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ABSTRACT 

Assessment of the condition of existing structures is vital for their maintenance and 

repair. Prestress force has been used widely with long span structure, and it is the most 

important factor to describe the load-carrying capacity of the structure. Besides, many 

structural systems are susceptible to damage in their useful lives due to many reasons. 

A change in the prestress force and structural damages will produce changes in the 

dynamic characteristics and the dynamic responses of the structure. This is the basis 

for the vibration-based damage and prestress force identification methods.  

In this dissertation, two methods for damage detection are developed.  The first 

method is dynamic response sensitivity-based finite element model updating. 

Elemental damage is identified from the measured structural dynamic responses. The 

other approach is parameterization of crack in beam.  The parameters of the crack, i.e. 

the location and the depth of the crack are identified from the measured dynamic 

structural responses in time domain. 

The contributions in this desertation are: 

1. Time domain response sensitivity with respect to physical parameters of a 

structural system is obtained numerically and analytically, and it was used 

for structural damage detection; 

2. Further applications of the dynamic response sensitivity for damage 

detection are developed, such as structural damage detection taking into 

account the temperature effect, differentiating different damage types in 
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structures made of isotropic homogeneous material, prestress force 

identification and damage detection including the load environment. 

3. A method for parameterization of crack in beam is proposed and a method 

for identifying the crack location and crack depth is developed in time 

domain using the measured dynamic response; 

4. A method for prestress force identification in structures is developed based 

on modal superposition. The prestress force is identified from the measured 

dynamic responses of the structure. 
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Chapter  1 
 

INTRODUCTION  

1.1 General Remarks 

1.1.1 Background and Motivation of Vibration-Based Damage and 

Prestress Force Identification 

Due to a wide variety of unforeseen conditions and circumstances, it is never 

possible to design and build a structure that has a zero percentage of probability of 

failure. Structural aging, environmental conditions, etc. are examples of factors that 

could affect the reliability and the life of a structure. Regular inspection and condition 

assessment of engineering structures are necessary so that early detection of any defect 

can be made and the safety and reliability of the structure can be determined. Early 

damage detection allows maintenance and repair works to be properly programmed 

thus minimizing the maintenance cost.  

Most systems are subject to damage over their useful lives. Damage may be 

defined as a change introduced into a system that adversely affects the current or future 

performance of the system (Doebling et al. 1998). In the past three decades, the 

research work is focused on identification of damage in structural and mechanical 

systems in civil, mechanical, and aerospace engineering. Thus, the definition of 

damage will be confined to the material and/or geometric properties of these systems, 

including changes to the boundary conditions and system connectivity, which 

adversely affect the performance of the systems (Farrar et al., 2001).  
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The increasing interest in monitoring a structure and detecting damage as early as 

possible results from previous catastrophic failures with great loss of life and property 

(Lancaster, 2000; Jones, 1998, 2001). Catastrophes due to structural failures, such as 

the series of Comet I aircraft failures in the 1950s caused by fatigue cracks of the 

cabin, the capsizing of the Alexander L Kielland rig in 1980 started from fatigue 

fracture of a brace, the air crash due to in-flight loss of the exterior skin on an Aloha 

Airlines flight in Hawaii in 1988, focus the public concerns on the safety of structures 

and mechanical systems. The public concerns, in turn, urge the government for the 

need of health monitoring the existing but ageing infrastructures. For example, there 

are over 2500 bridges built in the 1960’s and 1970’s in the United States, which 

typically have only two plate girders carrying all the dead and live loads (Drdacky, 

1992). It is a real challenge for technology and the economy to monitor them and to 

carry out proper repair if it is needed. 

Visual inspection by an expert has been the only available means of damage 

detection and structural maintenance during the early years of damage detection. 

However, many modern structures, such as offshore platforms, long-span bridges and 

space structures are difficult or inaccessible in their service life. Besides, many failures 

start from the inside of structural components, thus they cannot be detected by naked 

eyes at an early damage stage. Therefore, non-destructive evaluation (NDE) techniques 

are introduced and developed. As we know, most non-destructive damage detection 

techniques used are local experimental methods, such as acoustic or ultrasonic 

methods, magnetic field methods, radiography, eddy-current methods, or thermal field 

methods (Doherty, 1993). All of these experimental techniques require that the 

location of the damage be known a priori and be readily accessible. Due to these 

limitations, the application of these methods is far from satisfactory since we are 
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limited to detect local damage on the surface of the structure and the size of the 

structure is also practically limited. There is a great need for local damage 

identification methods that can be applied to complex and large-scale structures. This 

is the background of vibration-based damage detection that came into being.  

 The structural damage may be caused by various reasons such as operating loads, 

impact, fracture, fatigue, corrosion, manufacturing fault etc., in general, producing 

changes in the structural physical properties (i.e., stiffness, mass, and damping), and 

these changes will lead to changes in the dynamic characteristics or dynamic response 

of the structure. This fact has been widely noticed and used by structural engineers for 

damage detection or health monitoring of a structure. The vibration-based damage 

detection is found on the basis that the modal parameters (namely frequencies, mode 

shapes and/or transfer functions, modal damping) are functions of the physical 

properties of the structure (mass, damping, and stiffness). Recently, with the 

developments of technology in many areas, such as increase in memory and speed of 

scientific computing, advances in sensor and experimental techniques, and 

development of finite element methods, have contributed to the development of the 

vibration-based damage detection methods.  

In recent years, the interest in the safety assessment of existing prestressed 

concrete bridges increased. Prestress force is introduced to control crack initiation in 

concrete, to reduce deflections, and to add strength to the prestressed members. 

Therefore, a substantial difference between the desired and the in-service prestress 

force can lead to severe and critical serviceability and safety problems (Saiidi et al., 

1996; Saiidi et al., 1998). Most concrete bridges consist of prestressed concrete in two 

predominant construction categories: pre-tensioned and post-tensioned. The bridge 

deck may lose some of its prestress force due to creep and long period of service under 
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design or overloaded vehicles. Assessment on the magnitude of the prestress force or 

the loss of pretress force in the bridge deck is important for its load-carrying capacity 

assessment. It needs to develop a method that can identify the prestress force or 

prestress force loss via monitoring changes in dynamic responses. 

1.1.2 Vibration-Based Damage and Prestress Force Identification 

1.1.2.1 Interpretation of Vibration-Based Damage Detection 

In general, the vibration-based damage assessment is an inverse problem to 

identify the location, pattern and quantity of the loss in system stiffness from the 

measured structural vibration data. With the discovery of the Fast Fourier Transform 

(FFT) algorithm (Cooley and Tukey, 1965) and the use of digital computers in 

laboratory test systems, the development of techniques such as digital signal 

processing, modal testing and analysis is notably inspired. The advances in these areas 

in turn allowed researchers to investigate the possibilities for quantitatively measuring 

the state of a structure by inspecting its vibration characteristics. This encouraging 

technique has received wide attention throughout the civil, mechanical and aerospace 

engineering communities due to its potential for solving the aforementioned 

inaccessibility problem of localized experimental inspection methods. Doebling et al. 

(1998) provided an excellent summary on research advances in these techniques over 

the last three decades. A typical scheme of vibration-based non-destructive evaluation 

procedure is summarized as follows: firstly, the vibration response of the structure is 

measured. For an ambient vibration test, only the output response of the structure 

aroused from ambient excitation sources such as wind loads, normal traffic and wave 

loads is measured. For a forced vibration test, both the input excitation force and 

output structural response are measured. Secondly, modal analysis is performed to get 
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modal parameters such as natural frequencies, mode shapes and damping ratios from 

the measured time histories. Thirdly, a non-destructive detection algorithm is applied 

to identify damage using the previously estimated modal parameters. An analytical 

model of the structure and/or its predicted response may also be used as a baseline in 

the detection process if necessary. Lastly, structural safety and reliability analysis is 

carried out to direct the future usage of the structure according to the results of damage 

identification.  

1.1.2.2 Four-level Damage Identification 

The vibration-based damage detection approaches can be categorized according to 

various criteria. A well known classification for damage detection methods, proposed 

by Rytter (1993), defines the following four levels.  

 Level 1 (Damage Detection): Determination of the presence of damage in the 

structure; 

 Level 2 (Damage Localization): Level 1 plus determination of the probable 

location of the damage; 

 Level 3 (Damage Quantification): Level 2 plus quantification of the severity of 

the damage; 

 Level 4 (Consequence): Level 3 plus prediction of the remaining useful life of 

the structure. 

The four-level damage identification method provides a sequence to assess the 

structural damage stage by stage. Since Level 4 prediction requires knowledge 

associated with other fields such as structural design, fracture mechanics, materials 

aging studies, and damage mechanism, it is therefore not included in this research. 
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This dissertation will address only the vibration-based damage identification methods 

that provide damage information on the first three levels. 

1.1.2.3 Linear Damage versus Non-Linear Damage 

The damage can be classified as linear or non-linear damage according to its 

effects on the dynamic response of a structure. A linear damage is defined as the case 

in which the structure retains its initial linear-elastic property after damage occurrence 

(Doebling et al., 1998). The damage, in terms of changes in the geometry and/or 

material properties of the structure, changes the dynamic properties of the structure in 

a linear or a linear combination manner. Therefore, the response of the damaged 

structure can still be modeled using linear equations of motion. Up to now, the 

majority of the research results published in the technical literature address only the 

linear cases of damage detection. 

 Non-linear damage is defined as the case when the initially linear-elastic structure 

behaves in a non-linear manner after the damage has been introduced. (Doebling et al., 

1998). These non-linear behaviors in structural response can also be attributed to the 

changes in geometry and material properties caused by damage. One example of 

geometrically non-linear damage cases is a crack that subsequently opens and closes 

under the operating load. Material non-linear damage examples include non-linear 

behavior exhibited by a damaged concrete beam. If a structure exhibits moderate or 

severe nonlinearities, conventional damage identification approaches will give results 

with large error or even wrong results. Some researchers (Topole and Tzvetkova, 

1996) try to directly obtain the equations of system physical properties based on the 

first law of thermodynamics rather than use modal analysis techniques in structural 

damage prediction. Jin et al. (2000) investigates the possibility of applying an energy 
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index approach in general nonlinear finite element analysis for damage detection in 

highway bridge structures. The nonlinear behaviors of the bridges under dynamic 

loading conditions due to material inelastic deformation and crack damages have been 

studied. In another study, nonlinear analysis and chaos theory were applied to 

structural health monitoring (Livingston et al., 2000). Chaotic behavior was observed 

in the bridge model. They found that the natural frequencies of the structure are not 

fixed, but wander in time in a characteristic pattern around a central value.  

1.1.2.4 Response-Based Approach versus Model-Based Approach 

Damage detection using changes in modal data can be classified into two broad 

categories. The first category is the “response-based approach” in which the loss in 

stiffness is directly related to the measured modal parameters. Cawley and Adams 

(1979) proposed a method based on the assumption that the ratio of frequency changes 

in two modes is related to the location of damage. In this method, theoretical frequency 

ratios due to damage at different positions on the structure are compared to the 

measured ones. Salawu (1997b) introduced a global integrity index for detecting 

damage using a linear combination of the frequencies of both damaged and intact 

structure. Uzgider et al. (1993) used a technique based on identification of some 

stiffness parameters by using measured natural frequencies. In their method, vibration 

modes, for which the stiffness parameters are mostly sensitive, are selected and used to 

evaluate the magnitude of these parameters. Other applications of the “response-based 

approach” are due to Zhang et al. (1992, 1993) for detecting structural faults in frame 

structures and localizing defects in foundation piles. The drawback of most of the 

methods based on the above approach is that consideration of all possible damage 

scenarios at different locations on the structure is required. Consequently, excessive 

computational time is needed especially for large structures.  
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The second category of damage detection techniques is the “model-based 

approach” which is based on updating certain physical parameters to get a perfect 

agreement between the experimentally measured modal parameters and a finite 

element model. The updated parameters can be interpreted afterwards to evaluate 

damage and identify its location. Mottershead and James (1997) have used an updating 

technique to correct the mass and stiffness at the joint of an aluminium space frame. 

Collins et al. (1972, 1974) have proposed an updating method based on statistical 

technique. The updated parameters are estimated so that their variance is a minimum. 

Friswell (1989) has adopted the minimum variance method of Collins et al. (1972, 

1974) assuming that the measurement noise and the parameter estimates are not 

independent. Grossman (1982) has used a penalty function method based on a 

weighted average of the ratio between the measured and analytical modal data. From a 

theoretical viewpoint, natural frequencies as well as mode shapes can be used as modal 

parameters in the updating algorithm. However, in practice the measured mode shapes 

are normally less accurate than the natural frequencies. Up to 30% measurement error 

in the eigenvectors may be expected (Dascotte, 1990). On the contrary, the error in the 

measured natural frequencies is around 1% (Dascotte, 1990). Therefore, the 

eigenvalues can be used with more confidence than the eigenvectors in the updating 

procedure. If the quality of the measured mode shapes improves, they can contribute to 

the updating algorithm more efficiently. Recently, a scanning laser Doppler 

measurement system (Kochersbergen et al., 1992; Arrunda et al., 1992) has been 

developed in order to improve the quality of the measured mode shapes.  
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1.2 Objective and Scope of the Thesis 

It is desirable to develop a universal damage detection method that can be 

successfully used to detect damage in laboratory structure such as truss and frame 

structures, in practical aerospace and mechanical structures, and further in civil 

structures such as long-span bridges. And, it is also desirable to develop a robust 

damage detection method which can be used to classify different types of damage in 

structural components. Furthermore, it is also preferable to develop a method to 

identify the prestress force or prestress loss in the prestressed structure.  

The primary goal of this dissertation research aims to develop a simple, 

economical and yet technological feasible vibration-based evaluation procedure to 

assess damage and prestress force in existing structures using the measured structural 

dynamic responses. To meet this primary objective, the present thesis aims to complete 

the following tasks: 

1. To develop a methodology of identifying elemental damage using dynamic 

response; 

2. To develop a methodology of identifying structural  damage including the 

load environment; 

3. To develop a methodology for damage detection while taking into account 

the effect of environment, such as temperature difference in the 

measurements; 

4. To develop an approach to identify damage and differentiate the damage 

type for a structure of isotropic material; 
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5. To develop a methodology based on sensitivity-based model updating for 

prestress force identification. 

6. To propose a new crack model in beam and to develop a method for 

identifying the crack location and crack depth in time domain using the 

measured dynamic response;  

7. To develop a methodology of vibration-based prestress force identification 

in time domain; 

8. To developed a methodology of vibration-based prestress force and the 

moving excitation force(s) identification; 

The organization of the remainder of the dissertation is as follows.  The literature 

on the different crack models in beam and damage detection methods developed by 

various researchers in the past few decades are reviewed and summarized in Chapter 

Two.  

Chapter Three deals with the strategy of structural damage detection from response 

sensitivity based finite element model updating method.  Chapter Four deals with the 

further application of response sensitivity for damage detection, i.e., damage detection 

with temperature effect removed, differentiating different damage types in structures, 

assessment of prestress force and damage detection including the load environment.  

Chapter Five covers the other developments, i.e. a new crack model in beam is 

proposed as a delta function in this chapter, a method for identifying the damage 

location and damage depth is proposed in time domain. A new technique based on 

modal superposition and optimal technique is proposed to identify prestress force in 

beam using measured dynamic response in time domain is also included in this chapter. 
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Conclusions are made for this thesis research and some recommendations for future 

work are presented in Chapter Six. 
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Chapter  2 
 

LITERATURE REVIEW  

 

This chapter aims to provide a review on recent research on crack models in beam 

and recent advances in damage detection methods. As mentioned before, the field of 

non-destructive damage detection methods is very broad and covers techniques in 

many engineering disciplines, such as, acoustics, radiology, magnetics, 

thermodynamics, and structural mechanics. This literature review herein will be 

limited to methods that estimate damage from the vibration-based approaches.  And 

the literature will also cover vibration-based methods for prestress force identification. 

2.1 Crack Modeling in Beam  

There are a number of approaches to model cracks in beam structures in the 

literature. Generally, these methods can be classified into two main groups: the first 

group is open crack model, in which the crack is assumed to be permanently opened. 

This crack model mainly falls into three categories: local stiffness reduction, discrete 

spring models, and crack functions.  The second group is opening and closing crack or 

breathing crack model, in which the crack opens and closes alternately during 

vibration.  
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2.1.1 Local Stiffness Reduction 

A crack in a structure member introduces a local reduction in stiffness (or local 

increase in flexibility) that affects its dynamic response. The total flexibility of the 

cracked region of the structural element was related with the crack stress intensity 

factor (SIF) (Irwin, 1957; Bueckner, 1958; Westmann and Yang, 1967). The SIFs were 

obtained in many cases, and a well- founded relationship was discovered between the 

energy release rate, the SIFs, and the compliance of the cracked member. 

Using the fracture mechanics relations between the strain energy release rate, stress 

intensity factor and the Castigliano theorem, the local flexibility for a cross-section in 

the crack region is computed as, 

 )()/(/ sFbEIh6Mc Iπ=φΔ=  (2-1) 

where M is the moment acting at the cross-section and φΔ is the relative angle at the 

cross-section, h is the height , b is the width of the rectangular cross-section, EI is the 

flexural rigidity, s=a/h, a is the crack depth, and 

1098765432
I s666s144s172s9126s8171s2237s3716s953s861sF .......)( +−+++++−=

   (2-2) 

At present, SIFs have been theoretically obtained for various types of loading and 

specimen configurations. The formulas for the SIFs as a function of the crack depth 

can be found in several handbooks (Tada et al., 1985). 

Fine-mesh finite element techniques were also used to compute local flexibility of 

beam type structures (Gudmundson, 1983; Haisty and Springer, 1988; Ostachowicz 

and Krawczuk, 1990, 1991; Krawczuk and Ostachowicz, 1992, 1993a, 1993b). Qian et 

al. (1990) derived the stiffness matrix of a beam element with a crack from an 

integration of the SIFs. A finite element model was established to consider the effect 
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of crack closure on the modal parameters. Viola et al. (2002) also developed a cracked 

finite element of a Timoshenko beam. 

2.1.2 Discrete Spring Models 

There are many existing literatures that model the crack as discrete spring. 

Gudmundson (1983) used a spring to represent a permanent open crack. Rizos et al. 

(1990) modeled a beam with an open crack as two undamaged parts connected by a 

spring. They used the general form of the mode shapes of the two undamaged beams 

along with the boundary conditions at the crack location to establish equations on 

either side of the crack. Similar approach was used by Narkis (1994) to relate the 

natural frequency of the beam with a double-edged crack. The method was extended to 

a beam later with a series of crack (Shifrin and Ruotolo, 1999). Sundermeyer and 

Weaver (1995) modeled the crack as a bilinear spring. It showed that the beam was 

excited at two frequencies simultaneously, and the steady state response signal consists 

not only of the two driven frequencies, but also a component at a frequency equal to 

the difference between the two driving frequencies. Ballo (1998) modeled a cracked 

rotating shaft with a breathing crack as a non-linear spring, but their model was limited 

to the fundamental mode. The idea of representing a crack as a spring was extended by 

Neild et al. (2001). The beam was divided into short rigid blocks joined with rotational 

and transverse springs that represent bending and shear deformation respectively. Any 

stiffness reduction due to the crack was represented by adjusting the rotational spring 

stiffness at that position.  
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2.1.3 Crack Functions 

Christides and Barr (1984) developed a cracked Euler-Bernoulli beam theory by 

deriving the differential equation and associated boundary conditions for a uniform 

Euler-Bernoulli beam containing one or more pairs of symmetric cracks. Shen and 

Pierre (1990; 1994) used a two-dimensional finite element approach to determine the 

parameter that controls the stress concentration profile near the crack tip in the 

theoretical formulation without experimental verification. The Christides and Barr 

beam theory is an important step for the development of a rigorous cracked beam 

vibration theory. However, the assumption of the exponential distribution of the stress 

field close to the crack is a limitation that can be improved. Chondros et al. (1998) 

used a similar approach and derived the so called crack functions using fracture 

mechanics methods. The crack was modeled as a continuous flexibility using the 

displacement field in the vicinity of the crack. Carneiro and Inman (2002) extended 

this model to a Timoshenko type cracked beam. Sinha et al. (2002) proposed a 

simplified crack model in beam structure and used this model to estimate the crack 

locations and depth by minimizing the difference between the measured and predicted 

frequencies via model updating method. Abdel et al. (1999) used this approach in 

reinforced concrete beam. A damage function was presented for damaged concrete 

beam. This damage function is characterized by three parameters, namely, the length 

of the damage zone, the magnitude of the damage and the damage pattern. The 

damage pattern and its magnitude can be successfully determined by updating the 

three parameters in the inverse problem. 
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2.1.4 Opening and Closing (Breathing) Crack Model 

The non-linearity from a breathing crack has an important effect on the structural 

health monitoring, and the bilinear stiffness model is the most simple non-linear crack 

model and it is usually used to model the behavior of the crack opening and closure. A 

larger stiffness value corresponds to the state of crack closure, and a smaller stiffness 

value corresponds to crack opening. In fact, partial crack closure often exists due to 1) 

roughness interference; 2) wedging by corrosion or wear debris; 3) elastic constraint in 

the wake of the plastic zone. “Breathing” cracks have been investigated by 

Gudmundson (1983), who studied the effects of closing cracks on the dynamic 

characteristics of an edge cracked cantilever beam. Later, an experimental work was 

used to confirm by Ibrahim et al. (1987), who modeled a crack as a bilinear spring. 

Qian et al. (1990) used a finite element model to analyze the effect of crack closure on 

the vibration of a beam. The stiffness matrix of the system, derived from the stress 

intensity factors, was given two values; one for closing crack and the other for open 

the crack. The sign of stress on the crack faces was used to determine whether the 

crack was open or closed at each time step. Ostachowz and Krawczuk (1990) studied 

the influence of a closing crack using a special finite element in the contact area. Shen 

and Chu (1992) developed a “breathing crack” model, which opens when the normal 

strain near the crack tip is positive and otherwise when it closes. A more general 

approach, employing many terms of a Fourier series to simulate the continuous change 

of stiffness in crack breathing, was proposed by Abraham and Brandon (1995) and 

Brandon and Abraham (1995). Brandon and Mathias (1998) investigated strongly non-

linear displacement by experiments. Brandon et al. (1999) acquired the spectral 

signatures for open the crack, closing crack and breathing conditions using a pre-

loaded cracked cantilever beam in laboratory. Zhang and Testa (1999) investigated the 
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closure effects of the vibration responses of a fatigue cracked beam using experiments. 

Kisa and Brandon (2000) developed a finite element scheme for computing the eigen-

parameters for a cracked beam for different degrees of closure. Bovsunovsky and 

Matveev (2000) presented an analytical method to determine the dynamic 

characteristics of a beam with a closing crack. This method was used to detect the 

fatigue crack in beam-like structure by Matveev and Bovsunovsky (2002). 

2.2 Vibration-Based Damage Detection Methods 

2.2.1 Vibration-Based Damage Identification with Model Updating  

The approach that solves for the updated matrices by forming a constrained 

optimization problem based on the equations of motion, the original model and the 

measured data, is the well-known model updating approach. There is a large amount of 

literature on damage assessment methods based on the modification of a structural 

model matrices such as mass, stiffness, and damping to reproduce as closely as 

possible the measured static or dynamic responses from the data.  Comparisons of the 

updated matrices to those of the original model corresponding to the intact structure 

give an indication of the location and extent of damage. Many algorithms can be found 

in the literature, and the differences in the algorithms can be classified as  

• Objective functions to be minimized; 

• Constraints placed on the problem; 

• Numerical method used to implement the optimization. 

It should be noted that the model updating algorithms are usually applied in both 

damage detection applications and model refinement applications in a similar way, 
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namely, to seek an analytical model that is as close to the real structure as possible. 

However, considering the difference in application objectives between model 

improvement and damage detection, attention should be paid to some particular issues 

for discriminating and relating the usage of model updating methods in the two fields 

mentioned above.  

The purpose of model improvement is to modify the system stiffness, mass matrix 

and damping parameters of the numerical model so that better agreement between the 

numerical results and measured data can be obtained. In the construction of the 

original finite element model, it is usual to make some simplifications and reasonable 

assumptions. But sometimes, there are small features in the geometric representation 

of the structure that cannot be modeled in detail by a computational economical finite 

element mesh, and also, the boundary conditions and joints between components (such 

as bolted joints, welds, etc.) are hard to be fully understood. In such cases, engineers 

may, according to their engineering judgments, try to find a compromise with 

acceptable results. According to Mottershead and Friswell (1993), there are three 

forms of model errors: 1) model structure errors, which are likely to occur when there 

is uncertainty concerning the governing physical equations; 2) model parameter errors, 

which typically include inappropriate boundary conditions and inaccurate assumptions 

used in order to simplify the model; and 3) model order errors, which often arise when 

discretizing the complex structures and can result in a model of insufficient order. 

These model errors may exist only in a few locations or be extensively distributed in 

the structure (Law et al., 2001). 

 On the other hand, the damage detection applications aim to identify changes in 

stiffness, mass and damping matrices due to damage excluding the modeling errors. It 

is known that the damage only causes loss in local stiffness of the structure. To 
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distinguish damage from previously mentioned artificial errors in model construction, 

a good quality original model that accurately represents the structure of intact stage is 

necessary. Usually, a two-stage damage detection algorithm is adopted, firstly, a prior 

model refinement procedure is conducted to obtain this model by correlating erroneous 

initial model to the intact structure, and secondly, another model updating process 

solves subsequently for the updated matrices that correlated to the damaged structure. 

Comparisons of the updated matrices to the correlated original ones provide an 

indication of damage location and extent. 

The finite element model updating methods, either for model improvement 

application or for damage detection application, could be generally classified into the 

following three categories: 1) Optimal matrix updating methods; 2) Eigenstructure 

assignment methods; and 3) Sensitivity-based updating methods. The following 

sections review the techniques in these three categories and discuss their applications 

in damage detection and finite element model improvement.   

2.2.1.1 The Optimal Matrix Updating Methods 

 Optimal matrix updating methods include methods that use a closed-form direct 

solution to find the updated model matrices (stiffness and/or mass) to produce the 

measured modal data as closely as possible. Several reviews on these methods have 

been published (Smith and Beattie, 1991; Zimmerman and Smith, 1992; Hemez, 

1993). The problem is generally formulated by Lagrange multiplier and penalty-based 

optimization, which can be expressed as  

  )},,(),,({min
,,

KCMRKCMJ
KCM

ΔΔΔ+ΔΔΔ=
ΔΔΔ

λ  (2-3) 

where J is the objective function, R is the constrain function, λ  is the Lagrange 

multiplier or penalty constant. 
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Earlier work on optimal matrix updating using measured modal data was proposed 

by Rodden (1967), who used the measured vibration modes to determine the structural 

influential coefficients of an effectively unconstrained structure. Hall (1970) presented 

an approach to optimize the stiffness matrix by minimizing the least-squares formed 

difference between the analytical modes and experimental modes based on an 

assumption that the mass matrix is exact. A similar procedure was given by Ross 

(1971) and Zak (1983).  

Constrained minimization theory has also been applied to the optimal matrix 

updating algorithms. Brock (1968) presented an approach to optimize linear structural 

matrices by minimizing modal force errors with a property matrix symmetry 

constraint, which helps to preserve the reciprocity condition in the updated model. 

Baruch (1978) made an assumption that the mass matrix is correct and formulated a 

stiffness optimization method to acquire improved eigenvectors by minimizing the 

mass-weighted Frobenius norm of perturbations to global modal parameter matrix. 

Lagrange multipliers are used to enforce the constraints of zero modal force error and 

stiffness matrix symmetry. Berman (1979) questioned the assumption of the exact 

mass matrix, and proposed a so-called analytical model improvement (AMI) procedure 

to adjust the stiffness and mass matrix simultaneously (Berman and Nagy, 1983). In 

their method, the measured modes, in turn, are treated as exact data and the mass 

orthogonality constraint is satisfied by using Lagrange multiplier. Based on Baruch 

and Berman’s work, researchers believed that one of three quantities, the analytical 

mass, stiffness and the measured modes, should be assumed as the reference, and then 

the other two can be updated. A new class of structural matrix updating methods, 

named the model-reference-based methods, is subsequently introduced and attracted 

considerable attention in structural dynamics. 
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 The previous approaches will produce a model where the analytical modes agree 

exactly with the measured ones. However, Chen (1983) demonstrated the updated 

mass and stiffness matrices can be dramatically modified, e.g., a stiffness coefficient of 

zero value in original matrix could be altered to a very large number. The load paths 

that do not exist in real structure are hence introduced by these undesirable alterations. 

This is because that the constraints mentioned above still lack adequate mechanism to 

control parameter changes in the procedure of matrix updating.  

Kabe (1985) introduced a method that uses structural connectivity information as 

constraint to optimally adjust the stiffness matrix. The adjustment is such performed 

that the percentage change to each stiffness matrix coefficient is minimized. The 

physical configuration is preserved by keeping the sparsity pattern of the original 

stiffness matrix and the updated model exactly reproduces the measured modes used. 

Smith and Beattie (1991) extended Kabe’s formulation and solve the problem as the 

minimization of both the perturbation matrix norm and the modal force error subject to 

symmetry and sparsity constraints. McGowan et al. (1990) also used structural 

connectivity information in their stiffness adjustment algorithms applied to damage 

identification, in which mode shape expansion algorithms are employed to extrapolate 

the incomplete measured mode shapes to be comparable with analytical predicted 

modes. Smith (1992) presents an iterative technique to the optimal update problem that 

enforces the sparsity of the matrix at each iteration. The sparsity is enforced by 

multiplying each entry in the stiffness update by either one or zero, depending on the 

correct sparsity pattern. 

 Zimmerman and Kaouk (1994) noticed the fact that perturbation matrices tend to 

be of small rank because damage is usually located in a few structural members rather 

than distributed all over the structure. They presented an algorithm based on the basic 
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minimum rank perturbation theory (MRPT) that a unique minimum rank matrix 

solution for an underdetermined structure exists. Further research is extensively 

conducted by them and their colleagues to extend and improve the algorithm (Kaouk 

and Zimmerman 1994a, 1994b, 1994c, 1995; Zimmerman et al., 1995). 

A method was presented by Doebling (1996) to calculate a minimum-rank update 

on the elemental parameter vector rather than for the global or elemental stiffness 

matrices. This method also uses the same basic formulation as the MRPT, which 

constrains the global stiffness matrix perturbation to be an explicit function of the 

diagonal elemental stiffness parameter perturbation matrix that preserves the finite 

element strain-displacement relations.  A limitation of this method as with all 

minimum-rank procedures is that the rank of the perturbation is always equal to the 

number of modes used in the computation of the modal force error.  

The optimal matrix updating methods with constraints based on structural vibration 

mechanics and physical connectivity may be useful for the model improvement 

problem to obtain improved modal responses from analytical prediction. However, its 

capability for damage detection is doubtful. This is because damage typically causes 

local changes in structural stiffness matrix, whereas the matrix update methods tend to 

make modification throughout the entire matrices. Therefore, the results of damage 

identification suffer from a lack of persuasive proves with physical meaning. 

2.2.1.2 The Eigenstructure Assignment Methods 

Another matrix updating method, known as eigenstructure assignment is based on 

the design of a fictitious controller which would minimize the modal force error. The 

controller gains are then interpreted as parameter matrix perturbations to the 

undamaged structural model. 
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In eigenstructure assignment approaches, the model updating problem is 

formulated as a closed loop system, in which the state feedback describes the right 

hand side of the equation of motion in terms of the displacement and velocity 

variables. The feedback gain matrix is determined so that the output eigenvalues and 

eigenvectors correlate the measured eigen-data very well. This procedure will result in 

modifications to the stiffness and damping matrices but the mass matrix remains 

unchanged. The updated stiffness and damping matrices are given by 

 [ ] [ ] [ ][ ][ ]oA CGBKK += ,     [ ] [ ] [ ][ ][ ]sA CGBCC +=  (2-4) 

where [ ]G  is the feedback gain matrix determined by the eigenstructure assignment 

method. [ ]B  is an input distribution matrix which may be chosen arbitrarily. ][K and 

][C are the updated stiffness and damping matrices respectively, ][ AK and ][ AC are the 

orignal stiffness and damping matrices respectively.  [ ]oC  and [ ]sC  are the matrices 

relating the outputs and states. Because the obtained correction matrix [ ][ ][ ]oCGB  and 

[ ][ ][ ]sCGB   are generally non-symmetric, a further process of determining the matrices 

[ ]oC  and [ ]sC  iteratively may be needed until symmetric correction matrices are 

acquired.  

Minas and Inman (1990) proposed two model updating methods based on 

eigenstructure assignment technique. The first method formulates the problem as a 

non-linear optimization procedure with enforced symmetry constraint. Both 

eigenvalues and eigenvectors are assigned to produce the updated stiffness and 

damping matrices. The second method uses only the eigenvalue information 

incorporating with a state-space formulation to determine the state matrix. Zimmerman 

and Widengren (1990) also presented a symmetric eigenstructure assignment approach 
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in which a generalized algebraic Riccati equation is used to calculate the stiffness and 

damping correction matrices.  

Damage detection by using eigenstructure assignment technique was pioneered by 

Zimmerman and Kaouk (1992). They used a subspace rotation algorithm to improve 

the assignability of the eigenvectors and preserve matrix sparsity in the updated model. 

Lindner and Goff (1993) used an eigenstructure assignment technique to identify the 

damage coefficient defined for each structural member. A numerical simulation is 

performed to detect damage in the finite element model of a ten-bay truss structure. 

Lim (1994, 1995) applied a constrained eigenstructure assignment technique to process 

the measured incomplete modal data from a twenty-bay planar truss. The feedback 

gain matrix is diagonalized, and the diagonal members are interpreted as element-level 

perturbations to the stiffness matrix so that the damage is localized directly. 

Lim and Kashangaki (1994) introduced the best achievable eigenvectors into 

structural damage detection, as a derivative of eigenstructure assignment technique. 

They chose the control gain matrix that eliminates the modal force errors between the 

original structural model and the damaged structure. The best achievable eigenvectors, 

written in terms of measured eigenvectors, are then related to the measured 

eigenvectors as indicators of damage location. The localized damage is quantified 

using eigenstructure assignment technique so that the best achievable eigenvectors, 

intact structural matrices and the control gains satisfy the modal force error equation.  

A technique similar to eigenstructure assignment known as FRF assignment is 

presented by Schulz et al. (1996). The authors formulate the problem as a linear 

solution for element-level stiffness and mass perturbation factors. They illustrate that 

using FRF measurements directly to solve the problem is more straightforward than 

extracting mode shapes. This technique is applied to a finite element model of a bridge 
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structure. Cobb and Liebst (1997) also presented another eigenstructure assignment-

based method for structural damage detection.  

