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Abstract  

River flow forecasting and sediment load estimation are important issues in the 

hydrological field, and customarily undertaken by data-driven models. Despite the 

amount of research on the subject, most of them are incapable of providing insight into 

the unrecognized relationship of the input and output variables owing to a black-box 

nature. It is inevitable that the physically-meaningless models suffer from inappropriate 

input-output mapping, substantial uncertainty inherent in the modeling and inadequate 

optimization during calibration. This thesis is an attempt to develop physics-based 

models for efficiently and reliably simulating the river flow and sediment load.   

 

A novel hybrid neural network (HNN) model is proposed for downstream river flow 

forecasting, by combining fuzzy pattern-recognition and continuity equation in a neural 

network. The model is therefore, able to reflect fuzzy and time-varying features of river 

flows. In comparison with three benchmarking models, the HNN model is identified as 

the preferred tool to fit the total observations. The superiority of HNN model does not 

markedly deteriorate with the increase of forecasting lead time.  

 

With respect to sediment load estimation, a hybrid double feedforward neural network 

(HDFNN) model is developed by integrating fuzzy pattern-recognition and continuity 

equation into a structure of double neural networks. The generalization and estimation 

abilities of HDFNN models are verified by comparison with results from its counterpart 

models. It could reproduce medium and high loads appropriately, and present excellent 

performances in multi-step-ahead estimations particularly for high loads.   
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The request of determining the best input variables for the HNN and HDFNN models 

has been processed. Generally, areal precipitation is an appropriate input variable 

coupled with all observed upstream flows for the HNN model. The input variables may 

be uncertain and unstable when forecast lead time is shorter than the flow travel time. 

For the sediment estimation, river flows from the upstream and downstream stations 

with different ahead of times are selected to formulate input combinations. It is found 

that the downstream sediment seems to be more sensitive to upstream flows with small 

studied area while the downstream flows substantially affects the high sediment loads.  

 

The lower upper bound estimation (LUBE) is a straight-forward method that could 

construct the neural network based models with two output neurons and directly 

approximate the lower and upper bounds of prediction intervals. Applications on the 

HNN and HDFNN models indicate their reliability in hydrological prediction scenarios.    

 

The performances of three population-based optimization algorithms, namely 

differential evolution (DE), artificial bee colony (ABC) and ant colony optimization 

(ACO) for evolving the HNN and HDFNN models are compared. The DE is found to be 

a more appropriate algorithm in terms of generalization and prediction. The ABC 

appears to be more adapted in optimizing the multi-step-ahead cases, but on the other 

hand, presents computational inefficiency. As far as the stability is concerned, the DE 

and ABC algorithms are more adaptive than the ACO with the population size.  

 

The major contribution of this research is the development of HNN and HDFNN 

models for river flow and sediment load. The LUBE method has proven as a promising 

technique to evaluate the model reliability. In addition, this thesis advocates the use of 

DE algorithm for the optimization problems in hydrological models.  
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Hybrid Model of Neural Network and Population-based Optimization Algorithm                  Xiaoyun Chen 

1 Introduction 

1.1 Research background 

The assessments of flow and sediment in a river system are of vital interest in hydrology 

and hydraulic engineering, owing to their applications in the design and management of 

water resource projects. In order to control flow and sediment discharges more 

efficiently, models that forecast flow and sediment are desired to be of high precision. 

The problem is customarily settled with data-driven models, of which artificial neural 

network (ANN) is a widely-used model and powerful for real-time prediction and 

estimation of flow and sediment since early 1990s (Alp and Cigizoglu, 2007; Chau and 

Cheng, 2002; Cigizoglu, 2004; Dibike and Solomatine, 2001; Karunanithi et al., 1994; 

Kerh and Lee, 2006; Kisi, 2004b, 2004c; Melesse et al., 2011). The compact and 

flexible structure of ANN models enables them to be integrated with other techniques 

easily, which have been successfully undertaken in many studies to provide a more 

comprehensive model and improve model accuracy (Hassan et al., 2015; Kisi, 2010b; 

Kisi et al., 2006; Lafdani et al., 2013; Partal and Cigizoglu, 2008; Pramanik et al., 2011; 

Rajaee et al., 2010; Rajaee et al., 2011; Taormina and Chau, 2015c; Tayfur et al., 2013; 

Wu and Chau, 2006). The greatest superiority of ANNs over traditional modeling 

techniques is their ability to capture the nonlinear behavior of data without going into 

the details of hydrological processes. Nevertheless, in reverse, the totally implicit and 

physically meaningless features are also the major criticisms.  

 

Recent research attempts to overcome the lack of physical concepts and provide insight 

into the unrecognized relationship within ANN models. It has great significance 
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particularly for the flow and sediment modeling since that they embody features of 

highly-nonlinear, fuzzy and time-varying in a river system. Many studies have been 

reported by combining ANN with conceptual model, fuzzy theory or modular methods 

which could provide underlying physical processes (Corzo and Solomatine, 2007; Jain 

and Srinivasulu, 2006; Li and Chen, 2010; Lin and Namin, 2005; Nourani and Komasi, 

2013; Rezaeianzadeh et al., 2013; Song et al., 2011). However, these techniques appear 

to be complicated and not easily implemented, and the collection of required parameters 

may even not be satisfied. Other researchers have directly integrated fundamental 

physical principles into ANN structure to render the model more understandable (Li and 

Gu, 2003; Yang et al., 1998). They introduced continuity equation as activation 

functions into the ANN model, in which the nodes in the hidden and output layers were 

regarded as storage reservoirs. The introduction of fuzzy pattern-recognition into an 

ANN model is another practice to deal with the nonlinear and fuzzy hydrologic models 

(Qiu et al., 1998; Zhao and Chen, 2008). It was adopted as activation functions to 

connect the network input and the hidden nodes by classifying inputs into a number of 

categories in terms of different patterns. The number of studies which introduce 

physical activation functions to the ANN structure is scanty, thus, a motivation of the 

present study is the necessity to advance the application of ANN hybrid models for river 

flow and sediment load.  

 

The selection of input variable is crucial to the neural network models (Bowden et al., 

2005; Leahy et al., 2008; Partal and Cigizoglu, 2008; Xiong et al., 2015). It is a 

sophisticated task for the modeling of river flow and sediment, since the transport is 

governed by many factors including rainfall, strength of flow, sediment supply, river 

bed, etc. A large amount of studies concerning river flow forecasting have been 

undertaken from the antecedent flow records (Amiri, 2015; Hu et al., 2001; Lin et al., 
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2006; Nayak et al., 2004; Wang et al., 2009a; Wei et al., 2012) while concurrently 

rainfall has been included as an additional input variable (Araujo et al., 2011; De Vos 

and Rientjes, 2005; Firat, 2008; Iritz, 1992; Noori et al., 2011; Yawson et al., 2005). The 

influences of upstream inputs on the downstream discharge/stage have been investigated 

in several studies (Badrzadeh et al., 2015; Chau and Cheng, 2002; Kerh and Lee, 2006; 

Pramanik and Panda, 2009; Tabari, 2016; Zounemat-Kermani et al., 2013). In addition, 

areal precipitation over a river basin has been pronounced as a powerful influence on 

river flows as well (Bao et al., 2011; Chen et al., 2006; Jena et al., 2014; Johnson et al., 

1999; Rezaeianzadeh et al., 2014). In regards to the sediment estimation, rainfall, flow 

and sediment data are common input variables, yet, their spatial variability is seldom 

taken into account (Afan et al., 2015; Alp and Cigizoglu, 2007; Cigizoglu and Kisi, 

2006; Cimen, 2008; Firat and Güngör, 2010; Mustafa et al., 2012; Senthil Kumar et al., 

2011; Zhu et al., 2007). The need for considering factors in the upstream sections has 

motivated the researchers to investigate their influences on the downstream flow and 

sediment.  

 

The assessment of uncertainty prediction has become a necessity for most of the 

modeling studies within the hydrology community (Mantovan and Todini, 2006; 

Montanari, 2007; Zou et al., 2002). Generally, the lack of uncertainty analysis can lead 

to an inflated estimation of the model reliability and applicability, particularly for a 

novel proposed model. The methods to estimate the uncertainty of a model output range 

from probabilistic forecasting method and sampling-based method, to method based on 

the analysis of model errors and method based on fuzzy theory (Shrestha and 

Solomatine, 2006). They share a common weakness however, that the uncertainty 

analysis is based on specific assumptions (Blasone et al., 2008; Humphrey et al., 2016; 

Lohani et al., 2014; Montanari and Brath, 2004; Tiwari and Chatterjee, 2010a). The 
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demand of directly characterizing uncertainty has triggered new research. Nowadays, 

uncertainty estimation based on local error and clustering (UNEEC), lower upper bound 

estimation (LUBE) and grey formulation are popular techniques (Alvisi et al., 2012; 

Khosravi et al., 2011c; Solomatine and Shrestha, 2009; Taormina and Chau, 2015a). In 

this regards, the LUBE is the topic of current research for uncertainty analysis, in view 

of its easy implementation with neural network based models and direct construction of 

prediction intervals (Khosravi et al., 2011a; Quan et al., 2014a, 2014c; Rana et al., 2013; 

Ye et al., 2016).  

 

Undoubtedly, the hybrid models for river flow and sediment load are highly nonlinear, 

multi-dimensional and varying with time. Traditional optimization algorithms, e.g., the 

conjugate gradient algorithm and Levenberg-Marquardt (L-M) method are not 

applicable and may easily stick into local optima (Nourani et al., 2008; Raghuwanshi et 

al., 2006; Setiono and Hui, 1995). Recently, population-based optimization algorithms 

including differential evolution (DE), artificial bee colony (ABC) and ant colony 

optimization (ACO) have attracted the interest of many researchers (Afshar et al., 2009; 

Blum and Roli, 2003; Chiong et al., 2012; Chryssolouris et al., 1996; Karaboga et al., 

2007; Konar and Bagis, 2016; Korouzhdeh et al., 2017; Kumar and Reddy, 2006; Pang 

et al., 2015; Qin et al., 2010; Rocca et al., 2011; Szemis et al., 2012; Uzlu et al., 2014; 

Vasan and Simonovic, 2010). These algorithms are very powerful in finding a global 

optimum since they could simultaneously search in many directions. They can also 

overcome the poor generalization and slow convergence speed of local optimization 

algorithms. Therefore, optimization with population-based algorithms has been 

recognized as a significant issue in this research.  
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1.2 Research objectives 

The main objective of this thesis is to develop a feasible and reliable model respectively 

for river flow forecasting and suspended sediment estimation. The efficiency of LUBE 

method on uncertainty analysis and applications of DE, ABC and ACO algorithms as 

optimization techniques are also important issues. Specific objectives of this research 

are listed as follows:  

 

(1) To develop a hybrid forecasting model for downstream river flow by integrating 

physical concepts into neural network. The effectiveness of the proposed model will 

be confirmed by comparing with its benchmarking models. The most appropriate 

input variables will be determined, and concurrently the influences of inputs on the 

forecasting performances will be discussed. 

 

(2) To develop a hybrid double feedforward neural network model for suspended 

sediment load. The estimation performances of the proposed model will be 

compared with three benchmarking models and the corresponding results will be 

discussed. Further, the physical mechanism of the sediment transport in terms of 

different input combinations and river basins will be investigated.    

 

(3) To apply the use of LUBE method in evaluating the reliability of the proposed 

neural network models. The ability of constructing prediction intervals (PIs) by each 

model will be compared and investigated.  

 

(4) To conduct a comparative study of DE, ABC and ACO algorithms for the proposed 

models. The performances regarding optimization ability, convergence speed and 
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stability of each algorithm will be presented and discussed, and finally the most 

adaptive optimization algorithm will be determined. 

  

1.3 Organization of the thesis 

This thesis comprises eight chapters. The following is a brief description of each 

chapter.  

 

Chapter 1 introduces the background of the research, identifies the research objectives 

and presents the organization of the thesis.  

 

Chapter 2 firstly presents the modeling developments respectively for river flow 

forecasting and sediment load estimation. Then the input variables on the modeling as 

well as the selection methods are discussed. Research on the uncertainty analysis and 

population-based optimization algorithms is finally reviewed, in which the 

state-of-the-art methods and their applications are presented. 

 

Chapter 3 develops a hybrid model for downstream river flow forecasting. The 

identification of the model and the process of implementation are initially presented. 

The performances of the proposed model on daily and hourly river flows are then 

presented and discussed, in which comparison with its counterpart models is involved.  

 

Chapter 4 proposes a hybrid double feedforward neural network (HDFNN) model for 

suspended sediment loads estimation. The mechanism of the HDFNN model is 

displayed in details, derived from three existing models. The applications of the 

estimation models in two study cases are presented and main research findings are 
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discussed and concluded.  

 

Chapter 5 determines the best input variables for the proposed models respectively in 

Chapter 3 and 4. In this chapter, different input combinations are formulated and their 

influences on model performances are presented and discussed, where single- and 

multi-step-ahead cases are taken into account concurrently.  

 

Chapter 6 performs uncertainty analysis on the models proposed in Chapter 3 and 4. 

The LUBE method with neural network based models and the indices used for PIs 

evaluation are introduced. Cases studies are performed respectively for the river flow 

forecasting and sediment load estimation. The suitability of the proposed models is 

examined in comparison with their corresponding benchmark models. 

 

Chapter 7 presents the strategies of three population-based optimization algorithms and 

their applications on the proposed models. The comparative studies in terms of the 

optimization ability, convergence speed and stability are undertaken and discussed. 

Advantages and limitations of each algorithm are concluded.  

 

Chapter 8 summarizes conclusions of the research project and suggests the further work. 
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2 Literature Review 

While the necessity and significance of data-driven models for river flow and suspended 

sediment have been widely recognized, the demand for model accuracy, efficiency and 

reliability is still a challenge. This chapter introduces the development and applications 

of hydrological models in the field of river flow and suspended sediment simulation. 

The influences of input variables on the models are reviewed concurrently. Besides, 

methods of uncertainty analysis aiming at confirming the reliability of models as well as 

applications of population-based optimization algorithms are described in this chapter.  

 

2.1 Models for river flow forecasting  

River flow forecasting has a significant importance to hydrology and hydraulic 

engineering owing to its use in the design and management of water resource projects. 

In order to control water levels/discharges and to operate water structures more 

efficiently, models that forecast flow discharge are desired to be of high precision and 

certain degree of accuracy. Different types of hydrologic models have been employed 

for the river flows computation, the classification of which and the corresponding 

representative examples are demonstrated in Figure 2.1. Mechanistic models and 

conceptual models have been developed to describe the behavior of the internal 

hydrologic processes of the river flows in many decades. They belong to 

knowledge-driven models, which are based upon the conservation of mass, momentum 

and energy on the river system. Numerical simulations such as fractional steps method 

and finite volume method are applied to solve differential equations in the mechanistic 

models (Anderson and Bates, 1994; Deng et al., 2006; Sleigh et al., 1998). They are 
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inflexibly programmed and need predetermined order of execution, however. 

Conceptual models apply simplified principles to represent the interaction of 

hydrological variables such as rainfall, infiltration, runoff, evapotranspiration and 

drainage within storage elements (Franchini and Pacciani, 1991; Nash and Sutcliffe, 

1970; Wagener et al., 2004). In the recent decades, TOPMODEL (Beven et al., 1995), 

Xinanjiang (XAJ) model (Zhao, 1992) and probability distributed model (PDM) (Moore, 

2007) are popular conceptual models.  

 

The knowledge-driven models consider physical laws in the hydrologic processes, while 

data-driven models, on the contrary, directly capture the mapping between input and 

output variables without adopting any prior knowledge. One type of data-driven models 

assumes that the time series of dataset is stochastic, normal and time-invariant, in which 

linear/nonlinear regression models (Amemiya, 1983; Tiedeman et al., 1998), transfer 

function models (Kachroo, 1992; Yu et al., 1994) and linear perturbation models 

(Kothyari et al., 1993) are typical models. These models enjoy predefined structures but 

unknown parameters, thus are also termed models-based (Jain and Srinivasulu, 2004). 

The second type identifies models with unknown structures and parameters, and 

therefore, presents flexibility to some degree. Representative examples are 

K-nearest-neighbor (K-NN) methods (Solomatine et al., 2008; Teimouri, 2010), 

artificial neural network (ANN) models (Imrie et al., 2000; Kisi and Cigizoglu, 2007; 

Sudheer et al., 2003), fuzzy inference systems (FIS) (Cheng et al., 2005; Firat and 

Güngör, 2007; Pramanik and Panda, 2009), support vector machine (SVM) (Kisi and 

Cimen, 2011; Lin et al., 2006) and genetic programming (GP) (Guven, 2009; Savic et 

al., 1999; Sheta and Mahmoud, 2001). These models mainly develop on the basis of 

computational intelligence methods, which have proven to perform comparably to 

stochastic-based models (Adamowski et al., 2012; Rezaeianzadeh et al., 2014; Wang et 
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al., 2009a). The advantage lies on that they are available to exploit the information to 

model the highly-nonlinear and time-varying dynamics of the hydrological process. 

When compared with knowledge-driven models, the data-driven models pose practical 

applications refraining from the difficulty of model establishment and the uncertainty of 

principle representing flow processes. Therefore, the data-driven models, especially the 

intelligence-based methods, are gaining increasing popularity in hydrology community.  

Knowledge-driven 
models

Data-driven
models

Mechanistic models
System Hydrologic European
Institute of Hydrology Distributed Model
Geomorphology-Based Hydrology Simulation Model

Conceptual models
TOPMODEL
Xinanjiang Model
Probability-Distributed Model 

Models with predefined structures
Linear and nonlinear regression model
Transfer function model
Linear perturbation model

Models with unknown structures
K-nearest-neighbor method (K-NN)
Artificial neural network (ANN)
Fuzzy inference system (FIS)
Support vector machine (SVM)
Genetic programming (GP)

Hydrologic 
models

 
Figure 2.1 Classification of hydrologic models and the corresponding examples 

 

Artificial neural network (ANN) model is one of the most widely-used data-driven 

models and powerful for real-time prediction and estimation of flow since early 1990s 

(Chau and Cheng, 2002; Dibike and Solomatine, 2001; Karunanithi et al., 1994; Kerh 

and Lee, 2006; Kisi, 2004c; Sudheer et al., 2002). It imitates the function of human 

brain and nervous system, and acts as an information process system. The ANN model 

consists of input, hidden and output layers, and corresponding nodes in each layer. The 

artificial nodes receive information from the previous layer, then elaborate and pass 

them to other artificial nodes in the next layer. Then a learning process is conducted by 

finding an optimal set of weights for the connection and threshold values for the nodes. 

The ANN models can be classified according to the direction of information flow and 
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processing (Govindaraju, 2000), examples of which are the multilayer perceptron (MLP) 

(Cannas et al., 2006; Shamseldin, 2010; Sivakumar et al., 2002), radial basis functions 

(RBF) (Dawson et al., 2002; Kisi, 2008b; Partal, 2008) and Bayesian neural network 

(BNN) (Khan and Coulibaly, 2006; Kingston et al., 2005; Lampinen and Vehtari, 2001).  

 

The ANN models are capable of detecting any complex relationship between input and 

output variables due to their highly flexible structure. In particular, ANNs with one 

hidden layer are considered to provide enough complexity to model the nonlinear 

hydrologic process (De Vos and Rientjes, 2005), the structure of which is shown in 

Figure 2.2. By assessing the performances of ANN in comparison with traditional 

statistical models, it is ascertained that ANN is a remarkable alternative in river flow 

forecasting or flood predictions. For instance, Abrahart and See (2000) found that the 

ANN and autoregressive moving average (ARMA) provided similar results when 

applied to the river flow data in the Upper River Wye and the River Ouse; Cigizoglu 

(2003) demonstrated the superiority of ANN over multiple nonlinear regression (MNLR) 

model and autoregressive (AR) model for daily flow forecasting; the work of Kisi 

(2005a) showed that the ANN was able to produce better results than AR models when 

investigated with different inputs. Likewise, the performances of ANN models are 

comparably excellent when compared with other intelligence-based models such as 

SVM and GP models (He et al., 2014a; Kisi et al., 2012b; Londhe and Charhate, 2010; 

Wang et al., 2009a).  

Input layer Hidden layer Output layer

Inputs Outputs

 
Figure 2.2 A three-layer feed-forward ANN structure 
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The compact and flexible structure of ANN models enables them to be integrated with 

other techniques easily. The ANFIS (adaptive neuro-fuzzy inference system) model is a 

combination of ANN and Takagi–Sugeno FIS, and has been applied successfully in river 

flow models (Firat and Güngör, 2007; Keskin et al., 2006; Nayak et al., 2004; Pramanik 

and Panda, 2009; Singh and Deo, 2007). Numerous types of data preprocessing 

techniques, including wavelet analysis (WA) (Cannas et al., 2006; Nourani et al., 2009; 

Partal, 2008), singular spectrum analysis (SSA) (Wang et al., 2015b; Wu and Chau, 

2011; Wu et al., 2009a) and principal component analysis (PCA) (Hu et al., 2007; Noori 

et al., 2009; Okkan, 2012), have been employed to improve the performance of ANN 

models. The ANN models can also be combined with conceptual models for the purpose 

of effectively simulating the hydrological processes over various watersheds. Wilby et 

al. (2003) developed neural network solutions for daily discharge series simulated by a 

conceptual rainfall-runoff model and found a particular network that could emulate the 

gross behavior of the conceptual model. Song et al. (2011) integrated ANN and XAJ by 

considering the spatial distribution of rain-gauge stations and exploring nonlinear 

transformations of the runoff. Hybrid models of TOPMODEL and ANN were proposed 

as a simple and promising physically based rainfall-runoff model in flow modeling (Liu 

et al., 2013b; Xu et al., 2010). Furthermore, intelligence-based optimization algorithms 

integrated in ANN models to improve the generalization ability and accelerate the 

convergence speed are genetic algorithm (GA) (Giustolisi and Simeone, 2006; Jain and 

Srinivasulu, 2004; Wu and Chau, 2006), particle swarm optimization (PSO) (Chau, 

2006; Taormina and Chau, 2015c; Zhang et al., 2007) and Shuffled Complex Evolution 

(SCE-UA) (De Vos and Rientjes, 2008; Guo et al., 2013), to name a few. In the light of 

literature review, it can be deduced that ANN models are quite adaptable to be 

integrated with fuzzy systems, data preprocessing techniques, conceptual models and 

optimization algorithms. The consistently satisfactory performances of these models 

 12 



Hybrid Model of Neural Network and Population-based Optimization Algorithm                  Xiaoyun Chen     

lead to their wide applications on hydrological forecasting. Therefore, this study pays 

primary attention to the hybrid ANN model for the river flow forecasting.  

 

The ANN models yield powerful potential in forecasting issues owing to their relatively 

low computational demands and self-adjust to information as well. The greatest 

superiority of ANN models over traditional modeling techniques is their ability to 

capture the nonlinear behavior of data without going into the details of physical 

processes. Nevertheless, in reverse, the totally implicit and physically meaningless 

features are also the major criticisms. The confidence or reliability of networks in 

addressing real-word problem is difficult to build, since comprehensive decisions 

cannot be produced in a “black-box” ANN model (Benítez et al., 1997). Another 

drawback is that the structure of ANN models is unknown, thus the corresponding 

network design parameters (e.g., the node number in the hidden layer) are usually 

determined by trial-and-error methods. The over-fitting problem which may influence 

the generalization ability of ANN models is reported as well (Coulibaly et al., 2000; 

Giustolisi and Laucelli, 2005).  

 

As a matter of fact, ANN models still provide a great deal of promises in the hydrology 

community despite their limitations. Recent studies make an endeavor to overcome the 

disadvantage of physically-meaningless and provide insight into the unrecognized 

relationship within ANN models. They have great significance particularly for the flow 

modeling since that the flows in a river system embody features of highly-nonlinear and 

time-varying. Jain and his coworkers demonstrated that the hidden neurons in the ANN 

rainfall-runoff model can be approximate various components of the hydrologic system 

(such as infiltration, base flow, and delayed and quick surface flow, etc.) and suggested 

that the distributed structure of the ANN is able to capture certain physical behavior of 
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the rainfall-runoff process (Jain and Srinivasulu, 2006; Jain et al., 2004; Sudheer and 

Jain, 2004). Integrated approaches were developed using ANN and conceptual 

techniques when decomposing a flow hydrograph into different segments based on 

physical concepts in a catchment. Ahmad and Simonovic (2005) presented the use of 

ANN for predicting the peak flow, timing and shape of runoff hydrograph considering 

causal meteorological parameters and simulating a hydrograph. Rezaeianzadeh et al. 

(2013) applied the standard conceptual HEC-HMS (Hydrologic Engineering 

Center-Hydrologic Modeling System) model and ANN for forecasting daily outflows. 

As mentioned, neural networks have also been combined with fuzzy theory to identify 

the fuzzy behavior of river flow (Li and Chen, 2010; Nourani and Komasi, 2013; Peng 

and Liang, 2009). Modular ANN models have been proposed since that the underlying 

mechanisms of low-, medium- and high-flow generation are quite different and a single 

global ANN model cannot distinguish the corresponding process (Minns and Hall, 

1996). For instance, Zhang and Govindaraju (2000) used different modules within the 

network to learn subsets of the input space in predicting monthly discharges; Corzo and 

Solomatine (2007) addressed the baseflow separation through the use of a modular 

architecture that takes into account the existence of various flow regimes. The above 

literature reviews indicate the possibility of revealing physics in ANN models.   

 

Combining fuzzy pattern-recognition ideas with ANN model is another alternative to 

handle the nonlinear and fuzzy hydrological models. Qiu et al. (1998) introduced a 

model termed fuzzy pattern-recognition neural network (FPNN) to forecast annual 

runoff at Mayadu Station in Yili River of Xijiang. A meaningful function regarding 

fuzzy pattern-recognition was directly employed as an activation function in the hidden 

layer. The fuzzy notions in this practical FPNN model were the high and low runoffs 

due to wet and dry seasons respectively. The goal of pattern recognition was to classify 

 14 



Hybrid Model of Neural Network and Population-based Optimization Algorithm                  Xiaoyun Chen     

runoffs into a number of categories to reflect the nonlinear character of the river system. 

Zhao and Chen (2008) applied this hybrid FPNN model in ungauged basins, considering 

the fuzziness of basins. Such hybrid models have demonstrated their applicability and 

validity in hydrology communities.  

 

Other researchers have added physical equations into neural network to render the 

data-driven model more understandable. Yang et al. (1998) proposed a hydrological 

modeling network (HYMN) model, in which the continuity equation of flow was 

integrated into ANN model. The nodes in the hidden and output layers were regarded as 

storage reservoirs, which could provide water mass conservation and accord with the 

nonlinear nature. The model yielded satisfactory forecasting performances in the 

preliminary study of Irwell river basin at Salford University. Li and Gu (2003) further 

extended the HYMN model to streamflow and sediment forecasts at Jingjiang reach of 

the Yangtze River and Dongting Lake, China. Such HYMN model overcomes the 

drawback of the back-propagation (BP) algorithm in traditional ANN since the 

parameters have physical meanings, and the computing of output variables evolves with 

time. Piotrowski et al. (2007) showed that the forecasted peak concentrations of a 

transported pollutant in a river were more approximate when mass conservation was 

included. The number of studies which directly integrate physical principles into ANN 

structure is scanty, thus, an objective of the present study is to advance the application 

of ANN models with physical interpretation for river flow forecasting.  

 

Throughout the literature, intelligence-based models for river flow forecasting show 

superiority over another modeling in general. In this context, the ANN might be the 

most popular and powerful technique to simulate the nonlinearity and non-stationarity 

of river flow, particularly when combined with other effective algorithms. Directly 
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introducing physical-meaning activation functions into ANN structure has a high 

potential for modeling river flow. It has an aptitude to establish relationships between 

complex featured variables and concurrently provide comprehensive information about 

the mechanisms underlying the hydrologic process.    

 

2.2 Models for suspended sediment estimation 

Sediment estimation is another important issue in a river system since it is a priority in 

river restoration, stable channel design, water quality assessment and other applications. 

In practice, it is expensive and not easy to carry out the samplings of sediment 

concentration. Predicting the sediment load directly from empirical or analytical 

equation is also an extremely difficult task since the sediment transport is complex and 

nonlinear. In this regard, artificial intelligence techniques have become a remarkable 

tool to deal with the highly nonlinear and multi-variant problem in river engineering. 

 

Based on the mechanism by which sediment particles move, sediment transports are 

usually separated into two classes: bed load and suspended load. Bed load sediment is 

characterized by the rolling, sliding and hopping of sediment particles along the bed 

while suspended load sediment by the grains that are picked up off the bed and moving 

with the turbulent eddies in the flow. It is meaningful to classify the sediment particles 

since this distinction also results in different measurements of sediment data and the 

influencing factors on the sediment transport. Suspended sediment load (SSL) is of 

crucial importance because its presence or absence has significant impact on 

geomorphological and biological processes in rivers. Estimation of sediment load is a 

pre-work of design of many hydraulic structures. Take reservoir design for example, if 

sediment is underestimated it will lead to insufficient-capacity reservoirs, while 
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overestimation of sediment will result in over-capacity reservoirs. Additionally, 

suspended sediment could affect the water quality and cause irreparable damage to the 

environment. Thus it should be preciously forecasted and well taken measures by 

accurate prediction.  

 

Mechanistic methods which fall in the category of knowledge-driven models have been 

consistently employed to simulate the sediment transport process (Choi et al., 2007; Jha 

and Bombardelli, 2011; Zhao et al., 2017). It is based on the numerical methods coded 

to solve partial differential equations of flow and sediment transport. They are often 

impractical due to long computation time and huge data required, which might be even 

not available or measurable (Guldal and Muftuoglu, 2001). On the other hand, 

data-driven models for sediment simulation rely on the analysis of time series data 

without explicit knowledge of the system’s physical behavior. In this context, classical 

models such as sediment rating curve (SRC) and multi-linear regression (MLR) were 

widely applied at the beginning. The SRC is a relationship between the suspended 

sediment concentration (or yield) and river discharge. The curves are generally 

expressed in the form of a power equation proposed by Glysson (1987) and established 

by a regression analysis. Conventional SRC has been commonly used but proven to be 

incapable of providing sufficiently accurate estimates, since the goodness of fit implied 

by the relation is spurious (Demirci and Baltaci, 2013; Kisi, 2005b; McBean and 

Al-Nassri, 1988; Roushangar et al., 2016). Likewise, the MLR methods are not 

appropriate for modeling the sediment transport in view of their linear relations nature 

(Alp and Cigizoglu, 2007; Kisi, 2004b; Rajaee et al., 2009).   

 

In recent decades, there has been noticed a significant rise in the number of 

intelligence-based methods regarding the suspended sediment, such as SVM, GP, ANN 
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and ANFIS. Cimen (2008) found that negative sediment estimates which were 

encountered in the soft computing calculations are not produced by SVM. The 

superiority of SVM over conventional SRC and MLR has been presented for simulating 

suspended sediment, where the usage of wavelet support vector machine (WSVM) and 

least square support vector machine (LSSVM) increases lately (Himanshu et al., 2017; 

Kisi, 2012; Kumar et al., 2016; Nourani and Andalib, 2015; Roushangar et al., 2016; 

Zounemat-Kermani et al., 2016). Aytek and Kisi (2008) utilized the GP approach for the 

explicit formulation of daily suspended sediment-discharge relationship and found its 

superiority over the SRC and MLR models. Kisi et al. (2012a) applied GP technique to 

daily SSL estimation in two stations in Cumberland River in U.S. and indicated that GP 

is superior to the ANFIS, ANN and SVM models. Gene expression programming (GEP) 

and linear genetic programming (LGP) are extensions of the conventional tree-based GP 

presented in sediment modeling (Azamathulla et al., 2013; Guven and Kisi, 2011; Kisi 

and Guven, 2010; Kisi and Shiri, 2012; Shamaei and Kaedi, 2016; Shiri and Kisi, 2012).  

 

To the best of our knowledge, the ANN models are the most widely-used methods 

investigating the suspended sediment. The work of Cigizoglu (2004) indicated that the 

most frequently used ANN algorithm: multi-layer perceptron (MLP) could well capture 

the complex non-linear behavior of the sediment series. Melesse et al. (2011) also found 

that the MLP predictions for SSL are superior compared to predictions using MLR, 

MNLR and ARMA. Kisi (2004b) compared performances of MLP, RBF and GRNN 

(generalized regression neural network), and concluded that the MLP gave the best 

prediction and estimation in suspended sediment concentration (SSC); the RBF was best 

for the estimation of maximum sediment peak; the RBF and GRNN may give a better 

expectation for the performance in total sediment load estimation. Cigizoglu and Alp 

(2006) revealed the advantage of GRNN in handling the frequently encountered local 
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minima problem when compared with the FFBP (feedforward back propagation) in 

modeling sediment yield. Alp and Cigizoglu (2007) employed FFBP and RBF neural 

networks to estimate the daily SSL and presented their excellent performances in 

comparison with MLR. Wang et al. (2009b) concluded that both FFBP and GRNN 

could be successfully applied to the event-based SSC modeling and far superior to the 

classical regression. Afan et al. (2015) found that FFBP has superior performance than 

the RBF model in estimating daily sediment load. More reviews on the ANN 

applications in sediment modeling imply that they have emerged as an advanced 

modeling technique capable of addressing inherent non-linearity in the sediment 

transport processes (Ardiclioglu et al., 2007; Cigizoglu and Kisi, 2006; Joshi et al., 2016; 

Masoumeh and Mehdi, 2012; Mustafa et al., 2012; Singh et al., 2013). 

 

The fuzzy nature of sediment data series necessitates the utilization of fuzzy and highly 

nonlinear methods to the field of sediment simulation. Fuzzy logic was accepted as 

good procedures in suspended sediment estimation (Demirci and Baltaci, 2013; Kisi, 

2004a, 2009; Kisi et al., 2006; Kumar et al., 2012; Senthil Kumar et al., 2011). As 

describing the degree of ‘belongingness’ to a set or category by a membership number, 

it could better reveal the fuzzy feature of models and outperform the SRC and ANN 

models. Neuro-fuzzy (NF) techniques, which are combinations of artificial neural 

network and fuzzy logic, have been explored in the literature as well. Kisi (2005b) 

investigated the potential of NF in establishing streamflow-suspended sediment 

relationship and showed that NF gave better estimates than ANN, SRC and MLR. Its 

efficiency was further verified in the work of Kisi et al. (2008) when compared with 

RBF, FFBP, GRNN, MLR and SRC. The past decade has witnessed a few applications 

of NF techniques (usually refers to ANFIS) on SSL modeling, in which their efficiencies 

were compared with other novel methods or improved by combining with data 
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processing approaches (Azamathulla et al., 2013; Partovian et al., 2016; Rajaee et al., 

2010; Shiri and Kisi, 2012; Vafakhah, 2013). In regard to the SSC estimation, the 

superiority of the NF method over RBF, GRNN, MLP and SRC was also proven by 

Cobaner et al. (2009). The work of Rajaee et al. (2009) demonstrated that NF and ANN 

models were in good agreement with the observed SSC values. A conjunction of wavelet 

analysis and NF model was employed by Mirbagheri et al. (2010) for SSC prediction in 

rivers. Shamaei and Kaedi (2016) improved the ability of NF model in SSC estimation 

by combining stacking method as a powerful machine learning technique. Malik et al. 

(2017) applied co-active neuro-fuzzy inference system to daily SSC simulation and 

indicated its superiority over the MLP, MLR, MNLR and SRC models. Besides, the NF 

was used as a benchmark model for comparison in the studies by Kisi and his coworkers 

when they proposed novel models for SSC estimation (Kisi, 2009, 2010b; Kisi and 

Guven, 2010; Kisi et al., 2012c; Kisi and Shiri, 2012). The capacity of NF models in 

handling the uncertainty and vagueness of the sediment transport has been sufficiently 

confirmed. However, they face a major challenge regarding the choice of membership 

functions (e.g., triangle, trapezoidal, bell) in different cases. Besides, it is particularly 

notorious for the difficulty to be integrated with optimization algorithms in the learning 

process. A flexible and transparent model which allows implementing the fuzzy concept 

in neural networks is appreciated. 

 

As stated by Afan et al. (2016), the uninterrupted development in artificial intelligence 

techniques and their applications have increased competition between researchers to 

develop an accurate model to overcome the complexity, non-stationary and dynamism 

of the sediment transport behavior in rivers. In recent years, considerable attention has 

been paid to the data preprocessing techniques to enhance the sediment predictions. 

Partal and Cigizoglu (2008) employed a combined wavelet-ANN method to predict and 

 20 



Hybrid Model of Neural Network and Population-based Optimization Algorithm                  Xiaoyun Chen     

estimate daily suspended sediment load and showed its superiority to conventional ANN 

and SRC methods. Kisi (2010a) proposed neuro-wavelet technique for modeling daily 

suspended sediment-discharge relationship and revealed that the model produced 

satisfactory results. The efficiencies of WANN (wavelet-artificial neural network) and 

WNF (wavelet transform and neuro-fuzzy) in SSL prediction were demonstrated in 

comparison with their corresponding single model, MLR and SRC (Rajaee, 2010; 

Rajaee, 2011; Rajaee et al., 2010; Rajaee et al., 2011). Furthermore, Shiri and Kisi 

(2012) deduced that the wavelet conjunction models (combined with GEP, NF and ANN) 

could significantly increase the accuracy of individual models in suspended sediment 

estimation. Liu et al. (2013a) supported the usage of WANN model as a more accurate 

alternative to the FFBP in predicting SSC with highly nonlinear and non-stationary time 

series. The wavelet analysis demonstrates an aptitude to represent the signal on the base 

of wavelet function and reduce the data noise. Principal component analysis (PCA) and 

gamma test are also utilized to select independent variables in sediment transport 

modeling (Hassan et al., 2015; Lafdani et al., 2013; Malik et al., 2017; Pektas, 2015; 

Rashidi et al., 2016; Tayfur et al., 2013).  

 

Other attempts are combining optimization algorithms with machine learning 

approaches to predict suspended sediment. These initial studies mainly focus on the use 

of genetic algorithm as an evolution optimization method. Altunkaynak (2010) 

proposed Geno-Kalman filtering (GKF) as a combination of GA and Kalman filtering 

method to predict SSC. Ulke et al. (2011) found that the GA improved Brooks method 

can be used for SSL prediction, and its performance was as good as traditional ANN and 

ANFIS applications. Adib and Jahanbakhshan (2013) determined the SSC in tidal rivers 

by GA-ANN method and found that GA performed well in optimizing the parameters in 

ANN model. The GA-ANN model was also applied to SSL prediction by Adib and 
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Mahmoodi (2017). Ebrahimi et al. (2013) applied GA and honey-bees mating 

optimization algorithms in optimizing two parameters for the sediment rating curve to 

estimate the SSC. Liu et al. (2015) used an improved genetic algorithm to optimize the 

RBF for measuring high SSC in the Yellow River and revealed that the model can 

effectively eliminate environmental influences and raise the measuring accuracy and 

stability of the system. There are a few applications of the other high-potential 

algorithms such as PSO, DE and ABC for the sediment models (Guo and Wang, 2010; 

Kisi, 2009, 2010b; Kisi et al., 2012c; Masoumeh and Mehdi, 2012).   

 

Despite the substantial superiority of the aforementioned models, a common 

disadvantage is the lack of physical involvement with the inside mechanisms of 

sediment transport in a watershed. It is still necessary and essential to develop models 

with conceptual ideas to contemplate the complexity of suspended sediment behavior. 

