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ABSTRACT 

Noise barriers are commonly used to protect the residents from the disturbance of 

traffic noise. Parallel barriers would also be used in highly populated area but its 

performance is deteriorated due to the resonances created by the multiple reflections 

between two parallel walls. To solve this problem, a Helmholtz resonator which acts a 

sound radiator is mounted on the wall surface to radiate sound and influence the 

structure of sound reflection waves inside the parallel barriers. Ultimately, the 

degradation effect due to resonance would be reduced.  In order to understand the 

mechanism and design optimal Helmholtz resonator for controlling noise at wide 

frequency band, an analytical model for acoustical coupling of the baffled open cavity 

and the resonator array has been established. The resonators are regarded as the 

secondary sound sources which interact with multiple acoustic modes inside the cavity. 

Theoretical study indicates that sound peaks at outside receiver is dominated by one of 

the cavity modes and contributed from other modes. And the noise reduction inside and 

outside the cavity can be found at the target frequency when there is an appropriate 

design of resonators.  

The findings from the baffled open cavity in three dimensions is then applied to 

the noise control of the parallel barriers in two dimensions. There is no analytical 

expression to describe the acoustics field for open cavity without baffle and a hybrid 

method alternatively has been established by combining the analytical cavity modes 

and the numerical radiation modes. In order to suppress the multiple peaks of sound 

pressure levels at some frequencies, several resonators at different natural frequencies 

are combined together to obtain a broadband sound abatement. The validated hybrid 

model indicates that the noise reduction at the receiver can be found at the target 
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frequency. Through optimal design of the locations of the resonators, the deterioration 

can be suppressed and a broadband noise reduction can be obtained. 

In order to have higher sound suppression especially at low frequency regime, the 

plate cavity device is installed on the inner walls of parallel barriers. The flexible panel 

is used to radiate sound to undergo sound cancellation at the region of the barrier top 

edges to suppress the sound diffractions. A theoretical model which account for the 

acoustical coupling between the plate vibration and sound radiation of the parallel 

barriers has been developed. The noise abatement of the parallel barriers after 

integration with the plate cavity is investigated systematically and optimized on the 

base of the validated theoretical model. It is found that the several sound peaks can be 

suppressed when the clamped-clamped plate is properly designed with light mass and 

high stiffness. 

To validate the accuracy of the proposed theoretical model for vibroacoustic 

coupling of such a complicated system, numerical tool of the fast multipole boundary 

element method (FMBEM) would also be established. This model can also be adopted 

to examine the effectiveness of the proposed silencing device in practical use and give 

the flexibility into the design of complicated structure of the parallel barriers in a three 

dimensional configuration.  The BEM is the ideal solver for sound scattering in infinite 

space due to the fact that the Sommerfeld radiation condition can be satisfied inherently. 

The conventional BEM is insufficient for dealing with the sound scattering problem 

with large scale degree of freedoms and hence the fast multipole algorithm is chosen to 

accelerate the matrix vectors formulation and computation. Finally, the finite element 

method (FEM) is coupled to the FMBEM to deal with acoustic-structural interaction. 

Finally, a series of small scale experiments for open cavity and parallel barriers in 

anechoic chamber were conducted to valid the analytical and numerical models. 
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NOMENCLATURE 

Symbol Description 

A The coefficient matrix 

a  the sphere radius 

ia   the modal coefficient of the i-th eigenmode for cavity 

E  azimuthal angle in the Euler coordinate 

b The coefficient matrix 

ib  the modal coefficient of the i-th eigenmode for outside 

E  polar angle in the Euler coordinate 

C  The damping matrix 

SaC   the acoustic pressure on the structural nodal loads 

c  the sound speed in the media 

 c x  the constant related to the source point location x  

lc  the coefficient depending upon the precision of the arithmetic 

D computational domain size 

ld   the size of the cells at level l 

E Young’s module of the plate 

fcr critical frequency of the resonator 

G Green function 

GH half space Green function 

 1

nh  the first kind spherical Bessel function of n-th order  

IL Insertion loss 
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ij   the jth model index in i direction. 

nj   the first kind spherical Hankel function of n-th order 

K  stiffness matrices 

k the wavenumber 

jk   wave number of the j-th eigenmode 

 kd

 threshold value for the wideband multipole expansion 

L  the length of the edge of the largest cell 

L2L local to local translation 

M  global inertia matrix 

M2M multipole to multipole translation 

M2L multipole to local translation 

aN  the global interpolation functions for the acoustic domain 

SN   the global interpolation functions for the structure domain 

dofN  Degree of freedom 

eN  The total boundary element number 

i  The acoustical domain i 

o  center of a children box 

'o  center of a parent box 

 1 r
 

Weak singularity  

 21 r  Strong singularity 

 31 r  Hyper singularity 



 

 

viii 

 nP x  Legendre polynomial 

p  The sound pressure 

 j x  jth eigenmode 

q  the normal velocity 

sq   The sound source strength 

iq  The sound strength by the i-th resonator 

pR   the symmetry plane reflection coefficient 

r  The distance between two points 

0  The air density 

𝜌𝑝  the density of the plate 

 , ,r    the spherical coordinates of the vector 

OS  the elements inside the box with centroid o 

𝑆𝑐  the coupling face 

w  Displacement of the plate 

  angular frequency 

m

nY  the spherical harmonics 

Z normal impedance 

iZ  the output impedance at the ith resonator’s mouth 

∆𝑝 acoustic pressure load 

μ Poisson’s ratio 

 

  



 

 

ix 

TABLE OF CONTENTS 

CERTIFICATE OF ORIGINALITY .............................................................................. i 

ABSTRACT ................................................................................................................... ii 

PUBLICATIONS ARISING FROM THE THESIS ..................................................... iv 

ACKNOWLEDGEMENTS ........................................................................................... v 

NOMENCLATURE ..................................................................................................... vi 

TABLE OF CONTENTS .............................................................................................. ix 

LIST OF FIGURES ................................................................................................... xiii 

LIST OF TABLES ................................................................................................... xviii 

Chapter 1 Introduction and Literature Review ......................................................... 1 

1.1 Background ..................................................................................................... 1 

1.2 Literature review on barriers ........................................................................... 2 

1.2.1 Sound propagation in parallel barrier .......................................................... 4 

1.2.2 Calculation methods .................................................................................... 6 

1.3 The Helmholtz resonator for noise control ................................................... 16 

1.4 Vibroacoustic coupling for noise control ...................................................... 18 

1.5 The motivations of this study ........................................................................ 20 

1.6 Outline of this thesis ...................................................................................... 22 

Chapter 2 The Fast Multipole Boundary Element Method for Large Scale Acoustic 

Problems in Three-Dimensions.................................................................................... 24 

2.1 Conventional boundary element method (CBEM)........................................ 24 

2.1.1 The Non-uniqueness solution .................................................................... 27 



 

 

x 

2.1.2 Methods to solve the singularity ................................................................ 28 

2.2 Fast multipole BEM (FMBEM) .................................................................... 28 

2.2.1 Methodology and steps .............................................................................. 31 

2.3 Wideband multipole expansion ..................................................................... 36 

2.3.1 Low-frequency regime .............................................................................. 38 

2.3.2 High-frequency regime .............................................................................. 43 

2.3.3 Wideband fast multipole method ............................................................... 45 

2.3.4 The truncation terms .................................................................................. 46 

2.4 Half-space FMBEM ...................................................................................... 47 

2.5 Coupling of FMBEM-FEM ........................................................................... 49 

2.6 Numerical validations ................................................................................... 51 

2.6.1 Test case 1: pulsating sphere ..................................................................... 52 

2.6.2 Test case 2: single acoustic barrier ............................................................ 54 

2.6.3 Test case 3: duct with plate silencer .......................................................... 55 

2.7 Summary ....................................................................................................... 57 

Chapter 3 Acoustical Coupling for the Baffled Open Cavity Integrated with 

Helmholtz Resonators .................................................................................................. 58 

3.1 Introduction ................................................................................................... 58 

3.2 Description of the model ............................................................................... 60 

3.2.1 Acoustical coupling of the baffled open cavity with a resonator array ..... 60 

3.2.2 Analytical solution with one single resonator ........................................... 66 

3.3 Numerical results and discussions................................................................. 68 



 

 

xi 

3.3.1 Modal truncation and convergence ............................................................ 69 

3.3.2 Acoustical resonances of the baffled open cavity with one single acoustic 

resonator ................................................................................................................ 73 

3.4 The noise reduction by one single Helmholtz resonator ............................... 78 

3.4.1 Sound response inside and outside the baffled open cavity ...................... 78 

3.4.2 The mechanism of HR on noise control .................................................... 80 

3.5 Experimental validation ................................................................................ 94 

3.6 Summary ....................................................................................................... 98 

Chapter 4 Noise Reduction for Parallel Barriers by Integration with Helmholtz 

Resonators…. ............................................................................................................. 100 

4.1 Introduction ................................................................................................. 100 

4.2 Numerical modeling of the parallel barriers ............................................... 101 

4.2.1 Numerical validation ............................................................................... 106 

4.3 Numerical results and analysis .................................................................... 112 

4.4 Helmholtz resonator integrated with parallel barriers ................................. 116 

4.4.1 Sound Intensity ........................................................................................ 127 

4.5 Experiment validation ................................................................................. 130 

4.5.1 Experimental set up ................................................................................. 130 

4.6 Numerical calculation by FMBEM ............................................................. 133 

4.7 Summary ..................................................................................................... 135 

Chapter 5 Noise Suppression by Panels Integrated with Parallel Barriers via 

Vibroacoustic Coupling ............................................................................................. 137 



 

 

xii 

5.1 Introduction ................................................................................................. 137 

5.2 Theoretical formulations for acoustic-structure coupling ........................... 138 

5.2.1 Descriptions of the coupling system ........................................................ 138 

5.2.2 Parallel barriers coupled to single plate-cavity ........................................ 141 

5.3 Numerical results and analysis .................................................................... 146 

5.3.1 The mechanism of plate cavity on noise control ..................................... 147 

5.4 Properties of parameters .............................................................................. 152 

5.4.1 Cavity shape and location ........................................................................ 152 

5.4.2 Structural properties ................................................................................ 153 

5.5 Experimental validation .............................................................................. 156 

5.6 Numerical calculation by fast multipole BEM ............................................ 159 

5.7 Summary ..................................................................................................... 160 

Chapter 6 Conclusions and Recommendations .................................................... 162 

6.1 Conclusions ................................................................................................. 162 

6.2 Recommendations for future study ............................................................. 165 

Appendix-A................................................................................................................ 167 

Appendix-B ................................................................................................................ 168 

Appendix-C ................................................................................................................ 170 

References .................................................................................................................. 177 

  



 

 

xiii 

LIST OF FIGURES 

Fig 1.1: The sound propagation over the half-space and diffracted by a thin barrier: (a) Single barrier and 

(b) Parallel barriers. .................................................................................................................................. 4 

Fig 2.1: The complexity comparison between (a) CBEM and (b) FMBEM. ......................................... 30 

Fig 2.2: The octree structure: (a) eight cells at level 1; (b) the refinement cells..................................... 32 

Fig 2.3: The relations for the cell C and other cells. ............................................................................... 33 

Fig 2.4: The sketch of the multipole expansions and translations. ......................................................... 34 

Fig 2.5: The direct and multipole translation step. ................................................................................. 36 

Fig 2.6: Rotation-Coaxial Translation and Computational Complexity. ................................................ 41 

Fig 2.7: Sound scattering at half-space. .................................................................................................. 48 

Fig 2.8: late element used for the finite element method. ....................................................................... 50 

Fig 2.9: Elements for the pulsating sphere. ............................................................................................ 52 

Fig 2.10: The sound pressure calculated by the analytical, conventional BEM and Button-Miller BEM.

 ................................................................................................................................................................ 53 

Fig 2.11: The CPU time comparison among the CBEM, FMBEM at low and high frequency for 

increasing problem scale. ....................................................................................................................... 53 

Fig 2.12: The configuration of the single barrier with finite length. ...................................................... 54 

Fig 2.13: The comparison of IL for the single barrier. ........................................................................... 55 

Fig 2.14: The SPL contour for the single barrier. ................................................................................... 55 

Fig 2.15: The sketch for the plate silencer used in the acoustic duct. ..................................................... 56 

Fig 2.16: The results validation for the proposed FMBEM-FEM through the compared with experiment 

and FEM-FEM. ...................................................................................................................................... 56 

Fig 3.1: The sketch of the baffled open cavity integrated with Helmholtz resonator. ............................ 60 

Fig 3.2: Model number used for calculation for baffled open cavity without resonator. ........................ 70 



 

 

xiv 

Fig 3.3: Model numbers used for calculation for baffled open cavity with single HR. .......................... 71 

Fig 3.4: Comparison between the sound fields obtained by the proposed method and the BEM simulations.

 ................................................................................................................................................................ 72 

Fig 3.5: The comparison of sound pressure distribution calculated by the BEM and the proposed method: 

(a) BEM; (b) Modal. ............................................................................................................................... 73 

Fig 3.6: The eigenfrequencies of the baffled open cavity without and with one single resonator. ......... 77 

Fig 3.7: Normalized modal pattern for the open cavity before and after integrated with the resonator: (a) 

Original pattern at f=402.3+1.5i without resonator; (b) and (c) the newly coupled patterns after inserting 

the resonator at f=357.4+1.8i and f=416.5+4.1i. .................................................................................... 78 

Fig 3.8: Sound slice within the rectangular open cavity: (a) f=134Hz; (b) f=404Hz; (c) f=571Hz and (d) 

f=769Hz. ................................................................................................................................................. 80 

Fig 3.9: Predicted SPL comparison at inside and outside receivers when the same resonator located at 

different positions. .................................................................................................................................. 88 

Fig 3.10: The sound field at 402Hz: (a) without resonator; (b) with HR381-M1; (c) HR381-M1 and (d) 

HR381-M3.............................................................................................................................................. 89 

Fig 3.11: Predicted SPL comparison at inside and outside receivers when three different resonators 

located at same position. ......................................................................................................................... 90 

Fig 3.12: The sound field at the emerged new peaks for resonator with different internal resistance. ... 91 

Fig 3.13: the SPL variation when installed with same resonator of different relative size. .................... 92 

Fig 3.14: The sound field at 402 Hz for resonator with different relative size. ...................................... 93 

Fig 3.15: The sketch of the experimental setup. ..................................................................................... 94 

Fig 3.16: A typical T-shaped Helmholtz resonator. ................................................................................ 95 

Fig 3.17: Experimental setup for the baffled open cavity in anechoic chamber. .................................... 95 

Fig 3.18: The sound amplitude emitted from the loud speaker before and after equalization. ............... 96 

Fig 3.19: Measured and predicted SPL comparison at inside and outside receiver without acoustic 

resonator. ................................................................................................................................................ 97 



 

 

xv 

Fig 3.20: Measured and predicted SPL comparison at inside and outside receiver with single one acoustic 

resonator which natural frequency is 381 Hz. ........................................................................................ 98 

Fig 4.1: The parallel barriers integrated with multiple resonators. ....................................................... 101 

Fig 4.2: The absolute sound pressure distribution of first three modes at f=200 Hz: (a) mode=0; (b) 

mode=1 and (c) mode=2. ...................................................................................................................... 109 

Fig 4.3: The sound pressure level for parallel barrier comparison by COMSOL and modal expansion.

 .............................................................................................................................................................. 111 

Fig 4.4: Sound pressure distribution of the parallel barrier at two selected frequencies: (a) reference sound 

pressure field obtained using COMSOL at f=289 Hz; (b) reconstructed field using mode coupling at 

f=289 Hz; (c) reference sound pressure field obtained using COMSOL at f=932 Hz and (d) reconstructed 

field using mode coupling at f=932 Hz. ............................................................................................... 112 

Fig 4.5: The sound perssure level field in the parallel barriers excited by a source at (0.1, -0.9) m: (a) 

f=51 Hz; (b) f=109 Hz; (c) f=198 Hz; (d) f=289 Hz; (e) f=381 Hz; (f) f=474 Hz................................ 114 

Fig 4.6: Modal amplitude at two different frequencies: (a) and (b) for 289 Hz, (c) and (d) for 474 Hz and 

(e) and (f) for 849 Hz. ........................................................................................................................... 115 

Fig 4.7: SPL changes when the parallel barriers integrated with HR281 in 2D and 3D. ...................... 119 

Fig 4.8: The modal coefficients at two selected frequencies before and after installed with HR281. .. 120 

Fig 4.9: The sound pressure distribution at the 289 Hz before and after installed with the HR281: (a) and 

(b) rigid wall without resonator; (c) and (d) with single resonator whose natural frequency is 281 Hz.

 .............................................................................................................................................................. 121 

Fig 4.10: SPL changes after installed with single resonator at different locations. .............................. 122 

Fig 4.11: The SPL of the parallel barrier with the rigid wall compared to the Helmholtz resonator at 281 

Hz. ........................................................................................................................................................ 123 

Fig 4.12: Sound pressure level distribution after installed with the resonators. ................................... 125 

Fig 4.13: The SPL of the parallel barrier with the rigid wall compared to the Helmholtz resonator at 281 

Hz. ........................................................................................................................................................ 126 

Fig 4.14: The SPL distribution of parallel barriers integration with HRF281 and HR468. .................. 127 



 

 

xvi 

Fig 4.15：Sound intensity comparison of the parallel barrier without Helmholtz resonator at f=289 Hz, 

scale factor=100; .................................................................................................................................. 129 

Fig 4.16: Sound intensity comparison of the parallel barrier without resonator at f=474 Hz, scale 

factor=100; ........................................................................................................................................... 129 

Fig 4.17: Sound intensity comparison of the parallel barrier with resonators in case-3a at f=289 Hz, scale 

factor=1000; ......................................................................................................................................... 130 

Fig 4.18：Sound intensity comparison of the parallel barrier with resonators in case-3a at f=474 Hz, 

scale factor=1000; ................................................................................................................................ 130 

Fig 4.19: The sketch of the experimental study. ................................................................................... 131 

Fig 4.20: Experimental photo in the anechoic chamber. ...................................................................... 132 

Fig 4.21: SPL comparison for parallel barriers with rigid wall and five resonators HR281. ............... 134 

Fig 4.22: The sound field for the parallel barriers with rigid walls at 289 Hz. ..................................... 135 

Fig 4.23: The sound field for the parallel barriers integrated with resonators at 289 Hz. .................... 135 

Fig 5.1: The sketch of the parallel barriers with multiple plate cavities. .............................................. 139 

Fig 5.2: The sound spectrum at receiver for the parallel barriers with rigid wall and one plate cavity 

system. .................................................................................................................................................. 148 

Fig 5.3: The SPL distribution of parallel barriers integrated with plate cavity at (a) 269 Hz; (b) 334 Hz 

and (c) 526 Hz. ..................................................................................................................................... 149 

Fig 5.4: Comparison of the second plate mode and the plate response at 269 Hz. ............................... 150 

Fig 5.5: Comparison of the second plate mode and the plate response at 334 Hz. ............................... 151 

Fig 5.6: Comparison of the second plate mode and the plate response at 605 Hz. ............................... 151 

Fig 5.7: The SPL varies with the mass of the plate while the bending fixed at B=0.045: (a) mp=1; (b) 

mp=3 and (c) mp=5................................................................................................................................ 154 

Fig 5.8:  The SPL varies with the bending stiffness while the mass ratio fixed at m=3: (a) Bp=0.03; (b) 

Bp=0.045 ; (c) Bp=0.07 and (d) Bp=0.12. .............................................................................................. 156 

Fig 5.9: The sketch of the experimental setup. ..................................................................................... 157 



 

 

xvii 

Fig 5.10: Image of the parallel barriers integrated with plate cavity. ................................................... 158 

Fig 5.11: SPL Comparison for the parallel barriers with rigid walls and plate cavity. ......................... 158 

Fig 5.12: SPL distribution for parallel barriers with rigid walls. .......................................................... 160 

Fig 5.13: SPL distribution of parallel barriers with three plate cavity devices. .................................... 160 

Fig C.1: The details of the singular point and the integral boundary surface………………………….171 

 

  



 

 

xviii 

LIST OF TABLES 

Table 3.1, Air properties, cavity size, sound source and receiver locations. .......................................... 69 

Table 3.2 Geometry parameters for three resonators .............................................................................. 85 

Table 3.3 Resonator locations for three resonators. ................................................................................ 86 

Table 4.1: The air properties, configurations of the parallel barriers, sound source and the receiver 

locations used in the calculations. ........................................................................................................ 107 

Table 4.2, The comparison of the eigenvalues of first ten (m, 0) enclosed cavity modes and the 

frequencies of the sound pressure level for parallel barrier. ................................................................. 113 

Table 4.3: Resonator locations for HR281. .......................................................................................... 122 

Table 4.4 Resonator locations for HR281. ........................................................................................... 123 

Table 4.5 Resonator locations for HR281 and HR468. ........................................................................ 126 

Table 4.6 The geometric dimensions of the HRs and the measured resonance frequency. .................. 132 

Table 5.1: Air property, parallel barriers size, sound source and receivers locations ........................... 146 

 

 



 

 

1 

CHAPTER 1     

INTRODUCTION AND LITERATURE REVIEW 

1.1 Background 

The land transportation noise, which is mainly produced by motor vehicles and trains, 

has seriously reduced the life quality of residents who live in densely populated cities 

like Hong Kong. Engine operation, tire-road interaction and turbulent air flow around 

high-speed vehicles are three main causes of land transportation noise. Engine noise is 

produced by vibrating surfaces and individual sources [1]. It becomes the main noise 

source when the vehicle moves at low speed. Interactions between tires and road radiate 

noise when the vehicle moves at high speed.  Sound generated by the air turbulence is 

generally unimportant for land transport. Railway systems are comprised of long-haul 

freight and passenger trains, a variety of subways, elevated and surface vehicles and so 

on. Engine noise, rolling noise and aerodynamic noise that are produced by the train 

become predominant when the train speed is around 50km/h, between 50~300km/h and 

above 300km/h, respectively. Noise also occurs when train passes through bridges, 

curves and rail joints as well as brakes [2]. 

With the number of cars growing continuously and the speed of trains improving 

gradually, complaints about traffic noise arise frequently from those residents who 

expose to it excessively. So, how to reduce the noise level near road sides has become 

an urgent issue for the environmental protection bureau. A variety of measures were 

developed to solve the problem, among them barrier is one of the most widely used. 

For the purpose of attenuating the noise level at both sides of the road, two identical 

barriers are often erected in parallel. However, noise reduction performance of parallel 
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barrier will decline significantly when they are close to each other.  

Many numerical and experimental studies have confirmed that multiple reflections 

occur in the bounded domain formed by the two parallel reflecting walls and the ground. 

The reverberation within such a domain degenerates the noise reduction performance 

of the barriers. Taking the experimental study by Watts [3] as an example, the insertion 

loss (IL) of the parallel barrier with identical height (2m) reduced 4 dB (A) compared 

with that of a single barrier. Therefore, reverberation should be considered and its 

degeneration effect on noise reduction performance should be avoided when the parallel 

barriers are constructed in close proximity. In addition, the control of low frequency 

noise still remains a challenge, especially when the noise reduction performance, cost, 

durability and safety of the barriers are all taken into consideration. 

1.2 Literature review on barriers 

In general, there are three kinds of noise control elements: (1) controlling noise at 

the source; (2) modifying the propagation path and (3) reducing the noise level reaching 

the receiver. The mechanism of the acoustic barrier is based on the second one. 

Commonly, a noise barrier is placed between the sound source and the receiver to 

modify the sound propagation, which offers protections of the receiver from the direct 

sound waves. In this situation only the diffracted wave can reach behind the barrier. 

Therefore, this region is quiet due to the fact that the diffracted wave is relatively weak 

when compared with the direct waves and ground reflected waves. 

According to whether existing additional sound source, the noise reduction used for 

barrier can be divided to active and passive noise barrier. The active noise control 

(ANC), which contains a power and sensor system generally the loudspeaker and 

microphone, is more effective to reduce the low frequency noise [4-6]. However, the 

ANC systems developed in the above works generally contain of secondary source 
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power, error sensors and control circuits, the heavy cost and difficult implementation 

limit its wide application. The fact is that ANC is not a good option for the outdoor 

environment. The passive method takes advantage of the sound isolation materials and 

different barrier shapes to achieve the noise reduction. To the author’s best knowledge, 

most works to optimize the barrier performance is taken passive means. Numerous 

different types of barrier have been studied and the performance have been evaluated.  

These studies are mostly based on two ideas. One is to modify the barrier profile shape 

and the other is to cover the edge of the barrier with absorbent materials. In the earlier 

attempts, such as T-profiled [7, 8], multiple-edge [9], and novel irregular profile 

barriers [10, 11] have been studied. Hothersall et al. [12] reviewed the single barrier 

with different profiles including the T-shaped, Y-shaped and arrow shaped barriers and 

concluded that the noise reduction performance by T-shaped is better than other types 

of designs. On the other hand, Li [13] added the absorbent materials on the inner surface 

of the parallel barriers and evaluated its noise reduction performance in the urban 

environment. The numerical calculations and scaled experimental measurements 

indicated that the installation of absorbent materials at the inner surface of barrier could 

only improve of the noise reduction in the shadow zone. Micro-perforated panel has a 

good absorption performance in the middle to high frequency range and was adopted 

by [14] as the absorber on the noise barrier. However, the environmental problem and 

the durability issue limit the practical use of the absorption materials and the micro-

perforated panels. A comprehensive literature review about the noise barrier with 

different shapes and absorbent materials can be found in Ishizuka and Fujiwara [15].  

Of particular interest, the study in this work is focused on the parallel barrier in close 

proximity. As shown in Fig 1.1, the sound wave approaching the receiver for the single 

noise barrier and the parallel barrier is compared. The parallel barrier and the ground 
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forms the bounded domain. It is obvious that the multiple reflections occur within the 

bounded domain and more sound energy has reached the receiver behind the barriers. 

This significantly depredates of the acoustic performance of the noise barrier.  

Source

Receiver

(a) Single Barrier

Source

Receiver

(b) Parallel Barriers

 

Fig 1.1: The sound propagation over the half-space and diffracted by a thin barrier: (a) 

Single barrier and (b) Parallel barriers. 

1.2.1 Sound propagation in parallel barrier 

In order to reduce the noise level on both sides of the roadway, parallel barrier is 

often used. The sound wave emanated from the vehicles and approaches the receivers 

after multiple reflections if the parallel barrier are used. The multiple reflections create 

the reverberant sound field within the bounded domain and can significantly degrade 

the acoustic performance of the barriers. This phenomenon is well recognized and has 

been studied by researchers numerically and experimentally. A laser beam had been 

used by Hutchins and Pitcarn [16] to model the point sound source and examined the 

propagation paths between parallel barriers. Watts and Godfrey [17] demonstrated 

experimentally that the insertion loss was significantly reduced for the parallel barrier 

when compared with the single barrier. In 1996, Watts [3] reported field results for 

parallel barrier cases to evaluate the degradation effect due to the multiple reflections 

with the bounded domain by the parallel barrier and the ground. In his work, perfectly 

reflective barriers of various heights, as well as covered by absorptive conditions and 

tilted barriers were compared. He reported that the average noise levels behind the 

single barrier with 2 m in height were increased by 3.1 dB(A) when another barrier with 
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same height was placed 3.4 m away from this single barrier. When changing the point 

sound source to a line source, the increase was deteriorated further to 4.4 dB(A). Watts 

also found that this degradation was greater as the barrier height increased or the 

separation distance was reduced.  

Therefore, in order to eliminate this deterioration, the multiple reflections between 

the parallel barriers should be reduced. Ways to reduce the deterioration include (1) 

using the absorption layer on the inner faces which near the sound source, as studied by 

Watts and Godfrey [17], Li [13] or the far side barrier as pointed out by Watts [3]; (2) 

tilted the barrier suggested by Watts and Godfrey [17] and Monazzam and Fard [18]; 

and (3) novel profile such as the wave-trapping barrier by Yang and Pan [10] and 

subwavelength tube array by Wang [19].  For the barrier with sound absorption material, 

the thickness of the absorption layer needed increase impractically thick as the 

frequency decreases. The environmental issue limits the wide application of the 

absorption material on the outdoor noise barrier. 