2.2.1.3 The Sensitivity-Based Updating Methods 

Another class of matrix updating methods is based on the solution of a first-order 

Taylor series that minimizes a function of residual errors caused by structural matrices 

perturbations. The residual ir characterising the differences between the damaged and 

undamaged state can be formulated for real eigenvalues iλ , time response )(td or 

frequency response functions (FRFs,  FRF represents the steady state transfer function 

of a dynamic system and describes the relation between an input and an output as a 

function of frequency in terms of gain and phase. ) )(ωstH , etc., i. e. 

 )( 0
i

dam
ikk wr λλ −=  (2-5) 

 ))()(( 0
jij
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ikk tdtdwr −=  (2-6) 
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where kw  is an individual weighting factor for the kth residual. 

A linear or sequentially linearised relation is required of the form  

 }]{[}{ pSr Δ=  (2-8) 

}{ pΔ  is the perturbation in the unkowns. Equation (2-8) expresses the effects of 

parameter changes due to changes of the measured data included in the residual vector. 

][S  is the sensitivity matrix, which is used here in a general sense. Usually, ][S  is 

calculated from the partial derivatives of residuals with respect to the parameters 
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 An exhaustive classification of various sensitivity-based updating techniques is 

given by Hemez (1993). Jahn (1948) derived the complete formulae for eigenvalue and 

eigenvector sensitivities in a first-order Taylor series for a standard eigen-problem. 

The theory is then extended by Fox and Kappor (1968) in structural dynamics to solve 

the eigen-derivatives of a generalized symmetric eigen- problem with respect to 

physical variable changes. Some efforts have been devoted to improve the accuracy of 

the obtained approximate eigen-sensitivities in case where measurements are 

incomplete in modal orders (Yu et al., 1996). To essentially avoid such difficulties, 

Nelson (1976) developed an effective algorithm to compute eigen-derivatives of single 

mode by just using the modal data of that mode. Considering the difficulty of matrix 

inverse of system dimension involved with Nelson’s method, Lim et al. (1987) 

proposed an approximate modal method and Ting (1992) suggested an accelerated 

subspace iteration method to improve computational efficiency. For eigen-sensitivities 

of repeated modes, discussions and solutions can be referred to the published work by 

Dailey (1988) and Lee and Jung (1997). 

The earliest application of eigen-sensitivity analysis to finite element model 

updating is proposed by Collins et al. (1974). They generally formulated the inverse 

problem as a linear approximation below by using the truncated Taylor series of the 

modal data.   

 { } [ ] { }z S pδ δ=  (2-10) 

where { }pδ  is the incremental vector to the updating physical parameters, { }zδ  is the 

residual vector of the measured modal data, and [ ]S  is the eigen-sensitivity matrix. 

 Chen and Garba (1980) then modified the method proposed by Collins by 

introducing matrix perturbation technique to avoid the eigen-solution required for each 
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iteration. Zhang et al. (1987) further improved the solution condition of the inverse 

problem by reducing the number of unknowns through early localization of the 

significant model errors. Lin et al. (1995) suggested employing both analytical and 

experimental modal data to calculate the eigen-sensitivities. Such accurately 

determined eigen-sensitivity coefficients are then used in the classical model updating 

procedure to overcome the existing difficulties of identifying small magnitude model 

errors and slow convergence. Jung and Ewins (1992) suggested dividing the model 

updating procedure into two sessions, with the first session to locate major errors in 

grouped macro elements, then to refine the analytical model in the second session. 

Law et al. (2001) applied the super-element modeling technique to improve the finite 

element model of a bridge deck structure based on a similar consideration. The large 

number of DOFs in the original analytical model is dramatically reduced and the 

solution condition is improved. 

The major difference between the various sensitivity-based methods is the modal 

parameters used to estimate the sensitivity matrix. In addition to the most popular 

natural frequencies and mode shapes, other types of data, e.g., frequency response 

functions (FRFs), time histories of response, or combination of these, can also be used. 

Abdel Wahab (2001) presented a damage detection method based on model updating, 

in which the sensitivity of the natural frequencies, mode shapes and modal curvatures 

to damage are combined to construct the sensitivity matrix. Fritzen et al. (1998) 

developed another model updating based damage detection method using the 

sensitivity of FRFs with respect to damage. The sensitivity of the modal strain energy 

(MSE) to damage was also derived and used in damage identification (Shi et al., 

2000b). The technique was even extended to static data. Sanayei and Onipede (1991) 

presented an approach for updating the stiffness parameters of FEM using the results 
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of a static load-displacement test. A sensitivity-based updating scheme of element-

level parameters is used to minimize the errors between the applied forces and forces 

produced by applying the measured displacements to the stiffness matrix. This 

technique was further extended to sensitivity analysis of static strain by the authors 

(Sanayei and Saletnik, 1996a, 1996b).   

A structural damage detection method through the sensitivity-based finite element 

model updating procedure was presented by Hemez and Farhat (1995). They 

formulated the sensitivities at the element level. This allows the identification to focus 

on the structural members susceptible to damage, thus improves the computational 

efficiency comparing with the sensitivity analysis in structure level. Fritzen et al. 

(1998) studied the problem of identifying damage in a rectangular plate and beam 

structure using sensitivity-based model updating methods. Their discussion focuses on 

two problems: modeling errors in undamaged finite element model and their influence 

on damage localization accuracy, and the solution of the ill-posed equation system. A 

prior updating of the analytical model is suggested to improve the robustness of the 

damage localization procedure. By using a QR orthogonal decomposition algorithm to 

acquire the accurate solution for the ill-conditioned inverse problem, they made the 

conclusion that the sensitivity-based model updating methods are, in principle, suitable 

tools to deal with the problem of damage detection. 

 

2.2.2 Damage Index Methods  

Damage index method is another group of damage detection approaches, which 

utilize modal data (such as natural frequencies, mode shapes, modal damping, etc.) as 

damage indicators to identify the structural damage location and extent. The methods 
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are relatively simple and straightforward, but generally they do not provide 

quantitative information about the structural damage. In many practical applications, 

however, it is sufficient that the location of damage is indicated and this damage can 

be further investigated subsequently by visual inspection or other non-destructive test 

methods for damage quantification.  

The existing approaches may be classified into the following categories based on 

the modal parameters used for the damage location process: 1) damage index based on 

modal frequency changes; 2) damage index based on mode shape changes; 3) damage 

index based on mode shape curvatures / strain mode shapes; 4) damage index based on 

strain energy changes; and 5) damage index based on modal flexibility changes. 

2.2.2.1 Damage Index from Modal Frequency Changes 

In the early stage of modal experiment, the technique and equipment for modal 

testing is not sophisticated and accurate enough, therefore, the most effective damage 

detection methods at that time are those using changes in natural frequencies. It is 

because frequency measurement can be obtained cheaply and reliably. There is a large 

amount of literature related to damage detection using shifts in vibration frequencies. 

Salawu (1997a) presented a comprehensive review on the use of modal frequency 

changes in damage detection.  

Cawley and Adams (1979) presented a formulation to detect the possible damage 

location in composite materials from frequency changes only. In their method, the 

change in the jth natural frequency of a structure is a function of the damage position 

vector { }s  only, but not the damage extent, and the changes in stiffness matrix due to 

the damage Kδ  so that 

 { }( )sKfj ,δδω =  (2-11) 
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Expanding this function for a little-damaged state ( 0≈Kδ ), and ignoring the higher 

order terms, we have  

 { }( ) { }( )
( )K

sfKsfj ∂
∂

+=
,0,0 δδω  (2-12) 

Assuming the extent of damage is independent of frequency, and noticing that 

{ }( ) 0,0 =sf  for all possible { }s  since there is no frequency change without damage, 

the ratio of the frequency change between two modes j  and k is verified to be a 

function of damage location only 
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Therefore the simulated damage position, from which the analytical predicted ratio 

kj δωδω  equals the experimentally measured ratio, is indicated as possible damage 

site. The formulation does not account for possible case of multiple-damage locations.   

Some researchers (Penny et al., 1993; Messina et al., 1996) found the previous 

method sensitive to measurement errors. Friswell et al. (1994) presented a damage 

detection method based on a known catalogue of likely damage scenarios. They 

assume that there exists a precise model of the structure, and compute the ratios of the 

frequency changes for several lower modes using the model of intact state and all the 

postulated damage scenarios. The same ratios are also calculated for the inspected 

structure. A power law relation is used to fit these two sets of values. When damage 

scenario of the structure lies in the set of assumed damages, the correct type of damage 

will produce a fit depicted by a unity-slope line. For all other types of damage, the fit 

will be inexact. Williams et al. (1996) proposed another approach for improving 

damage localization using natural frequency sensitivity. 
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Another pattern recognition method for detecting structural defects in frame 

structures was proposed by Zhang et al. (1992). The method is based on the fact that 

the ratios of relative change in natural frequency between any two modes is 

approximately equal to the ratio of the squares of the corresponding modal strain 

values at the damage position. Since this method is sensitive to experimental and strain 

analysis errors, two parameters are introduced to control the damage identification 

process. A similar approach is also applied to detect faults in foundation piles (Zhang 

et al., 1993).   

Messina et al. (1996) proposed a statistical-based assurance criterion from natural 

frequency change for detecting single damage location. Let { }fΔ  be the measured 

frequency change vector for a structure with a single defect, and { }jfδ  be the 

theoretical frequency change vector for a damage of a known size at location j , the 

Damage Location Assurance Criterion (DLAC) for location j  can be defined as 
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DLAC values lies in the range of 0 to 1. The location j giving the highest DLAC 

value shows the best match to the measured frequency change pattern and is therefore 

taken as the predicted damage site. Later, they extended this method to multiple 

damage detection and introduce two algorithms for quantifying the extent of the 

damage (Contursi et al., 1998; Messina et al., 1998). The approach, titled the Multiple 

Damage Location Assurance Criterion (MDLAC), is formulated as 
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Dδ is the perturbation in the stiffness reduction vector. Other approaches using 

changes in natural frequencies to the forward problem of damage detection include the 

work reported by Gudmundson (1982), Tracy and Pardoen (1989), and Biswas et al. 

(1990). The common basis of these methods is that it is required to consider all 

possible damage scenarios at different locations in the structure. However, the number 

of combinations of all damage scenarios could be tremendous for a practical structure. 

Therefore, excessive computational time is needed especially for large-scale structures. 

Lifshitz and Rotem (1969) treated the damage detection as an inverse problem so 

that the damage state parameters are calculated directly from measured frequency 

changes. It may be reported the first journal article on detect damage via vibration 

measurements.  They found the change in the dynamic modulus, which is related to the 

frequency change, could be used as an indicator of damage in particle-filled elastomer. 

The dynamic modulus is computed by using curve fitting of the measured stress-strain 

relationships at various levels of filling. 

Stubbs and Osegueda (1990) developed a method for detecting damage in structure 

using modal frequency sensitivity based on the work by Cawley and Adams (1979). 

They assumed that damage occurs at only one member of the structure, and computed 

an error function for each mode and each structural member based on sensitivity 

analysis of modal frequency to damage. This method is demonstrated producing more 

accurate results than their previous methods, and is most useful for skeletal structures 

where the damage affects one significant stiffness component. However, the accuracy 

of this method is dependent on the quality of the finite element model (or other 

analytical model) used to compute the sensitivities.  

Salawu (1997b) proposed a global integrity index for detecting reduction or 

increase in the global stiffness of a structure. The index is obtained from a linear 
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combination of the frequencies from the undamaged and damaged structures 

respectively. The method has been successfully applied to assess the integrity of a full-

scale concrete highway bridge (Salawu, 1995). Other examples of inverse methods for 

detecting damage via modal frequency changes are reported by Adams et al. (1978), 

Wang and Zhang (1987), Hearn and Testa (1991), Koh et al. (1995), Morassi and 

Rovere (1997).  

The advantages of frequency-based damage detection approaches lie in: 1) since 

the frequency information is independent of the sensor position, few measuring points 

are required; 2) the resonant frequency has less statistical variation from random error 

sources than other modal parameters; 3) the methods can be implemented to 

continuously health monitoring a structure, since usually ambient vibration induced by 

normal traffic, is sufficient to extract the resonant frequencies.  

Because modal frequencies are a global property of the structure, it is not clear that 

shifts in this parameter can be used to identify more than the mere existence of damage. 

In other words, the frequencies generally cannot provide spatial information on the 

structural changes. In the case of a symmetrical structure, the changes in natural 

frequencies due to damage at two symmetric locations are exactly the same. One may 

expect that higher modal frequencies are associated with local responses, or that 

multiple frequency shifts can provide spatial damage information because structural 

changes at different locations will cause different combination of frequency changes. 

Unfortunately, there is often insufficient number of frequencies with significant 

changes to uniquely determine the damage location because of the practical limitations 

in modal test and analysis involved with excitation, modal density, etc.  

2.2.2.2 Damage Index from Mode Shape Changes 
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Mode shapes inherently contain the spatial information about structural changes. 

With the development of modal testing techniques, many researchers devoted their 

efforts in detecting damage with measured mode shape information. Many early works 

are based on direct comparison of mode shapes obtained before and after the structure 

is damaged.  

West (1984), who might be reported the first systematic use of mode shape 

information for locating structural damages, proposed the Modal Assurance Criteria 

(MAC) to determine the level of correlation between the modes measured from 

undamaged and damaged structures. The MAC, generally, is defined as 
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where rφ  and sφ  are any two eigenvectors of a structural system. It stands for 

correlation level between the two modes on a scale from 0 to 1, with a value of 1 to 

indicate identical mode shapes and 0 for orthogonal ones. For the application of 

damage detection, the eigenvectors rφ  and sφ  are often replaced by a pair of mode 

shape vectors measured from the structure before and after damage occur. In model 

updating cases, however, the mode shape pairs respectively from a tested structure and 

its corresponding analytical model are used instead to calculate the MAC values. In 

West’s method, a structure and its mode shapes are partitioned using sub-structure 

schemes, and the changes in MAC across the sub-structures are used to localize the 

structural damage. 

Yuen (1985) used finite element analysis to obtain the natural frequencies and the 

mode shapes of the damaged structure in a numerical study. A systematic approach 

was used to determine the changes in mode shape due to the presence of structural 
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damage. The study showed that a normalized set of eigenparameters describing the 

changes in the fundamental mode shape of the cantilever model possess definitive 

characteristics with respect to the location and extent of damage.   

Fox (1992) showed experimentally that measurement of mode shape changes for a 

single vibration mode, such as the MAC, are relatively insensitive to the saw cut 

damage in a beam. This problem could be highlighted if too much data compression is 

caused due to incomplete measurement. “Node line MAC”, a specific MAC obtained 

by putting measurement points close to a node for a particular mode, is proposed and 

found to be a more sensitive indicator of mode shape changes caused by damage. To 

locate the damage, the relative mode shape changes at node points (in modes that show 

little change in natural frequencies) are related with the corresponding peak amplitude 

points (in modes that show relatively large changes in natural frequencies) by a simple 

graphical comparison method. A method of scaling the relative changes in mode 

shapes for better damage localization is also proposed by Fox.      

As a development to the MAC techniques, Lieven and Ewins (1988) proposed 

another correlation criteria using mode shape information for damage localization, 

named the Coordinate Modal Assurance Criterion (COMAC), which is defined as 
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where subscripts k  and r  stand for coordinate index and mode index respectively, and 

superscripts A  and B  indicate the state after and before the structural damage has 

occurred. This correlation value is related to structural degrees-of-freedom (DOFs) 

rather than to mode indices and this is obviously more helpful to show the sites of 

defects in the structure than the MAC. 
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Mayes (1992) developed a method, known as the Structural Translational and 

Rotational Error Checking (STRECH) for structural model error localization based on 

mode shape changes. By taking the relative ratios of modal displacements, the method 

assesses the accuracy of structural stiffness between two different DOFs in a finite 

element model. The STRECH method can be applied to model improvement problems, 

as reported by Mayes, to compare the results from a modal test with the ones of an 

original finite element model. It can also be used in damage detection cases to compare 

the results from two tests, which are performed at different stages in the service life of 

a structure. 

Other studies that examine the mode shape changes to identify damage are also 

briefly reviewed. Skjaeraek et al. (1996) presented a structural damage detection 

method based on changes in the natural frequencies and mode shapes using a 

substructure iteration technique. The optimal sensor placement issue for the method is 

also examined. Cobb and Liebst (1997) and Shi et al. (2000a) separately proposed a 

sensor location optimization method for their structural damage approaches based on 

eigenvector sensitivity analysis. Ratcliffe (1997) developed an approach, which uses a 

finite difference approximation of a Laplacian operator on mode shape measures, to 

localize the damage in a beam. Other examples primarily focus on the use of MAC and 

COMAC can be found in reports by Rizos et al. (1990), Kim et al. (1992), Salawu and 

Williams (1994). 

2.2.2.3 Damage Index from Mode Shape Curvatures / Strain Mode Shapes 

An alternative to using mode shapes to obtain spatial information about changes in 

structural vibration characteristics is to use mode shape derivatives such as curvatures. 

The mode shape curvature of a structure can be computed from the modal 

displacement or accelerations. For beams, plates, and shells, which have a direct 
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relationship between curvature and bending strain, some researchers also examine the 

practical possibility to obtain the curvature by measuring strain directly.    

Pandey et al. (1991) demonstrated that absolute changes in the mode shape 

curvatures could be a good damage recognition index for the finite element modeled 

beam structure. In their method, the curvature values are computed from displacement 

mode shape using central difference operator. Chance et al. (1994) found that 

numerically calculated curvature for mode shapes could introduce unacceptable errors. 

Instead of measuring or computing curvature directly, they used measured strains and 

achieved dramatic improvement in the results of damage identification. 

Measuring the rotation of mode shapes is more difficult than measuring the 

translational mode shapes in the past. Recently, Abdo and Hori (2002) forecasted that 

the rotation of mode shapes might be feasible to be measured in the near future, as 

major advances have been made in the field of structural dynamics and mechanical 

vibration testing. They investigated the application of the rotation of mode shapes to 

detect and locate structural damage, and they found it is a sensitive indicator of 

damage. The study illustrates that the rotation of mode shapes has the ability to 

localize the damaged region when displacement modes fail. 

Despite the advantage of providing spatial information on the structural damage, 

methods using mode shapes and their derivatives suffer from several drawbacks in 

practical applications: 1) a large number of measuring points are needed in order to 

obtain the mode shapes for a complex structure; 2) mode shape measurements are 

sensitive to random errors and show more statistical variation than resonant 

frequencies; 3) rotational mode shapes, though more sensitive to structural changes 

than translational mode shapes, are still difficult to obtain with existing modal test 
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techniques; 4) the mode shape based methods, especially the curvature techniques, are 

not generally applicable to a structure of any shape. 

2.2.2.4 Damage Index from Modal Strain Energy Changes 

To further seek an effective approach to localize structural damage, some 

researchers start to make use of mode shapes correlated with information of finite 

element model to implement a new damage indicator. Some studies (Chen and Garba, 

1988; Kashangaki et al., 1992) illustrated that the strain energy is very useful in 

identifying structural damage. The general definition of modal strain energy of a 

structure with respect to the ith  mode can be expressed as 

 { } { }i
T
ii K

2
1MSE φφ=  (2-18) 

where { }iφ  is the modal displacement shape of the ith mode, and K  is the stiffness 

matrix of a structure.  

Stubbs et al. (1992) proposed a method based on examining the decrease in modal 

strain energy between two structural DOFs, as defined by the curvature of the 

measured mode shapes. Later, Topole and Stubbs (1995) investigated the feasibility of 

using limited set of modal parameters for structural damage detection. Stubbs and Kim 

(1996) improved the method by using the modal strain energy to localize and estimate 

the severity of the damage without baseline modal parameters.  

Another development on the use of modal strain energy is presented by Law et al. 

(1998), named Elemental Energy Quotient (EEQ). The EEQ of the j th element and 

the r th mode is defined as  
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where e
jk  is the jth elemental stiffness matrix, e

jm  is the jth mass matrix. Shi et al. 

(1998) proposed the concept of the Elemental Modal Strain Energy (EMSE), the MSE 

of the jth element and the rth  mode before and after the occurrence of damage is 

defined as 
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With damage occurring in an element, the EMSE changes little in the intact elements, 

but there will be a larger change in the damaged elements. The Modal Strain Energy 

Change Ratio (MSECR) defined as 

 
rj

rj
d
rjr

j MSE
MSEMSE

MSECR
−

=  (2-21) 

could be a meaningful indicator for damage localization. The authors also presented 

two damage quantification algorithms based on sensitivity analysis of MSE (Shi et al., 

2000b; Shi et al., 2002).  

2.2.2.5 Damage Index from Modal Flexibility Changes 

 Lin (1990) observed that higher modes contribute more to the stiffness matrix of a 

structure than the lower modes based on governing equations of structural dynamics. 

Hence, it is needed to measure all the modes of the structure, especially the higher 

frequency modes in order to obtain a good estimate of the stiffness matrix, or its 

change as required in damage detection. However, due to practical limitations in 

experimental modal test, it is much difficult to measure higher frequency response 

data. To overcome this difficulty, another class of damage detection methods uses 

flexibility matrix to estimate changes in structural stiffness. Because the flexibility 
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matrix is the inverse of the stiffness matrix, it is most sensitive to changes in the lower 

frequency modes of the structure which can be practically measured in test. 

Generally the flexibility matrix can be estimated from the mass-normalized 

measured mode shapes and frequencies. The formulation of the flexibility by this 

method is called modal flexibility. A commonly accepted feature of modal flexibility, 

related to vibration-based damage detection, is the fact that modal flexibility can be 

approximately estimated from a few of lower modes of the structure. As this feature 

inherently overcomes the shortcoming of mode incompleteness of measured modal 

data, many research efforts have been conducted on this subject. 

Doebling et al. (1996) proposed a technique to estimate unmeasured residual 

flexibility matrix. The residual flexibility matrix represents the difference between the 

exact flexibility matrix and the measured dynamic flexibility matrix, which is 

contributed from modes outside the measured bandwidth. The proposed technique 

completes the reciprocity of the residual flexibility matrix so that it can be used in 

computation of measured modal flexibility. It is demonstrated that the introduction of 

residual flexibility into the computation of the modal flexibility gives a more accurate 

estimation of the static flexibility matrix, hence improves the results of damage 

localization. 

Raghavendrachar and Aktan (1992) examined the application of modal flexibility 

for a three span concrete bridge. In their comparison, the modal flexibility is found to 

be more sensitive to local damages than natural frequencies or mode shapes. Toksoy 

and Aktan (1995) conducted a modal testing with eleven accelerometers on an existing 

three-span reinforced concrete bridge. In contrast with frequencies and mode shapes, 

there are significant differences caused by damage in modal flexibility. Zhao and 

Dewolf (1999) presented a sensitivity study theoretically comparing the use of natural 
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frequencies, mode shapes, and modal flexibilities for structural monitoring. The results 

demonstrate that modal flexibilities are more likely to indicate damage than either the 

other two.           

Pandey and Biswas (1994, 1995) proposed a damage location method based on 

directly examining the changes in the measured flexibility of the structure. This 

method is applied to a simple analytical beam model and a wide-flange steel beam. 

Results from the numerical and experimental examples show that location of the 

damage could be predicted from a few of the lower modes of the structural vibration. 

Lu et al. (2002) pointed out that Pandey and Biswas’s method is difficult to locate 

multiple damages, and recommend the modal flexibility curvature for multiple damage 

localization due to its high sensitivity to closely distributed structural damages.         

Zhang and Aktan (1998) studied the modal flexibility and its derivative, called the 

Uniform Load Surface (ULS), which is defined as the deformed shape of the structure 

when subjected to a uniform unit load. After investigating their truncation effect and 

sensitivity to experimental errors, they suggested that ULS has much less truncation 

effect and is least sensitive to experimental errors, while keeping good sensitivity to 

local damage. The ULS is calculated using the uniform load flexibilities constructed 

by summing the columns of the measured flexibility matrix. The ULS curvature is then 

estimated using a central difference operator and used as an indicator to local damage 

(Zhang and Aktan, 1995).  

Wu and Law (2004a) discussed the damage indices based on changes in modal 

flexibility, Uniform Load Surface (ULS) and their curvatures and extended to two-

dimensional space for localizing damage in plate structures. Furthermore, a new 

approach to estimate the ULS curvature is proposed based on the Chebyshev 
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polynomial approximation, instead of commonly used the finite central difference 

method. 

Wu and Law (2004b) extended the previous study on damage localization in plate 

structures with ULSC index to quantitatively identifying damage with a sensitivity-

based method. The Uniform Load Surface (ULS) is obtained from measured 

incomplete modal data and formulated in the two-dimensional space for a plate 

structure. For each plate element, a parameter is defined and related to the isotropic 

reduction in stiffness due to damage. The sensitivity of the ULS curvature with respect 

to the elemental stiffness parameters is derived analytically. Damage can then be 

located and quantified from the iteratively updated parameter changes from the intact 

state to the damaged state. 

A model updating method aiming to model error correction is developed based on 

modal flexibility sensitivity to the elemental generic parameters (Wu and Law, 2004c). 

The European Space Agency Structure is studied in a numerical example to validate 

the method. Furthermore, to interpret the physical meaning of generic element 

parameters, the concept of elemental eigen-parameters is derived from generic element 

theory.  An experiment was carried out to further verify the proposed method in the 

laboratory (Wu and Law, 2004d). 

The main advantage of the methods using modal flexibility attributes to the fact 

that the flexibility matrix can be approximately synthesized from a few lower natural 

frequencies and mode shapes. Furthermore, the flexibility matrix is insensitive to mass 

changes compared to the stiffness matrix (Berman and Flannelly, 1971). Computation 

of damage index based on modal flexibility is simple, fast and inexpensive through 

direct comparison of difference in modal flexibility before and after damage without 

the requirement of an analytical model of the structure. The disadvantage lies in:  



 
 

43

modal mass or mass-normalized mode shapes are required to estimate the modal 

flexibility. Thus, for ambient vibration tests from which the mass-normalized mode 

shapes cannot be extracted, there is no way to estimate the modal flexibility from the 

output-only measurements without certain assumptions or approximations.    

2.2.3 Non-linear Methods 

In contrast with the large amount of literature on linear damage detection methods, 

non-linear vibrational properties are much less investigated. 

Sundermeyer and Weaver (1995) utilize the nonlinear behavior of a breathing crack to 

detect the existence of the crack. It is illustrated that the predicted steady state response 

of the cracked beam shows the effect of the opening and closing of the crack and 

clearly reveals the presence of a bilinear spring even though the difference between the 

compressive and tensile stiffness is small. The prominence of this non-linear effect is 

then related to the crack depth and location. 

Van De Abeele and De Visscher (2000) studied the amplitude dependency of the 

dynamic behavior of a gradually damaged reinforced concrete (RC) beam. The non-

linearity is quantified as a function of the damage and the proposed nonlinear damage 

detection method is compared with linear damage assessment approach. 

A time stepping model is proposed by Nield (2001) to study the non-linearity in the 

vibration characteristics. This model is able to include damage in the form of a 

moment-rotation relationship over the crack region. Beam test showed that there is a 

change of non-linear behavior with damage. The change is greatest at low damage 

levels. Four possible non-linear mechanisms are discussed: 1) crack closure leading to 

a bilinear stiffness mechanism; 2) friction across the crack due to matrix aggregate 
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interaction; 3) slip between steel and concrete; and 4) the non-linear behavior of 

concrete in compression. 

Owen et al. (2002) states that a suitable phenomenological model for the non-linear 

behavior assumes that the stiffness transition from open to closed cracks follows a 

hyperbolic tangent form. The resulting model is used to model the response of RC 

beams at different damage levels. They found that the cracks do not fully close during 

the vibration cycle. 

Vanlanduit et al. (2002) use vibration characteristics to detect cracks during a fatigue 

test on a steel bar. To perform this test, an experiment setup is developed to 

simultaneously estimate static and dynamic response, as well as linear and non-linear 

vibration features. In this test, it turned out that the non-linear dynamic response is 

more sensitive to damage than the static non-linear and linear-elastic response. Also a 

double crack could be detected near fatigue failure using a non-linear identification 

method. 

2.2.4 Review on Time Domain Damage Identification Methods 

The damage detection methods reviewed above are all in frequency domain. There 

are also many publications on damage detection in time domain using structural 

dynamic response. Seibold and Weinert (1996) proposed a method to localize cracks in 

rotating machinery based on measured vibrations. This method used a time domain 

identification algorithm: the Extended Kalman Filter (EKF). The localization is 

performed by designing a bank of EKFs, in which each filter is tuned to a different 

damage hyposis. By calculating the probabilities of different hypotheses, the crack can 

be localized and its depth can be determined. 
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Majumder and Manohar (2003) proposed a time domain approach for damage 

detection in bridge structures using ambient vibration data. The vibration induced by a 

moving vehicle on the bridge is taken to be the excitation force. It was assumed that a 

validated finite element model for the bridge structure in its undamaged state is 

available. Alterations to be made to this initial model, to reflect the changes in bridge 

behaviour due to occurrence of damage, are determined using a time domain approach.  

Recently, Shi et al. (2000) and Chen and Li (2004) presented methods to identify 

structural parameters and input time history simultaneously from output-only 

measurements.  The structural parameters and the input time history are obtained in an 

iterative manner. Law and Zhu (2004) proposed an approach for damage detection in a 

concrete bridge structure in time domain. Both the damage and moving vehicular loads 

are identified successfully. 

Ling and Haldar (2004) proposed a system identification procedure for nondestructive 

damage detection of structures, which is a finite element based time-domain linear 

system identification technique capable of identifying structures at element level. The 

proposed algorithm can identify a structure without using input excitation information 

and can consider both viscous and Rayleigh type proportional damaping in the 

dynamic model. 

2.3 Vibration-Based Prestress Force Identification 

In recent years, the interest in the safety assessment of existing prestressed 

concrete bridges increases. Prestress force is introduced to control crack initiation in 

concrete, to reduce deflections, and to add strength to the prestressed members. 

Therefore, a substantial difference between the desired and the in-service prestress 

force can lead to severe and critical serviceability and safety problems (Saiidi et al., 
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1996; Saiidi et al., 1998; Aalami, 2000; Miyamoto et al., 2000). Most concrete bridges 

consist of prestressed concrete in two predominant construction categories: pre-

tensioned and post-tensioned. It is known that the loss of pretress force occurs due to 

elastic, creep and shrinkage of concrete, steel relaxation, anchorage slip, and frictional 

loss between tendon and it surrounding materials. And sometimes damage or severing 

of prestress strands will also cause loss of prestress force. Assessment on the 

magnitude of the prestress force or the loss of pretress force in the bridge deck is 

important for its load-carrying capacity assessment. It is desirable to develop a method 

that can identify the prestress force or prestress force loss via monitoring changes in 

dynamic responses. 

Unless a prestressed structure is instrumented at the time of construction, the 

existing prestress force cannot be directly measured. Based on previous works, 

nondestructive evaluation methods using vibration test data can be used to estimate the 

loss of prestress force in the prestressed structure due to the following reasons: 1) the 

loss of the prestress force in the structure is related to the change in structural 

stiffness( Lin, 1963; Saiidi et al., 1994); 2) the loss of prestress force changes vibration 

characteristics of the structure( Saiidi et al. 1994; Miyamoto et al., 2000); and 3) the 

change in structural stiffness can be estimated by monitoring the changes in vibration 

characteristics of the structure( Kim and Stubbs, 1995; Stubbs and Kim, 1996;Kim and 

Stubbs, 2002; Kim et al., 2003). Miyamoto et al. (2000) studied the behaviour of a 

beam with unbonded tendons, and a formula was proposed for the prediction of the 

modal frequency for a given prestress force with laboratory and field test verifications. 

Saiidi et al, (1994) reported a study with modal frequency due to the prestress force 

with laboratory test results.  Several researchers (Abraham et al, 1995b) tried to predict 
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the loss of prestress based on a damage index derived from the derivatives of mode 

shapes without success. 

Very recently, Kim et al. (2004) reported a method to identify prestress loss in 

prestressed concrete (PSC) bridges using modal information. In the method, an 

analytical model is formulated to estimate changes in natural frequencies of the PSC 

bridges under various prestress forces. Then an inverse solution algorithm is proposed 

to detect prestress loss by measuring the changes in natural frequencies.  

2.4 Critical Issues and Shortcomings in Existing Methods 

Vibration-based structural damage assessment has been an attractive subject in 

structural engineering for more than two decades. Research in vibration-based damage 

detection has been rapidly expanding in recently years. All the aforementioned damage 

detection methods have been studied in details by their authors and achieved their 

specific objectives either by numerical simulations or experiments on simple 

structures, e. g. beams, truss structures and planar frames. However, due to many 

reasons, it is still difficult, sometimes even impossible to apply many of these 

approaches for damage detection to practical engineering structures, especially for 

large-scale or complex engineering structures. 

It is known that the global dynamic properties of the structure may not be sensitive 

enough to the local changes in stiffness or mass due to structural damage. This is the 

first obstacle to prevent vibration-based damage detection methods from successfully 

applying to engineering problems. Kashangaki et al. (1992) indicated that damage 

detection is more feasible for the structural members that contribute significantly to the 

strain energy of the measured modes, but most structural members have only small 

contributions to the strain energy of a structure. Thus it is difficult to detect local 
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damage in its early stage or localize small model errors. For instance, Creed (1987) 

shows that it would be necessary for a natural frequency to change by about 5%  for 

damage to be detected with confidence. However, judging from significant frequency 

changes alone, one is not sure the existence of damage since frequencies may shift 

(exceeding 5% ) due to other reasons, say, changes in ambient conditions, etc. The 

modeling errors and measurement errors also play a significant role in vibration-based 

damage detection. It is noticed that there is usually 1% to 2% errors in measured 

natural frequencies and up to 30% measurement errors in the mode shapes. This also 

has adverse effects on the accuracy of the identified results.   

Another major problem in damage detection is the reliance on the finite element 

model. There will undoubtedly be errors even in the model of the undamaged structure. 

Thus if the measurements on the damaged structures are used to identify damage 

locations, the methods will have great difficulty in distinguishing between the actual 

damage sites and the location of errors in the original model. If suitable parameters are 

not included in to allow for the undamaged model errors, then there will be a 

systematic error between the model and the data. It is very likely that the original 

errors in the model will produce frequency changes that are far greater than those 

produced by the damage. There are two approaches to reducing this problem, but both 

rely on having measured data from an undamaged structure. The first is to update the 

finite element model of the undamaged structure to construct a reliable model. The 

second alternative uses differences between the damaged and undamaged response 

data in the damage location algorithm. This does rely on the structure not changing, 

except for the damage, between the two sets of measurements. 