Li and Gu (2003) introduced mass conservation of sediment deposition into the ANN 

structure, considering the time-varying nature of the sediment transport process. Lin and 

Namin (2005) combined a deterministic numerical model with the ANNs to predict the 

distribution of suspended sediments under non-uniform flow conditions. In this model, 

the transport process of sediments within the water column is simulated by numerically 

solving the advective-diffusion equation. Kumar et al. (2015a) explored the use of 

Tropical Rainfall Measuring Mission (TRMM-3B42) dataset for suspended sediment 

using neural networks. It was inferred that the TRMM-3B42 rainfall estimates can be 

used for the conceptual rainfall-runoff-sediment modeling. Si et al. (2017) presented a 

new semi-physical watershed sediment yield model for the estimation of suspended 

sediment in a loess region, which was composed by three modules in slope, gully, and 

stream phases. Notwithstanding a small amount of studies so far, the ideas that 

integrating physical concepts of sediment transport into data-driven models have been 
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identified and shown a promising future in the sediment modeling.  

 

2.3 Input variables of hydrological models  

The attempt to improve accuracy of hydrological models is a long-term topic of interest 

by researchers. In this regards, many issues, including identification of input variables, 

development of model structures and employment of optimization algorithms are 

encountered particularly for data-driven models. As an important step, the selection of 

input variables should be carefully conducted in order to facilitate the mapping of the 

input and output for modeling a given hydrological process. The model performances 

are significantly affected by the input variables imported. Negative consequence of 

under-specification of input variables is that the model could not simulate the potential 

relationship between inputs and outputs, which further results in building inaccurate 

models. Conversely, if the model is over-specification (i.e., the input variables are 

redundant), model calibration becomes more difficult due to the increased size of search 

space. It also adds noise to the models and thus increases uncertainty associated with 

model errors. In the following, the current state of input variable selections is reviewed 

respectively for the river flow forecasting and suspended sediment estimation models. It 

is imperative to appropriately identify the set of inputs for explaining the behavior of 

output variables after having a thorough understanding of the input influences.  

 

2.3.1 Input variable selection for river flow forecasting models 

Considering the difficulty of data measurement and scarcity of relevant data, a large 

amount of studies addressing river flow forecasting have been undertaken from inputs 

based on its own time series data (Amiri, 2015; Cheng et al., 2005; Guven, 2009; Hu et 
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al., 2001; Keskin et al., 2006; Lin et al., 2006; Nayak et al., 2004; Noori et al., 2009; 

Patel and Ramachandran, 2015; Singh and Deo, 2007; Wang et al., 2009a; Wei et al., 

2012; Wei et al., 2013). It belongs to the category of univariate forecasting in the 

literature, which may be presented in several scales such as hourly, daily, monthly and 

yearly. In this regard, the challenge of input determination is to select valuable inputs 

from past records, which have maximum dependency with output variables and 

minimum redundancy for calibration (Peng et al., 2005). Input variable selection 

techniques have been extensively employed in this field to solve the problems, and the 

details will be presented in the following. 

 

As known, the modeling entailing exogenous various apart from the flow itself is 

termed multivariate forecasting. In a hydrological cycle, precipitation and evaporation 

(or evapotranspiration) are main influencing factors on runoff, which therefore comprise 

the potential input variables for inflow forecasting. Rainfall has been included as an 

additional factor to the previous flow which is widely recognized as a necessity in 

model inputs (Araujo et al., 2011; Brezkova et al., 2010; De Vos and Rientjes, 2005; 

Dibike and Solomatine, 2001; Firat, 2008; Gopakumar et al., 2007; He et al., 2014b; 

Iritz, 1992; Londhe and Gavraskar, 2015; Noori et al., 2011; Rezaie-Balf et al., 2017; 

Wu et al., 2005; Xiong et al., 2004; Yawson et al., 2005). Some of these studies 

indicated that models with flows or rainfall input variable only have worse 

performances than those with input variables consisting of both rainfall and flow. In the 

meanwhile, the importance of evaporation or evapotranspiration as an input variable has 

been evaluated by researchers. Some of them found that they tend to be a redundant 

input variable (Abrahart et al., 2001; Anctil et al., 2004; Toth and Brath, 2007; Xu et al., 

2009a) while others pointed out their effectiveness on flow modeling (Breinholt et al., 

2012; Danh et al., 1999; Nayak et al., 2013; Wang et al., 2008a; Xu et al., 2009b; 
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Yawson et al., 2005). Studies that forecast flow using climate input data such as 

temperature, relative humidity, solar radiation and wind speed have also been witnessed 

in years (Alizadeh et al., 2017; Araujo et al., 2011; Chitsaz et al., 2016; Demirel et al., 

2012; Noori et al., 2011; Panagoulia et al., 2017). 

 

In the most recent decades, conceptual rainfall-runoff models are successfully employed 

to assess land-use impacts on hydrological processes (Anctil et al., 2004; Asadnia et al., 

2014; Chang et al., 2017; Daliakopoulos and Tsanis, 2016; Ferket et al., 2010; Franchini 

and Pacciani, 1991; Kan et al., 2015; Moore, 2007; Moore and Bell, 2002; 

Rezaeianzadeh et al., 2013; Vaze et al., 2011; Wei, 2016; Wilby et al., 2003). They 

incorporate simplified forms of physical laws and could manifest highly nonlinear, 

time-variant and spatially distributed properties of rainfall-runoff process with 

representative parameters (Hsu et al., 1995). The interaction of hydrological variables 

such as rainfall, infiltration, runoff, evapotranspiration and drainage within storage 

elements is taken into consideration. For instance, McIntyre and Al-Qurashi (2009) 

applied metric-conceptual IHACRES (Identification of unit Hydrographs and 

Component flows from Rainfall, Evaporation and Streamflow) model to an arid 

catchment in Oman using a semi-distributed representation of rainfall input, considering 

the spatial features of rainfall and the variability and non-linearity of losses; Samain and 

Pauwels (2013) found that actual evapotranspiration is a crucial factor in simulating the 

catchment water balance and the streamflow using PDM method; Daliakopoulos and 

Tsanis (2016) employed Sacramento soil moisture accounting model (SAC-SMA) using 

monthly rainfall, streamflow and potential evapotranspiration input. The conceptual 

rainfall-runoff models are gaining increasing popularity since they could adequately 

capture the behavior of runoffs from various inputs. Furthermore, the conceptual models 

make allowance for the spatial variability of input variables, which is a great advance in 
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hydrological modeling. However, the complexity of models imposes a heavy burden on 

the selection of optimal input variables from potential ones.  

 

In a river system, upstream rivers carrying water and sediment flow into downstream 

rivers. The discharge in downstream river, therefore, is significantly affected by that in 

upstream rivers (Zounemat-Kermani et al., 2013). Predicting discharge from its 

upstream rivers is thus meaningful and further research is required because more 

accurate prediction results could help to more efficiently manage the water and control 

flooding. A small number of studies were carried out to predict flow at the downstream 

end of a river by the discharge records of upstream gauging sites. Kerh and Lee (2006) 

employed an ANN model to forecast flood discharge at station downstream of the 

Kaoping River on the basis of information at stations upstream of the river. Chen et al. 

(2006) suggested that the upstream flow information are the key effects for modeling 

the flood forecast using precipitation and flow data sets of the Choshui River in central 

Taiwan. Pramanik and Panda (2009) estimated daily outflow from a barrage located in 

the downstream region of Mahanadi River basin, India, using data from the Hirakud 

Reservoir located upstream of the barrage, and evaluated the significance of the 

contribution of two upstream tributaries. Zounemat-Kermani et al. (2013) revealed that 

using upstream records could significantly increase the accuracy of ANN and MLR 

models in predicting daily stream flows by around 30%. Badrzadeh et al. (2015) 

conducted flood forecasting at Casino station on Richmond River, Australia from hourly 

rainfall and runoff data, and improved the model performances by adding an upstream 

river flow data (Wiangaree station) as another effective input. Tabari (2016) forecasted 

the daily runoff in downstream of Taleghan river using data of rain gauge and 

hydrometric stations which are located upstream of the river. Besides, water levels from 

the upstream stations have also been used in the flood forecasting (Chau and Cheng, 
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2002; Latt and Wittenberg, 2014; Nguyen et al., 2014; Tayfur and Moramarco, 2008; 

Tiwari and Chatterjee, 2010b; Wu and Chau, 2006), which also provides concrete 

evidence of the importance of spatial input variables in a river system.  

 

Apart from conceptual rainfall-runoff models, the spatial variability of precipitation has 

been considered in recent studies. Akhtar et al. (2009) explored the use of flow length 

and travel time in ANN models for river flow forecasting, which was employed as a 

preprocessing step when incorporating the spatial precipitation information. Ozyurt and 

Sezer (2012) used upstream flow, precipitation and retrospective downstream flow for 

prediction of downstream flow in the Zamanti River Basin. More generally, mean areal 

precipitation over a river basin has been pronounced as a powerful influence on river 

flows (Bao et al., 2011; Chen et al., 2006; Jena et al., 2014; Johnson et al., 1999; 

Linares-Rodriguez et al., 2015; Rezaeianzadeh et al., 2014). Chen et al. (2006) found 

that watershed's average rainfall could provide further information and thus enhance the 

model accuracy. Bao et al. (2011) analyzed the influence of areal rainfall on the 

simulation accuracy of runoff prediction using self-similarity topography method. 

Rezaeianzadeh et al. (2014) showed that the area-weighted precipitation as an input to 

ANNs and MNLR and the spatially distributed precipitation input to ANFIS and MLR 

lead to more accurate predictions. Given the importance to avoid flooding on the 

downstream side during the rainy season, it is requisite to simulate desired outflows 

with appropriate upstream inputs. 

 

There are basically two categories used to select an optimal input vector from 

candidates: model-based and model-free. Model-based approaches characterize the 

relation between input and output depending on a pre-existing model, involving 

methods that use a priori knowledge of the system, heuristic method and knowledge 
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extraction. The use of a priori knowledge of the modeled system is necessary to identify 

candidate inputs generally, but suffers from disadvantages of subjective and 

case-dependent (Campolo et al., 1999; Minns and Hall, 1996; Thirumalaiah and Deo, 

2000). Heuristic method is a trial-and-error process, which chooses the most appropriate 

input vector by comparing the performances of calibration models with all potential 

inputs (Hsu et al., 1995; Jain et al., 1999; Raman and Sunilkumar, 1995; Thirumalaiah 

and Deo, 1998; Wilby et al., 2003). A stepwise approach is used herein to avoid total 

enumeration by training separate networks for each input variable (Maier et al., 1998). 

The heuristic methods entail training a large number of models with high computational 

complexity, and the problem is further exacerbated in time series studies where 

appropriate lags must also be chosen (Bowden et al., 2005). Sensitivity analysis is the 

most common method of knowledge extraction, and the difficulties in choosing a 

reasonable value to perturb the input by and selecting the appropriate cutoff point for 

input significance impede its development (Atkinson et al., 2003; Kim and Kim, 2008; 

Liong et al., 2000; Noh et al., 2014; Yu et al., 2006; Zhao et al., 2015).    

 

On the other hand, model-free approaches are employed to determine the optimal input 

variables before model calibration. They utilize statistical measures of the degree of 

dependence between the candidate inputs and outputs. It is noted that the efficiency of 

model-free approaches is largely dependent on the statistical dependency measure used. 

The most common measure of statistical dependence for input variables selection is 

correlation, which measures only linear dependence between variables. Cross 

correlation (CC), autocorrelation (AC) and partial autocorrelation (PAC) are typical 

methods employed for input selection (Abrahart, 2003; Coulibaly et al., 2000; De Vos 

and Rientjes, 2005; Imrie et al., 2000; Jain et al., 2004; Sajikumar and Thandaveswara, 

1999; Solomatine et al., 2008; Sudheer et al., 2002; Yaseen et al., 2016). For the case in 
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water resources problems, however, the input-output relationships are usually highly 

non-linear. Thus, non-linear statistical dependence measures are more appreciated for 

determining input variables so that it will not omit important inputs that are related to 

the output in a nonlinear fashion. Mutual information (MI) is a nonlinear statistical 

dependence measure that could evaluate any arbitrary dependencies between random 

variables (Reyhani et al., 2005). It has been used to select the subset of lags of the time 

series and proves to be robust due to its insensitivity to noise and data transformation 

(Chen et al., 2014; Tongal, 2013; Wu et al., 2010). Partial mutual information (PMI) is a 

partial measure of the MI criterion, having advantages of catering for input redundancy 

with a well-defined stopping criterion. Its efficiency in the input determination 

regarding water resources applications has also been verified (Bowden et al., 2005; 

Fernando et al., 2009; He et al., 2011; May et al., 2008). Besides, principal component 

analysis (Chitsaz et al., 2016; Hu et al., 2007; Ouyang, 2005), self-organizing map 

(Herbst et al., 2009; Ismail et al., 2012; Tiwari et al., 2013) and the gamma test (Chang 

et al., 2014; Noori et al., 2011; Remesan et al., 2010) are other model-free methods for 

hydrologic applications. These methods extricate themselves from an interaction 

between the potential inputs and a particular data-driven model, thus present high 

computational efficiency. Nevertheless, they are not always suitable input selection 

approaches particularly when input information could be obtained by individually 

irrelevant candidates.  

 

In view of the disadvantages to each approach mentioned above, researchers advocate 

the use of composite methods for input variable selection. A combination of a priori 

knowledge and other methods is recommended in practice, owing to the importance of a 

good understanding of the hydrologic system on selecting appropriate input variables 

(Fernando and Jayawardena, 1998; Maier et al., 1998; Silverman and Dracup, 2000). 
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Other composite methods have also been reported in papers, for example, Schleiter et al. 

(1999) used various methods including Pearson correlation, stepwise forward regression 

and sensitivity analysis to determine optimal inputs for the modeling of water quality; 

Chang et al. (2017) utilized a combination of mutual information and cross correlation 

for the choice of rainfall inputs for event-based rainfall-runoff modeling. With the 

increasing attention paid to the selection of appropriate model inputs in the water 

resources applications, more effective selection methods are developed, which further 

facilitates the input-output mapping of the data-driven models.   

 

2.3.2 Input variable selection for suspended sediment estimation models 

The type of input variables for developing an accurate sediment model can be broadly 

divided into hydrologic and hydro-meteorological data. Hydrologic data mainly 

contains water lever, discharge and sediment, while the relevant hydro-meteorological 

data are commonly rainfall and temperature. These variables play different roles in the 

sediment transport process, and practically take effect jointly on the sediment output.  

Thus multivariate models have been widely reported for suspended sediment simulation, 

taking into account various input variables. On the other hand, discharge and sediment 

data have been found to be separately employed as input variables in a univariate 

sediment model.  

 

Antecedent sediment records could be the most easily available input for a sediment 

forecasting model. Examples of papers dealing with the prediction of suspended 

sediment using only past sediment data are Cigizoglu (2004), Partal and Cigizoglu 

(2008b), Guo and Wang (2010), Rajaee et al. (2011) and Afan et al. (2015). The single 

input variable could not unfailingly promise the optimal input-output mapping for the 

 30 



Hybrid Model of Neural Network and Population-based Optimization Algorithm                  Xiaoyun Chen     

sediment models, however. For instance, Cigizoglu (2004) found that the use of 

upstream sediment data gives more accurate results than using the input from 

downstream (its own station). Afan et al. (2015) revealed that including only sediment 

values in the input layer was not sufficient to obtain satisfactory performance, and an 

additional input of flow values significantly improved the result of estimation. Recently, 

the importance of flow data in model inputs has been widely recognized by researchers.  

 

Previous studies paid much attention to develop flow-sediment relationship using only 

the current flow data as inputs, in which the sediment rating curve (SRC) has been 

widely employed for the univariate estimation (Asselman, 2000; Crawford, 1991; 

Doomen et al., 2008; Harrington and Harrington, 2013; Horowitz, 2003; Jansson, 1997). 

More recently, the intelligence-based methods have been found to generally yield more 

accurate prediction than the traditional SRC method using the same input (Boukhrissa et 

al., 2013; Kisi, 2005b; Kisi et al., 2008; Liu et al., 2013a; Malik et al., 2017; 

Roushangar et al., 2016; Zounemat-Kermani et al., 2016). Kisi (2005b) found that the 

NF model whose input is the current discharge has the best results while the ANN 

model obtains highest accuracy from inputs containing current flow and past 

flow/sediment data in two study cases. Malik et al. (2017) used the gamma test to 

determine the best inputs from four input combinations and revealed the inferior 

performance by the case with only current flow input. It is a more common 

phenomenon indicated by the above studies that the estimations with only current flow 

input fail to give satisfactory performances in comparison with multivariate estimations. 

This is apprehensible since that single input variable could not provide sufficient 

information for effectively reflecting the complex features of the sediment data.  

 

There remains the necessity of taking into account the influences of various input 

 31 



2 Literature Review 

variables, commonly containing the flow and sediment data on a sediment estimation 

model (Afan et al., 2015; Cigizoglu, 2004; Cigizoglu and Alp, 2006; Cigizoglu and Kisi, 

2006; Cimen, 2008; Firat and Güngör, 2010; Guven and Kisi, 2011; Kisi, 2008a, 2009, 

2010b, 2012; Mustafa et al., 2012; Rajaee et al., 2009). Cigizoglu and Kisi (2006) 

suggested that the current flow and one-day-ahead of sediment data should be 

considered as inputs in the ANN model to estimate the suspended sediment at current 

day using the k-fold partitioning analysis. Cigizoglu and Alp (2006) found that the 

additional of sediment data could not attain better accuracy when using current and past 

flows as input data belonging to Juniata Catchment in USA. Kisi (2008a) used 

correlation analysis to identify a unique input vector to the ANN model and reduce the 

computing time. Rajaee et al. (2009) constructed six input combinations from flow and 

sediment data with different lead time, and found that the ANN and NF provided the 

best performance from the different input combination in the Little Black River Station. 

Afan et al. (2015) examined different input combinations of varying antecedent value 

for both suspended sediment load and discharge to get more accurate results. Recently, 

wavelet analysis has been widely used to improve the accuracy of estimating suspended 

sediment from discharge and sediment data (Partal and Cigizoglu, 2008a; Rajaee, 2010; 

Rajaee, 2011; Rajaee et al., 2010; Rajaee et al., 2011; Shiri and Kisi, 2012).  

 

In quite a few studies, water level is included as a suitable input variable in addition to 

the flow and sediment data (Jain, 2001; Lohani et al., 2007; Wang and Traore, 2009). 

These hydrologic data take direct effect on the sediment transport, thus could be 

regarded as effective input variables in the modeling. However, not only the strength of 

flow and sediment supply has influences on the sediment transport, but also the river 

bed condition and climate factors. Rainfall and temperature are two typical 

hydro-climatic input variables for suspended sediment estimation. Raghuwanshi et al. 
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(2006) estimated suspended sediment yield with different combinations of rainfall and 

temperature as inputs by ANN models. Alp and Cigizoglu (2007) prepared three input 

combinations comprising of the previous daily rainfall, sediment load and river flow 

data, and concluded that only rainfall data as input produced less accurate results than 

that with rainfall and flow inputs. Zhu et al. (2007) considered suspended sediment 

flux’s relation with the average rainfall, temperature, rainfall intensity and water 

discharge, and predicted monthly sediment for the Longchuanjiang River in the Upper 

Yangtze Catchment, China. Some algorithms concerning statistical properties (e.g., AC, 

PAC and CC function of the time series) were carried out by Senthil Kumar et al. (2011) 

to determine input vectors from antecedent rainfall, sediment concentration, and 

discharge values of upstream and current stations to predict SSC. Lafdani et al. (2013) 

employed a combination of gamma test and genetic algorithm to identify the best input 

from stream flow and rainfall data. Demirci and Baltaci (2013) used mean water 

temperature instead of rainfall to predict the SSC. There are other studies concerning the 

hydro-meteorological input variables in the suspended sediment models (Cobaner et al., 

2009; Goyal, 2014; Kisi and Shiri, 2012; Melesse et al., 2011; Singh et al., 2013; 

Vafakhah, 2013). 

 

Hydraulic data such as bed slope and sediment particle size are common input variables 

for knowledge-based sediment models, but have been rarely adopted in data-driven 

models. Dogan (2009) studied nonlinear relations between SSC and independent 

variables: bed slope, flow discharge and sediment particle size by using ANN to predict 

sediment concentration. Haddadchi and Dehghani (2012) demonstrated ANN’s superior 

performance in suspended load transport rate estimation by comparing with other nine 

transport formulas. They evaluated suspended load transport from hydraulic and 

sediment data including flow velocity, flow depth, the median size of bed material 
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sediments, bed load and the median size of suspended load sediments. Adib and 

Jahanbakhshan (2013) determined the SSC in tidal rivers by GA-ANN method with two 

different networks: the inputs of first network are distance from upstream of river, flood 

return period and tide return period; the inputs of second network are distance from 

upstream of river, flood discharge and ebb height. They found that the distance from the 

upstream river and flood discharge are two most effective factors on SSC respectively in 

the above two networks. Albeit satisfactory results obtained by the above studies, time 

series of hydraulic data are usually not available for data-driven models. Hydrologic and 

hydro-meteorological data, particularly the rainfall, flow and sediment data are more 

common and have proven important in the sediment transport. Spatial variability of the 

input variables should also be considered in the sediment models.   

 

2.4 Uncertainty analysis on hydrological models  

Despite the number of successful applications of data-driven models on hydrological 

prediction scenarios, the estimation of the uncertainties is still a practical necessity. 

Uncertainty associated with model errors has always been inherent in the process of 

hydrological modeling, which might be induced by the training data, model parameters 

and structure. The reliability and applicability of the models might not be ensured when 

only point predictions are provided. It is indicated that point predictions tend to be 

unreliable and questionable when the system is characterized with multi-valued data, 

noise and probabilistic events (Quan et al., 2014a). The probability for correct 

predictions could not be assessed by the point predictions, which may cause problematic 

decision-making when a high level of uncertainty is contained. For example, accurate 

and timely flood warning might not be issued if the flood forecasting is not a faithful 

representation of reality, where input data might be lacked, model structure might be 
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imperfect and probabilistic characterization of meteorological events might be included. 

Accordingly, a reliable hydrological prediction is essential for risk-based design and 

management of water systems. 

 

Quantifying the uncertainty in hydrological predictions has attracted considerable 

attentions recently (Kundzewicz, 2007; Mantovan and Todini, 2006; Montanari, 2007). 

The preferred methods for estimating uncertainty of the model output involve 

probabilistic forecasting method, sampling-based method, method based on the analysis 

of model errors and method based on fuzzy theory (Shrestha and Solomatine, 2006). 

Firstly, the probabilistic forecasting method predicts the output by representing the 

model parameters through probability distributions defined on Bayesian theory 

(Krzysztofowicz, 1999). As a learning approach, the Bayesian is introduced to train the 

neural network models by an assumed prior distribution of parameters. The Bayesian 

neural network (BNN) has been employed for streamflow simulation (Humphrey et al., 

2016; Zhang et al., 2009), rain-runoff modeling (Khan and Coulibaly, 2006), salinity 

forecasting (Kingston et al., 2005) and so on. A major drawback of the BNN is that 

singularity problems might be induced because of the computation of Hessian matrix. 

Besides, the method is only attributed to the uncertainty in the parameters, which could 

not address the uncertainties imported by model inputs and structure.  

 

The second method is generally known as ensemble method, still in the limit of 

accommodating the uncertainties associated with model parameters. The bootstrap is 

one typical ensemble method, which is based on resampling with replacement of the 

training dataset. Bootstrap based artificial neural networks have been successfully 

applied in hydrological modeling to estimate confidence interval of the outputs and 

quantify the uncertainty of the model parameters (Abrahart, 2003; Kumar et al., 2015b; 
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Sharma and Tiwari, 2009; Tiwari and Chatterjee, 2010a; Tiwari and Chatterjee, 2010b). 

Although the bootstrap method has the advantage of avoiding complex computations of 

derivatives, it is very time consuming since a large number of models is required to be 

trained to estimate total error variances. The Monte Carlo-based approach which 

samples the input space with probability distribution, also belongs to the 

sampling-based method (Kuczera and Parent, 1998). Generalized likelihood uncertainty 

estimation (GLUE) is a common approach using Monte Carlo sampling in hydrologic 

modeling (Aronica et al., 2002; Beven and Binley, 1992; Blasone et al., 2008). Most 

recently, Dehghani et al. (2014) performed an uncertainty analysis based on Monte 

Carlo approach for streamflow drought forecasts; Golasowski et al. (2015) used Monte 

Carlo method to sample and run multiple rainfall-runoff simulations from the modeled 

input space. Despite the successful applications, the demand for probability distribution 

of uncertain parameters hinders a widespread use of the Monte Carlo-based method.    

 

The method based on the analysis of model errors analyzes the statistical properties of 

the errors on account of assumptions for the model residuals (Montanari and Grossi, 

2008). For instance, Chryssolouris et al. (1996) computed a confidence interval with the 

assumption of normally distributed error for the neural network; Montanari and Brath 

(2004) employed a meta-Gaussian approach in order to estimate the probability 

distribution of the model error conditioned by the simulated river flow. McInerney et al. 

(2017) attempted to identify the best-performing error modeling schemes from eight 

common approaches, including the Box-Cox transformation and the log-sinh 

transformation to provide the most reliable and unbiased streamflow predictions. It is 

found in these studies that the predictive performances of such method primarily rely on 

the validity and relevancy of the model error assumptions. An approach termed 

“uncertainty estimation based on local error and clustering”(UNEEC) is proposed by 
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Shrestha and Solomatine (2006), in which the probability density function of the model 

error is estimated via empirical distribution. That is, the distribution of residuals is 

conditioned on the input and possible state variables of the model, making no 

assumption. Besides, the UNEEC takes the joint contribution of all sources of errors 

into account, which is more appreciated in the decision-making process for knowing the 

total model uncertainty. Solomatine and Shrestha (2009) concluded that the UNEEC 

method generates consistent, interpretable and improved model uncertainty estimates 

when compared with the Monte Carlo method GLUE, the meta-Gaussian, and the QR 

(Quantile regression) method. Pianosi et al. (2010) extended the UNEEC method to 

consider parameter uncertainty when relaxing the assumption that all sources of 

uncertainty, including input, parameter and model structure uncertainty are explicitly 

manifested in the model residuals. Heretofore, UNEEC method has been used for the 

uncertainty estimate in hydrological modeling (Chen et al., 2015; Dogulu et al., 2014; 

Weerts et al., 2015; Wu and Chau, 2010).  

  

It is indicated by Jacquin and Shamseldin (2007) that a method based on fuzzy theory is 

preferred since the fuzzy theory is a more appropriate tool than probability theory when 

the uncertainties are caused by imprecise knowledge about a real system but not from 

randomness. The method based on fuzzy theory uses membership functions for 

representing uncertainty of particular variables and characterizing vagueness in human 

thoughts (Kar et al., 2010; Liu et al., 2016; Lohani et al., 2014; Maskey et al., 2004). 

Shrestha and Solomatine (2006) developed a local uncertainty estimation model (LUEM) 

by partitioning the input space into different zones or clusters having similar model 

errors using fuzzy c-means clustering. The fuzzy c-means algorithm, which allows for 

each instance to belong to a cluster with some degrees, has been used as a clustering 

technique to reduce uncertainty in hydrological modeling (Choi and Beven, 2007). 
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Alvisi and Franchini (2011) developed a fuzzy neural network to produce crisp forecasts 

and uncertainty bands, in which the model parameters were assumed to be represented 

by fuzzy numbers. The output of the model was a fuzzy number accordingly, which 

could express the total uncertainty regarding the forecasted variable. Despite that, the 

calibration of the fuzzy numbers still needs to define a criterion for characterizing the 

membership function, and thereby limits the applicability of this method in uncertainty 

estimation. Alvisi et al. (2012) further improved the method by cooperating grey 

number theory in which the grey numbers were adopted instead of the fuzzy numbers 

for representing the model parameters. The grey formulation has been employed to 

forecast the river stage (Alvisi and Franchini, 2012) and represent the total uncertainty 

of a conceptual rainfall-runoff model (Alvisi et al., 2013), and is found to be valid in 

comparison with BNN and GLUE methods.  

 

The majority of the aforementioned methods suffer from implementation difficulties, 

special assumption about data distribution and heavy computational cost. This leads to 

the necessity of the development of simple, premise-free and fast techniques, which 

could still efficiently qualify uncertainties of hydrological models. Actually, methods 

that directly generate prediction intervals (PIs) are more appropriate. It is not 

accomplished in the above methods however since they construct PIs indirectly from 

point predictions. The Lower Upper Bound Estimation (LUBE) method was proposed 

by Khosravi et al. (2011c) for construction of neural network-based PIs. It considers 

both coverage probability and interval width criteria with two output neurons that 

directly approximate the lower and upper bounds. As such, the PI construction by 

LUBE is as simple as point predictions, which has no assumption about the data 

distribution and is independent of the mean and variance values of point prediction 

errors. The LUBE method has proven to be more efficient in generating high quality PIs 
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in comparison with the delta method, Bayesian method and bootstrap method (Khosravi 

et al., 2011c; Quan et al., 2014a; Quan et al., 2014b; Quan et al., 2014c). Furthermore, 

the LUBE-PSO has proven to be efficient by Quan et al. (2014a) in which PSO is 

employed as optimization method to minimize the nonlinear and discontinuous cost 

function; Taormina and Chau (2015a) successfully combined the LUBE with 

Multi-Objective Fully-Informed PSO for neural network river forecasting. The LUBE 

method has been applied to many other fields, such as travel time prediction (Khosravi 

et al., 2011a), electricity load prediction (Rana et al., 2013) and flood forecast (Ye et al., 

2016). The LUBE is the topic of current research for uncertainty analysis, in view of its 

easy implementation with neural network based models and direct construction of 

prediction intervals.   

 

2.5 Population-based optimization algorithms  

The training of neural network based models is a problem of nonlinear optimization, 

which is formulated by a machine learning algorithm (also termed training algorithm).  

Model parameters (e.g., weights and bias) are searched in the learning process by 

minimizing a loss function associated with the error between the network output and 

target output. The search for minimum value of loss function is implemented through 

the parameter space with a succession of steps, and at each step the loss will decrease by 

adjusting the model parameters. Based on the candidate solutions in the parameter space, 

the training algorithms are categorized as either local or global algorithm. A local 

training algorithm searches a solution within a neighboring set of candidate solutions 

while a global algorithm achieves optimal solution among all possible solutions.   

 

Typical local algorithms consist of gradient descent algorithm, Newton’s method, 
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conjugate gradient algorithm, quasi-Newton method and Levenberg-Marquardt (L-M) 

method. Gradient descent is a first-order method based on gradient vector and capable 

of dealing with many thousand parameters (Rumelhart and Mcclelland, 1986). The 

Newton's method is a second-order algorithm owing to the usage of Hessian matrix 

(Dennis and Schnabel, 1983). The conjugate gradient method can be regarded as 

something intermediate between gradient descent and Newton's method, in which the 

training directions are conjugated with respect to the Hessian matrix, and the search 

produces generally faster convergence than gradient descent directions (Adeli and Hung, 

1994). Quasi-Newton method is developed to solve the expensive computation of the 

abovementioned algorithms, by building up an approximation to the inverse Hessian 

(Setiono and Hui, 1995). The approximation is computed using only information on the 

first derivatives of the loss function. The L-M algorithm which belongs to the 

quasi-Newton method, is designed to work with loss functions taking the form of a sum 

of squared errors (Hagan and Menhaj, 1994). The convergence with the gradient vector 

and the Jacobian matrix renders the L-M algorithm to train fast and efficiently. The L-M 

algorithm is widely employed in the hydrological modeling by researchers therefore 

(Kisi, 2004b; Kostic et al., 2016; Nourani et al., 2008; Raghuwanshi et al., 2006; 

Rezaeian-Zadeh et al., 2013). However, it is inevitable that the training by L-M 

algorithm is easily trapped into local optima in the error surface. It is not applicable to 

loss functions such as the root mean squared error. Further, the L-M algorithm is not 

recommended when there are huge data sets in neural networks, owing to a lot of 

memory required in the computation of Jacobian matrix.  

 

The disadvantages of local training algorithms such as inclination to stick into local 

optima and slow convergence limit their further developments. Most recently, 

population-based optimization algorithms that belong to global optimization techniques 
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have attracted the interest of researchers and witnessed tremendous applications in 

many fields. They are characterized by a population consisting of possible solutions to 

the problem, which are modified by applying different types of operators and thus 

moving towards a near-optimal solution area. These algorithms are very powerful in 

finding a global optimum since they simultaneously search in many directions by using 

a population of possible solutions. Generally, there are two categories of 

population-based optimization algorithms: evolutionary algorithms (EA) and swarm 

intelligence algorithms. Typical methods of EAs are the genetic algorithm (GA) and 

differential evolution (DE), which attempt to simulate natural evolution. The second 

category, swarm intelligence-based algorithms are inspired by the collective behavior of 

animal societies, including particle swarm optimization (PSO), artificial bee colony 

(ABC) and ant colony optimization (ACO).  

 

As a branch of evolutionary algorithms, genetic algorithm (GA) was developed by 

Holland (1975) that seeks the solution of a problem in the form of strings of numbers by 

applying operators such as recombination and mutation. The search of optimization 

problems is thus transferred into an evolutionary process. Due to the abilities of global 

search and evolutionary adaptation properties, the GA has been successfully integrated 

into ANN models for adapting the connection weights and network architecture (Chen 

and Chang, 2009; Wang et al., 2011c; Young et al., 2015). It could be coupled with the 

L-M algorithm to speed convergence to each local minimum and used to force a broad 

search through parameter space (He et al., 2005; Liu et al., 2017b; Mahmoudabadi et al., 

2009; Prudencio and Ludermir, 2003). Although the GA compares very favorably with 

local training algorithms in literatures (Arabas, 1994; Mirzaee, 2009; Riley and 

Ciesielski, 1998), it suffers from expensive fitness function evaluations in finding the 

optimal solution to complex high-dimensional, multimodal problems and tendency to 
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converge prematurely onto a local optimum (Boudjelaba et al., 2014; Cruz-Vega et al., 

2016). Recent research of GA is focused on its modified version (Jiang et al., 2017; 

Tynchenko et al., 2016; Zaji and Bonakdari, 2015) and the application of NSGA II  

(Non-dominated Sorting Genetic Algorithm II) for multi-objective problems (Dai et al., 

2017; Ercan and Goodall, 2016; Heydari et al., 2016; Nazemi et al., 2006).    

 

Differential evolution (DE) proposed by Storn and Price (1995) is another 

commonly-used evolutionary algorithm. It optimizes a problem by maintaining a 

population of candidate solutions, and creating and searching optimal solutions with 

mutation, crossover and selection operations. The optimization problem is not required 

to be differentiable since the gradient of the problem is not used by DE algorithm. It 

could therefore be capable in optimization problems that are even discontinuous, noisy 

and change over time (Rocca et al., 2011). The DE algorithm has been applied 

extensively in hydrological modeling so far (Babu and Angira, 2003; Kisi, 2010b; Li et 

al., 2013a; Masoumeh and Mehdi, 2012; Piotrowski and Napiorkowski, 2011; 

Piotrowski et al., 2012; Vasan and Simonovic, 2010; Zahmatkesh et al., 2015). It has 

been exploited to be hybridized with local training algorithms to balance the local and 

global optima (Subudhi and Jena, 2008, 2011; Wang et al., 2015a). It also shows better 

performances than the GA in terms of convergence characteristics and computational 

efficiency (Bandurski and Kwedlo, 2010; Li et al., 2013a; Song et al., 2014; Wang et al., 

2008b). Modified or hybrid DE algorithms have gained a growing interest in 

hydrological studies. For instance, Chen et al. (2009) modified the DE algorithm by 

adopting an evolutionary learning method to optimize the controller parameters; a 

hybrid mutation strategy of DE algorithm was developed by Zhao et al. (2011) where 

some individuals in the population searched around the current best individual and the 

others searched randomly with its basic mutation strategy; Yang et al. (2016a) proposed 
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a modified DE algorithm consisting of initialization, evaluation, reproduction and 

crossover to train a recurrent functional neural fuzzy network. For more complex 

optimization problems in the real-world applications, multi-objective differential 

evolution has been applied to the operation of an irrigation reservoir system (Reddy and 

Kumar, 2008), the calibration of reservoir flood control operation (Qin et al., 2010) and 

flood spreading modeling (Liu and Pender, 2013). As suggested by previous research, 

there is still scope to employ the DE algorithm in the training of hydrological models 

with promising results.  

 

In regard to the swarm intelligence-based algorithms, the optimization is carried out by 

mimicking the collective behavior of a nature system, such as bird flocking, ant colonies 

and fish schooling. Kennedy and Eberhart (1995) proposed particle swarm optimization 

(PSO) that the optimal space is firstly initialized with a random population of particles 

and will update based on the particle’s position and velocity. Its advantages, including 

high efficiency in finding global optimum with a large probability and high convergence 

rate, relative simplicity of implementation, low computation cost and multi-objective 

generalization, have been documented (Clerc and Kennedy, 2002; Lopez et al., 2008; 

Masuda and Kurihara, 2012; Qiu et al., 2014; Rana et al., 2011; Sigarchian et al., 2016). 

It is thus applied broadly in the field of water resources, covering the prediction of 

river/stream flow and water level (Buyukyildiz et al., 2014; Chau, 2006, 2007; 

Najafzadeh and Zahiri, 2015; Piotrowski and Napiorkowski, 2011) , reservoir operation 

problem (Afshar, 2009; Kumar and Reddy, 2007; Peng, 2012; Reddy and Kumar, 2007; 

Zhang et al., 2014), water-supply system design (Montalvo et al., 2010; Montalvo et al., 

2008; Pawde et al., 2013; Suribabu and Neelakantan, 2006), optimization of 

rainfall-runoff models (Asadnia et al., 2014; Jakubcova et al., 2015; Liu, 2009; Lu et al., 

2013; Taormina and Chau, 2015b). As probably the most commonly-used and 
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successful training algorithm, PSO could be used as a benchmarking technique in order 

to evaluate the efficiency of other algorithms. In fact, although being proven as a 

striking alternative to most of the local algorithms, the PSO efficacy is not always 

ensured with respect to other global optimization algorithms. There exist some 

disadvantages with the canonical or standard PSO algorithm, for instance, suffering 

from premature or slow convergence when the optimization problem is multimodal or 

high-dimensional (Huang et al., 2012; Liu et al., 2017a; Lu et al., 2008). New variants 

of the PSO algorithm are thus devised as growing popularity, ranging from discrete PSO 

(Ezzeldin et al., 2014; Li et al., 2015; Wang et al., 2011b), dynamic PSO (Chen et al., 

2017; Lu et al., 2015; Rakitianskaia and Engelbrecht, 2012) and co-evolutionary PSO 

(He and Wang, 2007; Li et al., 2016; Yang et al., 2016b) to fully informed particle 

swarm (FIPS) (Mendes et al., 2004; Sebt et al., 2017; Taormina and Chau, 2015c; 

Tehzeeb-Ul-Hassan et al., 2012) and binary-coded PSO (Kesharaju and Nagarajah, 2017; 

Taormina and Chau, 2015b; Wu and Tsai, 2008).  

 

Artificial bee colony (ABC) algorithm was introduced and popularized by Karaboga 

(2005) to solve numerical optimization problems initially. It simulates the intelligent 

foraging behavior of honey bee swarm, the colony of which consists of employed, 

onlooker and scout bees. Each group of bees has its duties to find or choose a food 

source representing a possible solution to the optimization problem, on the basis of the 

nectar amount of a food source corresponding to the quality of the associated solution. 

