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Abstract

This dissertation pioneers the “phenomenological” or “behavioral” approach to model

the mutual-impedance matrix between two skewed crossed dipoles. This 2× 2 mu-

tual impedance matrix has the following four real-value scalars: the magnitude

and the phase of the cross-impedance, the magnitude and the phase of the self-

impedance. Simple expressions of the electromagnetic mutual impedance, in simple

closed forms are introduced, veering away from lengthy and complicated expres-

sions. The numerical values of the mutual and self-impedance are obtained from the

computer electomagnetics simulation software, EMCoS VLab. These VLab data

are then least-squares fit to various candidate functions of few degrees-of-freedom,

to arrive at a good “phenomenological” model. The phenomenological models are

expressed in terms of the dipoles’ skew angle, separation, and common length. The

three significant contributions of this dissertation are: (1) obtain the phenomeno-

logical models that best represent the VLab data, (2) interpret the models in terms

of electromagnetic considerations and (3) illustrate the usefulness of the obtained

phenomenological models in estimating an incident source’s direction-of-arrival.
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Chapter 1

Introduction

Introduction

This chapter introduces the motivations and the objectives of the research. While

mutual coupling among antennas within an array is oftentimes overlooked, an at-

tempt is made here to model this phenomenon for the special case of a pair of skewed

crossed dipoles, in simple tractable closed forms.

1.1 Motivations

Cross dipoles have been popularly used in many applications such as in beamforming

[81, 99], direction-of-arrival and polarization estimation [28, 86, 115, 118, 123, 126].

The crossed dipoles’ differently polarized elements can discriminate incident sources

based on their different polarizations, aside from their different frequency spectra

and their different directions-of-arrival. When two dipoles are mounted at right

angles with each other, electromagnetic coupling would not exist between them.

One unique Cartesian element of the incident electric-field vector is measured by

each dipole. The determination of the polarization and azimuth direction-of-arrival

of the electromagnetic wavefront can be achieved by only one pair of crossed dipoles.

For the relevant literature, please refer to [103].

In a real-world scenario, the orthogonality of crossed dipoles may not always be

actualized or maintained, so that mutual coupling results between the two dipoles.
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Please refer to Figure 1.1, which defines the skew angle ϕ (i.e. the angular deviation

from perpendicularity) between two identical dipoles - one on the z-axis and the

other on the y′-z′ plane.

Figure 1.1: The spatial geometry between two crossed dipoles of non-orthogonal orientation.
Here, the inter-dipole separation ∆ is greatly exaggerated for visual clarity.

For a pair of skewed dipoles, there had been various studies on the mutual

impedance, but they all introduced very highly complicated mathematical expres-

sions for the mutual impedance. Some of them introduced very long and complicated

equations as in [4], complex unsolved exponential integral equations [1, 5, 8, 12, 104,

113], and nested summations [7, 32, 105, 113]. While [5, 7, 8, 11, 47, 51, 95, 104, 105]

opted to only plotting the mutual impedance.

This dissertation introduces a new and different approach – “phenomenolog-

ical” or “behavioral” modeling in mutual coupling. Phenomenological modeling,

being new on mutual coupling, has been used in wireless propagation fading and

in nonlinear amplifier’s input/output relationship. These phenomenological models

on mutual impedance would feature simple and tractable expressions as a result of

least squares data fitting. These expressions involve three independent variables:

the dipoles’ skew angle (ϕ), the wavelength-normalized inter-dipole separation (∆
λ ),

and the wavelength-normalized dipole length (Lλ ).
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1.2 Objectives

The main objective of this dissertation is to obtain phenomenological models of

mutual impedance for skewed crossed dipoles.

The investigation’s specific steps are:

1. to use computer electromagnetics simulation software (i.e. EMCoS VLab) to

calculate the mutual impedance between skewed crossed dipoles.

2. to propose models with unknown coefficients to model the VLab simulation

data of the mutual impedance matrix.

3. to least-squares fit the VLab simulation data to the above simple phenomeno-

logical models with the goal of obtaining the optimized value of the unknown

coefficients.

4. to select the best model fit among the proposed functions using coefficient of

determination, R2, as goodness-of-fit criterion.

5. to interpret the obtained phenomenological models through electromagnetic

considerations.

6. to use the phenomenological models in estimating an incident emitter’s direction-

of-arrival

Summary

The adoption of phenomenological modeling to model the mutual coupling or

any other phenomena have not been explored in the field of antenna array

signal processing. Hence, this concept is unprecedented and adds to the body

of knowledge in the field of antenna array signal processing. As the motivations

and the objectives of this dissertation have been clearly established, it is time

to discuss the key concepts and main theories that will aid in satisfying the

research objectives. This will be done in the next chapter.
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Chapter 2

Theoretical Framework

Introduction

This chapter discusses the concept of “phenomenological modeling” and basic

theories of a dipole antenna and crossed dipoles. The concepts of mutual coupling

and the “method of moments” are also briefly discussed. The last section of the

chapter discusses direction-of-arrival estimation, a critical component of this disser-

tation as it validates if the modeling has been successful.

2.1 Phenomenological Modeling

Scientific modeling like “phenomenological” or “behavioral” approach involves em-

pirical relationship among phenomena. Phenomenological modeling merely describes

the occurrence which is consistent with fundamental theories but not really derived

from first principles. Some phenomenological models even goes beyond and con-

tradict fundamental theories. The mathematical tractability of phenomenological

models is its advantage over theories.

Phenomenological modeling has found applications in the wireless communica-

tion, fiber optics, and amplifiers. In the area of wireless communication, [130] used

phenomenological modeling to model the in vivo wireless channel. The data were

obtained using the ANSYS High Frequency Electromagnetic Solvers (HFSS) simu-

lation software. In fiber optics, [36] carried out phenomenological modeling of the
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output characteristics of the integrated multifrequency laser (MFL), in which re-

sulting model has found usage in performance monitoring, device evaluation and

improved transmitter design.

2.2 Wire Antennas

Wire antennas (like dipoles and loops) are simple to construct, hence widely used.

In this research, it is assumed that the cross-sectional radius of the wire is much

smaller than the wavelength of the antenna. The reason for this assumption is to

have only one component for the current. The assumed wire’s current distribution

is the major parameter to facilitate computation of the electric and magnetic fields

along the antenna.

The most popular type of wire antennas, which is the dipole antenna, is discussed

in detail on the succeeding subsections below.

2.2.1 Dipole Antenna

A dipole (a.k.a. doublet) is a conductive rod, split into two equal halves by a “feeding

gap” where electric current enters the rod. Figure 2.1 illustrates the geometry of a

center-fed dipole with length L.

Figure 2.1: The geometry of a dipole with length L. The feeding gap is at the center.

One of the applications of dipole antenna is in radio direction finding which

takes advantage of its “figure 8” radiation pattern that introduces maximum gain

perpendicular to the dipole and zero gain along its axis (see Figure 2.2).

The electric and magnetic far-field radiation of a dipole with finite length, L, is
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Figure 2.2: The “figure 8” radiation pattern of a horizontal dipole’s axis. Maximum
radiation is perpendicular to the dipole’s axis, while “null” radiation is along its axis.

given by the following equations: [34]

Eθ ' jη
I0e
−jβr

2πr

cos
(
βL
2 cos θ

)
− cos

(
βL
2

)
sin θ

 (2.1)

Hφ =
Eθ
η
' j

I0e
−jβr

2πr

cos
(
βL
2 cos θ

)
− cos

(
βL
2

)
sin θ

 , (2.2)

where η denotes the intrinsic impedance (120π or 377 ohms in free-space), I0 denotes

the maximum current flowing into the antenna, r is the far-field distance, β
(
= 2π

λ

)
denotes the wave number, and θ denotes the inclination angle.

A “short dipole” has length that is less than half-wavelength. This minimum

length makes the dipole resonant at the operating frequency. The “short dipole” is

used in cases where the full half-wave dipole would require considerable length and

becomes unwieldy.

Half-wave dipole (i.e. dipole with L = λ/2) is widely used in many applications,

such as receiving antenna in TV and FM broadcasting and base station antenna in

cellular telephony, because of its omnidirectional radiation pattern in the H-plane.
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At L = λ
2 , Equations 2.1 and 2.2 become

Eθ ' jη
I0e
−jβr

2πr

[
cos
(
π
2 cos θ

)
sin θ

]
(2.3)

Hφ =
Eθ
η
' j

I0e
−jβr

2πr

[
cos
(
π
2 cos θ

)
sin θ

]
. (2.4)

Figure 2.3 shows the current and voltage distributions of a center-fed half-wave

dipole. The current vanishes at the end points (i.e. maximum at the center and

minimum at both ends), while the voltage vanishes at the center and maximum at

both ends.

Figure 2.3: The voltage and current distributions along a half-wave dipole. Current is
maximum at the center and minimum at both ends.

Common applications of a dipole as a single antenna are: television indoor an-

tenna (i.e. “rabbit ears” antenna) , FM broadcast receiving antennas, HF shortwave

communications (i.e. in the form of a horizontal dipole), and a mast radiator for

medium-frequency and low-frequency transmissions.

Multiple dipoles can form different types of antenna array. The collinear antenna

array [3] which is composed of stack vertical dipoles end-to-end that is fed in phase to

form an omnidirectional pattern used in very high frequency (VHF) and ultra high

frequency (UHF) bands. Broadside array, end-fire array and parasitic array [73] are

other remarkable dipole antenna arrays used as radiating systems.
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2.2.2 Crossed Dipoles

Known at first to be a “turnstile” antenna, invented by Brown [2] in the early 1930s,

crossed dipoles are composed of two dipoles orthogonally aligned to each other (See

Fig. 2.4).

Figure 2.4: Crossed dipoles with common length L, elevated on the x′ − y′ plane.

A crossed-dipole antenna can be configured to provide omnidirectional [89, 139]

or isotropic radiation with dual [85] or circular polarization [117,124], by varying its

feeding structure. It can also be used for single-band, multiband [128] and broadband

operations [91] when combined with additional antenna elements.

The crossed dipoles, which are orthogonal and co-centered, introduce zero mutual

coupling as there is no radial component of the near electric field from the dipole in

the normal plane through the dipole center [92].

Crossed dipoles are nowadays a popular choice for applications such as TV and

FM broadcasting, mobile and satellite communications, RFID, and wireless LANs

[127].

Crossed dipoles will be investigated in this dissertation at various values of the

skew angles, of the separation between the two dipoles, and of the lengths of the

dipoles.
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2.3 Mutual Coupling

Given the many advantages of using antenna arrays, one drawback is the presence of

mutual coupling. Mutual coupling is the electromagnetic interaction among antenna

elements in an antenna array.

The current flowing into one antenna element creates an electromagnetic field

(EM) field. If nearby antenna element/s is/are exposed to EM field from the excited

antenna element, then current is induced to the exposed elements thereby causing

mutual coupling.

2.3.1 Mutual Coupling Effect

According to IEEE Standard Definitions and Terms for Antennas, mutual

coupling effect is defined as follows: “2.244. mutual coupling effect (A) (on the radi-

ation pattern of an array antenna) change in antenna pattern from the case when a

particular feeding structure is attached to the array and mutual impedances among

elements are ignored in deducing the excitation to the case when the same feeding

structure is attached to the array and mutual impedances among elements are in-

cluded in deducing the excitation. (B) (on input impedance of an array element).

For array antennas, the change in input impedance of an array element from the

case when all other elements are present but open-circuited to the case when all

other elements are present and excited.” [24]

2.3.2 Mutual Coupling in Antenna Arrays

The explanation for the transmit and receive modes of the antennas arrays are taken

from [34].

Transmit Mode

Antenna n is excited, generates energy traveling toward the antenna (0) and

radiates the EM field (1) into space. Antenna m is exposed to the radiated field (2)

and reradiates the intercepted field (3) while allowing some of the energy towards

the source (4) and the remaining energy sent toward antenna n (5). This continues
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indefinitely. The same action applies if antenna m is powered while antenna n is

the parasitic element. If antennas m and n are both excited at the same time, the

total field is the vector sum of the radiated and reradiated fields by and from each

antenna.

Figure 2.5: The mutual coupling in transmit mode [34]. Here, antenna n is excited and
antenna m is the induced antenna.

Receive Mode

The incident wave (0) first directly arrives at antenna m where current is induced.

There will be reradiation into space (2), and part will be intercepted by antenna n

(3) where it will be vectorially summed together with the incident wave (0), and

part also travels toward the feed point (1). A reflected wave (4) can also occur.

Figure 2.6: The mutual coupling in the receive mode [34]. Antenna m first receives the
incident wave.
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2.4 Mutual Impedance

In this dissertation, we characterize mutual coupling through mutual impedance.

Mutual impedance, according to IEEE Standard Definitions and Terms for Antennas

is, “any two terminal pairs in a multielement array antenna is equal to the open-

circuit voltage produced at the first terminal pair divided by the current supplied

to the second when all other terminal pairs are open-circuited [24].”

Consider an K-element array represented as K-port network. The voltage across

each element is given by, [74]

V1 = Z1,1I1 + Z1,2I2 + . . .+ Z1,KIK

V2 = Z2,1I1 + Z2,2I2 + . . .+ Z2,KIK
...

VK = ZK,1I1 + ZK,2I2 + . . .+ ZK,KIK


. (2.5)

In denotes the current the kth element, k = 1, 2, ...,K.

Zk,k =
Vk
Ik
, (2.6)

denotes the kth element’s self-impedance when the rest of the elements are in open-

circuit.

Zk,p =
Vp
Ik
, (2.7)

denotes mutual impedance between two elements p and k. [74]

The new input impedance or the driving point impedance (a.k.a. active impedance)

of each element in the array caused by mutual coupling is [74]

Zkd =
Vk
Ik

= Z1,1
I1

Ik
+ Z1,2

I2

Ik
+ . . .+ Z1,K

IK
Ik
. (2.8)
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Consider K=2 and a two-port network system in Figure 2.7. The voltages across

the two elements are: [34]

V1 = Z1,1I1 + Z1,2I2

V2 = Z2,1I1 + Z2,2I2

 , (2.9)

where

Z1,1 =
V1

I1

∣∣∣∣
I2=0

. (2.10)

Z1,1 denotes the input impedance at port 1(port 2, open circuit). When I1 is set to

Figure 2.7: Two-port network system. The mutual impedance between ports 1 and 2 are
derived here.

zero, Z1,2, is

Z1,2 =
V1

I2

∣∣∣∣
I1=0

. (2.11)

Z1,2 is the mutual impedance at port 1 when it is open-circuited and port 2 is excited.

Likewise, when I2 is set to zero, Z2,1, is

Z2,1 =
V2

I1

∣∣∣∣
I2=0

. (2.12)

Z2,1 is the mutual impedance at port 2 when it is open-circuited and port 1 is excited.

