Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk




AN ENVIRONMENT FOR HIGH-LEVEL, GRAPH
ORIENTED PARALLEL PROGRAMMING

By
Fan Chan

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF PHILOSOPHY
AT
THE HONG KONG POLYTECHNIC UNIVERSITY
HUNG HOM, KOWLOON, HONG KONG
JANUARY 2004

@Pao Yue-kong Library
PolyU « Hong Kong



CERTIFICATE OF ORIGINALITY

[ hereby declare that this thesis is my own work and that, to the
best of my knowledge and belief, it reproduces no material previously
published or written nor material which has been accepted for the award
of any other degree or diploma, except where due acknowledgement has

been made in the text.

(Signed)

(Name of Student)
Fan Chan




Abstract

Parallel computing has been used as an important technique to speed up the com-
putations in many different application areas. It also brings benefits in other aspects
of performance, such as scalability and fault tolerance. However, programming with
parallelized programs is much harder than writing sequential programs. A parallel
program consists of multiple processes that cooperate to execute the program. There
are many issues that need to address, e.g. communication, synchronization, and load
balancing. Also, large-scale parallel applications are not easy to maintain. The ability
to develop parallel programs quickly and easily is becoming increasingly important to
many scientists and engineers. Therefore, there is a need for a high-level programming

models and tools to support the building of parallel applications.

In this thesis, a project is described which aims to provide support for the design
and programming of parallel applications in a multiprocessor and cluster environ-
ment. The project investigates the Graph-Oriented Programming (GOP) Model to
provide high-level abstractions for configuring and programming cooperative paral-

tel processes. Based on GOP, a software environment with various tools has been

it



v

developed.

Many parallel programs can be modelled as a group of tasks performing local
operations and coordinating with one another over a logical graph, which depicts the
architectural configuration and inter-task communication pattern of the application.
Most of the graphs are regular ones such as tree and mesh. Using a message-passing
library, such as PVM and MPI, the programmer needs to manually translate the
design-level graph model into its implementation using low-level primitives. With
the GOP model, such a graph metaphor is made explicit in the programming ievels
because GOP directly supports the graph construct. The programmer can configure
the structure of a parallel/distributed program by using a user-defined logical graph
and write the code for communication and synchronization using primitives defined
in terms of the graph. The GOP runtime has been implemented on MPI with the
enhancement on the communication support and high-level programming with the
Multiple Program Multiple Data (MPMD) model. It provides a high-level program-
ming abstraction (GOP library) for building parallel applications. Graph-oriented
primitives for communications, synchronization and configuration are perceived at
the programming-level and their implementation hides the programmer from the un-
derlying programming activities associated with accessing services through MPI. The
programmer can thus concentrate on the logical design of an application, ignoring

unnecessary low-level details.



We have also built a visual programming interface, called VisualGOP, for the
design, coding, and running of GOP programs. VisualGOP applies visual techniques
to provide the programmer with automated and intelligent assistance throughout the
program design and construction process. It provides a visual, graphical interface with
support for interactive graph drawing and editing, visual programming functions and
auntomation facilities for program mapping and execution. VisualGOP is a generic
programming environment independent of programming languages and platforms.
VisualGOP also addresses the issues on providing graph scalability and support for
interoperability by using XML representations of GOP entities and primitives so that

it can support the deployment and execution in different platforms.

FExample applications have been developed with the support of our GOP environ-
ment. It has been observed that the environment eases the expression of parallelism,
configuration, communication and coordination in building parallel applications. Se-
quential programming constructs blend smoothly and easily with parailel program-
ming constructs in GOP. Using the examples, we have conducted evaluations on how
GOP performs in comparison with the traditional MPI parallel programming model.

The results showed that GOP programs are as efficient as MPI programs.
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Chapter 1

Introduction

Traditional sequential programming techniques involve a single computer consisting
of a memory connected to a processor via a datapath. This kind of system has perfor-
mance issues when the program grows large and complex. Over the years a number of
architectural and programming innovations have addressed these issues. One of the
most important innovations is parallelism. Parallelism is a strategy for more quickly
performing the larger and complex tasks in parallel programs. It does this by breaking
tasks up into several smaller tasks, assigning these tasks to several workers/processors
to work on simultaneously, and coordinating the workers/processors. Parallelism can
be used in large applications such as building construction, large organizations, and
automobile manufacturing plants, but the creation of software for parallel and dis-
tributed systems is difficult and gxpensive [21], while existing software engineering
methods and tools are becoming less effective in the context of new distributed and

dynamic hardware features [31]. As a result, systems often contain faults which make
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programs difficult to maintain and enhance, and leads to systems which fail to scale
as workloads increase.

Many efforts have been made to make programming easier by providing high-level
abstractions and programming tools. One such tool supporting visual programming
of parallel and distributed systems is provided by graph-based programming environ-
ment. In graph-based programming environments a program is defined as a direcl;ed
graph where nodes denote computations and links denote communication and syn-
chronization between nodes [4]. Providing structured, high-level abstractions can
greatly simplify the programming task and reduce development times.

This thesis proposes a graph-oriented programming model (GOP), which is used
for the configuration and high-level programming of modular parallel/distributed sys-
tems {6, 9). With built-in support for a language-level, logical graph construct and
various operations on the graph, GOP provides an integrated approach to designing
. and programming parallel and distributed systems. Using GOP, it is possible to repre-
sent the configuration of the interacting processes of a parallel/distributed program,
as well as the physical network topology, as a user-specified logical graph mapped
onto the physical network topology. The programming of inter-process communi-
cation and synchronization is supported with the built-in primitives of graph-based

operations [7}. Through its mapping to the user-specified logical graph, GOP provides



a high-level view of the message-passing nature of the underlying hardware. This the-
‘sis uses the GOP model to address the problem of creating high-level programming
environments.

Subsequent sections will define some of the problems in developing parallel applica-
tions, discuss the approach that this research will take, and describe the organization

of this thesis.

1.1 Problem

The computing model supported by Message-Passing (MP) environments is both
simple and very general, and accommodates a wide variety of application program
structures. The programming interfaces are deliberately straightforward, thus per-
mitting simple program structures to be implemented in an intuitive manner, yet
programmers have encountered three major difficulties when using MP facilities to
develop parallel programs, especially for large-scale scientific and engineering comput-
ing applications. First, although the concept of the message-passing is quite simple,
communication and synchronization of the process of developing parallel applications
is not. MPI [45], PVM [24] and other MP interfaces are low-level but nonetheless
problematic programming tools. Their interfaces are simple but they require the

programmer to deal with low-level details. On the other hand, for non-professional
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programmers their functions are complicated and unwieldy. For example, when com-
- puting solutions to problems whose data forms a two dimensional matrix, or mesh, it
is natural for programmers to arrange each node to communicate with its immediate
neighbours in its row or column. When these problems are formulated as algorithms,
it is natural to specify the destination of each message in terms of the primary com-
pass directions, rather than using an abstract identifier bearing no logical resemblance
to the problem being solved. Yet low-level parallel primitives require such identifiers
and this makes the writing of real-world parallel applications tedious and error-prone.
A second difficulty when using MP facilities to develop parallel programs is the fact
that some traditional MP tools (i.e. MPI} does not allow problems to be expressed
in terms of the logical communication patterns [34] of a number of well-identified and
standard process topologies [36], including meshes, hypercubes, and trees. A third
problem is that MP applications often call for the process management of MP facil-
ities. This is a difficult task requiring special techniques and skills which, moreover,
differ between MP facilities. This requires programmers t.o rely on their experience,
quite often in an ad-hoc way.

Visual programming environments, i.e., systems with graphical user interfaces
which support a user in developing parallel programs, suffer from a problem which is
common to all large software systems; they are complex and time consuming to de-

velop. This is because parallel/distributed programming is much more complex than



programming in a sequential paradigm. Many functions such as parallel execution,
task mapping, interprocess communication, synchronization and reconfiguration are
quite hard to program [5, 50] and even where the programmer can produce a complete
application, the source code is subsequently difficult to maintain. Current supports
are provided with visual programming environment, but the environment still lack of

integrated programming and runtime support.

1.2 Contribution

'T'his thesis describes a high-level programming methodology. It is based on the graph-
orient programming (GOP)} model, which was originally proposed as an abstract
model for distributed programming (6, 9]. In applying GOP to parallel programming,
we have observed that many parallel programs can be modeled as a group of tasks
performing local operations and coordinating with one another over a logical graph.
The logical graph depicts the architectural configuration and inter-task communica-
tion pattern of the application, and most of them are of a regular pattern, e.g. tree
and mesh. Using a message-passing library, such as PVM and MPL the programmer
should use low-level primitives to manually translate the design-level graph model
into its implementation. In the GOP model, such a graph metaphor is made explicit
in the programming levels because GOP directly supports the graph construct. By

directly using the logical graph construct, the task of a parallel program is configured



as a logical graph and implemented by using a set of high-level operations defined
over the graph.

The results of this work are a set of tools, library and an environment for pro-
sramming in parallel systems. The tools allow a unified view of the graphical/textual
aspects of parallel programs and also a unified view of all the activity associated with
them at the user interface: program editing, mapping, compilation and execution.

More concretely, it is described as follows:

o ClusterGOP. This provides a high-level programming abstraction (GOP li-
brary) for building parallel applications on clusters. Graph-oriented primitives
for communications, synchronization and configuration are perceived at the
programming-level and their implementations hide the programmer from the
underlying programming activities associated with accessing services through
MPI. The programmer can thus concentrate on the logical design of an appli-
cation, ignoring unnecessary low-level details. ClusterGOP can also support
parallel software architecture. In ClusterGOP, the concept of software architec-
ture is reified as an explicit graph object, which provides a locus for addressing
architectural issues, separated from programming of the parallel tasks. Further-
more, the system architecture design can be simplified with the graph abstrac-
tion and predefined graph types. ClusterGOP system is portable to a variety

of operating systems as its implementation is based almost exclusively on calls



to MPI, a portable message-passing standard, and the ClusterGOP library, a

user-level library implemented on top of MPL

VisualGOP. This provides integrated graphical tools for creating, compiling,
and executing programs. Because it is by nature graphical, VisualGOP is at a
higher level of abstraction than GOP. Using the visual components provided by
VisualGOP, a programmer creates a graph-oriented parallel/distributed pro-
gram by visually constructing a graph, binding and specitying the local pro-
grams (LPs), and writing the code of the LPs for inter-process communication
and synchronization. To run the constructed program, the programmer can
compile the LPs and visually map them onto the physical processors in the
network environment. In this way, the programmer does not need to code the
textual specification of the graph construct and manage the mappings between

logical processes to the physical processors.

In this thesis, we focus on GOP’s abstraction in message-passing programming.
Readers are referred to [8] for GOP’s support for software architecture. Also,
the systemn developed and described in this thesis is not a compiler for a GOP
program. The system does, however, allow the programmer to specify the ex-
ecution of programs in a visual way, so that programmers can write, compile
and execute parallel programs within.the visual tool. The program design and

execution results will be shown on the visual tools. The programmer does not,



therefore, need to know the details of underlying system structure.

1.3 Organization of the Thesis

This thesis is divided into six chapters. Chapter 2, Background and Related Work,
shows that many high-level programming models and visual programming environ-
ments exist, and that these benefit from the ability of the tool to quickly produce
high-level programming support for them, making it much easier to develop software
and maintain parallel applications. This thesis also identifies previous research that
has addressed the problem of visual programming environments and previous work in
developing message-passing parallel programs. Chapter 3, The Graph-Oriented Mode!
and ClusterGOP, provides a detailed explanation of the GOP model and the way in
which parallel program are programmed with GOP. Chapter 4 describes VisualGOP,
a visual programming tool developed for supporting the design and coding of graph-
oriented parallel/distributed programs. Chapter 5, Implementation of ClusterGOP,
describes the design and the implementation of ClusterGOP, a high-level parallel pro-
gramming environment on clusters. Chapter 6, Frample Applications, provides two
detailed examples to show how ClusterGOP works with real-world applications and
their performance results. Finally in Conclusions and Future Work, we conclude our

project and outline the future work to enhance the construct.



Chapter 2

Background and Related Work

This chapter reviews the background and previous work germane to the system de-
scribed in this thesis. It first describes the background of parallel computing, the
most basic concept for designing and executing programs on parallel systems and
follows that with a description of the high-level programming model for supporting
the programming environment. Finally, we will examine some work that has been

done on graph-based visual languages and discuss different approaches.

2.1 Parallel Computing

There have been considerable advances in processor technology in the past decade.
Processor speeds have greatly increased and processors are now capable of executing
multiple instructions in the same cycle. Over the same period, a variety of other
issues have also become important. Concurrency provides multiplicity of datapaths,
increased access to storage elements, scalable performance, and lower the cost in the

9
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wide variety of parallel computing. Applications requiring high availability rely on
parallel and distributed platforms for redundancy. Desktop machines, workstations
and servers are now often equipped with several processors, and are connected to
create a common platform for design applications. Large scale applications rely on
larger configurations of parallel computers, often consisting of hundreds of proces-
sors. Database or web servers often use clusters of workstations that provide high
disk bandwidth. Graphic and visualization applications use multiple rendering pipes
and processing elements to compute and render realistic environments in real time.
It is very important, from the point of view of cost, performance, and application
requirements, to understand the principles, tools, and techniques for programming

the wide variety of paraliel platforms currently available.

2.1.1 Parallel Computing Applications

Parallel computing has made a large impact on areas from computational simulations
for scientific and engineering applications to commercial applications in data mining
and transaction processing. In this section, we classify the parallel applications in

different categories and present some examples.
Applications in Engineering and Design

Parallel computing has traditionally been employed with great success in the design

of airfoils, internal combustion engines, high-speed circuits, and structures. Recently,
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its use in the design of microelectromechanical and nanoelectromechanical systems
has attracted significant attention. Most of the applications in engineering and design
solve some problems related to physical phenomena that creates great challenges for
geometric modeling, mathematical modeling, and algorithm development, all of them
in the context of parallel computers.

Other applications in the engineering and design focus on optimization of a va,rietyl
of processors. Parallel computers have been used to solve a variety of discrete and con-
tinuous optimization problems. Algorithms such as Simplex, Interior Point Method

and Genetic programming have been efficiently parallelized and are frequently used.
Scientific Applications

The past few years have seen a revolution in high performance scientific computing
applications. The sequencing of the human genome by the International Human
Genome Sequencing Consortium and Celera, Inc. has opened exciting new frontiers
in bioinformatics. Analyzing biological sequences with a view to developing new drugs
and cures for diseases and medical conditions requires innovative algorithms as well
as large-scale computational power.