Although being developed quite lately, the ABC has been proven to have similar or 

better performances in the optimization of numerical functions and some practical 

models compared with the GA, PSO and DE algorithms (Agrawal and Sahu, 2015; Basu, 

2013; Gozde and Taplamacioglu, 2011; Karaboga and Akay, 2009; Karaboga and 

Basturk, 2007; Konar and Bagis, 2016; Ning et al., 2011; Rout et al., 2012). It can be 
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combined with neural networks for efficiently adjusting the weights and bias in the 

training process (Awan et al., 2014; Ebrahimi et al., 2016; Iniesta et al., 2013; Karaboga 

et al., 2007; Kisi et al., 2012c; Taheri et al., 2017; Yigit et al., 2011). Besides, 

comparative studies between ABC and traditional back propagation algorithms in ANN 

applications have demonstrated the good exploration and exploitation capabilities of 

ABC as global optimization algorithms (Bullinaria and AlYahya, 2014; Ning et al., 2011; 

Ozkan et al., 2011; Uzlu et al., 2014). Similarly, the global search ability of ABC could 

be strengthened by improving strategies or assisted other algorithms, owing to its simple 

implementation and easy parallelization (Chen et al., 2016; Irani and Nasimi, 2011; 

Jadon et al., 2017; Jafrasteh and Fathianpour, 2017; Jia et al., 2016; Li et al., 2013b). In 

spite of that, our understanding and practice of ABC are far from completeness. The 

applications of ABC have not received sufficient attentions in hydrological fields, where 

the models might be characterized with complex hybrid and high sensitivity with noise. 

In addition, its relative performances corresponding to other population-based 

optimization algorithms in water resources projects remain a lack of research.  

 

Ant colony optimization (ACO) introduced by Dorigo et al. (1996) is another example 

of swarm intelligence-based optimization algorithms. It is a meta-heuristic technique 

inspired by the foraging behavior of ants, the objective of which is to find the shortest 

path between food source and their colony. The search is a stochastic procedure that 

incorporates positive feedback of accumulated information, which may avoid local 

optima and search for a global optimum (Bland, 2001). The implementation of ACO in 

neural network training has proven to be successful (Ashena and Moghadasi, 2011; 

Kalinli et al., 2010; Li and Chung, 2005; Mavrovouniotis and Yang, 2015; Socha and 

Blum, 2007). It is also indicated in literatures that the ACO might be a viable alternative 

to other optimization algorithms. For instance, Maier et al. (2003) presented the 
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superiority of ACO over GA both in terms of computational efficiency and the ability to 

find near global optimal solutions, for the optimal design of water distribution systems; 

the analysis of well testing data using ACO was a good match to these of the GA and 

modified L-M methods in the work of Jung et al. (2015); Kumar and Kumar (2016) 

found that the ACO was capable of operating on significantly small error rates in 

comparison to the PSO for automated selection of biometrics fusion rules/parameters. 

Recently, further research and detailed applications of the ACO method have included 

improved ACO algorithm (Korouzhdeh et al., 2017; Nguyen et al., 2016; Pang et al., 

2015), PSACO (particle swarm ant colony optimization) algorithm (Lahiri and Khalfe, 

2015; Lazzus et al., 2016; Shelokar et al., 2007) and multi-objective ACO (Golding et 

al., 2017; He and Ma, 2014; Zhang et al., 2016). On account of our study, the potential 

of applying ACO to the field of hydrological forecasting is clear, e.g., see its 

applications in water resource problems (Afshar et al., 2009; Jalali et al., 2006; Kumar 

and Reddy, 2006; Maier et al., 2003; Szemis et al., 2012; Zecchin et al., 2012).  

 

The review identifies major challenges and opportunities of the population-based 

optimization methods for prospective research. Their optimization ability, convergence 

speed and reliability will be examined and compared in this study, for the models of 

river flow forecasting and sediment load estimation respectively.      
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3 A Hybrid Neural Network for Downstream River 

Flow Forecasting  

Starting from this chapter, population-based optimization algorithms are employed to 

develop neural network models for river flow and sediment load. In this first application, 

a hybrid model is proposed by combining physical-meaning activation function in the 

neural network, which is an attempt to shed a light on the process of river flowing from 

upstream to downstream section. In particular, the development of forecasting models is 

presented from traditional ANN to the proposed model, and forecasting performances 

are compared between different models under both daily and hourly scenarios.   
 

3.1 Introduction 

The river flow forecasting is an important factor in the design and management of water 

resource projects. Forecasting models of high precision and certain degree of accuracy 

must be designed in order to prevent flooding and operate water structures more 

efficiently. The downstream river flow varies depending on climate, human activities, 

and especially the upstream flows. The spatial factors play an important role for the 

formation of downstream river. Thus, to ensure the impact of upstream flows on 

downstream flows in a river system, forecasting model with physical mechanism of the 

process is necessary.   

 

The ANN model has been accepted as a prescriptive technique for river flow forecasting. 

It is a “black box” which could not reflect the physical relation between the input and 
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output variables. Many studies have been undertaken by integrating ANN and 

conceptual model which are available to provide underlying physical processes 

(Rezaeianzadeh et al., 2013; Song et al., 2011). However, the techniques appear to be 

complicated and not easily implemented, and the collection of required parameters may 

even not be satisfied. Other researchers have directly integrated fundamental physical 

principles into ANN structure to render the model more understandable (Li and Gu, 

2003; Piotrowski et al., 2007; Yang et al., 1998). The number of these studies is scanty, 

thus, a motivation of the present study is the necessity to advance the applications of 

hybrid neural networks for river flow forecasting. Combining fuzzy pattern-recognition 

ideas with ANN model is another alternative to deal with the nonlinear and fuzzy 

hydrological models (Li and Chen, 2010; Qiu et al., 1998; Zhao and Chen, 2008), which 

also will be combined in the hybrid model in view of the convenience of operation and 

simplicity of computation.   

 

This chapter proposes a physics-integrated model to forecast the downstream river flow, 

by considering the fuzzy and time-varying features of the flows. In the following, the 

development of forecasting models is firstly presented, including the traditional ANN, 

fuzzy pattern-recognition neural network (FPNN), hydrological modeling network 

(HYMN) and the new hybrid neural network (HNN) model. Then the applications of the 

above four models to daily and hourly flow forecasts are discussed in details. The main 

conclusions are finally drawn in the section 3.5.  

 

3.2 Model development  

Since the forecasting of river flow is a highly nonlinear and non-stationary problem, it is 

customarily settled with data-driven models. The traditional ANN models could be 
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applied in this area because they are capable of addressing nonlinear nature of the 

system. The FPNN model which reflects fuzzy and nonlinear feature of the river system 

is viable in the field as well. The HYMN model aimed at satisfying water mass 

conservation in the river network is proven to be feasible when storage reservoirs are 

assumed. While combining the advantage of the above three models, the HNN model is 

finally proposed by introducing conceptual activation functions into the neural networks. 

The following part addresses the detailed mechanism of the four forecasting models for 

downstream river flow.  

 

3.2.1 Artificial neural network model 

Artificial neural network (ANN), being a data-driven model, is powerful in real-time 

forecasting. It imitates the function of human brain and nervous system, acting as an 

information process system which is composed of layers and nodes. A three-layer 

feed-forward neural network is the most commonly used ANN in practical applications. 

It consists of the input, hidden and output layers. The input layer },...,,{ 21 kppp has k 

nodes, representing the data introduced to the network. The weighted sum of inputs and 

bias is passed with a predetermined activation function f(.) to the nodes in the hidden 

layer (Thirumalaiah and Deo, 1998) 

                  )(
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j
jiji bwpft += ∑

=

                          (3.1) 

where it (i=1, 2, …, s) represent nodes in the hidden layer and jp (j=1, 2, …, k) 

represent nodes in the input layer. The weight parameter from the input layer to the 

hidden layer is denoted by jiw , and ib  is the bias value. The computed nodes in the 

output layer are obtained by similar forward pass from nodes in the hidden layers 

(Thirumalaiah and Deo, 1998) 
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where ha (h=1, 2, …, r) represent nodes in the output layer, and the weight parameter 

from the hidden layer to the output layer and bias are respectively denoted by ihw  and 

hb . For traditional ANN models, the activation functions f(.) and F(.) are usually 

nonlinear functions (e.g., radial basis function) and linear functions, respectively. They 

can reveal relations of nodes between two layers, although having no physical meanings. 

Based on the error between target and computed outputs, the values of weight and bias 

are adjusted in the learning process. By this means, an optimal set of 

parameters { }rsrsks bbwwbbww ,...,,,...,,,...,,,..., 111111  is determined. Therein, gradient 

descent algorithm and Levenberg-Marquardt algorithm are common optimization 

methods in conventional ANNs. The major drawbacks of the above methods are slow 

convergence rate and incapability in solving non-differential problems. 

 

3.2.2 Fuzzy pattern-recognition neural network model  

The fuzzy pattern-recognition idea could be combined with neural network by 

introducing a conceptual activation function. For this so-called fuzzy 

pattern-recognition neural network (FPNN) model, the activation function from the 

input layer to the hidden layer is demonstrated as follows (Qiu et al., 1998) 
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where iQ (i=1, 2, …, s) represent nodes in the hidden layer and in
jQ (j=1, 2, …, k) 

represent nodes in the input layer. The weight parameter from the input layer to the 
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hidden layer is denoted by jiw . A model vector is denoted by ][][ li MMM == , that 

contains a number of patterns in the hidden layer. The introduction of model vector can 

demonstrate fuzzy pattern-recognition idea in the hidden layer, since the inputs are 

classified into a number of categories in terms of different patterns. The parameter C 

refers to the number of elements in the model vector as well as the number of nodes in 

the hidden layer (i.e., C=s). Generally, a higher value of C generates a higher precision 

for the forecasting result, since it implies that there are more categories in the hidden 

layer and represents a higher degree of nonlinearity. The value C=5 and 

)0 0.25, 0.50, 0.75, ,0.1(=M  were employed in previous study (Qiu et al., 1998), 

which meant that the degree of membership is 1.0 for “wet” model in wet season and 0 

for “dry” model in dry season. Practically, the degrees of membership should not be 

linear only. However, a model vector with enough elements can circumvent this 

limitation. We further give a general expression for the vector M: if the number of the 

nodes in the hidden layer equals to C (≥2), then ,0)
1

1 ..., ,
1
3 ,

1
2 01(

C-C-
C-

C-
C-,.M = . This 

would fully cover the models ranging from “wet” to “dry” season. The model vector M 

(including the value of C) will be determined based on the forecasting performances, 

which would be a trial-and-error process akin to the determination of the number of 

nodes in the hidden layer for classic ANNs.  

 

The conceptual activation function of Eq. (3.3) facilitates the introduction of fuzzy ideal 

into a neural network. Meanwhile, the activation function of FPNN model from the 

hidden layer to the output layer is given by Qiu et al. (1998) as follows 
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where out
hQ (h=1, 2, …, r) represent nodes in the output layer and ihw  denotes the 

weight parameter from the hidden layer to the output layer. Thus, in FPNN model, the 

parameters to be optimized are jiw  and ihw . The framework of FPNN model is 

depicted in Figure 3.1. The structure of three-layer feed-forward neural network is kept, 

however, the activation functions are replaced by Eqs. (3.3) and (3.4). When compared 

with traditional ANN model, the FPNN model includes a pattern-recognition concept in 

the algorithm, which would make the recognition effects more efficient and reveal the 

highly nonlinear features. It is a viable model for fuzzy-and-nonlinear systems, such as 

river flows with distinct seasonal features. However, in previous studies, the focuses of 

FPNN models are quite limited to simple implementation in stationary forecasting 

problems, which could be extended or combined with other algorithms. 

 
Figure 3.1 Architecture of a three-layer feed-forward FPNN model 

 

3.2.3 Hydrological modeling neural network 

The river network, in which the upstream river carries water flow into the downstream 

river, has to satisfy the following continuity equation (Yang et al., 1998)  

hi

s

i
ih

h QQw
T
S

−=
∂
∂ ∑

=1
                         (3.5) 

where Sh is water storage, Qi and Qh is water discharge and T is time. Meanwhile, i (1, 
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2, …, s) refers to the reservoir in a previous layer and h (1, 2, …, r) refers to the 

reservoir in a current layer. That is, stations in the upstream river reach are represented 

by reservoirs in a previous layer and stations in the downstream river reach by 

reservoirs in a current layer. The fraction of water from a reservoir in the previous layer 

entering into a reservoir in current layer is denoted by ihw , which has the same meaning 

of the weight parameters in ANN structure. This equation implies that the rate of change 

of storage in the river section is determined by the difference with the source river 

discharge at the upstream river reach. The continuity equation is used to denote water 

mass conservation over the entire river system.  

 

The discretized form of Eq. (3.5) is  

hi
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i
ih

h QQw
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−= ∑
=1Δ

Δ
                          (3.6) 

where T∆ is the time step between two layers. The water storage Sh in the current layer 

at time TT ∆+ is determined by the following equation.   

TQQwSS Th

s

i
TiihThTTh Δ)( )(

1
)()()Δ( ×−+= ∑

=
+                (3.7) 

By setting TQwP
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1
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=

, Eq. (3.7) in its simplified form is given by  

)( )()()()Δ( ThThThTTh PSλS +×=+                      (3.8) 

where
)()(
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Δ
1

ThTh

Th
Th PS

TQ
λ

+

×
−= . Here λ  is regarded as a recession coefficient, which is 

assumed to be independent of time (Yang et al., 1998). The recession coefficient 

represents the capability of a reservoir to absorb and store water. A higher value of the 

recession coefficient indicates that the reservoir can store more water. Once the storage 

at time TT ∆+  is obtained from Eq. (3.8), the discharge in the current layer )( TThQ ∆+  
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is evaluated as a nonlinear function of storage as follows.  

)](exp[1
1

)()(
)(

TThTTh
TTh PS

Q
∆+∆+

∆+ +−+
=                 (3.9) 

The nonlinear feature of the reservoir lies in the nonlinear relation between the 

discharge and storage of the reservoir, which can be represented by an empirical 

expression. The derivations of Eqs. (3.6)-(3.9) can be found in Yang et al. (1998).  

 

The above process could be applied in the neural network to forecast downstream river 

discharges, which is termed hydrological modeling network (HYMN) model. In HYMN 

model, the river network is viewed as having the same architecture as a feed-forward 

neural network. The nodes in the input layer export river discharges directly. The nodes 

in the hidden and output layers are generalized as nonlinear reservoirs with storage 

capacity. They receive the outflows from the previous layer, and generate discharges 

after computing the entire water storage. The reservoirs in the same layer do not 

exchange water discharges. Thus there are two time-step parameters: 1T∆  representing 

the time of flow from the input layer to the hidden layer, and 2T∆  representing that 

from the hidden layer to the output layer. The water storage varies with time, denoting 

that the previous storage in this watershed will affect the discharge in the next time step. 

Consequently, large storage in wet season will result in a high discharge, exhibiting the 

physical phenomenon of flow in a river basin. The initial water storage )0( =ThS  of each 

reservoir is prescribed before the computation. Then storage )Δ( TThS +  is obtained from 

the initial one by every time step T∆ , which is a time-varying parameter in the model. If 

the storage variation term 
T
Sh

∂
∂  in Eq. (3.5) is neglected, HYMN model may be 

simplified to traditional ANN model. Three kinds of parameters are to be optimized: 

weight parameters jiw  and ihw , whose definitions are the same with those in ANN 
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model; recession coefficients iλ  and hλ  for the nodes in the hidden and output layers, 

respectively; initial storages )0( =TiS  and )0( =ThS  for the nodes in the hidden and output 

layers, respectively. Each of them has specific meanings associated with the 

nonlinearity and storage-capacity of the reservoir. Accordingly, the HYMN model is 

applied to river system in which observed river stations are regarded as storage and 

nonlinear reservoirs. 

 

3.2.4 Hybrid neural network model  

The ANN, FPNN and HYMN models have proven to be efficient forecasting models for 

river flows in previous studies. However, there are some limitations of these models. 

For example, in HYMN model, the nodes in the hidden layer are assumed as storage 

reservoirs, which apart from being impractical, render the model complicated. Firstly, it 

is difficult to determine the number of reservoirs between the input and output river 

stations (namely the number of nodes in the hidden layer). Secondly, it is not realistic to 

define time step of river flow from the input layer to a virtual reservoir in the hidden 

layer. Finally, the recession coefficients for reservoirs in the hidden layer are physically 

meaningless. Above all, it is unrealistic to regard the nodes in the hidden layer as 

storage reservoirs.  

 

A tentative practice is to apply Eq. (3.3) as the activation function from the nodes in the 

input layer to those in the hidden layer, and to consider the nodes in the output layer as 

storage reservoirs. This can also satisfy the mass conservation principle and represent 

the time-varying feature of the river network. The framework within such a hybrid 

neural network (HNN) model is as follows: (i) obtain the nodes in the hidden layer (i.e., 

determine the value of C by trial and error) by classifying the input variables into a 
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number of categories in terms of different seasons from Eq. (3.3); (ii) the sorted flows 

reach reservoirs in the output layer with a time step; (iii) compute the storage of 

reservoirs and (iv) output the discharges. In this way, the fuzzy characteristics of river 

flows and the time-dependent storage capacity of the observed stations are well 

considered. This novel model is much easier since storage reservoirs in the hidden layer 

are excluded. Similarly, the parameters to be optimized for the proposed HNN model 

are weight parameters jiw  and ihw ; recession coefficients hλ ; and initial storages 

)0( =ThS  for the reservoirs in the output layer. In the present study, the objective is to 

forecast the downstream river discharge. As a result, there is only one node to be 

considered as the reservoir in the output layer. The set of parameters to be optimized is 

correspondingly{ })0(11111 ,,,...,,,..., =Tsks Swwww λ .  

 

The PSO algorithm is employed to optimize the parameters in the learning process of a 

HNN forecasting model, as outlined in Figure 3.2. As shown in the left segment for the 

framework of HNN model, the output discharge at time TT ∆+  is computed from 

inputs (discharge Q and precipitation P) at time T with activation functions Eq. (3.3) 

and Eq. (3.9). Values of storage vary with time in particular and are obtained from 

previous time step values. It is worth noting that precipitation has the same nature with 

river flows, thus it is used as an additional input variable to be classified into different 

patterns in the FPNN and HNN models. The set of parameters to be optimized in HNN 

model include particle ix  and D dimensions ( 111 ++×+×= sskD ), where D is the 

number of parameters in the set, i.e., the sum of the number of jiw , ihw ,λ  and )0( =TS . 

The process of optimizing the parameters with PSO algorithm is established in the 

right-hand side of Figure 3.2 and described as follows: (i) a population with randomly 

initialized positions and velocities within the range of parameters is generated for the 
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PSO algorithm; (ii) define the objective function of HNN model, which would be used 

to evaluate the fitness of each particle; (iii) train the proposed HNN model with 

parameters corresponding to the current particle and obtain the fitness value of the 

objective function; (iv) the velocity and position of each particle are updated in each 

iteration until a stopping criterion is satisfied. Consequently, an optimal set of 

parameters are obtained with respect to the fitness value of the objective function for the 

forecasting model. In such a way, a hybrid forecasting model based on continuity 

equation and fuzzy pattern-recognition combining with PSO algorithm is developed to 

forecast downstream river discharge. For the sake of fairness, PSO algorithm is 

employed as the optimization algorithm for the ANN, FPNN and HYMN models in this 

chapter. In order to verify the application of suggested models, two case study sites 

consisting of both daily and hourly data are explored in the following sections.   

{ })0(11111 ,,,...,,,..., == Tsksi Swwwwx λ
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Figure 3.2 Outline of PSO algorithm for the calibration of HNN forecasting model 
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3.3 Daily river flow forecasting  

3.3.1 Study area and data 

Two study cases are performed in this study, the first of which is the Altamaha river 

basin located in Georgia of USA. It is a large river basin of the Atlantic coast whose 

drainage basin is about 36,000 km2 in size. The Yellow River flows generally 

southward for 122 km, as a tributary of the Ocmulgee River. The flow of the Yellow 

River exhibits a seasonal behavior, which is low in dry season and high during wet 

months. An accurate forecasting of river discharge is vital since it allows engineers to 

make efficient decisions in water management and to prevent flooding. As shown in 

Figure 3.3, four hydrological stations along the Yellow River are marked, demonstrating 

their locations on the map. The corresponding station ID, name, latitude and longitude 

are summarized in Table 3.1. The distance from station 02207335 to 02208000 is 

roughly 19.3 km, and the travel time of flow between two stations is estimated to be 16 

hours based on the mean velocity during flood flow condition.  
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Figure 3.3 Location of gauging stations along the Yellow River in the Altamaha river 

basin, Georgia 
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Table 3.1 Stations' ID, name, location and drainage area along the Yellow River in the 
Altamaha river basin, Georgia  

Station ID Station name Latitude Longitude 
Drainage 

area 
(km2) 

02207120 Yellow River at GA 124, near 
Lithonia 33°46'22"N 84°03'30"W 416.99 

02207220 Yellow River At Pleasant Hill 
road, near Lithonia 33°44'01"N 84°03'43"W 551.67 

02207335 Yellow River at Gees Mill 
road 33°40'01"N 83°56'17"W 673.40 

02208000 Yellow River at Rocky Plains 
road 33°29'59.5"N 83°53'03"W 1108.52 

 

The objective is to forecast the river flow at downstream station (i.e., Station 02208000) 

based on input variables at the upstream stations. The daily time series of discharge and 

precipitation in this river basin are downloaded from the USGS web server 

(http://waterdata.usgs.gov/ga/nwis/rt). Daily data from 1st January 2010 to 31st 

December 2013 were selected, and separated into training, validation and testing sets. 

The dataset for training stage are from 1st January 2010 to 31st December 2011, taking 

around 50% of all data. The data for Year 2012 are utilized for validation. During the 

calibration process, the training is strictly terminated at the point where the error in the 

validation set begins to rise. Validation is a necessary and crucial procedure to avoid 

over-fitting the training data (Faber and Rajko, 2007). The remaining data from 1st 

January 2013 to 31st December 2013 are used to assess the efficiency of the calibration 

and evaluate the performance of the forecasting models. The time series of discharges at 

Station 02208000 is demonstrated in Figure 3.4. As observed, the daily discharge varies 

quite irregularly, and the peak value could be as high as 199.35 m3/s. The corresponding 

statistic parameters of the total and separated data are summarized in Table 3.2, in 

which Xmean, Sx, Xmax, Xmin, Cv and Cs denote the mean, standard deviation, maximum, 

minimum, coefficient of variation and skewness coefficient, respectively. The training 

set can fully include the validation and testing data, and its statistical values are nearly 
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identical for the total data, which assure the availability of the selected data for the 

purpose of generalization and prediction.  
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Figure 3.4 Daily discharges at Station 02208000 as output for forecasting models 

 

Table 3.2 Pertinent information for the daily discharge data of Station 02208000 

Watershed and daily 
datasets 

 Statistical parameters 

 Xmean 
(m3/s) 

Sx 
(m3/s) 

Xmax 
(m3/s) 

Xmin 
(m3/s) Cv Cs 

Altamaha river basin 
Area: 36000 km2 

Data period: 
2010/01/01-2013/12/31 

Total data 13.23 17.63 199.35 0.71 1.33 4.28 
Training 13.46 18.65 199.35 0.71 1.38 4.68 

Validation 7.32 9.76 81.84 1.53 1.33 4.49 
Testing 18.68 19.73 156.87 4.16 1.06 3.14 

 

The downstream station 02208000 receives its flows mainly from two sources: 

discharge from the upstream station and precipitation at the current station. Thus two 

input variables are selected in the forecasting models, which are discharge at Station 

02207335 and precipitation at Station 02208000. A preliminary study is carried out to 

examine the contribution of precipitation to the forecasting of downstream river flow by 

the ANN model, and the predicted discharges are demonstrated in Figure 3.5. Results 

show that the model with precipitation input outperforms another one with the evidence 

of intensively distributed dots along the ideal line. Thus precipitation is included as an 

indispensable input variable for this study site. As mentioned above, the nature of both 

upstream flow and downstream precipitation is water, and thus the connatural of these 

 60 



Hybrid Model of Neural Network and Population-based Optimization Algorithm                  Xiaoyun Chen 

two input variables renders the possibility of classifying the inputs into different 

patterns in the FPNN and HNN models.  
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Figure 3.5 Observed and predicted daily discharges by the ANN model with different 

input variables in the Altamaha river basin 
 

In addition, it is recommended to normalize each attribute in order to avoid larger data 

dominating smaller data. In this study, the data are scaled linearly to the range between 

0.1 and 0.9 as follows (Campolo et al., 1999) 

 
minmax

min' 8.01.0
yy

yy
y i

i −
−

×+=                       (3.10) 

where '
iy  is the scaled value, iy  is the original value, and ymin, ymax are the minimum 

and maximum of the data series, respectively.  

 

The second site locates within the central Greensboro area, North Carolina. The North 

Buffalo Creek is a 12.1 km tributary of Buffalo Creek in Rockbridge County in Virginia. 

As shown in Table 3.3 and Figure 3.6, the target station 02095500 situates the North 

Buffalo Creek near Greensboro, which is 10.5 km far away from the upstream station 

02095271. Daily data from 1st January 2008 to 31st December 2013 are selected in this 

study case, which are downloaded from the USGS web server as well. As can be seen in 

Figure 3.7, the flows via Station 02095500 exhibit irregular, fluctuating and seasonable 
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behaviors. The peak value is as high as 52.95 m3/s while around 94% of all the data is 

under 5.0 m3/s. In general, the data is partitioned into training (i.e., data from Year 2008 

to 2010), validation (i.e., data from 1st January 2011 to 30th June 2012) and testing set 

(i.e., data from 1st July 2012 to 31st December 2013). Table 3.4 provides the pertinent 

information for the daily data within the central Greensboro area. The training set 

cannot fully include the validation data, where the minimum of the training series is 

slightly larger than that of the validation series. However, good quality of the full 

dataset is fairly satisfied in terms of other pertinent information. In the same manner, 

two input variables: discharge at Station 02095271 and precipitation at Station 

02095500 are selected for the forecasting models. The inclusion of precipitation in 

model inputs proves to be imperative for the present study site as well, which is 

concluded from the preliminary study in Figure 3.8. 

 
Table 3.3 Stations’ ID, name, location and drainage area along the North Buffalo 
Creek within the central Greensboro area, North Carolina 

Station ID Station name Latitude Longitude 
Drainage 

area 
(km2) 

02095181 North Buffalo Creek at Westover 
Terrace at Greensboro 36°04'45"N 79°48'46"W 24.73 

02095271 North Buffalo Creek at Church 
Street at Greensboro 36°05'52"N 79°46'57"W 36.78 

02095500 North Buffalo Creek near 
Greensboro 36°07'14"N 79°42'29"W 96.09 

 

Table 3.4 Pertinent information for the daily discharge data of Station 02095500 

Watershed and daily 
datasets 

 Statistical parameters 

 Xmean 
(m3/s) 

Sx 
(m3/s) 

Xmax 
(m3/s) 

Xmin 
(m3/s) Cv Cs 

Central Greensboro area 
Area: 283 km2 

Data period: 
2008/01/01-2013/12/31 

Total data 1.50 3.33 52.95 0.23 2.22 7.82 
Training 1.56 3.99 52.95 0.25 2.56 7.79 

Validation 1.32 2.34 26.79 0.23 1.77 6.38 
Testing 1.57 2.66 22.57 0.27 1.69 4.41 
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Figure 3.6 Location of gauging stations along the North Buffalo Creek within the 

central Greensboro area, North Carolina 
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Figure 3.7 Daily discharges at Station 02095500 as output for forecasting models 
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Figure 3.8 Observed and predicted daily discharges by the ANN model with different 

input variables within the central Greensboro area 
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3.3.2 Performances of forecasting models  

To evaluate the performance of forecasting models, three statistical indices were used as 

evaluation criteria. Firstly, the RMSE (Root mean squared error) is a commonly used 

error index statistic which is defined as follows (Legates and McCabe, 1999) 

∑
=

−=
N

i
ii Q̂Q

N 1

2)(1RMSE                        (3.11) 

It is used as the objective function in the calibration period in this study as well. 

Secondly, the NSEC (Nash-Sutcliffe efficiency coefficient) recommended by Nash and 

Sutcliffe (1970), is a normalized efficiency coefficient to assess forecasting results. It is 

formulated in Eq. (3.12), exhibiting the relative magnitude of the residual variance 

compared to the measured data variance.  
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)(
1NSEC                       (3.12) 

The statistic NSEC scales the mean squared error as well as RMSE, therefore, could 

reflect the performance on high values. When NSEC=1 it is a perfect fit between the 

forecasted discharge and the observed data; and NSEC=0 indicates that the model 

reaches the accuracy when the mean of the observed data is forecasted.  

 

The NSEC is a good alternative to the coefficient of determination (Legates and 

McCabe, 1999) as a relative error measure since it is sensitive to differences in the 

observed and forecasted means and variances. The RMSE is a necessary supplement as 

an absolute error measure for a complete assessment of model performances. In view of 

checking the performance of entire data, the third statistical index known as accuracy 

(ACC) is employed, which is obtained from the mean relative error (De Vos and 

Rientjes, 2008). Its mathematical expression is presented in Eq. (3.13). Obviously, a 
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higher value of ACC reveals a better forecasting performance of the model and the 

value “1” of ACC stands for a perfect fit.   

∑
=

−
−=

N

i i

ii

Q

Q̂Q

N 1

11ACC                      (3.13) 

In the above equations, iQ  and iQ̂  are respectively observed and forecasted 

discharges, Q is the mean of observed data, and N is the number of data. In the 

following, RMSE, NSEC and ACC are employed to evaluate the performances of 

various models developed.   

 

First of all, we determined the model vector M and its corresponding value C for the 

proposed HNN model by comparing the fitness values during the training period. As 

illustrated in Figure 3.9 for the Altamaha river basin, the fitness value varies with the 

number of nodes in the hidden layer (i.e., value C). It decreases with the fluctuation 

while C increases, and attains a minimum value when C =11. The corresponding vector 

is .1,0)0 ..., .8,0 .9,0 ,0.1(=M , which is large enough to perform the nonlinear property. 

Figure 3.10 obtains the best C value for the HNN model within the central Greensboro 

area in the same manner. The number of nodes in the hidden layer for the other three 

forecasting models is respectively determined by comparing the fitness values in the 

training period similarly. The identification of the structures of the forecasting models is 

herein determined when the number of nodes in the hidden layer is optimized. 
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Figure 3.9 Fitness values with different numbers of nodes in the hidden layer by the 

HNN model in the Altamaha river basin (with daily data) 
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Figure 3.10 Fitness values with different numbers of nodes in the hidden layer by the 

HNN model within the central Greensboro area (with daily data) 
 

As for the case in the Altamaha river basin, the lead time for ANN and FPNN model is 

selected as 1 day since the travel time of flow from station 02207335 to 02208000 is 

estimated as 16 hours. It is considered useful and necessary for practical purposes. That 

is, the output discharge at time T is computed from upstream discharge at time T-1 and 

precipitation at time T-1. Then time step ΔT is a vital parameter for both HYMN and 

HNN models. As demonstrated in Figure 3.2 for the HNN model, out
TT

Q
)( ∆+
 is computed 

from },{ )()( TT PQ , which means that the downstream flow has ΔT days delay from the 

inputs. That is, the inputs at day T strongly influence downstream discharge at day T+ΔT. 

We try different time steps ΔT (1, 2, 3, 4, 5 day) for the proposed model as shown in 

Table 3.5 for comparison. As a similar concept with forecasting lead time, ΔT is selected 
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as 1 day for HYMN and HNN models with best accuracy. Accordingly, the models 

provide a one-day lead time forecast for the flow in Station 02208000.   

 
Table 3.5 Training and testing performances of different ΔT values by the HNN model 
using daily data in the Altamaha river basin 

ΔT(day) 
Training Testing 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

1 3.4326 0.9661 0.7727 8.3465 0.8210 0.7969 
2 5.5129 0.9126 0.6733 10.5426 0.7152 0.7758 
3 6.4944 0.8789 0.6609 11.9661 0.6329 0.7451 
4 6.7369 0.8698 0.6537 12.3854 0.6078 0.7505 
5 6.8306 0.8663 0.6889 17.2968 0.2370 0.6832 

 

To validate the proposed model, forecasting results were compared to three 

benchmarking models. The evaluation criteria RMSE, NSEC and ACC during training 

and testing stages by different models are provided in Table 3.6. It can be observed that 

the traditional ANN model seems to be adequate for the forecasting as the NSEC value 

during the testing period is 0.7607. However, the peak discharge computed by ANN 

model is about 20 m3/s lesser than the observed value. This under-forecasting for peak 

discharge is intolerable for flood warning. The FPNN model provides a better forecast 

of the peak discharge, and is superior to ANN model in terms of the ACC value. The 

improvement is yet not distinct. The HYMN model performs excellently in terms of 

both RMSE and NSEC values. However, the ACC value is only 0.6841 in the testing 

period. This indicates that HYMN model is better in computing high values of 

discharges than ANN model and, nevertheless, cannot ensure good accuracy of all 

values. On the contrary, the present HNN model attains the best results for all evaluation 

criteria. For the training stage, there is a 56.79% reduction in RMSE value and 18.06% 

increase in NSEC value when compared with ANN model. The RMSE and NSEC 

values of HNN model are 8.3465 m3/s and 0.8210 respectively in the testing period, 

with a 36.10% reduction in RMSE and 46.40% improvement in NSEC value in 
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comparison with FPNN model. That is, the existence of continuity equation in HNN 

model has made tremendous contributions on improving the forecasting performances. 

The increment regarding the NSEC and ACC value is 3.83% and 16.49% respectively 

over HYMN model in the testing stage. This reveals that the proposed model 

outperforms the other three benchmarking models with best generalization and 

forecasting ability. It may be a good alternative where an optimal forecast can be 

guaranteed. 

 
Table 3.6 Training and testing performances by different models using daily data in the 
Altamaha river basin 

Model 
Number 

of 
nodes 

Training Testing Peak 
Discharge 

 
(m3/s) 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

ANN 9 7.9437 0.8183 0.7259 9.6406 0.7607 0.7289 119.83 
FPNN 11 6.6239 0.8737 0.6496 13.0611 0.5608 0.7526 215.66 
HYMN 6 6.0746 0.8938 0.5903 9.0272 0.7907 0.6841 136.91 
HNN 11 3.4326 0.9661 0.7727 8.3465 0.8210 0.7969 218.72 

 

To further illustrate these results, Figure 3.11 exhibits the observed and computed 

discharges during the testing period by the four models. It can be apparently observed 

that the peak value is over-forecasted by FPNN and HNN model with triangular and 

asterisk symbols. For the high values of computed discharges, most results from ANN 

and FPNN model are larger than the observed values. These two models can forecast the 

main data of the discharges satisfactorily, yet the computation of high values is 

relatively poor. Apparently, HYMN and HNN models match the observed values much 

better than their counterparts. In addition, we obtain the recession coefficient for 

reservoir in the output layer for HYMN and HNN models, which were 0.4369 and 

0.4553 respectively. The coefficient computed from the two models does not vary 

significantly, and is thus reasonable. The reliability of the recession coefficient for 

reservoirs in the output layer can be assured. On the contrary, the recession coefficients 
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for reservoirs in the hidden layer for HYMN model vary from 0.0239 to 0.9790, 

revealing their uncertainty and impractical application. This offers a concrete evidence 

for the assumption that it is improper to regard the nodes in the hidden layer as storage 

reservoirs in HYMN model.  
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Figure 3.11 Observed and computed daily discharges during testing period by different 

models in the Altamaha river basin 
 

In order to ensure wider applications of the conclusions, the performances of the study 

case within the central Greensboro area are demonstrated as follows. The travel time of 

flow from station 02095271 to 02095500 is estimated as 8 hours. Thus the one-day lead 

time forecast (with forecasting lead time ΔT=1 day) still gives the best accuracy, as seen 

in Table 3.7. However, the advantage is not distinct in comparison with the case in the 

Altamaha river basin. For instance, there is a 35.1% improvement in NSEC value when 

comparing the one- and four-day-ahead forecasts at Station 02208000, while the 

corresponding improvement is 18.6% at Station 02095500. That is, the flows at Station 

02095500 can be forecasted with longer forecasting lead time than the flows at Station 

02208000. It may be owing to the shorter distance between Station 02095500 and its 

nearest observed upstream station.  

 

The comparisons of evaluation criteria and peak discharge values between the HNN and 
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its counterpart models are provided in Table 3.8, with one-day lead time forecast. It also 

reveals that the HNN model achieves the best performances among four models with 

best generalization and forecasting ability, since there is 2.4% and 56.8% increase in 

NSEC value in the training and testing period respectively comparing with ANN model. 

The performance of traditional ANN model is unsatisfactory with low ACC values. The 

relatively large difference of the RMSE values between the training and testing period 

also reveals the poor generalization ability of ANN model. Even worse, the peak 

discharge computed by ANN model is 87.7% over-forecasted, which would cause 

improvident preparation for flood warning. Compared with ANN model, the FPNN and 

HYMN models are remarkably improved in view of smaller RMSE and larger ACC 

values. It is noted that the ACC values attained by the HYMN model are larger than that 

by the HNN model, in spite of poorer RMSE and NSEC results. This indicates that 

HYMN model is better in obtaining good accuracy of all values but still not more 

superior in computing high values when compared with the HNN model in this study 

case. The performance of HYMN model is inconsistent with that in the Altamaha river 

basin. It can be explained by the feature of the time series at each observed station, as 

shown in Figure 3.12. There are less remarkable differences between the high and low 

discharges in the time series of Station 02095500 when compared with that of the 

Station 02208000. When the HYMN model is employed for the forecasting, the 

computation of the downstream flows is more consistent with small variability data 

series, since the storage of the reservoir is generated from its previous-step value. This 

may be the reason of the best accuracy by the HYMN model for the case within the 

central Greensboro area. The performances of RMSE and NSEC reveal the weakness in 

computing approximate high values, which is attributed to the absence of fuzzy 

pattern-recognition in the HYMN model. The peak values forecasted by the four models 

are higher than the observation, in which the HNN model obtains the most 
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approximated one. On the whole, the HNN model makes the best accuracy of the daily 

flow forecasting within the central Greensboro area.  

  

In addition, the time series of observed and computed discharges within the central 

Greensboro area is exhibited in Figure 3.13. It can be perceived apparently that the high 

values are not well forecasted by the ANN model. Both HYMN and HNN models well 

reproduce corresponding observed discharge data and time shift between the forecasted 

and observed discharge does not occur. The recession coefficients for reservoir in the 

output layer for HYMN and HNN models are 0.1711 and 0.2066 respectively, which is 

approximated and acceptable. Accordingly, a conclusion can be drawn that the proposed 

HNN model is a considerable improvement over others and capable of producing good 

and approximate results. The forecasting performance is significantly enhanced as the 

HNN model can reflect the physical processes of the hydrological cycle within the river 

system more accurately with factual supports.  