The titled parallel barrier was designed and compared with other shapes of barrier 

by Monazzam and Fard [18]. Their numerical results showed that the barrier sloped 

with 10o
 had better noise reduction performance.  

The wave trapping barrier (WTB) proposed by Pan seems a good choice to improve 

the noise reduction of the parallel barrier. The typical profile of a WTB has multiple 

wedges on its inner surface which is near the sound source side. The wedges always 

redirect reflected waves downwards so that they are trapped within the bounded domain 

constructed by the two identical barriers and reflecting ground. Additionally, each 

wedge has a perforated surface, a back cavity, and internal lining to provide appropriate 

reflection and absorption of incident sound waves. However, as indicated by the 

numerical results [10], the improvement mainly occurs at frequency above 1000 Hz. 
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The insertion loss had little difference when compared with that of the parallel reflective 

barrier for a frequency below 1000 Hz. In the recent work, Wang [19] designed the 

parallel barrier constructed with hollow narrow tubes to create the inhomogeneous 

impedance on the inner surface of the parallel barrier. Their analytical model showed 

that the way of the wave reflection was altered after introducing inhomogeneous 

impedance on the inside barrier surfaces. The sound energy could be trapped in the 

semi-enclosed bounded domain and thus improve the noise reduction at the receivers. 

1.2.2 Calculation methods 

Due to the importance and high construction of the acoustic barrier, its noise 

reduction should be examined accurately at the design stage. What’s more, the exact 

prediction tool can reveal the noise reduction mechanism and indicate the ways of 

performance optimization. The full-scale or scaled model experiment is undoubted the 

most direct way. However, it is hard to distinguish the multiple reflections for parallel 

barrier and cannot reveal the principles of the noise propagation and reduction, 

especially in the complex urban sound environment. Moreover, field measurements are 

time consuming and expensive if a great deal of receiver points are required. For these 

reasons, these field data are served as the validation tool to examine the accuracy of the 

proposed calculation models. As the development of the computing techniques and the 

deeper understanding about the noise propagation and diffracted by the noise barriers, 

many researchers have conducted various studies to develop the calculation method to 

predict the noise reduction. 

1.2.2.1 Analytical Models 

It is hard to derive the exact solution for wave diffraction especially for the 
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complicated profile of the barrier. Alternatively, the diffracted wave in the shadow zone 

is represented by the superposition of the scattered wave by the edge and the incident 

wave. Based on this idea, Sommerfeld [20] obtained the rigorous derivation to 

diffraction problem above a half plane. In Sommerfeld’s solution, the sound field 

generated due to a plane wave scattered by the thin plane is mainly consist of two terms. 

One is the direct wave, which can be predicted based on the geometrical acoustic theory 

and the other contributes from the diffracted wave, which can be expressed by Fresnel 

integrals. Tolstoy [21] derived waves diffraction solution by wedges in the analytical 

form. In his method, the sound field by the diffraction was calculated by the 

superposition of a set of series and their corresponding coefficients. The advantage of 

this formulation is the diffractions at the edges are calculated exactly, without the 

approximation for integrals. However, the slow rate in convergence for the series 

especially at high frequencies limited the application of this method in practice. Another 

important accurate express of the sound filed diffracted by the screen and wedge was 

proposed by Hadden [22]. Pierce [23] extended the asymptotic solution to evaluate the 

sound diffraction by a single wide barrier following the ideas of geometrical theory of 

diffraction (GTD) developed by Keller [24]. In the recent work, Wei [25] proposed a 

simplified analytical model for the sound prediction concerning the multiple diffraction 

and reflection. The used trigonometric functions to approximated the double Fresnel 

Integral used in Pierce’s diffraction theory and hence improve the calculation efficiency. 

The comprehensive review about the calculation method can be found in Li [26]. 

1.2.2.2 Empirical Formulas 

On the other hand, various empirical formulas have been developed based on 

extensive experimental measurements, such as the formulas by Redfearn [27], 
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Maekawa [28], Kurze and Anderson [29] ,and several other empirical models. These 

empirical formulas are used extensively in engineering areas. Redfearn [27] was among 

the first researchers to develop graphs, with two known parameters namely the effective 

barrier height and the diffraction angle. These can be used to determine the noise 

reduction behind the reflective single barrier radiated by a point source. Subsequently, 

Maekawa [28] compared experimentally the sound attenuation by a thin rigid barrier 

when the noise source and reception points located to different positions. The 

experimental data was presented in a chart and the noise reduction was shown against 

the Fresnel number. Based on Maekawa’s study, several other empirical models were 

developed to predict the noise reduction in the shadow zone behind the thin barrier wall. 

Of particular interest, Delany et al. [30] concluded the empirical formula for parallel 

barrier, which was based on data from over two hundred field measurements. 

Numerical comparisons have shown that the empirical tools, including formulas, charts 

and tables, are quite adequate for engineering. However, such methods lost their 

accuracy and a more elaborate formula is needed when the sound source or the receiver 

is near to the barrier. 

1.2.2.3 Boundary Element Method 

However, for the barrier with complex profile or multi-layer materials, analytical 

and empirical methods may fail. In this regard, the numerical method is always a good 

choice to predict the noise reduction of the barriers. Among the numerical algorithms, 

the Boundary Element Method (BEM) is more popular in unbounded domain because 

of the Sommerfeld radiation condition are satisfied in its formulas. Besides, the Green 

function used in BEM is obtained analytically and hence improve the accuracy of this 

method. The third advantage is that the BEM is based on the boundary integral equation 
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and the discretization is only carried out on the boundary surfaces for a three 

dimensional domain and edges for a two dimensional domain. This dimension 

reduction makes the BEM more efficient in meshing and calculation.  

Chandler-Wilde and Hothersall [31]  applied BEM to the calculation of outdoor 

sound propagation. Their work described in detail of using the BEM to sound field 

prediction in air medium over an impedance surface of an arbitrary shape. The 

predictions were also compared with scale model experiments and good agreements 

were obtained. Based on the 2D BEM techniques, Seznec [32] studied the parameters 

affected the noise reduction performance, including barrier profile and absorption 

boundaries both on the barrier surface and the half ground. The mitigation of noise by 

single barrier was investigated by Hothersall [8] by mean of the BEM in 2D. The model 

described in their work can be applied to barriers with arbitrary profile and impedance 

conditions. Noise reduction performance by single barrier of different height, profile 

and impedance conditions had been compared. In a similar way, Ishizuka and Fujiwara 

[15] applied the BEM to study the noise reduction by barriers of different cross-

sectional profile and coverings on the surface. Numerical results in their study showed 

that the top edge covered with absorbent materials and soft conditions can improve the 

performance of the barrier significantly. As comparison, only a slight enhancement can 

be obtained when modifying the configuration of the single barrier. In all of the 

configurations and surface conditions studied in their work, the T-shaped barrier with 

soft top produces the highest noise reduction. The above predictions of noise reduction 

for single barrier is based on the two dimensional boundary element analysis, which 

assumes that the cross section infinitely long and unchanged. However, for barrier that 

cross section varied, three-dimensional (3D) models need to be developed to consistent 

with the configuration. In order to speed up the calculation, a quasi-periodic BEM 
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model was proposed by Fard et al. [33] to access the sound field of the barriers in three 

dimensions. A 2.5D BEM Model was developed by Jean [34] to the study of ground 

and foundation interaction. Such treatment gives much faster calculations when 

compared with the fully three-dimensional configuration. 

Although the BEM has enjoyed the advantages in modeling the sound radiation by 

complicated geometries in infinite domains, its low efficiency in solving large-scale 

problems still restrict its use in industry and scientific calculations. For example, the 

BEM can only be used to solve the acoustic problems with only a few thousand degree 

of freedoms on a personal computer for few years. This is because that the matrices 

produced by the conventional BEM are dense and non-symmetric. The computational 

time to form such matrices is proportional to  2

dofN  and the solving time is 

 3

dofN if the direct solvers are used, in which, dofN is the number for degree of 

freedom (DOF). Many techniques have been proposed to accelerate the BEM, such as 

wavelet compression [35], pre-corrected FFT [36], ACA [37] etc. The main idea of 

these acceleration methods is to speed up the former of the coefficient matrix. Of those 

acceleration methods, the fast multipole method (FMM) is the most popular. Rokhlin 

and Greengard [38] pioneered the FMM and used it to accelerate the calculations of 

conventional BEM. Under the acceleration of the FMM, the calculation time is 

promisingly reduced to dofN  . The main process of the FMBEM is to apply the FMM 

to accelerate the computing of the system coefficients matrix A and then use the 

iterative solvers to solve the linear equation of Ax=b. It should be noted, the direct 

calculations of the BEM are still needed for the boundary elements that are near the 

collection point. The fast multipole algorithm is implemented for boundary elements 

that are far away from the collection point. Comprehensive review and detailed 
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comparison about the FMBEM can be found in [39]. When applied the FMBEM to the 

noise barrier predictions, Bapat [40] developed the adaptive FMBEM to calculate the 

acoustic wave propagation in three dimensions. The Green function employed 

explicitly in their work and only the real domain need implementation of the tree 

structure when considering the semi-infinite problems, which could reduce the CPU 

time and memory storage. Based on the adaptive tree structure, Zheng [41] obtained the 

symmetric relationships for the multipole expansion coefficients between the real and 

the mirror domain which further simplified the multipole/local expansions in the half 

space. The straight and quasi-circular barriers were served to examine the efficiency 

and accuracy of their proposed method. Besides, the BEM can be coupled to other 

numerical method such as the finite element method (FEM) to calculate the acoustic-

structure coupling problems. Pates [42] coupled the BEM with the FEM to accurately 

model acoustic-structural interaction of a composite panel resting on an acoustic cavity. 

The numerical results was validated with the experimental result for isotropic panels 

and good agreement was obtained. Fischer [43] conducted the similar acoustic-structure 

interaction studies by BEM-FEM. Lagrange multipliers approach was used to transfer 

the data between the non-matched grids on the coupling surface. In the recent work by 

Isakari et al [44], the fast multipole accelerated BEM-FEM was combined together to 

conduct the topology optimization for elastic material to reduce the sound response at 

some fixed receivers.  

1.2.2.4 Ray method 

Despite the wide interest in using the wave-based BEM, ray based prediction 

methods have been well developed in the recent years. In 1993, Panneton et al. [45] 

used a coherent ray model to predict noise reduction of parallel noise barriers. The 
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authors considered the case of barrier absorption by the modified Delany-Bazley 

impedance model which proposed by Miki [46]. In their model, multiple reflections by 

the parallel walls and the ground were modeled by the acoustical imagery method and 

geometrical theory of diffraction, leading to a complex summation between acoustical 

waves originating from a single source traveling to the receiver via the top edge of the 

barriers. In the study, they reported that the ray model gave good precisions for mono-

frequency sound that compared reasonably well with theoretical and experimental 

results for various parallel barrier configurations. Numerical simulations were 

conducted on a six-lane highway of 36.5 m width. Vehicles were represented by 

punctual sources placed randomly on the six lanes. 48 sources in total were placed along 

a distance of 80 m and the receiver were located 15 m behind the near-side barrier. The 

predicted results reported that the use of hard parallel barrier brings about an insertion 

loss degradation of 2 to 4 dB in average. By adding absorbent material, this becomes 

nearly null and brought back to the single barrier case. Unfortunately, they only 

considered receiver points located within shadow zone very close to the ground. It is 

also noted that the model proposed by Panneton et al. [45] is limited to access only the 

total sound field at a particular receiver location below the barrier’s top edge. It is thus 

important to extend the model to calculate the insertion loss provided by a pair of 

parallel barriers at all possible receiver locations. In 2003, Li and Tang [47] proposed 

a numerical approach which combined image source theory with the diffraction solution 

of Hadden and Pierce [22] to predict the IL performance by a single noise barrier which 

is close to tall buildings. Comparisons with indoor scaled-model experiments and BEM 

simulations at different receiver locations were made to validate the accuracy of the 

proposed model. 
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1.2.2.5 Modal Analysis 

Typical parallel barriers consist of a finite confined space bounded by two identical 

barriers and an infinite half space. Such configuration can be clarified as the acoustic 

coupling between an open cavity and the unbaffled infinite region.  

Of the methods proposed to deal with this phenomenon, the most efficient and 

widely used being based on modal analysis. The fundamental idea of modal analysis is 

to express an acoustic field quantity as the summation of a complete set of properly 

weighted modal functions. The weighting factors are often called the modal amplitudes 

or modal response coefficients. The summation usually has an infinite number of terms; 

therefore, the modal analysis does not yield a closed-form solution. However, given 

that this infinite series converges, one can in practice truncate it to a finite sum and still 

reach the desired accuracy in the low-frequency regime. The modal analysis theory 

developed by Dowell, et al. [48] is capable of computing sound fields in damped 

enclosures. The method used a set of eigenfunctions solved from an eigenvalue problem 

as the modal functions, which is called the “normal modes.” The normal modes and the 

linear combination of them only satisfy rigid boundary conditions; therefore, large 

errors are often observed in the regions near damped boundaries. The eigenfunctions 

that satisfy the complex boundary conditions or irregular shape of the enclosure can be 

solved numerically from an exact eigenvalue problem [49-51]. The numerically 

calculated modes are uncoupled and automatically match the boundary conditions, 

which make them a very good candidate for the modal functions for modal analysis. 

However, there are several negative properties implicit with them. First of all, the 

completeness of this set of modal functions is an assumption. Second, the 

“orthogonality” relationship among these functions is abnormal, which may cause 

inconvenience for many applications. Finally, solving the exact eigenvalue problem 
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involves numerical root searching in the complex domain which is complicated and 

time-consuming [49]. Because of these disadvantages, the modal analysis is not utilized 

much in the literature. Alternatively, Xu and Sommerfeldt [52] proposed a new set of 

modal functions called the modified modes. Compared to the normal modes, modified 

modes are also coupled but can be easily simplified in many cases. Modal analysis 

based on the modified modes also introduces errors on boundaries but performs faster 

when compared with the conventional method. Unlike the numerically calculated 

modes, modified modes are orthogonal and complete. However, the numerical root 

search is still required. Following the findings for enclosure acoustic systems, numerous 

efforts have been devoted to the acoustical analysis for open space based on modal 

analysis. The energy radiated from the outlet of a cylindrical waveguide has been 

determined for multimode excitation [53]. For the domain-based numerical method, a 

basic difficulty exists for calculating the sound radiation to the far field reception points. 

Many treatments have been developed aiming to truncate the infinite domain to a finite 

one. Of all, the perfectly matched layer (PML) is the most efficient. A PML [54] 

provides theoretically ideal absorption of outgoing waves without reflection at any 

incident angle and frequency. 

 Therefore, the infinity can be truncated to the bounded domain by complex layers 

of finite thickness. The eigen-problems for such truncated domain can be solved. Koch 

[55], Hein et al. [56-58] and Duan et al. [59], for example, used PMLs to investigate 

the acoustic resonance in tunnels, duct-cavity systems and open cavities. All these 

studies concentrated on the eigenfrequencies of the resonances as well as on the search 

for real eigenvalues (purely non-dissipated localized modes or trapped modes) and 

corresponding Fano resonances. Use of leaky modes and modal decomposition have 

been used to investigate the sound propagation in open street canyons [60]. The analysis 
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was performed assuming that the source condition is the pressure distribution at the 

input end of the canyon. Using the hybrid model which combines image source 

modeling and the ray tracing method, numerical calculations have been conducted to 

predict the acoustic propagation within an urban canyon [61]. The analytical method 

based on a 2D image source model has been used to analyze the acoustic propagation 

for the case of an acoustic canyon with an open roof [62]. 

While the PML-based numerical method has been used to predict the resonant 

frequency modes and energy radiation, few studies cover the modal expression for the 

sound field of an open acoustic cavity. This is because the solution of PML-constructed 

eigenvalues generates a multitude of spurious eigenvalues which in many cases are very 

hard to distinguish from the correct ones [63]. This problem, namely a lack of efficient 

ways to extract the physical eigensolutions, diminishes the practical implementation of 

using the PML to construct the eigenvalues of the infinite external space. 

Alternatively, the non-Hermitian Hamiltonian approach [64-66] can be used to deal 

with acoustical coupling problems between the finite and infinite physical spaces. The 

basic principle of this approach is to divide the whole calculated domain into a finite 

part described by the discrete spectrum and an infinite part described by the continuous 

spectrum. The governing differential equation is then projected onto the subspace 

spanned by the wave functions of the discrete spectrum, leading to an effective 

differential operator, or the effective non-Hermitian Hamiltonian. In the recent work by 

Maksimov et al. [67]and Lyapina et al. [68], they investigated the acoustical 

transmission in the duct-cavity system by introducing the non-Hermitian Hamiltonian 

method. Maksimov et al. [67] demonstrated the coupled mode theory as an effective 

tool to solve sound transmission problems in 2D and 3D acoustic scatters. Lyapina et 

al. [68] used the acoustical coupled mode theory to analytically calculate the 
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eigenfrequencies and their shape functions of the bound states in open acoustic 

resonators. Xiong [69] derived the sound scattering in a waveguide partly lined with a 

locally reacting material. After forming the effective matrix, the acoustic resonances of 

the waveguide lined with impedance boundaries is reduced to the equivalent 

eigenvalues of the effective matrix. The occurrence of the transmission zero is 

discussed and linked to the Fano resonance. Tong et al. [70] further extended the non-

Hermitian Hamiltonian approach to the open acoustic system in two and three 

dimensions. They proposed to use the frequency-dependent eigensolutions to construct 

the sound field of the baffled and unbaffled open cavity and excellent agreement could 

be found when compared with the sound response results from the numerical solutions. 

However, as described by the definition, the frequency-dependent eigensolutions are 

related to the source frequency and hence complicates the problem in practical 

application. Moreover, the physical eigenvalues and the eigenfunctions used in their 

method are not clear. 

1.3 The Helmholtz resonator for noise control 

Various previous works have demonstrated that the degradation of the noise 

reduction in the diffracted region behind the barrier is due to the multiple reflections 

within the domain bounded by the parallel barriers and the reflecting ground. In the 

work by Yang and Pan [10], they showed that sound field of the parallel barriers could 

be expanded by trapped modes. The problem was solved numerically using FEM 

combined with perfectly matched layers (PML). The eigenvalues of these trapped 

modes of such an open domain has also been solved. In fact, the major peaks in the 

sound spectrum for the receivers behind the barrier are dominated by the (*, 0) modes, 

in which * are the modal index defined through visual inspection. In the recent work by 

Tong et al. [70], the sound fields in and outside the parallel barriers are described using 
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the modal expansion. The sound responses at the receivers are mainly contributed by a 

set of enclosure and external modes. Therefore, the idea of suppressing these dominated 

modes to improve the noise reduction at the receivers behind the barrier is proposed. 

The typical device to reduce the noise level at the resonant frequency especially at low 

frequency range is Helmholtz resonator. A classical Helmholtz resonator made up of a 

backing cavity and a narrow neck. It is useful to control noise centralized in a narrow 

frequency band.  

The resonator only works at target frequency and hence leads to a narrow noise 

reduction spectrum. To broader the frequency band of noise reduction, several 

resonators with different natural frequencies are needed combining together to form an 

array of resonators. The studies about resonators array can be found in the control of 

duct noise by [71, 72]. The duct integrated with multiple similar resonators or with the 

boundary covered by a perforated backed by the air cavities was discussed [73]. A 

conclusion was drawn that when resonators tuned with similar natural frequencies are 

close in spacing, they interact with each other and result in a decrease in the noise 

control performance compared with that by single resonator [74]. To avoid this 

degradation, the spacing proximity of the resonators should be considered carefully 

when applying resonator array to attenuate the sound response. The resonators are also 

used for the noise abatement in the environmental noise control, such as the periodical 

single barrier[75] and the sound scatter [76]. Fard et al. [75] studied the IL of single 

noise barrier whose top embedded with single and multiple Helmholtz resonators. Their 

numerical results indicated that the increases in IL can be obtained around the natural 

frequency of the embedded resonator. Three resonators tuned different natural 

frequencies can achieve an enhancement in noise reduction over the low frequency 

range of 150 to 300 Hz. However, the interactions among the sound field and the 
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resonators should be considered carefully. Van der Aa and Forssén [76] investigated 

the sound field after scattered by cylindrical shell array with perforated holes and the 

shell core filled with the porous materials. Calculation results of a small array of 

cylindrical shells are in excellent agreement with measurements from the experiments. 

The semi-analytical calculations show a strong and narrow insertion loss peak at 

resonance when the cylindrical shell drilled with perforated holes. When adding the 

porous materials into the core of the shells, the major change was that the reduction 

peak was broadened but the amplitude was reduced.  

1.4 Vibroacoustic coupling for noise control 

It is known that the low frequency noise in the parallel barriers is hard to control. 

The Helmholtz resonator array can control the noise performance at the low frequency 

range. The drawback is the narrow reduction spectrum for single resonator when the 

interest is wide noise abatement. Array resonators combining several resonators at 

different natural frequencies can achieve a broadband quieting. However, the conflict 

between effectiveness in performance and compactness in size always persists. The 

resonator’s natural frequency and distance between their apertures governs the noise 

abatement when using the resonator array to broaden the noise reduction bandwidth.  

The conflicting design constraints of broadband effectiveness at low frequencies and 

volume minimization present a major challenge for existing resonator array and some 

other reactive devices. Alternatively, the use of flexible boundaries instead of the 

discontinuity in traditional reactive silencers has been proposed and have attracted a lot 

of attention. Huang [77] suggested introducing flexible panels for the control of duct 

noise. The flexible panel is tensioned membrane called the drum-like silencer [78, 79]. 

The incident sound wave induces the vibration of the tensioned membrane with a low 

order axial mode, and such vibration reflects the noise at low frequencies very 
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effectively. Therefore, the drum-like silencer can produce a relatively broad noise 

reduction in the frequency range from 200 to 1700 Hz. Dynamic motion of the 

membrane and the interaction pattern is carried out based on the modal analysis [78]. 

Experimental measurement is conducted to validate the effectiveness without [80] and 

with flow [81].  

Due to the difficulty in finely tuning the membrane and the space occupation of the 

stretch mechanical system in practical use, Huang [82] proposed to use a flexible plate 

to replace the tensioned membrane. The theoretical studies show that a wider stopband 

can be achieved by the plate silencer when compared to the drum-like one. In order for 

easier implementation in practice, Wang [83] clamped the two ends of the plate instead 

of the simple support as used in Huang [82]. Their numerical and experimental studies 

reveal that broadband noise reduction can be obtained when the plate is light in mass 

and high in bending. Following such requirement, the sandwich plates and PMI foam 

reinforced by carbon fiber tows have been investigated independently by Wang [84] 

and Choy [85]. In an attempt to further broaden the noise abatement, micro-perforations 

were introduced to the light and flexible plate by Wang et al.[86]. The micro-

perforations aim to absorb sound waves which cannot be reflected sufficiently by the 

plate due to the weaker vibroacoustic coupling. Lawrie’s group contributed significant 

insights to the field through theoretical and numerical analysis. For instance, with the 

aid of a mode-matching method, Lawrie and Guled [87] found that a wider stopband 

can be achieved through changing the location of the membrane inside the backing 

cavity. 

Their researches show that the coupling between fluid and flexible panels has the 

potential to reduce the noise level at the low frequency range with an appropriate design. 

Further, their work indicates that the acoustic-structure interaction slows the acoustic 
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wave, thereby enabling a more compact device compared to a rigid walled silencer. The 

main principle of the noise reduction by the plate is to excite the resonances at a low 

frequency range and probable interactions between these resonances and the incident 

wave.  

For the above-mentioned structural acoustic wave reflector, the broadband 

performance arises from the fully coupled plate cavity system which has three or four 

adjacent resonant peaks [78]. Since the properties of the panel play a critical role in 

regulating the resonances and the modal shapes, the actual performance is sensitive to 

the change of the panel properties. Hence careful optimization has to be conducted 

before an actual design can be made [79]. 

1.5 The motivations of this study 

Traffic noise is a particularly acute problem in crowed cities like Hong Kong. Tall 

buildings are located very close to railway viaducts or road traffic expressways and the 

noise levels in the adjacent residential areas are significant. In these urban environments, 

parallel barriers are extensively used to protect residents away from traffic noise on 

either side of the way. However, the multiple reflections within the bounded domain by 

the parallel barriers and the rigid ground deteriorate the noise reduction performance. 

In addition, the low frequency noise control still remains a challenging task for parallel 

barriers. 

Lining a barrier walls with porous sound absorbing materials can attenuate the noise 

from medium to high frequency range. The durability and environmental problem 

restrict its wide use in urban cities. The Helmholtz resonators can be employed to 

control the low frequency noise and enhance the noise reduction at the resonant 

frequency of the parallel barriers, however, the studies and applications are limited to 

the enclosed system such the duct or rooms. No literature investigates the acoustical 
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coupling of resonator on open domain such as the infinite baffled open cavity or the 

parallel barriers. For duct acoustics, it has been assessed theoretically and 

experimentally that the plate silencer works well for low frequency range. In this regard, 

it is proposed to install the plate backed by an acoustic cavity on the inner walls of the 

parallel barrier to obtain a broadband noise reduction especially at low frequency range. 

 Therefore, the overall objective in this study is to establish a comprehensive method 

to predict the sound field of the parallel barriers and develop a broadband passive device 

that can reduce the low frequency noise effectively.  To achieve these objectives, the 

following three specific tasks are conducted. A first important aspect of the study is to 

investigate a theoretical model to calculate the sound distribution of the baffled open 

enclosure. Moreover, the resonator array is integrated to the enclosure walls regarded 

as the secondary sound sources to reduce the sound radiated from the baffled opening 

of the enclosure. To simplifying the theoretical model, a single resonator is to be studied 

in detail and the experimental validation is carried out to evaluate the accuracy of the 

model and the effectiveness of the resonator on noise reduction of the open enclosure. 

Secondly, the analysis of acoustical coupling for the infinite baffled open cavity (3D) 

is extended to the parallel barrier (2D) which the resonator array is installed inside the 

vertical barrier walls. A thorough hybrid modal combined the numerical and modal 

superposition method is proposed. Analyses allow the exploration of the working 

mechanisms and the performance optimization of the resonators on the parallel barriers. 

The third task of this study is the further noise reduction enhancement for the parallel 

barriers through the vibroacoustic interaction, in which the plate cavity is proposed to 

install on the inner side of the barrier walls. The acoustical coupling between the plate 

cavity and the parallel barrier domain is derived mathematically. A rigorous theoretical 

study is developed to compare the various design variables on the noise reduction 
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performance of such device. Moreover, the experimental study is also required to 

provide validations for the predictions and assessments of effectiveness of the proposed 

passive noise reduction device. 

1.6 Outline of this thesis 

The thesis is organized in six chapters. The first chapter presents the background of 

the land transportation noise to be issued in the work. At the same time, related previous 

work is reviewed. Motivations and objectives of this study are presented. 

In Chapter 2, a numerical method which combined the fast multipole boundary 

element method (FMBEM) and the finite element method (FEM) is established for the 

parallel barriers when integrated with the flexible plate cavity system. 

In Chapter 3, the first aim is to obtain the analytical rigorous formulas describing the 

sound field inside as well as outside the infinite baffled open rectangular cavity with a 

point sound source located at its bottom and coupled with a Helmholtz resonators array. 

Moreover, the coupled and shifted resonances of the baffled open cavity is derived 

mathematically. The accuracy of the proposed formulas based on the modal coupling 

is examined by comparison to the results obtained by BEM simulations. The 

mechanism and performance of noise reduction by single resonator is studies 

systematically. The results shows that combination with resonator, the noise level is 

decreased both inside and outside, which indicates the potential application in the street 

canyons and parallel barriers. 