The number and location of measurement sensors is another important issue. Many 

approaches work well in computation simulations but perform poorly due to the 
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measurement limitations imposed by practical testing. These limitations usually arise, 

because the number of measurement stations is limited by commercial consideration, 

and that the rotational DOFs usually cannot be measured, and that some DOFs in the 

structures are inaccessible. As far as damage index method is concerned, the derived 

equations can only be used to localize the damage at those measured DOFs or the 

defects in the structural members connected to them. There is no way to find the faults 

at other sites of the structure, which are not measured in the test. For the damage 

detection based on model updating techniques, since the finite element models for 

modern civil engineering structures, e. g. long-span bridges and tall buildings, involve 

a large number of DOFs by assembling all the critical and uncritical structural 

components, the number of DOFs in the model will be much greater than the number 

of measured DOFs. To deal with the spatially incomplete modal data, the modal 

reduction or modal expansion techniques are often used. However, when the measured 

DOFs are far less than the analytical model DOFs, both the techniques lead to 

remarkable additional errors and seriously degrade the accuracy of damage detection 

results. In some cases when the number of equations is smaller than that of unknown 

model parameters, this even results in an ill-conditioned and underdetermined inverse 

problem, to which one can not find a unique solution. 

There is an issue that has received almost no attention in the previous technical 

literature when applying model updating methods to damage detection problem, which 

can be generalized as the ability to differentiate the damage patterns and then identify 

them. The damage may be caused by different factors such as operating loads, impact, 

fatigue, corrosion, etc., and therefore various damage patterns may occur. Damage of 

typical patterns, such as crack, delamination and aging, affects the structures’ 
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behaviors very differently. Therefore how to model the damage itself plays a 

significant role in the detection procedure.  

Most of the existing approaches simply limit structural damages as isotropic 

reduction in local stiffness, usually involving a scalar parameter such as Young’s 

modulus. Subsequently two questions are often asked: where is the location of damage 

and what is its extent. As this over-simplified model could lead to significant different 

modal response from the real damaged structure, additional errors is introduced into 

model updating process and the accuracy of the detection results is decreased 

subsequently. A more satisfactory procedure to detect damage should orderly answer 

the following questions: where is the location of damage; what kind of damage it is;  

then what is its extent. Although some efforts have been made to build a more refined 

model for damage, such as the crack model in a beam (Christides and Barr, 1984), and 

to apply the model to damage identification (Sinha et al., 2002), research work in this 

area is still limited. 

One important issue is the dependence on prior analytical models and/or prior test 

data for the damage detection. Many of the existing algorithms need access to a 

detailed finite element model of the structure, while others assume that a data set from 

the undamaged structure is available. Usually, the lack of availability of this type of 

data makes an approach impractical for certain applications.  

An issue that has received almost no attention in the literature is the ability to 

discriminate changes in the modal properties resulting from occurrence of damage 

from those resulting from variations in measurements due to changing environmental 

and/or test conditions and from the repeatability of the test. High level of uncertainty 

in the measurements will prevent the early damage detection when the damage in the 
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structure is small. Very few studies report the results of false-positive study, i.e. 

applying the damage detection method to two sets of data from the undamaged 

structure to verify that the method does not falsely identify damage. Doebling et al. 

(1997) and Farrar and Jauregui (1996) have started to examine this issue.  
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Chapter  3 
 

SENSITIVITY OF DYNAMIC RESPONSE AND ITS 
APPLICATION IN DAMAGE DETECTION 

 
 

3.1 Introduction 

In recent years, many researchers have presented different methods for damage 

identification using natural frequencies and mode shapes, including the sensitivity 

methods ( Farhat and Hemez, 1993; Shi et al., 2000; Wu and Law, 2004), optimization 

methods( Hassiotis and Jeong, 1993), modal residual methods ( Kabe, 1985; Lim and 

Kashangaki, 1994) and modal force error methods (Zimmerman and Kaouk, 1994). 

More recently, Liu and Chen (2002) presented a computational inverse technique for 

identifying stiffness distribution in structures using structural dynamics response in the 

frequency domain, where the sensitivity matrix of displacement amplitude with respect 

to the stiffness factor was calculated by solving a set of linear algebraic equations.  

In the damage identification of structures, the damage parameters are generally 

related to the stiffness reduction as discussed by Araujo dos Santos et al. (2000), 

Bicanic and Chen (1997) and Chen and Bicanic (2000). When discretizing the 

structure into a number of finite elements, the stiffness distribution in the structures 

can then be expressed in terms of the stiffness parameter. The difficulty in identifying 

the stiffness parameter lies in the large number of unknowns. When solving an inverse 
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problem of parameter identification, it is usually formulated as an objective function of 

a weighted sum of squared difference between the measured value and the 

corresponding simulated value of the dynamic properties of the structures. The inverse 

reconstruction can then be solved by means of optimization methods to minimize the 

objective function. Genetic algorithms (GAs) have been widely used as a searching 

technique for such non-linear problem. The advantages of GAs lie in, (1) they do not 

need the sensitivity analysis and initial guess (Cunha et al., 1999; Liu and Chen, 2001); 

and (2) they converge to the global optimal of the solution. However, the disadvantage 

of GAs is computationally extensive and they suffer from slow convergence at the 

later stage due to the nature of random searching. Thus, for problems with large 

number of parameters to be identified, using GA becomes impractical. 

In this chapter, the sensitivity matrices of dynamic responses (displacement, 

velocity and acceleration) with respect to the elastic modulus are calculated. An error 

function is defined in a set of non-linear implicit equations of unknown parameters in 

the form of the difference between the calculated responses and measured dynamic 

responses of the structure. In the present study, measured displacements and 

accelerations are used in the identification of the elemental Young’s modulus, and 

penalty function method is used iteratively. After the dynamic responses of the 

structure are obtained, the sensitivities of the dynamic responses with respect to the 

unknown parameters are then calculated to form the sensitivity matrix. Computation 

simulations show the high efficiency and accuracy of the proposed method. 

Satisfactory results can be obtained even when the measured data is polluted with 

noise when regularization technique is used in the solution process. A frame structure 

and the European Space Agency Structure with single and multiple damages are used 
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as numerical examples to illustrate the proposed method, and it is further verified by 

experimental results obtained from a free-free supported steel beam in the laboratory. 

3.2 Forward Problem 

3.2.1 Dynamic Responses of the Structure  

For a general finite element model of a linear-elastic time-invariant structure, the 

dynamic governing equation is given by 

 )}({}]{[}]{[}]{[ tFdKdCdM =++ &&&  (3-1) 

where [M], [C] and [K] are the system mass, damping and stiffness matrices 

respectively. As we know, Rayleigh damping is the most popular damping model for 

structural dynamic analysis. In this thesis, Rayleigh damping model is taken, which is 

of the form: ][][][ KaMaC 21 += , where 1a  and 2a  are constants to be determined 

from two given damping ratios that corresponding to two unequal frequencies of 

vibration. If a more accurate estimation of the actual damping is required, a more 

general form of Rayleigh damping, the Caughey damping model (Bathe, 1982) can be 

adopted. }{d&& , }{d& and }{d are the acceleration, velocity and displacement vectors of the 

structure, )}({ tF is the nodal force vector.  

For an isotropic elastic material, the elemental stiffness matrix is proportional to 

the elastic modulus of the material and the geometric coefficient such as the length of 

the element, cross sectional area, etc., which are usually taken as the unknown 

parameters to be identified in the inverse problem. The stiffness matrix of the structure 

is expressed as the summation of the elemental stiffness matrices as, 
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where NE is the number of the elements. Damage in the ith element is modeled as a 

reduction in the average elastic modulus Ei. Substituting Equation (3-2) into Equation 

(3-1), we have 
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&&&  (3-3) 

The dynamic responses of the structures can be obtained from Equation (3-3) by 

direct numerical integration method, say, the well-known Newmark-β  method.  

3.2.2 The Sensitivity of Responses in Time Domain  

We can now derive the response sensitivity with respect to the physical parameters. 

Performing partial differentiations on both sides of Equation (3-3) with respect to the 

elastic modulus of the ith element, we have, 
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where }{ iE
d

∂
∂ ,{ iE

d
∂
∂ & },{ iE

d
∂
∂ && } are the displacement, velocity and acceleration 

sensitivities with respect to the unknown parameter. Note that Equation (3-4) is in the 

same form as Equation (3-3). Since the displacement and velocity responses have been 

obtained from Equation (3-3), the right hand side of Equation (3-4) serves as the 

equivalent force input, and similarly, the sensitivities can also be obtained numerically 

by direct integration. The dynamic response sensitivities of the initial conditions 

usually vanish this is because the initial conditions are independent of the system 

parameters. In the case when a structure is suddenly released from a static equilibrium 

state, the sensitivity of the initial displacement to the elemental Young’s modulus 
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exists, and thus the sensitivity of initial velocity has a non-zero value. In this case, the 

sensitivity of initial displacement is obtained from the direct differential of the static 

equilibrium equation. 

3.3 Inverse Problem 

In the forward analysis, the dynamic responses and their sensitivity with respect to 

the elastic moduli of a finite element system can be obtained from Equations (3-3) and 

(3-4) for a given set of parameters iE (i=1, 2, …, NE). In the inverse problem, 

however, these parameters are required to be identified from the measured responses. 

In other words, the parameters are chosen to best fit the experiment data. There are in 

general two ways to fit the data: one is simply using the least-squares method which 

minimizes the sum of squared errors; the other is the sensitivity-based analysis method 

which has different formulation for different problems, and it is often obtained 

approximately by neglecting the higher order of the formulation. The latter approach is 

adopted in this study. The objective function is defined as 

 }ˆ{][}ˆ{)(
1 1

ijij

l

j

nt

i

T
ijij RRWRREg −−= ∑∑

= =

 (3-5) 

where l is the number of measurement locations, nt is the number of time instances to 

provide the measured data. }{E  is the vector of unknown elastic moduli 

TNE21 EEE ),...,,( to be identified, R is the vector of calculated dynamic response of the 

structure from a known set of }{E , which can be displacement response, acceleration 

response, etc, and R̂  is the corresponding vector of measured response. ][W  is the 

weight matrix. In this thesis, it is taken as a unity matrix.  
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3.3.1 Penalty Function Methods 

Penalty function method is generally used for modal sensitivity with a truncated 

Taylor series expansion in terms of the unknown parameters (Friswell and 

Mottershead, 1995). The truncated series of the dynamic responses in terms of the 

stiffness parameter Ei of an element is used to derive the sensitivity-based formulation 

from the general dynamic responses. The identification problem can be expressed as 

follows to find the vector }{E such that the calculated response best matches the 

measured response, i.e. 

 }ˆ{}]{[ RRQ =   (3-6) 

where the selection matrix ][Q  is a constant matrix with elements of zeros or ones, 

matching the degrees-of-freedom corresponding to the measured response 

components. Vector }{R can be obtained from Equation (3-3) for a given set of }{E . 

Let  

 }{}ˆ{}]{[}ˆ{}{ calRRRQRz −=−=δ  (3-7) 

In the penalty function method, we have, 

 }]{[}{ ESz δδ =  (3-8) 

where }{ zδ is the error in the measured output and }{ Eδ  is the perturbation in the 

parameters, ][S  is the two-dimensional sensitivity matrix which is one of the matrices 

at time t in the three-dimensional sensitivity matrix shown in Figure 3-1. For a finite 

element model with NE elements, the number of unknown elemental elastic modulus is 

NE, and only NE equations are needed to solve the parameters. Matrix ][S  is on the 

Parameter-t plane in Figure 3-1, and we can select any row of the three-dimensional 

sensitivity matrix, say, the ith row corresponding to the ith measurement for the 

purpose. When writing in full, Equation (3-7) can be written as, 
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with NEl ≥  to make sure that the set of equation is over-determined. Equation (3-8) 

can be solved by the standard simple least-squares methods as follows, 

 }{][}{ 1 zSSSE TT δδ −=  (3-9) 

or 

 )ˆ(][ 1
1 cal

T
jj

T
jjj RRSSSEE −+= −

+  (3-10) 

The subscript “j” indicates the iteration number at which the sensitivity matrix is 

computed. 

3.3.2 Regularization 

Like many other inverse problems, Equation (3-9) is an ill-conditioned problem. In 

order to provide bounds to the solution, the damped least-squares method (DLS) 

(Tikhonov, 1963) is used and singular-value decomposition is used in the pseudo-

inverse calculation. Equation (3-9) can be written in the following form in the DLS 

method: 

 }{)(}{ 1 zSISSE TT δλδ −+=  (3-11) 

where λ  is the non-negative damping coefficient governing the participation of least-

squares error in the solution. The solution of Equation (3-11) is equivalent to 

minimizing the function 

 22 }{}{}{)},({ EzESEJ δλδδλδ +−=  (3-12) 

with the second term in Equation (3-12) provides bounds to the solution. When the 

parameter λ  approaches zero, the estimated vector }{ Eδ  approaches to the solution 
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obtained from the simple least-squares method. Matlab Regularization toolbox 

(Hansen, 1992) is used in this thesis to obtain the optimal regularization parameterλ . 

3.3.3 Procedure of Iteration 

 Starting with an initial guess }{ 0E for the unknown vector E, usually, }{ 0E is 

taken as the original elemental Young’s modulus, the procedure of iteration is given 

as: 

Step 1: Solve Equation (3-3) at the (k+1)th iteration with known }{ kE  for }{R and 

compute the value }{ kzδ . 

Step 2: Solve Equation (3-4) at the (k+1)th iteration with known }{ kE  for }{ iE
R

∂
∂  to 

get the sensitivity matrix. 

Step 3: Find 1kE +  from Equation (3-9) or Equation (3-10). 

Step 4: Repeat Steps 1 to 3 until tolerance
E

EE

1k

k1k ≤
−

+

+ . The tolerance equals to 

81001 −×.  in this chapter unless otherwise states. 

3.4 Numerical Examples 

3.4.1 A Plane Frame Structure 

A plane frame structure as shown in Figure 3-2 is studied to illustrate the proposed 

method. It is discretized into eleven Euler beam elements with twelve nodes. The 

frame is fixed at nodes 1 and 12. Each node has three degrees-of-freedom. There are 

eleven unknown elastic moduli in the inverse analysis. The mass density 



 
 

60

is 31072 ×=ρ . 3mkg / , the original Young’s modulus of the material 

is 91069×=E 2mN / , the height and width of the frame are respectively 1.2 m and 0.6 

m, and the cross-section dimensions are m010b .=  and mh 02.00 =  with the second 

moment of inertia equals 910676 −×. 4m . The first five natural frequencies of the 

undamaged frame are 13.095, 57.308, 76.697, 152.410 and 196.485Hz. Rayleigh 

damping model is taken, in this numerical study, the damping ratios of the first two 

modes are taken equal to 0.01. 

Sinusoidal, impulsive and random excitations are studied to calculate the dynamic 

responses and their sensitivities with respect to the stiffness parameter of the frame. 

The sinusoidal force is taken as )2sin(10)( fttF π=  where f is the frequency of 

excitation. The force is applied at node 2 along the x- direction. The impulsive force is 

applied at the same node as the sinusoidal force with 0.1 second duration. It is 

expressed in the following form with a magnitude of 10 N. 

  
⎩
⎨
⎧

≤≤−
≤≤−

=
15.01.0)15.0(200

1.005.0)05.0(200
)(

tt
tt

tF  (3-13) 

Uniformly distributed random force between +10 N and -10 N and normal random 

force between 0 to 10 N are also applied separately at node 2 along the x-direction.  

The response is measured along the x-direction at node 9 with a sampling rate of 

500 Hz including the first five modes of the structure. 

3.4.1.1 Features of the Response Sensitivities 

 Figures 3-3 to 3-8 shows the time histories of the excitation force, the displacement 

response, its sensitivity, velocity and acceleration response sensitivities with respect to 

the elastic modulus in element 1 for each type of the forces described above. Since the 
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magnitudes of all the excitation forces are equal, a comparison of the responses and 

their sensitivities is possible. 

The displacement sensitivity is less noisy than the acceleration sensitivity, while 

the latter is much larger than the former. The shapes of the three types of sensitivities 

in time are similar for each type of excitation, but it is different for different excitation. 

The sensitivities increase with time under excitation in general, except with the 

impulsive and sinusoidal excitations at 25 Hz where the sensitivities have the largest 

value at around 1.5s from the beginning of excitation. This observation cannot be 

explained and is believed to be dependent on the interaction between the excitation and 

the structural system. 

A comparison of the sensitivities shows that sinusoidal excitation at the first modal 

frequency would give higher sensitivities than random force excitations while those 

from impulsive excitation exhibit the smallest sensitivity. This may be due to the 

reason that there is only one impact hit acting on the frame during the time history, 

while the other excitations acting at the frame during the whole time history. The 

sensitivities from excitation at lower modal frequency of the structures are larger than 

those from a higher modal frequency. But the sensitivities from excitation at a lower 

frequency which is not a modal frequency are very small. These observations show 

that the sensitivities are dependent somewhat on the displacement response of the 

structure. This can be further explained from the point of energy input: the most 

energy is inputted to the structure from the sinusoidal excitation force at the first modal 

frequency, so the sensitivities are the largest from this excitation; the least energy is 

inputted from the impulsive force and thus the sensitivities are the smallest.  

Figures 3-7 and 3-8 show the sensitivities obtained from random excitations. The 

sensitivities from the two types of excitation are very similar and they are smaller 
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compared to those from sinusoidal excitations but they are larger compared to those 

from the impulsive excitations. 

Figure 3-9 gives the displacement sensitivities with respect to damage in elements 

3 and 6 of the frame from sinusoidal excitation at the first modal frequency. Damage in 

element 3, which is vertical, is found to be more significant to the horizontal response 

at node 9 than element 6 which is horizontal. 

3.4.1.2 Damage Detection Studies 

Several studies of single and multiple damages in the frame are studied and they 

are shown in Table 3-1. In the present study, the damage is simulated by assuming a 

reduction in the elastic modulus of an element. Both sinusoidal and impulsive 

excitations are used for the identification. The impulsive force as shown above but 

repeating at one second interval is used, while the sinusoidal excitation is defined 

as )tsin(F π1210=  at a frequency of 6 Hz. The sampling rate is 1000 Hz and 200 time 

steps are used in the identification. The relative percentage error is defined as 

following 

 Error(%) = %100
E

EE

true

trueid ×
−  (3-14) 

and they are shown in Table 3-2 for the following study cases. 

Study case 1: Initial finite element model updating 

 No damage is simulated in the structure, but the initial elastic moduli of all the 

elements are taken 5% under-estimation from the original value to simulate modeling 

error in the finite element model. The displacement response collected along the x-

direction at node 9 is used for the model updating. The solution converges to the true 

value in 271 iteration steps and 322 iteration steps for both sinusoidal excitation and 

impulsive excitation respectively with the maximum error of 0.02% and 0.1% for the 
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sinusoidal and impulsive excitations respectively at element 7 indicating that 

sinusoidal excitation gives better results. The optimal regularization parameters are 

15108.7 −×=optλ  and 15104.2 −×  for the two excitation forces respectively. This study 

shows the accuracy of the proposed approach in the system updating. In the following 

scenarios, only sinusoidal force is used in the identification. 

Study cases 2 and 3: Single damage identification 

Single damage in the frame is considered in elements 3 and 6 separately for Study 

cases 2 and 3 respectively. The same displacement measurement as Study case 1 is 

used in the identification. The damage magnitude is 20% reduction in the elastic 

modulus in the Study case 2 and 5% in the Study case 3. The initial guesses on the 

elastic moduli are taken as the original values. The sinusoidal excitation sensitivity 

leads to correct elastic modulus in the elements after 22 and 13 iterations with a 

maximum error of 0.19% at element 9 and 0.1% at element 5 respectively, and the 

corresponding optimal regularization parameters are 15102.8 −×=optλ  and 15106.8 −×  

respectively. This indicates the effectiveness of the proposed approach in detecting 

both small and mediate damages. 

Study case 4: Study on the frequency of the excitation force 

Here, Study case 2 is re-studied, but the frequency of the sinusoidal force is taken 

as 25 Hz. The same displacement measurement as Study case 1 is utilized. Under this 

sinusoidal excitation force, correct elastic modulus in each element is obtained after 24 

iterations with a maximum error of 0.15% at element 9, and the corresponding optimal 

regularization parameter is 15105.5 −×=optλ . This study indicates the frequency of the 

excitation force has little effect on the damage detection.  

Study case 5: Multiple damages identification 
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Multiple damages in the frame are considered to occur in elements 3 and 6 

simultaneously with 20% and 5% reduction in the elastic modulus respectively. The 

same sinusoidal excitation force as Study case 1 is used and the same displacement 

measurement as Study case 1 is utilized. Again very good results are obtained after 25 

iterations, and Table 3-2 gives the error of identification in all the elements with a 

maximum error of -0.41% in element 9. The optimal regularization parameter 

is 15104.7 −×=optλ .  

Study case 6: Study on different kinds of measurements 

This study case gives a comparison of different kinds of measurements on the 

damage detection. The last Study case is re-studied, but here, acceleration 

measurement is used. Again very good results are obtained after 18 iterations with a 

maximum error of 0.13% in element 5. The identified results are also listed in Table 4-

2. The optimal regularization parameter is 10100.3 −×=optλ .  Comparing with the last 

Study case, this study shows the acceleration measurement seems to give better 

identification results. This indicates acceleration measurement is more suitable for 

damage detection for damage detection when there is no measurement noise. 

Study case 7: Study on multiple measurements 

All the studies above use only one displacement or acceleration measurement. This 

study aims to discuss the effects of multiple measurements on the results of damage 

detection. The last Study case is re-studied, but here, two displacement measurements 

are used. The first one locates at node 9 in global x-direction and the second one 

locates at node 5 in global y-direction.  Better results are obtained in comparison with 

Study case 5 using only one displacement measurement after 23 iterations with a 

maximum error of -0.21% in element 9. The identified results are also listed in Table 

3-2. The optimal regularization parameter is 15106.1 −×=optλ .  Comparing with Study 
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case 5, this study shows two displacement measurements seems to give better 

identification results with a relative smaller errors in all elements. It is interesting to 

find that relative identified error reduced about 50%. This indicates that more 

measurements should be used for practical damage detection to reduce the 

identification error.  

Study case 8: Study on measurement noise  

 The effect of measurement noise on the identification is studied. A normally 

distributed random error with zero mean and a unit standard deviation is added to the 

measured displacement as  

  )var(ˆ
caloisecal dNEpdd ××+=  (3-15) 

where d̂ is the vectors of polluted displacement; Ep is the noise level ; Noise is a 

standard normal distribution vector with zero mean and unit standard deviation; var(•) 

is the variance of the time history; cald  is the vector of calculated displacement. 

Damage Study case 3 is again studied but with 1% and 10% noise included in the 

measurements. Again satisfactory results are obtained after 32 iterations and 41 

iterations for the two noise levels respectively, and the errors of identification are 

shown in Table 3-2 with a maximum error of 0.7% and 2.5% in elements 8 and 6 

respectively for the cases with 1% and 10% noise respectively. The optimal 

regularization parameter are 14102.2 −×=optλ  and 14103.6 −×  respectively. Higher 

relative errors are found in the identified results in comparing with noise free studies.  

3.4.2 The European Space Agency Structure 

The European Space Agency Structure (ESAS) is studied as another numerical 

example to validate the effectiveness of the proposed method. The finite element 
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model (FEM) of the structure ESAS is shown in Figure 3-10. The structure is modeled 

by 48 frame elements and 44 nodes with three DOFs at each node for the translation 

and rotational deformations. Each frame element is constructed by integrating an 

Euler-Bernoulli beam element with a rod element. The modulus of elasticity of 

material is assumed to be 210105.7 mNE ×=  and the density is 32800 mkg=ρ . The 

total number of DOFs specified in the analytical finite element model is 132.  The first 

eight natural frequencies of the undamaged ESAS structure are 16.86, 63.13, 80.05, 

131.34, 173.33, 196.23, 201.73 and 214.42Hz. Rayleigh damping model is used for 

constructing the damping matrix and the modal damping ratios of the first two modes 

are taken as 0.01 and 0.02 respectively. 

3.4.2.1 Damage Detection Studies 

Damage in the structure is introduced as a reduction in the stiffness of individual 

elements (a reduction of the elastic modulus of material), but the other properties 

remain unchanged. This damage model agrees with others found in the literature 

(Zimmerman and Kaouk, 1994; Pandey and Biswas, 1995; Topole and Stubbs, 1995; 

Messina et al., 1998). Four damage cases are considered and details of the damages are 

given in Table 3-3.  

One sinusoidal force is used to excite the structure and the dynamic responses and 

their sensitivities with respect to the elemental Young’s modulus are calculated by 

Newmark method. The sinusoidal force is taken as )22sin(5000 tF π= . The force is 

applied at node 26 along the global negative y-direction.  

Study case9: Study on Multiple damages near the supports 

In this study, two local damages are introduced in elements 1 and 13, which are 

adjacent to the support of the structure. It is assumed that there is a 10% reduction in 

Young’s modulus in each of these two elements. The sampling rate is 500 Hz. 
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Acceleration response is used for damage detection and the first five hundred data 

points are used. Only one accelerometer is used and it locates at the 5th node in the 

global y-direction. First of all, it is assumed that there is no modeling error in the finite 

element model. The response of the damaged structure is used as the “measured” 

response. The local damages are identified from the finite element model updating in 

an iterative manner as shown in the Procedure of Iteration (See Section 3.3.3). The 

damages are identified after 25 steps of iteration. The optimal regularization parameter 

is found to be 10102.1 −×  . Figure 3-11 shows the identified results. From this figure 

one can see, the two local damages are identified very accurately with maximum 

relative error less than 0.1%, while there is no error in all other elements. This shows 

the efficiency and the accuracy of the proposed method. 

Study case10: Study on Sampling Rate 

In this study, six local damages are introduced in elements 20, 21, 35, 36, 37 and 

40, these six elements are adjacent to each other as Figure 3-10 shows. It is assumed 

that there is a 10%, 7%, 15%, 10%, 10% and 10% reduction in Young’s modulus in 

these seven elements respectively. This scenario is to simulate damage spreading over 

several members of the structure. Two sampling rates are studied: (1) 500 Hz, which 

includes the first 10 modes of the structure; (2) 200 Hz, which includes the first 3 

modes. Acceleration response is used for damage detection and the first five hundred 

data points are used. Two accelerometers are used, the first one locates at the 5th node 

along the global y- direction, and the second one locates at the 18th node along the 

global y-direction. The required iteration numbers are 26 and 29 for sampling rates (1) 

and (2) respectively and the regularization parameters are found to be 101024.1 −×  and 

101031.1 −×    for the two sampling rates respectively. Figure 3-12 shows the identified 

results. The local damages are identified very accurately with maximum relative error 
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less than 0.1% in these two cases. This shows the sampling rate has little effect on the 

accuracy of the identified results. 

Study case11: Study on Data Points 

Study case 10 is re-examined here. Two more local damages are introduced to the 

structure in elements 1 and 13 with a 10% reduction in Young’s modulus besides the 

local damages in Study case 10. In this case the sampling rate is 500 Hz. Two different 

lengths of data are studied: (a) 200 data points; (b) 500 data points. The accelerometers 

are located at the same places as Study case 10. The required iteration numbers are 27 

and 30 for cases (a) and (b) respectively and the regularization parameters are  

101026.1 −×  and 101034.1 −×  respectively. Figure 3-13 shows the identified results. The 

local damages are identified with a maximum error less than 0.1% in element 12 in 

cases (a) and (b). This shows the number of data points has little effect on the accuracy 

of the identified results when it is larger than the number of the unknowns.  

Study case12: Study on measurement noise 

The last Study case is re-examined here. The sampling rate is 500 Hz and 500 data 

points are used in the identification. The accelerometers are located at the same places 

as Study case 10. Two different noise levels are studied: 1% and 10%. The required 

iteration numbers are 31 and 35 for the cases with 1% and 10% noise level 

respectively and the regularization parameters are found to be 101036.1 −×  and 

101041.1 −×  respectively. Figure 3-14 shows the identified results. From this figure, 

one can see that the measured noise has large effect on the identified results in 

comparison with the noise free studies above. The maximum relative error for 1% 

noise level is -3% in element 20 and for 10% noise level is 5.1% in element 14. Thus, 

in real application, the measured noisy data has to be de-noised before it can be used 

for damage detection.  
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3.5 Experimental Verification 

The proposed method is further verified by experiment on a steel beam conducted 

in the laboratory. The length, width and height of the beam are respectively 2.1 m, 

0.025 m and 0.019 m, and the elastic modulus and mass density of the material are 

111007.2 ×  2/ mN  and 31083.7 ×  3/ mkg  respectively.  The beam is suspended at its 

two ends as shown in Figure 3-15. It is discretized into twenty Euler beam elements 

with two degrees-of-freedom at each node. The elastic moduli of all the elements are 

taken as the unknowns to be identified in the inverse analysis. The first five natural 

frequencies of the intact beam are 22.87, 62.76, 123.05, 203.24 and 303.45 Hz from 

modal test of the beam. A sinusoidal force at the frequency of half of the first natural 

frequency of the beam was applied at the nodal point of the first vibration mode of the 

beam 480mm from the left free end with an exciter model LDS V450. The lateral 

acceleration obtained with a B&K 4370 accelerometer at the middle of the beam was 

used to identify these unknown elastic moduli. The sampling frequency is 2000Hz. 

Time history of the input sinusoidal force was also recorded as the input force for 

calculating the numerical response of the beam. Newmark method was used for the 

numerical solution of the system dynamic equations. Rayleigh damping model is 

adopted and the modal damping ratios were taken as 0.007 and 0.01 for the first two 

mode. The acceleration response data of the first second, i. e., 2000 time steps, were 

used for the damage detection.  

In the identification, the high frequency measurement noise in the measured 

acceleration was removed by using 21-points moving average.  

It is known that the finite element modeling error in the intact structure has 

significant effect on the accuracy of the damage identified results. In most cases, the 

initial finite element is updated first to obtain a good representation of the intact 
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structure. Table 3-4 lists the first five frequencies of the intact beam from eigenvalue 

analysis and the experimental frequencies. From this table, one can see, these two sets 

of frequencies match each other well, indicates the finite element model of the beam is 

good enough to use for damage detection.  

Study case 13: Experimental study on single damage identification 

Two cracks are introduced at 1.66 m and 1.72 m from the left free end with 3mm 

and 9mm crack depth respectively, and they are created using a machine saw with 

1.3mm thick cutting blade. Since the two cracks are close to each other and they are in 

the same element 17 of the finite element model. The crack damage is modeled as a 

reduction in the flexural rigidity of this element. The measured first five natural 

frequencies of the damaged beam are 22.74, 61.77, 119.75, 198.49 and 299.5 Hz 

respectively. The average equivalent damage is calculated as 12.8% reduction in the 

flexural rigidity of the cracked element by the crack model (Sinha et al. 2002), such 

that the first five calculated modal frequencies are: 22.71, 62.25, 120.73, 200.55 and 

301.37 Hz matching closely with the experimental modal frequencies. The 

convergence tolerance equals 71005 −×.  in this case and Study case 14. 

Good results are obtained after 54 iterations. Errors in the identified results are 

shown in Table 3-5 with a maximum error of 7.15% at element 17. The optimal 

regularization parameter is 9103.2 −×=optλ .  

Study case 14: Experimental study on multiple damage identification 

 The two cracks studied in Study case 13 increase to 12mm each. Another two 

cracks are introduced at 1.49 m and 1.52 m from the left free end of the beam with 

9mm and 6mm depth respectively. The latter two cracks are in the same element 15. 

The first five experimental natural frequencies of the damaged beam are 21.97, 56.58, 

110.96, 189.33 and 289.06 Hz. The average equivalent damage is calculated as 37.4% 
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and 57.6% reduction in the flexural rigidity of the cracked elements 15 and 17 

respectively, such that the first five calculated modal frequencies are: 21.96, 56.94, 

111.82, 190.01 and 288.33 Hz matching closely with the experimental modal 

frequencies. 

 Good results are obtained after 67 iterations of identification. The errors of 

identification are shown in Table 3-5 with a maximum error of -9.54% at element 17.  

The corresponding optimal regularization parameter is 9104.5 −×=optλ . This 

experimental work showed that the proposed method is capable to identify multiple 

damages at close spacing with acceptable errors. 

3.6 Comparison with Other Time Domain Approaches 

Several other time domain damage detection methods are available in the 

literature. Seibold and Weinert (1996) developed a method to localize cracks in 

rotating machinery based on the time domain measurements. This method used a time 

domain identification algorithm: the Extended Kalman Filter (EKF). The localization 

is performed by designing a bank of EKFs. By calculating the probabilities of different 

hypotheses, the crack can be localized and its depth can be determined. In developing a 

time-domain damage detection algorithm, the incomplete measurements in space and 

state should be considered in addition to measurement noise. The incompleteness in 

space occurs when structural responses are not measured at all degrees-of-freedom 

(Dofs) corresponding to its numerical model. Some algorithms circumvent this 

diffculty by including the unmeasured dof as system parameters to be estimated in 

damage detection (Seibold and Weinert 1996). The incompleteness in state also occurs 

in most dynamic measurements because only one state of acceleration, velocity, or 
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displacement time history is usually measured. Numerical schemes for integrating or 

differentiating the measured state vector are applied to compute unmeasured state 

vectors. Since the numerical schemes naturally develop computational error and 

amplify noise in measured responses, the most desirable way may be to avoid 

computing unmeasured responses using measured data in formulating a damage 

detection algorithm. Cattarius and Inman (1997) proposed a method using time 

histories of vibration response to detect the presence of damage. The beat phenomenon 

is used to look for small changes in response frequencies due to the existence of 

structural damage. This method is limited to detect the existence of damage without 

knowing the location and extent of the damage.  

 This chapter presents a new time-domain damage detection algorithm using an 

output error estimator based on general measurement (displacement, acceleration, etc.). 

The proposed damage detection algorithm estimates structural parameters through the 

minimization of an error function defined by the weighted least-squared error between 

the measured and the calculated dynamic responses. Since the error function is defined 

only with the time history of acceleration (displacement) measured at a few locations, 

the algorithm does not require any other measured information other than acceleration 

(displacement). 

 In comparison with other time domain damage detection methods, the proposed 

method has the following advangtages: (1) the number of measurements can be very 

small; (2) the identification process is fast and the identified results are accurate; (3) 

the number of identification equation can be adjusted according to the duration of time, 

this indicates that the identification equation can always be over-determined;  (4) 

several types of measurements can be used for the damage detection, i. e.,  

displacement, acceleration, strain measurement etc, or any combination of these 
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measurements can be  used; (5) only a short duration of dynamic response 

measurement is needed in the identification; (6) the proposed method has the potential 

for identifying large number of structural parameters.  