 
Table 3.7 Training and testing performances of different ΔT values by the HNN model 
using daily data within the central Greensboro area 

ΔT(day) 
Training Testing 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

1 1.0795 0.9266 0.6662 1.0563 0.8428 0.6881 
2 1.3154 0.8911 0.5675 1.2146 0.7925 0.5713 
3 1.3652 0.8828 0.5518 1.3826 0.7315 0.5465 
4 1.2377 0.9038 0.5926 1.4356 0.7109 0.5682 
5 1.3754 0.8813 0.5695 1.4452 0.7075 0.5618 

 
Table 3.8 Training and testing performances by different models using daily data 
within the central Greensboro area 

Model 
Number 

of 
nodes 

Training Testing Peak 
Discharge 

 
(m3/s) 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

ANN 9 1.2285 0.9050 0.5089 1.8118 0.5375 0.5046 42.3619 
FPNN 10 1.1127 0.9220 0.6309 1.3378 0.7479 0.6729 36.1379 
HYMN 7 1.0903 0.9251 0.7793 1.1457 0.8151 0.7529 29.2781 
HNN 11 1.0795 0.9266 0.6662 1.0563 0.8428 0.6881 22.8157 
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Figure 3.12 Observed daily discharges during testing period at Station 02208000 in the 

Altamaha river basin and 02095500 within the central Greensboro area 
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Figure 3.13 Observed and computed daily discharges during testing period by different 

models within the central Greensboro area 
 

3.4 Hourly river flow forecasting  

3.4.1 Study area and data 

Hourly flow forecasting enjoys a realistic significance with sufficient lead time for 

taking appropriate flood prevention measures and rehabilitation action, which has been 

undertaken in many studies (Aqil et al., 2007; Dawson et al., 2002; Kang et al., 1993; 

Tiwari and Chatterjee, 2010a). In the section, the hourly data were selected from 

stations in the Altamaha river basin and the central Greensboro area as well. Two-month 

long hourly data are collected both, whose pertinent information is summarized in Table 
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3.9. The same data partition is performed here for the hourly data: the first half of the 

entire data as training set and the first half of the remaining data as validation set and 

the other half as testing set. As can be seen, the training sets of the two cases cannot 

fully include the validation or testing data. The Cv values for the observed data at 

Station 02095500 are commonly larger than that at Station 02208000, which reveals a 

wider-range spread-out data series. Figures 3.14 demonstrate the hourly time series of 

output variables for the first study site. As for the second case study, the hourly 

discharge at downstream station 02095500 as output is plotted in Figures 3.15. These 

more irregular and fluctuating time series indicates more difficulties in generalization. 

Likewise, hourly precipitation at downstream station is proven as a crucial input 

variable from the preliminary study.  

 
Table 3.9 Pertinent information for the hourly discharge data of Station 02208000 and 
02095500 in two watersheds 

Watershed and daily 
datasets 

 Statistical parameters 

 Xmean 
(m3/s) 

Sx 
(m3/s) 

Xmax 
(m3/s) 

Xmin 
(m3/s) Cv Cs 

Altamaha river basin 
Station 02208000 

Data period: 
2010/03/01-2010/04/30 

Total data 20.25 14.36 88.91 8.78 0.71 2.96 
Training 26.04 17.28 88.91 14.98 0.66 2.33 

Validation 14.12 2.95 25.06 11.19 0.21 1.95 
Testing 14.40 8.50 45.31 8.78 0.59 2.39 

Central Greensboro area 
Station 02095500 

Data period: 
2013/07/01-2013/08/31 

Total data 2.61 7.05 68.53 0.40 2.70 6.46 
Training 3.27 8.98 68.53 0.51 2.75 5.52 

Validation 1.68 4.09 40.78 0.48 2.43 7.17 
Testing 2.24 4.37 29.45 0.40 1.95 3.85 
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Figure 3.14 Hourly discharges at Station 02208000 as output for forecasting models 
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Figure 3.15 Hourly discharges at Station 02095500 as output for forecasting models 

 

In general, the operation of neural networks entails the number of nodes in the hidden 

layer, which is determined by comparing the fitness value in the training period under 

trial tests. In particular, the results of HNN model for the two study cases are 

demonstrated in Figures 3.16 and 3.17, by systematically increasing the number of 

hidden neurons from 2 to 15. The best generalization is obtained with a same C value 

(i.e., C=5) for both cases, in which the corresponding vector 

is .25,0)0 .5,0 .75,0 ,0.1(=M . With increasing C values more than five, the training 

errors increase in a fluctuating tendency. Meantime, the model may be computationally 

intensive with a larger value of C. That is, it is unnecessary to classify the inputs into a 

large number of categories in comparison with the daily forecasting cases. This can be 

explained by the fact that the number of patterns is sensitive to the fuzziness of the input 

and output data. Since the daily time series seem to be more complicated and uncertain, 

the forecast should be conducted in terms of more patterns. While performing hourly 

forecasting, the nonlinear and fuzzy properties of flows can be fully acquired with five 

modes from totally wet to dry time for the study cases.  
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Figure 3.16 Fitness values with different numbers of nodes in the hidden layer by the 

HNN model in the Altamaha river basin (with hourly data) 
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Figure 3.17 Fitness values with different numbers of nodes in the hidden layer by the 

HNN model within the central Greensboro area (with hourly data) 
 

3.4.2 Performances of forecasting models  

The generalization and forecasting abilities of the proposed HNN model and its validity 

in terms of forecast lead time are discussed with hourly data in this section. It should be 

recall that the time step ΔT using in HYMN and HNN models represents forecasting 

lead time. Table 3.10 gives the performances of HNN model with different ΔT (ΔT=1, 4, 

8, 16 hours) for the study case in the Altamaha river basin. That is, the one-, four-, 

eight- and sixteen-hour-ahead forecasting is conducted respectively. The one-step-ahead 

forecasting exhibits the best results with fairly high NSEC and ACC values both in the 

training and testing period. The HNN model tends to be feasible in multi-step-ahead 

forecasting, with the evidence that the NSEC value attained by 16-hour-ahead 
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forecasting is as high as 0.8947 in the testing period.   

 
Table 3.10 Training and testing performances of different ΔT values by the HNN model 
using hourly data in the Altamaha river basin 

ΔT(hour) 
Training Testing 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

1 2.1194 0.9850 0.9403 1.0412 0.9850 0.9444 
4 2.6676 0.9763 0.9336 2.4826 0.9154 0.8561 
8 2.5868 0.9778 0.9351 2.7455 0.8975 0.8221 
16 2.7082 0.9758 0.9299 2.8114 0.8947 0.8819 

 

With respect to the case in the Altamaha river basin, the training and testing 

performances by ANN, FPNN, HYMN and HNN models for 1-hour-ahead and 

16-hour-ahead forecasting are presented in Table 3.11 and 3.12, respectively. It is 

noticeable that the ANN and FPNN models are not able to perform the 16-hour-ahead 

forecasting since the NSEC values in the testing period are negative. The undesirable 

ACC values obtained imply the unsatisfactory performances of these two models as 

well, which can not capture the mapping relation of the hourly forecasting. When 

conducting 1-hour-ahead forecasting, both ANN and FPNN models over-forecast the 

peak discharge with a range of 16.13% and 23.92%, and the NSEC and ACC values are 

comparably low. The HYMN model displays notably a good performance in computing 

high values with high NSEC values (i.e., 0.9789 in the training period and 0.9298 in the 

testing period). The HNN model generates quite low RMSE values, with a reduction of 

77.99%, 77.91% and 53.79% when compared with the ANN, FPNN and HYMN models 

in the testing period. This reveals the advantage of HNN model in forecasting high 

values of the flows. The ACC values obtained by the HNN model are fairly high, 

presenting its ability in matching the total flow values. In addition, the recession 

coefficients attained by HYMN and HNN models are respectively 0.9132 and 0.9354, 

which is an evidence to prove the reliability of storage reservoir assumption. Therefore, 

the HNN model is verified as an appropriate and alternative model for the 1-hour-ahead 

 76 



Hybrid Model of Neural Network and Population-based Optimization Algorithm                  Xiaoyun Chen 

forecasting. The superiority of HNN model over the other three models is more distinct 

with the 16-hour-ahead forecasting. The assumption of storage reservoir in the HYMN 

model renders good RMSE and NSEC values whereas the ANN and FPNN model 

obtain unavailable results. Possible explanation is that the storage ability of the reservoir 

can be more effectively behaved regarding multi-step-ahead forecasting. Certainly, the 

contribution of fuzzy pattern-recognition on the performance of HNN model is 

promising, as there is a 2.2% reduction in RMSE value and 5.8% improvement in ACC 

value in comparison with the HYMN model.  

 
Table 3.11 Training and testing performances by different models using hourly data in 
the Altamaha river basin (1-hour-ahead forecasting) 

Model 
Number 

of 
nodes 

Training Testing Peak 
Discharge 

 
(m3/s) 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

ANN 5 5.2702 0.9074 0.8843 4.7326 0.7023 0.7780 52.62 
FPNN 4 4.9445 0.9185 0.8929 4.7132 0.7048 0.8858 56.15 
HYMN 5 2.5076 0.9789 0.9400 2.2531 0.9298 0.8852 52.27 
HNN 5 2.1194 0.9850 0.9403 1.0412 0.9850 0.9444 43.79 

 

Table 3.12 Training and testing performances by different models using hourly data in 
the Altamaha river basin (16-hour-ahead forecasting) 

Model 
Number 

of 
nodes 

Training Testing Peak 
Discharge 

 
(m3/s) 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

ANN 5 10.0547 0.6678 0.8012 9.5912 -0.1764 0.5387 48.03 
FPNN 4 9.1462 0.7251 0.8541 9.5090 -0.1564 0.5943 58.98 
HYMN 5 2.9352 0.9716 0.9293 2.8748 0.8899 0.8334 39.55 
HNN 5 2.7082 0.9758 0.9299 2.8114 0.8947 0.8819 43.08 

 

The plots of observed and computed discharges by the four models with 1-hour-ahead 

and 16-hour-ahead forecasting depicted in Figure 3.18 and 3.19 respectively can further 

verify the forecasting ability of the proposed HNN model. It is worth noting that the 

four models make fairly obvious lagged forecasting both for the one-step-ahead and 

multi-step-ahead cases. The reason might be that the input data are not well manipulated 
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by data pre-processing techniques. Generally, the more the forecasting lead time is, the 

more obvious time lag it is. Another phenomenon can be observed is that the FPNN 

model tends to produce unexpected and discrete points in the hourly series. The 

probable reason may be the mismatching between these values and their mode in the 

model vector M. The absence of continuity equation from the FPNN model may result 

in the inconsistent points as well. Generally, the HNN model can basically fit the 

observed discharges in spite of slightly advanced under-forecasting for the peak value.     
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Figure 3.18 Observed and computed discharges during testing period by different 

models in the Altamaha river basin (1-hour-ahead forecasting) 
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Figure 3.19 Observed and computed discharges during testing period by different 

models in the Altamaha river basin (16-hour-ahead forecasting) 
 

Similar results are generated for the study case within the central Greensboro area, as 

shown in Tables 3.13-3.15 and Figures 3.20-3.21. The HNN model yields satisfactory 
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forecasting for the one-hour-ahead and four-hour-ahead cases. However, when 

performing more steps ahead forecasting, the NSEC and ACC values obtained are 

unacceptably low. This agrees with the fact that the accuracy of the forecasting is related 

with the lead time. Since the flow series of the North Buffalo Creek is more irregular 

and fluctuating than that of the previous case site, the forecasting is more sensitive to 

the lead time. Thus the multi-step-ahead forecasting in this area turns out to be 

unpromising. More evidences can be found in Table 3.15 for the case of 16-hour-ahead 

forecasting. Although the HNN model substantially improves the other three in terms of 

the RMSE and NSEC values, the ACC values are quite low and not the best one of all. 

When compared with the case in the Altamaha river basin in Table 3.12, the superiority 

of HNN model is not that distinct. That is, the HNN model is more applicable for the 

16-hour-ahead forecasting in the Altamaha river basin. This may be reasoned by the fact 

that the recession coefficient obtained in the station 02208000 (i.e.,λ =0.9354) is larger 

than that in the station 02095500 (i.e., λ =0.6612). In general, a larger recession 

coefficient implies a larger storage ability of the reservoir, which hence means the 

possibility to forecast more steps. As shown in Figure 3.21, many high values are 

over-forecasted by the ANN model and under-forecasted by the HNN model.  

 

In spite of that, the HNN model is preferred when one-step-ahead forecasting is 

performed. As can be seen in Table 3.14, the HNN model obtains comparably high ACC 

values both in the training and testing periods. There is a reduction of 30.80%, 26.14% 

and 21.23% in the RMSE values when compared with the ANN, FPNN and HYMN 

models in the testing period. What is more, the range of over-forecasting the peak 

values is 19.58% by the HNN model, which is the smallest amongst the four models. 

Observations in Figure 3.20 reveal that the HNN model can well reproduce 

corresponding observed values of the last two peak valleys, but presents comparably 
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poor performances in the first two peak valleys. It may be due to the complicated and 

fluctuating time series compared with the cases in the Altamaha river basin. As a whole, 

the HNN model is reasonably identified for the hourly data collected in both two study 

cases, in particular, for multi-step-ahead forecasting.  

 
Table 3.13 Training and testing performances of different ΔT values by the HNN model 
using hourly data within the central Greensboro area 

ΔT(hour) 
Training Testing 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

1 2.6075 0.9156 0.7162 1.7310 0.8432 0.7152 
4 2.5875 0.9170 0.7049 1.8875 0.8140 0.7155 
8 3.4935 0.8491 0.4556 2.5440 0.6636 0.3871 
16 3.5135 0.8473 0.4357 2.5695 0.6568 0.3408 

 

Table 3.14 Training and testing performances by different models using hourly data 
within the central Greensboro area (1-hour-ahead forecasting) 

Model 
Number 

of 
nodes 

Training Testing Peak 
Discharge 

 
(m3/s) 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

ANN 6 4.7505 0.7198 0.2992 2.5015 0.6724 0.2272 40.1450 
FPNN 6 2.6425 0.9133 0.6765 2.3435 0.7125 0.6085 41.3735 
HYMN 6 2.6640 0.9119 0.6371 2.1975 0.7472 0.5732 39.2650 
HNN 5 2.6075 0.9156 0.7162 1.7310 0.8432 0.7152 35.2010 

 

Table 3.15 Training and testing performances by different models using hourly data 
within the central Greensboro area (16-hour-ahead forecasting) 

Model 
Number 

of 
nodes 

Training Testing Peak 
Discharge 

 
(m3/s) 

RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

ANN 6 4.5350 0.7447 0.3759 3.2610 0.4434 0.2942 39.3070 
FPNN 6 4.2320 0.7785 0.2861 2.9695 0.5417 0.0633 22.6890 
HYMN 6 4.1025 0.7918 0.5348 2.7505 0.6067 0.4972 31.7690 
HNN 5 3.5135 0.8473 0.4357 2.5695 0.6568 0.3408 32.1100 
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Figure 3.20 Observed and computed discharges during testing period by different 

models within the central Greensboro area (1-hour-ahead forecasting) 
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Figure 3.21 Observed and computed discharges during testing period by different 

models within the central Greensboro area (16-hour-ahead forecasting) 
 

3.5 Summary 

This chapter has proposed a novel hybrid model reflecting fuzzy features of river flows 

and nonlinear storage reservoir for downstream river flow forecasting. This model 

incorporates fuzzy pattern-recognition concept and continuity equation into a neural 

network. The integration of physical equations and data-driven model in the river 

system renders the forecasting more physically meaningful. To verify the capability and 

applicability of the proposed HNN model, three benchmarking models (namely ANN, 

FPNN and HYMN) are employed and two study cases are investigated under both daily 

and hourly scenarios. Main conclusions can be highlighted as follows: 
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(a) As far as forecasting high flow values are concerned, the HNN model with lowest 

RMSE and highest NSEC values is identified as the preferred tool among all four 

models, which mainly benefits from the introduction of fuzzy pattern-recognition 

into the hidden layer of the neural network. The HNN model appropriately fits the 

observed flow series with the best accuracy of the total data, since the continuity 

equation produces consistent computation.     

(b) The reliability of assuming storage reservoir as the downstream station in the output 

layer of HNN model can be confirmed by the approximate recession coefficients 

generated by the HYMN and HNN models.   

(c) Apart from the upstream flow, precipitation in the current station is employed as an 

important and connatural input for the downstream river flow forecasting, especially 

for the FPNN and HNN models with pattern classification.  

(d) Since both daily and hourly forecasting are addressed in this chapter, the 

applicability of the HNN model shall be convincing. The travel time of flow from 

upstream to downstream station, the feature of time series (e.g., with more or less 

peak valleys, and with large or small variation) and the selected forecasting lead 

time will contribute to the forecasting performances of the HNN model.     

(e) The superiority of HNN model over the others is more salient in the case in the 

Altamaha river basin because of larger storage ability of the reservoir, from the 

perspective of multi-step-ahead forecasting. The performance of the HNN model 

does not markedly deteriorate with the increase of the forecasting lead time.  

   

The hybrid model to forecast river flow in this chapter is yet a pilot study. Since the 

uncertainty analysis is important for new proposed approaches, it will be undertaken as 

a further study. Besides, the efficiency and adaptability of the proposed model with 

other input variables and optimization algorithms can be investigated.      

 82 



Hybrid Model of Neural Network and Population-based Optimization Algorithm                  Xiaoyun Chen 

4 A Hybrid Double Feedforward Neural Network for 

Suspended Sediment Load Estimation  

The previous chapter advocates the use of HNN as effective model for downstream 

river flow forecasting. The idea of integrating fuzzy pattern-recognition and continuity 

equation into neural network could be extended for the estimation of sediment load. 

Besides, a structure of double feedforward neural network is employed in the proposed 

model since the input variables of sediment load estimation are different in nature. 

Investigation will be made on two study cases with daily data: 

(1) To compare the estimation performances of the proposed model with three 

benchmarking models; 

(2) To examine the physical mechanism of the sediment load transport with different 

lead time and river basin.  

 

4.1 Introduction 

The estimation of suspended sediment loads (SSL) is required in river restoration, stable 

channel design and water quality assessment. It is a difficult and sophisticated task in 

practice, however, since the sediment transport is highly nonlinear and governed by 

many factors including strength of flow, sediment supply, river bed, etc. Conventional 

sediment rating curves (SRC) are incapable of providing sufficiently accurate estimates 

attributed to the misleading practice of using sediment load versus discharge (Demirci 

and Baltaci, 2013; McBean and Al-Nassri, 1988). Artificial intelligence techniques have 

proven as efficient tools in modeling sediment loads in recent years. Alp and Cigizoglu 
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(2007) employed two artificial neural network (ANN) models namely feedforward back 

propagation (FFBP) and radial basis functions (RBF) to estimate daily SSL. The use of 

support vector machine (SVM) was investigated by Cimen (2008) for SSL estimation in 

rivers. Lafdani et al. (2013) used a combination of gamma test and genetic algorithm 

(GT-GA) to identify the best input of SVM and ANN models for daily SSL prediction. 

These models could capture the nonlinear behavior of sediment data without going into 

the details of physical processes in watershed. Nevertheless, in reverse, the totally 

implicit and physically meaningless features are also the major criticisms. It is still 

imperative to develop estimation models with conceptual ideas to reflect the 

characteristics of sediments.  

 

The fuzzy nature of SSL series necessitates the utilization of fuzzy and highly nonlinear 

methods for sediment simulation. A flexible and transparent model allowing 

implementing the fuzzy concept in activation functions is appreciated, which is inspired 

by the work of Qiu et al. (1998). The fuzzy pattern-recognition activation function was 

employed to connect the network input and the hidden nodes, and to classify inputs into 

a number of categories in terms of different patterns. In such a way, the fuzziness of 

runoff was considered with respect to the seasonal characteristic of the river system. 

This method offers practically significant advantage over other fuzzy-based models and 

is employed in this study for SSL estimation. In addition, the time-varying nature of 

sediment transport process can be considered by adding a continuity equation in the 

ANN structure, which has been performed by Li and Gu (2003). In their works, the 

nodes in the hidden/output layers were regarded as storage reservoirs, and continuity 

equation was satisfied when river flows from upstream to downstream sections. The 

spatial factors were taken into account in the sediment transport process by continuity 

equation, which can shed light on the effect of upstream sediment loads. Thus, this 
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method can build a relationship between upstream and downstream sediment loads, and 

is feasible and acclaimed in an SSL estimation model. It is preferred to completely 

physics-based approaches in which the detailed environmental data are generally not 

available and simplified assumptions are unrealistic (Kothyari et al., 1997; Kouassı et 

al., 2013).    

 

Traditional multi-layer feedforward neural network (MFNN) has some drawbacks in its 

architecture and regularization. He (1993) proposed double parallel feedforward neural 

network (DPFNN), which involves a paratactic relationship between linear and 

nonlinear mappings. It is a parallel connection of a multi-layer feedforward neural 

network and a two-layer feedforward neural network. The multi-layer network used its 

hidden nodes to adjust the nonlinear mapping; and the two-layer network can give high 

learning speed for linear solution (He 1994). It was demonstrated that DPFNN has faster 

convergence speed and better generalization capability than MFNN (Wang et al., 2011a; 

Zhong and Ding, 2005). The DPFNN model has been used for hyperspectral data 

classification (He and Huang, 2005), concentration estimation of gas mixture (Zhao et 

al., 2010) and water diversion demand estimate (Khan et al., 2014), and proven to be a 

promising method for regression and prediction.  

 

The purpose of this chapter is to develop a novel estimation model with a combination 

of fuzzy pattern-recognition, continuity equation and double feedforward neural 

network. In addition to river flows, the influence of sediment loads in the upstream river 

sections is investigated in this study. This chapter is structured in the following manner. 

Followed by Introduction, the details of estimation models for SSL are described in the 

section 4.2. The novel proposed model is identified and the process of implementation 

is presented. Section 4.3 gives the data information of two study areas and main results 
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and discussions are shown. Finally section 4.4 summarizes conclusions in this chapter.       

 

4.2 Model development  

This section proposes a hybrid double feedforward neural network (HDFNN) model for 

daily SSL estimation, by combining fuzzy pattern-recognition and continuity equation 

into a structure of double neural networks. The mechanism of the HDFNN model is 

displayed in details, derived from multi-layer feedforward neural network (MFNN), 

double parallel feedforward neural network (DPFNN) and hybrid feedforward neural 

network (HFNN) models. In the following, the procedures of the four models for the 

estimation of suspended sediment load are presented.  

 

4.2.1 Multi-layer feedforward neural network model  

The three-layer feedforward neural network consisting of the input, hidden and output 

layers, is the most widely used MFNN model. The topological structure of MFNN 

model is presented in Figure 4.1(a), in which only one node in the output layer is 

considered. Similar with the ANN model employed in the previous chapter, the nodes in 

the hidden and output layer are respectively computed from the following activation 

functions (Thirumalaiah and Deo, 1998): 
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where jp (j=1, 2, …, k) and it (i=1, 2, …, s) respectively represent nodes in the input 

and hidden layer, and y represents node in the output layer. The weight parameters are 
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denoted by jiw  and iw ; ib  and b  is the bias value. For traditional MFNN models, 

the activation function f(.) is usually a radial basis function or sigmoid function, and F(.) 

is a linear function. They reveal relation of nodes between two layers, although having 

no physical meanings. The MFNN model for SSL estimation has limitations attributed 

to the negligence of sediment properties.  

 

4.2.2 Double parallel feedforward neural network model 

As can be seen in Figure 4.1(a), DPFNN model is developed from MFNN model in 

which two networks connect each other in parallel with the same k input nodes. For the 

three-layer neural network of DPFNN, the nodes in the hidden layer ),...,,( 21 sttt are 

computed by Eq. (4.1) and then connected to the output with weight parameters iw  in 

the same manner. Analogously for the two-layer neural network, the weight parameters 

directly from the input layer to the output layer are denoted by jv (j=1, 2, …, k). The 

node in the output layer is obtained from the following equation (Zhong and Ding, 

2005): 
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                         (4.3) 

The output is a summary of two parallel neural networks. For a given set of training 

samples (pn, Yn) supplied to the model, the error function is defined as: 

∑
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where the vector W is a collection of all unknown parameters, and varies with the 

estimation model; yn and Yn are computed and desired output (n=1,2,…, N), respectively, 

and N is the number of training samples. The objective of network training, hence, is to 

find Wopt which satisfies that )()( WEminWE opt = . The vector W is updated with the 
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updated fitness value of E(W) and is finally outputted if stopping criteria is satisfied. In 

the present chapter, differential evolution (DE) is employed as an optimization 

technique to find the minimum value of error function and the corresponding Wopt. The 

DE algorithm is a widely used population-based optimization method, which is 

favourable for searching parameters of non-differentiable and time-varying models (Li 

et al., 2013a; Rocca et al., 2011; Storn and Price, 1995).   

 

4.2.3 Hybrid feedforward neural network model 

The above two models are incapable of distinguishing the influences of different inputs, 

thus },...,,{ 21 kppp  is employed to represent any potential inputs for SSL estimation. 

In practice, some previous studies estimated sediment based on the river flow and 

sediment data at its own station (Afan et al., 2015; Aytek and Kisi, 2008), while others 

focused on the estimation of downstream sediment data by using data from both 

upstream and downstream stations (Kisi, 2004b; Partal and Cigizoglu, 2008). For the 

case of this study, river flows Q either at the upstream or downstream stations and SSL 

at upstream stations are involved as inputs. When fed with various inputs, the output 

SSL at the downstream station is obtained in different manners.  

 

In this section, a hybrid feedforward neural network (HFNN) is developed with respect 

to river flow inputs )   ( 21
in
k

inin Q,...,Q,Q . The conceptual activation function based on fuzzy 

pattern-recognition is introduced as follows (Qiu et al., 1998): 
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where iQ (i=1, 2, …, s) are nodes in the hidden layer and in
jQ (j=1, 2, …, k) are nodes 

in the input layer. Model vector ][][ li MMM ==  is denoted the same with that in the 

previous chapter, which contains a number of patterns in the hidden layer and could 

fully cover the models ranging from “wet” to “dry” season. Meanwhile, the activation 

function from the hidden layer to the output layer is given as follows: 

 0)(
1

0
(1) b

i

s

i
i bwQaSSL +×= ∑

=
                         (4.6) 

where SSL(1) represents node in the output layer; iw  and b stand for the weight 

parameters and bias in the output layer, respectively. The activation function in Eq. (4.6) 

expresses a power relationship between river flows and sediment loads, which is 

generally a functional relationship representing the SRC. Values of a0 and b0 for a 

specific river are to be optimized in the training process of neural network. The 

structure of HFNN model is depicted in the framework of Figure 4.1(b), where SSL(1) is 

considered as the final output with inputs )   ( 21
in
k

inin Q,...,Q,Q . Accordingly, HFNN model 

examines the relationship of Q and SSL by considering the fuzzy property of sediment 

loads in an MFNN structure.     

 

4.2.4 Hybrid double feedforward neural network model  

In this section, a hybrid double feedforward neural network (HDFNN) is developed 

when sediment data at the upstream river stations are added as inputs. These sediment 

inputs directly work on the output in a two-layer neural network. In the representation 

of a river system, upstream stations are regarded as nodes in the input layer and 

downstream station as node in the output layer. Thus, mass conservation is satisfied 

over the river network by the following continuity equation (Li and Gu, 2003): 
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where SDs and Qs are respectively the sediment deposition and sediment transport rate 

at the downstream station, and T is time. Meanwhile, s
iQ  is the sediment transport rate 

at each upstream station, wherein i (1, 2, …, h) refers to the index of each node in the 

input layer. The fraction of sediment from a node in the input layer entering into the 

node in the output layer is denoted by iv . In the physical point of view, Eq. (4.7) 

implies that the rate of change of sediment deposition in the current river section is 

determined by the difference with the source sediment transport rate at the upstream 

river reaches, which reveals the sediment mass conservation over the entire river system. 

After discretization, the SDs at time TT ∆+  is determined by the following equation: 
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In this study, suspended sediment load refers to sediment discharge, thus the transport 

rate sQ  could be substituted by SSL, and SSLi(T) denotes sediment load at the upstream 

station. Accordingly, Eq. (4.8) is rewritten as follows: 

TSSLSSLvDSDS TTi

h

i
i

s
T

s
TT Δ)( )()(

1
)()Δ( ×−+= ∑

=
+              (4.9) 

Equation (4.9) in its simplified form is given by: 
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)()( . Here λ  is regarded as a 

recession coefficient, which is assumed to be independent of time (Yang et al., 1998). 

An initial value of sediment deposition sDS 0  is given in advance, and the value of SDs 

at each time step is computed from Eq. (4.10). The SSL in the output layer is evaluated 

as a nonlinear function of sediment deposition (Li and Gu, 2003) 
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When introducing upstream input )(TiSLS (referring to in
iSSL  in the following) at time 

step T into the network, downstream sediment load (2)
)( TT

SSL
∆+

is finally computed.  

 

The HDFNN model employs two separate neural networks with influences of river 

flows and upstream sediment loads on downstream SSL, which is different from the 

DPFNN model using the same input variables in two parallel networks. This is 

tantamount to say that two neural networks with respect to )   ( 21
in
k

inin Q,...,Q,Q  and 

)   ( 21
in
h

inin SSL,...,SSL,SSL  are involved, as shown in Figure 4.1(b). The final output SSL is 

a summary of SSL(1) and SSL(2). Accordingly, HDFNN model is capable of addressing 

two separate inputs due to the double networks. Besides, the inclusion of fuzzy 

pattern-recognition and continuity equation in the neural networks enables consideration 

of fuzzy and time-varying feature of sediment loads.  
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Figure 4.1 (a) Topological structure of MFNN and DPFNN models (b) topological 

structure of HFNN and HDFNN models 
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4.3 Suspended sediment estimation  

4.3.1 Study area and data  

Two watersheds in Montana of USA are considered as case studies. The first belongs to 

two stations on the Muddy Creek near Vaughn. The Muddy Creek is a tributary of the 

Missouri river, approximately 307 km long, and flows southeast through the Big Muddy 

Badlands. The drainage areas at these sites are 730.377 km2 for the upstream station 

(station No. 06088300) and 813.256 km2 for the downstream station (station No. 

06088500), as shown in Table 4.1 and Figure 4.2. These two stations have been studied 

in several works (Browning et al., 2005; Kisi and Fedakar, 2014), which ensures the 

reliability of our collected data. The objective of this work is to estimate the suspended 

sediment loads at the downstream station (SSLd) based on river flows at the upstream 

and downstream stations (Qu and Qd) and sediment loads at the upstream station (SSLu). 

 

The daily dataset is collated from US Geological Survey (USGS), covering a time 

period of four years from 1st January 1977 to 31st December 1980. The discharge and 

sediment data for the upstream and downstream stations are plotted in Figure 4.3. It can 

be seen that there is a highly nonlinear relationship between discharge and sediment 

data for both stations. The presence of outliers is detected as well, particularly for the 

sediment data. In the downstream dataset, only four values above or near 40000 

tons/day are observed while the others are below 20000 tons/day. These outliers of data 

may create additional difficulties to the estimation models.  

 

For the purpose of calibration and estimation, data for Years 1977 and 1978 are chosen 

in the training period, whilst those for Year 1980 serve the model testing. The remaining 

data for Year 1979 (around 25% of the whole data) are used for validation, which is an 
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indispensible process to avoid over-fitting. The statistical parameters of river discharge 

and sediment data for the two stations are summarized in Table 4.2, in which Xmean, 

Xmedian, SX, Xmax and Xmin denote the mean, median, standard deviation, maximum and 

minimum, respectively. A noticeable difference between Xmean and Xmedian is detected for 

the sediment data, which provides supporting evidence for the existence of outliers. The 

high values of SX indicate the complexity of the sediment data, and this may have a 

negative effect on the estimation performance. Moreover, the Xmin value in the training 

set is higher than that in the corresponding testing set, for Qu and SSLu datasets. This 

may cause extrapolation difficulties in computing low sediment values.  

 

Table 4.1 Stations’ ID, name and location on the Muddy Creek near Vaughn in 
Montana 

Station 
ID Station name Latitude Longitude 

06088300 Muddy Creek near Vaughn 47°37'30.08"N 111°38'07.46"W 
06088500 Muddy Creek at Vaughn 47°33'40.56"N 111°32'30.37"W 
 

 

 
Figure 4.2 Locations of stations on the Muddy Creek near Vaughn in Montana, USA 
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Figure 4.3 Scatter plots of (a) upstream and (b) downstream data between sediment 

load and discharge for the study case on the Muddy Creek 
 

Table 4.2 Summary of statistical parameters for data at stations on the Muddy Creek 

Station No. Data type Data 
period Xmean Xmedian SX Xmax Xmin 

06088300 
Data period: 

1977/01-1980/12 

Qu (m3/s) 
Training 2.97 1.53 3.53 38.79 0.62 

Validation 3.57 1.81 3.57 31.15 0.71 
Testing 2.65 1.84 2.32 22.94 0.42 

SSLu 
(tons/day) 

Training 291.91 10.0 2450.3 47600 2.30 
Validation 175.84 13.0 666.67 9740 2.00 

Testing 175.55 13.5 1589.9 26100 1.40 

06088500 
Data period: 

1977/01-1980/12 

Qd (m3/s) 
Training 3.79 1.93 4.33 45.31 0.14 

Validation 4.59 2.21 4.56 33.98 0.82 
Testing 3.64 2.07 3.34 30.58 0.45 

SSLd 
(tons/day) 

Training 610.28 25 3219.6 58300 0.96 
Validation 539.36 58 1413.7 17500 2.80 

Testing 384.04 30 2351.4 41900 1.70 
 

The second study case is situated on the Tongue River in Montana, USA. The Tongue 

River is a tributary of the Yellowstone River, which rises in Wyoming in the Big Morn 

Mountains, flows northeast through northern Wyoming and southeastern Montana and 

empties into the Yellowstone River at Miles city. Table 4.3 and Figure 4.4 present the 

locations of the upstream station 06307830 and downstream station 06308500 on the 

Tongue River. The drainage areas for each station are 10046.6 km2 and 13996.4 km2, 

respectively. The collected data include discharge and suspended sediment load from 

both stations as well, and data period spans four years from 1st October 1977 to 30th 

September 1981. The scatter plots between sediment load and discharge data for the 
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upstream and downstream stations are demonstrated in Figure 4.5. The mapping of 

discharge and sediment data presents highly nonlinear feature, which could not be 

expressed by a simple power relationship. The sediment data has outlier values in 

particular, in which the maximum SSLd is as high as 84400 tons/day while 98.63% of 

the data is below 10000 tons/day. The discharge and sediment data at the above two 

stations have been used in the study of Aytek and Kisi (2008).   

 
Table 4.3 Stations’ ID, name and location on the Tongue River in Montana 

Station 
ID Station name Latitude Longitude 

06307830 Tongue River blow Brandenberg 
bridge near Ashland 45°50'25.39"N 106°13'24.36"W 

06308500 Tongue River at Miles city 46°23'04.54"N 105°50'43.88"W 
 

 
Figure 4.4 Locations of stations on the Tongue River in Montana, USA 
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Figure 4.5 Scatter plots of (a) upstream and (b) downstream data between sediment 

load and discharge for the study case on the Tongue River  
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Similarly, the total data are partitioned into training, validation and testing sets. The data 

of the first two years are chosen for the training purpose, the first half of the remaining 

are employed to avoid over-fitting in the validation period, and the other half (i.e., data 

from 1st October 1980 to 30th September 1981) are chosen in the testing period. As 

seen from Table 4.4, the training set cannot fully include the validation and testing data 

for Qu, Qd and SSLd data series. Besides, the values of SX obtained from the discharge 

data in the training, validation and testing period are not approximate, when compared 

with the study case on the Muddy Creek. This reveals the imperfect data partition for 

the case on the Tongue River. It is intuitive that the lack of similar patterns between the 

training and testing datasets will give rise to poor performances in the testing period. 

The presence of outliers is detected by the salient differences between Xmean and Xmedian 

for the sediment data. For instance, the Xmean value reaches 1422.6 tons/day while the 

Xmedian is 86 tons/day in the training period for the SSLd data. The high values of SX also 

imply the widely-spread sediment data. In short, the sediment data to be estimated are 

irregular and ambiguous, and a model, which can map the highly nonlinear relationship 

between the downstream sediment load and the input variables, is in urgent need.  

 
Table 4.4 Summary of statistical parameters for data at stations on the Tongue River  

Station No. Data type Data 
period Xmean Xmedian SX Xmax Xmin 

06307830 
Data period: 

1977/10-1981/09 
 

Qu (m3/s) 
Training 17.85 11.30 24.51 215.21 2.55 

Validation 9.53 8.38 5.02 30.58 1.84 
Testing 10.28 6.65 12.54 62.86 1.98 

SSLu 
(tons/day) 

Training 606.22 58 2088.6 27200 1.5 
Validation 120.13 43.5 253.98 1980 1.5 

Testing 234.88 26 834.75 8000 3 

06308500 
Data period: 

1977/10-1981/09 

Qd (m3/s) 
Training 19.72 9.34 29.47 218.04 2.83 

Validation 7.53 6.33 4.54 28.32 1.90 
Testing 9.00 5.47 12.88 62.30 0.06 

SSLd 
(tons/day) 

Training 1422.6 86 5891.2 84400 4 
Validation 146.1 28 663.66 10600 3.4 

Testing 369.0 23 1235.1 7400 0.13 
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4.3.2 Performances of estimation models 

4.3.2.1 Evaluation criteria and preliminary work  

In order to undertake the comparison of performances by different models, two 

evaluation criteria are employed in current chapter, namely root mean square error 

(RMSE) and Nash-Sutcliffe efficiency coefficient (NSEC). Accuracy (ACC) is not an 

advisable measure for estimating models, since the sediment data present distinct 

outliers feature. Partitioning analysis is further conducted to provide explicit 

performances on different intervals of values, the details of which will be described in 

the following discussions.  

 

The purpose of this study is to compute current downstream sediment load value SSLd(t) 

with single- and multi-step-ahead estimations. Since the discharges Qu(t) and Qd(t) for the 

current day have significant relations with the current sediment SSLd(t), the computation 

of sediment data belongs to “estimation” instead of “forecasting”. For one-day-ahead 

estimation, Qu(t), Qd(t), Qu(t-1), Qd(t-1) and SSLu(t-1) are used to constitute the inputs. The 

MFNN and DPFNN models include the five input variables, while the HFNN model 

takes account of the four discharge inputs alone. The HDFNN model employs different 

inputs for multi-layer and two-layer: one encompasses discharge variables [Qu(t), Qd(t), 

Qu(t-1), Qd(t-1)] and the other sediment variable SSLu(t-1). It should be noted that time step 

ΔT in the HDFNN model represents lead time, which is the same as that in the previous 

chapter. Thus ΔT =1 day indicates that the downstream sediment SSLd(t) at time t is 

computed from upstream sediment SSLu(t-1) at time t-1. Likewise, the inputs for the two- 

and three-day-ahead estimations are [Qu(t), Qd(t), Qu(t-2), Qd(t-2), SSLu(t-2)] and [Qu(t), Qd(t), 

Qu(t-3), Qd(t-3), SSLu(t-3)], respectively. In addition, the datasets of discharge and sediment 

are scaled linearly within the range of [0.1, 0.9] according to Eq. (3.10) to avoid larger 
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data dominating smaller data.     

 

Primarily, it is an imperative task to determine the number of nodes in the hidden layer 

for a neural network. It is generally conducted by comparing the fitness value in the 

training period under trial tests. In particular, Figures 4.6 and 4.7 plot the fitness values 

versus the number of nodes in the hidden layer by the HFNN and HDFNN models for 

the case on the Muddy Creek. It is noted that these two models introduce fuzzy 

pattern-recognition into the hidden layer, thus the number of nodes in the hidden layer 

also means the number of elements in the model vector M. For the HFNN model, the 

value C=5 and )0 0.25, 0.50, 0.75, ,0.1(=M are obtained with smallest fitness value. 