The acoustical coupling of the parallel barriers and the Helmholtz resonator array is 

investigated in Chapter 4. The theoretical model developed for infinite baffled open 

cavity is extended to parallel barriers above semi-infinite rigid ground. The sound field 

outside the barriers domain is obtained numerically because of the difficulty in finding 

the Green’s function analytically for such an unbaffled cavity. In order to increase the 
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noise reduction of parallel barrier especially at the deteriorated frequencies, the optimal 

designed Helmholtz resonator is adopted to vary the acoustic mode. Finally, an 

experiment in anechoic chamber is carried out, verifying the effectiveness of the noise 

reduction enhancement by the Helmholtz resonator. 

In Chapter 5, aiming for a wideband noise attenuation, the plate cavity is installed 

on the inside walls of the parallel barriers. A theoretical model is established to account 

for the vibroacoustic behavior of the parallel barriers after installed with the plate cavity. 

Following the similar steps, the accuracy of the developed model is first validated 

through the comparison with commercial software. Various parameters of the plate 

cavity is compared including the size of the backing cavity, the bending and mass ratio 

of the flexible plate. Vibroacoustic analysis on the plate shows that the plate plays as a 

reflector instead of absorber.  

The major findings in this study will be summarized in Chapter 6. Recommends for 

the future work to increase the noise reduction for the parallel barriers will also be 

discussed briefly. 
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CHAPTER 2     

THE FAST MULTIPOLE BOUNDARY 

ELEMENT METHOD FOR LARGE SCALE 

ACOUSTIC PROBLEMS IN THREE-

DIMENSIONS 

In this chapter, the numerical method for acoustical scattering and vibroacoustic 

coupling in large scale is introduced. The conventional boundary element method 

(CBEM) will be discussed first. The CBEM has limited application for acoustical 

diffraction and radiation problems with large scale elements due to the slow calculation 

speed. Therefore, the fast multipole boundary element method (FMBEM), which based 

on the fast multipole algorithm, is developed to accelerate the calculation of the CBEM. 

Aiming to calculate the vibroacoustic problems, the FMBEM is coupled with the finite 

element method (FEM). Three cases are presented at the end of this chapter to validate 

the accuracy and the efficiency of the proposed numerical method. 

2.1 Conventional boundary element method (CBEM) 

For steady-state acoustic wave problems, the partial differential equation in 

homogeneous isotropic acoustic media is Helmholtz equation:  

      
2

2

s sp x p x Q x x
c




 
    

 
  (2.1) 

where    and c  are the angular frequency and the sound speed in the media, 

respectively.  
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The boundary conditions used for BEM can be divided into three types: 

 Dirichlet boundary condition, the sound pressure is obtained by: 

    p x p x   (2.2) 

 Neumann boundary condition, the normal velocity is defined as: 

     nq x p x i
n




  


  (2.3) 

 Robin boundary condition, the normal impedance is given by: 

    np x Z x   (2.4) 

According to the appropriate boundary conditions, the general solution to Eq.(2.1) 

in three dimensions is: 

  ,
4

ikre
G x y

r



   (2.5) 

where, r represents the distance from the point x  to y . 

The integral solution to the inhomogeneous Helmholtz equation (Eq.(2.1)) is 

represented by, 

        
 

 
,

, ,I

s
S

G x y
p x G x y q y p y dS p x y

n

 
   

 
   (2.6) 

where x   and y  are the points in the computational domain and  ,I

sp x y   is the 

incident wave located at sy  . 

Locating the source point on the boundary, one can obtain the conventional 

boundary integral equation as, 

          
 

 
,

, ,I

s
S

G x y
c x p x G x y q y p y dS p x y

n

 
   

 
   (2.7) 

where  c x  is the constant related to the source point location. If the integration part is 

smooth around x  ,  c x  is set to -0.5. When located at the sharp corners,  c x  is 
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determined by the solid angle [88]. 

Discretizing the boundary surface into eN   elements: 

 
1

eN

i

i

S S


   (2.8) 

Then the integral in Eq.(2.7) can be rewritten in the summation form as: 

          
 

 
1 1

,
, ,

e e

i i

N N
I

i i s
S S

i i

G x y
c x p x G x y q y dS p y dS p x y

n 


  


     (2.9) 

Setting the points x  on the boundary surface, and defining: 

 

 

 

1

1

n

i i

i

n

n ni i

i

p p N

v v N

















  (2.10) 
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 

,

,

j

j

ij j i i i
S
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S

G i G x y N dS

G x y
H i N dS c

n



 

 


  







  (2.11) 

where ip  and niv  are the sound pressure and the particle normal velocity at the nodes 

on the boundary surface, and iN  are the shape functions.  is the Dirac delta function. 

Substituting the above Eqs.(2.10) and (2.11) into Eq.(2.9) and yields 

 
1 1

e eN N
I

ij i ij ni

i i

H p G v p
 

     (2.12) 

The above equation is the general form of the conventional boundary element 

method and can be expressed as 

   I

nHp Gv p   (2.13) 

According to the boundary conditions, once we obtain the unknown variables of p  

and nv  on boundary surface from solving Eq.(2.13), we can evaluate the acoustic 

pressure within the domain. 
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2.1.1 The Non-uniqueness solution 

When Eq.(2.7) is used to calculate the exterior acoustic problems, non-uniqueness 

difficulty will occur at certain characteristic frequencies associated with the 

corresponding interior Dirichlet problem. In the past fifty years, many efforts have been 

focused to address this non-uniqueness issues [89-91]. Of the developed methods, 

Combined Helmholtz integral equation formulation (CHIEF) [89] and Burton-Miller 

formula [90] are the most effective and popular ones. 

In 1968, Schenck [89] proposed the CHIEF to handle the non-uniqueness issue in 

CBEM. The basic idea of CHIEF is as follows. Some points in the interior domain are 

added to aerate Helmholtz integral equations, resulting an over-determined form for 

system matrix. The CHIEF is convenient to use but there are two drawbacks that restrict 

its practical use. The first disadvantage is that the additional interior points are 

proportional to the wave number. As the wave number increases, more inserting points 

are needed to maintain accuracy. Large number of interior points increases the 

dimension of the system matrix and results in the loss of efficiency at high frequency 

range. More importantly, there are no analytical methods that can be used to determine 

how many interior elements should be added and where they should be located. These 

interior points are often introduced on a trial-and error basis. 

On the other hand, the Burton-Miller method [90] is alternatively used to deal with 

the non-uniqueness difficulty concerning the accuracy and convenience for wide 

frequency range. In this method, the conventional boundary integral equation (Eq.(2.7)) 

and its normal derivative are proposed to combine together through a constant. As 

shown in the rigorous derivations, the Burton-Miller formulation proves to be 

successful to deal with non-uniqueness issue at all frequencies. The negative aspect of 

this method is that the combination leads to the integration doubles: 
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 

 
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n y n y n x

G x y
G x y q y dS y q y dS y c x q x q x

n y





  
   

   

 
    
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 

 

 (2.14) 

2.1.2 Methods to solve the singularity 

As shown in Eq.(2.14), the Green function and its derivatives cause the singularity 

difficulties. The Green function and its derivatives used in the Burton-Miller method in 

three dimensions are: 

  ,
4

ikre
G x y

r



   (2.15) 
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  (2.16) 

and 

 

   
         

2

2 2

3

, 1
1 3 1

4

ikr
G x y r

ikr n y k r ikr n y n x e
n x n y r y


  

          
  (2.17) 

which  ,G x y ,    ,G x y n y   and      2 ,G x y n x n y    is weakly singular, 

strongly singular and hyper singular, at 0r   , respectively. The weak singularity is 

easy to tackle and can be evaluated by the Gauss method. Special care should be focused 

on the strong and hyper singularity. Many methods have been developed to calculate 

the hyper-singularity and in this study we adopt the method proposed by Silva et al. 

[92] to circumvent this problem. Main steps of this method has been list in the appendix 

C.  

2.2 Fast multipole BEM (FMBEM) 

Although the BEM is easy in use for sound scattering problems with complicated 
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geometries in infinite space, its efficiency in solving large-scale problems still limits its 

wide application. For example, discretizing parallel barriers into 10000 constant 

elements, the calculation time is about 3 hours for a single frequencies at a typical 

personal computer.  

As discussed in Chapter 1, the system matrix formed in BEM is dense and 

nonsymmetrical. The operations to calculate such a matrix is  2

dofN , where dofN  is 

the number of elements if constant element is used. The solution of Ax=b is another 

expensive task and the calculations are  3

dofN  if the direct solver is used. Therefore, 

the calculation efficiency of the BEM is decreased as the increase of the boundary 

elements and limits the application of this method for acoustic scattering problem in 

large scale. In the past fewer decades, many methods have been proposed to accelerate 

the calculation for BEM, A comprehensive review about these methods was discussed 

in Ref.[93]. In this work, fast multipole method (FMM) is chosen to speed up the 

calculation for the BEM. The BEM hereafter represents the conventional BEM 

modified based on the Burton-Miller formula.  

The principle for fast multipole algorithm is that the Green’s functions can be 

decomposed into the combination of two parts: 

      , ,, , ,x i c y i ci
G x y G x y G y y   (2.18) 

where cy  is the expansion point which satisfies  that condition that c cy y x y   . 

This procedure can be achieved by means of various expansions methods. In this way, 

the relationships between x   and y   is changed to the combinations of x   to cy  and y  

to cy . 

Fig 2.1 illustrates the comparison of the computational complexity in the BEM and 

FMBEM. The solid circle represents the source point and the open circle represents the 
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field point. The gray dashed circle is the expansion point which satisfying the condition 

c cy y x y   and lines represent the computations among the source points, the field 

points and the expansion points. As shown in Fig 2.1(a), the interactions between the 

elements x  and y  are calculated one by one. When the source element x  changes, the 

interactions between x  and y  should be calculated again. As compared, when chosen 

an expansion point cy
 approximately, the interactions between these elements x  and 

y   are connected through the expansion point and hence the computations among these 

elements are simplified. More importantly, the operations for the interactions of x  and 

cy
, y  and cy

 will be conducted only once when the source point move to others.  

(a) BEM (b) FMBEM

 

Fig 2.1: The complexity comparison between (a) CBEM and (b) FMBEM. 

In other words, in the BEM, any changes in x  lead to the reevaluation of the entire 

integral. While in the FMBEM, after the relationships of the source points x  and the 

field points y  satisfying c cy y x y   , the original integral about the Green’s 

function is computed based on the expression as shown in Eq. (2.18). The new integrals 

need to be evaluated only once even though the x  moves to other positions. In this 



 

 

31 

regards, the interactions of y  and cy  are independent of the locations of x  . Therefore, 

a dramatic decrease of calculations can be obtained as illustrated by the lines shown in 

Fig 2.1. 

At the beginning of section 2.2, the fundamental mechanism of the reduction in 

calculations of using FMBEM is analyzed. The main procedure of FMBEM is described 

in the following parts. The wideband expansion algorithm will be presented in the next 

section. 

2.2.1 Methodology and steps 

2.2.1.1 Discretization 

Firstly, the whole boundary surface is discretized and form a set of boundary 

elements, which rectangular or triangle elements used in three dimensions. The size of 

the elements can be referred to the recommendation by Marburg [94]. This step is the 

same as that adopted by conventional BEM.  

2.2.1.2 Tree structure 

In three dimensions, the octree is used to divide the domain into sub cubic boxes. 

Shown in Fig 2.2 is the tree structure for a sphere as an example. Here, the elements 

generated in the discretization step is represented by the color points.  

The details of the division can be described as follows: 

(1) First a cubic box that covers all the boundary elements (as shown by the color 

points in Fig 2.2) and call this box the cell at level 0. Generally the cubic box is 

a little bigger than the entire boundary that can enclose all the elements.  
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(2) Divide this parent cell into eight child cells of level 1, as shown in the Fig 2.2 

(a). The No. of these child cells is in the sequence from 0 to 7. 

(3) Continue dividing the cubic box until the elements number in each cell is less 

than or equal to a prescribed number. The refined tree structure is shown in Fig 

2.2 (b). The number of the boundary elements in a refinement cell varies from 

1 to 100. A smaller number need more calculation and therefore suppress the 

efficiency of the fast multipole method. 

 

 

Fig 2.2: The octree structure: (a) eight cells at level 1; (b) the refinement cells. 

A childless cell is called a leaf. The size of a cell at level l is given by  1

0 2
l

iL 
, 

with 0L  being the size of the largest cell at level 0 and i=3 for the three dimensional 

problems. In this process, an element can be considered to be within a cell when the 

element center is inside that cell. An octree structure is thus formed after the above 

procedures are completed.  

After the tree structure process, the cell relationship has been built. The adjacent 

cells are called for two cells at same level and share at least one common vertex. For 

two leaf cells at different levels, if the parent cell of one of the leaf cells shares at least 
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a common vertex with the other leaf cell, they are also said to be adjacent cells. Two 

cells at same level are called well separated if they are not adjacent at this level but their 

parent cells are adjacent at their father level. The list of all the well separated cells from 

the interaction list of cell C. The left cells are called far cells of cell C. Shown in Fig 

2.3 indicates the relations of cell C and its adjacent cells, cells in interaction list and far 

cells. Their corresponding locations are also shown in this figure. 

 

Cells in 

interaction list

Far cells

Cell C  

Adjacent cells

 

Fig 2.3: The relations for the cell C and other cells. 

2.2.1.3 Multipole translation 

The main multipole translations in the FMBEM is depicted in Fig 2.4, including the 

multipole moments expansion, multipole to multipole (M2M) translation, multipole to 

local (M2L) translation, local to local (L2L) translation and local moments expansion. 
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Xc’

Xc

yc’

ycM2M

M2M

L2L

L2L

M2L

X

y

Multipole Moments Local Moments

M2M L2L

M2L
 

Fig 2.4: The sketch of the multipole expansions and translations. 

The first step is to compute the multipole expansions based on the centroids of all 

childless cells. These multipole expansions hold for x  and y . Each element inside the 

cell is expanded around the centroid cy  of the cell which satisfies c cy y x y   . 

Such expansions is added together forming one set of multipole moments, as illustrated 

in Eqs.(2.19) and (2.20). This step is called multipole moments expansion which is 

indicated by the solid red line in Fig 2.4, with the arrow representing the direction of 

expansion. 

      , , ,
n

n c n cm n
G x y x y I y y


   (2.19) 

    , ,
j

n c n j c j
s

j

M y I y y ds   (2.20) 

The details about  ,n cx y ,  ,n cI y y  and  n cM y will be discussed in the 

following section. 

Subsequently, the expansion centroid is moved from the cy
  of the childless cell to 

'cy
 of its father cell if satisfying c cy y x y     . All the moments from the 
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centroids of the childless cells at all levels are shifted to the centroids of their father 

cells and this process continues to level 2. Thus, the influence of all the elements inside 

each cell is translated. The translation of multipole expansions from cell centroids at 

child level to their parents’ centroids at upward level is called multipole to multipole 

(M2M) translation in the literature, and the solid blue line in Fig 2.4 indicates this 

process.  

      ' ' ''
2 ,c n n c c n cn

M M y W I y y M y
    (2.21) 

In the next step, represented by the solid black line in Fig 2.4, the multipole 

expansions for the cell C at level l are converted to local expansions of cells in C’s 

interaction list. These conversions are about the multipole expansions to local 

representations for the cells in interaction list and are often referred as multipole to local 

(M2L) expansions.  

      ' ' '' 0
2 , 2c n n c c n cn

M L x W O x y M M y



    (2.22) 

After finish the M2L, all the local representations are then shifted to their children 

until reaching the childless cell. In Fig 2.4, the dashed blue line represents this operation. 

This step is defined as local to local (L2L) translation. 

      
0

2 , 2c n n c c n cn
L L x W I x y M L x




    (2.23) 

The multipole to multipole (M2M) translation and local to local (L2L) translation 

are also called respectively as the upward pass and downward pass. 

Finally, the calculations for the source point and far away field point can be obtained 

after the local expansions using the Eq. (2.24). 

      , 2 ,
n

c n cm n
G x y L L x I x x


    (2.24) 

The above expansions and translations are for the far elements. However, the 
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influence from the nearby elements should be evaluated in a direct way. The elements 

in the same cell and its adjacent cells are regarded as the nearby elements and their 

integrals are calculated directly as in the conventional BEM. These calculations are 

sketched in Fig 2.5 shows the calculations through the FMBEM and the CBEM.  

level l+1

direct computation

multipole expansion

multipole translation

collocation element

 

Fig 2.5: The direct and multipole translation step. 

Therefore, the integral on the source point x   can be expressed as: 

      , , ,
N F

N F
S S S
G x y dS G x y dS G x y dS      (2.25) 

where the integral on NS  is done by direct integration as in the BEM, and the integral 

on FS  is done by the fast multipole algorithm. Then the integrals work together to 

generate the matrix in the form of  A b  where the field variables are obtained. 

Till now, the main procedures for the fast multipole is presented. 

2.3 Wideband multipole expansion 

To be accurate, any calculation based on the discretization must resolve the smallest 

wavelengths of interest. Besides, the discretization should accurately represent the 

boundary surface at low frequencies. Thus, for the acoustic simulations in FMBEM, 



 

 

37 

there are two basic regimes: the low-frequency and the high-frequency regimes. These 

regimes can be characterized by the parameter kD , which is in terms of the product by 

the wavenumber k  and the cell size D . The threshold value  
*

kD  is often used to 

recognize these two regimes. The low-frequency regime is set when  
*

kD kD  and the 

high-frequency regime is set for  
*

kD kD . However, the computational complexity 

of the FMM for these two regimes is different [39].  

(1) Low-frequency regime 

In this regime, the computational cost of the FMM is proportional to the degree of 

freedoms (Dofs) and affected little by the parameter of kd . Here, the most efficient 

expansion and translation method is based on the spherical multipole wave functions 

and the rotation-coaxial translation-back-rotation (RCR) decompositions [39, 95]. 

(2) High-frequency regime 

In the high-frequency regime, the parameter of kD  heavily affects the computational 

cost and hence the efficiency. Since the wavenumber k  is inversely proportional to 

wavelength and, in practice, more boundary elements are required for accuracy at high-

frequency regime. In this regime, the diagonal FMM translations based on the plane 

wave expansion is suitable. 

Each of these two expansion methods fails in some way outside its preferred regime: 

the partial wave expansion needs high computational cost in the high-frequency regime; 

the plane wave expansion result in numerically unstable problems at the low-frequency 

regime. In each case, the difficulty is fundamental, and cannot be removed by simple 

expedients. Thus, there exist problems restrict the application in the broadband 

calculation for either of the two approaches.  

Alternatively, the ‘‘hybrid’’ scheme or the wideband fast multipole method is 
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constructed to deal with the wave problem in wide frequency range. The partial wave 

expansion is applied on the subwavelength levels of subdivision, and then transitioned 

to the plane wave expansion once the plane wave expansion are stable. An assessment 

of these formulations is provided in the work by Cheng et al. [96]. Here, we describe 

briefly the wideband FMM formulations used for the Helmholtz equation in three 

dimensions. These include the partial wave expansion method combined with the 

rotation-coaxial translation method and the plane wave expansion method. 

2.3.1 Low-frequency regime 

In the low-frequency regime, the partial wave expansion together with rotation-

coaxial translation method is used for the multipole expansion and translation. 

According to the partial wave expansion method, the Green’s function in three 

dimensions can be expanded as: 
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in which 
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In the above expansions, 
m

nI  is the complex conjugate of 
m

nI .  , ,r    represent the 

spherical coordinates of  the vectors ox  and oy  .  nP x  denotes the Legendre 

polynomial of degree n. 
 1

nh  is the first kind spherical Bessel function of the n-th order, 

and, nj  is the first kind spherical Hankel function of the n-th order and 
m

nY  the spherical 
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harmonics. 

Substituting above Eq.(2.26) into Eq.(2.14) , the boundary integrals can be written 

as 
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where OS  is the discretized elements inside the childless cell whose centroid at o  . 

Each element inside the cell is expanded around the cell centroid based on the Eqs.(2.28)

-(2.29). Then a total multipole moment by the summation of the expansions from each 

element inside the cell. 

Based on the formulas in Eq.(2.26), the multipole moments can be written as 
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The M2M (Eq.(2.31)), M2L (Eq.(2.32)) and L2L (Eq.(2.33)) are given by 
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In Eq.(2.31), 'o  is the centroid of a parent cell at level l and o  is the centroid of one 

of its children as used on Eq.(2.30) at level l+1. In Eq.(2.32), 'o  is the centroid of a cell 
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which located in the interaction list of cell o  . And in Eq.(2.33), the down pass is carried 

out and 'o  is the centroid of a child cell at level l+1 and o  is the centroid of its father 

cell at level l. As can be found obviously, in the summations of 
'

'

n n

l n n



 

 , l are calculated 

only for even values of 'n n l  . , ', , ',n n m m lW  is computed using the following form as 
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where 
a b c

d e f

 
 
 

 represents the Wigner 3j operator and t  equals to 'm m . 

Finally, the boundary integral equations after the local expansions can be given by 

the following equation: 
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The rotation-coaxial translation method is used to accelerate the translations in M2M, 

M2L and L2L. The method includes the operations of rotating the z Cartesian axis 

towards the direction of translation, then executing the translation along the new z axis 

and, finally, performing another rotation back to the original Cartesian system. The 

computational complexity of translations in the partial wave expansion method are 

proportional to  5

tN  , with tN  denotes to the maximum truncation terms used in the 

FMM series, as compared, in the rotation-coaxial translation method the computational 
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cost is reduced to   3

tN  after the rotations and translations are performed based on 

the z direction. A comprehensive progress and the computation complexity can be 

found in the following Fig 2.6. 
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Fig 2.6: Rotation-Coaxial Translation and Computational Complexity. 

Before rotation, the Euler angles  , ,0E E   for three dimensions should be defined. 

Along z axis direction, the forward rotation can be conducted by applying a rotation of 

 , ,0E E   and the backward rotation can be carried out by applying a rotation of

 , ,0E E   . 

The rotation matrices    , ' ',m m m m

n E n ER R    is given by 
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Therefore, the M2M, which based on the partial wave expansion and the rotation-

coaxial translation method are carried out by Eqs.(2.38),(2.39) and (2.40). 
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in which, angles shown by E  and E  are respective equal to the azimuthal and polar 

angles of  .  

The M2L are carried out by Eqs. (2.42), (2.43) and (2.44). 
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The L2L are carried out by Eqs.(2.46),(2.47) and (2.48). 
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Therefore, the boundary integrals modified by the Burton-Miller method can be 
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solved in the low frequency range. 

2.3.2 High-frequency regime 

In the high-frequency regime, the FMM is carried out based on the plane wave 

expansion. According to this method, the Green’s function in three dimensions is 

written as: 

      2
, ,

16

ik oyik
G x y e D ox k d k k



    (2.50) 

        1

0

, 2 1n

n n

n

k ox
D ox k i n h k ox P

k ox





 
   
 
 

   (2.51) 

The boundary integrals and its derivatives can be written in the following form as 
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 ,M k  is the multipole expansions which are given by 
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For the M2M and L2L translations based on the plane wave expansion, the 

operations are performed based on the unit sphere. The number of wave samples is 

increased for the upward pass or decreased for the downward pass. Therefore, 

interpolation and filtering of multipole and local expansions are used for these two 



 

 

44 

operations. In this study, the spherical truncation method proposed by Ref. [97] is 

adopted. The operations for M2M are split into interpolation and shifting steps. The 

interpolation step is performed as: 
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where: 2 2 24 1n

l l n l    and h  represents the Gaussian weighting function. Finally, 

the shifting from centroids of children cells to their parents’ centroids based on the plane 

wave expansions is performed by: 

    '', ,ik ooM o k e M o k   (2.57) 

M2L are performed by the diagonal translation operator: 
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and L2L are performed by a formulation similar to that used in the multipole to 

multipole expansions. The first step consists of shifting local representations from 

centroids of parent cells to centroids of children cells using plane waves: 
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Then, a filtering process is applied using the spectral truncation method: 
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Finally, the boundary integral equations can be written as: 
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2.3.3 Wideband fast multipole method 

For the fast multipole algorithm, the low-frequency and high-frequency regime is 

characterized by a dimensionless parameter kD , i.e., the product of the acoustic 

wavenumber and the tree structure size. While the frequency is relatively large, the grid 

size will be small for deep tree structure, resulting in low kD  and thus producing the 

instability issues. As mentioned, low-frequency FMBEM method does not have 

numerical instability problems, but the computational efficiency of high-frequency is 

relatively low. Therefore, the wideband FMM is proposed, which uses the partial wave 

expansion formulation in the low-frequency regime and the plane wave expansion 

formulation in the high-frequency regime. The rotation-coaxial translation and 

interpolation and filtering are also implemented during the calculations.  
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At low-frequency regime, the multipole expansions are based on the partial wave 

expansions. Then the translations are carried out the rotation-coaxial translation method. 

For high-frequency regime, the principal expansions are plane wave expansion. In the 

wideband calculation progress, a switch between the low-frequency and the high-

frequency is done through a spherical harmonic translation at the multipole moments 

and the local moments. Following the results by Cheng et al.[96], the low-frequency 

formulation is applied when the local cell size ld   becomes 0.25ld  , in which   is 

the acoustic wavelength. 

The spherical harmonic function used in the switch from the low-frequency regime 

to the high-frequency regime is given by 
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and its inverse operation from the high-frequency regime to the low-frequency regime 

is given by 
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in which,   is the polar angle and   is the azimuthal angle from k  . 

2.3.4 The truncation terms 

In the fast multipole algorithm, the number of terms used in the expansion should to 

be truncated. The following semi-empirical formula is generally applied to determine 

the truncation term [93] 

  l l l lN kd c log kd      (2.67) 

where ld  represents the size of the cells at level l, and lc  is the coefficient depending 

upon the precision of the arithmetic. From the Eq.(2.67), we can get that: the number 



 

 

47 

of truncation terms at different levels and increases from the bottom to the top level. 

Some further methods are made to improve the calculation efficiency of the FMBEM, 

including the block diagonal preconditioner and the iterative solver (GMRES). These 

can be found in the work by Chen and Harris [98] and will not discuss in this study. 

2.4 Half-space FMBEM 

Although the FMBEM algorithm to acoustic propagation and scattering in full-space 

has been widely studied in Refs. [96, 99-101], the implementations of the FMBEM to 

evaluate the noise reduction performance acoustic barrier in three dimensions are still 

quite few [40, 41, 102] and also need further studies. When applying the BEM to predict 

the acoustic performance of the barrier above the infinite plane ground, the half-space 

Green’s function can be used to remove the discretization of this infinite plane. 

Therefore, the discretization is only carried out on the barrier boundaries and reduce 

drastically the number of boundary elements. However, the Green’s function for half-

space cannot be employed directly in the fast multipole algorithm, as this fundamental 

solution should be expressed in forms of multipole expansions and translations. 

Bapat [40] proposed to employ the half-space Green’s function explicitly in the 

FMEBM. The tree structure used to group the boundary elements is only applied for 

the structure instead of containing both the real its mirror domain. Only the local 

expansions are modified and other steps are similar with that for full-space. This 

procedure simplifies the implementation of the FMBEM for the half-space acoustic 

problem and reduces the CPU time and memory storage by about a half for these 

acoustic problems.  

Assume the half space general solution is  ,HG x y  , its integral on the infinite 

plane is zero: 
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The boundary condition for the infinite half plane is 
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So the half-space Green’s function for three dimensions is: 
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pR  is the symmetry plane reflection coefficient. 1pR   when the plane is rigid. 

r
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Fig 2.7: Sound scattering at half-space. 

