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Abstract

Sparse probabilistic graphical models play an important role in struc-

tured prediction when the dependency structure is unknown. By in-

ducing sparsity over edge parameters, a typical sparse graphical model

can combine structure learning and parameter estimation under a uni-

fied optimization framework. In this thesis, we propose three specific

sparse graphical models accompanied by their applications in data

restoration and multi-label classification respectively.

For the data restoration task, we propose random mixed field (RMF)

model to explore mixed-attribute correlations among data. The RMF

model is capable of handling mixed-attribute data denoising and im-

putation simultaneously. Meanwhile, RMF employs a structured mean-

field variational approach to decouple continuous-discrete interactions

to achieve approximate inference. The effectiveness of this model is

evaluated on both synthetic and real-world data.

For the multi-label classification task, we propose correlated logistic

model (CorrLog) and conditional graphical lasso (CGL), to learn con-

ditional label correlations. (1) The CorrLog model characterizes pair-

wise label correlations via scalar parameters, thus effects in an explicit

(or direct) fashion. More specifically, CorrLog extends conventional

logistic regression by jointly modelling label correlations. In addition,

elastic-net regularization is employed to induce sparsity over the scalar

parameters that define label correlations. CorrLog can be efficiently

learned by regularized maximum pseudo likelihood estimation which



enjoys a satisfying generalization bound. Besides, message passing

algorithm is applied to solve the multi-label prediction problem. (2)

The CGL model further leverages features in modelling pairwise label

correlations in terms of parametric functions of the input features,

which effects in an implicit (or indirect) fashion. In general, CGL

provides a unified Bayesian framework for structure and parameter

learning conditioned on input features. We formulate the multi-label

prediction as CGL inference problem, which is solved by a mean field

variational approach. Meanwhile, CGL learning is efficient after ap-

plying the maximum a posterior (MAP) methodology and solved by a

proximal gradient procedure. The effectiveness of CorrLog and CGL

are evaluated on several benchmark multi-label classification datasets.
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Chapter 1

Introduction

1.1 Background

Probabilistic graphical models (PGMs) are the marriage of graph theory and

probability theory, which are very useful to deal with uncertainty and complex-

ity in the design and analysis of machine learning algorithms [12, 58, 133]. In

general, PGMs use nodes (empty or filled) to represent random variables, and

edges (undirected or directed) to represent dependency between them. Based

on the graphical representation, three basic tasks of PGMs are usually carried

out: (1) structure learning is to recover the pattern of edges or the structure of

the graph that best models or explains the data; (2) parameter learning aims

to obtain effective model parameters by maximizing data likelihood; (3) infer-

ence targets to efficiently calculate partition function value, marginals and most

probable explanation (MPE) solution.

As a recent research interest, sparse PGMs play an important role in struc-

tured prediction when the dependency structure is unknown. By inducing spar-

sity over edge parameters, a typical sparse graphical model can combine structure

learning and parameter estimation under a unified optimization framework. Ac-

cording to the types of random variables involved, sparse PGMs can be summa-

1



rized into three main categories: continuous, discrete and mixed graphical mod-

els. Continuous graphical models deal with real-valued random variables which

may be modelled, for example, by Gaussian, exponential, gamma, Wishart, beta,

Dirichlet and von Mises distributions. Discrete graphical models handle discrete-

valued random variables by using discrete distributions such as Bernoulli, bi-

nomial, categorical, multinomial and Poisson. Mixed graphical models consider

mixed continuous and discrete random variables.

1.2 Continuous Graphical Models

We restrict our discussion on pairwise undirected graphical models (UGMs). In

general, given a set of m random variables {xi}mi=1, a pairwise UGM defines the

joint distribution p(x) in terms of unary and pairwise potentials,

p(x) = exp

{
m∑
i=1

φ(xi) +
∑
i<j

φij(xi, xj)− A(Θ)

}
, (1.1)

where A(Θ) = log exp
{∑m

i=1 φ(xi) +
∑

i<j φij(xi, xj)
}

is the log-partition func-

tion which makes the distribution normalized.

Let the m random variables follow a multivariate Gaussian distribution, the

unary and pairwise potentials are in quadratic form of x, the log-partition function

can be calculated in closed-form. More specifically,

p(x) = exp

{
−1

2
(x− µ)TΩ(x− µ)− log

(
(2π)m/2(det Ω)−1/2

)}
, (1.2)

where Θ = {µ,Ω} are the model parameters. Given a set of training data

{x(l)}nl=1, the structure learning of Gaussian graphical model can be expressed

as minimizing the negative log-likelihood with `1-regularization over the preci-

2



sion matrix entries. The optimization problem is

min
Ω�0
− log det Ω + Tr(SΩ) + λ

∑
i<j

|ωij|, (1.3)

where S = 1
n

∑n
l=1(x(l) − x̄)(x(l) − x̄)T refers to the sample covariance matrix.

Note that x̄ = 1
n

∑n
l=1 x(l) is the sample mean of the training data. The positive

semi-definite (PSD) constraint Ω � 0 ensures that the solution yields a valid

distribution. In literature, the above optimization problem is usually referred

to as the graphical lasso [44, 91, 148]. It was firstly discussed in [91] where the

pseudo-likelihood methodology is employed to approximate the original problem

and leads to multiple interleaved linear regression sub-problems.

Apart from the Gaussian graphical model, it is also possible to consider other

kinds of continuous distributions such as exponential, gamma, beta, Wishart,

Dirichlet and von Mises. For example, [106] discussed about the von Mises graph-

ical model in terms of structure learning, parameter estimation and inference

which is claimed to be useful in modelling angular data.

1.3 Discrete Graphical Models

By applying `1-regularization over the parameters of a multivariate discrete dis-

tribution, we can obtain the structure learning problem of discrete graphical

models [33, 69, 134]. In literature, most of the works restricted the discrete vari-

ables to be binary with Ising potentials. Given a set of m binary valued random

variables {yi}mi=1, the joint distribution of Ising graphical model can be formulated

as below

p(y) = exp

{
m∑
i=1

βiyi +
∑
i<j

αijyiyj − A(Θ)

}
, (1.4)

3



where Θ =
{
{βi}mi=1, {αij}mi<j

}
and A(Θ) is the log-partition function. One can

observe that, an edge parameter αij being zero reflects a missing edge between

nodes i and j in the graph. Given a set of training data {y}nl=1, the structure learn-

ing of Ising graphical model can be expressed as minimizing the `1-regularized

negative log-likelihood. In other words,

min
Θ
−

m∑
i=1

βiφ̄i −
∑
i<j

αijφ̄ij + A(Θ) + λ
∑
i<j

|αij|, (1.5)

where φ̄i = 1
n

∑n
l=1 y

(l)
i and φ̄ij = 1

n

∑n
l=1 y

(l)
i y

(l)
j are usually referred to as the

sufficient statistics of Ising graphical model. Due to the intractable normalizing

constant, the above problem is more complicated than that of Gaussian case. To

handle the computational intractability, different approximate approaches were

investigated in literature. For example, [134] applied the pseudo-likelihood ap-

proximation to the original problem which leads to solving multiple interleaved

logistic regression sub-problems.

Until now, we mainly focus on the Ising graphical model to build intuition.

There are other kinds of discrete graphical models involving categorical, multi-

nomial or Poisson random variables. For example, [143] investigated the Poisson

graphical model to discover dependency structure of count data. Meanwhile,

it is also possible to consider continuous approximation or repulsion in learning

discrete graphical models. For continuous approximation, [82] investigated the re-

lationship between the structure of a discrete graphical model and the support of

the inverse of a generalized covariance matrix (which is defined by augmenting the

usual covariance matrix with higher-order interaction terms). This work opened

a possibility of applying Gaussian graphical model structure learning methods to

certain classes of discrete graphical models. For repulsive structure learning, [18]

investigated anti-ferromagnetic Ising models and provided a structure learning

algorithm whose complexity depends on the strength of repulsion.
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1.4 Mixed Graphical Models

By applying group `1-regularization over the edge parameters among mixed ran-

dom variables, we can obtain the structure learning problem of mixed graphical

models [27, 68, 142]. Consider a set of mc real valued and md binary valued ran-

dom variables {xs}mc
s=1, {yi}

md
i=1, the joint distribution of Gaussian-Ising graphical

model [68] can be formulated as

p(x,y) = exp

{
−1

2
xTΩx +

∑
s

µsxs +
∑
s

∑
i

ρsixsyi

+
∑
i

βiyi +
∑
i<j

αijyiyj − A(Θ)

}
, (1.6)

where Θ = {Ω, {µs}, {ρsi}, {βi}, {αij}} and A(Θ) is the log-partition function.

Given a set of training data {x,y}nl=1, the structure learning of Gaussian-Ising

graphical model is to minimize the `1-regularized negative log-likelihood.

min
Θ: Ω�0

1

2
Tr(SΩ)−

∑
s

µsφ̄
c
s −

∑
s

∑
i

ρsiφ̄
m
si −

∑
i

βiφ̄
d
i −

∑
i<j

αijφ̄
d
ij

+ A(Θ) + λc
∑
s<t

|ωst|+ λm
∑
s

∑
i

|ρsi|+ λd
∑
i<j

|αij|, (1.7)

where S = 1
n

∑n
l=1(x(l))(x(l))T , φ̄cs = 1

n

∑n
l=1 x

(l)
s , φ̄msi = 1

n

∑n
l=1 x

(l)
s y

(l)
i , φ̄di =

1
n

∑n
l=1 y

(l)
i and φ̄dij = 1

n

∑n
l=1 y

(l)
i y

(l)
j are the sufficient statistics. To handle the

computational intractability, we can again use the pseudo-likelihood approxima-

tion. In literature, mixed graphical models were first proposed by Lauritzen

and Wermuth [67] (and further studied in [45, 64–66]). However, the number

of model parameters scales exponentially with the number of discrete variables.

To reduce the number of model parameters, [68] considered a specialization with

only pairwise interactions and fixed precision matrix of continuous variables. As

a little more complex specialization, [27] further allowed triple interactions be-
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tween two discrete and one continuous variable. Motivated by the advantages

of exponential families, [142] considered mixed graphical models of general expo-

nential family distributions. Three examples, Gaussian-Ising, Poisson-Ising and

Gaussian-Poisson, are discussed to model heterogeneous data.

1.5 Data Restoration

The task of data restoration is to reduce the effect of noise and missing values,

which plays a critical preprocessing step in developing complex data mining al-

gorithms. In literature, some researchers describe the data restoration task as a

very huge concept, which may include but not limited to outlier detection and

removal, noise reduction, and missing value imputation. Interested readers can

check more details in the survey paper [158]. It is worth mentioning that out-

lier detection and removal has been very hot topic for the past decades [110].

The aim is to distinguish and remove those points that are faraway from other

points. In fact, outliers can be regarded as instance-level noise, thus the outlier

removal process will intrinsically shrink the dataset. In contrast, attribute-level

noise refers to undesirable incorrect measurements in some specific attribute of

all instances. For example, the Ecoli dataset [79] is used for the prediction of

proteins’ cellular localization sites and it contains 336 instances with 8 attributes

for each instance. The 6-th attribute, which represents the score of discriminant

analysis of the amino acid content of outer membrane and periplasmic proteins,

contains random noise.

Different from the characteristics of noise, missing values are unavailable mea-

surements. In practice, there are various reasons leading to missing values, such

as incaution or unwillingness in manual data entry process, equipment errors and

too high acquisition cost. Handling missing values highly depends on the task

at hand. There are 3 types of missing values: missing completely at random

(MCAR), missing at random (MAR), and not missing at random (NMAR) [80].
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MCAR refers to the scenario where missingness of attribute/feature values is in-

dependent of both observed and unobserved measurements. MAR occurs when

the missingness pattern is conditionally independent of the unobserved features

given the observations. Missing data is NMAR when the MAR condition fails to

hold.

Complex real-world data often contain continuous and discrete variables mea-

suring different aspects of the same subject. For example, survey reports, social

networks and high-throughput genomics. Note that, in machine learning and

data mining literature, the word “heterogeneous” may refer to two different re-

search settings: (1) heterogeneity inside a single data source and (2) heterogeneity

between multiple data sources. More specifically, the first setting describes a sub-

ject consisting of mixed continuous and discrete attributes, thus it is also called

“mixed-attribute” by some researchers [100,157]. As for the second setting, take

heterogeneous social networks for example, given a set of subjects, there exist

multiple different networks, each representing a particular kind of relationship,

and each kind of relationship may play a distinct role in a particular task [21].

In literature, there are several flows of works on dealing with data noise and

missing values, such as preprocessing (denoising and imputation), designing re-

duced models, training robust classifier, etc. We present a brief overview of the

research works as below.

1.5.1 Data Denoising Methods

In this subsection, we will try to focus on the less researched attribute-level data

denoising methods. Unlike popular image denoising research, attribute-level data

denoising research has long been negalected. The possible reason is, an image

usually has very strong local smoothness which can benefit denoising, but such

local smoothness rarely exists in general data, such as survey report data.

To achieve good local smoothness, [73] proposed to use cluster labels to rear-
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range all the instances in Ecoli dataset [79]. Then a wavelet shrinkage method

is employed to filter certain attribute across instances. Although such “fake”

smoothness may occasionally make sense, it is intrinsically unfounded and prone

to random instability.

Different from the above deterministic approach, probabilistic models provide

a very reasonable platform for handling noisy data. The key assumption is the

observed noisy data are generated by adding random noise to those latent noise-

free data. Upon this generative perspective, one can define some meaningful

prior on latent variables which encodes the attribute-level correlations. In addi-

tion, given the latent graphical structure, the observed variables can be thought

of independent to each other. In literature, there are many well-studied latent

variable models, such as finite mixture models [49], factor analysis and probabilis-

tic principle component analysis (PPCA) [123], mixtures of factor analyzers [48],

mixtures of PPCA [122] and their Bayesian extensions [94,95]. Those well-studied

models can be straightforwardly applied to handle noisy data. Take PPCA for

example, the classical PCA is expressed as the maximum likelihood solution of

a probabilistic latent variable model. Noise variance is usually very small com-

pared to signal variance and its energy will reside in those small eigenvalues after

PCA projection. By shrinking those small eigenvalues via Wienner filter, one

can obtain a “denoised” version of the original data matrix after reconstruction.

This is also the key principle behind many state-of-the-art signal/image denoising

algorithms [19,32].

Below we review some of the effective attempts along this approach. [132]

addressed the problem of learning a Gaussian mixture from a set of noisy data

points. Different from ubiquitous noise case, [61] considered partial noise case.

They presented an approach for identifying noisy fields (i.e., some specific at-

tributes) and using the remaining noise-free fields for subsequent modeling and

analysis. To achieve such objective, they designed three components for the

model: a generative model of the clean records, a generative model of the noise
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values, and a probabilistic model of the corruption process.

1.5.2 Data Imputation Methods

Data imputation techniques aim at providing good estimates of missing val-

ues. From the first sense, missing values can be filled with zero, mean/mode

value of available attribute values in database. Other recent techniques modi-

fied classical regressors/classifiers to impute continuous/discrete attributes. For

example, K-nearest neighbors imputation (KNNI) [124] imputes missing values

with the mean/mode of K nearest neighbors for continuous/discrete attributes.

Clustering-based imputation [70] first cluster all instances into several cluters and

then appy KNNI within each cluster. Local least squares imputation (LLSI) [57]

imputes missing values of the target instance as a linear combination of similar

instances. Support vector machine imputation (SVMI) [52] is a SVM regres-

sion based algorithm to fill in missing data. Multiple kernel learning imputation

(MKLI) [157] can impute mixed-attribute missing values by estimating kernel

density from available attributes in all instances. [117] presented a random forest

modification for mixed-attribute data imputation.

Another family of imputation methods builds probabilistic latent variable

models to find the most probable completion. More specifically, [49] addressed

the imputation problem by learning mixture models from a set of incomplete

data. To well handle missing values, the authors derived a suitable expectation-

maximization (EM) algorithm. [113] designed a regularized expectation maxi-

mization imputation (REMI) method by modeling the latent variable as a mul-

tivariate Gaussian. Singular value decomposition imputation (SVDI) [124] com-

bined principle component (PC) regression and EM estimation to estimate miss-

ing values. In addition, some researchers developed Bayesian extension to classical

latent variable models. For example, [98] utilized Bayesian principle component

analysis (BPCA) to conduct PC regression, baysian estimation and EM learning.
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1.5.3 Model Induction with Corrupted Data

The previous subsections summarized preprocessing treatments for noise and

missing values, this subsection reviews related works on model induction with

corrupted data. For model induction with corrupted data, it is usually assumed

that the corruption arises similarly both in training and testing data. The ob-

jective is to directly train robust classifiers to classify corrupted data, thus the

preprocessing step is avoided.

Model induction from noisy data has been widely considered in various top-

ics, [103] studied the effect of noise on the discovery of classification rules and

on their accuracy. A modified form of an existing rule-building algorithm that

can tolerate noisy descriptions is also presented. [112] investigated the induction

of a concept description given noisy instances and under potential concept drift.

They presented a solution to the task and claimed it is supported by psychological

and mathematical results. The work of [1] recommended the strategy of selecting

the most consistent rule for the sample when errors emerge randomly. They also

presented an analysis on the estimation of the rate of noise. Based on the statis-

tical reasoning, [9] proposed a novel formulation of support vector classification

(TSVC), which allows uncertainty in input data. A probabilistic support vector

machine (PSVM) is proposed in [71], to capture the probabilistic information of

the separating margin and formulate the decision function within such a noisy

environment. [54] replaced the hinge loss of standard SVM by pinball loss, which

achieved noise-insensitivity and re-sampling stability.

Model induction from incomplete data also has been widely investigated by

extending standard models, such as linear discriminant analysis (LDA), logistic

regression, neural networks, support vector machines (SVM) and kernel meth-

ods [89]. Following are just some representative works on extending standard

SVM formulation to handle missing values. In [8], SVM with certainty is extended

via replacing the linear constraints by a probabilistic one. In addition, the model

10



parameters are estimated by means of EM algorithm. [115] presented treatments

for dealing with missing variables in the context of Gaussian processes (GP) and

SVM. They casted kernel methods as an estimation problem in exponential fami-

lies, where estimation with missing variables is formulated as computing marginal

distributions. [101] defined a modified risk to analyse SVM involving missing val-

ues. [24,25] considered the structurally incomplete data case where certain feature

values are undefined for some data cases. Unlike those “imputation + classifier”

approaches, an instance-specific max-margin framework is formulated to handle

instances with missing values. Two approaches, one approximation to standard

quadratic program (QP) and another iterative projection method, are designed

to solve the resulting difficult optimization problem. [109] designed both online

and batch algorithms which are robust to missing values. For batch setting, they

developed a convex relaxation of a non-convex problem to jointly estimate an

imputation function, used to fill in the values of missing features, along with the

classification hypothesis.

The objective of learning against adversary is to train robust models against

various simulated corruptions (noise and missing values) and then apply the

model to corrupted testing data. As discussed in [34,86], the learning algorithms

should anticipate the actions of the adversary and account for them when training

a classifier. Notice that, the experimental setting is very similar to our setting,

i.e., training data is noise-free and complete, but testing data maybe corrupted

with noise and missing values. However, there is an important difference: most of

the current data restoration methods (including our algorithm) are unsupervised,

while learning against adversary methods are intrinsically belong to supervised

learning.
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1.6 Multi-Label Classification

The task of multi-label classification is to assign multiple possible labels to a single

instance, which is very common in document summarization, music annotation,

image classification, and bioinformatics applications. Since this topic maintains a

huge literature, we cannot cover all the methods but try to build intuitions using

representative methods from two different views.

1.6.1 The View of Label Dependence

As a first attempt, multi-label classification can be naively decomposed into mul-

tiple independent single-label classifications which is called the binary relevance

(BR) method. Though simple and efficient, BR may perform poorly if labels cor-

relates to each other. To improve the classification performance, it is beneficial

to consider correlations among different class labels. For example, in image clas-

sification, the existence of a table in an image will probably indicate the existence

of a chair.

According to [35, 36], there are two types of label correlations, unconditional

and conditional correlations respectively. Roughly speaking, the former charac-

terizes the global label correlations independent of any specific instance, while

the latter describes the label correlations conditioned on a specific instance in

a local way. Quite a number of multi-label classification algorithms have been

proposed in the past a few years, by exploiting either of unconditional or con-

ditional label correlations. From a classification perspective, proper utilization

of unconditional correlations can be beneficial but in an average sense due to

the marginalization effect. In contrast, modelling of conditional correlations is

preferable since they are directly related to prediction. We discuss this view of

summarization in Section 3.2 of Chapter 3.
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1.6.2 The View of Learning Strategy

Similar to the taxonomy of [50, 125, 153], multi-label classification methods can

also be summarized into four main categories according to the view of learning

strategy, i.e., problem transformation, algorithm adaptation, dimension reduc-

tion, and structure learning.

Problem transformation methods reformulate multi-label classification into

single-label classification by virtue of fitting data to algorithm. Methods in this

category rely on the basic assumption that single-label classifiers work more ef-

fectively in the transformed space. Algorithm adaptation methods extend typical

classifiers to multi-label situation by the philosophy of fitting algorithm to data.

