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Abstract

During recent two decades, functional data commonly arise from many scientific
fields such as transportation flow, climatology, neurological science and human mor-
tality among others. The corresponding data recorded may be in the form of curves,
shapes, images and functions that may be correlated, multivariate, or both. The
intrinsic infinite dimensionality of functional data poses challenges in the develop-
ment of theory, methodology and computation for functional data analysis. Tests of
significance are essential statistical problems and are challenging for functional data
due to the demands coming from real world applications. Motivated by requirements
in real-world data analysis, we have focused on two topics of study. 1) Multivari-
ate functional data have received considerable attention. It is natural to validate
whether two mean surfaces are homogeneous but existing work is few. 2) In exist-
ing literature, most testing methods were designed for validity of dense and regular
functional data samples, whereas in practice, functional samples may be sparse and
irregular or even partly dense. In such functional data setting, there is rare work for
testing equality of covariance functions or mean curves. To address these problems,
we aim to two targets: 1) We propose novel sequential and parallel projection testing
procedures that can detect the difference in mean surfaces powerfully. Furthermore,
we apply the idea to present testing statistics for test of equality of mean curves for
two functional data samples irrespective of the data type. Furthermore, the other

related work takes auxiliary information into consideration. We propose a new func-



tional regression model to characterize the conditional mean of functional response
given covariates. 2) We derive a novel test procedure for test of equality of covariance
functions that can deal with any functional data type, even irregular or sparse data.
In addition, by using the stringing technique, once a high-dimensional data can map
into functional data, we excogitate a testing procedure for comparison of covariance
matrices under the high-dimensional data setting. Our method outperforms the ex-
isting testing methods in high-dimensional data testing procedures. Almost all work
mentioned above include asymptotic theory and rigorous theorem proof, intensive

numerical experiments and real-world data analysis.
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Chapter 1

Introduction

During recent two decades, functional data commonly arise from many scientific fields
such as transportation flow, climatology, neurological science and human mortality,
among others. The corresponding data recorded may be in the form of curve, shape,
image and functions that may be correlated, multivariate, or both. Wang et al.
(2015a) presented the so-called first and next generation functional data by the cri-
terion that the random sample of real-valued functions are random trajectory/curve
data (Gasser et al., 1984; Rice and Silverman, 1991; Gasser and Kneip, 1995) or part
of complex data objects like hypersurface data. For instance, the neuroimage data
stated on page 23 of the report for the London workshop on the topic the Future
of Statistical Sciences held in November 2013, refer to http://www.worldofstati
stics.org/wos/pdfs/Statistics&Science-TheLondonWorkshopReport.pdf. In a
word, functional data has already established itself as an important and dynamic area
of statistics.

The term “functional data analysis” was coined by Ramsay (1982) and Ram-
say and Dalzell (1991), and the related history of this field can be tracked back to
Grenander (1950) and Rao (1958). It offers new effective tools and has stimulated
new theoretical and methodological development. The book by Ramsay and Sil-

verman (2005) gives a clear account of the basic considerations of FDA. The first
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advances in nonparametric FDA are described by Ferraty and Vieu (2006). Other
monographs include Bosq (2000), Ramsay and Silverman (2002), Ferraty and Vieu
(2006), Ramsay et al. (2009), Ferraty and Romain (2011), Shi and Choi (2011),
Horvéth and Kokoszka (2012), and Kokoszka and Reimherr (2017). Comprehensive
reviewing papers include Hall and Hosseini-Nasab (2006), Miiller (2014) and Miiller
(2016), among others. For functional data analysis, when it comes to the com-
parison between two samples, two natural yet essential questions are to check the
heterogeneity and heteroscedasticity. In the past decade, much effort has been made
in developing powerful testing procedures to detect the difference in mean functions
or deviations in covariance structure for two- or multiple- sample functional data.
The related reference regarding tests of significance may go to the introduction parts
in Chapters 2, 3 and 5 under functional data setting. In this thesis, we concentrate
on 1) testing the equality of mean surface functions for hypersurface functional sam-
ples; and 2) testing covariance functions for two functional data samples that are no
necessary dense and regular. Next we introduce the original practical motivation for
the theme in this thesis. It has come from exploration of two data sets.

Testing equality of two mean surfaces is motivated from detecting change in
precipitation affected by both the spatial and temporal effects in the Midwest of the
United States. The data is collected in cohort for climate monitoring and stored
in Global historical climatological network database, refer to the National Oceanic
and Atmospheric Administration: “ (https://www.ncdc.noaa.gov/oa/climate/g
hcn-daily/)”, which collects main climate parameters such as daily maximum and
minimum temperature, amount of precipitation (liquid equivalent), amount of snow
fall and snow depth, and so on. We investigate into daily precipitation amounts
recorded at 59 terrestrial observatories spread over 12 states during the period 1941-
2000, refer to Fig. 2.1 in Chapter 2.

Gromenko et al. (2017) detected the annual patten change along the temporal

— 2


(https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/)
(https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/)

PhD Thesis CHAPTER 1. INTRODUCTION

domain by a spatially indexed way. Their method could detect annual change point
when precipitation amount is looked as if observed on the curve with observations
on all 59 spatial locations. Extremely Berkes et al. (2009) fixed their test on an
individual station and thus detected no significance for any pair year segments during
the time course 60 years. Unfortunately, due to purpose of detection, such existing
methods can neither test the significance affected by the joint affects from both
spatial and temporal domains nor test treatment effect impacted by the marginal
spacial domain. However, both questions are important for climate monitoring. This
inspires our study in Chapter 2.

Testing the equality of covariance functions of two functional data samples is
motivated by investigation of CD4 cell measurements in an AIDS clinical study by
the AIDS clinical trials group (ACTG) monitored for 2.1 years, say the data from
Fischl et al. (2003). There are CD4 cell responses collected after three different
treatment arms. Such functional data is sparse and irregularly spaced due to various
reasons. It is important to provide solid and reliable statistical support to justify
whether the covariance functions are identical instead of a naive visualization of
sample covariance function surfaces. This drives our study in Chapter 5.

After testing the mean surfaces for multivariate functional data, we have exten-
sion research in two aspects. On one hand, employing the idea of mean surface
testing, we also present testing procedures to detect change in two mean curve func-
tions in univariate functional data scenario. Our method performs well regardless
dense, sparse or mixed functional samples. On the other hand, we notice that in anal-
ysis of the aforementioned daily precipitation in the Midwest of the United States,
there are quite a lot of auxiliary information such as temperature, pressure normal,
wind, cloudiness and other climate indexes. Naturally, we may use mean regression
to investigate how the auxiliary information affects the mean surface or curve. This
brings us considering new modeling of functional regression models where conditional

— 3 —
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mean response involves both main and interaction effects.

Furthermore, notice the stringing technique by Chen et al. (2011b) which may
transform high-dimensional vectors into functional data under some assumptions.
This motivates us to extend the method in testing equality of covariance functions
for functional data samples into the method to test the covariance matrices for high-
dimensional data samples provided that the high-dimensional data can map into
functional data.

Literature review for each piece of work are depicted in each chapter. Chapters
2, 3 and 4 are based on the work Zhang et al. (2017b), Yang and Zhang (2017) and
Zhang et al. (2017a). Chapters 5 and 6 are based on our work: Yang et al. (2017).

For the contribution of the thesis, we summarize into trifold. First, our test-
ing procedure for mean surface detection may be the very early work on equality
test in hypersurface functional data. Second, our proposed testing procedures for
checking equality of mean curve or covariance functions perform well in both size
and power not only for sparse and irregular random curves but also apply well for
dense and regular functional trajectories. Third, borrowing the strength of stringing
perception, we develop powerful testing statistic to detect the equality of covariance
matrices in high-dimensional setting. This will enlighten more effective transplanting
of methodology between functional data and high-dimensional data.

The rest of the thesis covers three parts. Chapters 2 and 3 attribute to part 1.
Chapter 2 discusses how we develop two sequential and parallel projection testing
procedures to detect change of the joint effects impacted by both domains. Chapters
3 and 4 are extension work on test equality of mean curves and new modeling of
functional mean regression with auxiliary information. Chapters 5 and 6 composes
part II discussing testing equality of covariance functions for functional data and its
extension in high-dimensional setting to test equality of covariance matrices. Part
I1T includes Chapter 7 which has a brief discussion in ongoing work and future work.

— 4 —



Chapter 2

Testing Equality of Mean Surface
for Two-sample Functional Data

2.1 Introduction

In the multivariate functional stochastic process X (u), there has increasing research
interest in data type that is both functional and multidimentional. That is, u = (s, )
has two arguments where s € S € R and t € T < R% with d; and d;, being positive
integers. Here s and t inherently belong to distinct domains S and 7 in terms of
scientific meaning or research design. For example, X (s,t) may be the mortality rate
of age s during year ¢ in a given country. A typical example of such data comes from
neuroimaging studies using functional magnetic resonance imaging (fMRI), in which
the so-called voxels data, i.e. brain activity like blood flow changes are discrepantly
recorded at a large number of locations at irregular time units (Lindquist, 2008; Aston
and Kirch, 2012). Spatiotemporal study is no doubt another important application
of this kind of data where t is defined on a temporal domain and s is defined on a
spatial domain. Although functional data of afore structure are encountered in many
applications, there is rare progress in inferential aspect for such data (Gromenko
et al., 2017; Aston et al., 2017). In the present work, we plan to investigate the

profile and globe tests of mean surfaces for two bivariate functional samples.
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A practical motivation for this research comes from precipitation data in Midwest

of the United States, where the daily data of precipitation from 1941 to 2000 are
collected at 59 spatial locations scattered over 12 states in the Midwest of USA. For
ease of reference, we provide a map of Midwest states with the locations of the climate
monitoring stations in Fig. 2.1. The Midwest is a breadbasket of the United States
and its agriculture has continued to play a major role in the economy of the region
(Pryor, 2013). The agriculture in the Midwest is vulnerably affected by the climate,
of which precipitation is a vital component. To monitoring the future agricultural
activities, it therefore has long been recognized as an important problem to reveal
how the change of precipitation takes place for different locations, different regions,

or different years in the same region.

\A o ND AA
o MN £ wI
SDO OAA A
()

A
[)
o NE A -
P o NARN S
KSo o 4

Figure 2.1: Light green region: 4 states from the Great Plains; Blue circle o indicates
location of a station; Yellow region: 5 states from the Great Lakes; Red triangle A
indicates location of a station.

The study of the precipitation data has led to several interesting findings. For
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instance, Berkes et al. (2009) detected no changes during the period 1941-2000 for

only individual station. However, it is difficult to implement if we sequently tested
for every station when the number of stations were large. Gromenko et al. (2017)
used cumulative sum paradigm to expose the fact that, the mean precipitation curves
before and after 1966 were different over the whole region. Nevertheless their method
was particularly designed to detect the temporal change but not applicable to detect
the difference in spatio domain, not to mention the joint spatiotemporal effect on
the precipitation. Looking into analysis of heatmaps of yearly sample mean surfaces
where X;(s,t),i = 1941,--- 1967, corresponds to the precipitation of the ¢th day in
the ith year at the sth station, intuitively we have observed that the yearly sample
mean surface of precipitation in the Great Plains is different from that in the Great
Lakes, refer to Fig. 2.2. Also, we can recognize from Fig. 2.2 that some profiles
of mean surface are same but others are different. These motivate us to develop
more powerful inferential procedures to detect if mean surfaces or its profiles have

significant difference for either different regions or different individual stations.

365

Day

1
1 31 59
Location

Figure 2.2: The heatmap of sample mean surface of precipitation during the time
1941-1967 in the Midwest, where the first 31 stations are located in the Great Plains
and the latter 28 stations are located in the Great Lakes.

Tracking back testing procedures for the equality of mean functions in the func-

tional data setting, existing works mainly focus on detecting the curve equality for
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univariate functional data. In the two-sample testing scenario, Benko et al. (2009)

presented bootstrap procedures for testing the equality of mean curves through the
eigenelements for two independent functional samples. Under the Gaussian assump-
tion, Zhang et al. (2010) considered the two-sample test based on L*-norm. Fremdt
et al. (2014) derived mean functions comparison through a normal approximation
method but only applicable to dense functional data samples. Pomann et al. (2016)
still solved testing the curve equality problem though in bivariate (two-dimensional
by their words) functional data setting and for distribution function testing. Regard-
ing the k-sample testing or the one-way ANOVA for functional data, works include
HANOVA (Fan and Lin, 1998), Cramér-von Mises type test (Cuevas et al., 2004;
Estévez-Pérez and Vilar, 2013), F-type test (Ramsay and Silverman, 2005; Zhang,
2013; Zhang and Liang, 2014), B-spline test (Gérecki and Smaga, 2015), and Maha-
lanobis distance (Ghiglietti et al., 2017), among others. In the case of within-curve
dependence in each sample, Aston and Kirch (2012) detected the mean curve vari-
ation using L*-norm criterion. Staicu et al. (2014) and its multiple group extension
Staicu et al. (2015) worked on parametric testing relying on quite strong assumptions.
Notice that, throughout our literature review, since our awareness concentrates on
testing the equality of mean functions, we leave out other inferential topics such as
testing the equality of coefficient operators or testing independency within a sample,
and etc.

It has series of work in functional time series literature on testing the equality of
mean functions, where weak dependence between or within two samples are accom-
modated in reality. Testing mean function difference in such functional time series
study had still been on comparison of mean curve functions (Zhang et al., 2011;
Horvath et al., 2013, 2014; Horvath and Rice, 2015a,b; Torgovitski, 2015, among
others).

Aforementioned literature in both functional curve samples and functional time

— 8 —
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series have all inclined to testing the equality of mean curve functions, i.e. the

inferential target is on univariate functional data. However, for comparison between
samples of multivariate functional data, there have been few works by far. Only
Gromenko et al. (2017) raised testing the equality of the mean surfaces of bivariate
functional data, but eventually the equality of mean curves indexed at all locations
were tested. Also to the best of our knowledge, the profile test of mean surfaces has
not been considered for two bivariate functional data samples. Although the profile
test of mean surfaces may belong to the curve test scope, it attributes to two different
topics due to the different subjects. Above dire need in real-world data analysis and
literature review motivates us to develop valid tests for equality of means surfaces
and the corresponding profile test for bivariate functional data samples.

To address the problem in demand, firstly, we obtain the marginal eigen-function
of the pooled sample by marginal functional principal component analysis (FPCA)
and project the profiles of mean surfaces on marginal eigenfunctions. The profile
testing statistic measures the distance of the profile of mean surfaces for two bivariate
functional samples. Once the marginal eigenfunctions are obtained, the eigensurfaces
of the pooled sample can be constructed by further FPCA. The distance between
mean surfaces for two samples can be measured by the globe test statistic using the
analogous projection ideas. Consequently, our proposed profile testing procedures
can be implemented for every profile of the mean surface, which corresponds to
simultaneously test whether mean precipitation curves have significant difference for
every station. The globe test performs well in terms of both the size and the power
in that it includes the information of two domains effectively.

The major contribution of this paper is threefold. Firstly, the presented method-
ology may be the first one to detect difference of mean surfaces and its profile for
two-sample bivariate functional data. In contrast to the literature that we can search

out by far, of which the focus has almost all been on testing the equality of mean
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curves as a matter of fact. When one argument is fixed, our profile test methodology

can also simultaneously detect the mean difference in the other domain. Secondly,
our testing procedures are interpretable and easily implemented. This will help fill
out some theoretical gaps in functional inference and facilitate the real application
and interpretation in statistical perspective. Finally, asymptotic distributions of the
test statistics under null hypotheses has been derived. The consistency of test proce-
dure has been proved. In addition, simulation studies show that the proposed tests
have a good control of the type I error by the size and can detect difference in mean
surfaces and its profile effectively in terms of power in finite samples.

The rest of the paper is organized as follows. In Section 2.2, we describe the
model and data structure. The profile test procedure of mean surfaces for two bi-
variate functional data samples is presented in Section 2.3, while globe test procedure
is proposed in Section 2.4. The finite sample performance for several representative
scenarios is investigated in Section 2.5. In Section 2.6, we demonstrate two applica-
tions associated with the precipitation changes affected jointly by time and locations
in the Midwest of USA, and the trends in human mortality from European period

life tables. Theory proofs are included in Section 2.7.

2.2 Model and data structure

Let L?(S x T) be the separable Hilbert space. {X™(s,t) : (s,t) € S x T} is a
square integrable stochastic process on L?(S x T) with mean function pu,,(s,t) =

E{X(™)(s,t)} and covariance function
CU{(s,0), (u,1)} = B{X (s, 0) X" (u, 1)},
where X(™¢(s 1) = X (s,t) — pm(s,t), for m = 1,2, respectively. With this
notation, we can decompose X (m)(s, t) into
X (5,1) = pon(s,t) + ™ (s,t), m = 1,2,
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where (™) (s, t) is the stochastic part of X (™ (s,t) with E{e(™)(s,)} = 0 and covari-

ance function C™{(s,v), (u,t)}.

Functional samples {Xi(m)(s, t),m=1,2; i =1, -+, n,} may usually be modeled
as independent realizations of the underlying stochastic process X (m)(s, t). In prac-
tice, {Xi(m)(s,t),m =1,2;i=1,--+ ,n,} can not be observed, but rather, measure-
ments are taken at discrete time points. In this paper, we assume {Xi(m)(s, t),m =

1,2;9=1,--+ ,n,} are recorded on a regular and dense grid of time points as follows,

Xz‘(m)(silu tity) = pm(Sity tiy) + 5§m)(5uutilz)§

m:1727 Z:177nma 11:17"'7N; l2:1,"',M.

In this paper, we are firstly interested in profile test of bivariate functional data

samples, i.e. for every fixed t* € T,

HS : iy (s,t%) = po(s,t*) vs. HS : juy(s,t*) # pa(s,t*), s€ S, (2.1)
or for every fixed s* € S,

H] i (s*,t) = po(s*,t) vs. H] : py(s*,t) # pa(s*,t), teT. (2.2)

Then we go to the second target to present a globe test procedure for bivariate

functional data samples with hypothesis below,
Ho : pa(s,t) = pa(s,t) vs. Hy @ py(s,t) # pa(s,t), se S,teT. (2.3)

The equality in hypothesis (2.1) means that §o{u1(s,t*) — pa(s, t*)}?ds = 0 for
every fixed t* € T, and the alternative means that §o{pu1(s,t*) — pa(s,t*)}?ds >
0. Analogously meaning can be interpreted for (2.2). However, null hypothesis of
(2.3) implies {g§{11(s,t) — pa(s,t)}?dtds = 0 while the alternative means that
§s $-{m(s,t) — pa(s, t)}?dtds > 0. For statistical inference of bivariate functional
data, marginal FPCA is a widely used tool, which often assumes that bivariate
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functional data can project onto finite-dimensional eigensurfaces (Li and Guan, 2014;

Park and Staicu, 2015; Aston et al., 2017). It is our start point for the proposed

profile and globe test procedures.

2.3 Profile test of bivariate functional data

Profile test of bivariate functional data is an important problem, as it allows to
provide multiple insight from multiple angles, and also is of interest in many applica-
tions. For example, in analysis of precipitation, the testing problem (2.2) corresponds
to test whether mean precipitation curves have significant difference before and after
1966 for every station, while the testing problem (2.1) means to test whether differ-
ent stations have significant difference for every day. Berkes et al. (2009) considered
detection the difference only on an individual station. However, it is difficult to im-
plement when the number of stations is large if we sequentially test for every station
by their method. So, we propose the profile test of mean functions which is easy to
implement and can simultaneously detect difference of all stations. In this section,
we address the test problem (2.1) only as (2.2) can be analogously implemented.
As a first step, the marginal covariance function is denoted to be Gém)(s,u) =

§.- C{(s,t), (u,t)}dt, as the form of (5) in Chen et al. (2017), and may be estimated

by
A~ N M ~
G (s, 51) = 2 Z “(3hs b)) X (1, tiny), (2.4)
where X™<(s,t) = X" (s,t) — X" (s, ¢) with Y(W)(s,t):—zx (s, 1).
nml
Denote
~ N2 A1) n1r  AQ)
Gs(s,u) = Gs'(s,u) + GS'(s,u), s,ueS.
sl = G0 (s, ) + G5,
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It is easy to see Gs(s,u) > (1 — G)GS)(S, u) + GGE?(S, u) = Gs(s,u), where 6 is

defined in Assumption 6 stated in next section and Gs(s, u) is the pooled covariance
function. Consequently, it has orthogonal eigenfunctions {¢;};>1 and non-negative

eigenvalues {v;};> satisfying

J Gs(s,u)j(u)du = vjih(s), s,ue S, j=1,2,....
s

Such eigencomponents can be numerically estimated by suitably discretized eigenequa-

tions,
L@S(s,u)@(u)du —0y(s), G = 1,2, (2.5)

with orthogonal constraints on {gZJ bis1
Once the estimators of marginal eigen-functions sz(s), j=1,2,..., are obtained,
we project the observations onto the marginal eigenfunctions and obtain the profile

estimators of mean functions as follows: for every fixed t* € T,

J ~
fim{(5:1%) = % A () (s), m = 1,2, (2.6)
1=
with
1 & 1 < ~
) = = DA (), g ) = 5 20 X s ) (s, ).
m =1 =1

For practical implementation, one has to decide the magnitude of J. A practical

%% > q}, where 7}, [ = 1,2,--- are defined in (2.5).

strategy is J = min{j :
We find that ¢ = 90% threshold works well for our numerical examples.
Based on above discussion, we propose the following profile test statistic

2
~(1 ~(2
s & (100 =720

n1+n2j

TP(t*) =

Il

—_
>)

.

—~
o~

*
~—
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~ ~ ~ 2
where A (%) = —12 A0 (%) 4 3O (0 wigh 30 (%) = nyl 30 {% (t) — 7! )(t*)},
m=1,2.

Remark 2.1. It is easy to see that "2 ([fiy(s,t*) — fia(s,t*)?dt —> Upnyny =

ni+ng

nino
ni+n2

Z{il(ﬁl(t*) — M2(t*))?. However, the variance of U,, », may be unnecessarily
inflated by the presence of, possibly many, very small estimates fi1(s,t*) — la(s,t*).

This drawback can be remedied by giving a divisor to X]- (t*).

We then establish asymptotic behaviors of the test statistic ﬁ)(t*) under the null
hypothesis Hs and the alternative one HY. To derive the asymptotic properties of

profile test statistic, we make the following assumptions.

Assumption 2.1. vy > vy > -+ where {v;};_12.. are the eigenvalues of covariance

goon

operates Gg(s,u).

Assumption 2.2. For every fized t*, i, (s, t*), m = 1,2 may be written as i, (s, t*) =

S )y (s), where 0™ () = §) pi (s, )05 (s)ds

Assumption 2.3. Assume sup, st fha (5, 1), m = 1,2 are bounded and E(sup €™ (s, t)|*),
m = 1,2 are bounded.

Assumption 2.4. The grid point {t;, : 13 = 1,...,N} and {sy, : lo = 1,..., M}
are equidistant. We assume ni/N? = o(1), ni/M? = o(1), ny/N* = o(1) and
ne/M? = o(1).

Assumption 2.5. min{ny, ns} — 90, n1/(n1+nq) — 0 for a fized constant 6 € (0, 1).

Assumptions 2.1 and 2.3 are regular conditions. One needs these conditions to
uniquely (up to signs) choose 9;(s) and obtain the bound of zzj(s) —1;(s). Assump-

tion 2.2 means that the profiles of mean surface are projected onto a space that
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is generated by a large set of basis functions. Assumption 2.4 requires that func-

tional data are recorded on dense grid. Assumption 2.5 is of standard for two-sample

asymptotic inference.

Theorem 2.1. Under Assumptions 2.1-2.5 and HS, we have 'ff’(t*) 4, X%, where

X% stands for a x* -distributed random variable with J degrees of freedom. Under

HY and 0 < 0 < 1, we have ﬁ’(t*) 2 0.

From the expression of rfi’(t*) and remark 2.1, we can see that rff)(t*) depends on

sample sizes 1y, na, and ﬁj(-l)(t*) —p® (t*),7 = 1,---, J, which reflects the difference of
profile mean functions py (s, t*) and uso(s, t*). Intuitively, , /%(ﬁy)(t*) - ﬁj@) (t*))X;m
has a limiting standard normal distribution under Hg. Theorem 2.1 shows that
rff’(t*) asymptotically follows the chi-square distribution with J degrees of freedom
if Hy holds. Furthermore, rfID(t”‘) is consistent under Hy. The proof of this theorem

is provided in Section 2.7.

2.4 Globe test of bivariate functional data

Compared with the profile test, the globe test of bivariate functional data attempts
to detect the joint effects impacted by both domains. In this section, we develop a
globe test method for bivariate functional data which aims to detect whether mean
surfaces of precipitation have significant difference over a specific time window and/or
a specific area, or whether two regions exist significant difference during different time
windows.

Based on the estimated marginal eigenfunctions @Zj(s) in Section 2.3, we next

estimate the marginal functional principal component scores {NJ(T)(t) The traditional
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integral estimates of EJ(T) (t) based on the definition

~

E(t) = f X™(s, )i (s)ds, i =1, nm; j=1,2,....
S

are

1=2 (2.7)

where NV is the number of measurements for X™“(s, ¢) in the direction .

Notice that each score function é\](’?) (t) is a centered new random curve. De-
note the covariance function of 5](-27) (t) by G({-rfj)(v, t) = E{gj(T) (U)ﬁj(-?) (t)}. Then, the

estimator of G%? is denoted as,

@(T] (tn, t1) ——Zfﬂn thf (t), thyti €T3 j=1,2,....
Let
~ /\ n A
Grj(v,t) = G (v, )+—1G(7%?j(v,t), vteT;j=1,2,....

nl—l—ng 7. ny + No

It is easy to see é’]’yj(@,t) 2 (1 - Q)GTJ(U t) + HGTJ(U t) = Grj(v,t) where
G7;(v,t) is the covariance function and has orthogonal eigenfunctions {¢;}x>1 and

non-negative eigenvalues {vj;}r>1 satisfying

J Grj(v,t)pjp(v)dv = vid,i(t), v,teT; k,j=1,2,....
.

Then estimators of eigenvalues and eigenfunctions {(vjx, ¢jx(t)) : 7,k = 1} are

obtained by the following equations,

f Gr (v, )di(W)dv = Do), k,j=1,2,.. ., (2.8)
-
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with orthogonal constraints on {ggjk.}k.>1.

Denote ;i (s,t) = ¢;x(t)1;(s) and its consistent estimator by @;x(s,t) = ajk(t)zzj(s).
We propose estimators of the mean surfaces which are projection of observations onto

a hyperspace spanned from the pooled eigensurfaces {@;x(s,t) : j,k = 1}, written as

J Kj
= Z k @]k S, t = 1727 (29)
j=1k=1
with
1" R (m) ~
= n_ Z z]k Y 77@]]{: = mlzllZl Xl (Sillﬁtilz)wjk(sil17ti12)’
i=1 2=1l=

where selection of J is the same to in Section 2.3 and K; can be decided by analogous

procedure. In details, we select K; = min{k : W > 0.9}, where 7,
l=1,2,-- are defined in (2.8).
It is natural to take into consideration the term TC = §s S -{ma (s, t)—pa(s, t)Y2dtds

to measure the distance between two estimated mean surfaces.

2
It is readily seen that TC -2 Z Z (njk - nj(k ) . Therefore, H, will be rejected
j=1k=1

if TC is large. Similarly, the variance of TC may be unnecessarily inflated by the
presence of, possibly many, very small estimates ﬁﬁ) — ﬁj(i) This drawback can also
be remedied by giving a divisor to their variance.
Based on the above steps, we propose the following test statistic
2
K; (A(l) _ A(2)>
e ik — Mjk
TM — ning Z J J ’

ny + No 1 gk

<.

X

J=1

~ ~ ~ ~ 2
where )\, = ng(n1+n2)’1)\§}€)+n1(n1+n2)’1)\ﬁ) with )\g-k) = (nNp—1)"1 30 (nfjk) - n](k )> ,
m=1,2.



CHAPTER 2. MEAN SURFACE TEST FOR TWO-SAMPLE FUNCTIONAL
DATA PhD Thesis

From (2.9), we can see that Xi(l)(-, -) and XZ»(Q)(-, -) are directly projected on the

common basis surface and obtain ﬁz(l,z and @(3211 ﬁﬁ) and ﬁﬁ), which are the average of

such projection, and hence can be viewed as the scores of projection that two mean
surfaces u1(s,t) and ps(s,t) project on the same basis function space, respectively.
The representation of TM measures the total such deviation between two samples.
Therefore, the proposed method has a nice explanation and easy to implement.
Next we establish asymptotic behavior of the test statistic TM under hypotheses

(2.3). Additionally, we need the following assumptions.
Assumption 2.6. vj; > vjs > -+ where {Vji}r=12, =12, are the eigenvalues of
the covariance function Gr(v,t).