The model vector ,0)
6
1,

6
2,

6
3,

6
4,

6
5 ,0.1(=M with C=7 is large enough to perform the 

nonlinear property for the HDFNN model, as indicated by Figures 4.7. The same 

method is used for the case on the Tongue River, as demonstrated in Figures 4.8 and 4.9 

for the HFNN and HDFNN models respectively. The minimum fitness takes place at 

C=8 for both of the models. That is, the nonlinear and fuzzy properties of flows can be 

fully acquired with eight modes from totally wet to dry time for the study case. It seems 

that the time series for the case on the Tongue River is more complicated and uncertain 

than that on the Muddy Creek, thus the estimations are performed in the context of more 

patterns with larger C values. The numbers of nodes in the hidden layer in the MFNN 

and DPFNN models are determined in the same manner.  
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Figure 4.6 Fitness values with different numbers of nodes in the hidden layer by the 

HFNN model for the study case on the Muddy Creek 
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Figure 4.7 Fitness values with different numbers of nodes in the hidden layer by the 

HDFNN model for the study case on the Muddy Creek 
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Figure 4.8 Fitness values with different numbers of nodes in the hidden layer by the 

HFNN model for the study case on the Tongue River 
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Figure 4.9 Fitness values with different numbers of nodes in the hidden layer by the 

HDFNN model for the study case on the Tongue River 
 

4.3.2.2 Estimation results for study case 1 

The performances of one-, two- and three-day-ahead estimations by the four models in 

terms of RMSE and NSEC are summarized in Table 4.5. The configurations of neural 

network for each model are provided as well. Taking the one-day-ahead case as an 

example, (5,4,1) for MFNN model implies that there are 5 nodes in the input layer, 4 

nodes in the hidden layer and 1 node in the output layer. For the DPFNN model, the 

structures for multi-layer and two-layer are respectively (5,5,1) and (5,1) with same 

inputs. HFNN model only considers the discharge inputs, thus there are only four input 

nodes. The HDFNN model has different inputs for multi-layer and two-layer, the 

structures of which are (4,7,1) with seven nodes in the hidden layer and (1,1) with one 

node in the input layer, respectively.   

 

For the one-day-ahead estimation with input combination [Qu(t-1), Qu(t), Qd(t), Qd(t-1), 

SSLu(t-1)], MFNN model has a fairly high RMSE value (i.e., 815.4227 tons/day), and 

shows inferior results due to its total “black-box” operation. DPFNN model 

demonstrates slightly better generalization and estimation capability than MFNN model, 

as indicated by the more approximate RMSE values in the training and testing periods. 
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HFNN model is found to be superior to MFNN model as well, with an increase of 

2.83% and 3.68% in NSEC value for the training and testing period respectively. The 

RMSE value of HDFNN model is respectively 55.50%, 55.43% and 47.95% lower than 

that of MFNN, DPFNN and HFNN model in the testing period. Meanwhile, the NSEC 

value attained by the HDFNN model is 0.9762, which is superbly high to reveal the 

ability of HDFNN model for sediment estimation.  

 

The performances of each model gradually deteriorate with the increase of lead time, as 

observed from Table 4.5. The two-day-ahead estimations yield inferior performances 

than the one-day-ahead cases in general, yet, still attain desirable results by the HDFNN 

model with a high NSEC value in the testing period (i.e., 0.9733) herein. The capacity 

of mapping both nonlinear and linear relationship with the double parallel networks by 

the DPFNN model renders smaller RMSE and higher NSEC values than the MFNN 

model in the testing period. The HFNN model brings about more improvement of 

performances, particularly in the training period. Although the influence of upstream 

sediment loads is not included, the physical activation function provides information 

about different patterns and considerably improves the generalization ability. HDFNN 

model draws the advantages of both DPFNN and HFNN models, hence, gives the best 

performances amongst the four models. When compared with MFNN model, there is a 

61.31% and 55.89% reduction in RMSE value for the training and testing stages, 

respectively. The superiority of HDFNN over DPFNN and HFNN models is obvious, 

particularly for the NSEC values in the testing period. Similarly for the three-day-ahead 

estimations, the HDFNN model yields the lowest RMSE and highest NSEC values. The 

reduction of RMSE values is respectively 44.80%, 43.28% and 42.50% in comparison 

with that of MFNN, DPFNN and HFNN models in the testing period. It seems that the 

superiority degree of the HDFNN model does not significantly mitigate with the 
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increase of lead time. As a consequence, the HDFNN is an effective and alternative 

model for downstream sediment loads with single- and multi-step-ahead estimations.  

 
Table 4.5 Performances by various models for the study case on the Muddy Creek 

Input Model Configuration 
Training Testing 

RMSE 
(tons/day) NSEC RMSE 

(tons/day) NSEC 

One-day-ahead 

MFNN (5,4,1) 665.8922 0.9572 815.4227 0.8797 
DPFNN (5,5,1)+(5,1) 692.0350 0.9537 814.1384 0.8801 
HFNN (4,5,1) 402.7692 0.9843 697.1047 0.9121 

HDFNN (4,7,1)+(1,1) 284.9112 0.9922 362.8466 0.9762 

Two-day-ahead 

MFNN (5,4,1) 813.1665 0.9361 872.9676 0.8625 
DPFNN (5,5,1)+(5,1) 819.9004 0.9351 842.3295 0.8720 
HFNN (4,5,1) 404.6351 0.9842 787.5140 0.8881 

HDFNN (4,7,1)+(1,1) 314.6514 0.9904 385.0416 0.9733 

Three-day-ahead 

MFNN (5,4,1) 897.9432 0.9221 914.0537 0.8497 
DPFNN (5,5,1)+(5,1) 814.9446 0.9358 889.5487 0.8573 
HFNN (4,5,1) 481.0746 0.9776 877.5841 0.8575 

HDFNN (4,7,1)+(1,1) 367.5171 0.9869 504.5875 0.9542 
 

The time series of observed and computed SSL as well as the scatter plots by various 

models for the one-day-ahead case are respectively demonstrated in the left- and 

right-hand side of Figure 4.10. It is observed that the HDFNN model perfectly fits the 

peak sediment load while the other three models underestimate the corresponding one. 

The estimations of high values including the peak one by various models are presented 

in Table 4.6, since they are quite scattered and inconvenient to be observed in figures. It 

is noticed that the HDFNN model reproduces 41279.4 tons/day for the peak value, 

which is almost equal to the observed one. All the four models underestimate the second 

highest value of 14600 tons/day, and generate unpromising results for the observations 

of 4550 tons/day and 4040 tons/day. This concretely displays the difficulty in capturing 

high values for the Muddy Creek datasets. The data applied to scatter plots in Figure 

4.10 are below 500 tons/day, which take up around 83% of all data and are used to 

present the performances of relatively medium and low values. It is observed that 

HDFNN model estimates are less scattered in relation to the other three models. MFNN 
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and HFNN over-estimate most of the values, whilst DPFNN could not model the 

observations lower than 50 tons/day. It can be concluded that the HDFNN model is 

more adequate than the others for SSL estimation.  
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Figure 4.10 The observed and estimated suspended sediments by (a) MFNN (b) 
DPFNN (c) HFNN (d) HDFNN models for the study case on the Muddy Creek 

(one-day-ahead) 
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Table 4.6 High values by various models for the study case on the Muddy Creek 

Input model High value1 
(tons/day) 

High value2 
(tons/day) 

High value3 
(tons/day) 

High value4 
(tons/day) 

 Observed 41900 14600 4550 4040 

One-day-ahead 

MFNN 30299.8 7052.1 9368.0 2064.7 
DPFNN 30221.2 7201.8 9098.8 2038.6 
HFNN 31364.1 11858.6 2238.2 1016.9 

HDFNN 41279.4 9950.6 3510.8 2066.2 

Two-day-ahead 

MFNN 27668.0 8741.2 2072.6 1194.3 
DPFNN 28236.8 8794.1 1950.1 1882.5 
HFNN 29174.1 11273.3 2795.3 973.0 

HDFNN 40553.5 9606.2 3453.9 1282.9 

Three-day-ahead 

MFNN 28086.9 8736.1 2612.8 2529.0 
DPFNN 27342.0 8711.0 2081.5 2005.7 
HFNN 27056.8 10663.1 4182.7 875.6 

HDFNN 40314.4 8637.3 2871.1 2307.1 
 

It is worth noting that the final output of HDFNN model is a summary of SSL(1) and 

SSL(2), which are respectively computed from discharge and sediment inputs. Figure 

4.11 shows the total output SSL of the middle data series for convenience of visual 

inspection, and its separate parts of result SSL(1) and SSL(2). The basic shape of three 

series is the same, in which SSL(1) makes the main contribution to the total sediment. 

Thus the validation of the mechanism of HDFNN model is attested, in which the two 

parts of inputs solely and effectively contribute the final output without contradiction. 
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Figure 4.11 The separate parts of estimation result by the HDFNN model for the study 

case on the Muddy Creek (one-day-ahead) 
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The statistics RMSE and NSEC scale the mean squared error of estimation models, 

therefore particularly reflect the performance on high values. Thus the above 

discussions on evaluation criteria and plots of estimated data could not provide explicit 

performances on different intervals of values. To address this problem, partitioning 

analysis is undertaken with regard to the performances of four models in this study, by 

finding threshold values of dataset and partitioning the data into several intervals (Goyal 

2014). Threshold values are determined based on the observed SSL data in the testing 

period. Median and mean of the dataset are considered as two threshold values. Values 

lower than median (30 tons/day) are regarded as a “low load”; values higher than mean 

(384.04 tons/day) as a “high load”; values higher than median and lower than mean as a 

“medium load”. The RMSE statistics by the four models with respect to low, medium 

and high loads are illustrated in Table 4.7. For the ‘low load’, HFNN model performs 

worse than its counterparts with a largest RMSE value due to the irrespective of 

upstream sediment data. HDFNN model is completely adequate in estimating low SSL 

values. Four models are capable of reproducing the ‘medium load’ with comparable 

performances, in which HDFNN model achieves the best result. The RMSE obtained by 

HDFNN model is much smaller than the other three models in ‘high load’. In overall, 

the performances of HDFNN model on low, medium and high loads are consistently 

excellent, which corroborates the use of this approach in SSL estimation.  

 

As can be seen in Table 4.6, the HDFNN model still generates the best peak value 

respectively for the two- and three-day-ahead estimations. The other high values 

estimated by the four models are not matched with the observations, and even worse 

when compared with the one-day-ahead case. When examining the RMSE statistics of 

different loads in Table 4.7, DPFNN model obtains the smallest RMSE values in low 

loads. The HFNN model could not fit the low and medium loads in particular, which 
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may be attributed to the absence of sediment input. The influence of upstream sediment 

on the corresponding downstream sediment lies on the storage capacity of the reservoir, 

thus the process is slow and accumulated. On the contrary, the river flows wash the 

sediment loads, and therefore, the contribution of discharges on sediment may mainly 

concentrate on the high values. That is, when the sediment input is not included, the 

estimation model tends to be improper in computing low and medium loads. The 

HDFNN model obtains ultra-low RMSE values in medium and high loads for the 

two-day-ahead estimation. And for the three-day-ahead case, it fits the high loads best 

although yields a higher RMSE value in medium loads than the DPFNN model. To 

conclude, the HDFNN model shows splendid performances on medium and high loads. 

 
Table 4.7 RMSE statistics of different loads by various models for the study case on 
the Muddy Creek 

Input model 
Low load 

RMSE 
(tons/day) 

Medium load 
RMSE 

(tons/day) 

High load 
RMSE (tons/day) 

One-day-ahead 

MFNN 43.5420 296.1510 1808.1 
DPFNN 89.3811 304.0241 1798.8 
HFNN 243.7477 375.7581 1456.2 

HDFNN 112.2258 161.2308 776.16 

Two-day-ahead 

MFNN 23.9308 290.4892 1940.4 
DPFNN 20.6136 260.1144 1876.9 
HFNN 240.2565 378.4800 1673.9 

HDFNN 96.9564 177.7255 827.81 

Three-day-ahead 

MFNN 202.2498 468.9671 1954.4 
DPFNN 22.4852 305.3180 1975.5 
HFNN 255.6576 360.1935 1916.5 

HDFNN 60.0741 348.1393 1050.9 
 

Figure 4.12 further demonstrates the scatter plots by various models for the 

two-day-ahead case. The data applied to the figures are below 2000 tons/day, since the 

performances of high values have been presented in Table 4.6. It is noticed that the 

HDFNN model outperforms the others with the evidence of intensively distributed dots 

along the ideal line. Most values below 500 tons/day are over-estimated by the HFNN 

model, which exhibits the mismatching with the low and medium loads. However, the 

 107 



4 A Hybrid Double Feedforward Neural Network for Suspended Sediment Load Estimation 

HFNN model obtains several promising dots between 500 and 1500 tons/day, which are 

obviously better than the other models. Likewise, Figures 4.13 present the model 

performances at three-day-ahead estimation. Compared with one- and two-day-ahead 

cases, the improvement by HDFNN model is not that significant. Visibly, the 

distribution of dots computed by HFNN model is different from the others, which may 

be attributed to the irrespective of sediment input. The better performances of HDFNN 

model rely on the excellent matching of high values, thus its superiority over the 

DPFNN model is not exhibited in the figure. It is rational that the computation of high 

values tends to be more difficult when performing more step-ahead estimations. The 

HDFNN model solves this problem by introducing fuzzy pattern-recognition into the 

neural network, which could effectively classify the discharge inputs and simulate the 

mode of high values. Thus the HDFNN is an appropriate model especially in fitting 

high values for multi-step-ahead estimations.   
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Figure 4.12 The observed and estimated suspended sediments by (a) MFNN (b) 
DPFNN (c) HFNN (d) HDFNN models for the study case on the Muddy Creek 

(two-day-ahead) 
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Figure 4.13 The observed and estimated suspended sediments by (a) MFNN (b) 
DPFNN (c) HFNN (d) HDFNN models for the study case on the Muddy Creek 

(three-day-ahead) 
 

It should be noted that the HFNN and HDFNN models take physical activation 

functions into account. Several parameters to be optimized are meaningful related with 

the study basin and worthy discussing. In HFNN model, a0 and b0 denote parameters in 

the power relationship between river flows and sediment loads, as shown in Eq. (4.6). In 

addition to the parameters a0 and b0, recession coefficientλ is a special one for the 

HDFNN model, representing storage capacity of the assumed reservoir. The values of 

these parameters are presented in Table 4.8. The values of parameters from one- and 

two-day-ahead estimations appear to be quite close to each other, which validates the 

availability of power relationship and storage reservoir assumption. The values 

optimized by the three-day-ahead case are not appropriate to express the characteristics 

of the study basin, since the corresponding estimation performances are relatively poor.    
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Table 4.8 Special parameters of HFNN and HDFNN models for the study case on the 
Muddy Creek 

Input HFNN HDFNN 
a0 b0 a0 b0 λ 

One-day-ahead 0.2809 7.6875 0.0547 5.2456 0.6504 
Two-day-ahead 0.2425 7.9936 0.0474 5.1696 0.6011 

Three-day-ahead 0.4053 3.1528 0.0900 4.8128 0.8373 
 

4.3.2.3 Estimation results for study case 2   

When applying the four models to the study case on the Tongue River, the estimations 

may be more complicated since the drainage areas are much larger when compared with 

that of the Muddy Creek. Table 4.9 presents the performances of one-, two- and 

three-day-ahead estimations in terms of RMSE and NSEC as well as the configurations 

of each network for the study case on the Tongue River. The best result is predictably 

achieved by the HDFNN model for the one-day-ahead case, with lowest RMSE values 

both in the training and testing period. The corresponding NSEC value in the testing 

stage is not as high as that of the case on the Muddy Creek, however, a value of 0.8985 

is appropriate for the estimation. There is a reduction of 23.56%, 17.13%, 13.34% in 

RMSE value of HDFNN model in comparison with the MFNN, DPFNN and HFNN 

models respectively in the testing period. The improvement by the proposed model is 

not as distinct as the first study case. The two-day-ahead estimations attain more 

approximated results by the four models in the testing period. The HFNN model has 

extraordinarily high RMSE values in the training stage, which does not agree with its 

performance in the testing stage. The probable reason is the extreme inconsistence 

between training and testing datasets, which does not allow the model to be 

appropriately trained. The MFNN model obtains an unacceptably low NSEC value (i.e., 

0.6812) and yields visibly worse results among the four models for the three-day-ahead 

case, revealing its unavailability in multi-step-ahead estimations. The ability of HDFNN 

model does not apparently decrease for the two- and three-day-ahead cases, however. 
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Instead, the HDFNN model remarkably outperforms the others on multi-step-ahead 

estimations. For instance, there is an increase of 27.55%, 8.72% and 3.77% in NESC 

value by the HDFNN model when compared with MFNN, DPFNN and HFNN models 

respectively, for the three-day-ahead case. Thus the suitability of the HDFNN model in 

multi-step-ahead estimations is confirmed. In all, the HDFNN model consistently 

performs excellent generalization and estimation abilities in the context of Tongue River 

case, despite of data complexity.  

 
Table 4.9 Performances by various models for the study case on the Tongue River 

Input Model Configuration 
Training Testing 

RMSE 
(tons/day) NSEC RMSE 

(tons/day) NSEC 

One-day-ahead 

MFNN (5,5,1) 1092.3099 0.9655 514.8608 0.8262 
DPFNN (5,5,1)+(5,1) 1041.1448 0.9687 474.9033 0.8521 
HFNN (4,8,1) 1013.6458 0.9703 454.1077 0.8648 

HDFNN (4,8,1)+(1,1) 972.9268 0.9727 393.5422 0.8985 

Two-day-ahead 

MFNN (5,5,1) 1088.9087 0.9657 599.5435 0.7649 
DPFNN (5,5,1)+(5,1) 1073.7914 0.9667 536.1495 0.8120 
HFNN (4,8,1) 1451.7979 0.9391 481.4851 0.8484 

HDFNN (4,8,1)+ (1,1) 993.4844 0.9715 429.0833 0.8796 

Three-day-ahead 

MFNN (5,5,1) 1214.6259 0.9574 700.2113 0.6812 
DPFNN (5,5,1)+ (5,1) 951.6755 0.9738 554.6614 0.7993 
HFNN (4,8,1) 969.3895 0.9728 499.4645 0.8373 

HDFNN (4,8,1)+ (1,1) 951.6636 0.9738 448.3174 0.8689 
 

The time series of observed and computed SSL and the scatter plots by various models 

for the one-day-ahead case are demonstrated in Figure 4.14. The left-hand side of the 

figures mainly presents the performances of two valleys in the time series while the 

right part presents results below 500 tons/day. It is found that the first three models can 

not fit the first small valley data while the HDFNN model obtains an advanced valley 

with approximate peak value. The MFNN model fairly underestimates the second valley, 

wherein reproducing a peak value of 6177.5 tons/day when the corresponding 

observation is 7400 tons/day. The DPFNN and HFNN models can basically match the 

second valley data, however, not as perfectly as the HDFNN model. The plots with data 
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below 500 tons/day also reveal excellent performance of the HDFNN model, with the 

evidence of less scattered. The results of HDFNN model can be further presented in 

Figure 4.15, with the total and separate parts of the output. Observations reveal that the 

SSL(2) mainly makes contribution to the valley data, and virtually attains equivalent 

values for the small loads. This conforms to the influence of upstream sediment input on 

the HDFNN model, that the reservoir storage plays a consistent and stable role when the 

load is small and can acts efficiently with varying loads. Therein, the SSL(2) works as a 

supplement of the total sediment output, nevertheless, an dispensable one.     

 

At the meantime, partitioning analysis is undertaken to show the performances on 

different loads. Values lower than 23 tons/day are assigned to “low load”; higher than 

369 tons/day to “high load”; the remaining parts to “medium load” for the present study 

case. As can be seen in Table 4.10, the HDFNN model yields smallest RMSE values in 

medium and high loads for the one-day-ahead case. The best RMSE for the low loads is 

obtained by the HFNN model, however. Similar results are observed in the two- and 

three-day-ahead cases. This is not accordant with the case on the Muddy Creek, in 

which the HFNN model yields worse RMSE results in low loads. As mentioned 

previously, the absence of sediment input in the HFNN model leads to inadequate 

computation of low loads, thus to high RMSE results. But for the case on the Tongue 

River, the influence of sediment input on low values weakens, thus the HDFNN model 

does not outperforms the HFNN model. Conversely, the best performance of HFNN 

model in low loads lies in the facts that the inputs are classified into different patterns 

with large enough model vector. Besides, the HDFNN model merely yields the best 

RMSE value in high loads for the three-day-ahead estimation, which is in keeping with 

the previous study case. The possible reason is that when the lead time is larger, the 

effect of reservoir storage is reinforced particularly on the high loads of the HDFNN 
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model. Thus the HDFNN model can show advantage on the computation of high loads. 

Another phenomenon can be observed in Table 4.10 is that the HDFNN model 

reproduces comparable peak value for the one-, two- and three-day-ahead cases, which 

implies its stability in the estimation.  
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Figure 4.14 The observed and estimated suspended sediments by (a) MFNN (b) 
DPFNN (c) HFNN (d) HDFNN models for the study case on the Tongue River 

(one-day-ahead) 
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Figure 4.15 The separate parts of estimation result by the HDFNN model for the study 

case on the Tongue River (one-day-ahead) 
 

Table 4.10 RMSE statistics of different loads and peak value by various models for the 
study case on the Tongue River 

Input model 
Low load 

RMSE 
(tons/day) 

Medium load 
RMSE 

(tons/day) 

High load 
RMSE 

(tons/day) 

Peak 
value 

(tons/day) 

One-day-ahead 

MFNN 222.2182 216.7987 1457.5 6177.5 
DPFNN 190.1340 202.5173 1353.6 7325.6 
HFNN 160.1106 194.8698 1307.5 7364.7 

HDFNN 174.0497 178.9218 1103.3 8397.0 

Two-day-ahead 

MFNN 302.8932 258.4876 1655.6 12831.0 
DPFNN 239.0731 237.1790 1503.5 12032.3 
HFNN 216.2265 254.2086 1322.4 7562.3 

HDFNN 268.8467 228.8932 1101.7 9430.1 

Three-day-ahead 

MFNN 488.5232 353.1156 1748.1 12126.8 
DPFNN 272.5450 217.2885 1548.3 11154.1 
HFNN 231.2159 207.8675 1399.4 10396.6 

HDFNN 252.5055 236.4333 1183.2 9606.0 
 

Furthermore, Figures 4.16 and 4.17 respectively present the scatter plots for the two- 

and three-day-ahead cases. The left-hand side of the figures shows results under 500 

tons/day, which include low and medium loads in the partition analysis. The four 

models generally overestimate the observations. The advantages of HFNN model over 

the HDFNN model are not exhibited in the plots since the RMSE values in low and 

medium loads are slightly better than the HDFNN model, as shown in Table 4.10. The 

right parts of the figures show the output between 2000 and 14000 tons/day. It is 

observed that the MFNN and DPFNN models overestimate the peak value markedly, 
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and the dots computed by the HDFNN models distribute closer to the ideal lines.  
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Figure 4.16 The observed and estimated suspended sediments by (a) MFNN (b) 
DPFNN (c) HFNN (d) HDFNN models for the study case on the Tongue River 

(two-day-ahead) 
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Figure 4.17 The observed and estimated suspended sediments by (a) MFNN (b) 
DPFNN (c) HFNN (d) HDFNN models for the study case on the Tongue River 

(three-day-ahead) 
 

The values of special parameters of HFNN and HDFNN models for the present study 

case are presented in Table 4.11. The one-day-ahead estimation does not attain 

approximate values when compared with the two- and three-day-ahead cases. It is 
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acceptable however, since the difference is not remarkable. Besides, the a0 and b0 values 

generated by the HDFNN models are comparable with that by the HFNN models, which 

reveals the reliability of power relationship between discharge and sediment. Similar 

phenomenon could not be observed in Table 4.8 for the case on the Muddy Creek, in 

view of the different values of a0 and b0 obtained by the HFNN and HDFNN models. A 

possible explanation may be that in the HDFNN model the upstream sediment for the 

Muddy Creek case has more impacts on the final output when compared with that for 

the Tongue River case. Thus the effects of discharge inputs are quite different from the 

HFNN model with disparate parameters a0 and b0. The recession coefficientλ obtained 

in current case is generally smaller than that in the case on the Muddy Creek. The 

smaller recession coefficient indicates smaller storage capacity of the reservoir, and thus 

the output is less dependent on the upstream sediment. This exactly makes the above 

discussions clear. It can also explain the conflicting performances of HFNN model in 

Tables 4.7 and 4.10. In addition, HDFNN model with larger recession coefficient 

improves the dependence relation between upstream sediment and the output sediment, 

thus outperforms the other models more significantly. Taking the three-day-ahead case 

as an example, the reduction of RMSE values is respectively 44.80%, 43.28% and 

42.50% when compared with that of MFNN, DPFNN and HFNN models for the case on 

the Muddy Creek, while the corresponding reduction is respectively 35.97%, 19.17% 

and 10.24% for the case on the Tongue River. In all, the recession coefficient takes 

effect on the storage reservoir and confirms the validation of the HDFNN model. The 

performances of the proposed model heavily rely on the characteristic of the studied 

watershed.   
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Table 4.11 Special parameters of HFNN and HDFNN models for the study case on the 
Tongue River 

Input HFNN HDFNN 
a0 b0 a0 b0 λ 

One-day-ahead 0.3497 4.4024 0.2547 4.3120 0.5409 
Two-day-ahead 0.1319 3.4968 0.2249 3.7896 0.2879 

Three-day-ahead 0.1839 3.8336 0.1431 4.6848 0.3764 
 

4.4 Summary   

This chapter is concerned with the application of HDFNN model for suspended 

sediment load estimation. The fuzzy and time-varying characteristics of the sediment 

are considered in HDFNN model, while a structure of double neural networks is 

employed with respect to river discharge and sediment inputs. The estimates based on 

HDFNN models are compared with three models (namely MFNN, DPFNN and HFNN) 

using dataset from two study cases in Montana, USA. Main research findings are 

concluded as follows:  

 

(a) The generalization and estimation abilities of HDFNN model are attested with the 

lowest RMSE and highest NSEC values after comparison with the other three 

benchmarking models. Besides, it can reproduce the medium and high loads 

appropriately as indicated by partitioning analysis. In view of the ability in 

meaningfully mapping the inputs and output, the HDFNN model could be provided 

as a superior alternative for SSL estimation.  

(b) The availabilities of power relationship and storage reservoir assumption in the 

HFNN and HDFNN models are confirmed by parameters a0, b0 and recession 

coefficientλ , which further verifies the reliability of the proposed model.       

(c) Upstream sediment is not a connatural variable with the discharge inputs, and could 

not be employed in the pattern classification. Double neural network is employed to 
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reveal different mechanisms of the inputs. The upstream sediment and discharge 

inputs of the HDFNN model can solely and effectively contribute the final output 

without contradiction.  

(d) The HDFNN model presents excellent performances in multi-step-ahead estimations, 

particularly in high loads. The probable reason is that when the lead time is larger, 

the storage capacity of assumed reservoir is better displayed with larger 

accumulation, thus leads to better simulation in high loads.    

(e) The performance of HDFNN model appears to be sensitive to studied cases. The 

larger recession coefficient of the case on the Muddy Creek results in better 

performances of HDFNN models in low loads when compared with the HFNN 

models. In addition, the advantage of HDFNN model over the other three models is 

not that distinct for the case on the Tongue River, in comparison with the Muddy 

Creek case. It is mainly due to smaller recession coefficient and larger drainage 

areas of the Tongue River case.   

 

The present work is the first application of considering the physics embedded with the 

structure of double neural networks, for modeling suspended sediment series in the 

downstream river section. This idea for modeling SSL can be referred and extended for 

other hydrological models. Nevertheless, the reliability of the proposed HDFNN model 

has not been verified by uncertainty analysis, which should be performed in future work. 

Besides, the HDFNN model only considers the inputs of upstream discharges and 

sediment, and their corresponding physical mechanism. In this regard, the influences of 

other inputs and hydrological process involved in the sediment loads can be explored 

additionally to improve the model accuracy.    
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5 Input Determination for River Flow and Sediment 

Load   

The previous two chapters have validated the effectiveness of two novel hybrid neural 

network models respectively for downstream river flow and suspended sediment load. 

The current chapter aims at determining the most appropriate input variables for each 

model, where single- and multi-step-ahead cases are taken into account concurrently. 

Since the possible input variables of the HNN and HDFNN models have corresponding 

physical meanings in relation to the river basin, the study of this chapter is an attempt to 

shed a light on the underlying mechanisms in the hybrid models. 

 

5.1 Introduction 

Input determination is an imperative process to identify the data-driven models. 

Deficient inputs without comprehensive information will bring about improper 

generalization. Redundant inputs that will increase the model complexity are not 

appreciated as well. Considering the difficulty of data measurement and scarcity of 

relevant data, most studies in the literature predicted river flows based on their 

time-series data, without the presence of spatial factors such as flows and precipitations 

from upstream sections (Hu et al., 2001; Wei et al., 2012; Wu et al., 2009b; Zhang, 

2003). However, the discharge in downstream river is significantly affected by that in 

upstream rivers since practically upstream flows carry water into downstream sections 

in a river system. A small number of studies were carried out to predict flow at the 

downstream end of a river by means of the discharges or water level records of 
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upstream gauging sites (Chau and Cheng, 2002; Kerh and Lee, 2006; Pramanik and 

Panda, 2009). In particular, Wu and Chau (2006) developed a genetic algorithm-based 

artificial neural network model to estimate water level at the downstream station 

Han-Kou using input data at upstream station Luo-Shan in Yangtze River, China; Turan 

and Yurdusev (2009) employed feed forward back propagation neural networks, 

generalized regression neural network and fuzzy logic to estimate the missing values of 

a downstream station from those of upstream stations; rainfall–runoff modeling was 

undertaken by Odiyo et al. (2012) to estimate the flows that Latonyanda River 

contributed to Luvuvhu River downstream of Albasini Dam. These studies did not pay 

much attention to the influences of upstream input variables, however. In addition, mean 

areal precipitation over a river basin has been pronounced as a powerful influence on 

river flows (Bao et al., 2011; Jena et al., 2014; Johnson et al., 1999; Rezaeianzadeh et al., 

2014). Given the importance to avoid flooding on the downstream side during the rainy 

season, it is requisite to simulate desired outflows with appropriate upstream inputs.  

 

The input variables tend to be various in different studies for the sediment load 

estimation. In practice, some research employs hydro-meteorological data including 

rainfall as input variables (Cigizoglu and Alp, 2003; Cobaner et al., 2009) while others 

estimates suspended sediment with river flow and sediment data (Afan et al., 2015; 

Aytek and Kisi, 2008; Shamaei and Kaedi, 2016) at its own station. The upstream and 

downstream flow and sediment data were used as inputs by Kisi (2004b) to estimate the 

downstream sediment. Partal and Cigizoglu (2008) employed a combined wavelet-ANN 

method for downstream sediment estimation in which upstream flow data were used as 

possible inputs. Although the studies on the impact of upstream inputs on downstream 

sediment are limited, it is essential to explore the mechanism of sediment transport from 

upstream to downstream section.   
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The present chapter concentrates on the comparison of different input variables on the 

performances of HNN and HDFNN models. It is a supplementary study to Chapters 3 

and 4, in order to determine the best inputs for the models respectively for downstream 

river flow and suspended sediment load. In the remaining sections of this chapter, firstly, 

input determination for the HNN model is performed with daily and hourly data. Then 

the possible input combinations for the HDFNN model are formulated with different 

lead times, and main findings are presented. A conclusive discussion of the input 

influences on the models is finally organized.    

 

5.2 Input determination for river flow forecasting  

The river at downstream section receives its flows mainly from flows and precipitations 

in the upstream sections. How these spatial factors influence the output flow remains an 

issue to explore. This section aims to figure out whether all upstream flows are essential 

or the nearest upstream flow is sufficient as an input variable. Additionally, the 

contribution of precipitations in the river basin to the modeling efficiency is examined. 

A comparison is made where the model with areal precipitation input is compared 

against that with point precipitation and without precipitation. Both daily and hourly 

data are applied to the forecasting model.  

 

5.2.1 Daily river flow forecasting 

5.2.1.1 Study area and data 

Two study cases, namely stations along the Yellow River in the Altamaha river basin 

(Figure 3.3) and the North Buffalo Creek within the central Greensboro area (Figure 
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3.6), are employed for the daily flow forecasting. The information of stations’ ID, name, 

location and drainage area for each case has been summarized in Tables 3.1 and Table 

3.3 respectively. In order to facilitate the comparison, different variables are selected 

and combined as input matrixes, as demonstrated in Tables 5.1 and 5.2. For the case in 

the Altamaha river basin, the simplified letters PP and AP refer to point precipitation at 

station 02208000 and areal precipitation over the river basin, respectively; Q1, Q2 and 

Q3 are the individual flow at station 02207335, 02207220 and 02207120. As can be 

seen, combination 1, 2 and 3 differ from one another by the precipitation input. All three 

members of combination 1 do not include any precipitation input; those of combination 

2 consider point precipitation as an input variable; and areal precipitation is selected in 

members of combination 3. In the meantime, the different members in a same group are 

distinguished by the different flow inputs. As an example, combination 3-1 has only one 

flow input Q1, which is from the nearest upstream section; combination 3-2 includes 

one more flow Q2; and combination 3-3 takes all the observed upstream flows into 

account. Thus, nine input combinations are formulated to develop the 

upstream-downstream flow relationship. Especially, areal precipitation over the river 

basin is computed by Thiessen polygon method, details of which can be found in Sen 

(1998). It is computed as the weighted precipitation of the four stations as described in 

the following equation, which can average the fluctuations recorded at each rain-gauge 

station.  

i

N

i
i PPwAP ∑

=

=
1

                          (5.1)  

where PPi is the point precipitation at station i, N is the number of stations and wi is the 

corresponding weight factor determined by the proportion of the basin each polygon 

takes up. That is to say, the weight is the relative area of each polygon, and the principle 
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1
1

=∑
=

N

i
iw  is satisfied. In this study site, the value of w is 0.218, 0.296, 0.141 and 0.245 

respectively for the four observed stations from 02207120 to 02208000. This mean areal 

precipitation representing effective uniform depth of rainfall over the basin is desirable 

owing to the uniformly distributed drainage basin. By this means, the areal precipitation 

is computed and plotted in Figure 5.1, together with point precipitation at station 

02208000. It is notable that there are barely extreme values in the areal precipitation 

data, and the peak one is 0.070 m, lower than that for the point precipitation. The 

Thiessen polygon method produces a smooth averaging precipitation over the river 

basin.  

 
For the second case in Table 5.2, the letters PP and AP refer to point precipitation at 

station 02095500 and areal precipitation over the river basin, respectively; Q1 and Q2 

are the individual flow at station 02095271 and 02095181. The input combinations are 

formulated in the same manner, with different precipitation and upstream flow inputs. 

The areal precipitation is computed from Eq. (5.1), in which the value of w is 0.157, 

0.233 and 0.610 respectively for the three observed stations from 02095181 to 

02095500. Figure 5.2 demonstrates the areal precipitation and point precipitation at 

station 02095500. They are much closer to each other in comparison with the first study 

case, which may be due to the smaller drainage areas. In the following, the best input 

combination for the HNN model will be finalized based on the verification dataset 

optimized with DE algorithm.  
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Table 5.1 Input combinations with different variables in the Altamaha river basin 

Combination type Combination ID Input variables 

Without precipitation 
(Combination 1) 

1-1 Q1 
1-2 Q1+Q2 
1-3 Q1+Q2+Q3 

Point precipitation 
(Combination 2) 

2-1 Q1+PP 
2-2 Q1+Q2+ PP 
2-3 Q1+Q2+Q3+ PP 

Areal precipitation 
(Combination 3) 

3-1 Q1+AP 
3-2 Q1+Q2+ AP 
3-3 Q1+Q2+Q3+ AP 

 
Table 5.2 Input combinations with different variables within the central Greensboro 
area 

Combination type Combination ID Input variables 
Without precipitation 

(Combination 1) 
1-1 Q1 
1-2 Q1+Q2 

Point precipitation 
(Combination 2) 

2-1 Q1+PP 
2-2 Q1+Q2+ PP 

Areal precipitation 
(Combination 3) 

3-1 Q1+AP 
3-2 Q1+Q2+ AP 
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Figure 5.1 Daily point precipitation at Station 02208000 and areal 

precipitation over the Altamaha river basin 
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Figure 5.2 Daily point precipitation at Station 02095500 and areal 

precipitation within the central Greensboro area 
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5.2.1.2 Model performances and discussions  

Three statistical measures namely RMSE, NSEC and ACC are employed to evaluate the 

performances of HNN model with different inputs. Both single- and multi-step-ahead 

forecasts are performed, and results in the testing periods are tabulated in Table 5.3. The 

one-day-ahead case indicates that the forecast lead time is one day, i.e., ΔT=1 day in the 

HNN model, and so do the two- and three-day-ahead cases. As can be seen, the results 

are categorized into three groups: the cases without precipitation input (combinations 

1-1, 1-2 and 1-3), with point precipitation input (combinations 2-1, 2-2 and 2-3) and 

with areal precipitation input (combinations 3-1, 3-2 and 3-3). The values of evaluation 

criteria are quite different from one another in each group, indicating marked influence 

of upstream flows on the output. For the one-day-ahead case, combination 1-3 obtains 

the best RMSE and NSEC values in the first group, although failing to yield the highest 

ACC value. When compared with combination 1-2, there is a 12.31% reduction in 

RMSE value for the combination 1-3, showing its excellent performance. Thus the 

model fed by all three upstream flow inputs appears to be a comparatively more 

appreciated predictor. This conclusion is confirmed by results in the second and third 

groups. We can observe that combination 2-3 gives significantly superior performances 

in terms of the three indices among the three cases with the presence of point 

precipitation input. The model with input combination 3-3 achieves the lowest RMSE 

and highest NSEC value (i.e., 8.1500 m3/s and 0.8294 respectively), and the ACC value 

is slightly smaller than that with combination 3-2. This implies that the combination 3-3 

is able to reproduce favorable high values, yet the perfect fitting of overall observations 

is not ensured. 

 

The observed and predicted discharges with different flow inputs are depicted in Figure 

5.3. It can be perceived that most of the predicted discharges fit well with those 
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observations, yet the peak values are apparently over-predicted for all cases. This is 

acceptable for flood warning delivery, since an under-predicted forecasting would cause 

insufficient preparation and inaccurate precautions. Nonetheless, too much 

over-prediction is not appreciated as well. As indicated in Figure 5.3(a) for the inputs 

without precipitation, models with input combinations 1-1 and 1-2 (with cross and 

triangular symbols, respectively) evidently over-predict a large number of high values. 

Similar phenomenon can also be detected in the cases with input combinations 2-1 and 

2-2 in Figure 5.3(b) as well as combinations 3-1 and 3-2 in Figure 5.3(c). A possible 

reason for these parsimonious predictions is that the exclusion of effective input 

variables Q2 and Q3 from input combination could lead to inadequate prediction. On 

the whole, the HNN model is sensitive to the upstream flows imposed; and generally the 

more information the input provides, the better the fit of the model to the observed data. 

It should be mentioned that it is not always proper to blindly apply all upstream flows 

into HNN model for other cases since the inputs from upstream sections may be 

redundant and unstable. 