This category requires specific strategies when modifying typical classifiers, thus

an effective strategy for one classifier may not generalize well to another classifier.

Dimension reduction methods target to handle high-dimensional features and la-

bels. Structure learning methods leverage label dependency structure estimation

to improve multi-label classification. We discuss this view of summarization in

Section 4.2 of Chapter 4.

1.6.3 Music Annotation and Retrieval

As a direct application of multi-label classification, music annotation and retrieval

deals the specific problem of annotating and retrieving relevant descriptions of a

music file. More specifically, music prediction tasks include tags prediction given a

song file (a clip or a whole song), artist name prediction, relevant song prediction

given a song file, tags or artist name. To exploit semantic relationship between

these different musical concepts, several ingredients are required including music

representation and semantic correlation modelling. Below we just introduce some

of the representative methods, interested readers are referred to a recent survey

on music annotation [46].

For music representation, the “bag-of-words” model [51] is typically utilized to
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build dictionary-based representation of the delta Mel-Frequency Cepstral Coeffi-

cient (MFCC) feature. In particular, k-means is firstly applied to MFCC features

to learn K cluster centroids which are literally referred to as “audio dictionary”.

Then for each music file, by counting the number of its MFCC features according

to the dictionary, we can obtain its “bag-of-words” (also called vector quantized)

representation. Along the line of research, [128] investigated training Gaussian

mixture models (GMM) over an audio feature space for each word in a vocab-

ulary. Base on the vector quantized representation, [51] proposed a Codeword

Bernoulli Average (CBA) model that learns to predict the probability that a word

applies to a song from audio. It is also possible to consider Dirichlet mixtures

(DirMix) [92] to model the audio feature space. In [31], the authors proposed

the hierarchical EM Gaussian mixture models (HEM-GMM) and the hierarchical

EM dynamic texture model (HEM-DTM) to handle multi-modal and complex

dependence among data. For semantic correlation modelling, context-SVM [97]

investigated how stacked generalization can be utilized to improve the perfor-

mance of a basic automatic music tag annotation system based on audio content

analysis.

1.6.4 Multi-Label Image Classification

Under the generic scope of multi-label classification, multi-label image classifica-

tion handles the specific problem of predicting the presence or absence of multiple

object categories in an image. Like many related high-level vision tasks such as

object detection [131, 145], object recognition [5, 136], visual tracking [90, 138],

image annotation [43] and scene classification [15,116], multi-label image classifi-

cation [83–85, 118, 139, 149] is very challenging due to large intra-class variation.

In general, the variation is caused by viewpoint, scale, occlusion, illumination,

semantic context, etc.

In literature, many effective image representation schemes have been devel-
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oped to handle this high-level vision task. Most of the classical approaches derive

from handcrafted image features, such as GIST [99], dense SIFT [13], VLAD [55],

and object bank [72]. In contrast, the very recent deep learning techniques have

also been developed for image feature learning, such as deep CNN features [23,60].

These techniques are more powerful than classical methods when learning from

a very large amount of labeled and unlabeled images.

Apart from powerful image representation methods, label correlations have

also been exploited to significantly improve image classification performance.

Most of the current multi-label image classification algorithms are motivated

by considering label correlations conditioned on image features, thus intrinsically

falls into the CRFs framework. For example, probabilistic label enhancement

model (PLEM) [77] designed to exploit image label co-occurrence pairs based on

a maximum spanning tree construction and a piecewise procedure is utilized to

train the pairwise CRFs [63] model. More recently, clique generating machine

(CGM) [121] proposed to learn the image label graph structure and parameters

by iteratively activating a set of cliques. It also belongs to the CRFs framework,

but the labels are not constrained to be all connected which may result in isolated

cliques.

1.7 Summary of Contributions

In this thesis, we propose three specific sparse graphical models to discover mixed-

attribute correlations and conditional label dependency for data restoration and

multi-label classification respectively.

In Chapter 2, a random mixed field (RMF) model is proposed to explore

mixed-attribute correlations among data. The RMF model employs Gaussian-

Potts potential to fit mixed numerical and categorical data. The learned generic

RMF prior is capable of handling mixed-attribute data denoising and imputa-

tion in a single framework. The content of this chapter is based on our recent
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publication in [74].

In Chapter 3, an elastic-net correlated logistic (CorrLog) model is developed

to learn conditional label correlations in an explicit (or direct) way. The Cor-

rLog model jointly learns multiple logistic regressions and their label correlations

measured by scalar parameters. In addition, elastic-net regularization is utilized

to balance stability and sparsity over the scalar parameters when exploiting label

correlations. This chapter originates from our recent publication in [76].

In Chapter 4, a conditional graphical lasso (CGL) model is proposed to learn

conditional label correlations in an implicit (or indirect) fashion. The CGL model

leverages features in modelling pairwise label correlations by using parametric

functions of the input features. Technically speaking, CGL provides a unified

framework for structure learning, parameter estimation and inference from a

probabilistic perspective. The multi-label prediction is formulated as CGL in-

ference problem that is solved based on mean field assumption. Meanwhile, label

correlation discovery is achieved by CGL learning which is an efficient proximal

gradient procedure with the maximum a posterior (MAP) methodology. This

chapter is based on our recent publication in [75].
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Chapter 2

Random Mixed Field Model for

Data Restoration

Noisy and incomplete data restoration is a critical preprocessing step in devel-

oping effective learning algorithms, which targets to reduce the effect of noise

and missing values in data. By utilizing attribute correlations and/or instance

similarities, various techniques have been developed for data denoising and im-

putation tasks. However, current existing data restoration methods are either

specifically designed for a particular task, or incapable of dealing with mixed-

attribute data. In this chapter, we develop a new probabilistic model to provide

a general and principled method for restoring mixed-attribute data. The main

contributions of this study are two-fold: a) a unified generative model, utilizing a

generic random mixed field (RMF) prior, is designed to exploit mixed-attribute

correlations; and b) a structured mean-field variational approach is proposed to

solve the challenging inference problem of simultaneous denoising and imputa-

tion. We evaluate our method by classification experiments on both synthetic

data and real benchmark datasets. Experiments demonstrate, our approach can

effectively improve the classification accuracy of noisy and incomplete data by

comparing with other data restoration methods.
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2.1 Introduction

Real world data usually contain noise and missing values, which could severely

degrade the performance of learning algorithms [88].The task of data restoration

is to reduce the effect of noise and missing values, and plays a critical prepro-

cessing step in developing effective learning algorithms. Attribute-level noise and

missing values are two of the major concerns in data restoration. In the literature,

attribute-level noise refers to undesirable incorrect measurements in some specific

attribute of all instances. Different from the characteristics of noise, missing val-

ues are unavailable measurements. In practice, there are various reasons leading

to noise and missing values, such as incaution or unwillingness in manual data

entry process, equipment failure and high acquisition cost.

Data denoising targets to estimate the true value from noisy measurements

based on certain assumptions. Unlike popular image denoising research [19, 20],

the research on attribute-level data denoising has long been limited. One possible

reason is that images usually have strong local smoothness which can benefit

denoising, but such local smoothness rarely exists in general data, such as survey

reports. To achieve good local smoothness, [73] proposed to use cluster labels

to rearrange all the instances in Ecoli dataset [79]. Then a wavelet shrinkage

method is employed to filter certain attribute across instances. Although such

“ad hoc” smoothness could make sense, it is intrinsically unfounded and prone to

random instability. Different from deterministic approaches, probabilistic models

provide a more rational approach for handling noisy data. The key assumption

is the observed corrupted data are generated by adding random noise to latent

noise-free data. Through such generative models, one can exploit informative

priors over latent variables so as to encode attribute correlations.

Data imputation aims at providing good estimates of missing values. De-

terministic approaches resort to modify classical regressors/classifiers to impute

missing attributes. For example, K nearest neighbors imputation (KNNI) [124]
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imputes missing values with the mean/mode of K nearest neighbors for continu-

ous/discrete attributes, as well as other techniques including local least squares

imputation (LLSI) [57], support vector machine imputation (SVMI) [52], multi-

ple kernel learning imputation (MKLI) [157], and random forest imputation [117].

On the other hand, probabilistic latent variable models are employed to find the

most probable imputation. For example, [49] addressed the imputation problem

by learning mixture models from an incomplete dataset. [113] designed a regu-

larized expectation-maximization imputation (REMI) method by modelling the

latent variables with multivariate Gaussian. Singular value decomposition im-

putation (SVDI) [124] combined principle component (PC) regression and EM

estimation to estimate missing values. Some researchers also developed Bayesian

principle component analysis based imputation [98], which jointly conducts PC

regression, Bayesian estimation and EM learning.

Despite their effectiveness in exploiting attribute correlations and/or instance

similarities, existing methods have two main limitations: (1) they are specifically

designed for a particular task, either denoising or imputation; (2) most of them

are incapable of dealing with mixed-attribute data directly, and a prerequisite

conversion step can inevitably cause information loss. In this study, we formu-

late the mixed-attribute data restoration problem with a random mixed field

(RMF) model. Moreover, to solve the resulting challenging inference problem,

we derive a structured variational approach based on the mean field assumption.

By exploiting mixed-attribute correlations, the proposed framework is capable of

mixed-attribute data denoising and imputation at the same time.

The rest of this chapter is organized as follows. Section 2.2 briefly reviews

related research status of mixed graphical models. Section 2.3 introduces the

proposed RMF model and illustrates its properties with interpretations. Section

2.4 presents algorithms for RMF inference by a structured mean-field variational

approach, and for RMF learning by maximum pseudo likelihood estimation with

sparse regularization. Section 2.5 reports results of empirical evaluations, where

19



both synthetic dataset and benchmark real datasets are used, and applications

to mixed-attribute data restoration and classification are also considered.

2.2 Related Works

Recently, mixed graphical models have attracted increasing attentions [27,68,142]

to meet the need for heterogeneous multivariate data modelling and analysis

[37,78,135]. In general, mixed graphical models extend classical graphical models

by letting nodes to emerge from different kinds of both continuous and discrete

random variables.

In the literature, mixed graphical models were first proposed in [67] to model

mixed continuous and discrete variables. In this seminal work, the multinomial

and conditional Gaussian distributions are used to represent the joint hetero-

geneous multivariate distribution. However, the number of model parameters

scales exponentially with the number of discrete variables. To reduce the number

of model parameters, [68] considered only pairwise interactions and fixed precision

matrix for continuous variables. [27] further explored triple interactions between

two discrete and one continuous variable. [142] considered mixed graphical models

via a unified exponential family distribution to handle mixed-attribute data.

Though an RMF model belongs to general mixed graphical models, we propose

to investigate the inference and parameter learning aspects of RMF model which

is indeed complementary to the latest structure learning research. Specifically,

1) a structured mean field approach is derived to solve the inference problem of

RMF model; 2) a variational expectation maximization algorithm is implemented

to estimate the noise parameters given a fixed RMF prior.
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(a) Mixed-net

Observed continuous variable

Observed discrete variable

Latent continuous variable

Latent discrete variable

Directed edges

Continuous-continuous edge

Discrete-discrete edge

Continuous-discrete edge

(b) Symbol explanations

Figure 2.1: An example of random mixed field model. (a) The hidden network is
a “mixed-net” consisting of both continuous and discrete nodes. (b) explains all
the four types of nodes and five types of edges.

2.3 Random Mixed Field Model

An RMF model is usually constructed by a hidden network playing the prior

part and a corresponding set of observed nodes playing the likelihood part. See

Figure 2.1 for a general example of RMF model. Note that, RMF model can be

regarded as a specification of general mixed graphical models. In the following,

we first describe the general framework of RMF model, and then give derivations

of the inference algorithm. Parameter learning and data restoration algorithms

will also be discussed. To simplify discussion, we will consider a fully-connected,

pairwise, and continuous-discrete mixed graph in the next part of the paper.

Given a general mixed pairwise graph G = (V,E), we have the vertex set

V = Vu ∪ Vv ∪ Vx ∪ Vy representing latent continuous/discrete, observed con-

tinuous/discrete variables, and the edge set E = Euu ∪ Evv ∪ Euv ∪ Eux ∪ Evy de-

noting the union of continuous-continuous, discrete-discrete, continuous-discrete

connections and emissions. Consider the mixed-net example in Figure 2.1a which

consists of four types of nodes and five types of edges. In detail, Vu and Vv are

represented by cyan and red circles, Vx and Vy are denoted by cyan and red
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filled circles. On the other hand, Euu, Evv and Euv correspond to green, purple

and yellow line segments; Eux and Evy correspond to cyan and red directed line

segments.

An RMF model defines a joint distribution over the latent and observed vari-

ables according to some specific graphical configuration. In general, the joint

distribution can be factorized into the prior and likelihood parts as below,

p(u, v, x, y|Θ) = p(u, v|Θp)p(x, y|u, v; Θn), (2.1)

where Θ = Θp ∪Θn represents the union of prior and noise parameters.

The prior distribution is defined over latent variables via a Gaussian-Potts

mixed potential,

p(u, v|Θp) ∝ exp

(
mc∑
s=1

mc∑
t=1

−1

2
ωstusut +

mc∑
s=1

µsus

+
mc∑
s=1

md∑
j=1

ρsj(vj)us +

md∑
j=1

md∑
k=1

φjk(vj, vk)

)
, (2.2)

where Θp = {{ωst}, {µs}, {ρsj}, {φjk}} denotes the prior parameters. In particu-

lar, ωst, µs, ρsj and φjk parameterizes continuous-continuous edge potential, con-

tinuous node potential, continuous-discrete edge potential, and discrete-discrete

edge potential, respectively. Upon this mixed Gaussian-Potts prior distribution,

we can also obtain node-wise conditional distributions for each variable. Specifi-

cally, the conditional distribution of a continuous variable us given all its neigh-

boring variables is a Gaussian distribution with a linear regression model for the
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mean and ω−1
ss being the unknown variance,

p(us|u\s, v) =

√
ωss√
2π

exp(ζ), (2.3)

ζ =
−ωss

2

us −
(
µs +

∑
j ρsj(vj)−

∑
t6=s ωstut

)
ωss

2

.

Note that, the backslash operator \ is used to exclude variable s in defining the

set of neighboring variables. The conditional distribution of a discrete variable

vj given its neighbors is a multinomial distribution with Lj states,

p(vj|v\j, u) =
exp(ξvj)∑Lj

l=1 exp(ξl)
, (2.4)

ξl =

(∑
s

ρsj(l)us + φjj(l, l) +
∑
k 6=j

φjk(l, vk)

)
.

The likelihood is defined based on the assumption that all observed variables

are independent to each other conditioned on the latent variables,

p(x, y|u, v; Θn) =
mc∏
s=1

p(xs|us)
md∏
j=1

p(yj|vj), (2.5)

where Θn = {{σs}, {ϕj}} denotes the noise parameters of Gaussian and multino-

mial distributions. In other words, the continuous emission corresponds to addi-

tive white Gaussian noise (AWGN), and the discrete emission represents random

flipping noise (RFN). Consequently, the distribution of xs conditioned on us is

modelled as a Gaussian with the noise parameter σs,

p(xs|us) =
1√

2πσs
exp

(
− 1

2σ2
s

(xs − us)2

)
. (2.6)

And the distribution of yj given vj is modelled as a multinomial distribution
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Figure 2.2: The proposed structured mean field approximation can be regarded as
cutting off those mixed-type edges and absorbing the interactions in the form of
expected sufficient statistics, i.e., Eq(us)[us] and Eq(vj)[ρsj(vj)], respectively. Such
a posterior approximation will result in two separate subgraphs, which are much
easier to handle. In addition, it is required to alternately update each of the two
subgraphs’ joint distributions until convergence.

parameterized by noise parameter ϕj,

p(yj|vj) =
exp(ϕj(yj, vj))∑Lj

l=1 exp(ϕj(l, vj))
. (2.7)

2.4 Algorithms

2.4.1 Structured Mean Field

With an RMF model, data restoration can be achieved by the inference over pos-

terior distribution p(u, v|x, y; Θ). Since the calculation of the likelihood p(x, y; Θ)

is intractable, we seek to approximate inference approaches. Specifically, we use

the variational approach, which is considered to be more efficient than sampling

methods. Based on the mean field assumption, the optimal variational approxi-
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mation of p(u, v|x, y; Θ) is given by

q∗(u, v) = arg min
q(u,v)=
q(u)q(v)

KL[q(u, v)‖p(u, v|x, y; Θ)]. (2.8)

The minimization of the Kullback-Leibler divergence in (2.8) can be achieved by

maximizing a lower bound,

L(q) = Eq(u)q(v)

[
ln
p(x, y, u, v)

q(u)q(v)

]
(2.9)

of the log evidence ln p(x, y) = ln
∑

v

∫
u
p(x, y, u, v) w.r.t. q(u) and q(v), respec-

tively. Accordingly, the update formula for q(u) and q(v) are given by [12],

q(u)← 1

Zu
expEq(v)[ln p(u, v, x, y)] (2.10)

q(v)← 1

Zv
expEq(u)[ln p(u, v, x, y)], (2.11)

where Ep[f ] calculates the expectation of function f w.r.t. distribution p, and Zu

and Zv are the normalization terms.

To solve Eqn. (2.10) for updating q(u), we evaluate the expectation w.r.t.

q(v),

Eq(v)[ln p(u, v, x, y)] ≡ −1

2

mc∑
s=1

mc∑
t=1

ωstusut

+
mc∑
s=1

µsus +
mc∑
s=1

md∑
j=1

Eq(vj)[ρsj(vj)]us

+
mc∑
s=1

[
−(xs − us)2

2σ2
s

]
+

md∑
j=1

Eq(vj)[ϕj(yj, vj)]

≡ −1

2
uT Ω̂u+ γ̂(v, x)Tu, (2.12)

where the notation ≡ denotes the two terms on the left and right hand sides are

equivalent up to a constant, and Ω = {ωst}, Ω̂ = Ω + diag{ 1
σ2
s
}, {γ̂(v, x)}s =
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µs +
∑

j Eq(vj)[ρsj(vj)] + xs
σ2
s
. Fortunately, q(u) follows a multivariate Gaussian

distribution, q(u) = N(u|B̂−1γ̂(v, x), B̂−1). Notice that, for the Gaussian-Potts

model defined in Eqn. (2.2), we do not need to calculate the inverse of the updated

precision matrix B̂. The reason is that the continuous-discrete edge potentials

are only absorbed into the first-order term of q(u). In addition, the noise term

diag{ 1
σ2
s
} is added to the diagonal of B thus does not affect the original graphical

connections defined in B. Consequently, algorithms such as Gauss elimination

and GaBP [11] can be employed to efficiently infer the mean B̂−1γ̂(v, x) when B

is sparse.

Regarding Eqn. (2.11), we have the expectation w.r.t. q(u),

Eq(u)[ln p(u, v, x, y)]

≡
mc∑
j=1

mc∑
k=1

φjk(vj, vk) +

md∑
j=1

mc∑
s=1

ρsj(vj)Eq(us)[us]

+
mc∑
s=1

Eq(us)

[
−(xs − us)2

2σ2
s

]
+

md∑
j=1

ϕj(yj, vj)

≡
md∑
j=1

md∑
k=1

φjk(vj, vk) +

md∑
j=1

ϕ̂j(yj, vj, u), (2.13)

where ϕ̂j(yj, vj, u) =
∑

s ρsj(vj)Eq(us)[us] + ϕj(yj, vj). In other words, q(v) fol-

lows a pairwise discrete MRF, q(v) ∝ exp
{∑

j

∑
k φjk(vj, vk) +

∑
j ϕ̂j(yj, vj, u)

}
.

Note that, for the Gaussian-Potts model defined in Eqn. (2.2), those interaction

and emission terms {ϕ̂j} do not affect the original graphical connection defined

in {φjk}. Thus, we can use the loopy belief propagation [93] algorithm to solve

the pairwise discrete MRF inference problem.

In the above derivations, the mixed-type edge terms appeared in both q(u) and

q(v) but in different forms. Figure 2.2 illustrates the process of formulating two

interacting subgraphs via Eq(us)[us] and Eq(vj)[ρsj(vj)] when the hidden network

is a mixed-net. The alternative updating between q(u) and q(v) is performed
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until convergence to a stationary point. The stationary point corresponds to

two completely independent subgraphs that jointly approximate the whole mixed

graph.

2.4.2 Parameter Estimation

Considering the data restoration task, we follow the setting of a clean training

dataset and a corrupted testing dataset [111]. Regarding “clean”, we mean the

samples are noise-free and complete and “corrupted” means the samples contain

noise and missing values. According to this setting, the RMF prior parameters Θp

can be learned from the clean training dataset. Fortunately, several third-party

learning techniques, such as, variants of graphical lasso [44], `1 regularized pseudo-

likelihood [6, 68] and `1 regularized node-wise regression [141], can be utilized to

learn this generic prior. Although these techniques are originally designed for

structure learning, the resulting sparsified parameters will not only indicate the

graphical structure, but also provide a good parameterization of the generic prior.

