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Abstract

Many areas like engineering, statistics and computing et.al involve solving optimiza-

tion models. The proximal gradient algorithm is a popular kind of algorithm for

solving these problems. This algorithm, though simple and widely used, can be slow

in practice; see for example [64, 90, 95]. To accelerate the proximal gradient algo-

rithm, various approaches such as extrapolation techniques or line-search have been

adopted. In this thesis, we first present some existing convergence results of the

proximal gradient algorithm such as the global complexity. Then, we focus on the

adaptation of the extrapolation techniques which is usually easier to implement in

practice and leads to provably better iteration complexity for a large class of con-

vex problems. We review this latter fact concerning iteration complexity and also

present some existing convergence properties of the proximal gradient algorithm with

extrapolation.

Another popular kind of first-order algorithms is the iteratively reweighted algo-

rithm. For this class of algorithms, the line-search techniques have also been adopted

for acceleration while the extrapolation techniques have not. In view of the success

in accelerating the proximal gradient algorithm empirically via extrapolations, in

the last section of this thesis, we investigate how extrapolation techniques can be

suitably incorporated into an iteratively reweighted `1 algorithm. We specifically

consider extrapolation techniques motivated from three popular optimal first-order

methods: the fast iterative soft-thresholding algorithm (FISTA) [10,68], the method
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by Auslender and Teboulle [6] and the method by Lan, Lu and Monteiro [53]. For

each algorithm, we exhibit an explicitly checkable condition on the extrapolation

parameters so that the sequence generated provably clusters at a stationary point of

the optimization problem. We also investigate global convergence under additional

Kurdyka- Lojasiewicz assumptions on certain potential functions. Our numerical ex-

periments show that our algorithms usually outperform the general iterative shrink-

age and thresholding algorithm in [46] and an adaptation of the iteratively reweighted

`1 algorithm in [56, Algorithm 7] with nonmonotone line-search for solving random

instances of log penalty regularized least squares problems in terms of both CPU

time and solution quality. The results concerning extrapolation techniques applied

to iteratively reweighted algorithm are based on the manuscript [101] available on

ArXiv.
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Chapter 1

Introduction

1.1 Models and applications

1.1.1 Compressed sensing

As we are in the midst of digitization, data in various fields such as engineering,

statistics and commerce has become so huge that it challenges not only the capacity

of devices which sense it but also the speed and capability to compute it. Thus,

people begin to transform data into simplified representations which capture the

most important information. Usually, the simplified signal is a sparse representation,

where the “sparse” here means a data set that has a high percentage of zero. For

example, pictures that have small amount of sharp edges have this sparsity property

under a proper multiscale wavelet transform; see [61]. Taking advantage of the

sparsity, we can reduce the size of the database, saving both the time of storage and

computation. Sparse signals are “compressed” and then transmitted. The process of

recovering the original sparse signal is called compressed sensing. This technique has

been widely used in signal processing, image processing, error correcting, parameter

estimation and so on; see [7,8,22,24,25,59,60,82,87]. In 2006, E. Candes, J. Romberg

and T. Tao proposed that the sparse database can be exactly recovered under suitable

conditions, see [23]. Their main approach is to solve a convex optimization problem.

More precisely, suppose there is a signal b ∈ Rm which comes from a sparse signal
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x ∈ Rn under the relation Ax = b, where m � n and A ∈ Rm×n is the sensing

matrix (or the measurement matrix). E. Candes, J. Romberg and T. Tao [23] proved

that, under suitable conditions on A such as the restricted isometry property, one

can recover the original sparse signal by solving

min
{x: Ax=b}

‖x‖0,

where ‖·‖0 represents the number of nonzero coefficients of x. However, this problem

is NP-hard in general; see [42]. Thus, they considered a convex relaxation of it,

min
{x: Ax=b}

‖x‖1, (1.1)

which gurantees an exact recovery under suitable assumptions; see [23, Theorem 1.3].

This model is convex and thus multiple schemes can be used for solving it such as

interior-point methods [15, 18, 28, 39, 52, 91, 100]. Intuitively, ‖ · ‖1 induces sparsity

by its nonsmoothness. Figure 1.1 shows that by adjusting the `1 norm of (x1, x2),

Figure 1.1: This picture shows how l1 norm induces sparsity. The original solution
(x1, x2) obeys the relation that x1 + x2 = 1 and the blue one is ‖(x1, x2)‖1 = 1.

we can find a sparse solution that satisfies x1 + x2 = 1.
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In many cases, the probed signal b is impacted by noise. Thus, we need to consider

the following noisy version of the compressed sensing problem:

min
{x: ‖Ax−b‖≤δ}

‖x‖0, (1.2)

where δ ∈ R+ is related to the level of the noise. Still, due to the nonsmooth

nonconvex structure of ‖ · ‖0, this model remains difficult to analyze and, as proved

in [63, Theorem 1], this problem is still NP-hard. Thus, we turn to solving the ‖ · ‖1

relaxation:

min
{x: ‖Ax−b‖≤δ}

‖x‖1. (1.3)

This is a convex optimization problem and can be solved by various schemes [15,18,

28, 30, 39, 52, 91, 100]. Moreover, if δ > 0 and A has full row rank, then the above

problem is equivalent to the following unconstrained optimization problem for some

λ > 0:

min
x
‖Ax− b‖2

2 + λ‖x‖1, (1.4)

if the maximizer of

max
µ

min
x
L(x;µ) := ‖x‖1 + µ(‖Ax− b‖2 − δ)

is strictly positive for some µ > 0.

Intuitively, in (1.4), when λ decreases, the residual ‖Ax − b‖2 decreases. Thus,

λ controls the residual; see [28]. Many efficient algorithms have been developed in

the literature [54,68,72,80,90] to solve this model and the convergence properties of

some of these algorithms will be reviewed in subsequent literature.

Compressed sensing has also been extended to the matrix case to recover “low

rank” matrices. Low rank matrix completion is to reconstruct the whole (low rank)

matrix from partial entries. This problem can be modeled as an optimization prob-

lem of finding the minimum rank or nuclear norm (as a convex relaxation) of some
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matrix; see [75]. The matrix completion is motivated from the Netflix problem,

which estimates someone’s ratings for contemporary movies based on previous rat-

ing records; see [20, 55, 60, 75, 76, 86] for a concrete description and the analysis of

respective algorithms.

1.1.2 Sparsity in statistical inferences

In the statistical field, the estimation of parameters of a linear system involves solving

the following model known as LASSO, which stands for “least absolute shrinkage and

selection operator”:

min
‖x‖16δ

‖Ax− b‖2, (1.5)

where δ > 0 represents a tuning parameter that indicates sparsity and xj ∈ R for

j = 1, . . . , n is one predictor variable while bi ∈ R for i = 1, . . . ,m are representative

responses. LASSO surpasses the ordinary least squares estimation in both prediction

accuracy and interpretation by shrinking some coefficients and setting others to 0;

see [84]. One way to solve LASSO is to solve (1.4) for some suitable λ > 0 instead.

LASSO and its variants are widely used for variable selection; see [84, 85, 102, 106].

For example, when partitioning {1, . . . , N} into p groups denoted as K1, . . . , Kp, we

get the grouped LASSO

min
β∈RN

{
‖y −

p∑
j=1

Xjβj‖2 + λ

p∑
j=1

‖βj‖Rj

}
,

where Xj with j ∈ {1, 2, . . . , p} is a submatrix of a given matrix X ∈ RM×N with

columns corresponding to the predictors in group Kj; βj stands for the coordinates

that are indexed by Kj and ‖z‖Rj = (zTRjz)
1
2 with a series of symmetric d × d

positive definite matrices {Rj}pj=1. This grouped LASSO enables variables that have

correlations to be selected or ruled out together; see [41,48,81,102].
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In fact, the key motivation to introduce LASSO is the ‖ · ‖1 part, which induces

sparsity. This idea can also be adopted in other regression models. For example, one

variant of the LASSO is the logistic loss model, which gives:

min
α∈Rp

`n(α) + λ‖α‖1, (1.6)

where `n(α) is a negative log-likelihood function

`n(α) = −
n∑
i=1

{
Yi log

e〈xi,α〉

1 + e〈xi,α〉
+ (1− Yi) log

[
1− e〈xi,α〉

1 + e〈xi,α〉

]}
,

where Y ∈ {0, 1}n and xi = (xi,1, xi,2, . . . , xi,p)
T for each i = 1, 2, . . . , n. This

optimization model can be further applied to the detection of the splice sites in

DNA, the estimation of German credit data and breast cancer data; see [47, 51, 62]

for concrete models, analysis of consistency and relevant algorithms to solve (1.6).

However, in some cases, LASSO may be biased when applied to high dimensional

variable selection. One way to deal with the bias of LASSO model is to replace the

`1 in (1.4) with the smoothly clipped absolute deviation (SCAD) penalty function

proposed by J. Fan and R. Li; see [38]. The SCAD function P (x) is given by

P (x) = λ
n∑
i=1

|xi|∫
0

min

{
1,

[θλ− t]+
(θ − 1)λ

}
dt,

where θ > 2 and λ > 0. This function can be rewritten in the form P (x) =
n∑
i=1

φ(|xi|),

where

φ(t) =


λt, t 6 λ,

−t2+2θλt−λ2
2(θ−1)

, λ < t 6 θλ,
(θ+1)λ2

2
, t > θλ.

According to [38], this penalty function possesses three good properties simultane-

ously: continuity, sparsity, and unbiasedness, which the `1 penalty function does
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not. The SCAD penalty function has been widely used in high dimensional prob-

lems; see [38,50,94]. In [50], an algorithm is proposed to solve (1.4) with `1 replaced

by SCAD.

Another way to tackle the bias is to solve (1.4) with `1 being replaced by the

a minimax concave penalty (MCP) function proposed by C. Zhang; see [104]. The

MCP function, which is denoted by P (x), is defined as follow:

P (x) = λ
n∑
i=1

|xi|∫
0

[1− t

θλ
]+dt,

where θ and λ are some fixed strict positive real numbers. This function can be

rewritten in the form P (x) =
n∑
i=1

φ(|xi|), where

φ(t) =

{
λt− t2

2θλ
, t 6 θλ

θλ2

2
, t > θλ.

In [104], C. Zhang showed that the MCP function has a high probability of getting

correct selection without some conditions required by the LASSO in [105].

Both the MCP and the SCAD penalty functions are nonconvex; see Figure 1.2. In

addition, they can be rewritten as the difference of two convex (DC) functions and P.

Gong et al. proposed a general iterative shrinkage and thresholding algorithm to solve

these problems and analyzed the convergence properties of their algorithm in [45].

One can also apply the proximal difference-of-convex algorithm with extrapolation

proposed in [96] to (1.4) with `1 being replaced by either the MCP function or the

SCAD function. In [96], the sequence generated by their algorithm was proved to

have global subsequential convergence under mild conditions.

Alternatively, one may also use other penalty functions to induce sparsity instead

of the l1 norm in (1.4). One such example is the lp quasi-norm, where p ∈ (0, 1):

min ‖Ax− b‖2
2 + λ‖x‖pp. (1.7)
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Intuitively, when 0 < p < 1, due to its “sharpness” around the origin, ‖ · ‖p may be

more effective than ‖ · ‖1 for inducing sparsity; see Figure 1.2.

Figure 1.2: the l1 regularization function intuitively induces sparsity. The black one
is φ(x) = |x|; the deep blue one is φ(x) = |x| 12 ; the light blue one is the SCAD
penalty function while the green one is the MCP function; the red one corresponds
to the l0 norm.

The problem nonconvex programming problem (1.7) is NP-hard when 0 < p < 1;

see [31]. However, algorithms have been developed to find stationary points of this

problem and the convergence properties are also investigated in [26,32,41,48,81,84,

104].
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1.2 Aim and structure of this thesis

Motivated by the aforementioned applications, in this thesis, we discuss algorithms

for solving those models. In particular, we focus on solving (1.4) and its variants

with `1 being replaced by MCP, SCAD and other regularizers. These models can be

solved by popular first-order methods such as the proximal gradient method (PG),

the iteratively reweighted algorithms and their variants; see [12,30,54,68,72,80,90,95].

More precisely, the proximal gradient method is designed to solve the following class

of problems:

min F (x) := f(x) + P (x), (1.8)

where f : Rn → R has Lipschitz continuous gradient with modulus L > 0 and

P : Rn → (−∞,∞] is proper closed. The models (1.4) and the Lagrangian function

of (1.5) are in this form.

We will discuss some existing convergence properties of the sequence generated

by the proximal gradient method in both convex and nonconvex cases. In the convex

case, i.e. when f and P are convex, we will show under some suitable assumptions

on the stepsize that the sequence of function values generated by PG decreases to

the optimal function value at a rate of O( 1
k
), in which case we say PG has a global

complexity of O( 1
k
). In the nonconvex case, i.e. when either f or P is not convex, we

will prove under another assumption on the stepsize that PG is a descent algorithm

and the sequence generated by this algorithm accumulates at a stationary point of

problem (1.8).

In some applications, the proximal gradient method can be slow; see for exam-

ple [5, 10, 64–66, 68]. Therefore, we will discuss some accelerated variants of PG.

In [10,68,89], extrapolation techniques such as Nesterov’s acceleration schemes were

incorporated into PG for solving (1.8) when f and P are convex, resulting in a global

complexity of O
(

1
k2

)
. In [70, 96], PG with Nesterov’s extrapolation techniques [64]
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coupled with a restart scheme was shown to exhibit fast convergence in their numeri-

cal tests. In this thesis, we will discuss how in [89] PG with Nesterov’s extrapolation

techniques has the complexity of O( 1
k2

) when applied to solving convex problems,

following the discussions in [90]. We will also discuss some convergence results of

PG with suitable extrapolation schemes when applied to solving nonconvex problem,

following the discussions in [95].

We will then discuss another kind of first-order algorithms, the iteratively reweighted

algorithms which include the iteratively reweighted `2 algorithm and the iteratively

reweighted `1 algorithm. The iteratively reweighted `2 algorithm is introduced first

and then we focus on the iteratively reweighted `1 algorithm which is related to

our proposed algorithms in later part of this thesis. The iteratively reweighted `1

algorithm was originally designed for the following problem

min
Ax=b

P (x)

with

P (x) =
n∑
i=1

φ(xi), (1.9)

where φ : R→ R. This model includes model (1.1) and its variants with `1 in (1.1)

replaced by `p, the logistic function and other regularizers; see [26, 27, 33]. More

precisely, the iteratively reweighted `1 algorithm solves a subproblem that has the

following form in each iteration:

xk+1 = min
{x: Ax=b}

n∑
i=1

wki |xi|,

where {wki } ⊆ R+ are called the weights. It is easy to see that when wki = 1 for

all i = 1, 2, . . . , n, the subproblem above reduces to (1.1). Intuitively, by properly

choosing the weights, the weighted l1 may be more efficient in inducing sparsity than

l1; see [26, Figure. 1].
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After discussing some popular first-order methods such as PG, its extrapolated

variants, and the iteratively reweighted algorithms, we will investigate how extrap-

olation techniques can be suitably incorporated into the iteratively reweighted `1

algorithm for solving special instances of (1.8). These results are joint work with

Ting Kei Pong, my supervisor. Assuming P in (1.8) has the form (1.9), under

suitable assumptions on f and φ, we specifically consider extrapolation techniques

motivated from three popular optimal first-order methods: the fast iterative soft-

thresholding algorithm (FISTA) [10, 68], the method by Auslender and Teboulle [6]

and the method by Lan, Lu and Monteiro [53]. We call the corresponding iteratively

reweighted `1 algorithm with extrapolation IRL1e1, IRL1e2 and IRL1e3, respectively.

For each algorithm, we show that the sequence generated clusters at a stationary

point of (1.8) under certain condition on the extrapolation parameters. These con-

ditions are satisfied by many choices of extrapolation parameters: for instance, one

can pick the parameters as in FISTA with fixed restart [70] in IRL1e1. Furthermore,

under some additional assumptions such as the Kurdyka- Lojasiewicz property (see

for example, [3,4]) on some suitable potential functions, we show that the sequences

generated by IRL1e1 and IRL1e3 are indeed convergent. We then perform numeri-

cal experiments comparing our algorithms (with our proposed choices of extrapola-

tion parameters) against the general iterative shrinkage and thresholding algorithm

(GIST) [46] and an adaptation of the iteratively reweighted `1 algorithm [56, Algo-

rithm 7] with nonmonotone line-search (IRL1ls) for solving log penalty regularized

least squares problems on random instances. In our experiments, our iteratively

reweighted `1 algorithms with extrapolation usually outperform GIST and IRL1ls in

both CPU time and solution quality. Moreover, IRL1e1 and IRL1e3 usually perform

better than IRL1e2.

The rest of the thesis is organized as follows: we discuss necessary preliminaries in

Chapter 2. Some existing convergence results concerning PG and PG with extrapo-
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lation are discussed in Chapter 3. We also briefly describe the iteratively reweighted

algorithms. In Chapter 4, we incorporate extrapolation techniques into the itera-

tively reweighted `1 algorithms. We analyze convergence properties of the sequences

generated by the resulting algorithms and some numerical results are presented.
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Chapter 2

Preliminaries

We call the set {x : f(x) <∞} the domain of f and denote it by domf . We say

that a function f : Rn → R̄ is proper if domf 6= ∅. Such a function is said to be

lower semicontinuous at x if

lim inf
xi→x

f(x) > f(x)

for all sequences xi → x, and is said to be closed if it is lower semicontinuous at

every point in Rn.