3.7 Concluding Remarks 

A novel damage identification method based on dynamic response sensitivity is 

proposed in this chapter. The sensitivity matrices of the dynamic displacement, 

velocity and acceleration with respect to elemental stiffness parameter are calculated, 

and they are used in a sensitivity-based method to update the stiffness parameters. This 

approach only involves measurement error while the different modeling errors of the 

system can be updated iteratively taking advantage of the plentiful measured data. 

Although only one response measurement is required for the updating of a large 

number of system parameters theoretically, and good identified results can be obtained 

from one measurement, when more measurements are taken in the identification, the 

identified results can be improved as shown in this chapter. This study also shows that 

acceleration measurement seems to give better identified results than displacement 

measurement when there is no measurement noise. Both computation simulations and 

laboratory work show the high efficiency and accuracy of the proposed method. 

Satisfactory results can be obtained even when the measured data is polluted with 

noise when regularization technique is employed in the solution. One limitation of the 

proposed method in this chapter is that the time history of the excitation force has also 

to be measured.  
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Table 3-1–Case studies for plane frame structure 

Study Cases 
Damage location 

(Element(s) ) 

Reduction in elastic 

modulus 
Noise Measurement 

1 No damage Nil Nil Displacement 

2 3 20% Nil Displacement 

3 6 5% Nil Displacement 

4 3 20% Nil Displacement 

5 3 and6 20% and 5% Nil Displacement 

6 3 and 6 20% and 5% Nil Acceleration 

7 3 and 6 20% and 5% Nil Displacement 

8a 6 5% 1% Displacement 

8b 6 5% 10% Displacement 
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Table 3-2– Error (%) in the identified results of Study cases 1 to 8 

Error (%) in each element Study 

cases 
Noise 

1 2 3 4 5 6 7 8 9 10 11 

1a - 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 

1b - 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

2 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.19 0.0 0.0 

3 - 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

4 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.0 0.0 

5 - -0.04 -0.08 0.24 -0.31 0.26 -0.02 0.12 0.25 -0.41 0.13 -0.02 

6 - 0.01 -0.02 -0.03 0.01 0.13 -0.01 -0.12 0.01 0.03 0.02 -0.02 

7 - -0.02 -0.04 0.12 -0.16 0.13 -0.01 0.06 0.12 -0.21 0.06 -0.01 

8a 1% -0.06 0.11 0.18 -0.08 -0.07 0.17 -0.14 0.7 -0.03 -0.08 0.06 

8b 10% 0.93 1.32 -0.82 1.18 -0.96 2.50 -1.91 1.11 0.85 1.43 -1.05 

 

Note: Case 1a denotes sinusoidal excitation force; Case 1b denotes impulsive 
excitation force 
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Table 3-3 –Case studies for ESAS structure 

Study Cases 
Damage location 

(Element(s) ) 

Reduction in 

elastic modulus 
Noise Measurement 

9 1 and 13 10% Nil  Acceleration 

10 
20, 21, 35, 36, 

37,  and  40 

10%, 7%, 15%, 

10%, 10% and 

10% 

Nil  Acceleration 

11 
1, 13,20, 21, 35, 

36, 37,  and  40 

10%, 10%, 10%, 

7%, 15%, 10%, 

10% and 10% 

Nil  Acceleration 

12 
1, 13,20, 21, 35, 

36, 37,  and  40 

10%, 10%, 10%, 

7%, 15%, 10%, 

10% and 10% 

1% and 10%  Acceleration 
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Table 3-4- The measured and the analytical Natural frequencies (Hz) and the 

relative error (%) of the steel free-free beam with multiple cracks 
 

Mode Crack Scenarios 1 2 3 4 5 
Experimental 22.87 62.76 123.05 203.24 303.45 

No 
crack Analytical 22.83/-0.18 62.74/-0.03 123.04/-0.0 203.03/-0.12 302.86/-0.2 

Experimental 22.74 61.77 119.75 198.49 299.50 
Two 

cracks 
Analytical 22.71/-0.22 62.25/-0.03 120.73/0.82 200.55/1.04 301.37/0.62 

Experimental 21.9 7 56.58 110.96 188.38 289.87 
Four 

cracks 
Analytical 21.96/0.0 56.94/0.64 111.82/0.78 190.01/0.87 288.33/-0.53 

Note: •/• denotes the modal frequency/relative error;  
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Table 3-5– Error (%) in the identified results of Study cases 13 and 14 

Error (%) in each element Study 

Cases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

13 2.32 3.24 -2.22 -3.43 -4.01 2.61 3.15 -3.08 -1.03 -2.47 -3.55 -4.21 3.45 2.21 -1.59 -4.35 7.15 -5.03 3.37 3.45 

14 4.13 3.61 -4.24 3.64 4.83 3.67 5.62 -4.33 -2.58 -3.83 -2.76 -4.68 5.73 4.54 -6.81 5.42 -9.54 6.11 -4.83 -1.07 
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Figure 3-1- Three-dimensional sensitivity matrix 
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Figure 3-2- The plane frame structure 
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Figure 3-3- Response sensitivity from impulsive force 
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Figure 3-4- Response Sensitivity from sinusoidal force at the 1st natural frequency 

of the frame 
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Figure 3-5- Response Sensitivity from sinusoidal force at the 3rd natural 

frequency of the frame 
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Figure 3-6- Response sensitivity from sinusoidal force at 25 Hz 
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Figure 3-7- Response sensitivity from uniformly distributed random noise 
excitation 
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Figure 3-8- Response sensitivity from normal random noise excitation 
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Figure 3-9- Displacement sensitivity with respect to different elemental elastic 
modulus 
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Figure 3-10- Finite element model of the European Space Agency Structure 
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Figure 3-11- Identification of multiple damages near the supports 
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Figure 3-12- Identification of damages from different sampling rates 

        (a) sampling rate= 500 Hz; (b) sampling rate = 200 Hz 
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Figure 3-13- Identification damages from different data points 

     (a) data points=200; (b) data points=500 
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Figure 3-14- Identification of damages from different noise levels 

(a) noise level=1%; (b) noise level=10% 
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Figure 3-15- Forced vibration test of free-free steel beam 
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Chapter  4 
 

FURTHER APPLICATIONS OF RESPONSE 
SENSITIVITY FOR STRUCTURAL DAMAGE 

DETECTION 

This chapter extends the proposed dynamic response sensitivity-based finite 

element model updating damage detection method in the last chapter for further 

applications. Four more applications are developed, namely, the structural damage 

detection taking into account the effects of temperature difference, differentiating 

different types of damage in structure, identifying the prestress force in prestressed 

structures and damage detection including the load environment.  

4.1 Numerical Study of Damage Detection by Model Updating with 

Temperature Effects Removed 

 
 

4.1.1 Introduction 

Damage detection based on a reference set of measured data usually has the 

problem of different environmental temperature in the two sets of measurements, and 

this temperature effect is usually ignored in the subsequent model updating. This 

section investigates the effect of this factor on the damage detection results with a 

combination of modeling errors and measurement noise. A method is then proposed to 
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remove the temperature effect prior to model updating. Local damages are identified in 

a gradient-based model updating method based on dynamic response sensitivity. The 

sensitivities of dynamic responses with respect to the system parameters and 

temperature difference are calculated by direct integration of the equation of motion. 

The dynamic responses are used to identify the damage location and extent. A single 

degree-of-freedom mass-spring system and a more complicated plane truss structure 

are studied to illustrate the effectiveness of the proposed method. The effect of 

temperature difference on the accuracy of results for the damaged elements is found 

not significant, but it would cause a spread of errors to other elements which may lead 

to false warnings in the case of identifying small damages particularly in a large-scale 

structure.  

4.1.2 Sensitivity in Time Domain 

4.1.2.1 Dynamic Response of the System  

For an N degree-of-freedom time-invariant discrete system with NP nodal points 

and NE finite elements, the governing equation of motion is given by 

 )}({}]{[}]{[}]{[ tFdKdCdM =++ &&&    (4.1-

1) 

where [M], [C] and [K] are the system mass, damping and stiffness matrices 

respectively, }{d&& , }{d& and }{d are the acceleration, velocity and displacement vectors of 

the structure, )}({ tF is a vector of nodal forces. For a known force vector and a given 

set of system matrices, the dynamic responses of the structures can be obtained from 

this equation by direct numerical integration method, e.g. the Newmark-β  method.  

4.1.2.2 Sensitivity of Response with respect to System Parameters 
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The mass matrix can be formulated from either the consistent mass matrix or the 

lump mass matrix. When the consistent mass matrix is adopted, differentiating both 

sides of Equation (4.1-1) with respect to the mass coefficient of the system will give 

 }{][}{][}]{[}]{[}]{[ 1 d
m
Mad

m
M

m
dK

m
dC

m
dM

ijijijijij

&&&
&&&

∂
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∂
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∂
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∂
∂    

  (i=1,2,…6;j=1,2…6)    (4.1-2) 

where }{
ijm

d
∂
∂ ,{

ijm
d

∂
∂ & },{

ijm
d

∂
∂ && } are the displacement, velocity and acceleration 

sensitivities, 1a  is the coefficient of the Rayleigh damping. Note that Equation (4.1-2) 

is of the same form as Equation (4.1-1). Since the dynamic responses have been 

obtained from Equation (4.1-1), the right-hand-side of Equation (4.1-2) serves as the 

equivalent force input, and the sensitivities can then be obtained numerically by direct 

integration. The sensitivities of response with respect to each damping and stiffness 

coefficients can be similarly obtained. This response sensitivity approach, 

theoretically, could be used to update all the system parameters of the structure from 

measured dynamic responses. 

4.1.2.3 Sensitivity of Response with respect to Change of Temperature  

A plane truss element is taken to illustrate the proposed approach. The elemental 

stiffness matrix is 
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where 0l  is the original element length. When taking into account the temperature 

difference TΔ , we have the elemental stiffness matrix as 
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where α  is the thermal expansion coefficient, and equals C/105.12 o6−×  for steel. 

Since 1T <<Δα , we have 
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Equation (4.1-4) can be rewritten as 
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with the temperature effect on the member area of the cross-section ignored. 

Performing differentiation on both sides of Equation (4.1-1) with respect to the 

temperature difference jTΔ  for the jth member, we have 
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where 2a  is the Rayleigh damping coefficient. 

The sensitivity of response with respect to the temperature difference can be 

obtained from Equation (4.1-8) by direct integration. It is common in large-scale 

structure to find visco-elastic materials, which can drastically change with temperature 

affecting not only the stiffness, but also the damping of the structure. It is assumed that 

the materials we have in the following studies are non-viscoelastic, and thus the system 

mass and damping will not be affected by this temperature difference. 
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4.1.3 The Damage Detection Algorithm with Removal of Temperature 

Effect 

The difference of responses at time it  obtained from the analytical model and the 

simulated “measurements” of the damaged structures, 
it

RΔ , can be expressed as a first 

order differential equation with respect to the system coefficients of all the DOFs of 

the system. The differential of response with respect to the temperature difference can 

also be calculated for each finite element. When writing in the form of Taylor first 

order approximation, 
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The pattern of temperature distribution in a structure can be obtained from 

temperature sensors or from theoretical model on the temperature distribution. The 

temperature differences in all members are assumed equal for simplicity in this study, 

i.e. NETTT Δ==Δ=Δ ...21 . The terms on the temperature difference can then be moved 

to the left-hand-side of Equation (4.1-9) as 
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When lump mass matrix is adopted, Equation (4.1-10) becomes 
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where kmΔ is the kth lump mass and '
it

RΔ  is the difference of dynamic response from 

the two damage states of the structure with the temperature effect removed. The 

sensitivity }{
ijk

ti

k
R

∂
∂  is assumed not affected by the temperature difference in this study. 

It is noted that the first order differential equation can be written in terms of the 

physical parameters of the structural system, i.e. the modulus of elasticity of material, 

Poisson ratio, mass density, cross-sectional area of member, dimensions, second 

moment of area of cross-section, polar moment of area and damping ratio, etc. and 

Equation (4.1-10) will take up a different form. 

If there are tN ( NENt ×××> 663 ) time steps in a single measured response, 

Equation (4.1-10) is over-determined, and it can be written as 
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or 

 RPS Δ=Δ  (4.1-11) 

where S is the response sensitivity matrix and ΔP and ΔR are the vectors of unknown 

parameter increments and incremental measured responses respectively. For the case 

of using lump mass matrix, NNENt +×××> 662  is required to make Equation (4.1-
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10) over-determined. Equation (4.1-11) can be solved by the damped least-squares 

method (DLS) and singular-value decomposition is employed in the pseudo-inverse 

calculation.  

The solution of Equation (4.1-11) is equivalent to minimizing the function 

 22)},({ PRPSPJ Δ+Δ−Δ=Δ λλ  (4.1-12) 

with the second damping term providing bounds to the solution. The parameter λ  is 

the non-negative damping coefficient governing the participation of the least-squares 

error in the solution. When parameter λ  approaches zero, the estimated vector }{ PΔ  

approaches the solution obtained from the simple least-squares method. Other 

formulation on the damping terms can also be found in (Tarantola, 1987). 

4.1.4 Procedure of Computation 

A two-stage approach is adopted with the first stage to update the analytical finite 

element model and the second stage to identify local damages in the structure. When 

measurement from the undamaged state of the structure is obtained, the response and 

its sensitivity to a system parameter are first computed basing on the analytical model 

of the structure and the measured input force. The error vector ΔR is computed from 

the calculated responses of the analytical model and the simulated “measured” 

responses, and the vector of parameter increment is then obtained from Equation (4.1-

12). The analytical model is then updated and the response and its sensitivity are again 

computed for the next iteration. Convergence is considered achieved when the 

following criterion is met: tolerance
P

PP

1k

k1k ≤
−

+

+ ，where }{ kP  is the vector of the 
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unknown parameters, k denotes the kth iteration. The tolerance is taken as 1× 510−  in 

this section. 

When measurement from the damaged state is obtained, the updated analytical 

model is used in the iteration in the same way as that using the measurement from the 

undamaged state. The final set of identified parameter increments correspond to the 

changes occurred in between the two states of the structure. In the present case, the set 

of increment of system parameters in all the elements form the vector of unknown 

parameters, and is initially set equals to a null vector. 

4.1.5 Numerical Example 

4.1.5.1 Single Degree-of-Freedom System 

Figure 4-1(a) shows a simple system in which the stiffness is distributed but the 

mass and damping are localized. It consists of a light cantilever beam of flexural 

rigidity EI , to the end of which is attached a point mass m and a damper c. Figure 5-

10(b) shows its equivalent model of a single degree-of-freedom system. The mass and 

damping of the system is m and c respectively, and the spring coefficient equals 

to 3LEI3k /= . Parameters of the system are: Kg2m = , msN11c /. ⋅= , 

mN500k /= , and m1L = . The equation of motion of the system is  

 )()( tFdT1kdcdm =Δα−++ &&&  (4.1-13) 

Differentiating both sides of Equation (4.1-13) with respect to the mass, damping, 

spring stiffness of the system and TΔ , we have, 
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The coupling effect between the flexural rigidity and temperature difference has 

been neglected. 

Responses from two measurement states are used for the identification. The beam 

is subject to a transverse excitation of t164F πsin=  N along the local y-axis and the 

beam is assumed to be initially at rest. Sampling rate is 200 Hz and the first second 

measured acceleration response along the y-axis is used for the identification. Figure 4-

2 shows the sensitivity of transverse displacement with respect to the three system 

parameters m, c, k and the temperature increment TΔ . It is noted that the dynamic 

response is more sensitive to the mass parameter and the damping than the flexural 

rigidity and temperature difference. The following studies are made with the above 

references. 

Study case 1: Effect of temperature difference 

The set of damaged system parameter is taken to be Kg2m = , msN21c /. ⋅= , 

mN450k /= , and assuming that there is a temperature difference of + C20 o  between 

the two sets of measurements. Table 4-1 gives results for Cases A and B with and 

without taking the temperature difference into consideration respectively in the 

identification. The number of iteration required for convergence is 12 for both cases, 

and the optimal regular parameters are 310251 −×.  and 31012.3 −×  respectively. Table 

4-1 shows that an error of 0.22% in the stiffness occurs when the temperature 
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difference is neglected, but the stiffness will converge to the true value when the 

temperature effect is removed. 

Study case 2: Effect of additional mass from sensors 

The same single DOF system as for last study is used. A sensor of mass 0.01 Kg is 

added to the system. Table 4-2 gives the identified results with (Case A) and without 

(Case B) considering the additional mass. The required number of iteration for 

convergence is 18 for both cases, and the optimal regularization parameters are 0090.  

and 0080.  respectively. Results from Table 4-2 show that the omission of 0.01 Kg in 

the system mass leads to a spread of errors of 0.5%, 1.7% and 0.3% in the identified 

system mass, damping and stiffness respectively. 

Study case 3: Modeling error 

The intact and damaged sets of parameters of the system are the same as those in 

Study 1. The system parameters are taken as: Kg1m = , msN80c /. ⋅= , N300k =  

to simulate the errors in the initial model. The identified results converge to the “true” 

damaged system parameters after 22 iterations, and the optimal regularization 

parameter is 0240. . Table 4-3 shows the identified results. 

Study case 4: Model error and measurement noise  

 Measurement noise exists in the measured responses in practice, and therefore 

the effect of 1%, 5% and 10% noise level on the measurements is investigated. A 

normally distributed random error with zero mean and unit standard deviation is added 

to the measured acceleration as  

  )var(ˆ
caloisecal dNEpdd &&&&&& ××+=   (4.1-18) 
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where d̂&& is the vector of polluted acceleration, Ep is the noise level, Noise is a standard 

normal distribution vector with zero mean and unit standard deviation, var(•) is the 

variance of the time history, cald&&  is the vector of calculated acceleration. 2000 data 

points from 10 second measured responses are used in the study. Table 4-4 shows the 

identified results. The number of iteration required for convergence is 24, 27 and 28 

respectively for the three noise levels, and the corresponding optimal regularization 

parameters are 0.015, 0.024 and 0.031. Results in Table 4-4 show that the identified 

results are satisfactory when the noise level is under 10% with a maximum error of 

3.42% in damping. This error can in fact be further reduced when more measured data 

points are used in the analysis. Damping is noted to be more sensitive to random noise 

than the mass and stiffness. 

4.1.5.2 A Plane Truss Structure 

This numerical study is extended to a more complicated five-bay plane truss 

structure as shown in Figure 4-3, and the effect of temperature increment, modeling 

error and measurement noise on the identified results is studied. It is assumed that 

there is no change in the mass and the damping with the occurrence of damage in the 

structure and there is no moment constraint between elements at the joints. The 

material parameters are: mass density is 3m/Kg7860  and Young’s modulus 

is GPa200 . The finite element model of the structure consists of nineteen two-

dimensional truss elements with eleven nodes and twenty-two DOFs. The geometrical 

data of the structure in the initial finite element model are also shown in Figure 4-3. 

The external and internal diameter of the hollow circular section member are 0.6 m and 

0.4 m respectively. An excitation force of t2010000F πsin−=  is acting at the 8th node 

in the negative direction of the global y-axis. Two accelerometers are used to collect 
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the acceleration responses at the 4th node along the global y-axis, and at the 10th node 

along the global x-axis. Five damage scenarios as shown in Table 4-5 are studied. 

Measurements from the first sensor are for the study of the first two damage scenarios, 

while those from the second sensor are for the study of damage Scenarios 3 and 4. 

Measurements from both sensors are used for the study of the last damage scenario. 

Sampling frequency is 1000 Hz, and 1800 time steps data are used for the 

identification. 

The first damage scenario involves 5% reduction in the axial stiffness in elements 

2, 5 and 19 while damage Scenario 2 involves 5% reduction in the axial stiffness in 

elements 2, 5 and 19 and with a temperature difference of +40 Co  between the two 

measurement states. The first eight natural frequencies of the intact structure and the 

structure with the two damage scenario are shown in Table 4-6. It is noted that the 

change in the natural frequencies due to the temperature difference is not significant.  

Damage Scenario 3 is for the study of the effect of temperature difference on the 

damage identification and the identified relative reduction in the axial stiffness for 

each of the elements are shown in Figure 4-4 for the cases with and without removing 

the temperature effect before the damage identification. It is noted that the local 

damage in element 5 can be identified very accurately with or without consideration of 

the temperature effect.  

Damage Scenario 4 is for the study of noise effect on the damage identification, 

and the identified relative reduction in the axial stiffness is shown in Figure 4-5. The 

results show that the local damage at element 12 can be accurately identified even 

under 10% measurement noise level, and an increase in the noise level from 5% to 

10% lead to an error of approximately +1% in the magnitude of the identified local 

damage. 
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Damage Scenario 5 is for the study of a combination of local damages in element 

2, 5 and 19, temperature effect, 10% noise level and 3% under estimation in the axial 

stiffness of all the members in the initial FEM. The use of 1800 data from the first 

sensor alone has been checked to give accurate results on the local damage for this 

combination when only 3% modeling error is used, and the computation fails to 

converge for a larger modeling error. Therefore 4000 data points from both sensors are 

used for this study. The identified results from the cases with and without the 

temperature effect removed from the time responses are shown in Figure 4-6. The 

identified results for the three damaged elements are very close to the true values in 

both cases. But there is a smearing of errors throughout the structure to other 

undamaged elements when the temperature effect has not been removed prior to the 

damage detection.  

Given the complexity of this damage scenario, the proposed damage detection 

method is considered effective in locating and quantifying small local damages with an 

incorrect initial model and noisy measurement. The number of iteration required for 

convergence is 33 and the regularization parameter is 101052 −×. . Good identified 

results are also obtained for other combinations of damages in different elements. 

Results in Figure 4-6 also indicate that the temperature effect would not have too much 

effect on the accuracy of identified damages but it would cause a spread of errors in 

other elements which may lead to false warnings in the case of identifying small 

damages. 

4.1.6 Concluding Remarks 

A damage detection method is proposed making use of the dynamic response 

sensitivity with respect to the different parameters of a structural system and the 
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temperature effect in measurement. The measured response can be obtained from as 

few as a single sensor. The effect of temperature difference between two 

measurements states is removed in the first stage of pre-processing of the measured 

data in the proposed algorithm. All the system parameters including the system mass, 

damping and stiffness can be updated successfully using noisy measurements. 

Numerical simulations using a single DOF system and a medium span plane truss 

show that: (1) the effect of temperature difference on the accuracy of results for the 

damaged elements is not significant, but it would cause a spread of errors to other 

elements which may lead to false warnings in the case of identifying small damages.  

(2) the effect of initial finite element model error on the accuracy of identification is 

significant, and more measured data is required for an accurate updating. The proposed 

method is limited to two-dimensional elements in this section and further research is 

required for application to structure consists of three-dimensional elements. And only 

numerical simulation is given to illustrate the proposed approach due to the limitation 

of experiment condition in our university. Further research is needed to carry out 

experimental study on real large-scale structures.  
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4.2 Assessment of Elemental Load Resistance from Response 

Sensitivity 

 

4.2.1 Introduction 

Damage is idealized as an overall reduction in local stiffness in most of the existing 

approaches in the literature. But there may be many types of damage throughout the 

service life of the structure affecting the structural dynamic response and 

characteristics differently. Engineers would like to know the load resistance of each 

structural component after an occurrence of damage incidence. For structures 

constituted of isotropic homogeneous material, such capacity would depend on the 

different physical and geometric properties of the component, viz. the cross-sectional 

area, second moment of area and torsional moment of area of cross-section, etc. 

Therefore, a more satisfactory procedure to approach the damage detection problem 

should give answers on the location and magnitude of the damage as well as the type 

of damage affecting the load-carrying capacity of the structure. One approach was 

developed by Wu and Law (2002) who had differentiated the damage type in a 

structure using a vector of sensitivities from the eigen-parameters of each structural 

member recently.  

This section provides an assessment on the load resistance of structural elements as 

discussed in last paragraph. The sensitivities of dynamic response with respect to 

different damage indices of a structure are analytically obtained. The problem of 

coupling between these indices is addressed and solved. The local damages are 

identified in a gradient-based model updating method based on the dynamic response 
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sensitivity. This section covers the derivation of formulations, numerical simulations 

and an experiment verification of the proposed method. A plane frame and a plane 

truss structures are studied in the numerical simulations to illustrate the effectiveness 

of the proposed damage detection method. Studies show that the proposed method is 

insensitive to model errors in the identification using short duration of measured data 

from as few as two sensors. The magnitude of damage is known directly from the 

actual amount of changes in the vector of damage indices.  

4.2.2 Forward Problem 

4.2.2.1 Dynamic Responses Sensitivities with respect to Different Damage Indices 

from Newmark Method  

For a general finite element model of a linear elastic time-invariant structure with 

N degrees-of-freedom and NE  elements, the dynamic governing equation is given by 

 )}({}]{[}]{[}]{[ tFdKdCdM =++ &&&  (4.2-1) 

where [M], [C] and [K] are the system mass, damping and stiffness matrices 

respectively. Also, Rayleigh damping is adopted in this chapter. }{d&& , }{d& and }{d are 

the acceleration, velocity and displacement vectors of the structure, )}({ tF is a vector 

of applied nodal forces. The dynamic responses of the structures can be obtained from 

this equation by direct numerical integration using the well-known Newmark- β  

method. 

For a planar beam-column element, let iE , iI  and iA  be the Young’s modulus of 

material, the second moment of area of cross-section and the sectional area of the ith 

element respectively. A physical damage affects the different physical parameters of 

an element differently, and these physical parameters become 
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where iE0 , iI0 , iA0  are the parameters of the intact structure, i
dE , i

dI , i
dA  are the 

parameters of the damaged structure, i
Eα , i

Iα  and i
Aα  represent the damage indices for 

the Young’s modulus of material, the second moment of area and area of the cross-

section respectively. Equations (4.2-2) to (4.2-4) give 
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Performing differentiations on both sides of Equation (4.2-1) with respect to the 

different damage indices, e.g. the damage index on the elastic modulus of the ith 

element, we have, 
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sensitivities with respect to the unknown index i
Eα . The terms on the right-hand-side 
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by direct integration. The sensitivities with respect to other parameters, i.e. }{ i
A

d
α∂
∂ , 

{ i
A

d
α∂
∂ & }, { i

A

d
α∂
∂ && }, }{ i

I

d
α∂
∂ , { i

I

d
α∂
∂ & } and { i

I

d
α∂
∂ && } can similarly be obtained. 



 
 

111

The indices i
Eα , i

Iα  and i
Aα  are used in this study instead of the original physical 

parameters Ei, Ii and Ai in the formulation of the sensitivity in previous works. This 

approach has the advantage of yielding sensitivities which are larger than those from 

the original parameters by several orders as seen in Figure 4-7 where the different 

sensitivity curves are calculated for Example 1.  

4.2.2.2 Dynamic Responses and Response Sensitivities from the State-Space 

Method 

The dynamic responses and response sensitivities with respect to the damage 

indices from the state-space method are derived as follows. The equation of motion 

can be written as the following first order differential equation by state space method: 

  FXKX += *&  (4.2-8) 

where 
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where X  represents a vector of state variables with a length 2N containing the 

displacements and velocities of the nodes. These differential equations can then be 

discretized using exponential matrix representation. 

 kk1k FDAXX +=+  (4.2-9) 

 hKeA
*

= ,   )(* IAKD 1
−=

−   

where A is the exponential matrix, )1( +k denotes the thk )1( + time step of 

computation, the time step h represents the time difference between the variable states 

kX  and 1kX +  in the computation. I is the unit matrix. The dynamic response of the 

system can be obtained from Equation (4.2-9). Once the displacement and velocity 
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responses are obtained, the acceleration response can be obtained by directly 

differentiating the velocity response. 

The sensitivity of the dynamic response with respect to the damage index can be 

derived as follows. Performing differentiation on both sides of Equation (4.2-8) with 

respect to the ith damage index i
Eα , we have, 
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where Y is the vector of displacement and velocity sensitivities with respect to the 

damage index in time domain. Equation (4.2-10) can be rewritten as  

 GYKY += ∗&  (4.2-11) 

It is noted that Equation (4.2-11) has the same form as Equation (4.2-8). The 

displacement and velocity response sensitivities can similarly be obtained as follows, 

 kk1k GDAYY +=+  (4.2-12) 

The initial conditions of these response sensitivities have been discussed in 

Chapter four. In this chapter, they are also taken as zeros. Then the acceleration 

response sensitivity can be obtained by directly differentiating the velocity sensitivity. 

Similarly, the dynamic response with respect to the ith damage index i
Aα  and i

Iα can 

be obtained by performing differentiations on both sides of Equation (4.2-8) with 

respect to i
Aα  and i

Iα  respectively.  
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4.2.3 Inverse Problem 

The identification problem is addressed as: to find the vector of unknown damage 

indices TNE
AAA

NE
III

NE
EEE ),...,,,...,,,...,( 212121 ααααααααα  such that the calculated responses 

best match the measured responses, i.e. 

 }ˆ{}]{[ RRQ =   (4.2-15) 

where the selection matrix ][Q  is a constant matrix with elements of zeros and ones, 

which maps the degrees-of-freedom of the system to the measured degrees-of-

freedom. { R } and { R̂ } are the vectors of calculated and measured dynamic responses 

of the system respectively. The inverse problem is to minimize the error between the 

calculated and measured responses as 

 }{}ˆ{}]{[}ˆ{}{ calRRRQRR −=−=δ  (4.2-16) 

In the gradient-based method, the error vector is expressed as the first order Taylor 

expansion of the dynamic response, 

 }]{[}{ δαδ SR =  (4.2-17) 
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where }{δα  is the vector of perturbation of the damage indices, }{ Rδ is the error 

vector in the measured output, and ][S  is the sensitivity matrix. Equation (4.2-16) can 

be written in full as, 
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with the number of time data points equal or larger than the number of unknown 

damage indices to have Equation (4.2-17) over-determined. Equation (4.2-17) can be 

solved by the damped least-squares method with bounds to the solution, 

 }{)(}{ 1 RSISS TT δλδα −+=  (4.2-19) 

where λ  is the non-negative damping (regularization) coefficient governing the 

participation of least-squares error in the solution.  

4.2.4 Computation Simulation 

4.2.4.1 A Plane Frame Structure 

The same plane frame structure as shown in Figure 3-2 is re-studied with the 

proposed method. It is discretized into eleven Euler beam elements with twelve nodes. 

The frame is fixed at nodes 1 and 12. Each node has three degrees-of-freedom. The 

mass density and the Young’s modulus of material are respectively 3107.2 × 3mkg /  

and 91069× 2mN / . The height and width of the frame structure are respectively 1.2 m 

and 0.6 m, and the cross-sectional dimensions are m010b .=  and m020h .= . The 

second moment of area is calculated as 910676 −×. 4m . The first five natural 

frequencies of the frame are 13.095, 57.308, 76.697, 152.410 and 196.485Hz.  

Sensitivity to different type of damage index 
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First of all, the response and response sensitivity are calculated using both 

Newmark method and the state-space method demonstrated in Section 4.2.2. A 

sinusoidal excitation force of )8sin(10)( ttF π=  N is used to excite the structure. The 

time duration under study is 5 seconds. The force is applied at node 2 along the global 

x- direction. Damping ratio is taken equal to 0.01 for the first two modes. Two values 

of time increment are studied: 0.01s and 0.001s. Figure 4-8(a) shows the horizontal 

displacement response at node 10, and Figure 4-8(b) shows the sensitivity of this 

horizontal displacement response with respect to the damage index of the second 

moment of area of the first element. A close inspection of this figure shows that there 

is no obvious difference between the response and response sensitivity calculated from 

two different time increments by the state-space method. The response curves 

calculated by Newmark method from the above two different time increments do not 

match each other well at the first two seconds but match very well when the responses 

are stable. But the response sensitivity calculated by Newmark method from the above 

two time increments does not match each other well all the time. This shows that state-

space method is better than the Newmark method with a better numerical stability. The 

response and response sensitivity in the following numerical simulation are calculated 

by the state-space method. Figure 4-9 shows the sensitivities of displacement response 

with respect to the three types of damage indices of the first element. It is noted that 

the displacement response is much more sensitive to damage indices Eα and Iα  than 

damage index Aα (sensitivity of Eα  is larger than that of Aα  by two orders).  

Procedure of Iteration  

 A check on the sensitivities of the four sets of damage indices show that the 

sensitivities with respect to i
Eα and i

Iα  are much larger than those with respect to i
Aα . 

A two-stage iterative algorithm is therefore adopted here (Wu and Law, 2004). The 
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initial set of damage indices }{ Eα , }{ Iα , }{ Aα  are set to be zero, and the iteration 

process is divided into two stages: 

Stage 1: Fix i
Aα  and update the indices i

Eα and i
Iα . 

Step 1: Solve the response vector }{R  from Equation (4.2-8) at (k+1)th iteration 

with known T
k

i
I

i
E ),( αα  and compute the error vector }{ kRδ . 

Step 2: Solve Equation (4.2-10) and Equation (4.2-14) at (k+1)th iteration with 

known T
k

i
I

i
E ),( αα   for the sensitivity }{ i

E

R
α∂
∂  and }{ i

I

R
α∂
∂  to form the 

sensitivity matrix. 

Step 3: Find T
1k

i
I

i
E +αα ),(  from Equation (4.2-19). 

Step 4: Repeat Steps 1 to 3 until 1),(),( 1 toleranceT
k

i
I

i
E

T
k

i
I

i
E ≤−+ αααα . The 

tolerance1 equals 61001 −×.  in this chapter. 

Stage 2: Fix the updated values of i
Eα  and i

Iα  obtained from Stage 1 and update i
Aα .  

Step 1: Solve the response vector }{R  from Equation (4.2-8) at (k+1)th iteration 

with known T
k

i
A )(α  and compute the error vector }{ kRδ . 

Step 2: Solve Equation (4.2-13) at (k+1)th iteration with known T
k

i
A )(α  for the 

sensitivity }{ i
A

R
α∂
∂  to form the sensitivity matrix. 

Step 3: Find T
k

i
A 1)( +α  from Equation (4.2-20). 

Step 4: Repeat Steps 1 to 3 until 2toleranceT
k

i
A

T
1k

i
A ≤α−α + )()( . The tolerance2 

is set to 61001 −×.  in this chapter. 

Repeat stages 1 and 2 in the next iteration until 5
k1k 10RR −

+ ≤− . 
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The convergence of this computation strategy has been proved by Li and Chen 

(1999) in the estimation of wind load and system parameters at the same time. While 

the uniqueness of the solution is not checked in this work, this and other algorithms for 

solving both the unknown forces and system parameters, such as Ling and Haldar 

(2004) and Shi et al. (2000), do not guarantee a unique solution. They all depend on 

the effectiveness of minimization of the objective function not falling into the local 

minimum. And the uniqueness of the algorithms remains to be an unsolved problem 

for further research. 