And,

Z2,2 =
V2

I2

∣∣∣∣
I1=0

. (2.13)

Z2,2 denotes the input impedance at port 2 (port 1, open-circuit). Note that for

a network that is reciprocal, Z1,2 = Z2,1. When each of the antennas 1 and 2

is radiating in an unbounded medium, the input impedances are Z1,1 and Z2,2,
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respectively. But, the presence of an obstacle or another element in close proximity

with the other would alter the input impedance. This alteration would depend on

the type of antenna, the relative positioning of the elements and the feed type to

excite the elements. With this consideration, (2.9) can be rewritten as, [34]

Z1d = V1
I1

= Z1,1 + Z1,2

(
I2
I1

)
Z2d = V2

I2
= Z2,2 + Z2,1

(
I1
I2

)
 . (2.14)

Z1d and Z2d denote the driving point impedances of antennas 1 and 2, respectively.

Therefore, in matching antennas, it is the driving point impedance that should be

matched.

Dealing with the effect of mutual coupling would improve the performance of an

antenna. However, we would also have to deal with the complexity of the underlying

computational analysis associated with it.

2.5 Method of Moments

The “Method of Moments” (MoM), for the last 50 years, has been providing solutions

to large number of electromagnetic problems. Harrington’s book [6] is the first

to explore MoM as numerical solution to electromagnetic field problems. Since

then, MoM has evolved to be the most popular computational technique in many

researches on antennas and electromagnetics. [9, 10, 35, 40, 42, 50, 55, 132] are some

MoM based studies particularly on dipoles and loops .

As part of the field of “computational electromagnetics” (CEM), which involves

the digital computer in solving electromagnetic problems, MoM is most applicable

in solving integral-equation-based frequency-domain problems [93].

There are two most popular techniques used in the computation of self and mu-

tual impedances, which are integral form based induced currents and voltages at

the antenna terminals, namely, the induced electromotive (EMF) method and inte-

gral equation-method of method (IE-MoM) . The IE-MoM is preferred over induced

EMF because induced EMF does not accurately take into consideration the wire’s
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radius and the feeding gap. Moreover, IE-MoM is the more appropriate solution to

dipoles with larger radii and complex antenna arrays including arrays with skewed

arrangements [111]. Hence, the MoM is the right computational technique to be

used in obtaining the numerical values of the mutual impedance on the antenna

array investigated on this dissertation.

2.6 Computer Simulation Software

Computer simulation tools are needed in dealing with very long mathematical formu-

lations and complex programming. Modeling, such as phenomenological modeling,

has been a very successful area in research because of the advent of supercomputers

which can provide good numerical data suitable for regression analysis.

The EMCoS “VLab” is an antenna simulation software for antenna parameter

calculations. For the calculation of mutual impedance values, the “VLab” uses

the MOM technique through their program core module called “TriD”. “TriD” is

capable of solving electromagnetic problems for the complicated metal and dielectric

structures either in free space or over infinite ground plane. It is based on Method of

Moments scheme by Poggio-Miller-Chang-Harrington-Wu (PMCHW) coupled with

Rao-Wilton-Glisson’s (RWG) triangle and improved wire and wire to surface basis

functions.

Unlike any other simulation tools, “VLab” features full-functional MOM based

3D EM solver with CAD interface. You can control and set your parameters through

its graphical user interface (GUI) in the Geometry, Model and Mesh modes.

2.7 Direction-of-Arrival Estimation

Direction-of-arrival (DOA) estimation has been a popular and extensively studied

area in array signal processing. Many algorithms have been developed in order to

accurately localize the sources of incident signals. Subspace-based algorithms such

as MUltiple SIgnal Classification (MUSIC) [16] is often an appropriate methods

if the estimation requires high-resolution multiple uncorrelated narrowband signal
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sources.

The performance of the estimation is usually gauged by the root-mean-square

error (RMSE) versus the signal-to-noise ratio (SNR). Obviously, the RMSE should

be decreasing with increasing SNR.

Summary

The significant necessary concepts and essential components of this dissertation

have already been discussed veering away from presenting too much mathematical

equations.

The mutual impedance has been chosen to characterize mutual coupling due to

the availability of the computer electromagnetics simulation software, EMCoS VLab,

in which its core calculation program is based on method of moments.
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Chapter 3

Review of Related Literature

Introduction

As mentioned in Section 1, one of the objectives of this dissertation is to obtain

simple and low-dimensional phenomenological models unlike previous papers which

presented very complicated equations for the mutual impedance of different configu-

rations for the pair of dipoles. The purpose of this chapter is to show the complexity

of the derived mathematical equations from different journals and conference papers

already published.

3.1 Related studies with derived expressions involving

unsolved integral equations.

Baker and Lagrone [5] introduced equations for the computation of complex mutual

impedance between thin linear antennas shown in Figure 3.1. The primary antenna

with length L1 is drawn along the z-axis, while the secondary antenna with length

L2 is drawn on the y′ − z′ and displaced in the y and z directions by distances of

y0 and z0 wavelengths, respectively. The polar angle θ and azimuthal angle φ of the

secondary antenna correspond to the spherical coordinate system.
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Figure 3.1: The six independent variables L1, L2, y0, z0, θ and φ [5].

Figure 3.2: Relationships among α, α1, α2, ρ, r, r1, r2 and s [5].

Given values of L1, L2, y0, z0, θ, φ and s, the following trigonometric relations

exist:

sz = s(cos θ)

sy = s(sin θ)(sinφ)

sx = s(sin θ)(cosφ)

ρ =
√
s2
x + (y0 + sy)2

r =
√
ρ2 + (z0 + sz)2

r1 =

√
ρ2 +

(
z0 + sz +

L1

2

)2

r2 =

√
ρ2 +

(
z0 + sz −

L1

2

)2
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Figure 3.3: Cartesian components of the vector s̄ [5].

For the sake of brevity, the derived mathematical expression for the real (i.e. R21)

and imaginary (i.e. X21) parts of the mutual impedance are presented in Equations

(3.1) and (3.2).
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r1
− sin(2πr2)

r2

)
sz

]}{
sin
[
2π
(
L2
2 − |s|

)]
s

}
ds,

(3.1)

X21 = −30

∫ s=
L2
2

s=
−L2

2

{[
1

ρ2

(
[cos(2πr1)]

[
sz + z0 + L1

2

r1

]
+ [cos(2πr2)]

[
sz + z0 − L1

2

r2

]

− 2[cos(πL1)][cos(2πr)]

[
sz + z0

r1

])
(s2
x + y0s

2
y + s2

y)

]

+

[(
2

(cos(2πr))(cos(2πL1))

r
− cos(2πr1)

r1
− cos(2πr2)

r2

)
sz

]}{
sin
[
2π
(
L2
2 − |s|

)]
s

}
ds.

(3.2)

Equations (3.1) and (3.2) contain unsolved integrals. Due to the complex nature

of these two equations which are very difficult to solve analytically, the authors

resorted to using digital computer to solve the equations involving integrals. The

written code involves over 1000 two-address instructions which was very tedious.
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Han and Myung [104] studied coplanar-skew dipoles using effective length vec-

tors. The analysis of the mutual impedance involves getting the product of the

radiated E-fields from the transmitting dipole and the receiving dipole’s current

distribution. The mutual impedance is then computed by taking the sum of two

integrals, one along the z′-axis and another along the y′-axis. From Figure 3.4,

l2ez = l2cos(α)

l2ey = −l2cos(α) (3.3)

where α denotes the slant angle and l2 denotes receiving dipole’s length.

Figure 3.4: Geometry of coplanar-skew dipoles [104]. The effective length vectors method
is used here.
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For the sake of succintness, the derived formula for the mutual impedance is,

Z21 =
−30

sin
(
kl1
2

)
sin
(
kl2ez

2

)
∫ h+

l2ez
2

h− l2ez
2

sin

[
k

(
−|z − h|+ l2ez

2

)]{
−je−jkR1z

R1z
+
−je−jkR2z

R2z
+ j2 cos

(
kl2ez

2

)
e−jkrz

rz

}
dz

+
−30

sin
(
kl1
2

)
sin
(
kl2ey

2

)
∫ d+

l2ey
2

d−
l2ey

2

sin

[
k

(
−|y − d|+ l2ey

2

)]{
−je−jkR1z

R1y
+
−je−jkR2y

R2y
− j2h cos

(
kl2ey

2

)
e−jkry

ry

}
dy

(3.4)

where k denotes the wave number, and

rz =
√
d2 + z2

R1z =

√
d2 +

(
z − l1

2

)2

R2z =

√
d2 +

(
z +

l1
2

)2

(3.5)

for z-axis.

ry =
√
h2 + y2

R1y =

√
h2 +

(
y − l1

2

)2

R2y =

√
h2 +

(
y +

l1
2

)2

(3.6)

for y-axis.

The formulas obtained were verified to be in agreement with the simulations

results from high frequency structural simulator (HFSS), which is finite element

method solver for electromagnetic structures. However, this paper contains complex

unsolved trigonometric and exponential integral functions which is still difficult to

decipher.
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3.2 Related studies with derived expressions involving

nested summations.

Richmond and Geary [7] studied coplanar-skew dipoles (see Figure 3.5) using induced

EMF method as a solution to obtain the mutual impedance. The goal of this paper

was to derive a closed-form expression for the mutual impedance between coplanar-

skew dipoles.

Figure 3.5: The geometry of coplanar-skew dipoles [7].

Figure 3.6: The linear dipole in cylindrical coordinate system [7].
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Avoiding the rigorous derivation part, the derived closed-form formula for the

mutual impedance in Figure 3.5 is

Z1,2 = −15

3∑
m=1

3∑
n=1

CmDn

1∑
p=−1

1∑
q=−1

pq exp[jk(pzm + qrn)] E(kRmn + kpzm + kqrn)

(3.7)

where

k = 2π
λ ,

p, q = −1, 1,

Rmn denotes the distance from point zm on dipole 1 to point rm on dipole 2,

Rmn = (z2
m + r2

n − 2zmrn cosψ)
1
2 ,

E(x) = Ci(|x|)− jSi(x), where

Ci(|x|) = −
∫∞
x cos(x)dx/x, Si(|x|) =

∫∞
x sin(x)dx/x,

C1 = 1
sin(kc1)

C2 = − sin(kc)
sin(kc1) sin(kc2)

C3 = 1
sin(kd1)

D1 = 1
sin(kd1)

D2 = − sin(kd)
sin(kd1) sin(kd2)

D3 = 1
sin(kd1) .

Other variables are also defined as follows:

ψ denotes the skew angle between the dipoles,

c, c1 and c2 are lengths referring to Dipole 1,

d, d1 and d2 are lengths referring to Dipole 2,

R1, R2 and R3 are the distances defined in Figure 3.6,

z1 and z3 denote Dipole 1’s endpoints, and z2, the terminals shown in

Figure 3.5,

r1 and r3 denote Dipole 2’s endpoints, and r2, the terminals shown in

Figure 3.5.
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The calculation of mutual impedance lies along the r-direction from the origin.

The derivation process involved integration that needs an additional axis for the

radial distances from the transmitting dipole and variable tranformations are also

required. The derived closed-form expression in (3.7) involved complicated equations

involving nested summations and exponential integration. It is only applicable to

closedly spaced dipoles.

Schmidt [32] introduced an expression for mutual impedance for nonplanar skew

dipoles. The type of configuration investigated is shown in Figure 3.8.

Figure 3.7: The monopole and its coordinate system .

Figure 3.8: The two monopoles on z and t axes, parallel to the xz plane with distance d
from each other and with skew angle ψ.
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The derived mutual impedance is,

Z =

√
µε

4πε

{
exp(−γR22)

γR22
+

1

4 sinh(γd1) sinh(γd2)

∑
st,sz ,sb=±1

stsz exp[γ(stt1 + szz1)]

∑
i=1,2

(−1)iE[γ(Ri + stt+ szzi + jsbβ)]

}
(3.8)

where

β = d
cos(ψ) + szst

sin(ψ)
,

γ = jω
√
µε,

d1 = z2 − z1,

d2 = t2 − t1,

Here, st, sz, sb = ±1, µ and ε denote permeability and permittivity, respectively.

R22 was not defined in the article.

The derived expression involves exponential integral, E(.) and nested summa-

tions which make it more complicated.

3.3 Related study with derived expressions involving

unsolved integral equations and nested summations.

Han, Song, Oh and Myung [113] studied nonplanar slanted dipoles using the effective

length vector. The final derived equation in (3.9) contains the characteristics for two

slanted dipoles that are arbitrarily located along the y − z and y′ − z′ planes.
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Figure 3.9: Geometry of nonplanar slanted dipoles [113].

Without the lengthy derivations,

Z21 = Z21z + Z21y

=
−30

sin
(
kl1
2

)
sin
(
kl2ez

2

) ∫ h− l2ez
2

h+
l2ez

2

sin

[
k

(
l2ez
2
− |z − h|

)]
{
−je−jkR1(z)

R1(z)
+
−je−jkR2(z)

R2(z)
+ j2 cos

(
kl1
2

)
−je−jkr(z)

r(z)

}
dz

+
−30

sin
(
kl1
2

)
sin
(
kl2ey

2

) ∫ d−
l2ey

2

d+
l2ey

2

sin

[
k

(
l2ey
2
− |y − d|

)]
{(

h− l1
2

)
je−jkR1(y)

R1(y)
+

(
h+

l1
2

)
−je−jkR2(y)

R2(y)
+ j2h cos

(
kl1
2

)
−je−jkr(y)

r(y)

}
dy

y

(3.9)

where

r(z) =
√
d2 + z2, r(y) =

√
h2 + y2

R1(z) =
√
d2 + (z − l1/2)2, R1(z) =

√
(h− l1/2)2 + y2

R2(z) =
√
d2 + (z + l1/2)2, R2(y) =

√
(h+ l1/2)2 + y2.

In order to facilitate mathematical integration, the Z21z and Z21y terms in (3.9)

40



which involve integration can be transformed into nested summations resulting to

Equations (3.10) and (3.11), respectively. Although, the sine and cosine integrals

are still inside the summation symbols.