For a proper function f , the regular subdifferential of f at x ∈ domf is defined

and denoted in [79, Definition 8.3] by

∂̂f(x) :=

{
ζ : lim inf

z→x,z 6=x

f(z)− f(x)− 〈ζ, z − x〉
‖z − x‖

> 0

}
.

The subdifferential of f at x ∈ domf (which is also called the limiting subdifferential)

is defined and denoted in [79, Definition 8.3] by

∂f(x) :=
{
ζ : ∃xv f→ x, ζv → ζ with ξv ∈ ∂̂f(xv) for each v

}
, (2.1)

where xv
f→ x means both xv → x and f(xv)→ f(x). We denote {x : ∂f(x) 6= ∅} =:

dom ∂f . We set ∂f(x) = ∂̂f(x) = ∅ for x /∈ dom f by convention. Moreover,

∂f(x) = {∇f(x)} if f is continuously differentiable at x; [79, Exercise 8.8].
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If f is proper convex, from the definition of the subdifferential of f at x ∈ domf

and the convexity of f , the subdifferential of f degenerates to

{ζ : 〈ζ, y − x〉 6 f(y)− f(x) for any y} ; (2.2)

see [16, Theorem 6.2.2].

The limiting subdifferential enjoys several basic calculus rules:

Proposition 2.1. The following statements hold:

(i) (Sum rule) Suppose that f = f1 + f2 with f1 Lipschitz continuous at some

x̄ ∈ domf and f2 is proper closed. Then

∂f(x̄) ⊆ ∂f1(x̄) + ∂f2(x̄).

In addition, if f1 is continuously differentiable at x̄, the above inclusion holds

as an equality.

(ii) (Separable function) Let f(x) =
n∑
i=1

fi(xi), where each fi : Rni → R̄ is

a proper closed function, x = (x1, x2, . . . , xn) with xi ∈ Rni. Then at any

x ∈ dom f , one has

∂f(x) = ∂f1(x1)× ∂f2(x2)× · · · × ∂fn(xn).

Proof. The first statement comes from [79, Exercise 10.10] and [79, Exercise 8.8]; the

second statement follows from [79, Proposition 10.5].

Next we introduce a repeatedly used function in this thesis, the indicator function.

The indicator function δC of C is defined as

δC(x) :=

{
0 x ∈ C,
∞ x /∈ C.
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The normal cone of C at an x ∈ C is defined as NC(x) := ∂δC(x), and the

distance from a point x ∈ Rn to C is denoted by dist(x,C).

Now we introduce the proximal mapping which is widely used in designing first-

order methods.

The proximal mapping of a proper closed function h : Rn → R̄ is defined as

follows:

Proxh(x) = Arg min
u

{
h(u) +

1

2
‖u− x‖2

}
.

When h is the indicator function of a closed set C, Proxh(x) reduces to ProjC(x),

the set of points in C that are closest to x.

One fact about the proximal mapping in optimization is that x∗ is a global min-

imizer of a convex function f : Rn → R̄ if and only if it is the fixed point of

Proxf (x), which can be deduced from the optimality condition [16, Theorem 3.1.5].

Actually, many algorithms can be considered as finding a fixed point of some op-

erators; see [9, 72, 78]. In many applications, Proxh(x) usually has a closed form;

see [28,34,35]. For example, when solving the models in Chapter 1, many algorithms

use the proximal mapping of h(x) = λ‖x‖1. Using the optimality condition, we have

the following explicit formula for h(x) = λ‖x‖1:

Proxh(x)i =


xi − λ, xi > λ;

0, |xi| < λ;

xi + λ, xi 6 −λ.

More closed forms of the proximal mapping of different functions can be found in [9,

Table 10.2].

Definition 2.1 (Strong convexity). We say that a proper function f : Rn → R̄ is

strongly convex with modulus m if for any x, y ∈ dom f and λ ∈ [0, 1], the following
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inequality holds:

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)− m

2
λ(1− λ)‖x− y‖2. (2.3)

Subproblems of many commonly used optimization algorithms are strongly con-

vex (even when the original problem is not convex), and the strong convexity is also

crucial in the convergence analysis of these algorithms; see for examples [44, 90, 96].

Here we list two most useful equivalent definitions of strong convexity. Before that,

we present a lemma which will be used in the proof of the equivalence of the defini-

tions of strong convexity.

Lemma 2.1. Let f : Rn → R̄ be proper, closed and convex, if x ∈ ri(domf), then

for any d ∈ span(domf − x),

f ′(x; d) = max
ξ∈∂f(x)

〈ξ, d〉 ,

and the maximum is attained, where f ′(x; d) := lim
t↓0

f(x+td)−f(x)
t

is the directional

derivative in the direction d at x and spanD of a set D means the smallest linear

subspace containing D.

Proof. Denote Z := span(domf − x) and fix any d0 ∈ Z.

Setting ψ(d) := αf ′(x; d0), where d = αd0 and α ∈ R, we have

ψ(d) =

αf ′(x; d0) = f ′(x;αd0), for α > 0;

αf ′(x; d0) = −(−α)f ′(x; d0) = −f ′(x;−αd0) 6 f ′(x;αd0), for α < 0,

(2.4)

where the first relation is due to the positive homogeneity of ψ on span {d0} that

can be easily obtained by the definition of f ′(x; d), and the inequality is because

f ′(x; ·) is sublinear on Z by [16, Proposition 3.1.2], thanks to the assumption that

x ∈ ri(domf).
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Therefore, we get

ψ(d) 6 f ′(x; d), ∀d ∈ span {d0} .

Using this together with the sublinearity of f ′(x; ·) on Z and the linearity of ψ(·) on

span {d0}, we can apply the Hahn-Banach Theorem and conclude that there exists

a vector ξ∗ such that

〈ξ∗, d〉 6 f ′(x; d) for d ∈ Z; 〈ξ∗, d〉 = ψ(d) for d ∈ span {d0} . (2.5)

Thus, for all d ∈ Z,

〈ξ∗, d〉 6 f ′(x; d) 6 f(x+ d)− f(x), (2.6)

where the second inequality is easily a consequence of the convexity of f . The

inequality (2.6) implies that ξ∗ ∈ ∂f(x). Using this fact and taking α = 1 in the

first equation in (2.4) and using (2.5), we have

f ′(x; d0) = ψ(d0) = 〈ξ∗, d0〉 6 max
ξ∈∂f(x)

〈ξ, d0〉 , (2.7)

where the second equality is from (2.5).

On the other hand, by definition of the subgradient, it is easy to check that

f ′(x; d0) > max
ξ∈∂f(x)

〈ξ, d0〉. Combining this with (2.7) we have

f ′(x; d0) = max
ξ∈∂f(x)

〈ξ, d0〉

and the maximum is attained at ξ∗. Since d0 ∈ Z is arbitrary, the proof is completed.

Now, we are ready to give some equivalent definitions of strong convexity.

Proposition 2.2. Suppose that f : Rn → R̄ is proper closed. Then the following

statements are equivalent:

(i) f is strongly convex;
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(ii) There exists an m > 0 such that for any points y ∈ dom f , x ∈ dom ∂f and

any ξ ∈ ∂f(x), we have

f(y) > f(x) + 〈ξ, y − x〉+
m

2
‖y − x‖2; (2.8)

(iii) There exists an m > 0 such that for any points x ∈ dom ∂f and y ∈ dom ∂f

and any ξx ∈ ∂f(x), ξy ∈ ∂f(y), we have

〈ξx − ξy, x− y〉 > m‖y − x‖2. (2.9)

Proof. First we prove (i)⇒ (ii). Fix any points y ∈ dom f , x ∈ dom ∂f and choose

any ξ ∈ ∂f(x). Choosing a λ ∈ [0, 1), rearranging (2.3), we have

λ

1− λ
f(x) + f(y) >

f(λx+ (1− λ)y)

1− λ
+
λm

2
‖x− y‖2

=⇒ f(y) >
f(λx+ (1− λ)y)− f(x)

1− λ
+ f(x) +

λm

2
‖x− y‖2

>
〈ξ, (1− λ)(y − x)〉

1− λ
+ f(x) +

λm

2
‖x− y‖2

= 〈ξ, y − x〉+ f(x) +
λm

2
‖x− y‖2,

where ξ ∈ ∂f(x) and the last inequality is due to (2.2). Passing to the limit as λ ↑ 1,

we obtain (2.8).

For (ii) ⇒ (i), we first prove that (2.3) holds for y ∈ ri(domf), x ∈ domf, λ ∈

(0, 1). Fix any points y ∈ ri(domf), x ∈ domf . For any λ ∈ (0, 1),

xλ := λx+ (1− λ)y = y + λ(x− y) ∈ ri(dom f) ⊆ dom ∂f,

where the inclusion is by [77, Theorem 23.4]. Thus, using (2.8), we have

f(y) > f(xλ) + 〈ξ, y − xλ〉+
m

2
‖y − xλ‖2,

f(x) > f(xλ) + 〈ξ, x− xλ〉+
m

2
‖x− xλ‖2,
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where ξ ∈ ∂f(xλ). Summing the first inequality multiplied by 1− λ and the second

multiplied by λ, we see that (2.3) holds for y ∈ ri(domf), x ∈ domf, λ ∈ (0, 1).

For x, y ∈ domf , λ ∈ (0, 1), taking a y0 ∈ ri(domf) and for any t ∈ (0, 1) we have

yt = y + t(y0 − y) ∈ ri(dom f) ⊆ dom ∂f,

where the inclusion is by [77, Theorem 23.4]. Thus, using the fact that (2.3) holds

for yt ∈ ri(domf) for t ∈ (0, 1), x ∈ domf , we have

f(λx+ (1− λ)y) 6 lim inf
t↓0

f(λx+ (1− λ)yt)

6 lim inf
t↓0

(
λf(x) + (1− λ)f(yt)−

m

2
λ(1− λ)‖x− yt‖2

)
6 λf(x) + (1− λ) lim sup

t↓0
f(yt)−

m

2
λ(1− λ)‖x− y‖2

6 λf(x) + (1− λ)f(y)− m

2
λ(1− λ)‖x− y‖2,

where the first inequality is because f is lower semicontinuous while the last inequal-

ity is because t 7→ f(yt) is upper semicontinuous in the closure of its domain by [103,

Proposition 2.1.6]. Thus, we have shown that (2.3) holds for x, y ∈ domf, λ ∈ (0, 1).

Noticing that when λ = 0 or λ = 1, (i) holds trivially, we obtain that (ii)⇒ (i).

For (ii) ⇒ (iii), using (2.8), for any x ∈ dom ∂f and y ∈ dom ∂f and any

ξx ∈ ∂f(x), ξy ∈ ∂f(y), we have

f(y) > f(x) + 〈ξx, y − x〉+
m

2
‖y − x‖2;

f(x) > f(y) + 〈ξy, x− y〉+
m

2
‖y − x‖2.

Summing these two inequalities, we obtain (2.9).

Finally, we prove (iii) ⇒ (ii). We first consider the case that y ∈ ri(domf) and

x ∈ dom∂f . Supposing that (iii) holds, then for ξ ∈ ∂f(x), using the Riemann-
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Lebesgue theorem (see for example [19]), we have

f(y) = f(x) +

1∫
0

f ′(xλ; y − x)dλ

= f(x) + 〈ξ, y − x〉+

1∫
0

f ′(xλ; y − x)− 〈ξ, y − x〉 dλ,

(2.10)

where xλ denotes x + λ(y − x). Since x ∈ dom∂f ⊆ domf , y ∈ ri(domf) and

λ ∈ (0, 1) implies,

xλ = x+ λ(y − x) = (1− λ)x+ λy ∈ ri(domf).

This property enables us to apply Lemma 2.1 at the point xλ at any λ ∈ (0, 1) to

obtain

f ′(xλ; y − x)− 〈ξ, y − x〉 = max
ξλ∈∂f(xλ)

〈ξλ, y − x〉 − 〈ξ, y − x〉

= 〈ξ∗λ, y − x〉 − 〈ξ, y − x〉 = 〈ξ∗λ − ξ, y − x〉

=
1

λ
〈ξ∗λ − ξ, xλ − x〉 >

1

λ
m‖xλ − x‖2,

(2.11)

where we denote a maximizer that attains maxξλ∈∂f(xλ) 〈ξλ, y − x〉 by ξ∗λ, which exists

due to Lemma 2.1. Applying the inequality (2.11) to the right hand side of (2.10),

we further have

f(y) > f(x) + 〈ξ, y − x〉+

1∫
0

1

λ
m‖xλ − x‖2dλ

= f(x) + 〈ξ, y − x〉+

1∫
0

λm‖x− y‖2dλ

= f(x) + 〈ξ, y − x〉+
m

2
‖x− y‖2.

Thus, for y ∈ ri(domf), x ∈ dom∂f , (iii)⇒ (ii) holds.
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For y ∈ domf, x ∈ dom∂f , taking a y0 ∈ ri(domf) and for any t ∈ (0, 1) we have

yt = y + t(y0 − y) ∈ ri(domf).

Thus, with the fact that (2.8) holds for yt ∈ ri(domf), x ∈ dom∂f , we have

f(y) > lim sup
t↓0

f(yt) > f(x) + lim
t↓0

[
〈ξ, yt − x〉+

m

2
‖yt − x‖2

]
= f(x) + 〈ξ, y − x〉+

m

2
‖y − x‖2

where the first inequality is because t 7→ f(yt) is upper semicontinuous on the closure

of its domain by [103, Proposition 2.1.6]. Thus, for y ∈ domf, x ∈ dom∂f , (2.8)

holds.

Corollary 2.1. If a proper closed function f : Rn → R̄ is strongly convex, then the

set of minimizers is nonempty. Moreover, if x∗ is a minimizer of f , then for any

y ∈ Rn

f(y) > f(x∗) +
m

2
‖y − x∗‖2 (2.12)

for some m > 0. In this case, the set of minimizers of such f is a singleton set.

Proof. We first show that the set of minimizers is nonempty. To this end, let x0 ∈

ri domf and recall that ∂f(x0) 6= ∅. Let ξ0 ∈ ∂f(x0). Then by (2.8), we have for

any x ∈ {x : f(x) 6 f(x0)},

0 > f(x)− f(x0) >
〈
ξ0, x− x0

〉
+
m

2
‖x0 − x‖2

> −‖ξ0‖‖x− x0‖+
m

2
‖x0 − x‖2,

i.e., we have

‖x− x0‖ 6 2

m
‖ξ0‖.

Therefore, the set {x : f(x) 6 f(x0)} is bounded.
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If f(x0) = inf
x
f(x), then we conclude immediately that the set of minimizers

is nonempty because it contains x0. Otherwise, choose a sufficiently large positive

integer n0 > 1 so that inf
x
f(x) + 1

n0
< f(x0). Then there exists a sequence {xn} so

that for any n > n0, we have

f(xn) 6 inf
x
f(x) +

1

n
< f(x0).

Then {xn} is bounded. Let {xnj} be a convergent subsequence of {xn} and let

lim
j→∞

xnj = x∗. Then, passing to the limit in the inequality above along the subse-

quence {xnj} and using the lower semicontinuity of f , we have

inf
x
f(x) 6 f(x∗) 6 lim inf

j→∞
f(xnj) 6 lim inf

j→∞

[
inf
x
f(x) +

1

nj

]
= inf

x
f(x),

where the first inequality follows from the definition of infimum. Thus, we conclude

that x∗ is a minimizer of f and hence the set of minimizers of f is nonempty.

We now prove (2.12). Following the definition of subgradient and the fact that

that x∗ is the minimizer, we have 0 ∈ ∂f(x∗). Setting ξ = 0 in (2.8), we obtain

(2.12). Suppose there are two different minimizers of f , and we denote them as x1

and x2. Then using (2.12) and the assumption that x1 6= x2, we get a contradiction

that f(x2) > f(x1) and f(x1) > f(x2). Thus, the set of minimizers of such f is a

singleton set.

Next we introduce a property which is widely used in the optimization literature

for establishing the convergence of algorithms; see [2–4].

Definition 2.2 (the Kurdyka- Lojasiewicz property). We say that a proper

closed function h satisfies the Kurdyka- Lojasiewicz (KL) property at x̂ ∈ dom∂h

if there are a ∈ (0,∞], a neighborhood V of x̂ and a continuous concave function

ϕ : [0, a)→ [0,∞) with ϕ(0) = 0 such that
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1. ϕ is continuously differentiable on (0, a) with ϕ′ > 0;

2. For any x ∈ V with h(x̂) < h(x) < h(x̂) + a, it holds that

φ′(h(x)− h(x̂))dist(0, ∂h(x)) > 1.

If a proper closed function h satisfies the KL property at every point in dom∂h, we

say that it is a KL function.

This property is satisfied by a bunch of proper closed semi-algebraic functions;

see [4, Section 2].