Then the Burton-Miller equation can be given by: 
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The half-space Green’s function HG  represents the interaction for x   and y  , 'x  

and y  , where 'x  is the mirror point corresponding to x  . The multipole expansion for 
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the half-space Green’s function with acoustically rigid ground can be written as: 

          
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Two sets of expansions can be found in the above Eq.(2.72).  , ,m

n ck x y is for the 

real domain and  , ',m

n ck x y for the image domain. However, there is no necessary to 

create a tree structure of cells to include the image domain, since 'x  is the mirror point 

corresponding to x . Therefore, the tree structure for boundary elements grouping are 

only implemented for the structure surfaces. The other steps for translations and 

expansions are similar to that used in full space. 

For the impedance plane, the Green’s function is given by Ochmann [103]. 
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The expressions for  ,   and zr  can be found in Ref. [103]. And the multipole 

expansions and the translations of the half-space impedance Green’s function as Eq. 

(2.73) will be conducted in the future study. 

2.5 Coupling of FMBEM-FEM 

Acoustic-structure interaction problems frequently arise in the aerospace, 

automotive industries. The sound causes the vibration of the elastic structure and the 

structural vibration influence the propagation and scattering of the incident wave. In 

this part, the BEM is coupled with the FEM to accurately model the acoustic-structural 

interaction. The fast multipole algorithm is used to accelerate the matrix vector 

computation. The accuracy of the coupled FMBEM-FEM is validated by comparing 

the numerical solutions with known analytical and experimental results for flexible 

panels used as silencer in the duct.  
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The dynamic equation for the sound induced vibration of the plate is given by: 
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in which, w is the displacement, 𝜌𝑝  the density of the plate and ∆𝑝 is the acoustic 

pressure load. Dp is calculated through   3 212 1pD Eh v  , in which E, v and h are 

the Young’s module, Possion’s ratio and the thickness of the plate, respectively. 

Assume the thickness in z direction is very small compared with the scale in x/y 

directions. The flexible plate in three dimensions can be treated as a panel vibrating in 

two dimensions, which is shown as: 
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Fig 2.8: late element used for the finite element method. 

The harmonic response of the flexible panel induced by the sound is governed by 

the following dynamic equation: 

  2i   K C M w f   (2.75) 

where M  , C  , K  represent the global inertia, damping and stiffness matrices, w  and 

f  are the displacement and force acting on the elements. 

Dividing the boundary structure into two parts: coupling part and the left one. The 

BEM equation according to Eq.(2.13) can be rewritten as 
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Then a combined BEM-FEM model can be obtained by considering the 

compatibility over the vibroacoustic interface: 

    sa cCf p   (2.77) 

in which the coupling matrix saC  represents the acoustic pressure on the structural 

nodal loads, and it can be expressed as: 

 
c
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sa s a c
s

C ds  N nN   (2.78) 

where 𝑆𝑐  denotes the coupling face; SN  and aN   are the shape functions for the 

structural and acoustical domains, respectively; and n   is the surface normal vector.  

The normal velocity 𝐯𝐜  of the coupling part can be expressed as a function of 

displacement 𝐰: 
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where 
c

T

a a c
s

S ds  N N  and 
T

as saC C .  

Combining the Eqs.(2.75), (2.76), (2.77) and (2.79) together, we can get the coupled 

system of equations, as follows: 
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The above is the coupling equation for the acoustic-structure interaction generated 

by the BEM-FEM method. 

2.6 Numerical validations 
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2.6.1 Test case 1: pulsating sphere 

The first test case is the sound radiated by a pulsating sphere. The acoustic pressure 

at any point can be calculated exactly, which are available in textbooks such as [104], 

    0

1

ik r a

n

i aa
p r v e

r ika

    
  

 
  (2.81) 

in which, p  represents the sound pressure at the receiver with a distance r from the 

sphere center. The radius of the sphere is indicated by a  and nv  the uniform normal 

velocity. 

 

Fig 2.9: Elements for the pulsating sphere. 

The radius of sphere a = 1 with pulsating normal velocity equal to unit. The wave 

number ka calculated in this validation is from 1 to 10, with a step of 0.01. 5400 

rectangular elements is meshed by the ANASYS-ICEM, which a commercial grid 

generator. The acoustic pressure at (5, 0, 0) calculated by the analytical, conventional 

BEM and the Burton-Miller BEM is plotted in Fig 2.10. As shown by the red dashed 

line, multiple peaks and dips can be found within the frequency range and the 

conventional BEM fails to predict the sound pressure at these fictitious frequencies. As 

compared, the results by BEM modified by the Burton-Miller functions agrees well 
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with the analytical solutions in the whole frequency range. 

 

Fig 2.10: The sound pressure calculated by the analytical, conventional BEM and 

Button-Miller BEM. 

This following figure examines the efficiency of the wideband FMBEM by 

comparison with the conventional BEM. Boundary conditions and geometry 

parameters are consistent. All these three calculations are implemented on a desktop 

personal computer with 4 GB in RAM and 2.93 GHz in Core CPU. 

 

Fig 2.11: The CPU time comparison among the CBEM, FMBEM at low and high 

frequency for increasing problem scale. 

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

ka

|p
|

 

 

Analytical

Conventional BEM

Burton-Miller

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

DOFs

C
P

U
 T

im
e

 (
s
)

 

 

CBEM

FMM BEM (low)

FMM BEM (high)



 

 

54 

In this test case of the pulsating sphere, the accuracy and the efficiency of the 

proposed FMBEM has been validated. The results comparison shows that the FMBEM 

can successfully overcome the non-uniqueness difficulties in wave radiation problems. 

Accelerated with the fast multipole algorithm, the efficiency of the CBEM for large 

scale problem is improved obviously. 

2.6.2 Test case 2: single acoustic barrier 

After validating the accuracy and efficiency of the FMBEM, the proposed FMBEM 

is verified through the insertion loss prediction of single acoustic barrier in the half 

space. The geometrical parameters of the single barrier can be referred to Ref [105]. 

The length of the barrier is 1.22 m and the height is 0.3 m. The ground in the experiment 

is made by the wooden board and can be assumed acoustically rigid. Therefore, the 

half-space Green’s function used here is the rigid one. The main setup in the FMBEM 

for the single barrier is similar with that used for the pulsating sphere. 

source

receiver

hl

 

Fig 2.12: The configuration of the single barrier with finite length. 

The IL of the single barrier measured in the experiment and compared with that 

predicted by the proposed half-space FMBEM is shown in the following Fig 2.13. The 

solid line represents the simulated IL results and the open circles are the experimental 

ones shown in Ref. [105]. Generally speaking, they agree well and shows the accuracy 

of the developed half-space FMEBM for acoustic barrier above rigid ground. 
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Fig 2.13: The comparison of IL for the single barrier. 

The sound pressure level contour at 900 Hz, which around the first IL peak is plotted 

in Fig 2.14. 

 

Fig 2.14: The SPL contour for the single barrier. 

2.6.3 Test case 3: duct with plate silencer 

Finally, the coupling of the FEM and the FMBEM is examined. The following figure 

sketches the plate silencer which used to control the dipole source in the duct. The 

details about this device and the experiment setup can be found in Ref.[106]. Two 

pieces of flexible plate made by the polymethacrylimide were flushed on the wall of 

the duct together with a backing cavity. The plate had the sizes of 100 mm * 300 mm. 

Density and elastic modulus for the plate is respectively 32 Kg/m^3 and 36 MPa. The 

duct wall and the rectangular backing cavity is made by the acrylic plate with a 
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thickness of 15 mm, which can prevent the sound translated through the duct and cavity 

walls. Two microphones are located near the outlet of the duct. The flexible plate is 

designed to control the noise in the low to medium frequency range. Therefore, the 

experimental measurement and the numerical calculation were only conducted in the 

frequency range from 100 to 1700 Hz. 

Loud Speaker

Plate

Rigd walls

 

Fig 2.15: The sketch for the plate silencer used in the acoustic duct. 

The lines in Fig 2.16 show the comparison of the experimental and numerical results. 

The dashed red line shows the result by the experiment. The solid blue and solid blank 

marked with diamond are the results obtained by the proposed FMBEM-FEM and the 

commercial software COMSOL Multiphysics based on the FEM-FEM. Roughly 

speaking, they are quite good agreement. The performance by FMBEM-FEM is better 

than by FEM-FEM. 

 

Fig 2.16: The results validation for the proposed FMBEM-FEM through the compared 

with experiment and FEM-FEM. 
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2.7 Summary 

This chapter concerns the implementation of the FMBEM-FEM for acoustic-

structural interaction in three dimensions.  

The principle of the BEM is firstly presented. The Burton–Miller BIE formulation 

is employed to yield unique solutions for sound radiation and diffraction problems.  

The wideband fast multipole algorithm used to accelerate the computation of the 

BEM is then discussed. The partial wave expansion is used in the low-frequency regime 

and the plane wave expansion formulation is used in the high-frequency regime. The 

comparison of the sound radiation by a pulsating sphere shows the accuracy and 

efficiency of the wideband FMBEM. 

Subsequently, the wideband FMBEM approach for half-space wave scattering in 

three dimensions has been presented. The half-space Green’s function is used, which 

the tree structure can be built for the structures in the real domain only.  

Finally, the coupled FMBEM-FEM is developed and the accuracy is validated 

through comparison with the experimental results for the plate cavity system. The 

results obtained shows a good agreement with these in the literature and demonstrate 

the accuracy of the proposed wideband FMBEM-FEM method. 
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CHAPTER 3     

ACOUSTICAL COUPLING FOR THE BAFFLED 

OPEN CAVITY INTEGRATED WITH 

HELMHOLTZ RESONATORS 

3.1 Introduction 

Typical parallel barriers consist of a finite confined space bounded by two identical 

barriers and an infinite half space. Besides, such acoustical system can be found in 

industry, transport systems and buildings. For example, some openings of ventilation 

and air-conditioning systems, outlets of different cooling systems and aircraft engines 

can be considered as open cavities. Moreover, some architectural structures can be 

modeled by means of open cavities which allow sound propagation to urban areas. 

These cases can be clarified as the acoustic coupling between an open cavity and the 

baffled infinite region.  

To reduce noise radiation through the cavity opening, both active and passive 

approaches have been developed. Emms and Fox [107] compared three types of active 

absorbers to enhance sound transmission loss of a baffled open cavity. Their numerical 

results found that the combination of a monopole and dipole can provide significant 

sound transmission loss through the aperture for large wavelengths when compared 

with the size of the aperture. Recently, Wang et al. [5] developed a the active noise 

control system called the planar virtual sound barrier. This device consists of 

microphones, loudspeakers, and control circuits at the opening of the baffled open 

cavity sound radiation against noise sources inside. Field and Fricke [108] proposed to 
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use a quarter-wave resonator to reduce noise transmission through openings to the 

buildings and achieved an extra attenuation of 6–7 dB. Transparent micro-perforated 

absorbers were used by Kang and Brocklesby to attenuate external noise along the 

ventilation path [109]. A Helmholtz resonator (HR) is a common resonance control 

device and has been extensively used in ducts and enclosure systems. Cheng and his 

co-authors [110-113] established the acoustical coupling of the enclosure and the 

Helmholtz resonators and investigated the location and internal resistance of the 

resonators in regard to the noise reduction inside the enclosure. Meanwhile, using a 

multiple resonator array with different resonance frequencies, a wide band of noise 

reduction can be obtained. Similar to this idea, a HR array was integrated into structures 

to improve the transmission loss of a duct [72, 73, 114] and that of an enclosure with a 

cylindrical shell [115-117]. However, most studies of HR on noise control are focused 

on the acoustic duct or enclosed systems, while little consider the application in sound 

reduction in an open system, especially using the HR to attenuate the noise radiation 

from the baffled open cavity based on modal analysis. 

In this chapter, the sound radiation from the baffled open cavity is analyzed based 

on modal analysis and the Helmholtz resonator is proposed to suppress the noise 

response outside the cavity. To achieve this, the theoretical model for the acoustical 

coupling of the baffled open cavity integrated with a Helmholtz resonator array was 

established. Moreover, the coupled and shifted resonant frequencies of the baffled open 

cavity was derived mathematically. Finally, the performance of noise reduction by one 

single resonator is studied systematically at the end of this chapter. The results show 

that with the combination with the resonator, the noise level is decreased both inside 

and outside, which indicates the potential application in the street canyons and parallel 

barriers.  
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3.2  Description of the model 

3.2.1 Acoustical coupling of the baffled open cavity with a 

resonator array 

Lx

Ly

Lz

ΩB

ΩA

Sop

x

y
z

Source

 

Fig 3.1: The sketch of the baffled open cavity integrated with Helmholtz resonator. 

Fig 3.1 shows the sketch to be investigated, comprising the baffled open cavity 

integrated with the Helmholtz resonator. The cavity has the dimensions of Lx*Ly*Lz 

with five rigid walls. The opening of the cavity, Sop, divides the whole domain into two 

domains, the cavity domain A  and the outside domain B . Domain  is semi-

infinite and the baffled boundary, for 0z   , is assumed to be rigid. The origin of the 

coordinate is at the upper left corner vertex of the cavity. A classical Helmholtz 

resonator is made up of a narrow neck and a baking volume. In this study, the aperture 

of the resonator neck is directed towards the inside domain. The primary point source 

is located at sx , whereas, the t-th Helmholtz resonator is regarded as the t-th secondary 

source located at 
R

tx . 

B
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Sound pressure p  inside and outside the baffled open cavity can be described by the 

Helmholtz equation in three dimensions: 

 
2 2

s sp x k p x Q x x   (3.1) 

where 0k c  is the wavenumber, 0c  is the speed of sound, and sQ  is the strength 

of the primary sound source. For the infinite far field, the Sommerfeld radiation 

condition should be satisfied and all the walls of the cavity are rigid except the opening 

of resonators. 
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In the cavity domain A as shown in Fig 3.1, when regarding the resonator as the 

secondary sources at 
R

tx , the governing equation for the sound pressure Ap  and the 

boundary conditions are:  
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in which, nv represents the particle velocity at the cavity opening and tZ  is the output 

impedance at the tth resonator’s mouth. In this work, the Helmholtz resonator array is 

located on the cavity walls and regarded as the secondary sources as described in 

Eq.(3.5). Note that the sign of volume velocity from the resonators is the same as that 

of primary source, representing that the sound generated by the resonator is radiated 

into the cavity. 
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The sound pressure  Ap x  for the domain A  can be described by the undamped 

eigenmodes as: 

    
1

N

A j jj
p x a x


   (3.6) 

where, ja  is the modal response of the j-th eigenmode  j x  and N is the maximum 

number of the truncated mode series.  

Combining with the rigid wall conditions, the eigenmodes, , for the three 

dimensional rectangular closed cavity as shown in Fig 3.1 is given by 
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The  j x  satisfies: 
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where jk  is the wave number of the j-th eigenfrequency, and ij  is the model index in 

the i direction. 

To solve for the coefficient ja  , the second Green identity can be applied: 
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where the volume integral covers the entire enclosure inside the domain A  and the 

surface integral is evaluated on the entire inside surface of the enclosure, including the 

openings of the enclosure and the resonators. 

Based on the expressions in Eqs.(3.6) and (3.7), Eq.(3.10) can be rewritten as: 

 j x
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Eq. (3.11) considers the interactions between the open cavity and the multiple 

resonators, in which the effect of the cavity opening on the acoustical coupling of the 

cavity-resonator system is indicated by the normal particle velocity nv . 

Using the property of the eigenmodes: 
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Eq.(3.11) can be simplified to: 
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The above equation indicates the effect of the multiple resonators on the modal 

response of the baffled open cavity. 

For outside domain B , the sound pressure Bp  can be expressed by the Kirchhoff-

Helmholtz integral equation as: 

    
 

 
 ,

,
B opB

B B B op B

G x xp x
p x G x x p x d

 





  
   

   
   (3.14) 

in which Bx  and opx are the points in B  and at the opening, respectively.  ,B opG x x  

is Green’s function which satisfies  

    
2 2

2

2 2
,B op B opk G x x x x

x y


  
     

  
  (3.15) 

The second term on the right-hand side of Eq. (3.14) vanishes if Green’s function is 

chosen properly and satisfies the boundary conditions at 0y  , Therefore, Eq.(3.14) 

can be rewritten as: 
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  (3.16) 

with  
1

,
2

ikr

op

e
G x x

r



  and 
opr x x   being the distance from the field point x  to 

the opening point opx  . 

Till now, in order to calculate the acoustical coupling of the baffled open cavity with 

multiple resonators, the coefficient ja  in Eq.(3.6) and the normal particle velocity nv  

in Eq.(3.16) should be solved. However, nv varies as the frequency changes and is hard 

to calculate due to the integration. Alternatively, a modal based approach is used to 

describe particle velocity at the opening. 

Mathematically, any complete and orthogonal function set can be used to expand the 

particle velocity at the cavity opening. Considering the boundary conditions at the two 

ends, the cosine function set,      
x ym m mx x y    , is chosen for the expansion of 

the normal particle velocity, therefore, nv can be written as: 

    
1

M

n op m m opm
v x b x


   (3.17) 

in which, mb  is the modal response of the m-th mode and M  is the maximum number 

of the truncated mode series. 

Substituting Eq.(3.17) into Eq.(3.16), the sound pressure Bp  in the outside domain 

B  can be expressed as: 

    
1

M

B m mm
p x b x


   (3.18) 

together with: 
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      ,
op

m op m op op
S

x j kc G x x x dS      (3.19) 

Now, as shown in Eq. (3.6) and Eq.(3.18), we have obtained the expressions 

describing the sound field of the baffled open cavity integrated with multiple resonators. 

According to the boundary conditions, the unknown coefficients of  and mb   can be 

determined. The solving procedures are presented in the following. 

Substituting Eq.(3.17), Eq.(3.13) can also be simplified based on the modal 

expression equation of nv  at the opening, 
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1 1

op

M
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T NR R

s i s i t h h tt h
t

a k k i kc b ds

i kc
i kcq x x a x

Z

  


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 
  (3.20) 

Another requirement is that the sound pressure continuity at the opening should be 

satisfied, i.e. 

    A BSop Sop
p x p x   (3.21) 

Substituting Eqs.(3.6) and (3.18)  into Eq.(3.21), we can obtain 

    
1 1

N M

j j m mj m
a x V x 

 
    (3.22) 

Multiplying  x  on both sides of Eq.(3.22) and integrating over the opening 

leads to: 
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  (3.23) 

When defining      
'

'
, , ' '

op op
op op

m m S S
S S

Z i kc x G x x x d d       as the ( modal ) 

radiation impedance of the opening [118], Eq.(3.23) can be rewritten as: 

  , , ,1 1
0

x x y y z

N M

j j j j m mj m
a V Z    

 
    (3.24) 

Eqs. (3.20) and (3.24) form two equations for the two unknown coefficients ja  and 

ja
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mV . After solving the coefficients, the acoustical coupling of the baffled open cavity 

with the Helmholtz resonator array can be analyzed. 

3.2.2 Analytical solution with one single resonator 

As observed from the last item of Eq. (3.20), when multiple resonators are used, 

complex acoustic interactions among the cavity and the resonators occurs. Each 

resonator couples with not only multiple cavity modes, but also with other resonators. 

Such interactions make the analysis of the acoustical coupling of the cavity and the 

resonators complex. In fact, the coupling of one single resonator and the open cavity 

shows a very representative feature. Therefore, multiple resonators are reduced to one 

single resonator in the proposed theoretical model and will be discussed in detail. 

For one single resonator, Eq. (3.20) can be simplified to: 
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Dividing both sides of Eq.(3.25) by  2 2

ik k  yields: 
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  (3.26) 

By multiplying the two sides of Eq.(3.25) by  
1

N R

ii
x

 , one can obtain: 
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Then the summation  
1

N R

h hh
a x

  can be solved by: 
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Substituting Eq.(3.28) into Eq.(3.25), the modal response ia with one single 

resonator gives: 
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 (3.29) 

When defining: 
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  (3.34) 

Eqs. (3.24) and (3.29) can be rewritten as: 

  A MB S   (3.35) 

 ΦA ZB   (3.36) 

The coefficient matrix A  and B  can be obtained after solving Eqs.(3.35) and 

(3.36). With the analytical model proposed above, the sound field in and outside the 

baffled open cavity integrated with a Helmholtz resonator can be calculated. 

3.3  Numerical results and discussions 
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The configuration of the rectangular open cavity and the properties of the air media 

are listed in Table 3.1. The geometrical parameters of the baffled open cavity used in 

this study are 0.45 m long (𝐿x), 0.17 m high (𝐿y) and 0.54 deep (𝐿z). The source is located 

at (0.05, 0.085, -0.49) m while the evaluation receivers are randomly chosen at (0.45, 

0.085, -0.05) and (0, -0.2, 0.5) m. The preliminary study has shown that these two 

locations can represent the sound field inside and outside the open cavity. 

Table 3.1, Air properties, cavity size, sound source and receiver locations. 

Air property Sound Source 

Density:  0  [kg/m3] 1.225 Location: (xs,ys,zs) [m] (0.05,0.085, -0.49) 

Sound speed: c [m/s] 340 Strength: Qs [kg/s2] 0.0001 

Baffled Open Cavity Receiver Locations 

Width: 𝐿x [m] 0.45 R1[m] (0.4, 0.085,-0.54) 

Height: 𝐿y [m] 0.17 R2[m] (0.65, 0, 0.2) 

Depth: 𝐿z [m] 0.54   

 

3.3.1 Modal truncation and convergence 

Theoretically an enclosed cavity has infinite degrees of freedom, i.e. an infinite 

number of cavity modes. In the numerical implementation, however, the mode series 

has to be truncated to form a finite number in Eqs.(3.6) and (3.17). The accuracy 

increases as the number of the truncated modes is large enough, however, the 

convergence will slow. Because this work is concentrated on controlling the low-

frequency noise, it is possible to only use a limited number of lower-order modes to 

obtain reasonably accurate results [119].  

A convergence study was conducted first by comparison of the calculated results at 

different modal numbers in the frequencies from 30 to 1000 Hz with a step of 1 Hz. 

The frequency band of [30, 1000] covers the major low-frequency resonance peaks for 
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the present baffled open cavity. Two arbitrary locations inside and outside the cavity 

were selected to compute the SPLs. Their locations are listed in Table 3.1.For the 

acoustic modes  n x  used in the calculation, the total number N ranges from 5 to 500. 

The finite cosine series in Eq.(3.17) is truncated to Nx, accordingly. The amplitude and 

phase of the sound pressure at the randomly selected receivers have been evaluated as 

the modal number increases. The calculated results are shown in Fig 3.2 for the baffled 

open cavity without the acoustic resonator and Fig 3.3 for the baffled open cavity 

integrated with one single resonator, respectively. As shown in these two figures, the 

amplitude and phase of the sound pressure at the random inside and outside receivers 

converge as the number of modes increase.  

 

Fig 3.2: Model number used for calculation for baffled open cavity without resonator. 

Subsequently, an acoustic resonator is designed to target the cavity mode at 381 Hz. 

A similar conclusion can be obtained from Fig 3.3 when the acoustic resonator is 

coupled to the cavity system. When comparing these two figures, we can find that the 

sound pressure converge slower for the baffled open cavity coupled with an acoustic 
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resonator than that with no resonator. That is to say, more modes should be used when 

calculating the acoustic coupling of the baffled open cavity with the acoustic resonator, 

which indicates that the acoustic resonator interacts with multiple cavity modes instead 

of only the target mode. 

 

Fig 3.3: Model numbers used for calculation for baffled open cavity with single HR. 

Generally speaking, the calculated results in the above two figures show that the 

number of cavity modes of 500 is normally enough. Further increasing the modal 

number does not make significant difference in the frequency range of interest below 

1000 Hz. Therefore, 500 cavity modes in total will be used in the following simulations 

and results analysis for frequencies of interest below 1000 Hz. 

To validate the proposed theoretical model, the sound fields inside and outside the 

open cavity are compared with the results calculated by using the BEM modified with 

the Burton-Miller formulation. The frequency range from 30 up to 1000 Hz at a step of 

1 Hz. The maximum size of constant elements used in the BEM simulation is 0.02m, 

which is almost 1/17 of the wavelength of 1000 Hz. 
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Fig 3.4 shows the comparison of the theoretical and simulated sound pressure levels 

at R1 inside the cavity and R2 outside the cavity. In the calculations, the number of 

cavity modes is 500 and the external modes is 34. The blue lines show the results at R1 

obtained by the two methods and the red lines show the results at R2. It is known that 

the sound field at the cavity opening is hard to calculate accurately. However, a good 

agreement can be found at R1, which is near the open cavity. It is shown in the figure 

that the results obtained by the proposed theoretical model agree well with the 

numerical results, so the accuracy of the theoretical model is validated. 

 

Fig 3.4: Comparison between the sound fields obtained by the proposed method and 

the BEM simulations. 

Fig 3.5 compares the sound pressure contour in the x-z plane for 404 Hz obtained 

by the proposed model and the BEM method. The color legend for these two figures 

are set to the same. The sound pattern inside the cavity seems almost the same and 

excellent agreement can be found.  
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Fig 3.5: The comparison of sound pressure distribution calculated by the BEM and the 

proposed method: (a) BEM; (b) Modal. 

3.3.2 Acoustical resonances of the baffled open cavity with 

one single acoustic resonator 

When compared with the eigenfrequencies of the enclosed cavity, the peaks of sound 

pressure level shift to higher frequency, which is due to the infinite baffled opening. In 

order to suppress the sound radiation from the cavity opening, more efforts should be 

devoted to the sound pressure peaks at receivers outside the cavity. Knowing the 

frequencies of these resonances at the design phase is crucial for implementing 

appropriate passive noise control techniques. The second point is that, optimizing the 

resonator design requires the knowledge of the nodal lines for the corresponding 

acoustic modes. This can avoid positioning the resonators too close to them. Last but 

not least, the insertion of the resonator can suppress the noise response well at the target 

resonances; however, the noise level at off-target frequencies may be improved. 

Therefore, in order to achieve broadband noise reduction, it would greatly benefit from 

an early knowledge of the acoustic eigenvalues and eigenmodes of the cavity with and 

without the resonator. In this section, using the established theoretical model accounting 

for the acoustical coupling, the variation of the baffled open cavity resonant frequencies 
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after one single resonator mounted on the cavity wall is investigated. 

3.3.2.1 The coupling and shifting due to the cavity opening  

Neglecting the sound source and covering the resonator aperture with a rigid stopper, 

the free vibration behavior of the baffled open cavity can be described by the following 

equation, which is the simplified form of Eq.(3.25): 

    2 2 0
op

i i i n op
S
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Substituting the modal expression for nv  into Eq.(3.37), we can obtain, 
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Using the orthogonal property of the eigenmodes, the characteristic matrix equation 

of the baffled open cavity is then given from Eq.(3.38) as: 
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





  

  

  

 

 

 

  (3.39) 

Combining Eqs. (3.24) and (3.39) together, these two set of equations can be written 

in matrix form as: 

 0    
      

I M A
Φ -Z B

  (3.40) 

in which I  denotes the identity matrix. The expressions about M , Φ  and Z  are 

similar to that used in Eqs.(3.31)-(3.33). A  and B  represent that modal coefficients as 

used in Eq.(3.30).  

Note that the frequency nullifying the determinant of the matrix  
  

I M
Φ -Z

 in 

Eq.(3.40) yields the eigenvalues of the baffled open cavity system. Therefore, the 
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eigenfrequencies of this open acoustic system can be solved. 

The obtained eigensolutions from Eq.(3.40) are shown plotted by the solid blue 

circle in Fig 3.6. In contrast to its closed counterpart, characterized by real spectra, open 

systems have complex spectra which permits external radiation. For example, the 

eigenfrequency corresponding to the (1,0,0) mode is 381.1 Hz for the enclosed cavity 

with the six rigid walls, whereas, the eigenvalue for the baffled open cavity is 

(402.3+1.5i). The imaginary part in the eigenvalue represents the radiation losses in the 

infinite space. Furthermore, the eigensolutions are shifted to larger ones. 