Z21z =
−30

sin
(
kl1
2

)
sin
(
kl2ez

2

)
[{

1 + 2 cos

(
kl1
2

)}
δt − 1

]
·

1

2

1∑
t=−1

1∑
n=−1

1∑
s=0

[
cos(kqn,t)

{
ci
(
k
√
d2 + q2

n,t + (−1)skqn,t

)
− ci

(
k
√
d2 + q2

0,t + (−1)skq0,t

)}
+(−1)s sin(kqn,t)

{
si
(
k
√
d2 + q2

n,t + (−1)skqn,t

)
− si

(
k
√
d2 + q2

0,t + (−1)skq0,t

)}]
[{

1 + 2 cos

(
kl1
2

)}
δt − 1

]
·

−j 1

2

1∑
t=−1

1∑
n=−1

1∑
s=0

[
cos(kqn,t)

{
si
(
k
√
d2 + q2

n,t + (−1)skqn,t

)
− si

(
k
√
d2 + q2

0,t + (−1)skq0,t

)}
−(−1)s sin(kqn,t)

{
ci
(
k
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d2 + q2

n,t + (−1)skqn,t

)
− ci

(
k
√
d2 + q2

0,t + (−1)skq0,t

)}]
(3.10)

where δt denotes the Kronecker’s delta function, and qn,t = h+ n l2ez2 + t l12 .
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Z21y =
−30
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(3.11)

where pm,t = d+m
l2ey

2 + t l12 .

The obtained equations here are all complicated involving unsolved integration

in Equation (3.9) and nested summations in Equations (3.10) and (3.11).

Summary

This chapter presented related studies which clearly established the very reason

why this dissertation is quite significant. The analyses introduced very intricate

and intractable expressions and difficult to understand derivations. Some of the pa-

pers derived equations using analytical methods first and then verified their results

through computer electromagnetics simulation software. Conversely, this disserta-

tion will first use method of moments based antenna simulation software to obtain

the numerical values of the mutual impedance, then obtain phenomenologically the
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expressions which model the obtained mutual impedance from VLab.
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Chapter 4

Research Methodology

Introduction

For the investigation on the skewed crossed dipoles, the research process in Figure

4.1 will be carried out. Each of the flow chart’s block is discussed in the succeeding

subsections.

Figure 4.1: The step-by-step research process of the dissertation.
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4.1 Identification of parameters for the study.

The crossed dipoles configuration in Figure 4.2 is the basis of this dissertation.

Figure 4.2: The coplanar and cocentered crossed dipoles. Here, there is no mutual coupling.

If the horizontal dipole is moved at a perpendicular distance as in Figure 4.3, as

long as the orthogonality between the dipoles is maintained, then there will be no

mutual coupling.

Figure 4.3: The nonplanar and cocentered crossed dipoles. Here, still there is no mutual
coupling.

Now, given the scenario in Figure 4.4, the horizontal dipole will now be skewed,

then there will be mutual coupling.

45



Figure 4.4: The skewed nonplanar and cocentered crossed dipoles. Here, there is now
mutual coupling.

Consider a center-fed dipole with length L, named as Dipole 1, located along the

z-axis and its feedpoint centered at the origin (See Figure 4.5 ). Another center-

fed dipole with length L, named as Dipole 2, with its feedpoint centered along the

x-axis, is located in the y′ − z′ plane and skewed at an angle ϕ.

In order to make the results independent of frequency, L and ∆ will be in terms

of wavelengths. The three independent variables, namely, the dipoles’ length L, the

skew angle ϕ, and the inter-dipole separation, ∆ will be varied in the simulation. The

phenomenological models, therefore, are expected to be functions of the trivariate(
L
λ , ϕ,

∆
λ

)
.

4.2 Obtain numerical values of the mutual impedance

matrix from VLab

VLab has “Pre-processing” and “Post-processing” stages. In the pre-processing

stage, there are three modes to undergo before computing the mutual impedance.

These modes are the “Geometry Mode”, “Model Mode” and “Mesh Mode”.

In the “Geometry Mode” the skewed crossed dipoles are constructed. The screen-

shot of the geometry view in VLab is shown in Figure 4.6.

Assigning physical parameters is done in the “Model Mode”. In model mode,

cables based on curves structure are created and feed segment is defined. Here,

the operating frequency of the antenna array and the calculation parameters (i.e.

46



Figure 4.5: The geometry of the skewed crossed dipoles under study. The independent vari-
ables are: the dipoles’ common length L, the skew angle ϕ, and the inter-dipole separation
∆.

Impedance, Z) are set, and the size of segmentation can be manually indicated.

Dipole feed segment’s termination device is also created in the model mode. The

model view is shown in Figure 4.7.
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Figure 4.6: Geometry view of the skewed crossed dipoles in VLab. Here, the skewed crossed
dipoles is constructed based on set variables.

Figure 4.7: Model view of the skewed crossed dipoles in VLab. Cables definition based on
curves structure and devices modeling is set here.

Discretization of obtained model (i.e. from the Model mode not the phenomeno-

logical model) for calculation is done in the “Mesh Mode”. The wire segments and

their segmentation size that were defined in model mode will be generated in the

mesh mode. Ports for measurement must be created in order to generate an output.

The result of the calculation or output is part of the post-processing stage.

Viewing and extraction of data for analyzing the results is done on this stage. The

mesh view is shown in Figure 4.8.
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Figure 4.8: Mesh view of the skewed crossed dipoles in VLab. Model conversion to discrete
elements (i.e. wire segments) for calculation is done on mesh mode.

All throughout the simulations: each dipole’s diameter is maintained at 0.02λ

millimeters; each dipole’s feeding gap equals λ
50 ; and the voltage source’s internal

impedance is always matched to a half-wavelength dipole, regardless of the actual

value of L
λ . The dipoles, placed in free-space, will be center-fed with a 1-V source

and a 50-ohm load impedance.

The skewed dipole-pair were simulated at these values:

1) a skewed angle ϕ ∈ {1◦, 45◦},

2) each dipole’s electric length L
λ ∈ {0.1, 1.0},

3) spatial separation between the two dipoles’ feeding center ∆
λ ∈ {0.01, 2.0}.

For each combination of
(
L
λ , ϕ,

∆
λ

)
, the mutual impedance value will be com-

puted.

The mutual impedance matrix to be used in the DOA estimation will be of the

form,

Z =

Z1,1 Z1,2

Z2,1 Z2,2


.

For a skewed crossed dipoles configuration, Z1,2 = Z2,1 and Z1,1 = Z2,2, which

follows a bisymmetric matrix.
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Choice of Real-Value Entities to be Model-Fit

To be model-fit are the real-value entities: |Z1,2|, ∠Z1,2, |Z2,1|, ∠Z2,1, |Z1,1|, ∠Z1,1,

|Z2,2|, ∠Z2,2. | · | and ∠· denote the magnitude and phase of the complex-value

entity, respectively.

50



4.3 Proposed phenomenological models

At this stage, the functions that model the mutual impedance from the VLab data

will be proposed. Various candidate models will be model-fit. All possible perspec-

tives of the trivariate function (i.e. f
{
L
λ , ϕ,

∆
λ

}
) for each real value entity will be

plotted and carefully observed.

4.4 Perform model fitting

The model fitting can be summarized into three major steps.

1. Form the objective function.

In general,

SSE =

N∑
n=1

∣∣∣Zn − Ẑn∣∣∣2 , (4.1)

where SSE denotes the “sum-of-squares error”, which measures how far the

data are from the model’s predicted values. Z denotes the impedance value

from VLab, Ẑ denotes the estimated impedance predicted by the model and

N denotes the number of observations.

The sum-of-squares error (SSE) will be the error function to be minimized.

2. Find the unknown parameters to be optimized.

Symbolically,

{c1, c2, ..., cq} = arg min
c

N∑
n=1

∣∣∣Zn − Ẑn∣∣∣2 , (4.2)

where c1, c2, ..., cq are the unknown parameters, and q denotes the number of

parameters to be optimized.
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3. Test the goodness-of-fit.

To determine if the model fitting is good, the “coefficient of determination”,

R2, will be used. R2 can be computed as,

R2 = 1− SSE

SST
, (4.3)

where SST denotes the sum-of-squares-total, which measures how far the data

are from the mean. Symbolically,

SST =

N∑
n=1

∣∣Zn − Z̄∣∣2 , (4.4)

where

Z̄ =
N∑
n=1

Zn, (4.5)

and Z̄ denotes the mean of the VLab data.

R2, which is a value between 0 and 1, measures how successful the fit is in

explaining the variation between the VLab’s data and the proposed model’s

data. An R2 value of 0 means that the proposed model explains none of the

variability. While, R2 value of 1 means the model is a perfect fit or the model

explains all variability in the VLab’s data. The higher the R2, the better is

the model fitting.

A MATLAB code will be written for this purpose. The code will perform four-

dimensional model fitting, e.g. |Z1,2|, Lλ , ϕ, and ∆
λ , to generate the optimized

parameters and the corresponding R2.
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4.5 Selection of the best model fit

The criteria for choosing the best model will be: (1) whichever model that gives the

highest value of R2, and (2) whichever model that has fewer number of the degrees

of freedom in the model. The selected model must return the estimated data sets as

close as those from VLab. Just as important as the two criteria, the models should

also conform with the existing electromagnetic theories and principles.

4.6 Relate the phenomenological models to electromag-

netic considerations

Having chosen the best model for each real value entity, the results should conform

to existing electromagnetic concepts. Not only that the resulting phenomenological

models relate to existing electromagnetic principles. Since this dissertation pioneers

phenomenological modeling of the mutual impedance of the mutual coupling, it is

also aimed that new insights be introduced. At this stage, results are backed-up

with pertinent graphs and illustrations in order to give clearer understanding of the

concepts being discussed.

4.7 Estimate a source’s direction-of-arrival

To show the usefulness of the proposed phenomenological models, direction-of-arrival

estimation will be performed. On this stage, the validation whether the modeling is

successful or not will be determined.

Summary

The research process that this dissertation will carry out has been established. This

phenomenological method considers getting first the numerical values of mutual

impedance and then model fit these VLab data to simple expressions. The criteria

for selecting the best model fit have also been set. The results and analysis will be

presented in the next chapter.
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Chapter 5

Data, Results and Analyses

Introduction

At this point, the simulations’ results from VLab and the proposed phenomenological

models for the cross-impedance and self-impedance are now presented. The analysis

part is based on existing electromagnetic principles and considerations.

5.1 Simulation Results from VLab

Since we are dealing with four variables and showing 4D plots will be difficult, the

phenomenological expressions are proposed based on the following three perspec-

tives: (1) |Z| or ∠Z vs. {∆
λ , ϕ} for a given L

λ , (2) |Z| or ∠Z vs. {∆
λ ,

L
λ} for a given

ϕ, and (3) |Z| or ∠Z vs. {ϕ, Lλ} for a given ∆
λ . Figures 5.1 - 5.6 are sample plots

from VLab. By carefully observing the behavior of the plots in three perspectives,

several models for each of the dependent variables (i.e. |Z1,2| = |Z2,1|, ∠Z1,2 = ∠Z2,1

|Z1,1| = |Z2,2| and ∠Z1,1 = ∠Z2,2) are proposed.
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Figure 5.1: The 3D plot of |Z1,2| at L
λ = 1.00, ∀{∆

λ , ϕ} from VLab. Here, |Z1,2| increases

with increasing ϕ, and |Z1,2| decreases with increasing ∆
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Figure 5.2: The 3D plot of |Z1,2| at ϕ = 45◦, ∀{∆
λ ,
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λ } from VLab. |Z1,2| also increases

with increasing L
λ .
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Figure 5.4: The 3D plot of |Z1,1| at L
λ = 1.00, ∀{∆

λ , ϕ} from VLab. The behavior of |Z1,1|
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λ is like a dampened sinusoid.
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Figure 5.6: The 3D plot of ∠Z1,1 at ϕ = 45◦, ∀{∆
λ ,

L
λ } from VLab. The data for ∠Z1,1

shows a sinuoidal relationship with L
λ .

57



5.2 Model Fitting of the Mutual Impedances, Z1,2 and

Z2,1

This section shows how the phenomenological models for Z1,2 and Z2,1 are obtained.

These phenomenological models will then be related to electromagnetic considera-

tions at the end part of each subsection.

In all the VLab simulations, Z1,2 = Z2,1, ∀{∆
λ ,

L
λ , ϕ}. Consequently, |Z1,2| =

|Z2,1| and ∠Z1,2 = ∠Z2,1.

5.2.1 Magnitude of Z1,2 and Z2,1

Note that all candidate models are presented in Appendix A. The best model is

|Z1,2| = |Z2,1| ≈ 10a1

(
∆

λ

)−a2
(
L

λ

)a3

|sin(ϕ)| , (5.1)

where

a1 := 2.3018,

a2 := 0.5564,

a3 := 2.6230.

The goodness-of-fit R2 equals 0.86 for (5.1), i.e. only 14% of the VLab numerical

data cannot be explained by the above model.

The R2 is evaluated on

log10 |Z1,2| = log10 |Z2,1|

≈ a1 − a2 log10

∣∣∣∣∆λ
∣∣∣∣+ a3 log10

∣∣∣∣Lλ
∣∣∣∣+ log10 |sin(ϕ)| (5.2)

instead of (5.1). This is because |Z1,2| = |Z2,1| has values over several orders of

magnitude. Hence, the latter would overweight those support regions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,2| = |Z2,1| is very large, thereby poorly fitting other regions of

{
ϕ, Lλ ,

∆
λ

}
where |Z1,2| = |Z2,1| is small. Specifically, the would-be-underweighted support
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region is where L
λ increases toward unity and where ∆

λ decreases toward zero.

|Z1,2| relies on length of the dipoles, on the separation between the dipoles and

on the skew angle.

The negative power of ∆
λ in the above phenomenological model suggests that

|Z1,2| = |Z2,1| decreases monotonically with an increasing inter-dipole separation

∆
λ . Indeed, as As ∆

λ → ∞, the model gives |Z1,2| = |Z2,1| → 0. These trends are

reasonable in terms of electromagnetics, because Z1,2 = Z2,1 is proportional to the

induced electric field, whose magnitude is inversely related to the distance between

the driving dipole and the induced dipole.
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Figure 5.7: How |Z1,2 csc(ϕ)| = |Z2,1 csc(ϕ)| of (5.1) varies with ∆
λ and L

λ .

The non-negative factor, | sinϕ|, in the model of (5.1) suggests that |Z1,2| = |Z2,1|

would increase monotonically, as the two dipoles become less perpendicular. This

is reasonable in terms of electromagnetics, because as the skew angle |ϕ| increases

from 0 toward 90◦, the two dipoles would become more parallel, hence more mutual

coupling between these two skewed dipoles. This | sinϕ| factor arises from the pro-

jection of the driving dipole’s electric field on the induced dipole, which is skewed

from the former dipole by a rotational angle of ϕ. Under the special case where the

two dipoles are perfectly orthogonal (i.e. ϕ = 0), |Z1,2| = |Z2,1| = 0 in (5.1), as

expected.
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As the dipole gets longer, the electromagnetic field along each dipole gets larger.

This will in turn produce more current and therefore the dipoles would radiate

greater amount of power. Consequently, as clearly indicated in (5.1) , |Z1,2| expo-

nentially increases with L
λ . Figure 5.7 agrees with the above claim.