 

In addition to the upstream flows, the significance of the contribution of precipitation to 

the downstream river flow is evaluated. The scatter plot of the observed and predicted 

discharges in Figure 5.4 allows comparison among them. As indicated in Figure 5.4(a) 

with one-flow input, the one with areal precipitation does not definitely produce the best 

performance in comparison with the other two, since there are apparent six dots 

over-predicted within a range of 50-150 m3/s. Input combination 2-1 with point 

precipitation outperforms others with evidence of relatively intensively distributed dots 

along the ideal line. This is in perfect agreement with the best RMSE and NSEC values 

shown in Table 5.3 when compared with combinations 1-1 and 3-1. Thus point 

precipitation is proven as a valuable input variable with one-flow input. In the models 
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with two- and three-flow inputs, it is evident from Figure 5.4 that the models without 

precipitation and with point precipitation perform slightly inferior to that with areal 

precipitation, especially for the peak and high flows. These discrepancies in the results 

can be attributed to the consideration of basin boundary. If the basin is limited by 

including only the nearest upstream section and current station, then point precipitation 

is adequate to yield excellent prediction. On the other hand, if all upstream flows are 

assigned to the HNN model, the influence of all precipitations over the river basin 

(represented by areal precipitation) should be contained. It is noted in Figure 5.4(b) that 

the input combination 3-2 gives the best performances with areal precipitation, which is 

the same with combination 3-3. It may be explained by that the distance between 

stations 02207120 and 02207220 is comparatively short, thus input combinations 3-2 

and 3-3 are assumed to enjoy similar basin boundary. In short, the optimum input 

structure for HNN model depends on the considered basin with measured flow and 

precipitation data.  

 
Table 5.3 Model performances from different input combinations in the Altamaha 
river basin (with daily data) 

Input 
 

one-day-ahead two-day-ahead three-day-ahead 
RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC RMSE 
(m3/s) NSEC ACC 

1-1 9.9994 0.7432 0.8131 10.3671 0.7246 0.7973 10.4562 0.7198 0.7897 
1-2 11.2772 0.6733 0.7997 9.7250 0.7577 0.7839 10.3032 0.7280 0.7452 
1-3 9.8891 0.7488 0.7985 10.1924 0.7338 0.7378 11.9710 0.6328 0.8004 

          
2-1 9.0676 0.7888 0.7940 9.7049 0.7587 0.7153 11.1397 0.6820 0.7503 
2-2 8.8346 0.7995 0.7989 10.6372 0.7101 0.7424 11.9307 0.6353 0.7320 
2-3 8.5419 0.8126 0.8079 11.0772 0.6856 0.7674 11.5434 0.6585 0.7090 

          
3-1 10.0161 0.7423 0.7932 10.9986 0.6900 0.6550 11.2614 0.6750 0.7134 
3-2 8.5179 0.8136 0.8142 9.8541 0.7512 0.7051 10.7945 0.7014 0.7022 
3-3 8.1500 0.8294 0.7937 9.5636 0.7656 0.6802 10.0597 0.7407 0.8017 
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Figure 5.3 Predicted discharges (a) without precipitation (b) with point 

precipitation (c) with areal precipitation in the Altamaha river basin 
(one-day-ahead)  
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Figure 5.4 Scatter plot of observed and predicted discharges with (a) one-flow 

and (b) two-flow (c) three-flow input in the Altamaha river basin 
(one-day-ahead) 
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The model performances on two- and three-day-ahead forecasts from different input 

combinations are shown in Table 5.3. The combination 3-3 generates the lowest RMSE 

and highest NSEC values in both cases, although the estimations gradually deteriorate 

with the increase of forecast lead time. In the first input group without precipitation, the 

two- and three-day-ahead forecasts achieve the best results from combination 1-2 with 

two-flow input, which is contrary to the one-day-ahead case. Similar observations are 

detected in the second group with point precipitation, where the models with 

combination 2-1 instead of 2-3 outperform others for the two- and three-day-ahead 

cases. The flows at the stations 02207120 and 02207220 appear to be redundant when 

areal precipitation is not considered for the multi-step-ahead forecasts. This also reveals 

that the model performances are sensitive to the upstream flow inputs. The inclusion of 

all upstream flows could not definitely ensure the best forecasts, and they may increase 

redundancy and uncertainty with increasing lead time. Conversely, models with 

combination 3-3 containing all three upstream flows are appropriate since the weighted 

precipitation is taken as a contributing input. This areal precipitation seems to smooth 

the precipitations over the distributed drainage basin, and may accordingly assist to 

exert the influences of the corresponding upstream flows in the river basin. For the 

two-day-ahead case, point precipitation is a probable coupled variable with one-flow 

input, which accords with the one-day-ahead case. The situation is different with the 

three-day-ahead forecast where combination 1-1 without precipitation attains the best 

results in the corresponding group. A possible explanation is that when forecast lead 

time increases, the precipitation may not take effect timely when near upstream flows is 

contained as inputs. The best performances with combination 1-2 in the two-flow input 

group at two- and three-day-ahead forecasts further confirm the above assumption. 

Accordingly, the influences of input variables on model performances may be various 

when multi-step-ahead forecasts are performed.  
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Two representative parameters, namely recession coefficient and initial storage 

regarding the storage reservoir (representing the downstream station), are discussed 

finally. The values of recession coefficient computed from nine input combinations are 

plotted in Figure 5.5(a), and a mean value of them is given as 0.3960 for comparison. 

The value of recession coefficient varies within a range of 0.3609 to 0.4431, which is 

comparable to one another, showing the efficiency and stability of the proposed HNN 

model. Observation also reveals that the input combinations 1-1, 2-1 and 3-1 with only 

one-flow input obtain fairly high recession coefficients. This may be attributed to the 

fact that the storage capacity may be diminished when a large amount of flows are 

imported, namely, the two- and three-flow input cases. The value computed from 

combination 3-3 is the smallest, which also provides convincing evidence to prove the 

above explanation. In view of the best forecasting performances from combination 3-3, 

the corresponding recession coefficient of 0.3609 is regarded as an optimal one to 

address the storage capability of the considered reservoir.  

 

Likewise, the values of initial storage computed from different input combinations are 

illustrated in Figure 5.5(b). It is defined in the same scaled interval [0, 1.0] as all the 

parameters. A mean value of 0.1378 is attained from the nine values ranging from 

0.1298 to 0.1583. The input combination 3-3 obtains a comparatively low initial storage 

(i.e., 0.1327), which corresponds with the small recession coefficient. Accordingly, the 

best value of initial storage for HNN model is determined with input combination 3-3. 

The HNN model attains almost comparable values of initial storage with various input 

combinations, and the satisfactory result further confirms the validity of the HNN model 

with an emphasis on the time-varying storage of the river station.  
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Figure 5.5 (a) Recession coefficient and (b) initial storage computed from 
different input combinations in the Altamaha river basin (one-day-ahead) 

 

On account of scarcity of relevant data, two upstream flow inputs are employed in the 

case within the central Greensboro area. The corresponding results in terms of RMSE, 

NSEC and ACC are outlined in Table 5.4. As been observed in Figure 5.2, areal 

precipitation may be not an appropriate input variable. The time of flow travelling from 

one upstream section to the downstream section is relatively short, thus point 

precipitation may have an instant influence on the river flow. Evidence that the 

combination 2-2 is superior to the others for both one- and two-day-ahead forecasts 

convinces the above assumptions. The situation becomes reverse in the three-day-ahead 

case, where the areal precipitation equipping combination 3-2 is proven as an 

appropriate input variable. This may be attributed to the larger forecast lead time which 

could result in more effective collection of the precipitations over the basin.   

 

Additionally, Figure 5.6 is demonstrated to make a comparison of different upstream 
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flow inputs for the one-day-ahead case. The advantages of two-flow over one-flow 

input are not significant in each group, and the former generally over-forecasts the high 

values while the latter under-forecasts them. This may be also due to the short distance 

between upstream and downstream sections, which leads to insensitivity of the model 

performances to upstream flow inputs hence. However, the two upstream flows are 

evaluated concurrently as effective input variables. In order to examine the effect of 

precipitation, scatter plots of observed and predicted discharges from different inputs 

are presented in Figure 5.7. Model with combination 3-1 reproduces slightly closer dots 

to the ideal line, particular in the low values. The observation that areal precipitation 

coupled with one-flow input achieves the best performances seems to be incompatible 

with the above results, and not agree with the conclusions from the previous study case. 

Plots of Figure 3.12 in Chapter 3 have implied that the daily data at Station 02095500 is 

relatively smooth with more small values than that at Station 02208000. This may be the 

reason that smoothed precipitation with one-flow can properly fit small values in the 

second study case. In contrast, point precipitation is a sufficiently applicable input 

variable together with two-flow input, as indicated in Figure 5.7(b).     

 

Table 5.4 Model performances from different input combinations within the central 
Greensboro area (with daily data) 

Input 
 

one-day-ahead two-day-ahead three-day-ahead 
RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC RMSE 
(m3/s) NSEC ACC 

1-1 1.0858 0.8339 0.7415 1.2380 0.7844 0.7435 1.2429 0.7830 0.7390 
1-2 0.9425 0.8749 0.7833 1.0988 0.8302 0.6961 1.1007 0.8298 0.7002 

          
2-1 1.0846 0.8343 0.7571 1.1976 0.7982 0.6781 1.2310 0.7871 0.7308 
2-2 0.9163 0.8817 0.7784 1.0592 0.8422 0.5370 1.0923 0.8324 0.6721 

          
3-1 1.0347 0.8492 0.7717 1.1479 0.8147 0.6435 1.1683 0.8083 0.6451 
3-2 0.9289 0.8784 0.7393 1.0793 0.8361 0.5585 1.0837 0.8351 0.6985 
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Figure 5.6 Predicted discharges (a) without precipitation (b) with point 

precipitation (c) with areal precipitation within the central Greensboro area 
(one-day-ahead) 
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Figure 5.7 Scatter plot of observed and predicted discharges with (a) one-flow 

and (b) two-flow input within the central Greensboro area (one-day-ahead) 
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Likewise, the values of recession coefficient and initial storage generated from different 

inputs are outlined in Figure 5.8. They are respectively taken as 0.1951 and 0.0219 from 

the input combination 2-2. It seems that the models with more flow inputs are prone to 

generate higher values of recession coefficient, which differs from the case in the 

Altamaha river basin. It is reasonable that a considerably small amount of flow inputs is 

observed in the central Greensboro area, and they will not diminish the storage capacity 

as the previous study case. The values of initial storage seem to be easily susceptible to 

the input variables when compared with the recession coefficient, as indicated by the 

wide range of values varying from 0.0219 to 0.1669. It is comparable and acceptable for 

the HNN model however. Conclusions could be drawn from the model performances 

using daily data that the input variables on HNN models are highly sensitive to the area 

of drainage basin, features of data series and the forecast lead time.  
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Figure 5.8 (a) Recession coefficient and (b) initial storage computed from 

different input combinations within the central Greensboro area 
(one-day-ahead) 
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5.2.2 Hourly river flow forecasting 

5.2.2.1 Study area and data 

The application of hourly data to the HNN model is employed in this section in order to 

determine the best input combination with different forecast lead times. The study areas 

in the previous section are applicable to the hourly data, which follows the procedure in 

Chapter 3. In this means, Tables 5.1 and 5.2 formulate practicable input combinations 

for the hourly river flow forecasting as well, respectively for the case in the Altamaha 

river basin and within the central Greensboro area. Areal precipitations for both study 

cases are computed in the same manner, and the comparisons with point precipitation 

are demonstrated in Figures 5.9 and 5.10. It is observed that the series of areal 

precipitation in the Altamaha river basin appears smoother than the point precipitation 

since it averages the fluctuations recorded. The point precipitation at station 02095500 

within the central Greensboro area seems to be smaller than that at the upstream stations, 

thus the areal precipitation is presented to emphasize the rainfall effect over the basin. 

The small drainage area in the second study case may be a reason for that the upstream 

precipitations significantly contribute to the areal precipitation. The differences between 

areal and point precipitations may cause different observations of the precipitation input 

on the model performances, which will be discussed in details in the following.      

0 250 500 750 1000 1250 15000

0.01

0.02

0.03

0.04

H
ou

rly
 p

re
ci

pi
ta

tio
n 

(m
)

 

 

Time (2010/03/01-2010/04/30)

Point precipitation
Areal precipitation

 
Figure 5.9 Hourly point precipitation at station 02208000 and areal 

precipitation over the Altamaha river basin 
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Figure 5.10 Hourly point precipitation at station 02095500 and areal 

precipitation within the central Greensboro area 
  

5.2.2.2 Model performances and discussions  

Regarding the case in the Altamaha river basin, the HNN model is performed with 

forecast lead times ΔT= 1, 4, 8 and 16 hours from different input combinations, and the 

results in the testing period are summarized in Tables 5.5 and 5.6. Input combination 3-3 

equipped with areal precipitation and three-flow input achieves the lowest RMSE and 

highest NSEC and ACC values in the 1-hour-ahead case. In the first and third input 

groups the models with three-flow input noticeably outperform others, which reveal the 

efficiency of upstream flows without precipitation and with areal precipitation. The 

one-flow input is appropriately coupled with point precipitation, as indicated by the best 

performances from combination 2-1.  

 

Figure 5.11 is plotted to provide visual inspection of the influences of upstream flows 

on the model performances. As can be seen, the models without precipitation could not 

basically fit the low values, and the combination 1-3 tends to better approximate the 

high values than the other two. As revealed in Figure 5.11(b), both combination 2-1 and 

2-3 generate satisfactory values of the valley, yet, the former is superior to the latter in 

the observations below 20 m3/s. Model fed by combination 3-3 matches the 

observations best, although under-forecasts the peak value. Besides, the model 
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performances from different precipitation input are demonstrated in Figure 5.12. The 

values attained by combination 2-1 distribute much closer than the other two, implying 

that point precipitation has a fair cooperation with the one-flow input. On the contrary, 

the areal precipitation shows its superiority with the two- and three-flow inputs. These 

results are reasonable in accordance with those from the daily forecasting, that the 

impacts of inputs strongly rely on the consideration of basin boundary. 

 
Table 5.5 Model performances from different input combinations in the Altamaha 
river basin (with 1- and 4-hour-ahead forecasting) 

Input 
combination 

1-hour-ahead 4-hour-ahead 
RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

1-1 4.2186 0.7537 0.7367 4.2760 0.7489 0.6600 
1-2 3.2826 0.8509 0.7436 4.0415 0.7757 0.6972 
1-3 3.0201 0.8738 0.7636 4.0462 0.7752 0.7329 

       
2-1 1.9096 0.9495 0.8585 2.8660 0.8872 0.8051 
2-2 2.5392 0.9108 0.8829 3.1187 0.8664 0.8989 
2-3 2.0142 0.9439 0.9168 3.1441 0.8643 0.8332 

       
3-1 2.8809 0.8851 0.7989 2.3604 0.9235 0.8842 
3-2 1.8395 0.9532 0.9138 2.7485 0.8963 0.8890 
3-3 1.7544 0.9574 0.9200 2.8259 0.8903 0.8836 

 

Table 5.6 Model performances from different input combinations in the Altamaha 
river basin (with 8- and 16-hour-ahead forecasting) 

Input 
combination 

8-hour-ahead 16-hour-ahead 
RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

1-1 4.3063 0.7479 0.6650 4.6453 0.7125 0.6727 
1-2 4.7812 0.6893 0..6679 5.1578 0.6455 0.6691 
1-3 3.8083 0.8029 0.7205 5.3633 0.6167 0.6778 

       
2-1 2.4746 0.9168 0.8526 2.8348 0.8929 0.8643 
2-2 3.2063 0.8603 0.8780 3.4783 0.8388 0.8881 
2-3 3.1289 0.8669 0.8478 3.7167 0.8159 0.8570 

       
3-1 2.5643 0.9106 0.8642 3.0348 0.8773 0.8622 
3-2 3.0620 0.8726 0.8385 3.8681 0.8006 0.8311 
3-3 2.9499 0.8817 0.8651 3.8208 0.8055 0.8062 
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Figure 5.11 Predicted discharges (a) without precipitation (b) with point precipitation (c) 

with areal precipitation in the Altamaha river basin (one-hour-ahead) 
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Figure 5.12 Scatter plot of observed and predicted discharges with (a) 

one-flow and (b) two-flow (c) three-flow input in the Altamaha river basin 
(one-hour-ahead) 
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The contributions of input variables to the downstream river flow may perform 

differently with respect to multi-step-ahead forecasts. As seen from Tables 5.5 for the 

4-hour-ahead case, input combination 3-1 yields the best RMSE and NSEC values. The 

flows at station 02207100 and 02207200 seem to be superfluous in comparison with the 

single-step-ahead case. Furthermore, the 8- and 16-hour-ahead forecasts tend to favor 

the point precipitation and one-flow input, as indicated by the best performances with 

combination 2-1 in Tables 5.6. The precipitations and flows at station 02207100 and 

02207200 may trigger a redundant and uncertain generalization with increasing lead 

time. It is noted that the daily and hourly cases achieve the best performances from 

different input combinations in the multi-step-ahead cases. The inconsistent 

performances lie behind the differences between flow travel time and forecast lead time. 

The estimated time of flow travelling from station 02207335 and 02208000 is about 16 

hours. As for the daily forecasts, the lead time (i.e., 1, 2 and 3 day) is larger than travel 

time, thus the flows and precipitations in the upstream stations are fully collected and 

serve as effective inputs for the downstream flow. On the other hand, the lead times 

chosen in the hourly forecast are within the travel time, where the stability of the 

mechanism of mapping the inputs and output could not be ensured. As a result, when 

the forecast lead time increases the models with combination 3-3 consistently achieves 

best daily forecasts, whereas the hourly upstream flows and areal precipitation are 

undesirable inputs for the downstream flow.  

 
The values of recession coefficient and initial storage concerning the one-hour-ahead 

forecast in the Altamaha river basin are illustrated in Figure 5.13. The optimal ones are 

determined from input combination 3-3, with value of 0.9439 and 0.2980 respectively. 

They are nearly approximate to each mean value computed from nine input 

combinations, which would be a concrete evidence of the stability of HNN model for 
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the hourly forecasting in this study area. Another interesting phenomenon can be 

observed is that the recession coefficient generated by hourly forecast is generally larger 

than that by the daily forecast. The assumed reservoir seems to play larger storage 

capacity from the time dimension of hour.  
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Figure 5.13 (a) Recession coefficient and (b) initial storage computed from 
different input combinations in the Altamaha river basin (one-hour-ahead) 

 

As for the case within the central Greensboro area, hourly forecasts are performed with 

the same forecast lead times, results of which in terms of RMSE, NSEC and ACC are 

presented in Tables 5.7 and 5.8. As can be observed, precipitation input could not show 

its efficiency on model output at 1-hour-ahead case. The improvements of combination 

1-2 over 2-2 and 3-2 are respectively 1.65% and 0.46% in terms of NSEC value. 

Besides, models with two-flow input are superior to that with one-flow, and the 

reductions in RMSE value are 6.43%, 17.43% and 6.76% respectively for the cases 

without precipitation, with point precipitation and with areal precipitation. The 

comparisons are visually presented in Figure 5.14, in order to shown the influences of 
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upstream flows. Both combinations 1-1 and 1-2 under-forecast the peak values of the 

first and forth valley in the time series, and they perfectly fit the observations of the 

third valley. The former attains slightly larger peak value and some high values than the 

latter, which finally results in its worse performances in terms of RMSE and NSEC. The 

model with combination 2-1 reproduces improper high values when compared with its 

counterpart, as indicated in Figure 5.14(b). The two-flow input with areal precipitation 

does not show great superiority over the one-flow input, revealing the weakness of flow 

input effect on the output. In addition, the influences of precipitation input are presented 

in Figure 5.15. In the group of combinations equipped with one-flow input, the 

performances attained from different precipitation input show considerable differences 

from one another. The combination 2-1 over-forecasts most of the observations, 

indicating the unpromising effect of point precipitation. The distributions of dots 

reproduced from inputs without precipitation are slightly closer to the ideal line than the 

other two in Figure 5.15(b), which confirms the unavailability of precipitation.  

 

The above conclusions can also be drawn from the results with 4-hour-ahead forecast, 

where combination 1-2 achieves the best results in view of the lowest RMSE and 

highest NSEC values. The best ACC value is attained from combination 3-2, although 

having inferior performances on reproducing high values. This also reveals that the 

two-flow input plays steadily effective role on the HNN model. The 4-hour-ahead 

forecast yields acceptable results from the perspective of practical application, since the 

NSEC and ACC values obtained by the best input are respectively as high as 0.8727 and 

0.7749. Nevertheless, the forecasts with 8- and 16-hour-ahead seem to be inapplicable 

as indicated in Table 5.8. These results could tell certain facts however, that the 

precipitation coupled with two-flow input begins to function with increasing lead time. 

The possible reasons have been stated in the previous study case that when forecast lead 
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times chosen are within the travel time (estimated by 8 hours in current case), the 

mapping of the inputs and output may be unstable and not every input variable at the 

upstream station could effectively work on the downstream flow.  

 

Table 5.7 Model performances from different input combinations within the central 
Greensboro area (with 1- and 4-hour-ahead forecasting) 

Input 
combination 

1-hour-ahead 4-hour-ahead 
RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

1-1 1.6597 0.8558 0.8038 1.8476 0.8213 0.4870 
1-2 1.5530 0.8737 0.7944 1.5596 0.8727 0.7749 

       
2-1 1.9845 0.7938 0.5241 1.9945 0.7918 0.3941 
2-2 1.6385 0.8595 0.7542 1.6486 0.8577 0.7100 

       
3-1 1.6922 0.8501 0.7650 1.7073 0.8474 0.6934 
3-2 1.5778 0.8697 0.7824 1.6180 0.8629 0.7804 

 
 
Table 5.8 Model performances from different input combinations within the central 
Greensboro area (with 8- and 16-hour-ahead forecasting) 

Input 
combination 

8-hour-ahead 16-hour-ahead 
RMSE 
(m3/s) NSEC ACC RMSE 

(m3/s) NSEC ACC 

1-1 2.5863 0.6523 0.5134 3.6458 0.3155 0.2678 
1-2 2.6015 0.6482 0.4580 2.6021 0.6480 0.5194 

       
2-1 2.4938 0.6767 0.4321 2.5218 0.6694 0.4427 
2-2 2.4061 0.6990 0.4344 2.4360 0.6915 0.3435 

       
3-1 2.6091 0.6461 0.3716 2.6100 0.6459 0.3969 
3-2 2.5468 0.6628 0.5050 2.5593 0.6595 0.3014 
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Figure 5.14 Predicted discharges (a) without precipitation (b) with point 

precipitation (c) with areal precipitation within the central Greensboro area 
(one-hour-ahead) 
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Figure 5.15 Scatter plot of observed and predicted discharges with (a) 

one-flow and (b) two-flow input within the central Greensboro area 
(one-hour-ahead) 
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Similarly, the values of recession coefficient and initial storage computed from different 

input combinations are plotted in Figure 5.16. The recession coefficient for the hourly 

forecast (i.e., 0.6754) is larger than the corresponding daily one, in agreement with the 

case in the Altamaha river basin. Mean initial storage is computed as 0.1524 from the 

values within the range between 0.1207 and 0.1956. The initial storage tends to be more 

sensitive to the input variables in comparison with the recession coefficient, for both 

daily and hourly forecasts in the two study cases. It is rational since the initial storage 

discussed herein is scaled within a particular range, but in fact, it has practical value 

(with unit m3) corresponding to the inputs with different values of data.  
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Figure 5.16 (a) Recession coefficient and (b) initial storage computed from 

different input combinations within the central Greensboro area 
(one-hour-ahead) 

 

As a whole, the functions of upstream flow and precipitation as input variables strongly 

depend on the forecast lead time for the hourly cases. When forecast lead times are 

shorter than the travel time, certain input variables including the precipitation may be 
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uncertain and redundant for the HNN model. Multi-step-ahead forecasting is prone to be 

better performed in the Altamaha river basin when compared with that within the 

Greensboro area, with the evidence of the high ACC value (i.e., 0.8643) even when the 

lead time is 16 hour. This may be owing to the less fluctuant data series and larger 

recession coefficient in the former study case.   

 

5.3 Input determination for sediment load estimation  

This section attempts to determine effective input variables for the HDFNN model 

proposed in Chapter 4. The same study areas are employed with daily data during the 

same time period. Both single- and multi-step-ahead estimations are performed with 

various input combinations, and the results are discussed in the following. 

 

5.3.1 Study area and data 

Stations 06088300 and 06088500 on the Muddy Creek in Montana USA as well as 

stations 06307830 and 06308500 on the Tongue River are chosen as study cases as 

before, and their locations on the map are observed in Figures 4.2 and 4.4. The relations 

of sediment and flow data at both upstream and downstream stations have been plotted 

in Figures 4.3 and 4.5 respectively for the two cases, with data at the same time step. 

Since input variables at different time may have different influences on the output, the 

cross-correlations between the data are addressed before the estimation. Table 5.9 

summaries the cross-correlations between the SSLu, Qu, Qd data at different time steps 

and SSLd data at time t for the first study case. As expected, the highest correlations are 

found between each input variable and the output at the same time. For instance, the 

cross-correlation between SSLu(t) and SSLd(t) reaches as high as 0.9064. However, the 
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degrees of relation gradually decrease with inputs more ahead of time. When the lead 

time is given as 4 day, the cross-correlations are reduced to 0.1552, 0.2361 and 0.2443 

respectively for the SSLu, Qu, Qd inputs. Similarly, the cross-correlations between the 

input variables and downstream sediment load for the case on the Tongue River are 

presented in Table 5.10. The reductions of cross-correlation with lead time seem to be 

mitigated when compared with the values in Table 5.9, which may finally result in 

different influences of input variables on the output in each study case specifically for 

the multi-step-ahead estimations. In contrast to the previous study case, 

cross-correlations between Qd and SSLd are consistently larger than that between the Qu 

and SSLd particularly. It is reasoned by the larger drainage areas in the Tongue River 

case that the upstream flows tend to have fewer influences on the downstream sediment.  

 
Table 5.9 The cross-correlation of the data of the stations on the Muddy Creek 

 SSLd(t)  SSLd(t)  SSLd(t) 
SSLu(t) 0.9064 Qu(t) 0.7287 Qd(t) 0.6878 
SSLu(t-1) 0.6911 Qu(t-1) 0.6047 Qd(t-1) 0.5590 
SSLu(t-2) 0.6033 Qu(t-2) 0.4876 Qd(t-2) 0.4711 
SSLu(t-3) 0.3993 Qu(t-3) 0.3741 Qd(t-3) 0.3692 
SSLu(t-4) 0.1552 Qu(t-4) 0.2361 Qd(t-4) 0.2443 
 

Table 5.10 The cross-correlation of the data of the stations on the Tongue River 

 SSLd(t)  SSLd(t)  SSLd(t) 
SSLu(t) 0.7749 Qu(t) 0.5967 Qd(t) 0.7424 
SSLu(t-1) 0.6444 Qu(t-1) 0.5621 Qd(t-1) 0.6329 
SSLu(t-2) 0.5433 Qu(t-2) 0.5040 Qd(t-2) 0.5289 
SSLu(t-3) 0.5077 Qu(t-3) 0.4542 Qd(t-3) 0.4884 
SSLu(t-4) 0.4880 Qu(t-4) 0.4214 Qd(t-4) 0.4744 
 

In this section, estimations with one-, two- and three-day-ahead upstream sediment 

input are undertaken for each study case, wherein the inputs Qu, Qd could be chosen 

with different ahead of times. The abnormity of input variable SSLu is attributed to the 

mechanism of the HDFNN model in which the output SSL(2) at time T+ΔT is computed 

from the upstream sediment at time T as indicated by Eqs. (4.10) and (4.11). As a result, 
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the upstream sediment applied to all possible input combinations is set to SSLu(t-1) for the 

one-day-ahead estimation. Those for the two- and three-day-ahead cases are 

respectively SSLu(t-2) and SSLu(t-3) in the same manner. It should be noted that the 

influence of upstream sediment is as important as the upstream and downstream flows. 

However, it fails to be implemented in this chapter owing to the unavailability of data 

collection at other upstream stations within the studied basins. Similar endeavor has 

been undertaken in the HNN model that the impacts of upstream flows on the 

downstream flow are examined. Representative input combinations with different lead 

times are formulated in Table 5.11. The main objective of this section is to compare the 

influences of Qu, Qd with different ahead of times and determine appropriate input 

variables for the HDFNN model.  

 
Table 5.11 The input combinations with different variables for the sediment estimations 

 Input 
ID 

Input variables 

One-day-ahead 
(Combination 1) 

1-1 [Qu(t-1), Qd(t), SSLu(t-1)] 
1-2 [Qu(t), Qd(t), SSLu(t-1)] 
1-3 [Qu(t-1), Qu(t), Qd(t), SSLu(t-1)] 
1-4 [Qu(t-1), Qd(t), Qd(t-1), SSLu(t-1)] 
1-5 [Qu(t), Qd(t), Qd(t-1), SSLu(t-1)] 
1-6 [Qu(t-1), Qu(t), Qd(t), Qd(t-1), SSLu(t-1)] 

Two-day-ahead 
(Combination 2) 

2-1 [Qu(t-1), Qu(t), Qd(t), SSLu(t-2)] 
2-2 [Qu(t-1), Qd(t), Qd(t-1), SSLu(t-2)]  
2-3 [Qu(t-1), Qu(t), Qd(t), Qd(t-1), SSLu(t-2)] 
2-4 [Qu(t), Qd(t), Qd(t-1), Qd(t-2), SSLu(t-2)] 
2-5 [Qu(t-1), Qu(t), Qd(t), Qd(t-1), Qd(t-2), SSLu(t-2)] 
2-6 [Qu(t-2), Qu(t-1), Qu(t), Qd(t), Qd(t-1), Qd(t-2), SSLu(t-2)] 

Three-day-ahead 
(Combination 3) 

3-1 [Qu(t-1), Qu(t), Qd(t), Qd(t-1), SSLu(t-3)] 
3-2 [Qu(t-1), Qu(t), Qd(t), Qd(t-1), Qd(t-2), SSLu(t-3)] 
3-3 [Qu(t-2), Qu(t-1), Qu(t), Qd(t), Qd(t-1), Qd(t-2), SSLu(t-3)] 
3-4 [Qu(t-1), Qu(t), Qd(t), Qd(t-1), Qd(t-2), Qd(t-3), SSLu(t-3)] 
3-5 [Qu(t-2), Qu(t-1), Qu(t), Qd(t), Qd(t-1), Qd(t-2), Qd(t-3), SSLu(t-3)] 
3-6 [Qu(t-3), Qu(t-2), Qu(t-1), Qu(t), Qd(t), Qd(t-1), Qd(t-2), Qd(t-3), SSLu(t-3)] 
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5.3.2 Model performances and discussions  

As far as the case on the Muddy Creek is concerned, the model performances in terms 

of RMSE and NSEC with one-day-ahead estimation are primarily demonstrated in Table 

5.12. Input combination consisting of Qu(t-1), Qu(t), Qd(t), Qd(t-1) and SSLu(t-1) achieves the 

best results, where the NSEC value reaches as high as 0.9762. The reductions in RMSE 

value with combination 1-3 are respectively 31.70% and 20.07% when compared with 

the 1-1 and 1-2. These three combinations enjoy a same Qd input, thus great influences 

of upstream flow are accordingly revealed. Both Qu(t-1) and Qu(t) variables seem to be 

indispensable for the one-day-ahead estimation. The partitioning analysis is employed 

as well to examine the model performances in different loads, as shown in Table 5.12. 

The combination 1-6 better approximate the medium and high loads, which still implies 

its efficiency in the estimation. It is observed in Table 5.13 that the two-day-ahead case 

attains the lowest RMSE and highest NSEC values from combination 2-3, whose flow 

inputs are identical to the 1-6. The inclusion of Qd(t-2) in combinations 2-4, 2-5 and 2-6 

appears to be redundant. In addition, combination 2-3 is better than 2-1 merely for the 

estimation of high values whereas its RMSE values in low and medium loads are 

relatively large. It means that the Qd(t-1) input variable functions on increasing the 

accuracy of fitting high values.  

 

When examining the three-day-ahead estimation in Table 5.14, input combination 3-1 

equipped with the same flow inputs obtains the highest NSEC value, suggesting that the 

flow variables two- and three-day-ahead of time either on the upstream or downstream 

stations could not contribute to the downstream sediment. It is reasonable since the 

cross-correlations between flow input and output reduce to low values when the lead 

times are more than one day. Besides, the inclusion of input variables Qu(t-2) and Qd(t-2) in 

combination 3-3 strengthens the model ability in reproducing low loads, while the 
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combination 3-4 shows advantage in matching medium loads. The inconformity of 

performances of input combinations on different loads may not be generalized. However, 

it reveals that the influences of input variables in terms of different ahead of times could 

be more complicated and uncertain with increasing lead time.   

 
Table 5.12 Model performances from different input combinations for the study case 
on the Muddy Creek (one-day-ahead) 

Input combination 
Total 

RMSE 
(tons/day) 

NSEC 
Low 

RMSE 
(tons/day) 

Medium 
RMSE 

(tons/day) 

High 
RMSE 

(tons/day) 
1-1 564.0116 0.9425 70.3698 455.9110 1139.708 
1-2 481.9468 0.9580 95.7952 176.7717 1057.852 
1-3 385.2324 0.9732 100.1694 171.8181 830.3655 
1-4 485.8397 0.9573 83.1704 211.7877 1059.875 
1-5 394.6522 0.9718 99.6747 170.3804 853.3354 
1-6 362.8466 0.9762 112.2258 161.2308 776.1632 

 

Table 5.13 Model performances from different input combinations for the study case 
on the Muddy Creek (two-day-ahead) 

Input combination 
Total 

RMSE 
(tons/day) 

NSEC 
Low 

RMSE 
(tons/day) 

Medium 
RMSE 

(tons/day) 

High 
RMSE 

(tons/day) 
2-1 407.1043 0.9703 87.1773 146.3615 891.5690 
2-2 417.2932 0.9686 96.1004 156.5874 910.4079 
2-3 384.6389 0.9733 113.8330 172.2728 823.0381 
2-4 417.6001 0.9685 100.8666 156.5884 909.7979 
2-5 488.6829 0.9569 107.2553 206.3164 1061.114 
2-6 901.6060 0.8534 100.7966 167.3921 2021.598 

 

Table 5.14 Model performances from different input combinations for the study case 
on the Muddy Creek (three-day-ahead) 

Input combination 
Total 

RMSE 
(tons/day) 

NSEC 
Low 

RMSE 
(tons/day) 

Medium 
RMSE 

(tons/day) 

High 
RMSE 

(tons/day) 
3-1 402.3409 0.9709 101.8828 169.0317 868.8377 
3-2 466.0711 0.9609 109.0735 172.5343 1015.545 
3-3 762.7784 0.8953 70.0881 246.4649 1691.351 
3-4 462.0712 0.9612 113.4957 135.2544 1013.654 
3-5 652.0077 0.9235 96.6598 171.2376 1448.626 
3-6 730.3532 0.9040 87.9750 217.7262 1620.819 
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More insights on the models performances from different input combinations can be 

obtained through a visual inspection of the scatter plots of data below 2000 tons/day. As 

in Figure 5.17 where the downstream flow is fixed as [Qd(t), Qd(t-1)], the effects of 

upstream flows could be observed by performances from combinations 1-4, 1-5 and 1-6. 

The model with Qu(t-1) over-estimates many observations while that with Qu(t) tends to be 

an under-estimator. The superiority of combination 1-6 over the 1-5 is not obvious than 

the 1-4 from the figures, which may lead to a conclusion that the Qu(t) plays a more 

important role than the Qu(t-1). However, combination including both of them assures 

best estimation for the output. Figure 5.18 is plotted to show the influences of 

downstream flows with fixed upstream flows [Qu(t), Qu(t-1)] for the two-day-ahead 

estimation. It seems that the distributions of computed dots from the three combinations 

do not markedly differ from each other, thus the downstream flow inputs may not have 

crucial influences on the loads lower than 2000 tons/day. Similar findings are observed 

in Figure 5.19 with same upstream flow inputs for the three-day-ahead estimation. This 

also implies that the impacts of downstream flow inputs are mainly on the high loads, 

which generate quite different RMSE values in high loads as indicated in Tables 5.13 

and 5.14. The model performances with various upstream flow inputs for the 

three-day-ahead estimation are demonstrated in Figures 5.20. The additions of Qu(t-2) 

and Qu(t-3) in the combinations 3-5 and 3-6 render wider spread dots visibly, indicating 

the unpromising functions of upstream flows ahead of two and three days. When 

comparing the model performances between Figures 5.19 and 5.20, the upstream flows 

deliver much more differences than the downstream flows on the output, which might 

be reasoned by the higher cross-correlation between the Qu and SSLd.   
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Figure 5.17 Scatter plot of observed and estimated sediment from input combinations 

(a) 1-4, (b) 1-5 and (c) 1-6 on the Muddy Creek  
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Figure 5.18 Scatter plot of observed and estimated sediment from input combinations 

(a) 2-1, (b) 2-3 and (c) 2-5 on the Muddy Creek 
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Figure 5.19 Scatter plot of observed and estimated sediment from input combinations (a) 

3-1, (b) 3-2 and (c) 3-4 on the Muddy Creek 
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Figure 5.20 Scatter plot of observed and estimated sediment from input combinations (a) 

3-4, (b) 3-5 and (c) 3-6 on the Muddy Creek 
 

Likewise, special parameters of the HDFNN model are concerned in this section. The 

values of four parameters, namely a0, b0, recession coefficient λ and initial sediment 
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deposition sDS 0 for the one-day-ahead estimation are plotted in Figure 5.21. The 

parameters a0, b0 represent a relation between river flow and sediment, and thus vary 

greatly with the input combinations. Their optimal values are respectively 0.0574 and 

5.2456 with the best input combination 1-6. Representative values of 0.6504 and 0.0091 

for the parameters λ and sDS 0  are attained as well.  
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Figure 5.21 Parameter (a) a0, (b) b0, (c) λ and (d) sDS 0 computed from different input 

combinations on the Muddy Creek (one-day-ahead) 
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The tendency of model performances to input combinations appears to be another 

matter in the case on the Tongue River. Results of the one-day-ahead estimation in terms 

of RMSE and NSEC are summarized in Table 5.15. Input combination 1-3 containing 

Qu(t-1), Qu(t), Qd(t) and SSLu(t-1) yields the best results where the NSEC value is as high as 

0.9032. The addition of Qd(t-1) in combination 1-6 generates fairly matched low and 

medium loads as indicated by the partitioning analysis. The improvements of 

combination 1-3 over 1-1 and 1-2 are respectively 7.82% and 2.93% in terms of NSEC 

value while that of 1-6 over 1-4 and 1-5 are respectively 8.12% and 4.17%. The 

approximated values corresponding to the improvements reveal stable influences of 

upstream flows on the output. As indicated in Table 5.16, the input variable Qd(t-2) exerts 

its effect on two-day-ahead estimation. The input combination 2-5 outperforms 2-3 with 

a reduction of 12.90% in RMSE value. The latter input combination achieves the best 

RMSE value in low loads however, revealing the efficiency of input [Qu(t-1), Qu(t), Qd(t), 

Qd(t-1), SSLu(t-2)] in generating low loads. The input combination 2-5 could not effectively 

fit the medium loads either, in which the RMSE value is 21.45% higher than the 2-4. 

This difference lies in the inclusion of Qu(t-1) in combination 2-5. Besides, the addition 

of Qu(t-2) in combination 2-6 leads to a 1.96% lower NSEC value when compared with 

the 2-5. This means that the input Qu(t-1) helps to match the low and high loads while the 

Qu(t-2) seems to be a redundant input variable. Regarding the three-day-ahead estimation 

in Table 5.17, the input Qu(t-2) effectively functions on the output since the combination 

3-3 renders the best model performances. The inclusion of input variables Qd(t-3) and 

Qu(t-3) in combinations 3-4, 3-5 and 3-6 could not ensure excellent estimations as before. 