The next lemma concerns the uniformized KL property and was proved in [14,

Lemma 6].

Lemma 2.2 (Uniformized KL property). Suppose that h is a proper closed function

and let Γ be a compact set. If h is a constant on Γ and satisfies the KL property

at each point of Γ, then there exist ε, a > 0 and a concave continuous function

ϕ : [0, a) → [0,∞) that is continuously differentiable on (0, a) with ϕ(0) = 0 and

ϕ′ > 0 on (0, a) such that

ϕ′(h(x)− h(x̃))dist (0, ∂h(x)) > 1

for any x̃ ∈ Γ and any x satisfying h(x̃) < h(x) < h(x̃) + a and dist(x,Γ) < ε.

Next, we show a simple fact that will be used to deduce the global complexity of

the proximal gradient method with extrapolation.

Lemma 2.3. Suppose the sequence {θN} satisfies θ0 = 1 and θN+1 =

√
θ4N+4θ2N−θ

2
N

2

for N > 0. Then θN 6 2
N+2

for any N ∈ N.

Proof. We show this by induction. For N = 0, the conclusion obviously holds.

Suppose that for some N = k > 0, we have θk 6 2
k+2

. Next we prove θk+1 6 2
k+3

by
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a contradiction argument. Since

θk+1 =

√
θ4
k + 4θ2

k − θ2
k

2

=⇒θ2
k+1 + θk+1θ

2
k = θ2

k,

if θk+1 >
2

k+3
, then(

2

k + 3

)2

+

(
2

k + 3

)
θ2
k < θ2

k+1 + θk+1θ
2
k = θ2

k

=⇒ 4

(k + 3)(k + 1)
< θ2

k.

Since 4
(k+3)(k+1)

> ( 2
k+2

)2, we deduce that θk >
2

k+2
, which contradicts the induction

assumption that θk 6 2
k+2

. Thus, for any N ∈ N, θN 6 2
N+2

.

Before ending this chapter, we prove an auxiliary lemma that will be used in our

convergence analysis in Chapter 4. This lemma concerns properties of the regularizer

φ used in the objective function to be studied in Chapter 4.

Lemma 2.4. Let φ : R+ → R+ be a continuous concave function with φ(0) = 0

that is continuously differentiable on (0,∞). Moreover, suppose that ` := limt↓0 φ
′(t)

exists. Then the following statements hold:

(i) φ′(t) is nonincreasing and nonnegative when t > 0, and ` = φ′+(0) > 0.1

(ii) ∂φ(| · |)(t) = φ′+(|t|)∂|t| for all t ∈ R.

Proof. First we proof φ′(t) is nonincreasing. For any 0 < b < a, since φ is concave,

1 Here and throughout, φ′+(t) denotes the right-hand derivative, i.e., φ′+(t) := limh↓0
φ(t+h)−φ(t)

h .
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for any λ ∈ (0, 1], we have

φ(λa+ (1− λ)b) > λφ(a) + (1− λ)φ(b)

=⇒ φ(b+ λ(a− b))− φ(b)

λ
> φ(a)− φ(b)

=⇒ φ′(b)(a− b) > φ(a)− φ(b)

and similarly

φ′(a)(b− a) > φ(b)− φ(a).

Summing the last two inequalities and dividing a− b on both sides we get

φ′(b)− φ′(a) > 0.

This show that φ′(t) is nonincreasing when t > 0.

Now, for any ε > 0, there exist tε ∈ (0, ε) such that

0 6 φ(ε)− φ(0) = φ′(tε)ε,

from which we have φ′(tε) > 0. Thus, sup
0<t6ε

φ′(t) > 0.

` = lim
t↓0

φ′(t) = lim
ε↓0

sup
0<t6ε

φ′(t) > 0.

Finally, we establish the nonnegativity of φ′. Suppose to the contrary that there

is a t0 > 0 such that φ′(t0) < 0. Then for any t > t0, due to the concavity of φ, we

have

φ(t) 6 φ(t0) + φ′(t0)(t− t0),

where the second inequality is because φ′ is nonincreasing. Since φ(t0) < 0, we can

find a large t such that the right side of the inequality above becomes negative and

thus leads φ(t) < 0, which is contradictive with the assumption that φ(t) > 0. Thus,

for any t > 0, φ′(t) > 0 .
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To prove (ii), write g(t) = φ(|t|). Then g is differentiable at any t 6= 0 with

∂g(t) = φ′(|t|)∂|t|.

We now consider the case t = 0. In this case, we note first from the definition of

regular subdifferential that

∂̂g(0) :=

{
µ : lim inf

y→0,y 6=0

g(y)− g(0)− µy
|y|

> 0

}

=

{
µ : min

{
lim inf
y→0,y>0

g(y)− g(0)− µy
|y|

, lim inf
y→0,y<0

g(y)− g(0)− µy
|y|

}
> 0

}
=
{
µ : min

{
φ′+(0)− µ, φ′+(0) + µ

}
> 0
}

= [−φ′+(0), φ′+(0)].

(2.13)

In addition, from [16, Theorem 6.2.5] and the formula of ∇g(t) when t 6= 0, we have

∂◦g(0) = conv
{

lim
i
∇g(ti) : ti → 0, ti 6= 0

}
= [−`, `].

Since ` = φ′+(0) according to (i), the above equality together with (2.13) gives

[−φ′+(0), φ′+(0)] = ∂̂g(0) ⊆ ∂g(0) ⊆ ∂◦g(0) = [−φ′+(0), φ′+(0)],

where the first inclusion follows from the definition of the subdifferentials and the

second inclusion follows from [17, Theorem 5.2.22].
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Chapter 3

A brief survey on proximal

gradient methods and iteratively

reweighted algorithms

3.1 The proximal gradient method

The model (1.4) can be reformulated into semidefinite programming problems and

can be solved by interior point methods; see [15, 18, 28, 39, 52, 91, 100] for example.

However, these methods can be inefficient when the problem size is large. For large-

scale problems, first-order methods such as the proximal gradient method and its

variants have been adapted for solving the model (1.4); see [12, 30, 54, 68, 72, 80, 90,

95]. More about the proximal gradient method, its variants and the convergence

properties of them can be found in [57, 58, 92]. Specifically, the proximal gradient

method is designed to solve the following class of problems:

min F (x) := f(x) + P (x), (3.1)

where f : Rn → (−∞,+∞] has Lipschitz continuous gradient with modulus L > 0

and P : Rn → (−∞,∞] is proper closed. The model (1.4) is in this form.

The proximal gradient method can be described as follows:
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Proximal Gradient Method (PG)

Step 0. Input: an initial point x0 ∈ domP and a step size γ > 0.

Step 1. For k = 0, 1, 2, ...

xk+1 ∈ Arg min
x

{
f(xk) +

〈
∇f(xk), x− xk

〉
+

1

2γ
‖x− xk‖2 + P (x)

}
.

(3.2)

Step 2. If a termination criterion is not met, go to Step 1.

We next discuss the convergence properties of the sequence generated by this

method in both convex and nonconvex cases. We say that x is a stationary point of

Problem (3.1) if

0 ∈ ∂F (x).

Since f is continuously differentiable, by [79, Exercise 8.8], we know that x is a

stationary point of problem (3.1) if and only if

0 ∈ ∇f(x) + ∂P (x).

From [79, Theorem 10.1], we know that a local minimizer of Problem (3.1) is a

stationary point.

Theorem 3.1. Suppose that P in (3.1) is convex and inf F > −∞. Then the

following statements hold.

(i) [88, Proposition 1] Suppose that γ ∈ (0, 2
L

) and let
{
xk
}

be the sequence gener-

ated by PG. Then the sequence
{
F (xk)

}
is nonincreasing and any accumulation

point of
{
xk
}

is a stationary point of problem (3.1).

(ii) (Global Complexity) [90, Theorem 1] Suppose in addition that f is convex

and γ = 1
L

. Let
{
xk
}

be the sequence generated by PG, then for any x,

F (xk) 6 F (x) +
L

2k
‖x− x0‖2. (3.3)
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Proof. We start by proving the first conclusion. Using the fact that ∇f is Lipschitz

continuous with modulus L, we see that for any x,

f(xk+1) + P (xk+1) 6 f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+
L

2
‖xk+1 − xk‖2 + P (xk+1)

= f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2γ
‖xk+1 − xk‖2 + P (xk+1)

+

(
L

2
− 1

2γ

)
‖xk+1 − xk‖2

6 f(xk) +
〈
∇f(xk), x− xk

〉
+

1

2γ
‖x− xk‖2 + P (x)− 1

2γ
‖x− xk+1‖2

+

(
L

2
− 1

2γ

)
‖xk+1 − xk‖2,

(3.4)

where the second inequality follows from Corollary 2.1 and the definition of xk+1 as

a minimizer of the strongly convex objective in the subproblem (3.2).

Letting x = xk in the above inequality, we obtain further that

f(xk+1) + P (xk+1)

6 f(xk) + P (xk)− 1

2γ
‖xk − xk+1‖2 +

(
L

2
− 1

2γ

)
‖xk+1 − xk‖2

= f(xk) + P (xk) +

(
L

2
− 1

γ

)
‖xk+1 − xk‖2.

(3.5)

Since γ ∈ (0, 2
L

), we have (L
2
− 1

γ
)‖xk+1 − xk‖2 6 0, showing that

{
F (xk)

}
is nonin-

creasing.

Summing (3.5) from k = 0 to ∞, we have

−∞ < lim inf
k

f(xk) + P (xk) 6 f(x0) + P (x0) +

(
L

2
− 1

γ

) ∞∑
k=0

‖xk+1 − xk‖2,

where the first inequality follows from the assumption that inf(f +P ) > −∞. Since
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γ ∈ (0, 2
L

), which means L
2
− 1

γ
< 0, we conclude that

∞∑
k=1

‖xk+1 − xk‖2 <∞,

which implies

lim
k
‖xk+1 − xk‖ = 0. (3.6)

Let x̄ be an accumulation point of
{
xk
}

and let
{
xkj
}

be a subsequence of
{
xk
}

such

that xkj → x̄. By the first-order optimality condition of the subproblem in PG and

using [79, Exercise 8.8], we have

0 ∈ ∇f(xkj−1) +
1

2γ
(xkj − xkj−1) + ∂P (xkj).

Using the closedness of the subgradient operator together with (3.6) and the conti-

nuity of ∇f , we have upon passing to the limit that

0 ∈ ∇f(x̄) + ∂P (x̄).

Thus, x̄ is a stationary point of (3.1).

Next, supposing in addition that f is convex, we prove the second conclusion.

Letting γ = 1
L

in (3.4) and using the convexity of f , we obtain that

f(xk+1) + P (xk+1)

6 f(xk) +
〈
∇f(xk), x− xk

〉
+
L

2
‖x− xk‖2 + P (x)− L

2
‖x− xk+1‖2

6 f(x) + P (x) +
L

2
‖x− xk‖2 − L

2
‖x− xk+1‖2.

Summing this inequality from k = 0 to N − 1, we have

N(f(xN) + P (xN)) 6
N−1∑
k=0

[
f(xk+1) + P (xk+1)

]
6 N(f(x) + P (x)) +

L

2
‖x− x0‖2 − L

2
‖x− xN‖2

6 N(f(x) + P (x)) +
L

2
‖x− x0‖2, (3.7)
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where the first inequality follows from the first conclusion that {F (xk)} is nonin-

creasing. Thus, by dividing N on both sides of (3.7), we obtain (3.3).

This completes the proof.

From the above theorem, we see that when f and P are convex, if a global

minimizer x∗ of (3.1) exists and we let x = x∗ in (3.3), then we see that the sequence

of function values generated by PG with γ = 1
L

decreases to the optimal function

value at a rate of O( 1
k
).

Next, we discuss the behavior of PG in nonconvex cases.

Theorem 3.2. Suppose that inf F > −∞. Let γ ∈ (0, 1
L

) and
{
xk
}

be the sequence

generated by PG. Then the sequence
{
F (xk)

}
is nonincreasing and any accumulation

point of
{
xk
}

is a stationary point of problem (3.1).

Proof. Using the Lipschitz continuity of ∇f , we have

f(xk+1) + P (xk+1) 6 f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+
L

2
‖xk+1 − xk‖2 + P (xk+1)

= f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2γ
‖xk+1 − xk‖2 + P (xk+1) +

(
L

2
− 1

2γ

)
‖xk+1 − xk‖2

6 f(xk) + P (xk) +

(
L

2
− 1

2γ

)
‖xk+1 − xk‖2,

(3.8)

where the last inequality follows from the definition of xk+1 as a minimizer of the

subproblem (3.2). Since γ ∈
(
0, 1

L

)
, we have

(
L
2
− 1

2γ

)
‖xk+1 − xk‖2 6 0, which

means that
{
F (xk)

}
is nonincreasing.

The second conclusion can be obtained by a similar argument as in the proof of

Theorem 3.1 (i).
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3.2 Proximal gradient method with extrapolation

In some applications, the proximal gradient method can be slow; see for exam-

ple [5, 10, 64–66, 68]. Many variants have been proposed to accelerate PG. While

performing line-search provides an empirical way for accelerating an optimization

method, incorporating extrapolation is another classical technique for empirical ac-

celeration; see [5, 10, 68, 83, 90, 93]. The application of extrapolation techniques has

a long history, dating back to Polyak’s heavy ball method [73]. During the past

decade, Nesterov’s extrapolation techniques [64–66, 68] have been widely adopted

and so-called optimal first-order methods have been developed for convex composite

optimization problems; see, for example, [6, 10, 11, 53, 64, 90]. As we will introduce

in Section 3.2, these are first-order methods that exhibit a function value conver-

gence rate of O(1/k2), where k is the number of iterations. Extrapolation techniques

have also been applied to the proximal gradient algorithm for some classes of non-

convex problems and good empirical performance has been observed; see, for exam-

ple, [43,96,99]. In particular, the proximal gradient method with extrapolation is as

follows:

Proximal gradient method with extrapolation (PGe)

Step 0. Input initial x0 = x−1 ∈ domP, k = 0, a nonnegative sequence {βk} ⊆
[0, 1].

step 1. yk = xk + βk(x
k − xk−1).

step 2. Set

xk+1 ∈ Arg min
x

{
f(yk) +

〈
∇f(yk), x− yk

〉
+
L

2
‖x− yk‖2 + P (x)

}
. (3.9)

Step 3. If a termination criterion is not met, set k = k + 1 and go to Step 1.

When f and P are convex, under the conditions lim sup βk < 1, βk > 0 and
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βk in addition satisfies
∑
k

βk‖xk − xk−1‖2 < ∞, the sequence generated by this

method is weakly convergent to a solution of problem (3.1); see [1]. From the first-

order optimality condition [79, Theorem 10.1] and the analysis in [1], Problem (3.1)

can be interpreted as a fixed point problem. The problem of finding an x such

that x = ProxF (x) for F in (3.1), and can be solved by the algorithms proposed

in [1]. In [1, Proposition 2.1], F. Alvarez and H. Attouch showed that when {βk}

is nondecreasing and lim sup βk <
1
3
, the sequence generated by this algorithm is

globally convergent to a solution of problem (3.1). In [49], P. R. Johnstone and P.

Moulin established a convergence results when lim supk βk < 1 and βk > 0, and they

also showed that when P (x) = λ‖x‖1 and under a strict complementarity condition,

this method with a special choice of βk generates
{
xk
}

and
{
F (xk)

}
that are linearly

convergent.

Other popular choices of {βk} in this algorithm that surpass the proximal gradi-

ent method both theoretically and experimentally can be found in [21,64,68,70,96].

One choice proposed by Nesterov in [64] has a complexity of O( 1
k2

), which is used ex-

tensively in subsequent work. Here we present a detailed and representative analysis

of the sequence generated by PGe with a general {βk}. In [95], for the problem

min
x
f(x) + P (x), (3.10)

where P is proper closed convex and f has a Lipschitz continuous gradient, it was

shown that if {βk} is below some threshold value, then any accumulation point of

the sequence generated by PGe is a stationary point of (3.10).

Note that if f has a Lipschitz continuous gradient, it can be decomposed into

the form f = f1 − f2, where f1, f2 are both convex and have Lipschitz continuous

gradients. For example, we can always let f1(x) = f(x) + c
2
‖x‖2; f2(x) = c

2
‖x‖2 for

some c > Lf , where Lf is the Lipschitz constant of ∇f . The function f1 is convex
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because for any x, y ∈ Rn,

〈∇f1(x)−∇f1(y), x− y〉

= 〈∇f(x) + cx−∇f(y)− cy, x− y〉

= 〈∇f(x)−∇f(y), x− y〉+ c‖x− y‖2

> −‖∇f(x)−∇f(y)‖ · ‖x− y‖+ c‖x− y‖2

> −Lf‖x− y‖2 + c‖x− y‖2 > 0,

where the second inequality is because f is Lipschitz continuous and the assumption

that c > Lf . By [65, Theorem 2.1.3], we conclude that f1 is convex.

In what follows, without loss of generality, we suppose f = f1 − f2 for some f1

and f2 that are convex and have Lipschitz constant gradients whose moduli are L

and l respectively. We further set L > l, which can always be satisfied by taking

larger L. Under this setting, the Lipschitz continuity modulus of f is also L.