)Spjk(sa t);

Assumption 2.7. Assume fi,,(s,t),m = 1,2 may be written as pi,(s,t) = Zﬁl S, n](km
where 77](-21) = Sé Sé tm (S, t)pjk(s, t)dsdt.

Assumption 2.6 along with Assumption 2.3 in Section 2.3 ensures the bound of
ajk(t) — ajk(t). The interpretation of Assumption 2.7 is similar to Assumption 2.2

in Section 2.3.

Theorem 2.2. Under Assumptions 2.1-2.7 and Hy, we have
Tl\\/-[ —d) XQJ 9
2K
j=1
where XQZJ K stands for a x?-distributed random variable with Zj;l K degrees of
j=11%7

freedom. Under Hy and 0 < 6 < 1, we have ™ -2 o0,

Intuitively , /572 <ﬁ](,1§) — ﬁ](,i)) ) ; kl/ ® has a limiting standard normal distribution

under Hy. Theorem 2.2 shows that ™ asymptotically follows the chi-square dis-

J —_—
tribution with >, K; degrees of freedom under Hy. The consistency of TM is also
j=1



CHAPTER 2. MEAN SURFACE TEST FOR TWO-SAMPLE FUNCTIONAL
PhD Thesis DATA

illustrated under H;, which together provides clear theoretical justification of the

empirical properties of the proposed test. The proof of this theorem is provided in

2.7.

2.5 Simulation studies

We conduct extensive simulation studies and report two representative examples
here. Examples 2.1 and 2.2 evaluate two proposed testing procedures in terms of
empirical size and power when covariance functions of two samples are identical or
distinct, separately. The data grid for argument s consists of 100 equispaced points
on [0,1], and the grids for argument s consists of 50 equispaced points on [0, 1].

Each pair of data-generated processes was replicated 1000 times.
Example 2.1. Identical covariance functions.

In this example, we consider the following model

X (s) = (s,), =1, m,
(2.10)
XP(s,6) = (s + 1) +(s,0), i = 1,...,ms,

where 5§1)(s, t) and 652)(8, t) are independently generated from
2
e(st) = > &(t)y(s), se[0,1],te0,1],
j=1
with ¥ (s) = s? and ¢s(s) = s, s € [0,1]. &(t) is generated from
2 .
&(t) = k:Zl Xik@sk(t), J=1,2,

with (/bn(t) = ¢21(t) = —\/2COS(27Tt), ¢12(t> = ¢22(t> = \/28111(271'75), t € [0,1]7
X11 ~ N(0,3), X12 ~ N(O, 15), X21 ~ N(O, 2), and X22 ~ N(O, 1)
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Example 2.2. Distinct covariance functions.

To compare with Example 2.1, we consider the following model

X (s, t) =eWV(s,t), i=1,...,n,
(2.11)
X{ (s,1) = 8(s +1) + £ (s,1), i =1, mo,

(1)

where €, (s, ) is generated from

5(1)(87t) - Z?:l §j(t)¢j(3)a S€ [Ov 1]7t € [07 1]7
and 522)(57 t) from

5(2)(57t) = gl(t)wl(s)a S € [07 1]7t € [07 1]7

with ¥1(s) = s* and ¢s(s) = s*, s € [0,1]. &;(t) is generated from
2 .
&(t) = kZ Xik@sk(t), J =1,2,
-1

with ¢11(t) = /2cos(27t), ¢do1(t) = /2sin(27t), ¢P1a(t) = 2cos(4nt), Poa(t) =
2sin(4nt), t € [0,1]; x11 ~ N(0,3), xi2 ~ N(0,1.5), x21 ~ N(0,2), and x22 ~
N(0,1).

Example 2.1 can be seen as two-sample tests where covariance functions are
identical, while covariance functions of Example 2.2 are distinct. The sample size
pair is taken to be (n1,ny) = (25,75), (50, 150), (100, 300), (50, 50), (100, 100), and
(200, 200), respectively. The empirical sizes of profile test are computed for different
s and t. To save space, we here only present the results of different s for (nq,ny) =
(100,100) in Fig. 2.3. Next, we can also compute the empirical sizes of the globe
test. The results are reported in Table 2.1. The empirical power can be evaluated

when 0 # 0. The empirical power at 6 = 0.4,0.6,0.8 of profile tests are displayed



CHAPTER 2. MEAN SURFACE TEST FOR TWO-SAMPLE FUNCTIONAL
PhD Thesis DATA

in Fig. 2.4 while the results of globe tests at 6 = 0.2,0.4,0.6,0.8,1.0,1.2 are scatter

plotted in Fig. 2.5.
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Figure 2.3: The results of empirical size when covariance functions of two samples
are identical (left column) and distinct (right column).

Table 2.1: Empirical sizes of two proposed test procedures in Examples 2.1 and 2.2.

(n1, o) (50,50)  (100,100) (200,200) (25,75) (50,150)  (100,300)

Example 2.1 0.079 0.060 0.050 0.111 0.085 0.061
Example 2.2 0.074 0.064 0.048 0.080 0.062 0.048

Several observations can be concluded from Fig. 2.3 and Fig. 2.4. Firstly, the
profile tests have a good control of the type I error. The empirical sizes of identical
covariance scenarios are better than that of distinct covariance cases. Secondly, the
empirical power of the test becomes larger when ¢ increases from 0.4 to 0.8, which is
expected. Lastly, the empirical power for the same covariance case is slightly larger

than that of the different covariance function cases.
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Figure 2.4: The results of empirical power when covariance functions of two samples
are identical (left column) and distinct (right column).

Example 1 Example 2

L L L L L L L L L L L L
0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2

3 8

Figure 2.5: The results of empirical power when covariance functions of two samples
are identical (left column) and distinct (right column). Top: The results of empirical
power of (ny,ny) = (25,75) (red), (50,150) (green) and (100, 300) (blue). Bottom:
The results of empirical power of (ny,ns) = (50,50) (red), (100,100) (green) and
(200, 200) (blue).

We may observe from Table 2.1 and Fig. 2.5 that the globe test approach can

keep steady empirical size even at pairs of small sample sizes (ny,ns) = (25,75)



CHAPTER 2. MEAN SURFACE TEST FOR TWO-SAMPLE FUNCTIONAL
PhD Thesis DATA

or (50,50). The empirical power of two test methods increases as the sample size

increases. When ¢ increases from 0.2 to 1.2, the empirical power of the test becomes
more and more large, which is evidence of the consistency of the testing procedures.
Also the empirical power of equal sample size scenario is slightly better than that of

unequal sample size one.

2.6 Real data examples

To illustrate profile and globe tests methods, we analyse the historical precipitation
data in the Midwest of USA and the period lifetables in Europe for human mortality

trend analysis.

2.6.1 Precipitation data

The first example is used to analyze the changes of precipitation during 1941-2000
or in different regions in the Midwest of USA. Berkes et al. (2009) detected no
changes during the period 1941-2000 for only one station while Gromenko et al.
(2017) detected the change of precipitation during 1941-2000 over the whole region.

The precipitation data is available from the global historical climatological net-
work database. The comprehensive U.S. Climate Normals dataset includes various
derived products including daily air temperature normals, precipitation normals and
hourly normals. The dataset that we analyzed in this paper can be downloaded
directly from GHCN (Global Historical Climatology Network)-Daily, an integrated
public database of NOAA (https://www.ncdc.noaa.gov/oa/climate/ghcn-dai
ly/) by an R interface. Our interest is daily precipitation records from Midwest-
ern states including Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri,
Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. In Fig. 2.1, totally
59 locations of the climate monitoring stations are indicated with blue circles o in 4

states from the Great Plains (light green region), and with red triangles A in 5 states


(https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/)
(https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/)
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from the Great Lakes (yellow region). Notice that there is no climate monitoring

stations in Towa, Michigan, and Missouri. We target to detect whether the changes
of average precipitation took place for different time phases or regions.

Let Y;(s,t) be the precipitation of the ¢th day in the ith year of the sth station.
Before we apply the proposed method, we need to do registration with the data. To

remove the effects due to the heavy tail distribution, we apply the transformation
Zi(s,t) =logo{Yi(s,t) + 1},

where {Y;(s,t)} are original records. After the transformation, we pre-smooth data by
using the cubic splines function. It is noted that the data of every climate monitoring
stations from 1941 to 2000 can be constituted into a time series with length 21900(365
day by 60 year). Then, the data of the 59 climate monitoring stations can be seen
as a sample with sample size being 21900 and variables being 59. According to the
empirical Pearson correlation of 59 variables, the 59 climate monitoring stations is
stringed into a function by the stringing method in Chen et al. (2011b). Consequently
the spatiotemporal data {Y;(s,t)} are converted into the bivariate functional data
{X;(s,t)}. Notice that the difference between the spatiotemporal data Y;(s,t) and
the bivariate functional data X;(s,t) is that the argument s in the former expression
has no order but it is ranked in the latter.

Gromenko et al. (2017) studied the data Y;(s,t) and detected out the change
of the average precipitation at about 1967. In this subsection, we firstly apply the
profile test to check if the profile of mean surfaces are equal during the periods 1941-
1967 and 1968-2000. It corresponds to test whether the average precipitation of
every station has changes during these periods. The p-values of the profile tests are
computed and results are displayed in Fig. 2.6. As can be seen from Fig. 2.6, most of
the p-values are less than 0.05 or significant except 11 stations. For ease of reference,
we list the latitude and longitude in Table 2.2 for 11 stations. This displays that the
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Table 2.2: The latitude and longitude of stations where the p-value of profile test

are more than 0.1.

Code latitude longitude
USC00148235 38.4661 -101.7758
USC00250050 42.5522 -99.8556
USC00252145 41.4086 -102.9661
USC00255090 40.8508 -101.5428
USC00325479 46.8128 -100.9097
USC00394007 43.4378 -103.4739
USC00398307 45.4283 -101.0764
USC00394007 43.4378 -103.4739
USC00392797 45.7644 -99.6353
USC00321871 48.9075 -103.2944
USC00327530 46.8886 -102.3192

average precipitation of most locations had changed during the periods 1941-1967

and 1968-2000.
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Figure 2.6: The p-value of the profile tests for every station.
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Next, we implement the following globe test

HMAveSt .y (s,) = po(s,t) vs. HMSU .y (s,8) # pa(s,t), s € R? ¢ e R,

From the globe test procedure presented in Section 2.4 together with the asymptotic
distribution of the test statistic fl\\/[, we calculate the corresponding p-value to be
0.001. This result is consistent with the conclusion of Gromenko, Kokoszka and
Reimherr. That is, the patterns of mean surfaces are different over the whole Midwest
region between before 1967 and after 1967. Intuitively, according to the results of
the profile test, the precipitation had changed in most of locations which lead to the
variations of whole region.

The heatmaps in Fig. 2.2 leak the information that sample mean values of annual
precipitation in the Great Lakes (GL) based on 28 stations are more than that in
the Great Plains (GP). This motivates us to further explore how the mean functions
of bivariate functional data {X;(s,t)} was affected by temporal and spatial effects
from both domains. It is natural to test the equality of two mean surfaces of the
precipitation for the 31 stations located in the GP and the 28 stations located in the
GL during the periods 1941-1967 and 1968-2000, respectively by

1967— . , GP _  GL 1967— .  GP GL
H, pt = po vse Hy NV S

and

1967+ . , GP _  GL 1967+
H, =p " vs. Hy

») GP

C GL.

I
All the p-values by globe test procedures for above two hypotheses are tiny approach-
ing to zero indicating rejecting the null hypotheses but in favor of the alternative
one. It is consistent with the intuition that the mean patterns of precipitation at

Great Plains and at Great Lakes are different.

Furthermore, for the 28 stations located in the GL, we test the mean surfaces of
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Table 2.3: Results of the tests based on statistics 'fl\\/[

statistic the observed value of a statistic p-value
et T06T= (g 4y — ;1967 (5 %)
™ 123.6 0.001
HSP - 1197 (5,1) = 97+ (s, ¢)
™ 59.7175 0.5677
HST (957 (5, 4) = 957+ (s, )
™ 108.20 0.0163
H™= 157 (s, 1) = 1%, 1)
™ 973.11 0.0000
HI 1 1CP (5. 1) = 1CC(s, 1)
™ 1116.4 0.0000

precipitation before and after 1967, denoted by

GL .  1967— _ 1967 GL ., 1967— 1967
Hy™ = Tovs. H # ',

[t 1t

The p-value is 0.0163. The null hypothesis would be rejected at 0.05 significance
level. Testing equality of the mean surfaces of precipitation before and after 1967 is

also implemented for the 31 stations located in the GP, denoted by
HEP . 1967 = 1067+ g[GP . 1967 ) 1967+

The p-values by globe testing method are 0.5677. The null hypothesis would not be
rejected at 0.05 significance level. That is, averagely speaking, the precipitation in
the Great Lakes changed before 1967 and after 1967, whereas the mean pattern of
precipitation in the Great Plains had no change before 1967 and after 1967. There-
fore, our analysis provides evidence that change in the mean function of precipitation
was mainly due to the Great Lakes but the Great Plains may be affected little. By
looking up the map, we find that all the stations in Table 2.2 are located in the Great
Plains. It further verify the reliability of the proposed methods. All testing results

are presented in Table 2.3.
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2.6.2 FEuropean human mortality rate data

In the second example, we will analyse the trends in human mortality based on the
records in the period life tables during the calendar years 1960-2006 for Europe coun-
tries. A period life table represents the mortality conditions at a specific moment in
time. It is approachable from the Human Mortality Database via the website link-
age www.mortality.org (Wilmoth et al., 2007). The analysis of trends in human
mortality is important to recover the demographic impacts. Results of such research
will benefit the prediction and forecasting of future cohort mortality (Vaupel et al.,
1998; Oeppen and Vaupel, 2002). We focus on comparison of different countries or
genders, specifically on the older ages over 50 years old.

There are 32 countries included in the European period life tables. It contains five
Eastern European countries, Belarus, Bulgaria, Russia, Ukraine and Lithuania, and
the remaining 27 Western European countries. Following the notation introduced
in Section 2.3, Xi(l)(s, t),i =1,...,5, denotes the mortality rate of the five Eastern
European countries for subjects at age s and calendar year ¢, where 50 < s < 90,
focusing on the death rates of older individuals, and on a recent block of 47 years,
1960 < ¢ < 2006. Similarly, X (s,¢),i = 1,...,27, denotes the mortality rate for
other countries. The sample mean function i, (s,t) = 3, Xi(l)(s, t) and fis(s,t) =
21221 X i(Q)(s, t) for two clusters of countries are visualized in Fig. 2.7. The heatmaps
and sample mean surfaces show obvious opposite trend of mortality rates particularly
for very aged people in Eastern and Western European countries as the calendar year
passed 1980 or so. We apply the profile and globe test procedures to test if the two

underlying mean surfaces and its profile are different.


www.mortality.org
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Figure 2.7: The heatmap of sample mean surface of precipitation during the time
1941-1967 in the Midwest, where the first 31 stations are located in the Great Plains
and the latter 28 stations are located in the Great Lakes.

According to profile test method introduced in Section 2.3, we implement the
tests (2.1) and (2.2). The p-values for fixed s* or t* are calculated, respectively.
The results are presented in Fig. 2.8. For every fixed age s*, we find that all of
p-values are approaching to zero. This indicates that the mean mortality rates of
the Eastern and Western European is different for every age s* = 50,---,90. For
every fixed year t*, almost all p-values are less than 0.05 except for years t* = 1978
and 1986. Sequentially, we implement the globe test for the mean mortality rates

of the Eastern and Western European. The numbers of included components is
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J = 2K, = 2,K, = 2 are chosen by the fraction of variance explained (FVE)

criterion with the threshold 0.90. Based on the asymptotic distribution of the test
statistic 'fl\\/[, the p-value is calculated to be 0. It coincides with the intuition on
images in Fig. 2.7 and is evidence that the mean surfaces of the mortality rates are
different between the Eastern and Western European countries. Also, it is consistent
with the conclusion of the profile test because almost of Hy and HJ are rejected for

fixed s* and t*.
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Figure 2.8: The p-value of the profile tests for every age (left) and year (right).

Next we examine the equality of mean surfaces and its profile between female
and male clusters in West Europe. The heatmaps and sample mean surfaces for
male and female clusters are displayed in Fig. 2.9. Intuitively it does not show
obvious difference. However, all the p-values of profile tests are zero for fixed s*
and t*. Furthermore, we also implement globe test and obtain the p-value that is 0.
Therefore, the mean surface and its profile are different in Western Europe for aged

people in different gender type.
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Figure 2.9: Top: Sample means of the mortality rate of male. Bottom: Sample
means of the mortality rate of female.

2.7 Proof of the theorems

In order to prove the Theorems 2.1 and 2.2, we first introduce several lemmas.

Lemma 2.1. Under Assumptions 2.1 and 2.3, we have

max [1;(s) — é5145()] = Opf(ny + no)~72),

1<j<J

where ¢; = sz’gn(@j, ¥;).
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Lemma 2.2. Under Assumptions 2.3 and 2.6, we have

. |6 () — djxdjn(t)]| = Op{(n1 + na) =12},

where c/l\jk = sign(ggjk, Djk)-

The proof of Lemmas 2.1 and 2.2 can easily be obtained by the Lemma 4.3 of
Bosq (2000).

Lemma 2.3. Under Assumptions 2.1, 2.3 and 2.6, we have

7y . _ —1/2
e (s.8) = o5, )] = Opf(mr + )72}

The proof of Lemma 2.3 can easily be obtained by Lemmas 2.1 and 2.2.

Proof of Theorem 2.1

Firstly, we prove

! (126 = f0) <4 N (0.6
(2.12)
(1200~ 12)) 5 ¥ (0.420)).

where
W) = [ 00, s )dsin

W) = | e 5.0, ()i
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For the term n,'/? <77( (%) — nj(-l)(t*)), it can be observed that

ﬁj(l)(t*) — n_lZ Z X Szllg %(Szh)

li=1

1 & N
+ {n_lz 2 X(l) S'lll?t )¢](Sll1)

=1 (2.13)

=1

_ n_lZ Z X 8111, ), (Slll)}
= Al + A2'

For A, we have

A = n—lz Z g; 31117 w](slh)

=1

1381 & (2.14)
WZ (51117 )wj<slll)

EA11+A12.

It is easy to see that Aq; is the average of independent and identically distributed
random variables with mean F(A;;) = 0 and variance var(Ay;) = )\El)(t*). By the

central limit theorem, we obtain
Ay, -4 N (0, Ag.”(t*)) . (2.15)

For Ay5, according to Assumption 2.2, we have

A=) = =33 S o (o) = [ 00051
- (2.16)

Il
Q
/N
==
N———
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Combing (2.13), (2.14), (2.15), (2.16) and Assumption 2.4, we obtain

/2 (A1 - n;.?) AN (o, Ag.”(t*)) . (2.17)
For A,, we have
181 &
Ay = _Z N Z 1(Siy 5 t ){l/Jj (sit,) — 1/Jj(8ill)}
S e
(2.18)
o Z S O ) 0) — o)
nl l1 1
= Ay + Ag.
It is easy to see
c ni 1 N
E(Agl) = _QZ F Z Szl17 77/}]( zl1) ¢j(8il1)]2}
1 i=1 =1
c <
+_22 Z{Ml (i1, 1 Sitl t*)
m z':l ll#
El;(si,) — ¥i(sa) [ (s ) — (s )]}
= Aoi1 + Aoio
For Asqq, by Assumption 2.3 and Lemma 2.1, we have
c ni 1 N
Ay < sup (s, t)_z e Z [%( i) — i (sa,)]*}
(s;)eSXT n i3 li=1 (2 19>
1
=0
(”1N )
According to Cauchy-Schwarz inequality, we obtain
Iy (2.20)
212 = N .
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By (2.18), (2.19), (2.20) and Assumption 2.4, we have Ay = op(n;1/2). Similarity,

we can obtain Ay = op(nfl/z).

Combing above discussion, we have

Ay =0, <n1_1/2) : (2.21)

By (2.13), (2.17) and (2.21), we obtain n}’> <n§ (%) — n§1>(t*)> AN (o, Ag.”(t*)).

3 3 fos * * d *
Similarly, we can prove né/z <77§2) (t*) — 77](.? (t )) — N (O,)\gz) (t )) The proof of
(2.12) is completed.

Secondly, we prove
AP () LA () AP () L AP (1), (2.22)

It can be observed that

ng(t*):n_lZ 2 (51, )05 (s1,) = A ()] D0 (X (s )05 (1) — 7 (7))

=1 l1=1 =1

B S X0y il )Ei(sy 1) (51 ()
B n_lZ N2

o AT i Jt* j -~ /,t* ' ;) — t
TRV e |y 2o ) =)
=
131 8 - 1Y
+n_Z NZei(Sl’l’t*)%(sz’l)[ﬁz p(siy, )05 (s1y) — 757 ()]
b=l Ih=1 l=1

1 ni 1 N A(l) . N o o
- _Z 2 2 C )%(811) (t >][Z “(Sl’l’t )wz’(sl’) — 15 (t%)

— ’
=1 =1

=

EBl+BQ+B3+B4.
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It is easy to see that By —— Agl)(t*). Next, we analyze the term B,. In fact, by

(2.12) and Lemma 2.1, we have

According to (2.15) and Lemma 2.1, we have

L LS o )35(60) = 01
nle: 117 j\ol) = .

Then, we have By = 0,(1). Using the arguments similar to that of Bs, we have
Similarity, we can prove

So, the proof of (2.22) is completed. By (2.12) and (2.22), together with Slutsky’s
lemma, the firstly part of Theorem 2.1 have been proved.
Next, we prove ﬁ(t*) > o under H§. According to the results in the above

proof, we have for j =1,...,J,

— 7m2i@@ﬂ@%W{&nmz§mWF%WWH

(%) RIRL

Then, Theorem 2.1 is proved.
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Proof of Theorem 2

The proof of Theorem 2.2 is similar to that of Theorem 2.1, and so we only outline

the main section. If we can prove
A d d )
12 (nj,b 77<]1€>> 4, N (o, )\%2) R (77J<k) nﬁ)) Ay (0’ A%)  (223)
where

1 1 1 1
A =[] ] et )5 0 (o) o tdsdudoat,
0 JOo Jo JO

11 plopl
)\ﬁ) = J f J J gojk(s,v)C'(Q){(s,u), (v, t) Yok (u, t)dsdudvdt,
0 Jo Jo Jo

then together with Slutsky’s lemma, Theorem 2.2 can be easily proved.

For the term n/? <n](k) 775?), it can be observed that

—_

M N
~1 1 1 1
77]('k) = n_Z WUN Z 2 Xi( )(Sizutuz)@jk(Sul,tizg)

1 i=1 lo=111=1
+ . Z Z Xil (Sill’ t’il2)@jk(sil1 ) tilz)
n o MN = (2.24)

Z MN Z X 51117 ila Sojk(szllatzlg)}

For D¢, we have

ny M N
Dl = %ZML Z_ Z_ M 32l17 il onk(szlly zlg)

(2.25)

= D11 + D12.
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It is easy to see that Dj; is the average of independent and identically distributed
random variables with mean FE(D;;) = 0 and variance var(Dp;) = )\ﬁ). By the

central limit theorem, we obtain
n11/2D11 —d> N <0, )\]k > (226)

For D15, according to Assumption 2.7, we have

1 ni M N 1 r1
Dip =) = — Z N D0 D0 msays tiny) @ (siy s tiry) — J J pua(s, t) s (s, t)dsdt
L R lo=11;=1 0 Jo (2.27)
- 1
N MN
Combing (2.25), (2.26), (2.27) and Assumption 2.4, we obtain
w2 (Dy = ni)) =5 N (0.00)). (2.28)
For D, we have
A2 = n_Z Z Z /4L1 lea ’ng {Spjk:(szll? ’ng) Spjk( ’Llla 112)}
1 12 10,=1
(2.29)
+ _Z Z Z g; 81117 ilo {Spjk’(slhv le) @Jk<8111,tzl2)}
g l2 10h=1
= A21 + A22.
It is easy to see
ni M N
E<Agl) = Z M2N2 Z Z {M%(Silwtilz)E[Sbjk(sill?tilQ) - Sojk(silmtib)]?}
i=1 la=11=1
c &
o A MOT N 1) & 2 bt t) g 5
= 12# lﬁél

X E[@jk(silutilz) ijk<szl17 le)][(ng( zl )1 ) ijk<szl'7t )]}

= A1 + Agio
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For Asqq, by Assumption 2.4 and Lemma 2.3, we have

ni

M N
2
A211 < o SEEXTul S, t M2N Z= Z: 50]16 Sily s llz) ijk(silutilz)] }

(2.31)
-0 (nlj\lﬂ\f)

According to Cauchy-Schwarz inequality, we obtain

1
A1 = O <n1MN> (2.32)

By (2.30), (2.31), (2.32) and Assumption 2.4, we have Ay = op(nl_l/Q). Similarly, we
can obtain Ay = op(nl_m).

Combing the above discussions, we have
As = o0, <n1_1/2> . (2.33)

By (2.24), (2.28) and (2.33), we obtain n)’> (ﬁ](,lg) — n](,lc)) LN <0, Aﬁ)). Similarly,

we can prove né/Q <ﬁ](i) — né?) 4N <O, /\ﬁ)>. The proof of (2.23) is then com-
pleted.

According to (2.23), we have

(1) p D A2 »p 2
77j(‘k) - 77§k)a 77]('k) - 77]('k)'

Under Hy, we obtain

2
L (0 —)
> -~ "~ 7 5 o.
ny +Ng j=1 k=1 Ajk

Top 2, e

Then, Theorem 2.2 is proved.



Chapter 3

Testing Equality of Mean Curve
for Two-sample Functional Data

3.1 Introduction

Over the last two decades, functional data analysis has established itself as an impor-
tant and dynamic area of statistics. It offers effective new tools and has stimulated
new methodological and theoretical developments. The field has become very broad
and specialized directions of research. Many areas of functional data analysis have
been developing rapidly over the last decade. For a summary of some of these de-
velopments, we refer to Ramsay and Silverman (2005) and Ferraty and Vieu (2006).
More recently, see Ferraty and Romain (2011) and Horvath and Kokoszka (2012).
Functional data which are referred to as curve data in the early days was pi-
oneered by Castro et al. (1986) and was further developed in Rice and Silverman
(1991). Functional Data Analysis (FDA) dealing with curve data is concerned for
the data that are repeated measurements of the same subject. The repeated mea-
surements are often recorded over a period of time, say on an interval 7. Generally,
there exist two different approaches to treating them, depending on whether the mea-
surements are available on a dense grid of time points, or whether they are recorded

relatively sparsely. Dense functional data allow the number of observations for every

40
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subject tending to infinity and a conventional estimation approach is to smooth each

individual curve and then infer. For a summary of some of these development, we
refer to Hall et al. (2006) and Zhang and Chen (2007). In the case of sparse func-
tional data, every subject is often observed at a small number of time points, and
often irregularly, spaced measurements on human or other biological subjects, they
are typically termed longitudinal data. For an introduction to this area, see Yao
et al. (2005), Hall et al. (2006), Yao (2007), and Ma et al. (2012).

For dense or sparse functional data, a lot of regression models have been ex-
tensively studied. For example, functional linear model (Yuan and Cai, 2010; He
et al., 2010; Hall and Horowitz, 2007; Lee and Park, 2012), functional nonparametric
model (Ferraty and Vieu, 2002, 2006; Ferraty et al., 2012), Semiparametric functional
model (Chen et al., 2011a; Chiou et al., 2003; Jiang and Wang, 2011). However, most
of inferential procedures based on it assume that mean function is the same for all
subjects. If, in fact, mean functions are different, the results of inference may be con-
founded. So, it is important to consider the two-sample or multi-sample problems of
functional data. Despite the above problem are important for functional data, they
have received little attention.

In the setting of dense functional data, Horvath et al. (2009) compared linear
operators in two functional regression models. Horvéth et al. (2013) developed and
asymptotically justified testing procedures for the equality of means in two functional
samples exhibiting temporal dependence. Fremdt et al. (2014) considered a normal
approximation method to derive statistics that used segments of observations and
segments of the FPC’s and then applied results to derive inferential procedures for
the mean function. However, all these research are based on the assumption which
the repeated measurements take place on the dense and regular time points for each
subject. In the setting of sparse functional data, less attention has been paid to this
area.
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In practice, it is hard to decide when the observations are dense or sparse. In some

functional studies it is possible that we have dense observations on some subjects
and sparse observations on the others. It is thus useful to develop a unified method-
ology which can test if two sample or multi-sample have the same mean function
for functional data no matter they are dense or sparse. A direct motivation for the
research of this chapter comes from a two-sample problem in which we wish to test
whether the mean functions of two functional observation sample are equal without
the information that the data are dense or sparse.