5.2.2 Phase of Z1,2 and Z2,1

The candidate models for ∠Z1,2 = ∠Z2,1 are presented in Appendix B. The best

phenomenological model fit for the ∠Z1,2 and ∠Z2,1 is

∠Z1,2 = ∠Z2,1

≈ b1
∆

λ
+ b2

L

λ
+ b3, (5.3)

where

b1 := −5.5920 = −1.78π,

b2 := 0.5048π,

b3 := −0.2952 = −0.0940π.

The goodness-of-fit R2 equals 0.96, i.e. only 4% of the VLab numerical data cannot

be explained by the above model.

This model of ∠Z1,2 = ∠Z2,1 is independent of the inter-dipole skew angle ϕ.

This is reasonable in terms of electromagnetics: The phase ∠Z1,2 = ∠Z2,1 depends

on the electric field at the induced dipole. If the induced dipole is rotated with

respect to its feed center, that electric field’s phase would remain the same. Hence,

the inter-dipole skew angle ϕ has no effect on ∠Z1,2.

This model of ∠Z1,2 = ∠Z2,1 varies linearly with the inter-dipole separation ∆
λ .

This is reasonable in terms of electromagnetics: As the radiation propagates outward

from the driving dipole, its phase would change linearly with the distance traversed.

This model of ∠Z1,2 = ∠Z2,1 increases linearly with the dipoles’ electric length

L
λ . This is reasonable in terms of electromagnetics: The radiation is emitted from
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driving dipole along that dipole’s entire length, and is received by the induced dipole

along the induced dipole’s entire length. The average of such distances increases

linearly with the two dipoles’ length. Hence, the phase would change also linearly

with L
λ . Figure 5.8 shows the 3D plot of the model in (5.3).
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Figure 5.8: How ∠Z1,2 = ∠Z2,1 of (5.3) varies with ∆
λ and L

λ . The ∠Z1,2 = ∠Z2,1

varies linearly with ∆
λ and L

λ .

5.3 Model Fitting of the Self-Impedances, Z1,1 and Z2,2

This section shows how the phenomenological models for Z1,1 and Z2,2 are obtained.

The analysis of the obtained phenomenological models will be based on existing the-

ories and principles of antenna electromagnetics at the end part of each subsection.

In all the VLab simulations, Z1,1 = Z2,2, ∀{∆
λ ,

L
λ , ϕ}. Hence, |Z1,1| = |Z2,2| and

∠Z1,1 = ∠Z2,2.
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5.3.1 Magnitude of Z1,1 and Z2,2

All candidate models are shown in Appendix C. The best-fitting phenomenological

model is

|Z1,1| = |Z2,2|

≈

P1(∆
λ
,ϕ) :=︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣

p1 + p2

P2(∆
λ ) :=︷ ︸︸ ︷

cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ sin2(ϕ)

∣∣∣∣∣∣∣∣∣∣
P3(Lλ ) :=︷ ︸︸ ︷[(

L

λ
− p6

)2

+ p7

]
. (5.4)

where

p1 := 20415.4041,

p2 := 98.3895,

p3 := 4.0412π,

p4 := 3.4539π,

p5 := 0.2782,

p6 := 0.4838,

p7 := 0.0057.

The goodness-of-fit R2 equals 0.98, i.e. only 2% of the VLab’s numerical data cannot

be explained by the above model.
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The R2 is evaluated on

log10 |Z1,1| = log10 |Z2,2|

≈ log10

∣∣∣∣p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ sin2(ϕ)

∣∣∣∣
+ log10

∣∣∣∣∣
(
L

λ
− p6

)2

+ p7

∣∣∣∣∣ . (5.5)

instead of (5.4). This is because |Z1,1| = |Z2,2| takes on values over several orders

of magnitude. Hence, any R2 computation based on (5.4) would overweight those

support subregions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,1| = |Z2,2| is very large, thereby poorly

fitting other regions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,1| = |Z2,2| is small. More explicitly,

the would-be-overweighted region is where L
λ increases toward unity and where ∆

λ

decreases toward zero.

The two dipoles’ separation ∆
λ affects |Z1,1| = |Z2,2| only through P1

(
∆
λ , ϕ

)
. If

and only if the two dipoles are very far apart (i.e. as ∆
λ →∞): P1

(
∆
λ , ϕ

)
→ p1; and

the second term inside | · | approaches zero.
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varies with ϕ and ∆
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The two dipoles’ skew angle ϕ affects |Z1,1| = |Z2,2| only through sin2(ϕ). This

sin2(ϕ) multiplicative factor may be interpreted to arise from the round-trip prop-

agation of the radiated electric field, from the excited dipole, to the induced dipole,

then back to the excited dipole. Recalling that these two dipoles are skewed with

respect to each other by ϕ, this induced electric field (as mentioned in Section 5.2.1)

is proportional to | sin(ϕ)| for each one-way propagation. When the two dipoles are

orthogonal (i.e. ϕ = 0), the second term inside | · | equals zero. The variation of

P1

(
ϕ, ∆

λ

)
with ϕ and ∆

λ is illustrated in Figure 5.9.

The two preceding paragraphs point out that the second term inside | · | ap-

proaches zero, if and only if either the two dipoles are orthogonal (i.e. ϕ = 0) or

very far apart (∆
λ →∞), when the driving dipole would become effectively isolated

from the induced dipole. Hence, that second term could be interpreted to corre-

spond to re-radiation from the induced dipoles. In other words, the driving dipole’s

self-impedance Z1,1 is partly due to the dipole’s isolated self-impedance and partly

due to the electric field induced back to it by the induced dipole. The former effect,

however, is at least p1

p2
≈ 207 times more significant than the latter effect. This is

reasonable in terms of antenna electromagnetics: The inter-dipole coupling’s afore-

mentioned round-trip effect (i.e. round trip from the driving dipole to the induced

dipole, then back to the driving dipole) is small relative to the driving dipole’s own

isolated self-impedance.

When either the two dipoles are very widely separated or are orthogonally ori-

ented, the model in (5.4) degenerates to the mathematical form of p1P3

(
L
λ

)
, which

is a reasonable representation of an isolated dipole’s self-impedance. The dipoles’

length L
λ affects |Z1,1| = |Z2,2| only through the multiplicative factor P3

(
L
λ

)
. Figure

5.10 plots P3

(
L
λ

)
alongside L

λ . This term is the dominating factor in (5.4).
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(
L
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)
varies with L

λ . Observe that resonance is near L
λ = 0.50.

This minimum value is exactly at L
λ = 0.48.

Analysis of P2

(
∆
λ

)
The model in (5.4) varies with ∆

λ as a dampened sinusoid, with an inter-peak gap

and an inter-null gap of roughly ∆
λ ≈

1
2 . Figure 5.11 shows how P2

(
∆
λ

)
varies

with ∆
λ . As ∆

λ → ∞, the factor P2

(
∆
λ

)
→ 0. This is also reasonable in terms

of electromagnetics, because the two skewed dipoles (being very far apart) would

become electromagnetically isolated from each other. |Z1,1| = |Z2,2| is a damped

sinusoid of the inter-dipole separation ∆
λ . This is reasonable in terms of antenna

electromagnetics: As ∆
λ widens, the induced electric field decreases in magnitude,

hence the exponentially decaying factor of e−p5
∆
λ .

The cos(·) arises due to the summation (at the driving dipole) between the driv-

ing electric field and the scattered electric field. This summation could be construc-

tive or destructive or in between, depending on the two electric fields’ phases. The

summation would be perfectly constructive if the two dipoles are separated by an

integer number of λ
2 , which would correspond to an inter-dipole round-trip distance

2∆ of an integer multiple of λ.

Note that p3 ≈ 4π, that would give a period of ∆ = λ
2 in the cos(·) factor. That

period corresponds to a round-trip of 2∆ = λ between the 2 dipoles. However, p3 is

65



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

∆

λ

P
2

(

∆ λ

)

Figure 5.11: How P2

(
∆
λ

)
varies with ∆

λ . Here, there are 4 peaks and nulls. The

absolute maximum is at ∆
λ = 0.13 with an amplitude of 0.96, while the absolute

minimum is at ∆
λ = 0.38 with an amplitude of −0.90.

not exactly 4π, because the aforementioned induced field effects involve the entire

length of each dipole; hence, the above-mentioned inter-dipole separation consider-

ations involve not just the separation between the two dipoles’ feeding points.

To locate peaks and nulls of P2

(
∆
λ

)
in (5.4) within ∆

λ = [0, 2], get the first

derivative of P2

(
∆
λ

)
.

P ′2

(
∆

λ

)
= e−p5

∆
λ

{
−p5 cos

(
p3

∆

λ
+ p4

)
− p3 sin

(
p3

∆

λ
+ p4

)}
(5.6)

To obtain the critical points of P2, set (5.6) to zero.

0 = e−p5
∆
λ

{
−p5 cos

(
p3

∆

λ
+ p4

)
− p3 sin

(
p3

∆

λ
+ p4

)}
.

Within the interval [0, 2], the zeros of P ′2(·) are

∆

λ
=

tan−1
(
−p5

p3

)
+ nπ − p4

p3
. (5.7)
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The tangent function has a period of π, hence nπ is added in equation (5.7).

At n = 4, 5, 6, 7, 8, 9, 10, 11, (5.7) respectively gives the local maxima or minima

of ∆
λ = 0.1334, 0.3809, 0.6283, 0.8758, 1.1232, 1.3707, 1.6181, 1.8656, with these cor-

responding peak/null values from (5.4)

P1(0.1334) := 0.9633,

P1(0.3809) := −0.8992,

P1(0.6283) := 0.8394,

P1(0.8758) := −0.7836,

P1(1.1232) := 0.7314,

P1(1.3707) := −0.6828,

P1(1.6181) := 0.6374,

P1(1.8656) := −0.5950.

As P2(0.1334) := 0.9633 is the maximum value for ∆
λ = [0, 2], the absolute maximum

point is at ∆
λ = 0.1334. While the absolute minimum is at ∆

λ = 0.3809. The four

peaks occur at ∆
λ = 0.1334, 0.6283, 1.1232, 1.6181, whereas the four nulls occur at

∆
λ = 0.3809, 0.8758, 1.3707, 1.8656.

|Z1,1| = |Z2,2| at “resonance” near L
λ = 0.5.

According to electromagnetics, the |Z1,1| and |Z2,2| should go through a minimum

at near L
λ = 0.5. This is half-wave dipole’s first resonance.

Substituting the values of p1, p2, ..., p7 into (5.4),

|Z1,1| =

{
20415.4041 + 98.3895 cos

(
4.0412π

∆

λ
+ 3.4539π

)
e−0.2782 ∆

λ sin2(ϕ)

}
{(

L

λ
− 0.4838

)2

+ 0.0057

}
(5.8)
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The use of built-in function ‘fminsearch” from MATLAB for ∆
λ = [0.01, 2.0], and

ϕ = [1◦, 45◦] in (5.8) results to L
λ = 0.4838.

Another way is to use Calculus.

Finding the partial derivative of |Z1,1| with respect to L
λ ,

∂(|Z1,1|)
∂ Lλ

=

{
20415.4041 + 98.3895 cos

(
4.0412π

∆

λ
+ 3.4539π

)
e−0.2782 ∆

λ sin2(ϕ)

}
{

2

(
L

λ
− 0.4838

)}
(5.9)

Setting (5.9) to zero and solving for L
λ , for ∆

λ = [0.01, 2.0], ϕ = [1◦, 45◦] results

to L
λ = 0.4838.

Now, to determine if the L
λ = 0.4838 is indeed minimum, we now get the second

derivative.

∂2(|Z1,1|)
∂ Lλ

2 =

{
20415.4041 + 98.3895 cos

(
4.0412π

∆

λ
+ 3.4539π

)
e−0.2782 ∆

λ sin2(ϕ)

}
{2} (5.10)

For ∆
λ = [0.01, 2.0] and ϕ = [1◦, 45◦],

∂2(|Z1,1|)
∂ L
λ

2 > 0..

Since, the values of the second derivative are all greater than zero for all ∆
λ ’s and

ϕ’s , therefore L
λ = 0.4838, through the second derivative test, is indeed a minimum.

Hence, we can conclude that at L ≈ 0.48λ, the first resonance of the half-wave dipole

according to electromagnetics has been achieved.
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5.3.2 Phase of Z1,1 and Z2,2

All candidate models are presented in Appendix D. The best-fitting model is

∠Z1,1 = ∠Z2,2

≈

q1 +

Q(∆
λ ) :=︷ ︸︸ ︷

q2 sin

(
q3

∆

λ

)
e−q4

∆
λ

 sin

(
q5
L

λ

)
, (5.11)

where

q1 := 1.7648,

q2 := 0.0103,

q3 := 0.7091π,

q4 := 5.0565,

q5 := −2.0758π.

The goodness-of-fit R2 equals 0.90; hence, only 10% of the VLab’s numerical data

cannot be explained by the above model.

Like |Z1,1| = |Z2,2| in Section 5.3.1, the phenomenological model here for ∠Z1,1 =

∠Z2,2 has two terms inside the curly brackets. The first term corresponds to each

dipole’s isolated self-impedance, whereas the second term, Q
(

∆
λ

)
, arises due to the

re-radiation from the induced dipole back to the driving dipole. The first term

dominates the second term (by a ratio of q1
q2
≈ 171 multiples), as would be expected

and as explained in Section 5.3.1. Figure 5.12 shows how Q
(

∆
λ

)
varies with ∆

λ .

Like ∠Z1,2 = ∠Z2,1 in Section 5.2.2, the phenomenological model here for

∠Z1,1 = ∠Z2,2 is independent of ϕ, for reasons already explained in Section 5.2.2.

The plot of the phenomenological model for ∠Z1,1 against L
λ and ∆

λ is shown in

Figure 5.13.
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Summary

As earlier promised, the obtained phenomenological models with simple and tractable

expressions of the mutual and self-impedance, in simple closed forms, are now ob-

tained and introduced.

Table 5.1 summarizes the phenomenological models and the optimized parame-

ters for |Z1,2| = |Z2,1|, ∠Z1,2 = ∠Z2,1, |Z1,1| = |Z2,2|, ∠Z1,1 = ∠Z2,2.

Table 5.1: Summary of the Obtained Phenomenological Models for Skewed Cross Dipoles

Entity Phenomenological Model

|Z1,2| = |Z2,1| 10a1
(

∆
λ

)−a2
(
L
λ

)a3
(sin(ϕ))

where a1 = 2.3018, a2 = 0.5564, a3 = 2.6230.