Identification of different damage indices 

A damage is simulated at the third element. The depth of the cross-section is 

assumed to be reduced by 1mm over the full width and length of the finite element. 

This is equivalent to a 14% reduction in the second moment of area of element 3 and 

5% reduction in its cross-sectional area, i.e. 14.03 −=Iα  and 05.03 −=Aα . The Young’s 

modulus of all elements is also assumed to be under-estimated by 5%, i.e. 05.0−=i
Eα , 

(i = 1,2,…,11). The damping ratios for the first two modes are taken equal to 0.01. 

A sinusoidal excitation force of )8sin(10)( ttF π=  N is applied at node 2 along the 

global x-direction. Two acceleration measurements located at node 6 along the global 

y-direction and at node 9 along the global x-direction are collected. The sampling rate 

is 1000 Hz and data from the first two seconds after the application of force are used in 

the damage detection.  

To assess the effect of measurement noise on the proposed method, white noise is 

added to the calculated acceleration responses of the beam to simulated the noisy 

measurement data with 

 )( calculatednoisepcalculatedmeasured accNEaccacc σ××+=  (4.2-20) 
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where pE  is the noise level, noiseN is a standard normal distribution vector with zero 

mean value and unit standard deviation, )( calculatedaccσ  is the standard deviation of the 

original acceleration response. The effect of 10% noise in the calculated response is 

studied. 

Table 4-7 shows the iteration number and the optimal regularization parameter for 

convergence in the identification. Table 4-8 shows the results of damage detection in 

all the finite elements for the cases with and without noise. It is noted that not only the 

location of the damage is accurately identified; the damage pattern is also accurately 

classified. The distribution of damage can be read off directly from the table. For the 

case with 10% measurement noise, the identified indices Iα , Eα  and Aα of the third 

element are respectively –0.06, –0.155 and –0.056 which are close to the true values. It 

may be concluded that the proposed method is not sensitive to measurement noise 

since the number of iteration required for convergence does not significantly increase 

as shown in Table 4-7.  

4.2.4.2 A Planar Truss Structure 

The same five-bay plane truss structure as shown in Figure 4-3 is re-studied as a 

numerical example here. Effects of modeling error in combination with measurement 

noise on the identified results are studied in this example. The mass density and 

Young’s modulus of material are 3m/Kg7860  and GPa200  respectively. The finite 

element model of the structure consists of nineteen two-dimensional truss elements 

with eleven nodes and twenty-two degrees-of-freedom. An excitation force 

of t2010000F π−= sin N is acting at node 8 in the negative direction of the global y-

axis. Two acceleration measurements located at node 4 along the global y-axis and 

node 10 along the global x-axis are collected. The damping ratios for the first two 
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modes are taken equal to 0.01 and 0.02 respectively. The sampling frequency is 1000 

Hz and the first 2000 time steps data are used for the identification. Four damage 

scenarios as shown in Table 4-9 are studied. 

Table 4-10 summarized the number of iteration and the optimal regularization 

parameter for convergence of the identification in each Scenario. Table 4-11 shows the 

identified results on Scenarios 1 and 3. The damage location and extent are identified 

with high accuracy even with 10% noise level.  

Damage Scenario 4 is a multi-damage case in combination with modeling error and 

10% measurement noise. Figure 4-10 indicates that accurate results are obtained for 

the damaged elements while there are false alarms in other elements with a maximum 

of 2.2% reduction in index Aα  in element 13. From Table 4-10 one can see, more 

iteration steps are needed with modeling error. This indicates computation with 

modeling error require a longer computer time for convergence of the identification.  

The above studies show finite element modeling error has larger effect on damage 

identification results than the random noise. A relatively accurate initial model of the 

structure is therefore required for correct representation of the structure in order to 

obtain accurate damage detection results, and this can be accomplished by updating the 

intact structure as illustrated in the section of experimental verification. 

4.2.5  Experimental Verification 

4.2.5.1 Description of the Test Structure  

A five-bay three-dimensional frame structure was assembled using Meroform M12 

construction system as shown in Figure 4-11(a). The structure consists of thirty-seven 

22 mm diameter alloy steel tubes jointed together by 17 standard Meroform ball nodes. 
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Each tube is fitted with a screwed end connector which, when tightened into the node, 

also clamps the tube by means of an internal compression fitting. All the connection 

bolts are tightened with the same torsional moment to avoid asymmetry or nonlinear 

effects caused by man-made assembly errors. The length of all the horizontal, vertical 

and diagonal tube members between the centers of two adjacent balls is exactly 0.5 m 

after assembly. The structure orientates horizontally and is fixed into a rigid concrete 

support at three nodes at one end. Table 4-12 gives a summary of the main material 

and geometrical properties of the components of the test structure. 

4.2.5.2 Finite Element Modeling of the Test Structure  

In the finite element model of the structure, each ball joint is regarded as a node 

and each bar as a beam element. The finite element model consists of 37 three-

dimensional Euler beam elements and 17 nodes as shown in Figure 4-11(b) and the 

dimensions of the structure are also shown in this figure. Each node has six DOFs, and 

altogether there are 102 DOFs for the whole structure. Appendix A shows the 

elemental mass stiffness and stiffness for finite element analysis. 

The total weight of the ball and half weight of the bolt, which connects the ball 

with the beam elements, are placed on each node as the lump mass. Another half of the 

weight of the bolt is included as part of the beam element. Each ball node and bolt 

weighs 230 gram and 90 gram respectively. An additional mass of 72 gram weight is 

added to each joint to balance the mass of the accelerometers. 

4.2.5.3 Test Procedure on Structure  

Dynamic modal test was conducted on the undamaged structure first. The beam 

was excited with impacts from a B&K Type 8202 force hammer. A commercial data 

logging system INV303E and the associated signal analysis package DASP2003 were 
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used in the data acquisition. The sampling rate was 2020 Hz. Natural frequencies, 

modal damping and mode shapes were extracted from the measured data. The first 

eleven measured natural frequencies are listed in Table 4-13, and Figure 4-12 plots the 

corresponding mode shapes of the intact structure from the modal test. In order to 

reduce the finite element modeling error of the intact structure, the finite element 

model needs to be updated. The measured dynamic response from the intact structure 

is used to update the original finite element model. Due to the limitation of the 

computer, the measured acceleration data was re-sampled and the sampling rate 

reduces to one fourth of the original one, that is, 505 Hz. Only data from the first three 

seconds from two accelerometers (node 3, z-direction and node 4, z-direction) are 

used.  

4.2.5.4 Iteration Procedure 

The iteration procedure given for the simulation studies refers only to the treatment 

of indices with a wide range of sensitivities. The practical case of identification basing 

on two different states of the structure is discussed below. 

When measurement from the undamaged state of the structure is obtained, the 

response and its sensitivity to a damage index are first computed basing on the 

analytical model of the structure and the measured input force. The analytical model is 

then updated and the response and its sensitivity are again computed for the next 

iteration.  

When measurement from the damaged state is obtained, the updated analytical 

model is used in the iteration in the same way as that using the measurement from the 

undamaged state. The final set of identified damage indices correspond to the changes 

occurred in between the two states of the structure. In the present case, the damage 
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indices of all the elements form the vector of unknown parameter, which is initially set 

equals to a null vector. 

4.2.5.5 Initial Finite Element Model Updating 

On looking back on the finite element modeling of the structure, the modeling 

errors may come from two sources: the first one is the lump mass at each node of the 

structure. Since half weight of each bolt is assumed at the related node as lump mass, 

and this may be incorrect. Another possible source is the Young’s modulus of the 

material. Therefore the proportion of weight of each bolt at the related node and the 

Young’s modulus of material are taken as the design parameters for model updating.  

Three seconds response data obtained in the modal test of the intact structure is used to 

update the finite element model of the original structure. Results show that 62.5% of 

the weight of each bolt should be placed at the related node as lump mass and the 

Young’s modulus is 99.3% of the original value. The first eleven calculated natural 

frequencies of the structure after updating are also shown in Table 4-13. The updated 

natural frequencies agree well with the measured natural frequencies with maximum 

relative error of 1.86%. The calculated and the measured modeshapes are checked by 

Modal Assurance Criteria (MAC) as shown in Table 4-14. The two mode shapes are 

observed matching each other very well. These show that the updated finite element 

model can represent accurately the intact structure for the next stage of damage 

detection. 

4.2.5.6 Damage Scenarios 

Several local faults are then introduced into the test structure by replacing two 

intact members with damaged ones. Damage Scenario E1 has the fourth beam element 

in the finite element model replaced by a damaged member. Damage was introduced 
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by grinding away a layer of material from the surface of the beam. Figure 4-13 gives a 

close view of this damaged member. The external diameter of the tube is reduced from 

22.02 mm to 21.47mm, and the length of the weakened section is 202 mm, which 

locates in the middle of the beam with 99mm and 75mm length of original tube cross-

section at both ends.  

Damage scenario E2 includes two damage members. Apart from the damage 

member in Scenario 1, the second beam element in the finite element model was also 

replaced by a damaged member. The artificial damage is a perforated slot cut in the 

central length of the beam. The length of slot is 134.77mm, and the remaining depth of 

the tube in the cut cross-section is 14. 75mm. The slot opens vertically (global z-

direction). Figure 4-14 gives a close view of this damaged member. Damage scenario 

E3 is similar to the last scenario but with the slot in element two opened horizontally 

(global y-direction). 

4.2.5.7 Damage Detection 

The perturbed modal properties corresponding to each damaged state of the test 

structure are obtained in another modal test, and the experimental modal frequencies 

are shown in Table 4-13. A falling weight test was then conducted on the structure 

afterwards for each damage scenario. A 5.15 kg mass was hung at node 17. Free 

vibration was introduced by the sudden release of the mass. The time histories from 

five accelerometers located at node 2 (global z-direction), node 3 (both z- and y-

directions) and node 11(both z- and y-directions) were recorded for Damage Scenario 1. 

For Damage Scenarios 2 and 3, the time histories from five accelerometers located at 

node 14 (global z-direction), node 9 (both z-and y-directions) and node 11 (both z- and 

y-directions) were recorded. These responses were selected not in close proximity to 

the damaged elements. The sampling rate is 2020 Hz and the time duration is 8 
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seconds for each test covering the whole duration of vibration caused by the falling 

mass excitation. 

Damage Scenario E1  

This scenario has four types of damage in the beam element, i.e. a reduction in 

cross-sectional area A, the polar moment of area J, the second moments of area zI  and 

yI . The analytical reduction in the parameters of the damaged element are estimated 

approximately by the Guyan reduction method, which are, 6.75%, 3.25%, 3.25% and 

2.32% for the polar moment of inertia J, the second moments of inertia yI  and zI , and 

the cross-sectional area A respectively. The measured acceleration data was re-sampled 

at 505 Hz. Orthogonal polynomial function (Law and Zhu, 2000) was utilized here to 

remove the measurement noise in the acceleration data. Only two seconds measured 

data from two accelerometers (node 3, z-direction and node 11, z-direction) were used 

for the damage identification. Four sets of damage indices, namely, Jα ,
yIα ,

zIα , and 

Aα  are updated. The total number of unknown for updating  is 148437 =× . And the 

number of equations is 202022505 =×× , the number of equations is much greater 

than the number of unknowns. The required iteration number for convergence and the 

optimal regularization parameter are 17 and 0.0025 respectively for updating Aα , and 

those for updating the remaining sets of indices are 23 and 0.0033 respectively. Table 

6-7 shows the first eleven natural frequencies calculated for the updated damaged 

structure, and they are found matching the experimental values very well. Figure 4-15 

shows the identified changes in the four sets of physical parameters. It is noted that 

both the location and the pattern of damage were identified successfully.  

Damage Scenario E2  
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The analytical reduction in the parameters of the damaged element 2 are estimated 

approximately by the Guyan reduction method, which are, 26.65%, 6.74%, 23.25% 

and 8.76% for the polar moment of inertia J, the second moments of inertia yI  and zI , 

and the cross-sectional area A respectively. Data in the first two seconds measurement 

from two accelerometers (node 9, z-direction and node 11, z-direction) were used for 

the damage identification. Figure 4-16 shows the identified results. The location of the 

damage and the damage patterns were identified correctly, except with some false 

alarms in Iy where elements 3, 5, 21, 27 and 30 are incorrectly identified to have a 

change larger than 1%. The required iteration number for convergence and the optimal 

regularization parameter are 19 and 0.0029 respectively for updating Aα  and those for 

updating the remaining sets of damage indices are respectively 25 and 0.0053. The 

first eleven natural frequencies calculated for the updated damaged structure are shown 

in Table 4-13, and they are found matching the corresponding experimental values 

very well.  

Damage Scenario E3  

The analytical reduction in the parameters of the damaged element 2 are estimated 

approximately by the Guyan reduction method, which are, 26.65%, 23.25%, 6.74% 

and 8.76% for the polar moment of inertia J, the second moments of inertia yI  and zI , 

and the cross-sectional area A respectively. Data in the first two seconds of 

measurement from two accelerometers (node 9, z-direction and node 11, z-direction) 

were used for the damage identification. Figure 4-17 shows the identified results. The 

location of the damage and the damage patterns were identified correctly, except with 

some false alarms in Iz where elements 16, 18, 23, 26 and 30 are incorrectly identified 

to have a change larger than 1.0%. The required iteration number for convergence and 
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the optimal regularization parameter are 18 and 0.0027 respectively for updating Aα  

and those for updating the remaining sets of damage indices are respectively 26 and 

0.0054. The first eleven natural frequencies calculated for the updated damaged 

structure are shown in Table 4-13, and they are found matching the corresponding 

experimental values very well.  

Identified Damage Values 

The identified values for all the three Scenarios are given in Table 4-15. The 

damage in element 4 is identified with consistently values in all the Scenarios. Damage 

in element 2 with the major axis in the horizontal or vertical directions is also 

identified with consistently values. The values are all smaller than the predicted values 

from the approximate Guyan reduction method. 

4.2.6 Concluding Remarks 

A new approach for differentiating different types of load resistance of elements in 

a structure is proposed in this chapter. A method is proposed to calculate the 

sensitivities of dynamic response with respect to different types of damage indexes by 

both Newmark method and state-space method. Numerical study shows that state-

space is more computational stable than Newmark method. And these damage indexes 

are used to detect both the location of damage, the extent of damage and type of 

damage as well. Two numerical simulations and a laboratory work show that the 

proposed method is effective and robust in both identifying damage and classifying the 

damage pattern. Studies show the proposed method is insensitive to measurement 

noise, but like many other damage detection methods, the finite element modeling 

error has larger effect on the accuracy of damage detection, so a relatively accurate 
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initial finite element model of the structure is required and thus a two-stage damage 

detection method is adopted to avoid large error in the damage detection results.   

 

 

 

4.3 Identification of Prestress Force from Measured Structural 

Responses 

4.3.1 Introduction 

In this section, a method was proposed for identification of prestress force in 

structures based on structural dynamic response sensitivity. The sensitivity of dynamic 

responses (displacement, velocity and acceleration) with respect to a system parameter 

is derived by state space method. 

An inverse problem to identify the prestress force is then presented taking the 

prestress force in all the elements as the unknown parameters in the identification with 

both sinusoidal and impulsive excitation. The sensitivities of acceleration or strain with 

respect to the unknown system parameter are used in the identification. The 

sensitivity-based finite element model updating method is adopted and very good 

results are obtained. The effect of measurement noise and model errors on the 

identification result is discussed. Computation simulations and laboratory test on a 

prestressed concrete beam show that the prestress force can be effectively identified 

from a short duration of measurement from as few as a single sensor.  
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4.3.2 Forward  Problem  

4.3.2.1 Structural dynamic responses 

Figure 7-15 shows a two spans simply-supported, rectangular prestressed concrete 

bridge with a prestressing tendon. The equation of motion of the bridge deck modeled 

as an Euler-Bernoulli beam with N  degrees-of-freedom can be written as 

 )}({}]{[}]{[}]{[ tFdKdCdM =++ &&&  (4.3-1) 

where d  is the displacement vector, d&  and d&&  are the first and second derivative of d  

with respect to time t  respectively. M is the mass matrix, C is the damping matrix. 

Here, Rayleigh damping is used, )}({ tF is a vector of the nodal forces. gKKK −=  is 

the global stiffness matrix of the structure. K  is the global stiffness matrix without 

prestress force, and gK  is the global geometrical stiffness matrix expressed as,  
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where NE is the total number of element of the finite element. The geometrical 

stiffness matrix of each element can be written as: 
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where T  is the uniform axially prestress force and l is the length of the element. 

Writing Equation (4.3-1) in the state-space formulation, 

  FXKX += *&  (4.3-2) 
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where X  represents a vector of state variables with a length 2N containing the 

displacements and velocities at the nodes. These differential equations are then 

discretized using the exponential matrix representation, 

  kk1k FDAXX +=+  (4.3-3) 

  hKeA
*

= , )(* IAKD 1
−=

−   

where A is the exponential matrix, (k+1) denotes the value at the (k+1)th time step of 

computation, and h represents the time increment between the variable states kX  and 

1kX +  in the computation. I is a unit matrix. The dynamic response of the system can 

be obtained from Equation (4.3-3), and the acceleration response can be obtained by 

directly differentiating the velocity response. 

4.3.2.2 The Strain Responses 

For a two-dimensional finite beam element of length l  with deformation described 

by the deformation vector T
sssrrr ),v,u,,v,u( θθ  at its two ends r and s. The strain at 

any cross-section distance y from the left end of the element can be obtained in terms 

of the deformations at its two ends as 
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   (4.3-4) 

where z is the distance from the neutral axis of the beam to the strain gauge. 

 

4.3.2.3 Sensitivity formulation in time domain 

The sensitivity of the dynamic response with respect to a physical parameter of the 

system, αi, such as the prestress force, support stiffness and the flexural rigidity of a 

finite element, etc., can be obtained by differentiating both sides of Equation (4.3-2) 

with respect to parameter αi of an element, 
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where 2a  is the coefficient of the Rayleigh damping as shown in Chapter 3.  

Let i/XY α∂∂= , where Y is the vector of displacement and velocity sensitivities with 

respect to parameter iα . 
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Equation (4.3-5) can be rewritten as  

 GPYKY ++= ∗&  (4.3-6) 

It is noted that Equation (4.3-6) has the same form as Equation (4.3-2). The 

displacement and velocity response sensitivities can be obtained in a discretized form 

similar to Equation (4.3-3) as, 

 )( kkk1k GPDAYY ++=+  (4.3-7) 

The acceleration response sensitivity can then be obtained by directly differentiating 

the velocity sensitivity.  

4.3.2.4 Strain Response Sensitivity 

Differentiating both sides of Equation (4.3-4) with respect to parameter iα , we 

have 
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  (4.3-8) 

which is a function of the displacement sensitivities at the two ends of the element. 
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4.3.3 Inverse Problem   

The identification problem is to find the vector of prestress force }{T  such that the 

calculated responses best match the measured responses, i.e. 

 }ˆ{}]{[ RRQ =   (4.3-9) 

where the selection matrix ][Q  is a constant matrix with elements of zeros or ones, 

which maps the degrees-of-freedom of the system to the measured degrees-of-

freedom. { R } and { R̂ } are the vectors of calculated and measured dynamic responses 

of the system respectively. The inverse problem is to minimize the error between the 

calculated and measured responses as 

 }{}ˆ{}]{[}ˆ{}{ calRRRQRR −=−=δ  (4.3-10) 

In penalty function method, the error vector is expressed as the first order Taylor 

expansion of the dynamic response, 

 }]{[}{ TSR δ=δ  (4.3-11) 

where }{ Tδ  is the vector of perturbation of the parameters, }{ Rδ is the error vector in 

the measured output, and ][S  is the sensitivity matrix. For a finite element model with 

NE elements, NE equations are needed to solve the unknown vector of prestress force 

in the elements. Equation (4.3-10) can be written in full as, 
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with p ≥ NE to make sure that the equation is over-determined. Equation (4.3-12) can 

be solved by the damped least-squares method with bounds to the solution, 

 }{)(}{ 1 RSISST TT δλδ −+=  (4.3-13) 
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where λ  is the non-negative damping (regularization) coefficient governing the 

participation of least-squares error in the solution.  

4.3.3.1 Procedure of Iteration 

When measurement from the non-prestressed state of the structure is obtained, 

the response and its sensitivity to a system parameter are first computed basing on the 

analytical model of the structure and the measured input force. The error vector is 

computed from Equation (4.3-10), and the vector of parameter increment is then 

obtained from Equation (4.3-13) or (4.3-14). The analytical model is then updated and 

the response and its sensitivity are again computed for the next iteration. Convergence 

is considered achieved when the following criterion is met: 

  tolerance
T

TT

1k

k1k ≤
−

+

+  (4.3-14)        

where k denotes the kth iteration. The tolerance is taken as 610−  in this section. 

When measurement from the prestressed state is obtained, the updated analytical 

model is used in the iteration in the same way as that using the measurement from the 

non-prestressed state. The final set of identified parameter increments correspond to 

the changes occurred in between the two states of the structure. In the present case, the 

prestress force in all the elements form the vector of unknown parameters, and is 

initially set equals to a null vector. 

4.3.4 Computation Simulation 

4.3.4.1 Prestress Force Identification in a Single Span Beam  

A 30 metres long single span simply supported Euler-Bernoulli beam with a 

uniform 6102.1 ×  N axial prestress force is studied. The mass density and Young’s 
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modulus of material are m/kg105.2 3×  and 210 m/N105.3 ×  respectively, and the 

width and depth of beam are 0.6m and 1.2m respectively. The prestressed beam is 

modeled with ten equal Euler-Bernoulli beam elements with three degrees-of-freedom 

at each node. The first five natural frequencies are: 1.81, 8.27, 19.93, 35.76 and 56.16 

Hz. Rayleigh damping is adopted, and the modal damping ratios for the first and 

second modes are assumed to be 0.02 and 0.04 respectively.  

4.3.4.2 Under Sinusoidal Excitation 

An external sinusoidal force  )]15sin(05.0)4sin(1.01[8000)( tttF ππ ++=  N is 

applied at 12 metres from the left support. The frequency components of the force are 

close to the first two modal frequencies of the beam. Vertical acceleration at 6 meters 

from the left support and strain measurement at the bottom of the beam 9 metres from 

the left support are recorded. The sampling rate is 200 Hz which is larger than two 

times the highest frequency of interest at 56.16 Hz. The beam is assumed initially at 

rest, and data recorded in the first two seconds after the application of the excitation 

force is used in the identification. 

The identification is performed with three types of measured data: acceleration data 

or the strain data alone and then with both types of data. The number of iteration 

required for convergence and the optimal regularization parameters are respectively 24 

and 910215 −×. , 38 and 1110082 −×.  and 30 and 1010331 −×.  for the three types of 

measured data. The identified prestress force in each element of the beam almost 

matches the true value perfectly with a maximum error of 0.25 %. 

4.3.4.3 Under Impulsive Excitation 

An impulsive force is applied at 12 meters from the left support for a short duration 

of 0.1 second. The magnitude of the force is 9500 N and it is expressed as 
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Vertical acceleration at 6 meters from the left end is used for the prestress force 

identification. The sampling rate and number of data points are the same as for the last 

study. The iteration number for convergence of result and the optimal regularization 

parameter are 36 and 81046 −×.  respectively. The identified prestress force in each 

beam element matches the true value excellently with a maximum error of 0.08%.  

Results from the studies in this example indicate that the prestress force can be 

identified accurately from the measured dynamic responses either from acceleration 

response or strain response or their combination from as few as a single sensor. 

Identification from acceleration alone is more efficient than from the measured strain 

with fewer number of iteration for convergence. 

4.3.4.4 Prestress Force Identification in Two- Span Continuous Beam  

A two equal spans prestressed continuous beam as shown in Figure 4-18 is studied. 

The total length of the beam is 48 meters with the two ends on rigid support and the 

middle support modeled with a stiff linear spring of vertical stiffness of 151051 ×. N/m. 

The finite element model of the prestressed beam consists of sixteen equal Euler-

Bernoulli beam elements with three degrees-of-freedom at each node. The Young’s 

modulus and mass density of material are 10103.3 ×  N/m2 and 2500  kg/ 3m  respectively. 

Due to friction loss at the anchorage and friction (Eugene and Andrew, 1995), non-

uniform distribution of the prestress is considered. Assuming the beam is jacked from 

both ends to a tension of 40000 kN, the final prestress forces in the elements are listed 

in Table 4-16. The first five natural frequencies of the prestressed beam are: 3.83, 6.36, 

16.69, 21.29 and 28.05 Hz. Modal damping ratios for the first and second modes are 

taken to be 0.02 and 0.04 respectively. 
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The same sinusoidal excitation as used for the single span beam is used. It is 

applied at a point 15 m from the left support. The sampling rate is 200 Hz. The 

following cases of using two seconds of different type and combination of measured 

information are studied.  

• Case 1 – Acceleration at 18 m from the left support. 

• Case 2 – Acceleration at 18m and strain at 30 m from the left support. 

• Case 3 – Acceleration at both 18m and 30m from the left support. 

• Case 4 – Strain at both 6 m and 30 m from the left support. 

• Case 5 – Acceleration at both 18m and 30m from the left support contaminated 

with 1% or 10% noise. 

To simulated the effect of measurement noise, a normally distributed random error 

with zero mean and a unit standard deviation is added to the calculated displacement as  

  )var(ˆ
caloisecal RNEpRR ××+=  (4.3-16) 

where R̂ is the vectors of measured structural response; Ep is the noise level; Noise is a 

standard normal distribution vector with zero mean and unit standard deviation; var(•) 

is the variance of the time history.  

The identified prestress force is shown in Table 4-16 together with the required 

number of iteration and the optimal regularization parameter for each Case. Case 1 

fails to identify the prestress force. This may be due to the fact that the sensor is 

located at the nodal point of the third mode of vibration, and the first three modes 

contribute greatly to the vibrational response of the beam. Results with an error of 

identification larger than 1% are highlighted. The error in all cases is very small with a 

maximum of -1.87%. Acceleration data is found to be more effective than strain data 

with a smaller number of iteration for convergence and the proposed method is not 

sensitive to random measurement noise. It is concluded that two second of measured 
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data from a strain gauge and an accelerometer could in general identify the prestress 

force distribution along a beam with good accuracy. 

4.3.4.5 Effect of Model Errors 

The effect of different possible model errors is studied with measured acceleration 

at both 18m and 30m from the left support. The excitation force, sampling rate and the 

number of data used for the identification are the same as for last study. 

• Case 6 – with 5% under-estimation in the flexural rigidity of the beam  

• Case 7 – with reduction of support stiffness to 1/10th of the original  

• Case 8 – with 3% under-estimation in the mass density of material 

• Case 9 – with a change in Rayleigh damping coefficients: the two coefficients 

a1 and a2 are changed from 0.02 and 0.04 to 0.04 to 0.08 

• Case 10a   – with all the above mentioned model errors together 

• Case 10b  – with all the above mentioned model errors together plus 10% 

random noise in the measurements 

The identified results for all the above Cases are shown in Table 4-17. The two 

largest errors in each case are highlighted. The errors for Cases 6 to 9 are very small, 

while Case 8 with a model error in the mass density shows a slightly larger error than 

the other cases. This is because the sensitivity of response to a perturbation in the 

prestress force is very large compared with a small change in other physical 

parameters of the structural system, e.g. support stiffness, flexural stiffness of the beam, 

material constants and mass density. This is further confirmed in the results for Case 

10 where the error of identification is dominated by the 10% noise effect rather than 

the combination of different types of model errors. 

The relatively small error in the identification is due to the large response 

sensitivity when compared with sensitivities with respect to other physical parameters 
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of the structural system, e.g. support stiffness, flexural stiffness of the beam as shown 

in Figure 2. The curves in Figure 2 are from the case with a sinusoidal excitation force 

of 20000 N at 2Hz acting at 21 metres from the left end of the single span beam in the 

first example. The acceleration response is measured at a point 15 metres from the left 

support. A beating phenomenon is observed due to the close proximity of the 

excitation frequency to the fundamental frequency of the structure. The shapes of the 

sensitivity curves are similar to the dynamic response with similar phase, but there is a 

phase reversal in the case of the sensitivity with respect to the prestressing force. It 

should be noted that these observations are only specific to this type of structure and 

the type of excitation used, but there is a clear dependence between the sensitivities 

and the original dynamic response. 

 

4.3.5 Experimental Verification 

The proposed method is further verified with a simple prestress concrete beam in 

the laboratory. Figure 4-20(a) shows the experiment setup of the beam. The 

experimental setup is shown diagrammatically in Figure 4-20(b). It is 4.0 meters long 

with a mmmm 200150 ×  uniform cross-section and a clear span of 3.8 meters. A seven-

wire straight strand was placed in a 57mm diameter duct located at the centre of 

gravity of the beam cross-section throughout the length of the beam. The duct remains 

ungrouted such that the prestress force can be monitored as a reference. The elastic 

modulus of concrete and the steel strand are respectively 31.5 910×  N/m2 and 194 910×  

N/m2 and the mass density of concrete is 33 m/kg10398.2 × . The yield strength of the 

strand is 192 kN. The beam is instrumented with seven equally spaced accelerometers 

to measure the vertical acceleration responses of the beam. Seven strain gauges are 

also instrumented on the upper surface of the beam; they locate at L/16, 3L/16, 5L/16, 

7L/16, 9L/16, 11L/16, and 13L/16 from the left end. 
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4.3.5.1 Modal Tests 

Dynamic modal test is conducted on the concrete beam without prestress force first. 

The beam is excited with impacts from a Dytran Instruments 12 lb instrumented 

impulse hammer, model 5803A in the vertical direction at a fixed point 3L/8 from the 

left support. A commercial data logging system INV303E and the associated signal 

analysis package DASP2003 are used in the data acquisition. One load cell is located 

at one end of the strand to measure the magnitude of prestress force applied on the 

concrete beam. The load cell is calibrated before it was installed on the prestress 

tendon. During the test, once we measured the strains of the lead cell, the prestress 

force can be calculated from the strain values. After 100 KN prestress force is applied 

to the prestressing strand, another modal test is conducted on the prestressed beam. 

The frequencies are found increased after prestressing. This seems to contradict with 

the prediction from the theoretical formula (Kim et al., 2004) 
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where bb IE  is equivalent flexural rigidity of the beam section, cc Aρ  is the mass of 

beam per unit length. T is the magnitude of the prestress force. Equation (4.3-17) 

shows that an increase in the axial compressive force reduces the modal frequency and 

vice versa. But on further checking on the experimental system, we found that the 

equivalent flexural rigidity of the beam without prestress force is 3.13×103 kN-m2, and 

it increases to 3.20×103 kN-m2 after prestressing. Also the equivalent mass per unit 

length of the beam is increased by 1.49% after prestrsssing. This is due to the presence 

of the additional equivalent flexural rigidity and the mass of the prestressing strand. 

Thus the physical presence of the prestressing tendon has dual effects on the natural 

frequency of the beam. The prestressing tendon itself increases the flexural rigidity and 
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hence the natural frequency of the beam, but the self weight and compressive axial 

force it carries reduce the frequency of the beam. However, the stiffening effect from 

the increase in the equivalent flexural rigidity is greater than the softening effect due to 

the compressive axial force and the additional inertia effect due to its self weight. And 

this results in a net increase in the natural frequency. Other effect such as an increase 

in the dynamic modulus of concrete is considered small and is therefore not discussed.  

4.3.5.2 Identification of Prestress Force 

The initial finite element model of the beam before prestressing consists of sixteen 

two-dimensional Euler-Bernoulli beam elements with three degrees-of-freedom at each 

node. Impulsive force is applied with the impact hammer at 1/4L from the left support 

of the beam.  The sampling rate is 2000 Hz. Time histories of both the excitation force 

and the accelerations are recorded, and data obtained from the third and fourth 

accelerometers are used in the prestress force identification. 

The initial finite element model of the beam before prestressing consists of sixteen 

two-dimensional Euler-Bernoulli beam elements with three degrees-of-freedom at each 

node. The flexural rigidity of the beam is calculated as 3.13×103 kN-m2. The support 

stiffnesses are updated using the proposed sensitivity approach with 1 second 

measured data from the two accelerometers, and the left and right support stiffnesses 

are revised to 7109.8 × N/m and 7104.9 × N/m respectively. Rayleigh damping model is 

adopted in calculating the structural response, and the measured modal damping ratios 

for the first three modes are respectively 0.028, 0.15 and 0.11. The analytical modal 

frequencies are shown in Table 4-18. 

After the beam is prestressed, the flexural rigidity of the beam section is calculated 

to be 3.20×103 kN-m2. The prestress force is identified using data from 0.2 second to 

1.0 second after the hammer impact. The first 0.2 second data is skipped because of the 
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many high frequency components in the response caused by the impulsive force 

created by the hammer. The orthogonal polynomial function is used to remove the 

measurement noise. The measured modal damping ratios for the first three modes are 

respectively 0.022, 0.14 and 0.08. The load cell at the end of the strand shows that the 

prestress force is 66.7 KN. The identified prestress force and error are shown in Table 

4-19, and they are very close to the true force with a maximum error of 10.9% close to 

one end of the beam. The relative error reduced much compared with the results from 

the last section. 56 iterations are required for convergence of the results and the 

corresponding optimal regular parameter is 810031 −×. . Figure 4-21 shows the curve 

of convergence and Figure 4-22 shows the reconstructed acceleration responses and 

the corresponding measured ones. It is noted that these two sets of time histories match 

each other very well. 

4.3.6 Concluding Remarks 

A method based on response sensitivity is proposed for identification of prestress 

force in this section. The sensitivities of dynamic responses with respect to physical 

system parameters are analytically derived. The sensitivity-based method is used to 

update the prestress force in an Euler-Bernoulli beam. Both sinusoidal and impulsive 

excitations from an impact hammer are used, and the effectiveness of both acceleration 

and strain responses for the identification are studied. Very good identified results can 

be obtained from a very short duration of 2 seconds from as few as a single measuring 

point. Numerical simulations and experimental results from a prestressed concrete 

beam in the laboratory show that the proposed method is insensitive to different types 

of model errors and measurement noise, but a combination of these two factors would 

give significant error in the identified result. 
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4.4 Simultaneous Identification of System Parameters and Input 

Force  

4.4.1 Introduction 

In Chapter 3, a method for damage detection based on response sensitivity is 

proposed and it can be used to identify structural damage successfully. It is assumed 

that the excitation force can be measured and it is known a priori. But in practice, 

sometimes the excitation force cannot be measured. This section deals with a more 

general problem when the excitation force is unknown and thus we need to identify the 

excitation force and the structural damage simultaneously. This research topic has been 

explored by other researchers. Chen and Li (2004) and Shi et al (2000) presented 

methods to identify structural parameters and input time history simultaneously from 

output-only measurements.  The structural parameters and the input time history are 

obtained in an iterative manner. Law and Zhu (2004) also proposed an approach for 

damage detection in a concrete bridge structure in time domain. Both the damage and 

moving vehicular loads are identified successfully. 