3.3.2.2 The coupling and shifting due to the resonator 

When removing the rigid stopper at the resonator aperture and neglecting the 

primary sound source, we can obtain the following equation accounting for the open 

cavity and the single resonator as: 

        2 2

1
op

NR R

i i i n op i h hhS

i
a k k i kc v ds x a x

Z


   


      (3.41) 

Especially when the baffled cavity opening is closed as 0nv  , the above Eq.(3.41) 

is the acoustically coupled model for the enclosure with one single HR as that in Li and 

Cheng [110]. 

Dividing  2 2

ik k  on both sides of Eq.(3.41) yields: 

 
 

   
   

2 2 2 2 1

op
i n op

NS R R

i i h hh

i i

i kc v ds
i kc

a x a x
k k Z k k

 


 


 
 


   (3.42) 

Then multiplying these two sides by  
1

N R

ii
x

 , one can obtain: 

 

 
 

 
 

 
   

2 21 1

2

2 21 1

op
i n op

N N SR R

i i ii i

i

N NR R

i h hi h

i

i kc v ds

a x x
k k

i kc
x a x

Z k k

 
 


 

 

 




 
 


 

 

  (3.43) 
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Therefore, the summation  
1

N R

h hh
a x

  can be expressed as: 

  
     

   

2 2

1

21 2 2

1
1

op

N R

i i n op iiN SR

h hh N R

i ii

i kc x v ds k k

a x
i kc x Z k k

  


 










    
   

 



  (3.44) 

Substituting Eq.(3.44) into Eq.(3.41) yields: 

 

   

 
     

   

2 2

2 2

1

2
2 2

1
1

op

op

i i i n op
S

N R

h h n op hh SR

i N R

h hh

a k k i kc v ds

i kc x v ds k k
i kc

x
Z i kc x Z k k

 

  



 





 

 
 

  
     
    



 



  (3.45) 

The above equation can be further simplified after substituting the expression for 

nv : 
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 
     

   

2 2

1

2 2

1 1

2
2 2

1

op

op

M

i i m i m opm S

N MR

h m h m op hh m SR

i N R

h hh

a k k i kc b ds

i kc x b ds k k

i kc x
Z i kc x k k

  

   
 

 



 



 

 
 

  
   
  

 

  



  (3.46) 

This leads to a similar matrix form as Eq.(3.40) expressed as: 

 0
R R

R R

   
      

I M A

Φ -Z B
  (3.47) 

where the superscript ‘R’ represents the variables for the system at the presence of the 

resonator. The above matrix can be used to solve the resonances of the baffled open 

cavity integrated with one single resonator. The calculated results are shown by asterisk 

in Fig 3.6, in which the open circles represent the resonance of the baffled open cavity 

without resonator. 
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Fig 3.6: The eigenfrequencies of the baffled open cavity without and with one single 

resonator. 

Similar to the baffled open cavity with rigid walls, the eigenfrequencies after 

integrated with a resonator consist of real part and imaginary parts. The imaginary parts 

represent the radiation loss to the infinite space and are relatively small when compared 

with their real part. Therefore, the high Q-factor can be observed at these frequencies. 

Furthermore, as indicated by Fig 3.6, when inserting the acoustic resonator whose 

natural frequency is f=381.1 Hz, two new frequencies of 357.4+1.8i and 416.5+4.1i are 

produced normally lying on either side of the original frequency of 402.3+1.5i. A little 

shift can be observed for other resonant frequencies. In other words, after inserting one 

resonator, one additional resonance emerges and little changes at other resonances. The 

results are consistent with the studies for the acoustical coupling of the enclosure and 

the resonator by Fahy and Schofield [120]. The separation between the new frequencies 

is dominated by the target modal property and the characteristics of the resonator 

compared with the cavity. The comparison of modal pattern for the above 

eigenfrequencies is plotted in the following Fig 3.7. 
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Fig 3.7: Normalized modal pattern for the open cavity before and after integrated with 

the resonator: (a) Original pattern at f=402.3+1.5i without resonator; (b) and (c) the 

newly coupled patterns after inserting the resonator at f=357.4+1.8i and f=416.5+4.1i. 

Fig 3.7 (a) presents the sound pressure distribution at 402.3+1.5i Hz for the baffled 

open cavity without resonator. Fig 3.7 (b) and (c) illustrate the sound fields at the newly 

emerged frequencies of 357.4+1.8i and 416.5+4.1i Hz after being coupled with one 

single acoustic resonator. The natural frequency of the resonator is 381 Hz and target 

for the enclosed-cavity mode of (1, 0, 0). The geometrical parameters and the location 

of the resonator will be investigated in detail in the next section. 

3.4 The noise reduction by one single Helmholtz resonator 

3.4.1 Sound response inside and outside the baffled open 

cavity 

In order to control the noise level of the baffled open cavity system, the sound field 

of such open system should be analyzed in detail first. The frequencies of sound 



 

 

79 

pressure level peaks as shown in Fig 3.4 appear at 134, 404 and 769 Hz, below 1000 

Hz. Except for the first peak at 134 Hz, the other peak frequencies are close to the 

resonant frequencies of the enclosed cavity. It is obvious that the opening increases the 

values of the resonances for the enclosed cavity, and the formation mechanism of the 

sound pressure distribution at 134 Hz is different from others. 

Fig 3.8 show the sound pressure level distribution on the cross plane when the source 

is located at (0.05, 0.085, -0.49) and the frequencies are (a) 134, (b) 404 and (c) 769 Hz 

respectively. It can be found that sound pressure distribution at the last two frequencies 

appears almost as the mode patterns caused by the two rigid walls of the rectangular 

cavity. While at 134 Hz, the sound pressure level remains almost the same within the 

open cavity except at the cavity opening. This means that the sound pressure 

distribution at 134 Hz is mainly due to the reflection of the bottom plane and the open 

cavity behaves like a quarter wavelength resonator, a similar pattern can be found in 

the study by Ref.[5].  

For the (2a) and (3a) figures in Fig 3.8, the sound pressure distributions are similar 

to their enclosure modal pattern. At each frequency, a clear modal feature can be 

identified within the cavity domain. Within the cavity formed by four vertical rigid 

walls and the reflective bottom, multiple reflections occur. These reflecting waves 

superimpose with each other and with the direct waves generated by the noise source. 

In fact, the sound pressure level at each of the above frequencies is dominated by one 

associated mode of the enclosed cavity, as shown by Fig 3.8 (2b) and (3b). Take the 

sound peak at 404 Hz as the example, the sound field within the cavity is dominated by 

the enclosed-cavity mode of (1, 0, 0) and the sound field outside the cavity is mainly 

contributed by the second external mode. Therefore, the direct and effective noise 

reduction enhancement at these frequencies aims to suppress the corresponding 
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resonances, the Helmholtz resonator device is hereafter introduced. 

 

Fig 3.8: Sound slice within the rectangular open cavity: (a) f=134Hz; (b) f=404Hz; (c) 

f=571Hz and (d) f=769Hz. 

3.4.2 The mechanism of HR on noise control 

When mounting a resonator on the cavity wall, resonators interact with the cavity 
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through a dual process: (1) the vibration of the lumped mass inside the resonator neck 

reflects part of acoustic energy from the incident wave back to the cavity, resulting in 

an acoustic interaction with the open cavity. (2) Meanwhile, part of the incident acoustic 

energy passing to resonators is trapped inside the resonator cavity as kinetic and 

potential fluid energies, part of them being dissipated through energy loss mechanisms. 

It is also known that insertions of acoustic resonators can control the target mode well, 

however, other off-target modes may be improved, which in turn deteriorates the noise 

control performance if the frequency range of interest is broadband [110].  

Eq.(3.29) provides analytical expressions in terms of the modal coefficients inside 

the cavity under the effect of one single Helmholtz resonator. As shown on the right-

hand side of Eq.(3.29), the first term is the effect of the primary sound source, the 

second term characterizes the radiation opening and the last term indicates the resonator 

contributions after being coupled with the original sound field. As expected, the single 

resonator interacts with all of the acoustical modes of the cavity. If a targeted cavity 

mode is well separated from other modes, the interaction among these modes and the 

resonator can be neglected. On the contrary, high modal density or a larger frequency 

band may necessitate the consideration of the interaction among the resonator and 

multiple cavity modes. The same applies if the control performance of the resonator 

should be evaluated in a broad band. 

Especially, when the cavity opening is covered with a rigid wall, the problem 

degenerates to the acoustical coupling of the enclosure with one single resonator, as 

studied by Cheng’s group [110, 112, 113]. Though the expression by Eq. (3.29) is not 

as straight as that by Li and Cheng [110], Eq. (3.29) still shows two important factors 

which dominate the noise control performance: location and internal resistance of the 

resonator. The value of  R

h x  is location dependent and hence the noise reduction is 
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sensitive to the resonator locations. Traditionally, the resonator is set at the anti-nodal 

surfaces where the strongest coupling happens and the most effective noise control 

undergoes. The sound response at the target frequency can be suppressed well in this 

case; however, the noise response in the vicinity may be improved. Aiming to achieve 

noise reduction within a frequency band instead of a narrow band around the peak, 

acoustical coupling of the single resonator and the multiple enclosed-cavity modes 

should be considered [112]. Therefore, the optimal location for the single resonator 

used for the open cavity may not be consistent with the traditional one used for the 

enclosure. Besides, due to the space limitation, the resonator in this study was limited 

to being mounted on the vertical walls of the cavity. 

On the other hand, when the resonator location is fixed, the output impedance of Z 

at the resonator aperture, is very important in determining the noise reduction 

performance within the chosen frequency band. The output impedance of the resonator 

is mainly dependent on its internal resistance and the physical parameters in geometry. 

An excessively high internal resistance renders Z approach to infinity, thereby annulling 

the effect of the resonator. On the contrary, if the internal resistance is too low, Z  tends 

towards zero at the resonance frequency, which causes an unacceptably high amplitude 

ia  at the two newly emerged frequencies (coupled peaks) after the resonator is installed 

[113]. Neither of the two above scenarios are desirable. Therefore, the location of the 

resonator and its internal resistance need to be investigated and properly chosen.  

If the aperture of the resonator is covered with rigid stoppers, then Z goes to infinity. 

In this circumstance, i.e., neglecting the effect of the resonator, the modal coefficient 

ia   can be determined based on Eq. (3.29) 

 
 

 
 

 
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op
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 
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As expected, the model coefficient is determined by the primary sound source and 

the cavity opening, as indicated by the first and second term on the right-hand side of 

Eq. (3.48), respectively. From this expression, the effect of the opening on the sound 

distribution inside the cavity is obvious, i.e., the influence of the opening is selective to 

the cavity modes (  
op

i n op
S

v ds ). In other words, the opening only contributes to ia  

when xyi m  due to the orthogonal property. This can be used to explain the high 

sound level inside and outside the baffled open cavity mainly existing around 

frequencies associated with  , ,0x yi i  modes. 

When considering the resonator as the secondary sound source mounted on the wall, 

the volume velocity source strength
Rq  directed outwards from the aperture into the 

cavity is given by: 
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  (3.49) 

It is observed from Eq.(3.49) that the location and internal resistance of the resonator 

have a strong effect on 
Rq  through the items  R

h x  and Z . A low internal resistance 

results in high values of 
Rq  in the vicinity of the resonance of the resonator, which 

promotes strong re-radiation from the resonator. With the increase of the resonator 

resistance, 
Rq decreases and approaches to zero eventually, thereby disabling the 
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resonator’s radiation.  

If further assuming that the multiple mode interactions can be ignored, the 

relationship between the secondary source from the resonator and the primary sound 

source can be obtained from Eq.(3.49), 

  
   

   
2

2 2

0
xy zh s h hR R

s h
R

h h

x b
q q i kc x

Z k k i kc x
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 


 

  
 

  (3.50) 

For appropriate designs of the resonator, the ratio of the resonator source to the 

primary source can approach -1 at the resonant frequency, i.e. 1R

sq q  . In this way, 

the sounds generated by the two sources are of the same amplitude but out of phase. 

The noise reaching the receivers at proper locations is canceled. 

3.4.2.1 The output impedance of the HR 

The acoustic resonator used in this study was referred to the T-shaped acoustic 

resonator designed and developed by Li et al. [111] due to its compactness in size. Such 

typical resonator consists of two branches, a short circular neck tube and a long 

rectangular volume tube perpendicular to the short one.  The radius of the circular neck 

is    and the area of the cross-sectional area for the rectangular tube is S2. The physical 

lengths of the neck branch is LB1 and the volume branch is divided into LB2 and LB3, 

respectively. The plane wave propagation inside the resonator is assumed when 

deriving the resonant frequency and output impedance at the aperture.  In this study, 

the crucial frequency of the resonator was 4096 Hz, which is far greater than the 

frequency of interest and validates the satisfaction of the plane wave assumption.  

As derived by Ref. [111], the acoustic output impedance, Z, at the external aperture 

of the resonator can be calculated from 
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  (3.51) 

where 1k , 2k  and 3k are the complex propagation constant of three branches 

considering the absorption process, and iL
 is the effective lengths of the relative branch 

i, which is the summation of the physical lengths and its end correction [121], 
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  (3.52) 

Notice that the 1L in this study is a little different from that presented in Ref [111], 

because the resonator aperture in their study was unflanged. Li et al. [111] validated  

the proposed impedance model and generally speaking, the calculation accuracy of 

acoustic impedance by Eq.(3.51) is satisfactory. 

3.4.2.2 The noise control by the single HR 

Three resonators, consist of a circular short neck tube and rectangular backing 

volume, were designed in this study. Their geometry parameters are indicated in the 

following Table 3.2. In order to facilitate the analysis, the resonator is named using a 

‘HR’ together with an integer indicating the natural frequency of the resonator. The ‘S’, 

‘M’ and ‘L’ represent their volume size are small, medium and large. 

Table 3.2 Geometry parameters for three resonators 

Resonator 

Resonant 

frequency 

[Hz] 

Neck Branch 

Diameter 

[m] 

Volume 

Branch width 

[m] 

LB1 

[m] 

LB2 

[m] 

LB3 

[m] 

HR381S 381 0.021 0.037 0.04 0.03 0.04 

HR381M 381 0.021 0.049 0.021 0.03 0.036 

HR381L 381 0.03 0.05 0.03 0.042 0.041 
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It is known that noise abatement by resonators is sensitive to their location and 

internal resistance [112]. Therefore, three resonators were fabricated whose natural 

frequencies were tuned to the same value of 381 Hz. The neck branches of these two 

resonators are identical while the volume branches were different. We named the 

resonator in small volume branch HR381S and the larger one HR381M and the largest 

one HR381L. Comparison of the sound response when these two resonators were 

installed at the same position can roughly validate the relative size effect of the 

resonator on the noise radiation reduction of the open cavity. When considering the 

internal resistance effect, three values of Ri from the Ref. [113] have been investigated. 

The location effect can be examined by changing the resonator location. Due to the 

space limitation and the practical application in the noise barrier studied in the next 

chapter, the resonators were only mounted on the vertical walls of the cavity. The 

locations of these two resonators are list in Table 3.3 and the sound attenuation 

performance is compared through the sound pressure level at the inside and outside 

receivers. 

Table 3.3 Resonator locations for three resonators. 

 
Helmholtz 

resonator 

Location 

x y z 

HR381-S1 HR381S 0 0.085 -0.49 

HR381-M1 HR381M 0 0. 085 -0.49 

HR381-M2 HR381M 0.45 0. 085 -0.49 

HR381-M3 HR381M 0 0.085 -0.29 

HR381-L1 HR381L 0 0.085 -0.049 

 

In this section, the enclosure mode (2, 0) which dominants the second sound perk at 

404 Hz was chosen as the target mode. The locations of the HR381 were shown in 

Table 3.3. 
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3.4.2.2.1 Location effect 

The first comparison was to investigate the location effect of the resonator on the 

noise abatement at receivers inside and outside the cavity. 

Fig 3.9 (a) and (b) illustrates the SPL changes after inserting the resonator. Fig 3.9 

(a) presents the receiver inside the cavity and (b) the receiver outside the cavity. A 

similar SPL variation tendency could be obtained at the two receivers. The locations of 

the resonators can be found in Table 3.3. When the resonator is nearest the sound source, 

the maximum noise reduction can be observed around the target frequency. For a longer 

distance of the resonator from the primary sound source, weaker coupling between the 

cavity and resonator resulted less noise reduction. Fig 3.9 (c) and (d) present the source 

strength generated at the resonator aperture compared with the primary sound source 

based on Eq.(3.49). The solid line in these two sub-figures is the amplitude and phase 

of the primary sound source. As can be observed, the variation of the amplitude R

sq q   

in Fig 3.9 (c) is consistent with the changes of the sound pressure level in Fig 3.9 (a) 

and Fig 3.9 (b). Taking the dashed green line as the example, two SPL peaks in the 

vicinity of the original one are caused by the strong sound reflection at the resonator 

aperture. When the primary source frequency approached the tuned natural frequency 

of the resonator HR381-M1, the relative amplitude generated by the resonator was 

almost equal to the primary sound source, while the phase difference in radians was  . 

In other words, the sound response at the receiver generated by the primary sound 

source and the resonator was identical but out of phase, resulting in the noise 

cancellation. A similar observation was made for HR381-M2 and HR381-M3. While 

the enclosure modal functions were the same at these resonators, the acoustical coupling 

of the resonators and the cavity varied due to the baffled opening. 
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Fig 3.9: Predicted SPL comparison at inside and outside receivers when the same 

resonator located at different positions. 
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Fig 3.10 presents the sound field variation at 402 Hz when the resonator was in the 

above locations. 

 

Fig 3.10: The sound field at 402Hz: (a) without resonator; (b) with HR381-M1; (c) 

HR381-M1 and (d) HR381-M3. 

3.4.2.2.2 Internal resistance 

Subsequently, the internal resistance of the resonator was investigated. The internal 

resistance Ri on the noise control of the baffled open cavity can be explained as follows 

with the help of Fig 3.11. A large internal resistance in resonators can definitely 

increase the dissipation ability, but reduce the radiation from resonators. However, the 

energy dissipation in resonators also depends on the vibration of the lumped mass in 

the resonator neck. The high internal-resistance constrains the vibrating level of the 

lumped mass, and consequently weakens the interaction between resonators and the 

cavity. Therefore, an excessive internal resistance can only bring about a moderate SPL 

reduction in the vicinity of the original peak, as shown in Fig 3.11 by a dashed line. On 
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the contrary, a low internal resistance in resonators leads to a drastic SPL peak reduction 

at the targeted frequency at the expense of creating two pronounced peaks as shown by 

a dot-dashed line in Fig 3.11. Resonators thus radiate sound back into the enclosure 

efficiently and only dissipate a small amount of energy in the frequency band. The 

resonator in this condition works as a reflector with little dissipation. None of the above 

scenarios is desirable. The energy dissipation and radiation in Ref.[113] has also been 

used to confirm the above analysis. 

 

Fig 3.11: Predicted SPL comparison at inside and outside receivers when three different 

resonators located at same position. 

As obtained from Fig 3.11, when the resistance of the resonator is at optimal value 

or approximates to the optimal value, the noise reduction is maximum and the peaks at 

the coupled frequencies are relatively flat, resulting in overall sound reduction within 
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the frequency band. When the internal resistance of the resonator is much lower than 

the optimal value, the insertion of the resonator produces two pronounced peaks, 

thereby affecting the sound attenuation ability of the resonator within the chosen band. 

In this case, most of the energy is radiated back to the cavity with little amount of energy 

dissipated by the resonator. This is attributed to the low mobility of the resonator 

aperture so that the resonator and the enclosure cannot be effectively coupled. 

 

Fig 3.12: The sound field at the emerged new peaks for resonator with different internal 

resistance. 
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3.4.2.2.3 Relative resonator size 

This section investigates the effect of resonator size on the sound field inside and 

outside the cavity. Three resonators were designed to have the same natural frequency 

of 381 Hz, while the neck and volume branches were different. HR381-S1 and HR381-

M1 have an identical neck branch but the volume size of HR381-M1 is larger than that 

of HR381-S1. For the third resonator, HR381-L1, it had either the largest diameter of 

aperture or volume of backing cavity. The relative volume ratios of these three 

resonators were 3.4%, 5.2% and 7.4% when compared to the open cavity, respectively. 

 

Fig 3.13: the SPL variation when installed with same resonator of different relative size. 

Fig 3.13 presents the SPL changes at receivers R1 and R2 when installed with one 

single resonator of a different size. These resonators were tuned to the same natural 

frequency and located at the same location at (0, 0.085, -0.49). For a Helmholtz 
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resonator with a small cavity/long neck, the dip of SPL occurs exactly at the tuned 

frequency in a narrow frequency range (green dashed line). For a large cavity/short 

neck, there is a slight shift in the dip SPL from the tuned frequency to a lower frequency 

(dot-dashed and dotted lines). As the resonator size increases, the broader the noise 

reduction frequency range that can be obtained. The following contours indicate the 

sound field at 402 Hz before and after being embedded with a different sized resonator. 

 

Fig 3.14: The sound field at 402 Hz for resonator with different relative size. 

As indicated by the calculated results, when using a resonator to suppress the sound 

radiation from the open cavity, the noise reduction performance is mainly determined 

by the acoustical coupling of the resonator and the cavity mode. With proper design 

and careful location, the resonator can attenuate effectively the sound radiation at the 

target frequency. Besides, a broad noise reduction range can be obtained. However, two 

new peaks emerged around the original resonant frequency and the sound response 
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maybe enhanced. Therefore, when using the resonator (array) to reduce the sound 

radiation from the open cavity in the wide frequency regime, the induced additional 

resonant frequencies have to be considered carefully. 

3.5 Experimental validation 

Experiments were carried out to validate the aforementioned results. Fig 3.15 is the 

sketch of the experimental setup. Two B&K microphones were positioned at R1 and 

R2, respectively. One was installed flush with the cavity walls and the other was 

supported by the tripod. Both the AD (BNC 2120) and the DA (NI. 9234) convectors 

were controlled by a LABVIEW program, which is made to run from 200 to 1000 Hz. 

The output noise signal from the DA converter was passed firstly via a power amplifier 

(LA 1201) and then to the loudspeaker.  

 

Fig 3.15: The sketch of the experimental setup. 

An acoustic resonator was used in the experiment is shown in Fig 3.16. The resonator 

was fabricated using a circular PVC tube and rectangular aluminum tube. The physical 
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length of the circular branch was 21.0 mm and that for rectangular branch is 71.5 mm. 

The area of cross section for the rectangular branch were 29.5 mm*29.5 mm. Fig 3.17 

indicates the rectangular open cavity and the baffled panel. The open cavity was 

constructed from acrylic plates which were 20 mm in thickness to prevent sound 

transmission through the side walls. The size of the cavity was the same as that in 

calculations. The opening of the cavity was located at the center of the baffled panel 

and the size of the baffle was 2.4m*2.4m. The primary source, generated by a 20-cm 

diameter loudspeaker, was located at (0.05, 0.085, -0.49) m near the cavity bottom and 

generated tonal or broadband sound. The resonator was mounted on the cavity wall and 

was used to control the noise level in the above baffled open cavity in the validation 

experiments.  

 

Fig 3.16: A typical T-shaped Helmholtz resonator. 

 

Fig 3.17: Experimental setup for the baffled open cavity in anechoic chamber. 

Practically, the frequency response of the loud speaker is not always flat as indicated 

by the solid blue curve in Fig 3.18. The acoustical resonances of the cavity might be 
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misinterpreted. Therefore, the loud speaker was regulated to equalization first by 

inverse filtering. A loud speaker with a short rigid tube was used in the equalization 

process and the microphone was placed 20 mm in front of the tube aperture. The 

measured white noise response was used to construct an inverse filter. Fig 3.18 shows 

the loud speaker frequency response before and after equalization. As expected, the 

sound amplitude emitted from the loud speaker had almost the same level (±0.3 dB) 

from 200 to 1000 Hz with a step of 1 Hz [122]. 

 

Fig 3.18: The sound amplitude emitted from the loud speaker before and after 

equalization. 

To examine the accuracy of the proposed theoretical model, a comparison of the SPL 

at the same receivers was made. The SPL predicted by the proposed theoretical method 

and measured in the experiment was compared firstly for the baffled open cavity 

without the resonator. Fig 3.19 (a) shows the SPLs at (0.45 m, 0.085 m, -0.49 m) inside 

the open cavity while Fig 3.19 (b) shows those at (0.65 m, 0. m, 0.2 m). The solid lines 

shows the results predicted by the theoretical model and the dashed line for the results 

measured in the experiments. Well agreement can be found for the solid and dashed 

lines in these two figures, which shows that the proposed model could be used to 

accurately predict sound pressure inside and outside the baffled open cavity. 
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Fig 3.19: Measured and predicted SPL comparison at inside and outside receiver 

without acoustic resonator. 

Subsequently, a comparison of SPL was made for the baffled open cavity with one 

single resonator. The resonator was located at (0.0 m, 0.085 m, -0.49 m), at the same 

vertical level as the sound source. The aperture of the resonator was toward the cavity 

side. Fig 3.20 shows the SPLs at the same two receivers as used in Fig 3.19. After 

inserting the resonator, the noise reduction can be found at the two receivers either in 

the experiment or the calculation. Two new peaks emerged in the vicinity of the original 

one. Generally speaking, the results obtained by the proposed model agree well with 

the experimental results, which shows that the proposed method could be used to 

accurately predict sound pressure response for the cavity with a partial opening. 
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Fig 3.20: Measured and predicted SPL comparison at inside and outside receiver with 

single one acoustic resonator which natural frequency is 381 Hz. 

3.6 Summary 

The aim of this chapter has been to establish a theoretical model for the acoustical 

coupling between a baffled open cavity and a Helmholtz resonator array based on the 

modal coupling method. For the convenience of the analysis, the resonator array was 

simplified to one single resonator. The accuracy of the theoretical method was validated 

by comparison with the numerical method BEM programs and good agreement was 

found. 

Combining the dominant equations of the sound field inside and outside, the 

characteristic matrix equation was produced and the eigenvalues of the open space 

determined. Due to the radiation loss, the eigenfrequencies is complex and shifted to 
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higher values compared with those for the enclosed cavity. The theoretical analysis 

indicates that the sound peaks inside and outside the baffled open cavity are dominated 

by one cavity mode whilst being contributed from other modes. After inserting the 

resonator whose natural frequency was equal to the dominant one, the noise reduction 

inside and outside the cavity could be found obviously at the target frequency. Besides, 

two new resonances emerged around the original eigenfrequency. The location, internal 

resistance and the relative size of the resonator, which determine the noise abatement 

performance were investigated. The longer the distance of the resonator from the 

primary sound source, the weaker the coupling between the cavity and resonator 

resulting in less noise reduction. When the resistance of the resonator is at the optimal 

value or approximates to the optimal value, the noise reduction is maximum and the 

peaks at the coupled frequencies are relatively flat, thus resulting in overall sound 

reduction within the frequency band. As the resonator size increases, a broader noise 

reduction frequency range can be obtained. 

  Finally, experiments at the same receivers for the baffled open cavity without and 

with single one resonator was performed in an anechoic chamber. The measured results 

demonstrate the accuracy of the proposed theoretical model and the effectiveness of 

using the Helmholtz resonator to reduce the noise radiation from the opening of the 

cavity. The proposed model provides a useful tool to analyze the sound radiation from 

the opening of the baffled open cavity and noise reduction device based on the modal 

control. 
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CHAPTER 4     

NOISE REDUCTION FOR PARALLEL 

BARRIERS BY INTEGRATION WITH 

HELMHOLTZ RESONATORS 

4.1 Introduction 

As discussed in Chapter 1, the multiple reflections between the barriers create a 

reverberant sound field within the bounded domain and deteriorate the performance at 

some discrete frequencies [10, 123]. These frequencies correspond to the resonances in 

such an unbaffled open cavity system and their SPLs at receivers are higher than at 

other frequencies. When analyzing the sound response at these resonances, a strong 

oscillation with a high pressure amplitude can be found within the bounded domain by 

the two vertical barriers and the reflective ground. In this regards, a modal insight can 

help to gain a deeper understanding of wave propagation in parallel barriers but not 

much literature exists on this issue. Essentially, the degradation in the performance is 

due to the resonance in the bounded domain, so the effective and direct way to improve 

the degradation is to suppress the resonance within the two vertical parallel barriers. 