∠Z1,2 = ∠Z2,1 b1
∆
λ + b2

L
λ + b3

where b1 = −5.5920, b2 = 1.5858, b3 = −0.2952.

|Z1,1| = |Z2,2|
∣∣∣p1 + p2 cos

(
p3

∆
λ + p4

)
e−p5

∆
λ sin2(ϕ)

∣∣∣ {(Lλ − p6

)2
+ p7

}
where p1 = 20415.4041, p2 = 98.3895, p3 = 4.0412π, p4 = 3.4539π,

p5 = 0.2782, p6 = 0.4838, p7 = 0.0057.

∠Z1,1 = ∠Z2,2

{
q1 + q2 sin

(
q3

∆
λ

)
e−q4

∆
λ

}
sin
(
q5
L
λ

)
where q1 = 1.7648, q2 = 0.0103, q3 = 0.7091π,

q4 = 5.0565, q5 = −2.0758π.
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Chapter 6

Direction-of-Arrival Estimation

to Demonstrate the Usefulness

of the Proposed Models

Introduction

To demonstrate the usefulness of the phenomenological models in (5.1), (5.3), (5.4),

(5.11) — these new models are utilized below in the estimation of an incident source’s

azimuth-elevation direction-of-arrival (DOA).

6.1 The Skewed Dipole-Pair’s Electromagnetic Measure-

ment Model

The first dipole is aligned along the z-axis and is centered at the Cartesian ori-

gin. The second dipole lies on the x-y plane and is centered at the Cartesian point

of (∆, 0, 0), as shown in Figure 4.5. The second dipole’s location incurs a spatial

phase factor of ej2π
∆
λ

sin(θ) cos(φ), where θ ∈ [0◦, 180◦] symbolizes the incident source’s

polar angle of arrival, and φ ∈ [0◦, 360◦) denotes the azimuth angle of arrival mea-

sured from the positive x-axis. The second dipole’s skewed orientation on the y′-z′

plane implies that its voltage is affected by the incident electromagnetic wave’s y-

component and z-component.
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If these dipoles are of wavelength-normalized lengths greater than 0.10 (i.e. with

L
λ >

1
10), the skewed-dipoles would have this 2× 1 array manifold [103,141]:

apair(θ, φ, γ, η)

= C


1 0

0 ej2π
∆
λ

sin(θ) cos(φ)




0 1

cos(ϕ) sin(ϕ)




− sin(θ) 0

cos(θ) sin(φ) cos(φ)



ejη sin γ

cos γ


◦


`
(L)
θ

`
(L)
ψ


◦


csc(θ)

csc(ψ)


. (6.1)

where

`
(L)
θ = −λ

π

1

sin
(
πLλ
) cos

(
πLλ cos(θ)

)
− cos

(
πLλ
)

sin(θ)
,

`
(L)
ψ = −λ

π

1

sin
(
πLλ
) cos

(
πLλ cos(ψ)

)
− cos

(
πLλ
)

sin(ψ)
,

cos(ψ) = sin(θ) sin(φ) cos(ϕ) + cos(θ) sin(ϕ),

sin(ψ) =

√
sin2(θ) sin2(ϕ) + cos2(θ) cos2(ϕ) + sin2(θ) cos2(φ) cos2(ϕ)− 2 sin(2θ) sin(2ϕ) sin(φ)

In the above, γ ∈ [0, π2 ] denotes the auxiliary polarization angle, η ∈ [−π, π]

refers to the polarization phase difference, `
(L)
θ and `

(L)
ψ denote the effective lengths

of dipoles, ψ refers to the angle made between the slanted dipole and the unit

vector along the direction of propagation and C symbolizes the skewed-dipoles’

2× 2 electromagnetic coupling matrix. ◦ denotes element-wise multiplication.
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This coupling matrix is related to the impedance matrix Z as follows: [14,26,38,

41,58,59,66,109,116]

C =

(
Z

Z0
+ I

)−1

, (6.2)

where Z0 = 50 Ω and I is an identity matrix.

The subsequent direction-finding study would consider three cases:

(A) The actual impedance matrix is exactly known to the direction-of-arrival es-

timation algorithm. Here, Z would equal the VLab output values. This case

corresponds to the dotted black curve on the subsequent graphs.

(B) The actual impedance matrix is unknown to the direction-of-arrival estimation

algorithm. Instead, the phenomenological models of (5.1), (5.3), (5.4), (5.11)

are used to form Z for use in the estimation algorithm. This case corresponds

to the solid red curve on the subsequent graphs.

(C) Mutual coupling is presumed erroneously by the direction-of-arrival estimation

algorithm to be nonexistent. Here, Z equals a 2× 2 matrix of all zeros. This

case corresponds to the dash-dot blue curve on the subsequent graphs.
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6.2 The Data’s Statistical Model

Let the receiver be equipped with a square array of four identical pairs of skewed-

dipoles, each of which is as described above in Section 6.1(see Figure 6.1).

Figure 6.1: The square array of crossed dipoles separated by a distance of 14λ. The
inter-pair coupling is negligible at this distance.

This square array’s each side is 14λ in length – a separation long enough to

render any inter-pair coupling to be negligible. This array’s 8 × 1 array manifold

may be represented as

aarray = apair ⊗



exp{j7π sin(θ)[+ sin(φ) + cos(φ)]}

exp{j7π sin(θ)[+ sin(φ)− cos(φ)]}

exp{j7π sin(θ)[− sin(φ) + cos(φ)]}

exp{j7π sin(θ)[− sin(φ)− cos(φ)]}



, (6.3)
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where ⊗ symbolizes the Kronecker product.

To focus on the electromagnetic coupling among the dipoles and on the proposed

phenomenological models, an admittedly simple statistical model will be used below

for the incident signal and the noise. Suppose a pure tone signal s(t) = exp[j(ωt+ϕ)]

impinges on aforementioned receiver. At the mth time-instant, the collected data

may be modeled as an 8× 1 vector of

x(m) = a(θ, φ, γ, η,C) s(m) + n(m). (6.4)

In the above, n(m) denotes an 8× 1 vector of additive noise, modeled here as Gaus-

sian, zero in mean, statistically uncorrelated over the time-instants and uncorrelated

across all eight dipoles.

76



With M number of time samples, form an 8×M data matrix of

X := [x(1),x(2), . . . ,x(M)], (6.5)

Each subsequent Monte Carlo simulation has M = 50 number of time-samples.

6.3 MUSIC-Based Direction Finding

The direction finding problem is to estimate the incident source’s incident direction-

of-arrival (θ, φ), based on the observations of X.

The estimation algorithm has prior knowledge of the numerical values of L
λ , ∆

λ ,

ϕ.

MUSIC [32] is a popular parameter estimator, based on a eigen-decomposition

of the data correlation matrix, R := XHX. Eigen-decompose this 8 × 8 matrix to

obtain its null space, Unull.

R = [Us,Un]H Λ [Us,Un] . (6.6)

Then, the direction-of-arrival estimates and the polarization estimates are given by

(θ̂, φ̂, γ̂, η̂) := arg
(θ,φ,γ,η)

max
1

‖UH
n a(θ, φ, γ, η,C)‖2

, (6.7)

where ‖ · ‖ represents the Frobenius norm of the entity inside.

For a fair comparison across the three impedance cases (A)-(C) in Section 6.1, the

signal-to-noise power ratio (SNR) plotted in the simulation figures: The coupling

matrix’s norm, ‖C‖2, affects the “effective” signal-to-noise power ratio in (6.4).

Hence, to fairly compare across the three settings above, the array manifold in (6.1)

is normalized by ‖C‖2.
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6.4 DOA Estimation Plots

Figures 6.2 - 6.24 show the estimation root-mean-square error (RMSE) of θ̂ and φ̂,

versus the SNR. Each icon in Figures 6.2 to 6.24 represents 100 independent Monte

Carlo trials. These figures verify the usefulness of the proposed phenomenological

models — that these models offer estimation precisions almost as good as if the exact

impedance were known, whereas ignoring mutual coupling causes a degradation that

can be several orders of magnitude.

The root-mean-square error values are all expressed in degrees. From all the

plots presented here, the average root-mean-square error values at SNR = 10 dB for

θ̂ equals 0.057◦. At SNR = 10 dB, the minimum and maximum values for all θ̂’s are

0.044◦ and 0.097◦, respectively. At SNR = 30 dB, the average of all the root-mean-

square errors for all θ̂’s equals 0.006◦. The minimum and maximum values for all

θ̂’s are 0.004◦ and 0.010◦, respectively.

The average root-mean-square values of φ̂’s at SNR = 10 dB and SNR = 30 dB

are 0.098◦ and 0.010◦, respectively. At SNR = 10 dB, the minimum and maximum

values for all φ̂’s are 0.044◦ and 0.270◦, respectively. While at SNR = 30 dB, the

minimum and maximum values for all θ̂’s are 0.025◦ and 0.005◦, respectively.

The performance of the MUSIC algorithm is generally better in estimating the

zenith angle, θ than the azimuthal angle, φ. Nonetheless, examining the recorded

RMSE values for the direction-of-arrival estimation, the obtained results are overall

significant.
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(b)

Figure 6.2: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.45,
ϕ = 45◦, ∆

λ = 0.04, θ = 26◦, φ = 12◦, γ = 44◦, η = −20◦.
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(b)

Figure 6.3: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.45,
ϕ = 45◦, ∆

λ = 0.04, θ = 55◦, φ = 53◦, γ = 19◦, η = 32◦.
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(b)

Figure 6.4: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.01, θ = 50◦, φ = 36◦, γ = 15◦, η = 40◦.
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(b)

Figure 6.5: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.01, θ = 40◦, φ = 65◦, γ = 33◦, η = −23◦.
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(b)

Figure 6.6: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.01, θ = 32◦, φ = 28◦, γ = 52◦, η = −28◦.

83



10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

SNR, in dB

R
M
S
E

o
f
θ̂
,
in

d
eg
re
es

 

 

perfectly prior known mutual coupling
wrongly presuming no mutual coupling
phenomenologically modeled mutual coupling

(a)

10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

SNR, in dB

R
M
S
E

o
f
φ̂
,
in

d
eg
re
es

 

 

perfectly prior known mutual coupling
wrongly presuming no mutual coupling
phenomenologically modeled mutual coupling

(b)

Figure 6.7: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.01, θ = 32◦, φ = 28◦, γ = 50◦, η = −32◦.
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(b)

Figure 6.8: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.02, θ = 53◦, φ = 30◦, γ = 15◦, η = 45◦.
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(b)

Figure 6.9: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.02, θ = 48◦, φ = 28◦, γ = 16◦, η = 40◦.
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(b)

Figure 6.10: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.02, θ = 10◦, φ = 36◦, γ = 20◦, η = 54◦.
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(b)

Figure 6.11: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.02, θ = 48◦, φ = 34◦, γ = 14◦, η = 22◦.
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(b)

Figure 6.12: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.02, θ = 12◦, φ = 48◦, γ = 16◦, η = 52◦.

89



10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

SNR, in dB

R
M
S
E

o
f
θ̂
,
in

d
eg
re
es

 

 

perfectly prior known mutual coupling
wrongly presuming no mutual coupling
phenomenologically modeled mutual coupling

(a)

10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

SNR, in dB

R
M
S
E

o
f
φ̂
,
in

d
eg
re
es

 

 

perfectly prior known mutual coupling
wrongly presuming no mutual coupling
phenomenologically modeled mutual coupling

(b)

Figure 6.13: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.02, θ = 14◦, φ = 44◦, γ = 14◦, η = 56◦.
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(b)

Figure 6.14: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.50,
ϕ = 45◦, ∆

λ = 0.04, θ = 22◦, φ = 42◦, γ = 28◦, η = 60◦.
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(b)

Figure 6.15: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.55,
ϕ = 45◦, ∆

λ = 0.02, θ = 34◦, φ = 46◦, γ = 16◦, η = −8◦.

92



10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

SNR, in dB

R
M
S
E

o
f
θ̂
,
in

d
eg
re
es

 

 

perfectly prior known mutual coupling
wrongly presuming no mutual coupling
phenomenologically modeled mutual coupling

(a)

10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

SNR, in dB

R
M
S
E

o
f
φ̂
,
in

d
eg
re
es

 

 

perfectly prior known mutual coupling
wrongly presuming no mutual coupling
phenomenologically modeled mutual coupling

(b)

Figure 6.16: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.55,
ϕ = 45◦, ∆

λ = 0.02, θ = 21◦, φ = 46◦, γ = 27◦, η = −14◦.
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(b)

Figure 6.17: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.60,
ϕ = 45◦, ∆

λ = 0.01, θ = 30◦, φ = 45◦, γ = 24◦, η = −8◦.
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(b)

Figure 6.18: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.60,
ϕ = 45◦, ∆

λ = 0.02, θ = 19◦, φ = 84◦, γ = 56◦, η = 41◦.
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(b)

Figure 6.19: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.60,
ϕ = 45◦, ∆

λ = 0.02, θ = 15◦, φ = 53◦, γ = 83◦, η = 45◦.
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(b)

Figure 6.20: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.75,
ϕ = 45◦, ∆

λ = 0.04, θ = 48◦, φ = 56◦, γ = 14◦, η = −14◦.
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(b)

Figure 6.21: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.75,
ϕ = 45◦, ∆

λ = 0.04, θ = 22◦, φ = 40◦, γ = 24◦, η = −58◦.
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(b)

Figure 6.22: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.75,
ϕ = 45◦, ∆

λ = 0.04, θ = 36◦, φ = 48◦, γ = 14◦, η = −68◦.
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Figure 6.23: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 0.85,
ϕ = 45◦, ∆

λ = 0.01, θ = 46◦, φ = 36◦, γ = 18◦, η = −24◦.
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Figure 6.24: How the RMSE of (a) θ̂ and (b) φ̂ varies with the SNR. Here, Lλ = 1.00,
ϕ = 45◦, ∆

λ = 0.01, θ = 65◦, φ = 38◦, γ = 13◦, η = −10◦.
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Summary

The 23 pairs of θ̂ and φ̂ graphs shown here are just some of the many good graphs

that were produced for the different settings of L
λ , ϕ and ∆

λ . These graphs clearly

show that the phenomenological models obtained can be used to estimate an incident

source’s direction-of-arrival, hence, attesting to the success of the phenomenological

modeling.
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Chapter 7

Conclusions and Future Work

The open literature’s earlier analysis of dipole electromagnetics has produced equa-

tions of such intractable complexity, that little intuitive rule-of-thumb qualitative

insights are obtained on how the mutual impedance magnitude of a pair of skewed

co-centered cross-dipoles of equal length would vary with the dipoles’ skew angle,

the dipoles’ common length, and the dipoles’ separation. This work takes a “phe-

nomenological” or “behavioral” approach of modeling, to least-squares-fit mutual

impedance values to low-dimensional models. These new models are found useful in

direction finding, despite these models’ few degrees of freedom.