 In this section, Newmark method is used in the computation of dynamic response 

and the sensitivities of dynamic response with respect to the structural physical 

parameters. The parameter changes are identified simultaneously using an iterative 

algorithm. A notable advantage of the proposed method is that as few as one dynamic 

response measurement of the structure is needed in the inverse analysis. A prestressed 

single-span concrete beam and a two-span continuous beam are used as numerical 

example to illustrate the effectiveness of the proposed method. Computation 
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simulations show that the proposed method is not sensitive to measurement noise. 

Experimental results obtained from a simply supported steel beam with damage 

excited by a releasing a dead weight demonstrate that the proposed method can 

successfully identify both the unknown excitation and physical parameters 

simultaneously.  

4.4.2 The Dynamic Response and Response Sensitivity 

Figure 4-23 shows a simply supported rectangular prestressed concrete beam with 

a straight tendon passing through the centroid of the cross-section. The equation of 

motion by finite element representation can be written as 

  }]{[}]{[}]{[}]{[ FBdKdCdM =++ &&&  (4.4-1) 

where d  is a vector of displacement, d&  and d&&  are the first and second derivatives of 

d  with respect to time t  respectively, M is the mass matrix, C is the damping matrix, 

as in last chapter, Rayleigh damping model in utilized in this section. }{F  is the vector 

of input excitation forces and ][B  maps these forces to the associated degrees-of-

freedom of the structure. K  is the global stiffness matrix of the prestressed beam with 

gKKK −= , where K  is the global stiffness matrix without prestress force. gK  is the 

global geometrical stiffness matrix, ∑
=

=
NE

i

i
egg kK

1

][ , NE is the total number of element, 

and gk  is the elemental geometrical stiffness matrix. 

 The jth input force is represented by 
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where, j
0F j

lF , j
lω  are parameters of the jth force, fN is the total number of excitation 

force and n is the number of terms in the series. They are taken as the unknown force 

parameters to be identified in the inverse problem.  

Expressing the stiffness matrix of the structure as the summation of the elemental 

stiffness matrices, and substituting Equation (4.4-2) into Equation (4.4-1), we have 
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where  e
ik][  is the ith elemental stiffness matrix. The dynamic response can be 

obtained from Equation (4.4-3) using Newmark method. 

The response sensitivity with respect to the parameters of force and system 

parameters is derived as follows. 

 Performing differentiation to both sides of Equation (4.4-3) with respect to the 

parameters of the jth excitation force, we have, 
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Performing differentiation to both sides of Equation (4.4-3) again with respect to 

the jth physical parameter, i
SjP  , of the ith element, we have, 

 }{][}{][}]){[][(}]{[}]{[ 2
1

d
P
Kad

P
k

P
dKk

P
dC

P
dM i

Sj
i

Sj

e
i

i
Sj

g

NE

i

e
ii

Sj
i

Sj

&
&&&

∂
∂

−
∂
∂

−=
∂
∂

−+
∂
∂

+
∂
∂ ∑

=

 (4.4-7) 

where 2a  is the coefficient for Rayleigh damping. Note that Equations (4.4-4) to 

(4.4-7) have the same form as Equation (4.4-3). The response sensitivities can also be 
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obtained by Newmark method. The initial values of the dynamic responses and 

sensitivities are all taken equal to zero. In the case of non-zero initial conditions, the 

sensitivities obtained would be a little different from those with zero initial conditions, 

but such differences would diminish very rapidly since their effects are transient 

occurrences. Furthermore if the non-zero effects have to be quantified, the transient 

responses due to them can be computed as well as their sensitivity with respect to the 

required physical parameter or force parameter, and they can be identified together in 

the same iterative process as shown below. 

4.4.3 Identification of Excitation Force and Damage 

The identification problem is to find the vectors of the force parameters {PF} and 

the physical parameters of the system {PS} such that the calculated acceleration }{d&&  

best matches the measured response }ˆ{d&& , i.e. 

 }ˆ{}]{[ ddQ &&&& =   (4.4-8) 
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where the selection matrix ][Q  matches the degrees-of-freedom corresponding to the 

measured acceleration components. Vector {PS} gives all the physical parameters for 

the set of beam-column two-dimensional finite element member, and ns is the number 

of supports. ii PL ,  are the length and axial prestress of the ith element, and i
R

i
V K,K  are 

the translational and rotational stiffness of the ith support. Let the error vector be 

 }]{[}ˆ{}{ dQdz &&&& −=δ  (4.4-9) 
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The identification problem can be accomplished in the following two stages. 

4.4.3.1 Input Force Identification  

 In the penalty function method, we have, 

 }]{[}{ FF PSz δ=δ  (4.4-10) 

The physical parameters of the intact structure are used in calculating the matrix 

][ FS  as we are not certain about the true state of the damage structure.  ][ FS  is the 

two-dimensional sensitivity matrix, which is the change of acceleration response with 

respect to the force parameters in time domain. }{ FPδ  is the vector of perturbation in 

the force parameters. Substituting Equation (4.4-9) and rewriting Equation (4.4-10) in 

full, we have 
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where m  is the number of time steps,  which  should be larger than the number of 

unknown force parameters to make sure that the set of equation is over-determined. 

Equation (4.4-10) can be solved by the damped least-squares method (DLS) as 

follows, 

 }{)())()((}{ 1 zSISSP T
FF

T
FF δλδ −+=  (4.4-12) 

where λ  is the non-negative regularization parameter governing the participation of 

least-squares error in the solution. The solution of Equation (4.4-12) is equivalent to 

minimizing the function 

 22 }{}{}){()},({ FFFF PzPSPJ δλδδλδ +−=  (4.4-13) 
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with the second term in Equation (4.4-13) providing bounds to the solution. When the 

parameter λ  approaches zero, the estimated vector }{ FPδ  approaches to the solution 

obtained from the simple least-squares method.  

4.4.3.2 Damage Identification  

Once the forces have been obtained from above, we can move on to the local 

damage identification. Again by using the penalty function method, we have, 

 }]{[}{ SS PSz δδ =  (4.4-14) 

The physical parameters of the intact structure are used in calculating the 

matrix ][ SS . ][ SS  is the two-dimensional sensitivity matrix, which is the change of 

acceleration response with respect to the physical parameter in time domain. }{ SPδ  is 

the vector of perturbation of the parameter. The physical parameter can also be 

obtained from 

 }{)())()((}{ 1 zSISSP T
SS

T
SS δλδ −+=  (4.4-15) 

or 

 }{)())()(()()( 1
1 j

T
jSjS

T
jSjSjS zSISSPP δλ −

+ ++=  (4.4-16) 

where subscript “j” indicates the iteration number. 

4.4.3.3 Algorithm of Iteration 

 Since both the excitation force and the damaged structure are unknown, the 

following iterative algorithm is used in the identification:   

(A) Iteration for the excitation force parameters 

 Starting with a set of given initial values on the unknown force parameter vector 

}){( 0FP  and the intact set of physical parameter }){( 0SP , the procedure of iteration is 

given as: 
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Step 1: With the initial force vector and vector of the undamaged system, Equation 

(4.4-3) is solved at j=k+1 iteration step for the acceleration }{d&&  and the error 

vector }{ kzδ  is computed. 

Step 2: Solve Equations (4.4-4) to (4.4-6) at j=k+1 iteration step with known }){( kFP  

for the sensitivity matrix ])(/[ kFPd ∂∂ && . 

Step 3: Find }){( 1kFP +  from Equation (5-12) . 

Step 4: Repeat Steps 1 to 3 until 1limit
}){(

}){(}){(

1

1 econvergenc
P

PP

kF

kFkF ≤
−

+

+ .  

(B) Iteration for the elemental flexural rigidity 

With the modified excitation force parameter vector }{ FP  obtained from (A) 

above, and take the intact vector of physical parameter as initial value of 0}{ SP , 

Step 5: Equation (4.4-3) is solved at j=k+1 iteration step for the acceleration }{d&&  and 

the error vector }{ kzδ  is computed. 

Step 6: Solve Equation (4.4-7) at j=k+1 iteration step with known }){( kSP  for the 

sensitivity matrix ])(/[ kSPd ∂∂ && . 

Step 7: Find }){( 1+kSP  from Equation (4.4-16). 

Step 8: Repeat Steps 5 to 7 until limit2
}){(

}){(}){(

1

1 econvergenc
P

PP

kS

kSkS ≤
−

+

+ . 

The identified excitation force obtained in (A) can be further improved using the 

updated physical parameters obtained in (B) and repeating Steps 1 to 4. On the other 

hand, the vector of physical parameters can also be further improved using the 

modified excitation force and repeating Steps 5 to 8. In the simulation examples of this 
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section, the convergence limit is 1.0×10-6 in both the force and parameter 

identification. 

4.4.4 Computation Simulations 

4.4.4.1 Study Case 1 - One impulsive force on a single span beam with one local 

damage 

A 20 metres long single span simply supported Euler-Bernoulli beam as shown in 

Figure 4-23 with a constant axial prestress force of 61001 ×. N is studied, the prestess 

tendon is assumed to be unboned. The physical parameters of the beam are: mass 

density 33 mkg1052 /. ×=ρ , Young’s modulus 210 mN1033E /. ×= , length m20L = , 

width mb 6.0=  and height mh 0.10 = .  

The impulsive force is assumed to act on the beam at 8 metres from the left support 

at time 0.05 second and lasting for 0.05 second. It is assumed to be a constant in such a 

small time interval, and is expressed mathematically as, 
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White noise is added to the calculated responses of the beam to simulate the noisy 

measured data with 

 )(dNEdd noisep
&&&&&& σ××+=

∧

 (4.4-22) 

where pE  is the noise level, noiseN is a standard normal distribution vector with zero 

mean value and unit standard deviation, )d( &&σ  is the standard deviation of the 

calculated acceleration response. The effect of 1%, 5% and 10% measurement noise on 

the identified result is studied.  
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The finite element model of the beam consists of ten equal Euler-Bernoulli beam 

elements with three degrees-of-freedom at each node. The first five natural frequencies 

of the intact beam are: 4.07, 16.42, 37.03, 65.93 and 103.25 Hz. The damping ratios 

for these five modes are all equal to 0.02. The local damage is simulated by a 10% 

reduction in the flexural rigidity of the 3rd element from the left. The force is modeled 

with five sinusoidal terms plus a constant term as shown in Equation (4.4-2), and the 

initial set of force parameters is chosen as (1000, 1000, 1000, 1000, 1000, 

1000, π2 , π4 , π6 , π8 , π10 ) T , where the first six values are the amplitudes, and the last 

five values are the circular frequencies of the force. Since Equation (4.4-10) is a linear 

approximation, the parameters of the force are obtained in an iterative manner. It is 

noted that the force parameters are updated from minimizing a non-linear function 

using an iterative approach, a local rather than a global minimum maybe found. This 

may be checked by using a number of the different initial values for the unknown force 

parameters. In the present numerical example, study shows that when the magnitudes 

of the force parameters are less than 1000, the constructed force will fail to converge to 

the true force whereas the magnitudes of the force parameters are equal or greater than 

1000 will converge to the true value. Thus the magnitudes of the force are all set to 

1000. The time step is 0.001 s and the response for 2 seconds is calculated. One 

vertical acceleration measurement at 12 metres from the left support is collected and 

2000 data are used. The required number of iteration for convergence for the force 

with 1, 5 and 10% noise is 70, 72 and 78 respectively, and that for the local damage is 

36, 40 and 47 respectively. The optimal regularization parameter optλ  corresponding to 

1, 5 and 10% noise level are 0.003, 0.005 and 0.006 respectively for the force and 

6.5×10-7, 1.18×10-6 and 1.22×10-6 respectively for the damage. Table 4-20 summarized 

the iteration steps required and the optimal regularization parameters corresponding to 
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different noise levels. Figures 4-24 and 4-25 give the identified results of the impulsive 

force and the damage. From these figures, the following observations can be obtained: 

• The identified impulsive force and the local damage are all close to the true 

values. This shows that the proposed method is correct and effective to identify 

iteratively both the excitation force and damage in the beam from noisy 

dynamic response measurement.  

• The identified results are similar and the required number of iteration for 

convergence is also similar for different noise level under study. This indicates 

that the present method is relatively insensitive to noise in the measurement. 

• The sensitivities of the force parameters, especially the frequency components, 

have been checked to be much larger than those of the physical parameters. 

This leads to a much larger regularization in the identified results in the force 

identification compared with the physical parameters as seen in the two sets of 

optimal regularization parameters. This will be further studied below. 

4.4.4.2 Study Case 2 – One sinusoidal excitation force on a two-span beam with 

four local damages 

A 30 metres long simply supported two-span continuous Euler-Bernoulli beam 

with a constant axial prestress force of 6102.1 ×  N is studied. The physical parameters 

of the beam are: mass density 33 mkg1052 /. ×=ρ , Young’s 

modulus 210 mN1033E /. ×= , length m30L = , width mb 6.0=  and 

height mh 0.10 = . The finite element model of the beam consists of sixteen equal Euler 

beam elements with three degrees-of-freedom at each node. The first five natural 

frequencies of the intact beam are: 7.26, 11.39, 29.23, 37.00 and 65.90 Hz. The 

damping ratios for these five modes are all equal to 0.02. The external excitation force 
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is )50sin05.012sin1.01(16000)( tttf ππ ++×=  N and it is applied at the 3rd nodes 

from the left support.  The time step is 0.001 s and the response for 2 seconds is 

calculated. One vertical acceleration measurement at the 7th node from the left support 

is used and 2000 data points are used in the identification. 10% noise is added to the 

calculated acceleration to simulate the measured response.  

The purpose of this study is on the resolution capability of the proposed method for 

damages at close proximity to each other and on the effect of model error on the 

identification. The local damages are simulated by assuming 5%, 10%, 5% and 8% 

reduction in the flexural rigidity of elements 5, 6, 14 and 15 respectively. No model 

error is assumed in Scenario 1, while 5 % reduction in the flexural rigidity of all the 

beam elements is assumed in Scenario 2. 

Again, the excitation force is modeled with five sinusoidal terms plus a constant 

term. Since the sensitivity of response to the frequency component of the force is much 

higher than that for the amplitude of the force, a two-step strategy is adopted in the 

force updating to avoid large error in the identified force when both types of force 

parameters are identified simultaneously. The first step updates the frequency 

components with the initial vector of the force amplitude which have been all initially 

set at 1000 N. The initial set of circular frequency of the force is ( π14 , π22 , π30  , 

π40 , π60 ) T . The first two frequency components are selected near the first two 

natural frequencies of the bridge. The other three components are arbitrarily chosen, 

there is no obvious different in the final results for different values of these three 

components. The second step adopts the identified frequency components as the true 

values and updates the force amplitudes. The same set of measured data points are 

used in the iteration.  
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The final identified force time histories shown in Figure 4-26 almost overlap each 

other indicating a high accuracy in the force identification. The identified damages are 

shown in Figure 4-27 after the second cycle of iterations. The identified reductions in 

Scenario 1 are 4.8%, 9.5%, 5.3% and 7.5% in elements 5, 6, 14 and 15 respectively. 

The required number of iteration in the second cycle for the forcing frequency, the 

magnitude and the damage are respectively 23, 36 and 32. The optimal regularization 

parameters are respectively 0.08, 6.3×10-4 and 8.5×10-9. The identified reductions in 

Scenario 2 are 4.4%, 9.3%, 5.6% and 7.4% in elements 5, 6, 14 and 15 respectively. 

The required number of iteration in the second round for the forcing frequency, the 

magnitudes and the damage are respectively 30, 45 and 40. The optimal regularization 

parameters are 0.11, 4.5×10-4 and 6.7×10-9 respectively. Table 4-21 summarized the 

iteration steps required and the optimal regularization parameters for Study case 2. The 

two sets of results are very close to each other and to the true value. The following 

observations are noted: 

• Only two seconds of measured data from one accelerometer is required in the 

identification. Both the excitation force and damages can be identified 

accurately indicating the proposed method can provide a good resolution on 

damages at close proximity to each other. 

• It is noted that only two cycles of successive iterations are required. The 

proposed two-steps strategy for the force identification is shown effective to 

circumvent the usual problem we have in optimization when we have large 

difference in the sensitivities of the different parameters in the problem. 

• The model error of a uniform reduction in the flexural stiffness does not have 

significant effect on the identified results. 
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4.4.5 Laboratory Work 

The proposed method is further demonstrated with laboratory results from a simply 

supported single span steel beam as shown in Figure 4-28. The parameters of the beam 

are: length 2.0 m, width 0.0254 m and height 0.0194 m, the elastic modulus and mass 

density of the material are 11100652 ×.  2/ mN  and 310761.7 ×  3/ mkg  respectively.  It 

is discretized into sixteen equal Euler beam elements with three degrees-of-freedom at 

each node. A mass of 2.61 kg is hung by a fine nylon rope at node 11 of the beam, and 

the excitation force generated by cutting the rope will serve as the input force. The true 

value of the force is 25.58 N and is an “impulsive force” acting at the initial time t=0. 

Mathematically, it is expressed as 
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The flexural rigidities of all the elements and the assumed impulsive force are 

taken as the unknowns in the inverse analysis. The initial values for the damage 

parameters are all zero. The initial vector of the force parameters 

is [ ]TFP πππππ 10,8,6,4,2,0,0,0,0,0,0}){( 0 = . In this case, the magnitude of the force 

parameters can be all set to zeros.  

 The sampling frequency is 2000Hz. Acceleration responses collected by B&K 

4370 accelerometers from nodes 7 and 9 are used for the identification. A commercial 

data logging system INV303E and the associated signal analysis package DASP2003 

are used in the data acquisition. The data acquisition lasts for 2 seconds. The first 0.5 

second data is skipped and only data from 0.5 to 1.5 second are used in the 

identification. The damage is introduced by removing 1.0 mm thick of material over a 

length of 9 mm in element 13 with one edge of the damage zone starting at node 13. 

The material is removed on both sides of the beam to produce a symmetric change in 
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the section property. The equivalent reduction in the second moment of inertia of 

element 13 is found to be 11.3 % after reducing the middle degrees-of-freedom to the 

two end nodes 13 and 14, by Guyan reduction. The first five natural frequencies of the 

undamaged beam are 10.523, 41.316, 92.615, 165.353, and 254.625 Hz, and those for 

the damaged beam are 10.282, 40.508, 91.264, 164.695 and 250.583 Hz obtained from 

modal test.  

The required number of iteration for convergence in the second cycle of iteration is 

19 and 154 for the force and the damages, and the corresponding optimal 

regularization parameter is 6.02 and 13.74 respectively. Figure 4-29 shows the 

identified damage after the second iteration. The identified damage in element 13 is 

13.5% which is close to the true value. But there is a large false identification in 

element 12. This observation is also commonly found with other damage identification 

algorithm since element 12 is in immediate adjacent to the damage element and the 

vibration energy in the element would be much more disturbed than those in other 

elements as discussed by Shi and Law(2000b). Figure 4-30 shows the identified time 

history of the force with a peak of 25.6 N at t=0 which is very close to the true value. 

Figure 5-9 shows the time histories of the calculated acceleration using the identified 

input force and the corresponding measured acceleration after using the orthogonal 

polynomial function (Law and Zhu, 2000) to remove the measurement noise. The two 

time series match each other very well. The natural frequencies of the beam calculated 

with the identified parameters are 10.271, 40.744, 92.258, 164.703 and 253.328 Hz 

which also match the experimental frequencies very well indicating the success of the 

identification. 
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4.4.6 Concluding Remarks 

This section presented a method for identifying the input excitation force and the 

physical parameters of a structure simultaneously. Newmark method is used to 

calculate the structural dynamic responses and their sensitivities with respect to the 

parameters of force and system parameters. The changes in the force and physical 

parameters are identified in a gradient-based model updating method based on 

dynamic response sensitivity.  The problem with different sensitivity of parameters in 

the identification is addressed in the solution process. The proposed method has the 

advantage that only short duration of dynamic response measurement from only one 

sensor is needed in the inverse analysis. Laboratory study shows that we do not need to 

use the measured time response data from the beginning of the time in the 

identification. This indicates that the proposed method has the potential for the 

application of practical damage detection.  
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Table 4-1- Identified results with temperature difference between two 
measurement states 

 Updated 
mass(Kg) 

Updated 
damping(N.s/m)

Updated 

stiffness(N/m) 

Case A 2.0/(0.0) 1.2/ (0.0) 450.0/(0.0) 

Case B 2.0/(0.0) 1.2/(0.0) 449.0/(0.22) 

Note: (•) percentage error in identification 

 

 

 

Table 4-2- Identified results with an additional mass 

 
Updated 
mass(Kg) 

Updated 
damping(N.s/m)

Updated 

stiffness(N/m) 

Case A  2.01/(0.0) 1.2/(0.0) 450.0/(0.0) 

Case B 2.0/(0.5) 1.22/(1.7) 448.5/(0.3) 

Note: (•) percentage error in identification 

 

 

Table 4-3- Identified results with modeling error 

Identified results with modeling error 

 
Updated 
mass(Kg) 

Updated 
damping(N.s/m)

Updated 

stiffness(N/m) 

True  2.0 1.2 450.0 

Identified 2.0/(0.0) 1.2/(0.0) 450.0/(0.0) 

Note: (•) percentage error in identification 
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Table 4-4- Identified results with measurement noise 

Noise 
Level 

Updated 
mass(Kg) 

Updated 
damping(N.s/m)

Updated 

stiffness(N/m) 

1% 1.998/(0.1) 1.197/(0.25) 450.5/(0.11) 

5% 1.987/(0.65) 1.227/(2.25) 448.54/(0.32) 

10% 1.97/(1.5) 1.241/(3.42) 446.9/(0.69) 

  Note: (•) percentage error in identification 

 

 

Table 4-5- Damage scenarios on the plane truss 

Damage 
Scenario 

Damage 
Location 

Reduction in 
EA TΔ ( Co ) Noise 

level Model error 

1 Elements 2, 
5,19 5% Nil Nil Nil 

2 Element 2, 
5, 19 5% +40 Nil Nil 

3 Element 5 10% +40 Nil Nil 

4 Element 12 5% Nil 5%, 10% Nil 

5 Elements 2,  
5 and 19 5% each +40 10% 

3% under 
estimation 

in all EA 
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Table 4-6- Natural Frequency Changes due to local damage and temperature 

 Natural Frequencies (Hz) 

Mode 
order Intact Scenario 1 Scenario 2 

1 6.957 6.916/(0.58) 6.914/(0.61) 

2 14.406 14.328/(0.54) 14.325/(0.57) 

3 23.367 23.222/(0.62) 23.216/(0.64) 

4 41.475 41.328/(0.35) 41.318/(0.38) 

5 45.123 44.931/(0.43) 44.919/(0.45) 

6 64.213 63.770/(0.69) 63.754/(0.71) 

7 72.028 71.723/(0.42) 71.705/(0.45) 

8 74.486 74.284/(0.27) 74.2654/(0.30) 

  Note : (•) frequency change percentage with respect to the intact structure. 
 



 
 

159

 
 

 

Table 4-7- Iteration number and regularization parameter required for 
convergence 

 Damage 
indices without noise 10% noise 

Eα  and Iα  20 24 Iteration 
number 

Aα  17 20 

Eα  and Iα  1.71 2.84 
optλ  

Aα  1.93 2.61 

 

 

 

 

 

Table 4-8– Identified results for the Plane Frame with and without noise 

Element number 
Damage indices 

1 2 3 4 5 6 7 8 9 10 11 

Without noise -5.3 -5.1 -4.9 -5.0 -4.8 -4.7 -4.7 -4.9 -5.0 -4.7 -4.8 Eα (%) 

With noise -5.6 -4.4 -6.0 -4.7 -4.3 -4.5 -4.4 -4.4 -4.3 -5.5 -4.7 

Without noise 1.3 -0.9 -14.6 -1.1 1.2 -0.7 -0.3 1.1 -0.8 0.2 0.1 Iα (%) 

With noise 1.8 -1.3 -15.5 -1.4 -0.6 -0.8 -0.3 2.5 -0.9 -0.7 -0.4 

Without noise 0.1 -1.0 -5.3 -0.9 0.1 -0.7 -0.3 -0.5 -0.3 0.3 0.1 Aα (%) 

With noise 1.3 -1.2 -5.6 -1.1 1.3 -0.9 -0.7 1.5 -1.3 0.7 -0.6 
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Table 4-9– Damage Scenarios for the plane truss 

Reduction in 
Damage 
Scenario 

Damage 
Location Young’s 

modulus Area 
Noise level Model error 

1 Element 5 10% 5% Nil Nil 

2 Element 5 10% 5% 10% Nil 

Element 2 5% 10% 
3 

Element 5 10% 15% 
10% Nil 

Element 2 5% 10% 

Element 5 10% 15% 
4 

Element 16 15% 5% 

10% 

5% and 2% 
under-
estimation 

of Young’s 
modulus and 
mass density 
in all 
elements 
respectively 

 

 

 

 
 

 

Table 4-10 - Iteration number and regular parameters for different study cases 

Iteration number Regularization parameter Study 
Case for E  for A  for E  for A  

1 17 21 0.001 0.003 

2 20 23 0.098 0.011 

3 22 24 0.01 0.015 

4 35 38 0.05 0.07 

Note:  E denotes Young’s modulus of material; A denotes cross-sectional area. 
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Table 4-11– Identified results for the Damage Scenarios in the Plane Truss 

Identified Value (%) 
Damage 
Scenario 

Damage 
Location Young’s 

modulus Area 
Noise level 

1 Element 5 -9.9 -5.1 Nil 

2 Element 5 -9.5 -4.5 10% 

Element 2 -4.4 -10.5 
3 

Element 5 -9.4 -13.5 
10% 

Element 2 -4.1 -11 

Element 5 -9.1 -13.3 4 

Element 16 -15.7 -4.3 

10% 

 

 
 

 

Table 4-12- Material and geometrical properties of the test structure 

Properties Beams Bolts Balls 
Young modulus [N/m2] 2.10E11 2.10E11 2.10E11 

Area [m2] 6.597E-5 -- -- 

Density [kg/m3] 1.2126E4 1.2126E4 1.2126E4 
Mass [kg] 0.32 0.09 0.23 + 0.072 * 

Poisson ratio 0.3 -- -- 

Moment of area yI [m4] 3.645E-9 -- -- 

Moment of area zI  [m4] 3.645E-9 -- -- 

Torsional rigidity J [m4] 7.290E-9 -- -- 

*  0.072 kg additional mass was added to each joint to balance the mass of the accelerometer 
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Table 4-13– The calculated and experimental natural frequencies of the test 
structure 

Intact (Hz) Scenario E1 (Hz) Scenario E2 (Hz) Scenario E3 (Hz) 
Mode 

Exp. FEM Exp. FEM Exp. FEM Exp. FEM 

1 9.25 9.23/-0.19 9.22 9.19/-0.33 9.13 9.17/0.44 9.16 9.13/-0.32 

2 28.27 28.32/0.18 28.20 28.26/0.21 28.04 28.12/0.29 28.17 28.23/0.21 

3 33.15 33.77/1.86 33.00 33.64/1.94 32.99 33.51/1.58 32.98 33.61/1.91 

4 49.11 49.20/0.2 49.01 49.12/0.22 48.84 49.02/0.37 48.88 49.09/0.43 

5 50.52 50.10/-
0.82 50.47 49.87/1.19 50.24 50.12/-

0.22 50.43 50.14/-0.58 

6 70.43 71.18/1.07 70.43 70.94/0.72 70.03 70.51/0.69 70.24 70.86/0.88 

7 89.02 89.94/1.03 88.19 89.46/1.44 87.85 88.27/0.48 87.93 89.24/1.49 

8 156.15 154.71/-
0.92 154.62 154.86/0.1

6 154.22 154.61/0.2
5 154.36 154.84/0.31 

9 192.79 196.29/1.8
1 191.28 195.64/2.2

8 190.45 194.38/2.0
6 190.87 194.82/2.07 

10 258.99 256.79/-
0.85 258.48 256.96/-

0.59 257.64 255.21/-
0.94 257.94 256.73/-

0.47 

11 276.90 276.17/-
0.26 275.23 276.02/0.2

9 274.48 275.36/0.3
2 274.68 275.29/0.22 

Note:  •/• denotes the calculated value/percentage error; 
 
 

 
 
 

Table 4-14– The diagonal MAC values between the calculated and measured 
mode  

Shapes 

 1 2 3 4 5 6 7 8 9 10 11 

MAC 1.00 0.99 0.98 0.99 0.99 0.98 0.97 0.96 0.98 0.99 0.98 
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Table 4-15– Identified values for the Experimental Truss 

Identified Values of damage indices (%) 
Damage 
Scenario 

Damage 
Location 

Jα  
yIα  

zIα  Aα  

E1 Element 4 4.5 2.5 2.7 1.8 

Element 4 4.4 2.3 2.8 1.6 
E2 

Element 2 24.5 1.7 21.8 7.8 

Element 4 4.2 2.6 2.9 1.5 
E3 

Element 2 24.6 21.5 1.4 7.5 
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Table 4-16– Identified results for the two-span bridge 

Prestress force (107) N  

True Case 2 Case 3 Case 4 
Case 5 

1% noise 

Case 5 

10% noise 

Iteration No. - 300 193 326 324 388 

λopt - 6.2×10-8 3.5×10-9 5.45×10-9 5.7×10-9 7.4×10-9 

1 3.985 3.984/-0.03 4.000/0.38 3.978/-0.18 3.976/-0.23 3.967/-0.45 

2 3.956 3.957/0.03 3.918/-0.96 3.964/0.20 3.977/0.53 3.998/1.06 

3 3.926 3.926/0.00 3.955/0.74 3.928/0.05 3.911/-0.38 3.895/-0.79 

4 3.897 3.901/0.10 3.863/-0.87 3.906/0.23 3.920/0.59 3.940/1.10 

5 3.854 3.854/0.00 3.888/0.88 3.853/-0.03 3.836/-0.47 3.878/0.62 

6 3.800 3.802/0.05 3.768/-0.84 3.806/0.16 3.818/0.47 3.836/0.95 

7 3.746 3.746/0.00 3.784/1.01 3.748/0.05 3.725/-0.56 3.705/-1.09 

8 3.692 3.691/-0.03 3.658/-0.92 3.688/-0.11 3.710/0.49 3.728/0.98 

9 3.692 3.693/0.03 3.725/0.89 3.692/0.00 3.674/-0.49 3.656/-0.98 

10 3.746 3.745/-0.03 3.708/-1.01 3.743/-0.08 3.767/0.56 3.787/1.09 

11 3.800 3.799/-0.03 3.833/0.87 3.786/-0.37 3.783/-0.45 3.765/-0.92 

12 3.854 3.853/-0.03 3.821/-0.86 3.856/0.05 3.782/-1.87 3.891/0.96 

13 3.897 3.900/0.08 3.936/1.00 3.889/-0.21 3.880/-0.44 3.860/-0.95 

14 3.926 3.927/0.03 3.898/-0.71 3.936/0.25 3.942/0.41 3.957/0.79 

15 3.956 3.955/-0.03 3.993/0.94 3.951/-0.13 3.935/-0.53 3.915/-1.04 

El
em

en
t n

o.
 

16 3.985 3.987/0.05 3.969/-0.40 3.994/0.23 3.995/0.25 4.004/0.48 

Note: •/• denotes the identified value/percentage error. 
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Table 4-17– Identified results including model errors 

Prestress force (107) N  

True Case 6 Case 7 Case 8 Case 9 Case 10a Case 10b 

Iteration No. - 198 203 232 196 243 258 

λopt - 3.7×10-9 3.8×10-9 5.1×10-9 3.6×10-9 7.8×10-9 2.4×10-8 

1 3.985 4.050/1.63 4.005/0.50 4.120/3.38 4.080/2.38 4.10/2.91 4.127/3.56 

2 3.956 3.868/-2.22 3.916/-1.01 3.968/0.30 3.902/-1.37 3.92/-0.96 3.718/-6.01 

3 3.926 3.975/1.25 3.958/0.82 3.875/-1.30 3.961/0.89 3.87/-1.55 3.665/-6.64 

4 3.897 3.843/-1.39 3.861/-0.92 3.923/0.67 3.852/-1.15 3.91/0.23 4.306/10.5 

5 3.854 3.881/0.7 3.884/0.78 3.782/-1.87 3.968/2.96 3.78/-1.89 3.581/-7.08 

6 3.800 3.748/-1.37 3.763/-0.97 3.718/-2.16 3.749/-1.34 3.76/-1.16 3.656/-3.79 

7 3.746 3.788/1.12 3.781/0.93 3.834/2.35 3.853/2.86 3.94/5.21 3.945/5.31 

8 3.692 3.654/-1.03 3.654/-1.03 3.538/-4.17 3.636/-1.52 3.71/0.51 3.741/1.33 

9 3.692 3.732/1.08 3.721/0.79 3.665/-0.73 3.731/1.06 3.56/-3.52 3.26/-11.65 

10 3.746 3.702/-1.17 3.702/-1.17 3.641/-2.80 3.684/-1.66 3.61/-3.58 3.542/-5.45 

11 3.800 3.853/1.40 3.838/1.00 3.963/4.29 3.881/2.13 3.89/2.24 3.685/-3.03 

12 3.854 3.817/-0.96 3.825/-0.75 3.894/1.04 3.805/-1.27 3.90/1.14 3.998/3.74 

13 3.897 3.943/1.18 3.931/0.87 3.986/2.28 3.976/2.03 3.95/1.44 4.053/4.00 

14 3.926 3.868/-1.5 3.891/-0.89 3.763/-4.15 3.792/-3.41 3.85/-1.88 3.752/-4.43 

15 3.956 4.013/1.44 3.997/1.03 4.053/2.45 4.031/1.90 3.89/-1.79 3.845/-2.80 

El
em

en
t n

o.
 

16 3.985 3.949/-0.90 3.961/-0.60 3.875/-2.76 4.090/2.63 4.10/2.99 4.204/5.50 

Note: •/• denotes the identified value/percentage error. 