Furthermore, the best performances on low, medium and high loads are obtained from 

different input combinations. This is another evidence of the uncertainty of the mapping 

between input and output with the increase of lead time.   
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Table 5.15 Model performances from different input combinations for the study case 
on the Tongue River (one-day-ahead) 

Input combination 
Total 

RMSE 
(tons/day) 

NSEC 
Low 

RMSE 
(tons/day) 

Medium 
RMSE 

(tons/day) 

High 
RMSE 

(tons/day) 
1-1 497.4973 0.8377 222.9459 249.6212 1377.5 
1-2 432.1941 0.8775 230.6391 189.0678 1182.2 
1-3 384.1510 0.9032 197.2603 198.1040 1038.5 
1-4 507.7745 0.8310 198.5880 235.4965 1439.4 
1-5 457.9967 0.8625 206.3545 184.6659 1294.4 
1-6 393.5422 0.8985 174.0497 178.9218 1103.3 

 

Table 5.16 Model performances from different input combinations for the study case 
on the Tongue River (two-day-ahead) 

Input combination 
Total 

RMSE 
(tons/day) 

NSEC 
Low 

RMSE 
(tons/day) 

Medium 
RMSE 

(tons/day) 

High 
RMSE 

(tons/day) 
2-1 411.0440 0.8895 169.2445 202.7216 1150.2 
2-2 431.4866 0.8782 117.5789 160.5999 1271.3 
2-3 447.7933 0.8689 111.0080 170.3950 1322.3 
2-4 411.9271 0.8890 127.4412 158.7089 1203.8 
2-5 390.0215 0.9005 125.7231 192.7459 1113.2 
2-6 423.3997 0.8828 139.5266 183.9982 1221.9 

 

Table 5.17 Model performances from different input combinations for the study case 
on the Tongue River (three-day-ahead) 

Input combination 
Total 

RMSE 
(tons/day) 

NSEC 
Low 

RMSE 
(tons/day) 

Medium 
RMSE 

(tons/day) 

High 
RMSE 

(tons/day) 
3-1 449.4354 0.8682 159.3906 203.2677 1284.135 
3-2 449.2980 0.8683 162.0146 202.8875 1282.307 
3-3 414.9479 0.8877 177.9250 226.0627 1139.601 
3-4 434.0001 0.8771 191.1288 202.4367 1210.981 
3-5 457.6289 0.8634 220.9050 228.0081 1251.886 
3-6 457.0090 0.8638 179.6844 239.0122 1273.907 

 

The scatter plots of observed and estimated sediments from different input combinations 

are demonstrated as well, in which the sediments below 500 tons/day and within the 

range between 2000 and 10000 tons/day are respectively presented to distinguish the 

model performances on different loads. As shown in Figure 5.22, the impacts of 

upstream flow are basically embodied in high loads where the distributions of dots 

computed from combination 1-3 are visibly closer than the others. The three 
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combinations over-estimate most observations lower than 500 tons/day and the 

advantage of combination 1-3 over its counterparts is not marked. As for the comparison 

of downstream flow, Figure 5.23 is plotted with a fix upstream flow input [Qu(t), Qu(t-1)]. 

The addition of Qd(t-1) in combination 2-3 generates closer distributed dots when 

compared with the 2-1. The superiority of considering Qd(t-2) seems to be revealed from 

the right figures merely, in which both the combinations 2-3 and 2-5 fairly fit the 

observations below 500 tons/day. As observed in Figure 5.24, the Qd(t-2) deliver slight 

differences between combinations 3-1 and 3-2, whereas the inclusion of Qd(t-3) in 

combinations 3-4 increases accuracy in fitting high loads. Thus a conclusion may be 

drawn that the downstream flow mainly functions on high loads instead of all values. 

Model performances in terms of different upstream flows are further shown in Figure 

5.25, as a supplement to the single-step-ahead case in Figure 5.23. It can be observed 

that the combination 3-4 outperforms 3-5 in view of slightly closer distributed dots 

corresponding to all observations. Thus the Qu(t-2) is proven as a redundant input 

variable in this case. The addition of Qu(t-3) in combination 3-6 seems not to deteriorate 

the model performances in comparison with combination 3-5.  

 

The values of a0, b0, λ and sDS 0  computed from different input combinations for the 

one-day-ahead estimation are plotted in Figure 5.26. Their values are respectively 

recommended as 0.2284, 5.0880, 0.6351 and 0.1221 associated with the combination 

1-3. The value of recession coefficient computed from the best input combination for 

the present case is still smaller than that for the Muddy Creek case, which is highly 

consistent with the results in Chapter 4. Thus the storage capacity tends to be larger at 

station on the Muddy Creek than that on the Tongue River. 
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Figure 5.22 Scatter plots of observed and estimated sediment from input combinations 

(a) 1-1, (b) 1-2 and (c) 1-3 on the Tongue River  
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Figure 5.23 Scatter plots of observed and estimated sediment from input combinations 

(a) 2-1, (b) 2-3 and (c) 2-5 on the Tongue River 
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Figure 5.24 Scatter plots of observed and estimated sediment from input combinations 

(a) 3-1, (b) 3-2 and (c) 3-4 on the Tongue River 
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Figure 5.25 Scatter plots of observed and estimated sediment from input combinations 

(a) 3-4, (b) 3-5 and (c) 3-6 on the Tongue River 
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Figure 5.26 Parameter (a) a0, (b) b0, (c) λ and (d) sDS 0  computed from different input 

combinations on the Tongue River (one-day-ahead) 
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5.4 Summary 

The request of determining best input variables for the HNN and HDFNN models has 

been processed in this chapter. River flow and precipitation data from the upstream 

sections are imposed as critical inputs for downstream river flow. In particular, areal 

precipitation over the entire river basin is computed by Thiessen polygon method and 

regarded as a potential input variable. The Yellow River with four recorded stations in 

the Altamaha river basin and the North Buffalo creek with three stations within the 

central Greensboro area are selected as case study sites in the context of daily and 

hourly forecasts. As far as the sediment load estimation is concerned, river flows from 

the upstream and downstream stations with different ahead of times are selected to 

formulate possible input combinations. Stations on the Muddy Creek and the Tongue 

River are employed as two study cases. The main findings could be highlighted in the 

following.   

 

(a) The efficiency of flows and precipitations in upstream river sections depends on the 

basin boundary considered. Areal precipitation is an appropriate input variable 

coupled with all observed upstream flows in general. The upstream flow inputs may 

be redundant and uncertain with increasing lead time. 

(b) The influences of upstream flow inputs on downstream flow seem to be insensitive 

if the studied river basin is small. Also due to the shorter distance between upstream 

and downstream stations, areal precipitation may not be a contributing input variable 

since the rainfall is not fully collected in time.  

(c) Observations on the hourly forecasts reveal that certain input variables including the 

precipitation may be uncertain and unstable for the HNN model when forecast lead 

time is shorter than the travel time. The recession coefficients computed from hourly 
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forecasts are generally larger than that from daily forecasts, implying that the 

reservoir plays larger storage capacity from the time dimension of hour.  

(d) The downstream sediment load seems to be more sensitive to upstream flows than 

the downstream flows when the studied area is smaller. The downstream flow is 

identified as a critical factor affecting high sediment loads substantially. 

(e) With the increase of lead time, the best performances on low, medium and high 

loads tend to be attained from different input combinations, revealing the 

uncertainty of the mapping between input and output.  

 

This chapter provides applicable inputs for downstream river flow and suspended 

sediment load, particularly putting great concern on the spatial factors. The analysis of 

input influences is not thorough since, in fact, it is frequently encountered by the 

difficulty of data measurement and scarcity of relevant data. Besides, mapping between 

input variables and model output tends to be uncertain with increasing lead time. Data 

preprocessing methods could be undertaken to eradicate the problem. There is still 

considerable room for the improvement of the HNN and HDFNN models in order to 

have excellent overall performances.    
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6 Uncertainty Analysis on Hydrological Models  

In the previous chapters, novel neural network based models were proposed for 

deterministic predictions on river flows and sediment loads. Uncertainty analysis is 

complemented in this chapter in order to enhance the reliability and applicability of the 

models. It is undertaken by incorporating uncertainty into deterministic predictions, and 

termed interval predictions corresponding to point predictions. By the method of Lower 

Upper Bound Estimation (LUBE), the suitability of HNN and HDFNN models in 

producing prediction intervals (PIs) is tested in the following.  
 

6.1 Introduction 

Although the applications of data-driven models for the real-time predictions of river 

flows and sediment loads have been well established over the past years, the analysis of 

uncertainty is usually disregarded. Uncertainty has always been inherent in hydrological 

models, which may be imported by inputs, model parameters and structure itself. 

Generally, the lack of uncertainty analysis can lead to an inflated estimation of the 

model reliability and applicability, particularly for a novel proposed model. Additionally, 

in some cases rather than purely the point forecasts, the interval forecasts in which 

uncertainties are taken into account have become an increasing demand. For these 

reasons, it is desirable to develop an effective method to deal with the uncertainties in 

hydrological models.   

 

The quantification of uncertainty in hydrological modeling has attracted considerable 

attentions in recent years (Mantovan and Todini, 2006; Montanari, 2007; Zou et al., 
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2002). The methods to estimate the uncertainty of the model output range from 

probabilistic forecasting method and sampling-based method, to method based on the 

analysis of model errors and method based on fuzzy theory (Shrestha and Solomatine, 

2006). The probabilistic forecasting method predicts the output by representing the 

model parameters through probability distributions defined on Bayesian theory, and 

thereby requiring priori distributions (Krzysztofowicz, 1999). The sampling-based 

method is generally known as ensemble method or the Monte Carlo method, still in the 

limit of entailing defining a distribution of parameters (Kuczera and Parent, 1998). The 

method based on the analysis of model errors analyzes the statistical properties of the 

errors on account of assumptions for the model residuals (Montanari and Grossi, 2008). 

The method based on fuzzy theory can be very subjective due to the requisite 

knowledge of the membership function (Maskey et al., 2004). Alvisi and Franchini 

(2011) proposed fuzzy neural networks to product crisp forecasts and uncertainty bands 

and Alvisi et al. (2012) further improved the method by cooperating grey number theory. 

It was indicated by Jacquin and Shamseldin (2007) that a method based on fuzzy theory 

is preferred to probability theory when the uncertainties are caused by imprecise 

knowledge about a real system but not from randomness.  

 

These four methods share a common weakness since they estimate the model 

uncertainty on specific assumptions. To overcome this issue, an approach based on the 

model error was improved by Shrestha and Solomatine (2006), which is referred to as 

an “uncertainty estimation based on local error and clustering”(UNEEC). It takes the 

joint contribution of all sources of errors into account, drawn on the basis of a clustering 

approach. The use of the UNEEC method has found increasing applications in the 

uncertainty assessment since it is not imperative to make any assumption about residual 

(Dogulu et al., 2014; Pianosi et al., 2010; Solomatine and Shrestha, 2009). Other efforts 
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are made on the premise of straight-forward and effective methods, which has led to the 

development of the “Lower Upper Bound estimation” (LUBE). The LUBE method 

proposed by Khosravi et al. (2011c) constructed the ANN with two output neurons that 

directly approximated the lower and upper bounds. It made no assumption about the 

data distribution. The LUBE method has proven to be simple, fast and efficient in 

generating high quality PIs (Khosravi et al., 2011c; Quan et al., 2014a, 2014b).  

Taormina and Chau (2015a) successfully combined the LUBE with Multi-Objective 

Fully-Informed PSO for neural network river forecasting. Besides, the LUBE method 

has been applied to many other fields, such as travel time prediction (Khosravi et al., 

2011a), electricity load prediction (Rana et al., 2013) and flood forecast (Ye et al., 

2016).  

 

The main contribution of this chapter is to apply the LUBE method to neural network 

based models for PIs construction. The rest of the chapter is organized as follows. 

Section 6.2 introduces the LUBE method with neural network based models and the 

indices used for PIs evaluation. Cases studies are performed in Section 6.3 and 6.4 

respectively for the river flow forecasting and sediment load estimation. The suitability 

of proposed HNN and HDFNN models is examined by assessing the qualities of PIs 

generated, in comparison with their corresponding benchmark models. Section 6.5 

finally concludes the results and discussions.  

 

6.2 Estimation of neural network based PIs with LUBE 

By definition, a PI is a range of values with lower and upper bounds for a prescribed 

coverage probability called the confidence level (CL). As such, the PI is constructed by 

predicting the lower and upper bounds and has an indication of accuracy with 
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confidence level. Suppose (1-a)% is the target CL for output variable Y, l and u are 

lower and upper bounds in which PI is delimited as [l, u] when Pr (l<Y<u)=1-a. That is, 

each value of the predicted output is enclosed in the intervals with (1-a)% probability. 

For a given confidence level, narrower width of the intervals indicates less uncertainty 

of the prediction and accordingly entails higher accuracy. Coverage probability and 

width of intervals are two important indices for evaluation of PIs quality. They are 

represented by Prediction Interval Coverage Probability (PICP) and Prediction Interval 

Normalized Root-mean-square Width (PINRW) in literatures. A compound PI-based 

indicator, namely Coverage Width-based Criterion (CWC), is employed in the training 

period as an objective function. The definitions of these indices are presented as 

follows. 

 

The PICP measures the percentage of target observations that are enclosed in the 

intervals (Khosravi et al., 2010):    

∑
=

=
n

i
ic

n 1

1PICP                           (6.1) 

where n is the number of observations, ci is equal to one if the observation yi lies within 

the range of ],[ ii ul and zero otherwise. It is obvious that when all observations are 

covered by intervals, PICP=100% as the ideal case. The PINRW is defined as the ratio 

of the 2-norm of the width of the PIs to the range R of the output variable (Quan et al., 

2014a): 
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It is inspired by the successful applications of RMSE for the point predictions. The 

1-norm of the width of the PIs, namely Prediction Interval Normalized Average Width 

(PINAW), can also be employed instead of PINRW. It is defined as the ratio of the 
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average width of the PIs to the range R of the output variable (Khosravi et al., 2011b): 

∑
=

−=
n

i
ii lu

nR 1
)(1PINAW                        (6.3) 

In this study, PINRW is used during the training period since it magnifies wider 

intervals and trends to obtain better results. The PINAW is employed for the testing for 

an overall evaluation of the width of PIs. It can be seen that larger PICP and narrower 

PINRW indicate higher quality PIs. However, they are two conflicting properties. For 

the purpose of comprehensive balance between the PICP and PINRW, a cost function 

CWC is developed as follows (Quan et al., 2014a): 

                  (6.4) 

where (PICP)γ =1 for training in order to construct more conservative PIs. It becomes a 

step function of PICP in the testing period: 





<
≥

=
.PICP if              1
;PICP if             0

(PICP)
µ
µ

γ                         (6.5) 

The parameters η and μ are two constants that determine the penalty term controlling the 

balance between coverage probability and interval width. The value of μ can be set to 

(1-a) since it is the nominal confidence level associated with PIs. η exponentially 

magnifies the difference between PICP and μ, and is suggested to be valued as 80 (Quan 

et al., 2014a). CWC tries to find a trade off between valid PIs for which PICP≥(1-a) 

holds and informative PIs with narrow width in the optimization process.  

 

Lower Upper Bound Estimation (LUBE) method is a straightforward technique to 

generate the lower and upper bounds as two outputs for neural network based models. 

As demonstrated in Figure 6.1, the HNN model directly obtains two outputs out
TTu

Q
)( ∆+
 

and out
TTl

Q
)( ∆+
, corresponding to the upper and lower bounds of the PIs separately. 

Accordingly, two storage reservoirs with different recession coefficient and initial 

) (PICP) 1 PINRW( CWC ) (PICP µ η γ − − + = e 
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storage are assumed as two downstream sections and continuity equation is still satisfied 

when river flows from the upstream section to the downstream ones. The set of 

parameters to be adjusted is { })02()01(2121211111 ,,,,,...,,,...,,,..., == TTssks SSwwwwww λλ  

correspondingly, in which weights{ }ksww ,...,11  from the input to the hidden layer are 

used for both output of the HNN-LUBE model. In other words, the PI constructed by 

LUBE method is the range of values delimited by the two outputs produced by the HNN 

model. The flowchart in Figure 6.2 demonstrates how HDFNN-LUBE is implemented 

with reference to the topological structure of HDFNN model presented in Chapter 4. 

The upper and lower bounds of the PIs are directly computed with two outputs SSLu and 

SSLl, in which the structure of double feedforward neural network is still maintained. 

The values of bounds SSLu and SSLl respectively contain two parts of results, which are 

obtained from discharge and sediment inputs separately. It is supposed that observations 

fall between the two HDFNN outputs with (1-a)% probability. Unlike traditional 

methods for construction of PIs, the LUBE is a simple method of release from 

estimating the mean and variance values of point prediction. It can be combined with 

neural network based models to directly generate the upper and lower bounds of PIs in 

one step.  

 

Figure 6.1 HNN model for LUBE to generate upper and lower bounds of PIs 
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Figure 6.2 HDFNN model for LUBE to generate upper and lower bounds of PIs 

 

The training of neural network based model for LUBE method is performed by 

minimizing the cost function CWC, which is nonlinear, discontinuous and 

non-differentiable. Traditional derivative-based optimization algorithm could not be 

employed for its minimization. In this chapter, differential evolution (DE) is applied as 

an optimization algorithm to minimize the cost function during the training period. To 

facilitate the model training, the entire data are scaled linearly to the range between 0 

and 1. They are then separated into training, validation and testing sets. During the 

calibration process, the training is strictly terminated at the point where the error in the 

validation set begins to rise in order to avoid over-fitting the training data. The testing 

data are used to evaluate the quality of PIs, which would be measured by four indices 

namely PICP, CWC, PINRW and PINAW expressed in terms of percentages. In the 

following, the LUBE method is employed for construction of PIs and to quantify 

uncertainties of the HNN and HDFNN models respectively for downstream river flows 

and suspended sediment loads. 
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6.3 Uncertainty analysis for river flow forecasting  

The LUBE method for construction of PIs is applied in the river flow forecasting 

models in the present section. The main objective is to assess the reliability of HNN 

model proposed in Chapter 3, by quantifying the uncertainties in comparison with its 

counterpart models namely ANN, FPNN and HYMN. The Yellow River in the 

Altamaha river basin is employed as a case study site, in which river flow at the 

downstream station 02208000 is the target output. Both single- and multi-step-ahead 

cases are performed for a comprehensive analysis in the following.  

 

6.3.1 Performances on single-step-ahead forecasting  

As a study case, single-step-ahead forecasting in the Altamaha river basin is presented 

in daily scale. The PIs are developed using input variables of three upstream flows and 

areal precipitation. This corresponds to the input combination 3-3 in Chapter 5, which is 

the optimal input for one-day-ahead point forecasting. Uncertainty analysis is 

undertaken with CL of 90%, 95% and 99% in conjunction with LUBE method, thus the 

value of μ in Eq. (6.4) is set to 0.90, 0.95 and 0.99, respectively. To begin with, the 

optimal number of nodes in the hidden layer is determined by gradually increasing the 

node number and finding the best results for each model. The procedure is not presented 

in details herein since similar practice has been demonstrated in Chapter 3. The results 

are not the same with the point predictions, however. Taking the case with 90% 

confidence level as an example, the optimal numbers of nodes in the hidden layer are 8, 

10, 9 and 11 respectively for the ANN, FPNN, HYMN and HNN models.   

 

The comparisons of the 90%, 95% and 99% PIs by various models in terms of PICP, 

CWC, PINRW and PINAW are summarized in Table 6.1. Taken as a whole, the values 
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of CWC, PINRW and PINAW become larger with increasing confidence level and PICP 

value. It is reasonable since a narrow width of intervals could not be guaranteed if the 

intervals intend to enclose many observations. With respect to the 90% CL, the PICP 

values attained by the four models are larger than 0.90, indicating a satisfactory 

coverage probability of the PIs. On this basis, CWC retrogrades to be the same as the 

PINRW index considering the interval width only. Herein, PINRW and PINAW are 

respectively 2-norm and 1-norm of the width of the PIs for evaluation. It can be 

observed from the table that the HNN model yields the smallest PINRW and PINAW 

values among the four models. There are respectively 18.64%, 11.33% and 8.82% 

decrements in terms of PINRW when compared with ANN, FPNN and HYMN models. 

The suitability of HNN-LUBE model in producing PIs is thus ensured at 90% 

confidence level.   

 

As for the confidence level 95%, the four forecasting models still return strictly valid 

PIs with corresponding PICP values of 95.06%, 97.25%, 95.33% and 95.60%. With 

almost unqualified coverage probability and relatively wide intervals of PIs, the ANN 

model might be not efficient to deal with the uncertainties of the river flows at 95% CL. 

The FPNN obtains larger PICP and smaller PINAW values in comparison with the ANN, 

and yet their PINRW values are nearly equal. This means that the FPNN model is 

available to enclose more observations than the ANN with nearly the same interval 

width. On the contrary, the HYMN contains almost the same amount of observations 

with narrower intervals when compared with the ANN model. The qualities of PIs are 

improved by the FPNN and HYMN model therefore, where higher accuracies are 

achieved with less uncertainty of the forecast. By integrating the PFNN and HYMN 

models, the HNN could better describe the complex features of river flows and thus 

demonstrate applicability in the forecasting. It is verified by the smallest PINRW and 
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PINAW values obtained, in which the reduction of PINAW is respectively 32.37%, 

23.43% and 6.64% compared with the other three models. Likewise, all the four models 

generate valid PIs for the 99% case and the best performer with the highest quality PIs 

is obtained by the HNN model. It seems that the improvement of HNN model over the 

others is not as significant as in the cases of 90% and 95% CL. The probable reason is 

that the parameters are not easily to be searched to fit both the lower and upper bounds 

of the PIs with high confidence level. As a whole, the four forecasting models optimized 

by the DE algorithm are capable of achieving convincing PIs using LUBE for all the 

examined cases. The HNN model unsurprisingly returns the narrowest PIs, with PINAW 

of 15.31%, 16.44% and 32.74% for the one-day-ahead forecasting. It is interesting to 

note that the PICP values obtained by the HNN model are not significantly higher than 

the corresponding CL values, but the CWC values are quite small. This provides further 

evidence for the reliability of HNN model, in that it could construct narrow PIs with 

highly efficient coverage probability.  

 

The LUBE generated PIs at 95% confidence level for the one-day-ahead river flow 

forecasting is demonstrated in Figure 6.3. It is noticed that the ANN presents better 

performances for the first 200 around observations than the FPNN model, since the 

latter generates apparently inferior lower bounds which are far from the observations. 

On the contrary, the PIs constructions of upper bounds are more appreciated by the 

FPNN model. Besides, the ANN could not generate excellent PIs for the latter part of 

observations, as implied by the almost out-of-bounds of observations and wide intervals. 

From a comparison between Figure 6.3(b) and (c), it emerges that the HYMN model 

generally attains closer upper and lower bounds of PIs, although failing in simulating 

appropriate upper bounds of some high values. It can be detected in Figure 6.3(d) that 

the PIs constructed by HNN model are evidently narrower than those by the other three, 
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which conveys more information with less uncertainty. The superiority of HNN over 

FPNN model is reflected into a better positioning of lower bounds of the PIs, where the 

continuity equation integrated in HNN model facilitates the computing particularly in 

small values. It might be due to that the lower bounds of PIs could be separately 

adjusted by the recession coefficient of the assumed reservoir, to effectively change 

with the complexly varied observation series. On the other hand, the HNN is better than 

HYMN model in terms of the high values of observations. The different patterns 

classified by fuzzy pattern-recognition in the HNN model might explain the excellent 

performances in capturing high values. Besides, the abolishment of impractical assumed 

reservoirs in the hidden layer renders the HNN more compact with narrower PIs than 

the HYMN model. It is thus concluded that the HNN model could produce convincing 

upper and lower bounds with high quality PIs for the present one-day-ahead forecasting.  

  

Table 6.1 Testing performances by various models for the one-day-ahead case in the 
Altamaha river basin  

 models PICP CWC PINRW PINAW 

90% confidence level 

ANN 0.9231 0.2377 0.2377 0.2006 
FPNN 0.9011 0.2181 0.2181 0.2068 
HYMN 0.9176 0.2121 0.2121 0.1950 
HNN 0.9093 0.1934 0.1934 0.1531 

95% confidence level 

ANN 0.9506 0.2831 0.2831 0.2431 
FPNN 0.9725 0.2825 0.2825 0.2147 
HYMN 0.9533 0.2256 0.2256 0.1761 
HNN 0.9560 0.2005 0.2005 0.1644 

99% confidence level 

ANN 0.9918 0.4690 0.4690 0.3902 
FPNN 0.9945 0.4563 0.4563 0.3780 
HYMN 0.9918 0.4269 0.4269 0.3907 
HNN 0.9973 0.3917 0.3917 0.3274 
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Figure 6.3 LUBE generated PIs at 95% confidence level for the one-day-ahead case in 

the Altamaha river basin by (a) ANN (b) PFNN (c) HYMN and (d) HNN model 
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6.3.2 Performances on multi-step-ahead forecasting 

As far as the performances of forecasting models on multi-step-ahead uncertainty 

predictions are concerned, PIs with a lead time of 16 hours are produced for the USGS 

gauging stations in the Altamaha river basin. It has been found in Chapter 3 that the 

ANN and FPNN models are not available to perform the 16-hour-ahead point 

forecasting while the HYMN and HNN models present their efficiency with input 

variables of the nearest upstream flow and point precipitation. The modeling in this 

section utilizes the same input variables for the interval prediction, which have proven 

as the best input in Chapter 5. The applicability and credibility of the four models with 

large forecast lead time are accordingly assessed in the following.  

 

Details regarding the model performances in PIs constructions are reported in Table 6.2 

at 90%, 95% and 99% CL. With respect to the 90% case, the ANN and FPNN models 

yield PIs enclosing the same number of observations. The width of intervals obtained by 

the FPNN model is slightly smaller than the ANN. The HYMN and HNN generate 

narrower intervals than the above two models, with smaller coverage probability of 

90.70%, however. The HNN constructs the narrowest PIs with a slight reduction of 

2.12%, 1.16% and 1.17% in terms of PINRW when compared with ANN, FPNN and 

HYMN models. It seems that the PIs generated by the HNN do not have significantly 

higher quality than the other models. This can probably be attributed to the large 

forecast lead time, where the parameters of recession coefficient and initial storage 

might have large discrepancy for the corresponding assumed reservoir. Results with 

confidence level 95% reveal more improvement of HNN model over the others where 

the decrements of PINRW are 12.58%, 9.16% and 5.87%, respectively. The 

corresponding PICP values of 95.93%, 95.93%, 95.35 % and 96.22% for the 99% case 

imply that the four models are incapable of satisfying the validity condition. These 
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unqualified PIs are accompanied with large CWC values, which are not equal to the 

corresponding PINRW values. Notwithstanding, the HNN is the most viable model with 

largest coverage probability and narrowest intervals. The reliability of forecasting 

models with large lead time is not always guaranteed if the PIs are proposed to enclose 

observations with a high coverage probability. This is probably due to the increasing 

uncertainties accompanied with inputs of large forecasting lead time. 

 

Table 6.2 Testing performances by various models for the 16-hour-ahead case in the 
Altamaha river basin  

 models PICP CWC PINRW PINAW 

90% confidence level 

ANN 0.9273 0.3492 0.3492 0.3092 
FPNN 0.9273 0.3458 0.3458 0.3050 
HYMN 0.9070 0.3459 0.3459 0.3022 
HNN 0.9070 0.3418 0.3418 0.2975 

95% confidence level 

ANN 0.9651 0.4674 0.4674 0.4331 
FPNN 0.9564 0.4498 0.4498 0.4029 
HYMN 0.9535 0.4341 0.4341 0.3927 
HNN 0.9564 0.4086 0.4086 0.3567 

99% confidence level 

ANN 0.9593 7.1481 0.5648 0.5120 
FPNN 0.9593 7.0320 0.5556 0.5017 
HYMN 0.9535 10.9104 0.5578 0.5002 
HNN 0.9622 5.5637 0.5435 0.4881 

 

In order to visually observe the performances of various models for the 16-hour-ahead 

forecasting, the LUBE generated PIs at 95% confidence level are plotted in Figure 6.4. 

As can be seen, there are obvious lagged forecasts of the intervals produced by the four 

models, which are in advance of the observations. This might be acceptable for 

forecasting applications, and could be eliminated by reliable data preprocessing 

techniques. The valid PIs are also found to comprise the peak discharge for the major 

storm event. As observed in Figure 6.4(a), the PFNN model is superior to the ANN in 

generating closer lower bounds of PIs to the observations. The high values of the 

observations are not appropriately simulated, in which the corresponding upper bounds 

stay a bit away from the observed ones. Herein, the PFNN presents slightly worse 
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performances than the ANN in the PIs construction of peak values. As for the HYMN 

and ANN models demonstrated in Figure 6.4(b), the HYMN model produces better 

lower bounds of PIs than the ANN. Thus the qualities of PIs are improved by the FPNN 

and HYMN models in light of better lower bounds constructions in comparison with the 

ANN. Observations of the Figure 6.4(c) and (d) reveal that the superiority of HNN 

model over the FPNN and HYMN lies in the excellent generation of upper bounds of 

PIs. The width of PIs by the HNN is therefore, evidently the smallest among the four 

models. These comparisons conclusively reveal that the HNN model is able to produce 

more effective upper and lower bounds of the PIs using LUBE than the traditional ANN 

model. Its applicability is thus validated for the current 16-hour-ahead forecasting, in 

the light of less uncertainty in the narrow PIs with 95% confidence level.  
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Figure 6.4 LUBE generated PIs at 95% confidence level for the16-hour-ahead case in 
the Altamaha river basin by (a) ANN/PFNN (b) ANN/HYMN (c) FPNN/HNN and (d) 

HYMN/HNN model 
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6.4 Uncertainty analysis for sediment load estimation 

The applications of LUBE method on estimation models for suspended sediment load 

(SSL) are presented in the following section. The Muddy Creek in Montana is 

considered as a study case site, in which the SSL at downstream station 06088500 is the 

output variable. Daily data are applied to models for both single- and multi-step-ahead 

estimation. The comparative study is undertaken between HDFNN model and its 

counterpart models namely MFNN, DPFNN and HFNN, to examine their abilities in 

constructing prediction intervals using LUBE method.  

 

6.4.1 Performances on single-step-ahead estimation 

As indicated in Chapter 5, input combination consisting of Qu(t-1), Qu(t), Qd(t), Qd(t-1) and 

SSLu(t-1) attains the best point prediction for the one-day-ahead case on the Muddy Creek. 

It is adopted in the current section as well for the uncertainty analysis of the estimation 

models. In order to search optimal model structure, the number of the nodes in the 

hidden layer is tested from 2 to 15 for each model employed.  

 

Table 6.3 shows the comparisons of the 90%, 95% and 99% PIs constructed by MFNN, 

DPFNN, HFNN and HDFNN models. The four models generate valid PIs for the 90% 

CL, indicated by the PICP values larger than 0.90. Thus the values of CWC are the 

same with those of PINRW, and employed together with PINAW as a width index to 

evaluate the quality of PIs. The corresponding values of PINRW and PINAW gradually 

decrease by the four models, in which the HDFNN generates the narrowest intervals. 

The decrements of PINAW by the HDFNN are respectively 22.22%, 17.97% and 

13.22% when compared with MFNN, DPFNN and HFNN. In regard to the 95% CL, the 

improvement of HDFNN over the other three models is not that significant, e.g., with a 
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13.07% reduction in PINAW value in comparison with MFNN model. Despite that, its 

superiority in construction of PIs is clearly exhibited with the largest PICP and smallest 

PINRW/PINAW values. For the present one-day-ahead estimation, the four models are 

available to produce PIs covering more than 99% observations, thus their reliability 

could be ensured with 99% confidence level. However, the interval widths remarkably 

increase and the qualities of PIs are not as excellent as those with 90% and 95% 

confidence levels. For instance, the PIs with 99% CL covers more than 1.98% 

observations than the 95% case by the HDFNN model, but the corresponding width of 

intervals is 126.80% larger in terms of PINAW. This might probably be explained by the 

same reasons with the forecasting models, that the given high confidence level increases  

difficulty in adapting both the lower and upper bounds of the PIs using the same 

parameters from the input to the hidden layer. 

 
Table 6.3 Testing performances by various models for the one-day-ahead case on the 
Muddy Creek 

 models PICP CWC PINRW PINAW 

90% confidence level 

MFNN 0.9588 0.0172 0.0172 0.0135 
DPFNN 0.9588 0.0158 0.0158 0.0128 
HFNN 0.9533 0.0150 0.0150 0.0121 

HDFNN 0.9506 0.0137 0.0137 0.0105 

95% confidence level 

MFNN 0.9670 0.0217 0.0217 0.0176 
DPFNN 0.9670 0.0204 0.0204 0.0168 
HFNN 0.9698 0.0197 0.0197 0.0158 

HDFNN 0.9725 0.0182 0.0182 0.0153 

99% confidence level 

MFNN 0.9918 0.0657 0.0657 0.0450 
DPFNN 0.9945 0.0599 0.0599 0.0443 
HFNN 0.9918 0.0514 0.0514 0.0406 

HDFNN 0.9918 0.0445 0.0445 0.0347 
  

For further study of PIs constructions by various models, partitioning analysis is 

employed to provide explicit performances on different intervals of values. As 

suggested in Chapter 4, median and mean of the dataset in the testing period are 

considered as two threshold values, and the entire data are divided into low, medium 

and high loads accordingly. The statistics of different loads obtained by the four models 
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at 95% confidence level are displayed in Table 6.4. As can be seen, the PIs are capable 

of enclosing all observations located in low and medium loads. The PICP values in high 

loads are respectively 83.10%, 83.10%, 84.51% and 85.92% for the four models, which 

are far from the confidence level of 95%. Thus the PIs in terms of high loads are 

considered completely invalid. The high discrepancy and outlier presence of sediment 

data render it difficult to effectively capture both the low and high sediment loads, 

which is also a challenge in the point predictions. As expected, the HDFNN model 

produces narrow PIs in terms of different loads, which finally lead to the smallest 

PINRW and PINAW values obtained using the whole dataset in Table 6.3. In regard to 

the low load, the width of intervals based on PINAW are respectively 17.24%, 14.28% 

and 6.49% smaller than the MFNN, DFPNN and HFNN models. The HFNN model 

produces slightly better PIs than the HDFNN in terms of medium loads. This might be 

attributed to many reasons, for instance, the fuzzy patterns in the HFNN happen to 

capture the medium observations effectively for PIs construction. However, the 

performance of HFNN model has no general significance, which could not be 

concluded that it is more reliable than the HDFNN. Albeit being invalid, the PIs attained 

by the HDFNN model have the highest quality in high loads. It covers 1.67% 

observations more than the HFNN model with 8.33% smaller interval width. 

Accordingly, PIs for the sediment simulation mainly present their efficiency in low and 

medium loads. The HDFNN model is able to generate relatively excellent PIs in terms 

of high loads, in spite of unconvincing at a particular confidence level.  

 
Table 6.4 Statistics of different loads by various models for the one-day-ahead case on 
the Muddy Creek at 95% confidence level 

Model Low load Medium load High load 
PICP PINRW PINAW PICP PINRW PINAW PICP PINRW PINAW 

MFNN 1 0.0090 0.0087 1 0.0229 0.0217 0.8310 0.0374 0.0346 
DPFNN 1 0.0087 0.0084 1 0.0215 0.0199 0.8310 0.0351 0.0399 
HFNN 1 0.0082 0.0077 1 0.0196 0.0189 0.8451 0.0351 0.0324 

HDFNN 1 0.0079 0.0072 1 0.0201 0.0194 0.8592 0.0303 0.0297 
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The PIs generated at 95% CL by the four models are depicted in Figure 6.5 for 

comparison. For convenience of visual inspection, six points of observations with 

extremely high values are cut from the time series and not demonstrated in the figures. 

As can be seen from Figure 6.5(a), the MFNN and DFPNN are not available to generate 

effective lower bounds of PIs for the middle part of the observations. The lower bounds 

obtained are nearly equal to a small value and are not consistent with observations in the 

flow series. With respect to the upper bounds of PIs, the performances of DFPNN are 

slightly superior to the MFNN for the middle part of the observations, nevertheless, 

comparable with the rest of observations. The more compact structure of DFPNN model 

might explain the above performances, that less uncertainty might be accompanied with 

more optimal structure of models. The integration of fuzzy pattern-recognition into the 

HFNN model render it generate PIs with better upper bounds than the MFNN, as 

indicated in Figure 6.5(b). The performances presented in Figure 6.5(c) imply that the 

HDFNN model is particularly outstanding in construction of lower bounds of PIs. This 

might be explained by the practice of introducing continuity equation in HDFNN model, 

in which the lower bounds of PIs could be effectively produced using the recession 

coefficient, and change with the time series of observations. Narrower intervals by 

HFNN and HDFNN models are also observed when compared with that by the MFNN 

and DPFNN. The capacity of the HDFNN model in making appropriate uncertainty 

prediction is thus verified in view of producing suitable lower bounds and narrower 

intervals.     
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Figure 6.5 LUBE generated PIs at 95% confidence level for one-day-ahead case on the 
Muddy Creek by (a) MFNN/DPFNN (b) MFNN/HFNN and (c) HFNN/HDFNN models 
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6.4.2 Performances on multi-step-ahead estimation  

As a case, the multi-step-ahead estimation is developed with input combination [Qu(t-1), 

Qu(t), Qd(t), Qd(t-1), SSLu(t-3)] to compute the downstream sediment load at time t. It could 

be regarded as a three-day-ahead estimation since the sediment input is three days ahead 

of the output variable. After the optimal model structure has been identified, a thorough 

comparison of the LUBE PIs constructed by each model is presented in the following.  

 

As indicated in Table 6.5, the reliability of MFNN, DPFNN and HFNN models could 

not be ensured with 99% confidence level. They are inadequate to generate PIs covering 

more than 99% observations for the present three-day-ahead estimation. The HDFNN 

model shows its superiority particularly with this high confidence level, since it could 

still generate convincing and narrow intervals. When compared with the HFNN, its PIs 

cover more than 0.28% observations with 2.21% smaller width. The improvement of 

HDFNN model is not as marked as the one-day-ahead case for the 99% case. The 

conclusion does not agree with the results of point predictions in Chapter 4, which 

suggests that the superiority degree of the HDFNN does not significantly mitigate with 

the increase of lead time. The high confidence level is prone to increase great 

difficulties for the estimation models in PIs constructions. As far as the 90% and 95% 

CL cases are concerned, the values of PINAW obtained by the HDFNN model are 

respectively 1.05% and 1.54%, which is almost the same with the one-day-ahead 

estimation. However, the current cases produce PIs with smaller coverage probability. 

Also in light of lower PICP and higher PINAW values obtained by the other three 

models, it could be concluded that the qualities of PIs substantially deteriorate with 

increasing lead time. The HDFNN attains narrower intervals than the MFNN, in which 

the PINAW values are respectively 27.08% and 18.95% smaller for the 90% and 95% 

CL. The corresponding reduction values for the one-day-ahead case are 22.22% and 
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13.07%, and comparisons with the above case imply that the HDFNN model could still 

better present its advantage with larger lead time. This eventually accords with the 

findings for the point predictions. In other words, the improvements of HDFNN model 

over the others are greater than the one-day-ahead case with 90% and 95% CL. The 

main reason might be that the reservoirs assumed in the HDFNN model could better 

present their storage capability with larger lead time. Furthermore, the HDFNN model is 

adapted to satisfy the validity condition for the 99% CL for the three-day-ahead case.  