Lemma 3.1. ( [95, Lemma 3.1]) Suppose the P in (3.10) is convex and βk ∈ [0, 1]

and β̄ := sup
k
βk 6

√
L
l+L

. Let
{
xk
}

be the sequence generated by PGe and α > 0.

Denote

Hk,α := F (xk) + α‖xk − xk−1‖2.

Then for all k,

Hk+1,α −Hk,α 6

(
−L

2
+ α

)
‖xk+1 − xk‖2 +

(
L+ l

2
β2
k − α

)
‖xk − xk−1‖2. (3.11)

Proof. Note that the objective function of problem (3.9) is strongly convex and xk+1

is the minimizer of (3.9). By Corollary 2.1, for any z ∈ Rn we have

f(yk) +
〈
∇f(yk), xk+1 − yk

〉
+
L

2
‖xk+1 − yk‖2 + P (xk+1)

6 f(yk) +
〈
∇f(yk), z − yk

〉
+
L

2
‖z − yk‖2 + P (z)− L

2
‖z − xk+1‖2.
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Rearrange this inequality, we have for any z ∈ Rn,

P (xk+1) 6
〈
∇f(yk), z − xk+1

〉
+
L

2
‖z − yk‖2 + P (z)− L

2
‖z − xk+1‖2 − L

2
‖xk+1 − yk‖2.

(3.12)

On the other hand, since ∇f is Lipschitz continuous with constant L, we have

f(xk+1) 6 f(yk) +
〈
∇f(yk), xk+1 − yk

〉
+
L

2
‖xk+1 − yk‖2. (3.13)

Summing (3.12) and (3.13), since f = f1 − f2 as we assume, we get for any z ∈ Rn,

F (xk+1) 6 f(yk) +
〈
∇f(yk), z − yk

〉
+ P (z) +

L

2
‖z − yk‖2 − L

2
‖z − xk+1‖2

= f1(yk) +
〈
∇f1(yk), z − yk

〉
−
[
f2(yk) +

〈
∇f2(yk), z − yk

〉
+
l

2
‖z − yk‖2

]
+ P (z)

+
l + L

2
‖z − yk‖2 − L

2
‖xk+1 − z‖2

6 f1(z)−
[
f2(yk) +

〈
∇f2(yk), z − yk

〉
+
l

2
‖z − yk‖2

]
+ P (z)

+
l + L

2
‖z − yk‖2 − L

2
‖xk+1 − z‖2

6 f1(z)− f2(z) + P (z) +
l + L

2
‖z − yk‖2 − L

2
‖xk+1 − z‖2

= F (z) +
l + L

2
‖z − yk‖2 − L

2
‖xk+1 − z‖2,

where the second inequality follows from the convexity of f1 and the third inequality

is because f2 has Lipschitz continuous gradient with constant l.

Setting z = xk in the inequality above, the inequality above becomes

F (xk+1) 6 F (xk) +
l + L

2
β2
k‖xk − xk−1‖2 − L

2
‖xk+1 − xk‖2,

where we made use of the definition of yk in (3.9) so that z − yk = xk − yk =

−βk(xk − xk−1).
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Rearrange this inequality, we get

F (xk+1) + α‖xk+1 − xk‖2 − F (xk)− α‖xk − xk−1‖2

6
l + L

2
β2
k‖xk − xk−1‖2 − L

2
‖xk+1 − xk‖2 + α‖xk+1 − xk‖2 − α‖xk − xk−1‖2

=

(
−L

2
+ α

)
‖xk+1 − xk‖2 +

(
L+ l

2
β2
k − α

)
‖xk − xk−1‖2.

Recalling the definition of Hk,α we have the desired conclusion.

Lemma 3.2. ( [95, Lemma 3.3]) Suppose the P in (3.10) is convex and suppose in

addition that β̄ := sup
k
βk 6

√
L
l+L

. Let
{
xk
}

be a sequence generated by PGe and let

α ∈ [L+l
2
β̄2, L

2
]. If inf

x∈Rn
F (x) > −∞, then

∞∑
k=0

(
α− l + L

2
βk

)
‖xk − xk−1‖2 <∞.

Proof. Since α ∈ [L+l
2
β̄2, L

2
], by (3.11), we know

Hk+1,α −Hk,α 6

(
−L

2
+ α

)
‖xk+1 − xk‖2 +

(
L+ l

2
β2
k − α

)
‖xk − xk−1‖2

6

(
L+ l

2
β2
k − α

)
‖xk − xk−1‖2.

Summing this inequality from k = 0 to k = N − 1, we have

HN,α −H0,α 6
N−1∑
k=0

(
L+ l

2
β2
k − α

)
‖xk − xk−1‖2. (3.14)

Since inf
x∈Rn

F (x) > −∞, by the definition of Hk,α, we have

inf
k
Hk,α > inf

x∈Rn
F (x) > −∞.

Thus, passing N in (3.14) to infinity, we have

−∞ < lim inf
N

HN,α −H0,α 6
∞∑
k=0

(
L+ l

2
β2
k − α

)
‖xk − xk−1‖2,
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which gives the desired conclusion.

Now we are ready to present the following result in [95].

Theorem 3.3. ( [95, Lemma 3.4]) Suppose the P in (3.10) is convex and β̄ <
√

L
l+L

and infx∈Rn F (x) > −∞. Let
{
xk
}

be a sequence generated by PGe. Then any

accumulation point of
{
xk
}

is a stationary point of problem (3.10).

Proof. Let x̄ be an accumulation point of
{
xk
}

generated by PGe and let
{
xkj
}

be a

subsequence of
{
xk
}

such that xkj
j→ x̄. Then by the first-order optimality condition

of subproblem (3.9) in PGe and the definition of ykj , using [79, Exercise 8.8], we have

−L
[
(xkj+1 − xkj)− βkj(xkj − xkj−1)

]
∈ ∇f(ykj) + ∂P (xkj+1). (3.15)

Since β̄ <
√

L
l+L

, setting α ∈ (L+l
2
β̄2, L

2
), for all k, we have

α− L+ l

2
β2
k > α− L+ l

2
β̄2 > 0.

Thus by Lemma 3.2, we have

∞∑
k=0

‖xk+1 − xk‖2 6
∞∑
k=0

α− L+l
2
β2
k

α− L+l
2
β̄2
‖xk+1 − xk‖2

=
1

α− L+l
2
β̄2

∞∑
k=0

(
α− L+ l

2
β2
k

)
‖xk+1 − xk‖2 <∞.

This means lim
k→∞
‖xk+1−xk‖2 = 0. Together with the definition of ykj , the continuity

of ∇f and the closedness of ∂P , by passing k in (3.15) to infinity, we have

0 ∈ ∇f(x̄) + ∂P (x̄).

Therefore the conclusion is proved.
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3.2.1 A fast iterative shrinkage-thresholding algorithm (FISTA)

In [89], Tseng presented various variants of the proximal gradient method that utilize

Nesterov’s acceleration scheme (see [64]) and established the complexity of O
(

1
k2

)
.

In [10,68], extrapolation techniques for accelerating PG were incorporated for solving

(3.2) when f and P are convex, which results in a global complexity of O
(

1
k2

)
.

In [70, 96], the PGe with βk chosen as in Nesterov’s extrapolation techniques [64]

coupled with a restart scheme exhibits fast convergence in their numerical tests. Also,

in [21], a global complexity of O
(

1
k1+d

)
was established under suitable assumptions

on βk, where d ∈ (0, 1].

In this thesis, we study a fast iterative shrinkage-thresholding algorithm (FISTA)

proposed in [68]. We follow the analysis in [89] in detail. The precise algorithm is as

follows:

A fast iterative shrinkage-thresholding algorithm (FISTA)

Step 0. Input initial x0 = x−1 ∈ domP , θ0 = θ−1 = 1. Set k = 0.

step 1. yk = xk + θk(θ
−1
k−1 − 1)(xk − xk−1);

step 2. Set

xk+1 = arg min
x

{
f(yk) +

〈
∇f(yk), x− yk

〉
+
L

2
‖x− yk‖2 + P (x)

}
.

(3.16)

Step 3. Compute θk+1 =

√
θ4k+4θ2k−θ

2
k

2
.

Step 4. If a termination criterion is not met, let k = k + 1 and go to Step 1.

Theorem 3.4 (Global complexity). [90, Theorem1] Suppose f and P in (3.1)

are convex and inf F > −∞. Let
{
xk
}

be the sequence generated by FISTA. Then

for any x ∈ domP ,

F (xk) 6 F (x) +
2L‖x− x0‖2

(k + 2)2
, for k > 1. (3.17)
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Proof. Since the objective function of the subproblem of FISTA (3.16) is a strongly

convex function with modulus 1
L

and xk+1 is the minimizer of the subproblem of

FISTA (3.16), by Corollary 2.1, for any y, we have

f(yk) +
〈
∇f(yk), xk+1 − yk

〉
+
L

2
‖xk+1 − yk‖2 + P (xk+1)

6 f(yk) +
〈
∇f(yk), y − yk

〉
+
L

2
‖y − yk‖2 + P (y)− L

2
‖y − xk+1‖2. (3.18)

Since ∇f is Lipschitz continuous with modulus L, we have for any y,

F (xk+1) = f(xk+1) + P (xk+1)

6 f(yk) +
〈
∇f(yk), xk+1 − yk

〉
+
L

2
‖xk+1 − yk‖2 + P (xk+1)

6 f(yk) +
〈
∇f(yk), y − yk

〉
+
L

2
‖y − yk‖2 + P (y)− L

2
‖y − xk+1‖2

6 f(y) + P (y) +
L

2
‖y − yk‖2 − L

2
‖y − xk+1‖2

= F (y) +
L

2
‖y − yk‖2 − L

2
‖y − xk+1‖2, (3.19)

where the second inequality follows from (3.18) and the last inequality follows from

the convexity of f .

Fixing any x ∈ domf and letting y = (1 − θk)xk + θkx with any fixed x, (3.19)

becomes

F (xk+1)

6 F ((1− θk)xk + θkx) +
L

2
‖(1− θk)xk + θkx− yk‖2 − L

2
‖(1− θk)xk + θkx− xk+1‖2

= F ((1− θk)xk + θkx) +
Lθ2

k

2

∥∥∥∥x+

(
1

θk
− 1

)
xk − 1

θk
yk
∥∥∥∥2

− Lθ2
k

2

∥∥∥∥( 1

θk
− 1

)
xk + x− 1

θk
xk+1

∥∥∥∥2

= F ((1− θk)xk + θkx) +
Lθ2

k

2
‖x− zk‖2 − Lθ2

k

2
‖x− zk+1‖2,
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where

zk = −
(

1

θk
− 1

)
xk +

1

θk
yk

and the last equality follows from Step 3 in this algorithm together with the defini-

tions of yk and zk.

By the convexity of F , we further conclude from the above inequality that

F (xk+1) 6 (1− θk)F (xk) + θkF (x) +
Lθ2

k

2
‖x− zk‖2 − Lθ2

k

2
‖x− zk+1‖2,

i.e.,

F (xk+1)− F (x) 6 (1− θk)
[
F (xk)− F (x)

]
+
Lθ2

k

2
‖x− zk‖2 − Lθ2

k

2
‖x− zk+1‖2.

Dividing θ2
k on both sides, we have

1

θ2
k

[
F (xk+1)− F (x)

]
6

(
1

θ2
k

− 1

θk

)[
F (xk)− F (x)

]
+
L

2
‖x− zk‖2 − L

2
‖x− zk+1‖2

Recall that θk+1 =

√
θ4k+4θ2k−θ

2
k

2
for any k ≥ 0. Thus,

1

θ2
k

=
1

θ2
k+1

− 1

θk+1

, (3.20)

which further yields for all k > 0,(
1

θ2
k+1

− 1

θk+1

)[
F (xk+1)− F (x)

]
6

(
1

θ2
k

− 1

θk

)[
F (xk)− F (x)

]
+
L

2
‖x− zk‖2 − L

2
‖x− zk+1‖2.

Summing this from k = 0 to k = N − 1, we obtain that

1

θ2
N−1

[
F (xN)− F (x)

]
=

(
1

θ2
N

− 1

θN

)[
F (xN)− F (x)

]
6

(
1

θ2
0

− 1

θ0

)[
F (x0)− F (x)

]
+
L

2
‖x− z0‖2 − L

2
‖x− zN‖2

6
L

2
‖x− x0‖2,
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where the equality follows from the setting (3.20) and the second inequality follows

from θ0 = 1 and z0 = −
(

1
θ0
− 1
)
x0 + 1

θ0
y0 = x0. Thus,

F (xN) 6 F (x) + θ2
N−1

L

2
‖x− x0‖2.

By Lemma 2.3, we know that for any N > 1, θN 6 2
N+2

, which establishes the global

complexity of FISTA.

3.3 Iteratively reweighted algorithms

To solve (1.7), the iteratively reweighted algorithms were introduced; see [26, 27,

32, 33, 56, 69, 71, 74, 97]. The iteratively reweighted algorithms can be divided into

two kinds: the iteratively reweighted `2 algorithm and the iteratively reweighted

`1 algorithm. The subproblem of the iteratively reweighted `2 algorithm takes the

following form:

xk+1 ∈ Arg min
{x: Ax=b}

n∑
i=1

wki x
2
i , (3.21)

where {wki } ⊆ R++ variate in different literatures, and we discuss some possible

choices of {wki } below. In [27], for solving

min
Ax=b

n∑
i=1

|xi|p, (3.22)

Chartrand and Yin proposed an iteratively reweighted `2 algorithm whose subprob-

lem takes the form (3.21) with wki =
(
(xki )

2 + ε
)p/2−1

for some ε > 0. Applying these

weights, in the numerical tests of [27], their algorithm had a better recovery than

the one with the weight wki =
(
(xki )

2
)p−2

. In addition, it was also shown in [27] that

when the sparsity of the signal is under a threshold and A satisfies some assumptions,

the solution to the model

min
{x: Ax=b}

n∑
i=1

wix
2
i
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with wi =
(
(xki )

2 + εj
)p/2−1

converges to the solution of (3.22) as εj ↓ 0. In [33],

the weight wki in (3.21) is chosen as [(xki )
2 + ε2k]

−1/2 with specially chosen εk > 0. It

was proved that using these weights and under some additional assumptions, one of

which is that A satisfies the restricted isometry property (RIP) in [33], the sequence

generated by their iteratively reweighted `2 algorithm converges globally. In addition,

under further assumptions on εk, it was proved in [33] that the sequence generated

by (3.21) converges to a solution of (1.1). The convergence rate was also given

in [33] under suitable assumptions. More applications and variants of the iteratively

reweighted `2 algorithm can be found in [71,74,97].

On the other hand, the iteratively reweighted `1 algorithm can also be applied

to solving (3.22) and other variants of (3.22) with other regularizers like the logistic

function (see [26,97]) in place of `p. The subproblem of the iteratively reweighted `1

algorithm is given as follows:

xk+1 ∈ Arg min
{x: Ax=b}

n∑
i=1

wki |xi|, (3.23)

where different works set different {wki } ⊆ R++. For instance, to solve (3.22) with

the logistic function in place of `1, i.e., the following model with some ε > 0,

min
{x: Ax=b}

n∑
i=1

log(|xi|+ ε), (3.24)

We set wki = 1
|xki |+ε

in (3.23) for all i = 1, 2, . . . , n. In this case, [26, Figure. 4(a)]

shows that the iteratively reweighted `1 algorithm outperforms the one with all

weights being 1 in sparse signal recovery. One explanation in [26] for this behavior is

that
∑n

i=1wi|xi| with wi = 1
|x∗i |+ε

, where x∗ is the local minimizer of problem (3.24),

is the first-order approximation of the logistic regularization function in (3.24).

The subproblem of iteratively reweighted `1 algorithm can also be viewed as a
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variant of the convex relaxation (1.1) itself, which is as follows:

min
{x: Ax=b}

n∑
i=1

wi|xi|, (3.25)

where we use the “weighted” `1 norm in place of the `1 norm with wi ≥ 0. When

wi = 1 for all i = 1, 2, . . . , n, this model reduces to (1.1). In [26], the picture [26,

Figure. 1] intuitively shows that by properly choosing the weights, the weighted l1

in (3.25) may be more efficient in inducing sparsity than l1.

The reweighted `1 scheme in (3.23) has also been incorporated into the proximal

gradient methods to solve (1.7). The iteratively reweighted `1 algorithm in [26, 27,

32, 56] outperforms the proximal gradient method in experimental results and the

convergence rate of the sequence generated was studied under mild assumptions.