 
 

166

 

Table 4-18–Modal Frequencies (Hz) of the non-prestressed and Prestressed Beam 

 unprestressed prestressed 

 FEM Experimental FEM Experimental 

Mode 1 23.10 23.21 23.47 23.31 

Mode 2 85.62 86.17 86.54 87.98 

Mode 3 184.53 183.29 187.12 185.93 

 

 

 

 

Table 4-19- The Identified Prestress Force in Experiment 

Element No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Prestress (kN) 66.6 69.4 63.6 65.8 72.3 61.1 67.6 70.1 63.3 65.8 68.9 63.0 68.0 68.6 59.4 71.7 

Error (%) 0.1 -4.0 4.7 1.3 -8.4 8.4 -1.3 -5.1 5.1 1.3 -3.3 5.5 -2.0 -2.9 10.9 -7.5 
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Table 4-20- Iteration number and optimal regularization parameters 
corresponding to different noise levels 

 1% noise 5% noise 10% noise 

Force 70 72 78 Iteration 

number Damage 36 40 47 

Force 0.003 0.005 0.006 
optλ  

 Damage 71056 −×.  610181 −×.  610221 −×.

 

 
 

Table 4-21 -Iteration number and optimal regularization parameters for Study 

Case 2 

Iteration number optλ  
 

iω  iF  Damage iω  iF  Damage 

       

Scenario 1 23 36 32 0.08 4103.6 −×  
9105.8 −×  

       

Scenario 2 30 45 40 0.11 4105.4 −×  9109.6 −×  
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Table 4-22-Calculated and measured natural frequencies of the test beam (Hz) 

 1st 2nd 3rd 4th 5th 

Measured 10.523 41.316 92.615 165.353 254.625Intact 

Calculated 10.459 41.423 93.116 165.274 256.242

Measured 10.282 40.508 91.264 164.695 250.583Damaged 

Calculated 10.271 40.744 92.258 164.703 253.328
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Figure 4-1- (a) The cantilever beam, (b) The equivalent single DOF system 
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Figure 4-2- Sensitivity of displacement with respect to different parameters 
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Figure 4-3- The plane truss structure 
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Figure 4-4- Identified Elemental local damage in element 5 
(a) With the temperature effect removed; 

                        (b) Without removing the temperature effect 
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Figure 4-5- Damage detection under different noise level 
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Figure 4-6- Multiple damage detection with modeling error 

  (a) Without removing the temperature effect  

           (b) With the temperature effect removed. 
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Figure 4-7- Displacement sensitivity with respect to damage index Eα  and 

Young’s modulus E 
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Figure 4-8- Response and response sensitivity (__ dt=0.001s, ... dt=0.0.01s) 
(a) Response from Newmark method; (b)Response from State-Space) 

                   (c) Sensitivity from Newmark method; (d)Sensitivity from State-
Space) 
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Figure 4-9- Sensitivities with respect to different damage indices 
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Figure 4-10- Identified results for Scenario 4 

 
 

 
 



 
 

176

 
 

 
 

(a) The three-dimensional truss structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Finite element model 
 

Figure 4-11- The truss structure and its finite element model               
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Mode 1 (torsion) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mode 2 (torsion) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mode 3 (bending) 
                                                                                                          (To be continued) 
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Mode 4 (torsion) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mode 5 (torsion) 
 
 
 
 
 
 
 
 
 
 
 

                                    
 
 
 

Mode 6 (torsion) 
 
 
 
                                                                                                       (To be continued) 
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Mode 7 (bending) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mode 8 (bending) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mode 9 ( torsion and bending) 
 
                                                                                                      (To be continued) 
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Mode 10 ( torsion) 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

Mode 11 (torsion) 

 

Figure 4-12 - The measured first 11 mode shapes of the structure 
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Figure 4-13– Detail of the first damaged member 
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Figure 4-14– Detail of the second damaged member 
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Figure 4-15– Identified percentage change in different physical parameters for 

Scenario E1 
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Figure 4-16- Identified percentage change in different physical parameters for 

Scenario E2 
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Figure 4-17- Identified percentage change in different physical parameters for 

Scenario E3 
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Figure 4-18- The multi-span prestressed bridge 
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Figure 4-19- Acceleration sensitivity with respect to different parameters                       
(a) Acceleration response; (b) Sensitivity w.r.t. prestress forece; (c) Sensitivity 

w.r.t. flexural rigidity; (d)  Sensitivity w.r.t. stiffness of the support 
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(To be continued) 
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Figure 4-20- Test setup for the prestressed concrete beam 
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Figure 4-21– Curve of convergence of results 
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Figure 4-22– Time histories of measured and reconstructed acceleration 

responses. (a) the 3rd accelerometer; (b) the 4th accelerometer 
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Figure 4-23- The prestressed beam model 

 
 

 

 

 

 
 

 Figure 4-24– Identification of impulsive force with different noise levels  

 
 
 
 
 
 
 
 

F(t) 

L b 

h

A 

A 

Section A-A



 
 

193

 
 
 
 
 

 
Figure 4-25– Identified damage for different noise levels 

 
 
 
 
 
 

 
Figure 4-26– True and identified force histories after the second 
cycle of iterations 
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Figure 4-27– Identified damages after the second cycle of iterations 
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Figure 4-28- Experimental set-up 
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Figure 4-29– Final experimental identified damage 

 
 
 
 

 
 

Figure 4-30– Identified force in experiment 
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Figure 4-31– Experimental and calculated acceleration time histories from 
          (a) node 7, (b) node 9;  ___ calculated, …… experiment. 
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Chapter  5 
 

OTHER DEVELOPMENTS OF THE THESIS 

5.1 Crack Identification in Beam from Dynamic Responses 

5.1.1 Introduction 

Inspection of the structural components for damage is very important for making 

decision on the maintenance program of the structure. A lot of work has been 

published in the area of damage detection and many methods have been developed. 

These methods are mainly based on the relationship between the dynamic 

characteristics, such as the natural frequencies (Ibrahim et al., 1990; Cheng et al. 1999) 

or mode shapes (Rizos et al., 1990) and the damage parameters like the crack depth 

and its location.  

A variety of crack models can be found in the literature as reviewed in Chapter 2, 

for instance, modeled as a spring (Adams et al., 1978; Ibrahim et al., 1990), a zone 

with a reduced Young's modulus (Joshi and Madhusudhan, 1991), and crack function 

models were also developed (Chondros et al., 1998) to model the crack in more details.  

Most of the damage identification problems are solved in the frequency domain. 

Cawley and Adams (1979) are among the first ones to detect damage in elastic 

structure by using natural frequencies. Pandey et al. (1991) used complete mode 

shapes from the undamaged and damaged states to identify both the location and the 

extent of damage by solving a system of linear equations.  
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A crack with a constant depth is modeled with a Dirac delta function 

mathematically and a method is proposed to identify the crack parameters using the 

dynamic responses in this section. The method is developed based on the modal 

superposition and optimization technique in combination with regularization on the 

solutions to smooth out the large variations in the identified results.  Either the 

displacement or the strain measurement can be used to identify the crack, and only the 

first few modes from several measuring points are required for the identification. 

Identification of both the single crack and multiple cracks are studied numerically with 

sinusoidal or impulsive excitation. The identification algorithm is further verified 

using experimental results from a beam with a single crack with different depths.  

5.1.2 Direct Problem 

5.1.2.1 Equation of Motion 

A single-span uniform Euler-Bernoulli beam with a single-sided transverse crack 

subject to an excitation force )(tP  acting at px from the left support is shown in Figure 

5-1. The crack is assumed to be fully opened and has a fixed depth ch at a location 

distant cx  from the left support. The equation of motion of the beam can be written as 

)()()),(())((),(),(
p2

2

2

2

cc02

2

xxtP
x

txy
x

xxEIEI
t

txyc
t

txyA −δ=
∂

∂
∂
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−δ−+
∂

∂
+

∂
∂

ρ  (5.1-1) 

where ρ is the mass density of the beam, A is the cross-sectional area, c is the damping 

of the beam, E is the Young's modulus of material, 0I is the moment of inertia of the 

beam cross-section, cI is the reduction of the moment of inertia of beam cross-section 

at the crack defined as ])([ 3
c0

3
0 hhh

12
b

−− , 0h  is the depth of the beam, ),( txy is the 
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transverse displacement function of the beam, )(xδ is the Dirac delta function and b is 

the width of the beam. The beam is assumed to be at rest at the beginning of the 

identification, and the damping effect originated from the crack is not considered. 

The kinetic energy ET , the strain energy EU , the work done cW  due to the viscous 

damping in the beam, and the work done W  due to the external force can be expressed 

as 

 dx
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Expressing the transverse displacement of the beam ),( txy in modal co-ordinates  

                                 ∑
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=
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i
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where )(xYi can be obtained from the assumed mode shapes. We have 
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and      dxxYxAYm j

L

iij )()(
0∫= ρ ,              dxxYxYEIk j

L
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Substituting Equations (5.1-7) to (5.1-10) into the Lagrange equation  
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We obtain 
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ij tftqkktqctqm )()()()()( &&&          ( ni ,...,2,1= ) (5.1-12) 

Writing Equation (5.1-12) in matrix form 

                            )}({)}(]){[]([)}(]{[)}(]{[ tFtqKKtqCtqM =′−++ &&&  (5.1-13) 

where  

 },,...,,;,...,,,{][ n21jn21imM ij ===        },...,,;,...,,,{][ n21jn21icC ij === , 

 },...,,;,...,,,{][ n21jn21ikK ij === ,        },...,,;,...,,,{][ n21jn21ikK ij ==′=′ , 

 T
n21 tqtqtqtq )}(),...,(),({)}({ = ,            T

n21 tftftftF )}(),...,(),({)}({ =  (5.1-14) 

The modal responses qqq ,, &&& of the beam can then be obtained by direct integration, 

say, Newmark method (1959). 

5.1.2.2 The Assumed Mode Shapes 

 The general form of vibration mode for a uniform Euler beam can be written as 

         xAxAxAxAxY ββββ sinhcoshsincos)( 4321 +++=    (5.1-15) 
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where 4321 ,,, AAAA are constants and β is a frequency parameter. The vibration modes 

for an Euler beam with simply supported ends are obtained as 

 
L
xiAxYi

πsin)( 2=  (5.1-16) 

where L  is the length of the beam. It is noted that the effect of the crack on the 

vibration modes is very small (Fernandez-Saez et al., 1999) and it is not considered in 

this work. 

5.1.2.3 Accuracy of the Crack Model 

 To validate the proposed crack model, the fundamental frequencies of the beam 

with the proposed crack model are compared with the results by Fernandaz-Saez, et al. 

(1999). They proposed a simplified method of evaluating the fundamental frequency 

for the bending vibrations of cracked Euler-Bernoulli beams with the crack in a beam 

modeled as an elastic spring.  A closed form solution on the fundamental frequency 

was given for the simply supported cracked beam.  

 A 30 metres long simply supported Euler-Bernoulli beam with an open crack at 4 

metres from the left support is studied. The parameters of the beam 

are: mkgA /100.5 3×=ρ , 210 /105 mNE ×= , mL 30= , mb 6.0= , and mh 0.10 = . 

Figure 5-2 shows the variation of the ratio of fundamental frequency with crack to the 

original frequency with no crack from different ratio of crack depth. The results from 

both models are close to each other except where the crack is at midspan, with the 

present model giving a slightly larger difference from those by Fernandaz-Saez et al. 

(1999).  

Sinha et al. (2002) proposed an open crack model in an Euler-Bernoulli beam 

element with a modified local flexibility of the beam in the vicinity of the crack. The 

same beam for the above study is investigated here with an excitation force of 



 
 

202

)]40sin(05.0)10sin(1.01[40000)( tttP ππ ++=  N applied at 7 meters from the left 

support. The crack is at 4 metres from the left support with 0.25 m depth. The 

displacement responses at the 1/4 span and the middle point of the cracked beam were 

compared with the existing solution (Sinha et al., 2002) as shown in Figure 5-3. The 

responses obtained from both models are very close to each other indicating the 

accuracy of the proposed model. 

5.1.3 Inverse Problem 

5.1.3.1 Identification from Measured Displacements 

 Expressing the measured displacements ),(~ txy m in modal co-ordinates 

                       ∑
=

=
N

i
iim tqxYtxy

1
)()(),(~ , ),...,2,1( mNm =  (5.1-17) 

where mN is the number of measurement locations; },...,2,1),,(~{ mm Nmtxy = are the 

displacements at mx . Equation (5.1-17) can be re-written as 

                              11 }{][}~{ ××× = NNNN qYy
mm

  (5.1-18) 

where 1}~{ ×mNy is the vector of displacements at mN measurement locations. The vector 

of generalized co-ordinates can be written using the least-squares pseudo-inverse as 

                                 1
1

1 }~{][)][]([}{ ××
−

××× =
mmmm NNN

T
NNNN

T
N yYYYq  (5.1-19) 

The modal velocity and acceleration of the beam responses can be obtained from 

Equation (5.1-19) by numerical methods. However, if the central difference method is 

used to calculate the modal velocity and acceleration, it will lead to large 

approximation error. Therefore the generalized orthogonal polynomial (Law and Zhu, 

2000) is used to model the displacement so as to avoid the approximation error, 



 
 

203

                                     )(),(~ tGatxy i

Nf

i
ij ∑=                             (5.1-20) 

where ),(~ txy j is the approximated displacement at the jth measuring point, )(tGi is the 

orthogonal polynomial and the ia is the coefficient. The velocity and acceleration are 

then approximated by the first and second derivatives of the orthogonal polynomial. 

The orthogonal polynomial used in this chapter is shown in Appendix B. 

 Writing in matrix form, we have, 

1NfNfN1N tGAy
mm ××× = )}({][}~{ , 1NfNfN1N tGAy

mm ××× = )}({][}~{ && , 1NfNfN1N tGAy
mm ××× = )}({][}~{ &&&&

 (5.1-21) 

where NfNm
A ×][ , 1NftG ×)}({ , 1NftG ×)}({ & , 1NftG ×)}({ && are the coefficient matrix of the 

polynomial, the orthogonal polynomial matrix, the first and second derivatives of the 

orthogonal polynomial variable matrix respectively. fN  is the order of the orthogonal  

polynomial. The coefficient matrix ][A  can be obtained by the least-squares method 

from Equation (5.1-21) as 

                      1T
N11Nf

T
Nf11NNfN fmm

tGtGtGyA −
××××× = ))}({)}(({)}({}~{][  (5.1-22) 

Substituting matrix ][A  into Equation (5.1-21), we can get }~{y&  and }~{y&& . And 

substituting }~{},~{},~{ yyy &&&  and the derivatives of { )(tG } into Equation (5.1-19), we can 

obtain the modal displacement q , modal velocity q&  and modal acceleration q&& . 

Substituting further q , q&  and q&&  into Equation (5.1-13), we have 

           )(tFKqqCqMqK −++=′ &&&  (5.1-23) 

The elements of matrix K ′are obtained as follows with the first order approximation 
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                     )()()()( cjci
c

2
0

cjcicij xYxY
4

hEbhxYxYEIk ′′′′≈′′′′=′  (5.1-24) 

The inverse problem here is how to find the crack location and the crack depth 

from Equation (5.1-23). When at time it , we have the following from Equations (5.1-

23) and (5.1-24). 
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Rewriting Equation (5.1-25), and letting 
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or 

                                   d)p(A)h,x(J cc −=                                   (5.1-27) 

where ),( cc hxJ  is an error vector, and )p(A  represents the first term of the right-

hand-side of Equation (5.1-26), and d represents the second term, the vector 

p contains the unknown crack location and depth parameters. 

Now the problem becomes a nonlinear optimization problem with two unknown 

parameters: the crack depth ch and the location cx . This is equivalent to minimizing the 

error function 

                22
cc dpAhxJ −= )(min),(min  (5.1-28) 
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Like many inverse problems, this is an ill-conditioned problem, and regularization 

method is adopted to provide bounds to the solution. A regularization term λ is 

introduced into the right-hand-side of Equation (5.1-28) 

                             })({min),(min 2
0

22
cc ppdpAhxJ −λ+−=                    (5.1-29) 

where 0>λ  and 0p  is the vector containing the a priori information on the crack 

location and depth at time it .  

The following strategy is proposed to locate approximately the crack. It is known 

that when the identified crack location does not match the real location, the identified 

crack depth exhibits large fluctuations due to ill-conditioning in the solution. 

Therefore the variance of the identified crack depth time history from using different 

initial crack location in the calculation is taken as an indicator. The correct initial 

guess on the crack location should correspond to the smallest variance in the identified 

crack depth time history.  

The crack identification can be realized through the following steps: the mode 

shapes )(xYi  are obtained from Equation (5.1-16). The modal displacement q , modal 

velocity q&  and modal acceleration q&&  are computed from Equation (5.1-21). Then by 

minimizing the error function J , we can get the crack location cx and the crack 

depth ch . 

5.1.3.2 Identification from Measured Strains 

The strain at the bottom of a rectangular beam with depth h0 can be expressed in 

terms of the generalized co-ordinates as 

             ∑
=

′′−=
N

i
imm tqxYhtx

1

0 )()(
2

),(~ε          ( ),...,2,1 mNm =  (5.1-30) 
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where mN is the number of measurement locations; },...,2,1),,(~{ mm Nmtx =ε are the 

strains at mx . Equation (5.1-30) can be written as 

            1
0

1 }{][
2

}~{ ××× ′′−= NNNN qYh
mm

ε  (5.1-31) 

where 1}~{ ×mNε is the vector of strains at mN measurement locations. Again the strain 

can be approximated by the orthogonal polynomial )(tG as 

 )(),(~ tGatx i

Nf

i
ij ∑=ε  (5.1-32) 

where ),(~ tx jε is the strain at the jth measuring point. The rest of the computation in 

the identification is similar to those for identification from measured displacements 

mentioned above. 

5.1.3.3 Identification of Multiple Cracks  

The proposed formulation for single crack is extended to identify cN  single-sided 

transverse cracks in the beam, and Equation (5.1-1) becomes 
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ρ ∑
=  (5.1-33) 

Matrix K ′ in Equation (5.1-14) becomes  

  ),...,2,1;,...2,1(,)(
1

njnikK k

Nc

k
ij ==′=′ ∑

=

 (5.1-34) 

where  kijk )( '   is the matrix '
ijk   in Equation (5.1-24) for the kth crack and Equation 

(5.1-25) becomes  



 
 

207

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′′′′′′′′′′′

′′′′′′′′′′′′

′′′′′′′′′′′′

∑∑∑

∑∑∑

∑∑∑

===

===

===

)(

)(
)(

))(())(())(())(())(())((

))(())(())(())(())(())((

))(())(())(())(())(())((

in

i2

i1

Nc

1k
ckkcnkcn

Nc

1k
ckkc2kcn

Nc

1k
ckkc1kcn

Nc

1k
ckkcnkc2

Nc

1k
ckkc2kc2

Nc

1k
ckkc1kc2

Nc

1k
ckkcnkc1

Nc

1k
ckkc2kc1

Nc

1k
ckkc1kc1

2
0

tq

tq
tq

hxYxYhxYxYhxYxY

hxYxYhxYxYhxYxY

hxYxYhxYxYhxYxY

4
Ebh

M

L

MMMM

L

L

 

  

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

)(

)(
)(

)(

)(
)(

][

)(

)(
)(

][

)(

)(
)(

][ 2

1

2

1

2

1

2

1

in

i

i

in

i

i

in

i

i

in

i

i

tf

tf
tf

tq

tq
tq

K

tq

tq
tq

C

tq

tq
tq

M
MM

&

M

&

&

&&

M

&&

&&

  (5.1-35) 

    The crack identification formulation will be similar to the single crack 

identification, and both the displacement and strain measurements can be used to 

identify multiple cracks in the beam.  

5.1.4 Simulation and Results 

5.1.4.1 Single Crack Identification 

A 30 metres long simply supported Euler-Bernoulli beam with an open crack is 

studied. The first six natural frequencies of the uncracked beam are: 1.23, 4.94, 11.11, 

19.75, 30.86 and 44.43 Hz. The damping ratios for these modes are all equal to 0.02. 

The excitation  force is assumed to be )]40sin(05.0)10sin(1.01[40000)( tttP ππ ++= N, 

and it is applied at 7 metres from the left support. The dynamic components of the 

force are close to the second and fourth modal frequencies of the beam. The parameters 

of the beam are: mkgA /100.5 3×=ρ , 210 /105 mNE ×= , mL 30= , mb 6.0= , and 

mh 0.10 = . White noise is added to the calculated displacements and strains to 

simulate the polluted measurements as follows: 

   )var( calculatedoisecalculated yNEpyy ××+=  (5.1-26) 

   )var( calculatedoisecalculated NEp εεε ××+=   (5.1-27) 
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where y andε  are the vectors of polluted displacement and strain respectively; Ep is 

the noise level ; oiseN is a standard normal distribution vector with zero mean and unit 

standard deviation; var(•) is the variance of the time history; calculatedy  and calculatedε  are 

the vectors of calculated displacement and strain. 0%, 5% and 10% noise levels are 

studied in this paper. In the numerical simulation, the crack locates at 4 metres from 

the left support with the crack depth ch equals 0.25m.  

The first three modes are used in the calculation. Measured strains at 1/4L, 1/2L 

and 3/4L are used in the identification. The sampling frequency is 100Hz, which is 

larger than two times the highest frequency of interest at 44.43 Hz. 

Figure 5-4 shows the plot of variance of the identified crack depth time history 

against the initial crack location. The crack depth is taken as zero in the search for the 

crack location. The optimal regularization parameter λ was found different for 

different initial crack location, and it is taken equal to 200 for the preparation of 

Figure 5-4. The results confirm that the smallest variance corresponds to the correct 

crack location. In fact a wide range of λ from 20 to 200 gives results similar to Figure 

3-4.  

The initial crack location is then set at 4 metres as from Figure 3-4 with an initial 

zero crack depth. The regularization parameter is plotted against the variance of the 

identified crack location in Figure 5-5. The variance gradually increases with a 

reduction in the parameter until a point where there is a sudden jump in the variance. 

The value of λ  corresponds to the point before this sudden jump (λ=20) is taken as 

the optimal regularization parameter. 

Figures 5-6 shows the identified results from measured strains without any noise 

and with 10% noise respectively. There is little difference in the identified crack depth 

time histories from both cases. The polluted measurements have been approximated 
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with orthogonal polynomial functions with 20 terms, and the velocity and 

accelerations subsequently obtained by direct differentiating the functions are 

compared with those from the measurements in Figure 5-7, and they are found 

matching each other very well. Larger errors are only found in the accelerations.  

The effect of modal truncation on the identification is also studied. Figure 5-8 

shows the identified results from using the first three and six modes. And the number 

of measuring points is taken equal to the number of vibration modes with the 

measuring points evenly distributed on the beam. The sampling frequency is 100Hz, 

and 5% noise level is included in the measurement. It can be seen from the figure that 

the identification accuracy increases with increasing number of modes in the 

identification, but the curves obtained from using only three modes are still varying 

close to the true curves. 

Large fluctuations are found in the identified crack depth within the first and final 

quarters of the time history in all the above cases. This can be explained by observing 

the acceleration and velocity obtained from the orthogonal polynomial functions in 

Figure 5-7. Errors are found in these time derivatives near the beginning and end of 

the time histories while those in the middle halve are well approximated by the 

polynomials. This is the major source of error in the identification and is due to the 

discontinuity of the time responses with the excitation force. The identification error is 

found to decrease when more modes are used. 

5.1.4.2 Multi-Cracks Identification 

The same simply supported Euler-Bernoulli beam with three open cracks is 

studied. The crack locations are at 4 m, 14 m and 24 m from the left support. The open 

crack depths are arbitrarily taken as m20h 1c .= , m250h 2c .=  and m20h 3c .= . 
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The first 6 modes and 6 displacement measurements are used in the identification, 

and 5% noise is included. The measuring points are evenly distributed on the beam, 

and the sampling frequency is 100 Hz. The same sinusoidal excitation force as for 

single crack identification is used in this study. The strategy for searching the optimal 

location for the single crack identification is not applicable for multiple cracks because 

of the existence of numerous local minima in the search for the global minimum 

variance. This strategy assumes that the desired locations are close to the nominal 

initial values and that there are no spurious solutions in the neighborhood of the 

correct solution. These assumptions are not valid in this case because the nominal 

initial values on the locations are not known. Hjelmstad (1996) has used a random 

starting point scheme in conjunction with the objective minimization algorithm to find 

all the multiple minima of the parameter estimation problem. Pothisiri and Hjelmstad 

(2002) have also proposed a method to find a near-optimal measurement set for 

parameter estimation. Both of these methods could be applied to the present problem 

to find solutions on the initial crack locations.  

In this study, the true locations of the cracks are included in the identification, and 

the optimal regularization parameter is 100 in this study. Figure 5-9 shows the 

identification results on the three cracks, the first two are found almost overlapping 

with the true curve while the third one varies around the true curve. Large fluctuations 

are found at both ends of the time history similar to those found in the single crack 

identification. 

5.1.4.3 Crack Identification from an Impulsive Force 

A periodic impulsive force is applied on the same beam as for the above study with 

a period of 1 second, and the duration of the force is 0.1 second. The magnitude of the 

force is 9500 N simulating the impact excitation produced by a 125 kg weight free 
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falling for one metre on the beam. The effect of the falling mass after the impact is 

ignored. The force is applied at 7 metres from the left support and it can be expressed 

in the following form mathematically, 
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Forty terms in the series are used to include the higher frequency components in 

the force. The crack location and crack depth are the same as for the single crack 

identification. The regularization parameter is 20. The sampling frequency is 100 Hz, 

and the first 6 modes and 6 displacement measurements are used in the identification. 

5% noise is included in the identification. The measuring points are evenly distributed 

on the beam. Figure 5-10 shows that the identified crack depth is close to the true one. 

Results not shown here indicate that the identified result is less dependent on the 

sampling rate. This is because the impulsive force consists of a wide spectrum of 

frequency components as an excitation force, but the majority of the responses come 

from the first few modes of the structure which can be easily collected using a low 

sampling rate. 

5.1.4.4 Comparison with Existing Method 

The accuracy of identification results is compared with those from Sinha et al. 

(2002) for the cases of single crack and multiple cracks under sinusoidal excitation 

and results from both methods are listed in Table 5-1. Since the parameters are 

identified in a time series, the data obtained from averaging the identified values 
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during the period 0.1s to 0.6 s are taken as the results. This is to avoid the errors close 

to the beginning and end of the time histories due to the discontinuity of the time 

response with the excitation force. The proposed method is found giving much better 

accuracy with 5% or 10% noise in the measurement than Sinha et al. (2002) without 

any measurement noise both in the location and crack depth. It is also noted that the 

crack parameters are identified in the time domain, and this means that the proposed 

method can be extended to identify breathing cracks in the beam with time varying 

parameters.  

5.1.5 Laboratory Verification 

Experimental results are used to verify the algorithm developed for the crack 

identification. The test steel beam was suspended with fine nylon rope at both ends. 

Figure 5-11 shows the experimental setup. The parameters of the test sample are: L= 

2.1 m, b = 0.025 m, h0 = 0.019 m, E= 111007.2 ×  2/ mN , ρ = 310832.7 ×  3/ mkg .  The 

crack is at 1.72 m from the left free end, and is created using a machine saw with 

1.3mm thick cutting blade. Five measured strains were used to identify the crack in the 

beam which were located at 0.6m, 0.9m, 1.1m, 1.4m and 1.95m from the left free end 

respectively. An impulsive force was applied with an impact hammer model B&K 

8202 at 1.2 m from the left free end. The sampling frequency is 2000Hz, and the data 

record time duration is 1 minute. The data are re-sampled with a sampling frequency 

of 500 Hz in the identification in order to improve the computation efficiency.  The 

first 5 natural frequencies of the intact and the damaged beam with the crack depth at 

3mm, 6mm and 9mm are shown in Table 5-2. The frequencies do not change much 

with damage in the first two modes. Figure 5-12 shows a sample of the impulsive force 

and the five measured strains when the crack depth is 6 mm. Two hammer hits were 
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applied on the beam within this duration. It is noted that the measured strains from the 

beam are very small with a maximum of approximately 60 micron at 1.1 m. 

Figure 5-13 shows the identified results for the different crack depths. The first 4 

modes are used in the identification. And the regularization parameter λ is 100. Due to 

the limitation of the computer memory, only the first 7.0 seconds measured strains 

were used in the identification.  The location of the crack can be obtained from a study 

of the variance of the identified results as what has been done in the simulation study, 

and therefore the true locations are used in the identification. The identified crack 

depth time history fluctuates close to the true value of the time history for all the 

cases. The identified crack depth for 9mm crack is more accurate than those with 

smaller depth. It is noted that these results comes from two hammer hits on the beam 

with very low level of dynamic responses. The identified results are believed to 

improve significantly with longer duration in the identification or when more hammer 

hits are included within the time duration of computation.   

 

5.1.6 Concluding Remarks 

This section includes a method for crack identification in a beam structure. The 

crack with a constant depth is modeled with a Dirac delta function, and a method is 

proposed to identify the open crack in beam structures based on dynamic 

measurements in time domain. The proposed method is based on modal superposition 

and optimization technique with regularization on the solution. Only several 

displacement or strain measurements and the first few modes are required in the crack 

identification. An orthogonal polynomial function is used to approximate the 

measured strain or displacement for a practical application with noisy measurements. 
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But the acceleration measurement cannot be used for crack identification; this is 

because the displacement integrated twice from the acceleration will lead to a shift by 

using the orthogonal polynomial function.  Computation simulations using sinusoidal 

and impulsive excitations on a beam with a single or multiple cracks show that the 

method is effective to identify cracks and is more accurate than the method by Sinha 

et al. (2002) from polluted measurements. Another advantage of the proposed method 

is that it can be easily extended to identify time-varying crack in the structures. This 

will be a further research topic for the authors. Experimental results also show that a 

few hammer hits could be used as the excitation source for the single crack 

identification. One limitation of the proposed crack identification method is that in the 

case of multiple damages, where the locations of the crack have to be known a priori.  
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5.2 Time Domain Responses of a Prestressed Beam and Prestress 

Identification 

5.2.1 Introduction 

Prestress force has been used very often with long span structure. The interest in 

the safety assessment of existing prestressed concrete bridges increases in recent years. 

Amongst the different physical parameters of the structural system, the prestress force 

is one of the most important parameters to describe the load-carrying capacity of the 

structure. A quick and non-destructive test method to assess the condition of existing 

structures is required by the industry for their maintenance programme. 

Very few works have been reported on any successful method to identify directly 

or indirectly the prestress force of a beam. It is known that prestress force has very 

little effect on the mode shapes of the beam, and the higher modal frequencies do not 

change significantly with the prestress force. Saiidi et al. (1994) showed that the 

sensitivity of the modal frequency decreases with higher vibration modes, and the 

prestress force affects the first few lower modes more significantly than the higher 

ones. Consequently the prestress force would be difficult to identify from the modal 

frequencies. Also Abraham et al. (1995) reported that the mode shapes remain almost 

identical with different prestress force in the beam, and it will also be difficult to 

identify the force from the measured mode shapes. 

The dynamic response of a prestressed beam under both fixed excitation force and 

moving force is studied in this section based on modal superposition, and the 

contribution from the higher modes is found less than that from lower modes. An 
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inverse problem to identify the prestress force is then formulated taking only the 

prestress force and both the prestress force and the flexural rigidity of the beam as 

variables in the identification with external excitation. A more general inverse problem 

is also studied with the identification of the prestress force, the moving force(s) and the 

flexural rigidity of the beam simultaneously. The damped least squares method with 

regularization is used for the solution. Orthogonal polynomial function (Law and Zhu, 

2000) is used to approximate the measured strain responses to remove the 

measurement noise effect. The work presented in this section indicates that the 

identification of prestress force with normal modal testing technique is possible even 

with noisy data.  

5.2.2 Forward Problem 

5.2.2.1 Equation of Motion 

The bridge deck is modeled as a single-span simply supported prestressed uniform 

rectangular Euler-Bernoulli beam subject to an external excitation force )(tP  acting at 

a distance px from the left support as shown in Figure 5-14. The equation of motion of 

the beam can be written as 
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2

2
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∂
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∂

+
∂

∂
+

∂
∂

+
∂

∂
ρ  (5.2-1) 

where ρ is the mass density of the beam, A is the cross-sectional area, c is the damping 

of the beam, E is the Young's modulus of material,
12
bhI

3
0

0 =  is the moment of inertia of 

the beam cross-section, b is the width of the beam, 0h  is the height of the beam, T  is 

the externally applied compressive axial force (note that compressive is positive and 
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tension is negative), ),( txy is the transverse displacement function of the beam, and 

)(xδ is the Dirac delta function.  

The prestress tendon is assumed unbonded with the concrete, and it is constant 

along the whole beam. The tendon eccentricity gives rise to a static moment effect on 

the beam section, but it has not any relationship with its dynamic properties. It is 

therefore not represented in Equation (5.2-1). 

5.2.2.2 Modal Responses 

On the basis of modal superposition, the dynamic deflection ),( txy of the beam can 

be expressed as: 

                   

 ∑
∞

=

=
1

)()(),(
i

ii tqxYtxy  (5.2-2) 

where )(xYi is the mode shape function of the ith mode and )(tqi is the ith modal 

amplitude. 

 Substituting Equation (5.2-2) into Equation (5.2-1), multiplying each term by )(xYj , 

integrating with respect to x between 0 and L and applying the modal orthogonality 

conditions, we have: 

  )(1)()(2)( 2 tf
m

tqtqtq i
i

iiiii =++ ωωξ &&&  (5.2-3) 

where ))()(( 240

L
i

A
T

L
i

A
EI

i
π

ρ
π

ρ
ω −= , iξ  and im are the reduced modal frequency, the 

damping ratio and the modal mass of the ith mode; )()()( pii xYtPtf = is the modal 

force.  The modal shape function of the prestressed beam resembles that of a beam 
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without prestress force (Abraham et al, 1995) and it is written in the normalized form 

as x
L
i

AL
xYi

π
ρ

sin2)( =  for a simply supported beam, and  

  1)(
0

2 == ∫ dxxAYm
L

ii ρ  (5.2-4) 

Writing equation (5.2-3) in matrix form 

                            )}({)}(]){[]([)}(]{[)}(]{[ tFtQKKtQCtQI =′−++ &&&  (5.2-5) 

where 

][C  =diag( )2 iiωξ ;     ))((][ 40

L
i

A
EIdiagK π
ρ

= ;     ))
L
i(

A
T(diag]K[ 2π
ρ

=′ ; 

T
n tqtqtqtQ )}(),...,(),({)}({ 21= ,       T

n tftftftF )}(),...,(),({)}({ 21=  

and ][I  is the unity matrix.  

We can determine i

__
ω  for crTT ≤  where  2

0
2

L
EITcr

π
=  is the critical buckling load 

of the beam. The dynamic response is computed in the time domain numerically using 

the Newmark’s integration scheme.  