Advances in computational physics and chemistry have focused on understanding
processes ranging in scale from quantum phenomena to macromolecular structures.
These advances have resulted in design of new materials, understanding of chemical

pathways, and more efficient processes. Applications in astrophysics have explored



the evolution of galaxies, thermonuclear processes, and the analysis of extremely large
datasets from telescopes. Weather modeling, mineral prospecting, flood prediction,
etc., rely heavily on parallel computers and have very significant impact on day-to-day

life.
Commercial Applications

With the widespread use of the web and associated static and dynamic content,
there is an increasing emphasis on cost-effective servers capable of providing scalable
performance. Parallel platforms ranging from multiprocessors to Linux clusters are
frequently usec-l as web and database servers. For instance, on heavy volume days,
large brokerage houses on Wall Street handle hundreds of thousands of simultaneous
user sessions and millions of orders. Platforms such as [BMs SP supercomputers and
Sun Ultra HPC servers power these business-critical sites. While not highly visible,

some of the largest supercomputing networks are housed on Wall Street.
Applications in Computer Systems

As computer systems become more pervasive and computation spreads over the net-
work, parallel processing issues become engrained in a variety of applications. In
computer security, intrusion detection is an outstanding challenge. In the case of net-
work intrusion detection, data is collected at distributed sites and must be analyzed

rapidly for signaling intrusion. The infeasibility of collecting this data at a central
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location for analysis requires effective parallel and distributed algorithms. In the area
of cryptography, some of the most spectacular applications of Internet-based parallel
computing have focused on factoring extremely large integers.

While parallel computing has traditionally confined itself to platforms with well
behaved computer and network elements in which faults and errors do not play a
significant role, there are valuable lessons that extend to computations in ad-hoc,

mobile, or faulty environments.

2.1.2 Parallel Programming Models

When discussing parallel programming models, the parallel computing community
usually considers two models: message-passing and shared memory. In this section
we examine the features of these two models, and how these features affect the way

programs are written in parallel environments.
Message-Passing Paradigm

The message-passing paradigm is one of the oldest and most widely used approaches
for programming parallel computers. [ts root can be traced back in the early days of
parallel processing and its widespread adoption can be attributed to the fact that it
imposes minimal requirements on the underlying hardware. Five attributes charac-
terize the message-passing programming paradigm:

Multithreading: A message-passing program consists of multiple processes, each of
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which has its own thread of control and may execute a different program code. Both
control parallelism (MPMD, Multiple Program Multiple Data) and data parailelism
(SPMD, Single Program Multiple Data) are supported.

Asynchronous Parallelism: The processes of a message-passing program execute
asynchronously. Special operations, such as barrier and blocking communication, are
used to synchronize processes.

Separate Address Spaces: The processes of a parallel program reside in different
address spaces. Data variables in one process are not visible to other processes. Thus,
a process cannot read from or write to the variable of another process variables. The
processes interact by executing special message-passing operations.

Bxplicit Interactions: The programmer must resolve all the interaction issues, in-
cluding data mapping, communication, synchronization, and aggregation. The work-
load allocation is usually done through the owner-computer rule; i.e., the procesé that
owns a piece of data performs the computations associated with it.

Explicit Allocation: Both workload and data are explicitly allocated to the pro-
cesses by the user. To reduce design and coding complexity, the user often realizes
applications by writing SPMD programs using the single-code approach.

The following paragraphs describe the two public domain message-passing sys-
tems: the MPI and PVM. These two widely accepted systems are the product of

many years of work by researchers and users in academia, industry, and government



laboratories. Both systems have incorporated many useful features from previous
programming systems.

Message-Passing Interface (MPI): MPI is a standard specification for a library of
message-passing functions. MPI was developed by the MPI Forum, a broadly based
consortium of parallel computer vendors, library writers, and application specialists.
MPI achieves portability by providing a public-domain, platform»independent stan-
dard of message-passing library. MPI specifies this library in a language-independent
form, and.provides Fortran C and C+4- bindings. This specification does not contain
any feature that is specific to any particular vendor, operating system, or hardware.
For these reasons, MPI has gained wide acceptance in the parallel computing com-
munity. MPI has been implemented on IBM PCs on Windows, all main Unix work-
stations, Linux and all major paraliel computers. This means that a parallel program
written in standard C or Fortran, using MPI for message-passing, could run in cross
platform.

Parallel Virtual Machine (PVM): PVM is a self-contained, public-domain software
system that was originally designed to enable a network of heterogeneous Unix com-
puters to be used as a large-scale, message-passing parallel computer. As its popular-
ity grows, it has been ported to many parallel systems. The programming languages
supported include C, Fortran, and Java. With PVM, a user can construct a virtual

machine, a set of fully connected nodes. Each node can be any Unix computer, such
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as any sequential, vector, or parallel computer. The user can then dynamically create
and manage a number of processes to run on this virtual machine. PVM provides
library routines to support interprocess communication and other functions.
Comparison between MPI and PVM The main difference between PVM and MPI
is that PVM is a self-contained system while MPI (or more specifically, MPI-1) is
not. MPI relies on the underlying platform to provide process management and [/O
functions. These functions are included in PVM. On the other hand, MPI has more
powerful support for message-passing. MPI and PVM are evolving towards each
-other. For instance, MPI-2 added process management functions, while PVM now
has more collective communication functions. It will be beneficial to the parallel pro-
cessing community if PVM and MPI eventually merge into a single, standard library.
Moreover, a nice feature of the MPI design is that MPI provides powerful function-
ality based on four orthogonal concepts. Qne can learn these concepts individually,
knowing their combinations follow wgll—deﬁned semantic patterns. MPI provides more
that 200 functions, much more that PYM. Normally, MPI is easier to learn and use

than PVM.
Shared Memory

In shared memory architectures, communication is implicitly specified since some (or

all) of the memory is accessible to all the processors. Consequently, programming
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paradigms for shared memory machines focus on constructs for expressing concur-
rency and synchronization along with techniques for minimizing associated overheads.

However, parallel programming based on the shared memory model has not pro-
gressed as much as message-passing parallel programming. An indicator is the lack of
a widely accepted standard such as MPI or PVM for message-passing. The current
sttuation is that many shared memory programs are written in a platform-specific
language for multiprocessors. Such programs are not portable even among multi-
processors. Fortunately, there are also some platform-independent shared memory

programming models, such as Pthreads and OpenMP.

2.1.3 Cluster Computing

In the past, supercomputers were the only machines powerful enough to solve hard
problems in fields such as medical science, biology, space exploitation, natural sci-
ence, robotics, financial modeling, and the design of human-machine interfaces. The
progress of work will depends on the magnitude of computational performance t;he
systems are able to engage. Unfortunately, the market value of such extreme perfor-
mance systems appears to be, in the short term at least, well below that required to
justify industry investment in the development of these specialty-class supercomputer
architectures.

Fortunately, this conflict between the requirements for high performance and the

availability of resources needed to provide it is being addressed through an innovative
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synergy of some old ideas from the parallel computing community and some new low-
cost technologies from the consumer digital electronics industry. The legacy concepts
are the physical clustering of general purpose hardware resources and the abstract
message-passing model of distributed computing. The low cost computing capability
is derived from the mass market Commodity Off The Shelf (COTS) PC and local
networking industries. Together, these basic capabilities and founding principles,
which originally serving for very different purposes, have emerged as the new domain
of high performance: commodity cluster computing.

A cluster is a collection of complete computers (nodes) that are physically in-
terconnected using a high-performance network or a Local Area Network (LAN).
Typically, each computer node is an Symmetrical Multiprocessor (SMP) server, or
a. workstation, or a personal computer. All cluster nodes must be able to work to-
gether collectively as a single, integrated computing resource in addition to filling the
conventional role in which each node is used interactively by individual users.

Five architectural concepts are merged into a cluster as an interconnected set of
whole computers (nodes) that work collectively as a single system to provide uninter-
rupted (availability) and efficient {performance) services. A conceptual architecture

of a cluster is shown in Figure 2.1.
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Figure 2.1: Typical architecture of a cluster of multiple computers

Benefits of Clusters

Clusters allow recycle use of computer: hardware and software technologies that were
developed for broad application to mainstream commercial and consumer markets
can also operate in the clustering environment. Both networks of workstations and
Beowulf-class PC clusters were possible because they required no expensive or long-
term development projects prior to their initial end use. Such early systems were
far from perfect but they were usable. The cluster systems have price-performance
advantages over contemporary supercomputers. More than that, the rapid rate of
improvement in PC microprocessor performance and advances in local area networks
has led to systems capable of tens or even hundreds of Gigaflops performance while

retaining exceptional price-performance benefits.
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Commodity clusters permit a flexibility of configuration not ordinarily encoun-
tered through conventional Massively Parallel Processor (MPP) systems. Number of
nodes, memory capacity per node, number of processors per node, and interconnect
topology are all parameters of system structure that, due to custom configurability,
may be specified in fine detail on a per system basis without incurring additional cost.
Further, the system structure may easily be modified or augmented over time as need
and opportunity dictates without the loss of prior investment. This expanded contro!l
over the system structure not only benefits the end user buf the system vendor as
well, yielding a wide array of system capabilities and cost tradeoffs to better meet
customer demands. Commodity clusters also permit rapid response to technology
improvements. As new devices including processors, memory, disks, and networks
become available, they are most likely to be integrated into desktop or server nodes
most quickly allowing clusters to be the first class of parallel systems to benefit from
such advances. The same is true of benefits incurred through constantly improv-
ing price-performance trends in delivered technology. Commodity clusters are best
able to track technology improvements and respond most rapidly to new component

offerings.



2.2 High-Level Programming Support

Writing parallel/distributed programs overwhelms many programmers due to the dif-
ficulty of explicitly expressing communication and synchronization among the com-
putations. The ability to develop parallel programs quickly and easily is becoming
increasingly important to many programmers. A high-level programming model facil-
itates the building of large-scale applications, and bridges the semantic gap between
the application and the parallel machines. It also facilitates code reuse, reduces code
complexity, and abstracts away low-level details necessary to achieve performance on
a particular architecture. The current models for ﬁessage—passing are too low-level
to achieve this objective. Although we cannot expect parallel programming to be-
come as easy as sequential programming, we can avoid unnecessary difficulties by
using appropriate tools. Many efforts have been made to make programming easier
by providing high-level abstractions, programming tools, etc. In the next section, we

will describe the models which use high-level approaches.

2.2.1 High-Level Programming Tools

Ensemble [16, 17, 18] supports the design and implementation of message-passing
applications (applied to MPI and PVM), particularly MPMD and those demanding
irregular or partially regular process topologies. Also, the applications are built by

composing modular message-passing components. Ensemble divided the software



architecture into two layers: the Abstract Design and Implementation (AD&I), which
is the responsibility of the programmer, and the Architecture Specific Implementation
(ASI), e.g. MPI implementation, which is generated from the AD&T and transparent
to the developer. AD&I consists of three well-separated implementation parts: virtual
components, symbolic topologies, and resource allocation. Virtual components are the
implementation abstractions of a MP program. For example, they provide abstract
names and abstract roots for collective calls and abstract point-to-point interaction.
They also use "ports” to replace the MPI argument types (context, rank and message
tag). Symbolic topology is an abstraction of a process topology, which specifies the
number of processes required from each component, each process’s interface and its
interaction with other processes. Resource allocation is the mapping of processes, as
well as the location of source, executable, input and output files in the underlying
environment.

We compare Ensemble and GOP in four aspects. Firstly, the i)rogramming moclel
of Ensemble and GOP are different. Ensemble is mainly for abstract programming
design of the application. Instead of compiling the programs directly, Ensemble uses a
tool to generate the abstract parallel programs into pure MPI code, and then compiles
the code into modular MPI components. In GOP, the programmer can use the high-
level GOP API to develop parallel applications. Then the parallel programs and the

GOP library will be compiled together to form executable programs and run. GOP
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also includes a runtime system to help the graph update and synchronization, so that
the graph topology for communication can be changed during runtime. The program
is static, so the topology for communication cannot be changed easily. Secondly, GOP
and Ensemble have similar features in the application programming. Abstraction is
used for referring the node names, node groups and communicating edges. Thirdly,
GOP has a flexible mapping strategy which provides automatic and manual mapping,
but in Ensemble mapping can be done only manually. The last difference is that the
GOP syntax is iﬁdependent of MPI, which provides a high-level abstraction library
for programming parallel applications. The Programmer can design the GOP appli-
cation without need to know any low-level syntax of MPI. However, the programming
structure of Ensemble is a mixture of MPI and its syntax. Therefore, the programmer
needs to learn the new architecture design of Ensemble and also the usage of MPI
comrmunication routines.

Some systems integrate message passing with other parallel paradigms, such as
the data parallel approach, to enhance the programming support and take advan-
tages of different paradigms. The Nanothreads Programming Model (NPM) {26] is
a programming model for shared memory multiprocessors. The NPM can integrate
with MPI, used on distributed memory systems. The runtime system is based on a
multilevel design that supports both the models (NPM and MPI) individually but of-

fers the capability to combine their advantages. Existing MPI codes can be executed



without any changes and codes for shared memory machines can be used directly,
while the concurrent use of both models is easy. The major feature of the NPM
runtime system is portability, as it is based exclusively on calls to MPI and Nth-
lib, a user-level threads library that has been ported to several operating systems.
The runtime system supports the hybrid-programming model (MPI + OpenMP) [29].
Moreover, it extends the API and the multiprogramming functionality of the NPM
on clusters of multiprocessors and can support an extension of the OpenMP standard
on distributed memory multiprocessors.

There are similarities and differences between NPM and GOP. The two models
are similar in that they both have their own API to support high-level program-
ming design. This overcomes the inadequate support of the low-level library routines
that are included in the MPI, providing a more efficient and easy way to design-and
manage the application. The two models differ in that although they can both sepa-
rate the application intp a number of smaller parts, they have different programming
structures. NPM decompose the application into fine-grain tasks and executed in
a dynamic multi-programmed environment. The parallelizing compiler analyzes the
source program in order to produce an intermediate representation, called the Hier-
archical Task Graph. The graph is used for the mapping of user tasks to the p.hysica,l
processors on runtime. The model allows one or several user-level ready queues to

contain the ready tasks that are waiting for execution. When a processor finishes its



current tasl, it picks up the next task from the ready queue. Processors continuously
pick up tasks from the ready queue until the program terminates. In GOP, the graph
is used for several purposes, not only for mapping, and nodes in the user-defined graph
are representing different processes. Programmers can write graph-oriented programs
to be bound to the nodes and then map the nodes into the physical processors. Since
the mapping is one-to-one, programmers can map manually or let the system do it
automatically. Before the application executes, they can review their design and the
mapping information.

Another example is Global Arrays (GA) [41] which allows programmers to easily
express data parallelism in a single, global address space. GA provides an efficient
and portable shared-memory programming interface for parallel computers. The use
of GA allows the programmer to program as if all the processors have access to the
same data in shared memory.

There are some high-level MPMD languages (e.g. Mentat [25], C++ [12] and
Fortran-M (22]) and runtime systems (e.g. Nexus [23]}, which support combination
of dynamic task creation, load balancing, global name space, concurrency, and hetero-
geneity. Due to the need for crossing program domains, for asynchronously detecting
incoming communication, and for potentially spawning new threads, the communi-
cation overheads in these systems are often prohibitively high for a multi-computer

system. In these systems, programming platforms based on an SPMD model (e.g.
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Split-C [19] and CRL {32]) have a significant performance advantage over MPMD-
based ones and are preferred for parallel application development. However, there
exists MPMD systems (e.g. MPRC {14, 13]) using RPC as the primary communica-

tion abstraction which produce good results compared with the SPMD model.