When restoring the corrupted testing dataset, domain knowledge can be em-

ployed to yield a good estimate of the noise parameters Θn. If unfortunately

this method fails, a variational EM algorithm can be adopted to estimate noise

parameters given all testing data and the generic RMF prior. In general, given

N i.i.d. observation samples X = {x(i)} and Y = {y(i)}, the variational EM

algorithm iterates between variational inference (E-step) and parameter estima-

tion (M-step). Since the RMF prior parameters are fixed after learning from

the training dataset, we can only iteratively infer q(u, v) and estimate Θn on the

testing dataset until convergence. The corresponding noise parameter estimation
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in M-step is achieved by taking derivatives of the objective function Q(Θ)

Q(Θ) =
∑
i

∑
v(i)

∫
u(i)

q(u(i), v(i)) ln p(x(i), y(i), u(i), v(i))

=
∑
i

∑
v(i)

∫
u(i)

q(u(i))q(v(i))
[
ln p(u(i), v(i))

+
∑
s

ln p(x(i)
s |u(i)

s ) +
∑
j

ln p(y
(i)
j |v

(i)
j )

]
(2.14)

w.r.t. σ2
s and ϕj(a, b) respectively. Note that we have made explicit the testing

sample index i for clarity.

For continuous noise parameter, since σ2
s only appears in p(x

(i)
s |u(i)

s ), we can

throw all other terms into the constant. After applying the continuous likelihood

distribution in Eqn. (2.6), the specified objective of Eqn. (2.14) is

Q(σ2
s) ≡

∑
i

∑
v(i)

∫
u(i)

q(u(i))q(v(i)) ln p(x(i)
s |u(i)

s )

=
∑
i

∫
u
(i)
s

q(u(i)
s ) ln p(x(i)

s |u(i)
s )

≡ −N
2

lnσ2
s −

1

2σ2
s

∑
i

∫
u
(i)
s

q(u(i)
s )(x(i)

s − u(i)
s )2 (2.15)

Taking derivative of Q(σ2
s) w.r.t. σ2

s , and setting it to zero, we have

− N

2σ2
s

+
1

2σ4
s

∑
i

∫
u
(i)
s

q(u(i)
s )(x(i)

s − u(i)
s )2 = 0

⇒ σ2
s =

1

N

∑
i

∫
u
(i)
s

q(u(i)
s )(x(i)

s − u(i)
s )2

=
1

N

∑
i

(x(i)
s )2 − 2

N

∑
i

x(i)
s E

q(u
(i)
s )

[u(i)
s ]

+
1

N

∑
i

E
q(u

(i)
s )

[(u(i)
s )2]. (2.16)

For discrete noise parameter, since ϕj only appears in p(y
(i)
j |v

(i)
j ), we can
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similarly treat all other terms as constant. By substituting the discrete likelihood

distribution with Eqn. (2.7), we have another specified objective of Eqn. (2.14)

Q(ϕj) ≡
∑
i

∑
v(i)

∫
u(i)

q(u(i))q(v(i)) ln p(y
(i)
j |v

(i)
j )

=
∑
i

∑
v
(i)
j

q(v
(i)
j ) ln p(y

(i)
j |v

(i)
j )

=
∑
i

∑
v
(i)
j

q(v
(i)
j )ϕj(y

(i)
j , v

(i)
j )

−
∑
i

∑
v
(i)
j

q(v
(i)
j ) ln

∑
l

exp
(
ϕj(l, v

(i)
j )
)

(2.17)

Note that ϕj corresponds to a square table of size Lj × Lj and the degree of

freedom for each column is Lj − 1 due to the normalization requirements. Now

we specifically consider the element in ath row and bth column. In detail, take

derivative of Q(ϕj) w.r.t. ϕj(a, b) and set it to zero, we obtain

∑
i

q(v
(i)
j = b)I(y(i)

j = a) =
∑
i

q(v
(i)
j = b)

exp(ϕj(a, b))∑
l exp(ϕj(l, b))

⇒ exp(ϕj(a, b))∑
l exp(ϕj(l, b))

=

∑
i I(y

(i)
j = a)q(v

(i)
j = b)∑

i q(v
(i)
j = b)

. (2.18)

It is interesting that this equation seems to be indirectly related to an optimal

ϕj(a, b). However,
exp(ϕj(a,b))∑
l exp(ϕj(l,b))

is exactly the desired probability p(yj = a|vj = b).

Upon this equation, the normalization issue is actually sidestepped.

So far, it seems that our derivation only considers noise. However, it is very

straightforward to modify the proposed framework to handle missing values. Con-

sider some of the observed variables of sample i are missing, say x
(i)
m and y

(i)
m , we

can simply delete those p(x
(i)
m |u(i)

m ) and p(y
(i)
m |v(i)

m ) terms, and keep all the other

terms totally unchanged. Then the proposed variational inference procedure is

modified accordingly. It is worth mentioning that our framework can resort to
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(a) Ground truth (b) Noisy observation

(c) Denoised result

Figure 2.3: The mixed-net graph used in our simulation contains 15 continuous
(HSV-colored) and 10 discrete (grey-colored) nodes. The nodes are colored ac-
cording to attribute values of a representative example. The three types of edges
(continuous-continuous in red, discrete-discrete in black and continuous-discrete
in light grey) are randomly chosen from all possible edges.

the generic RMF prior even when heavy missingness occurs. Thus, the simple

deletion strategy is also applicable when the missing values become prevalent.

2.5 Experiments

2.5.1 Evaluation on Synthetic Data

We design a simulation study to show that mixed-attribute correlations can effec-

tively help reduce noise effects and improve classification performance. Consider
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Figure 2.4: KNN (left plot) and SVM (right plot) classification accuracies of noisy
(black) and denoised (light grey) data under different levels of random noise (the
noise strength τ ranges from 0.1 to 0.5). Each bar represents the mean and
standard deviation of 10 independent experiments.

a mixed-net graph consisting of 15 continuous and 10 discrete nodes with corre-

lation parameters defined as below,

µs = 1, ωss = 1,∀s ∈ Vu, ωst = 4, ∀st ∈ Euu;

ρsj = [3 2 1],∀sj ∈ Euv;

φjj = 0,∀j ∈ Vv, φjk =


1.5 0.5 0.5

0.5 1.5 0.5

0.5 0.5 1.5

 ,∀jk ∈ Evv.

In addition, we formulate two classes by adding two small but different random

numbers (δ1, δ2 ∈ [−0.5, 0.5]) to all elements of ρsj. According to this setting, we

generate 750 random examples for each class. Then we split all the examples into

training and testing sets with a ratio of 2 : 1. The training set is utilized to train

RMF model and KNN, SVM classifiers. And the testing set is used to generate

noisy testing sets by injecting different levels of AWGN to continuous attributes

and RFN to discrete attributes. In addition, the corruption strength is defined at
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five different percentages, i.e., τ = 0.1, 0.2, 0.3, 0.4, 0.5. For continuous attributes,

the noise standard deviations are σs = τ σ̌s, s = 1, 2, . . . ,m, with σ̌s being the

signal standard deviations. For discrete attributes, the flipping probabilities are

formulated as p(yj 6= a|vj = a) = τ , j = 1, 2, . . . , n.

Figure 2.3 illustrates the synthetic mixed-net graph structure and a represen-

tative example. We observe that the colors of these denoised continuous nodes

are much closer to ground truth than noisy observation. In addition, the ob-

served wrong state values of the discrete variables (in dotted circles) are also

corrected after applying our inference algorithm. Besides the qualitative result,

we also conduct quantitative classification experiment and summarize the results

in Figure 2.4. According to the error bars, RMF improves the performance of

classification significantly.

2.5.2 Evaluation on Real Data

In this section, we present experimental results on four real-world mixed-attribute

datasets from the UCI machine learning repository [79], which are “Adult”,

“Credit”, “Statlog-Australian” and “Statlog-German” as described in Table 2.1.

The “Adult” dataset has already been split into train/test in approximately

2/3, 1/3 proportions. As for the “Credit”, “Statlog-Australian” and “Statlog-

German” datasets, we simply select the first 2/3 proportion of all the instances

as the training set and the remaining as the testing set.

Furthermore, to specifically consider the effect of all comparison methods on

handling noise/missingness at testing stage, the experimental setting is clean

training data versus corrupted testing data. The same methodology has also

been widely employed in the literature, for example [34, 86, 111]. Consequently,

all models and classifiers are built using clean training data and applied to handle

corrupted testing data.

Except where no corruption is applied, each reported result is the average

32



Table 2.1: Datasets Summary. #Train./#Test. Inst. Stands for the Number of
Training and Testing Instances Respectively. #Num./#Cat. Attr. Stands for
the Number of Numerical and Categorical Attributes Respectively.

Datasets
#Train.

Inst.
#Test.
Inst.

#Num.
Attr.

#Cat.
Attr.

Testing Set
Class Distrib.

Adult 32561 15060 6 8 [0.2457, 0.7543]
Credit 460 220 6 9 [0.3909, 0.6091]

Statlog-AU 460 230 6 8 [0.5609, 0.4391]
Statlog-GE 667 333 7 13 [0.7117, 0.2883]

classification accuracy over 10 independent experiments in which random noise

and missingness are injected into the testing data. More importantly, all com-

parison methods are carried out on the same random noisy or incomplete testing

data.

2.5.3 Data Denoising

For data denoising task, we employ the same noisy data generation strategy

used in previous simulation study. More specifically, five different levels of noise

strength (τ = 0.1, 0.2, 0.3, 0.4, 0.5) are applied to all the four UCI datasets. Table

2.2 presents the classification accuracies of standard classifiers, before and after

applying RMF denoising. As expected, the classification accuracy decreases as

the noise strength increases compared to noise-free data classification. On the

other hand, for most cases, the classification accuracies are effectively improved

after RMF denoising. In addition, SVM classifier is more sensitive to noise than

KNN classifier as the performance drops faster. In fact, SVM makes predictions

using pre-trained fixed hyperplane weights while KNN is a lazy learner which can

make adjustments for new instances.

2.5.4 Noisy Data Imputation

We further evaluate RMF’s capability on the task of data imputation under noise.

A little different from previous setting, the corrupted testing data are generated
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Table 2.2: Classification Accuracies with/without Data Denoising.

τ 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Method Adult Credit

KNN
0.8248

0.8174 0.8063 0.7944 0.7821 0.7694
0.8227

0.7727 0.7191 0.6605 0.6105 0.5273
RMF+KNN 0.8174 0.8083 0.7967 0.7865 0.7748 0.7700 0.7386 0.6936 0.6764 0.6455

SVM
0.8467

0.8356 0.8243 0.8084 0.7951 0.7817
0.8636

0.7895 0.7200 0.6455 0.5900 0.4968
RMF+SVM 0.8413 0.8317 0.8186 0.8053 0.7920 0.7895 0.7382 0.6859 0.6664 0.6336

Method Statlog-Australian Statlog-German
KNN

0.8783
0.8052 0.7274 0.6617 0.6148 0.5526

0.7417
0.7189 0.6895 0.6700 0.6703 0.6474

RMF+KNN 0.8091 0.7613 0.7396 0.7074 0.6635 0.7147 0.6970 0.6880 0.6757 0.6655
SVM

0.8478
0.7791 0.6948 0.6422 0.5752 0.4965

0.7688
0.7486 0.7204 0.6955 0.6778 0.6580

RMF+SVM 0.7974 0.7661 0.7361 0.7078 0.6657 0.7523 0.7411 0.7210 0.7270 0.7096

Table 2.3: Classification Accuracies with Noisy Data Imputation when τ = 0.2.

ρ 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9
Method Adult Credit

KNNI+KNN 0.8063 0.8018 0.7814 0.7543 0.7075 0.3577 0.7191 0.7114 0.6859 0.6377 0.5673 0.4645
REMI+KNN 0.8063 0.8043 0.7918 0.7683 0.7333 0.6929 0.7191 0.7136 0.7045 0.6705 0.6441 0.6005
missF+KNN 0.8063 0.8033 0.7844 0.7605 0.7323 0.6940 0.7191 0.7205 0.7159 0.6586 0.6018 0.5068
RMFI+KNN 0.8083 0.7997 0.7794 0.7631 0.7553 0.7543 0.7386 0.7245 0.7041 0.6732 0.6355 0.6150
KNNI+SVM 0.8243 0.8144 0.7944 0.7703 0.7236 0.4947 0.7200 0.7095 0.6764 0.6300 0.5477 0.4555
REMI+SVM 0.8243 0.8190 0.8088 0.7889 0.7574 0.7032 0.7200 0.7150 0.6995 0.6668 0.6291 0.5327
missF+SVM 0.8243 0.8171 0.7974 0.7742 0.7460 0.7127 0.7200 0.7209 0.7168 0.6668 0.6064 0.4718
RMFI+SVM 0.8317 0.8222 0.7972 0.7743 0.7589 0.7547 0.7382 0.7205 0.7091 0.6795 0.6377 0.6155

Method Statlog-Australian Statlog-German
KNNI+KNN 0.7274 0.7261 0.6952 0.6470 0.6000 0.5696 0.6895 0.6952 0.6913 0.6550 0.6057 0.5637
REMI+KNN 0.7274 0.7317 0.7222 0.6917 0.6596 0.6000 0.6895 0.7030 0.6874 0.6784 0.6604 0.5817
missF+KNN 0.7274 0.7400 0.7296 0.6978 0.6435 0.5348 0.6895 0.6970 0.6916 0.6706 0.6679 0.6405
RMFI+KNN 0.7613 0.7635 0.7217 0.6926 0.6470 0.5857 0.6970 0.6913 0.6946 0.6712 0.6465 0.6141
KNNI+SVM 0.6948 0.7022 0.6800 0.6474 0.5896 0.4917 0.7204 0.7282 0.7015 0.6895 0.5844 0.4147
REMI+SVM 0.6948 0.7070 0.7017 0.7013 0.6600 0.5770 0.7204 0.7327 0.6994 0.6976 0.6838 0.6793
missF+SVM 0.6948 0.7117 0.7087 0.6874 0.6430 0.5183 0.7204 0.7345 0.6955 0.6901 0.6808 0.6505
RMFI+SVM 0.7661 0.7700 0.7317 0.7009 0.6561 0.5857 0.7411 0.7312 0.7144 0.7129 0.7072 0.7081

by first injecting noise (τ = 0.2, 0.4), then adding different levels of missingness.

Missing completely at random (MCAR) strategy is employed to randomly annihi-

late a percentage (ρ = 0.1, 0.3, 0.5, 0.7, 0.9) of continuous and discrete attributes

of each instance in the testing data. Tables 2.3 and 2.4 compare classification ac-

curacies of standard classifiers utilizing KNN imputation (KNNI), regularized-EM

imputation (REMI), random forest based imputation (missF) and the proposed

RMF imputation (RMFI) techniques. According to the experimental results,

RMFI obtained better performance with other imputation methods. Note that

the proposed RMFI framework is capable of reducing noise effect during imputa-

tion, thus RMFI is very suitable for the noisy data imputation task.

Note that, KNNI imputes missing values with the mean/mode of K nearest
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Table 2.4: Classification Accuracies with Noisy Data Imputation when τ = 0.4.

ρ 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9
Method Adult Credit

KNNI+KNN 0.7821 0.7773 0.7612 0.7393 0.6954 0.3560 0.6105 0.5973 0.5668 0.5605 0.5332 0.4377
REMI+KNN 0.7821 0.7781 0.7675 0.7484 0.7178 0.6906 0.6105 0.6086 0.5782 0.5927 0.5959 0.6009
missF+KNN 0.7821 0.7779 0.7641 0.7480 0.7300 0.6704 0.6105 0.6168 0.6045 0.5918 0.5605 0.4545
RMFI+KNN 0.7865 0.7800 0.7676 0.7589 0.7545 0.7543 0.6764 0.6655 0.6332 0.6255 0.6318 0.6123
KNNI+SVM 0.7951 0.7869 0.7660 0.7441 0.7084 0.5013 0.5900 0.5809 0.5582 0.5450 0.5159 0.4332
REMI+SVM 0.7951 0.7925 0.7817 0.7639 0.7336 0.7001 0.5900 0.5864 0.5736 0.5864 0.5868 0.5191
missF+SVM 0.7951 0.7903 0.7744 0.7563 0.7371 0.6717 0.5900 0.5932 0.5923 0.5755 0.5568 0.4491
RMFI+SVM 0.8053 0.7985 0.7801 0.7650 0.7574 0.7547 0.6664 0.6573 0.6259 0.6245 0.6305 0.6123

Method Statlog-Australian Statlog-German
KNNI+KNN 0.6148 0.6209 0.5839 0.5596 0.5587 0.5426 0.6703 0.6607 0.6462 0.6369 0.5994 0.5607
REMI+KNN 0.6148 0.6196 0.6052 0.6043 0.6152 0.5709 0.6703 0.6517 0.6468 0.6511 0.6508 0.5895
missF+KNN 0.6148 0.6291 0.6117 0.6074 0.6043 0.5083 0.6703 0.6514 0.6547 0.6637 0.6381 0.6438
RMFI+KNN 0.7074 0.6900 0.6613 0.6496 0.6243 0.5700 0.6757 0.6682 0.6643 0.6517 0.6303 0.6123
KNNI+SVM 0.5752 0.5848 0.5548 0.5383 0.5396 0.4904 0.6778 0.6793 0.6718 0.6465 0.5721 0.3955
REMI+SVM 0.5752 0.5935 0.5817 0.5935 0.6178 0.5504 0.6778 0.6763 0.6757 0.6637 0.6492 0.6580
missF+SVM 0.5752 0.5943 0.5917 0.5887 0.5970 0.4857 0.6778 0.6718 0.6793 0.6577 0.6450 0.6351
RMFI+SVM 0.7078 0.6887 0.6657 0.6487 0.6252 0.5700 0.7270 0.7018 0.6979 0.7006 0.7057 0.7102

neighbors for continuous/discrete attributes, while REMI is to impute missing

values via a regularized expectation-maximization iterative procedure. In all

our experiments, we employ the KNNI implementation, “knnimpute.m”, from

Matlab’s Bioinformatics toolbox. For KNNI settings, we choose K = 3 and use

weighted Euclidean distance measure, which is also suggested by the authors [124].

The REMI source code is available at the author’s homepage1, and the default

setting is used. The R source code of missF2 is called from Matlab via reading and

writing “csv” files. We use the default setting for missF except for “Adult” dataset

where ntree = 1 is employed for speed. Before applying the KNNI and REMI

methods, we first transform those nominal attributes into dummy variables. Then

the imputed testing data are post-processed to satisfy the constraint that the

dummy vector of each nominal attribute should contain exactly one numerical

value “1”. It is worth mentioning that we have also tried other methodologies,

such as specially impute nominal attributes with mode, but obtained no better

results than the above one.

1http://climate-dynamics.org/software/#regem
2https://github.com/stekhoven/missForest
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2.5.5 Noisy Data Imputation After Denoising

In this subsection, we further evaluate all the imputation algorithms under differ-

ent levels of simulated noise (AWGN and RFN respectively). We choose to com-

pare all the methods in this setting with all four datasets. The proposed RMFI

framework is capable of reducing noise effect during imputation, thus RMFI is

very suitable for the noisy data imputation task. To make a much fair com-

parison, a pre-step of RMF denoising is applied before all the other imputation

methods are carried out. To give a complete comparison, we also include the re-

sults without applying RMF pre-denoising step as a reference point. Figures 2.5

- 2.12 present all the degeneration curves of classification accuracy versus number

of missing attributes under different noise strength.

In general, a pair of solid and dashed lines through one shape (circle, lower

triangle or diamond) represent the classification performance after imputation

with or without RMF denoising. By and large, the former is slightly better than

the latter. This observation validates the effectiveness of RMF for data denoising.

Besides, all the degeneration curves in solid lines represent the classification per-

formance after data restoration (whether in two stage as RMF plus imputation,

or in one stage as RMFI). It is obvious that all these curves in one plot start

from the same point which corresponds to the complete data case. For the six

plots of one classifier (KNN or SVM) on one dataset, the starting point declines

as the noise strength increases from 0 to 0.5. Under some specific level of noise

strength, both KNN and SVM classification accuracies shrink as the number of

missing features increases.