The Helmholtz resonator (HR) is the common resonance control device and has been 

extensively used in ducts and enclosure systems. A series of work by Li and Cheng 

[110-113] systematically investigated the acoustical coupling of an enclosure and 

Helmholtz resonators. The theoretical model and the optimization strategy were 

established and investigated effect of the physical characteristics and the locations of 

the resonators. Meanwhile, by using a resonator array with different resonance 
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frequencies, a wide band noise reduction can be achieved. Similar to this idea, a HR 

array was integrated into structures to improve the transmission loss of a duct [72, 73, 

114] and that of an enclosure cylindrical shell [115-117]. However, most of the work 

focused on the acoustic duct or enclosed systems, little concerns the HR application on 

the sound reduction in the open system such as parallel barriers. 

Therefore, the objective of this chapter is to study the sound propagation in parallel 

barriers from a modal view and use the Helmholtz resonator to enhance the noise 

reduction.  

4.2 Numerical modeling of the parallel barriers 

The following Fig 4.1 shows the schematic diagram of the parallel barriers.  

 

Fig 4.1: The parallel barriers integrated with multiple resonators. 

The height of the two barriers is the same as yL and the distance between these two 

barriers is xL . It is assumed that the cross sections are unchanged in the z-direction. A 

primary sound source marked by the asterisk is fixed near the left barrier. The origin of 
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the coordinate is at the left top vertex of the barrier. All the walls of the barrier are 

assumed to be acoustically rigid. The ground is considered perfectly reflecting in this 

chapter. Multiple Helmholtz resonators are embedded in the walls of the parallel 

barriers.  

When a harmonic time dependence sound pressure field is generated by a point 

source at  ,s s sx x y  in the cross-section plane, the sound field  p x   can then be 

described by a two-dimensional inhomogeneous Helmholtz equation:  

 
2 2

s sp x k p x Q x x   (4.1) 

where 0k c  is the wavenumber, 0c  is the speed of sound in the air, and sQ  and sx  

are the source strength and location, respectively. 

For convenience, the whole acoustic domain of the parallel barriers together with 

the semi-infinite half space is divided into two parts: (1) the bounded rectangular cavity 

domain A , which is enclosed by the parallel barriers, the reflecting ground and the 

opening and (2) the outside domain B . The two domains are shown in Fig 4.1. They 

are connected through the cavity opening opS  (red dashed line).  

For the infinite far field, the Sommerfeld radiation condition should be satisfied and 

all the walls of the barrier are acoustically rigid except the opening of resonators, 

 

1/2lim 0

0

x
r ik p

r

p

n



 
  

 






  (4.2) 

In the bounded cavity domain A as shown in Fig 4.1, when regarding the resonator 

as the secondary sources at 
R

tx , the governing equation for the sound pressure Ap  and 

the boundary conditions is:  
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2 2

A A s sp x k p x i kcq x x   (4.3) 

together with the boundary conditions for the opening of the cavity and the acoustic 

resonator, i.e., 
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in which nv is the particle velocity at the cavity opening and tZ  is the output impedance 

at the aperture of the t-th resonator. Multiple resonators are mounted on the cavity walls 

and regarded as the secondary sources as described in Eq.(4.5) by means of the Robin 

boundary condition. The aperture of these resonators is towards the inner side of the 

bounded domain. Note that the sign of volume velocity from the resonators is the same 

as the primary sound source, which represents that the sound is radiated into the cavity. 

The sound pressure  Ap x  inside the domain A  can be described by the 

undamped eigenmodes as: 

    
1

N

A j jj
p x a x


   (4.6) 

where, ja  is the modal response of the jth eigenmode  j x , and N is the maximum 

number of the truncated mode series.  

Combining with the rigid wall conditions, the eigenmodes, , for the two 

dimensional rectangular closed cavity is given by 

      
x yj j jx x y      (4.7) 
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The  j x  satisfies: 

 
2 2 0j j jx k x   (4.8) 
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where jk  is the wave number of the j-th eigenfrequency, and xj  and yj  are the model 

index in the x and y directions, respectively. 

In the outside domain B , the sound pressure  Bp x  is dominated by the sound 

radiation from the opening. When employing the plane wave to expand the field in the 

outside infinite space, traveling wave solution would create complexity. Alternatively, 

in this chapter, an expansion by an incomplete basis set is proposed based on the normal 

velocity distribution at the opening. 

The sound pressure in the outside domain B and the particle normal velocity nv  

at the opening can be expressed as used in Chapter 3. 

    
1

op

M

n m mmS
v x b x


   (4.10) 

    
1

M

B m mm
p x b x


   (4.11) 

where M  is the maximum modal number to be truncated. However, for the outer 

domain B of the parallel barriers (Fig 4.1), it is hard to express in the analytical way 

as used in Chapter 3 due to the difficulty in finding the Green function. Alternatively, 

the numerical method based on the finite element or boundary element analysis is used 

to obtain the  m x . The details about using a numerical tool to obtain the  m x  will 

be discussed in Section 4.2.1. 

Based on the second Green identity and the sound pressure continuity at the opening, 

the following two equations can be obtained, the detailed derivation of which can be 
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found in Chapter 3 and will not be discussed here. 
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Similarly, when defining    ,
0

,0
xL

m mZ x x dx     as the radiation impedance of 

the opening [118], Eq.(4.13) can be rewritten as: 
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When we set: 
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Eqs.(4.12) and (4.14) can be simplified to: 

    R
K Z A MB S   (4.22) 

 ΦA ZB   (4.23) 

The coefficient matrix A  and B  can be obtained after solving the above equations. 

After these two coefficient are obtained, the sound pressure in cavity domain A  

governed by Eq.(4.6) and the sound pressure of outside domain B  governed by 

Eq.(4.11). can be solved. 

4.2.1 Numerical validation 
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This part conducts the computational investigation to examine the accuracy of the 

theoretical method proposed above. The configuration of the acoustical domain and the 

properties of air are listed in Table 4.1. 

Table 4.1: The air properties, configurations of the parallel barriers, sound source and 

the receiver locations used in the calculations. 

Air properties 

Density: 0  [kg/m3] 1.225 

Sound speed: c [m/s] 343 

Parallel Barriers 

Width: Lx [m] 1.83 

Height: Ly [m] 1 

Sound Source 

Location: (xs,ys) [m] (0.1, -0.9) 

Strength: Qs[kg/s2] 4𝜋×10-4 

Receiver Locations 

R1[m] (1.7, -0.1) 

R2[m] (5, -0.9) 

 

The parallel barriers used in this study are similar to configuration in [10] and have 

the size of 1.83 m long (𝐿𝑥) and 1 m high (𝐿𝑦). It should be noted that, in order for 

comparison to be made with the parallel barriers installed with the Helmholtz resonator 

studied in the following section, the thickness of the barrier walls is expanded to 0.1 m. 

Preliminary study indicates little change in the frequency range of interest for the sound 

response at the receivers, when changing the thickness from 0 to 0.1 m. The source is 

located at (0.1, −0.9) m while the evaluation receivers are randomly chosen at (1.7, -

0.1) and (5, -0.9) m, representing the sound field in the domain A  and B , 

respectively.  

Due to the difficulty in describing the sound field in the outside domain B  
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analytically, the numerical software COMSOL based on the finite element method is 

an alternative to be utilized to calculate the sound response due to the normal vibration 

velocity at the cavity opening. The commercial FEM solver is chosen instead of the 

BEM tool developed in Chapter 2 due to the fact that the FEM is more efficient in the 

calculation in 2D within the confined domain. Moreover, the post package of the 

COMSOL offers another advantage to analyze the calculated results. The calculated 

frequency range is from 30 to 1000 Hz with a step size of 1 Hz. The maximum triangle 

mesh sizes are 1/12 the wavelength of 1000 Hz.  
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Fig 4.2: The absolute sound pressure distribution of first three modes at f=200 Hz: (a) 

mode=0; (b) mode=1 and (c) mode=2. 

In order to simulate the Sommerfeld radiation condition in the semi-infinite space, 

the artificial absorbing layers -- Perfectly Matched Layer (PML) is employed, which 

enables minimal reflections and promises the least influence on the domain of interest 

from the reflections. Note that only frequencies above 30 Hz are treated in COMSOL, 

as at very low frequencies, the PMLs needed for calculation become very thick in order 
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to prevent spurious wave reflection. The Fig 4.2 presents the modulus values of the first 

three base functions in   m x  at the frequency of 200 Hz, which is obtained from the 

numerical software COMSOL. 

Convergence study for the modal number was carried out as the steps in Chapter 3. 

For the acoustic modes  n x  in Eq.(4.6), the total number ranges from 0 to 400. The 

finite cosine series in Eq.(4.10) is truncated to m=30. The amplitude and phase of the 

sound pressure at the randomly selected receivers have been evaluated as the increasing 

of the modal number. Numerical results show that 400 enclosed-cavity modes are 

normally enough in the frequency range below 1000 Hz. This will be used in the 

following simulations and results analysis. 

The performance of the proposed method is verified by calculating the sound 

pressure at field points R2 for multiple frequencies below 1000 Hz, as shown in Fig 4.3. 

The sound source strength is taken as qs=4𝜋×10-4 kg/s2 for all frequencies. Fig 4.3 

compares the results obtained by the analytical model and the COMSOL. The solid line 

shows the SPL at R2 calculated by the COMSOL and the dashed line represents the 

results by the proposed theoretical model. The excellent agreement can be found for the 

results by the two methods and verifies the accuracy of the proposed method.  
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Fig 4.3: The sound pressure level for parallel barrier comparison by COMSOL and 

modal expansion. 

Fig 4.4 provides a comparison of the reference sound field via COMSOL and the 

predicted sound pressure distribution based on the coupled enclosure modes and the 

radiation modes. Two frequencies are chosen, one is the f=289 Hz, representing one of 

the sound level peak; the other is f=932 Hz, the dip point in the sound pressure level 

curve as shown in Fig 4.3. The contours in Fig 4.4 (a) and (b) shows the sound field of 

the parallel barriers at 289 Hz, calculated by the COMSOL and the theoretical model. 

The color legend are the same and shown in the right side of the figures. Generally 

speaking, the sound field calculated by these two methods seem almost the same at this 

peak frequency. The similar conclusion can be obtained for the contours in Fig 4.4 (c) 

and (d) which show the sound field at 932 Hz. Therefore, excellent agreement between 

the results of the proposed method and the reference method is observed. Based on the 

results comparison in Fig 4.3 and Fig 4.4, the accuracy of the proposed theoretical 

model based on the mode coupling method has been validated and the analysis in the 

following studies are based on this method except as otherwise defined. The modal 

number for the enclosed cavity is 400 and for the external space is 30. 
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Fig 4.4: Sound pressure distribution of the parallel barrier at two selected frequencies: 

(a) reference sound pressure field obtained using COMSOL at f=289 Hz; (b) 

reconstructed field using mode coupling at f=289 Hz; (c) reference sound pressure field 

obtained using COMSOL at f=932 Hz and (d) reconstructed field using mode coupling 

at f=932 Hz. 

4.3 Numerical results and analysis  
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Following the steps for baffled open cavity, to understand the noise control 

mechanism of the parallel barriers, the sound field of such an open system is analyzed 

in detail below by referring to Fig 4.3. The frequencies of sound pressure level which 

peak below 1000 Hz appear at 51, 109, 198 etc., as listed in Table 4.2. Except for the 

first peak of 51 Hz, the other peak frequencies are related to the second to the ninth 

frequencies listed in third column in Table 4.2. It is obvious that the opening increases 

the values of the modal frequencies of the enclosed rigid cavity, and the formation 

mechanism of the sound pressure distribution at 51 Hz is different from others. The 

following Fig 4.5 distinguishes sound response at 51 Hz and the other five peaks. 

Table 4.2, The comparison of the eigenvalues of first ten (m, 0) enclosed cavity modes 

and the frequencies of the sound pressure level for parallel barrier. 

Enclosed-cavity Parallel Barriers 

Mode number 
Modal indices Frequency 

Peaks 
Frequency 

 ,x yi i   Hz Hz 

1 (0,0) 0 1 51 

2 (1,0) 93.72 2 109 

3 (2,0) 187.43 3 198 

4 (3,0) 281.15 4 289 

5 (4,0) 374.86 5 381 

6 (5,0) 468.58 6 474 

7 (6,0) 562.3 7 567 

8 (7,0) 656.01 8 660 

9 (8,0) 749.73 9 753 

10 (9,0) 843.44 10 849 

 

Fig 4.5 (a)–(f) show the sound pressure level on the cross plane when the source is 

located at (0.1, -0.9) and the frequency is 51, 109, 198, 289, 381, 474 Hz, respectively. 

It can be observed that sound pressure distribution at the last five frequencies appear 

almost as the mode patterns caused by the two rigid walls of the parallel barriers, while 

the sound pressure level at 51 Hz remains almost the same within the domain bounded 
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by the parallel reflecting barriers and ground (this domain is called bounded domain 

hereafter). This means that the sound pressure distribution at 51 Hz is mainly due to the 

reflection of the bottom plane and the bounded domain behaves like a 1/4 wavelength 

resonator at 51.0 Hz.  

 
Fig 4.5: The sound perssure level field in the parallel barriers excited by a source at 

(0.1, -0.9) m: (a) f=51 Hz; (b) f=109 Hz; (c) f=198 Hz; (d) f=289 Hz; (e) f=381 Hz; (f) 

f=474 Hz. 

In Fig 4.5(b)-(f), the sound pressure distribution is similar to their enclosure modal 

pattern. At each frequency, a clear resonance feature can be identified within the 

bounded domain. Within this domain, multiple reflections occur, and these reflecting 

waves superimpose with each other and with the direct waves generated by the noise 

source. In a harmonic steady state, the superposition of these waves forms a resonance 

response. In fact, the sound pressure level at each of the above frequencies is dominated 

by one associated radiation mode with its natural frequency closely coinciding with the 
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frequency. Therefore, the noise reduction enhancement at these frequencies for the 

parallel barriers is to suppress the corresponding resonances. 

 

Fig 4.6: Modal amplitude at two different frequencies: (a) and (b) for 289 Hz, (c) and 

(d) for 474 Hz and (e) and (f) for 849 Hz. 

Fig 4.6 shows the modal coefficients  
ja   and mb  for the sound pressure at the 

receiver R2, the two selected freqeuencies are  f=289 Hz and f=474 Hz. Fig 4.6 (a) and 

(b) indicate the modal coefficients at 289 Hz and (c) and (d) for 474 Hz. Shown by red 

in Fig 4.6 (a) and (c) are the (m,0) modes as listed in Table 4.2. It can be observed 

obviously that the sound pressure at these two frequencies are dominated by the (3,0) 
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mode and (5,0) mode respectively. 

When concerning the sound pressure level curve as shown in Fig 4.3, it is found that 

some peaks emerged together with dips. For example, Fig 4.3 has a peak close to f=474 

Hz and a dip around f=463 Hz. This phenomenon is referred as the Fano resonances, a 

feature can be found in the open acoustic system when a high Q-factor resonance 

interact with the continuous spectrum.  

Although not having a standard Fano lineshape, this phenomenon is a type of Fano 

resonance in that the asymmetric lineshape can be explained in terms of the 

interferences between resonant eigenmodes and non-resonant eigenmodes. Fano 

resonance occurs where there is a quasi-trapped mode (of high quality factor and sharp 

narrow resonance). When the source frequency sweeps from below to above the 

resonance frequency of the quasi-trapped mode, a sharp phase change occurs for the 

response of this quasi-trapped eigenmode while the modal coefficients of the other non-

resonant eigenmodes remain almost the same within the narrow frequency band. A 

similar phenomenon was observed in the scattering coefficients of acoustic resonators, 

although the spectrum there displayed a standard Fano lineshape [69, 124].  

4.4 Helmholtz resonator integrated with parallel barriers 

As illustrated in Section 4.3, the sound response peaks at the receiving point are 

related to the resonances in the bounded cavity domain. The assumption is proposed 

that if the resonances inside the bounded cavity domain is suppressed, the sound 

response corresponding to this mode can be abated. In order to control these resonances 

and then enhance the noise reduction performance of the parallel barriers, the 

Helmholtz resonator (HR) is chosen and applied in such artificial enclosure acoustic 

system. The previous studies in Chapter 3 have validated the effectiveness of the 
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Helmholtz resonator on the noise radiation from the baffled open cavity in three 

dimensions. The studies in this chapter mainly focus on applying the Helmholtz 

resonator array to obtain a broadband noise reduction for parallel barriers. Several 

resonators with different natural frequencies are proposed to increase the noise 

reduction of parallel barriers at low frequencies. 

Fig 4.1 shows the sketch to be investigated, comprising the parallel barriers 

integrated with multiple Helmholtz resonators. As above, both the parallel barriers and 

resonators are treated to have rigid walls. In this design, the aperture of the resonator 

neck is directed towards the inside of the bounded domain. In order to facilitate the 

analysis and comparison, the resonator is named using a ‘HR’ together with an integer 

indicating the resonator’s natural frequency.  

In this chapter, the two-dimensional Helmholtz resonator is presented, in which the 

traditional concentric hole is replaced by an infinite slit. The geometrical parameters of 

the HR are carefully designed and their resonance frequencies are validated by 

numerical calculations. As we known, the natural frequency calculation of the HR is on 

the base of the plane wave assumption. Thus, the frequency range covered by the model 

must always be below the internal critical frequency  of the acoustic resonator [104, 

125]. If the maximum radius of a circular resonator is max = 21mm, the critical 

frequency of the resonator is  0 max1.84 2crf c   Hz, below which the plane-wave 

assumption is still valid. This is a rather high frequency, whose value would increase 

further as the radius decreases meaning that the plane wave assumption is valid in the 

frequency range of interest. Due to the space limitation and the practical installation, 

the T-shaped acoustic resonators as used in Chapter 3 are used for noise enhancement 

of parallel barriers at low frequencies ( f <1000 Hz) [125].  

We study firstly the location effect of a single Helmholtz resonator on the 
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degradation when integrated at different vertical height on the parallel walls. A 

Helmholtz resonator with a resonant frequency of 281 Hz, represented as ‘HR281’, is 

designed for the fourth peak in the sound pressure level curve. Following the findings 

about the baffled open cavity and the resonators, the closer spacing between the 

resonator and the sound source could result in a good noise reduction around the target 

frequency. Therefore, one single HR281 is installed at the left side of the parallel 

barriers and 0.1 m above the ground, the same height as the sound source from the 

ground. Sound pressure level at the receiver R2 (5m, -0.9m) for the perfect reflecting 

walls is shown with the solid blue line in Fig 4.7, named ‘Rigid Wall’. As compared, 

the dashed red line shows the sound pressure level change at the same receiver after 

being integrated with the single HR281 whose aperture center is 0.1 m above the ground. 

It can be obviously found that after integration with the HR281, the sound pressure 

levels around the original peak are suppressed. Good noise reduction enhancement is 

available at the degradation frequency 289 Hz. As shown by the diamond and circle, 

the sound pressure level is reduced from 68.93 dB to 51.79 dB, and a 17.14 dB noise 

reduction is obtained. Besides, the noise performance within the frequency range 

[198,381] has also been improved. This is because, the enclosure mode (3, 0) not only 

dominates the sound response at 289 Hz, but also mainly contributes to the noise level 

in the vicinity frequency range. However, at higher frequencies, the sound pressure 

level is increased after intruding the HR281, thereby deteriorating the noise reduction 

performance within this frequency range. The low sound pressure level by the rigid 

parallel barriers is due to the fact that their dominant modes cannot be excited well. 

After being fully coupled with the resonator HR281, the modal response at these 

frequencies is enhanced. Such findings are different from those in Chapter 3, where 

noise reduction could only be found around the target frequency and vanished at high 
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frequencies. As compared, the SPL variations at the same receiver after the parallel 

barriers are integrated with the three dimensional resonator are plotted by the dot-

dashed line. The noise response is suppressed in the vicinity of the target frequency and 

little difference can be observed at other frequencies. Therefore, the two-dimensional 

resonator in this study acts like the acoustical coupling between the small cavity 

(resonator cavity) and the unbaffled open domain through a narrow tube (resonator 

neck). Such an acoustic resonator not only abates the target mode, but also influences 

the resting modes.  

 

Fig 4.7: SPL changes when the parallel barriers integrated with HR281 in 2D and 3D. 

The following figure shows the modal coefficients 
ja   and mb   before and after 

resonator HR281 is installed at 0.1m above the ground. The first row shows the modal 

coefficients 
ja  and mb  at 289 Hz and the second row at 849 Hz. For the parallel 

barriers with rigid wall, the sound wave has a strong oscillation inside the bounded 

domain A  around 289 Hz, the corresponding modal coefficients are high and result 

in a peak for the sound response at the outside receiver. When the frequency increases 
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to 849 Hz, the mode (9, 0) is not excited well, the sound pressure levels dominated by 

this mode is relative low. After installed with the HR281 at the left wall, the SPL at the 

outside receiver is suppressed around 289 Hz. The modal amplitude for the cavity mode 

(4, 0) and the fourth radiation mode is reduced, as shown by the red bars in Fig 4.8(a) 

and (b). However, due to the modal coupling, the original weak excitation cavity mode 

(9, 0) has been enhanced, which results in an increase in noise level at the outside 

receivers. The modal amplitudes for this mode and the corresponding radiation mode 

have been increased obviously, which can be found in Fig 4.8(c) and (d). 

 

Fig 4.8: The modal coefficients at two selected frequencies before and after installed 

with HR281. 

Fig 4.9  illustrates the comparison of sound pressure distributions for the 289 Hz 

before and after the single HR281 is installed. The sound field pattern still remains 

almost the same. However, the sound field distribution at the corresponding frequencies 
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has a distinctive signature, with the sound pressure substantially reduced. The 

advantage of the proposed barriers is more obvious in the shadow zone outside the two 

parallel barriers: the sound energy is less than 55 dB for the proposed barriers and above 

65 dB for the rigid wall units. Besides, as shown clearly in Fig 4.9, after being integrated 

with HR281, the sound response reduction is not only achieved at the shadow zone, but 

also can be obtained in the whole illustrated domain.  

 

Fig 4.9: The sound pressure distribution at the 289 Hz before and after installed with 

the HR281: (a) and (b) rigid wall without resonator; (c) and (d) with single resonator 

whose natural frequency is 281 Hz. 

It is known  that modal response control and modal rearrangement are the two 

general control strategies to suppress associated with different types of acoustical mode 

[126].  Previous studies in the duct noise control show that the aperture of the two 

identical resonators should not too close. When their center distance is greater than a 

quarter wavelength of the resonators’ natural frequency, the sound transmission loss is 

larger than that of a single resonator. However, when these two same resonators are in 

close proximity, they interact and lead to a decrease in the overall performance. In this 
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study, the center distance among the resonators is larger than 0.1 m. The first study was 

to investigate the noise reduction performance when a resonator is installed at different 

locations. Three locations were tested and their corresponding positions are listed in 

Table 4.3. The calculated SPL changes are shown in Fig 4.10. 

Table 4.3: Resonator locations for HR281. 

  Helmholtz resonator 
Location 

x y 

Same-Frequency 

Case-1a HR281 0 0.1-Ly 

Case-1b HR281 0 0.2-Ly 

Case-1c HR281 1.83 0.1-Ly 

 

Similar to the conclusion in Chapter 3, the closer the resonator from the primary 

sound source, the stronger the acoustical coupling that occurs and the higher the noise 

reduction can be achieved in the vicinity of the target frequency. Shown in Fig 4.10 is 

the SPL changes when the same HR281 is located at three different locations. These 

lines shows that the sound responses around the third peak are suppressed. However, 

the sound pressure level is enhanced in the high frequency range where the resonances 

have not been excited well. This result is consistent with that for a single resonator. 

 

Fig 4.10: SPL changes after installed with single resonator at different locations. 
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Therefore, in order to lower the noise response around the sound peaks and maintain 

the original weak resonances, the resonator should be properly located, as indicated by 

Case-1b.  

Then, two resonators (referred to as HR281-1 and HR281-2) with the same natural 

frequency were designed to study the arrangement of two identical resonators for the 

noise reduction in frequency range of interest. Their positions are listed in Table 4.4. 

Table 4.4 Resonator locations for HR281. 

  Helmholtz resonator 
Location 

x y 

Same-

Frequency 

Case-2a 
HR281-1 

HR281-2 

0 

0 

0.1-Ly 

0.3-Ly 

Case-2b 
HR281-1 

HR281-2 

0 

1.83 

0.2-Ly 

0.1-Ly 

Case-2c 
HR281-1 

HR281-2 

1.83 

1.83 

0.1-Ly 

0.3-Ly 

 

In order to avoid the interaction between the two resonators, their center distance is 

larger than 0.1 m. the locations of these two identical resonators are referred the findings 

from the single one HR281. 

 

Fig 4.11: The SPL of the parallel barrier with the rigid wall compared to the Helmholtz 

resonator at 281 Hz. 
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Fig 4.11 indicates that sound response changes after being integrated with the same 

two resonators at different positions. These two resonators were installed in the left 

barrier, as indicated by Case-2a, and the sound response is shown by the dashed line 

with a reduction of 8.54 dB at its corresponding resonant frequency compared with the 

rigid wall result. However, similar to the predictions in Case-1a, the sound response at 

the higher frequencies is shifted and enhanced. The dot-dashed line shows the SPL 

changes at the same receiver when the same two resonators were installed at each side 

of the barrier. The sound response of the two resonators installed at the far barrier side 

is shown by the dotted line. When compared with the results from a single resonator, it 

is found that the noise reduction is mainly determined by the near resonator. The 

addition of the same resonator has little effect on the total noise abatement if the 

resonator is embedded on the far side wall. In this study, the primary sound source was 

located at (0.1,-0.9), near the left barrier. When moving the source towards to the far 

side, a similar conclusion can be obtained. 

The following contours in Fig 4.12 are the sound field at 289 Hz and 849 Hz in the 

above three cases. The first column illustrates the sound distribution at 289 Hz after the 

two same resonators are installed at different positions and the other column is for that 

at 849 Hz. As can be found for 289 Hz when compared with Fig 4.9 (a), the modal 

pattern at this frequency is suppressed and modified. When HR281 is located at the 

positions according to Case-2a, the noise response around the primary sound source is 

reduced drastically. As indicated by the modal control theory, when the sound source 

is moved to the anti-nodal line, the noise response dominated by this mode is relatively 

low due to the weak excitation. When moving the resonators to the far side, the 

acoustical coupling of the resonator and the (4, 0) mode is decreased, and the noise 

abatement is thereby reduced. However, the strong acoustical coupling instead leads to 
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an increase in sound response at 849 Hz. As shown in Fig 4.12(b), the original weak 

modal excitation has been enhanced and resulted in the higher sound level around this 

frequency. 

 

Fig 4.12: Sound pressure level distribution after installed with the resonators. 

Finally, two resonators with different natural frequencies were installed on the 

barrier walls. Table 4.5 indicates the locations of these resonators. HR281 and HR468 

resonators (named HR281-3 and HR468-1) were designed to study the combination of 

two resonators with different frequencies. The physical parameters for HR281 used 

these three cases are the same. 
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Table 4.5 Resonator locations for HR281 and HR468. 

  Helmholtz resonator 
Location 

x y 

Different-

Frequency 

Case-3a 
HR281-3 

HR468-1 

0 

1.83 

0.2-Ly 

0.05-Ly 

Case-

3b 

HR281-3 

HR468-1 

1.83 

1.83 

0.2-Ly 

0.05-Ly 

 

Fig 4.13 shows that the use of two Helmholtz resonators tuned to different 

frequencies can result in a global noise reduction compared to the sound pressure level 

for a barrier in the absence of Helmholtz resonators. The natural frequencies of the two 

resonators are 281 and 468 Hz, respectively.  These two resonators were both installed 

on the right side. The height for HR281 is 0.05 m and for HR468, the height is 0.2 m. 