2.2.2 XML Support for High-level Programming Environ-

ment

XML (eXtended Markup Language) [3] is a popular and a widely accepted standard
description language for data interchange. The central idea of XML is to allow users
to create any documents of their preferred structures and share with other people.
This opens a way for different types of document structures to be created to facilitate
communications for various professional domains.

There are some research for graph description languages, such as GraphXML [27]
and GXL [28], based on the rich features of XML. Both GraphXML and GXL provide
interchange formats for graph drawing and information visualization applications,
with provisions for extension. We propose an extension to GraphXML to suit the
systems like VisualGOP for graph-based parallel and distributed programming, and
call the GOP-XML. GOP-XML includes the specification for processor configuration,
LP definition, various edge and node attributes, etc. Each graph in GOP-XML can

be represented as an XML document.
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2.3 Visual Programming Environment

Support for visual programming of parallel and distributed systems is provided by
graph-based programming environments, in which a program is defined as a directed
graph where nodes denote computations and links denote communication and syn-
chronization between nodes [4]. Directed-graph program representations are used to
specify multiple threads of control, to display and expose parallel structure, and to ex-
press communication and synchronization which are separated from the specification

‘of sequential computations in individual LPs.

2.3.1 Graph-Based Visual Languages

In the past decade, a number of visual programming environments have been devel-
oped [49, 33, 39, 40, 44, 48, 50, 51]. HeNCE [1, 51] is an X-windows based software
environment for developing parallel programs that run on a network of computers.
To develop a HeNCE application, a programmer first expresses the sequential com-
putations in a standard language and then specifies how they are to be decomposed
into a parallel program. Based on a parallel programming paradigm where an ap-
plication program is described on a graph, HeNCE provides the programmer with a
high-level abstraction for specifying parallelism. CODE .[33, 38} is a visual environ-
ment similar to HeNCE. It is a graphical, re-targetable parallel programming system.

The programmer writes parallel programs by drawing a graph which represents the



relationships between the various units of computation. The structure of the graph
captures major elements of the parallel structure of the program. The graph serves
as a template which is used as a framework for creating dynamic structures aft run-
time. Both HeNCE and CODE facilitate a compositional approach to programming.
Sequential units of computation are composed to form a parallel program where de-
pendencies are specified by means of arcs of the directed graph [5]. VDCE [48] is
based on a dataflow programming paradigm. The software architecture consists of
three parts: Application Editor, Abplication Scheduler, and VDCE Runtime Sys-
tem. VDCE provides an efficient mechanism to execute large-scale applications on
distributed and diverse platforms. Importantly, in HeNCE, CODE and VDCE, the
nodes represent sequential computations in which communications with other nodes
occur only at the beginning and end of the computation [4]. The dependencies are
mainly based on data-flow, so the computations are forced to be split into separate
processes when communications occur. Overcoming this problem, Phred [2] makes
an attempt to combine dataflow and control flow at the same level of abstraction as
HeNCE and CODE. Neither of these formalisms provides sufficient information on the
spatial distribution of processes. By explicitly specifying processes with both dataflow
and control flow, PCG (Process Communication Graph) [46] used in the Vispe.r dis-
tributed programming environment [47], which adapts the Space-Time Diagram to

visualize the design phase of message-passing programs. [ts levels of abstraction range
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from groups of processes, processes commuunication and synchronization, to sequential
program blocks. The PCG environment, however, lacks the support for graph-based
operations and validation capability. In terms of the programming model and func-
tionality, systems closer to VisualGOP include VERDI [44], the Software Architect’s
Assistant [40], and GRADE {33]. VERDI is a visual environment for Raddle [20]. 1t
provides a visual language used for describing the system control flow. VERDI has a
graphical editor that allows a designer to represent the design graphically using icons.
[t can also execute a design using data that are either supplied by the programmer or
generated internaily. The designer can examine the functionality of the design during
execution through VERDI’s animation feature or through the data produced, or even
through a combination of both features. The Software Architect’s Assistant is a visual
programming environment for the design and development of Regis [37]. Facilities
provided include the integrated graphical and textual views, a flexible mechanism for
recording design information and the autqmatic generation of program code and for-
matted reports from design diagrams. The focus of the Assistant is on program design
and construction. There is no management of network resources such as processor
mapping. GRADE is a high-level, integrated programming environment for PVM
based program development. [t provides a graphical user interface through which
the programmer can access tools to construct, execute, debug, monitor, and visualize

PVM parallel programs. GRADE also provides high-level graphical programming
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abstraction mechanisms to construct parallel applications. Same as the Assistant,

GRADE does not provide support for mapping of parallel processes to processors.

2.4 Summary

This chapter describes three threads of research towards developing parallel pro-
gramming environments. Some previous works has been done on supporting parallel
programming and graph visualization. The next chapter describes the graph-oriented
programming approach and the high-level programming support in clusters. Chap-
ter 4 provides a detailed description of the high—-level supporting tool, VisualGOP, for

programmer to program in the parallel environment.



Chapter 3

Graph-Oriented Model and
ClusterGOP

In this chapter, we first introduce the GOP model for high-level programming of
parallel applications. We then describe the ClusterGOP system, including the Clus-
terGOP API and discuss the enhancement to MPI provided by GOP. Finally, we use
two examples to illustrate how ClusterGOP enhances the high-level programming

support in parallel environment.

3.1 The Graph-Oriented Programming Model

In the GOP model, a parallel program is defined as a collection of LPs that may
execute on several processors. Parallelism is expressed through explicit creation of
LPs and communication between LPs is solely via message-passing. GOP allows

programmers to write parallel programs based on user-specified graphs, which can

31
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serve the purpose of naming, grouping and configuring LPs. It can also be used
as the underlying structure for implementing uniform message-passing and LP co-

ordination mechanisms.

Local programs D I:j D

Logical graph
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Network

g
)T -
-
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Figure 3.1: The GOP conceptual model

The key elements of GOP are a logical graph construct to be associated with the
LPs of a parallel program and their relationships, and a collection of functions defined
in terms of the graph and invoked by messages traversing the graph. As shown in

Figure 3.1, the GOP mode! consists of the following:

e A logical graph whose nodes are associated with LPs, and whose edges define

the relationships between the LPs.

e An LP-to-Node mapping, which allows the programmer to bind LPs to specific

nodes.

e An optional nodes-to-processors mapping, which allows the programmer to ex-

pliéitly specify the mapping of the logical graph to the underlying network of
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processors. When the mapping specification is omitted, a default mapping will

be performed.
e A library of language-level graph-oriented programming primitives.

GOP programs are conceptually sequential but are augmented with primitives for
binding LPs to nodes in a graph, with the implementation of graph-oriented inter-
node communications completely hidden from the programmer. The programmer
defines variables of the graph construct in a program and then creates an instance of
the construct. Once the local context for the graph instance is set up, communication
and coordination of LP’s can be implemented by invoking operations defined on the
specified graph. The sequential code of LLPs can be written using any programming
language such as C, C++ and Java.

A graph-oriented parallel program is defined as a logical graph, G (N, E), where N
is a finite set of nodes and E is a ﬁnit-e set of edges. Ilach edge of the graph links a pair
of nodes in N. A graph is directed if each edge is unidirectional. A graph is labeled
if every edge is associated with a label [9]. A graph is associated with a parallel
program, which consists of a collection of LPs bound to the nodes with the messages
that pass along the edges of the graph. Edges denote the interaction relationship
between LPs. The graph can represent a logical structure that is independent of the
real structure of a parallel system. Such a parallel system can be used to reflect the

properties of the underlying system. For example, the label on each edge may denote
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the cost or delay in sending a message from one site to another site within the system.

A GOP program consists of a collection of LPs, which are built using the graph
construct, and a main program. A graph construct consists of a directed conceptual
graph, an LP-to-Node mapping, and an optional Node-to-Processor mapping. The
programmer can create an instance of a graph construct using the following three

steps:
e Step 1: Graph tempiate declaration and instantiation

A Graph is a template for a logical graph describing the logical relationships between
LPs. [t instantiates a graph instance and associates a name with the instance. The
structure of a Graph is a general type of logical graph, which is described as a list
of nodes connected with edges. It is defined as follows in Backus-Naur Form.

< Graph-template> = Graph Graph-name ‘=" {{<set-of-nodes>}, {<list-of-
edges>}} | |

<set-of-nodes> = <range-of-nodes> | <node-list>

<range-of-nodes> = <node_no>..<node_no>

<node-list> 1= <node-list>, <node_no> | <node_no>

<list-of-edges> 1= <list-of-edges>, {node_no, node_no}| e

A Graph is the type identifier denoting the definition of a graph construct. The
Graph-name is an identifier of a graph construct. The node_no is an integer identifier

of a node.
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s Step 2: Mapping in GOP

Map LPs to the conceptual nodes of a graph and the nodes to the underlying proces-
sors. The LP-to-Node mapping is defined as a set of {node_no, LP_no) pairs.
<LN-mapping> 1= LNMAP LN-map-name ‘=" {<node-lp-pair>}

<node-lp-pair> 1= <node-lp-pair>, {<node_no>, <LP no>}| e

LNMAP is the type identifier of an LP-to-Node mapping. LN-map-name is
the name of a mapping instance. The LP named in LP_no is mapped to the node
identified by node_no.

The Node-to-Processor mapping is optional in the graph construct, which is spec-
ified by a set of (node_no, processor_no) pairs, in a similar form to the LP-to-Node
mapping.

<NP-mapping> := NPMAP NP-map-name ‘=" {<node-processor-pair>}

<node-processor-pair> 1= <node-processor-pair>, { <node.no>,
<processor-no>} | e

NPMAP is the type identifier of a Node-to-Processor mapping. NP-map-name
is the name of a mapping instance. The node named in node_no is mapped to the

processor identified by processor.no.

e Step 3: Graph construct binding

Given the declaration of a graph construct and its mappings, a graph instance can be
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created by binding the mappings to the graph. The routine CreateGraph is used
for this purpose.

CreateGraph ( Graph-name, LN-map-name, NP-map-name, Graph-instance-name);

Graph-instance-name is the identifier of a file that specifies all of the information
about the newly created instance. This information is useful in establishing the
operating context for the LPs. LN-map-name is the name of an LP-to-Node mapping
and NP-map-name is the name of a Node-to-Processor mapping.

Programming based on a graph-oriented model includes creating the graph con-
struct and writing program codes for the LPs using the graph primitives. GOP allows
the programmer to exploit the semantics of the graph construct to deal with various
aspects of parallel programming. The graph primitives define operations on a user-
specified graph including communication and synchronization. These operations can
be used to pass messages from one node to other nodes in the graph without knowing
the .low-level details such as absolute naming, addressing and routing. In this way,
the programmer is saved from the burden of writing dedicated program codes for
implementing task mapping and message-passing, and can concentrate on designing

the structure and the logic of the parallel program instead.
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3.2 ClusterGOP System Structure

It is important to note that the GOP model is independent of any particular language
and platform. It can be implemented as library routines incorporated in familiar
sequential languages and integrated with different programming platforms. In this
thesis, however we present an implementation of the GOP framework on MPI, called
ClusterGOP.

The ClusterGOP software environment is illustrated in Figure 3.2. The top layer
is a visual programming environment. It supports the design and construction of
parallel program. It has a highly visual and interactive user interface, and provides a
framework in which the design and coding of ClusterGOP program, and the associated
information can be viewed and modified easily and quickly. It also facilitates the
compilation, mapping, and execution of programs (see Chapter 4}.

A set of ClusterGOP API is provided for the programmer to use in parallel pro-
gramming, so that the programmer can build application based on the ClusterGOP
model, ignoring the details of low-level operations and concentrating on the logic of
the parallel program. The ClusterGOP library provides a collection of routines imple-
menting the ClusterGOP APIL The goal in the ClusterGOP library implementation
is to minimize the package overhead by introducing a minimum number of services
with a very simple functionality.

The runtime system is responsible for compiling the application, maintaining
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structure, and executing the application. The target machine contains two runtimes.

The first runtime is the ClusterGOP runtime, a background process that provides

graph deployment, update, query and synchronization. When deploying and updat-

ing the graph, it will block other machines in order to further update the graph and

synchronize the graph update on all machines. The second runtime is the MPI run-

time, which provides a complete set of parallel programming library for the Cluster-

GOP implementation. ClusterGOP uses MPI as the low-level parallel programming

facility so that processes can communicate efficiently.
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3.3 The ClusterGOP Library

The implementation of ClusterGOP applications is through wrapping functions (Clus-
terGOP library) to native MP1 software. In general, ClusterGOP API adheres closely
to MPI standards. However, the ClusterGOP library simplifies the API by providing
operations that automatically perform some MPI routines. It also allows argument
list to be simplified relative to the MPI programs.

For message passing, ClusterGOP provides a set of routines to enable graph-
oriented point-to-point a.nd-collective communications {(in both blocking and non-
blocking modes). In this layout, the ClusterGOP‘ system follows the MPI standard,
but it is simpler and the implementation is specifically designed for the graph-oriented
framework. For example, we use node ID instead of process ID to represent different
processes, so the LP bound to a node can be replaced without affecting other LPs.
ClusterGOP also hides the complexity of low-level addressing, communication, as well
as initializing processes from the programmer.

ClusterGOP provides programmers with three types of communication and syn-

chronization primitives:
e Point-to-Point Communication

o Collective Communication

e Synchronization
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Point-to-point Communication consists of a process that sends a message and another
process which receives the message - a send/receive pair. These two operations are
very important as well as being the most frequently used operations. To implement
optimal parallel applications, it is essential to have a model that accurately reflects
the characteristics of these basic operations. Collective Communication refers to
message passing routines involving a group (collection) of processes. Sometimes, one
wishes to gather data from one or more processes and share this data among all
participating processes. At other times, one may wish to distribute data from one or
more processes to a specific group of processes. In ClusterGOP API, there is another
type of collection communication primitive which provides the operations using the
parent and child relationships. It is used for finding the parent or child nodes, and
then broadcast the data to all the corresponding nodes. Finally, Synchronization
operations are provided to support the synchronization of processes.