We propose a significance test for testing the null hypothesis of having the same
mean function against the alternative of different mean functions. One particular
advantage of the proposed method is that we do not have to discern data type: dense
or sparse.

This chapter is organized as follows. In Section 3.2, we present the proposed
testing method. Asymptotic theory of the proposed procedures are also developed
in this section. While Section 3.3 is devoted to a report on simulation results. In
Section 3.4, we analyze two real data sets to illustrate the proposed procedures. All

proofs are displayed to Section 3.5.

3.2 Methodology and main results

Consider two independent samples:

Yi(m) (tir,) = pm(tir,,) + Uz-(m) (i) + 81(21)7
(3.1)
m=12i=1, ng; lpn=1, N teT,
where p,,(t), m = 1,2, are the fixed population means of Y;(m) (t), m = 1,2.
vi(m) (t), m = 1,2, are the subject-specific random trajectories of Y;-(m)(t) with E{vi(m) 1)} =

0 and covariance function v, (¢, s) = cov{v™(t),v™ (s)}. Ny, and N, are the num-
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ber of measurements collected from two subjects, refer to Horvath et al. (2013).

g;(t)s are i.i.d. random error process independent of v;(t), refer to Shi et al. (1996),
Zhang and Chen (2007), and Horvath and Kokoszka (2012), among others.
In this chapter, we want to test if two samples have the same mean function.

Thus, we are interested in testing

Ho: g (t) = po(t) vs. Hy o ug(t) # pso(t), teT.

To perform the test, we first estimate the mean functions. The following is the

procedure to obtain the estimators.
Step 3.1. Obtain initial estimators of mean functions pi(t) and ps(t).
To estimate the mean function py(¢) by local linear scatterplot smoothers, one

minimizes

iiK(D(”l ){Yi(l)(zll) do — dy(tu, — )}27

1=110=1

with respect to dy and dy to obtain 9(¢) = dy(t), where the kernel KM (.) is assumed
to be a smooth symmetric density function and b§ is a bandwidth. Analogously, one

may define the estimator of the mean function pus(t), say i9(t).

Step 3.2. Obtain the estimation of covariances functions v, (t,s) and v,(t, s).

Let Gty ta) = (V" (tug,) — 19ty )Y (fisy) — i (f,,)} . Define the local

linear surface smoother for v, (¢, s) by minimizing

S ti, — 1t i, — S
Z Z K® ( hE ' RE ) {Gl,i(tilnv tilm) - f(Oé, (t7 8)7 (tiln’ ti112))}2 ’
Y Y

i=11<l1#lh2<N;

with respect to o = (g, 11, ag2) where f(a, (¢,5), (tiy,, tin,)) = o + a1 (t —tay,) +
a12(5 — tiy,), yielding 49(t, s) = éo(t, s). Here, the kernel K is a two-dimensional
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smooth density with zero mean and finite covariance and hj is a bandwidth. An

essential feature is the omission of the diagonal elements l1; = [15 which are contami-

nated with the measurement errors. Analogously, we can obtain the estimator of the

covariance function ya(t, s), say 45(t, s). Let 4°(t, s) = T2-A7(t, s) + —-A3(t, s).

ni+nsg
It is easy to see 3°(t, s) —— (t,s) = (1 — 0)11(t, s) + 012(t, s) and (¢, s) is a covari-
ance function where 6 is defined in the following assumption 3.5. Consequently, it has

orthonormal eigenfunctions {¢;};>; and non-negative eigenvalues {v;},>1 satisfying:

f Y(t, s)p;(s)ds = v;p;(t).
-

Step 3.3. Estimates the eigenvalues and eigenfunctions {v;, ¢;}i=1 of (¢, s).

Estimation of eigenvalues and eigenfunctions {v;, ¢;};>1 are obtained by numeri-

cal solutions {7, éj }j=1 of the following suitably discretized eigenequations,
| *te.s)os(s)ds = ind 0
-

with orthonormal constraints on {¢;};1.
In order to obtain final estimators of pu,,(t), m = 1,2, we make the following

assumption.

Assumption 3.1. Assume S(l) ,u?n(t)dt <o, m = 1,2 and p,(t) may be written as
p(t) = S 0™ 65 (t) where ™ = § () s (t)dt

Step 3.4. Obtain the projection estimator onto eigenfunctions.

Estimator of the mean function is a projection estimator onto a space that is

generated by a set of eigenfunctions,
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iy _ 1 <h o o
7 :—ij ) ZY tily ¢](zl1)
ni4a Ni li=1
with ggj (t), j=1,---,J are the eigenfunctions. The number J is a tuning parameter.

A practical strategy to select J will be discussed in Section 3.3.

Similarly, we can define

J
~(2) 7
= Z ]( )¢](t)7
j=1

where

n

1 & 1 & ;
(2 ~(2) A2 2
n2 i=1 v l2:1
The difference between our estimating approach and that of Fremdt et al. (2014)
is typically that every curve of the proposed method is directly projected on the

common basis function space and obtain 77](-1) and 77](-2) which are the means of projec-

tion. ﬁj(.l) and 77](-2) can be viewed as the scores of projection that two mean functions
p1(t) and po(t) project on the basis function space, respectively. Advantages of this
method lies in two aspects. On the one hand, global statistics can be provided from
the expression of () and us(t). On the other hand, whatever functional data is
sparse or dense, regular or irregular, the means of projection can be always obtained
from the expressions of ﬁj(~1) and ﬁj(?) which lead to the wide applicability of our tests.

It is natural to take an empirical version of the integrated square deviation be-

tween two mean curves § {1 (t) — pa(t)}*dt to measure the distance between two

estimated mean curves. Consider the statistic

ning

TN — f (in(t) — fu(t)} dt, (3.2)

n1+n2




CHAPTER 3. MEAN CURVE TEST FOR TWO-SAMPLE FUNCTIONAL
PhD Thesis

DATA

Hy will be rejected if TM is large.

From lemma 3.1 in Section 3.5, it is easy to see that

J
D) (1) 7
™ =
ny + ng fT {Z ¢j Z

7j=1
ning J
niy + N9 T

J
n1n9
* n1 + No ‘J [2

7=1

)

| j=1

{ — ] }‘] {qg(t)—qﬁ?(t)}dt

A-2 }2 + 0p(1).

ning

J
nl—l—nQZ{

We consider the following test statistic for testing the hypothesis Hy :

Mg(t), te T,
J {A(l) A(2)
Thi - |y | v
ny + N =
3 n A(l) n 1(2)
where \; = mfm y mJ:m )\j with
ni 2
(1) 1 S1) (D)
)\j B nl—lz{n” _nj }

=1

n2

@ 1 (2) @)
)\j _ng—lg{nz] _nj } '

pa(t) =

We demand the following assumptions before showing the theorems 3.1 and 3.2.

Assumption 3.2. There exists positive constant C' and o > 1 such that

r—a—1
vi —vj1 = Cj

)
where {v;};<1 are the eigenvalues of covariance function y(t, s).
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Assumption 3.3. n_1J%™ — 0, where m = 1, 2.

Assumption 3.4. {vgl)(-)}i, {ti, i, and {ei, }ig, are independent and identically

distributed and mutually independent. So are {v§2)(-)},~, {tit, }igo and {€i, ity -

Assumption 3.5. We assume 7 = E(1/ny) = E(1/n2) and —— — 0 for some

ni+ng

0 <60 <1 asmin(ny,ng) — 0.

Assumption 3.2 requires that the spacings between the eigenvalues are not too
small. It implies that each v; is greater than a constant multiple of j=%. One
needs this condition to get the bound of ¢;(t) — ¢;(t). Assumption 3.3 requires
that the number of principle component for two samples are not too large since
J = max(Jy, J2), where J; and J, will be described in Section 3.3. Assumption 3.4
is a regular condition and assumption 3.5 requires that the type of the observations
for two samples are same.

Theorems 3.1 and 3.2 shown below establish the asymptotic behaviors of the
statistic TM under hypotheses Hy and Hy, respectively. The proofs of these theorems

are provided in Section 3.5.

Theorem 3.1. Under assumptions 3.1-3.5 and Hy, we have
™ -4 N(0, 1)

The null hypothesis Hy : pi(t) = po(t), t € T is rejected if \rfl\\/[] > (o, where ¢, 18
the upper-a quantile of N(0,1).
Theorem 3.2. Under assumptions 3.1-3.5 and H,, we have

™ -2 .

Both Theorems 3.1 and 3.2 provide clear theoretical justification of the empirical
properties of the proposed test.
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3.3 Simulation studies

To evaluate the finite sample performances of the proposed test method, we con-

ducted some simulation studies.

3.3.1 Tuning parameter selection

For practical implementation, one has to decide the values of the tuning parameters
J. We can select J using the following method, Firstly, we select J; as the minimum
number of FPCs that explain 99% of the total variation for the sample one by the
PACE (principal analysis by conditional estimation) package and J, for sample two.
In detail, we refer to Yao et al. (2005) for a complete description. Then, we select
J = max(Jy, J5). Using the asymptotic developed in this chapter, selecting J is
not essential. We can observe that different J gives the similarly conclusion on the
empirical size and power in the following simulation.

The choice of bandwidth is a very important topic in nonparametric regression
estimation for our Steps 3.1 and 3.2. The popular method such as cross-validation,
generalized cross-validation (GCV) and the rule of thumb can be used to select the
optimal bandwidth for the estimators of p,,(t) and ~,,(t,s), m = 1,2. Here, we

recommend using GCV to determine the optimal bandwidth.

3.3.2 Test of mean function

We consider combinations of sample sizes (ny,n2) = (100, 100) and (200, 200), each
pair of data-generated processes was replicated 1000 times. In this section, v(t) was

generated from

v(t) = Z &id;i(t),
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with ¢ () = —v/2cos(27t), ¢o(t) = v2sin(27t), t € [0,1]. &, j = 1,2 were gener-
ated from N (0, vy) with v4 = 1 and v, = 0.5.

Example 3.1. Sparse design with the same covariance function.

To illustrate the adaptivity of our test method to sparse design, we firstly consider

the following model

Y(l)(till) = Ugl)(till) + 5(1) L= ]-7' T, N ll = 1a T 7Ni7

i % ily 2

(3.3)
Y(2)<til2) = atilz + UZ@)(tilg) + 5(2) 1= 17 s, Ng; l2 = ]-7 e aNia

(3 ilo

where vgm)(t), m = 1,2 were generated from v(t). The parameter a regulates the
difference between the means of two samples. The number N,, , m = 1,2 of measure-

ments for each curve were selected from {5,---,9} with equal probability in [0, 1].

The measurement error is 55;1) ~ N(0,1), so is 55122)5. Model (3.3) can be seen to

be sparse design with the same covariance function ~(t, s) = cov(v(l)(t),vi(l)(s)) =

cov(vZ@) (1), UZ@)(S)) = 75(t, s) in this example. The empirical sizes can be calculated
when a = 0 and the empirical power can be calculated when a # 0. The empirical

size and power of the test are reported in Tables 3.1-3.3.
Example 3.2. Sparse design with different covariance functions.

In this example, we consider the sparse design with different covariance func-
2)

tions for comparing with Example 3.1. We consider Model (3.3) except v, (t) was

generated from

v®(1) = 1P (s).

Jj=1

with 55»2) generated from N(0,v;) for j = 1 and 2 with v; = 2 and v, = 1. The
number of measurements for each subject and the measurement error are the same
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Table 3.1: The empirical sizes of the test in Examples 3.1 and 3.2.

J (n1,n2) = (100,100) (n1,n2) = (200, 200)
a =0.01 a = 0.05 a =0.10 a =0.01 a = 0.05 a =0.10
Example 3.1
2 0.031 0.049 0.067 0.025 0.039 0.062
3 0.017 0.039 0.060 0.026 0.049 0.068
4 0.023 0.043 0.063 0.020 0.043 0.061
5 0.02 0.049 0.066 0.015 0.041 0.056
6 0.018 0.038 0.053 0.021 0.045 0.061
7 0.022 0.044 0.068 0.018 0.044 0.071
8 0.019 0.052 0.084 0.023 0.039 0.064
Example 3.2
2 0.027 0.049 0.066 0.031 0.063 0.082
3 0.019 0.035 0.056 0.019 0.040 0.064
4 0.015 0.039 0.057 0.019 0.039 0.063
5 0.016 0.040 0.056 0.013 0.034 0.059
6 0.023 0.042 0.065 0.024 0.048 0.073
7 0.018 0.036 0.076 0.020 0.045 0.066
8 0.014 0.038 0.055 0.015 0.037 0.065

as in Example 3.1. This example can be seen to be the sparse design with the different
covariance functions r(t, s) = cov(vi(l)(t),vi(l)(s)) and r3(t, s) = COV(UZ@) (1), UZ@)(S)).
The empirical size and power of the test are also reported in Tables 3.1-3.3.

Several observations can be made from Tables 3.1-3.3. Firstly, the empirical size
does not depend on J at all level from Table 3.1. The test based on proposed method
has asymptotically correct empirical size at the 5% level, overrejects by about 3% at
the 10% level and slightly higher than nominal (about 1% at 1% level). Secondly,
when a increases from 1 to 1.5 and J > 3, the empirical power of the test does not
depend on J at all level and become large from Tables 3.2 and 3.3, which is expected.
Thirdly, from the simulations of Examples 3.1 and 3.2, we find that the empirical
power of the test increases as the sample size increases. Lastly, the empirical power
for the same covariance case is slightly larger than that for the case of different

covariance functions. All in all, the proposed method work well for the sparse design

even in the case of different covariance functions.

Example 3.3. Dense design with same/different covariance functions.
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Table 3.2: The empirical power of the test for a = 1.

J (n1,n2) = (100,100) (n1,n2) = (200, 200)
a =0.01 a = 0.05 a =0.10 a =0.01 a = 0.05 a =0.10
Example 3.1
2 0.311 0.417 0.477 0.619 0.717 0.756
3 0.682 0.762 0.794 0.887 0.914 0.929
4 0.797 0.845 0.879 0.946 0.962 0.971
5 0.780 0.841 0.858 0.930 0.954 0.965
6 0.770 0.822 0.846 0.936 0.960 0.972
7 0.760 0.812 0.839 0.926 0.952 0.964
8 0.738 0.802 0.830 0.936 0.960 0.970
Example 3.2
2 0.229 0.297 0.340 0.456 0.550 0.595
3 0.557 0.638 0.679 0.807 0.857 0.875
4 0.691 0.765 0.809 0.876 0.908 0.924
5 0.649 0.730 0.772 0.892 0.929 0.946
6 0.639 0.729 0.763 0.887 0.921 0.940
7 0.634 0.710 0.756 0.865 0.894 0.911
8 0.586 0.673 0.721 0.851 0.908 0.923

In order to compare the proposed method (denoted by 1/’1\\/[) with the testing method

TF due to Fremdst et al. (2014) and evaluate the influence of the number of measure-

ments for testing, we consider the following model

Y(l)(till) = ’U(l)(tl‘ll) + 6(1) = 1,‘ s, Ny, ll = ]_, s ,Nl‘,

i % ily

(3.4)
Y(Q)(tilz) = atib(l - tilg) + Uz@)(tib) + 6(2) 1= 1, s, Ng; lg = ]_, te 7Ni7

7 il

where v}m) (t), m = 1,2 were generated from standard Brownian motions. The
locations of measurements for each curve were selected at 100 equidistant time points
in [0,1]. We compute the empirical size (a = 0) and power (¢ = 1 and a = 1.5) of
the test for sample sizes (ny,ng) = (100, 100) and (200, 200) in Tables 3.4-3.6.
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Table 3.3: The empirical power of the test for a = 1.5.

J (n1,n2) = (100,100) (n1,n2) = (200, 200)
a =0.01 a = 0.05 a =0.10 a =0.01 a = 0.05 a =0.10
Example 3.1
2 0.642 0.718 0.752 0.916 0.949 0.964
3 0.889 0.920 0.932 0.986 0.994 0.994
4 0.928 0.950 0.959 0.991 0.995 0.997
5 0.940 0.959 0.965 0.994 0.999 0.999
6 0.945 0.967 0.972 0.991 0.994 0.996
7 0.934 0.959 0.971 0.992 0.995 0.996
8 0.922 0.952 0.960 0.990 0.996 0.996
Example 3.2
2 0.492 0.597 0.649 0.802 0.848 0.875
3 0.810 0.848 0.875 0.958 0.977 0.984
4 0.879 0.902 0.915 0.976 0.984 0.986
5 0.896 0.919 0.938 0.978 0.984 0.988
6 0.870 0.909 0.931 0.969 0.982 0.987
7 0.861 0.907 0.930 0.977 0.985 0.988
8 0.859 0.903 0.922 0.964 0.977 0.983

Table 3.4: The empirical sizes of the test in Example 3.3.

J ™ TF
a =0.01 a =0.05 o =0.10 o =0.01 a=0.05 a=0.10
(n1,n2) = (100,100)

2 0.030 0.054 0.074 0.032 0.058 0.075
3 0.033 0.063 0.083 0.035 0.063 0.086
4 0.018 0.042 0.070 0.020 0.042 0.072
5 0.023 0.052 0.071 0.025 0.056 0.074
6 0.020 0.043 0.071 0.020 0.044 0.073
7 0.024 0.046 0.073 0.025 0.050 0.076
8 0.019 0.038 0.075 0.019 0.043 0.074
(n1,mz) = (200,200)
2 0.036 0.057 0.069 0.038 0.058 0.073
3 0.017 0.047 0.066 0.018 0.047 0.067
4 0.022 0.047 0.075 0.022 0.049 0.078
5 0.018 0.041 0.066 0.018 0.043 0.068
6 0.021 0.050 0.071 0.021 0.051 0.074
7 0.020 0.051 0.076 0.024 0.054 0.079
8 0.019 0.056 0.081 0.021 0.060 0.083

From Tables 3.4-3.6, we can see that both the tests based on TM and TF can
control the type I error and do not depend on .J. We can also see that the empirical

powers based on TM and TF are comparable in the setting of dense design. In a
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word, the proposed method works well for the case of the dense design.

Table 3.5: The empirical power of the test for a = 1 in Example 3.3.

J ™ TF
a = 0.01 a = 0.05 a=0.10 a = 0.01 a = 0.05 a = 0.10
(n1,n2) = (100,100)
2 0.841 0.884 0.911 0.843 0.886 0.917
3 0.826 0.883 0.899 0.826 0.884 0.899
4 0.807 0.872 0.900 0.813 0.875 0.902
) 0.763 0.841 0.881 0.766 0.845 0.885
6 0.762 0.848 0.883 0.771 0.852 0.886
7 0.735 0.814 0.852 0.745 0.819 0.853
8 0.749 0.836 0.877 0.756 0.840 0.881
(n1,n2) = (200,200)
2 0.991 0.996 0.997 0.991 0.996 0.999
3 0.992 0.997 0.999 0.992 0.998 0.999
4 0.990 0.994 0.996 0.990 0.994 0.996
) 0.984 0.992 0.996 0.984 0.992 0.997
6 0.992 0.998 0.999 0.992 0.998 0.999
7 0.982 0.989 0.993 0.984 0.989 0.993
8 0.972 0.990 0.996 0.973 0.991 0.998

Table 3.6: The empirical power of the test for a = 1.5 in Example 3.3.

J ™ TF
a =0.01 a =0.05 o =0.10 o =0.01 a=0.05 a=0.10
(n1,7n32) = (100,100)

2 0.996 0.998 0.998 0.997 0.998 0.998
3 0.996 1.000 1.000 0.996 1.000 1.000
4 0.996 0.998 0.999 0.996 0.998 0.999
5 0.996 0.999 1.000 0.996 0.999 1.000
6 0.993 0.996 0.999 0.993 0.997 0.999
7 0.993 0.997 0.998 0.993 0.997 0.999
8 0.993 0.996 0.997 0.995 0.996 0.998
(n1,n2) = (200,200)
2 0.996 0.998 0.998 0.997 0.998 0.998
3 0.996 1.000 1.000 0.996 1.000 1.000
4 0.996 0.998 0.999 0.996 0.998 0.999
5 0.996 0.999 1.000 0.996 0.999 1.000
6 0.993 0.996 0.999 0.993 0.997 0.999
7 0.993 0.997 0.998 0.993 0.997 0.999
8 0.993 0.996 0.997 0.995 0.996 0.998
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3.4 Real data examples

In this section, we analyzed two real data sets to illustrate the proposed method.
The first example is the longitudinal CD4 data set for samples of AIDs patients, and
we analyzed it to illustrate the application of the proposed method to the sparse
and irregular function data. The second example is the Nitrogen Oxide Emission
Level data set, which is analyzed to illustrate the proposed method for the case of

the dense and regular functional data.

3.4.1 CD4 data

We applied the proposed test to an AIDS clinical study developed by the AIDS clin-
ical trials group (ACTG) that can be found at http://www.urmc.rochester.edu
/biostat/people/\faculty/wusite/datasets/ACTG388.cfm. The study enrolled
517 HIV-1-infected patients in three antiviral treatments, denote as A, B and C,
respectively. Every group has 166, 171 and 176 patients, respectively. Patients were
treated with an highly active antiretroviral therapy (HAART) for 128 weeks during
which CD4 cell counts were monitored at weeks 4, 8 and every 8 weeks thereafter.
However, each individual patient might not exactly follow the designed schedule and
missing clinical visits for CD4 cell measurements frequently occurred which made
the data set to be a typical longitudinal data set. The CD4 cell count data during

128 weeks of treatment are plotted for three groups in Fig. 3.1.


http://www.urmc.rochester.edu/biostat/people/\faculty/wusite/datasets/ACTG388.cfm
http://www.urmc.rochester.edu/biostat/people/\faculty/wusite/datasets/ACTG388.cfm
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1400 T T T T T

CD4-+cell counts for the thirdly group

Figure 3.1: The CD4 cell count data during 128 weeks for group A, B and C,
respectively.

We wanted to test if the two underlying mean functions of (4, B), (A,C) and

(B, C) are different, which motivated a two-sample mean function testing problem.
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Three combinations of the estimated mean functions were displayed in Fig. 3.2 for

group A, B and C.

Estimated mean function for the group A (solid) and the group B (dash)
T T T T

150 . . . . . .
0 20 40 60 80 100 120 140

Estimated mean function for the group A (solid) and the group C (dash)

150 . . . . . .
0 20 40 60 80 100 120 140

Estimated mean function for the group B (solid) and the group C (dash)
450 T T T T T T

350 Z q
300 g q
250 , 4

200 q

20 40 60 80 100 120 140

Figure 3.2: Three combination of the estimated mean functions for group A, B and

C.
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We firstly considered the combination (A, B) and computed the p-value of test

from J = 2 to J = 6 and obtained which all of value are 0. This indicates that
the mean function of group A and B is different. For the combinations (A, C') and

(B, (), we obtained the same conclusion as the combination (A, B).

3.4.2 Nitrogen oxide emission level data

Nitrogen Oxides (NOx) are known to be among the most major pollutants, precursors
of ozone formation, and contributors to global warming (Febrero et al., 2008). NOx
is primarily caused by combustion processes in sources that burn fuels such as motor
vehicles, electric utilities, and industries, among others. Fig. 3.3 shows NOx emission
levels for seventy-six working days and thirty-nine non-working days, respectively,
which were measured by an environmental control station close to an industrial area
in Poblenou, Barcelona, Spain. The control station measured NOx emission levels
in g/m3 every hour per day from February 23 to June 26 in 2005. The hourly
measurements in one day (24 hours) formed a natural NOx emission level curve of

the day. It is seen that within one day, the NOx levels increased in morning, attained

300

2501

200+

150+

100~

50F NS

10
NOx emission levels of non-working days NOx emission levels of working days

Figure 3.3: NOx emission levels for seventy-six working days and thirty-nine non-
working days.

their extreme values around 8 a.m., then decreased until 2 p.m. and increased again
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in the evening. The influence of traffic on the NOx emission levels is not ignorable as

the control station is located at the city center. It is not difficult to notice that the
NOx emission levels of working days are generally higher than those of non-working
days. This is why these NOx emission level curves were divided into two groups as
pointed out by Febrero et al. (2008). Of interest is to test if the mean NOx emission
level curves of working and non-working days are significantly different.

The fitted sample mean functions of two groups were displayed in Fig. 3.4. Using

mean functions of non-working days (solid) and working days (dash)
140 T T T T

120 AN

100 // \
80
60 —

40t

20

Figure 3.4: The estimated mean functions for seventy-six working days and thirty-
nine non-working days.

the method similar in Subsection 3.4.1, the p-value is 0. This implies that the
mean functions of the NOx levels are significantly different between working and

non-working days.

3.5 Proofs of main results

Lemma 3.1. Under assumptions 3.2-3.5, we have

16,(5) = 8,91 = 0, (* ) |

n
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Using assumption 3.2 and equation (5.2) in Hall and Horowitz (2007), we can

obtain proof of Lemma 3.1.

Lemma 3.2. Under assumptions 3.1-3.5, We have
Vi (i = n") =5 N (0,40)
. d
Vs (775.2) - 77§2)) N (0, Ag?)) .

Proof of Lemma 3.2

It can be observed

~(1 1
A — g

{ S 3 vt )t — w}

_ lel

(3.5)

1S 1T S 1oy Y
) R
+{n—12ﬁ2>@ <tm>¢j<tm>—n—lgﬁ2_ ) (ta)4( m)}

For Ay, we have

n- 255 L )

= llll

3.6
+{ Z Z :ul 111 Qb] Zl1 } ( )

= Zl11

= All + Alg.

It is easy to see that A;; is the average of independent and identically distributed

random variables with mean F(A;;) = 0 and variance var(Ay;) = /\gl) /ny where

1
A== o { [ neogoa o)
0
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with

Iy = r r D ()11 (t, 5)¢;(s)dtds.
0 JO

By the central limit theorem, we obtain

Ay -5 N (0 — > (3.7)

n1
For Ai,, according to assumption 3.5, we have
A12 = O( 71/2). (38)

By (3.6), (3.7) and (3.8), we obtain
d Ly

For A,, we have

A= 30 S e {dy(ta) - 050}

1§ L N (1

+ n_ ﬁ U; ( zl1) {QSJ( zl1) gbj(till)}
it e (3.10)
1S O (s

. n_lzzlﬁillzl ity {¢ ( 111) ¢j( zll)}

=S A21 + A22 + Agg.

According to Cauchy-Schwarz inequality, Assumption 3.1 and lemma 3.1, we have

n g N; 1/2
A21 niz [Z :ul lll Z {(b] 111 ¢j(til1)}2]
R h=1 (3.11)

=0, (nl_l/2> .
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For Asy, we have

E(A3)

1n
“aLw

L S [t - o) 5

(3.12)

1 &1 ~ ~
+ 2 Z m Z {¢ ( Zlu) Qb]( Zlu)} {qu(tilu) - ¢j(til12)} E {Ui(l)(tllu) z(l)(tillz)}
m i=1 "0 1<y #l2<N;
= o(ny").
Using the arguments similar to that of (3.12), it can be shown
E(A3;) =o(ny'). (3.13)
By (3.10), (3.11), (3.12), and (3.13), we have

Ay = o, <n1_1/2> . (3.14)

By (3.5), (3.9) and (3.14), we obtain \/771(77](1) (1)) — N(0, )\( ). Similarly, we

can prove «/nQ(ﬁ]@) - n](?)) 45 N(0, /\52)). The proof is then completed.
Proof of theorem 3.1 According to lemma 3.1 and Slutsky theory, we can easy
obtain the the conclusion of theorem 3.1. The proof is then completed.

Proof of theorem 3.2 According to lemma 3.1, we have

~(1) (1 »~2) P (2

T]] —)773777]' —’77]

Under Hy, we obtain




Chapter 4

Interaction Models with Nonlinear
Link for Functional Regression

4.1 Introduction

Functional regression is modeled by allowing functional random trajectories of either
response or covariate or both. It has attracted more and more research interest raised
from real data analysis, among which one class of modeling extensively investigated
is the scenario with scalar response and functional covariates, refer to Ramsay and
Silverman (2005), Li and Hsing (2007), Ma (2016), Usset et al. (2016), among others.
For this kind of functional regression model, in practice there used to involve mul-
tiple functional covariates. A motivating example is the daily precipitation which is
affected by temperature curve, pressure normals curve, wind curve, cloudiness curve,
and other climate indices, etc.