 

Fig 4.13: The SPL of the parallel barrier with the rigid wall compared to the Helmholtz 

resonator at 281 Hz. 

It is clear from the above two figures, that after installing the resonator, the 

corresponding resonant peak was suppressed and the noise level was reduced. 

Following the radiation impedance results analysis, the nearby resonant peak also 

reduced because of the modal contribution from the suppressed mode. And the resonant 

frequency shift was also found. The SPL distribution of the parallel barriers integration 
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with two resonators at 289 Hz, 381 Hz, 474 Hz and 567 Hz is shown in Fig 4.14. 

 

Fig 4.14: The SPL distribution of parallel barriers integration with HRF281 and HR468. 

4.4.1 Sound Intensity 

Attention was then paid to the sound intensity changes when the parallel barriers 

were integrated with HR281 and HR468. 

By analogy with the reflection and transmission coefficients defined for reflecting 

and transmitting waves, a diffraction coefficient D is suggested in the GTD [24]. In this 
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definition, a diffraction field is determined by the acoustical property of the sound field 

at the diffracting point and the diffraction coefficient D. 

 
1/2 jkr

d ip Dp r e   (4.24) 

where dp and ip  are the sound pressure at the receiving and diffracting points, and r   

is the distance from the diffracting point to the receiving point. Eq.(4.24) illustrates that: 

when a barrier is erected, the sound field behind the barrier is mainly contributed by the 

diffraction wave. The incident wave directly reaches the barrier top, then the sound 

field around the barrier top works as a secondary source and generates the diffracting 

waves. To this end, the sound pressure in the shadow zone has an inherent relationship 

with the sound pressure at the diffracting point. In addition, since the thickness of the 

barrier used in the current analysis is 0.1 m, which is much smaller than the wavelength 

of 1000 Hz, one could simply assume that the diffracting point is at the barrier top. 

The diffraction coefficient D is determined by the directions of the incident and 

diffracting rays, the wavelength, and the geometrical and physical properties of the 

media at the point of diffraction. An asymptotical expanded form of the diffraction 

coefficient D is: 
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  (4.25) 

where    and   are the angles of incidence and diffraction and can be found in [24]. 

As shown in Eq.(4.25), the diffraction coefficient is low for a high frequency. As a 

result, the sound pressure at the receiver has a descending trend with the increase of 

frequency. In addition, at the same frequency, the increase of incident angle  attains 

a bigger diffraction coefficient. That is to say, the sound wave is more effectively 

diffracted if the incident wave impinges normally to the barrier surface. In that case, 

the maximum diffraction coefficient is reached. If the incident wave is in parallel (at a 
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grazing angle) with the barrier surface, a minimum diffraction coefficient is obtained. 

It should be noted that, the scale factor of the sound intensity field in Fig 4.15 and Fig 

4.16 is 100, while the scale factor in Fig 4.17 and Fig 4.18 is 1000, respectively. As 

shown in Fig 4.15 and Fig 4.17, the amplitude of sound intensity at 289 Hz after 

integration with two HRs is still less than that with rigid walls, though the scale factor 

is 1/10. That is to say, the sound pressure ip at the diffraction point around the top of 

the right barrier is intensely reduced. When compared with the wave incident direction 

around the top edge, no obvious difference can be observed and hence the diffraction 

coefficient D undergoes little change. Combined with Eq.(4.24), the noise reduction 

can be achieved in the shadow zone. 

 

Fig 4.15：Sound intensity comparison of the parallel barrier without Helmholtz 

resonator at f=289 Hz, scale factor=100; 

 

 

Fig 4.16: Sound intensity comparison of the parallel barrier without resonator at f=474 

Hz, scale factor=100; 



 

 

130 

 

Fig 4.17: Sound intensity comparison of the parallel barrier with resonators in case-3a 

at f=289 Hz, scale factor=1000; 

 

 

Fig 4.18：Sound intensity comparison of the parallel barrier with resonators in case-3a 

at f=474 Hz, scale factor=1000; 

4.5 Experiment validation 

4.5.1 Experimental set up 

The experimental study was conducted in an anechoic chamber with the size 

6m*6m*4m. The sketch for the parallel barriers is shown in Fig 4.19. Several pieces of 

wooden boards with a thickness of 18.5 mm were used to simulate the parallel barriers 

and the reflecting ground. Previous measurements have demonstrated that these 

wooden boards can be treated as acoustically rigid in the frequency range of interest 

[13]. The height of the parallel barriers is 1 m and the length of the barriers is 4.8 m. 

The distance between the two barriers was 1.83 m which was the same as that in the 

theoretical calculation. 
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In order to simulate a point source, a speaker is connected to a circular brass pipe. 

The length and the diameter of the brass pipe is l.5m and 25 mm. The directional feature 

of the point source was measured and showed that the deviation in the sound pressure 

level for all directions is within 1 dB for all the frequency range above 200 Hz. 

During the measurements, the point source was fixed at (0.1, 0.1, 0) m as shown in 

Fig 4.19. in which the origin of the coordinate is located at the center of the left barrier 

and the ground plane. Four B&K microphones were supported by the tripod to measure 

the sound pressure behind the barrier located at the right side. The receivers are chosen 

at 1 m away from the right barrier and with heights of 0.2, 0.5, 0.7 and 1 m above the 

ground. The following Fig 4.19 illustrate the set up in the experiment.  

 

 

Fig 4.19: The sketch of the experimental study. 

 The resonator was made from circular cross sectional PVC tubes and rectangular 

cross sectional aluminum cavities. The physical dimensions of the resonators are listed 

in Table 4.6. Five identical resonators were fabricated. The natural frequency of these 

resonator were designed to 281 Hz and the measurement validated the design. These 

five resonators were mounted on the left barrier wall as shown in Fig 4.19. Their 

aperture center is 0.1 m above the ground. 
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Table 4.6 The geometric dimensions of the HRs and the measured resonance frequency. 

Helmholtz 

Resonator 

Neck 

diameter 

(mm) 

Neck 

Length 

(mm) 

Body 

Width 

(mm) 

Body 

Length 

(mm) 

Measured natural 

frequency (Hz) 

HR281 21 30 49 124.6 281 

 

A photo of the parallel barriers integrated with a resonator array can be found in Fig 

4.20. The holes on the wooden panel is used to mount the resonators HR281. 

 

Fig 4.20: Experimental photo in the anechoic chamber. 

The sound pressure level at the receivers for the parallel barriers with rigid wall 

condition was firstly measured. The resonator apertures were covered with stoppers 

made of aluminum which can be regarded as acoustically rigid.  

Subsequently, the sound response at the same position after resonators were installed 

was investigated. As indicated from the Fig 4.21, after integrated with the resonator 

whose natural frequency is 281 Hz, the original sound peak at 289 Hz was suppressed. 

Different from the predictions in two dimensions, the SPL at higher frequencies were 
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not improved. It should be noted that, this experiment mainly aimed to examine the 

effectiveness of the resonator on noise control of parallel barriers, rather than validating 

the accuracy of the proposed theoretical model. 

4.6 Numerical calculation by FMBEM 

In this section, the developed FMBEM program is used to predict the sound field of 

the parallel barriers with a resonator array in three dimensions. The configurations used 

in the calculation are the same as that in the experiments in the anechoic chamber. The 

calculated frequency range is 200-1000 Hz, which is consistent with that in the 

experiment. 

The parallel barriers and ground were treated as acoustically rigid surfaces. A point 

source fixed at the same position as in the experiment. Five same resonators were 

embedded in the left side of the parallel barriers. They are arranged horizontally and 

the distance between the resonators was identical, i.e. 0.1 m. The height of the resonator 

from the ground was the same as the sound source. 

The maximum size of the boundary elements used to discretize the barriers is 0.025 

m. with at least 12 elements per wavelength. When integrated with the resonators, the 

mesh for the resonator and around the aperture was refined. The maximum number of 

multipole and local expansion terms was set to 10 for this problem. 

In Fig 4.21, the comparisons of the experimental measurements and numerical 

predictions at the receiver (1, 0.2) is presented. The solid and dashed lines without 

marks shows the results obtained from the FMBEM without and with five resonators. 

The solid and dashed lines with asterisk and circle are the results from the experiment. 

The tendency of the predictions consist with that of the experiment. Several sound 

peaks has emerged due to the multiple reflections generated by the two barrier walls. 

Noise reduction can be found around the target peak either in the experiment or the 
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experiment. It is likely that the discrepancies at high frequencies are due to some system 

errors in the measurement setup. The main source of these measurement errors was 

considered to be the directivity of the loudspeaker and the microphone. And also, it was 

difficult to make the panel stand vertically during the experimental setup.  

 

Fig 4.21: SPL comparison for parallel barriers with rigid wall and five resonators 

HR281. 

Next, Fig 4.22 and Fig 4.23 present the contour plot of the SPL in dB on the parallel 

barriers and the near field without and with five same resonators of HR281. The color 

legend is shown at the right corner. As can be found in Fig 4.22, the contour indicates 

strong sound oscillation inside the bounded domain consist of the parallel barriers and 

the ground at 289 Hz. The sound leakage in the negative and positive direction on the 

z-axis weaken the oscillation. The sound leakage in the z-direction increase the noise 

level at the microphone locations but reduce the noise level at certain regions, as shown 

by the blue lines. 



 

 

135 

 

Fig 4.22: The sound field for the parallel barriers with rigid walls at 289 Hz. 

As compared, the sound field after integration with the resonators is plotted in Fig 

4.23. It is obvious that the resonators act as the secondary sound source and the sound 

response in the whole open space is suppressed at the target frequency. 

 

Fig 4.23: The sound field for the parallel barriers integrated with resonators at 289 Hz. 

4.7 Summary 
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This chapter deals with the noise reduction degradation problem of parallel barriers 

used in traffic noise control. To understand the physics, the modal equation of the 

parallel barriers system is obtained. The eigenfunctions governing the sound field have 

been expressed as the finite sum of the coupled enclosure modes and the radiation 

modes. The radiation impedance matrix at the opening of the parallel barriers was 

obtained to specify the radiation characteristics of such barrier system.  

Due to the difficulty in expressing the sound field analytically, a hybrid method 

based on the modal superposition method was developed first to obtain the sound field 

inside and outside the parallel barrier.  

The mechanisms and the radiation impedance at the opening were investigated. The 

sound peaks at the receiver were dominated by the corresponding closed-cavity mode 

and contributed by the nearby modes.  

The noise reduction inside and outside the bounded domain can be found obviously 

at the target frequency; however, the low noise response may be improved at the 

frequency which has not been excited well by the primary sound source. Through 

optimal design of the locations of the resonator, the deterioration can be suppressed and 

a broadband noise reduction can be obtained.  

Finally, experiments were carried out to verify the noise performance prediction 

results by the proposed FMBEM. Generally speaking, the experimental results indicate 

an agreed tendency with the numerical results. 
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CHAPTER 5     

NOISE SUPPRESSION BY PANELS 

INTEGRATED WITH PARALLEL BARRIERS 

VIA VIBROACOUSTIC COUPLING 

5.1 Introduction 

As shown in Chapters 3 and 4, the resonator array can be used to reduce the sound 

response at the low frequency range, however, the noise reduction band of the resonator 

is always narrow. Aiming to broader the noise reduction band at low frequency range, 

a flexible plate backed by a rectangular cavity is proposed to integrate with the parallel 

barriers. The backing cavity serves to one hand protect the sound wave radiated by the 

plate travelling to the receiver directly, on the other hand modify the plate vibration. 

Such a device is called the plate silencer, which is proposed by Huang [82] and applied 

such a device to attenuate the duct noise mainly at low frequency range. Through proper 

adjusting the plate property, the induced vibration of the plate radiates wave to the 

incident side. The noise reduction can be reached when the incoming and radiated wave 

interfere favorably. In order to implement conveniently in the compact duct system, 

Wang et al. [83] replace the plate end conditions to clamped-clamped instead of simply 

supported. The theoretical study examined the effectiveness of such a device and a 

broadband TL was obtained over low to medium frequency range. Wang also pointed 

out that the plate with soft ends can further improve the noise attenuation performance 

of the plate silencer.  

In this chapter, in order to widen the noise reduction range and maintain the 
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effectiveness in the low frequencies, the plate cavity device is adapted to the parallel 

barriers. The light plate with high bending vibrates in response to the sound wave 

generated by the point source and reflected by the barrier walls and works as a wave 

reflector undergoing the sound cancelations at the downstream over a broad frequency 

band in the low frequencies. The goal of this chapter is to carry out a systematic analysis 

of the acoustics-structural interaction of the parallel barriers integrated with the plate 

cavity. To achieve this target, a theoretical model based on the modal coupling will be 

first established to reconstruct the acoustic-structure coupling behavior between the 

open enclosure and the vibrating panel backed with cavity.  The influence of plate 

vibration on the sound field inside and outside the parallel barriers is then analyzed. 

Finally, the experimental measurements is carried out to validate the effectiveness of 

using the plate cavity to reduce the noise response of the parallel barriers in practical 

applications. 

5.2 Theoretical formulations for acoustic-structure coupling  

In this section, a theoretical model will be established to understand the underlying 

physics which includes the acoustic-structure coupling behavior and sound interference 

between the sound waves in the open space and the radiated waves from the vibrating 

panel backed with cavity. The sound pressure inside and outside the bounded domain 

of the parallel barriers can be solved using the procedure described in Chapters 3 and 

4. In order to avoid unnecessary duplication, the whole procedure is presented briefly. 

However, the sound coupling between the plate cavity and the parallel barriers is critical 

to this study, so some essential expressions have been formulated in detail. 

5.2.1 Descriptions of the coupling system  
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Fig 5.1: The sketch of the parallel barriers with multiple plate cavities. 

The configuration is shown in Fig 5.1. The geometrical parameters of the parallel 

barriers are the same as that used in chapter 4. On the barrier walls facing the noise 

source is lined by flexible plate of length Lpi and a Hpi length of the lower end from the 

ground. The plate is clapmed at the two ends in y direction, and is enclosed by a rigid-

walled cavity of depth Dcav,i and length Lcav,i. Our interest here is in the acoustic 

interaction among the interior domain A , the exterior domain B  and backing 

cavity domains ,cav i . 

Assuming harmonic time dependence omitted, we can obtain the governing 

equations for the acoustic fields and the plate as: 

 
2 2

A B A B s sp x k p x Q x x   (5.1) 

 
2 2

, , 0cav i cav ip x k p x   (5.2) 

 

4

, ,

, , ,4

p i p i

p i p i cav i A

B v
m ikcv p p

ikc x


  


  (5.3) 

where ,p iv  is the vibration velocity of the plate i. ,p iB  and ,p im  are the bending stiffness 
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and the mass per unit surface area of the plate i , respectively. 

In the interior domain A , the governing equation and the boundary conditions are:  

 
2 2

A A s sp x k p x i kcq x x   (5.4) 

  
0

, 0A
n x

y

p
j kcv x L

n





   


  (5.5) 

  , , ,1
0,

,

x

R rA
p p i p i p ir

x L

p
j kcv H y H L

n






    


   (5.6) 

where, nv is the particle velocity at the opening. 

As described in chapter 3 and 4, the sound pressure  Ap x  inside the domain A can 

be described by the undamped eigenmodes as: 

    
1

N

A j jj
p x a x


   (5.7) 

where, ja  is the modal response of the j-th eigenmode  j x . For the rectangular 

cavity,  j x  is given in Chapter 3. 

For the exterior domain B , the particle velocity nv at the opening and the sound 

pressure Bp  can be expressed as: 

    
1

M

n m mm
v x b x


   (5.8) 

    
1

M

B m mm
p x b x


   (5.9) 

where, mb  is the modal response of the mth mode  m x  and M  is the maximum 

number of the truncated mode series. For the baffled open enclosure with the infinite 

baffled plane,  m x  can be expressed as: 

      ,
op

m op m op op
S

x i kc G x x x dS      (5.10) 
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For the unbaffled open enclosure such as the outside domain B  as in this chapter,

 m x  can be obtained numerically by BEM or FEM. The details about obtaining 

 m x numerically can be found in Chapter 4 and will not be discussed here. 

Based on the pressure continuity at the opening, 

    A BSop Sop
p x p x   (5.11) 

Substituting Eqs. (5.7) and (5.9) into Eq.(5.11), we can obtain: 

    
1 1

N M

j j m mj m
a x b x 

 
    (5.12) 

Multiplying  ' 'jx x  at both sides of Eq.(5.12) and integrating over the opening 

leads to: 

      , '1 1
0 '

op

N M

j jx jx jy m m op opj m S
a b x x dS   

 
 
      (5.13) 

When defining     '

, '
op

m m op
S

Z x x dS      , Eq.(5.13) can be rewritten 

as: 

  , ' ',1 1
0

N M

j jx jx jy m jx mj m
a b Z 

 
    (5.14) 

Applying the second Green identity to the interior domain A , one can obtain: 

 

   

   , ,

2 2

1

op

r
p

p i p i

i i i n op
S

R

i s i si s

a k k i kc v ds

i kc v ds i kcq x

 

   


 

  



 
  (5.15) 

The above equation indicates the effect of the multiple cavity on the modal response 

of the parallel barriers. 

5.2.2 Parallel barriers coupled to single plate-cavity 
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The coupling of the parallel barriers and multiple plate cavities behaves like the 

acoustoelasticity model presented by Dowell et al. [48]. The discretized modal 

equations generally involve integral operations over the interface surface between the 

flexible plate and acoustic domain. As shown in the previous Chapter 4, the coupling 

between a single Helmholtz resonator and a multi-degree freedom open domain exhibits 

a very special feature. In fact, for a given plate cavity at one fixed location, dynamics 

of the panel and the sound field inside the backing cavity is critical for this research. 

Therefore, the problem of the parallel barriers interacts with only one plate cavity is 

studied first in the following part. After the mechanism study and a deep principle 

understanding, the theoretical model can be extended to consider more plate cavity with 

complicated configurations. 

The dynamics of the plate described in Eq. (5.3) can be expanded as a series of in 

vacuo modes  u x  with their corresponding modal amplitude ,pV  . The solutions can 

be found in textbooks such as Ref. [127]; hence, only the final result is presented. In 

order to facilitate the formulation, the vibration mode shape  u x is written using the 

local dimensionless variable  p py H L    as: 

    ,1

U

p pu
v x V   


   (5.16) 

where 

      1, 2, 3, 4,sin cosA e A e A A    

          


      (5.17) 

with the ,iA   and  can be obtained by 

    1, 2, 3, 4,

1 1
1 , 1 , , 1

2 2
A A A A                 (5.18) 

 
   
   

   
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, cos cosh 1
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 

  
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 
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 


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
  (5.19) 
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Substituting Eq.(5.16) into Eq.(5.3) and then integrating over the plate, Eq.(5.3) can 

be transformed as: 

    
1

,
0

p cav AL V p p d        (5.20) 

where L  is the structural operator and can be defined as: 

 

4

p

p

p

B
L m ikc

ikc L





 
   

 

  (5.21) 

The acoustic pressure inside the backing cavity can be expressed based on the cavity 

modes [128]. For the rectangular cavity considered here, the acoustical pressure cavp

inside its backing cavity can be calculated from: 

  
 

 
   

1
,

,21 02

,

' 0, ' '
T cav t

cav p cav tt

cav t

x
p x ikc v y y dy

k k





   


    (5.22) 

where  pv   is the vibration velocity over the plate, ,cav t is the tth acoustic cavity mode 

and  ,cav tk is the wave number of the corresponding cavity mode; ,cav t and ,cav tk are given 

as, 

  
0,0,

,

22
cos cos

yx
tt yx

cav t

cav cav cav cav

tt
x x y

D D L L

 


    
    

   
  (5.23) 
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  (5.24) 

Substituting Eq.(5.16) into Eq.(5.22) and the sound pressure inside the backing 

cavity can be rewritten as: 

  
 

 
   

1
,

, ,21 1 02

,

0,
U T cav t

cav p cav tu t
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x
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k k
 


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   


     (5.25) 

The above equation can be further rewritten as: 
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    , ,1

U

cav p cavu
p x V p x 

   (5.26) 

where,  ,cavp x  is the sound pressure inside the backing cavity caused by the -th 

modal vibration and is given as, 
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 
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Suppose  ip x   is the radiation pressure due to the modal vibration  j  . The 

modal impedance ijZ  can be given by 

    
1

0
ij i jZ p x d      (5.28) 

For the backing cavity, cavity impedance is the component of the modal impedance 

that is contributed by the acoustic pressure inside the cavity. In this regard, the cavity 

impedance, ,cav iZ   , is given as: 
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 (5.29) 

in which, ,t iuI  is defined as: 

     

     

1

, 1, 2, 3, 4,
0

1 ' '

1, 2, 3, 4,
0

sin cos cos

sin ' cos ' cos ' '

i i

t i i i i i i iI A e A e A A t d

A e A e A A t d 

   



   

     

   

     





     

    
 




 (5.30) 

The calculation about ,t iI   can be found in Appendix-A. 

Therefore, the first item on the right side of Eq.(5.20) can be rewritten by the cavity 
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impedance and the modal coefficient of the plate vibration as 

 
1 1

, , , ,1 10 0

U U

cav p l cav l p l cav ll l
p d V p d V Z   

 
      (5.31) 

The second item on the right side of Eq.(5.20) relates the plate vibration and the 

sound pressure inside the domain A .  

      
1 1

,1 10 0
0,

N N

A j j j A jj j
p d a y d a Z      

 
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where    
1

,
0

= 0,A j jZ y d    . 

Substituting Eqs.(5.31) and (5.32) into Eq.(5.20) yields: 
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  (5.33) 

For a single plate cavity integrated at the left inside walls of the parallel barriers, Eq. 

(5.15) can be simplified to 

        2 2

op p
i i i n op i p p s i s

S s
a k k i kc v ds i kc v ds i kcq x             (5.34) 

Substituting the modal expressions for nv and pv  into Eq. (5.34) yields: 
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Setting   , p
p

i i s p
s

h x ds   and using the orthogonal property of the eigenmodes, 

Eq.(5.35) can be rewritten as 
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  (5.36) 

Combining Eqs. (5.14), (5.33) and (5.36) together, and setting 
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Eqs.(5.14), (5.33) and (5.36) can be written as: 

   pA MB HV S   (5.38) 

 ΦA ZB   (5.39) 

  
p cav p enl

LV Z V Z A   (5.40) 

The modal coefficients A , B and p
V can be solved. With the theoretical model 

above, the sound field in and outside a baffled open cavity integrated with the plate-

cavity can be calculated. 

5.3 Numerical results and analysis  

The geometrical parameters of the parallel barriers and the property of the air media 

are the same as that in Chapter 4. We will just list them in Table 5.1 and ignore the 

detailed descriptions. Besides, the external modal functions 
 m x

 for the outside 

domain is obtained by COMSOL Multiphysics. The details about this step can be found 

in Chapter 4, too.  

Table 5.1: Air property, parallel barriers size, sound source and receivers locations 

Air property Sound Source Locations 

Density:  0  

[kg/m3] 

1.225 Location: (xs,ys) [m] (0.1, -0.9) 

Sound speed: c 

[m/s] 

340 Strength: Qs 0.0001 

Baffled Open Cavity Receiver Locations 

Width: Lx [m] 1.83 R1 (1.82, -0.1) 

Height: Ly [m] 1 R2 (5, -0.9) 
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Modal truncation needs to be implemented for Eqs. (5.7), (5.8) and (5.22). 

Convergence study for the SPL has been conducted as shown in Chapter 3 in the 

frequency range of [30, 1000] Hz. The steps can be found in the previous chapters and 

will not be discussed in detail. The results obtained by the proposed theoretical model 

based on the coupled mode theory agree well with those generated by the commercial 

software COMSOL. Therefore, in the following analysis, the comparison and analysis 

of the results are calculated by the proposed model.  

5.3.1 The mechanism of plate cavity on noise control 

The goal of the study in this chapter is to develop a broadband noise reduction device 

for the parallel barriers based on the acoustic-structure interaction. An investigation 

was conducted first to explain the physics mechanism of the plate on the noise reduction 

radiated from the opening. The range of interest is the low frequency regime. Following 

the studies for the plate silencer in the duct [83, 86], the light plate with high bending 

was used. 

In order to facilitate the  analysis and comparison with the previous results about 

plate silencer in Ref.[83] and Ref.[86], the mass ratio and the bending stiffness is 

defined as the dimensionless form in their studies, 

 
*

* *

0

m
m

h
   (5.41) 

 

   

*

3 2
* * *

0 0

B
B

h c
   (5.42) 

The parameters with asterisk are referred to as the dimensional parameters and *h

equals 0.1 m. 

The noise abatement by the plate cavity is subject to several design variables, for 
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instance, the backing cavity geometry, the plate property as well as their location. The 

effects of these parameters will be addressed in the next section. Consistent with the 

analysis in Chapters 3 and 4, the SPL at the outside receiver is compared with that of 

the rigid walls to validate the noise attenuation of the flexible plate on the parallel 

barriers. The sound spectrum at (5, -0.9) was chosen to represent the sound pattern at 

the far field. Fig 5.2 illustrates the sound spectrum comparison at receiver (5, -0.9) for 

the parallel barriers with rigid conditions and integrated with one plate cavity system. 

The design parameters for the plate cavity are given by: 

0.4 , 0.1 , 0.1

3, 0.045

p p p

p p

L m H m D m

m B

  

 
 

 

Fig 5.2: The sound spectrum at receiver for the parallel barriers with rigid wall and one 

plate cavity system. 

As expected, the sound response is suppressed with properly tuned designs of the 

plate cavity. The sound pressure levels around the resonances of the enclosed cavity 

have been reduced. Obvious noise reduction can be found around the third peak for the 

rigid wall condition. A series of dips can be found, as indicated by open circles. SPL at 

these frequencies are suppressed well compared with vicinity frequencies.  
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Fig 5.3: The SPL distribution of parallel barriers integrated with plate cavity at (a) 269 

Hz; (b) 334 Hz and (c) 526 Hz. 

To explain this phenomenon, it is proposed that the occurrence of the maximum 

sound suppression is related to the resonances of the plate or the resonances of the plate 

cavity system, just as the peak of a Helmholtz resonator appears at its resonance 

frequency. However, a preliminary investigation found that no coincidence can be 

observed between the resonant frequency of the plate cavity and the spectral dips in the 

SPL spectrum. This issue, the relationship of SPL dips and the resonances of the plate 

cavity system will be explored in the future work. 
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Fig 5.3 presents the SPL distribution of the parallel barriers integration with the plate 

cavity. Three frequencies corresponding to the dips in Fig 5.2 are chosen. As can be 

observed, the SPLs at these frequencies are suppressed inside and outside the bounded 

domain of the parallel barriers. Specially, the noise reduction for the right outside region 

at first two frequencies, 269 Hz and 334 Hz, is more obvious than that for the left region. 

The first two vibration mode of the plate are shown in Fig 5.4, Fig 5.5 and Fig 5.6 

in solid lines, together with the vibration response of the plate at the corresponding SPL 

dips for comparison (in dashed lines). When the frequency is extremely low, the cavity 

is compact and very stiff to the volume-displacing mode. As shown in Fig 5.4, the shape 

of plate vibration at 269 Hz looks rather like the second in vacuo mode which is almost 

not affected by the incompressibility of the air in the cavity.  

 

Fig 5.4: Comparison of the second plate mode and the plate response at 269 Hz. 

However, at 334 Hz, the vibration of the plate is mainly dominated by the first mode. 

The possible explanation is that the cavity is compact and very stiff to the volume-

displacing mode at this frequency. When observing the sound pressure distribution 

inside the cavity, a relatively uniform distribution can be observed at the plate side. 
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Fig 5.5: Comparison of the second plate mode and the plate response at 334 Hz. 