The following is the list of ClusterGOP communication and synchronization prim-
itives:

Point-to-point Communication primitives:

/* sending unicast message */

MsgHandle Usend(Graph g, Node n, Msg msg, CommMode m)

/* receiving unicast message */

MsgHandle Urecv{(Graph g, Node n, Msg msg)

/* send message to parent nodes */

MsgHandle SendToParent{Graph g, Msg msg, CommMode m)

/* receive message from pareant nodes */



MsgHandle RecvFromParent{Graph g, Msg msg)

/* send message to children nodes +/

MsgHandle SendToChildren{Graph g, Msg msg, CommMode m)

/* receive message from children nodes */

MsgHandle RecvFromChildren(Graph g, Msg msg)

Collective Communication primitives:

/* sending multicast message */

MsgHandle Msend(Graph g, NodeGroup ng, Msg msg, CommMode m};

/* receiving multicast message */

MsgHandle Mrecv(Graph g, NodeGroup ng, Msg msg);

/* s collect data ffom all nodes in the NodeGroup +/

MsgHandle Gather{Graph g, NodeGroup ng, Msg msg, Node s};

/* s distribute data to all nodes in the NodeGroup */

MsgHandle Scatter(Graph g, NodeGroup ng, Msg msg, Node s);

/+ data collection in all nodes in the NodeGroup */

MsgHandle Allgather{(Graph g, NodeGroup ng, Msg msg);

/* data distribution in all nodes in the NodeGroup*/

MsgHandle Alltoall{Graph g, NodeGroup ng, Msg msg);

/* reduce data to s from all nodes in the NodeGroup */

MsgHandle Reduce(Graph g, NodeGroup ng, Msg wmsg, Node s);

/+ data reduction in all nodes in the NodeGroup */

MsgHandle Allreduce{Graph g, NodeGroup ng, Msg msg);

Synchronization:

/#* 3ynchronize all nodes in the graph =/

void barrier(Graph g};

/* Synchronize this node with all (other) nodes in the NodeGroup. */

void barrier{(Graph g, NodeGroup ng):

/* Check if the msg(s) arrived. =/
Boolean isArrived{(Graph, MsgHandle handle};
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The signatures of the above methods all follow one pattern, in which the first
argument represents the specified logical graph, used for defining the scope of process
communication. The communication target can be either a single node (Node) or a
group of nodes (NodeGroup}. Unlike MPI, ClusterGOP. hides the message contents,
type and tag by embedding them inside the Msg datatype. ClusterGOP API thus uses
fewer arguments than MPI. This reduces the complexity of using the API routines
and makes program maintenance easier.

ClusterGOP also provides a set of operations to duery the information about nodes
and edges in the graph. The corresponding ClusterGOP API is listed below:

Query primitives:

/+ get the edge from start node and end node %/

Edge GetEdge{Graph, Node start, Node end);

/* get the end node from edge */
Node GetNode{(Graph, Edge edge);

This query information can. be generated during the running of the application.
Programmers can use thle query information in comrmunication. For example, when
programmers want to find the neighbor node connected with the current node, they
can use the routine GetNode to retrieve the node name of a connected edge. Pro-
gramming in this way helps programmers dynamically assign the node names in the
communication procedures, without specifying static node names in the LP code.
Therefore it helps programmers design the LP structure freely, and produces a more

readable code for software maintenance.
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In ClusterGOP, we use a NodeGroup to represent a group of processes, providing
the same functionality as the MPT communicator. NodeGroup helps the programmer
to write code for group communications. A NodeGroup consists of the member pro-
cesses. Each process in the group can invoke group communication operations such as
collective communications (gather, scatter, etc). NodeGroup hides the programming
details that are used for constructing the NodeGroup in the MPMD programs so that
the programmer can concentrate on programming the nodes’ tasks. As a result, tﬁe
program is easier to understand.

As shown below, NodeGroup has simple APIs that are easy to use. In forming a
group, the programmer first forms a task group, assigns a name to the group, and

then adds nodes to or removes nodes from the NodeGroup.

/* create the NodeGroup from a list of nodes */

NodeGroup InitNodeGroup (Graph gname, char* group_name, Nodel] nodelist);

/* add one node to the NodeGroup */
int AddNode {NodeGroup +*ng, Node s};

/+ remove one node from the NodeGroup */

int RemoveNode (NodeGroup *ng, Node s);

/* clear all nodes in the NodeGroup */

void ClearNodeGroup (NodeGroup *ng);
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3.4 Programming in the ClusterGOP Environment

This section shows the advantage of using the ClusterGOP environment to develop
parallel applications. We demonstrate this with two example, comparing the dif-
ferences between programming in ClusterGOP and MPI. ClusterGOP can support
both SPMD and MPMD program structures. In our examples, we first use an SPMD
program, Finite Difference Method (FDM), to compare more clearly the differences
between ClusterGOP and MPI programming. Then, we use another programming
example, parallel matrix multiplication, to show that ClusterGOP support high-level

MPMD programming.

3.4.1 SPMD Programming Example

In our first example, we use a popular scientific program to illustrate how Cluster-
GOP supports higher level message-passing parallel programming. The FDM is an
approach to obtaining an approximate solution to a partial differential equation gov-
erning the behavior of a physical system. The method imposes a regular grid on the
physical domain. It then approximates the derivative of an unknown value u at a
grid point (x, v} using the values of adjacent grid points. Consider a specific partial
differential equation- Laplace equation, the approximation uij to the exact solt-:tion

u(x;, y;) on the grid satisfies the equation

1 o
Usj = Z(qu,j + Uiy b Ut i), 45 =0, N -1 (3.4.1)
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Equation (3.4.1) shows that the value of u at any point is affected by four adjacent
elements. Given the initial value, the value of u at any point can be approximated

by iteration

0 _ 1o 1)

( ) (k—1) (k-1)
17 4( i+1,5 +u

u,; P tJ+1 +u t]—l)

until the predefined accuracy is reached.

When solving the problem on p processors, the grid will be partitioned into p
sections. The grid can be decomposed in different ways. Here, a two-dimensional
- partition is used that generates a coarser grid. Figure 3.3 shows the grid partitions
for 4 processors. Figure 3.3(a) is the partition on 4 processors. Figure 3.3(b) is the
program graph of the FDM derived from this partition. The program graph has the
coarse-grid topology correspondent to the physical topology of the grid. The entry
and exit nodes are omitted in the program graph because they are dispensable to
expressing the problem.

When programming in ClusterGOP, LPs can be implemented using common pro-
gramming languages such as C, C++ or Java. In this example, we use the C language
to write the application. The LP structure is similar to that of a MPI program, but
ClusterGOP provides a simple statement to hide the details from the programmer.
In each ClusterGOP program, the code starts with the routine Init and ends with

the routine Finalize:

Init(arge, argv); ... ... Finalize();
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Figure 3.3: Grid partitions for 4 processors

Between routines Init and Finalize, the programmer writes code for the appli-
cation. ClusterGOP communication primitives are used for processes to communicate
with each other in the parallel environment. The routine Usend is used for commu-
nication in the example. It defines a unicast message-passing primitive, delivering
a message from the current node to another node in synchronous or asynchronous
sending mode. In calling the sending and receiving routines, ClusterGOP runtime
resolves the node’s process 1D automatically. Here is the example of the message-

passing routine Update Boundary Condition in the FDM:

Update_Boundary _Condition{ double **solution_array, int mrow, int mcol, int k) {
int 1i;
Msg msgl, msg2, msg3, msgd;
if (k%L2==0){ /* even numbered processes «/
/+ -- The message template is generated by VisualGOP -- #/
msgl = createMsg{&(solution_array(mrow] [t]), mcol, DOUBLE, 0);
msg2 = createMsg{&(solution_array [0][1}), mcol, DOUBLE, O);
msg3 = createMsg(&(solution_array £1]1[1}), mcol, DOUBLE, 1};
msgd = createMsg{&{solution_array [mrow+1][1]), mcel, DOUBLE, 1};
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Usend(ggraph, GetNode(ggraph, "right"), msgl, ASYN);
Urecv{ggraph, GetNode{ggraph, “left"), msg2);
Usend{ggraph, GetNode{ggraph, “left"), msg3, ASYN);
Urecv{ggraph, GetNode{ggraph, "right"), msgd):

e
else { /* odd numbered processes */
Urecv{ggraph, GetNede(ggraph, "left"), msg2);
Usend{ggraph, GetNode(ggraph, "right"), msgl, ASYN);
Urecv{ggraph, GetNede{ggraph, "right"), msgd);
Usend(ggraph, GetNode(ggraph, “left"}, msg3, ASYN
}

/* -- The message template is generated by VisualGQOP -- =/
- msgl = createMsg(&sbuf_up, mrow, DOUBLE, 2);
msgZ = createMsg{&rbuf_down, mrow, DOUBLE, 2);
msg3 = createMsg(&sbuf_down, mrow, DOUBLE, 3};
msg4 = createMsg(&rbuf_up, mrow, DOUBLE, 3};

it (k% 2==0) /% even numbered processes */
Usend (ggraph, GetNode(ggraph, "up"), msgl, ASYN);
Urecv{ggraph, GetNode(ggraph, "down"), msg2);
Usend(ggraph, GetMNode(ggraph, “down"), msg3, ASYN);
Urecv(ggraph, GetNode{ggraph, “up"}, msgd);

}
else /* odd numbered processes */
{
Urecv(ggraph, CetNode{ggraph, "down"), msg2);
UIsend (ggraph, GetNode{ggraph, "up®}, msgl, ASYN);
Urecv{ggraph, GetNede{ggraph, "up"}, msgd);
Usend{ggraph, GetNode{ggraph, "down"}, msg3, ASYN);
}

In contrast, in MPI, each process must provide the static process ID for commu-
nication during the program compilation. As a result, the programmer is required
to write the extra routine neighbors to calculate the processor IDs of neighbors for

each node:

neighbors{int pid, int *left, int *right, int *up, int +down, int



total_p_num} {

int g, r, ¢, prec_col, i=0, j;:

proc_col = 1;
for ( j=1; j<=c; j++) /+ calculate the column size of the grid */

proc_col *= 2;

if ( pidiproc_col == 0 ) /* the first column in the grid =/
{
*left = -1; /+* tells MPI not to perform send/recv +/

*right = pid+l;

}
else if ( pidiproc_col == proc_col-1 ) /+ the last column */
{
*left = pid-1;
*right = -1; /* tells MPI not to perform send/recv +/
}
else
{
*left = pid-1;
sright = pid+1;
}
if ( proc_col == total_p_num) /% no rows in the grid s/
{
*p = -1,
*down = -1;
}
else if { pid < proc_cel } /% the first row +/
{
*up = pid+proc_col; /+ tells MPI not to perform send/recv #/
*down = -1; /* tells MPI not to perform send/recv +/
H
else if ( pid »= total_p_num-proc_cel ) /+ the last row */
{
wup = -1; /* tells MPI not to perform send/recv */
+down = pid-proc_col;
}
else
{

¥up = pid+proc_col;

*down = pid-proc_cel;



Update_Boundary_Condition ( double ** solution_array, int mrow,
int meol, int k, int left, int right, int up, int down ) {
MPI_Status status;
int i;
if (k%4 2==0){ /* even numbered processes */
MPT_Send(&(solution_arrayl[mrow] [1]), mcol, MPI_DOUBLE, right, O, MPI_COMM_WORLD):
MPI_Recv(&({solution_array[0] [1]), mcol, MPI_DOUBLE, left, O, MPI_COMM_WDRLD,
rstatus);
MPI_Send(&(solution_array{1][i)), mcol, MPI_DOUBLE, left, 1, MPI_COMM_WORLD);
MPI_Recv(&(solution_array{mrow+1][1}), mcol, MPI_DOUBLE, right, 1, MPI_COMM_WORLD,

kstatus);

}

else { /* odd numbered processes */
MPI_Recv(&(sclution_array[0](1]), mcol, MPI_DOUBLE, left, {, MPI_COMM_WORLD,

kstatus);
MPI_Send (k(solution_array[mrowl (1]}, mcol, MPI_DOUBLE, right, O, MPI_COMM_WORLD};
MPI_Recv(&(solution_array[mrow+1]1{1]), mcol, MPI_DOUBLE, right, 1, MPI_COMM_WORLD,
Eatatus);

MPI_Send(&(solution_array[11[1]), mcol, MPI_DOUBLE, left, 1, MPI_COMM_WORLD);

1

if (k% 2==0) /* even numbered processes «/

{
MPI_Send{sbuf_up, mrow, MPI_DOUBLE, up, 2, MPI_COMM_WORLD);
MPI_Recv(rbuf _down, mrow, MPI_DOUBLE, down, 2, MPI_COMM_WORLD, &status);
MPI_Send(sbuf_down, mrow, MPI_DOUBLE, down, 3, MPI_COMM_WORLD):
MPI_Recv(rbuf_up, mrow, MPI_DOUBLE, up, 3, MPI_COMM_WORLD, &status};

¥

else /+ odd numbered processes */

{
MPI_Recv(rbuf down, mrow, MPI_DOUBLE, down, 2, MPI_COMM_WORLD, Xstatus);
MPI_Send({sbuf _up, mrow, MPI_DOUBLE, up, 2, MPI_COMM_WORLD);
MPI_Recv(rbuf_up, mrow, MPI_DOUBLE, up, 3, MPI_COMM_WORLD, &status);
MPI_Send{(sbuf_down, mrow, MPI_DQUBLE, down, 3, MPI_COMM_WORLD);

}

49

Note that the communicator and status arguments of the MPI API are eliminated
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in the ClusterGOP API and that the VisualGOP, which will be described in the next
chapter, hides the message details from the programmer unless the programmer is
required to modify them explicitly. This makes programming in ClusterGOP simpler

and more Hexible.

3.4.2 MPMD Programming Example
In this example, we consider the problem of developing a library to compute'C =
AxB, where A | B and C are dense matrices of size NxN (e.g., see Eq. 3.4.2).

N—1

Cij = Z A’ik * Bkj (342)
k=0

Figure 3.4: Parallel matrix multiplication structure
As shown in Figure 3.4, 3x3 mesh is defined. Besides NxN nodes in the mesh,
there is an additional node, named master, which is connected to all the nodes

of the mesh. There are two types of programs in this example: distributor and
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calculator. There is only one instance of distributor, which is associated with
the "master” node. Each mesh node (nodel to node®) is associated with an instance
of calculator. The distributor program first decomposes the matrices A and B
into blocks, whose sizes are determined by the mesh’s dimension. [t then distributes
the blocks to the nodes on the left most column (nodel, node4, and node7) and the
nodes on the bottom rows {nodel, node2, node3), respectively. Each calculator
receives a block of matrix A and matrix B from its left edge and bottom edge, and
also propagates the block along its right edge and top edge. After data distribution,_
each calculator calculates the partial product and sends it back to the distributor.
The distributor assembles all the partial products and displays the final result.
The programmer has support by VisualGOP and ClusterGOP in building this

application:

o Data distribution. In writing the code for "distributor”, the programmer must
decompose the matrix A and B into blocks. Instead of writing the code man-
ually, the programmer can select the data distribution option in VisualGOP.
VisualGOP automatically generates the distributed object by using the API

provided by GA toolkit.

o MPMD representation. In MPI, the SPMD version of the program needs to
calculate the rank D of the destination node. The MPMD program written in

ClusterGOP, however, can be separated into tasks and each node is associates
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with an independent program source. In ClusterGOP, the function GetNode
returns the destination node by the edge, so that the program is not required
to calculate the rank ID. The code structure is simplified and programmers can
have a clear view of the application logic. The following code segments show

the difterence between the MPI SPMD and the ClusterGOP MPMD programs.