5.2.3 Inverse Problem  

5.2.3.1 Prestress Force Identification from Measured Displacements 

Expressing the measured displacements ),(~ txy m at a point xm from the left support 

in modal co-ordinates 

                       ∑
=

=
N

i
iim tqxYtxy

1

)()(),(~ ,                      ),...,2,1( mNm =  (5.2-6a) 

or in matrix form as 

                              11 }{][}~{ ××× = NNNN qYy
mm

 (5.2-6b) 
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where 1}~{ ×mNy is the vector of displacements at mN measurement locations, and N is the 

number of measured modes in the responses. The vector of generalized co-ordinates 

can be written using the least-squares pseudo-inverse 

                                 1
1

1 }~{][)][]([}{ ××
−

××× =
mmmm NNN

T
NNNN

T
N yYYYq  (5.2-7) 

The modal velocity and acceleration of the beam responses can be obtained from 

Equation (5.2-7) by numerical methods. However, when the measurements are 

polluted by noise, the use of central difference method to calculate the modal velocity 

and acceleration will lead to large computation error. Therefore the generalized 

orthogonal polynomial is used to model the measured displacement as 

                                          )(),(~ tGatxy i

Nf

i
ij ∑=                                  (5.2-8) 

where ),(~ txy j is the approximated displacement at the jth measuring point. Nf is the 

order of the orthogonal polynomial function. The velocity and acceleration are then 

approximated by the first and second derivatives of the orthogonal polynomial. It is 

note that the order of the orthogonal polynomial function, Nf, has large effects on the 

accuracy of velocity and acceleration approximated by the first and second derivatives 

of the orthogonal polynomial. Study in the present paper found that 20N f =  is the 

optimal order such that the velocity and acceleration can be obtained accurately. 

Substituting Equation (5.2-8) into (5.2-6) and writing in matrix form, we have, 

  11 ][][}~{ ××× = NfNfNN GAy
mm

 

 11 ][][}~{ ××× = NfNfNN GAy
mm

&&  (5.2-9) 

 11 ][][}~{ ××× = NfNfNN GAy
mm

&&&&  
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where NfNm
A ×][ , 1NfG ×][ , 1NfG ×][ & , 1NfG ×][ && are the coefficient matrix of the polynomial, the 

orthogonal polynomial matrix, the first and second derivatives of the orthogonal 

polynomial variable matrix respectively. The coefficient matrix ][A  can be obtained 

by the least-squares method from Equation (5.2-9) 

                       1T
N11Nf

T
Nf11NNfN fmm

GGGyA −
××××× = )][]([][}~{][  (5.2-10) 

Substituting matrix ][A  and the derivatives of [G] into Equation (5.2-9), we can 

get }~{y&  and }~{y&& . And substituting }~{},~{},~{ yyy &&&  into Equation (5.2-7), we can obtain 

the modal displacement q , modal velocity q&  and modal acceleration q&& . Substituting 

further q , q&  and q&&  into Equation (5.2-5), and after transformation, we have 

           )}({)}(]{[)}(]{[)}(]{[)}(]{[ tFtQKtQCtQItQK −++=′ &&&  (5.2-11) 

Matrix [K’] contains the prestress force T, which is assumed constant throughout 

the length of the beam. Matrix [C] contains the modal damping ξi and modal frequency 

ωi which are assumed unchanged, and matrix [K] contains the system parameters of 

the beam which are also assumed unchanged. The inverse problem is to solve Equation 

(5.2-11) in time domain to get the prestress forceT . Rewriting Equation (5.2-11)  

  1N1N FTB ×× = }{}{  (5.2-12) 
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and vector { F } contains all the terms on the right-hand-side of Equation (5.2-11). 

From Equation (5.2-12) one can see, the equation number is N  but the unknown is 
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only one,T , so the prestress force T can be calculated directly by the simple least-

squares method  

  }{}{}){}({ FBBBT T1T −=  (5.2-13) 

In order to have bounds on the ill-conditioned solution, the damped least-squares 

method (DLS) is used and singular value decomposition is used in the pseudo-inverse 

computation. Equation (5.2-13) is written in the following form using the DLS method. 

  }{}{)}{}({ FBIBBT T1T −λ+=  (5.2-14) 

where λ is the non-negative damping coefficient governing the contribution of the 

least-squares error in the solution. The solution of Equation (5.2-14) is equivalent to 

minimizing the function 

  )}{}{min(),( 22
TFTBTJ λ+−=λ  (5.2-15) 

with the second term in Equation (5.2-15) providing bounds to the solution. 

 

5.2.3.2 Identification from Measured Strains 

The strain at the bottom of the beam at a point xm from the left support can be 

expressed similar to Equation (5.2-6) in terms of the generalized co-ordinates as 

             ∑
=

′′−=
N

i
imm tqxYhtx

1

0 )()(
2

),(~ε          ( ),...,2,1 mNm =  (5.2-16) 

where 0h is the depth of the beam. Equation (5.2-16) can be written as 

            11 }{][}~{ ××× ′′= NNNN qY
mm

ε  (5.2-17) 

where 1}~{ ×mNε is the vector of strains at mN measurement locations. Again the strain at 

the jth measuring point can be approximated by the orthogonal function )(tG as 

                                         )(),(~ tGatx i

Nf

i
ij ∑=ε  (5.2-18) 
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The rest of the computation in the identification is similar to that for identification 

from measured displacements mentioned above. 

5.2.3.3 Identification of both Prestress Force and the Flexural Rigidity of the 

Beam 

Other variables in the system should also be included in the identification for a real 

application. Since the dimensions of the beam can be measured accurately, and the 

modal damping can be estimated from a preliminary spectral analysis before the 

identification, the only variable with uncertainty is the flexural rigidity 0EI  of the 

beam section. If we have a uniform uncracked beam, we have both T and 0EI  as the 

two variables in the identification. Rewriting Equation (5.2-11) as 
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   (5.2-19) 

 The inverse problem is to solve Equation (5.2-19) in time domain at each time 

step to get the prestress force T  and the flexural rigidity 0EI . Rewriting Equation (5.2-

19) in a simple form 

  1NFXB ×= }{}]{[  (5.2-20) 

where  
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Again the prestress force T and the flexural rigidity 0EI can be calculated directly by 

the simple least-squares method 

  [ ] }{][])[(}{ FBBBX T1T −=  (5.2-21) 

or in the following form using the DLS method. 

  }{][])[][]([}{ FBIBBX T1T −λ+=  (5.2-22) 

Both the prestress force and the flexural rigidity of the beam are identified at each 

time step. The dimension of the variable {X} is 1nt2 × , where nt is the total time steps. 

The variable vector {X} is defined with these two variables appearing in alternative 

order, i.e. the prestress force takes up the odd terms of the vector {X} while the 

flexural rigidity takes up the even terms. 

5.2.3.4 Simultaneous Identification of Prestress Force and Moving Loads 

The equation of motion of a beam subject to a set of moving forces 

lP ( l = pN...,,2,1 ) can be written as 
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The identification equation can be expressed as the following, 

  )}(]{[)}(]{[)}(]{[)}({)}(]{[ tQKtQCtQItFtQK ++=+′ &&&  (5.2-24) 

The vector of generalized force )}({ tF  can also be found from 

  )}(]{[)}({ tPLtF =  (5.2-25) 

where )}({ tP  are the set of moving forces on the beam and 
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where ))(sin())((
L

txi
AL
2txY 1

1i
π

ρ
=  is the value of ith mode shape function  at the 

location of )(tx1 , etc.  

Rewriting Equation (5.2-24) in a simple form 

  1N1NNN1NT rtPLTB
pp ×××× =+ }{)}({][}{  (5.2-27) 

where vector {r} contains all the terms on the right-hand-side of Equation (5.2-24). In 

Equation (5.2-27) T  is the unknown prestress force of the beam and )}({ tP  is the 

unknown moving force vector to be identified. 

 The inverse problem is to solve Equation (5.2-13) in time domain. Since both T and )}({ tP   

are uncoupled, Equation (5.2-27) can be further simplified into 

  }{][ rXBd =  (5.2-28) 
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The prestress force T and the moving force }{P can be calculated directly by the 

damped simple least-squares method (DLS)  

  }]{[)][]([}{ 1 rBIBBX dd
T

d
−+= λ  (5.2-29) 

 

5.2.3.5 Identification of the Prestress and Moving Forces and the Flexural Rigidity 

of the Beam 

Other variables in the system should also be included in the identification for a real 

application. If we have a uniform uncracked beam in the problem, we have prestress 

force T, flexural rigidity 0EI  and moving force )(tP  as the three variables in the 

identification. Rewriting Equation (5.2-24) as 

  1N0EI1NNN1NT rEIBtPLT
pp ×××× =−+ }'{}{)}({][}{B  (5.2-30) 

where 

  )}(]{[)}(]{[}'{ tQCtQIr &&& +=   (5.2-31) 

or in a simple form 

  1Nd rXB ×= }'{}]{[  (5.2-32) 

where  
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 Again the vector of variables X can be calculated directly by the simple least-

squares method or using the DLS method. 

5.2.4 Simulation and Results 

5.2.4.1 The Prestress Beam 



 
 

226

A 30 metres long simply supported Euler-Bernoulli beam with an axial prestress 

force of 6102247.83.0 ×=crT  N is studied. The first six natural frequencies of the beam 

are: 1.03, 4.75, 10.11, 19.56, 30.67 and 44.25 Hz. The damping ratios for these six 

modes are all equal to 0.02. The prestress force is constant along the beam. The 

external exciting force is )]40sin(05.0)10sin(1.01[12000)( tttf ππ ++=    N and it is 

applied at 7 metres from the left support. The parameters of the beam 

are: mkg1005A 3 /. ×=ρ , 210 /105 mNE ×= , mL 30= , mb 6.0= , and mh 0.10 = . The 

flexural rigidity 0EI  of the beam is calculated as 9105.2 ×  2Nm . 

5.2.4.2 Effect of Prestress on the Modal Frequency and Responses 

Table 5-3 shows the modal frequencies of the first five modes of the above beam 

when ,1.0 crTT = crT30T .= and crTT 5.0= respectively, and the lower modal 

frequencies are seen more affected by the axial compression than the higher modes. 

The frequency of the beam decreases with an increase in the axial compression and 

vice versa. This is due to the “compression softening” effect (Tse, 1978) from the 

prestress force.   

Figures 5-15 and 5-16 show the effect of the prestress force on the responses of the 

beam when crT10T .=  and crT30T .= respectively when only three modes are included. 

It is seen that the effect of prestress is most significant with the displacement responses 

and the acceleration responses are least affected and such effect increases with larger 

prestress in the beam. 

5.2.4.3 Case 1- Prestress Force Identification from Measured Strains 

White noise is added to the calculated displacements and strains to simulate the 

polluted measurements as follows: 

          )var( calculatedoisecalculated yNEpyy ××+=   (5.2-33) 
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            )var( calculatedoisecalculated NEp εεε ××+=  (5.2-34) 

where y andε  are the vectors of polluted displacements and strains respectively; Ep is 

the noise level ; oiseN is a standard normal distribution vector with zero mean and unit 

standard deviation; var(•) is the variance of the time history; calculatedy  and calculatedε  are 

the vectors of calculated displacements and strains. 5% and 10% noise levels are 

included in the study in this section.  

The above beam with crT30T .= axial force is studied. The first three modes are 

used in the calculation. Measured displacements at 1/4L, 1/2L and 3/4L are used in the 

identification. The sampling frequency is 1000Hz, which is larger than 20 times the 

highest frequency of interest at 44.25 Hz. The beam is assumed at rest initially. 

Figure 5-17 shows the identified results from measured strains with 5% and 10% 

noise with the corresponding optimal regularization parameter equals to 3.4 × 10-6 and 

6.1 × 10-6 respectively. There is only a slight difference in the time histories of the 

identified prestress from both cases. This is because the measurements have been 

approximated with 20 terms of the orthogonal functions and the velocities and 

accelerations are subsequently obtained by directly differentiating the functions. This 

shows that the orthogonal function approach is effective in eliminating the noise in the 

measured data. 

Large responses are found close to the start and end of the time histories while 

those in the middle halve vary closely around the true value. This is because the 

response is a discontinuous function of time at these two time instances. The second 

term in Equation (5.2-22) provides bounds to the solution. When the regularization 

parameter λ approaches zero, the estimated vector }{F  approaches the solution 

obtained from the least squares method. In practice, the expected value of λ is not 
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known, and the error between the true and the estimated forces is minimized  for a 

specific range of λ. The optimal λ  is determined from the L-curve method (Hansen, 

1992). 

5.2.4.4 Case 2- Identification using Impulsive Excitation  

An impulsive force is also used to identify the prestess force, which acts on the 

beam from t = 0.05s to 0.15s. The magnitude of the force is 9500 N simulating the 

impact excitation produced by a 125 kg weight free falling for one meter on the beam. 

The weight is assumed bounced off the beam after impact, and the effect of the falling 

mass after the impact is ignored. The force is applied at 7 metres from the left support 

and it can be expressed in the following form  

  
⎩
⎨
⎧

≤≤−
≤≤−

=
)15.01.0()15.0(190000
)1.005.0()05.0(190000

)(
tNt

tNt
tP  (5.2-35) 

The sampling frequency is 1000 Hz, and the first three modes and three 

displacement measurements evenly distributed along the beam are used in the 

identification. Five percent noise is included in the identification. Figure 5-18 shows 

that the identified prestress force obtained from using an optimal regularization 

parameter of 4.1 × 10-6 and it is found fluctuating closely around the true value except 

close to the two ends.  

5.2.4.5 Case 3- Identification of Both Prestress Force and the Flexural Rigidity of 

the Beam 

The same system as for the last study is used here, and the flexural rigidity 0EI  of 

the beam is 9105.2 ×  2Nm . The sampling frequency is 1000 Hz, and the first three 

modes and three evenly distributed displacement measurements are used in the 
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identification. Also 5% noise is included in the identification.  All other parameters 

remain unchanged. 

Figure 5-19 shows that both the identified prestress force and the flexural stiffness 

are fluctuating around the true values except close to the two ends. The corresponding 

optimal regularization parameter is 2.7 × 10-6. This shows further the effectiveness of 

the proposed method with multiple parameters identification. 

5.2.4.6 Case 4- Identification of Both Prestress Force and One  Moving Force 

The same system as for the last study is used here. The moving force is taken as  

)]10sin(3.0)2sin(5.01[40000)( tttP ππ ++=    N, which moves along the axial 

direction of the beam at a velocity of 30 m/s from the left support to the right support. 

The effect of the number of modes used on the results of prestress force 

identification is studied. The first three to six modes and measured strains are used in 

the calculation. The number of measurement location is equal to the number of modes, 

and the measurement locations are evenly distributed on the beam. The damping ratio 

is equal to 0.02 for all modes. The sampling frequency is 1000Hz, which is larger than 

twenty times the highest frequency of interest at 44.25 Hz.  

Table 5-4shows the errors in the identified single moving force and the prestress 

force from using different number of vibration modes. The following conclusions can 

be made: 

• The identification errors decrease with the increase in the number of the 

vibration modes used in the identification. 

• The errors in the moving force identification is much less than the error in 

the prestress force identification, this may be due to the reason that the 

response is not sensitive to the prestress force. 
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• The identification errors are not sensitive to the noise level in the response 

measurements used in the identification.  

Figures 5-20 shows the identified results from measured strains with 5% and 10% 

noise. There is only a slight difference in the time histories of the identified moving 

force from the two noise levels. This is because the measurements have been 

approximated with 20 terms of the orthogonal functions and the velocities and 

accelerations are subsequently obtained by directly differentiating the functions. The 

effect of measurement noise has been substantially removed. The identified prestress 

force also gives close to true value in the middle portion of the time history. 

The large fluctuations in the response at the start and end of the time histories are 

typically ill-solutions in the problem due to the discontinuity of the solution in time at 

these two moments. The optimal value of parameter λ is 61085.4 −× . 

5.2.4.7 Case 5- Identification of a Single Moving Force, the Pretress Force and the 

Flexural Rigidity of the Beam 

The same system as for the previous study is used here, and the flexural rigidity 

0EI  of the beam is calculated as 9105.2 ×  2Nm . The sampling frequency is 500 Hz, 

and the first four modes and four displacement measurements are used in the 

identification. The measured points are evenly distributed along the beam. The 

damping ratio is equal to 0.02 for all modes. 5% random noise is included in the 

identification.  All other parameters remain unchanged. 

Figure 5-21 shows that both the identified prestress force and the flexural stiffness 

are fluctuating around the true values while the identified moving force varies closely 

to the true force. This demonstrates further the effectiveness of the proposed method 

for multiple parameters identification. 
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5.2.4.8 Case 6- Identification of Two Moving Forces and the Prestress Force 

Again the single span simply supported prestressed beam is considered. The 

parameters of the beam are the same as those for Case 1 study. The two moving forces 

are 

 )]10sin(3.0)2sin(5.01[20000)(1 tttP ππ −+=    N, 

 )]10sin(2.0)2sin(5.01[20000)(2 tttP ππ ++=    N. 

and they are moving as a group at 4 metres spacing at 30 m/s from left to right. Again, 

the effect of the number of measured modes used in the identification is studied. The 

first three to eight vibration modes and measured strains are used in the calculation. 

The number of measured strain is taken equal to the number of vibration modes, and 

the measurement locations are evenly distributed on the beam. The damping ratio is 

equal to 0.02 for all modes. The sampling frequency is 500 Hz. Table 5-5 gives the 

errors in the identified moving forces and the prestress force from using different 

number of vibration modes. Figure 5-22 shows the identified results from measured 

strains with 5% and 10% random noise. The following observations are made: 

• The errors in the identified moving forces and the prestress force are larger 

than those for single force identification.  

• Errors in the identified prestress force are larger than the errors in the 

identified moving forces. This is due to the same reason as the single 

moving force identification. 

• The errors decrease with the increase in the number of the vibration modes 

used in the identification. This observation is the same for Case 5 study. 

• When the noise level is relatively small and below 5%, and the number of 

vibration modes is more than four, the errors do not vary too much with 

different combinations of mode numbers and noise level. This indicates 

little improvements in the identified results despite an increase in the 
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number of vibration modes and sensors. The errors in the results would 

mainly come from the large fluctuations at the beginning and end of the 

time histories. Similar observation can be found for Case 5 study. 

5.2.4.9 Case 7 - Identification of Two Moving Forces, the Prestress Force and the 

Flexural Rigidity of the Beam 

The same system as for Case 1 is studied here and the two moving forces to be 

identified are the same as for Case 6 study. Again, the sampling frequency is 500 Hz, 

and the first four modes and four evenly distributed strain measurements are used in 

the identification. Also 5% noise is included in the identification.  Other parameters 

remain unchanged. 

Figure 5-23 shows that the identified prestress force, two moving forces and the 

flexural stiffness are fluctuating around the true values. The moving forces are more 

accurately identified than the system parameters with the latter ones being more 

accurately identified only over the middle half of the time histories. 

5.2.4.10 Sensitivity of the Proposed Method to Prestress Force Magnitude 

In most cases of construction with prestress, the prestress force in a beam 

component is relatively small. A study is therefore made to study the errors involved in 

the identification of different magnitude of prestress force with different noise levels. 

The same beam and excitation for the last study is used. Five prestress levels and three 

noise levels are studied and the summation of error of the identified force according to 

Equation (7-36) is shown in Table 5-6. The time histories of the identified prestress 

force which are 0.01Tcr, 0.1Tcr and 0.3Tcr under 10% noise level are shown in Figure 

5-24 obtained from using an optimal regularization parameter of 6.1 × 10-6. 
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ptrue

ptruepid

T

TT
error  (5.2-36)  

The noise level is not important to the identification except for the case of a small 

prestress force of 0.01 Tcr. However detail inspection of Figure 5-24 shows that all the 

curves are fluctuating around their corresponding true values. The sum of squares error 

or the variance of the identified forces is of the same order for all the cases studied 

indicating same order of accuracy in all the identifications. This also shows that the 

proposed method is insensitive to the level of prestress force. The large percentage 

error for a small prestress force arises from a small denominator as calculated from 

Equation (5.2-36). Furthermore, over ninety percent of the force time history in the 

middle gives close to true values of the force with smaller fluctuations indicating the 

good accuracy of the proposed method.  

5.2.5 Experimental Verification 

The proposed method is further verified with a simply supported prestress concrete 

beam in the laboratory. The same experimental setup as Figure 4.3-20 is used, and the 

test procedure is the same as the experiment verification in Section 4.3.  

5.2.5.1 Identification of Prestress Force 

Impulsive force is applied with the impact hammer at node 7 of the beam. The 

sampling rate is 2000 Hz. Time histories of both the excitation force and the strains are 

recorded, and data obtained from the third and fourth strain gauges are used in the 

prestress force identification. 

The flexural rigidity of the beam before prestressing is calculated as 3.13×103 kN-

m2. The beam is assumed to be simply supported. Rayleigh damping model is adopted 



 
 

234

in calculating the structural response, and the measured modal damping ratios for the 

first three modes are respectively 0.028, 0.15 and 0.11. The analytical modal 

frequencies are shown in Table 7-5. 

After the beam is prestressed, the flexural rigidity of the beam section is calculated 

to be 3.20×103 kN-m2. The prestress force is identified using data from 0 second to 1.0 

second after the hammer impact. Measured strains from the 3rd and the 4th strain 

gauges were used for prestress force identification. Figure 5-25 shows the measured 

time history from the two strain gauges. The orthogonal polynomial function is used to 

remove the measurement noise.  The measured modal damping ratios for the first three 

modes are 0.022, 0.14 and 0.08 respectively. The load cell at the end of the strand 

shows that the prestress force is 66.7 KN. The identified magnitude of the prestress 

force is 45.3 KN, the relative error is 32.1%. The optimal regularization parameter 

is 5106.1 −× .  The large percentage error may come from the assumption that the beam 

is rigidly supported.  

 

5.2.6 Concluding Remarks 

A method is proposed to identify the prestress force in a prestressed concrete beam 

in this section. All the system parameters are assumed to be time-inrariant. The 

prestress force in a beam has been identified successfully with or without including the 

flexural rigidity of the beam in the inverse analysis. And it is further extend to identify 

both moving force and prestress force simultaneously. Several numerical simulation 

studies show that it is possible to identify these two parameters from measured 

dynamic responses. The noise effect is improved using the orthogonal polynomial 

function. Both the sinusoidal and impulsive excitation could give good results from the 
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lower three measured modes and strain or displacement obtained from only three 

measuring points. Both displacement response and strain response can be used for 

prestress force identification. Work in this section indicates that indirect measurement 

of the prestress force in a beam is feasible.   
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Table 5-1- Comparison with existing method 

 Single crack Depth of crack (m) 

 Location 
(m) 

Depth 
(m) crack 1 crack 2 crack 3 

True value 4.0 0.25 0.20 0.25 0.20 

Sinha et al. (2002). 4.16/4% 0.31/24% 0.235/17.5% 0.21/-16% 0.237/17.5%

Proposed method 4.03/0.75% 0.23/-8% 0.195/-2.5% 0.254/1.6% 0.182/-9% 

Note: •/• denotes the identified value and percentage of error. 

 

 
 
 
  

Table 5-2– Experimental Modal frequencies (Hz) of the cracked beam 

Mode Number Crack depth and location 
1 2 3 4 5 

No crack 22.868 62.763 123.049 203.236 303.452 

hc = 3mm at 1720mm 22.797 62.622 122.559 202.271 302.490 

hc = 6mm at 1720mm 22.766 62.378 121.704 201.050 301.514 

hc = 9mm at 1720mm 22.766 61.890 119.995 198.486 299.500 
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Table 5-3– Modal frequencies corresponding to different prestress force 

Frequency( Hz) Prestress force 
1st 2nd 3rd 4th 5th 

0=T  1.23 4.94 11.11 19.75 30.86 

crTT 1.0=  1.17 4.88 11.05 19.69 30.80 

crTT 3.0=  1.03 4.75 10.92 19.56 30.67 

crTT 5.0=  0.87 4.62 10.80 19.44 30.55 

 
 
 
 
  

Table 5-4- Errors in the identified single moving force and prestress force (%) 

Noise level Number of 

vibration modes 1% 5% 10% 

3 5.8/27.2 6.0/28.9 7.6/36.0 

4 5.1/26.3 5.0/28.2 6.3/34.8 

5 5.1/26.1 5.1/28.0 5.7/34.2 

6 4.8/25.8 4.9/27.6 5.4/32.7 

Note: •/• denotes errors for the moving force and the prestress force respectively. 
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Table 5-5- Errors in the two identified moving forces and prestress force (%) 

Noise level Number of 

vibration modes 1% 5% 10% 

3 15.3/18.1/29.7 24.8/23.9/56.0 29.2/28.1/70.8 

4 10.0/12.4/25.0 12.5/12.9/50.4 17.1/15.8/68.3 

5 7.8/8.4/22.9 9.2/8.7/45.8 12.1/10.4/66.3 

6 7.2/6.7/19.3 7.7/7.5/43.6 9.8/7.8/65.0 

7 6.6/6.2/21.8 6.8/6.8/43.5 8.1/7.1/64.8 

8 5.7/5.4/23.5 6.1/5.7/42.4 7.0/6.2/64.0 

Note: •/•/• denotes errors for the first and second moving forces and the prestress 

force respectively. 

 
 

 
Table 5-6- Error percentage (%) and sum of squares error 

   in the Identified Prestress Force for different noise level 

Prestress Force 1% noise 5% noise 10% noise 

0.01Tcr 173/(7.77x107) 218.3/(1.1x108) 237.88/(1.37x108)

0.05Tcr 75.53/(1.79x108) 81.46/(2.16x108) 86.46/(2.53x108) 

0.1Tcr 46.37/(2.19x108) 48.33/(2.48x108) 50.29/(2.8x108) 

0.3Tcr 31.02/(3.03x108) 31.86/(3.30x108) 32.8/(3.66x108) 

0.5Tcr 21.6/(3.43x108) 21.62/(3.48x108) 22.91/(3.56x108) 

 
 Note: (•) denotes the sum of squares error. 
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Table 5-7– Experimental modal frequencies (Hz) of the non-prestressed and 
prestressed beam 

 unprestressed prestressed 

 Calculated Experimental Calculated Experimental 

1st Mode  23.64 23.21 23.87 23.31 

2nd Mode  89.82 86.17 90.64 87.98 

3rd Mode  195.33 183.29 197.82 185.93 
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Figure 5-1 - The cracked beam model   

 

Figure 5-2- The variation of the fundamental frequency corresponding to 
different crack location   

(___Fernandaz-Saez et al (1999), ---Proposed, (a) cx =4m, (b) cx =7m, (c) cx =15m, 
(d) cx =25 m)

)(tF

cx  
L

px

x  
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Figure 5-3– The displacement responses of cracked beam for different crack 

model 
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Figure 5-4– The variance of the identified crack location (5% noise) 
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Figure 5-5– The optimal regularization parameter (corresponding to crack 

location at 4 m and 5% noise) 
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Figure 5-6– Crack identification from different noise level 

( ___ True; -.-.-. no noise; ---10% noise) 
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Figure 5-7– Response at the measuring points ( ___ from simulation; ---- from 
orthogonal function) 
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Figure 5-8– Crack identification from 3 and 6 modes ( ___ True; …. 3 modes; ---- 

6 modes) 
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Figure 5-9– Identified crack depth for the three cracks (5% noise) 

( ___ True; ---- Identified) 
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Figure 5-10 – Crack identification from impulsive force ( ___ True; -.-.-. 

Identified) 
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Figure 5-11- The experiment setup 

 

 

Impact  

Strain Gauges 

Crack 600 mm 300 mm 200 mm 300 mm 550 mm 



 
 

250

 
Figure 5-12– The impulsive force and five measured strains 
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Figure 5-13– Crack identification from measured strains 

(a) hc=3mm, (b) hc=6mm, (c) hc=9mm,; ( ___ True, ---- Identified) 

 

 
 
 

 
 

Figure 5-14- The prestressed beam model 
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Figure 5-15 – Comparison of response with and without prestress force 

( T =0.1 crT ; ___ With Prestress force; ---- Without prestress force)                                                                             
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Figure 5-16 – Comparison of response with and without prestress force 

( T =0.3 crT ; ___ With Prestress force; ---- Without prestress force) 
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 Figure 5-17 – Prestress force identified from the first three mode 
 (__ True; --- 5% noise; … 10% noise) 
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Figure 5-18 – Prestress force identified from impulsive force 

 (__ True; --- Identified)  
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Figure 5-19 – Identification of prestress force and flexural rigidity  
(__ True; --- Identified) 
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Figure 5-20 – Identification of single moving force and prestress force with 
different noise levels (__ True; … 5% noise; 10% noise) 
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Figure 5-21 – Identification of moving force, prestress force and flexural rigidity 
of beam (__ True; --- Identified) 
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Figure 5-22 – Identification of two moving force and prestress force (__ True; … 
5% noise; --- 10% noise) 
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Figure 5-23 – Identification of two moving forces, prestress force and flexural 
rigidity of beam (__ True; --- Identified) 
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Figure 5-24 – Identification of different magnitude of prestress force 

 (__ True; --- crTT 3.0= ; -.-.-. crTT 1.0= ; … crTT 01.0= ) 
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Figure 5-25  - Time histories of the measured two strains, (a) the 3rd; (b) the 4th   
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Chapter  6 
 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions on the Present Study 

This dissertation aims to develop a simple, economical and yet sophisticated 

vibration-based evaluation procedure to assess damage as well as prestress force in 

existing structures using the measured structural dynamic responses. Some useful 

conclusions are drawn as shown in the following paragraphs. 

A novel damage identification method based on dynamic response sensitivity is 

proposed in Chapter 3. The dynamic response sensitivities with respect to the physical 

parameters have been derived numerically. Only one response measurement is used for 

the updating of a large number of system parameters theoretically, because the plenty 

measured data in time domain can be used directly in the solution. When more 

measurements are taken in the identification, the identified results can be improved as 

shown in this chapter. The advantages of this approach for damage identification are: 

the number of measurements can be very small; the identification process is fast and 

the identified results are accurate; and finally, the number of identification equation 

can be adjusted according to the duration of time. And this indicates that the 

identification equation can always be over-determined. This method is further studied 

with other problems in the broad topic of damage assessment, such as, taking into 

account the temperature effect, differentiating different types of damage for structures 

consisting of isotropic material, identification of prestress force in prestressed concrete 
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structures and the identification of the system parameters including the load 

environment in Chapters 4.  

In Chapter 5 Section 1, a method is proposed for crack identification in a beam 

structure. The crack with a constant depth is modeled with a Dirac delta function, and 

a method is proposed to identify the open crack in beam structures based on dynamic 

measurements in time domain. Only several displacement or strain measurements and 

the first few vibration modes of the beam are required in the crack identification. 

Computation simulations using sinusoidal and impulsive excitations on a beam with a 

single crack show that the method is effective to identify cracks and is more accurate 

than the method by Sinha et al. (2002) from polluted measurements.  

Chapter 5 Section 2 proposed a method based on modal superposition in 

combination with optimization and regularization methods to identify the prestress 

force in time domain. The prestress force in a beam has been identified successfully 

with or without including the flexural rigidity of the beam in the inverse analysis 

whereas many other methods based on modal frequencies fail. And the proposed 

method can be further extended to identify both moving force and prestress force 

simultaneously. Identification of prestress force based on the response sensitivity 

method is also included in this section. The presented work indicates that indirect 

measurement of the prestress force in a beam is feasible. 

 

As a conclusion, the major contribution of this desertation lies in: the dynamic 

response sensitity with respect to system parameters has been derived numerically and 

analytically. And the response sensitivity-based finite element updating is used for 

damage and prestress force identification. The proposed method can take into account 

the temperature effect in the identification which is neglected by other existing damage 
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detection methods. In this thesis, an iterative algorithm is proposed to identify 

structural damage including the load environment; both the excitation force and the 

structural damage can be identified successfully. The proposed method has been used 

successfully to beam structures, plane frame and space frame structures subjected to 

damage of different types. The presented method is not sensitive to measurement noise, 

modeling errors as shown in the numerical studies and the laboratory work, and thus, it 

has the potention for real application for damage and prestress force identification. 

Theoretically speaking, the methodology can be extended and applied to more 

complex structures. But how to successfully apply the method in a real structure is still 

difficult because a practical structure usually has a huge number of DOFs, and 

according to the number of unknowns, the measurement data sets requirement would 

be many times larger than what has been studied in this thesis.   

6.2 Recommendations 

Further studies related to the vibration-based damage and prestress force 

identification are recommended. The present work in this dissertation provides some 

exploratory experiences and suggestions in the following aspects: 

  

1. The algorithm proposed for damage detection with the removal of temperature 

effect (Chapter 4, Section 1) was only validated by numerical simulations. An 

experimental verification or a real application to a large-scale civil engineering 

structure is needed for further verification.  

2. The crack model proposed in Chapter 5 is assumed permanent open. However, in 

practice, the crack may open and close under the normal traffic. Therefore, it is 
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more practical to extend this time-invariant crack to time-variant crack model for 

further investigation.  

3. With regards to long-term health monitoring of structures such as bridges, 

offshore platforms, etc., the need to reduce the dependence on measurable 

excitation forces should be noted. The ability to use the vibrations from ambient 

or operating loads for assessment of structural damage is an area that highly 

merits further research.  

4. Theoretically, measurement from only one sensor is need for damage detection. 

But computation simulation shows that measurements from multiple sensor 

combinations will result not only in a reduction in iteration steps but also an 

improvement in the identified results. Therefore, the issues on optimal sensor 

number and the optimal sensor location for the damage detection worth further 

research. 

5. In this dissertation, only the vibration of translational degree-of-freedom is used. 

Although it is still difficult to measure the vibration of rotational degree-of-

freedom in most practical structures, it is suggested that both simulation study and 

the laboratory techniques to measure vibration of rotational degree-of-freedom 

and the related damage detection methods may worth further research.  

6. The proposed method based on response sensitivity has been utilized for damage 

detection applications on skeletal structures (such as beams, plane frame and 

space frame) in this dissertation. Further investigations aim to extend this method 

for damage detection in plate-like structures are expected. 

7. The proposed method based on response sensitivity has been utilized for both 

damage detection and prestress force identification in structures. Further 
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investigations should extend this approach to identify damage and prestress force 

simultaneously in prestressed structures. 

8. In this dissertation, Rayleigh damping model is used. And the damping is 

assumed to remain unchanged before and after the damage occurrence. But in fact, 

the damping may change after the occurrence of damage; therefore, further 

research should identify the damping coefficients as well as the structural damage. 
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APPENDIX  A 
 

ELEMENTAL MASS MATRIX AND STIFFNESS MATRIX 

 

Elemental Consistent Mass Matrix of 3-D Finite Element  
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Elemental Stiffness Matrix of 3-D Finite Element 
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APPENDIX  B 
 

THE ORTHOGONAL POLYNOMIAL FUCTION 
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