 

Fig 5.6: Comparison of the second plate mode and the plate response at 605 Hz. 

The third response of plate vibration at 605 Hz shown in Fig 5.6 looks also like the 

second plate mode. On the whole, Fig 5.4-Fig 5.6 demonstrate remarkable similarity 

between the vibration modes of the plate cavity system and the plate vibration responses 

at the SPL dips, which suggests that the occurrence of the spectral dip of the noise 

reduction due to the plate cavity device is closely related to the resonances of such an 
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acoustic-structure system. 

5.4 Properties of parameters 

Compared with the tensioned membrane, the construction for plate cavity device is 

a very simple. However, a lot of variables can affect noise abatement performance 

greatly of this device. For instance, the cavity shape and location, the plate properties, 

and the installation method of the plate play important roles in determining the plate 

vibration. During the design of the plate cavity system, the effect of various design 

parameters are identified with other design parameters fixed. 

The incident and reflected sound induce the dynamic motion of the plate, which is 

mainly determined by the mass and bending of the plate. The plate vibration in turn 

affects the impedance, sound reflection and ultimately the noise reduction performance 

of the plate cavity. Therefore, the variables analysis should be carried out to achieve 

the best noise reduction. These variables are basically divided into two categories: the 

first is geometrical variables such as the length, depth and location of the cavity or the 

plate; the second is related to structural properties, such as the mass and the bending of 

the plate. 

5.4.1 Cavity shape and location 

The backing cavity serves to prevent the noise transmission through the plate to the 

receivers. Meanwhile, it also introduces air stiffness to the system and modifies the 

resonances and vibration of the plate, especially at relatively low frequency. As claimed 

by Ref. [79] for rectangular duct, for given cavity volume, a shallower cavity with a 

longer plate has a wider TL spectrum. The noise reduction bandwidth increase while 

the peaks in amplitude fall. On the contrary, deeper and shorter cavity works like the 
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resonator and a better minimal TL can be obtained in a narrow frequency band. A 

primary study in this chapter has shown that broadband noise reduction can be obtained 

when setting the cavity length to 0.4 m, which is a little shorter than recommended by 

Ref.[79].  Another restriction of the cavity depth is the wall thickness of the barriers. 

Regarding the noise reduction performance and the space limitation of the barrier walls, 

the length and the depth of the cavity is 0.4 m and 0.1 m, respectively.  

5.4.2 Structural properties 

In this section, the structural properties of the plate on the noise abatement at the 

receiver is examined. The plate chosen was with light density and high tension. 

5.4.2.1 Plate mass 

The plate mass was first investigated by varying the mass ratio pm  while other 

parameters were fixed. For each mass ratio given, bending stiffness is consistent with 

the value of the PMI foam to search for the optimal noise reduction in the low frequency 

range.  

The mass effect of the plate on the noise control for parallel barriers is shown in Fig 

5.7 , in which the bending stiffness B equaling 0.045. The SPL after installing the plate 

silencer was compared with the rigid conditions. As shown in Fig 5.7 (a), an obvious 

noise reduction can be observed in the frequencies around the third SPL peak. As the 

mass increases, the spectra is shifted towards lower frequencies. For instance, the 

frequency of the first dip is 273 Hz for pm =1, as compared, the frequency for the first 

dip is 237 Hz as shown in Fig 5.7 (c). Therefore, the noise reduction at lower 

frequencies can be obtained as increasing the mass of the plate. However, increasing 

the plate mass cannot improve the overall noise abatement, because the noise reduction 
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at high frequencies may be reduced. Shown by Fig 5.7 (c), the original fourth SPL peak 

is shifted and lifted. The SPL around this peak is larger than the original values. For the 

lighter plate, as shown by Fig 5.7 (a), the noise reduction can be obtained in the vicinity 

of this sound peak. 

 

Fig 5.7: The SPL varies with the mass of the plate while the bending fixed at B=0.045: 

(a) mp=1; (b) mp=3 and (c) mp=5. 

As a summary, the mass effect is generally counterproductive. As the increase of 

plate mass, the noise reduction can be obtained at lower frequencies, while the sound 

response at higher frequencies is increased. Besides, for each mass ratio given, bending 

stiffness should be varied to search for the optimal noise reduction. The studies in this 

chapter mainly focus on exploring the acoustically coupling of the plate cavity and the 

parallel barriers. The performance optimization will be conducted in the future work. 
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5.4.2.2 Bending stiffness 

Fig 5.8 displays the SPL spectra varying with different bending stiffness. The mass 

ration of the plate is fixed at pm  = 3, and the cavity is 0.1 m in depth and 0.4 m in length. 

Several SPL dips can be observed when varying the bending stiffness of the plate. The 

dip frequencies shift towards higher values as the increase of the bending stiffness. 

Shown in Fig 5.8 (a) is the SPL comparison when the bending stiffness is a small value, 

Bp = 0.03. The noise reduction can be obtained for the frequencies in the vicinity of 289 

Hz. In the frequency range around 847 Hz, the low noise level from the rigid condition 

has been kept. When the bending stiffness increases, the dips are shifted to higher 

frequencies accordingly. However, when the bending stiffness is too high (Bp = 0.12) 

as shown in Fig 5.8 (d), the noise reduction can mainly be found at the original sound 

peaks. This is probably due to the high bending stiffness restricts the dynamic motion 

of the plate. Therefore, originally high sound oscillations between the rigid walls can 

induce the vibration of the plate and thereby the SPL peaks at these frequencies can be 

reduced obviously. The benefit of high bending can also be observed at higher 

frequencies, where the original low sound response is still reduced. In the previous work 

by Wang et al. [83], the bending stiffness should be high enough in order to achieve a 

broad stopband for duct noise control. However, in our work, the high bending stiffness 

does not always work well, especially at the high regime in the frequency range below 

1000 Hz. 

Combining Fig 5.7 and Fig 5.8, we can conclude that, with plate in light mass and 

high bending, the noise reduction can be achieved in the frequency range of 200 up to 

1000 Hz. The sound levels at the multiple peaks have been reduced and the original low 

noise levels from the rigid wall condition have been maintained.  
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Fig 5.8:  The SPL varies with the bending stiffness while the mass ratio fixed at m=3: 

(a) Bp=0.03; (b) Bp=0.045 ; (c) Bp=0.07 and (d) Bp=0.12. 

5.5 Experimental validation 

The experimental study was conducted in the anechoic chamber with the same setup 

as described in Chapter 4. The experimental diagram is shown in Fig 5.9. Details about 

the configuration of the parallel barriers and the measurement devices can be found in 

Chapter 4 and will be discussed here.   
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Fig 5.9: The sketch of the experimental setup. 

The aim of this experiment was to validate the effectiveness of the plate cavity on 

the noise abatement of the parallel barriers. Three same backing cavities made of 18.5-

mm-thick wood panel were installed on the left barrier which was near to the sound 

source, as indicated in Fig 5.10.  The cross-section of the cavities was 100 mm x 100 

mm and their lengths were consistent with the previous analysis.  

As discussed in the above section, the plate should be light density while high 

tension. Therefore, PMI foam was chosen to fabricate the rectangular plate. The density 

of this material is 32 kg/m3 and its Young’s modulus is 0.036 Gpa. Three pieces of PMI 

foam were installed flush with the backing cavity.  

The plate was a little larger than the opening of the backing cavity, measuring 

420mm* 104mm*2mm, which are length, width and thickness. Two edges of the plates 

along the length direction were clamped and their effective length was 400 mm. A very 

small clearance existed between the plate lateral edges and the backing cavity wall such 

that the lateral edges could freely vibrate to simulate the two-dimensional behavior. The 

following photo illustrates the parallel barriers after installation with these three plate 

cavity systems. 
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Fig 5.10: Image of the parallel barriers integrated with plate cavity. 

Fig 5.11 presents the experimental results measured from the experiment. Dashed 

line with asterisk represents the SPL for the parallel barriers with rigid walls and the 

dashed line with open circles for the parallel barriers integrated with three plate cavity 

devices. It can be regarded that the SPL are suppressed in the frequency range of interest 

except that around the 800 Hz, where the increase can be observed. 

 

Fig 5.11: SPL Comparison for the parallel barriers with rigid walls and plate cavity. 
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5.6 Numerical calculation by fast multipole BEM 

The FMBEM-FEM program was then used to predict the sound field of the parallel 

barriers integrated with the plate cavity system. The configurations used in the 

numerical calculations are the same as those in the experiment. The meshing and setup 

for the multipole expansions and truncations can be found in Chapter 4 and will not be 

discussed here. The constant triangle elements were used in the FMBEM and the 

number is 63402. The rectangular elements were used in the FEM and the number is 

1200. The solid line in Fig 5.11 represents the SPL numerically calculated for the 

parallel barriers with rigid walls and the dashed line for the parallel barriers integrated 

with three plate cavity devices. An obvious noise reduction can be observed in the 

frequency range of interest after the frequency corresponding to the first peak. The main 

feature of the SPL outside the parallel barriers is similar with that in two dimensions. 

The difference is that the opening in z-direction decreases the noise response at higher 

frequencies. When comparing the results measured from the experiment and calculated 

by the FMBEM-FEM, the agreement in trend can be observed. The main difference is 

around 328 Hz, where the sound peak in the numerical result while the dip in the 

measurement. The explanation to this might be the weak response of the loud speaker 

and will be explored in the future work. The following two figures show the SPL 

comparison at 390 Hz for the parallel barriers with rigid walls and three plate cavity 

devices. 
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Fig 5.12：SPL distribution for parallel barriers with rigid walls. 

 

Fig 5.13: SPL distribution of parallel barriers with three plate cavity devices. 

5.7 Summary 

The systematic analysis of the acoustics-structural interaction of the parallel barriers 

integrated with the plate cavity was carried out. To achieve this target, a theoretical 

model was first established accounting for the acoustic-structure coupling behavior 

between the open enclosure and the vibrating panel backed with cavity.  The influence 

of plate vibration induced by the sound source on the sound field inside and outside the 

parallel barriers was then analyzed. Moreover, the mass ratio and the bending stiffness 
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of the plate on the noise reduction of the parallel barriers was investigated. As the 

increase of the bending stiffness, the noise reduction in spectrum shifts to a higher 

frequency. As compared, the noise reduction shifts to a lower frequency as the increase 

of the plate mass. With a proper bending stiffness and mass ratio, broadband noise 

reduction can be obtained in the low frequency regime. Finally, the experimental 

validation in an anechoic chamber and numerical calculations by FMBEM-FEM in 

three dimensional were conducted. These results confirm the effectiveness of using the 

flexible panel to abate the noise of the parallel barriers. 
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CHAPTER 6     

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The research in this thesis has been to solve the sound radiation and abatement from 

the open structures. The study was motivated by the degradation of the acoustic 

performance for parallel barriers and the inherent difficulties in controlling low 

frequency environmental noise. The theoretical and numerical model for the parallel 

barriers have been established and the Helmholtz resonators and plate cavity devices 

have been applied to improve the noise reduction of the parallel barriers in the present 

work. 

Before developing the noise control device for the parallel barriers, the numerical 

method of FMBEM-FEM for the large scale acoustic-structural interaction in three 

dimensions has been established. In order to solve the non-unique solutions for exterior 

problem, the Burton-Miller formulation is used to modify the BEM. The fast multipole 

algorithm is then adopted to accelerate the computation of the BEM in large scale 

problem. The expansion and translation in the low-frequency regime is based on the 

partial wave expansion together with the rotation-coaxial translation method. In the 

high-frequency regime, the plane wave expansion and the interpolation/filtering 

method are used. These methods form the hybrid multipole expansion and translation 

in the wideband. To deal with the acoustic-structural interaction, the FEM is coupled to 

the FMBEM.  

The acoustical coupling of the baffled open cavity and the Helmholtz resonators was 

then explored in three dimensions. The noise reduction by applying Helmholtz 
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resonator was investigated theoretically and experimentally. A theoretical model based 

on modal analysis was established to reconstruct the sound field inside and outside the 

cavity. The accuracy of the proposed method was validated by comparing with the 

numerical results obtained through the BEM programs. Combining the dominant 

equations of the sound fields inside and outside of the cavity, the characteristic matrix 

equation was produced and the eigenvalues of the open space were determined. It was 

found that the eigenfrequencies were complex and shifted to higher frequencies 

compared with their closed-cavity ones. For the convenience of the analysis, the 

resonator array was simplified to single one resonator, named HR381. Due to the 

acoustical coupling between the open cavity and the resonator, two new resonances 

emerge on each side of the targeted eigenfrequency. After inserting the HR381, noise 

reductions inside and outside the cavity was found at the target frequency. However, 

the noise levels in the vicinity of the target frequency have been increased. In order to 

achieve the noise reduction within a frequency band, the location, internal resistance 

and relative volume ratio of HR381 were explored. The theoretical analysis indicated 

that, the resonator should with a moderate internal resistance and large volume should 

be near to the primary sound source. Finally, the measurement for the baffled open 

cavity without and with one single resonator was conducted in the anechoic chamber, 

which also demonstrated the accuracy of the proposed theoretical model and the 

effectiveness of using the Helmholtz resonator to reduce the noise radiation level from 

the opening of the cavity. The proposed model provides a useful tool to analysis the 

noise reduction of sound radiation from the aperture of the baffled open cavity. 

Afterwards, following the studies of the resonator on the baffled open cavity, the 

Helmholtz resonators were mounted on the barrier wall to reduce the noise level at the 

receivers far from the barrier. Due to the difficulty in expressing the Green’s function 
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for the unbaffled cavity analytically, a hybrid method was developed first to predict the 

sound field in and outside the parallel barrier. It was found that: (1) the degradations 

was caused by the resonances inside the bounded domain; (2) the sound peaks at the 

receiver inside the bounded domain were dominated by the corresponding closed-cavity 

modes and (3) the sound peaks at the receiver outside the bounded domain were 

dominated by the external modes. The resonator arrays were used to improve the noise 

reduction at these frequencies through suppressing the responses of their dominant 

modes. Comparison for the noise reduction by single HR281 at different location was 

carried out. When the single HR281 at (0, -0.9), a reduction in 17.14 dB was achieved 

at the target frequency. Besides, the noise level within the frequency range [198,381] 

Hz had also been reduced. However, the low noise response around 847 Hz was 

improved. The optimization location of the single HR281 should consider the balance 

between the noise reduction at the target peak and noise increase in the vicinity 

frequency. Two resonators with different natural frequencies, HR281 and HR468, were 

designed and mounted on the barriers. The deteriorations were suppressed and a 

broadband noise reduction was obtained in the frequency range from 200 to 1000 Hz. 

Finally, numerical calculations based on the developed FMBEM were carried out and 

compared with the experimental measurements.  Roughly speaking, the good 

agreement could be found and validates the accuracy of the FMBEM in modeling the 

noise reduction of the parallel barriers integration with Helmholtz resonators. 

As shown in Chapter 4, the resonator can reduce the noise level at the outside 

receivers. However, its drawback is that the reduction spectrum for single resonator is 

narrow. Array resonators combining several resonators at different natural frequencies 

can obtain a broadband noise abatement, while the compromise is that the acoustical 

coupling among the resonators and the parallel barriers deteriorates the noise reduction. 
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In Chapter 5, in order to broaden the noise reduction and maintain the effectiveness in 

low frequency range, the plate cavity device was adapted to the parallel barriers. The 

plate cavity system consists of the light plate with high stiffness and a rectangular 

backing cavity. A systematic analysis on the acoustics-structural interaction of the 

parallel barriers integrated with the plate cavity was carried out. The influence of plate 

vibration induced by the sound source on the sound field inside and outside the parallel 

barriers was then analyzed. The location and length of the plate cavity, the mass ratio 

and the bending stiffness of the plate on the noise reduction of the parallel barriers were 

investigated. As the increase of the plate cavity length, the noise reduction is shifted to 

lower frequencies. The noise abatement could only be found at the sound peaks as 

lifting the plate cavity location. When increasing the bending stiffness, the noise 

reduction in spectrum shifts to a higher frequency. As compared, the noise reduction 

shifts to a lower frequency as the increase of the plate mass. Finally, the experimental 

validation and numerical calculations by the proposed FMBEM-FEM were conducted 

for three-dimensional configuration. Good agreement can be found for the experimental 

measurements and the numerical calculations. These results confirm the effectiveness 

of using the flexible plate backed by rectangular cavity to improve the noise reduction 

of the parallel barriers. 

6.2 Recommendations for future study 

The studies in this thesis provide a theoretical, numerical and experimental analysis 

to improve the noise reduction of the parallel barriers by integration of Helmholtz 

resonators or plate cavity device. In order to enhance the understanding of the acoustical 

coupling of the open space as well as the noise control through structure-acoustics 

interaction, future work will be developed in the following areas. 

The present study shows that the sound peaks at the receivers are dominated by the 
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resonances inside the bounded domain. A direct and effective way to reduce the noise 

level is to suppress these resonances. It is believed that a thorough understanding of the 

formation mechanism of the SPL spectral peaks not only can stimulate scholars’ 

academic interest, but also can help to improve the resonator array or the plate cavity 

design as well as develop new applications. Although multi resonators are combined 

together and can obtain a broadband noise reduction enhancement in the low frequency 

range for parallel barriers. The parameters and optimization of the array resonators on 

the noise control still need further investigation. 

In the derivation of the modal coupling for open domains (baffled open cavity and 

parallel barriers), the damping is not included. The experimental validation has 

demonstrated the importance of the damping on the sound levels at the resonances. 

Therefore, the damping will be considered in the future work. 

A systematic study on the effect of multi plate cavity should be carried out. The 

acoustically rigid backing cavity used in this study is rectangular. It is necessary to 

identify the vibration of the plate backed by an irregular cavity. Also, it is of great help 

to fully understand the physics of the vibroacoustic on the sound radiation and 

abatement of open structures. Although attempts are made to explain the connection 

between the dip frequencies for the SPL spectrum and the plate vibration, there is not 

yet a clear explanation for the occurrence of the spectral peaks. Hence, further study 

should be conducted to investigate the formation mechanism of the spectral dips in the 

SPL spectrum. 
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APPENDIX-A 

Coefficients in Eq.(5.30) 
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APPENDIX-B 

The matrix in Eq.(5.38): 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 

1 1 ,1 1 1 ,2 1 1 ,

2 2 2 2 2 2

1 1 1

2 2 ,1 2 2 ,2 2 2 ,

2 2 2 2 2 2

2 2 2

,1 ,2 ,

2 2 2 2 2 2

0 0 0
, , ,

0 0 0
, , ,

0 0 0
, , ,

y x y x y x M

y x y x y x M

Ny Nx Ny Nx Ny Nx M

N N N

k k k k k k

k k k k k kj kc

k k k k k k

     

     



     

 
 

   
 
 
 

     
 
 
 
 

    

M   (B.1) 

 

     

     

     

1,1 1,2 1,

2 2 2 2 2 2

1 1 1

2,1 2,2 2,

2 2 2 2 2 2

2 2 2

,1 ,2 ,

2 2 2 2 2 2

, , ,

, , ,

, , ,

U

U

N N N U

N N N

h h h

k k k k k k

h h h

k k k k k kj kc

h h h

k k k k k k



 
 

   
 
 
 

     
 
 
 
 

    

H   (B.2) 

 

 

 
 

 

 

 

1

2 2

1

2

2 2

2

2 2

s

s

s

N s

N

x

k k

x

k kj kcq

x

k k









 
 

 
 
 
 

   
 
 
 
 

  

S   (B.3) 

 

     

     

     

1 ,1 1 2 ,1 2 ,1

1 ,2 1 2 ,2 2 ,2

1 , 1 2 , 2 ,

0 , 0 , , 0

0 , 0 , , 0

0 , 0 , , 0

x y x y Nx Ny

x y x y Nx Ny

x NX y x NX y Nx NX Ny

     

     

     

 
 
 

  
 
 
 

Φ   (B.4) 



 

 

169 

 

   ,

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

' '

, , ,

, , ,1

2

, , ,

m m
S S

M

M

NX NX NX M

Z x x dSdS

Z Z Z

Z Z Z
kc

Z Z Z

  



   

 
 
 
 
 
  

 

Z
  (B.5) 

 

1
4

2

, 0, , 0

0, , , 0
;

0, 0, ,

p

p

p

U

L

B L
L m jkc

jkc L

L







 
    

      
  
  

L   (B.6) 

    

,11 ,12 ,1

1 ,21 ,22 ,2

, ,
0

, 1 , 2 ,

, , ,

, , ,
;

, , ,

cav cav cav U

cav cav cav U

cav i i cav

cav U cav U cav UU

Z Z Z

Z Z Z
Z p d

Z Z Z

   

 
 
 

   
 
 
 

 cavZ   (B.7) 

    

,11 ,12 ,1

1 ,21 ,22 ,2

,
0

, 1 , 2 ,

, , ,

, , ,
;

, , ,

enl enl enl N

enl enl enl N

enl j j enl

enl U enl U enl UN

Z Z Z

Z Z Z
Z d

Z Z Z

    

 
 
  
 
 
  

 Z   (B.8) 
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APPENDIX-C 

The hypersingular integral arising in Eq.(2.17) can be written as 

 

 

 

   

       
   

1

2

2 2

3

,

,

1 3 1
4

ikr

F x y

G x y

n x n y

e r r
ikr n x n x ikr k r

r n x n y



 

   
            

  (C.1) 

When 0r  , the above equation can be changed to 

  
 

   
   

   

2

1

3

, 1
, 3

4

ikrG x y e r r
F x y n x n y

n x n y r n x n y r




      
       
       

  (C.2) 

 1 ,F x y is hyper singular and need special treat before using Gaussian integration. 

Firstly, the boundary can be treated as: 

  
0

limx xS S S S e S 


       (C.3) 

where xS  is the boundary including the point x , S  is the hemisphere whose center is 

point x  and radius is   and e   is the surface encircled by S  on the boundary, the 

details can be found in the following Fig C.1. 
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Fig C.1: The details of the singular point and the integral boundary surface. 

 

     

     

     

     

1

1

1

0

1

0

,

,

lim ,

lim ,

x

x

S

S S

S S

e

F x y p y dS y

F x y p y dS y

F x y p y dS y

F x y p y dS y





























  (C.4) 

On the other surface of the hemisphere S , 

 
 

 
   

1

i i

r

n y

r
n x n y

n x







 



  (C.5) 

Substituting Eq.(C.5) into the last part of Eq.(C.4), we can obtain: 

      
   

   1

00 0

1
lim , lim

2

i i

S

n x n y
F x y p y dS y p y dS y





   
     (C.6) 

Then the second integral at the right side of Eq.(C.4) is 

 
     

       

1

0

1

1 2
0

lim ,

lim ,

x

x

S S

i

i x y y y
S S

F x y p y dS y

p F J d d p y








     




 




  (C.7) 

Neglecting the pi and changing the local coordinate to the polar coordinate, the 

above equation can be written as 
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       

 
2

1

1

1 2
0

2

00

lim ,

lim ,

x

i

x y y y
S S

F J d d p y

W d d



 



     

   











 
  (C.8) 

in which, the  ,W    is defined as 

        1, , i

x y y yW F J          (C.9) 

The expression of     34i in x n y r   can be changed to the following form in the 

polar coordinate, 

  
   

   3
,

4

i i i

y y

n x n y
f J

r
    


    (C.10) 

When   is very small,  ,f    can be expanded based on its corresponding 

Laurent series in the folowing form, 

  
   

 2 1

2
, 1

f f
f

 
  

 

 
     (C.11) 

Therefore, Eq.(C.8) can be written as 

  
   

   

2

1

2 2

1 1

0 1 2

2
2 1

200

2 2
1 2

20 00 0

lim ,

lim lim

I I I

f f
W d d

f f
d d d d

 



   

  

 
   

 

 
   

 

 

 



 

 

 

    
     

     

         
       

         

 

   

  (C.12) 

The three integral parts named 0I  , 1I  and 2I  , respectively.  

0I  can be calculated by the Gaussion method directly because the singularity has 

been removed from the integral. 

  
   22

2 1

0 20 0
,

f f
I W d d

   
   

 

 
  

    
   

    (C.13) 
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Based on the Tylor series, we can obtain, 

      2 3            (C.14) 

Sustituting Eq.(C.14) into 1I  and integrating over   results in 

  
 

 
 

2 2

1 1 1
0 00

ˆ
ln lim lnI f d f d

 



 
    

 
  



 
        

    (C.15) 

According to the Lipschitz condition in the sense of Cauchy principal value, the 

integral at the last term has to be identically zero, i.e.,  
2

1
0

0f d


    . Therefore, 

the expression for 1I  becomes, 

  
 

 

2

1 1
0

ˆ
lnI f d

  
 

 
     (C.16) 

Similarly, 2I  can be changed to 

  
 

   

 

 

2 2
2

2 2 20 00

1 1
lim

ˆ

f
I f d d

 



  
  

      



 


   
     

   
    (C.17) 

Combining the expressions of 0I  , 1I  and 2I  together, we can obtain, 

 

 
   

 
 

 

 
 

   

 

 

22 2
2 1

120 0 0

2 2
2

2 20 00

ˆ
, ln

1 1
lim

ˆ

f f
W d d f d

f
f d d

  

 



   
     

   

  
  

      

 








  
    

   

   
     

   

  

 

 (C.18) 

Therefore, the hypersingular integral of Eq.(C.1) can then be evaluated in the 

Hadamard finite part sense as 
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     

     

 
   

 
 

 

 
 

   

2

1

1

2
2 1

20 0

2

1
0

2

2 20

,

,

,

ˆ
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1

ˆ

S

S S

i

i

i

F x y p y dS y

F x y p y dS y

f f
p W d d

p f d

p f d



 





 
   

 

 
 

 

 
 

   



 







  
    

   



 
  

 





 





  (C.19) 

The integrals at the right hand side of the above equation are in polar coordinates 

and can be calculated by the standard Gaussian method. While the functions about 

 1f   ,  2f   ,     and     should be specified firstly. In polar coordinate 

defined by  ,   , the following relationship can be obtained, 

 

   

       
 

1 2

2 22 2 2
2 3

2 2

1 1 2 2

cos sin

cos cos sin sin

2 2 2

i i
i i

i i i

x x
y x

x x x

   

     

  
 

   
  

   

 

  

  
   

   

   
    

     

 

 (C.20) 

Or can be written as 

 

     

     
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1 2
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cos sin

cos cos sin sin

2 2 2
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i
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i
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A

x x x
B

   

     

     

  
 

   


   

 

  

   

 
 

 

  
  

   

  (C.21) 

The expansion of r y    at any order based on the Tylor expansion is 



 

 

175 

  
   

 
 2

2
1

k kn n n n
A B

r A n
A

 
    




 

   
 

  (C.22) 

Then we can get the expansion of 3r . The  A   and  B   in the above equation 

are defined as, 

 
       

       

1/2
2 2 2

1 2 3
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B B B B

   

   

    

    

  (C.23) 

Using the Eq. in the region near S  and let 1n   and r  , we can get the Tylor 

expansion of   as following:  

  
   

 
 2 3k kA B

A
A

 
     


     (C.24) 

Eq. (C.21) can be used to get the results of  iA   and  iB  , then     and     

can be obtained through the above equation. Then the functions and can be calculated. 

From the Eq.(C.22), 3r   can be changed as, 
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Then the shape function 
 n 

  is expanded in the region near 
S  as 
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  (C.26) 

Setting      i iJ n J    then the Jacbian matrix can be expanded as 
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  (C.27) 

After this, the expansion forms of 3r  ,  n   and      i in n J    have been 

obtained. Substituting these expressions into Eq.(C.10), the  1f   and  2f   are 

given by 
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  (C.28) 

Till now, the expressions about  1f   ,  2f  ,     and     have been 

derived. The Gaussian integration can be used to calculate the integral including the 

hyper-singular part and get an exact result. 
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