Existing literature tends to model the association between scalar response and
functional covariate in two ways. One just considers the main effects of functional
covariates additively but rarely take into consideration of the interaction effects,
refer to Cardot et al. (2003) and Ramsay and Silverman (2005). This intuitively
will lead to inappropriate conclusions due to biased or even inaccurate estimation of

the model parameters. The other is to directly assume a nonparametric link on the
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mean regression, refer to Yao et al. (2005), Cai and Hall (2006), Hall and Horowitz

(2007), and Li and Hsing (2007). This is robust but bit of losing information. Usset
et al. (2016) might be the first one to incorporate the interaction effect besides the
individual main effect of functional covariates. Their estimation procedure conducted
the inference for main effects using penalized regression splines and for the interaction
effect by a tensor product basis. However, it is idealistic that the interaction part
in the model of Usset et al. (2016) is assumed to be linear. This motivates us to
consider a more general model with non-linear interaction part instead. This is
implemented mathematically by adding an unknown link function structure on the
interaction part. Consequently it makes the corresponding statistical inference much
more complicated. We address the statistical problem via the widely used functional
principal components (FPC) and the minimum average variance estimation (MAVE)
methods by Xia and Hérdle (2006).

The remaining of this chapter is as follows. In Section 4.2, we introduce the
conditional mean regression models with nonparametric single-index interaction, all
of the estimation procedures are discussed in Section 4.3. We describe the asymptotic
theory of the procedure in Section 4.4, while Section 4.5 is devoted to a report
on simulation results, followed by a description of one application to regression for
climate data in Section 4.6. Some details of estimation, assumptions and all proofs

are included in Supplementary material.

4.2 Model alternative based on K-L representa-
tion

The data observed is {(Y;, X;, Z;),7 = 1,--- ,n}, where Y; is a scalar response, X;()
and Z;(-) are independent non-stationary smooth random functions in L?[0,1]. The

conditional mean regression given the covariates is described as follows when taking
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interaction effects into account,

ElY|X,Z]=a+ J’T Bx(s)X(s)ds + JT Bz (t)Z¢(t)dt

va ([ [ s ox@znms),

where « is an intercept and g(+) is an unknown link function, X¢(s) = X (s) — pux(s)
and Z°(t) = Z(t) — uz(t) denote the centered predictor processes. The regression
parameter function Sx(s) and 8z(t) are assumed to be smooth and square integrable.
v(s,t) is a real valued bi-variate function defined on 72. It is quite general to include
many other important models as special examples. For instance, if v(s,¢) = 0 in
(4.1), it reduces to the conditional mean regression models, refer to Ait-Saidi et al.
(2008). If X (s) = Z(s) and ¢(-) is an identity function, (4.1) becomes the functional
quadratic regression model which has been studied by Yao and Miiller (2010). When
Bx(s) = 0,6z(t) = 0 and Z°(t) = constant, (4.1) becomes the functional single-
index regression model which has been investigated by Chen et al. (2011a). In
addition, if Sx(s) =0, 8z(t) = 0 and (s, t)Z°(t) is a semiparametric function with a
single-index structure, (4.1) reduces to the generalized functional linear model with
semiparametric single-index interaction considered by Li et al. (2010) as a special
case. It is noted that the proposed model (4.1) included also the model of Usset et al.
(2016) as the special situation when g(+) is an identity function. However, our model
distinguishes from model of Ma (2016) where interaction of two functional data are
not considered.

Denote mean and auto-covariance functions of two predictor processes are smooth.

E{X(s)} = px(s), E{Z()} = pz(t);

COV{X(Sl), X(Sg)} = GX (81, 82)7 COV{Z<t1>, Z(tg)} = Gz(tl, tg)

For prediction processes X(-) and Z(-), their Karhunen-Loeve expansions (Ash and
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Gardner, 1975) are

X(s) = px(s) + Z Ei05(s)s Z(t) = pz(t) + Y Gon(?)

where ¢; and 1, are sequences of orthonormal eigenfunctions of associated auto-
covariance operators that form a basis of the function space and are associated with
sequences of non-increasing eigenvalues \; and 7y, satisfying »] ;A< o0, Dok T < 0,
Gx(s1,82) = Zj Xioi(s1)0;(s2), 51,52 € T and Gz (t1,t2) = X, Tetlr(t1)i(t2), t1,t2 €
T, and the coefficients {; and ( are referred to as functional principal component
(FPC) score. They are sequences of uncorrelated random variables, respectively,
with means E(§;) = 0, E(¢x) = 0 and variances Var(§;) = \;, Var((x) = 7.

Since the eigenfunctions ¢;,j7 = 1,2,... and 93,k = 1,2, ... of the processes X
and Z form a complete basis, the regression parameter functions in (4.1) can be

represented in this basis,

0

[es} [ee} [ee}
= D1 Bk85(s), Balt) = D Bu(t), v(s,t) = Z Z Yinds ()Un(t),  (4.2)
j=1 k=1 j=1k=1
for suitable sequences {Bg(}j:1727..., {B5}=12.. and {Vjk};jr=12.. With Zj Bg( < o,
By <ooand Y v < 0.

Substituting (4.2) into (4.1) and applying the orthonormality property of the
eigenfunctions, one finds that model (4.1) can be alternatively expressed as a function

of the scores &; and ¢, of predictor processes X and Z,
ElY|X,Z] = a+ Z BlE; + Z BiC+g (Z > w@@) : (4.3)

j=1 k=1j=1

Model (4.3) can be alternatively expressed as a function of a finite number of the

scores &; and (j, of predictor processes X and Z, if we skip the intercept or let o = 0
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for identifiability purposes,

BTU+g(0"W), (4.4)

Ko Kj
E[Y|X,Z] Z BLE + Z BEG + g (Z D m@@)

k=1j=1

where g7 = (5;(’...7 LBy By ) 07 = (M1, VK  » VELK,), U =
(1€ G C,) and W= (6G1, -+, 61Cke, -+ 5§, Gy ). The first equiva-
lence indicates that Y mainly depends on the leading K; principal components in
X () and the leading K principal components in Z(-). The justification lies on in
the fact that estimation of high order principal components is highly unstable and
difficult to interpret in functional data analysis, refer to the comments in Rice and
Silverman (1991) and Hall and Hosseini-Nasab (2006). The second equivalence is in
the form of classical partially linear single-index model. For model identification, let

6 satisty |0 = 1 and 7,1 > 0.

4.3 Estimation of coefficient functions of all func-
tional covariates

Since the scores &; and (; are unknown, we cannot estimate 3, 6 and ~ based on
the model (4.4) directly. Thus, to estimate functional principal component scores is
necessary. Our starting point for modeling are the actual observations, which consist
either of densely spaced and non-random measurement (dense design) or alternatively
of sparse and randomly (irregularly) spaced repeated measurements (sparse design)
of the predictor trajectories X; and Z;. Let R;; and Vj; denote the observations
of the random trajectories X; and Z; at fixed or random time points S;; and Tj;
contaminated with measurement errors €;; and €;;, respectively. The errors ;; and
€;r are assumed to be independent and identically distributed with zero means and

variances 0% and 0%, respectively. Meanwhile, the errors are independent of X;(s)
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and Zz(t>

o0
Rij = Xi(Sij) + €5 = px(Sy) + Y &65(Sij) + €,

=1

e
Vik = Zi(Ti) + € = pz(T) + D Cetoi(Tow) + €an,
k=1

where E{&;} = E{Cu} = 0, B{&;&;7} = E{Calw} =0 (j # ., k# k), B{&} = X
and E{C%} = 7. Estimates jix, Gx, \j, ¢; and 6% (respectively, fiz, Gz, 7%, Ur
and 6%) of the underlying population mean function uy, covariance function Gy,
eigenvalues )\;, eigenfunctions ¢; and error variance o% (respectively, mean function
iz, covariance function Gz, eigenvalues 7, eigenfunctions 1, and error variance o%)
are easily obtained by applying a nonparametric functional approach. Estimates
éj and ék of the FPC scores §; and (; can be obtained by the traditional integral
estimates for the dense design case or the conditional expectation approach of Yao
et al. (2005) for the sparse design case. Some additional details are given in Part a
of Section 4.7.

Once these preliminary estimates are in hand, we adopt the minimum average
variance estimation (MAVE) method by Xia and Héardle (2006) to estimate £ and 6.

We briefly describe the method as following. Let
. . . . o NT
U’i: (51’17"' 7€iK17 gila'” 7CiK2> )
and
. - - ~ . NT
W; = <£i1<ila"' , EitGikg, 7§z‘K1§z’K2) s i=1,-,n
For W; which are close to w, we have the following local linear approximation

Y, - 5TUz‘ -9 (QTI/T/i> ~ Y — 5TUi -9 (eTw) - 9/ (HTUJ) ‘47597
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where Wiy = W; — w. Following the idea of local linear smoothing, we may estimate

g(0Tw) and g ("w) by the argument (a,d)" that minimizes

n . R 2 R
{Y;- - (,BTUi ta+ dmge)} Hy, (4.6)
i=1
where H;o > 0,2 =1,---,n, are some weights with > " Hy = 1, typically centering

at w. Let a; and d; be the estimate of g(@TW;) and ¢ (TW;), respectively. Our

estimating procedure is to minimize

& (07 1, (W) S 4¥i— (8700 + a + a1i7]0) }2 Hi, (4.7)

1 i=1

=
with respect to (a;,d;) and (3, 6), where G(-) is another weight function that controls
the contribution of (U,;,Wi,Yi), i = 1,---,n to the estimation of (3,0), I,() is
employed here for technical purpose to handle the boundary points, and F[ij is local
weight function and Wij = Wl — VAVJ

We use two sets of weights. In the initial stage, let f]ij = (W) 30, ﬁb’l(Wj),
where H,,(W;) = b5 52 H(W,,;/b), with H(-) is a K, K,-dimensional kernel func-
tion and b is a bandwidth. This will enable us to find a consistent estimator (4, )
based on (4.7). We then switch to a set of refined weights to gain more effi-
ciency. In the second stage, we carry out the same iteration steps but let flfj =
KR (0TV)/ X0 KD (0TW;), where K, () = by K0T W; —w)/by}, with K (-) is

an univariate kernel function, b; is the bandwidth and 6 is the estimated value of @

A A

from the previous iteration. Denote the final value by (3, 0), where

2, Sp 2 2 T =z o o ~ T
B:<6Xa"'7 X1’/6Z7”'7 ZQ> 5 0:<,}/1,17"'7,}/1,K2a"'77K1,Kg> . (48)

~
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The estimator of Bx(-), 5z(:) and (-, -) are then given by

Kq P R K> . ) K1 Ko ) R
= D 300i(s). Bz(t) = D] BPUs(s), Als,t) Z Z i ()e(t). (4.9)
j=1 k=1 j=1k=1

Meanwhile, we can also estimate g(v) by the solution of a; in (4.7) with §TW; replaced

by v and denote its estimate by g(v).

4.4 Asymptotic theory

To establish the relevant asymptotic results, we require studying the relationship
between the true FPC scores §;; and n;;, with their estimates éij and 7, since the
estimates of the conditional mean regression models with single-index interaction
need to be based on the estimated scores. A key step in the mathematical analysis is
to establish exact upper bounds of \élj —¢&;;| and |9, —nk|. The convergence properties
of the estimated conditional mean regression models follow from those upper bounds
since these estimates are obtained by applying MAVE method to {éij,f]ik,Y;} for
1=1,---,n,5g=1,..., Kiand k =1,..., K.

We consider the consistency rate of the estimated regression functions in a func-
tional setting where the number of FPCs depends on the sample size n, i.e. K; =
Ki(n) and Ky = Ks(n), and tends to infinity as n — co. In practice the choice of
K, = Ki(n) and Ky = Ks(n) depends on the intrinsic structural complexity and
estimating accuracy of the covariance structure.

We are ready to present the asymptotic results of the proposed estimators. The-
orems 4.1 and 4.2 below establish the consistency of the estimators of the parameter
function and the nonparametric function, respectively. The proofs of these theorems

are provided in Part ¢ of Section 4.7.
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Theorem 4.1. Under all the assumptions listed in Part b of Section 4.7, we have

|8x = Bx| 0, Bz = Bz &0, |5 —~] >0
where Bx, By and 4 are defined in (4.9).

The rates of convergence of | Sx — Bx|, |8z — Bz, and |4 — 7| can be found in

the (4.29) of Part b of Section 4.7.

Theorem 4.2. Under all the assumptions listed in Part b of Section 4.7, if the
density function fo(v) of 0TW is positive, the derivative of E[e*|0TW = v] ewists,
by ~ n® with 1/6 < 6 < 1/4, and E[e;|U;, W;,Y;,j < i] = 0 almost surely, we then

have

9(0) = 9(0)| 0.

Additional results on the rates of convergence of |§(v) — g(v)| can be found in the

(4.30) of Part b of Section 4.7. The proof of Theorems 4.1 and 4.2 is in Section 4.7

4.5 Simulation studies

We conducted some Monte Carlo simulation studies to evaluate the performance of
our proposed estimators for finite samples.

Simulation 1. Additive model for functional data has been studied by Ferraty
and Vieu (2009). We used the same model as that of Ferraty and Vieu (2009) in the

simulation. The predictor functions were generated by

X! (t) = exp {sin® (wit)} + (a; + 2m) t* + b,

(2

X2(t) = cos (wit) + (c; + 2m) £ + d;,

where i = 1,---,100, t € [—1,1]. w; are random real numbers generated from
uniform distributions on [0, 27| and a;, b;, ¢; and d; are generated from U[0, 1].
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The responses have been generated according to different regression models of

the form

(1 — cosw; + as|sinw;|)

Y: = ai(a; + 27) + + aod; + €,

Wi

where ¢; simulated from a N(0,1) distribution.

These models have been chosen to contain three terms, one depending only on
the first covariate (this is controlled by the parameter a; ), one depending only on the
second covariate (this is controlled by the parameter ay) and the third one depends
on both covariates. Indeed, just by changing the values of the parameters a; and as
one can change significantly the structure of the model.

For each model we simulated two samples: a learning sample of size 100 from
which the estimates are computed and a testing sample of size 50 on which the pre-
diction errors are calculated. For each predictor function, we sampled through 50
equidistantly spaced measurements in [—1,1]. To show the usefulness of the condi-
tional mean regression models with single-index interaction, we have also computed
the predicted values on the testing sample by means of procedures in Section 4.3 and

compared the proposed model with various nonparametric models:

e Method M lep3 kernel estimate based on the single covariate Xj;

e Method vap: kernel estimate based on the single covariate X5;

e Method M](Vll’f): kernel estimate based on the pair of (X7, X3);

e Method Mgcé?: two-step additive estimate starting with variable Xj;

e Method Mﬁi&;): two-step additive estimate starting with variable Xo;

e Method M§u¥: two-step additive estimate with automatic order choice;



CHAPTER 4. INTERACTION MODELS WITH NONLINEAR LINK FOR
FUNCTIONAL REGRESSION

PhD Thesis

e Method M;,..: the estimate based on the conditional mean regression models

with single-index interaction.

The results are summarized in Table 4.1 which gives, for various values of a1 and axo,

the comparative Mean of Square Residuals (MSR)

MSRz%i(Yi—Y,-

i=1

where Y; is the prediction described just before.

Table 4.1: MSR for different method.

o wm My, R, WY WP M VG Ve
ag =1 1.76 1.57 1.69 1.64 1.64 1.62 1.38
gy = 2.98 1.56 1.95 1.63 1.63 1.58 1.34
a; =1 g =D 4.26 1.60 2.22 1.67 1.67 1.88 1.57
g = 7.09 1.73 2.89 1.81 1.81 2.39 1.72
Qg = 10.92 1.98 3.85 2.07 2.07 3.17 1.97
Qg = 2.76 2.58 2.67 2.62 2.62 2.63 2.00
g =3 3.08 2.76 2.62 2.74 2.74 2.50 2.43
a; =3 g =D 4.88 2.64 2.86 2.66 2.66 2.73 2.52
g =17 7.67 2.77 3.52 2.81 2.81 3.24 2.57
g = 11.47 3.01 4.44 3.05 3.05 4.02 2.63
Qg = 3.42 4.29 3.45 3.32 3.45 4.29 3.04
g = 4.18 4.72 3.81 3.43 3.81 4.09 3.42
a; =95 Qg = 5.95 4.90 4.43 3.55 3.55 4.22 3.53
g =17 8.71 5.15 4.71 3.77 3.77 4.71 3.59
g = 12.48 4.90 5.66 3.70 3.70 5.48 3.66
ag =1 5.00 6.70 5.08 4.90 5.08 6.62 4.88
g =3 5.73 7.27 5.47 5.04 5.04 6.29 4.95
ar =17 Qg = 7.76 7.76 6.27 5.33 5.33 6.30 5.27
g = 10.20 8.06 7.10 5.57 5.57 6.78 5.29
Qg = 13.94 8.36 7.33 5.90 5.90 7.55 5.49
g = 7.03 9.81 7.18 6.95 7.18 9.65 6.75
s =3 7.28 10.46 7.57 7.09 7.57 10.23 6.93
a; =9 g =D 9.43 11.27 8.40 7.50 8.40 9.12 7.30
g = 12.14 11.67 9.28 7.80 9.28 8.99 7.52
as =9 15.85 12.22 9.98 8.29 9.98 9.51 8.36

From Table 4.1, it is observed that the conditional mean regression n models with
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single-index interaction give very nice results compared with nonparametric methods

based on one or two variables. Indeed, the conditional mean regression models with
single-index interaction lead to the smallest prediction error in all situations.
Simulation 2. In this study, we consider functional data generated from the

process

3
25@]@5] Z zkgbk 1= 7"' 71007

where ¢1(s) = —v/2cos(2ms), ¢2(s) = v/2sin(27s), ¢3(s) = —v/2cos(4ms), s € [0, 1],
and fij ~ N(O,)\]) with )\1 = 4, )\2 = 1/2 and Czk: ~ N(O,Tk) with T = 1, Ty = 1/2

and 73 = 1/4. Responses Y; were obtained as:

r

Model(A) :Y; = | Bx(s)X; d8+fﬁz dt+exp{JJ (s,1)X ()dtds}Jrei,

JT

.
Model(B) : Y; = | Bx(s)X;(s)ds + e;,
JT
.

Model(C) : Y; = | Bz(t)Z;i(t)dt + ey,
JT

Model(D) : Y; = ( Bx(s)X; ds+f Bz(t)Z;(t)dt + e;,
JT

where
Bx(s) = =2¢1(s) + da(s), Bz(t) = 2¢1(t) — da2(t) + 305(t),

(5.8) = (51611 + = (5)0n(1) + 301 (0n(8) + 3n(s)e(0) + F6r(s)n)

and e; were simulated as N(0,0.01). The measurement error in (4.5) is g; ~
N(0,0.25) and €;; ~ N(0,0.25), respectively.

The number of measurements where each trajectory was sampled was selected
100 equi-distant point in [0, 1] for dense cases. We compared the performance with
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various models. The performance measure tabulated in Table 4.2 is Mean of Square

Residuals MSR = Y1 (Y; — ¥;)?/100.

Table 4.2: MSR for different model.

True Model Fitted Model 25th 50th 75th
A 1.2424 2.8452 29.5848
A B 19.6825 41.3847 126.0650
C 19.7162 41.6527 125.8314
D 19.2137 40.8378 125.5848
B A 0.3868 0.3952 0.4042
B 0.4030 0.4153 0.4268
c A 5.00 6.70 5.08
C 5.73 7.27 5.47
A 0.4106 0.4190 0.4268
D B 2.5623 2.6141 2.6665
C 3.9933 4.0696 4.1604
D 0.4508 0.4508 0.4791

Our conclusion is that the conditional mean regression with single-index inter-
action leads to similar prediction errors with functional linear regression when the
underlying regression model is linear, while the conditional mean regression with
single-index interaction performs better than the linear model in situations when the

underlying regression relationship is nonlinear.

4.6 Real data example: Climate data

We now focus on the analysis of climate data from NOAA ( www.ncdc.noaa.gov)
to illustrate functional data regression procedures. The source-datasets directory
contain all normals derived from hourly data, including temperature, dew point
temperature, heat index, wind chill, wind, cloudiness, heating and cooling degree
hours, and pressure normals, also contains all precipitation, snowfall, and snow depth

normals files including percentiles, frequencies, and averages.


www.ncdc.noaa.gov
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Figure 4.1: The four functional covariates for learning samples.

The scalar response Y is the precipitation every day. In order to study the
possible influence, four functional covariates (temperature normals X (¢), wind chill
X, (t), pressure X3(t), and cloudiness X,(¢)) which are daily curves each hour are
studied. We select the climate data of one station over a period of 180 days. The 180
days have been split (randomly) into two subsamples: a learning one (of size n = 90)
from which the various predictors are computed and a testing one (of size n = 90) on
which the prediction errors are computed. The four functional covariates for learning
samples are plotted in Fig. 4.1. According to method which is introduced in Part
a, the numbers of included components K| = 2, Ky = 2, K3 = 1 and K4 = 2 were

chosen by the fraction of variance explained (FVE) with threshold 0.85, respectively.

Table 4.3: MSR of uni-functional linear model for different functional covariates.

Covariates X1 X5 X3 X4
MSR 4.7510 12.5386 205.5929 344.8723
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We firstly consider the functional linear model with only one functional covariate

and compute the MSR in Table 4.3. Table 4.3 shows that the most influent functional
variable is the temperature curve and wind chill while the others covariates have
quite bad predictive power. However, even if these variables contain just a little
information on the target Y it could be interesting to use them in order to improve
the results given by the main explanatory variable. From Table 4.3, we can also seen,
even the most influent variable (the temperature curve) has also a large MSR, using
simply linear model, this shows that uni-functional linear model can not reveal such
a regression information.

To illustrate the performance of the proposed model, we compute the MSR in
Table 4.4 based on model (4.1) for different functional covariates with or without
interaction. In the case of with interaction, the best regression modeling is composed
by the two covariates: wind chill and pressure curve, which is also consistent with the
meteorological knowledge, i.e. the main factors affecting precipitation are wind band
and pressure zone. For this regression model, the estimated univariate linear function
p1(t) and [y(t) are plotted in Fig. 4.2 and Fig. 4.3 displays the estimated bivariate
surface y(t, s). Meanwhile, we compare the regression models with and without the
interaction effects by according to the MSR. In result, a large improvement has been
obtained when regression models with interaction have been used.

Table 4.4: MSR of the proposed model and the functional linear model with two
functional covariates for different functional covariates.

Covariates With interaction Without interaction
X; and X5 17.6832 70.5021
X, and X3 41.3530 126.0087
X, and X4 40.6600 97.3201
X, and X3 3.7300 387.3311
Xy and X4 66.7202 306.0660
X3 and X4 292.7686 744.1033
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Figure 4.2: The estimated univariate linear function 3, (t) and S (¢).
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Figure 4.3: The estimated bivariate surface 5(¢, ).

To conclude, the results of Tables 4.3 and 4.4 confirm that the wind chill is

the most influent variable, while temperature (X;(¢)), pressure normals (X3(t)) and

cloudiness (X4(t)) can lead to big and interesting additional information.
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4.7 Some additional details and proofs of main re-
sults

4.7.1 Part a

To estimate the predictor mean function px (s) by local linear scatterplot smoothers,

one minimizes

i Sij — S
N ( s ) (Ry; — do — di(s55 — 5)) (4.10)
, X

with respect to dy and d; to obtain fix(s) = dy(s), where the kernel K™ is assumed
to be a smooth symmetric density function and b% is a bandwidth. Analogously, one
may define the estimator of the mean function uz(t).

Let Gx,i(Sij,Su) = {Rij — fix(Sij)H{Ra — fix(Si)}, and define the local linear

surface smoother for Gx(s,t) by minimizing

3 5w (B I e (5,050 - a0, (S SONF (411
i=11<j#I<N; X X
where f(a, (s,u),(Si,S1)) = ao + aq1(s — Si;) + aia(u — Sy), with respect to
o = (ag, a1, am), yielding Gx(s,t) = dg(s,t). Here, the kernel K® is a two-
dimensional smooth density with zero mean and finite covariances and h% is a band-
width. An essential feature is the omission of the diagonal elements j = [ which
are contaminated with the measurement errors. Analogously, we can obtain the
estimator of the covariance function Gz(s,t).

Estimates of eigenvalues and eigenfunctions {\y, ¢ }x>1 are obtained by numerical

solutions {S\k, ng}kg]_ of suitably discretized eigenequations,
f GX(SI; Sz)ﬁgk(sz)dsz = 5\1@@31@(81) (4.12)
-
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with orthonormal constraints on {@}r>1. Analogously the estimates of {7y, ¥r}rs1

can be obtained.
For the dense design case, the traditional integral estimates of the functional

principal components §; and ¢, defined by

6 = [1X(9) ~ ux(@os()ds. G = [(2:0) -~ na(®)}nlt)ds

are

M;
gz] = Z {Rzm - ﬂX(Sim)}¢j(5im)(3im — Si,m—l), j=1,2,---,

m=2
(4.13)
~ N ~
Gt = D {Vig — i1z (tig) Yn(tig) (tig — tig—1): k=12,
q=2

For the sparse design case, to estimate &; and (i, we must first estimate o%
and 0%. To estimate 0%, we first estimate Vx(s) = Gx(s,s) + {ux(s)}* + 0%, by

minimizing

ZZK1<8” >{le 9o — g1(si5 — 9)}° (4.14)

i=17=1

with respect to g = (go, g1), yielding VX(S) = go(s). Analogously we can obtain the
estimator of Vy(t).

We then estimate 0% by

52 = il f ~ Gxl(s,s) — {,&X(s)}Q]ds (4.15)

where |7 | denote the length of interval 7. Analogously we can obtain the estimator
of 0%.

Under the sparse design case, the best predictions of functional principal com-
ponents &;; and (j; given observations R; = (ry1, - ,min;) " and V; = (v, ,viz,) "
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are the conditional expectation E(&;;|R;) and E((y|V;), respectively, which under

Gaussian assumptions are found to be

£ = Miﬂflﬁf(& — fix;) (4.16)
and

i = %kﬁiTkif/il(Vi — fiz,), (4.17)
where

ij = [953'(7“1’1)7"' ,ng(ﬁNi)]Ta ik = [%@k(vu),"' Wk(viLi)]Ta

(Br) = Cximera) + 030, (S0) = Grlvum, va) + 630
m’ m7

and (Xg,)my and (3y,)m, are the (m,])th elements of 3g, and Yy, respectively.
For the choice of the number of included components K; and K5, one may use
cross-validation or model selection criteria such as pseudo-BIC (Bayesian information

criterion); we adopt the latter, i.e. we may take K; and Ks by minimizing

n N; 2 2 -
B[C(Kl) = ZZ [_ a.lx {R :LLX SZJ Z £lk1¢k1 SZJ)}] + KllOQ (2 )4 18

k1=1

L; 2 K> ) R 2 n
BIC(K,) = Z [—% {Vij — iz (tin) — Z Cikgl/sz(tik)}] + Kslog (Z Li)4-19)
: i=1

ko=1

respectively.
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4.7.2 Part b

We require the following conditions for predictor processes.

Let b% = b%(n) and b3, = b} (n) denote the bandwidths for estimators fix and
iz respectively. h% = h%(n) and h} = h%(n) denote the bandwidths for estimators
Gy and Gy respectively. hy = ﬁx(n) and hy = fzz(n) denote the bandwidths for

estimators oy and 7 respectively. The following assumptions are needed.
A1.1) b% — 0, h% — 0, nb¥* — oo, nh* — o0, nb%% < oo and nh*d < oo,
( b X X X X X
(A1.2) hx — 0, nhy — oo and nh% < .

For processes Z, analogous requirements are

B1.1) b% — 0, hi — 0, nbit — o0, nhit — w0, nbi < v and nhil < oo,

Z Z Z Z Z Z

(B1.2) hy — 0, nhy; — o and nhi < .

To obtain consistent functional principal component estimates for dense designs, we
require both the pooled data across all subjects and the data from each subject to be
dense in 7. For random process X, denote the sorted time points across all subjects
by ap < S1 < S < -+ < Si < by, and AN = max{S(m) — Sen_1) : M = 1,...,N+1},
where N = D Ny, T = [ag,bo], So = ap and S(N+1) = by. For the ith subject,
suppose that the time points S;; have been ordered non-decreasingly. Let AX =
maz{Si;—Sij1:7=1,...,Ni+1}, AX* = max{AX :i=1,...,n} and N = N/n.
Put NX = max{N; :i =1,...,n} and NX

max min

= min{N; : i = 1,...,n}. Assume

that
(A21) AY = Ofmin{n"2b5 20 n=V4n3 1)),

(A2.2) N — o0, NX <N, AX* = O(1/N), for some ¢, > 0.

max
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For processes Z, we analogously define the quantities AZ, L, AZ A?* L, L7 L7

max’ “min>

and assume that
(B21) A” = O(min{n" by 0~ 2hy ! =1 hi ),
(B2.2) L—ow, LZ <c L, A% = O(l/f)), for some ¢ > 0,

max

Denote the distribution that generates R;; the ith subject at S;; by R;(s) ~ R(s) with
density gr(r;s). Letgr(ri,ra;s1,s2) be the density of (R(sy), R(s2)). Analogously
for random process Z, denote the distribution that generates V;;, the ith subject
at T;; by Vi(t) ~ V(t) with density fy(v;t). Letfy(vi,va;t1,t2) be the density of
(V(t1),V(t2)). The following assumptions are for the case of dense designs. Let

fw(w) and fy(u) be the densities of W and U, respectively.
(A3) supyeg E[R(s)] < oo,

(B3) sup,eq E[VA(t)] < o0,

and

(C2,1) d?/ds*gg(r, s) is uniformly continuous on R' x T; d?/ds} ds?gr(r1,79; 51, 52) is

uniformly continuous on R? x T2 for I} + 1y, =2, 0 < 1,1, < 2.