In [69], the convergence of the sequence generated by the iteratively reweighted

`1 algorithm to a stationary point was proved under KL assumptions and other

conditions. In [32], Chen and Zhou proved that any accumulation point of {xεk} is

a global minimizer of (1.7) if εk → 0+, where xεk is the global minimizer of

min ‖Ax− b‖2
2 +

n∑
i=1

(|xi|+ εk)
p. (3.26)

They also established the convergence rate of their algorithms under some conditions

on p in (1.7) and the assumption that the sequence generated by their iteratively

reweighted `1 algorithm converges to a local minimizer of the problem (3.26) for

each εk; see [32, Theorem 4]. On the other hand, in [56], instead of using
∑n

i=1(|xi|+

εk)
p with a dynamic εk to approach the `p and applying the iteratively reweighted

`1 algorithm to (3.26) for each εk, Lu proposed several variants of the iteratively

reweighted `1 algorithm to solve (3.26) with εk being constant. Specifically, in his

paper, he started with the following model:

minF (x) = f(x) + λ

n∑
i=1

‖x‖p, (3.27)
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f is bounded below and ∇f is Lipschitz continuous; λ > 0 and p ∈ (0, 1). When

f(x) = ‖Ax− b‖2, this model reduces to (1.7). He then adopted a Lipschitz contin-

uous approximation to `p, which results in the following problem:

minFε(x) := f(x) + λ

n∑
i=1

huε(xi), (3.28)

where

huε(t) = min
06s6uε

p

(
|t|s− sq

q

)
, uε =

( ε

λn

) 1
q
,

and ε > 0. Note that huε is a Lipschitzation of `p and this problem uses huε as an

approximation of `p with a fixed ε instead of an approximation of `p with a dynamic

εk as in (3.26). In [56], Lu proved that using a fixed ε, the sequence generated by the

7th algorithm of [56] accumulates at a stationary point of (3.27) under suitable as-

sumptions, which is different from the convergence results in [32] that use a dynamic

εk. The 7th algorithm of [56] is precisely as follows:

A variant of new iterative reweighted l1 (IRL1) minimization method
for (3.28)

Step 0. Let 0 < Lmin < Lmax, τ > 1 and c > 0 be given. Let q be such that
q−1 + p−1 = 1. Input an initial point x0, ε > 0 and set k = 0.

Step 1. Choose L0
k ∈ [Lmin, Lmax] and set Lk = L0

k.

Step 2. Set

sk+1
i = min

{( ε

λn

)q−1

,
∣∣xki ∣∣(q−1)−1

}
for i = 1, . . . , n;

xk+1 = arg min
x

{
f(xk) +

〈
∇f(xk), y − xk

〉
+
Lk
2
‖y − xk‖2 + λp

n∑
i=1

sk+1
i |yi|

}
.

Step 3. If

Fε(x
k+1)− Fε(xk) >

c

2
‖xk+1 − xk‖2,

let Lk = τLk, and go to Step 2.

Step 4. If a termination criterion is not met, set k = k + 1 and go to Step 1.
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Note that the subproblem of this algorithm minimizes the sum of a quadratic and

the weighted `1 norm. Also, line search is incorporated for empirical acceleration in

this algorithm.

In the next chapter, we will propose three new iteratively reweighted `1 algo-

rithms whose subproblems involve the sum of a quadratic and the weighted `1 norm,

for a large class of problems including (3.28). However, instead of using line-search

techniques to numerically accelerate our algorithms, we adapt three types of extrap-

olation schemes in our reweighted proximal gradient algorithms. As we introduced

in section 3.2, the proximal gradient method with suitably incorporated extrapola-

tion techniques provably converges at a rate of O(1/k2). Therefore, it is of interest

to investigate how extrapolation techniques behave when adapted to the iteratively

reweighted `1 algorithm.
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Chapter 4

Iteratively reweighted `1
algorithms with extrapolation

techniques

4.1 Introduction

In the last chapter, we introduced the iteratively reweighted `1 algorithm which has

been widely studied for minimizing optimization models such as (1.3), (1.4) and (1.5)

that attempt to induce sparsity in their solutions. In this chapter we will discuss

how extrapolation techniques behave when adapted in the iteratively reweighted

`1 algorithm. Here, we consider this algorithm for solving the following class of

optimization problems

v := min
x∈Rn

F (x) := f(x) + δC(x) + Φ(|x|), (4.1)

where f : Rn → R is a smooth convex function with a Lipschitz continuous gradient

whose Lipschitz modulus is L, C is a nonempty closed convex set, and x 7→ Φ(|x|) is

a sparsity inducing function: specifically, we assume that Φ(y) =
∑n

i=1 φ(yi), where

φ : R+ → R+ is a continuous concave function with φ(0) = 0 that is continuously

differentiable on (0,∞), and the limit ` := limt↓0 φ
′(t) exists. We also assume that F

is level-bounded and hence v > −∞ as a consequence. Problem (4.1) covers many
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applications we mentioned in Section 1.1 such as compressed sensing [25, 40] and

statistical variable selections [38,84,104,106], where f is typically a loss function for

data fidelity, C is a simple closed convex set (encoding, for example, nonnegativity

constraints or box constraints), and φ can be, for example, the smoothly clipped

absolute deviation (SCAD) function [38], the minimax concave penalty (MCP) func-

tion [104] or the log penalty function [67] which we mentioned in Section 1.1.2.1

When the iteratively reweighted `1 algorithm is applied to (4.1), the sparsity

inducing regularizer in the objective is approximated by a weighted `1 norm in each

iteration, and the resulting subproblem is then approximately solved to produce

the next iterate. These subproblems may not have closed form solutions in general

due to the function f , and a variant of the algorithm was proposed in [56] that

allows majorization of the smooth function f by a quadratic function with a constant

Hessian in each iteration to simplify the subproblem. Moreover, a line-search strategy

was incorporated for empirical acceleration; see [56, Algorithm 7].

As we introduced in Section 3.2, first-order methods with extrapolation tech-

niques exhibit a function value convergence rate of O(1/k2), where k is the number

of iterations. In view of the success in accelerating first-order methods such as the

proximal gradient algorithm empirically via extrapolations, in this chapter, we in-

vestigate how extrapolation techniques can be suitably incorporated into iteratively

reweighted `1 algorithms for solving (4.1). We specifically consider extrapolation

techniques motivated from three popular optimal first-order methods: the fast it-

erative soft-thresholding algorithm (FISTA) [10, 68], the method by Auslender and

Teboulle [6] and the method by Lan, Lu and Monteiro [53]. We call the corresponding

iteratively reweighted `1 algorithms with extrapolation IRL1e1, IRL1e2 and IRL1e3,

1 Note that when f is the least squares loss function and Φ(| · |) is the MCP or SCAD function,
the function f(·) + Φ(| · |) is not level-bounded (though it necessarily has a minimizer). However,
the level-boundedness of F can still be enforced by picking C to be a huge box, i.e., C = [−M,M ]n

for a sufficiently large M > 0 so that C intersects Arg minx{f(x) + Φ(|x|)}. For this choice of C,
the optimal value of F is the same as that of f(·) + Φ(| · |).
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respectively. For each algorithm, we show that the sequence generated clusters at

a stationary point of (4.1) under certain condition on the extrapolation parame-

ters. These conditions are satisfied by many choices of extrapolation parameters:

for instance, one can pick the parameters as in FISTA with fixed restart [70] in

IRL1e1. Furthermore, under some additional assumptions such as the Kurdyka-

 Lojasiewicz property on some suitable potential functions (see for example, [3, 4]),

we show that the whole sequence generated by IRL1e1 and IRL1e3 are indeed conver-

gent. We then perform numerical experiments comparing our algorithms (with our

proposed choices of extrapolation parameters) against the general iterative shrink-

age and thresholding algorithm (GIST) [46] and an adaptation of the iteratively

reweighted `1 algorithm [56, Algorithm 7] with nonmonotone line-search (IRL1ls)

for solving log penalty regularized least squares problems on random instances. In

our experiments, our iteratively reweighted `1 algorithms with extrapolation usually

outperform GIST and IRL1ls in both CPU time and solution quality. Moreover,

IRL1e1 and IRL1e3 usually perform better than IRL1e2.

The rest of this chapter is organized as follows. In Section 4.2, we prove an

axillary lemma which will be used in the convergence analysis of IRL1e1, IRL1e2

and IRL1e3. We present the convergence analysis of IRL1e1, IRL1e2 and IRL1e3 in

Sections 4.3, 4.4 and 4.5 respectively, and our numerical experiments are presented

in Section 4.6. Finally, some concluding remarks are given in Section ??.

4.2 The sum rule of the subdifferential

In this section, we prove an axillary lemma which will be used in the following

sections. This auxiliary lemma has to do with the first-order necessary condition of

(4.1). Recall that a point x̄ is said to satisfy the first-order necessary condition of

49



(4.1) if

0 ∈ ∂ (f(·) + δC(·) + Φ(| · |)) (x̄). (4.2)

Such a point is called a stationary point, and it is known from [79, Theorem 10.1]

that any local minimizer of (4.1) is a stationary point. Note that computing the

subdifferential in (4.2) directly from definition can be complicated. In our next

lemma, we show that the subdifferential in (4.2) equals the sum of ∇f(x̄), the normal

cone of C at x̄ and the set Φ′+(|x̄|) ◦ ∂|x̄|; here and throughout this paper, for any

y ∈ Rn, we write

Φ′+(|y|) := (φ′+(|y1|), φ′+(|y2|), . . . , φ′+(|yn|)) ∈ Rn
+,

∂|y| := ∂|y1| × ∂|y2| × · · · × ∂|yn| ⊂ Rn.

Notice that Φ′+(|y|) ∈ Rn
+ for all y ∈ Rn is a consequence of Lemma 2.4(i).

Lemma 4.1. The objective of (4.1) satisfies the following equation for any x ∈ C:

∂F (x) = ∇f(x) +NC(x) + Φ′+(|x|) ◦ ∂|x|.

Proof. Since ∂δC(x) 6= ∅ at any x ∈ C, by [79, Corollary 8.11] and [79, Proposi-

tion 8.12], we know that f and δC are regular at any point in C.

Let φ̃ : R → R be defined so that φ̃(t) = φ(t) when t > 0 and φ̃(t) = `t

otherwise. Then φ̃ is continuously differentiable in view of Lemma 2.4(i) and φ(|t|) =

max{φ̃(t), φ̃(−t)} for all t ∈ R. Using these, we deduce from [79, Example 10.24(e)]

that φ(| · |) is amenable. This together with [79, Exercise 10.26(a)] implies that Φ(| · |)

is amenable. Consequently, Φ(| · |) is regular, thanks to [79, Exercise 10.25(a)].

Therefore, using [79, Corallary 10.9], we see that

∂F (x) = ∇f(x) +NC(x) + ∂Φ(| · |)(x) = ∇f(x) +NC(x) + Φ′+(|x|) ◦ ∂|x|,

where the second equality follows from [79, Proposition 10.5] and Lemma 2.4(ii).
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4.3 Iteratively reweighted `1 algorithm with type-

I extrapolation

In this section, we propose and analyze an iteratively reweighted `1 algorithm with

an extrapolation technique motivated from FISTA [10, 68]: this technique has been

widely studied in both convex and nonconvex settings; see, for example, [10, 11, 68,

90, 96]. We call the algorithm based on this extrapolation technique the iteratively

reweighted `1 algorithm with type-I extrapolation (IRL1e1). This algorithm is pre-

sented in Algorithm 4.3 below.

Iteratively reweighted `1 algorithm with type-I extrapolation (IRL1e1)

Step 0. Input an initial point x0 = x−1 ∈ C and {βk} ⊂ [0, 1). Set k = 0.

Step 1. Set

sk+1 = Φ′+(|xk|);
yk = xk + βk(x

k − xk−1);

xk+1 = arg min
y∈C

{〈
∇f(yk), y − yk

〉
+
L

2
‖y − yk‖2 +

n∑
i=1

sk+1
i |yi|

}
.

(4.3)

Step 2. If a termination criterion is not met, set k = k + 1 and go to Step 1.

We next present our global convergence analysis. We will first characterize the

cluster points of the sequence generated by the algorithm under suitable assump-

tions on {βk}, and then show that the whole sequence is convergent under further

assumptions. Our analysis makes extensive use of the following auxiliary function,

and is similar to the analysis in [96]:

H1(x, y) := f(x) + δC(x) + Φ(|x|) +
L

2
‖x− y‖2. (4.4)

We start by showing that any accumulation point of the sequence {xk} gener-

ated by IRL1e1 is a stationary point of (4.1) under the additional assumption that

supk βk < 1. This assumption is general enough to accommodate a wide variety of
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choices of extrapolation parameters such as those used in FISTA with both fixed and

adaptive restart strategies [70]. This latter choice of {βk} was shown empirically to

be highly effective in accelerating the proximal gradient algorithm for convex com-

posite optimization problems [70] and the proximal difference-of-convex algorithm

for a class of difference-of-convex optimization problems [96].

Theorem 4.1. Suppose that supk>0 βk < 1 and let {xk} be the sequence generated

by IRL1e1 for solving (4.1). Then the following statements hold:

(i) {H1(xk, xk−1)}k>0 is a nonincreasing convergent sequence. Moreover, there ex-

ists a positive constant D1 such that

H1(xk, xk−1)−H1(xk+1, xk) > D1‖xk − xk−1‖2. (4.5)

(ii) The sequence {xk} is bounded and limk ‖xk+1 − xk‖ = 0.

(iii) Any accumulation point of {xk} is a stationary point of (4.1).

Proof. First we prove (i). We write lf (x; y) := f(y) + 〈∇f(y), x− y〉 for notational

simplicity. Recall that ∇f(x) is Lipschitz continuous with modulus L. Then, we

have

F (xk+1) 6 lf (x
k+1; yk) +

L

2
‖xk+1 − yk‖2 + Φ(|xk+1|)

6 lf (x
k+1; yk) +

L

2
‖xk+1 − yk‖2 + Φ(|xk|) +

n∑
i=1

sk+1
i (|xk+1

i | − |xki |),

where the second inequality follows from the concavity of φ and the definition of

sk+1. Notice that xk+1 is the minimizer of a strongly convex objective function by

its definition in (4.3). Using this together with the above inequality, we see further
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that

F (xk+1) 6 lf (x
k; yk) +

L

2
‖xk − yk‖2 + Φ(|xk|)− L

2
‖xk+1 − xk‖2

6 f(xk) +
L

2
‖xk − yk‖2 + Φ(|xk|)− L

2
‖xk+1 − xk‖2

= f(xk) + Φ(|xk|) +
L

2
β2
k‖xk − xk−1‖2 − L

2
‖xk+1 − xk‖2,

(4.6)

where the second inequality follows from the convexity of f , while the equality follows

from the definition of yk in (4.3).

Rearranging (4.6) and invoking the definition of H1 and the fact that supk βk < 1,

we have

0 6
L

2
(1− sup

k
β2
k)‖xk − xk−1‖2 6

L

2
(1− β2

k)‖xk − xk−1‖2

6

[
F (xk) +

L

2
‖xk − xk−1‖2

]
−
[
F (xk+1) +

L

2
‖xk+1 − xk‖2

]
= H1(xk, xk−1)−H1(xk+1, xk),

(4.7)

which implies that {H1(xk, xk−1)} is nonincreasing and (4.5) holds with D1 = L
2
(1−

supk β
2
k) > 0. In addition, since inf F > v > −∞, we know that

{
H1(xk, xk−1)

}
is

bounded from below. Thus, limkH1(xk, xk−1) exists and (i) holds.

In addition, we have from (4.7) and the definition of H1 that

F (xk) 6 H1(xk, xk−1) 6 H1(x0, x−1) = F (x0) <∞,

Since F is level-bounded, we conclude from this inequality that {xk} is bounded.

Moreover, summing (4.7) from k = 0 to ∞, we obtain

L

2

∞∑
k=0

[
1− (sup

k
βk)

2

]
‖xk − xk−1‖2 6 H1(x0, x−1)− lim

k
H1(xk+1, xk) <∞.

Since supk βk < 1, we have limk ‖xk+1 − xk‖ = 0. This proves (ii).
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Now we prove (iii). Let x̃ be an accumulation point of {xk} and let {xkj} be a

subsequence such that xkj → x̃. Using the first-order optimality condition of the

subproblem in (4.3), we have

0 ∈ ∇f(ykj) +NC(xkj+1) + L(xkj+1 − ykj) + skj+1 ◦ ∂|xkj+1|;

here we made use of the subdifferential calculus rules in [79, Proposition 10.5] and [79,

Proposition 10.9]. Combining this with the definition of yk in (4.3) and rearranging

terms, we deduce that

−L[(xkj+1− xkj)− βkj(xkj − xkj−1)]∈∇f(ykj)+NC(xkj+1) + skj+1◦ ∂|xkj+1|. (4.8)

Next, we claim that

lim
j
skj+1 = Φ′+(|x̃|). (4.9)

To prove this, we first consider those i corresponding to x̃i 6= 0. Since φ is continu-

ously differentiable, we have from the definition of skj+1 that limj s
kj+1
i = limj φ

′
+(|xkji |) =

φ′+(|x̃i|). On the other hand, for those i corresponding to x̃i = 0, we have limj s
kj+1
i =

limj φ
′
+(|xkji |) = ` = φ′+(0), thanks to Lemma 2.4(i). Thus, (4.9) holds.

Now, notice that Φ′+(x) ◦ ∂|x| ⊆ [−`, `]n for all x ∈ Rn, meaning that the set-

valued mapping x⇒ Φ′+(x) ◦ ∂|x| is bounded. Using this, [79, Proposition 5.51], the

closedness of convex subdifferentials, (4.9) and the fact that limk ‖xk+1 − xk‖ = 0

from (ii), we see by passing to the limit in (4.8) that

0 ∈ ∇f(x̃) +NC(x̃) + Φ′+(|x̃|) ◦ ∂|x̃| = ∂F (x̃),

where the last equality follows from Lemma 4.1. Thus (iii) holds.

