a) Interaction models with nonlinear link for
functional regression. Can. J. Statist., Submitted.

Zhang, T., Yang, J., Liu, C., Yuen, K. and Liu, A. (2017b) Testing for equality
of mean surfaces for two-sample bivariate functional data. J. R. Statist. Soc. C,
Submitted.

Zhang, X., Shao, X., Hayhoe, K. and Wuebbles, D. (2011) Testing the structural sta-
bility of temporally dependent functional observations and application to climate
projections. Electron. J. Statist., 5, 1765–1796.

Zhao, X., Marron, J. and Wells, M. (2004) The functional data analysis view of
longitudinal data. Statist. Sin., 14(3), 789–808.

Zhong, P.-S. and Chen, S. (2011) Tests for high-dimensional regression coefficients
with factorial designs. J. Am. Statist. Assoc., 106(493), 260–274.

Zhong, P.-S., Chen, S. and Xu, M. (2013) Tests alternative to higher criticism
for high-dimensional means under sparsity and column-wise dependence. Ann.
Statist., 41(6), 2820–2851.

Zhu, B., Taylor, J. and Song, P.-K. (2011) Semiparametric stochastic modelling of
the rate function in longitudinal studies. J. Am. Statist. Assoc., 106(496), 1485–
1495.

— 155 —


	Certificate of Originality
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Mean Surface Test for Two-sample Functional Data
	2.1 Introduction
	2.2 Model and data structure
	2.3 Profile test of bivariate functional data
	2.4 Globe test of bivariate functional data
	2.5 Simulation studies
	2.6 Real data examples
	2.6.1 Precipitation data
	2.6.2 European human mortality rate data

	2.7 Proof of the theorems

	3 Mean Curve Test for Two-sample Functional Data
	3.1 Introduction
	3.2 Methodology and main results
	3.3 Simulation studies
	3.3.1 Tuning parameter selection
	3.3.2 Test of mean function

	3.4 Real data examples 
	3.4.1 CD4 data
	3.4.2 Nitrogen oxide emission level data

	3.5 Proofs of main results

	4 Interaction Models with Nonlinear Link for Functional Regression
	4.1 Introduction
	4.2 Model alternative based on K-L representation
	4.3 Estimation of coefficient functions of all functional covariates
	4.4 Asymptotic theory
	4.5 Simulation studies
	4.6 Real data example: Climate data
	4.7 Some additional details and proofs of main results
	4.7.1 Part a
	4.7.2 Part b
	4.7.3 Part c


	5 Covariance Operator Test for Two-sample Functional Data
	5.1 Introduction
	5.2 Methodology and main results
	5.2.1 Estimation of covariance operator
	5.2.2 Asymptotic distributions

	5.3 Simulation studies
	5.4 Real data example: Environmental pollution data
	5.5 Proofs of main results

	6 Covariance Matrix Test for Two-sample High-dimensional data
	6.1 Introduction
	6.2 Methodology and main results
	6.3 Simulation studies
	6.4 Real data example: Mitochondrial calcium concentration data
	6.5 Proofs of main results

	7 Conclusions & Future Work
	Bibliography