This dissertation was not only successful in obtaining the low-dimensional phe-

nomenological models described above but having to demonstrate the usefulness of

these models in estimating the source’s direction-of-arrival is quite an accomplish-

ment. The contribution of this research in pioneering phenomenological modeling

approach in antenna array signal processing will be helpful in carrying out researches

for other antenna array configurations in the future. This dissertation serves as an

important reference for similar studies in modeling the mutual coupling or any other

phenomena in antenna arrays.

For future work, the investigation on one dipole and one loop, collocated but

perpendicular, labeled as “Cocentered Orthogonal Loop and Dipole” (COLD) array

will be done. The “perpendicularity” here is between the dipole axis and the loop

plane, not between the dipole axis and the loop axis. Hence, the electric dipole
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moment and the magnetic loop moment are aligned; and the COLD antenna pair

retains omni-directionality on any plane perpendicular to the dipole axis.

Consider a co-centered pair of wire antennas, consisting of (i) an infinitesimally

thin circular loop of radius R lying on the x-y Cartesian plane and a very thin, and

(ii) a center-fed dipole of length L, skewed from the z-axis by a polar angle (a.k.a.

zenith angle) of ϕ denotes the skew angle, and at an azimuth angle of β from the

loop’s feeding gap. Please refer to Figure 7.1.

Figure 7.1: The spatial geometry of cocentered non-orthogonal loop and dipole.

The COLD antenna pair has been to estimate the arrival-angles and/or the po-

larization in [31, 56, 70, 80]. One reason for the COLD antenna pair’s popularity is

the absence of any mutual coupling between the dipole and the loop, if perpendic-

ularity is maintained. Also, electrically small dipoles and magnetically small loops

can be useful where the platform allows limited space, e.g. on a missile. In transmis-

sion the COLD array’s overall polarization may be easily switched between circular

polarization and linear polarization by adjusting the two feeding currents.

This work will characterize the mutual coupling resulting from a skewness away

from perpendicularity between the dipole axis and the loop plane — how the 2× 2

mutual impedance matrix’s entries would vary with the dipole’s length (Lλ ), the

loop’s circumference (Cλ ), the skew angle, etc.
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Appendix A

Candidate Models for

|Z1,2| = |Z2,1|

A.1 Model 1

|Z1,2| = |Z2,1|

≈
(
a1 + a2e

(−∆
λ

+a3
L
λ )
)
|ϕ|, (A.1)

where

a1 := 31.9218

a2 := 0.0789

a3 := 10.9603.

|Z1,2| = |Z2,1| has values over several orders of magnitude. Hence, the latter

would overweight those support regions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,2| = |Z2,1| is very

large, thereby poorly fitting other regions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,2| = |Z2,1| is small.

Specifically, the would-be-underweighted support region is where L
λ increases toward

unity and where ∆
λ decreases toward zero. Also, |Z1,2| = a1 6= 0 even when ∆

λ →∞.

Hence, this model is unacceptable.
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A.2 Model 2

|Z1,2| = |Z2,1|

≈
(
a1 + a2e

−∆
λ

(
L

λ

)a3
)
| sinϕ|, (A.2)

where

a1 := 42.1133

a2 := 4870.5

a3 := 10.0884.

This model was not chosen due to the same reasons as in the candidate model

(A.1).

A.3 Model 3

|Z1,2| = |Z2,1|

≈
(
a1 + a2e

−∆
λ

(
L

λ

)a3
)
|ϕ|, (A.3)

a1 := 39.0876

a2 := 4527.5

a3 := 10.0887.

This model was not chosen due to the same reasons as in the candidate model

(A.1).
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A.4 Model 4

|Z1,2| = |Z2,1|

≈ a1 e
−a2

∆
λ

(
L

λ

)a3

| sinϕ|, (A.4)

where

a1 := 4824.8035,

a2 := 0.8941,

a3 := 9.6869.

|Z1,2| = |Z2,1| has values over several orders of magnitude. Hence, the latter

would overweight those support regions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,2| = |Z2,1| is very

large, thereby poorly fitting other regions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,2| = |Z2,1| is small.

Specifically, the would-be-underweighted support region is where L
λ increases toward

unity and where ∆
λ decreases toward zero. Hence, this model was not chosen.

A.5 Model 5

|Z1,2| = |Z2,1|

≈
(
a1 + a2e

−∆
λ

(
L

λ

)a3
)
| sinϕ|, (A.5)

where

a1 := 42.1133

a2 := 4870.5

a3 := 10.0884.

This model was not chosen due to the same reasons as in the candidate model

(A.1).
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A.6 Model 6

|Z1,2| = |Z2,1|

≈
(
a1 + a2e

(−∆
λ

+a3
L
λ )
)
| sinϕ|, (A.6)

where

a1 := 34.4054

a2 := 0.0848

a3 := 10.9601.

This model was not chosen due to the same reasons as in the candidate model

(A.1).

A.7 Model 7

|Z1,2| = |Z2,1|

≈ a1

(
∆

λ

)−a2
(
L

λ

)a3

| sinϕ|, (A.7)

where

a1 := 2225.4020,

a2 := 0.2129,

a3 := 9.7105.

This model was not chosen due to the same reasons as in the candidate model

(A.1).
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A.8 Model 8

|Z1,2| = |Z2,1|

≈ a1 e
(−a2

∆
λ

+a3
L
λ ) | sinϕ|, (A.8)

where

a1 := 0.1257,

a2 := 0.8946,

a3 := 10.5557.

This model was not chosen due to the same reasons as in the candidate model (A.1).

A.9 Model 9

|Z1,2| = |Z2,1|

≈ a1

(
∆

λ

)−1(L
λ

)a2

| sinϕ|, (A.9)

where

a1 := 78.1382,

a2 := 9.4613.

|Z1,2| = |Z2,1| has values over several orders of magnitude. Hence, the latter

would overweight those support regions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,2| = |Z2,1| is very

large, thereby poorly fitting other regions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,2| = |Z2,1| is small.

Specifically, the would-be-underweighted support region is where L
λ increases toward

unity and where ∆
λ decreases toward zero. Hence, this model was not chosen.
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A.10 Model 10

log |Z1,2| = log |Z2,1|

≈ a1 − log

∣∣∣∣∆λ
∣∣∣∣

+a2 log

∣∣∣∣Lλ
∣∣∣∣+ log |sin(ϕ)| , (A.10)

where

a1 := 2.0469,

a2 := 2.6230.

This model was not chosen due to the low R2 of 0.7723.

A.11 Model 11

log |Z1,2| = log |Z2,1|

≈ a1 − a2 log

∣∣∣∣∆λ
∣∣∣∣

+a3 log

∣∣∣∣Lλ
∣∣∣∣+ a4 log |sin(ϕ)| , (A.11)

where

a1 := 2.3066,

a2 := 0.5564,

a3 := 2.6230

a4 := 1.0059.

This model was not selected because it has 4 degrees-of-freedom while the best

fit model in (5.1) has has fewer degrees-of-freedom of 3.
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A.12 Model 12

log |Z1,2| = log |Z2,1|

≈ a1 + a2 log e(−
∆
λ

+a3
L
λ )

+ log |sin(ϕ)| , (A.12)

where

a1 := 0.5060,

a2 := 1.3268,

a3 := 5.2816

a4 := 1.0059.

This model was not selected because it has 4 degrees-of-freedom while the best

fit model in (5.1) has only 3 degrees-of-freedom.

NOTE: For Models 13 to 16, the model fitting was done in two steps:

1. A proposed model, which is a function of the bivariate {∆
λ ,

L
λ}, is fitted through

the MATLAB built-in function “cftool”. Here, the ϕ is set to a fixed value

during fitting.

2. The obtained optimized coefficients (i.e. c1, c2 and c3) for all ϕ’s are then

averaged.

Noe that Models 13 to 16 were not chosen due to the incorrect method of gen-

erating the optimized coefficients.
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A.13 Model 13

|Z1,2| = |Z2,1|

≈
(
c1 + c2e

(−∆
λ

+c3
L
λ )
)
|ϕ|, (A.13)

where

c1 := [35.92 35.92 35.91 35.84 35.54 36 36 36]

≈ 35.8192,

c2 := [0.06779 0.06787 0.0682 0.06951 0.07433 ...

0.07995 0.08168 0.06941]

≈ 0.0723,

c3 := [11.18 11.17 11.17 11.14 11.06 10.96 ...

10.91 11.08]

≈ 11.0838.

The values of c1, c2, and c3 are the averages of all c1’s, c2’s and c3’s for all ϕ’s.
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Figure A.1: How ϕ affects the coefficients of the 3-DoF model in (A.13).
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A.14 Model 14

|Z1,2| = |Z2,1|

≈
(
c1 + c2e

−∆
λ

(
L

λ

)c3)
| sinϕ|, (A.14)

where

c1 := [43.03 43.04 43.05 43.11 43.28 43.35 42.84 40.96]

≈ 42.8325

c2 := [4827 4826 4823 4811 4772 4735 4771 5002]

≈ 4820.9

c3 := [10.29 10.29 10.28 10.26 10.18 10.07 10.00 10.13]

≈ 10.1875
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Figure A.2: How ϕ affects the coefficients of the 3-DoF model in (A.14).
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A.15 Model 15

|Z1,2| = |Z2,1|

≈
(
c1 + c2e

(−∆
λ

+c3
L
λ )
)
| sinϕ|, (A.15)

where

c1 := [35.93 35.93 35.94 35.96 36 35.87 35.11 33.09]

≈ 35.4788,

c2 := [0.06779 0.06788 0.06826 0.06974 0.07531 ...

0.08394 0.09062 0.08395]

≈ 0.0759,

c3 := [11.18 11.17 11.17 11.14 11.06 10.94 ...

10.87 11]

≈ 11.0663.

The values of c1, c2, and c3 are the averages of all c1’s, c2’s and c3’s for all ϕ’s.
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Figure A.3: How ϕ affects the coefficients of the 3-DoF model in (A.15).
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A.16 Model 16

|Z1,2| = |Z2,1|

≈
(
c1 + c2e

−∆
λ

(
L

λ

)c3)
|ϕ|, (A.16)

where

c1 := [43.03 43.03 43.02 42.97 42.72 41.99 40.23 36.88]

≈ 41.7338,

c2 := [4827 4825 4819 4795 4710 4586 4480 4503]

≈ 4693.1,

c3 := [10.29 10.29 10.28 10.26 10.18 10.07 10 10.13]

≈ 10.1875.

The values of c1, c2, and c3 are the averages of all c1’s, c2’s and c3’s for all ϕ’s.
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Figure A.4: How ϕ affects the coefficients of the 3-DoF model in (A.16).
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A.17 Model 17

|Z1,2| = |Z2,1|

≈ c0 + c1e
(−c2 ∆

λ
)

(
L

λ

)c3
(A.17)
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Figure A.5: How ϕ affects the coefficients of the 4-DoF model in (A.17).

From Figure A.5,

c0 ≈ 0.7372 + 0.5954 log |ϕ|

c1 ≈ 2.855 + 0.5931 log |ϕ|

c2 ≈ 0.8866

c3 ≈ 10.1359
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A.18 Model 18

|Z1,2| = |Z2,1|

≈ c0 + c1e
(−∆

λ
+c2

L
λ ) (A.18)
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Figure A.6: How ϕ affects the coefficients of the 3-DoF model in (A.18).

From Figure A.6,

log c0 ≈ 1.511 + 0.9661 log |ϕ|

c0 ≈ 10(1.511 + 0.9661 log |ϕ|)

log c1 ≈ −1.091 + 1.053 log |ϕ|

c1 ≈ 10(−1.091 + 1.053 log |ϕ|)

c2 ≈ 11.0663
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A.19 Model 19

log |Z1,2| = log |Z2,1|

≈ p0,0 + p0,1 log

(
L

λ

)
+ p0,2 log2

(
L

λ

)
+ p1,0 log

(
∆

λ

)
+ p1,2 log

(
∆

λ

)
log2

(
L

λ

)
. (A.19)
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Figure A.7: How ϕ affects the coefficients of the 5-DoF model in (A.19).

From Figure A.7,

p0,0 ≈ 2.108 + 0.5881 log |ϕ|

p0,1 ≈ 6.0789

p0,2 ≈ 3.1213

p1,0 ≈ −0.3685

p1,2 ≈ −0.8572

Models 17 to 19 were not selected due to the two-step process which is the

incorrect way of getting the optimized coefficients.
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Appendix B

Candidate Models for

∠Z1,2 = ∠Z2,1

B.1 Model 1

∠Z1,2 = ∠Z1,2

≈ b1
∆

λ
+ b2 (B.1)

here

b1 := −5.5920

b2 := 0.4910

This model failed to consider the effect of L
λ . The best fit phenomenological

model in (5.3) is only independent of ϕ not with L
λ , hence, this model was not

selected.
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B.2 Model 2

For ∆
λ ≤ 0.40,

∠Z1,2 = ∠Z1,2

≈ b1
L

λ
+ b2

(
L

λ

)2

+ b3
∆

λ

(
L

λ

)2

+ b4

(
L

λ

)3

+ b5
∆

λ

(
L

λ

)3

+ b6

(
L

λ

)4

, (B.2)

where

b1 := −23.0477

b2 := 124.3852

b3 := −39.8265

b4 := −199.5342

b5 := 38.2241

b6 := 100.1033

For ∆
λ > 0.40,

∠Z1,2 = ∠Z1,2

≈



b7 (x+ 0.6) + b8 if x ∈ [0, 0.2],

b9 (x+ 0.6) + b10 if x ∈ [0.2, 1.0],

(B.3)

where

x ,

(
∆

λ
+ b11e

(b12
L
λ ) − 0.6

)
mod 1
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where

b7 := 19.1744

b8 := −14.0835

b9 := −6.2797

b10 := 7.6338

b11 := 8.3065× 10−6

b12 := 11.2036.

The model was not selected for the reason that it is complicated and fewer degrees-

of-freedom is preferred. The chosen phenomenological model for ∠Z1,2 has only 3

degrees-of-freedom.

138



B.3 Model 3

∠Z1,2 = ∠Z1,2

≈

{
b1 + b2

L

λ
+ b3

(
L

λ

)2

+ b4

(
L

λ

)3

+ b5

(
L

λ

)4
}

{
b6 sin

(
b7

∆

λ
+ b8

)
+ b9 sin

(
b10

∆

λ
+ b11

)}
(B.4)

where

b1 := 2.2413

b2 := 1.9464

b3 := −0.0254

b4 := −4.2087

b5 := 2.2045

b6 := 9.5608

b7 := 0.4453

b8 := 2.3251

b9 := 8.9874

b10 := 0.2373

b11 := 2.2733

The model was not selected for the reason that it is complicated and fewer

degrees-of-freedom is preferred. The chosen phenomenological model for ∠Z1,2 has

only 3 degrees-of-freedom.
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B.4 Model 4

This model involves two parts: (1) ∆
λ ≤ 0.40, and (2) ∆

λ > 0.40.