Corollary 4.1. Suppose that supk>0 βk < 1 and let {xk} be the sequence generated by

IRL1e1 for solving (4.1). Then the set of accumulation points of {(xk, xk−1)}, denoted

by Ω1, is a nonempty compact subset of dom ∂H1, and H1 ≡ limkH1(xk, xk−1) on

Ω1.
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Proof. From Theorem 4.1(ii), we know that the set of accumulation points of {xk},

denoted by Λ1, is nonempty and compact. Moreover, since limk ‖xk+1− xk‖ = 0, we

see that Ω1 = {(x, x) : x ∈ Λ1}, which is clearly nonempty and compact. Further-

more, since Λ1 belongs to {x : 0 ∈ ∂F (x)} ⊆ dom ∂F according to Theorem 4.1(iii),

it is routine to check that Ω1 ⊂ dom ∂H1.

Next, choose any (x̃, x̃) ∈ Ω1 and let {xkj} be a subsequence of {xk} with xkj → x̃.

Then

H1(x̃, x̃) = F (x̃) = lim
j
F (xkj) +

L

2
‖xkj − xkj−1‖2 = lim

j
H1(xkj , xkj−1),

where the second equality follows from the continuity of F on C and Theorem 4.1(ii).

Since {H1(xk, xk−1)} is convergent thanks to Theorem 4.1(i) and (x̃, x̃) ∈ Ω1 is

chosen arbitrarily, we obtain that H1 ≡ limkH1(xk, xk−1) on Ω1. This completes the

proof.

Next, we prove under additional assumptions on H1 and φ′+ that the whole se-

quence {xk} generated by IRL1e1 is convergent to a stationary point of (4.1). We

start with an auxiliary lemma.

Lemma 4.2. Suppose that supk>0 βk < 1 and that φ′+ is Lipschitz continuous on

[0,∞). Let {xk} be the sequence generated by IRL1e1 for solving (4.1). Then there

exists a positive constant C1 such that for all k > 1,

dist
(
(0, 0), ∂H1(xk, xk−1)

)
6 C1(‖xk−1 − xk−2‖+ ‖xk − xk−1‖).

Proof. First, using the first-order optimality condition of the subproblem in (4.3)

and the definition of ski , there exist a ξk ∈ ∂|xk| and a ζk ∈ NC(xk) such that

0 = ∇f(yk−1) + ζk + Φ′+(|xk−1|) ◦ ξk + L(xk − yk−1) (4.10)
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for all k > 1. Define ηk := ∇f(xk) + ζk + Φ′+(|xk|)◦ ξk +L(xk−xk−1). Then we have

(ηk,−L(xk − xk−1))

∈
(
∇f(xk) +NC(xk) + Φ′+(|xk|) ◦ ∂|xk|+ L(xk − xk−1)

{−L(xk − xk−1)}

)
= ∂H1(xk, xk−1).

where the equality follows from [79, Exercise 8.8], [79, Proposition 10.5] and Lemma

4.1. Consequently, we have for all k > 0 that

dist
(
(0, 0), ∂H1(xk, xk−1)

)
6
√
‖ηk‖2 + L2‖xk − xk−1‖2. (4.11)

On the other hand, from the definition of ηk and (4.10), we see that

‖ηk‖ =
∥∥ηk − [∇f(yk−1) + ζk + Φ′+(|xk−1|) ◦ ξk + L(xk − yk−1)

]∥∥
=
∥∥∇f(xk)−∇f(yk−1)− L(xk−1 − yk−1) +

[
Φ′+(|xk|)− Φ′+(|xk−1|)

]
◦ ξk

∥∥
6 ‖∇f(xk)−∇f(yk−1)‖+ L‖xk−1 − yk−1‖+ ‖Φ′+(|xk|)− Φ′+(|xk−1|)‖

6 ‖∇f(xk)−∇f(yk−1)‖+ L‖xk−1 − yk−1‖+

√√√√ n∑
i=1

ρ2(|xki | − |xk−1
i |)2

6 L‖xk − yk−1‖+ L‖xk−1 − yk−1‖+ ρ‖xk − xk−1‖

6 (L+ ρ)‖xk − xk−1‖+ 2L‖xk−1 − xk−2‖,

(4.12)

where the first inequality follows from the elementary inequality ‖a ◦ b‖ ≤ ‖b‖∞‖a‖

for any a, b ∈ Rn and the fact that ‖ξk‖∞ ≤ 1 since ξk ∈ ∂|xk|, the second inequality

follows from the Lipschitz continuity of φ′+ (with modulus ρ); the third inequality

holds because ∇f is Lipschitz continuous; and we made use of the definition of yk

and the fact that {βk} ⊂ [0, 1) for the last inequality. The desired conclusion now

follows immediately from (4.11) and (4.12).

We are now ready to prove convergence of the whole sequence {xk} generated

by IRL1e1 under suitable assumptions. Our proof is similar to standard convergence
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arguments making use of KL property; see, for example, [3,4]. We include the proof

for completeness.

Theorem 4.2. Suppose that supk>0 βk < 1 and that φ′+ is Lipschitz continuous on

[0,∞). Suppose in addition that H1 is a KL function. Let {xk} be the sequence gen-

erated by IRL1e1 for solving (4.1). Then
∑∞

k=1 ‖xk−xk−1‖ <∞ and {xk} converges

to a stationary point of the problem (4.1).

Proof. In view of Theorem 4.1(iii), it suffices to show that
∑∞

k=1 ‖xk − xk−1‖ < ∞

(which implies convergence of {xk}). To this end, note first from Theorem 4.1(i)

that w1 := limkH1(xk, xk−1) exists. If there exists k′ such that H1(xk
′
, xk

′−1) = w1,

then for all k > k′, we must have H1(xk, xk−1) = H1(xk
′
, xk

′−1) = w1, thanks to the

fact that {H1(xk, xk−1)} is nonincreasing by Theorem 4.1(i). Combining this with

(4.5), we obtain that xk = xk
′

when k > k′, i.e. the sequence generated converges

finitely and thus the conclusion of this theorem holds in this case. Thus, from now

on, we assume that H1(xk, xk−1) > w1 for all k.

According to Corollary 4.1, H1 is constant (which equals w1) on the nonempty

compact set Ω1 ⊆ dom ∂H, where Ω1 is the set of accumulation points of {(xk, xk−1)}.

This together with the assumption that H1 is a KL function and Lemma 2.2 implies

that there exist ε1, η1 > 0 and ϕ1 ∈ Ξη1 such that

ϕ′1 (H1(x, y)− w1) dist (0, ∂H1(x, y)) > 1

for any (x, y) satisfying dist((x, y),Ω1) < ε1 and w1 < H1(x, y) < w1 + η1. In

addition, since {xk} is bounded according to Theorem 4.1(ii), there exists k0 such

that whenever k > k0, we have

dist((xk, xk−1),Ω1) < ε1.

Furthermore, from the definition of w1 and the assumption that H1(xk, xk−1) > w1

for all k, we know there exists a k1 such that such that whenever k > k1, w1 <
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H1(xk, xk−1) < w1 + η1. Let N = max {k0, k1}. Then for k > N , we have

ϕ′1
(
H1(xk, xk−1)− w1

)
dist

(
0, ∂H1(xk, xk−1)

)
> 1.

Combining this with the concavity of ϕ1 we have

[ϕ1

(
H1(xk, xk−1)− w1

)
− ϕ1

(
H1(xk+1, xk)− w1

)︸ ︷︷ ︸
∆k

] · dist
(
0, ∂H1(xk, xk−1)

)
> ϕ′1

(
H1(xk, xk−1)− w1

)
· dist

(
0, ∂H1(xk, xk−1)

)
·
(
H1(xk, xk−1)−H1(xk+1, xk)

)
> H1(xk, xk−1)−H1(xk+1, xk) > D1‖xk − xk−1‖2,

where the last inequality follows from (4.5). Using Lemma 4.2 to upper bound the

term dist
(
0, ∂H1(xk, xk−1)

)
in the above relation, we further deduce that

‖xk − xk−1‖2 6
4C1

D1

∆k ·
1

4

(
‖xk−1 − xk−2‖+ ‖xk − xk−1‖

)
6

[
C1

D1

∆k +
1

4

(
‖xk−1 − xk−2‖+ ‖xk − xk−1‖

)]2

,

where the second inequality follows the relation 4ab 6 (a+ b)2 for a, b ∈ R. Taking

square root on both sides of the above inequality and rearranging terms, we have

1

2
‖xk − xk−1‖ 6 C1

D1

∆k +
1

4

(
‖xk−1 − xk−2‖ − ‖xk − xk−1‖

)
.

Summing this inequality from k = N + 1 to ∞, we obtain that

1

2

∞∑
k=N+1

‖xk − xk−1‖ 6 C1

D1

(
ϕ1

(
H1(xN+1, xN)− w1

))
+

1

4

(
‖xN − xN−1‖

)
<∞,

which also implies the convergence of {xk}. This completes the proof.

4.4 Iteratively reweighted `1 algorithm with type-

II extrapolation

In this section, we propose and analyze another version of iteratively reweighted `1

algorithm with an extrapolation technique motivated from the method by Auslender
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and Teboulle [6]: this was described as the second APG method in [90] and was

shown empirically to be the most efficient optimal first-order method in the numerical

experiments of [11]. We call the algorithm based on this extrapolation technique the

iteratively reweighted `1 algorithm with type-II extrapolation (IRL1e2). This method

is presented as Algorithm 4.4 below.

Iteratively reweighted `1 algorithm with type-II extrapolation
(IRL1e2)

Step 0. Input initial points x0, z0 ∈ C and a sequence {θk} ⊂ (0, 1]. Set k = 0.

Step 1. Set

sk+1 = Φ′+(|xk|);
yk = (1− θk)xk + θkz

k;

zk+1 = arg min
x∈C

{〈
∇f(yk), x− yk

〉
+
Lθk
2
‖x− zk‖2 +

n∑
i=1

sk+1
i |xi|

}
;

xk+1 = (1− θk)xk + θkz
k+1.

(4.13)

Step 2. If a termination criterion is not met, set k = k + 1 and go to Step 1.

We will show that any accumulation point of the sequence {zk} generated by

IRL1e2 is a stationary point of F under suitable assumptions. Our convergence ar-

guments also make use of H1 defined in (4.4), and are inspired by [90, Appendix A].

In our analysis below, the parameters {θk} in IRL1e2 have to satisfy (4.14). We will

demonstrate in Section 4.6 how such {θk} can be chosen in our numerical experi-

ments.

Theorem 4.3. Suppose that the {θk} in IRL1e2 is chosen so that

sup
k>1
{θ2

k(1− θk−1)2 − θ2
k−1} < 0, (4.14)

and let {xk, yk, zk} be the sequences generated by IRL1e2 for solving (4.1). Then the

following statements hold.
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(i) {H1(xk, xk−1)}k>1 is a nonincreasing convergent sequence.

(ii) It holds that

lim
k

max{‖zk+1 − xk‖, ‖zk+1 − yk‖, ‖zk+1 − zk‖} = 0. (4.15)

(iii) The sequence {zk} is bounded.

(iv) Any accumulation point of {zk} is a stationary point of (4.1).

Proof. In this proof, we write lf (x; y) := f(y) + 〈∇f(y), x− y〉 for notational sim-

plicity. Since ∇f is Lipschitz continuous with modulus L > 0, we have

F (xk+1) 6 lf (x
k+1; yk) +

L

2
‖xk+1 − yk‖2 + Φ(|xk+1|)

= lf (x
k+1; yk) +

Lθ2
k

2
‖zk+1 − zk‖2 + Φ(|xk+1|)

= (1− θk)lf (xk; yk) + θklf (z
k+1; yk) +

Lθ2
k

2
‖zk+1 − zk‖2 + Φ(|xk+1|)

= (1− θk)lf (xk; yk) + θk

[
lf (z

k+1; yk) +
Lθk
2
‖zk+1 − zk‖2 +

n∑
i=1

sk+1
i |zk+1

i |

]

+
n∑
i=1

[
φ(|xk+1

i |)− θksk+1
i |zk+1

i |
]

6 lf (x
k; yk) + θk

[
Lθk
2
‖xk − zk‖2 +

n∑
i=1

sk+1
i |xki | −

Lθk
2
‖xk − zk+1‖2

]

+
n∑
i=1

[
φ(|xk+1

i |)− θksk+1
i |zk+1

i |
]
,

(4.16)

where the first equality follows from the definitions of xk+1 and yk in (4.13) so that

xk+1 − yk = [(1− θk)xk + θkz
k+1]− [(1− θk)xk + θkz

k] = θk(z
k+1 − zk),
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the second equality follows from the definition of xk+1, and the last inequality follows

from the definition of zk+1 as a minimizer and the strong convexity of the objective

of the minimization problem defining zk+1.

From the convexity of f and (4.16), we see further that

F (xk+1) 6 f(xk) + θk

[
Lθk
2
‖xk − zk‖2 +

n∑
i=1

sk+1
i |xki | −

Lθk
2
‖xk − zk+1‖2

]

+
n∑
i=1

[
φ(|xk+1

i |)− θksk+1
i |zk+1

i |
]
,

6 f(xk) + θk

[
Lθk
2
‖xk − zk‖2 − Lθk

2
‖xk − zk+1‖2

]

+
n∑
i=1

[
φ(|xki |) + sk+1

i (|xk+1
i | − |xki |)− θksk+1

i |zk+1
i |+ θks

k+1
i |xki |

]
,

(4.17)

where the second inequality follows from the fact that sk+1 = Φ′+(|xk|) and the

concavity of φ.

Next, observe from the last relation in (4.13) that for each i = 1, . . . , n,

|xk+1
i | = |(1− θk)xki + θkz

k+1
i |,

=⇒ |xk+1
i | 6 (1− θk)|xki |+ θk|zk+1

i |,

=⇒ |xk+1
i | − |xki | − θk|zk+1

i |+ θk|xki | 6 0.

Combining this with (4.17) and the nonnegativity of ski , we obtain further that for

all k > 1 that

F (xk+1) 6 f(xk) + Φ(|xk|) + θk

[
Lθk
2
‖xk − zk‖2 − Lθk

2
‖xk − zk+1‖2

]

= F (xk) +
Lθ2

k(1− θk−1)2

2
‖xk−1 − zk‖2 − Lθ2

k

2
‖xk − zk+1‖2,

(4.18)

where the last equality follows from the last relation in (4.13).
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Observe that for k > 0, xk ∈ C and θk(z
k+1 − xk) = xk+1 − xk. Using these and

the definition of H1, we obtain from (4.18) that for k > 1,

H1(xk+1, xk)−H1(xk, xk−1) 6

(
Lθ2

k(1− θk−1)2

2
−
Lθ2

k−1

2

)
‖xk−1 − zk‖2

6 −A1‖xk−1 − zk‖2,

(4.19)

where A1 := L
2

infk{θ2
k−1 − θ2

k(1− θk−1)2}, which is positive thanks to (4.14). Thus,

{H1(xk, xk−1)}k>1 is nonincreasing.

In addition, since xk ∈ C, we have

v ≤ F (xk) 6 F (xk) +
L

2
‖xk − xk−1‖2 = H1(xk, xk−1),

showing that {H1(xk, xk−1)} is bounded from below. Thus, {H1(xk, xk−1)}k>1 is

convergent. This proves (i).

Next, summing (4.19) from k = 1 to ∞, we have

A1

∞∑
k=1

‖xk−1 − zk‖2 6 H1(x1, x0)− lim
k
H1(xk+1, xk) <∞.

Therefore, limk ‖xk − zk+1‖ = 0, which further implies that

lim
k
xk+1 − xk = lim

k
θk(z

k+1 − xk) = 0;

lim
k
xk+1 − zk+1 = lim

k
(1− θk)(xk − zk+1) = 0;

lim
k
xk+1 − yk+1 = lim

k
θk+1(xk+1 − zk+1) = 0;

(4.20)

where the first and second equalities are due to the last relation in (4.13) and the

third equality is due to the second relation in (4.13). Then we have

lim
k
zk+1 − zk = lim

k
(zk+1 − xk) + (xk − zk) = 0,

lim
k
zk+1 − yk = lim

k
(zk+1 − xk) + (xk − yk) = 0.
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This proves (ii).

We now prove (iii). Notice from (4.19) and the definition of H1 that

F (xk) 6 H1(xk, xk−1) 6 H1(x1, x0) = F (x1) +
L

2
‖x1 − x0‖2 <∞.

Since F is level-bounded, we conclude from this inequality that {xk} is bounded. In

view of this and the second equality in (4.20), we conclude that {zk} is also bounded,

i.e., (iii) holds.