(C2,2) d?/dt*fy (v,t) is uniformly continuous on R' x T d2/dt dt2 fy« (v1, va: t, t5) is

uniformly continuous on R? x T2 for I} + 1y =2, 0 < l,1, < 2.
(C2,3) The second derivatives (2) w) exist and are continuous on R, and
( ’ ) %% )
fr (Wb~ 52 = ofmin(n'?b%, n'/?b%, N'2)}, fur(w)by = o{min(n'?b%, n'/?b5, N'/)}.

The Fourier transforms of x; and ko are given by wf (u) = {exp(—iut)r:(t)dt,

K1 (u,v) = §exp(—iut — ivs)ra(s, t)dsdt respectively.
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(C2.4) ki and ki are absolutely integrable, {[x1 (u)|du < o0, §|k% (u, v)|dudv < 0.

Let || fllo = supte-| f(t)] for any function with support 7, and ||g|| = 4/ , ¢*(t)dt for

any g € L?(A). The following assumptions are needed for Theorem 1.

(A4)
(B4)

(D1)

(D2)

(D5)

(D6)

E(|X'|%) < o0, E(|X?|%) = o(N), and E(&}) < oo for any fixed j.
E(|Z'|%) < o, E(|Z?|1%) = o(Lyz), and E(n}) < oo for any fixed k.

{(U;, W;,Y;)} are a strongly mixing and stationary sequence with geometric

decaying mixing rate «a(k).

With Probability 1, W lies in a compact set ©. Density functions fy of 6TW
for any [|f| = 1 have bounded derivatives. Regions {W : f(W) > ¢} and
{W: fo("W) = ¢} for all 6 : ||0] = 1 are non-empty.

For any perpendicular unit norm vectors # and 1}, the joint density function
fur;ug) of (OTW,9TW) satisfies f(u1;u2)) < cfgrw (ur) forw (us), where ¢ is a

constant.

Let M = (U",WT)T g has bounded, continuous third order derivative. The
conditional expectations E[U|W = w], E[UUT|W = w], E[M|0TW = v] and
E[MMT|0TW = v] have bounded derivatives. E[Y"|W = w], E[|U|"|W = w],
E[|U]|U||Wy = wy, Wy = w] and E[|Uj||U,||0TW, = a,0TW; = b] are bounded

by a constant for all [ > 0, wy, w;, w, a, b, where r > 3.

H is a density function with bounded derivative and compact support {|w| < d}
for some d > 0. K is a symmetric density function with bounded derivative

and compact support [—eq, eg] for some ey > 0.

Matrix E[{U — E(U|W)}{U — E(U|W)}"] is a positive definite matrix.
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4.7.3 Part c
Define

Dy — J (Gx(s,) — G (s, )]2dsdt, Dy — J [Ca(s,1) — Gu(s, 1) 2dsdt,
T2 T?

. . 4.20
§p = mini<j<i(Aj — Nj+1), 67 = mini<j<i(Tj — Tj51), (4.20)

T = 1/A 167, 7 = 1/m, + 1/67.

The following lemmas give the weak uniform convergence rates for the estimators

of the FPCs, setting the stage for the subsequent developments.

Lemma 4.1. Suppose that Assumptions (A1.1)-(A3), (B1.1)-(B3) and (C2.1), (C2.2),
and (C2.4) hold, we have

supli ()= 03 0 = 0 (e )« supliactt) — nz(0) = 0, (=)

*
teT teT nl/? bZ

R 1 A 1
sup [Gi(s1) = Gix(5:0) = 0y (s )« sup[Galont) = Grlout) = 0, (s ).
X

*2
s,teT s,teT n'/2h¥

22 2 1 1 22 2 1
and as a consequence, 6y — 05 = Op(nl/gh;,z2 + nl/%X) and 63 — o3, Op(nmh}g +

ﬁ) Considering eigenvalues \j, T, of multiplicity one, qgj and @k can be chosen
A

such that

X
P( sup |5\j -\l < Dx) =1, SUP|<§j(t) — ¢;(t)] = Oy < i ) ’

1<j<Ki tel n1/2h>)k(
R rd
P( sup |7 — 7| < Dz) =1, sup [t(t) — ()| = O, < 1/2h*> :
1<k<K, teT n Z

The proof of Lemma 4.1 can be found in Miiller and Yao (2008).
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Recall that |[f|e = supie,|f(t)| for any function with support 7', and |g| =

r/$ 4 92(t)dt for any g € L*(A) and define

1 R
P = el Xl + e XiX{]oo + €3, FO = sup,co1cjcr, (105(5) — d5(9)]),
2
PP =1+ supy ooy, 650 AYF, F® = supg |ix(s) — px(s)],
3
pg ; = ] Xilloo + e51 X0 + cs, Fg SUP) < iy (1|05 o A, (4.21)
4
pz |ZT 2527“ Sup1<]<K1 ||¢]Hoo<szr Si,r—l)‘a F‘] = 17 .
) |Zr 2 ‘€ZT|(SZT 51,7"71)7 F(5) = F]( )7
for some positive constants ¢y, - - , cg that do not depend on 7 or j. Similarly, define
corresponding quantities for the process Z as follows
0" = di|Zi] + da|| Z:Z | + d, G = super,y cpere, ([0k(E) = Ui(t)]),
2
@53’ — 1+ 5P, cpe iy (|00 o) A7, G® = sup,ep|fiz(t) — pz(t)],
= = di| Zioo + ds| 2} + do GO = sup, s, (10io) AZF, (422)
4
@5 : = | 5 et suPrpar (W) (b —tir-1)l, G =1,
) = |Z 2|5zr|(zr_ zr—l)a G(5)EG(1)7
for some positive constants dq, - - - , dg that do not depend on 7 or k.

The next lemma is critical for the subsequent developments, providing exact

upper bounds for the estimation errors |éw —&;;] and i — G| for the FPC estimates

éij and Czk in 4.13.

Lemma 4.2. For ,0” , sz , F and G,(f) as defined in (12) and (13), suppose that
Assumptions (A1.1)-(A3), (B1.1)-(B3) and (C2.1), (C2.2), and (C2.4) hold, then

5
2 @ l
|€ij - gzg Z P )F |Czk - Czk:| Z QS )G(E)
/=1
o 5 5
|&iCire — &igCar| < Z PV FO + Z oG,
(=1 /=1

The proof of Lemma 4.2 can be found in Miiller and Yao (2008).
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Define

maxi<ji<K, ] maxi<j< Tz "
p = ) PR+ g VAT o= ) {BRE Sy VAR,
~ A A ~ ~ ~ T
Wz = (5@'1@17 T 7£i1<K127 o 7£Ki1<K7;2) ) Wz = (51’1(7;17 T 7§i1<Ki27 o 7£K11CK1'2) ) (423)
p= K1K27

where AX* is defined in Part b.

Recall that

Hys = H{(w = Wi/b})(0),  Hys = H{(w — Wi/b} /().
Kp = K{(w—0TW)/bi}/(by), Kf, = K{(v—0T1,)/bi}/(by),

To evaluate |3 — S| and |0 — 6], one has to quantify the order of the differences

Dy = Y (Hyi — Hy), Dy = Y (Hys — Hy)Yi,
Dy = Yy (Hy s — Hoiiy), Dy = X0 (Hyiiw — Hoimie)
Ds =37 1(Hbz§zg77zk Hyi&mik), De =D 1(Hbz§] Hyi&5).
Lemma 4.3. Suppose that Assumptions (A1.1)-(A4), (B1.1)-(B4) and (C2.1)- (C2.4)hold,

then

Proof of Lemma 4.3 Considering D;, without loss of generality, assume the

compact support of H is [—1,1]P. Since H is Lipschitz continuous on its support

Dl\pr

{I(\w Wi <) + I(jw — W] < bp)} ,

for some ¢ > 0, where I(-) is an indicator function. We then have
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By the central limit theorem for a random number of summands (Billingsley (1995),

page 380), observing > I(|w — Wi| < WP)/nbP > 2 fy (w), we have
C o ¢
o A Tl =W < 87) 2 25w () (A7)

provided that E(p@) < for € =1,--- 5 Note that E(p\") < oo, E(pz(?’)) < o by

(2 K3

(Ad), E(p;”’) < 20x+/A% and E(p;”’) < |S|lox by the Cauchy-Schwarz inequality.
Then

anp Zp (Jw = Wil < =0y ni2h 25w

sk ]>fw( )

SUP1<J<K1 195125 ) fw(w),

1 n
@_= E @) W, _
nb2r izlpi I(w i| <V) =0, (n1/2b bp> fw (w),

bQPZp ‘w W‘ :Op

. maX1<J<K1 7Tk
anPZp (lw = Wil < )_Ol’( nl/2px2bp >fW( )-

We now obtain >3_, F()_¢ 3" 1pZ I(jw — W;| < ) = O,(pb7?), using simi-

nbP
lar arguments, we have >,_ G- 37" 1QEE)I(| — Wil < ) = O,(0b7?), then

—os 2y i = WilI(Jw — Wi < W) = Op((p + 0)b™7). The asymptotic rate of the

second term can be derived analogously. Observing
LSy Wi <P
2l (lo-wi<v)

n 5
ibz [ (Jw—=W;| <20°)+ 1 <Z {pEZ)F(z) + QEDG(Z)} > bp>

(=1
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This implies —b >" | W, — will(Jw — Wi| <) = Op((p + 0)b?). Then Dy =
Op((p + 0)b7P).

Analogously, one can show Dy = O,((p+0)b™") by the Cauchy-Schwarz inequality
0

7 )

for py) and QEE), ¢ = 1,3 and observing the independence between Y; and pge), 0

¢ = 1,3, given the moment condition (A4). For D3, we have
D; = Z {(ﬁbz - Hb,i) &ij + (f:[bz - Hb,z') <ém - fij) + Wi (é@] - fij)}
i=1

We have D3; = O,((p + 0)b™?), using the arguments similar to D;. It is easy to
see that Dss = 0,(Ds1). Since D33 < 62221 Fj(e)n—ép Dy pz(f)l(|w - Wil <) +
3, G,(f) > Q§?I(|w — w;| < bP) for some ¢ > 0, one also has D33 = 0,(D3;). This
results in Dy = O,((p + 0)b™?). Analogously, one shows Dy = O,((p + 0x)b"?), and
D5 = O,((p+ 0)b7P). Observing ]éfj —&il < € — €i1€55] + (€5 — €i;)?, one can show

Dg = O,((p + 0)b7P), using similar arguments to that of Ds.

Lemma 4.4. Suppose that Assumptions (A1.1)-(A4), (B1.1)-(B4) and (C2.1)-(C2.4)
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hold, then

(Kglﬁi - Kl?lﬂ') =0, ((p+0)b1),

&
|
s

s
Il
—

&
||
gk

@
Il
-

(Kb = K0.) Yi = 0y ((p + 0)b).

(K& = K6,.65) = Op (o + o).

&
||
Ingk

@
Il
—_

(Kflmm - Kziﬂik) =0, ((p+0)h),

=
I
D=

@
Il
—_

(Rl?l,iéijﬁik - K&,ﬁij"ﬁk) =0, ((p+0)b1),

s
I
gk

@
Il
fu

Eeg

I

(K&~ Ki.&) = 0o+ 0)bn).

=1

The proof of Lemma 4.4 is similar to that of Lemma 4.3.

Let dg = |0 — 60|, 05 = |8 — Bo|, 0y = 60 + 5, p = K1Ka, 8, = {logn/(nb?)}V/2,
Ton = b2 + Opn, O = {logn/(nby))}V/2, 7, = b? +6,, © = {0 : |§] = 1}. Suppose
A, is a matrix. A, = O(a,) (or o(a,) ) means every element in A, is O(a,) (or
o(ay) ) almost surely. We abbreviateK,(0"W;o) and Hy(Wi) as K ;(w) (or K} )
and Hp,;(w) (or Hy; ) respectively in the following context. We take G(-) = 1 in
the proofs for simplicity. We further assume that ko = K (v)v? = 1 and Hy =
SHU)UUTAU = Lyxy.

In the following context, we abbreviate L for any function L(x), and Ly or Lg(z)

for any function Ly(0"z). Let

N 1 " & Q 1 " & T 1 " ' T

0 =2 D1 Hoi, St= 3 2 HoiWio,  Sa= 220 Hy Wi oW, g
T 1N"™ 17T T T 1N"™ 17 77T A 1N T YT

Ty = - >0 HyUs, Ty = >0 Hy,UU),  Co= >0 Hy ;WU
7 LN"™ 77T ) LN"™ 7 S & GT

By =230 Hy,UY;, Dy= 230 Hy WioY;, Ly = GpS2 — S15]
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and

a,i

Cf)e (U)) = {HTSQQ} ]f[bﬂ' — eTglﬁb’ieTWi,g, (fJZ’Z(”LU) = foﬁbﬁTVT/w.

We can obtain initial estimators of 6y and [y as follows. Choose a vector # with norm

1 and any vector . Let 0f = 07 L,,(W;)0 and calculate

Qb
S

_ &) Zw Y= 87O
- (4.24)

&
I
~—
Ep
ST
—~—~
AN
=
(A
QLD

H
Il
—

RUAI g

T D

()= S 4ot~ 5a
0 := sgn.0/|0).

where sgn; is the sign of first entry of § and

S i ( B0V @G0\ /o
2= 5000 ( gty (s ) / o)

and A~! denotes the Moore-Penrose inverse of matrix A. Repeat the calculations in

A

(4.24) and (4.25) with (8, 3) replaced by (6, 3) until convergence. Denote the final

(4
value by ((0, 5).

Lemma 4.5. Under all the Assumptions listed in Part b, as b — 0 and nb%152+2

0, if we start the estimation procedure with 0 such that 070, # 0, then
0—0p=0,(b+b"0pm + (p+0)b77")

and
B=B0=0p(b+b" 0+ (p+0)b7"),

where p, o are defined in (4.23), p = K1 Ky and 6,, = {logn/(nbP)}/2.
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Proof of Lemma 4.5 Let ﬁl(w) =Y; —a— By U; — dW, 6. We have

(3)- () prossn )z () ) 24(0) o ().

By Lemma 4.3, we can obtain

n n = Op ((p + Q)b_p) ’

S(W;) — (W) = O, ((p + Q)bip) ’

A

Zn:Hb ( WU.idA ) ( > ZH“ ( Wwd )A (W) = Op ((p+ 0)p™")

1%y

1>

where DY d;, A; and ¢o(W;) are defined in Xia and Hirdle (2006). It is easy to show

( g ) - < gg ) +D;1(9)Z["(MG)Z”:HW(WJ) ( W[i]jigj ) Az’(Wj)/%(Wj)

j=1 i=1
Applying the method similar to Xia and Hérdle (2006), we can obtain

6 =60 = Op(b+ 07"+ (p+ 0)b), 5= Bo = Op(b+ 0" + (p+ 0)D).

The proof is completed.
Next, we shall improve the efficiency of the estimators using a univariate kernel.

Let

AG . Zz 1 KZZ{HTWZO}k k - 07 17 273

d} = 9K9 (’Kaﬁ W djgl GK" 0 Wo—nghz,

10 2 Zz— az? . 1~ 71121':1 [A(z,ivj/l(]?

72 = 71121 1K21WzoW£, jjle = %Z?:l [{gz[]}a

Ef—% KUY = & 2 K WY,

T20 = %Z?:l K}QL,iU UzT> 029 =1 Zz 1K219TW10UT

St =1ym Kgi{mmo}moa S, = inl Kf 0T Wio}* Wi,

8Py =130 K {0T Wi} Wi, S§ =130 Kp Wio{(0 — 00) Wi},
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We improve the estimators § and § as follows. Let @ = &(W;). Starting with

(0,8) = (0, B), calculate

(4.26)

Repeat the procedure (4.26) an 7) with (0, 5) replaced by (é, B) until conver-

d (42
0,

gence. Denote the final value by ( 5) and denote the final value of &? by é?.

A A

Lemma 4.6. Let (3,0) be the estimators based on the single-index kernel weight
starting with (3,0) = (5,0). Under all the assumptions listed in Part b, as by ~ n°

with 1/6 < § < 1/4 and that E(e;|U;, W;,Y;,7 < 1) = 0 almost surely, we have
0 —00=0y((p+ o)1),
B~ Bo=0,((p+ o)1)

Proof of Lemma 4.6 Let &Z(w) — Y, —a— BlU; — dW} 6y, we have

( a )= (i) ooy n () i () 7 ) () /
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By Lemma 4.4, we can obtain

Dﬁ - Di =0, ((p+0)b1),

GV = GWy) = Oy ((p + 0)bn)
ZK&M®<ﬁii>ﬁ ZKm ) (g ) 507 = 0, (o + o).

where DY, A;, d; and ¢f(W;) are defined in Xia and Hardle (2006)
By Assumption (A2.2) and (B2.2), applying the method similar to Xia and Hérdle
(2006), we can obtain

6—00=0,((p+0)bi) + O, (n"12)

= O, ((p+ 0)b1), (@28)

B= o= 0y ((p+ o)1) + O, (n~12)

= O, ((p+ 0)b1).

Proofs of Theorems

Let

I =S R 1 =
)Igl(s) = Zj:ll Bxd;i(s), gz( ) = ﬂz¢k(t)7
HIYH2 = ST ST ’72<37t)d5dt7 ,7(571;) Z Z ijgbjwk

We note that the square integrability properties imply, as n — o,

RBX7K1 = ||ﬁX - B)Igl || — 0,
RBZyKQ = H/BZ - §2H — 0,

R’Y = H,-)/ - fYKLKQH — 0.
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The weak convergence rates W, , W, and ¥, of the regression function estimators

Bx, Bz and A are as follows,

K1 X
7T
‘I}BX - Z 1/2h* (IO + Q)bl + RBX7K17
7j=1
Ky Z
T4
\I}’BZ - Z nl/QJh} + (p + Q)bl + R527K27 (429)
k=1

K1 Ko Z
Tk
Z Z (nl/Qh* 1/2;@) +(p+0)b1) + Ry,

respectively, where h% and h}, are the bandwidths for estimating G'x and Gz respec-
tively. 7% and 7 are defined in Part b.

Proof of Theorem 1 Using Lemmas 4.1 and 4.6, it is easy to see

Bx - x|
< Z |Hedi(s) — Bleon(s)| + iﬁx i(s)

31(5) - 0,05)] + 1841 [ d55) — 059

- 8]

K A
+ D2 Bk a5(s)
j=1

Ky X
T
=0, (Z nl/;h} +(p+0)br + Rb’x,lﬁ)

j=1

A 4
Analogously, one shows ||z — z]| = O,(3r2, s+ (p+0)b1 + Rs, k)
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It can also be observed

[7(s,2) = (s, 2)]

S|

Yik — Vik

YVik — Vik

| Je5(s)e(0) | + O5()0n(t) = 65(5)n(0)
4 el [1(5000) — 6,0 ] + |2 D s (et
j=1k=1

K X K:
= 2L+ii+(+)b +R
=0, T R p T 0)0n ~ |-

j=1 k=1

The proof is completed.
The weak convergence rates ¥, of the nonparametric function estimator g(-) is

as follows,
U, = 1/2k29 (v) + 1/A/nb1 + (p + 0)bs. (4.30)

Proof of Theorem 2 Let af is the final estimator of a; and g*(v) is the estimator

of g(v) in Xia and Hérdle (2006), we have
g(v) = g*(v)

_ Z?:l é?K{<U - éWl) /bl} B Z?:l d?K{(U - éWz) /b1}
(o) s (o) )

: [zylézK{@ o)y Sk (o) /bl}]
S K {(o—0W) o} S K { (0= 0w) /o

(Bl mn ooy

(4.31)

S K {(v-ow) s K { (o —0m) o)

5141+WA2
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By Assumption (D5) and (4.28), we obtain

Al <c 5Wz - éI/VZ
(4.32)
= Op((p+0)b1).
According to Lemma 4.4, we have
AQ S C gl? — &]0
(4.33)

= O, ((p+ 0)b1).

By (4.31), (4.32) and (4.33), we obtain g(v) — §*(v) = O,((p + 0)b1).
According to Theorem 1 of Xia and Hérdle (2006), we can obtain

9(v) = g(v) = 1/2k29" (v) + O, (1/v/nby + (p + 0)by) .

The proof is completed.

The weak convergence rates ® of the predictions E[Y|X, Z] is as follows,

K1 Ko Ky 7.‘_X Ko 7TZ
” T %1 —1/2 —1/2
(I>E = 1/2%29 g g ’Y]kfj* ;: + E W + E nl/;h* + KlN / + KQIW /
j=1k=1 j=1 X k=1 VA

+ (p+ 0)b1 + Rsy ik, + Rs, k, + Ry + 1/Vnh.

(4.34)



Chapter 5

Testing Equality of Covariance
Operator for Two-sample
Functional Data

5.1 Introduction

Tests of significance are essential statistical problems and are challenging particularly
for functional data analysis drawing accumulated research attention, see Ledoit and
Wolf (2002), Berkes et al. (2009), Benko et al. (2009), Panaretos et al. (2010), Arias-
Castro et al. (2011), Horvath and Kokoszka (2012), and Horvéth et al. (2013), among
others. It is natural to validate whether covariance operators or matrices of two
populations are equal or not before further analysis, see pp.49-53 in Ferraty (2011)
and Fremdt et al. (2013), among others. Thereafter, we use the word covariance
operator as was named in Ferraty and Vieu (2006). The term covariance function is
also used in other monograph for functional data analysis. In this chapter, we address
new methodology for significance testing of covariance operators for the stochastic
process in functional data analysis. Our methodology is specifically designed for the
situations where the timing of recordings is sparse and irregularly spaced, say some
longitudinal data studies, refer to Zhao et al. (2004), Zhu et al. (2011), and Chen

et al. (2013), but it works well also for the cases where the recordings of the curves
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are scheduled on a regular and dense grid.

A primary motivation for this part of this research comes from a study on compar-
ison of emission levels of SO, and PM 2.5, two well-known main air pollutant indices,
detected in some southwestern industrial area of China in 2013. In industrial area,
SO, is primarily caused by combustion procedure such as burning fuels, electric util-
ities, and other industrial activities. The dirty air in China, known as smog, has
been blamed by World Health Organization(WHO) and the public. More policies
and studies have been conducted to do against the air pollution for public health.
The afore city governmental bureau invigilated and monitored the arising issue of
environmental detection and protection. Therefore, by an environmental detection
station in the center of the city, hourly and daily in the whole year of 2013, there are
official records of emission levels of SOy and PM2.5. The hourly measurements in a
day(24 hours) form natural emission level curves of the day. However, in some days,
all hourly data could be observed, whereas in other days, the data recorders could
only gain incompletely observed hourly data because of detecting machines out of
run or meter burst by high pollutant levels. This incurred the recorded functional
data containing multiple types: sometimes it is regular and dense, but sometimes
it is irregular and sparse. The scatterplot of 3 selected days for SO, levels and 50
incompletely observed PM2.5 levels are displayed in Fig. 5.1. One of our interest in
studying this air pollutant data is to test the equality of covariance operators of SO,
and PM2.5 in working days and in non-working days or varying seasonally. More
details will be stated and analyzed in the first application in this chapter.

For testing equality of covariance operators in functional data samples, although
this problem is important, it is challenging and related research progress is quite
limited. Benko et al. (2009) developed bootstrap procedures for testing the equality
of specific functional principal components which was equivalent to testing if covari-

ance operators were equal. Horvath et al. (2009) compared linear operators in two
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Figure 5.1: Left: SOy emission levels for 3 selected days; Right: PM2.5 emission
levels for 3 selected days.

functional regression models. Panaretos et al. (2010) focused on testing the equality
of the covariance operators in two samples of independent and identically distributed
Gaussian functional observations. Fremdt et al. (2013) proposed a non-parametric
test for the equality of the covariance structures in two functional samples. However,
all aforementioned research had assumed that repeated measurements took place
on the dense and regular time points for each subject. For samples with sparse
and irregularly spaced observations, to the best of our knowledge, rare work could
be searched. Furthermore, it is hard to decide when the observations are dense or
sparse. In some functional data studies, it is possible that we have dense observations
on some subjects and sparse observations on the others. It hence deserves developing
unified methodologies for testing equality of two covariance operators regardless of

whatever types of functional data, dense or sparse, and regular or imbalanced.

5.2 Methodology and main results

Functional data may usually be modeled as independent realizations of an underlying

second-order effect stochastic process
Yi(t) = p(t) +oit) +&(t), i=1,---,n, teT
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where 7 = [0,1] in most literature, or any compact domain 7 < R, {Y;(¢)} is the

ith response process, p(t) denotes the population mean function of afore stochastic
process, {v;(t)} models random effect process or between-subject variation, and e;(t)s
are i.i.d. random error process independent of v;(t), refer to Shi et al. (1996), Zhang
and Chen (2007), and Horvath and Kokoszka (2012), among others.

Consider two independent samples:

Y (b)) = (b, ) + 0™ (ta,) + €57,

2

(5.1)
m=12,i=1,--- . ng,; lL,=1--,N;.

where Yi(l) (ti,) and Y;(z) (ta,) are the measurements taken at time t;, and t;;, from two

samples with N,,, and N,, the number of measurements, respectively. Without loss

(1)

ilq

(1)2

. . 2
of generality, the ;’s are zero-mean errors with E(e; ") = o2, so are 8§l2)8. For the

1 2 .
@ and ! ), denote covariance operators

A 7

subject-specific random trajectory process v

7t s) = cov{vz-(l)(t),vl-(l)(s)} and vo(t,s) = cov{vf)(t),vf)(s)}, respectively. In

this section, we focus on testing if two functional samples have the same covariance

operator structure, i.e.
Hy : v (t,s) = 7(t,s) vs. Hy : y1(t, s) # Yo(t,s), t,seT.

5.2.1 Estimation of covariance operator

The estimation of the covariance operator in functional data has drawn arising at-
tention because of the importance of covariance operators in functional data analy-
sis. Based on the functional principle component analysis, Hall and Hosseini-Nasab
(2006) and Zhang and Chen (2007) considered a smooth-first-then-estimate strat-
egy. Cai and Yuan (2010) proposed a nonparametric estimation method within a
reproducing kernel Hilbert space frame. Li and Hsing (2010) estimated the covari-

ance operator based on the local linear smoother and made it statistical inference.
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Kraus (2015) presented an estimation method by looking irregular functional data

as missing data, among others.
Here our estimation of covariance operator of individual and pooled sample can be

conducted following the procedures below.
Step 5.1. Estimate the eigenfunctions of the pooled samples.

Step la: Obtain the initial estimations of mean functions p () and pa(t).
It is direct application of (A.2) and (A.3) of Yao et al. (2005). The local linear

scatterplot smoother 22(t) = do(t) is obtained by optimizing
U & ta, —t
. (1) iy T e\ i - 2
arg mmg Z K (—b1 ) [Yi(ta,) — do — di(ty, — 0)]7,

where K(M(-) is a smooth symmetric kernel density function and b; is a bandwidth.
Analogously, one may define 9(¢) using the bandwidth by, the estimator of the mean
function ps(t).

Step 1b: Obtain the initial estimators of covariance operators v,,(t, s), m = 1,2.
Denote Gy ;(tiy,, tin,) = {Yi(tin,) — fa (g, ) H{Yi(ti,) — fu(tiy,)}- The local linear

surface smoother 49(, s) = @o(t, s) can be obtained by optimizing

ni
. t‘l -t t'l — S
arg mlnz 2 K(2) < - ) — ) {Gl,i<til117til12) - f(Oé, (tv 8)7 (tilu?tilm))}Q )
= hl hl
i=11<l11#L2<N;
where K?)(-,-) is a bivariate smooth kernel density with zero mean and finite covari-
ance, hl isa bandwidth, and f(Oé7 (t, S), (tilna tz’llz)) = Qg+ Oén(t — tilll) + 0412(8 — tihg)
with o = (ap, @11, @12). An essential feature is the omission of the diagonal elements
ly1 = lyo which are contaminated with the measurement errors. Analogously, we
can obtain 49(¢, s) using the bandwidth hs, the initial estimator of the covariance

function 7, (t, s).
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Denote 4°(t,s) = "2-47(t,s) + “L-45(t,s). It is easy to see §°(t,s) BN

v(t,s) = (1 — )7 (t, s) + 0va(t, s) where y(t, s) is an asymptotic pooled covariance
operator of the two given samples and 6 is defined at assumption 5.8 in Subsection
5.2.2. Consequently, it has functional principal components, also known as orthonor-
mal eigenfunctions {¢y }r>1, as well as corresponding non-negative eigenvalues {vy }r>1

with 14 > 15 > - - - satisfying:

J V(t, 8)pr(s)ds = vror(t).
-

Step lc: Estimate the set of orthonormal basis {vy, ¢ }r=1 of (2, s).
Estimation of eigenvalues and eigenfunctions {vy, ¢y }r=1 are obtained by numerical

solutions {7, qgk};@l of suitably discretized eigenequations,
| 4%t )n(s)ds = indntt)
-

with orthonormal constraints on {qgk},@l.
Step 5.2. Obtain the projection estimators of covariance operators.