For ∆
λ ≤ 0.40,

∠Z1,2 = ∠Z1,2

≈ c1
L

λ
+ c2

(
L

λ

)2

+ c3
∆

λ

(
L

λ

)2

+ c4

(
L

λ

)3

+ c5
∆

λ

(
L

λ

)3

+ c6

(
L

λ

)4

. (B.5)

For each ϕ,

c1 := [−22.13 − 22.13 − 22.13 − 22.14 − 22.18 − 22.25 − 22.35 − 22.49]

≈ −22.2250

c2 := [120.1 120.1 120.1 120.1 119.9 119.7 119.4 118.8]

≈ 119.7750

c3 := [−39.83 − 39.83 − 39.84 − 39.88 − 40.01 − 40.23 − 40.46 − 40.56]

≈ −40.0800

c4 := [−193.4 − 193.4 − 193.3 − 193.2 − 192.6 − 191.5 − 189.7 − 187.4]

≈ −191.8125

c5 := [38.16 38.17 38.18 38.23 38.42 38.73 39.04 39.17]

≈ 38.5125

c6 := [97.3 97.29 97.26 97.15 96.69 95.85 94.54 92.89]

≈ 96.1212

The values of c1 − c6 are the averages of all c1’s to c6’s for all ϕ’s.
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For ∆
λ > 0.40,

∠Z1,2 = ∠Z1,2

≈



c7 (x+ 0.6) + c8 if x ∈ [0, 0.2],

c9 (x+ 0.6) + c10 if x ∈ [0.2, 1.0],

x ,

(
∆

λ
+ c11e

(c12
L
λ ) − 0.6

)
mod 1

For each ϕ,

c7 := [27.8162 27.6606 27.6593 27.6346 27.5995 27.5493 27.4948 27.6543]

≈ 27.6336

c8 := [−19.6240 − 19.5271 − 19.5262 − 19.5229 − 19.5097 − 19.4862 − 19.4525 − 19.4155]

≈ −19.5080

c9 := [−6.2046 − 6.2046 − 6.2046 − 6.2045 − 6.2044 − 6.2041 − 6.2038 − 6.2035]

≈ −6.2043

c10 := [7.5924 7.5925 7.5925 7.5925 7.5928 7.5933 7.5940 7.5949]

≈ 7.5931

c11 := [0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006]

≈ 6× 10−5

c12 := [9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20]

≈ 9.2000

The values of c7 − c12 are the averages of all c7’s to c12’s for all ϕ’s.

Model 4 applied the two-step process, which is an incorrect way of optimizing

the unknown coefficients. Hence, it was selected.
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Appendix C

Candidate Models for

|Z1,1| = |Z2,2|

C.1 Model 1

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ ep6ϕ

}
{(

L

λ
− p7

)2

+ p8

}
, (C.1)

where

p1 := 23422.3889,

p2 := 53.9352,

p3 := 3.9029π,

p4 := 5.5776π,

p5 := 0.5118,

p6 := 3.8075,

p7 := 0.4811,

p8 := −0.0018.
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This model is not recommended since |Z1,1| = |Z2,2| takes on values over a large

range. |Z1,1| = |Z2,2| takes on values over several orders of magnitude. Hence, anyR2

computation based on (C.1) would overweight those support subregions of
{
ϕ, Lλ ,

∆
λ

}
where |Z1,1| = |Z2,2| is very large, thereby poorly fitting other regions of

{
ϕ, Lλ ,

∆
λ

}
where |Z1,1| = |Z2,2| is small. More explicitly, the would-be-overweighted region is

where L
λ increases toward unity and where ∆

λ decreases toward zero. Another reason

why this model was not chosen because at L
λ = p7, |Z1,1| < 0, which is illogical.
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C.2 Model 2

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ |ϕ|

}
{(

L

λ
− p6

)2

+ p7

}
, (C.2)

where

p1 := 23521.2122,

p2 := 63.5567,

p3 := −6.6653π,

p4 := 5.0417π,

p5 := 73.1540,

p6 := 0.4811,

p7 := −0.0018.

The reasons for not choosing this model are the same as in (C.1).
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C.3 Model 3

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ |ϕ|p6

}
{(

L

λ
− p7

)2

+ p8

}
, (C.3)

where

p1 := 23520.6470,

p2 := 45.6549,

p3 := 36.2684π,

p4 := 6.5309π,

p5 := 17.7974,

p6 := 3.1830,

p7 := 0.4811,

p8 := −0.0018.

The reasons for not choosing this model are the same as in (C.1).
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C.4 Model 4

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ | sin(ϕ)|

}
{(

L

λ
− p6

)2

+ p7

}
, (C.4)

where

p1 := 23506.3520,

p2 := 92.8410,

p3 := 1.3200π,

p4 := 6.0051π,

p5 := 1.3121,

p6 := 0.4811,

p7 := −0.0018.

The reasons for not choosing this model are the same as in (C.1).
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C.5 Model 5

|Z1,1| = |Z2,2|

≈

p1 + p2

P1(∆
λ ) :=︷ ︸︸ ︷

cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ sin2(ϕ)

{(
L

λ
− p6

)2

+ p7

}
, (C.5)

where

p1 := 23439.3128,

p2 := 1914.2833,

p3 := −3.8994π,

p4 := 0.4090π,

p5 := 0.5087,

p6 := 0.4812,

p7 := −0.0018.

The reasons for not choosing this model are the same as in (C.1).
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C.6 Model 6

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ | sin(ϕ)|p6

}
{(

L

λ
− p7

)2

+ p8

}
, (C.6)

where

p1 := 23520.4845,

p2 := 112.9325,

p3 := 2.7775π,

p4 := 4.9792π,

p5 := 178.9852,

p6 := 5.5039,

p7 := 0.4811,

p8 := −0.0018.

The reasons for not choosing this model are the same as in (C.1).
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C.7 Model 7

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ sin2(ϕ)

}
{(

L

λ
− p6

)2

+ p7

}
, (C.7)

where

p1 := 23138.1624,

p2 := 1924.3751,

p3 := 3.9229π,

p4 := 5.5608π,

p5 := 0.4888,

p6 := 0.4804,

p7 := 0.00000025733.

This model was not selected since |Z1,1| = |Z2,2| takes on values over a large

range. |Z1,1| = |Z2,2| takes on values over several orders of magnitude. Hence,

any R2 computation based on (C.1) would overweight those support subregions of{
ϕ, Lλ ,

∆
λ

}
where |Z1,1| = |Z2,2| is very large, thereby poorly fitting other regions of{

ϕ, Lλ ,
∆
λ

}
where |Z1,1| = |Z2,2| is small. More explicitly, the would-be-overweighted

region is where L
λ increases toward unity and where ∆

λ decreases toward zero.
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C.8 Model 8

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ ep6ϕ

}
{
p7e

p8
L
λ + p9e

p10
L
λ

}
, (C.8)

where

p1 := 4.3710,

p2 := −0.0007,

p3 := 0.5601,

p4 := 3.4014,

p5 := 1.6758,

p6 := 3.6285,

p7 := 0.1622,

p8 := 1.6959,

p9 := 0.9041,

p10 := −3.2461.

This model was not selected due to the large number of degrees-of-freedom.
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C.9 Model 9

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ ep6ϕ

}
p7e

−
(
L
λ
−p8
p9

)2

+ p10e
−
(
L
λ
−p11
p12

)2
 , (C.9)

where

p1 := 3.9153,

p2 := −0.3183,

p3 := 2.1916,

p4 := 1.3968,

p5 := 4.0320,

p6 := −5.0740,

p7 := −0.4343,

p8 := 0.4983,

p9 := 0.2868,

p10 := 1.0087,

p11 := 0.6649,

p12 := 2.5468.

This model was not selected due to its complexity and due to the large number

of degrees-of-freedom.
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C.10 Model 10

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ ep6ϕ

}
{
p7

(
L

λ

)4

+ p8

(
L

λ

)3

+ p9

(
L

λ

)2

+ p10

(
L

λ

)
+ p11

}
, (C.10)

where

p1 := −0.2816,

p2 := 177.4234,

p3 := 0.4715,

p4 := 1.5658,

p5 := 146.3067,

p6 := −127.0248,

p7 := 59.9839,

p8 := −107.6804,

p9 := 32.4132,

p10 := 16.6568,

p11 := −15.0194,

This model was not selected due to its complexity and due to the large number

of degrees-of-freedom.
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C.11 Model 11

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ |ϕ|p6

}
{
p7e

p8
L
λ + p9e

p10
L
λ

}
, (C.11)

where

p1 := 0.3916,

p2 := −0.0671,

p3 := 13.8602,

p4 := 7.4596,

p5 := 9.1662,

p6 := 13.8754,

p7 := 1.8111,

p8 := 1.6958,

p9 := 10.0953,

p10 := −3.2461.

This model was not selected due to the large number of degrees-of-freedom.
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C.12 Model 12

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ | sin(ϕ)|p6

}
{
p7e

p8
L
λ + p9e

p10
L
λ

}
, (C.12)

where

p1 := 0.6306,

p2 := 0.3413,

p3 := 8.4951,

p4 := 11.7166,

p5 := 7.8617,

p6 := 13.9790,

p7 := 1.1244,

p8 := 1.6958,

p9 := 6.2680,

p10 := −3.2461.

This model was not selected due to the large number of degrees-of-freedom.
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C.13 Model 13

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ |ϕ|p6

}
p7e

−
(
L
λ
−p8
p9

)2

+ p10e
−
(
L
λ
−p11
p12

)2
 , (C.13)

where

p1 := 4.2666,

p2 := 10.1235,

p3 := 1.3079,

p4 := −0.1623,

p5 := 12.9825,

p6 := 25.3620,

p7 := −0.3792,

p8 := 0.4863,

p9 := 0.2910,

p10 := 0.9046,

p11 := −0.0311,

p12 := 26.6629.

This model was not selected due to its complexity and due to the large number

of degrees-of-freedom.
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C.14 Model 14

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ | sin(ϕ)|p6

}
p7e

−
(
L
λ
−p8
p9

)2

+ p10e
−
(
L
λ
−p11
p12

)2
 , (C.14)

where

p1 := 10.5046,

p2 := 3.5518,

p3 := −0.7215,

p4 := 2.6124,

p5 := 19.6664,

p6 := 16.8376,

p7 := −0.1532,

p8 := 0.4872,

p9 := 0.2893,

p10 := 0.3669,

p11 := 1.2465,

p12 := 22.4539.

This model was not selected due to its complexity and due to the large number

of degrees-of-freedom.
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C.15 Model 15

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ |ϕ|p6

}
{
p7

(
L

λ

)4

+ p8

(
L

λ

)3

+ p9

(
L

λ

)2

+ p10

(
L

λ

)
+ p11

}
, (C.15)

where

p1 := 4.6067,

p2 := −8.4630,

p3 := −0.0007,

p4 := 1.5720,

p5 := −0.7125,

p6 := 4.3720,

p7 := −5.0905,

p8 := 9.9604,

p9 := −4.6921,

p10 := −0.1901,

p11 := 0.8449,

This model was not selected due to its complexity and due to the large number

of degrees-of-freedom.
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C.16 Model 16

|Z1,1| = |Z2,2|

≈
{
p1 + p2 cos

(
p3

∆

λ
+ p4

)
e−p5

∆
λ | sinϕ|p6

}
{
p7

(
L

λ

)4

+ p8

(
L

λ

)3

+ p9

(
L

λ

)2

+ p10

(
L

λ

)
+ p11

}
, (C.16)

where

p1 := 2.8236,

p2 := 0.5890,

p3 := −4.1481,

p4 := 1.5905,

p5 := 5.2617,

p6 := 4.5600,

p7 := −12.0029,

p8 := 24.4661,

p9 := −13.7944,

p10 := 1.4457,

p11 := 1.2264,

This model was not selected due to its complexity and due to the large number

of degrees-of-freedom.

NOTE: The model fitting from Models 17-20 is done in two steps:

1. The VLab data for |Z1,1| = |Z2,2| will be fitted to equation (C.17) per L
λ value

in the MATLAB built-in function, “cftool”.

2. The obtained optimized coefficients per L
λ in (1) will then again be fitted to

another function, which is again done in “cftool”.
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C.17 Model 17

The proposed model is,

|Z1,1| = |Z2,2|

≈
{
c1 + c2 cos

(
c3

∆

λ
+ c4

)
e−c5

∆
λ |ϕ|c6

}
{(

L

λ
− c7

)2

+ c8

}
(C.17)
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Figure C.1: How L
λ affects the coefficients of the 8-DoF model in (C.17).
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From Fig. C.1,

c1 ≈ 2474 + 2991 cos

(
5.677

L

λ

)
− 995.7 sin

(
5.677

L

λ

)
+ 1099 cos

(
11.354

L

λ

)
− 671.1 sin

(
11.354

L

λ

)
+ 503.3 cos

(
17.031

L

λ

)
− 429.8 sin

(
17.031

L

λ

)
+ 212.7 cos

(
22.708

L

λ

)
− 199.1 sin

(
22.708

L

λ

)
+ 25.54 cos

(
28.385

L

λ

)
− 120 sin

(
28.385

L

λ

)
c2 ≈ 0.001378 e14.09L

λ + 2.194

c3 ≈
9.177

(
L
λ

)3 − 6.949
(
L
λ

)2
+ 0.7756Lλ + 0.2854(

L
λ

)2 − 0.8883Lλ + 0.2063

c4 ≈ 19.89 sin

(
3.71

L

λ
− 0.1706

)
+ 14.53 sin

(
4.653

L

λ
+ 2.715

)
+ 0.5484 sin

(
18.28

L

λ
− 2.858

)
+ 0.3028 sin

(
32.39

L

λ
− 2.655

)
c5 ≈ 304 e−7.607L

λ

c6 ≈ 2.1968

c7 ≈ 0.4850

c8 ≈ −0.9698

(
L

λ
− 0.4814

)2

+ 0.994

This model fits the data using the Fourier series at the L
λ values where VLab

simulations are done, hence the many cosine functions. However, the coefficient

values depend on the Fourier series grid, so this model is not chosen.
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C.18 Model 18

|Z1,1| = |Z2,2|

≈
{
c1 + c2 cos

(
c3

∆

λ
+ c4

)
e(−c5 ∆

λ
+c6ϕ)

}{(
L

λ
− c7

)2

+ c8

}
(C.18)

From Fig. C.2,

c1 ≈ 137200 e
−
(
L
λ
−0.4483

0.04192

)2

+ 33430

c2 ≈ 99.5 e
−
(
L
λ
−0.4771

0.05298

)2

+ 17.87

c3 ≈ 1477000 e−101.2L
λ + 9.58

c4 ≈ −23.49 e−2.606L
λ + 18.6

c5 ≈ 417.4 e−8.613L
λ

c6 ≈ 3.9800

c7 ≈ 0.4786

c8 ≈ −0.0045

The functions c1, c2, c3, c4 and c5 are derived from the 2D curve fitting in

Matlab’s “cftool”. While the values of c6, c7 and c8 are averages for all L
λ ’s.
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Figure C.2: How L
λ affects the coefficients of the 8-DoF model in (C.18).
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C.19 Model 19

|Z1,1| = |Z2,2|

≈

{
c1 + c2 cos

(
c3

∆

λ
+ c4

)
e(−c5 ∆

λ
)

((
L

λ
− c7

)2

+ c8

)}
e(c6ϕ)

(C.19)
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Figure C.3: How ϕ affects the coefficients of the 8-DoF model in (C.19).