In particular, we shall mention five specific observations from all the compari-

son results. First of all, KNNI performs the worst for most of the cases, especially

when the number of missing features goes beyond half of the total number. Sec-

ondly, on “Adult” dataset, RMFI is comparable with REMI and missF in both

KNN and SVM classification accuracy when missingness is very light, while RMFI
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KNNI REMI missF RMF−KNNI RMF−REMI RMF−missF RMFI

Figure 2.5: The degeneration curves of classification accuracy versus number of
missing attributes on “Adult” dataset: Imputation + KNN Classifier
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Figure 2.6: The degeneration curves of classification accuracy versus number of
missing attributes on “Adult” dataset: Imputation + SVM Classifier
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KNNI REMI missF RMF−KNNI RMF−REMI RMF−missF RMFI

Figure 2.7: The degeneration curves of classification accuracy versus number of
missing attributes on “Credit” dataset: Imputation + KNN Classifier
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Figure 2.8: The degeneration curves of classification accuracy versus number of
missing attributes on “Credit” dataset: Imputation + SVM Classifier

40



0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9
τ = 0.0

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9
τ = 0.1

Number of Missing Features
C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9
τ = 0.2

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9
τ = 0.3

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9
τ = 0.4

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9
τ = 0.5

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y
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Figure 2.9: The degeneration curves of classification accuracy versus number of
missing attributes on “Statlog-Australian” dataset: Imputation + KNN Classifier
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Figure 2.10: The degeneration curves of classification accuracy versus number of
missing attributes on “Statlog-Australian” dataset: Imputation + SVM Classifier

42



0 2 4 6 8 10 12 14 16 18
0.55

0.6

0.65

0.7

0.75

τ = 0.0

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0 2 4 6 8 10 12 14 16 18
0.55

0.6

0.65

0.7

0.75

τ = 0.1

Number of Missing Features
C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y

0 2 4 6 8 10 12 14 16 18
0.55

0.6

0.65

0.7

0.75

τ = 0.2

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0 2 4 6 8 10 12 14 16 18
0.55

0.6

0.65

0.7

0.75

τ = 0.3

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0 2 4 6 8 10 12 14 16 18
0.55

0.6

0.65

0.7

0.75

τ = 0.4

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0 2 4 6 8 10 12 14 16 18
0.55

0.6

0.65

0.7

0.75

τ = 0.5

Number of Missing Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y
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Figure 2.11: The degeneration curves of classification accuracy versus number of
missing attributes on “Statlog-German” dataset: Imputation + KNN Classifier
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Figure 2.12: The degeneration curves of classification accuracy versus number of
missing attributes on “Statlog-German” dataset: Imputation + SVM Classifier
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surpasses REMI and missF when heavy missingness appears. This is reasonable

since RMFI can still work in an average sense when the missingness is heavy.

Thirdly, on “Credit” dataset, RMFI still works better than REMI and missF

when a large missingness ratio occurs, while performs comparable with REMI

and missF when the missingness is moderate. Fourthly, on “Statlog-Australian”

dataset, though RMFI is slightly outperformed by REMI, the gap decreases as

the noise strength gets heavier. Fifthly, on “Statlog-German’ dataset, RMFI is

outperformed by missF with KNN classifier, but performs the best with SVM

classifier. Consequently, we can claim that RMFI is more consistent than the

other competing methods based on the above five observations.

2.6 Summary

Data restoration is common and critical for real-world data analysis practice.

Although major problems, e.g, data denoising and imputation, have been widely

studied in the literature, there still lacks a principled approach that is able to

dress the generic data restoration problem. The proposed RMF model reduces

this gap, by providing a principled approach to jointly handle data denoising and

imputation within the probabilistic graphical model scope. An efficient inference

algorithm for the RMF model was derived based on a structured variational

approach. Empirical evaluations confirmed the effectiveness of RMF and showed

its competitiveness by comparing with other data restoration methods.
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Chapter 3

Elastic-Net Correlated Logistic

Model for Multi-Label

Classification

In this chapter, we present correlated logistic model (CorrLog) for multi-label

classification. CorrLog extends conventional Logistic Regression model into multi-

label cases, via explicitly modelling the pairwise correlation between labels. In

addition, we propose to learn model parameters of CorrLog with Elastic Net reg-

ularization, which helps exploit the sparsity in feature selection and label corre-

lations and thus further boost the performance of multi-label classification. Cor-

rLog can be efficiently learned, though approximately, by regularized maximum

pseudo likelihood estimation (MPLE), and it enjoys a satisfying generalization

bound that is independent of the number of labels. We evaluate CorrLog’s per-

formance on two multi-label classification tasks. For music annotation, CorrLog

achieves comparable results with the state-of-the-art performance on CAL-500

dataset. For multi-label image classification, CorrLog also performs competitively

on benchmark datasets MULAN scene, MIT outdoor scene, PASCAL VOC 2007

and PASCAL VOC 2012, compared to the state-of-the-art multi-label classifica-
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tion algorithms.

3.1 Introduction

Multi-label classification extends conventional single label classification by al-

lowing an instance to be assigned to multiple labels from a label set. It occurs

naturally from a wide range of practical problems, such as document catego-

rization, music annotation, image classification, and bioinformatics applications,

where each instance can be simultaneously described by several class labels out of

a candidate label set. Because of its great generality and wide applications, multi-

label classification has received increasing attentions in recent years from machine

learning, data mining, to computer vision communities, and developed rapidly

with both algorithmic and theoretical achievements [28,53,102,125,152,153].

The key feature of multi-label classification that makes it distinct from single-

label classification is label correlation, without which classifiers can be trained

independently for each individual label and multi-label classification degenerates

to single-label classification. The correlation between different labels can be veri-

fied by calculating the statistics, e.g., χ2 test and Pearson’s correlation coefficient,

of their distributions. According to [35, 36], there are two types of label corre-

lations (or dependence), i.e., the conditional correlations and the unconditional

correlations, wherein the former describes the label correlations conditioned on

a given instance while the latter summarizes the global label correlations of only

label distribution by marginalizing out the instance. From a classification point

of view, modelling of label conditional correlations is preferable since they are

directly related to prediction; however, proper utilization of unconditional corre-

lations is also helpful, but in an average sense because of the marginalization.

In this chapter, we present correlated logistic model (CorrLog) to handle

conditional label correlations in a more principle way. CorrLog enjoys several

favourable properties: 1) built upon independent logistic regressions (ILRs), it
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offers an explicit way to model the pairwise (second order) label correlations;

2) by using the pseudo likelihood technique, the parameters of CorrLog can be

learned approximately with a computational complexity linear with respect to

label number; 3) the learning of CorrLog is stable, and the empirically learned

model enjoys a generalization error bound that is independent of label number.

In addition, the results presented here extend our previous study [10] in following

aspects: 1) we introduce elastic net regularization to CorrLog, which facilitates

the utilization of the sparsity in both feature selection and label correlations; 2)

a learning algorithm for CorrLog based on soft thresholding is derived to handle

the nonsmoothness of the elastic net regularization; 3) the proof of generalization

bound is also extended for the new regularization; 4) we apply CorrLog to music

annotation and multi-label image classification, and achieve competitive results

with the state-of-the-art methods of their areas.

The rest of this chapter is organized as follows. Section 3.2 briefly reviews

related methods for multi-label classification from the view of label dependence.

Section 3.3 introduces the model CorrLog with elastic net regularization. Section

3.4 presents algorithms for learning CorrLog by regularized maximum pseudo

likelihood estimation, and for prediction with CorrLog by message passing. Sec-

tion 3.5 presents a generalization analysis of CorrLog based on the concept of

algorithm stability. Sections 3.6 and 3.7 report results of empirical evaluations,

including experiments on several benchmark datasets for music annotation and

multi-label image classification.

3.2 Related Works

Quite a number of multi-label classification algorithms have been proposed in

the past a few years, by exploiting either of unconditional or conditional label

correlations [35, 36]. We give a brief review of the representative multi-label

classification methods according to this taxonomy as below.
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Methods exploiting unconditional label correlations effect in a global sense.

A large class of multi-label classification algorithms that utilize unconditional

label correlations are built upon label transformation. The main process is a

three-phase procedure: (1) represent the original label vector 1 in an embed-

ded subspace hoping that the dimensions of the embedded label vector (now

maybe binary or continuous valued) are uncorrelated to each other; (2) perform

single-label prediction independently in the embedded subspace; (3) recover the

original label vector. Label transformation based methods include [147] which

utilizes low-dimensional embedding and [53] and [156] which use random projec-

tions. Another strategy of using unconditional label correlations, e.g., used in

the stacking method [28] and the “Curds” & “Whey” procedure [17], is first to

predict each individual label independently and correct/adjust the prediction by

proper post-processing. Algorithms are also proposed based on co-occurrence or

structure information extracted from the label set, which include random k-label

sets (RAKEL) [126], pruned problem transformation (PPT) [107], hierarchical bi-

nary relevance (HBR) [22] and hierarchy of multi-label classifiers (HOMER) [125].

Regression-based models, including reduced-rank regression and multitask learn-

ing, can also be used for multi-label classification, with an interpretation of uti-

lizing unconditional label correlations [35].

Methods exploiting conditional label correlations perform in a local way.

Multi-label classification algorithms in this category are diverse and often de-

veloped by specific heuristics. For example, multi-label k-nearest neighbour

(MLKNN) [152] extends KNN to the multi-label situation, which applies maxi-

mum a posterior (MAP) label prediction by obtaining the prior label distribution

within the k nearest neighbours of an instance. Instance-based logistic regres-

sion (IBLR) [28] is also a localized algorithm, which modifies logistic regression

1In general, a label vector is binary valued (denoted by either {0, 1} or {−1,+1}) and each
dimension decides the existence of that label. Note its difference from one-hot representation
which corresponds to the multi-class case.
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by using label information from the neighbourhood as features. Classifier chain

(CC) [108], as well as its ensemble and probabilistic variants [29], incorporate

label correlations into a chain of binary classifiers, where the prediction of a label

uses previous labels as features. Channel coding based multi-label classification

techniques such as principal label space transformation (PLST) [120] and maxi-

mum margin output coding (MMOC) [155] proposed to select codes that exploits

conditional label correlations. Graphical models, e.g., conditional random fields

(CRFs) [63], are also applied to multi-label classification, which provides a richer

framework to handle conditional label correlations.

3.3 Correlated Logistic Model

We study the problem of learning a joint prediction y = d(x) : X 7→ Y, where the

instance space X = {x : ‖x‖ ≤ 1,x ∈ RD} and the label space Y = {−1, 1}m. By

assuming the conditional independence among labels, we can model multi-label

classification by a set of independent logistic regressions (ILRs). Specifically, the

conditional probability plr(y|x) of ILRs is given by

plr(y|x) =
m∏
i=1

plr(yi|x)

=
m∏
i=1

exp
(
yiβ

T
i x
)

exp (βTi x) + exp (−βTi x)
,

(3.1)

where βi ∈ RD is the coefficients for the i-th logistic regression (LR) in ILRs. For

the convenience of expression, the bias of the standard LR is omitted here, which

is equivalent to augmenting the feature of x with a constant.

Clearly, ILRs (3.1) enjoys several merits, such as, it can be learned efficiently,

in particular with a linear computational complexity with respect to label number

m, and its probabilistic formulation inherently helps deal with the imbalance of

positive and negative examples for each label, which is a common problem en-
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countered by multi-label classification. However, it ignores entirely the potential

correlation among labels and thus tends to under-fit the true posterior p0(y|x),

especially when the label number m is large.

3.3.1 Correlated Logistic Regressions

CorrLog tries to extend ILRs with as small effort as possible, so that the correla-

tion among labels is explicitly modelled while the advantages of ILRs can be also

preserved. To achieve this, we propose to augment (3.1) with a simple function

q(y) and reformulate the posterior probability as

p(y|x) ∝ plr(y|x)q(y). (3.2)

As long as q(y) cannot be decomposed into independent product terms for indi-

vidual labels, it introduces label correlations into p(y|x). It is worth noticing that

we assumed q(y) to be independent of x. Therefore, (3.2) models label correla-

tions in an average sense. This is similar to the concept of “marginal correlations”

in multi-label classification [35]. However, they are intrinsically different, because

(3.2) integrate the correlation into the posterior probability, which directly aims

at prediction. In addition, the idea used in (3.2) for correlation modelling is also

distinct from the “Curds and Whey” procedure in [17] which corrects outputs

of multivariate linear regression by reconsidering their correlations to the true

responses.

In particular, we choose q(y) to be the following quadratic form,

q(y) = exp

{∑
i<j

αijyiyj

}
. (3.3)

It means that yi and yj are positively correlated given αij > 0 and negatively

correlated given αij < 0. It is also possible to define αij as functions of x, but

this will drastically increase the number of model parameters, e.g., by O(m2D) if

51



linear functions are used.

By substituting (3.3) into (3.2), we obtain the conditional probability for

CorrLog

p(y|x; Θ) ∝ exp

{
m∑
i=1

yiβ
T
i x +

∑
i<j

αijyiyj

}
, (3.4)

where the model parameter Θ = {β,α} contains β = [β1, ..., βm] and α =

[α12, ..., α(m−1)m]T . It can be seen that CorrLog is a simple modification of (3.1),

by using a quadratic term to adjust the joint prediction, so that hidden label

correlations can be exploited. In addition, CorrLog is closely related to popular

statistical models for joint modelling of binary variables. For example, conditional

on x, (3.4) is exactly an Ising model [105] for y. It can also be treated as a

special instance of CRFs [63], by defining features φi(x,y) = yix and ψij(y) =

yiyj. Moreover, classical model multivariate probit (MP) [2] also models pairwise

correlations in y. However, it utilizes Gaussian latent variables for correlation

modelling, which is essentially different from CorrLog.

3.3.2 Elastic Net Regularization

Given a set of training data D = {x(l),y(l) : 1 ≤ l ≤ n}, CorrLog can be learned

by regularized maximum log likelihood estimation (MLE), i.e.,

Θ̂ = arg min
Θ

L(Θ) +R(Θ), (3.5)

where L(Θ) is the negative log likelihood

L(Θ) = − 1

n

n∑
l=1

log p(y(l)|x(l); Θ), (3.6)

and R(Θ) is a properly chosen regularization.
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A possible choice for R(Θ) is the `2 regularizer,

R2(Θ;λ1, λ2) = λ1

m∑
i=1

‖βi‖2
2 + λ2

∑
i<j

|αij|2, (3.7)

with λ1, λ2 > 0 being the weighting parameters. The `2 regularization enjoys the

merits of computational flexibility and learning stability. However, it is unable to

exploit any sparsity that can be possessed by the problem at hand. For example,

for multi-label classification, it is likely that the prediction of each label yi only

depends on a subset of the D features of x, which implies the sparsity of βi.

Besides, α can also be sparse since not all labels in y are correlated to each other.

`1 regularizer is another choice for R(Θ), especially regarding model sparsity.

Nevertheless, it has been noticed by several studies that `1 regularized algorithms

are inherently unstable, that is, a slight change of the training data set can lead

to substantially different prediction models. Based on above consideration, we

propose to use the elastic net regularizer [159], which is a combination of `2 and

`1 regularizers and inherits their individual advantages, i.e., learning stability and

model sparsity,

Ren(Θ;λ1, λ2, ε) = λ1

m∑
i=1

(‖βi‖2
2 + ε‖βi‖1)

+ λ2

∑
i<j

(|αij|2 + ε|αij|), (3.8)

where ε ≥ 0 controls the trade-off between the `1 regularization and the `2 regu-

larization, and large ε encourages a high level of sparsity.

3.4 Algorithms

In this section, we derive algorithms for learning and prediction with CorrLog.

The exponentially large size of the label space Y = {−1, 1}m makes exact algo-
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rithms for CorrLog computationally intractable, since the conditional probability

(3.4) needs to be normalized by the log-partition function

A(Θ) = log
∑
y∈Y

exp

{
m∑
i=1

yiβ
T
i x +

∑
i<j

αijyiyj

}
, (3.9)

which involves a summation over an exponential number of terms. Thus, we

turn to approximate learning and prediction algorithms, by exploiting the pseudo

likelihood and the message passing techniques.

3.4.1 Approximate Learning via Pseudo Likelihood

Maximum pseudo likelihood estimation (MPLE) [7] provides an alternative ap-

proach for estimating model parameters, especially when the partition function

of the likelihood cannot be evaluated efficiently. It was developed in the field

of spatial dependence analysis and has been widely applied to the estimation of

various statistical models, from the Ising model [105] to the CRFs [119]. Here,

we apply MPLE to the learning of parameter Θ in CorrLog.

The pseudo likelihood of the model over m jointly distributed random vari-

ables is defined as the product of the conditional probability of each individual

random variables conditioned on all the rest ones. For CorrLog (3.4), its pseudo

likelihood is given by

p̃(y|x; Θ) =
m∏
i=1

p(yi|y−i,x; Θ), (3.10)

where y−i = [y1, ...,yi−1,yi+1, ...,ym] and the conditional probability p(yi|y−i,x; Θ)

can be directly obtained from (3.4),

p(yi|y−i,x; Θ) =

1

1 + exp
{
−2yi

(
βTi x +

∑m
j=i+1 αijyj +

∑i−1
j=1 αjiyj

)} . (3.11)
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Accordingly, the negative log pseudo likelihood over the training data D is given

by

L̃(Θ) = − 1

n

n∑
l=1

m∑
i=1

log p(y
(l)
i |y

(l)
−i,x

(l); Θ). (3.12)

To this end, the optimal model parameter Θ̃ = {β̃, α̃} of CorrLog can be learned

approximately by the elastic net regularized MPLE,

Θ̃ = arg min
Θ

L̃r(Θ)

= arg min
Θ

L̃(Θ) +Ren(Θ;λ1, λ2, ε). (3.13)

where λ1, λ2 and ε are tuning parameters.

A First-Order Method by Soft Thresholding: Problem (3.13) is a convex

optimization problem, thanks to the convexity of the logarithmic loss function

and the elastic net regularization, and thus a unique optimal solution. However,

the elastic net regularization is non-smooth due to the `1 norm regularizer, which

makes direct gradient based algorithm inapplicable. The main idea of our al-

gorithm for solving (3.13) is to divide the objective function into smooth and

non-smooth parts, and then apply the soft thresholding technique to deal with

the non-smoothness.

Denoting by Js(Θ) the smooth part of L̃r(Θ), i.e.,

Js(Θ) = L̃(Θ) + λ1

m∑
i=1

‖βi‖2
2 + λ2

∑
i<j

|αij|2, (3.14)

its gradient ∇Js at the k-th iteration Θ(k) = {β(k),α(k)} is given by


∇Jsβi(Θ(k)) = 1

n

n∑
l=1

ξlix
(l) + 2λ1β

(k)
i

∇Jsαij
(Θ(k)) = 1

n

n∑
l=1

(
ξliy

(l)
j + ξljy

(l)
i

)
+ 2λ2α

(k)
ij

(3.15)
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with

ξli =

−2y
(l)
i

1 + exp
{

2y
(l)
i

(
β

(k)T
i x(l) +

∑m
j=i+1 α

(k)
ij y

(l)
j +

∑i−1
j=1 α

(k)
ji y

(l)
j

)} . (3.16)

Then, a surrogate J(Θ) of the objective function L̃r(Θ) in (3.13) can be obtained

by using ∇Js(Θ(k)), i.e.,

J(Θ; Θ(k)) = Js(Θ
(k))

+
m∑
i=1

〈∇Jsβi(Θ
(k)), βi − β(k)

i 〉+
1

2η
‖βi − β(k)

i ‖2
2 + λ1ε‖βi‖1

+
∑
i<j

〈∇Jsαij
(Θ(k)), αij − α(k)

ij 〉+
1

2η
(αij − α(k)

ij )2 + λ2ε|αij|.

(3.17)

The parameter η in (4.25) servers a similar role to the variable updating step

size in gradient descent methods, and it is set such that 1/η is larger than the

Lipschitz constant of ∇Js(Θ(k)). For such η, it can be shown that J(Θ) ≥ L̃r(Θ)

and J(Θ(k)) = L̃r(Θ
(k)). Therefore, the update of Θ can be realized by the

minimization

Θ(k+1) = arg min
Θ
J(Θ; Θ(k)), (3.18)

which is solved by the soft thresholding function S(·), i.e., β
(k+1)
i = S(β

(k)
i − η∇Jsβi(Θ(k));λ1ε)

α
(k+1)
ij = S(α

(k)
ij − η∇Jsαij

(Θ(k));λ2ε),
(3.19)
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Algorithm 1 Learning CorrLog by Maximum Pseudo Likelihood Estimation
with Elastic Net Regularization

Input: Training data D, initialization β(0) = 0, α(0) = 0, and learning rate η,
where 1/η is set larger than the Lipschitz constant of ∇Js(Θ) (4.25).

Output: Model parameters Θ̃ = (β̃(t), α̃(t)).
repeat

Calculating the gradient of JS(Θ) at Θ(k) = (β(k),α(k)) by using (4.24);
Updating Θ(k+1) = (β(k+1),α(k+1)) by using soft thresholding (4.27);
k = k + 1

until Converged

where

S(u; ρ) =


u− 0.5ρ, if u > 0.5ρ

u+ 0.5ρ, if u < −0.5ρ

0, otherwise.

(3.20)

Iteratively applying (4.27) until convergence provides a first-order method for

solving (3.13). Algorithm 1 presents the pseudo code for this procedure.

Remark 1 From the above derivation, especially equations (4.24) and (4.27), the

computational complexity of our learning algorithm is linear with respect to the

label number m. Therefore, learning CorrLog is no more expensive than learning

m independent logistic regressions, which makes CorrLog scalable to the case of

large label numbers.