/* MPL SPMD program #/

/* MPI needs to get the msg tag and size before receiving the msg */
MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, kstatus);
rcv_nid = status.MPI_SOURCE;

MPI_Probe(MPI_ANY SOURCE, MPT_ANY_TAG, MPI_COMM_WORLD, &status);
rcv_nid = status.MPI_SOURCE;
tag = status.MPI_TAG;
MPI_Get_count(&status, MPI_INT, Zaum);
MPI_Recv(buf, num, MPI_INT, rcv_nid, tag, MPI_COMM_WORLD, &status});
if{tag<1000) { /+ Matrix A& =/
... /* processing received data */
if(nid % msize != 0)
MPI_Send(buf, num, MPI_INT, nid+l, tag, MPI_COMM_WORLD);
}
else { /« Matrix B «/
. /+ processing received data */
if({int) (nid-1)/msize '= msize-1)
MPI_Send(buf, num, MPI_INT, nid+msize, tag, MPI_COMM_WORLD);

}
/# ClusterGOP MPMD program cn nodel =/
for{i=0; i<2; i++){
Urecv{ggraph, GOP_ANY NODE, msgl);
if (cag<l000){ /+ HMatrix A */
... /* processing received data */
Usend{ggraph, GetNode(“rightnl"), msgl, ASYN);
}
else { /+ Matrix B */
. /% processing received data +/

Usend{ggraph, GetNode("top edge"), msgl, ASYN};

}
/* ClusterGOP MPMD program on node® */

for{i=0; i<2; i++){



Urecv(ggraph, GOP_ANY_NODE, msgl);
if (tag<1000){ /« Matrix A */
... /% processing received data */
}
else { /+ Matrix B */

. /* processing received data */

ClusterGOP provides a GOP library, which is higher level than MPT library, for
programmer to build parallel applications. The library contains Graph-oriented prim-
itives (ClusterGOP API) for programmers to write programs for parallel programs
and the implementations hide the programmer from the underlying MPI programming
details. Programmers can thus concentrate on the logical design of an application,
ignoring unnecessary low-level details. In the program design, the programmer does
not require to remember or use the process ID of destination node. Instead of using
process 1D, ClusterGOP provides nodes with names which are more easy to identify
the nodes in the application. Also, the destination node can be dynamically generated
by querying the logical graph (i.e. parent nodes/child nodes), so that the program-
mer is not required to write a routine to calculate the destination node or assign a
fixed process ID into the send/receive functions. This facilities the design process of

parallel applications.



3.5 Summary

ClusterGOP provides several high-level features to support message-passing program-
ming in a parallel computing environment. A user-defined graph helps in better
understanding and programming the parallel structure of the program code. The
programmer is not required to understand the syntax and other low-level details of
the underlying MP1 message-passing system. The ClusterGOP APIs can help to hide
the implementation details, and support for Node-to-Processor and L.P-to-Node map-
ping can greatly help the programmer deploy the application and manage the system
resources. The next chapter will continue our examples in working with VisualGOP,
which provides a visual and interactive user interface for programmer to design their

parallel application.



Chapter 4

VisualGOP

This chapter provides a detailed description of ViéualGOP which provides support for
developing graph-oriented parallel programs. We first discuss the framework design
of VisualGOP, then we continue to describe our program examples in the previous
chapter, to show how VisualGOP supports the visual programming design. We first
describe how to construct the logical graph using tools in Visual GOP, and then ex-
amines program e-diting feature. After that, we describe the mapping procedure for
programmefs to do the LP-to-Node and the Node-to-Processor mapping. Finally, we
discuss the remote compile and execution features in VisualGOP. In later sections,
we talk about other salient features in VisualGOP, such as cousistency check, graph

scaling support, automatic mapping, and the interpretability.
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4.1 The Architecture and Framework

This section introduces the overall architecture and the visual programming frame-
work of VisualGOP. VisualGOP consists of the following major components:

Logical graph construction. This is a component provided for constructing a GOP
program using graphical aids. The graphical aids are used to represent the logical
program structure from a visual perspective. VisualGOP allows the manipulation of
graph structures in both graphical aﬁd textual (XML-based) forms and can transform

from one form to the other.

o [P editing tool. This tool is used to edit the program source of LPs in a GOP

program.

o Network resource management. This component provides programmers with
control over networking resource management. It facilitates the mapping of LPs
to graph nodes and the mapping of graph nodes to processors. It also allows

programmers to access information about the status of the network elements.

o Compilation tool. This tool is used for transforming the diagrammatic repre-

sentations and GOP Primitives into the target machine codes for execution.

These components are organized to form the architecture of VisualGOP, as shown

in Figure 4.1. They are divided into two levels: the visual level and the non-visual
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level. Each part has its own data storage and communicates with the other through
a shared, common data structure.

The visual level components present, the design views, which are controlled by a
visual graph design editor and a text program editor, and provide the mapping and
deployment tools, which are accessed through a mapping panel and a processor panel.

Figure 4.2 shows a screen dump of the main visual interface of VisualGOP.
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The non-visual level contains components responsible for maintaining a represen-
tation for GOP program design and deployment information. This representation is
kept in memory when program design takes place and is later stored in a file, in either
a format internal to VisualGOP or in an XML format. This level also contains the
distributed Remote Execution Manager, which makes use of the stored information

to execute the constructed GOP program on a given platform.
Using VisualGOP

When programming in VisualGOP, the programmer starts program development with
building a highly abstracted design and then transforms the design successively into
an increasingly more detailed solution. More specifically, VisualGOP separates the
program design and configuration (i.e., the definition of the logical graph) from the
implementation of the program components (i.e., the coding of the LPs). This dis-
tinction features a form of design which helps in reconfiguring the program structure
independent, of LP coding.

The visual programming process under VisualGOP consists of the following iter-

ative stages:

e Specify the logical graph representing the configuration of a parallel program.
The logical graph consists of a set of nodes representing LPs and a set of edges
representing the interactions between the LPs in the program. The graph design

editor is used by the programmer to visually create and represent the logical
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Figure 4.2: The main screen of VisualGOP

graph.

e Create LPs of tﬁe parallel program and map them to the nodes in the logical
graph. There are two ways to do this. One way is to create the LPs first and
then bind them to the graph nodes. Another way is to combine the two steps
into one - click on a node of the graph to open the text editor by which the

code of the LP mapped to the node can be entered.

o Map the nodes of the graph to the processors of the underlying network. The
Mapping panel of Visual GOP displays the GOP program elements (nodes, pro-

cessors, LPs) in a hierarchical tree structure. LPs, nodes and processors can be
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added to and deleted from the panel. The programmer can use drag-and-drop
to bind and unbind the LPs to graph nodes and the graph nodes to processors.
A node’s detailed binding information can be viewed by selecting and clicking
the node. The Processor panel provides icons for displaying processors and their
connections. When a processor is added, a new processor icon will appear on
the panel. For Node-to-Processor mapping, the panel also provides the drag
and drop fgnction to bind and unbind graph nodes to one of the processors in

the panel.

e Compile the LPs and ezecute the application. When the programmer needs
to deploy the program to other platforms, VisualGOP will first distribute the
graph information, LP source files, and the network information to the target
machines. Source files are then compiled on the target machines. Finally, the
constructed GOP programs are executed on the specified processors. Outputs

will be digplayed on the VisualGOP.

The following sections (Section 4.2 - 4.4) describe the basic features which are
supported by VisualGOP. The demonstration uses the SPMD and MPMD examples

in the previous chapter.
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4.2 Program Construction

Graphical Programming

VisualGOP uses the graph abstraction method to represent parallel programs. It
divides a parallel program into several LPs and defines their interactions. Each graph
node can be allocated on a processor in a parallel system and then the LPs can be
assigned to the nodes. As LPs are finally located on parallel processors, interactive
behaviors describe the message-passing mechanism that is performed betweep parallel
Processors.

A graph-is constructed in VisualGOP as a structure containing data types for
describing a conceptual graph. First, an appropriate logical graph of the parallel
application should be well designed. Based on the design, programmers can use the
Graph Editing Panel to draw the graph, which will be translated to the textual form.
The Graph Iditing Panel displays the graphical construction view of VisualGOP,
and this is where all of the editing of the program’s logical graph structure takes
place. Controls are provided for drawing the graph components within this panel.
These controls include functions for adding nodes, subgraph nodes, and edges, as
well as for moving nodes. We use our previous SPMD example to demonstrate the
graph construction. Figure 4.3 shows how nodes can be added to the graph by simply
clicking the add-node button in the Graph Construction Toél. FEdges can be added

between two nodes by joining the source and the destination nodes. Like the program



graph of FDM, we create four nodes and link the nodes with edges.
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Figure 4.3: Logical graph for 4 processors in VisualGOP

A visual component (node or edge) can be manipulated directly on the screen
when constructing a program. VisualGOP has one or more display areas, each de-
picting certain properties of the visual component. Properties of a visual class can
be represented visually, such as a button or a pull-down menu. The associated panel,
the Mapping Panel, presents the graph component properties in a simple tree style.
The component is classified into one of three categories: node, processor and LP.
Each component shows its properties in the program, and the mapping relationship

that it belongs to. It is updated automatically whenever the program structure is
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modified in the Graph Editing Panel. Tt is useful not only as an indicator of the over-
all program structure, but also as a navigational aid for browsing the different parts
of the system. Navigation is assisted by highlighting the part of the tree diagram
that corresponds to the component being displayed in the Graph Editing Panel. Due
to the fixed screen size, only a limited number of visual components can be viewed
and operated on the screen. It is desirable for programmers to hide the information
that is not currently needed, and to show as many objects as they want to view and

operate.
LP Code Editing

The Code Editing Panel (program editor) is one of the key components of the Visu-
alGOP and it serves programmers in several tasks and different contexts. The editor
is used to define data (program sources) attached to VisualGOP graph components.
Each node of a program is displayed and edited within an appropriate edit dialog.
Programmers interact with the editor through input devices that are uniformly inter-
preted by the editor according to the context of the action.

The program editor provides consistency check so as to prevent the creation of
graph semantic errors. For example, the programmer is not allowed to make incorrect
connections, such as between a node and a non-existent node. To assist the program-
mer with graph p.rogramming, the editor has features to ensure that newly created or

modified node or edge names are correct within the logical graph structure. Further
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details of consistency check are discussed in Section 4.5. VisualGOP also provides dif-
ferent sets of LPs for mapping a node to the program source. There are two methods

to invoke the program editor:

1. Start editing a new program source.

2. Invoke the mapped LP by double click on the node.
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Figure 4.4: Editing the LP

To edit a new program, the programmer starts the program editor from the Map-
ping Panel {(see Figure 4.4). In our SPMD example, the programmer use the C
language to write an LPs, the LP_FDM, which calculates and submits the values and

then collects the values from the neighbor nodes. On the other hand, the programmer
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Figure 4.5: Loading and Creating LPs

can load the existing program source into the program editor (see Figure 4.5). After

that, the new LP will bind to the node automatically.
Generation of GOP Primitives

The GOP model provides high-level abstractions for programming parallel applica-
tions, easing the expression of parallelism, configuration, communication and coor-
dination by directly supporting logical graph operations (GOP primitives). [n Visu-
alGOP, programmers are provided with a variety of abstractions that are useful in
coding parallel programs. By using the basic GOP primitives, the programmers do not
need to know much detail about the low-level communication mechanism; they only
need to know the usage of the selected GOP primitive. In the Code Editing .Panel,
GOP primitives can be automatically generated from visual icons. As described in

Chapter 3, the primitives can be categorized into several groups: Communication,
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Query, Sub-graph generation and Graph Update. Programmers can generate GOP

primitives via two methods:
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Figure 4.6: The GOP Primitive Menu

1. Adding the GOP Primitives from the program editor’s menu directly (see Fig-

ure 4.6).

2. Dragging and dropping the node into the program editor to update the node

parameter (see Figure 4.7).

After we have created the logical graph and LPs, we need to bind the LPs to the
nodes. We also need to setup a processor list for binding the nodes to the processors,
so that the LPs can be bound to processors and their processes can communicate
through the GOP system. In the next section, we describe the steps to build up the

mappings in VisualGOP.
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Figure 4.7: Manipulating graph nodes directly

4.3 Two-Step Mappings

An important task in implementing GOP is to manage the mapping of LPs to the
nodes of a logical graph (LP-to-Node Mapping), and the mapping of the graph nodes
to the underlying network processors (Node-to-Processor Mapping). LPs must be
bound to the nodes of a logical graph for naming, configuration, and communica-
tion purposes. When the Node-to-Processor is mapped, the solution to the problem
is straightforward if the programmer specifies the mapping. Otherwise, the GOP
system Should provide support for task allocation in order to make efficient use of
system resources and/or to speed up the computations. Once mapped, the graph
node has all this required information (by Node-to-Processor Mapping) such as IP

address/hostname, compiler path, etc.
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4.3.1 An Example of Mapping

In our MPMD example of parallel matrix, we have one master node and nine nodes
connected with edges, as shown in Figure 4.8. Although the application is designed
using MPMD style, there are still some programs must be shared with the same pro-
gram source {e.g. nodel, node2, node4 and node5). VisualGOP provides the mapping
interface that programmers can use for managing the program source mapping, so

that they need not worry about the complex task of resource management.
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Figure 4.8: Diagram for the parallel matrix multiplication

When the programmer selects the status of a specific node, an LP can be chosen
from the node property’s pull-down menu. After the selection, the LP is mapped to

that node (See Figure 4.9). The mapping can also be carried out by dragging and
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dropping the node into one of the processors in the Processor Panel. Let us define
a map of the MPMD example, named M1, which defines the relationships between
the graph nodes and the LPs. In the map, there are several types of LPs: the
distributor, which receives and distributes the data, and the calculator, which
calculate and submit their own partial data to the distributor and receive data
from the neighbor nodes and from the distributor. Our definition of M1 is (given
in the C language, where LV-MAP is the corresponding map data type):

LV-MAP M1 =

{ {0, “distributor”}, {1, “calculatorA”}, {2, “calculatorA”}, {3, “calculatorB”},
{4, “calculatorA”}, {5, “calculatorA”}, {6, “calculatorB”}, {7, “calculatorC”}, {8,
“calculatorC”}, {9, “calculatorD”} }

In the same way, the programmer can specify a mapping M2 of the graph nodes
onto the processors. It is assumed in VisualGOP that each node will be eXECLlFed
on a different processor. For example, an LP on processor A sends a message to
another LP on processor B. The message passes from one platform to another, so the
Node-to-Processor mapping must perform such a task.

The Processor Panel displays information about processor availability. If it is
currently assigned, the relevant node is indicated. The whole application is run using
parallel processors. Programmers can manually choose which processor runs each of

the LPs or this can be assigned by VisualGOP automatically. With the aid of the
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Processor Panel the node is mapped onto the target processor.
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The mapping of the node onto the target processor is carried out in two steps.