Estimators of the covariance operators are projection estimators onto a space gen-
erated based on the orthonormal basis {ék} k=1 We propose the following estimators

of the covariance functions

:Zzpkkd)k WHZZZ kk¢k du(5),

k=1p' =1 k=1p'—1
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where

i=1 Ni =1
@ _ 1 3.0 70 =
U n_gZﬁ”“ ./ Z Y 8112 ¢k (8i1),
i=1 Ni la=1

where K is a tuning parameter. We propose a concise and practical method to select
K by K = max{K;, K}, where K; and K, are minimum numbers of functional
principal components that explain 95% of the total variation for sample 1 and sam-
ple 2, respectively. The Matlab package PACE is a tool to calculate K; and Ky

conveniently, refer to Yao et al. (2005).

Remark 5.1. The difference between our estimating approach and that of Panaretos
et al. (2010) and Fremdt et al. (2013) is typically to project the curves YV (t) and
Y®(t) on the common basis function space and obtain ﬁi(;) and f]i(,f), and hence /3;1]3/

and ﬁ](i),, which are the covariance of projection. The covariances ﬁ](:k),

and ﬁl(i), reflect
the wvolatility of two functional samples on direction ék(t)ék/(s) Advantages of our
method lies in three aspects. Firstly, unlike the method proposed by Panaretos et al.
(2010) and Fremdt et al. (2013), our method has a better explanation and easier to
implement. Secondly, one obvious advantage of such a method is that we can always
define estimators ofﬁg) and ﬁgZ), and hence 4, (t, s) and 42(t, ), no matter functional
data 1s sparse and irreqular, dense and irreqular, or dense and reqular, which leads

to wide applicability of the proposed test. Lastly, the distance of covariance operators

(1)

~(2)
o and p from the

of two samples can be transformed into that of the variances p

expression of Y1(t,s) and 42(t,s) and (5.2). This directly leads to a global statistic.
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5.2.2 Asymptotic distributions

Next we propose a testing statistic by measuring the integrated square discrep-
ancy of the covariance operators of two functional data samples. Denote TC =

unz ({5 — A4a(t, 8)|2dtds. Tt is readily seen that

ni+ng

ro- e [ 1SS i - 3 S dlawd )
g4 ne - Py PEL) P/ S Py Pr(t) oy (s s

N K K 2 R ~
e [ 155 -] [z - oo au

The decomposition in equation (5.2) shows that the statistic TC is equivalent to
the square error of two sample variances of the orthonormal basis except a subtle
residual. Therefore, Hy will be rejected if TC is large.

We demand the following assumptions in order to derive the asymptotic properties

of statistic fa

Assumption 5.1. For the estimators of mean functions pi(s) and the initial es-
timators of covariance operators vi(s,t), We require by — 0, hy — 0, nb] — oo,
nh® — oo, nbS < o and nh§ < . For the estimators of mean functions pia(s)
and the initial estimators of covariance operators vo(t,s), analogous conditions are

required.

Assumption 5.2. sup,.; E[YW4(t)] < 00 and sup,.r[Y @4(t)] < 0.
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Assumption 5.3. K™ s absolutely integrable, that is, §|K™ (u)|du < oo, for

m=1,2.

Assumption 5.4. Let 6,3;(” = minlgjgk(yj('l) Y

(2)_ (2 )
j+1

v (2) o .
) and 0y = minygj<k (v, —v)

)

where v; 2)

and v;~ are the eigenvalues of covariance operators vi(t,s) and ¥a(t, s),

respectively. Denote ¥’ = 1/1/k, +1/8YY and 77" = 1/1/,9 +1/8Y?. We demand

1 )
YV /h2 < o0 and 7Y /h2 < .

Assumption 5.5. For sample {Yl(l), e ,Yn(ll)}, denote the sorted time points across
all subjects by 0 < t; < <ty <1, and A = max{t(ny,) —tm,—1) N2 =1,..., N+
1}, where N = >t Ni. For theith subject, suppose that the time points t;; have been
ordered mon-decreasingly. Let A}/( ! = =max{t;; —tij—1:J=1,...,N; + 1}, A}/@) =
max{AY" :i=1,....m} and N = N/ny. Put Nn{;; =max{N;:i=1,...,n1} and

NYD —min{N; :i =1,...,m}. Assume that AY" = O(min{n] /zb_ _1/2 hi'}),

min

and N — o, N¥V' < ¢,N, AY® = O(1/N), for some c; > 0. For sample

{Y1(2), . ,Yn(f)}, analogous conditions are required.
Assumption 5.6. {U§1)(-)}i, {tu, }is, and {52(;1)}1-,[1 are independent and identically
distributed and mutually independent. Similarly, {Ui(2)(~)}i, {sit, }ig, and {65122)}1'712 are

independent and identically distributed and mutually independent.

Assumption 5.7. Assume So p2 (t)dt < oo, m = 1,2 and p,,(t) may be written as

pon (1) = 22 ™ . where pl™ = §) pn ()i (1)t

Assumption 5.8. min{n,ny} — o0, - — 0 for a fired constant 6 € (0,1).

Remark 5.2. Assumptions 5.1 and 5.3 are similar to that of Yao et al. (2005) which
are also regqular condition for unbalance functional data analysis. Assumptions 5.2

and 5.0 are reqular conditions in functional data analysis. Assumption 5.4 requires
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that the spacings between the eigenvalues are not too small. Assumption 5.5 was

adopted by Miiller and Yao (2008). This assumption implies the dense observation
which is easier to use in our theoretical justifications. Assumption 5.8 is a reqular
condition in two sample test. Assumptions 5.1-5.5 and 5.8 are used to get the bound

of qﬁj(t) — ¢;(t). Assumption 5.8 is a reqular condition in two sample test.

In order to present our testing statistic, we need to use of the below asymptotic

result.

Lemma 5.1. Under assumptions 5.1-5.5 and 5.8, we have

teT — ot ) - "1’"2)> '
€
y(l) 7T1/(2) v o) ) )
where Ag, ny) = max(rhg, rhg) and ) " and w7 are stated in assumption 5.4.

Lemma 5.2. Under assumptions 5.1-5.8 and Hy, we have

pA(l) . 15(2)/
b TR 4, N(0,1), min{ny, ne} — .

where

2

oy =o'+ [ u1<t>¢k<t>dt}2 [ oo oris)
([ mwocoa) [ [ atsmion sotsss
AL s [ [ et o ninas
J

f 20 [E {0 )| 63 (s)deds

UJ@ 71ts)¢k()dtds}2
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and
2 [ watoraoras)

| alt)y <t>dt} | 1 | el )a(sn, 52)y (s2)dsids

2

&
)
)

i~
_l’_
S—
>,
=
[N}
=~
S~—
-
Eal
=
Y
ny
——

f 1 ug(t)gzﬁk(t)dt} J f b0 (51751, 52) by (52)ds1 s

) 1 01 20) [ {o2(0022(5)} | 6 (s)aeas

| [ vttt s>¢k/<s>dtds}2

Based on lemma 5.1 and symmetry of ,('}](; — pk) for subscripts k and k', we

suggest the following statistic:

K K {p<1)/ ﬁ( )/}2 K(K-1)

nTil+”52 Z Z - 2

o= ,
K(K —1)
where @, = %A’ik), + wfjj and wkk,), m = 1,2 are the estimators of
wgﬁ), m = 1,2, respectively. In fact, w](ck,), m = 1,2 are unknown but can be

substituted by their consistent estimators — >, [l — ﬁ,(ﬁl)][ﬁfél) - ?7,(;)] — ¢, )2

and - L [nlk —77,,(C )][ﬁ(;,) —ﬁ,(j)] ®,}2, respectively, where ®; = n_1 Zf:ll[ﬁz(;) -

~(1 2 ~(2
i )][n(k) — '] and @y = L 37 [0 — P65 - 7).

We are ready to present the asymptotic results of the proposed test. Theorems 5.1

and 5.2 below establish the asymptotic behaviors of the statistic TC under hypotheses

Hy and Hy, respectively. The proofs of these theorems are shown in Section 5.5.
Theorem 5.1. Under assumptions 5.1-5.8 and Hy, we have

TC -4 N(0,1), min{n;,ny} — co.
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The null hypothesis Hy : 71 (t,s) = 7a(t,s), t,s € T is rejected if |ﬁj| > (,, where

o 18 the upper-a quantile of N(0,1).
Theorem 5.2. Under assumptions 5.1-5.8 and H,, we have
TC -2 oo, min{ny, ny} — 0.

Remark 5.3. From the expression of ”f@, we can see that TC depends on two sample
sizes and distance between ,623/ and ﬁ](jj, fork=1,--- K and k' =1,--- K , which
reflect the difference of covariance operators v1(t,s) and v2(t,s). On the one hand,
with the larger difference of covariance operators, TC will become bigger and bigger
when the sample size is fived. On the other hand, TC will grow with ny and nsy
when the difference of covariance operators are fixed. Theorems 5.1 and 5.2 thus

provide clear theoretical justification of the empirical properties discussed in Section

5.3. Theorem 5.2 also shows that the behavior of the test is consistent.

5.3 Simulation studies

The random effect function v;(t) was generated from
v;(t) = Aisin(wt) + B;sin(2nt) + C; sin(4nt),

where A, = bW,, B; = 3W,, C; = W3, and Wy, W5 and W3 were independent t-
distributed random variables. All the simulation results reported were based on 1000

simulations.
Case 5.1. Sparse design with identical mean functions.

To illustrate the adaptivity of our test method to sparse design, we first considered

the following model,

(5.3)
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The number of measurements was selected from {5, --- 9} with equal probability in

[0,1]. The measurement errors were 51(»1)(15) ~ N(0,0?%) for t € {tu, }ic1 . mydy=1.- N,
and 552) (t) ~ N(0,0?) for t € {ti,}im1. myis=1.- ;- In order to study the empirical
size and power of the test, we set vl@)(t) = avfl)(t), a=04,0.6,08,1.0,1.2, 1.4,1.6,
where the parameter a regulated the difference in the covariance function in two
samples. The empirical size can be reached when a = 1 and the empirical power can
be reached when a # 1. This can be viewed as a sparse design with the identical
mean functions py(t) = pa(t) = 0. We considered combinations of sample sizes

(n1,n2) = (50,50), (100,100) and (200,200). The empirical size and power of the

test are reported in Table 5.1 for the setting of 02 = 0.5 and o2 = 4, respectively.
Case 5.2. Sparse design with distinct mean functions.

To illustrate whether mean functions has influence for the test of covariance function,
we considered the following model,
vO() = o) + 7 (),

(5.4)
YP) =t + 02 ) + 2 (1),

where vfl)(t), vZ@) (1), 81(1)(25), and 51(2) (t) followed the Case 5.1. This can be viewed
as a sparse design with the different mean functions py(t) = 0 and ps(t) = t. The
empirical size and power of the test are also reported in Table 5.1 for the setting of

0% = 0.5 and o? = 4, respectively.
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Table 5.1: The empirical size and power of the test in Cases 5.1 and 5.2.

Case a  (n1,n2) =(50,50) (ni,n2) = (100,100) (n1,n2) = (200, 200)
a=001 a=005 a=001 a=005 a=001 «a=0.05
o2 =105

Casel 04 0.957 0.992 0.993 0.999 0.999 1.000
0.6 0.551 0.762 0.845 0.955 0.974 0.992
0.8 0.083 0.219 0.191 0.398 0.394 0.619
1.0 0.010 0.046 0.011 0.047 0.014 0.058
1.2 0.058 0.172 0.120 0.293 0.249 0.460
1.4 0.261 0.481 0.460 0.707 0.784 0.889
1.6 0.476 0.695 0.792 0.914 0.977 0.994

Case 2 04 0.952 0.987 0.998 0.999 1.000 1.000
0.6 0.521 0.741 0.846 0.947 0.986 0.996
0.8 0.103 0.232 0.165 0.354 0.381 0.617
1.0 0.009 0.056 0.012 0.047 0.010 0.042
1.2 0.055 0.150 0.112 0.278 0.249 0.475
14 0.250 0.451 0.475 0.707 0.803 0.911
1.6 0.478 0.704 0.796 0.916 0.967 0.991

o =4

Casel 04 0.937 0.984 0.993 0.998 0.999 1.000
0.6 0.513 0.731 0.830 0.940 0.981 0.994
0.8 0.070 0.209 0.182 0.377 0.389 0.622
1.0 0.006 0.050 0.007 0.057 0.014 0.059
1.2 0.052 0.157 0.132 0.287 0.231 0.463
1.4 0.225 0.458 0.464 0.670 0.763 0.911
1.6 0.492 0.706 0.775 0.917 0.969 0.993

Case 2 04 0.937 0.982 0.991 0.996 0.999 1.000
0.6 0.488 0.716 0.817 0.928 0.975 0.993
0.8 0.073 0.226 0.163 0.355 0.350 0.563
1.0 0.015 0.061 0.008 0.050 0.010 0.051
1.2 0.057 0.179 0.113 0.273 0.244 0.468
14 0.223 0.407 0.451 0.684 0.791 0.905
1.6 0.488 0.717 0.774 0.903 0.973 0.988

Several phenomenon can be observed from Table 5.1. First, the test based on the

proposed method has correct empirical size at all levels. Second, as expected from

the theory results, when a increases from 1.2 to 1.6 or decreases from 0.8 to 0.4, the

power of the test becomes larger and larger. Third, from the simulations of Cases
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5.1 and 5.2, we find that the power of the test increases as the sample size increases.

For example, the empirical power for sample sizes (ny,n2) = (200, 200) is better than
that of (n1,n2) = (100, 100), whereas the sample sizes are equal. Last, the empirical
size and power in Case 5.1 are comparable with that in Case 5.2. This shows that
mean functions have no significant influence on our testing procedure in the setting

of sparse design.
Case 5.3. Dense design with identical mean functions.

In order to compare the proposed method, denoted by 'ﬁj, with that of Fremdt et al.

(2013), denoted by Fremdt, we considered the dense design where v(l)(t) and Ui(Q) (t)
(

follow (5.3) in Case 5.1 except that the locations of measurements for each vil)(t)

and vz-(Q)(t) were selected at 50 equidistant time points in [0,1]. We computed the
empirical size and power of the test for sample sizes (n1,n2) = (50,50), (100, 100)
and (200, 200) in Table 5.2 for the setting of 0 = 0.5 and o2 = 4, respectively.

Case 5.4. Dense design with distinct mean functions.

This experiment is to compare with case 5.3 and case 5.2 separately. Therefore, we
used (5.4) to model the functional data but the locations of measurements for each
vi(l)(t) and UZ@) (t) were selected at 50 equidistant time points in [0, 1]. The empirical
size and power of the test are also reported in Table 5.2 (right side) for the setting

of 02 = 0.5 and 0% = 4, respectively.
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Table 5.2: Empirical sizes and power of test in Cases 5.3 and 5.4.

identical mean non-identical mean
Sample sizes a TC Fremdt a TC Fremdt
a2 =05 2 =05
0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
(n1,ng) = 0.7 0.448 0.554 0.131 0.388 | 0.7 0477 0.605 0.157 0.428

(50, 50) 0.8 0183 0.272 0.041 0.171 | 0.8 0.173 0.261 0.031 0.148
0.9 0.046 0.087 0.013 0.069 | 0.9 0.054 0.097 0.004 0.042
1.0 0.023 0.050 0.001 0.041 | 1.0 0.025 0.053 0.006 0.041
1.1 0.044 0.091 0.009 0.05 | 1.1 0.053 0.088 0.006 0.057
1.2 0.126 0.192 0.015 0.127 | 1.2 0.109 0.180 0.024 0.118
1.3 0.255 0362 0.052 0.215 | 1.3 0.278 0376 0.065 0.231

(n1,n2) = 0.7 0778 0843 0.488 0.762 | 0.7 0.762 0.851 0.491 0.761
(100, 100) 0.8 0340 0449 0.109 0.326 | 0.8 0.359 0.464 0.123 0.353
0.9 0.0v8 0.132 0.015 0.088 | 0.9 0.076 0.134 0.014 0.094
1.0 0.034 0.054 0.004 0.038 | 1.0 0.019 0.045 0.003 0.040
1.1 0.077 0.128 0.013 0.070 | 1.1  0.067 0.107 0.010 0.073
1.2 0.222 0318 0.072 0226 | 1.2 0.222 0.325 0.067 0.233
1.3  0.750 0.836 0487 0.745 | 1.3 0.474 0.572 0.199 0.466

(n1,ng) = 0.7 0967 0983 0876 0970 | 0.7 0974 0988 0.876 0.971
(200, 200) 0.8 0.630 0.707 0.370 0.650 | 0.8 0.627 0.709 0.384 0.645
09 0124 0.193 0.042 0.142 | 0.9 0.133 0.218 0.033 0.154
1.0 0.031 0.063 0.004 0.044 | 1.0 0.020 0.044 0.007 0.046
1.1 0.132 0.197 0.035 0.154 | 1.1  0.114 0.168 0.031 0.125
1.2 0.419 0545 0.196 0439 | 1.2 0.431 0.542 0.203 0.444
1.3  0.768 0.845 0552 0.774 | 1.3 0.789 0.866 0.536 0.793

o2 =14 o2 =4
0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
(n1,n2) = 0.7 0338 0.482 0.124 0.412 | 0.7 0471 0.600 0.148 0.413
(50, 50) 0.8 0.103 0.192 0.032 0.147 | 0.8 0.170 0.244 0.032 0.152

0.9 0.051 0.088 0.007 0.067 | 0.9 0.051 0.090 0.006 0.048
1.0 0.031 0.089 0.011 0.046 | 1.0 0.022 0.048 0.004 0.030
1.1 0.036 0.072 0.010 0.059 | 1.1 0.048 0.087 0.008 0.056
1.2 0.090 0.160 0.018 0.114 | 1.2 0.115 0.183 0.025 0.109
1.3  0.156 0.265 0.060 0.205 | 1.3 0.241 0.350 0.053 0.209

(n1,ng) = 0.7 0695 0801 0.494 0.745 | 0.7 0.759 0.857 0.457 0.736
(100, 100) 0.8 0242 0.358 0.112 0.349 | 0.8 0.360 0.471 0.117 0.354
0.9 0.049 0.106 0.013 0.088 | 0.9 0.067 0.133 0.014 0.088
1.0 0.028 0.048 0.002 0.033 | 1.0 0.024 0.050 0.003 0.039
1.1 0.048 0.088 0.012 0.082 | 1.1 0.076 0.128 0.016 0.087
1.2 0172 0264 0.005 0224 | 1.2 0.221 0315 0.056 0.214
1.3 0359 0496 0.205 0466 | 1.3 0.488 0.599 0.212 0.476

(n1,ng) = 0.7 0940 0967 0.878 0973 | 0.7 0961 0976 0.859 0.956
(200, 200) 0.8 0539 0.647 0.365 0.622 | 0.8 0.614 0.707 0.347 0.633
0.9 0.094 0.154 0.046 0.167 | 0.9 0.133 0.216 0.044 0.184
1.0 0.021 0.048 0.003 0.038 | 1.0 0.033 0.054 0.005 0.041
1.1 0.101 0.164 0.028 0.134 | 1.1  0.108 0.180 0.044 0.136
1.2 0338 0445 0.195 0452 | 1.2 0.439 0.543 0.220 0.454
1.3  0.711 0.793 0556 0.788 | 1.3 0.794 0.861 0.549 0.795
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From Table 5.2, we can see that the tests based on TC and Fremdt have correct
empirical size at all levels which imply that both tests can control the type I error
well. However, the test based on statistic TC has a higher power than that of
Fremdt. Comparing Tables 5.1 with 5.2 when a = 0.8 and 1.2, we find that dense

design performs better than sparse design.

5.4 Real data example: Environmental pollution
data

We applied the proposed test method to an environmental pollution data recorded in
a southwestern city of China which is an industrial zone. A primary motivation for
the first part of this research comes from a study of the comparison of air pollutants
SOy and PM2.5 recorded in some southwestern areas of China two years ago. In
industrial area, SO, is primarily caused by combustion procedure such as burning
fuels, electric utilities, and other industrial activities. The dirty air in China, known
as smog, has been blamed by World Health Organization (WHO) and the public.
More policies and studies have been conducted to do against the air pollution for
public health. In one southwestern city, the emission levels of SO, and PM2.5
were measured per hour in several workstations each day during the whole year in
2013. Fig. 5.2 shows SO, and PM2.5 emission levels for 365 days in 2013 which
were measured by an environmental control station close to an industrial area in the
center of the city. The hourly measurements in a day (24 hours) formed natural
emission level curves of the day. One of our interest in studying this air pollutant
data is to test the equality of covariance operators of SO, and PM2.5 in working
days and in non-working days or varying seasonally. It happened that all hourly

data could be observed, or just incompletely observed in a day sometimes because
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of machine out of run or meter burst by high pollutant levels.
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Figure 5.2: Top: SO, emission levels for 365 days in 2013. Bottom: PM2.5 emission
levels for 365 days in 2013.

Example 5.1. Testing equality of covariance operators for working day and non-

working day.

For PM2.5, 3 days of 250 working days and 4 days of 115 non-working days were
completely unobserved. The total number of samples of working days was 247 where
38 curves had incompletely observations and 111 for non-working days where 12
curves had incompletely observations. A subsample of 20 randomly selected curves

for working days and non-working days are plotted in Fig. 5.3. The numbers AEJI») and
Ag) of observation per day for working days and non-working days varied from 1 to

24, and two histograms of AS) and Ag) are shown in Fig. 5.4. The initial estimated
covariance operators were displayed in Fig. 5.5 for working days and non-working

days. From the initial estimated covariance operators, it is seen that the volatility
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of PM2.5 levels in non-working days is higher than that of working days from 0

to 18 o’clock. However, more volatility is appeared in working days from 19 to 23
o’clock. Our interest is to test if the covariance operators of PM2.5 emission level
curves of working and non-working days are significantly different. This motivates a

two-sample covariance operators testing problem.

0.35 T T 0.25

X
R

>

X
=<

30

Figure 5.3: Left: A subsample of 20 randomly selected curves for working days;
Right: A subsample of 20 randomly selected curves for non-working days.
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Figure 5.4: Frequency distributions of the number of observation for PM2.5. Left:
234 working days; Right: 106 non-working days.
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. ) : |

Figure 5.5: The initial estimated covariance operators. Left: working days; Right:
non-working days.

According to method introduced in Section 5.2, K = 4 is selected. Based on
the asymptotic distribution of the test statistic T/a, the p-value was calculated to be
0.8982. We also computed the p-value of different K in Table 5.3. All the results
indicate that there is little evidence that the covariance operators are different for
working and non-working days.

In reality, industrial pollution and automobile exhaust are the main sources of
PM?2.5 in the city. For the factory, production was business as usual in the non-
working days. Therefore, the main factor that cause different manifestations is au-
tomobile exhaust. The number of workers in non-working days may be have more
choices to stay at home or outdoor than that of working days at night. This leads
to more volatility of PM2.5 levels in non-working days from 20 to 23 o’clock. On
the contrary, there are so many more options of transport to consider for workers
in working days in the daytime. Thus, it shows that the volatility of PM2.5 levels
in working days is more larger than that of non-working days from 0 to 19 o’clock.
Therefore, this leads to different modes for workdays and non-workdays. Generally

speaking, we think that PM2.5 emission level curves of workdays and non-workdays
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are not different.

Table 5.3: p-values of the test for the SO, and PM2.5 data.

K 2 3 4 5
working day and non-workday
PM2.5 0.3926 0.3858 0.8982 0.8145
SO, 0.5711 0.6756 0.1721 0.2377
Spring and Summer
PM2.5 0.0000 0.0000 0.0000 0.0000
SO, 0.4724 0.7541 0.7009 0.6036
Spring and Autumn
PM2.5 0.0124 0.0342 0.0524 0.1769
SOs 0.8168 0.7888 0.9480 0.8459
Spring and Winter
PM2.5 0.2319 0.6014 0.1885 0.4104
SO, 0.0352 0.3589 0.4358 0.9459
Summer and Autumn
PM2.5 0.0000 0.0000 0.0000 0.0000
SO, 0.7714 0.4188 0.2401 0.1657
Summer and Winter
PM2.5 0.0000 0.0000 0.0000 0.0000
SO, 0.0348 0.0101 0.0021 0.0000
Autumn and Winter
PM2.5 0.0000 0.0671 0.1066 0.3173
SO, 0.0187 0.0000 0.0094 0.0133

For SO,, we considered 234 workdays where 100 days have incomplete observations
and 106 non-workdays where 47 days have incompletely observations because some
days it could not be recorded. Using the method similar to that of PM2.5, the
p-value is 0.1721 by the proposed test method. Also, the p-values of different K
are listed in Table 5.3. This implies that there is little evidence that the covariance

operators of the SO, levels are different for working and non-working days.

— 117 —



CHAPTER 5. COVARIANCE OPERATOR TEST FOR TWO-SAMPLE
FUNCTIONAL DATA PhD Thesis

Example 5.2. Testing the covariance operators for Spring, Summer, Autumn and

Winter.

In this example, we firstly consider the covariance operators testing of PM2.5 level
for Spring, Summer, Autumn and Winter where the days are 91, 94, 90, and 90,
respectively. But we only obtain the number of curves are 90, 94, 84, and 90 because
some days can not be recorded. Among of curves, some are fully recorded and
others have incompletely record. The curves of four seasons are plotted in Fig. 5.6,
respectively. Four histograms of the number of observation per day for four seasons
are shown in Fig. 5.7.

The initial estimated covariance operators were displayed in Fig. 5.8 for four
seasons. For the initial estimated covariance operators, we can see that PM2.5
levels in Spring and Winter jumped by the biggest amount but it can be reduced
to a minimum in Summer and Autumn. We are interested in whether the curves
have the same covariance operators for the combinations (Spring, Summer), (Spring,

Autumn), (Spring, Winter), (Summer, Autumn), (Summer, Winter), and (Autumn,

Winter).
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Figure 5.7: Four histograms of the number of observation per day for four seasons.
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1 0.4

Figure 5.8: The initial estimated covariance operators for four seasons.

The p-values for different combinations were computed and collected in Table 5.3
using the proposed test method. From Table 5.3, we can see that the hypothesis
71(t,s) = 72(t,s) is not reasonable except for the combination (Spring, Autumn),
(Spring, Winter) and (Autumn, Winter). For the test of covariance operators of

above three combinations, the p-value using the proposed test method were computed
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to be 0.0524, 0.1885 and 0.1066, respectively. Thus, there is little evidence that the

covariance operators are different for the combination (Spring, Autumn), (Spring,
Winter) and (Autumn, Winter).

By the similar method to that of PM2.5, we test the mean function of SO for
the combination (Spring, Summer), (Spring, Autumn), (Spring, Winter), (Summer,
Autumn), (Summer, Winter), and (Autumn, Winter). The results are also display in
Table 5.3, Different conclusions are drawn from Table 5.3. Almost of the combination
can not reject the null hypothesis Hy : v1(t, s) = 72(t, s) except for the combination

(Summer, Winter) and (Autumn, Winter).
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5.5 Proofs of main results

Proof of lemma 5.1

Dpi(t) — Vk¢k(t)‘

1

[ 50t putsras - [ .90

0 0

n1 + No n1 + No

H () + — %(t,s>}azk<s>ds

_JO {(1 = 0)y(t,s) + Oya(t,s)} pr(s)ds

f{ =2 71(7578)—(1—9)71(t,s)}¢3k(3)d3

0 n1+n2

o 1 o aait0)  0)f on(o)s

n +’n,2
1
s Jo {nlfnz%(t’ s) = (1= 0)%(t, 8)} or(s)ds

+ Jo {(1=0)n(t,s) — (1 —)n(t,s)} ng(s)ds

N H U alts) — 03l ou(o)s

0 niy + N9

" j (alt, 5) — 09a(t, )} dn(s)ds

EG1+G2+G3+G4

According to assumption 5.8, we have G; — 0 and G3 — 0.
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For G5, we have

G < (1) [ () =0t [ou(o) s+ 1= ) [ e 1[G — )] s

<(1- 9>\/ f (1(t.5) = (¢, )} ds | u(s)|

+(1- e>\/ | (e, 5017 ds[u(5) = 6u(5)|
y(1)

According to assumptions 5.1-5.5, we can obtain G, = Op(:;’;TT). Analogously,
1

7|—Y(2)
Gi = Opl(Jmz)

Proof of lemma 5.2

can be obtained.