Now we prove (iv). Let z∗ be an accumulation point of {zk} and let {zkj} be a

subsequence such that zkj → z∗. Clearly z∗ ∈ C. From (4.15), we know that

zkj−1 → z∗, ykj−1 → z∗, xkj−1 → z∗. (4.21)

Using the definition of zk as the minimizer of the optimization problem in (4.13)

and the subdifferential calculus rules in [79, Proposition 10.5] and [79, Proposi-

tion 10.9], we have

0 ∈ ∇f(ykj−1) +NC(zkj) + θkj−1L(zkj − zkj−1) + skj ◦ ∂|zkj |. (4.22)

Next we show that

lim
j
skj = Φ′+(|z∗|). (4.23)

We consider two cases. First, for those i satisfying z∗i 6= 0, we have from the definition

of sk and (4.21) that limj s
kj
i = φ′+(|z∗i |). On the other hand, for those i corresponding

to z∗i = 0, we have by the definition of sk that limj s
kj
i = limj φ

′
+(|xkj−1

i |) = ` = φ′+(0),

thanks to Lemma 2.4(i). Therefore, limj s
kj = Φ′+(|z∗|).

Now, notice that the set-valued mapping x ⇒ Φ′+(x) ◦ ∂|x| is bounded because

Φ′+(x)◦∂|x| ⊆ [−`, `]n for all x ∈ Rn. Using this, [79, Proposition 5.51], the closedness

of convex subdifferentials, (4.23) and (4.21), we see by passing to the limit in (4.22)

that

0 ∈ ∇f(z∗) +NC(z∗) + Φ′+(|z∗|) ◦ ∂|z∗| = ∂F (z∗),
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where the equality follows from Lemma 4.1. This completes the proof.

4.5 Iteratively reweighted `1 algorithm with type-

III extrapolation

In this section, we propose and analyze yet another version of iteratively reweighted

`1 algorithm with an extrapolation technique motivated from the method by Lan,

Lu and Monteiro [53]: this was stated as algorithm LLM in [11] and was the first of

its kinds whose complexity has been established in some nonconvex settings [36,43].

We refer to the algorithm based on this extrapolation technique as the iteratively

reweighted `1 algorithm with type-III extrapolation (IRL1e3). The method is pre-

sented as Algorithm 4.5 below.

Iteratively reweighted `1 algorithm with type-III extrapolation
(IRL1e3)

Step 0. Input initial points x0, z0 ∈ C and a sequence {θk} ⊂ (0, 1]. Set k = 0.

Step 1. Set

sk+1 = Φ′+(|xk|);
yk = (1− θk)xk + θkz

k;

zk+1 = arg min
x∈C

{〈
∇f(yk), x− yk

〉
+
Lθk
2
‖x− zk‖2 +

n∑
i=1

sk+1
i |xi|

}
;

xk+1 = arg min
y∈C

{〈
∇f(yk), y − yk

〉
+
L

2
‖y − yk‖2 +

n∑
i=1

sk+1
i |yi|

}
.

(4.24)

Step 2. If a termination criterion is not met, set k = k + 1 and go to Step 1.

Now we present convergence analysis for this algorithm. Our analysis is inspired

by [36, Section 8] and relies heavily on the following auxiliary function:

H3(x, y, w) = f(x) + δC(x) + Φ(|x|) +
L

2
‖w − y‖2 +

L

2
‖w − x‖2.
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We start by characterizing the accumulation points of the sequence generated by

IRL1e3 under suitable assumptions on {θk}, and establish the convergence of the

whole sequence under additional assumptions. In particular, we require {θk} to be

chosen so that (4.25) holds: we will demonstrate how such {θk} can be chosen to

satisfy this condition in our numerical experiments in Section 4.6.

Theorem 4.4. Suppose that {θk} in IRL1e3 is chosen so that for some γ ∈ (0, 1),

sup
k>1

max

{
θ2
k(1− θk−1)2

γ
− θ2

k−1,
θ2
k

1− γ
− 1

}
< 0. (4.25)

Let {xk, yk, zk} be the sequences generated by IRL1e3 for solving (4.1) and define

wk+1 := (1− θk)xk + θkz
k+1 for k > 0. Then the following statements hold:

(i) {H3(xk, xk−1, wk)}k>1 is a nonincreasing convergent sequence. Moreover, there

exists a positive constant D3 such that

H3(xk, xk−1, wk)−H3(xk+1, xk, wk+1)>D3(‖xk−1− zk‖2+‖wk − xk‖2). (4.26)

(ii) The sequence {xk} is bounded.

(iii) It holds that

lim
k

max{‖xk−1 − zk‖, ‖wk − xk‖, ‖xk − xk−1‖, ‖xk − yk−1‖} = 0. (4.27)

(iv) Any accumulation point of {xk} is a stationary point of (4.1).

Proof. In this proof, we write lf (x; y) := f(y) + 〈∇f(y), x− y〉 for notational sim-
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plicity. Since ∇f is Lipschitz, we have

F (xk+1) 6 lf (x
k+1; yk) +

L

2
‖xk+1 − yk‖2 + Φ(|xk+1|)

= lf (x
k+1; yk) +

L

2
‖xk+1 − yk‖2 +

n∑
i=1

sk+1
i |xk+1

i |+ Φ(|xk+1|)−
n∑
i=1

sk+1
i |xk+1

i |

6 lf (w
k+1; yk) +

L

2
‖wk+1 − yk‖2 +

n∑
i=1

sk+1
i |wk+1

i |+ Φ(|xk+1|)−
n∑
i=1

sk+1
i |xk+1

i |

− L

2
‖wk+1 − xk+1‖2,

where wk+1 = (1 − θk)xk + θkz
k+1, and the second inequality follows from the defi-

nition of xk+1 as the minimizer of the strongly convex subproblem for the x-update.

Plugging the definition of wk+1 into the first three terms in the last inequality above

and invoking the definition of yk, we see that

F (xk+1) 6 (1− θk)lf (xk; yk) + θklf (z
k+1; yk) +

Lθ2
k

2
‖zk+1 − zk‖2 + Φ(|xk+1|)

+
n∑
i=1

sk+1
i |(1− θk)xki + θkz

k+1
i | −

n∑
i=1

sk+1
i |xk+1

i | −
L

2
‖wk+1 − xk+1‖2.

Applying the relation |(1− θk)xki + θkz
k+1
i | ≤ (1− θk)|xki |+ θk|zk+1

i | to the inequality
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above and grouping terms, we obtain further that F (xk+1) is bounded above by

(1− θk)lf (xk; yk) + θk

[
lf (z

k+1; yk) +
Lθk
2
‖zk+1 − zk‖2 +

n∑
i=1

sk+1
i |zk+1

i |

]

+
n∑
i=1

(1− θk)sk+1
i |xki |+ Φ(|xk+1|)−

n∑
i=1

sk+1
i |xk+1

i | −
L

2
‖wk+1 − xk+1‖2

6 lf (x
k; yk) + θk

[
Lθk
2
‖xk − zk‖2 +

n∑
i=1

sk+1
i |xki |

]
− Lθ2

k

2
‖xk − zk+1‖2

+
n∑
i=1

(1− θk)sk+1
i |xki |+ Φ(|xk+1|)−

n∑
i=1

sk+1
i |xk+1

i | −
L

2
‖wk+1 − xk+1‖2

= lf (x
k; yk) +

n∑
i=1

[
sk+1
i |xki |+ φ(|xk+1

i |)− sk+1
i |xk+1

i |
]

+
Lθ2

k

2
‖xk − zk‖2

− L

2
‖wk+1 − xk+1‖2 − Lθ2

k

2
‖xk − zk+1‖2,

where the inequality follows from the definition of zk+1 as the minimizer of the

strongly convex subproblem for the z-update.

Applying the convexity of f , the concavity of φ and the fact that sk+1 = Φ′+(|xk|)

to the above upper bound, we further have

F (xk+1) 6 f(xk) +
n∑
i=1

[
φ(|xki |) + sk+1

i (|xk+1
i | − |xki |)− sk+1

i |xk+1
i |+ sk+1

i |xki |
]

+
Lθ2

k

2
‖xk − zk‖2 − L

2
‖wk+1 − xk+1‖2 − Lθ2

k

2
‖xk − zk+1‖2

= F (xk) +
Lθ2

k

2
‖xk − zk‖2 − L

2
‖wk+1 − xk+1‖2 − Lθ2

k

2
‖xk − zk+1‖2.

(4.28)

Now, observe that wk−xk = (1−θk−1)xk−1 +θk−1z
k−xk = xk−1−xk+θk−1(zk−

xk−1) for any k > 1, we thus have

xk − zk = xk − xk−1 + xk−1 − zk = (1− θk−1)(xk−1 − zk)− (wk − xk).
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Using this and the inequality that (a+b)2 6 a2

γ
+ b2

1−γ , where γ ∈ (0, 1) is as in (4.25),

we deduce further from (4.28) that F (xk+1) is bounded above by

F (xk) +
Lθ2

k(1− θk−1)2

2γ
‖xk−1 − zk‖2 +

Lθ2
k

2(1− γ)
‖wk − xk‖2

− L

2
‖wk+1 − xk+1‖2 − Lθ2

k

2
‖xk − zk+1‖2

= F (xk) +
L

2

(
θ2
k−1‖xk−1 − zk‖2+ ‖wk − xk‖2− ‖wk+1 − xk+1‖2− θ2

k‖xk − zk+1‖2
)

+

(
θ2
k(1− θk−1)2

γ
− θ2

k−1

)
L

2
‖xk−1 − zk‖2 +

(
θ2
k

1− γ
− 1

)
L

2
‖wk − xk‖2.

Using the assumptions on θk, we then obtain the following estimate:

F (xk+1) 6 F (xk)− A2(‖xk−1 − zk‖2 + ‖wk − xk‖2)

+
L

2

(
θ2
k−1‖xk−1 − zk‖2+‖wk − xk‖2−‖wk+1 − xk+1‖2− θ2

k‖xk − zk+1‖2
)

= F (xk)− A2(‖xk−1 − zk‖2 + ‖wk − xk‖2)

+
L

2

(
‖wk − xk−1‖2+‖wk − xk‖2−‖wk+1 − xk+1‖2− ‖wk+1 − xk‖2

)
,

where A2 = L
2

infk min
{
θ2
k−1 −

θ2k(1−θk−1)2

γ
, 1− θ2k

1−γ

}
, which is positive according to

(4.25), and the equality follows from the definition of wk so that wk−xk−1 = θk−1(zk−

xk−1). Rearranging terms in the above inequality and invoking the definition of H3,

we have for all k > 1 that

A2(‖xk−1 − zk‖2 + ‖wk − xk‖2) 6 H3(xk, xk−1, wk)−H3(xk+1, xk, wk+1), (4.29)

which means that {H3(xk, xk−1, wk)}k>1 is nonincreasing. In addition, it is not

hard to see that {H3(xk, xk−1, wk)} is bounded from below. Thus, the sequence

{H3(xk, xk−1, wk)} is convergent. This proves (i).

Next, we have from (4.29) that for any k > 1 that

F (xk) 6 H3(xk, xk−1, wk) 6 H3(x1, x0, w1) <∞,

68



Since F is level-bounded, we conclude from this inequality that {xk} is bounded and

therefore (ii) holds.

We now prove (iii). Summing (4.29) from k = 1 to ∞, we obtain

A2

∞∑
k=1

(‖xk−1 − zk‖2 + ‖wk − xk‖2) 6 H3(x1, x0, w1)− lim
k
H3(xk+1, xk, wk+1) <∞.

Thus, we have

lim
k
‖xk−1 − zk‖ = lim

k
‖wk − xk‖ = 0. (4.30)

Combining these relations with the definition of wk, we have

wk − xk−1 = θk−1(zk − xk−1)→ 0. (4.31)

Combining this with (4.30), we see further that

xk − xk−1 = xk − wk + wk − xk−1 = (xk − wk) + θk−1(zk − xk−1)→ 0. (4.32)

Combining this with the definition of yk and (4.30), we obtain

yk − xk = θk(z
k − xk) = θk(z

k − xk−1) + θk(x
k−1 − xk)

= θk(z
k − xk−1) + θk

[
(wk − xk) + θk−1(xk−1 − zk)

]
= (θk − θkθk−1)(zk − xk−1) + θk(w

k − xk)→ 0.

(4.33)

Using this together with (4.32) and (4.30), we deduce that

wk − yk−1 = wk − xk + (xk − xk−1) + (xk−1 − yk−1)

= θk−1(zk−xk−1)+(θk−1θk−2−θk−1)(zk−1−xk−2) + θk−1(xk−1 − wk−1)→ 0.
(4.34)

Finally, using (4.34), we have

xk − yk−1 = xk − wk + wk − yk−1

= (xk − wk)+θk−1(zk−xk−1)+(θk−1θk−2−θk−1)(zk−1−xk−2)+θk−1(xk−1 − wk−1),

which also goes to zero thanks to (4.30). This proves (iii).
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Finally, we prove (iv). Let x̃ be an accumulation point of {xk} and let {xkj} be a

subsequence such that xkj → x̃. From the first-order optimality condition of the sec-

ond subproblem in (4.24) and subdifferential calculus rules in [79, Proposition 10.5]

and [79, Proposition 10.9], we have

0 ∈ ∇f(ykj) +NC(xkj+1) + L(xkj+1 − ykj) + skj+1 ◦ ∂|xkj+1|. (4.35)

Using the same arguments as in the proof of Theorem 4.1(iv), we have limj s
kj+1 =

Φ′+(|x̃|).

Now, observe that Φ′+(x) ◦ ∂|x| ⊆ [−`, `]n so that the set-valued mapping x ⇒

Φ′+(x)◦∂|x| is bounded. Using these, (4.27), the closedness of convex subdifferentials

and [79, Proposition 5.51], passing to the limit as j goes to ∞ in (4.35), we have

0 ∈ ∇f(x̃) +NC(x̃) + Φ′+(|x̃|) ◦ ∂|x̃| = ∂F (x̃),

where the last equality follows from Lemma 4.1. Thus (iv) holds and this completes

the proof.

Corollary 4.2. Suppose that the {θk} in IRL1e3 is chosen so that (4.25) holds. Let

{xk, zk} be the sequences generated by IRL1e3 for solving (4.1) and define wk+1 :=

(1−θk)xk+θkz
k+1 for k > 0. Then the set of accumulation points of {(xk, xk−1, wk)},

denoted by Ω3, is a nonempty compact subset of dom ∂H3. Moreover, it holds that

H3 ≡ limkH3(xk, xk−1, wk) on Ω3.

Proof. First, we see from Theorem 4.4(ii) that the set of accumulation points of {xk},

denoted by Λ3, is nonempty and compact. Moreover, in view of Theorem 4.4(iii),

we deduce that Ω3 = {(x, x, x) : x ∈ Λ3}, which is clearly nonempty and compact.

Finally, since Λ3 ⊆ {x : 0 ∈ ∂F (x)} ⊆ dom ∂F according to Theorem 4.4(iv), it is

routine to check that Ω3 ⊂ dom ∂H3 as required.

Now, fix any (x̃, x̃, x̃) ∈ Ω3 and let {xkj} be a subsequence of {xk} with xkj → x̃.
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Then

H3(x̃, x̃, x̃) = F (x̃) = lim
j
F (xkj) +

L

2
‖wkj − xkj‖2 +

L

2
‖wkj − xkj−1‖2

= lim
j
H3(xkj , xkj−1, wkj),

where the second equality follows from the continuity of F on C and Theorem 4.4(iii).

Since {H3(xk, xk−1, wk)} is convergent according to Theorem 4.4(i) and (x̃, x̃, x̃) ∈

Ω3 is chosen arbitrarily, we conclude that H3 ≡ limkH3(xk, xk−1, wk) on Ω3. This

completes the proof.

Next, we show under some assumptions on H3 and φ′+ that the sequence {xk}

generated by IRL1e3 converges to a stationary point of (4.1). We first prove the

following auxiliary lemma.

Lemma 4.3. Suppose that the {θk} in IRL1e3 is chosen so that (4.25) holds and

that φ′+ is Lipschitz continuous. Let {xk, zk} be the sequences generated by IRL1e3

for solving (4.1) and define wk+1 := (1− θk)xk + θkz
k+1 for k > 0. Then there exists

a positive constant C3 such that for all k > 2,

dist
(
(0, 0, 0), ∂H3(xk, xk−1, wk)

)
6 C3(‖xk − wk‖+ ‖zk − xk−1‖+ ‖xk−1 − wk−1‖+ ‖zk−1 − xk−2‖).

Proof. First, using the optimality condition of the x-update in (4.24) and the defi-

nition of sk, there exist a ξk ∈ ∂|xk| and a ζk ∈ NC(xk) such that for all k > 2,

0 = ∇f(yk−1) + ζk + Φ′+(|xk−1|) ◦ ξk + L(xk − yk−1). (4.36)

Define ηk := ∇f(xk) + ζk + Φ′+(|xk|) ◦ ξk + L(xk − wk). Then we have

(ηk,−L(wk − xk−1), L(wk − xk−1) + L(wk − xk))

∈

∇f(xk) +NC(xk) + Φ′+(|xk|)∂|xk|+ L(xk − wk)
{−L(wk − xk−1)}

{L(wk − xk−1) + L(wk − xk)}


= ∂H3(xk, xk−1, wk);
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here the equality follows from [79, Exercise 8.8], [79, Proposition 10.5] and Lemma 4.1.