First, the programmer has to configure the target processor in the processor config-

uration dialog (see Figure 4.10). Inside the dialog, the programmer can specify the

new identify name, IP address or hostname (currently only supported for one proces-

sor per machine). Second, the node is mapped onto the configured processor, either

manually or automatically. In the manual mode, the programmer clicks on a node

in the node property and specifies the name of the target processor. The automatic

mode will be discussed in Section 4.7.

The final step of building an application is to compile the LPs and to execute it.
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We will show how VisualGOP support the features in the next section.

4.4 Remote Compilation and Execution

VisualGOP supports automatic code generation, which generates the compiled ma-
chine code and starts execution remotely. The code generator recognizes the LP’s
implementation language type and assigns the corresponding remote compitation and
execution procedures to the LP, which will be compiled and executed automatically.
Using this technique, code generation of VisualGOP would be simple, high-level and
a single programming environment could generate the parallel program code used for
a wide variety of systems. Figure 4.12 shows the process of automatic code genera-
tion for C and Java languages. Remote controlled programs installed on the target
machines are listening for remote requests. When VisualGOP submits the requests
for remote compilation or execution, a connection is established between VisualGOP

and the remote machine.
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Figure 4.12: Automatic code generation framework

When the programmer selects the remote compile option within a node, a selection



dialog (see Figure 4.13) is provided for the programmer to select the processor to be
used as the target for compiling the program source for execution. The machine’s
name is the same as that of the processor that the programmer specified in the Graph
Panel. After a processor is selected, the program source is ready for compilation.
The programmer is only required to input the command argument which is used for
compiling or executing the LP on the target machine (see Figure 4.14). After that,
the remote compilation and execution will be done automatically. The execution
option is similar to setting up the compilation option. After the programmer selects
the processor to run the application, the results can be viewed in the window of a

VisualGOP dialog (see Figure 4.15).
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Figure 4.14: Dialog for entering the compile argument
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Figure 4.15: Dialog for returning the remote command result

The remaining sections in this chapter show all other features that are supported
by VisualGOP. Programmers can use the features to enhance the program design and

the programming efficiency.

4.5 Consistency Check

Program editors can automatically check the consistency of program code by using
the graph structure specified by the programmer. When the programmer opens the
Code Editing Panel, the automatic consistency checking module also starts up, as
shown in the flow chart of Figure 4.16. While the programmer is editing the program
source, the editor submits the current code statement to the program code parser.
Then, the parser finds the supported GOP primitives and its parameters, stores them
in a variable array called the Function Parameter Array. After that, the parser gets

the current editing node’s name from the Graph Structure (an internal VisualGOP



R

structure). Based on the NxN matrix truth table, the parser can find the parent nodes
of any child node and store the result in the Valid Node Array. By comparing the
Function Parameter Array and the Valid Node Array, the consistency checking system
can determine whether the parameters in the GOP primitives contain the valid parent
or child node name. If the parameter is found to be invalid, the corresponding part
of the program code will be highlighted to i_ndicate that the parameter is inconsistent,
with the graph structure. Then, the programmer is expected to notice the problem
and correct the parameter value.

Figure 4.17 shows active screen of the Participant in the program editor, using
in this example the GOP primitive Usend. Usend defines a unicast message-passing
primitive, delivering a message from the current node to another node. The second
parameter of Usend accepts a node variable or value. When the parameter is detected
invalidated by the program editor, it will be highlighted in color. If the parameter is a
variable (i.e., a reference value), it will be underlined, and the corresponding variable
value will be found throughout the program source automatically.

When the programmer clicks on the invalid parameter value, a list of valid values
will pop up, allowing the programmer to select the correct node name (see Fig-
ure 4.18). If the selected parameter is a static string, the program editor updafes the
string directly. Otherwise, program editor will try to find out the actual value of the

selected variable, and update it with the valid node value.
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To correct the invalid node value, the programmer can update the value by draggin
and dropping the node into the GOP primitive. In Figure 4.19, the programmer
has two options (node4 or master) for updating the parameter. By providing the
programmer with automated. intelligent assistance throughout the software design
process, VisualGOP creates a flexible programming environment and eliminates most

of the mundane clerical tasks.
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Figure 4.19: Updating GOP primitive parameter through the Graph Editing Panel

4.6 Graph Scaling

When the programmer needs to create a realistic graphical representation for parallel

application, a task graph should be defined as an abstraction of program structure. In
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addition, it should be highly scalable so as to be adaptable to parameters such as the
size of the problem and number of processors. Owr graph scaling approach is based
on Task Interaction Graph (TIG) [30, 43| by which the graph scaling algorithms and
the graph mapping strategy will be implemented. In graph scaling, the nodes in the
graph can be decomposed or merged, and the edges are reconstructed based on the
original graph strgcture to produce a new task graph to match the parameters. TIG
provides a concise topology to describe process-level computation and communication.
It has flexible structure for graph scaling. Graph scaling can be carried out in two
modes, expansion and compression. If the number of parallel tasks is less than the
required problem size or the number of processors, the graph is expanded to generate
more tasks. On the other hand, if the number of parallel tasks is greater than the
problem size, the graph is compressed so that it includes fewer nodes, although this
is a rare situation in a task graph. Also, if the number of parallel tasks is greater
than the available processors, the graph may be compressed. This approach has been
implemented and described in detail in another paper [10]. For our example of FDM,
we use a mesh structure (see Figure 4.20) for the basic pattern of the task graph, so
that the application is scalable.

VisualGOP will ask for the graph pattern, \:\fhich is required for the basic gréph of
the application. This example uses the mesh tree template {see Figure 4.21). When

editing the LPs, we use a GOP primitive that can generate the node name from the



ofeset:::

{al Original 2xZ mesh (&) Expanded 254 mesh (<) Expanded 3+ mesh

Oo—0—0C—0

(dy Ex4 wiesh

Figure 4.20: Graph expansion for mesh structure

neighbor edge, so that it is not necessary to enter the static node name into the
program source. The LPs can use one copy of thé source program and easy to design
and maintain when the application grows large. After that, VisualGOP require the
programmer to input the processor number, VisualGOP will choose graph expansion
if the available processor number is larger than the graph node number, otherwise
the graph compression is used. The programmer can also make a preview on the

expanded or compressed graph, for accepting or rejecting the changes.
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Figure 4.21: Graph Template for the Basic Graph Diagram

Another example of graph scaling uses the tree pattern for graph expansion. The
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tree in Figure 4.22(a) can be expanded in two directions. It can be expanded in
breadth as shown in Figure 4.22(b), in which all expanded nodes are attached to the
root, and it can be expanded in depth, in which case the functional nodes spawn

children beneath as shown in Figure 4.22(c
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Figure 4.22: Graph expansion for tree structure
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Figure 4.23: Array assignment program in VisualGOP

In this simple example, the master task initiates N number of worker tasks. It
then distributes an equal portion of an array to each worker’s task. Each worker’s
task receives its portion of the array, and performs a simple value assignment to each

of its element. The value assigned to each element is simply that element’s index
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in the array+1. Each worker’'s task then sends its portion of the array back to the
master task. VisualGOP allows the programmer to expand the graph using breadth-
oriented expansion (see Figure 4.23). The array distribution is not affected since the
programmer can program the code to calculate the array assignment according to the

number of processors (or the number of processes running in the environment).

4.7 Automatic Mapping

After the program design, the programmer can either choose the LP-to-Node mapping
manually or automatically. In SPMD model, all the nodes share the same copy of
the program, so the mapping is simple. In the MPMD model, each node may work
on different tasks. The programmer can choose a set of rules to automatically map
the LP-to-Node. There are rules for classifying the LP into different groups, e.g., a
range of node IDs, similar node names, and node types. Finally, a task graph will be
mapped to processors. Each processor is responsible for executing a node in the task
graph; i.e., there is a one-to-one correspondence between a processor and a node.
Programmers can also choose a mapping policy for the nodes-to-processors map-
ping. Using the mapping policy, the system binds nodes to the processors automati-
cally. This simplifies the mapping process and helps programmers to assign thé most

useful/powerful processors to the more important LPs.

e Map Processors Sequentially. When we use this simple mapping algorithm, we



assume that process nodes are mapped to processors in their listed order, This
means that the first node in the node list is matched with the first processor
in the processor list, and all the others follow this simple matching order. Pro-
grammers can take advantage of this if they write the programs in the order of
their relative importance, starting from the core program followed sequentially

by the smaller components of the parallel application.
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Figure 4.24: Mapping Index Table

e Map Processors by Priority. Unlike the mapping algorithm described above,
this mapping algorithm calculates different priorities between the processors
and the nodes. The processor power index and the node weighting have ‘to be
specified by the programmer. This index number, in both cases, indicates the
relative priority; a larger value indicates a higher priority. This indication of

relative priority allows the most powerful nodes and processors to be matched



(see Figure 4.24).

4.8 Interpretability

Representations of Graph and program configuration represented in the VisualGOP
system require to be exchanged across different GOP platforms. To enable interop-
erability between the different tools performing various tasks on various platforms,
a standard representation is required for the exchange of the GOP program design
between different systems. Other benefits of the standard textual representation of
logical graphs include that such structured or semi-structured graph and program
representation may be transformed into any other data representation schemes au-
tomatically, and can also be easily understood by a human reader. ClusterGOP
implements the interface so that the GOP program design can be accessed by Cluster
nodes without any problems.

Figure 4.25 illustrates the layered ar(.:hitecture of GOP-XML. GOP-XML is com-
posed of two layers, the Programming Layer and the Mediation Layer. The result
L.Ps, graph representations and program configurations are deployed to the target
machines. The GOP-XML Wrapper is a module for extracting data from each pro-
gramming resource and converting into an XML hle. Mediator in the mediation layer

is a module for programming resource integration. The mediator controls the wrapper
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and distributes the program sources to the target machines. The mediator is writ-
ten using DOM [52]. The DOM specification defines the Document Object Model,
a platform and language neutral interface that will allow programs and scripts to
dynamically access and update the content, structure and style of documents. The
Document. Ob jec;t Model provides a standard set of objects for representing HT'ML
and XML documents, a standard model of hpw these objects can be combined, and
a standard interface for accessing and manipulating them. Therefore, programmers
_are not required to know how the mediator works and can concentrate on designing

the application.
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Figure 4.25: Layered Architecture or GOP-XML
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4.8.1 Mediator

When the programmer needs to compile or execute the application, a GOP-XML
document will be transferred to the corresponding processors. VisualGOP has been
developed based on Java so it is portable to many platforms. For the GOP-XML,
we use the Java API for XML Processing (JAXP) to makes it easy to process XML
data in VisualGOP. JAXP leverages the parser sténdards SAX (Simple API for XML
| Parsing) and DOM (Document Object Model) so that the programmer is supported
to parse the data as a stream of events or to build a tree-structured representation of

t.
4.8.2 Wrapper

The main function of Wrapper is to translate the programming details into XML
data format. Wrapper is composed of Query Processor, DOM Parser and Result
Translator. The role of Query Processor is receiving the request from the DOM
structure, resolving the processor and the LP information. The DOM Parser retrieves
the items from the GOP DOM structure, which includes the graph representation
and mapping relationship. Result Translator in Wrapper coordinates all the result
as XML format. After generating the result with XML format, Wrapper vaiidates

results against the XML syntax.

<?xml version="1.0" encoding="utf-B8"7> <Graph Title="Sample GOF
Graph" Type="Tree">
<GraphTopology>
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<GraphLaycut Number="0">
<Mode Name="master" IsGroup="false" Interface="Coordinator">
</Node>
<Edge Name="edgel">
</Edge>
</GraphlLayout>
</GraphTopology>
<Processors>
<Processor Name="pc(1" Type="1P/Hostname">
</Processor>
</Processors>

<LocalPrograms>

"an

</LocalProgram>
</LocalPrograms>
<API id="Simple Graph">
<GROUP name="Communication and Sychronization"/>
<ENTRY id="Usend"/>
</API>
<Additional>

</Additional> </Graph>

The XML example above shows the basic style of the graph description in the
GOP-XML format. The first line describes the file as being in XML format. The
second line indicates the title and the type of the graph. The third section (between
the <GraphTopology> and <GraphTopology> tags) describes the logical graph in
GOP. The fourth section (< Processors> tag) provides the details of the processor
used. The fifth section (<LocalPrograms> tag) defines the LP. The sixth section
{<APIL> tag) specifies the GOP primitives used in the application. - The last section
{<Additional> tag) adds the supplementary information about the graph, such as
graph type, graph element descriptions. Attributes can also be defined as value pairs

for each of the elements. The GOP-XMI schema defines a set of rules to check
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the allowable elements, attributes and structures in the XML. A parser has been
developed to validate the syntax of any GOP-XML document.

When the programmer has to compile or execute the application, a GOPXML
document is transferred to the corresponding processors. As shown in Figure 4.26,
when VisualGOP is required to start the remote compilation or execution, GOP-
XML Wrapper will collect the graph, the mapping and the network information and
translate the data into GOP-XML format. The GOP-XML file and the LPs are then
deployed to the processors of the target platform. It is important to note that GOP
is independent of any particular language and platform. It can be implemented as
library routines incorporated in familiar sequential languages and integrated with
programming platforms such as clusters, CORBA, and the Web [11, 8].

In figure 4.27, the GOP-XML file is transferred to the target platform using the
program deployment in VisualGOP. ClusterGOP runtime starts and the platform
dependent parser reads the GOP-XML file. The GOP-XML is a flexible format for
reading in all platforms. In different platform implementations, different XML li-
braries are supported for reading the GOP-XML file. ClusterGOP uses a library
called Expat [15] to extract the data from the GOP-XML. Expat is a library for pars-
ing XML documents. It is a stream oriented parser that requires setting ha.ndiers to
deal with the structure that the parser discovers in the document. By using the Ex-

pat, ClusterGOP can implement functions for converting the GOP-XML document
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into the program structure of the platform. In each platform or machine, the Clus-
terGOP runtime receives the logical graph structure and the resources configuration
such as LP-to-Node and nodes-to-processors mapping. The ClusterGOP runtimes
collect all the required runtime information. They initialize the parallel programs

into processes, manage and control the activities of the processes.
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GOP-XML

Program Deployment file

thusterGOP runtime

Running processes Platform dependent XML Parser

middleware and

other applications ' i
Logical Resource
Graph Configurations

Underlying Platform

Figure 4.27: Platform independent structure in ClusterGOP

4.9 Summary

Building a parallel application is not an easy task. The complexity and large scale of
the network makes the development process difficult. This chapter describes a novel
graph-oriented approach to configuring and programming parallel software and a vi-

sual programming interface for the programmer to manage network nodes, processors

and LPs.



91

VisualGOP supports a high-level program development, where the process struc-
ture is described using a GOP model. It provides integrated graphical tools for
design, mapping, compiling and executing parallel programs. With the aid of the
Graph Editing Panel the programmer designs the logical graph. The Coding Editing
Panel allows the programmer to write LP using different programming languages, and
provides a set of high-level programming primitives for writing parallel programs. It
can also interact with the visual components, directly manipulates the textual source
code visué,lly. The Mapping Panel displays the information of visual components,
and helps the programmer to specify the mapping of nodes to processors and the
mapping of LPs to nodes visually. Additionally, VisualGOP has features to support
the automatic Node-to-Processor mapping, the graph scaling, the XML-based graph
representation and the MPMD programming.