Remark 2 It is possible to further speed up the learning algorithm. In partic-

ular, Algorithm 1 can be modified to have the optimal convergence rate in the

sense of Nemirovsky and Yudin [96], i.e., O(1/k2) wherein k is the number of

iterations. However, its convergence is usually as slow as in standard gradient

descent methods. Actually, we only need to replace the current variable Θ(k)

in the surrogate (4.25) by a weighted combination of the variables from previ-

ous iterations. As such modification is a direct application of the fast iterative

shrinkage thresholding, [4], we do not present the details here but leave readers
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to the reference.

3.4.2 Joint Prediction by Message Passing

For multi-label classification, as the labels are not independent in general, the

prediction task is actually a joint maximum a posterior (MAP) estimation over

p(y|x). In the case of CorrLog, suppose the model parameter Θ̃ is learned by the

regularized MPLE from the last subsection, the prediction of ŷ for a new instance

x can be obtained by

ŷ = arg max
y∈Y

p(y|x; Θ̃)

= arg max
y∈Y

exp

{
m∑
i=1

yiβ̃
T
i x +

∑
i<j

α̃ijyiyj

}
. (3.21)

We use the belief propagation (BP) to solve (3.21) [12]. Specifically, we run the

max-product algorithm with uniformly initialized messages and an early stopping

criterion with 50 iterations. Since the graphical model defined by α in (3.21) has

loops, we cannot guarantee the convergence of the algorithm. However, we found

that it works well on all experiments in this study.

3.5 Generalization Analysis

An important issue in designing a machine learning algorithm is generalization,

i.e., how the algorithm will perform on the test data compared to on the training

data. In the section, we present a generalization analysis for CorrLog, by using

the concept of algorithmic stability [14]. Our analysis follows two steps. First,

we show that the learning of CorrLog by MPLE is stable, i.e., the learned model

parameter Θ̃ does not vary much given a slight change of the training data set D.

Then, we prove that the generalization error of CorrLog can be bounded by the

empirical error, plus a term related to the stability but independent of the label
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Table 3.1: Summary of important notations for generalization analysis.

Notation Description

D = {x(l),y(l)} training dataset with n examples, 1 ≤ l ≤ n

Dk

modified training data set by replacing the
k-th example of D with an independent ex-
ample

D\k
modified training data set by discarding the
k-th example of D

L̃(Θ)
negative log pseudo likelihood over training
dataset Dk

L̃r(Θ)
regularized negative log pseudo likelihood
over training dataset D\k

Ren(Θ;λ1, λ2, ε)
elastic net regularization with weights λ1, λ2

and parameter ε

Θ = {β,α} model parameters of CorrLog

Θ̃ = {β̃, α̃} empirical learned model parameters by max-
imum pseudo likelihood estimation over D

Θ̃k = {β̃k, α̃k} empirical learned model parameters over Dk

Θ̃\k = {β̃\k, α̃\k} empirical learned model parameters over D\k

R̃(Θ̃)
empirical error of the empirical model Θ̃ over
training set D

R(Θ̃) generalization error of the empirical model Θ̃
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number m. To ease the presentation of generalization analysis, we summarize the

important notations in Table 3.1.

3.5.1 The Stability of MPLE

The stability of a learning algorithm indicates how much the learned model

changes according to a small change of the training data set. Denote by Dk

a modified training data set the same with D but replacing the k-th training

example (x(k),y(k)) by another independent example (x′,y′). Suppose Θ̃ and Θ̃k

are the model parameters learned by MPLE (3.13) on D and Dk, respectively.

We intend to show that the difference between these two models, defined as

‖Θ̃k − Θ̃‖ ,
m∑
i=1

‖β̃ki − β̃i‖+
∑
i<j

|α̃kij − α̃ij|, ∀ 1 ≤ k ≤ n, (3.22)

is bounded by an order of O(1/n), so that the learning is stable for large n.

First, we need the following auxiliary model Θ̃\k = {β̃\k, α̃\k} learned on D\k,

which is the same with D but without the k-th example

Θ̃\k = arg min
Θ

L̃\k(Θ) + Ren(Θ;λ1, λ2, ε), (3.23)

where

L̃\k(Θ) = − 1

n

∑
l 6=k

m∑
i=1

log p(y
(l)
i |y

(l)
−i,x

(l); Θ). (3.24)

The following Lemma provides an upper bound of the difference L̃r(Θ̃
\k) −

L̃r(Θ̃).

Lemma 1. Given L̃r(·) and Θ̃ defined in (3.13), and Θ̃\k defined in (3.23), it
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holds for ∀1 ≤ k ≤ n,

L̃r(Θ̃
\k)− L̃r(Θ̃) ≤

1

n

(
m∑
i=1

log p(y
(k)
i |y

(k)
−i ,x

(k); Θ̃\k)−
m∑
i=1

log p(y
(k)
i |y

(k)
−i ,x

(k); Θ̃)

)
(3.25)

Proof. Denote by RHS the righthand side of (3.25), we have

RHS =
(
L̃r(Θ̃

\k)− L̃\kr (Θ̃\k)
)
−
(
L̃r(Θ̃)− L̃\kr (Θ̃)

)
.

Furthermore, the definition of Θ̃\k implies L̃
\k
r (Θ̃\k) ≤ L̃

\k
r (Θ̃). Combining these

two we have (3.25). This completes the proof.

Next, we show a lower bound of the difference L̃r(Θ̃
\k)− L̃r(Θ̃).

Lemma 2. Given L̃r(·) and Θ̃ defined in (3.13), and Θ̃\k defined in (3.23), it

holds for ∀1 ≤ k ≤ n,

L̃r(Θ̃
\k)− L̃r(Θ̃) ≥ λ1‖β̃\k − β̃‖2 + λ2‖α̃\k − α̃‖2. (3.26)

Proof. We define the following function

f(Θ) = L̃r(Θ)− λ1‖β − β̃‖2 − λ2‖α− α̃‖2.

Then, for (3.26), it is sufficient to show that f(Θ̃\k) ≥ f(Θ̃). By using (3.13), we

have

f(Θ) = L̃(Θ) + 2λ1

m∑
i=1

βTi β̃i + 2λ2

∑
i<j

αijα̃ij

+ λ1ε

m∑
i=1

‖βi‖1 + λ2ε
∑
i<j

|αij|. (3.27)
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It is straightforward to verify that f(Θ) and L̃r(Θ) in (3.13) have the same

subgradient at Θ̃, i.e.,

∂f(Θ̃) = ∂L̃r(Θ̃). (3.28)

Since Θ̃ minimizes L̃r(Θ), we have 0 ∈ ∂L̃r(Θ̃) and thus 0 ∈ ∂f(Θ̃), which

implies Θ̃ also minimizes f(Θ). Therefore f(Θ̃) ≤ f(Θ̃\k).

In addition, by checking the Lipschitz continuous property of log p(yi|y−i,x; Θ),

we have the following Lemma 3.

Lemma 3. Given Θ̃ defined in (3.13) and Θ̃\k defined in (3.23), it holds for

∀ (x,y) ∈ X× Y and ∀1 ≤ k ≤ n

∣∣ m∑
i=1

log p(yi|y−i,x; Θ̃)−
m∑
i=1

log p(yi|y−i,x; Θ̃\k)
∣∣

≤ 2
m∑
i=1

‖β̃i − β̃\ki ‖+ 4
∑
i<j

|α̃ij − α̃\kij |. (3.29)

Proof. First, we have

‖∂ log p(yi|y−i,x; Θ)/∂βi‖ ≤ 2‖x‖ ≤ 2,

and

|∂ log p(yi|y−i,x; Θ)/∂αij| ≤ 4|yiyj| = 4.

That is log p(yi|y−i,x; Θ) is Lipschitz continuous with respect to βi and αij, with

constant 2 and 4, respectively. Therefore, (3.29) holds.

By combining the above three Lemmas, we have the following Theorem 1 that

shows the stability of CorrLog.
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Theorem 1. Given model parameters Θ̃ = {β̃, α̃} and Θ̃k = {β̃k, α̃k} learned

on training datasets D and Dk, respectively, both by (3.13), it holds that

m∑
i=1

‖β̃ki − β̃i‖+
∑
i<j

|α̃kij − α̃ij| ≤
16

min(λ1, λ2)n
. (3.30)

Proof. By combining (3.25), (3.26) and (3.29), we have

‖β̃\k − β̃‖2 + ‖α̃\k − α̃‖2 ≤

4

min(λ1, λ2)n

(
m∑
i=1

‖β̃i − β̃\ki ‖+
∑
i<j

|α̃ij − α̃\kij |

)
. (3.31)

Further, by using

‖β̃\k − β̃‖2 + ‖α̃\k − α̃‖2 ≥

1

2

(
m∑
i=1

‖β̃i − β̃\ki ‖+
∑
i<j

|α̃ij − α̃\kij |

)2

(3.32)

we have

m∑
i=1

‖β̃i − β̃\ki ‖+
∑
i<j

|α̃ij − α̃\kij | ≤
8

min(λ1, λ2)n
(3.33)

Since Dk and D\k differ from each other with only the k-th training example, the

same argument gives

m∑
i=1

‖β̃ki − β̃
\k
i ‖+

∑
i<j

|α̃kij − α̃
\k
ij | ≤

8

min(λ1, λ2)n
. (3.34)

Then, (3.30) is obtained immediately. This completes the proof.
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3.5.2 Generalization Bound

We first define a loss function to measure the generalization error. Considering

that CorrLog predicts labels by MAP estimation, we define the loss function by

using the log probability

`(x,y; Θ) =


1, f(x,y,Θ) < 0

1− f(x,y,Θ)/γ, 0 ≤ f(x,y,Θ) < γ

0, f(x,y,Θ) ≥ γ,

(3.35)

where the constant γ > 0 and

f(x,y,Θ) = log p(y|x; Θ)−max
y′ 6=y

log p(y′|x; Θ)

=

(
m∑
i=1

yiβ
T
i x +

∑
i<j

αijyiyj

)

−max
y′ 6=y

(
m∑
i=1

y′iβ
T
i x +

∑
i<j

αijy
′
iy
′
j

)
. (3.36)

The loss function (3.35) is defined analogously to the loss function used in bi-

nary classification, where f(x,y,Θ) is replaced with the margin ywTx if a linear

classifier w is used. Besides, (3.35) gives a 0 loss only if all dimensions of y are

correctly predicted, which emphasizes the joint prediction in multi-label classi-

fication. By using this loss function, the generalization error and the empirical

error are given by

R(Θ̃) = Exy`(x,y; Θ̃), (3.37)

and

R̃(Θ̃) =
1

n

n∑
l=1

`(x(l),y(l); Θ̃). (3.38)

According to [14], an exponential bound exists for R(Θ̃) if CorrLog has a

uniform stability with respect to the loss function (3.35). The following Theorem
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2 shows this condition holds.

Theorem 2. Given model parameters Θ̃ = {β̃, α̃} and Θ̃k = {β̃k, α̃k} learned

on training datasets D and Dk, respectively, both by (3.13), it holds for ∀(x,y) ∈

X× Y,

|`(x,y; Θ̃)− `(x,y; Θ̃k)| ≤ 32

γmin(λ1, λ2)n
. (3.39)

Proof. First, we have the following inequality from (3.35)

γ|`(x,y; Θ̃)− `(x,y; Θ̃k)| ≤ |f(x,y, Θ̃)− f(x,y, Θ̃k)| (3.40)

Then, by introducing notation

A(x,y,β,α) =
m∑
i=1

yiβ
T
i x +

∑
i<j

αijyiyj, (3.41)

and rewriting

f(x,y,Θ) = A(x,y,β,α)−max
y′ 6=y

A(x,y′,β,α), (3.42)

we have

γ|`(x,y; Θ̃)− `(x,y; Θ̃k)| ≤
∣∣A(x,y, β̃, α̃)− A(x,y, β̃k, α̃k)

∣∣
+ |max

y′ 6=y
A(x,y′, β̃, α̃)−max

y′ 6=y
A(x,y′, β̃k, α̃k)|. (3.43)

Due to the fact that for any functions h1(u) and h2(u) it holds1

|max
u

h1(u)−max
u

h2(u)| ≤ max
u
|h1(u)− h2(u)|, (3.44)

1 Suppose u?1 and u?2 maximize h1(u) and h2(u) respectively, and without loss of generality
h1(u?1) ≥ h2(u?2), we have |h1(u?1)−h2(u?2)| = h1(u?1)−h2(u?2) ≤ h1(u?1)−h2(u?1) ≤ maxu |h1(u)−
h2(u)|.
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we have

γ|`(x,y; Θ̃)− `(x,y; Θ̃k)|

≤
∣∣A(x,y, β̃, α̃)− A(x,y, β̃k, α̃k)

∣∣
+ max

y′ 6=y

∣∣A(x,y′, β̃, α̃)− A(x,y′, β̃k, α̃k)
∣∣

≤ 2 max
y

(
m∑
i=1

|yi(β̃i − β̃ki )Tx|+
∑
i<j

|(α̃ij − α̃kij)yiyj|

)

≤ 2

(
m∑
i=1

‖β̃i − β̃ki ‖+ 2
∑
i<j

|α̃ij − α̃kij|

)
. (3.45)

Then, the proof is completed by applying Theorem 1.

Now, we are ready to present the main theorem on the generalization ability

of CorrLog.

Theorem 3. Given the model parameter Θ̃ learned by (3.13), with i.i.d. training

data D = {(x(l),y(l)) ∈ X × Y, l = 1, 2, ..., n} and regularization parameters λ1,

λ2, it holds with at least probability 1− δ,

R(Θ̃) ≤ R̃(Θ̃) +
32

γmin(λ1, λ2)n

+

(
64

γmin(λ1, λ2)
+ 1

)√
log 1/δ

2n
. (3.46)

Proof. Given Theorem 2, the generalization bound (3.46) is a direct result of

Theorem 12 in [14] (Please refer to the reference for details).

Remark 3 A notable observation from Theorem 3 is that the generalization

bound (3.46) of CorrLog is independent of the label number m. Therefore, Cor-

rLog is preferable for multi-label classification with a large number of labels, for

which the generalization error still can be bounded with high confidence.

Remark 4 While the learning of CorrLog (3.13) utilizes the elastic net regulariza-

tion Ren(Θ;λ1, λ2, ε), where ε is the weighting parameter on the `1 regularization
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Figure 3.1: Empirical evaluation of the generalization bound of CorrLog with
different number of labels.

to encourage sparsity, the generalization bound (3.46) is independent of the pa-

rameter ε. The reason is that `1 regularization does not lead to stable learning

algorithms [140], and only the `2 regularization in Ren(Θ;λ1, λ2, ε) contributes to

the stability of CorrLog.

3.5.3 Empirical Evaluation

We design a simple simulation study to demonstrate the generalization capability

of CorrLog. Consider a m-label classification problem on a 2-D plane, where each

instance x is sampled uniformly from the unit disc ‖x‖ ≤ 1 and the corresponding
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labels y = [y1, ...,ym] are defined by

yi =

 sign(ηT1 x̃), i = 1,

OR
(
yi−1, sign(ηTi−1x̃)

)
, i = 2, ...,m,

Note that η1, ..., ηm are defined by using the first m vectors from a predefined

pool1 and the augmented feature is x̃ = [xT , 1]T . The sign(·) function takes value

1 or −1, and the OR(·, ·) operation outputs 1 if either of its input is 1. The

definition of y makes the m labels correlated. Then, we use different number of

training samples, from 100 to 5000, to learn model parameter of CorrLog, and use

5000 test samples to estimate the test risk. The generalization risk is composed

of the sample error and the approximation error, with a confidence set to 0.9 and

the best model’s risk estimated from 10 000 samples. The model parameter, used

in both the empirical learning and calculating the sample error, is selected by the

10-fold cross validation on the training set. Figure 3.1 presents the simulation

results. With the increase of the number of training samples, the generalization

bound of CorrLog approaches to the test risk and the decrease rate is roughly
√
n

which is consistent with (3.46). In addition, the curves of four different number

of labels are much similar to each other, which confirms the observation from

Theorem 3 that the generalization bound is independent of the label number m.

3.6 Experiments: Music Annotation and Re-

trieval

In this section, we apply CorrLog to music annotation and retrieval. Given a

song with a few relevant labels or tags, e.g. pop, male vocal and happy, we

want to predict confidence values that accurately estimate the strength of the

1The predefined pool includes η1 = (1, 1,−0.5), η2 = (−1, 1,−0.5), η3 = (1,−1,−0.5),
η4 = (−1,−1,−0.5), η5 = (1, 2,−0.5), η6 = (1,−2,−0.5), η7 = (−1, 2,−0.5), and η8 =
(−1,−2,−0.5).
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association between the labels and audio contents. These confidence values can

be used to rank the tags by relevance, and this is the music annotation task.

In the music retrieval task, we rank the songs according to their relevance to a

specific query tag. We show that CorrLog provides promising performance for

both music annotation and retrieval compared with the state-of-the-arts.

Table 3.2: Experimental results for top 97 popular tags. CBA stands for Code-
word Bernoulli Average (CBA) [51], GMM for Gaussian Mixture Models [128],
DirMix for Dirichlet Mixture model [92].

Model Precision Recall F-score P3 P5 P10 MAP AROC
CorrLog 0.452 0.229 0.314 0.517 0.524 0.487 0.462 0.717

CBA 0.361 0.212 0.267 0.463 0.458 0.440 0.425 0.691
GMM 0.405 0.202 0.269 0.456 0.455 0.441 0.433 0.698

Context-SVM 0.380 0.230 0.286 0.512 0.487 0.449 0.434 0.687
DirMix 0.441 0.232 0.303 0.519 0.501 0.470 0.443 0.697

Table 3.3: Experimental results for top 78 popular tags. CBA stands for Code-
word Bernoulli Average (CBA) [51], HEM-GMM for hierarchical EM Gaus-
sian Mixture Models [128], HEM-DTM for hierarchical EM Dynamic Texture
Model [31].

Model Precision Recall F-score AROC MAP P10
CorrLog 0.48 0.28 0.35 0.74 0.51 0.55

CBA 0.41 0.24 0.29 0.69 0.47 0.49
HEM-GMM 0.49 0.23 0.26 0.66 0.45 0.47
HEM-DTM 0.47 0.25 0.30 0.69 0.48 0.53

The music data comes from CAL-500 Dataset [127]. There are 500 Western

polyphonic songs and the annotations were collected from more than three human

subjects per song. When training the classifier, we only use the binary annota-

tions with {−1, 1} to indicate whether the tag is relevant to the song. We are

more interested in predicting more “useful” tags rather than very obscure ones.

Following the same setting in [31, 92], we only evaluate on the 78 tags that have

at least 50 songs and 97 top popular tags.

For song representation, we use the delta Mel-Frequency Cepstral Coefficient

(MFCC) feature and the “bag-of-words” model [51]. First, we exact MFCC fea-
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tures for each song with a 23ms time window, and the 39-dimensional delta MFCC

features are concatenated from the MFCC features, and their first and second

derivatives. Normalization into zero mean and unit variance in each dimension

is also applied to the MFCC features. After that, we utilize k-means to learn

K cluster centroids as “audio dictionary”, and further obtain the “bag-of-words”

representation of songs. The dictionary size K is set to 2000.

3.6.1 Experimental Setting

For fair comparison, we used the same experimental setting as in [31,92], that is,

we used 5-fold cross validation for performance evaluation, where in each round,

we first learned the model parameters of CorrLog with the 400-song training

set and then predicted confidence ratings on the remaining 100-song test set.

The conditional probability, i.e., the confidence rating, of a tag being assigned

to a song was obtained by calculating the marginal probability p(yi|x; Θ̃) of the

joint probability p(y|x; Θ̃) (3.4), with LBP. To compensate for non-uniform label

prior, we adopted the same heuristic used in [51] by introducing a “diversity

factor” d = 1.25. For each predicted confidence rating, we subtracted d times the

mean confidence for that tag. We then assigned each song with the top 10 most

confident tags.

Annotation was evaluated by mean precision and recall over the tags. Given

the 10 annotations per song in the test set, we calculated precision and recall

for each tag and then averaged across all considered tags. The final result was

averaged over 5 rounds of cross validation. In addition, F-score, the harmonic

mean of precision and recall, was computed to summarize the two aspects of

precision and recall.

For retrieval, we first ranked the songs in the descending order according to

confidence ratings for a specific tag. Better retrieval result corresponds to cases

that more relevant songs appear at the top of the ranking list. Then, we calculated
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precision at every position down the ranking list via dividing the number of

true positives found so far by the total number of songs so far. Evaluation was

conducted through averaged precision and precision at k (k = 3, 5, 10) as in [92].

Averaged precision was computed by taking the average of all the positions down

the ranking list where new true positives were found. Precision at k was k-th

precision that we calculated on the ranking list.

3.6.2 Results and Dicussions

We compare our results with the state-of-the-art performance on the CAL-500

dataset. For the 97 tags setting, we compare with CBA [51], GMM [128], context-

SVM [97] and Dirichlet mixtures (DirMix) [92]. Their results were originally re-

ported in [92] and cited here in Table 3.2 for more convenient comparison. For the

78 tags setting, CBA, hierarchical EM Gaussian mixture models (HEM-GMM)

and hierarchical EM dynamic texture model (HEM-DTM) [31] were compared.