From Fig. C.3,

c1 ≈ 11540

c2 ≈ 23100

c3 ≈ 2.7608× 10−5

c4 ≈ 1.787× 10−4

c5 ≈ 1.2792× 10−4

c6 ≈ 0.2507

c7 ≈ 0.4811

c8 ≈ −0.5014
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C.20 Model 20

|Z1,1| = |Z2,2|

≈
{
c1 + c2 cos

(
c3

∆

λ
+ c4

)
e−c5

∆
λ |ϕ|c6

}
{(

L

λ
− c7

)2

+ c8

}
(C.20)
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Figure C.4: How L
λ affects the coefficients of the 8-DoF model in (C.20).
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c1 ≈ 2.324× 104

(
L

λ
− 0.4803

)2

c2 ≈ 0.001366 e14.1L
λ + 2.361

c3 ≈
2814

(
L
λ

)4 − 147.6
(
L
λ

)3
+ 704.7

(
L
λ

)2
+ 13.84Lλ + 190.6(

L
λ

)4 − 924.6
(
L
λ

)3
+ 2472

(
L
λ

)2 − 1600Lλ + 338.7

c4 ≈
−4.299

(
L
λ

)3
+ 8.567

(
L
λ

)2 − 5.125Lλ + 0.9699(
L
λ

)4 − 3.083
(
L
λ

)3
+ 3.448

(
L
λ

)2 − 1.61Lλ + 0.2679

c5 ≈ 299.8 e−7.444L
λ

c6 ≈ 2.1951

c7 ≈ 0.4853

c8 ≈ 0.9281
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C.21 Model 21

|Z1,1| = |Z2,2|

≈ c0 + c1e
(c2 Lλ ) + c3e

(−c4 Lλ ) (C.21)
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Figure C.5: How ϕ affects the coefficients of the 5-DoF model in (C.21).
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From Fig. C.5,

c0 ≈ −416.2750

c1 ≈ 19.20

c2 ≈ 5.9253

c3 ≈ 7604.9

c4 ≈ 6.8407

C.22 Model 22

log |Z1,1| = log |Z2,2|

≈ p0,0 + p0,2 log2

(
L

λ

)
+ p0,3 log3

(
L

λ

)
+ p0,4 log4

(
L

λ

)
+ p0,5 log5

(
L

λ

)
(C.22)
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Figure C.6: How ϕ affects the coefficients of the 5-DoF model in (C.22).
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From Fig. C.6,

p0,0 ≈ 3.7734

p0,2 ≈ −71.0738

p0,3 ≈ −272.20

p0,4 ≈ −351.5250

p0,5 ≈ −150.1875
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Appendix D

Candidate Models for

∠Z1,1 = ∠Z2,2

D.1 Model 1

∠Z1,1 = ∠Z2,2

≈
{
q1 + q2 cos

(
q3

∆

λ
+ q4

)
e(−q5 ∆

λ

}{
cos

(
q7
L

λ
+ q8

)}
(D.1)

where

q1 := 1.7649

q2 := 6.6980

q3 := 0.0096

q4 := 4.7128

q5 := 9.3626

q6 := 6.5207

q7 := −4.7122

This model was not chosen due to the number of degrees-of-freedom of 7. The best
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fit model in (5.11) has only 5 degrees-of-freedom.

D.2 Model 2

∠Z1,1 = ∠Z1,1

≈
{
q1 + q2 cos

(
q3

∆

λ
+ q4

)
e(−q5 ∆

λ

}
f(
L

λ
)

(D.2)

where

f(
L

λ
) =


q6, if mod

(
L
λ , 1
)
< q9

cos
(
q7 mod

(
L
λ , 1
)

+ q8

)
if mod

(
L
λ , 1
)
> q9

q1 := 1.4580

q2 := 2.2817

q3 := 5.8308

q4 := −1.6890

q5 := 25.4661

q6 := −0.8891

q7 := 5.5635

q8 := 8.6596

q9 := 0.4996

This model was not chosen due to the number of degrees-of-freedom of 9 and

due to its complex form. The chosen model in (5.11) has only 5 degrees-of-freedom.
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D.3 Model 3

∠Z1,1 = ∠Z2,2

≈

q1 +

Q(∆
λ ) :=︷ ︸︸ ︷

q2 sin

(
q3

∆

λ

)
e−q4

∆
λ | sin(ϕ)|


sin

(
q5
L

λ

)
, (D.3)

where

q1 := 1.7648,

q2 := 0.0971,

q3 := 1.5977π,

q4 := 10.5309,

q5 := −2.0758π.

This model was not chosen due to the little dependence of ϕ in the ∠Z1,1 and ∠Z2,2.
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D.4 Model 4

∠Z1,1 = ∠Z2,2

≈
{
q1 + q2 sin

(
q3

∆

λ

)
e−q4

∆
λ | sin(ϕ)|2

}
sin

(
q5
L

λ

)
, (D.4)

where

q1 := 1.7659,

q2 := 0.0994,

q3 := 1.6161π,

q4 := 16.0681,

q5 := −2.0758π.

This model was not chosen due to the little dependence of ϕ in the ∠Z1,1 and ∠Z2,2.
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D.5 Model 5

∠Z1,1 = ∠Z2,2

≈
{
q1 + q2 sin

(
q3

∆

λ

)
e−q4

∆
λ | sin(ϕ)|q5

}
sin

(
q6
L

λ

)
, (D.5)

where

q1 := 1.7664,

q2 := 0.0098,

q3 := 2.1483π,

q4 := 6.8185,

q5 := 3.1243,

q6 := −2.0758π.

This model was not chosen due to the little dependence of ϕ in the ∠Z1,1 and ∠Z2,2.
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D.6 Model 6

∠Z1,1 = ∠Z2,2

≈
{
q1 + q2 sin

(
q3

∆

λ

)
e−q4

∆
λ |ϕ|

}
sin

(
q5
L

λ

)
, (D.6)

where

q1 := 1.7649,

q2 := 0.4952,

q3 := 0.3245π,

q4 := 12.7485,

q5 := −2.0758π.

This model was not chosen due to the little dependence of ϕ in the ∠Z1,1 and ∠Z2,2.
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D.7 Model 7

∠Z1,1 = ∠Z2,2

≈
{
q1 + q2 sin

(
q3

∆

λ

)
e−q4

∆
λ |ϕ|q5

}
sin

(
q6
L

λ

)
, (D.7)

where

q1 := 1.7650,

q2 := 0.0943,

q3 := 1.1830π,

q4 := 8.4140,

q5 := 1.0945,

q6 := −2.0758π.

This model was not chosen due to the little dependence of ϕ in the ∠Z1,1 and ∠Z2,2.
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D.8 Model 8

∠Z1,1 = ∠Z2,2

≈
{
q1 + q2 cos

(
q3

∆

λ
+ q4

)
e−q5

∆
λ

}
{
q6
L
λ

2
+ q7

L
λ + q8

L
λ

2
+ q9

L
λ + q10

}
, (D.8)

where

q1 := 0.7811,

q2 := 0.0007,

q3 := 7.4286π,

q4 := 8.5522,

q5 := 0.7675,

q6 := −0.9786,

q7 := 1.5903,

q8 := −0.5463,

q9 := −1.0524,

q10 := 0.2992.

The ∆
λ term inside the first curly bracket was first fitted in “cftool”, a built-in

function in MATLAB. The “rational” function involving L
λ inside the second curly

bracket was fitted separately in “cftool”. After getting good fitting for both terms

in “cftool”, it was then fitted altogether in 4D using the code written in MATLAB.

Aside from the complex nature of the above expression, this model was not chosen

due to the large number of degrees-of-freedom.

175



D.9 Model 9

∠Z1,1 = ∠Z2,2

≈
{
q1 + q2 cos

(
q3

∆

λ
+ q4

)
e−q5

∆
λ

}
q6e

−
(
L
λ
−q7
q8

)2

+ q9e
−
(
L
λ
−q10
q11

)2
 , (D.9)

where

q1 := 1.3726,

q2 := 0.0039,

q3 := 1.2443,

q4 := 1.5995,

q5 := 1.3905,

q6 := 2.7508,

q7 := 0.6657,

q8 := 0.2374,

q9 := −1.6424,

q10 := 0.4658,

q11 := 0.5343.

Like the candidate model in (D.8), the same procedure was carried out. The term

involving L
λ is now a “Gaussian” function. Again, it’s complex and difficult to

explain in terms of electromagnetics. Also, this model was not chosen due to the

large number of degrees-of-freedom.
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D.10 Model 10

∠Z1,1 = ∠Z2,2

≈
{
q1 + q2 cos

(
q3

∆

λ
+ q4

)
e−q5

∆
λ

}
{
q6

(
L

λ

)5

+ q7

(
L

λ

)4

+ q8

(
L

λ

)3

+ q9

(
L

λ

)2

+ q10
L

λ
+ q11

}
,(D.10)

where

q1 := 0.9909,

q2 := 0.0039,

q3 := 0.8370,

q4 := 1.1806,

q5 := 1.3791,

q6 := 346.1105,

q7 := −912.0844,

q8 := 832.9370,

q9 := −311.1516,

q10 := 47.7609,

q11 := −3.9708.

Like the candidate model in (D.8), the same procedure was implemented. The term

involving L
λ is now a “polynomial” function. Again, it’s complex and difficult to

explain in terms of electromagnetics. Besides, this model was not chosen due to the

large number of degrees-of-freedom.
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D.11 Model 11

∠Z1,1 = ∠Z2,2

≈
{
q1 + q2 cos

(
q3

∆

λ
+ q4

)
e−q5

∆
λ

}
{
q6 sin

(
q7
L

λ
+ q8

)
+ q9 sin

(
c10

L

λ
+ q11

)}
, (D.11)

where

q1 := 1.5891,

q2 := 0.9794,

q3 := 0.0061,

q4 := 1.5684,

q5 := 1.3266,

q6 := 1.1532,

q7 := 6.6205,

q8 := 3.0688,

q9 := 0.2671,

q10 := 18.5921,

q11 := 3.2727.

Like the candidate model in (D.8), the same procedure was employed. The term

involving L
λ is now a “sum of sine” function. The complexity of the expression and

the large number of degrees-of-freedom were the reasons for not choosing this model.
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D.12 Model 12

∠Z1,1 = ∠Z2,2

≈
{
c1 + c2 cos

(
c3

∆

λ
+ c4

)
e(−c5 ∆

λ
) cos

(
c7
L

λ
+ c8

)}
e(c6ϕ) (D.12)
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Figure D.1: How ϕ affects the coefficients of the 8-DoF model in (D.12).

From Fig. D.1,

c1 ≈ −0.1282 e−11.40|ϕ|

c2 ≈ 3.694 e−10.21|ϕ|

c3 ≈ 5.9724× 10−6

c4 ≈ 1.2619

c5 ≈ 0.0010

c6 ≈ 11.4275

c7 ≈ −6.373

c8 ≈ 4.609
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This model is not chosen because the fitting error is artificially low because of

dominance by the VLab data at L
λ ≈ 1.0.

D.13 Model 13

∠Z1,1 = ∠Z2,2

≈
{
c1 + c2 cos

(
c3

∆

λ
+ c4

)
e(−c5 ∆

λ
+c6ϕ)

}
{

cos

(
c7
L

λ
+ c8

)}
(D.13)

From Fig. D.2,

c1 ≈ 5.082 e
−
(
L
λ
−0.4542

0.04627

)2

+ 1.813

c2 ≈ 8.546× 10−9 e16.63L
λ

c3 ≈ 1258 e−18.64L
λ + 9.929

c4 ≈ 4.8472

c5 ≈
−0.06303 L

λ + 0.7038

(Lλ )2 − 0.4114 L
λ + 0.06139

c6 ≈ 3.6788

c7 ≈ −6.3728

c8 ≈ 4.6093

The functions c1, c2, c3 and c5 are derived from the 2D curve fitting in Matlab’s

“cftool”. While the values of c4, c6, c7 and c8 are their averages for all L
λ ’s.
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Figure D.2: How L
λ affects the coefficients of the 8-DoF model in (D.13).

D.14 Model 14

∠Z1,1 = ∠Z2,2

≈
{
c1 + c2 cos

(
c3

∆

λ
+ c4

)
e(−c5 ∆

λ
)|ϕ|c6

}
{

cos

(
c7
L

λ
+ c8

)}
(D.14)

From Fig. D.3,

c1 ≈ 5.061 e
−
(
L
λ
−0.4542

0.04625

)2

+ 1.816

c2 ≈ 4.322× 10−10 e22.78L
λ

c3 ≈ 2813 e−22.97L
λ + 10.16

c4 ≈ 4.8490

c5 ≈
−0.3016 L

λ + 0.7147

(Lλ )2 − 0.4675 L
λ + 0.07276

c6 ≈ 1.9116

c7 ≈ −6.3727

c8 ≈ 4.6093

The functions c1, c2, c3 and c5 are derived from the 2D curve fitting in Matlab’s
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“cftool”. While the values of c4, c6, c7 and c8 are their averages for all L
λ ’s.
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Figure D.3: How L
λ affects the coefficients of the 8-DoF model in (D.14).
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D.15 Model 15

∠Z1,1 = ∠Z2,2

≈
{
c1 + c2 cos

(
c3

∆

λ
+ c4

)
e(−c5 ∆

λ
+c6ϕ)

}
e−( L

λ
−c7
c8

)2

+ c9


(D.15)
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Figure D.4: How L
λ affects the coefficients of the 9-DoF model in (D.15).
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From Fig. D.4,

c1 ≈ 11.21 e
−
(
L
λ
−0.5009

0.04042

)2

+ 3.553

c2 ≈ 8.785× 10−9 e17.07L
λ − 0.004687

c3 ≈ 135.2 e−9.939L
λ + 9.125

c4 ≈ 6.0231

c5 ≈ 67.65 e−4.165L
λ

c6 ≈ 3.6412

c7 ≈ 0.7354

c8 ≈ 0.2600

c9 ≈ −0.4908
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