The next chapter provides a detailed description of the ClusterGOP implementa-

tion.



Chapter 5

Implementation of ClusterGOP

In this chapter, we first describe the implementation of ClusterGOP, including the

system architecture and the runtime library. Then we discuss the MPMD support in

ClusterGOP.

5.1 System Architecture

As shown in Figure 5.1, the ClusterGO.ID system architecture is divided into three
layers: the programming layer, the; compilation layer and the execution layer.

In the programming layer the programmer develops a ClusterGOP program by
using high-level abstraction in message-passing implementation. ClusterGOP exports
a set of API that provides the implementation of the parallel applications with tradi-
tional programming languages, e.g., the C language. The ClusterGOP API contains
a header file of global information, which is shared among the ClusterGOP library
routines.
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In the compilation layer, LPs will be transformed into an executable program on
the target’s execution environment. LPs are compiled together with the MPI and the
ClusterGOP libraries.

The execution layer is realized through the services of two important runtimes,
MPI runtime and ClusterGOP runtime. The MPI runtime is the environment used
for commupication through out the network. The ClusterGOP runtime is developed
as a daemon process on top of the Operating System. It helps the ClusterGOP
processes to dynamically resolve the node names into process IDs and to prepare for
MPI communication. It also provides synchronization among all the nodes, so that
each node can get the most updated logical graph for running ClusterGOP primitives.
The ClusterGOP runtime system is implemented using the C language with the socket
communication and synchronization scheme. In the ClusterGOP runtime system, a
logical graph is used for supporting the GOP primitive operations. The ClusterGOP
runtime lies on each node so that the nodes can exchange the graph information in a
synchronized way. Nodes in the same machine use the shared memory to access the
graph. Nodes on different machines require a memory coherence protocol in order
to synchronize graph updates. We choose the Sequential Consistency model as the

graph synchronization scheme [42].



5.2 ClusterGOP Runtime Library

The ClusterGOP Runtime Library consists of a set of basic communication operations
based on the GOP model. This section first describes the basic structure in the library,

and then describes the implementation of each library functions.

5.2.1 Basic Library Structure

When started, the LP program invokes the routines init and finalize

Init(arge, argv); /#* start ClusterGOP =/

In MPI, the programmer needs to add additional statements for program initial-

ization, as shown below:

MPT _Init{kargc, kargv); /¥ starts MPI */
MPI_Comm_rank(MPT_COMM_WORLD, Ek); /* get current process id #/
MPI_Comm_size(MPI_COMM_WORLD, &p); /* get # procs from env */

To understand how ClusterGOP hides the details from the programmer, let us
have a look inside the initialization code in GOP. The routine Init performs several
operations, including obtaining the command line arguments, determining the number
of processes in MPI environment, getiing its own process ID, getting the processor
name and reading initialize the graph representation. The implementation is shown

helow:

void Init(int arge, char *argv[]) {
MPI_Init(kargc, targv);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &myid);
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MPI_Get_processor_name(processor_name,&namelen) ;
/* init graph node ID mapping */
Graph_Init();

The routine Graph_Init is invoked to read the logical graph into the ClusterGOP
system during runtime. Logical graph is stored in an XML format, ClusterGOP
uses the Expat (XML parser library) to extract the XML structure and convert
the data into program structure. In the following routine, the XML_Parser vari-
able is initialized for preparing the XML parsing process, and then the logical graph
is input as the source of parsing data. The routines XML_SetElementHandler and
XML _SetCharacterDataHandler are the handlers of start/end tags and handler of
text respectively. After that, the XML parsing begins by submitting the parsing data.

into the routine XML Parse continuously.

int graph _xml_init{) {
FILE *fp;
XML_Parser p = XML_ParserCreate{(NULL};

fp = fopen("graph.xml", “c"J;
if { £p == NULL ) {
fprintf(stderr, "error in reading graph xml\n");

exit(-1);

if (' p) o
fprintf(stderr, "Couldn’t allocate memory for parser\n"};
exit(-1);

XMi._SetElementHandler(p, start, end);
XML_SetCharacterDataHandler{p, char_hndl};

for ;) {
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int done;

int len;

len = fread(8uff, 1, BUFFSIZE, fp);

if (ferror(stdin)) {
fprintf(stderr, "Read error\n");
return -1;

}

done = feof(fp);

if (' XML_Parse(p., Buff, len, done)) {
fprintf(stderr, "Parse error at line %d:\n¥s\n",
XML _GetCurrentLineNumber{p),

XML_ErrorString(KML_CetErrorCode(p)));

return -1;

if {(done) break;
}

return 0O;

In the finalizing routine, just like MPI, ClusterGOP releases the resources used by
the ClusterGOP library such as graph representation and temporary variables, and

then calls the routine MPI Finalize to end the MPI process.

void Finalize() {
free_Graph(}; /t release the memory of ClusterGOP graph +/
MPI_Finalize();

5.2.2 ClusterGOP Primitives

ClusterGOP primitives are built based on the MPI, so that calling them actually
invokes the MPI operations. [n order to get the MPI process ID from the ClusterGOP

node, a conversion between ClusterGOP nodes to MPT process IDs is processed inside
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the ClusterGOP communication primitives, as shown below in implementing routine

GetNodelID as an example:

int GetNodeID(Graph gname, Node gn) {
int i=0;
if ( (gname == NULL) ! (gn == NULL) ) return -1;
nodes = get_graph_nodes(gname);
/* Here shows a simple method for searching the node,
*/
/* a more efficient algorithm will be replaced if necessary */
for (i=0; i<node_count; i++} {
if (strcmp(gn; nodes(i].name) == 0)
return i;
}

return -1;

The foilowing code segment is the implementation of point-to-point primitives:
routine Usend and Urecv. The code shows how the parameters are translated from

ClusterGOP to MPI.

int Usend(Graph gname, Node nodename, Msg msg, CommMode mode) {
int nedeid; /¢ MPI process ID */

int status; /# return status #/

/* resolve process ID from ClusterGOP runtime +/
nodeid = GetNodeID(gname, nodename);

if (nodeid==-1) return -1;

. if (mode == SYN)} { /+ synchronous send =/
status = MPI_Ssend(msg.data, msg.length, msg.datatype, nodeid, msg.tag,
MPI_COMM_WORLD) ;
if (status == MPI_SUCCESS) return 0;
} else if {mode == ASYN) { /* asynchronous send */
status = MPI_Send(msg.data, msg.length, msg.datatype, nodeid, msg.tag,
MPI_COMM_WORLD) ;
if (status == MPI_SUCCESS) returm 1;
}

return -i;
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int Urecv{Graph gname, Nede nodename, Msg msg) {
int nodeid; /* MPI process ID */

int status; /#* return status */

/* resolve process ID from ClusterGOP runtime */
nodeid = GetNodeID{gname, nocdename) ;

if (nodeid==-1) return -1;

status = MPI_Recv(msg, size, datatype, nodeid, tag, MPI_COMM_WORLD, &status);
if (status == MPI_SUCCESS)

return 0;
else

return -1;

The implementation of the collective primitives is similar to the point-to-point
primitives, except they use NodeGroup to represent a list of nodes that are required for
communication. Therefore, ClusterGOP invoke the function createGroup to resolve
the NodeGroup into nodes. The detailed description of NodeGroup will be introduced
in the next section. The following code segment presents the routine GOP _Gather of

the collective primitives.

int GOP_Gather (Graph gname, NodeGroup ng, Msg msg, Node s)
int status /* return status */
/% create the MPI communicator from the NodeGroup /

createCroup{gname, ng);

status = MPI_Gather(msg.data, msg.length, msg.datatype,
msg-recv_data, msg.recv_length, wmsg.recv_datatype,
s, ng.comm};
if (status == MPI_SUCCESS)
return 0;
else

return -1;
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5.3 Implementing the MPMD model in Cluster-
GOP

With the MPMD programming model under ClusterGOP, each LP is associated with
separate source code. Data can be disiributed and exchanged among the LPs. Clus-
terGOP also has a better node group management than MPI so that the processes
can form groups easily and efficiently. In this section, we describe the methodol-
ogy for MPMD programming support in the ClusterGOP environment. We focus
on the new features added to VisualGOP to support high-level MPMD program-
ming, including forming process groups, data distribution among the processes and
deployment of processes for execution. With these new features, programiners can
program group communication by using NodeGroup, manage distributed tasks and
processors through visual interface, map resources to tasks, and compile/execute pro-
grams automatically. The underlying implementation using MP1 is hidden from the

programimer.

5.3.1 NodeGroup Implementation

ClusterGOP’s NodeGroup is implemented using MPI’s communicator. The basic
functions of a communicator include managing processes, defining scope of process
communication, and communication between communicators. When two processes

do not belong to the same communicator, they cannot send or receive information
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from each other. When the parallel application starts, a default communicator,
namely MPI_.COMM._WORLD, is created. By default, all processes belong to the
MPI.COMM_WORLD can communicate with each other. Programmers can create
new communicators in addition to MPI_COMM_WORLD. However, MPI does not
provide an easy way to create a new communicator. The example below shows how

MPI creates groups and communicators inside the program.

MPI Group MPI_GROUP_WORLD, first_row_group;
MPI _Comm first_row_comm;
int row_size;

int* process_ranks;

process_ranks = (int*} malloc {(q*sizedf(int)});
for (proc=0; proc<q; proc++)

process_ranks [proc] = proc;
/* create the group from all processes «/
MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);
/* select only the process by including the rank no. in the process ranks */
MPI_Group_incl(MPI_GROUP_WORLD,q,process_ranks,

#first_row_group);

/¢ create a new communicator according to the group +/
MPI_Comm_Create (MPI_COMM_WORLD, first_row_group,

kfirst_row_comm);

To introduce a new communicator into the application, MPI requires that an
MPI group be created to store the neighbors in an array of rank ID. Therefore, the
programmer needs to write the corresponding code, remembering every rank [D in
the new communicator. This decreases the readability of the program and increases
its complexity. In contrast, NodeGroup simplifies the procedure for building the
communication group and provides better handling of group communication. The

following code segment shows the creation of the NodeGroup.
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NodeGroup InitNodeGroup(Graph gname, char *group_name, Nedenodes{}) {
int i=0;
NodeGroup group;
strcpy (group.name, group};
while {nodes(i] != NULL) {
group.nodes{i] = nodes[il;
group.nodeids[i] = GetNodeID{gname, nodes[il};
group.size++;
i++;
}
return group;
}
int getNodeID{Node gn} { int rank_id=0; /+ This variable stores
the rank ID */
for (rank_id=0; rank_id<global_node_count; rank_id++)
if (strcmp{gn, nodes[rank_id] name) == 0) return rank_id;

return -1;

InitNodeGroup is the API for programmer to initialize the NodeGroup from a
list of nodes. The function stores the name and rank ID of the each node into the
NodeGroup data structure. For getting the rank ID, the function simply invokes
GetNodelD fo retrieve it.

The programmer can add, remove or clear the nodes in the NodeGroup by invoking
the corresponding API functions. The implementation of function AddNode is shown

below.

AddNode (NodeGroup *ng, Node s) {

int i=ng->size;
strcepy(ng->nodes[i], s);

ng->nodeids[i] = getModelD(s);

ng->size++;

After a NodeGroup is created, the function createGroup generates the MPI_Group
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object (group-world) by providing the NodeGroup information to MPI function MPI_Group_it
Then, the MPI_Group object is passed to the function MPI_Comm_create to form a

new MPI communicator.

int createGroup{Graph gname, NodeGroup ng) {
MPI_Group group_world, new_group;

MPI_Comm new_comm;

MPI_Comm_group{(MPI_COMM_WORLD, &group_world);
HPI_Group_incl(group_uorld, ng.size, ng.nodeids, &new_group};
MPT_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);

return new_comm;

5.3.2 Support for Data Distribution

In the MPMD programming model, tasks have different programs to execute but
usually need to exchange or share some data. MPI provides API functions for dis-
tributing data to different processes, but the programmer still has to write the code
for the datd distribution procedure. In ClusterGOP, tasks share data by keeping a
portion of the global memory in each node that is involved in the communication.
The node can update the memory without having to communicate with other nodes.

Using VisualGOP, data distribution can be performed by the programmer through
the visual interface. The distributed shared memory can be created by selecting
an option in the program editor of VisualGOP as shown in Figure 5.2. Currently,
there are three options of the distributed memory styles: vertical, horizontal and

square mernory distribution. By default, the memory is distributed to the nodes in a
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balanced way such that each node will almost share the same size of the distributed
data object. VisualGOP also provides a visual interface to allow the programmer to

manually specify the memory distribution on each node.

Figure 5.2: Choosing Memory Distribution Type

In many DSM systems, the distributed memory object is built-in function and
most of the objects are distributed in the whole environment. However, due to its
complex design nature, overheads occur frequently which reduce its efficiency. Clus-
terGOP implements the distributed shared memory in a different way that distributed
objects are used only if programmer explicitly demands them.

In ClusterGOP, the programmer can use predefined data distribution algorithms |
to put the distributed objects into different parts of the program. VisualGOP also
provides a visual way for the programmers to define the data distribution on tasks.
ClusterGOP translates the data distribution specified by the programmer into MPI

code. For example, when the programmer wants to distribute the object among
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several tasks, he/she can insert a distributed data object, and then select which
nodes (or NodeGroup) they want to share the object and define the sharing rule. All
these can he done with the aid of VisualGOP.

ClusterGOP implements the distributed shared memory functions by using the GA
toolkit, which is based on MPI for communications. Before compiling the application,
all distributed objects are converted into Global Arrays (GA) codes. GA provides
an efficient and portable shared-memory programming interface. The Global Arrays
installs itself on top of the MPI library, allowing programmers to take advantage of

the interfaces in the MPI and Global Arrays in the same program.

5.3.3 Automatic compilation and execution support

Tn MPMD programming, managing the mapping of nodes (tasks) to processors could
be a complicated task. VisualGOP provides the programmer support to visually map
LPs to nodes and noaes to processors. It also provides support for automatic com-
pilation and eiecution of the applications. This facilitates the development process
and simplifies the running of the large-scale MPMD application.

After the program is written, through VisualGOP, the programmer can send the
program source codes to the target processors in the system for compilation. When
deploying the application, VisualGOP provides information about the target plat-

form such as the address of the machines, the logical graph representation and the
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compilation arguments. The programmer creates a processor list for the parallel en-
vironment so that the Nodes-to-Processors mapping can be established. After the
application has compiled, VisualGOP allows the programmer to start the application
for execution. The programmer can provide some pre-defined input argument or data
to the application. The final step is the execution of the root process, and VisualGOP
monitors the status of the root process and receives the feedback from it.

A ClusterGOP demon process runs on each target processor to receive the incom-

ing compilation and execution requests and interpret them as system commands.