Hence, there exists a C0 > 0 so that for all k > 1,

dist
(
(0, 0, 0), ∂H3(xk, xk−1, wk)

)
6 C0(‖ηk‖+ ‖wk − xk−1‖+ ‖wk − xk‖). (4.37)

Next, from the definition of ηk and (4.36), we see further that

‖ηk‖ = ‖ηk −
[
∇f(yk−1) + ζk + Φ′+(|xk−1|) ◦ ξk + L(xk − yk−1)

]
‖

= ‖∇f(xk)−∇f(yk−1) +
[
Φ′+(|xk|)− Φ′+(|xk−1|)

]
◦ ξk − L(wk − yk−1)‖

6 ‖∇f(xk)−∇f(yk−1)‖+ ‖Φ′+(|xk|)− Φ′+(|xk−1|)‖+ L‖wk − yk−1‖

6 ‖∇f(xk)−∇f(yk−1)‖+

√√√√ n∑
i=1

ρ2(|xki | − |xk−1
i |)2 + L‖wk − yk−1‖

6 L‖xk − yk−1‖+ ρ‖xk − xk−1‖+ L‖wk − yk−1‖

6 [L+ ρ]‖xk − xk−1‖+ L‖xk−1 − yk−1‖+ L‖wk − yk−1‖,

(4.38)

where the first inequality follows from the elementary inequality ‖a ◦ b‖ 6 ‖b‖∞‖a‖

for any a, b ∈ Rn and the fact that ‖ξk‖∞ 6 1 since ξk ∈ ∂|xk|; the second inequality

follows from the Lipschitz continuity of φ′+ (with modulus ρ); the third inequality

holds because ∇f is Lipschitz continuous. The desired conclusion now follows from

(4.37), (4.38) and the relations (4.31), (4.32), (4.33), (4.34), which state that xk −

xk−1, wk − xk−1, xk−1− yk−1 and wk − yk−1 can be written as linear combinations of

zk − xk−1, xk − wk, zk−1 − xk−2, xk−1 − wk−1 with coefficients at most 2.

We will now establish the convergence of the whole sequence {xk} generated by

IRL1e3 under some assumptions. Our analysis is similar to standard convergence

analysis based on KL property; see, for example, [3,4]. We include the proof for the

convenience of the readers.

Theorem 4.5. Suppose that the {θk} in IRL1e3 is chosen so that (4.25) holds,

that H3 is a KL function and that φ′+ is Lipschitz continuous. Let {xk} be the
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sequence generated by IRL1e3 for solving (4.1). Then
∑∞

k=1 ‖xk − xk−1‖ < ∞ and

{xk} converges to a stationary point of (4.1).

Proof. In view of Theorem 4.4(iv), it suffices to prove
∑∞

k=1 ‖xk − xk−1‖ < ∞,

which implies convergence of {xk}. Now, recall from Theorem 4.4(i) that w3 :=

limkH3(xk, xk−1, wk) exists. If there exists k′ ≥ 1 such that H3(xk
′
, xk

′−1, wk
′
) = w3,

then (4.26) implies that for any k > k′, H3(xk, xk−1, wk) = H3(xk
′
, xk

′−1, wk
′
) = w3.

Invoking (4.26) again together with (4.32), we obtain that xk = xk
′

when k > k′, i.e.

the sequence generated converges finitely and hence the conclusion of this theorem

holds trivially. In what follows, we consider the case where H3(xk, xk−1, wk) > w3

for all k.

Recall from Corollary 4.2 that Ω3 is a nonempty compact subset of dom ∂H3 and

H3 ≡ w3. Since H3 is a KL function, using Lemma 2.2, there exist ε3, η3 > 0 and

ϕ3 ∈ Ξη3 such that

ϕ′3 (H3(x, y, w)− w3) dist (0, ∂H3(x, y, w)) > 1

for any (x, y, w) satisfying dist((x, y, w),Ω3) < ε3 and w3 < H3(x, y, w) < w3 + η3.

In addition, recall from Corollary 4.2 that Ω3 is the set of accumulation points of

{(xk, xk−1, wk)}. Since {(xk, xk−1, wk)} is bounded in view of Theorem 4.4(ii) and

(iii), there exists k0 such that whenever k > k0,

dist((xk, xk−1, wk),Ω3) < ε3.

Furthermore, it follows from the definition of w3 that there exists k1 such that when-

ever k > k1, w3 < H3(xk, xk−1, wk) < w3 + η3. Define N ′ = max {k0, k1}. Then for

all k > N ′, we have

ϕ′3(H3(xk, xk−1, wk)− w3︸ ︷︷ ︸
χk

) · dist
(
0, ∂H3(xk, xk−1, wk)

)
> 1.
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Using this and the concavity of ϕ3, we have further that

(ϕ3(χk)− ϕ3(χk+1)︸ ︷︷ ︸
∆k

) · dist
(
0, ∂H3(xk, xk−1, wk)

)
> ϕ′3(χk) · dist

(
0, ∂H3(xk, xk−1, wk)

)
· (χk − χk+1)

> H3(xk, xk−1, wk)−H3(xk+1, xk, wk+1) > D3

(
‖xk−1 − zk‖2 + ‖wk − xk‖2

)
,

where the last inequality is from (4.26). Now, using the relations that (a + b)2 6

2(a2 + b2) and 4ab 6 (a + b)2 for a, b ∈ R, we further deduce from this inequality

that(
‖xk−1 − zk‖+ ‖wk − xk‖

)2
6 2

(
‖xk−1 − zk‖2 + ‖wk − xk‖2

)
6

8C3

D3

∆k ·
1

4C3

dist
(
0, ∂H3(xk, xk−1, wk)

)
6

8C3

D3

∆k ·
1

4

(
‖xk − wk‖+ ‖zk − xk−1‖+ ‖xk−1 − wk−1‖+ ‖zk−1 − xk−2‖

)
6

[
2C3

D3

∆k +
1

4

(
‖xk − wk‖+ ‖zk − xk−1‖+ ‖xk−1 − wk−1‖+ ‖zk−1 − xk−2‖

)]2

,

where the third inequality follows from Lemma 4.3. Taking square root on both sides

of the above inequality and rearrange terms, we obtain

1

2

(
‖xk−1 − zk‖+ ‖wk − xk‖

)
6

2C3

D3

∆k +
1

4

[
‖xk−1 − wk−1‖+ ‖zk−1 − xk−2‖ − ‖xk − wk‖ − ‖zk − xk−1‖

]
.

Summing this inequality from k = N ′ + 1 to ∞, using (4.32) and the fact that

H3(xk, xk−1) > w3 for all k, we obtain that

1

2

∞∑
k=N ′+1

‖xk − xk−1‖ =
1

2

∞∑
k=N ′+1

‖xk − wk + θk−1(zk − xk−1)‖

6
1

2

∞∑
k=N ′+1

(
‖xk−1 − zk‖+ ‖wk − xk‖

)
6

2C3

D3

ϕ3 (χN ′+1) +
1

4

(
‖xN ′ − wN ′‖+ ‖zN ′ − xN ′−1‖

)
<∞,
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which implies the convergence of {xk} and
∑∞

k=1 ‖xk − xk−1‖ <∞.

4.6 Numerical test

In this section, we perform numerical experiments to study the behaviors of IRL1e1,

IRL1e2 and IRL1e3. All codes are written in Matlab, and the experiments are per-

formed in Matlab 2015b on a 64-bit PC with an Intel(R) Core(TM) i7-4790 CPU

(3.60GHz) and 32GB of RAM.

We consider the following log penalty regularized least squares problem [46]:

min Flog(x) :=
1

2
‖Ax− b‖2 +

n∑
i=1

(λ log(|xi|+ ε)− λ log ε) , (4.39)

where A ∈ Rm×n, b ∈ Rm, λ > 0, ε > 0. This is a special case of (4.1) with f

being the least squares loss function, C = Rn and φ(t) = λ log(t+ ε)− λ log ε. Thus,

we deduce from Theorem 4.3 that the sequence generated by IRL1e2 for a choice of

{θk} satisfying (4.14) clusters at a stationary point of (4.39). In addition, one can

check that the corresponding H1 and H3 are continuous subanalytic functions [37,

Section 6.6], and hence they are KL functions [13, Theorem 3.1]. Consequently, we

know from Theorem 4.2 (resp., Theorem 4.5) that if supk βk < 1 (resp., {θk} satisfies

(4.25)), then the whole sequence generated by IRL1e1 (resp., IRL1e3) converges to a

stationary point of (4.39).

In our experiments below, we compare IRL1e1, IRL1e2 and IRL1e3 with two other

state-of-the-art algorithms for solving (4.39): the general iterative shrinkage and

thresholding algorithm (GIST) [46] and an adaptation of the iteratively reweighted

`1 algorithm [56, Algorithm 7] with nonmonotone line-search (IRL1ls). We discuss

the implementation details of these algorithms below.

IRL1e1. For this algorithm, we set L = λmax(AAT ) and choose {βk} as in FISTA
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[10, 68] with both the adaptive and fixed restart schemes [70]:2

βk = θk(θ
−1
k−1 − 1) with θk+1 =

2

1 +
√

1 + 4/θ2
k

and θ0 = θ−1 = 1

and we reset θk−1 = θk = 1 every 200 iterations, or when
〈
yk−1 − xk, xk − xk−1

〉
> 0.

It is clear that supk βk < 1. We initialize this algorithm at the origin and terminate

it when

2L‖xk+1 − yk‖+ `‖xk+1 − xk‖
max {1, ‖xk+1‖}

< 10−4.

Notice from (4.8) that this termination criterion implies that dist (0, ∂F (xk+1)) 6

10−4 max
{

1, ‖xk+1‖
}

.

IRL1e2. For this algorithm, we set L = λmax(AAT ), and let θk be as in FISTA

[10, 68] for the first 50 iterations, i.e., θ0 = 1 and θk+1 = 2

1+
√

1+4/θ2k
for 0 6 k 6 48,

θ50 = θ49, and we update θk = θ99−k for 51 6 k 6 99 and set θk = θmod(k,100) for

k > 100. It can be verified with simple computation that this choice of {θk} satisfies

(4.14). We initialize the algorithm at the origin and terminate it when

L‖zk+1 − yk‖+ `‖xk − zk+1‖+ L‖xk+1 − yk‖
max {1, ‖zk+1‖}

< 10−4.

Observe from (4.22) that this termination criterion implies that dist (0, ∂F (zk+1)) 6

10−4 max
{

1, ‖zk+1‖
}

.

IRL1e3. For this algorithm, we set L = λmax(AAT ), and we generate a sequence

{ρk} as in FISTA in the first 57 iterations and fix it from then on, i.e., ρ0 = 1 and

ρk+1 =

{
2

1+
√

1+4/ρ2k
0 6 k 6 55,

ρ56 k > 56.

2 In our experiments, this quantity is computed in matlab with code lambda=norm(A*A’), when
m < 2000 and by opts.issym = 1; lambda = eigs(A*A’,1,’LM’,opts); otherwise.
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We then set θk = ρk+6 for all k ≥ 0. It can be verified that the above {θk} satisfies

(4.25) with γ = 0.95. We initialize the algorithm at the origin and terminate it when

2L‖xk+1 − yk‖+ `‖xk+1 − xk‖
max {1, ‖xk+1‖}

< 10−4.

Note from (4.35) that this termination criterion implies that dist (0, ∂F (xk+1)) 6

10−4 max
{

1, ‖xk+1‖
}

.

GIST. This algorithm was proposed in [46]; see also [98]. Following the notation

in [29, Appendix A, Algorithm 1], here we set c = 10−4, τ = 2,M = 4 and set L0
0 = 1

and

L0
k = min

{
108,max

{
‖A(xk − xk−1)‖2

‖xk − xk−1‖2
, 10−8

}}
(4.40)

for k > 1. Note that the subproblem in [29, Appendix A, (A.4)] now becomes

min
x∈Rn

{〈
AT (Axk − b), x− xk

〉
+
Lk
2
‖x− xk‖2 +

n∑
i=1

(λ log(|xi|+ ε)− λ log ε)

}

whose closed form solution can be found in [46]. We initialize the algorithm at the

origin and terminate it when

‖∇f(xk)−∇f(xk+1)‖+ Lk‖xk − xk+1‖
max {1, ‖xk+1‖}

< 10−4;

this condition implies that dist (0, ∂F (xk+1)) 6 10−4 max
{

1, ‖xk+1‖
}

.

IRL1ls. This algorithm is an adaptation of [56, Algorithm 7], which was originally

designed for solving (4.1) with φ(t) = λmin{p(ts − sq

q
) : 0 6 s 6 ( ε

λn
)
1
q } for some

p ∈ (0, 1), q = p
p−1

, λ > 0 and ε > 0. For ease of presentation, we present our

adaptation below in Algorithm 4.6. Its convergence can be proved by adapting the

convergence analysis of [56, Algorithm 7] and that of [98].
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Iteratively reweighted `1 algorithm with nonmonotone line-search for
(4.39) (IRL1ls)

Step 0. Let 0 < Lmin < Lmax, τ > 1 and c > 0 be given. Input an initial point
x0 and set k = 0.

Step 1. Choose L0
k ∈ [Lmin, Lmax] and set Lk = L0

k.

Step 2. Set

sk+1
i =

λ

|xki |+ ε
for i = 1, . . . , n;

xk+1 = arg min
y∈C

{〈
∇f(xk), y − xk

〉
+
Lk
2
‖y − xk‖2 +

n∑
i=1

sk+1
i |yi|

}
.

Step 3. If

Flog(xk+1) > max
[k−M ]+6s6k

Flog(xs)− c

2
‖xk+1 − xk‖2,

let Lk = τLk, and go to Step 2.

Step 4. If a termination criterion is not met, set k = k + 1 and go to Step 1.

For this algorithm, we let Lmin = 10−8, Lmax = 108, c = 10−4, τ = 2,M = 4 and

set L0
0 = 1 and for k > 1, we set L0

k as in (4.40). We initialize the algorithm at the

origin and terminate it when

‖∇f(xk)−∇f(xk+1)‖+ (Lk + `)‖xk − xk+1‖
max {1, ‖xk+1‖}

< 10−4.

From Step 2 in Algorithm 4.6, one can observe that this termination criterion implies

that dist (0, ∂F (xk+1)) 6 10−4 max
{

1, ‖xk+1‖
}

at termination.

We compare the above algorithms on random instances. We first generate an

m×n matrix A with i.i.d. standard Gaussian entries and then normalize this matrix

to have unit column norms. A subset T of size r = [m
9

] is then chosen uniformly

at random from {1, 2, 3, ..., n} and an r-sparse vector y ∈ Rm supported on T with

i.i.d. standard Gaussian entries is generated. We then set b = Ay + 0.01 · ω, where

ω ∈ Rm has i.i.d. standard Gaussian entries.
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In our experiments, we set (m,n) = (720i, 2560i), with i = 1, . . . , 10. We pick

λ = 5 × 10−4 in (4.39) and experiment with ε = 0.1 and 0.5. We present the

corresponding results in Tables 4.1 and 4.2, respectively, where we report the time

for computing λmax(ATA) (t0), the CPU times in seconds (time) and the function

values at termination (fval), averaged over 20 random instances. One can see that

our algorithms are usually faster than GIST and IRL1ls and return slightly better

function values at termination. Moreover, IRL1e1 and IRL1e3 are usually faster than

IRL1e2.
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Chapter 5

Conclusion

In this thesis, we introduced sparsity inducing models that are adopted in many

real-world problems such as compressed sensing and statistical problems. Then,

existing first-order methods including the proximal gradient method and the iter-

atively reweighted methods were introduced to solve those sparsity inducing mod-

els. Since the proximal gradient method can be slow in many cases as suggested

in [5, 10, 64–66, 68], extrapolation techniques were adapted for empirical and pos-

sible theoretical acceleration. However, there is not much existing work adapting

extrapolation techniques in the iteratively reweighted algorithms.

In this thesis, we incorporated three classical extrapolation techniques presented

in [6,10,53,68] into the iteratively reweighted `1 algorithm. The resulting algorithms

are named IRL1e1, IRL1e2 and IRL1e3 respectively and their convergence properties

under suitable assumptions on the extrapolation parameters were analyzed. When

analyzing IRL1e2, the global convergence of the sequence generated by IRL1e2 was

not established because of the failure of proving the distance from zero to the subdif-

ferential of the potential function we used there is bounded by the successive changes

of the generated sequence. On the other hand, global sequential convergence for

IRL1e1 and IRL1e3 was established under additional smoothness assumption on the

objective function and KL assumption on some suitable potential functions.
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In our experiments, we empirically compared IRL1e1, IRL1e2 and IRL1e3 with

GIST proposed in [46] and an adaptation of [56, Algorithm 7]. With properly chosen

parameters, we found that our algorithms with extrapolation techniques are slightly

faster than the other two without these techniques. We also applied our algorithms,

GIST proposed in [46] and an adaptation of [56, Algorithm 7] to other models with log

penalty function in (4.39) being replaced by the MCP function and SCAD function.

In those experiments, the iteratively algorithms, IRL1e1, IRL1e2 and IRL1e3 and an

adaptation of [56, Algorithm 7], did not perform as GIST in time or the ability of

recovery.
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