Under assumptions 5.1-5.6, if we can prove

(1 1 1/2 (2 2 —1/2
nl(f)_nl(v):O (nl />a 77() 7712)—012<n2/>-

then lemma 5.2 can be easily proved. It can be observed

~(1 1
T

{ Z Z ily ¢k ily _7715:1)}

_ lel

BRI SHTTIRERS I DITAS]

Z111 = z111

EAl —‘rAg.
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For A, we have

l

_ _Z Z { 1) (ti,) 81(-111)} di(tir,)

= Zz11

5.6
+{ Z 2#1 ti)ou(ta,) } >0

= 1111

= A11 + A12.

It is easy to see that Ay is the average of independent identically distributed random

variables. By the central limit theorem, we obtain

An =0, (n;”z) . (5.7)
For Ajs, according to assumption 5.7, we have

A =0 (nl_m) . (5.8)
By (5.6), (5.7) and (5.8), we obtain

A =0, <n;1/2) . (5.9)

For A,, we have

:_Z Zul i {¢k ti,) — ¢k(till)}

Z111

1 Mmoo N; (1
ny N;
+ nil i EZ(»,? {Qbk(till) - (bk(tih)}

= Ay + Agy + Ags.
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According to Cauchy-Schwarz inequality, assumption 5.2 and lemma 5.1, we have

1 ni 1 N; N; 9 1/2
Az < _Z_ [Z /‘%( ily) {¢k( i) — ¢k(tz‘zl)} ]
mny “ NZ
i=1 li=1 l1=1
13 |1 & 1 & 2 (5.11)
= n_l Z E M%(tzh) E {¢k(tll1) ¢k(tzl1)}
=1 l1=1 l1=1
=0, (nl_l/Z)

For Asy, according to Cauchy-Schwarz inequality, assumption 5.2 and lemma 5.1, we

have

N; N; NEE
[ o (ta) Y, {dultu) - m(m)}]

= %:ﬁ;d % 121 o (ta,) % 11231{ ti,) ¢k(till)}2 12
=0, <nfl/2) )
Using the arguments similar to that of (5.12), it can be shown that
Ags = O, (nl_l/Q) . (5.13)
By (5.10), (5.11), (5.12), and (5.13), we have
Ay =0, <n1_1/2) . (5.14)

By (5.5), (5.9) and (5.14), we obtain f),i ) _ 77,(61) Op(nl_m). Similarly, we can prove

(2 2 ~1/2
n()_nl(c)_Op(WQ /)‘
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Now we proof lemma 5.2. It can be observed that

1o
~(1 ~(1 ~(1 ~(1 ~(1
RN U S U
i=1
_ —Z 050 _ g0
k
— B, - B,

B can be decomposed as

n1 N;
Bl:nil;{]if ZY; zll ¢k il }{ ZY le ¢k lll)}

2111

1 1 & . .
= n_12 {NQ Z Yz (ta,)*on(ta,) by (ta,) Z Y (tity,) )( tityy) Pk (tity, ) Oy (tihg)}

to=1 Z l11¢l12

1 &1 & (1)
-3 5 2 ) o) + ) dutea )

1 1 1 n 2 ;
+ W Z {,ul(tilu) + vz( )(tilu) + gz(ll)l} {Ml (tilm) + Uz( )(tilm) + 62(11)2} ¢k(till1)¢k/ (til12)]

t 1 #lin

= n_lZ Z {Nl i) +v; )(tih) zzl} Oi(tit, )by (tar,)

1Zl11

n_l Z N2 Z {:ul Zln) + U( )(tllll) + 8511)1} {/“(tllu) + ’U( )(t’lllZ) + 51112} (bk( Zl11)¢k ( 1112)

i=1" % l11#l12
N;

e > 7 2 () + o00) + 20} { )y () — ot )0 (1)

1 & 1 1
?”L_ Z Z { Zl11 ( )(tilll) + 8511)1} {/“(tilu) + Uz'( )(tilm) + Ez(‘ll)g}
l11#h

=1 ’L

X {&k(tilll)(ﬁk/ (tillz) - ¢k<tilll)¢k’ (tillz)}

= B + Bia + Bz + Bu.
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For Bji, we have

B = —Z Z {1 (tir,) ¢k tit, ) Oy (tar,)

zlllll

e LS S (i)} oo )

+ nili ]\172 2_ { zll} On(ti, )by (Lir,)

1 N;
1
+ n—ll 1 NZQ P 1{#1 zll zl1>}¢k( 1l1)¢k ( zl1>

+7L_12

{,u1 ul le } ¢k( zl1)¢k ( ’Lll)

=1 Z l1=1
2 1 &
1
+ n_lzm 2 {UZ( )( zll) le}@s( 1ll)¢k ( lll>
i=1""1" [1=1

= By + Bz + Biig + Biia + Biis + Bis.
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For B, we have

By = _Z Z :ul Lily, :ul( %l12>¢k( Zl11)¢k ( 2112)

= ’ l11#012

_Z Z Ml lel Zl12)¢k( Zlu)qbk ( 1112)

L) 1 l11#l12

n—lZ Z Hl zln ”12¢k( zl11)¢k ( 1112)

i=1 1 li1#lh2

n_lZ Z 1 zlu :ul 1112)¢k( Zlu)¢k ( 1112)

i=1 Z l11#l12

n—lZ Z 1 1111 ) ( zllg)¢k( zlu)¢k ( 1112)

=1 Z l11#l12

n—lZ 2 1 1111 Zlm‘bk( zl11>¢k ( 1112)

i=1 Z l11#l12

n_lZ Z 5Zl11/L1 zllz)(bk( 1111)¢k ( Zll2>

i=1 Z l11#l12

n—lz Z &Tlln i zllg (bk( 1111>¢k ( 1112)

Z l11#l12

_Z Z E'\’Ll11 Zl12¢k Zl11>¢k ( le2)
n1

i=1 Z l11#l12

= Bia1 + By + Bias + Bioa + Bias + Biag + Bior + Biag + Biog.

For Bjss5, we have

Bias —d’ N <L1,7TS€))

where 1] = S(l) Sé or(t) (L, s)py (s)dtds and 7T1k So So P3(t) E{?J (v (2)2( s)}¢% (s)dtds—

{So So ()71 (t, s) @y (s)dtds}?.
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By assumption 5.7, we may obtain

Bio1 — 771(91)771(;) = Op (n;1/2> .
By assumptions 5.2 and 5.5, we have

Biig =0, (nl_m) , g=1,2.

Analogously, we have By, = op(nil/z), g =3,4,5,6. Because Biay + Biaz + Biag +

Biog + Bia7 + Biog + Biog are the average of independent identically distributed

. . : 2
random variables with mean zeros and variance 7r§k), where

-4 1 m<t>¢k<t>dt}2 Il 1 (5165 |

+ UOI 1 () by (t)dt}2 f: L 1 b1 (s1)71 (51, 52)i(52)dsdss

2

So, we obtain
Bias + Biaz + Bias + Biag + Biar + Biag + Biag 4N (0, 7T§?> .
According to Cauchy-Schwarz inequality and lemma 5.1, we have
By, = o, (nl_m) , g=23,4.
By the central limit theorem, we obtain
v (A0 = o) 2 N (),

where ¢, = Sé S(l) &r(t)71(L, 5)¢y (s)dtds and w](;:, = 7T8€) + 7rﬁ).
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Similarly, we can prove f(pkk —pfk)) S N(Lg, ), where 15 = S(l) Sé O (t)y2(t, )y (s)dtds

and wl(i), is defined in Section 5.2.

Under Hy, we obtain the conclusion of lemma 5.2. The proof is then completed.
Proof of theorem 5.1 According to lemma 5.1, lemma 5.2 and Slutsky theory,
we can easily obtain the the conclusion of theorem 5.1. The proof is then completed.

Proof of theorem 5.2 According to lemma 5.2, we have

1 r1 1 rl
i || onome oy paas, 52 2 || onterate o (s

Under Hy, we obtain

nin §o 5o #r(t {’Y1 (t,8)—v2(t,8)}¢, s (s)dtds 2 K(K—1

o zmy sy a0 e mee] xocn

TCL ”1 kk' M2 kk o
K(K 1)

the proof is then completed.

— 129 —



Chapter 6

Testing Equality of Covariance
Matrix for High-dimensional Data

6.1 Introduction

Initiating from functional data analysis, we gain much insight in presenting a novel
two-sample testing procedure on high-dimensional covariance matrices under the
non-normality assumption and “large p, small n” paradigm.

Testing the equality of two covariance matrices ¥ and ¥ is an significant prob-
lem in multivariate analysis. Many statistical procedures including the classical
Fisher’s linear discriminant analysis depend on the assumption of equal covariance
matrices has been studied, see Sugiura and Nagao (1968), Gupta and Giri (1973),
Perlman (1980), Gupta and Tang (1984), O’Brien (1992), and Anderson (2003). In
particular, the likelihood ratio test (LRT) is commonly used and enjoys certain op-
timality under regular conditions. However, the abovementioned work are based on
the low-dimensional data.

High-dimensional data are increasingly encountered in many statistical appli-
cations with the most prominently in biological and financial studies. A common
feature of high-dimensional data is that the data dimension is much larger than the

sample size, namely the “large p, small n”. Tests of significance are challenging
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for high-dimensional data analysis arisen accumulated research interest. Chen and

Qin (2010) proposed a two-sample test for the means without requiring explicit con-
ditions in the relationship between the data dimension p and sample size n under
the data structure of i.i.d. within each sample. Zhong and Chen (2011) intro-
duced simultaneous test for coefficients in high-dimensional linear regression models
with factorial designs. Qiu and Chen (2012) introduced a test for bandedness of
high-dimensional covariance matrices and bandwidth estimation without assuming a
specific parametric distribution. Zhong et al. (2013) considered two alternative tests
to the Higher Criticism test of Donoho and Jin (2004) for high-dimensional means
under the sparsity of the nonzero means for sub-Gaussian distributed data with un-
known column-wise dependence. Under dependence assumption, Cai et al. (2014)
developed a test for testing the equality of two mean vectors based on a linear trans-
formation of the data by the precision matrix which incorporates the correlations
between the variables. Wang et al. (2015b) concerned with testing the population
mean vector of nonnormal high-dimensional multivariate data and proposed a test
statistic based on the spatial sign function of the observed data.

The conventional testing procedures such as the LRT for covariance matrices
either perform poorly or are not even well defined under such high-dimensional data
setting. Several tests for the equality of two large covariance matrices have been
proposed, Ledoit and Wolf (2002) showed the locally best invariant test based on
John’s U statistic to be (n, p)-consistent when p/n — 0 < 00, where ¢ is a constant
known as the concentration. Srivastava (2005) proposed a test based on the first
and second arithmetic means of the eigenvalues of the sample covariance but only
requires the more general condition n = O(p°), 0 < § < 1. Schott (2005) introduced
a simple statistic for testing the complete independence of random variable under
a multivariate normal distribution and compared the finite sample size performance

with the Likelihood ratio test. Schott (2006) proposed a testing procedure for the test
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that the smallest eigenvalues of a covariance matrix are equal based on Ledoit and

Wolf (2002). Schott (2007) introduced a test for the equality of several covariance
matrices based on the Frobenius norm of the deviation of any two covariance matrices.
Srivastava and Yanagihara (2010) constructed a test that relied on a measure of
distance by tr(X?%)/(tr(31))% — tr(X2)/(tr(X2))?. Both of these two tests are designed
for the multivariate normal populations. Without the strong assumption of Gaussian
distribution of two vector samples, Chen et al. (2010) resented nonparametric testing
statistics for sphericity and identity of the covariance matrix based on estimators for
traces of covariance matrix and its square when p may be a larger order of n. Fisher
et al. (2010) developed a new test procedure of the covariance matrix based on
Cauchy-Schwarz inequality utilizing the ratio of the second and fourth arithmetic
means of the sample eigenvalues. Fisher (2012) explored the problem of testing
the covariance matrix is an identity matrix when the dimensionality is equal to the
sample size or larger. Li and Chen (2012) constructed a testing statistic based on
an unbiased estimator of the Frobenius norm of the difference of two covariance
matrices allowing the dimension to be much larger than the sample sizes, whereas
their empirical size and power do not perform well when n is comparatively smaller
than p. Cai and Ma (2013) proposed a covariance matrix test based on U-statistics
in the high-dimensional setting under the data structure of i.i.d. within each sample.
Cai et al. (2013) developed a whole variance-covariance matrices test based on the
maximum of the standardized differences between the entries of the two sample
covariance matrices »; and Xq under the data structure of independence between
the two samples and i.i.d. within each sample. Also, they considered the support
recovery of difference between two covariance matrices under the null hypothesis is
rejected as well as testing them row by row. Li and Qin (2014) proposed tests for an
identity matrix and for the equality of two covariance matrices based on empirical
spectral distributions (SD) when the data dimension and the sample size are both
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large.

The novelty lies in the fact that high-dimensional data could be converted into a
stochastic process by stringing via existed methods and software packages, refer to
Chen et al. (2011b).

Stimulation for this part of this research comes from the close relationship be-
tween functional data and high-dimensional data. Chen et al. (2011b) constructed
stringing as a tool to reorder the components of high-dimensional vector data by
multi-dimensional scaling (MDS), thus transforming the high-dimensional vectors
into functional data. MDS projects data into a low-dimensional target space, where
the configuration in the target space aims to reproduce the proximity relations in
the original space, by minimizing a cost function. as well as transformed Pear-
son correlation as proximity measures in the original high-dimensional predictor
space (Cox and Cox, 2001). The configuration obtained by MDS projection into
one dimension provides an ordering of the predictors and assigns a location to each
predictor, aligning the predictors within a one-dimensional interval like pearls on
a string. Predictors with high proximity will tend to be positioned closely to-
gether after MDS projection, enabling the construction of smooth trajectories in
function space. Once the data have been converted into a smooth stochastic pro-
cess by stringing, functional principal component analysis (FPCA) can be used to
summarize and further analyze the high-dimensional data. Its implementation is
readily conducted by the option PACE-Stringing from PACE 2.15 package in Mat-
lab, see http://anson.ucdavis.edu/~mueller/data/pace.html. This motivates
us to take advantage of methodologies from functional data analysis by mapping
high-dimensional predict vectors into infinite-dimensional smooth random functions

(stochastic process).
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6.2 Methodology and main results

Now we come to develop testing procedure on equality of covariance matrices from

two high-dimensional data samples. Let Xl(l), e ,Xflll) and Xl(z), e ,X,(lz) be in-

dependent and identically distributed samples drawn from two p-dimensional ran-
(0)

. . . . 0 .
dom vectors with variance-covariance matrices >, and Eg ), respectively, where

p/n1 — oo and p/ny — oo within a large p, small n setting. Our objective is to test
H® .20 =50 v g®. 50 » 50 (6.1)
Similar to Section 5.2, we propose a three-step algorithm below.

Step 6.1. String high-dimensional data into functional data type.

In stringing, every high-dimensional vector is thought of as being generated by a
hidden smooth stochastic process {Z(t),t € [0,1]}, where each element of a grid of
support points ¢; € [0, 1] indices one possible predictor, s; being the position of the
corresponding predictor and Z(¢;) its value. The distance between predictor posi-
tions which can be derived from proximities such as empirical Pearson correlation is
interpreted as a measure of the relatedness of the predictors. Once a distance matrix
has been determined, the predictors are stringed into the real line by minimizing
the stress function, and the detail can be seen in Chen et al. (2011b). So, each p-
dimensional random vector is converted into a random function where the recordings
of every random function are scheduled on a regular and dense grid on interval [0, 1].
Denote Yl(l), e ,Y,fll) and Yl(g), e ,Y,g) to be the reordered random vectors with

covariance matrices ¥y and X, respectively. Then test (6.1) is equivalent to test
HY % =%, vs. HY . % # %,
Step 6.2. Obtain a pooling covariance matriz and spectrum decomposition.
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ni I OO I AT OO B ¢ )) (0 na 2) (2 2
Let £ = Ly (v =¥, )T =7,)) and P = L 372 (v -V, )T (v, -
e : : (1 nm (1
Y,.)) be the sample covariance matrices of two sample where Y,/ = nil > Yi( ) and

_n = nlz > Y respectlvely Denote 30 = ﬁiﬁo) + ﬁigo). It is readily
seen that £ -2 ¥ = (1—a)%; +a,, where « is defined at assumption 6.5 and ¥ is
an asymptotic pooled covariance matrices. Consequently, it has orthonormal eigen-

vector {ex}r=1 and corresponding decreasing sequence of non-negative eigenvalues

{Ak}r=1 such that,
Y= )\kegek.

Estimation of eigenvalues and eigenvectors {(Ag,ex)}r=1 is obtained by eigenequa-

tions,
SO¢, = A\péx,
with orthonormal constraints on {éx}x>1.

Step 6.3. Obtain the projection estimators of covariance matrices. We propose the

following estimators of covariance matrices.

K® K® K® K®
Si=> Y0y, D= Y 9%eley,
k=1p — k=11 —1
where
sy 1 (1) _ g0 fe) _gm) - am Lo s oo,
ﬁkkﬁl = Z {5 } {glk/ - Sk/ } I gk = Zé}k I 1k = _}/; ek;
™Mo ] p

0= N {8 -E e -} - L - e

Here the tuning parameter K® can be selected by K® = max{K® KP}, with K®

being the minimum number of the eigenvalues of f]m, m = 1,2, which explains 95% of
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the total variation for the transformed random function sequences Yi(l),z' =1,---,m

and Y;(Q) ;0 = 1,--- ny. However, it is noted that it is time consuming when p is
too large in our simulation. To overcome this problem, we adopt a practical way
to select K® in the simulation: we conduct a pilot 50 trials to select {K®}%, the

median of which is employed as our K® in all simulated trials.

Remark 6.1. In fact, it is easy to extend the above method to the two sample test of
high-dimensional vector with partial missing and partial completely observation. We
can rearrange the high-dimensional data using the completely observed subsample.
So, random wvectors are converted into partial densely and partial sparsely random

functions. According to the remark 5.1, the proposed method can also be applied for

this kind of data.

We demand the following assumptions in order to derive the asymptotic properties

= (1)
of statistic TC' .

W and Y@ = ,u2—|—w§2) where E(wl(l)) = E(w?)) =

3 K3

Assumption 6.1. Yi(l) = p1tw
(1)

7

(
wgl)) =3 and cov(wz@),w@)) = .

0, cov(w ;

Assumption 6.2. The eigenvalues of covariance matrices ¥ such that Ay > Ay >

Assumption 6.3. i, m = 1,2 may be written as p, = >, Sl(m)el, where §l(m) =
%umelT.

ni
7 ni+ng

Assumption 6.4. min{n;,ny} — — « for a fized constant a € (0,1).

Assumption 6.5. Assume the condition of Chen et al. (2011b) satisfies.

Remark 6.2. Assumption 6.1 is the slightly weaker than that of Li and Chen (2012)
(1) )

where w;’ and wg2 are divided into the product of two factor. Assumption 6.2 is
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used to guarantee the consistency of the estimators for eigenvector. Assumption

6.3 is used to prove the asymptotic normality of 191(11/) Assumption 6.4 is a reqular
condition in two sample test. Assumption 6.5 is useful to guarantee high dimensional

data which can be converted into a random function.

In order to present our testing statistic, we need to use of the below asymptotic

result.

Lemma 6.1. Under assumptions 6.1-6.5 and H0®, we have

i _ 5@
ﬁkk/ - ﬁkk/ d N(O 1)
L0 4 150 T

kK kK

where

=
=
——
[\
—~
D
o
ST
=
—
——
[\
I
~=
D
=
N/
—_
®
Eond
N~

wkk, = {ul ey } {ek Zlek} {,ul ek} {e i€y } + F [{e

=
S
ST~
>
——
[\
—~
D
=
S
ST
")
——
I
~=
D
B
\g
(e}
Q
o
——

wkk, = {,u2 o } {e;EQBk} {u2 ek} {e 1 2i9€y } + K [{e

(2)

W and w;

where w; are stated in assumption 6.1.

Based on lemma 6.1, we then propose the following statistic:

51 _5(2) 12
ning K® K® {ﬁkkliﬁkk,} _ K®(K®-1)

TE@ _ mtns k=1 £uk'=1 @ 2
K®(K® —1) ’
where w,,, = 22w A() + @(2) with w( m) m = 1,2 being the consistent
k' = itns kK n1+n k&' kk' o o)

m)
kk'

(m)

L+ M= 1,2 are unknown and

estimators of o' = 1,2, respectively. In fact, @

can be substituted by their consistent estimators ;- >3, [{éz(,? —é,(gl)}{él(;,) —é,(;)}—\lfl]?
and n% Z?jl[{éz(,f) — f,iz)}{éfj) — f,(j)} — U,]?, respectively, where ) = n%zzl{éz%) —
GUHEY — &) and Wy = L3 EY — EPHEY - €7}
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We are ready to present the asymptotic results of the proposed test. Theorems

. . . .. =0
6.1 and 6.2 below establish the asymptotic behaviors of the statistic 77C'" under
hypotheses H and H , respectively. The proofs of these theorems are provided in

Section 6.5.

Theorem 6.1. Under assumptions 6.1-6.5 and HY, we have
7=® d .
TC — N(0,1), min{ny,ny} — .
Theorem 6.2. Under assumptions 6.1-6.5 and H1®, we have
—® D .
TC — oo, min{ni,ny} — 0.

6.3 Simulation studies

—®
To compare the proposed method, denoted by T'C' ", with Li and Chen (2012), de-
noted by Li — C'hen, we carry out simulations for scenarios where p is much larger
than n. We choose a set of data with p ranging from 32 to 700 and n ranging from

20 to 100, respectively. We consider a moving average model

vV =zV 4270 (6.2)

il il il +1

as the null model of both populations for size evaluation. To assess the power per-
formance, the first population is generated according to (6.2), while the second is

from

VD =20 228  + 2%

ilo i,lo+1 i,la+27

(6.3)

where {Zz'(zll)}izl,~~~,nl;k=1,~--,p and {ZZ-(IZ)}i:h..,nQ;q:L.“7p+2 are 7.i.d sequences. Three
combinations of distributions are experimented in models (6.2) and (6.3), respec-

tively. They are: (i) both sequences are standard normal; (ii) centralized Gamma(4,
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0.5) for Sample 1 and centralized Gamma(0.5,4/2) for Sample 2; (iii) standard normal

for Sample 1 and centralized Gamma(0.5,/2) for Sample 2. The last two combina-
tions are designed to assess the performance under nonnormality. All the simulation
results reported are based on 1000 simulations with the nominal significance level to

be 5%. The empirical size and power of the test are reported in Table 6.1.

From Table 6.1, we can see when ﬁ® and Li— Chen have controllable empirical

size. It is noticeable that @® has higher power than that of Li—Chen. A significant
improvement can be obtained particularly when n; is relatively smaller, say n; = 20,
and p is large. This indicates that the proposed test is especially adaptive to the
problem of “large p, small n”. There are two reasons that might explain why our
method performs better. On one hand, stringing method itself works better when
dimension p is larger. On the other hand, observation on interval [0, 1] means that
it becomes denser when dimension p is increasing. This result is consistent with that

in Section 5.3, i.e. dense design performs better than sparse design.

6.4 Real data example: Mitochondrial calcium con-
centration data

Mitochondrial Calcium Concentration Data has been studied by some authors. For
example, Ruiz-Meana et al. (2003) investigated whether cariporide could inhibit
mitochondrial Na+/H+ exchanger during ischemia, delaying H+ gradient dissipa-
tion and ATP exhaustion. Gregory et al. (2015) analyzed Mitochondrial Calcium
Concentration Data to illustrate the test of two population mean vectors in the
“large p, small n” setting. The mitochondrial calcium was measured in two groups
(control and treatment). To a treatment group, a dose of cariporide was adminis-

tered, which is believed to inhibit cell death due to oxidative stress. The investiga-
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Table 6.1: Empirical size and power of test based on statistics TE’® and Li — Chen.

o4 128 256 512 700
ni,n2 Test Statistics Size
—®
TC 0.026 0.031 0.015 0.022 0.031
Sample 1 20 Li — Chen 0.054 0.051 0.048 0.051 0.038
——®
N(O,1) 5 TC 0.037 0.029 0.017 0.022 0.032
Li — Chen 0.060 0.033 0.043 0.054 0.049
—®
T 0.035 0.029 0.031 0.023 0.024
Sample 2~ 80 Li — Chen 0.060 0.047 0.048 0.052 0.053
N@1) 100 To® 0.029 0.034 0.028 0.023 0.023
’ Li — Chen 0.049 0.052 0.046 0.049 0.048
Power
0 To® 0.352 0.470 0.683 0.863 0.933
Li— Chen 0.256 0.267 0.277 0.282 0.291
5 To® 0.927 0.988 0.999 1.000 1.000
Li — Chen 0.821 0.830 0.837 0.832 0.849
0 7o® 0.996 1.000 1.000 1.000 1.000
Li — Chen 0.992 0.991 0.998 0.999 0.998
100 7e® 1.000 1.000 1.000 1.000 1.000
Li— Chen 1.000 0.999 1.000 1.000 1.000
Size
——®
TC 0.045 0.025 0.026 0.019 0.020
Sample 1~ 20 Li — Chen 0.117 0.069 0.063 0.051 0.040
—®
7O 0.033 0.031 0.021 0.029 0.020
Gamma(4,0.5) 50 Li— Chen 0.110 0.094 0.052 0.053 0.051
—®
T 0.041 0.036 0.027 0.038 0.033
Sample 2 80 Li — Chen 0.111 0.093 0.067 0.064 0.044
——®
T 0.050 0.050 0.042 0.055 0.043
Gamma(0.5,v/2) 100 Li— Chen 0.120 0.084 0.056 0.058 0.053
Power
0 o® 0.183 0.311 0.464 0.628 0.697
Li — Chen 0.282 0.290 0.309 0.265 0.277
0 To® 0.770 0.914 0.981 0.996 0.997
Li — Chen 0.665 0.693 0.750 0.801 0.828
" To® 0.974 0.996 1.000 1.000 1.000
Li — Chen 0.886 0.942 0.968 0.991 0.986
100 7o® 0.995 1.000 1.000 1.000 1.000
Li — Chen 0.945 0.986 0.995 0.998 1.000
Size
——®
TC 0.040 0.025 0.021 0.019 0.023
Sample 1~ 20 Li — Chen 0.099 0.076 0.059 0.070 0.050
—®
N, 0 TC 0.029 0.021 0.038 0.026 0.017
Li — Chen 0.111 0.069 0.068 0.057 0.053
—®
T 0.046 0.052 0.035 0.029 0.044
Sample 2~ 80 Li — Chen 0.099 0.091 0.065 0.064 0.060
—®
T 0.047 0.042 0.049 0.041 0.044
Gamma(0.5,v/2) 100 Li— Chen 0.122 0.085 0.069 0.056 0.047
Power
20 7o® 0.213 0.305 0.467 0.635 0.727
Li — Chen 0.296 0.278 0.207 0.276 0.295
5 7o® 0.794 0.924 0.982 0.997 0.999
Li — Chen 0.659 0.724 0.766 0.824 0.823
@ 7o® 0.979 1.000 1.000 1.000 1.000
Li — Chen 0.890 0.950 0.977 0.989 0.992
100 7o® 1.000 1.000 1.000 1.000 1.000
Li — Chen 0.958 0.982 0.996 0.999 1.000
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Table 6.2: The p-values of the test for the intact cells and permeabilized cells data.

K 2 3 4 5
intact cells data 0.0011 0.0041 0.0000 0.0000
permeabilized cells data 0.9645 0.8103 0.1922 0.1440

tors measured the mitochondrial concentration of Ca2+ every ten seconds during the
hour. In fact, due to technical reasons, the original experiment was performed twice,
using both the intact, original cells and permeabilized cells (a condition related to the
mitochondrial membrane), see Ruiz-Meana et al. (2003). The data have been made
available by Febrero-Bande and Oviedo de la Fuente (2012) in the R package. The
first 180 seconds of the data are removed, given the erratic behavior of the curves,
leaving p = 342 time points. The tests were applied to both the intact and perme-
abilized data to test for equality between the true treatment and control covariance
matrices.

For the intact cells data, the sample sizes are 89 where the sample sizes of control
group and treatment group are 44 and 45, respectively. Let >»; and X5 be, respec-
tively, the covariance matrices of control group and treatment group. We apply the
test procedure in Section 6.2 to check the hypotheses Hy : 31 = Y9 vs Hy : X1 # Ys.