5.4 ClusterGOP Daemon and Runtime Configura-

tion

Before remote compilation and execution, VisualGOP connects to the remote ma-
chines and deploys the logical graph, LPs, compilation and execution information to
them. Each machine installs and starts the ClusterGOP daemon process for receiving
requests from VisualGOP. The daemon program is implemented by a Java network
package, using socket to communicate with VisualGOP.

To start the daemon process, programmer runs the daemon program in the ter-

minal environment using the following command:

java GOPServer

After the daemon process is started in the local machines, the programmer can
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use VisualGOP to connect the local machines. VisualGOP selects the mapped LP
and transfers the source code to the local machine by using java file stream. Also,
the logical graph will be distributed into each local machine. The source code for

transferring LP and logical graph is shown below:

String str = br.readLine(};
// start to read the file and save to temp file
if ( (str!=null) && (Integer.parselnt(str) > 0)) {

int filelen = Integer.parselnt{str);

str = br.readline();

FileQutputStream outtmp = new FileQutputStream(str);

byte[] tmpbytes = new byte{Integer.parselnt(str)];

for (int i=0; i<filelen; i++) {
cuttmp.vrite(br.read());

}

// save the file

outtmp.close(};

Upon receiving the comptlation command from VisualGOP, the daemon process
issues and executes the compilation command on the local machine automatically, for

example:

make OBJS=local_program.c

There is an OS makefile to standardize the compilation format of LP in each local
machine. The OS makefile contains the required libraries, compilation tools’ path

and configuration. An example of Unix makefle is shown below:

# Generated automatically from Makefile.in by configure.
ALL: default
#u#ne User configurable options #####
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SHELL = /bin/sh

ARCH = solaris

coMM = ¢h_pd

MPIR_HOME = /usr/comp/mpi

cC = /usr/comp/mpi/lib/solaris/ch_pd/mpicc
CLINKER = $(CC)

### End User configurable options ###

CFLAGS = §(DPTFLAGS) ~I../include

CFLAGSMPE = $(CFLAGS) -I$(MPE_DIR) $ (MPE_GRAPH)
CCFLAGS = $(CFLAGS)

LIBS = -L../1lib -lexpat

### End User configurable options ###

CFLAGS = $(OPTFLAGS) -I../include
LDFLAGS =

LIBS = -L../lib -lexpat

0BJS =

default: ${EXECS)
all: default

run: ${0BJ5} nodeconv.c gopmpi.c mergesort.c< ${MPIR_HOME)/include/mpi.h
$(CC) $(CFLAGS) -o $0 ${0BJS} gopmpi.c mergesort.c nodecenv.o -1m ${LIBS)

nodeconv.o: nodeconv.c nodeconv.h $(MPIR_HOME) /include/mpi.h
$(CCY $(CFLAGS) $(LDFLAGS) -c -g nodeconv.c -lm $(LIBS)

The compilation and execution output will be stored in a file under the remote
machine’s local directory. The daemon process helps programmer by capturing the

compilation messages and sending the messages hack to VisualGOP for displaying
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the result.

Before executing the ClusterGOP programs, the root process of the application
requires a program list to start MPI processes. VisualGOP generates the required
information to the remote machine, such as machine name and program path of all
LPs in the application. Then the daemon process generates the MPI program list for

the root process, as shown below:

FileOntputStream outtmp = pew FileDutputStream("pgfilel");
PrintWriter pw = new PrintWriter{outtmp);
str = br.readline(};
int processor_num = 0;
// start to read the file and save to MPI program list
if ( (str!'=null) && (Integer.parselnt(str) > 0))

processor_num = Integer.parselnt(str);

int index = 0;

// read each node’s program path

for (int i=0; i<processor_num; i++) {

str = br.readlLine();

String dir = br.readLine();

if (i>0)
index = 1;
else
index = 0; // for processor is the host
String line = str + " " + index + " " + dir + "/run “ + System.getProperty("user.name");

pw.println{line};

Below shows an example of the MPI program list:

Ubx-17x 1 /home/program/nodel/run
USx-17x O /home/program/nodel/run
U5x-17x O /home/program/nodel/run

ClusterGOP runtime will start with the local processes. It is implemented based
on MPICH (release version 1.2}). MPICH v1.2 follows the MPI 1.2 standard and pro-

vides full function for running MPI programs. It is a freely available implementation
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that runs on a wide variety of systems, such as Unix, Linux, Windows, etc.
When executing the program, the local machine of the root process uses the follow

comrmmand:

mpirun -np [no_of_nodes] [mpi_program_list]

The ClusterGOP runtime and library are written in C language, using the stan-

dard C and MPI library. The header file is shown below:

#include <stdio.h>
#include "mpi.h"

#include "gopmpi.h"
ClusterGOP uses the following MPI library functions to form ClusterGOP library:

MPI_Init()
KPI_Comm_size()
MPI_Comm_rank(}
MPI_Get _processor_name
MPI_Finalise()}
MPI_Barrier{)
MPI_Ssend()
MPI_Send(}
MPI_Irecv({)
MPI_Recv()
MPI_Waitall()
MPI_Bcast ()
MPI_Gather()
MPI_Scatter(}
MPI_Allgather()
MPI_Alltoall()}
MPT_Reduce
MPI_Allreduce()

5.5 Summary

This chapter has described the design and implementation of the ClusterGOP system.

The system consists of run-times and libraries, and it has been implemented on MPL
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It provides a high-level programming abstraction (ClusterGOP library} for building
parallel applications. Graph-oriented primitives for communications, synchronization
and configuration are perceived at the programming-level and conceals the underlying
programming activities from the programmer.

The next chapter shows the performance results of three examples. We use the

results to compare the performance between ClusterGOP and MPI.



Chapter 6

Example Applications

In ti’le previous chapters, we have introduce two examples which demonstrate the use .
of GOP in parallel programming applications. They are Finite Difference Method
(FDM) and Parallel Matrix Multiplication. This chapter will present the performance
of each example and compare them with the original MPI programs. Moreover,
another example, Two-Dimensional Fast Fourier Transform (2-D FFT), will also be
described. It is an example of the mixture of SPMD and MPMD programming style.

The program performance is also mentioned in the example.

6.1 Finite Difference Method

The example of FDM has been described as an SPMD application in Chapter 3,
Section 3.4.1. In this section, we present the evaluation results of FDM. In our
preliminary experiment we have communications between processes in_the parallel
application. We first compare the performance of our proposed GOP application

112
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library with those of the MPI library, and then identify the overhead involved in the
GOP system.

The experiment uses a 20 processors SGI Origin 2000 machine [35], running on
IRIX64 6.5. The release of the IRIX implements the MPI 1.2 standard and all the
testing programs are written using C langunage. We use the example described in
Section 3.4 for testing. For the program input, we choose large problem sizes 256 x 256
and 512x512.

Execution times were rneaswéd in seconds using the routine MPI_Wtime. Mea-
surements were made by inserting instructions to start and stop the timers in the
program code. To make the result more accurate, the lowest bound value from 10
measurements is chosen. The major differences between the two implementations
are that the MPI program must contain an extra routine to calculate the runtime
processor ID for each node, while GOP must resolve the node names into process IDs
before invoke the communications which is based on MPL

Figure 6.1 shows the execution times for the core-code of the Finite Difference
Method in MPI and GOP system, without considering other factors such as program
initialization and finalization. The MPI program performs slightly better than GOP,
as GOP must spend more time to manipulating the graph topology and preparing the
message data for communications. However, the difference is small and the speedups

achieved by the MPI and GOP programs are almost the same. The corresponding
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Figure 6.1: Time required by MPI and GOP programs

speedups are shown in Figure 6.2.

We also compared the performance of the MPl and GOP communication routines.
Here, we assume MPI does not have any overheads and used it as the baseline for
comparison. GOP will spend processing time on converting node names to process
IDs and converting the message into arguments of MPI operations. Hence, we use a
pair of routines MPI_Send and MPI Recv for the MPI Node-to-Node communication
setup. On the other hand, we evaluate a pair of sending and receiving operation {
routines Usend and Urecv ) in GOP and calculate the overhead.

Diring the GOP communication, all node names will be translated into process

[Ds of the mapped processors. The source node invokes routine Usend to convert the
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GOP message type into input arguments of MPI routine MPI_Send, and sends out
the message to the destination node. On the other side, the destination node invokes
routine Urecv and waits for the message from the source node. Once the message has
arrived, it will be converted into a GOP message.

Figure 6.3 shows the overhead in handling the GOP message-passing operation.
We can see the overhead imposed by this is small compared with using the same

procedures under the MPI environment.

Time (micro-second}

4 8 12 16 20

Number of nodes

Figure 6.3: Message-passing overhead on GOP

Figure 6.4 shows the program initialization time. Both GOP and MPI require
some setup before their library routines can be called. MPI includes an initialization
routine MPI_INIT. GOP performs the same step as MPI along with the graph initial-
ization. In the graph initialization, each running node reads the graph structure from
the graph representation, then it converts the graph structure into its programming

structure and loads the graph into the memory. We can see that the initialization



time for both MPI and GOP increases linearly with the number of the processes

(nodes). The difference between them is very small.
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Figure 6.4: Graph initialization time

6.2 Parallel Matrix Multiplication

We have introduced the example of parallel matrix as an MPMD application in Chap-
ter 3, Section 3.4.2. In this section, we compare the performance hetween the Clus-
terGOP MPMD and the MPI SPMD programs.

The experiments used a cluster of twenty-five Linux workstations, and each work-
station 1s running on Pentium-4 2GHz. The workstations are setup with MPICH

1.2 and all the testing programs are written in C. Execution times were measured
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Figure 6.5: Execution time per input array for the parallel matrix multiplication

application

in seconds using the function MPT_Wtime. Measurementis were made by inserting in-

structions to start and stop the timers in the program code. The execution time of a

parallel operation is the greatest amount of time required by all processes to complete

the execution. We choose to use the minimum value from ten measurements.

Figure 6.5 shows the performance result in execution time. We can see that the

MPI program runs slightly faster than the ClusterGOP program. This may be the

result of conversion overheads(nodes to the rank ID) in the ClusterGOP library.

However, there are no significant differences between MPI and ClusterGOP when the

problem size and processor number are getting larger.
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(a) 2-D FFT mapping (b) Pipelined2-D FFT mmapping

Figure 6.6: Two implementations of a 2-D FFT, the shading area indicates the ele-
ments of the array that are mapped to one processor

6.3 Two-Dimensional Fast Fourier Transform

In Figure 6.6a illustrates that the program calculating 2-D FFT first calls the sub-

| routine rowfft (row FFT) to apply an one-dimensional (1-D) FFT to each row of the
.2-D array A, and then transposes the array and calls rowfft again to apply a 1-D
FFT to each column of A. The 1-D FFTs performed within rowfft are independent
of each other and can proceed in parallel. The image data structure needs to be
distributed to processors. This distribution allows the calls to the rowfft routine
to proceed without communication. However, the transposition (or FFT in column)
involves all-to-all comnmunication.

An alternative pipelined algorithm is often more efficient (see in Figure 6.6b).
The algorithm partitions the FFT computation among the processors such that %
processors perform the read and the first set of 1-D FFTs, while the other % Processors
perform the second set of 1-D FFTs and the write. At each step, intermediate results

are communicated from the first to the second set of processors. These intermediate
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results must be transposed on the way; as each processor set has size %, this requires

%2 messages. In conirast, the normal 2-D FFT algorithm’s all-to-all communication
involves P(P-1) messages, communicated by P processors: roughly twice as many per
processor. In accordance with the pipelined algorithm, the application is separated
into row FFT and column FFT programs. The row FEFT can pass the value to
column FFT and then continues work for its next data stream. As a result, the
network utilization is improved and the application’s performance is increased.
Figure 6.7 shows the logical graph of the application represented in VisualGOP.
The input node sends data to the row-fit node, which contains four nodes in the
subgraph. The col-fit node also contains four nodes. The corresponding programs

are mapped to the nodes, and the nodes are mapped to the processors for execution.

VisualGOP and ClusterGOP provide several advantages:

o MPMD representation. An FFT program is divided into several parts as men-
tioned above. Each node is associated with a separated program and mapped
to a processor to run. There are totally eight processors involved in the com-
putation. Four processors are used for computing the row FFT and others are

used for computing the column FFT.

o NodeGroup formation. The nodes are classified into two NodeGroups, namely
the row FFT group and column FFT group. The two node groups communicate

with each other. The row FEFT group collects the result and then sends it to
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Figure 6.7: Diagram for the 2-D FFT program in VisualGOP

the column FFT group.

e Data distribution. To simplify the process communication, a distributed mem-
ory object is used in each NodeGroup (row FFT group and column FFT group).

It provides a better way to share data between the processes within the same

NodeGroup.

In our experiment, the ClusterGOP code is executed as a pipeline of two kinds
of tasks in a MPMD model, with an equal number of processors assigned to each
task. The MPI code is executed as a single SPMD program. The experiments used a
24-processor SGI Origin 2000 machine, running on IRIX64 6.5, which implements the

MPI 1.2 standard. The programs are written using the C language and measurements
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were made by inserting instructions to start and stop the timers in the program
code. Execution times were measured in seconds using the function MPI_Wtime. The
execution time of a parallel operation is the greatest amount of time required by
all processes to complete execution and we choose to use the smallest value from 10
measurements.

Figure 6.8 presents the results of the experiments, which are performed for various
program sizes to render pipeline startup and shutdown costs insignificant. Again, the
MPI code is faster than the ClusterGOP code when the problém size 1s small. This is
because ClusterGOP has some overheads in processing graph access and communica-
tion. However, this effect is eliminated when the problem size increases. As expected,
the ClusterGOP code is faster than the MPI code when the number of processors is

getting larger.
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Figure 6.8: Execution time per input array for the 2-D FFT application
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6.4 Summary of Results

This chapter has given examples which demonstrate how the GOP concepts described
in earlier chapters that allow high-level support for writing parallel programs. The
performance result shows that the GOP implementation performs well compared with

the low-level programming model (MPI).



Chapter 7

Conclusions and Future Work

In this thesis, we have described a graph-oriented approach to providing high-level ab-
straction in message-passing parallel programming. The GOP model has the desirable
features of expressiveness and simple semantics. It provides high-level abstractions for
programming parallel programs and by directly supporting logical graph operations
eases the expression of parallelism, configuration, communication and coordination.
Furthermore, sequential programming constructs blend smoothly and easily with par-
allel programming constructs in GOP. We have implemented ClusterGOP based on
the GOP model, to support high programming development in clusters. We also
provide a visual programming environment, VisualGOP, to provide a visual and in-
teractive way for the programmer to develop and deploy parallel applications. We
have described the implementation of the GOP environment and reported the results
of the evaluation on how GOP performs to compare with the MPL. The results showed

that GOP is as efficient as MPI in parallel programming.

124
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For our future work, we can enhance the current implementation with more pro-
gramming primitives, such as update and subgraph generation. We can also define

commonly used graph types as built-in patterns for popular programming schemes.
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