Their original results reported in [31] and copied in Table 3.3. The results of

CorrLog with the elastic net regularization are also reported in Table 3.2 and

Table 3.3, for the two settings respectively.

From Table 3.2, we can see that Context-SVM and DirMix generally outper-

form CBA and GMM. We believe this is due to the fact that the former two are

able to utilize the information of label correlations. CorrLog futher improves the

performance on most evaluation metrics. Similar results can be observed from

Table 3.3 for the 78 tags setting.

3.7 Experiments: Multi-Label Image Classifica-

tion

In this section, we apply the proposed CorrLog to multi-label image classifi-

cation. In particular, four multi-label image datasets are used in the follow-
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Table 3.4: Datasets summary. #images stands for the number of all images,
#features stands for the dimension of the features, and #labels stands for the
number of labels.

Datasets #images #features #labels
MULANscene 2047 294 6

MITscene-PHOW 2688 3600 8
MITscene-CNN 2688 4096 8

PASCAL07-PHOW 9963 3600 20
PASCAL07-CNN 9963 4096 20

PASCAL12-PHOW 11540 3600 20
PASCAL12-CNN 11540 4096 20

ing experiments, including MULAN scene (MULANscene)1, MIT outdoor scene

(MITscene) [99], PASCAL VOC 2007 (PASCAL07) [41] and PASCAL VOC 2012

(PASCAL12) [40]. MULAN scene dataset contains 2047 images with 6 labels, and

each image is represented by 294 features. MIT outdoor scene dataset contains

2688 images in 8 categories. To make it suitable for multi-label experiment, we

transformed each category label with several tags according to the image contents

of that category2. PASCAL VOC 2007 dataset consists of 9963 images with 20 la-

bels. For PASCAL VOC 2012, we use the available train-validation subset which

contains 11540 images. In addition, two kinds of features are adopted to repre-

sent the last three datasets, i.e., the PHOW (a variant of dense SIFT descriptors

extracted at multiple scales) features [13] and deep CNN (convolutional neural

network) features [23, 60]. Summary of the basic information of the datasets

is illustrated in Table 4.1. To extract PHOW features, we use the VLFeat im-

plementation [129]. For deep CNN features, we use the ’imagenet-vgg-f’ model

pretrained on ImageNet database [23] which is available in MatConvNet matlab

toolbox [130].

1http://mulan.sourceforge.net/
2The 8 categories are coast, forest, highway, insidecity, mountain, opencountry, street, and

tallbuildings. The 8 binary tags are building, grass, cement-road, dirt-road, mountain, sea,
sky, and tree. The transformation follows, C1 → (B6, B7), C2 → (B4, B8), C3 → (B3, B7),
C4 → (B1), C5 → (B5, B7), C6 → (B2, B4, B7), C7 → (B1, B3, B7), C8 → (B1, B7). For
example, coast (C1) is tagged with sea (B6) and sky (B7).
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Table 3.5: Learned CorrLog label graph on MITscene using `2 or elastic net
regularization.

MITscene Images and Tags

coast forest highway inside-city mountain open-country street tall-building

sea

sky

dirt-road

tree

cement-road

sky
building

mountain

sky

grass

dirt-road

sky

building

cement-road

sky

building

sky

Learned CorrLog Label Graph

`2 regularization Elastic net regularization

−0.034843 0.043017

building

grass

cement−road
dirt−road

mountain

sea

sky

tree

building

grass

cement−road
dirt−road

mountain

sea

sky

tree

3.7.1 A Warming-Up Qualitative Experiment

As an extension to `2 regularized CorrLog, the proposed method utilizes elastic

net to inherit individual advantages of `2 and `1 regularization. To build up the

intuition, we employ MITscene with PHOW features to visualize the difference

between `2 and elastic net regularization. Table 3.5 presents the learned CorrLog

label graphs using these two types of regularization respectively. In the label

graph, the color of each edge represents the correlation strength between two

certain labels. We have also listed 8 representative example images, one for each

category, and their binary tags for completeness.

According to the comparison, one can see that elastic net regularization results

in a sparse label graph due to its `1 component, while `2 regularization can only

lead to a fully-connected label graph. In addition, the learned label correlations
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in elastic net case are more reasonable than that of `2. For example, in the `2 label

graph, dirt-road and mountain have weekly positive correlation (according to the

link between them), though they seldom co-occur on the images in the datasets,

while in the elastic net graph, their correlation is corrected as negative. It has

to be confessed that elastic net regularization also discarded some reasonable

correlations such as cement-road and building. This phenomenon is a direct

result of the compromise between learning stability and model sparsity. We shall

mention that those reasonable correlations can be maintained by decreasing λ1,

λ2 or ε, though more unreasonable connections will also be maintained. Thus,

applying weak sparsity may impair the model performance. As a result, it is

important to choose a good level of sparsity to achieve a compromise. In our

experiments, CorrLog with elastic net regularization generally outperforms that

with `2 regularization, which confirms our motivation that appropriate level of

sparsity in feature selection and label correlations help boost the performance of

multi-label classification. In the following presentation, we will use CorrLog with

elastic net regularization in all experimental comparisons. To benefit following

research, our code is available upon request.

3.7.2 Quantitative Experimental Setting

In this subsection, we present further comparisons between CorrLog and other

multi-label classification methods. First, to demonstrate the effectiveness of

utilizing label correlation, we first compare CorrLog’s performance with ILRs.

Moreover, four state-of-the-art multi-label classification methods - instance-based

learning by logistic regression (IBLR) [28], multi-label k-nearest neighbour (MLKNN)

[152], classifier chains (CC) [108] and maximum margin output coding (MMOC)

[155] were also employed for comparison study. Note that ILRs can be regarded

as the basic baseline and other methods represent state-of-the-arts. In our ex-

periments, LIBlinear [42] `2-regularized logistic regression is employed to build
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Table 3.6: MULANscene performance comparison via 5-fold cross validation.
Marker ∗/~ indicates whether CorrLog is statistically superior/inferior to the
compared method (using paired t-test at 0.05 significance level).

Datasets Methods
Measures

Hamming loss 0-1 loss Accuracy F1-Score Macro-F1 Micro-F1

MULANscene

CorrLog 0.095±0.007 0.341±0.020 0.710±0.018 0.728±0.017 0.745±0.016 0.734±0.017
ILRs 0.117±0.006 ∗ 0.495±0.022 ∗ 0.592±0.016 ∗ 0.622±0.014 ∗ 0.677±0.016 ∗ 0.669±0.014 ∗
IBLR 0.085±0.004 ~ 0.358±0.016 0.677±0.018 ∗ 0.689±0.019 ∗ 0.747±0.010 0.738±0.014

MLKNN 0.086±0.003 0.374±0.015 ∗ 0.668±0.018 ∗ 0.682±0.019 ∗ 0.742±0.013 0.734±0.012
CC 0.104±0.005 ∗ 0.346±0.015 0.696±0.015 ∗ 0.710±0.015 ∗ 0.716±0.018 ∗ 0.706±0.014 ∗

MMOC 0.126±0.017 ∗ 0.401±0.046 ∗ 0.629±0.049 ∗ 0.639±0.050 ∗ 0.680±0.031 ∗ 0.638±0.049 ∗

binary classifiers for ILRs. As for other methods, we use publicly available codes

in MEKA1 or the authors’ homepages.

We used six different measures to evaluate the performance. These include

different loss functions (Hamming loss and zero-one loss) and other popular mea-

sures (accuracy, F1 score, Macro-F1 and Micro-F1). The details of these evalua-

tion measures can be found in [29, 87, 108,126]. The parameters for CorrLog are

fixed across all experiments as λ1 = 0.001, λ2 = 0.001 and ε = 1. On each dataset,

all the methods are compared by 5-fold cross validation. The mean and standard

deviation are reported for each criterion. In addition, paired t-tests at 0.05 sig-

nificance level is applied to evaluate the statistical significance of performance

difference.

3.7.3 Quantitative Results and Discussions

Tables 3.6, 3.7, 3.8 and 3.9 summarized the experimental results on MULANscene,

MITscene, PASCAL07 and PASCAL12 of all six algorithms evaluated by the

six measures. By comparing the results of CorrLog and ILRs, we can clearly

see the improvements obtained by exploiting label correlations for multi-label

classification. Except the Hamming loss, CorrLog greatly outperforms ILRs on

all datasets. Especially, the reduction of zero-one loss is significant on all four

1http://meka.sourceforge.net/
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Table 3.7: MITscene performance comparison via 5-fold cross validation. Marker
∗/~ indicates whether CorrLog is statistically superior/inferior to the compared
method (using paired t-test at 0.05 significance level).

Datasets Methods
Measures

Hamming loss 0-1 loss Accuracy F1-Score Macro-F1 Micro-F1

MITscene-PHOW

CorrLog 0.045±0.006 0.196±0.017 0.884±0.012 0.914±0.010 0.883±0.017 0.915±0.011
ILRs 0.071±0.002 ∗ 0.358±0.015 ∗ 0.825±0.007 ∗ 0.877±0.005 ∗ 0.833±0.007 ∗ 0.872±0.003 ∗
IBLR 0.060±0.003 ∗ 0.243±0.021 ∗ 0.845±0.012 ∗ 0.879±0.008 ∗ 0.848±0.009 ∗ 0.886±0.006 ∗

MLKNN 0.069±0.002 ∗ 0.326±0.022 ∗ 0.810±0.009 ∗ 0.857±0.006 ∗ 0.827±0.009 ∗ 0.869±0.004 ∗
CC 0.047±0.005 0.200±0.021 0.883±0.012 0.913±0.008 0.883±0.015 0.913±0.009

MMOC 0.062±0.010 ∗ 0.274±0.035 ∗ 0.845±0.017 ∗ 0.885±0.014 ∗ 0.846±0.024 ∗ 0.885±0.017 ∗

MITscene-CNN

CorrLog 0.017±0.004 0.088±0.015 0.953±0.008 0.966±0.006 0.957±0.011 0.968±0.006
ILRs 0.020±0.002 ∗ 0.102±0.015 ∗ 0.947±0.006 ∗ 0.962±0.004 ∗ 0.951±0.007 ∗ 0.963±0.005 ∗
IBLR 0.022±0.001 ∗ 0.090±0.009 0.944±0.004 0.957±0.003 ∗ 0.944±0.004 ∗ 0.958±0.003 ∗

MLKNN 0.024±0.002 ∗ 0.104±0.005 ∗ 0.939±0.003 ∗ 0.954±0.003 ∗ 0.941±0.002 ∗ 0.955±0.004 ∗
CC 0.021±0.003 ∗ 0.075±0.008 ~ 0.951±0.005 0.962±0.004 ∗ 0.948±0.007 ∗ 0.961±0.005 ∗

MMOC 0.018±0.002 0.062±0.005 ~ 0.959±0.003 ~ 0.967±0.003 0.955±0.005 0.967±0.004

datasets with different type of features. This confirms the value of correlation

modelling to joint prediction. However, it should be noticed that the improvement

of CorrLog over ILRs is less significant when the performance is measured by

Hamming loss. This is because Hamming loss treats the prediction of each label

individually.

In addition, CorrLog is more effective in exploiting label correlations than

other four state-of-the-art multi-label classification algorithms. For MULAN-

scene dataset, CorrLog achieved comparable results with IBLR and both of them

outperformed other methods. For MITscene dataset, both PHOW and CNN fea-

tures are very effective representations and boost the classification results. As a

consequence, the performance of CorrLog and the four multi-label classification

algorithms are very close to each other. It is worth noting that, the MMOC

method is time-consuming in the training stage, though it achieved the best per-

formance on this dataset. As for both PASCAL07 and PASCAL12 datasets,

CNN features perform significantly better than PHOW features. CorrLog ob-

tained much better results than the competing multi-label classification schemes,

except for the Hamming loss and zero-one loss. Note that the CorrLog also per-

forms competitively with PLEM and CGM, according to the results reported
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Table 3.8: PASCAL07 performance comparison via 5-fold cross validation.
Marker ∗/~ indicates whether CorrLog is statistically superior/inferior to the
compared method (using paired t-test at 0.05 significance level).

Datasets Methods
Measures

Hamming loss 0-1 loss Accuracy F1-Score Macro-F1 Micro-F1

PASCAL07-PHOW

CorrLog 0.068±0.001 0.776±0.007 0.370±0.010 0.423±0.012 0.367±0.011 0.480±0.008
ILRs 0.093±0.001 ∗ 0.878±0.007 ∗ 0.294±0.008 ∗ 0.360±0.009 ∗ 0.332±0.008 ∗ 0.404±0.007 ∗
IBLR 0.066±0.001 ~ 0.832±0.003 ∗ 0.270±0.005 ∗ 0.308±0.006 ∗ 0.258±0.007 ∗ 0.408±0.009 ∗

MLKNN 0.066±0.001 ~ 0.839±0.006 ∗ 0.256±0.007 ∗ 0.291±0.008 ∗ 0.235±0.006 ∗ 0.392±0.007 ∗
CC 0.091±0.000 ∗ 0.845±0.010 ∗ 0.318±0.005 ∗ 0.379±0.003 ∗ 0.348±0.004 ∗ 0.417±0.001 ∗

MMOC 0.065±0.001 ~ 0.850±0.003 ∗ 0.259±0.009 ∗ 0.299±0.011 ∗ 0.206±0.007 ∗ 0.392±0.012 ∗

PASCAL07-CNN

CorrLog 0.038±0.001 0.516±0.010 0.642±0.010 0.696±0.010 0.674±0.002 0.724±0.006
ILRs 0.046±0.001 ∗ 0.574±0.011 ∗ 0.610±0.010 ∗ 0.673±0.009 ∗ 0.651±0.004 ∗ 0.688±0.007 ∗
IBLR 0.043±0.001 ∗ 0.554±0.011 ∗ 0.597±0.014 ∗ 0.649±0.015 ∗ 0.621±0.007 ∗ 0.682±0.010 ∗

MLKNN 0.043±0.001 ∗ 0.557±0.010 ∗ 0.585±0.014 ∗ 0.635±0.015 ∗ 0.613±0.006 ∗ 0.668±0.011 ∗
CC 0.051±0.001 ∗ 0.586±0.008 ∗ 0.602±0.008 ∗ 0.668±0.008 ∗ 0.635±0.009 ∗ 0.669±0.008 ∗

MMOC 0.037±0.000 ~ 0.512±0.008 0.634±0.009 ∗ 0.684±0.009 ∗ 0.663±0.005 ∗ 0.719±0.004 ∗

Table 3.9: PASCAL12 performance comparison via 5-fold cross validation.
Marker ∗/~ indicates whether CorrLog is statistically superior/inferior to the
compared method (using paired t-test at 0.05 significance level).

Datasets Methods
Measures

Hamming loss 0-1 loss Accuracy F1-Score Macro-F1 Micro-F1

PASCAL12-PHOW

CorrLog 0.070±0.001 0.790±0.009 0.344±0.009 0.393±0.010 0.369±0.014 0.449±0.006
ILRs 0.100±0.001 ∗ 0.891±0.009 ∗ 0.269±0.007 ∗ 0.333±0.008 ∗ 0.324±0.008 ∗ 0.370±0.005 ∗
IBLR 0.068±0.001 ~ 0.869±0.009 ∗ 0.219±0.005 ∗ 0.252±0.003 ∗ 0.253±0.007 ∗ 0.345±0.005 ∗

MLKNN 0.069±0.001 ~ 0.883±0.008 ∗ 0.191±0.006 ∗ 0.218±0.005 ∗ 0.213±0.007 ∗ 0.306±0.006 ∗
CC 0.097±0.001 ∗ 0.862±0.012 ∗ 0.291±0.010 ∗ 0.350±0.010 ∗ 0.340±0.007 ∗ 0.380±0.006 ∗

MMOC 0.067±0.001 ~ 0.865±0.003 ∗ 0.227±0.005 ∗ 0.262±0.007 ∗ 0.200±0.007 ∗ 0.346±0.004 ∗

PASCAL12-CNN

CorrLog 0.040±0.001 0.526±0.010 0.639±0.007 0.695±0.007 0.674±0.006 0.708±0.006
ILRs 0.051±0.001 ∗ 0.613±0.002 ∗ 0.581±0.005 ∗ 0.649±0.006 ∗ 0.638±0.005 ∗ 0.658±0.005 ∗
IBLR 0.045±0.001 ∗ 0.574±0.006 ∗ 0.575±0.009 ∗ 0.627±0.010 ∗ 0.613±0.008 ∗ 0.657±0.006 ∗

MLKNN 0.045±0.002 ∗ 0.575±0.012 ∗ 0.566±0.015 ∗ 0.616±0.017 ∗ 0.604±0.011 ∗ 0.645±0.013 ∗
CC 0.055±0.001 ∗ 0.615±0.010 ∗ 0.579±0.009 ∗ 0.647±0.010 ∗ 0.623±0.005 ∗ 0.643±0.007 ∗

MMOC 0.039±0.001 ~ 0.525±0.005 0.619±0.006 ∗ 0.669±0.007 ∗ 0.659±0.004 ∗ 0.699±0.005 ∗

in [121].

3.7.4 Complexity Analysis and Execution Time

Table 3.10 summarizes the algorithm computational complexity of all multi-label

classification methods. The training computational cost of both CorrLog and

ILRs are linear to the number of labels, while CorrLog causes more testing com-

putational cost than ILRs due to the iterative belief propagation algorithm. In

contrast, the training complexity of CC and MMOC are polynomial to the num-
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ber of labels. The two instance-based methods, MLKNN and IBLR, are relatively

computational in both train and test stages due to the involvement of instance-

based searching of nearest neighbours. In particular, training MLKNN requires

estimating the prior label distribution from training data which needs the consid-

eration of all k nearest neighbours of all training samples. Testing a given sample

in MLKNN consists of finding its k-nearest neighbours and applying maximum

a posterior (MAP) inference. Different from MLKNN, IBLR constructs logistic

regression models by adopting labels of k-nearest neighbours as features.

To evaluate the practical efficiency, Tables 3.11 and 3.12 present the execution

time (train and test phase) of all comparison algorithms under Matlab environ-

ment. A Linux server equipped with Intel Xeon CPU (8 cores @ 3.4 GHz) and 32

GB memory is used for conducting all the experiments. CorrLog is implemented

in Matlab language, while ILRs is implemented based on LIBlinear’s mex func-

tions. MMOC is evaluated using the authors’ Matlab code which also builds upon

LIBlinear. As for IBLR, MLKNN and CC, the MEKA Java library is called via a

Matlab wrapper. Based on the comparison results, the following observations can

be made: 1) the execution time is largely consistent with the complexity analysis,

though there maybe some unavoidable computational differences between Matlab

scripts, mex functions and Java codes; 2) CorrLog’s train phase is very efficient

and its test phase is also comparable with ILRs, CC and MMOC; 3) CorrLog is

more efficient than IBLR and MLKNN in both train and test stages.

3.8 Summary

We have proposed a new multi-label classification algorithm CorrLog and applied

it to multi-label image classification. Built upon IRLs, CorrLog explicitly models

the pairwise correlation between labels, and thus improves the effectiveness for

multi-label classification. Besides, by using the elastic net regularization, CorrLog

is able to exploit the sparsity in both feature selection and label correlations, and
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Table 3.10: Computational complexity analysis. Recall that n stands for the
number of train images, D stands for the dimension of the features, and m stands
for the number of labels. Note that C is the iteration number of the max-product
algorithm in CorrLog, and K is the number of nearest neighbours in MLKNN
and IBLR.

Methods Train Test per image
CorrLog O(nDm) O(Dm+ Cm2)

ILRs O(nDm) O(Dm)
IBLR O(Kn2Dm+ nDm) O(KnDm+Dm)

MLKNN O(Kn2Dm) O(KnDm)
CC O(nDm+ nm2) O(Dm+m2)

MMOC O(nm3 + nDm2 + n4) O(m3)

Table 3.11: Average execution time (in seconds) comparison on MULANscene
and MITscene.

MULANscene MITscene-PHOW MITscene-CNN
Train Test Train Test Train Test

CorrLog 0.09 1.74 2.80 2.12 2.46 2.08
ILRs 2.54 0.02 39.50 0.37 7.50 0.15
IBLR 12.01 2.63 218.98 53.31 215.28 52.19

MLKNN 10.29 2.36 188.08 45.87 176.52 42.78
CC 5.48 0.06 40.71 0.55 26.64 0.65

MMOC 851.98 0.51 2952.77 0.70 2162.13 0.48

Table 3.12: Average execution time (in seconds) comparison on PASCAL07 and
PASCAL12.

PASCAL07-PHOW PASCAL07-CNN PASCAL12-PHOW PASCAL12-CNN
Train Test Train Test Train Test Train Test

CorrLog 8.94 10.68 8.35 11.08 9.67 12.58 8.62 13.06
ILRs 872.77 4.79 122.73 1.56 1183.45 5.59 161.71 1.83
IBLR 3132.18 779.15 2833.94 688.53 4142.75 1034.86 3824.06 947.90

MLKNN 2507.51 628.61 2232.19 551.26 3442.21 863.17 3020.29 779.50
CC 74315.65 7.48 8746.82 8.15 137818.99 8.38 15926.62 9.57

MMOC 86714.47 33.08 38403.54 17.75 97856.16 31.43 45541.01 20.66
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thus further boost the performance of multi-label classification. Theoretically,

we have shown that the generalization error of CorrLog is upper bounded and

is independent of the number of labels. This suggests the generalization bound

holds with high confidence even when the number of labels is large. Evaluations

on benchmark music annotation and multi-label image datasets confirm the ef-

fectiveness of CorrLog for multi-label classification and show its competitiveness

with the state-of-the-arts.