K = 2 is selected by our method. Based on the asymptotic distribution of the test

statistic ﬁ®, the p-value is calculated to be 0.0011. At the standard significant level
a = 0.05, the null hypothesis Hy : 31 = X5 is thus rejected. For more illustration, we
also compute the p-values under different K values in Table 6.2. Such results show
that it is not reasonable to assume Y; = ¥ in applying a classifier to this data set.
The equality testing of covariance matrices is also conducted for permeabilized
cells data, where the sample sizes of control group and treatment group are 45. The
p-values under different K's are also included in Table 6.2. We can see that there
is little evidence that the covariance structures for the permeabilized cells data are

different for the control group and the treatment group.
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6.5 Proofs of main results

Proof of lemma 6.1 Under assumptions 6.1-6.3, if we can prove
(1 1 —1/2
&) =& =0,(n),
22 2 —1/2
& =67 = 0y(n,""),

then lemma 6.1 can be easily proved. It can be observed

5121) B 5,&1)
1 1 & 1
_ Z Y(l) T 5}({1) +{ = Z Y;(l)é;gr _ Z Y(l) T (64)
mp i mp = mp i

= Cl + CQ.

For C}, we have
ni T
01 = nLl %Y;( ) € — Il),ulTek (65)

=1

It is easy to see that (' is the average of independent and identically distributed

random variables. By the central limit theorem, we obtain

¢ =0, <n1_1/2> . (6.6)
For Cy, we have
1
Co = S Z YT {er — e} (6.7)
n =1

It is easy to see that f]go) - ¥ = Op(nl_m) and f]go) — 35 = Op(ny 12 ), so we
have 5O — % = 0,(n; ) and &] — ¢} = O,(n;"?). According to Cauchy-Schwarz

inequality, we have

O

P} =0, (). (65)
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By (6.4), (6.6) and (6.8), we obtain ,;5,9) - 5,(:) = Op(nfm). Similarly, we can prove

&) =67 = 0,(ny ).

Now we proof lemma 6.1. It can be observed

ni

s 1 A1) W) [ )
19kk: o Z {gik Sk }{gik’ Sk' }

i=1
_ 250)% W
=1

EDl—DQ.

Dy can be decomposed as

2

1
D =L Z Lyore lyars
il p

L (Lo Lot L+ )1 Suwrym | s
= > 2_9}/; Ck Z;Y; R T DYV (6 —ep)
=1 3

i (6.9)
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It is easy to show that Dis, Di3 and Dyy equal to o,(n~Y/2). For Dy;, we have
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According to assumption 6.4, we have

2 2
D11y N (el—crzlek/aE l{elwgl)} {e;wgl)} ] - (egElek/f) :

By assumption 6.3, we can obtain
D112 — D2 = 0p (nl_l/2> .

Because Dy13+ D114 is the average of independent and identically distributed random
variables with mean 0 and variance (u ey )*(ef L1ex) + (pf ex)?(e), X1e). By the

central limit theorem, we can obtain
(1 1 d 1
N {19;]3, — 19;]3,} — N <e£216k/,wlik),> ,

where @) = (1] e/ )2(e] Srex)+ (1] en)2(e), Srey )+ E{(ef wiV)? (] w)?}—(ef Siey ).

(2)

2 @)
)s where @

Similarly, we can prove 4/712{19](62}3/ — 19](;),} L5 N(e] Shey, @ o

(g e (e Saer) + (3 ex) (e Saey) + El{efw” P {efwf”}] — (] Saey)*. Under
H(C)@ , we obtain the conclusion of lemma 6.1. The proof is then completed.

Proof of theorem 6.1 According to lemma 6.1 and the Slutsky theorem, we can
easily obtain the the conclusion of theorem 6.1. The proof is then completed.

Proof of theorem 6.2 According to lemma 6.1, we have

¢! 32
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Under Hf@ , we obtain
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the proof is then completed.
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Chapter 7

Conclusions & Future Work

The title name contains the term longitudinal has three reasons: First, in Chapter 2,
data are collected by repeated measurements which can be regarded as longitudinal
data. For the random curve samples, we considered the two-sample mean curve
test and covariance function test in sparse and irregular data. It also can be seen
as longitudinal study. In addition, in real data analysis, precipitation and CD4
study are also longitudinal studies. Therefore, When functional data are observed
at irregular time points, perhaps just a few time points per subject, they are usually
referred as longitudinal data since they often arise from longitudinal studies.

The thesis has motivated further research in hands. Here we mainly report two
ongoing pieces of work.

The first one is to extend two-sample test of equality of covariance functions to

multiple sample scenarios. Suppose we have G independent samples
Yoin = iltgik) + Vgiltgik) + €giks
where g=1,--- |G, i=1,--- ,ng,and k =1,--- ,ng;. The hypotheses are

Hy:mi(s,t) = =,(s,t) vs. Hy:3j# ksuch that v(s,t) # v,(s, ).
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Let n be the whole sample size, i.e. n = Zle ng. When G = 2, it is easy to see that

ninsg

TC =

G
1
A2 - & A A2
n1+n2‘|% Yoll G;:l”gH% ’YgHza

G
where 49 = = 3 g4, and || f — g|[3 = §§{f (s, 1) — g(s, t)}*dsdt. Therefore, a natural
g=1

extension to G populations framework of the proposed test statistic is to consider
1 &
_ . £ 112
TCq = q Z ngl1%0 — Ygll3-
g=1

In this new setting, one should expect

1 & K[y & » 2
TCG:EZHQ Z - Z Ny P, + 0,(1),

g=1 I=1 g'=19'#g

where [)l(g)’s are similarly defined by involving {Yy ;x4 =1, ,ng, k=1,--- ,ng;}.

The next one is to consider the partial derivative of hypersurface functional data.
In practice, one may be more interested in the rate of change of function instead
of the function values themselves. Here by term "rate of change” of a function we
mean the derivatives of a function, and in multivariate case the partial derivatives.
Therefore, developing new methods for estimating the partial derivatives of functional
data will also be an interesting topic. In addition, appropriate mean regression that

can predict multivariate functional response deserves further investigation.

— 146 —



Bibliography

Ait-Saidi, A., Ferraty, F., Kassa, R. and Vieu, P. (2008) Cross-validated estimations
in the single-functional index model. Statistics, 42, 475-494.

Anderson, T. (2003) An Introduction to Multivariate Statistical Analysis (3rd ed.).
New York: Wiley-Interscience.

Arias-Castro, E., Candes, E. and Plan, Y. (2011) Global testing under sparse al-
ternatives: anova, multiple comparisons and the higher criticism. Ann. Statist.,
39(5), 2533-2556.

Ash, R. and Gardner, M. (1975) Topics in Stochastic Processes. Academic Press.

Aston, J. and Kirch, C. (2012) Detecting and estimating changes in dependent func-
tional data. J. Multi. Anal., 109, 204-220.

Aston, J., Pigoli, D. and Tavakoli, S. (2017) Tests for separability in nonparametric
covariance operators of random surfaces. Ann. Statist., 45(4), 1431-1461.

Benko, M., Hardle, W. and Kneip, A. (2009) Common functional principal compo-
nents. Ann. Statist., 37(1), 1-34.

Berkes, 1., Gabrys, R., Horvath, L. and Kokoszka, P. (2009) Detecting changes in
the mean of functional observations. J. R. Statist. Soc. B, 7T1(5), 927-946.

Billingsley, P. (1995) Probability and Measure (3rd edition). John Wiley & Sons Inc.,
New York.

Bosq, D. (2000) Linear Processes in Function Spaces. Springer.

Cai, T. and Hall, P. (2006) Prediction in functional linear regression. Ann. Statist.,
34, 2159-2179.

Cai, T., Liu, W. and Xia, Y. (2013) Two-sample covariance matrix testing and
support recoverary in high-dimensional and sparse settings. J. Am. Statist. Ass.,
108(501), 265-277.

Cai, T., Liu, W. and Xia, Y. (2014) Two-sample test of high dimensional means
under dependence. J. R. Statist. Soc. B, 76(2), 349-372.

147



BIBLIOGRAPHY PhD Thesis

Cai, T. and Ma, Z. (2013) Optimal hypothesis testing for high dimensional covariance
matrices. Bernoulli, 19(5B), 2359-2388.

Cai, T. and Yuan, M. (2010) Nonparametric covariance function estimation for func-
tional and longitudinal data. Tech. Rep.

Cardot, H., Ferrarty, F. and Sarda, P. (2003) Spline estimators for the functional
linear model. Statist. Sin., 13, 571-591.

Castro, P.; Lawton, W. and Sylvestre, E. (1986) Principal modes of variation for
processes with continuous sample curves. Technometrics, 28(4), 329-337.

Chen, D., Hall, P. and Miiller, H--G. (2011a) Single and multiple index functional
regression models with nonparametric link. Ann. Statist., 39, 1720-1747.

Chen, K., Chen, K., Miiller, H-G. and Wang, J.-L. (2011b) Stringing high-
dimensional data for functional analysis. J. Am. Statist. Assoc., 106(493), 275
284.

Chen, K., Delicado, P. and Miiller, H.-G. (2017) Modeling function-valued stochastic
processes, with applications to fertility dynamics. J. R. Statist. Soc. B, 79(1),
177-196.

Chen, L., Dou, W. and Qiao, Z. (2013) Ensemble subsampling for imbalanced mul-
tivariate two-sample tests. J. Am. Statist. Assoc., 108(504), 1308-1323.

Chen, S. and Qin, Y.-L. (2010) A two-sample test for high-dimensional data with
applications to gene-set testing. Ann. Statist., 38(2), 808-835.

Chen, S., Zhang, L. and Zhong, P. (2010) Tests for high-dimensional covariance
matrices. J. Am. Statist. Ass., 105(490), 810-819.

Chiou, J.-M., Miiller, H.-G. and Wang, J.-L. (2003) Functional quasi-likelihood re-
gression models with smooth random effects. J. R. Statist. Soc. B, 65(2), 405-423.

Cox, T. and Cox, M. (2001) Multidimensional Scaling. London: Chapman & Hall.

Cuevas, A., Febrero, M. and Fraiman, R. (2004) An anova test for functional data.
Computnl Statist. Data Anal., 47, 111-122.

Donoho, D. and Jin, J. (2004) Higher criticism for detecting sparse heterogeneous
mixtures. Ann. Statist., 32, 962-994.

Estévez-Pérez, G. and Vilar, J. (2013) Functional ANOVA starting from discrete
data: an application to air quality data. Enuviron. Ecol. Statist., 20, 495-517.

Fan, J. and Lin, S.--K. (1998) Test of significance when data are curves. J. Am.
Statist. Assoc., 98(443), 1007-1021.

— 148 —



PhD Thesis BIBLIOGRAPHY

Febrero, M., Galeano, P. and Gonzalez-Manteiga, W. (2008) Outlier detection in
functional data by depth measures, with application to identify abnormal NOx
levels. Environmetrics, 19(4), 331-345.

Febrero-Bande, M. and Oviedo de la Fuente, M. (2012) Statistical computing in
functional data analysis: the R package fda. usc. J. Stat. Softw., 51(4), 1-28.

Ferraty, F. (2011) Recent Advances in Functional Data Analysis and Related Topics.
Springer.

Ferraty, F., Keilegom, I. and Vieu, P. (2012) Regression when both response and
predictor are functions. J. Multi. Anal., 109, 10-28.

Ferraty, F. and Romain, Y. (2011) The Ozford Handbook of Functional Data Analysis.
Oxford University Press.

Ferraty, F. and Vieu, P. (2002) The functional nonparametric model and application
to spectrometric data. Computnl. Statist., 17, 545-564.

Ferraty, F. and Vieu, P. (2006) Nonparametric Functional Data Analysis. Springer.

Ferraty, F. and Vieu, P. (2009) Additive prediction and boosting for functional data.
Computnl Statist. Data Anal., 53, 1400-1413.

Fischl, M., Ribaudo, H., Collier, A., Erice, A., Giuliano, M., Dehlinger, M., Eron,
J., Saag, M., Hammer, S. and Vella, S. (2003) A randomized trial of 2 differ-
ent 4-drug antiretroviral regimens versus a 3-drug regimen, in advanced human
immunodeficiency virus disease. J. Infect. Dis., 188(5), 625-634.

Fisher, T., Sun, X. and Gallagher, C. (2010) A new test for sphericity of the covari-
ance matrix for high dimensional data. J. Multi. Anal., 101(10), 2554-2570.

Fisher, T. J. (2012) On testing for an identity covariance matrix when the dimension-
ality equals or exceeds the sample size. J. Statist. Planng Inf., 142(1), 312-326.

Fremdt, S., Horvath, L., Kokoszka, P. and Steinebach, J. (2014) Functional data
analysis with increasing number of projections. J. Multi. Anal., 124, 313-332.

Fremdt, S., Steinebach, J., Horvéath, L. and Kokoszka, P. (2013) Testing the equality
of covariance operators in functional samples. Scand. J. Statist., 40(1), 138-152.

Gasser, T. and Kneip, A. (1995) Searching for structure in curve samples. J. Am.
Statist. Assoc., 90(432), 1179-1188.

Gasser, T., Miiller, H.-G., Kohler, W., Molinari, L. and Prader, A. (1984) Nonpara-
metric regression analysis of growth curves. Ann. Statist., 12(1), 210-229.

— 149 —



BIBLIOGRAPHY PhD Thesis

Ghiglietti, A., Leva, F. and Paganoni, A. (2017) Statistical inference for stochastic
processes: two-sample hypothesis tests. J. Statist. Planng Inf., 180, 49-68.

Goérecki, T. and Smaga, L. (2015) A comparison of tests for the one-way ANOVA
problem for functional data. Comput. Stat., 30(4), 987-1010.

Gregory, K., Carroll, R., Baladandayuthapani, V. and Lahiri, S. (2015) A two-sample
test for equality of means in high dimension. J. Am. Statist. Assoc., 110(510),
837-849.

Grenander, U. (1950) Stochastic processes and statistical inference. Ark. Mat., 1(3),
195-277.

Gromenko, O., Kokoszka, P. and Reimherr, M. (2017) Detection of change in the
spatiotemporal mean function. J. R. Statist. Soc. B, 79(1), 29-50.

Gupta, A. and Giri, N. (1973) Properties of tests concerning covariance matrices of
normal distributions. Ann. Statist., 6, 1222—-1224.

Gupta, A. and Tang, J. (1984) Distribution of likelihood ratio statistic for testing
equality of covariance matrices of multivariate Gaussian models. Biometrika, 71,
555-559.

Hall, P. and Horowitz, J. (2007) Methodology and convergence rates for functional
linear regression. Ann. Statist., 35, 70-91.

Hall, P. and Hosseini-Nasab, M. (2006) On properties of functional principal compo-
nents analysis. J. R. Statist. Soc. B, 68(1), 109-126.

Hall, P., Miiller, H.-G. and Wang, J.-L. (2006) Properties of principal component
methods for functional and longitudinal data analysis. Ann. Statist., 34(3), 1493
1517.

He, G., Miiller, H.-G., Wang, J.-L. and Yang, W. (2010) Functional linear regression
via canonical analysis. Bernoulli, 16(3), 705-729.

Horvath, L. and Kokoszka, P. (2012) Inference for Functional Data with Applications.
Springer series in statistics, Springer, New York, NY.

Horvath, L., Kokoszka, P. and Reeder, R. (2013) Estimation of the mean of functional
time series and a two-sample problem. J. R. Statist. Soc. B, 75(1), 103-122.

Horvath, L., Kokoszka, P. and Reimherr, M. (2009) Two sample inference in func-
tional linear models. Can. J. Statist., 37(4), 571-591.

Horvath, L., Kokoszka, P. and Rice, G. (2014) Testing stationarity of functional time
series. J. Econometrics, 75(1), 103-122.

— 150 —



PhD Thesis BIBLIOGRAPHY

Horvéth, L. and Rice, G. (2015a) An introduction to functional data analysis and a
principal component approach for testing the equality of mean curves. Rev. Mat.
Complut., 28, 505-548.

Horvath, L. and Rice, G. (2015b) Testing equality of means when the observations
are from functional time series. J. Time Ser. Anal., 36, 84—108.

Jiang, C.-R. and Wang, J.-L. (2011) Functional single index models for longitudinal
data. Ann. Statist., 39(1), 362-388.

Kokoszka, P. and Reimherr, M. (2017) Introduction to Functional Data Analysis.
Chapman and Hall/CRC.

Kraus, D. (2015) Components and completion of partially observed functional data.
J. R. Statist. Soc. B, 77(4), 777-801.

Ledoit, O. and Wolf, M. (2002) Some hypothesis tests for the covariance matrix
when the dimension is large compared to the sample size. Ann. Statist., 30(4),
1081-1102.

Lee, E. and Park, B. (2012) Sparse estimation in functional linear regression. .J.
Multi. Anal., 105(1), 1-17.

Li, J. and Chen, S. (2012) Two sample tests for high-dimensional covariance matrices.
Ann. Statist., 40(2), 908-940.

Li, W. and Qin, Y. (2014) Hypothesis testing for high-dimensional covariance ma-
trices. J. Multi. Anal., 128, 108-119.

Li, Y. and Guan, Y. (2014) Functional principal component analysis of spatiotempo-
ral point processes with applications in disease surveillance. J. Am. Statist. Assoc.,
109(507), 1205-1215.

Li, Y. and Hsing, T. (2007) On rates of convergence in functional linear regression.
J. Multiv. Anal., 98, 1782-1804.

Li, Y. and Hsing, T. (2010) Uniform convergence rates for nonparametric regression
and principal component analysis in functional/longitudinal data. Ann. Statist.,
38(6), 3321-3351.

Li, Y., Wang, N. and Carroll, R. (2010) Generalized functional linear models with
semiparametric single-index interactions. J. Am. Statist. Assoc., 105, 621-633.

Lindquist, M. (2008) The statistical analysis of fMRI data. Statist. Sci., 23(4),
439-464.

Ma, S. (2016) Estimation and inference in functional single-index models. Ann. Inst.
Stat. Math., 68, 181-208.

— 151 —



BIBLIOGRAPHY PhD Thesis

Ma, S., Yang, L. and Carroll, R. (2012) A simultaneous confidence band for sparse
longitudinal regression. Statist. Sin., 22, 95-122.

Miiller, H.-G. (2014) Functional data analysis. International Encyclopedia of Statis-
tical Science, 554-555.

Miiller, H.-G. (2016) Peter Hall, functional data analysis and random objects. Ann.
Statist., 44, 18671887

Miiller, H.-G. and Yao, F. (2008) Functional additive models. J. Am. Statist. Assoc.,
103(484), 15341544,

O’Brien, P. (1992) Robust procedures for testing equality of covariance matrices.
Biometrics, 48, 819-827.

Oeppen, J. and Vaupel, J. (2002) Broken limits to life expectancy. Science, 296,
1029-1031.

Panaretos, V., Kraus, D. and Maddocks, J. (2010) Second-order comparison of Gaus-
sian random functions and the geometry of DNA minicircles. J. Am. Statist. Ass.,
105(490), 670-682.

Park, S. and Staicu, A. (2015) Longitudinal functional data analysis. Stat, 4, 212—
226.

Perlman, M. (1980) Unbiasedness of the likelihood ratio tests for equality of several
covariance matrices and equality of several multivariate normal populations. Ann.
Statist.t, 8, 247-263.

Pomann, G., Staicu, A. and Ghosh, S. (2016) A two-sample distribution-free test for
functional data with application to a diffusion tensor imaging study of multiple
sclerosis. J. R. Statist. Soc. C, 65(3), 395-414.

Pryor, S. (2013) Climate Change in the Midwest: Impacts, Risks, Vulnerability, and
Adaptation. Indiana University Press.

Qiu, Y. and Chen, S. (2012) Test for bandedness of high-dimensional covariance
matrices and bandwidth estimation. Ann. Statist., 40(3), 1285-1314.

Ramsay, J. (1982) When the data are functions. Psychometrika, 47(4), 379-396.

Ramsay, J. and Dalzell, C. (1991) Some tools for functional data analysis. J. R.
Statist. Soc. B, 53(3), 539-572.

Ramsay, J., Hooker, G. and Graves, S. (2009) Functional Data Analysis with R and
MATLAB. New York: Springer.

— 152 —



PhD Thesis BIBLIOGRAPHY

Ramsay, J. and Silverman, B. (2002) Applied Functional Data Analysis. New York:
Springer.

Ramsay, J. and Silverman, B. (2005) Functional Data Analysis. New York: Springer.

Rao, C. (1958) Some statistical methods for comparison of growth curves. Biometrics,
14(1), 1-17.

Rice, J. and Silverman, B. (1991) Estimating the mean and covariance structure
nonparametrically when the data are curves. J. R. Statist. Soc. B, 53, 233-243.

Ruiz-Meana, M., Garcia-Dorado, D., Pina, P., Inserte, J., Agullo, L. and Soler-
soler, J. (2003) Cariporide preserves mitochondrial proton gradient and delays
ATP depletion in cardiomyocytes during ischemic conditions. Am. J. Physiol.
Heart Circ. Physiol., 285(3), H999-H1006.

Schott, J. (2005) Testing for complete independence in high dimensions. Biometrika,
92(4), 951-956.

Schott, J. (2006) A high-dimnsional test for the equality of the smallest eigenvalues
of a covariance matrix. J. Multi. Anal., 97(4), 827-843.

Schott, J. (2007) A test for the equality of covariance matrices when the dimension is
large relative to the sample sizes. Comput. Stat. Data Anal., 51(12), 6535—6542.

Shi, J. and Choi, T. (2011) Gaussian Process Regression Analysis for Functional
Data. Chapman and Hall/CRC.

Shi, M., Weiss, R. and Taylor, J. (1996) An analysis of Paediatric CD4 counts for
acquired immune deficiency syndrome using flexible random curves. J. R. Statist.
Soc. C, 45(2), 151-163.

Srivastava, M. (2005) Some tests concerning the covariance matrix in high dimen-
sioanl data. J. Janpan Statist. Soc., 35(2), 251-272.

Srivastava, M. and Yanagihara, H. (2010) Testing the equality of serveral covariance
matrices with fewer observations than the dimension. J. Multi. Anal., 101(6),
1319-13209.

Staicu, A.-M., Lahiri, S. and Carroll, R. (2015) Significance tests for functional data
with complex dependence structure. J. Statist. Planng Inf., 156, 1-13.

Staicu, A.-M., Li, Y., Crainiceanu, C. and Ruppert, D. (2014) Likelihood ratio tests
for dependent data with applications to longitudinal and functional data analysis.
Scand. J. Statist., 41, 932-949.

Sugiura, N. and Nagao, H. (1968) Unbiasedness of some test criteria for the equality
of one or two covariance matrices. Ann. Math. Statist., 39, 1682-1692.

— 153 —



BIBLIOGRAPHY PhD Thesis

Torgovitski, L. (2015) Detecting changes in Hilbert space data based on “repeated”
and change-aligned principal components. Preprint ArXiv: 1509.07409.

Usset, J., Staicu, A.-M. and Maity, A. (2016) Interaction models for functional re-
gression. Computnl Statist. Data Anal., 94, 317-329.

Vaupel, J., Carey, J., Christensen, K., Johnson, T., Yashin, A., Holm, N. Ia-
chine, I., Kannisto, V., Khazaeli, A., Liedo, P., Longo, V., Zeng, Y., Manton,
K. and Curtsinger, J. (1998) Biodemographic trajectories of longevity. Science,
280(5365), 855-860.

Wang, J.-L., Chiou, J.-M. and Miiller, H.-G. (2015a) Review of functional data
analysis. Ann. Rev. Statist., 104, 1-41.

Wang, L., Peng, B. and Li, R. (2015b) A high-dimensional nonparametric multivari-
ate test for mean vector. J. Am. Statist. Assoc., 110(512), 1658-1669.

Wilmoth, J., Andreev, K., Jdanov, D. and Glei, D. (2007) Methods protocol for the

human mortality database, version 5. Technical Report.

Xia, Y. and Hérdle (2006) Semi-parametric estimation of partially linear single-index
models. J. Multiv. Anal., 97(5), 1162-1184.

Yang, J. and Zhang, T. (2017) Unified two-sample testing of mean functions for
sparse or dense functional data. Comput. Stat. Data Anal., Submitted.

Yang, J., Zhang, T., Liu, C. and Ferraty, F. (2017) Testing equality of covariance
operators/matrices for two-sample functional/high-dimensional data. Journal of
the Royal Statistical Society, Series B.

Yao, F. (2007) Asymptotic distributions of nonparametric regression estimators for
longitudinal or functional data. J. Multi. Anal., 98(1), 40-56.

Yao, F. and Miiller, H.-G. (2010) Functional quadratic regression. Biometrika, 97,
49-64.

Yao, F., Miiller, H.-G. and Wang, J.-L. (2005) Functional data analysis for sparse
longitudinal data. J. Am. Statist. Assoc., 100, 577-590.

Yuan, M. and Cai, T. (2010) A reproducing kernel Hilbert space approach to func-
tional linear regression. Ann. Statist., 38(6), 3412-3444.

Zhang, J.-T. (2013) Analysis of Variance for Functional Data. CRC press.

Zhang, J.-T. and Chen, J. (2007) Statistical inferences for functional data. Ann.
Statist., 35(3), 1052-1079.

— 154 —



PhD Thesis BIBLIOGRAPHY

Zhang, J.-T. and Liang, X. (2014) One-way ANOVA for functional data via global-
izing the pointwise F-test. Scand. J. Statist., 41(1), 51-71.

Zhang, J.-T., Liang, X. and Xiao, S. (2010) On the two-sample Behrens-Fisher prob-
lem for functional data. J. Stat. Theory Pract., 4, 571-587.

Zhang, T., Liu, C. and Yang, J. (2017a) Interaction models with nonlinear link for
functional regression. Can. J. Statist., Submitted.

Zhang, T., Yang, J., Liu, C., Yuen, K. and Liu, A. (2017b) Testing for equality
of mean surfaces for two-sample bivariate functional data. J. R. Statist. Soc. C,
Submitted.

Zhang, X., Shao, X., Hayhoe, K. and Wuebbles, D. (2011) Testing the structural sta-
bility of temporally dependent functional observations and application to climate
projections. Electron. J. Statist., 5, 1765-1796.

Zhao, X., Marron, J. and Wells, M. (2004) The functional data analysis view of
longitudinal data. Statist. Sin., 14(3), 789-808.

Zhong, P.-S. and Chen, S. (2011) Tests for high-dimensional regression coefficients
with factorial designs. J. Am. Statist. Assoc., 106(493), 260-274.

Zhong, P.-S.; Chen, S. and Xu, M. (2013) Tests alternative to higher criticism
for high-dimensional means under sparsity and column-wise dependence. Ann.
Statist., 41(6), 2820-2851.

Zhu, B., Taylor, J. and Song, P.-K. (2011) Semiparametric stochastic modelling of
the rate function in longitudinal studies. J. Am. Statist. Assoc., 106(496), 1485—
1495.

— 155 —



	Certificate of Originality
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Mean Surface Test for Two-sample Functional Data
	2.1 Introduction
	2.2 Model and data structure
	2.3 Profile test of bivariate functional data
	2.4 Globe test of bivariate functional data
	2.5 Simulation studies
	2.6 Real data examples
	2.6.1 Precipitation data
	2.6.2 European human mortality rate data

	2.7 Proof of the theorems

	3 Mean Curve Test for Two-sample Functional Data
	3.1 Introduction
	3.2 Methodology and main results
	3.3 Simulation studies
	3.3.1 Tuning parameter selection
	3.3.2 Test of mean function

	3.4 Real data examples 
	3.4.1 CD4 data
	3.4.2 Nitrogen oxide emission level data

	3.5 Proofs of main results

	4 Interaction Models with Nonlinear Link for Functional Regression
	4.1 Introduction
	4.2 Model alternative based on K-L representation
	4.3 Estimation of coefficient functions of all functional covariates
	4.4 Asymptotic theory
	4.5 Simulation studies
	4.6 Real data example: Climate data
	4.7 Some additional details and proofs of main results
	4.7.1 Part a
	4.7.2 Part b
	4.7.3 Part c


	5 Covariance Operator Test for Two-sample Functional Data
	5.1 Introduction
	5.2 Methodology and main results
	5.2.1 Estimation of covariance operator
	5.2.2 Asymptotic distributions

	5.3 Simulation studies
	5.4 Real data example: Environmental pollution data
	5.5 Proofs of main results

	6 Covariance Matrix Test for Two-sample High-dimensional data
	6.1 Introduction
	6.2 Methodology and main results
	6.3 Simulation studies
	6.4 Real data example: Mitochondrial calcium concentration data
	6.5 Proofs of main results

	7 Conclusions & Future Work
	Bibliography