80



Chapter 4

Conditional Graphical Lasso for

Multi-Label Classification

Multi-label image classification aims to predict multiple labels for a single image

which contains diverse content. By utilizing label correlations, various techniques

have been developed to improve classification performance. However, current ex-

isting methods either neglect image features when exploiting label correlations

or lack the ability to learn image-dependent conditional label structures. In this

chapter, we develop conditional graphical lasso (CGL) to handle these challenges.

CGL provides a unified Bayesian framework for structure and parameter learning

conditioned on image features. We formulate the multi-label prediction as CGL

inference problem, which is solved by a mean field variational approach. Mean-

while, CGL learning is efficient due to a tailored proximal gradient procedure by

applying the maximum a posterior (MAP) methodology. CGL performs compet-

itively for multi-label image classification on benchmark datasets MULAN scene,

PASCAL VOC 2007 and PASCAL VOC 2012, compared with the state-of-the-art

multi-label classification algorithms.

81



𝐲(𝑙)

𝑛

𝝂

𝝀𝟏

𝝎

𝝀𝟐

(a) Graphical Lasso

𝐱(𝑙)

𝐲(𝑙)

𝑛

𝜷

𝝀𝟏

𝜶

𝝀𝟐

(b) Conditional Graphical Lasso

Figure 4.1: Comparison of graphical models between unconditional and condi-
tional graphical Lasso. The templates denotes replica of n training images and
labels. x(l) represents the l-th image and y(l) denotes its label vector. The param-
eters {ν,ω}, {α,β} are shared across training data, and are themselves parame-
terized by hyperparameters λ1 and λ2. In graphical Lasso, ν and ω parameterize
unary and pairwise potentials, respectively. In contrast, the parameterization is
achieved by considering linear functions of x(l), i.e., βTx(l) and αTx(l), in condi-
tional graphical Lasso.

4.1 Introduction

Multi-label image classification targets the specific problem of predicting the pres-

ence or absence of multiple object categories in an image. Like other high-level

vision tasks such as object recognition [5], image annotation [43] and scene classi-

fication [15], multi-label image classification is very challenging due to large intra-

class variation caused by viewpoint, scale, occlusion, illumination, etc. To meet

these challenges, many image representation and feature learning schemes have

been developed to gain variation-invariance, such as GIST [99], dense SIFT [13],

VLAD [55], object bank [72], and deep CNN [23, 60]. Meanwhile, label correla-

tions, which are typically encoded in a graph structure, have been exploited to

further improve classification performance.

In literature, the task of finding a meaningful label structure is commonly han-

dled with probabilistic graphical models [58]. A classical approach is the ChowLiu
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Tree [30] which utilizes mutual information between labels to obtain a maximum

spanning tree structure and is proved to be equivalent to the maximum likeli-

hood estimation. Recently, probabilistic label enhancement model (PLEM) [77]

exploits label co-occurrence pairs based on a maximum spanning tree construc-

tion and applies the tree structure to solve multi-label classification problem. In

these methods, the structure learned on labels is naively used to model the label

structure conditioned on features, which is inappropriate because this kind of

structure describes the label distribution rather than the conditional distribution

of labels.

To target the problem, several methods have been proposed to incorporate

input features during label structure learning [16, 121, 151]. An extension to the

ChowLiu Tree is designed in [16] which investigates two kinds of conditional mu-

tual information to learn a conditional tree structure. Meanwhile, a conditional

directed acyclic graph (DAG) is also designed to reformulate multi-label classi-

fication into a series of single-label classification problems [151]. More recently,

clique generating machine (CGM) [121] learns the conditional label structure in a

structured support vector machine framework. These methods assume a shared

label graph across all input images, which provides a better approximation to

the true structure than the unconditional label graph. However, such a shared

conditional graph is not flexible enough to characterize the label structure of each

unique image.

In this study, we propose a conditional label structure learning method which

can produce image-dependent conditional label structures. Our method extends

the classical graphical lasso (GL) framework which estimates graph structure

associated with Markov random field (MRF) by employing sparse constraints [68,

91, 105]. 1 We term the proposed method as conditional graphical lasso (CGL).

1In literature, the term “graphical Lasso” is traditionally restricted to refer structure learn-
ing for (continuous) Gaussian MRF only. In this chapter, we use this concept to cover contin-
uous, discrete and mixed random fields.
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See Figure 4.1 for the comparison between graphical models of GL and CGL. CGL

offers a principled approach to model conditional label structures within a unified

Bayesian framework. Besides, CGL provides a simple but effective way to learn

image-dependent label structures by considering conditional label correlations as

linear weight functions of features. Such favourable properties are achieved via

an efficient mean field approximate inference procedure and a tailored proximal

gradient based learning algorithm.

The rest of this chapter is organized as follows. Section 4.2 briefly reviews

related multi-label classification methods from the viewpoint of learning strat-

egy. Section 4.3 first introduces the GL framework for modeling binary valued

labels and then describes the proposed conditional extension CGL in terms of a

probabilistic perspective. Section 4.4 presents algorithms for CGL inference and

learning, of which inference is achieved by a mean-field variational approach and

learning is achieved by a proximal gradient method. Section 4.5 reports results of

empirical evaluations, where both qualitative and quantitative experiments are

considered on several benchmark multi-label image classification datasets.

4.2 Related Works

Apart from the structure learning approach, we briefly review three other main

categories of multi-label classification methods which follows the taxonomy of

recent surveys [50,125,153]. The three categories include problem transformation,

algorithm adaptation and dimension reduction.

Problem transformation methods reformulate multi-label classification into

single-label classification. For example, the binary relevance (BR) method trains

binary classifiers for each label independently. By considering label dependency,

classifier chain (CC) [108], as well as its ensemble and probabilistic variants [29],

constructs a chain of binary classifiers, in which each classifier additionally use

the previous labels as its input features. Another group of algorithms are built
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upon label powerset or hierarchy information, which includes random k-label sets

(RAKEL) [126], pruned problem transformation (PPT) [107], hierarchical binary

relevance (HBR) [22] and hierarchy of multi-label classifiers (HOMER) [125].

Algorithm adaptation methods extend typical classifiers to multi-label situa-

tion. For example, multi-label k-nearest neighbour (MLKNN) [152] adapts KNN

to handle multi-label classification, which exploits the prior label distribution

within the neighbourhood of an image instance and applies the maximum a pos-

terior (MAP) prediction. Instance based logistic regression (IBLR) [28] adapts

LR by utilizing label information from the neighbourhood of an image instance

as features.

Dimension reduction methods target to handle high-dimensional features and

labels. The reduction of feature space aims to reduce feature dimension either by

feature selection or by feature extraction. For example, multi-label informed la-

tent semantic indexing (MLSI) [146], multi-label least square (MLLS) [56], multi-

label F-statistics (MLF) and multi-label ReliefF (MLRF) [59]. Label specific

features (LIFT) [150] method represents an image instance as its distances to

label-specific clustering centers of positive and negative training image instances,

and use the features to train binary classifiers and make predictions. On the other

hand, the reduction of label space utilizes a variety of strategies, such as multi-

label compressed sensing (MLCS) [53], compressed labeling (CL) [156], principal

label space transformation (PLST) [120] and its conditional variant [26], canon-

ical correlation analysis output coding (CCA-OC) [154], and maximum margin

output coding (MMOC) [155].

4.3 Model Representation

In this section, we first review the basic GL framework from a Bayesian per-

spective. Then we present the extension by considering conditional variables and

exploiting a group sparse prior. To simplify discussion, we will consider a fully-
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connected and pairwise label graph, though the same methodology can be easily

applied to a higher-order case.

4.3.1 Graphical Lasso

An GL framework considers the problem of estimating the graph structure as-

sociated with an MRF. Consider the `1-regularized Ising MRF [105] over a label

vector y ∈ {−1, 1}m, GL employs an `1 regularization over pairwise parameters

and achieves conditional independence by increasing sparsity. An `1 regulariza-

tion is equivalent to imposing a Laplacian prior. Thus, we can formulate the

`1-regularized Ising model into the Bayesian framework which is given by

p(y,ν,ω) = p(y|ν,ω)p(ν)p(ω), (4.1)

p(y|ν,ω) ∝ exp

{
m∑
i=1

νiyi +
∑
i<j

ωijyiyj

}
, (4.2)

p(ν) ∝ λ
d/2
1 exp(−λ1‖ν‖2

2), (4.3)

p(ω) ∝ λ
d/2
2 exp(−λ2‖ω‖1), (4.4)

where ν and ω parameterize the unary and pairwise potentials over y. λ1 and λ2

are hyperparameters which control the strength of regularization over ν and ω,

respectively. Though the label graph learned by GL can be applied to multi-label

classification, both ν and ω have no explicit connection to the image features. In

the next subsection, we will make a conditional extension to GL by incorporating

image features to the learning process of label graph which leads to our CGL

framework.

4.3.2 Conditional Graphical Lasso

As an extension to the GL framework, we consider a more deliberate structure

learning approach when conditional variables emerge. In particular, CGL frame-
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work aims to search adaptive structures among response variables (labels) condi-

tioned on input variables (image features).

For the particular multi-label classification task, we study the problem of

learning a joint prediction y = fΘ(x) : X 7→ Y, where the prediction function f

is parameterized by Θ, the image feature space X = {x : ‖x‖ ≤ 1,x ∈ Rd} and

the label space Y = {−1, 1}m. By considering appropriate priors on Θ, we arrive

at the joint probability distribution over y and Θ conditioned on x,

p(y,Θ|x) = p(y|x,Θ)p(Θ). (4.5)

Note that the joint conditional distribution can be specified according to certain

considerations, such as dealing with overfitting problems and inducing sparsity

over label correlations.

Consider a label graph G = (V,E), V = {1, 2, · · · ,m} denotes the set of nodes

corresponding to labels and E = {(i, j) : i < j; i, j ∈ V} represents the set of edges

encoding pairwise label correlations. We can model the conditional distribution

p(y|x,Θ) with a set of unary and pairwise potentials over the label graph G,

p(y|x,Θ) ∝ exp

{
m∑
i=1

νi(x)yi +
∑
i<j

ωij(x)yiyj

}
. (4.6)

The above unary and pairwise weights {νi(x)}, {ωij(x)} can be linear or nonlinear

functions of x. For simplicity, we restrict the weights to be linear functions of x

which are defined as  νi(x) = βTi x, for i ∈ V;

ωij(x) = αTijx, for (i, j) ∈ E.
(4.7)

To this end, the model parameter Θ = {β,α} contains β = [β1, ..., βm] and

α = [α12, ..., α(m−1)m]. Note that, conditioned on x, (4.6) is exactly an Ising

model for y. It can also be treated as a special instantiation of CRF [63], by
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defining features φi(x,y) = yix and ψij(x,y) = yiyjx.

As for the model prior p(Θ), we employ multivariate d-dimensional Gaussian

priors over each group of the node regression coefficients, which is equivalent to

place an `2-norm regularizer on the nodewise parameters β. Meanwhile, we use

multivariate d-dimensional Multi-Laplacian priors [104] over each group of the

edge regression coefficients, which can be regarded as imposing an `2,1-norm, i.e.,

group-Lasso regularizer on the edgewise parameters α. More specifically,

p(Θ) = p(β)p(α) =
m∏
i=1

p(βi)
∏
i<j

p(αij), (4.8)

p(βi) ∝ λ
d/2
1 exp(−λ1‖βi‖2

2), (4.9)

p(αij) ∝ λ
d/2
2 exp(−λ2‖αij‖2), (4.10)

where hyperparameters λ1 and λ2 control the strength of regularization over β

and α, respectively. It is worth mentioning that one can also choose other kinds of

priors over the model parameters provided the priors can induce certain sparsity

over pairwise correlations.

It is interesting to compare the differences between GL and CGL in modeling

the label correlations. Firstly, GL uses scalar parameters to define the pattern

and strength while CGL uses parametric functions of input features. Secondly,

though both GL and CGL produce a shared label structure pattern for different

instances, CGL additionally has the flexibility of capturing the varying correlation

strength for different instances.

4.4 Algorithms

In this section, we derive both inference and learning algorithms for CGL. Gen-

erally, the label space Y = {−1, 1}m in (4.6) maintains an exponentially large

number of possible configurations. To normalize the conditional distribution in
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(4.6), one requires the log-partition function. For CGL with linear weight func-

tions of x in (4.7), the log-partition function is defined as

A(Θ,x) = log
∑
y∈Y

exp

{
m∑
i=1

yiβ
T
i x +

∑
i<j

yiyjα
T
ijx

}
, (4.11)

which involves a summation over all the configurations. Hence, it is computa-

tionally intractable to exactly calculate the log-partition function. To make CGL

inference and learning tractable, we resort to approximate inference and learning

algorithms via the variational methodology.

4.4.1 Approximate Inference

Inference of CGL involves two main tasks: marginal inference and the most proba-

ble explanation (MPE) prediction. However, conducting inference from the exact

distribution p(y|x) is intractable due to the log-partition function A(Θ,x). Con-

sidering tractable approximation techniques, we choose the variational approach

instead of sampling methods for its simplicity and efficiency. In particular, by

applying the mean field assumption, the optimal variational approximation of

p(y|x) is obtained by

q̂(y) = arg min
q(y)=∏
i q(yi)

KL[q(y)‖p(y|x,Θ)]. (4.12)

According to [12], the marginal q(yi) that minimizes (4.12) is achieved by analyt-

ically minimizing a Lagrangian which consists of the Kullback-Leibler divergence

and Lagrangian multipliers constraining the marginal q(yi) to be a valid proba-

bility distribution. For brevity of presentation, we simply give the update formula

for each q(yi),

q(yi)←
1

Zi
expEq(y\i)[ln p(y|x,Θ)], (4.13)
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Algorithm 2 CGL Inference

Input: Image x and model parameters Θ = (β,α).
Output: Variational distribution q̂(y) =

∏
i q̂(yi).

Initialize q(0)(yi)← 1

1+exp{−2yiβT
i x} for each i.

while not converged do
for i = 1, · · · ,m do

Prepare expected statistics,

ξq(y\i) =

{
Eq(t+1)(yj)[yj] : 1 ≤ j < i;

Eq(t)(yj)[yj] : i < j ≤ m.

}
Update the variational distribution q(t+1)(yi) with ξq(y\i) by using (4.16).

Update the i-th expected statistic Eq(t+1)(yi)[yi].
end for
t = t+ 1

end while

where Ep[g] calculates the expectation of function g w.r.t. distribution p, Zi is the

normalization term for distribution q(yi), and we defined q(y\i) =
∏

j 6=i q(yj).

To solve (4.12) for updating q(yi), we expand and reformulate the expectation

w.r.t. q(y\i). By dissecting out all the terms that contain yi, we obtain

Eq(y\i)[ln p(y|x,Θ)]

= yiβ
T
i x + yiEq(y\i)

[∑
j 6=i

yj

]
αTijx + const (4.14)

= yiβ
T
i x + yi

∑
j 6=i

Eq(yj)[yj]α
T
ijx + const, (4.15)

where we have applied the marginalization property of the joint distribution q(y\i)

to obtain (4.15).

With a further consideration for the normalization constraint of a valid prob-

ability distribution, we arrive at a logistic regression for each q(yi) given by

q(yi) = σ

(
2yi

(
βTi x +

∑
j 6=i

Eq(yj)[yj]α
T
ijx

))
, (4.16)
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Algorithm 3 CGL Learning

Input: Training images and labels {X,Y}, hyperparameters {λ1, λ2}, and
learning rate η, where 1/η is set larger than the Lipschitz constant of ∇Js(Θ)
(4.25).

Output: Model parameters Θ̂ = (β̂, α̂).
Initialize β(0) = 0, α(0) = 0.
while not converged do

Update the variational distributions {q̂(y(l))}nl=1 with Θ(k) = (β(k),α(k)) by
using Algorithm 2.
Calculate the gradient of Js(Θ) at Θ(k) = (β(k),α(k)) according to (4.24).
Update Θ(k+1) = (β(k+1),α(k+1)) by using (4.27);
k = k + 1

end while

where σ(t) = 1
1+exp(−t) is the sigmoid function. This formula requires the expec-

tation of other variables connected to variable yi. Thus, a cycling and iterative

updating for each q(yi) is performed until convergence to a stationary point. Al-

gorithm 2 presents the pseudo code for this procedure. It is worth mentioning

that, we employed the most recent expected statistics ξq(y\i) instead of the terms

from previous round when updating one particular factor distribution q(yi). This

strategy can avoid undesired abrupt oscillations of the iterative procedure to some

extend.

So far, it seems that our derivation only considers optimizing a factorized

variational distribution q(y) which approximates p(y|x). However, the same

methodology can be straightforwardly applied to other inference and learning

tasks. Take MPE for example, suppose we are given a new image x, MPE aims

to perform a joint prediction of its label vector y with some learned model pa-

rameter Θ̂. Instead of conducting the max-product algorithm over p(y|x, Θ̂), we

can achieve the prediction ŷ directly from q(y).

4.4.2 Structure and Parameter Learning

Given a set of i.i.d. training images X = {x(l)}nl=1 and their label vectors
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Y = {y(l)}nl=1, structure and parameter learning of CGL aims to find the optimal

model parameter Θ̂ which achieves the maximum a posterior (MAP) under certain

values of hyperparameters {λ1, λ2}. It is worth emphasizing that the graphical

structure is implicitly represented by the `2-norm of αij. In other words, a nonzero

vector αij almost probably indicates an edge in the graph between node i and j,

while a zero vector αij implies no such edge. To utilize the MAP methodology

for CGL learning, the Bayesian rule is applied to obtain

Θ̂ = arg max
Θ

p(Θ|Y,X) (4.17)

= arg max
Θ

p(Y,Θ|X)∫
Θ
p(Y,Θ|X)

(4.18)

= arg max
Θ

p(Y,Θ|X) (4.19)

= arg max
Θ

n∏
l=1

p(y(l)|x(l),Θ)p(Θ). (4.20)

Note that we have exploited the fact that the evidence
∫

Θ
p(Y,Θ|X) is indepen-

dent of the model parameter Θ. And the final optimization problem (4.20) is

achieved by considering (4.5) and the i.i.d. assumption.

By taking negative logarithm of the posterior and substituting (4.6), (4.9) and

(4.10) into (4.20), the original maximization problem can be reformulated into

an equivalent minimization problem as below,

Θ̂ = arg min
Θ
−

m∑
i=1

βTi φ̄i −
∑
i<j

αTijψ̄ij +
1

n

n∑
l=1

A(Θ,x(l))

+
λ1

n

m∑
i=1

‖βi‖2
2 +

λ2

n

∑
i<j

‖αij‖2, (4.21)

where φ̄i = 1
n

∑n
l=1 y

(l)
i x(l), ψ̄ij = 1

n

∑n
l=1 y

(l)
i y

(l)
j x(l). Note that we have included

A(Θ,x) into (4.6) before the derivation, and thrown away all other terms that

are independent of Θ.
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Denoting by L(Θ) the objective function on the right-hand-side of (4.21). To

learn the parameters Θ, a direct gradient-based optimizer is inapplicable due to

the non-smooth `2,1-norm regularizer. In addition, the intractable log-partition

function A(Θ,x) makes the optimization even more complicated. As an alterna-

tive, we optimize L(Θ) by first dividing the objective into smooth and nonsmooth

parts, and then apply the soft thresholding technique. Meanwhile, the mean field

approximation is employed to approximate the gradient of A(Θ,x).

More specifically, we first separate out the smooth part of L(Θ) and denote

it by Js(Θ), i.e.,

Js(Θ) = −
m∑
i=1

βTi φ̄i −
∑
i<j

αTijψ̄ij +
1

n

n∑
l=1

A(Θ,x(l))

+
λ1

n

m∑
i=1

‖βi‖2
2. (4.22)

Further, according to the mean field approximation described in Section 4.4.1,

the gradient of A(Θ,x) is estimated by replacing the true conditional distribution

p(y|x) with the variational distribution q̂(y). Hence, we have ∇Aβi(Θ,x) = Ep(y|x)[yix] ≈ Eq̂(y)[yix]

∇Aαij
(Θ,x) = Ep(y|x)[yiyjx] ≈ Eq̂(y)[yiyjx].

(4.23)

This results in a simple approximation of the gradient ∇Js at the k-th iteration

Θ(k) = {β(k),α(k)} as below
∇Jsβi(Θ(k)) ≈ −φ̄i + 1

n

n∑
l=1

q̂(y
(l)
i )x(l) + 2λ1

n
β

(k)
i

∇Jsαij
(Θ(k)) ≈ −ψ̄ij + 1

n

n∑
l=1

q̂(y
(l)
i )q̂(y

(l)
j )x(l).

(4.24)

Then, a surrogate J(Θ) of the objective function L(Θ) can be obtained by using
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∇Js(Θ(k)), i.e.,

J(Θ; Θ(k)) = Js(Θ
(k))

+
m∑
i=1

〈∇Jsβi(Θ
(k)), βi − β(k)

i 〉+
1

2η
‖βi − β(k)

i ‖2
2

+
∑
i<j

〈∇Jsαij
(Θ(k)), αij − α(k)

ij 〉

+
1

2η
‖αij − α(k)

ij ‖2
2 +

λ2

n
‖αij‖2. (4.25)

The parameter η in (4.25) serves as a similar role to the variable updating step size

in gradient descent methods. It can be shown that J(Θ) ≥ L(Θ) and J(Θ(k)) =

L(Θ(k)) if 1/η is larger than the Lipschitz constant of ∇Js(Θ(k)). Hence, Θ can

be updated by minimizing (4.25), i.e.,

Θ(k+1) = arg min
Θ
J(Θ; Θ(k)), (4.26)

which is solved by  β
(k+1)
i = β

(k)
i − η∇Jsβi(Θ(k))

α
(k+1)
ij = S(α

(k)
ij − η∇Jsαij

(Θ(k)); λ2
n

),
(4.27)

where the soft thresholding function is

S(u; ρ) =

 (1− ρ
‖u‖2 )u, if ‖u‖2 > ρ;

0, otherwise.
(4.28)

Iteratively applying (4.27) until convergence provides a first-order method for

solving (4.21). The pseudo code for this procedure is summarized in Algorithm

3. Note that the gradient descent steps in Algorithm 3 can be speeded up with

modern optimization procedures, such as the fast iterative shrinkage thresholding

[4].
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As a final remark, the conditional graph structure learned by CGL is largely

related to the value of hyperparameter λ2. In general, a larger λ2, which repre-

sents a more peaked Multi-Laplacian prior over α, can lead to a sparser condi-

tional structure. As a consequence, it is important to find an appropriate level of

sparsity, which can be achieved by resorting to domain knowledge or data-driven

cross-validation techniques.

4.5 Experiments

In this section, we evaluate the performance of CGL on the task of multi-label

image classification. In particular, all experiments are conducted on three bench-

mark multi-label image datasets, including MULAN scene (MULANscene)1, PAS-

CAL VOC 2007 (PASCAL07) [41] and PASCAL VOC 2012 (PASCAL12) [40].

MULAN scene dataset contains 2047 images with 6 labels, and each image is rep-

resented by a 294-dimensional feature. PASCAL VOC 2007 dataset consists of

9963 images with 20 labels. For PASCAL VOC 2012, we use public available train

and validation subsets which contains 11540 images with 20 labels. As for image

features of the latter two datasets, two kinds of feature extractors are employed,

i.e., the PHOW (a variant of dense SIFT descriptors extracted at multiple scales)

features [13] and the deep CNN (convolutional neural network) features [23, 60].

We extract PHOW features of 3600 dimensions by using the VLFeat implemen-

tation [129]. For deep CNN features, we use MatConvNet matlab toolbox [130]

and the ’imagenet-vgg-f’ model pretrained on ImageNet database [23] to represent

each image as a 4096-dimensional feature. The basic information of the datasets

is summarized in Table 4.1.

1http://mulan.sourceforge.net/
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Table 4.1: Datasets summary. #images stands for the number of all images,
#features stands for the dimension of the features, and #labels stands for the
number of labels.

Dataset #images #features #labels
MULANscene 2047 294 6

PASCAL07-PHOW 9963 3600 20
PASCAL07-CNN 9963 4096 20

PASCAL12-PHOW 11540 3600 20
PASCAL12-CNN 11540 4096 20

4.5.1 Label Graph Structure of CGL

To build up an intuition on structure learning of CGL, we employ PASCAL07 with

CNN features to visualize the label correlations under different levels of sparsity

regularization. In particular, we fix hyperparameter λ1 = 0.01 and let λ2 varies

in the range 0.001 ∼ 0.1 to check the label graph evolvement. Since CGL models

pairwise label correlations via a parametric linear function, i.e., ωij(x) = αTijx,

the label graph is actually dependent on features thus unique for each image. To

simplify the visualization of so many label graphs, we use the average feature of

training images, i.e., x̄ = 1
n

∑
l x

(l), and consider the average label graph.

Figure 4.2 presents the graph structure variations as λ2 increases. From the

four label graphs, the number of edges shrinks as λ2 increases. In addition, the

maintained edges are consistent with both semantic co-occurrence (e.g., chair

and table) and repulsion (e.g., cat and dog) edges. For co-occurrence, ”chair”

and ”table” often co-appear in the dataset and have large positive correlations,

thus the edge weight in the label graph is a large positive value. In contrast,

”cat” and ”dog” share certain visual similarity, though they seldom co-appear in

the dataset. These two terms can be easily treated as conditionally independent

by considering label only. However, CGL can successfully capture the repulsion

between these two terms, which is represented as a large negative edge weight in

the label graph. It is not astonishing since CGL takes both feature and label into

account when modeling label correlations.
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Figure 4.3 presents the conditional label co-occurrence matrices of three ex-

ample images from PASCAL07. First of all, the label graph is symmetric and the

color of each block represents the correlation strength between two labels. Sec-

ondly, for the three different images, the label graphs maintain the same structure.

This is not astonishing due to the effect of group sparsity over the pairwise pa-

rameters {αij}. Note that, the prominent (chair, table) correlation is successfully

captured by CGL. Thirdly, the correlation strength of the three images differs

from each other. In particular, the (chair, table) correlation strength of the third

image (which is in dark red) is much stronger than the first two images (which

are in light red). This observation also validates our motivation of incorporating

image features during label graph learning.

4.5.2 Comparison Methods and Measures

We compare CGL with the binary relevance (BR) method and six state-of-the-

art multi-label classification methods. Here we use logistic regression to imple-

ment BR method which is also named as the independent logistic regressions

(ILRs) method. Moreover, six state-of-the-art multi-label classification methods

- instance-based learning by logistic regression (IBLR) [28], multi-label k-nearest

neighbor (MLKNN) [152], classifier chains (CC) [108], maximum margin output

coding (MMOC) [155], probabilistic label enhancement model (PLEM) [77] and

clique generating machine (CGM) [121] were also employed for comparison study.

Note that ILRs can be regarded as the basic baseline and other methods repre-

sent state-of-the-arts. In our experiments, LIBlinear [42] `2-regularized logistic

regression is employed to build binary classifiers for ILRs. Based on ILRs, we

implement PLEM by ourselves. As for other methods, we use publicly available

codes in MEKA 1 and the authors’ homepages 2 3.

1http://meka.sourceforge.net/
2http://www.cs.cmu.edu/~yizhang1/
3http://www.tanmingkui.com/cgm.html
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Table 4.2: Multi-label image classification performance comparison on MULAN-
scene via 5-fold cross validation

Datasets Methods
Measures

Hamming loss 0-1 loss Accuracy F1-Score Macro-F1 Micro-F1

MULANscene

ILRs 0.117±0.006 0.495±0.022 0.592±0.016 0.622±0.014 0.677±0.016 0.669±0.014
IBLR 0.085±0.004 0.358±0.016 0.677±0.018 0.689±0.019 0.747±0.010 0.738±0.014

MLKNN 0.086±0.003 0.374±0.015 0.668±0.018 0.682±0.019 0.742±0.013 0.734±0.012
CC 0.104±0.005 0.346±0.015 0.696±0.015 0.710±0.015 0.716±0.018 0.706±0.014

MMOC 0.126±0.017 0.401±0.046 0.629±0.049 0.639±0.050 0.680±0.031 0.638±0.049
PLEM 0.096±0.005 0.423±0.010 0.627±0.011 0.644±0.012 0.713±0.017 0.704±0.014
CGM 0.096±0.004 0.390±0.016 0.647±0.016 0.659±0.016 0.717±0.011 0.708±0.012
CGL 0.096±0.006 0.347±0.019 0.705±0.019 0.724±0.020 0.745±0.015 0.731±0.018

Table 4.3: Multi-label image classification performance comparison on PAS-
CAL07 via 5-fold cross validation

PASCAL07-PHOW

ILRs 0.093±0.001 0.878±0.007 0.294±0.008 0.360±0.009 0.332±0.008 0.404±0.007
IBLR 0.066±0.001 0.832±0.003 0.270±0.005 0.308±0.006 0.258±0.007 0.408±0.009

MLKNN 0.066±0.001 0.839±0.006 0.256±0.007 0.291±0.008 0.235±0.006 0.392±0.007
CC 0.091±0.000 0.845±0.010 0.318±0.005 0.379±0.003 0.348±0.004 0.417±0.001

MMOC 0.065±0.001 0.850±0.003 0.259±0.009 0.299±0.011 0.206±0.007 0.392±0.012
PLEM 0.066±0.001 0.800±0.005 0.319±0.009 0.362±0.010 0.324±0.013 0.445±0.011
CGM 0.073±0.002 0.819±0.011 0.327±0.010 0.381±0.010 0.359±0.014 0.450±0.011
CGL 0.070±0.002 0.742±0.010 0.386±0.011 0.433±0.011 0.371±0.012 0.475±0.014

PASCAL07-CNN

ILRs 0.046±0.001 0.574±0.011 0.610±0.010 0.673±0.009 0.651±0.004 0.688±0.007
IBLR 0.043±0.001 0.554±0.011 0.597±0.014 0.649±0.015 0.621±0.007 0.682±0.010

MLKNN 0.043±0.001 0.557±0.010 0.585±0.014 0.635±0.015 0.613±0.006 0.668±0.011
CC 0.051±0.001 0.586±0.008 0.602±0.008 0.668±0.008 0.635±0.009 0.669±0.008

MMOC 0.037±0.000 0.512±0.008 0.634±0.009 0.684±0.009 0.663±0.005 0.719±0.004
PLEM 0.045±0.001 0.555±0.011 0.619±0.009 0.678±0.009 0.654±0.008 0.694±0.008
CGM 0.044±0.001 0.552±0.011 0.628±0.009 0.689±0.009 0.661±0.006 0.702±0.009
CGL 0.040±0.001 0.480±0.010 0.676±0.009 0.730±0.009 0.680±0.007 0.726±0.008

Table 4.4: Multi-label image classification performance on PASCAL12 compari-
son via 5-fold cross validation

PASCAL12-PHOW

ILRs 0.100±0.001 0.891±0.009 0.269±0.007 0.333±0.008 0.324±0.008 0.370±0.005
IBLR 0.068±0.001 0.869±0.009 0.219±0.005 0.252±0.003 0.253±0.007 0.345±0.005

MLKNN 0.069±0.001 0.883±0.008 0.191±0.006 0.218±0.005 0.213±0.007 0.306±0.006
CC 0.097±0.001 0.862±0.012 0.291±0.010 0.350±0.010 0.340±0.007 0.380±0.006

MMOC 0.067±0.001 0.865±0.003 0.227±0.005 0.262±0.007 0.200±0.007 0.346±0.004
PLEM 0.068±0.001 0.823±0.009 0.286±0.009 0.325±0.009 0.326±0.012 0.405±0.008
CGM 0.076±0.002 0.836±0.007 0.302±0.009 0.352±0.010 0.361±0.015 0.417±0.011
CGL 0.076±0.001 0.762±0.006 0.365±0.007 0.413±0.007 0.380±0.007 0.442±0.005

PASCAL12-CNN

ILRs 0.051±0.001 0.613±0.002 0.581±0.005 0.649±0.006 0.638±0.005 0.658±0.005
IBLR 0.045±0.001 0.574±0.006 0.575±0.009 0.627±0.010 0.613±0.008 0.657±0.006

MLKNN 0.045±0.002 0.575±0.012 0.566±0.015 0.616±0.017 0.604±0.011 0.645±0.013
CC 0.055±0.001 0.615±0.010 0.579±0.009 0.647±0.010 0.623±0.005 0.643±0.007

MMOC 0.039±0.001 0.525±0.005 0.619±0.006 0.669±0.007 0.659±0.004 0.699±0.005
PLEM 0.049±0.001 0.592±0.006 0.590±0.003 0.653±0.003 0.639±0.004 0.664±0.004
CGM 0.047±0.001 0.583±0.006 0.603±0.006 0.666±0.007 0.650±0.005 0.677±0.006
CGL 0.042±0.001 0.498±0.010 0.661±0.005 0.717±0.006 0.677±0.004 0.707±0.003

We use six widely accepted performance criteria to evaluate all the methods,

including four example based measures (Hamming loss, zero-one loss, accuracy

and F1-score) and two label based measures (Macro-F1 and Micro-F1). In gen-

eral, example based measures encourage the importance of performing well on
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each example, the Macro-F1 score is more influenced by the performance on rare

categories, and the Micro-F1 score tend to be dominated by the performance

on common categories. More details of these evaluation measures can be found

in [87, 144]. It is worth mentioning that, PLEM, CGM and our method solve

MPE inference problem for label prediction (each predicted label is either 0 or 1

thus containing no ranking information). As a result, ranking based measures like

mean average precision (mAP) are not suitable for these methods. In addition,

all the methods are compared by 5-fold cross validation on each dataset. And

the mean and standard deviation are reported for each criterion.

4.5.3 Results and Discussion

Tables 4.2, 4.3, 4.4 summarize the experimental results on MULANscene, PAS-

CAL07 and PASCAL12 of all eight algorithms evaluated by the six measures. Ex-

cept for Hamming loss, CGL achieves better or comparable results on all datasets

with different types of feature. This is because Hamming loss treats the predic-

tion of each label individually. However, CGL performs significantly better than

other methods on PASCAL07 and PASCAL12 in terms of the other five mea-

sures. Especially in terms of accuracy and F1-score, CGL performs the best on

all datasets. It is interesting that these two measures encourage good performance

on each example. CGL’s outstanding performance on accuracy and F1-score con-

firms our motivation of exploiting conditional label correlations, which enables

example based label graph. In the following, we present a more detailed compar-

ison between CGL and the four different categories of multi-label classification

methods.

We first compare CGL with problem transformation methods (ILRs and CC).

We observe that both CGL and CC outperforms ILRs which validates the im-

provements obtained by exploiting label correlations for multi-label classification.

However, CC has to incrementally conduct training and prediction thus is not
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scalable to large label space.

Secondly, CGL shows better performance than algorithm adaptation methods

(IBLR and MLKNN). Both IBLR and MLKNN adopt a local approach to adjust

label prediction performance for each image instance. However, such lazy learners

can be very inefficient when making predictions especially when the training

database is large.

Thirdly, CGL outperforms the label space dimension reduction algorithm

MMOC. Though MMOC obtained good performance on PASCAL07-CNN and

PASCAL12-CNN, the training of output codes is time-consuming. In addition,

MMOC is sensitive to the features at hand since its performance degrades more

than other methods when PHOW feature is utilized instead of CNN.

Finally, we compare three structure learning based methods (PLEM, CGM

and CGL). One can observe that both CGL and CGM performs better than

PLEM on all datasets. This is because PLEM learns the label graph based on

label statistics without using the features. On the other hand, CGM learns a

shared label graph across all images which lacks flexibility. In contrast, CGL

exploits conditional label correlations that are adaptive to different images.

To investigate how CGL exploits label correlations, we present the perfor-

mance variation of CGL versus the hyperparamter λ2 on MULANscene and

PASCAL07-CNN. We use the same setting in Section 4.5.1 by letting λ1 = 0.01

and λ2 range from 0.001 to 0.1. The results are shown in Figures 4.4 and 4.5.

To make the performance variation easier to understand, we also provide the

curve of #Edges versus λ2 in Figures 4.4a and 4.5a. According to the two curves,

larger λ2 encourages graph sparsity which leads to fewer edges. As for the per-

formance curves, we can draw several conclusions. First, the performance almost

keeps stable when λ is larger than some value since few label correlations have

been utilized. Second, utilizing more relevant label correlations can improve the

performance. However, adding too many label correlations (especially irrelevant

ones) may impair the performance due to overfitting issues.
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4.6 Summary

A conditional structure learning approach has been developed for multi-label im-

age classification. Our proposed conditional graphical lasso framework offers a

principled way to model label correlations by jointly considering image features

and labels. In addition, our proposed framework is provided with a graceful

Bayesian interpretation. The multi-label prediction task is formulated into an

inference problem which is handled via an efficient mean field approximate pro-

cedure. And the learning problem is efficiently solved by a tailored proximal gra-

dient algorithm. Empirical evaluations confirmed the effectiveness of our method

and showed its superiority over other state-of-the-art multi-label classification

algorithms.
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Figure 4.2: Illustration of the CGL label graphs learned from PASCAL07-CNN.
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Figure 4.3: Illustration of the CGL label graphs for test example images in
PASCAL07-CNN.
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Figure 4.4: Performance variation of CGL versus the hyperparameter λ2 on MU-
LANscene.
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Figure 4.5: Performance variation of CGL versus the hyperparameter λ2 on
PASCAL07-CNN.

105



Chapter 5

Conclusions

5.1 Summary of This Thesis

In this thesis, we studied how to learn sparse graphical models to exploit mixed-

attribute and conditional label correlations to handle data restoration and multi-

label classification tasks. To this end, we have the following conclusions:

• Current existing data restoration methods are either limited to a partic-

ular task, or incapable of handling mixed-attribute data. The proposed

random mixed field (RMF) model derives from general properties of mixed

graphical models. RMF provides an elegant unified framework for exploit-

ing mixed-attribute correlations among data. Based upon a regularized

maximum pseudo likelihood estimation procedure, RMF learning can be

achieved by using proximal gradient descent method. Meanwhile, by us-

ing a structured mean-field approach, RMF inference is effective for data

denoising and imputation tasks simultaneously.

• Learning conditional label correlations is beneficial to improve the perfor-

mance of multi-label classification. The proposed elastic-net correlated lo-

gistic (CorrLog) model explicitly handles label correlations by scalar param-

eters. By inducing elastic-net regularization over these parameters, CorrLog

is able to obtain an interpretable sparse label graph. CorrLog learning is

106



also implemented according to the regularized maximum pseudo likelihood

estimation. Meanwhile, CorrLog inference is based on the message pass-

ing algorithm which is effective for multi-label classification according to

empirical evaluations on music annotation and image classification.

• The proposed conditional graphical lasso (CGL) implicitly handles label

correlations via parametric functions of input features. CGL provides a uni-

fied Bayesian framework for structure and parameter learning conditioned

on input features. The learned label graph has good semantic interpreta-

tions and benefits multi-label classification. By applying the maximum a

posterior methodology, CGL learning is efficient via a proximal gradient

procedure. Besides, CGL inference relies on a mean-field approach which is

effective for multi-label classification according to empirical evaluations on

benchmark image classification datasets.

5.2 Future Works

In this thesis, we studied sparse graphical models in terms of parametric and

attraction-based settings. Future efforts may extend sparse graphical models in

three directions by considering non-parametric (or semi-parametric) tools such

as kernel [114] and copula [39], by leveraging repulsion such as determinant point

process [62] and submodular methods [3], and by compensating uncertainty via

Bayesian methodology [47].

• Parametric methods are usually tied with the parametric function form

being used thus inflexible to model complex data and its model capacity

cannot improve as we provide more data. In contrast, the non-parametric

approach offers a natural recipe for handling complex data and scalability

of model capacity. For instance, copula provides a graceful semi-parametric

approach to design sparse graphical models [81]. In general, the copula ap-
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proach explicitly models correlations between independent univariate dis-

tributions via a dependency matrix. By combining copula, sparsity and

exponential family distributions, we could design more powerful, flexible

and manageable sparse graphical models to discover attribute dependence

among heterogenous data.

• Currently, most of the sparse graphical models are based on the attraction

assumption. However, real-world data may also contain repulsive relation

which violate the attraction assumption. A recent progress on submodular

graphical models [38] validated the possibility of compromising attraction

and repulsion in a unified framework.

• The third direction is a widely employed methodology in extending non-

Bayesian graphical models. In particular, a Bayesian compensation of un-

certainty over model parameters could provide more reasonable posterior

estimate of graph structure an parameters. A recent progress along this

direction is the Bayesian graphical lasso [137] which investigated differ-

ences between the posterior mean estimate and the posterior mode esti-

mate (obtained by graphical lasso) of the graph structure. Besides, we can

move further by considering Bayesian sparse non-parametric (or submodu-

lar) graphical models.
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perimental comparison of methods for multi-label learning,” Pattern Recog-

nit., vol. 45, no. 9, pp. 3084–3104, 2012. 75, 99

[88] O. Maimon and L. Rokach, “Data mining and knowledge discovery hand-

book,” 2010. 18

[89] B. M. Marlin, “Missing data problems in machine learning,” Ph.D. disser-

tation, University of Toronto, 2008. 10

[90] X. Mei and H. Ling, “Robust visual tracking using `1 minimization,” in

Proc. IEEE Int. Conf. Comput. Vis. IEEE, 2009, pp. 1436–1443. 14
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