 

The results of partitioning analysis with 95% confidence level are summarized in Table 

6.6. The PIs in low and medium loads enclose all corresponding observations while 

those in high loads are not reliable at 95% CL, which is the same with the results in 

one-day-ahead case. The current cases generate PIs with even fewer observations 

enclosed by the HFNN and HDFNN models in terms of high loads. Despite that, the 

HDFNN model unsurprisingly produces the highest quality of PIs consistently in the 

three loads. The HDFNN model is better than the HFNN at generating narrower 

intervals in medium loads for the present case however, which conflicts with the results 

in one-day-ahead case. This provides another evidence for the excellent performances of 

HDFNN model in PIs construction with a lead time of three days. That is, although the 

HFNN model could simulate effective low and medium loads benefitting from the fuzzy 

pattern-recognition, the ability of HDFNN in modeling the sediment loads with large 

lead time is preferably presented.  

 

The LUBE generated PIs by various models for the three-day-ahead estimations are 

demonstrated in Figure 6.6. As can be seen, the four models present inabilities to 

generate lower bounds consistent with the complexly varied observations, particularly 

for those in the middle of flow series. As a similar tendency of the comparisons in the 
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previous case, the DPFNN model produces slightly better upper bounds of PIs than the 

MFNN. It is observed in Figure 6.6(b) that the superiority of HFNN model over MFNN 

is obvious in view of the narrower PIs. Moreover, the HFNN is able to produce 

fluctuating values of upper bounds varying with the observations, owing to the fuzzy 

patterns. By comparing the results between Figure 6.6(a) and (c), it is also found that 

PIs attained by the HFNN and HDFNN models are significantly narrower than that by 

the MFNN and DPFNN. In this context, the HDFNN is better than the HFNN in the 

generation of upper bounds. It seems that the HDFNN model could not generate PIs 

with effective lower bounds with a lead time of three days.  

 

Table 6.5 Testing performances by various models for the three-day-ahead case on the 
Muddy Creek 

 models PICP CWC PINRW PINAW 

90% confidence level 

MFNN 0.9475 0.0161 0.0161 0.0144 
DPFNN 0.9503 0.0169 0.0169 0.0134 
HFNN 0.9475 0.0159 0.0159 0.0120 

HDFNN 0.9475 0.0130 0.0130 0.0105 

95% confidence level 

MFNN 0.9668 0.0231 0.0231 0.0190 
DPFNN 0.9668 0.0222 0.0222 0.0180 
HFNN 0.9641 0.0221 0.0221 0.0172 

HDFNN 0.9668 0.0193 0.0193 0.0154 

99% confidence level 

MFNN 0.9834 0.0491 0.1321 0.0431 
DPFNN 0.9862 0.0496 0.1169 0.0427 
HFNN 0.9889 0.0431 0.0900 0.0362 

HDFNN 0.9917 0.0443 0.0443 0.0354 
 

Table 6.6 Statistics of different loads by various models for the three-day-ahead case on 
the Muddy Creek at 95% confidence level 

Model Low load Medium load High load 
PICP PINRW PINAW PICP PINRW PINAW PICP PINRW PINAW 

MFNN 1 0.0103 0.0103 1 0.0234 0.0216 0.8310 0.0402 0.0373 
DPFNN 1 0.0100 0.0100 1 0.0211 0.0189 0.8310 0.0395 0.0373 
HFNN 1 0.0079 0.0072 1 0.0242 0.0228 0.8169 0.0380 0.0341 

HDFNN 1 0.0076 0.0071 1 0.0187 0.0180 0.8310 0.0348 0.0327 
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Figure 6.6 LUBE generated PIs at 95% confidence level for three-day-ahead case on the 

Muddy Creek by (a) MFNN/DPFNN (b) MFNN/ HFNN and (c) HFNN/HDFNN 
models 
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6.5 Summary 

The uncertainty analysis on hydrological models for river flow forecasting and sediment 

load estimation are undertaken respectively in this chapter, as a complementary study to 

the research in Chapters 3 and 4. Instead of examining the model effectiveness, the main 

objective of this study is to assess the reliability of models by interval predictions and 

finally evaluate their applicability in practical use. The LUBE is a straight-forward 

method that can construct neural network based models with two output neurons and 

directly approximate the lower and upper bounds of PIs. An index, namely Coverage 

Width-based Criterion (CWC), as a combination of coverage probability and interval 

width, is employed in the LUBE model in order to search high quality PIs.  

 

Applications on the river flow forecasting models reveal the reliability of HNN model 

from the perspective of one-day-ahead and 16-hour-ahead cases with 90% and 95% 

confidence level. In regard to the 99% CL case, the HNN model generates valid and 

narrow PIs with a lead time of one day, although the improvements over the other three 

models are not as significant. The large lead time in the 16-hour-ahead case increases 

the uncertainties in the inputs, and thus leads to failure to ensure the required coverage 

probability with confidence level 99%.  

 

As for the sediment load estimation, the superiority degree of the HDFNN over its 

counterparts does not significantly mitigate with the increase of lead time for the 90% 

and 95% CL cases. The more compact structure of HDFNN model renders narrower PIs 

entailing less uncertainty. Further, it could produce better lower bounds of PIs owing to 

the integration of the continuity equation and the employment of recession coefficients. 

The fuzzy patterns in the HDFNN model could explain the generated PIs with better 
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upper bounds. Partitioning analysis reveals that the HDFNN consistently constructs 

narrow PIs with 100% enclosed observations in low and medium loads, although with 

invalid PIs in high loads with 95% CL. With confidence level 99%, it is more difficult 

to optimize the parameters from the input to the hidden layer to adapt both the lower 

and upper bounds of the PIs, particularly when more uncertainties are imported with 

increasing lead time. Only the HDFNN could ensure the required coverage probability 

and generate the narrowest PIs among the four models for the three-day-ahead case.   

 

The influences of hydrological models on the quality of the PIs are found to be 

significant in this study using DE algorithm to minimize the objective function. Further 

research should be focused on examining the effectiveness of other optimization 

algorithms in addressing the highly nonlinear, discontinuous and non-differentiable 

problem in LUBE method. In addition, the identification of optimal input variables for 

the interval predictions should be undertaken using appropriate input selection 

techniques.   
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7 Comparative Study on Population-based 

Optimization Algorithms  

The effectiveness and reliability of population-based optimization algorithms in neural 

network models are another concern in this thesis. The optimization confronted with the 

HNN and HDFNN models is characterized as a highly-nonlinear and non-differentiable 

problem, which entail the use of population-based optimization algorithms. The present 

chapter primarily concentrates on the following contents: 

(1) To compare the optimization ability, convergence speed and reliability of three 

population-based optimization algorithms (i.e., DE, ABC and ACO);   

(2) To determine the most adaptive population-based optimization algorithm for the 

HNN and HDFNN models. 

  

7.1 Introduction  

Traditional optimization algorithms namely the gradient descent method and 

Levenberg-Marquardt (L-M) method are not applicable for non-differentiable problems. 

Besides, local optima are more likely to happen when the models to be optimized are 

characterized with multi-dimension, high nonlinearity and varying with time. Recently, 

population-based optimization algorithms have attracted the interest of many 

researchers (Blum and Roli, 2003; Chiong et al., 2012). They are characterized by a 

population consisting of possible solutions to the problem, which are modified by 

applying different types of operators and thus moving towards a near-optimal solution 

area. These algorithms are very powerful in finding a global optimum since they 
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simultaneously search in many directions by using a population of possible solutions. 

Generally, there are two categories of population-based optimization algorithms: 

evolutionary algorithms and swarm intelligence algorithms (Blum et al., 2012). Typical 

methods of evolutionary algorithms are the genetic algorithm (GA) and differential 

evolution (DE), which attempt to simulate natural evolution. The DE algorithm was 

proposed by Storn and Price (1995) and has been applied extensively in hydrological 

modeling (e.g., Babu and Angira, 2003; Liu and Pender, 2013; Vasan and Simonovic, 

2010). It shows better performances than the GA in terms of convergence characteristics 

and computational efficiency (Li et al., 2013a; Song et al., 2014; Wang et al., 2008b). In 

view of its ability to handle optimization problems that are non-differentiable, nonlinear, 

non-continuous and varying with time (Rocca et al., 2011), it is adopted in this chapter 

for the comparative study.  

 

The second category, swarm intelligence-based algorithms are inspired by the collective 

behavior of animal societies, including particle swarm optimization (PSO), artificial bee 

colony (ABC) and ant colony optimization (ACO). This chapter focuses on ABC and 

ACO as stochastic global optimization algorithms. The ABC algorithm was introduced 

and popularized by Karaboga (2005) to solve numerical optimization problems. It has 

predictive capability comparable to the GA, PSO and DE algorithms on numerical test 

functions (Karaboga and Akay, 2009). Hybrid models that combine ABC algorithms 

with ANNs have been developed recently (Karaboga et al., 2007; Kisi et al., 2012b). 

Another swarm intelligence-based optimization method ACO was derived from the food 

searching behavior of ants (Dorigo et al., 1996). Similar to the ABC algorithm, it is a 

meta-heuristic technique available to solve non-linear optimization problems with high 

dimensionality and inequality constraints. Coupling ACO algorithm with feed-forward 

neural network training has proven to be successful (Li and Chung, 2005; Shelokar et al., 
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2007; Socha and Blum, 2007). The potential to apply ACO to the field of river flow 

forecasting and sediment load estimation is clear, e.g., see its applications in water 

resource problems (Jalali et al., 2006; Kumar and Reddy, 2006; Maier et al., 2003). 

 

Optimization of neural networks has always been an open research. It is imperative to 

solve the disadvantages of traditional learning algorithms, such as poor generalization, 

slow convergence speed and easily plunging into local optima. The main objective of 

this chapter is therefore, to incorporate population-based optimization algorithms 

(namely DE, ABC and ACO) into the HNN and HDFNN models, and compare their 

optimization ability, stability and reliability, and thereby, determine the most adaptive 

optimization algorithm for the river flow forecasting and sediment load estimation. The 

rest of this chapter is structured in the following manner. In the section 7.2, a brief 

review of the three population-based optimization algorithms is firstly provided. Section 

7.3 then applies the algorithms into the river flow forecasting model, with single- and 

multi-step-ahead cases respectively. The applications and performances of the 

optimization algorithms on the HDFNN model are subsequently presented. Finally, the 

computational results and comparisons of the optimization algorithms are summarized 

in the section 7.5. 

 

7.2 Population-based optimization algorithms  

7.2.1 Differential evolution algorithm  

The differential evolution (DE) algorithm conducts mutation, crossover and selection 

operations based on the differences of randomly sampled pairs of solutions in the 

population. Mutation operation acts as a search mechanism while the crossover operator 

recombines the parent vector with the mutated one. Afterwards, all solutions have an 
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equal chance of being selected as a parent. The strategies are described as follows. 

 

Firstly, define a population of D dimensional parameter vectors, with NP population 

size. Each individual (target vector) for generation G is then represented as Xi,G (i =1, 

2, …, NP) and }{ 21 G,iDG,iG,iG,i x,...,x,xX = constitutes all parameters to be optimized. 

Donor vector in the next generation Vi,G+1 is generated from three randomly selected 

vectors Xr1,G, Xr2,G and Xr3,G as follows 

)( 3211 G,rG,rG,rG,i XXFXV −+=+                    (7.1) 

in which F acts as a mutation factor which is a random number uniformly distributed 

within the range [0, 2]. The randomly selected indexes r1, r2, r3 ϵ {1, 2, …, NP} must 

be different from one another and from the running index i as well.  

 

The crossover operation defines a trial vector }{ 112111 ++++ = G,iDG,iG,iG,i u,...,u,uU  as 

follows  
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       (7.2)  

where j=1, 2, …, D; CR is a crossover constant in the range of [0, 1]; randij is a random 

number within 0 and 1 ; and Irand is a random index from [1, 2, …, D], ensuring that at 

least one element in the trial vector is obtained from G,iV . The change of the diversity of 

the population is controlled by the CR value.  

 

The selection operation chooses the vector in the next generation by the following 

equation for a minimizing problem  
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in which the objective function associated with G,iX  is denoted as )( G,iXf . In other 

words, when comparing the target vector with the trial vector, a lower function yielding 

value is admitted to the succeeding generation. In general, the DE algorithm is a 

comparatively simple algorithm because only three control parameters (i.e., NP, F and 

CR) are required to be prescribed.   

 

7.2.2 Artificial bee colony  

The ABC algorithm draws its inspiration from the foraging behavior of honey bee 

swarms. A possible solution to the optimization problem is viewed as a food source for 

the artificial bees. In the foraging process, bees interact with each other aiming to 

maximize the nectar amount of the food source. The distribution and duties of grouped 

employed, onlooker and scout bees have been described in details (Karaboga and Akay, 

2009).  

 

In this scheme, a population of food source position {X1, X2, …, XNP} is initialized 

randomly, where NP denotes the number of population and refers to the number of food 

sources as well. Each food source }{ 21 iDiii x,...,x,xX =  is a D-dimensional vector, 

containing D variables for the optimal problem. During the employed bees’ phase, a 

neighbor solution ijv  is generated from an original one ijx  by the following equation  

)()11( kjijijij xx,randxv −×−+=                      (7.4) 

where the subscript j ϵ [1, D] are randomly chosen indexes and k ϵ [1, NP] is a random 

neighbor index which should be different from i. After evaluating the new neighbor and 

original solution by the fitness value of the optimal problem, the better solution will be 

kept in the population. Employed bees will then transmit the information concerned 

with the source to the onlooker bees. The onlooker bees employ a roulette-wheel like 
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selection depending on a probability value as follows 

∑
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= NP
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                            (7.5) 

where )( iXf  is the fitness value of the solution Xi. The probability value ip  is 

proportional to the fitness value for a selected solution. If ip  is larger than a random 

number drawn for each solution within [0, 1], the onlooker bees will make a local 

search as in Eq. (7.4) to find a neighbor solution. During the employed and onlooker 

bees’ phases, when the nectar of a food source being exploited is exhausted, the source 

will be abandoned. That is, if the original solution is kept and not replaced by a new 

neighbor one for exceeding a prescribed number of cycles, namely Limit, it is postulated 

to be an exhausted one and has to be replaced by a new random solution. The scout bees 

determine a new food source by the following expression: 

)()1 0( min
j

max
j

min
jij xx,randxx −×+=                  (7.6) 

in which, min
jx and max

jx  are the minimum and maximum value of the corresponding 

solution, respectively. Similarly, the new solution will be evaluated and compared with 

the existing one. The solution with a “rich source” (minimum fitness value) will be 

selected as the optimal one. There are two control parameters in an ABC algorithm: NP 

and Limit.  

 

7.2.3 Ant colony optimization  

The ACO algorithm simulates ants’ behavior in which their fundamental objectives are 

to find the shortest path between food source and their nest. There is a hypothetical 

chemical substance named pheromone laid by other ants in their trails, which works as a 

communication mechanism. The ants will choose paths independently according to the 
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pheromone intensity. For a specific solution component, it is more likely to be selected 

if its pheromone value is higher. The pheromone value will be reinforced if the 

corresponding solution component belongs to the best solution. The following 

discussion outlines the basic concept of the ACO algorithm.  

 

Given that there are D parameters to be optimized in the search space. Each parameter’s 

definition space is split into a set of discrete points. As shown in Table 7.1, for 

parameter xj (j=1, 2, …, D) within a range of [aj1, ajN], there are totally N discrete points 

when the feasible range is uniformly divided into N-1 shares. Each point corresponds to 

a candidate value of the parameter, namely solution component ajk (k=1, 2, …, N). 

Suppose an ant i (i=1, 2, …, NP) is on its path to search D parameters, it can only 

choose a value for each parameter among the candidate points and record the 

corresponding tag. In the meantime, the pheromone intensity is needed for each 

candidate point, represented by τjk for tag k. When an ant reaches the parameter xj, each 

solution component has the following probability to be selected 

∑
≤≤

=

Nm
jm

jk
jkp

1
τ

τ
                             (7.7) 

With probability value larger than a random value within the range [0, 1], the 

corresponding point ajk will be selected for this parameter. After the ant finishes its tour 

and all parameters are selected as Xi={x1, x2 ,…, xD}, it will return to its nest and update 

the pheromone intensity according to the following equations: 

jkjkjk ii τρττ ∆+=+ )()1(                       (7.8) 





=∆
else                       0

   tobelongs and  as selected is  if       )( ijjki
jk

Xxa Xf/Q
τ    (7.9) 

The first term in the right-hand side of Eq. (7.8) reflects an evaporation process in 

which ρ ϵ [0, 1] is the coefficient of pheromone duration. The second term indicates the 
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reinforcement in which Δτjk is the amount of pheromone retained in the solution 

component being a part of Xi. The reinforcement value Δτjk=0 if component ajk is not 

within the best solution. In particular, the pheromone constant Q in Eq. (7.9) is a 

user-defined parameter which is the same for all ants, and f (Xi) is the fitness value 

associated with Xi. The parameters of the ACO algorithm to be prescribed are 

respectively NP, N, ρ and Q.  

 
Table 7.1 Pheromone table for each parameter in ACO algorithm 

xj (j=1, 2,…, D) 
Tag 1 2 … N-1 N 

Solution component aj1 aj2 … aj(N-1) ajN 
Pheromone intensity τj1 τj2 … τj(N-1) τjN 

 

This chapter employs the population-based algorithm to deal with the non-differentiable 

and combinatorial problems of the HNN and HDFNN models. Given that the number of 

parameters to be optimized is D, this set of parameters is represented by a vector Xi. As 

outlined in Figure 7.1, the steps for optimizing parameters, when taking the DE 

algorithm as an example, are as follows: (1) randomly generate a population {X1, X2, …, 

XNP} within their interval [ max
j

min
j x,x  ]; (2) define the objective function of the model and 

set the running generation G=1; (3) train the model with current updated parameters and 

obtain the corresponding fitness value of the objective function; (4) apply the mutation 

and crossover processes to construct donor and trial vectors, and finally select one 

vector with a minimum fitness value from the trial and target vectors; (5) reset G=G+1; 

(6) if G>MI (maximum iteration), the stopping criterion is satisfied and the optimal set 

of parameters is outputted; or go to step (3) and (4) for the next generation. In particular, 

for step (4), the configuration of ABC and ACO algorithms is demonstrated in Figure 

7.1 as well. The ABC algorithm undergoes the employed, onlooker and scout bees’ 

phases orderly. As for the case of the ACO algorithm, firstly, set i=1 and initialize equal 
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pheromone intensity; release ant Xi, and let it select a candidate value for all D 

parameters; update the pheromone intensity and reset i=i+1; if i<=NP, release the 

succeeding ant and begin its tour, otherwise all ants have finished the search. All these 

three techniques show an easy realization in the process of optimizing parameters for 

the HNN and HDFNN models.  
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for all D parameters
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i=i+1

if  i<=NP

if  i>NP

 
Figure 7.1 Framework for optimizing parameters by (a) DE (b) ABC (c) ACO algorithm 
 

7.3 Applications on river flow forecasting  

In order to compare the performances of the population-based optimization algorithms 

on the HNN model, the Yellow River in the Altamaha river basin is employed as a case 

study site. This chapter adopts the same daily and hourly data to compute the river flow 

at the downstream station 02208000. When the optimization ability, convergence speed 

and stability of each algorithm might be relevant with forecast lead time, both single- 

and multi-step-ahead cases are performed in the following.   
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7.3.1 Performances on single-step-ahead forecasting  

As been shown in Chapter 5, the DE algorithm yields the best forecasting performances 

when daily areal precipitation and all three upstream flows are employed as input 

variables. These results are compared with that optimized by the ABC and ACO 

algorithms using the same input. For completeness’ sake, the PSO algorithm is included 

as a benchmark case for the comparison of forecasting performances, a detailed 

description of which is given by Clerc and Kennedy (2002). 

  

Firstly, the training and testing performances by various algorithms in terms of RMSE, 

NSEC and ACC are summarized in Table 7.2. The DE algorithm outperforms its 

counterparts in both training and testing period with respect to RMSE and NSEC values. 

The high values of NSEC suggest that the HNN model is fully trained to provide 

sufficiently accurate forecasting by the DE algorithm, although obtaining a lower ACC 

value than the PSO in the testing stage. The advantage of DE over ABC algorithm is 

relatively evident, as there is a 9.76% reduction in RMSE and 4.92% increase in NSEC 

value during the testing period. When compared with the PSO algorithm, ABC does not 

show superiority in this study case. Comparison of performances between DE and ACO 

implies that the ACO algorithm can be recommended as an effective method as well. It 

has comparable performances with the PSO algorithm, particularly for the RMSE and 

NSEC values in the training period. From the perspective of generalization and 

forecasting abilities, the HNN model superbly captures the input-output mapping when 

optimized with DE and ACO algorithms. To obtain the above results, parameters used 

are: MI =500, NP=550, F=0.4 and CR=1.0 in the DE algorithm; MI =2000, NP=440 and 

Limit=214 in the ABC algorithm; MI =500, NP=780, N=45, ρ=0.3 and Q=1.0 in the 
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ACO algorithm.      

 

The scatter plots of observed and computed discharges by these four algorithms are 

presented in Figure 7.2. The HNN model exhibits good matches between the observed 

and computed data series in the testing period. The plots of intensively distributed dots 

along the ideal line within 0-50 m3/s suggest that the low river flows are mostly well 

forecasted. This is because the frequent occurrences of low values allow a better 

generalization of the trained model. The performance of the ABC algorithm is not as 

good when compared with the DE, ACO and PSO with evidence of five apparent dots 

over-forecasted with a range of 113-226 m3/s. The result is consistent with the high 

RMSE value obtained by the ABC algorithm in Table 7.2. The improvement of 

performances for the DE over ACO algorithm is not evident in the scatter plots.  

 

The capability of capturing extreme values is critical to evaluate the performance of the 

HNN model. Figure 7.3 presents the time series of observed and computed discharges 

by the DE algorithm and marks five observed extreme points. The quantitative values 

are provided in Table 7.3, along with the forecasted results by the four algorithms. 

Whilst the peak value (extreme point 2) is over-forecasted by all algorithms, the DE 

algorithm produces a relatively closer result. It performs well at extreme point 3 

although the forecasted one is slightly under-estimated. The ACO algorithm gives the 

most approximate values for point 4 and 5. The relative mean errors between the 

computed and observed extreme values by all four algorithms do not vary significantly. 

Accordingly, the four algorithms perform equally well in capturing extreme values. 

They have operators providing variable step size and diversity, thus can perform the 

perturbation of the proposed HNN model.     
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Table 7.2 Training and testing performances by various algorithms in terms of RMSE, 
NSCE and ACC for the one-day-ahead case in the Altamaha river basin  

Algorithm Training Testing 
RMSE (m3/s) NSEC ACC RMSE (m3/s) NSEC ACC 

DE 2.5534 0.9812 0.7627 8.1500 0.8294 0.7937 
ABC 3.0827 0.9727 0.7279 9.0319 0.7905 0.7905 
ACO 2.8174 0.9772 0.7658 8.8573 0.7985 0.7853 
PSO 2.8306 0.9769 0.7139 8.1502 0.8294 0.8150 

 

Table 7.3 Observed and computed extreme values by various algorithms for the 
one-day-ahead case in the Altamaha river basin  

Algorithm 
Extreme 
point 1 
(m3/s) 

Extreme 
point 2 
(m3/s) 

Extreme 
point 3 
(m3/s) 

Extreme 
point 4 
(m3/s) 

Extreme 
point 5 
(m3/s) 

Relative 
mean 
error 

Observed 89.4811 156.8751 69.6593 49.8376 124.0276  
DE 66.4992 219.9800 68.8210 64.1180 117.3200 0.2024 

ABC 75.2180 223.3100 67.5240 69.5910 132.1700 0.2151 
ACO 54.3910 224.1600 71.0100 61.9400 125.1600 0.2184 
PSO 71.8230 223.7800 62.4530 64.5090 115.9200 0.2174 
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Figure 7.2 Observed and computed discharges by (a) DE (b) ABC (c) ACO and (d) PSO 

algorithm for the one-day-ahead case in the Altamaha river basin 
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Figure 7.3 Observed and computed discharges by DE algorithm and marked extreme 
points for observed discharges for the one-day-ahead case in the Altamaha river basin 

 

Details regarding the mean, variance and mean of 95% confidence interval by the four 

algorithms are provided in Table 7.4. This statistical analysis is necessary to check the 

significance of the differences. The mean value attained by the PSO algorithm is closer 

to the observed one when compared with the others. These four algorithms obtain 

higher variance values than the observations, which indicate that the computed results 

are more widely distributed. The most approximated value for the observations is 

obtained by the PSO algorithm for the mean with 95% confidence interval, yet slight 

discrepancy is observed in comparison with other algorithms. Thus the forecasting 

performances by these four optimization algorithms are comparable.  

 

The Diebold-Mariano (DM) test is employed to assess the statistical significance of the 

comparison of the results. It is used to compare the accuracy of two forecasts, by 

computing the DM statistics on the base of the loss differential defined as the difference 

of the squared forecast errors (Diebold and Mariano, 1995; Harvey et al., 1997; Rech, 

2002). Under the null hypothesis of equal forecasting accuracy, the asymptotical 

distribution of DM is standard normal. Suppose that the significance level of the test is 

0.05, the null hypothesis of no difference will be rejected if the computed DM statistic 
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falls outside the range of -1.96 to 1.96. Table 7.5 provides the DM statistics between 

each pair of algorithms. Observations reveal that all the DM statistics are within the 

range of [-1.96, 1.96], which give all the algorithms equal chance of forecast. This 

supports the reliability of the comparative study of optimization algorithms. The DM 

statistics between DE and the other three algorithms are -1.0389, -1.4719 and -0.0005 

respectively, and these negative values reveal a preference with regard to the DE 

algorithm. Inversely, the positive DM statistics between ABC and the other three imply 

the inferiority of the former algorithm. The PSO and DE algorithms show almost equal 

accuracy, as indicated by the low DM statistic (i.e., 0.0005). These results accord with 

the above discussions on forecasting performances.    

 
Table 7.4 Statistical analysis by various algorithms for the one-day-ahead case in the 
Altamaha river basin  

Algorithm Mean 
(m3/s) 

Variance 
(m6/s2) 

Mean of 95% confidence 
interval (m3/s) 

Observed 18.6845 389.4509 15.1565 
DE 19.2846 453.6750 16.3556 

ABC 19.6943 512.7502 16.1543 
ACO 18.8421 433.9878 16.0703 
PSO 18.5927 441.1913 15.8193 

 

Table 7.5 DM test for the forecasting accuracy between each pair of algorithms for the 
one-day-ahead case in the Altamaha river basin  

Algorithms DE ABC ACO PSO 
DE  -1.0389 -1.4719 -0.0005 

ABC 1.0389  0.1905 1.2904 
ACO 1.4719 -0.1905  1.1300 
PSO 0.0005 -1.2904 -1.1300  

 

In addition, the convergence speed of population-based optimization algorithms is 

investigated, in which the training error as a function of running iteration is illustrated in 

Figure 7.4. The training error decreases rapidly when the number of iterations is less 

than 200 and remains approximately constant when the running iteration approaches 

500 times for the DE and ACO algorithms. That is, these two algorithms can achieve 
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convergence with 500 time runs. The PSO algorithm has faster speed since the training 

error decreases dramatically and becomes stable before running 200 times. In contrast, 

the ABC algorithm reaches the minimum training error until the running iteration 

approaches 2,000. However, the minimum training errors produced by the four 

algorithms are sufficiently small, indicating satisfactory precision of the generalization. 

These four algorithms have a powerful global search ability to prevent the optimization 

from the premature convergence. As shown in Table 7.6, the running times for each 

algorithm are respectively 3.12, 29.4, 4.43 and 1.64 hours. The ABC algorithm displays 

slow convergence speed, and thereby, is time consuming. This is mainly attributed to 

the localization of the method itself, in which two phases with equally large population 

of bees are assigned in the searching process. The values of special parameters, namely 

recession coefficient and initial storage, are also presented in the table for comparison. 

The ABC algorithm obtains quite different values while the other three tend to attain 

reliable values. Thereby, the DE and ACO algorithms have the feature of rapid 

convergence on global optima and high precision in searching parameters of the HNN 

model. They are consistently better than the ABC algorithm in time and derivation 

efficiency.  
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Figure 7.4 Training errors (RMSE) by various algorithms versus running iteration for 

the one-day-ahead case in the Altamaha river basin 
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Table 7.6 Running time and values of special parameters by various algorithms for the 
one-day-ahead case in the Altamaha river basin 

Algorithm 
Maximum 
iteration 

(MI) 

Running time 
(hour) 

Parameters 

recession coefficient λ initial storage S(T=0) 

DE 500 3.12 0.3609 0.1327 
ABC 2000 29.4 0.3032 0.0532 
ACO 500 4.43 0.3864 0.1365 
PSO 500 1.64 0.3661 0.1309 

 

A comprehensive comparative study on the stability of DE, ABC and ACO algorithms is 

further carried out. The parameter of population size NP poses a great impact on the 

performance of population-based optimization algorithms. A large NP can endow the 

algorithms with powerful ability of exploring more possible solutions, albeit 

computationally intensive. Figure 7.5 presents the influence of NP on the RMSE value 

by various algorithms. The DE algorithm has an adaptive relation between NP and 

RMSE, where the RMSE value firstly decreases and remains stable with increasing NP. 

The choice of NP assures the stability of the DE algorithm. This is most likely due to 

donor and trial vectors, which provide diversity of population and thus weaken the 

dependency of the performance on population size. The ABC and ACO algorithms 

could not reveal such consistency, since the NP significantly affects the RMSE value. 

Nevertheless, the variation of RMSE with NP is within a reasonable range.  

 

Mutation factor F and crossover constant CR serve as the other two control parameters 

of the DE algorithm, and their influences on the RMSE value are demonstrated in 

Figure 7.6. The results of Figure 7.6(a) are obtained with fixed CR=1.0 while those for 

Figure 7.6(b) are obtained with fixed F=0.4. The best RMSE value is attained when F 

and CR are recognized as 0.4 and 1.0, respectively. However, the plots of RMSE versus 

F and CR are quite different. As F increases from 0 to 2, RMSE first drops to a 

minimum value and then begins to increase. This implies that RMSE is sensitive to F 
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for the DE algorithm. As a basic requirement, the chosen F should be able to provide a 

diversity of mutated vectors. The RMSE decreases sharply from 0 to 0.1, and fluctuates 

within a narrow range when CR increases. The DE algorithm presents a certain degree 

of stability in terms of CR within the interval between [0.1, 1.0].   

 

Limit is an inclusive control parameter for the ABC algorithm, which governs the 

number of scout bees’ exploration. As illustrated in Figure 7.7, the value of Limit is 

recommended to be smaller than the number of food source NP since a too high value of 

Limit will lead to an ineffective scout bees’ phase. A too small Limit value which 

indicates that employed and onlooker bees do not work is not appreciated as well. In an 

ABC searching process, both exploration by scout bees and exploitation by employed 

and onlooker bees must be efficiently carried out (Karaboga, 2005). In this simulation, 

the ABC algorithm presents stability in terms of Limit in the interval of [80, 320]. A 

slight advantage of the ABC over the other two algorithms is that there is only one 

control parameter in addition to NP.   

 

Figure 7.8 presents the sensitivities of RMSE value to the number of solution 

components N, pheromone duration coefficient ρ and pheromone constant Q 

respectively for the ACO algorithm. The precision of finding the optimal solution is low 

and the best solution may not be obtained if N is small and the amount of available 

solutions is insufficient. On the contrary, a larger value of N does not definitely ensure 

better searching results even though there are more solution components to be selected. 

As displayed in Figure 7.8(a) with fixed ρ=0.3 and Q=1.0, the RMSE value strongly 

depends on N with irregular fluctuations. Generally, N can be enacted to be less than 

100 for this case since the RMSE varies within a small range. The fixed parameters 

given in Figure 7.8(b) are N=45 and Q=1.0 whilst those in Figure 7.8(c) are N=45 and 
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ρ=0.3. The ACO algorithm exhibits stability regarding ρ and Q, apart from infeasible 

cases both on the boundary value 0. An appreciable value of ρ enables the ant to 

effectively forget the fallacious solution component and explore a new one. The value of 

Q is associated with the fitness value, and a range of [0.1, 1] is suggested to assure the 

stability of ACO algorithm in this study. However, these values for the control 

parameters vary with the dimensions of the problem and other specific characteristics. 

The recommended values to these parameters may not be applicable in other studies.  
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Figure 7.5 The influence of population size on forecasting performances by various 

algorithms for the one-day-ahead case in the Altamaha river basin 
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Figure 7.6 The influences of (a) F (b) CR on forecasting performances by DE algorithm 

for the one-day-ahead case in the Altamaha river basin 

 206 



Hybrid Model of Neural Network and Population-based Optimization Algorithm                  Xiaoyun Chen 

0 100 200 300 400 500 6002

4

6

8

10

12

14

Values of  Limit
R

M
SE

 (m
3 /s

)
 

Figure 7.7 The influence of Limit on forecasting performances by ABC algorithm for 
the one-day-ahead case in the Altamaha river basin 
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Figure 7.8 The influences of (a) N (b) ρ (c) Q on forecasting performances by ACO 

algorithm for the one-day-ahead case in the Altamaha river basin 
 

In conclusion, the DE algorithm presents the best performance on the generalization and 

forecasting for the HNN model, which is quite comparable to the PSO algorithm. The 

ACO is a feasible algorithm yielding satisfactory forecasting results as well. The ABC 

algorithm does not exhibit a comparable efficiency, with slow convergence and time 

consumption. The ACO and DE algorithms are found to give a consistent parameter 

optimization of the HNN model in terms of the recession coefficient and initial storage. 
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Also in view of stable performances regarding their control parameters, the DE and 

ACO algorithms are well adapted for the optimization problem in the HNN model. 

 

7.3.2 Performances on multi-step-ahead forecasting  

As far as the performance of optimization algorithms on multi-step-ahead forecasting is 

concerned, the 16-hour-ahead forecast in the Altamaha river basin is presented in this 

section. The DE algorithm has shown its efficiency with a high NSEC value (i.e., 

0.8929) from input combination 2-1 in Chapter 5. The training and testing performances 

by the other algorithms are shown in Table 7.7 based on the same hourly data and input. 

As can be seen, the DE attains slightly inferior results than the PSO, yet they are 

perfectly capable algorithms with large forecast lead time. The ABC algorithm yields 

the best RMSE and NSEC values in the training period, revealing its ability in 

generalization. The forecasting accuracy by the ABC algorithm is fairly appropriate as 

well, in which the ACC value is slightly higher than that by the DE algorithm. Thus the 

ABC algorithm could be employed as an effective optimization technique with the HNN 

model when multi-step-ahead forecast is performed. The ACO algorithm consistently 

yields comparable results in this study case, and obtains the best accuracy in particular. 

The corresponding forecasted results are plotted in Figure 7.9 to provide a visual 

comparison. The computed dots by the four algorithms are basically distributed along 

the ideal lines, indicating that they are alternative methods for the hourly forecasting. 

Some of the dots in the range of 10-30 m3/s are perfectly matched with the observations. 

Besides, the ACO algorithm slightly outperforms others with evidence of intensively 

distributed dots within the range of 30-50 m3/s. The above results are achieved by the 

following parameters: MI =500, NP=600, F=0.4 and CR=0.9 in the DE algorithm; MI 

=2000, NP=460 and Limit=226 in the ABC algorithm; MI =500, NP=800, N=500, ρ=0.3 
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and Q=0.1 in the ACO algorithm.   

  
Table 7.7 Training and testing performances by various algorithms in terms of RMSE, 
NSCE and ACC for the 16-hour-ahead case in the Altamaha river basin 

Algorithm Training Testing 
RMSE (m3/s) NSEC ACC RMSE (m3/s) NSEC ACC 

DE 2.6799 0.9763 0.9327 2.8348 0.8929 0.8643 
ABC 2.6792 0.9763 0.9320 2.8377 0.8927 0.8667 
ACO 2.7990 0.9742 0.9266 2.9636 0.8830 0.8865 
PSO 2.7082 0.9758 0.9299 2.8114 0.8947 0.8819 
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Figure 7.9 Observed and computed discharges by (a) DE (b) ABC (c) ACO and (d) PSO 

algorithm for the 16-hour-ahead case in the Altamaha river basin  
 

The statistical analysis by the four algorithms is presented in Table 7.8 in order to check 

the significance of the differences. The ACO algorithm obtains the most approximate 

mean values of all data and of 95% confidence interval, which agrees with its highest 

ACC value in the testing period. The variances computed by the four algorithms are 

lower than the observations, where the ACO algorithm attains the lowest one. The 

reliability of the comparative study of optimization algorithms is proven by the DM test, 

since all the DM statistics are between -1.96 and 1.96 in Table 7.9. The preference with 

 209 



7 Comparative Study on Population-based Optimization Algorithms 

regard to the DE algorithm is supported by the negative values attained between the DE 

and ABC/ACO algorithms. The positive DM statistic between the DE and PSO 

algorithms reveals lower accuracy of the former. The difference between the ABC and 

PSO algorithms is relatively significant with a value of 1.7325 for the DM statistic.  

 

The training errors versus running iteration are demonstrated in Figure 7.10 for the 

purpose of comparing convergence speed of the optimization algorithms. Observations 

reveal that the DE and PSO algorithms have a similar trend to achieve convergence. The 

model optimized by the ACO algorithm also reaches the minimum training error before 

500 running iteration, yet with slower speed. The ABC algorithm suffers the 

disadvantage of slow convergence speed as before, in which the training error decreases 

slowly and becomes constant after running 2000 times. It is noted that the ABC 

achieves almost the same minimum training error as the other three algorithms, which 

indicates that the model parameters are fully searched and optimized. This might 

explain the excellent performances of the ABC algorithm for the present study case 

when compared against the results in Figure 7.4. The running times shown in Table 7.10 

imply the feature of time consuming of the ABC algorithm. The larger running iteration 

is not the only reason for the longer running time, since the maximum iteration by the 

ABC is four times larger than the DE and yet its running time is eight times longer than 

0.84 hour. This means that the ABC spends more time in each iteration, and its 

computational efficiency is lower in comparison with the other algorithms. It can also 

be observed from Table 7.10 that the parameter optimization ability of the four 

algorithms is fairly equal for the present case, with evidence of the comparable values 

of recession coefficient and initial storage.  
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Table 7.8 Statistical analysis by various algorithms for the 16-hour-ahead case in the 
Altamaha river basin  

Algorithm Mean 
(m3/s) 

Variance 
(m6/s2) 

Mean of 95% confidence 
interval (m3/s) 

Observed 14.5282 75.2713 12.3248 
DE 15.1541 65.7083 13.0795 

ABC 15.0622 64.4972 13.0153 
ACO 14.3551 55.2520 12.5727 
PSO 14.8639 67.4586 12.7749 

 

Table 7.9 DM test for the forecasting accuracy between each pair of algorithms for the 
16-hour-ahead case in the Altamaha river basin  

Algorithms DE ABC ACO PSO 
DE  -0.1490 -0.8333 1.0665 

ABC 0.1490  -0.9178 1.7325 
ACO 0.8333 0.9178  1.0494 
PSO -1.0665 -1.7325 -1.0494  

 

Table 7.10 Running time and values of special parameters by various algorithms for the 
16-hour-ahead case in the Altamaha river basin 

Algorithm 
Maximum 
iteration 

(MI) 

Running time 
(hour) 

Parameters 

recession coefficient λ initial storage S(T=0) 

DE 500 0.84 0.4553 0.1350 
ABC 2000 7.21 0.4585 0.1359 
ACO 500 1.15 0.4850 0.1324 
PSO 500 0.73 0.4600 0.1283 
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Figure 7.10 Training errors (RMSE) by various algorithms versus running iteration for 

the 16-hour-ahead case in the Altamaha river basin  
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In addition, the influences of control parameters on the DE, ABC and ACO algorithms 

are systematically performed. The contributions of population size to the forecasting 

performances are outlined in Figure 7.11 for the 16-hour-ahead forecast. The RMSE 

value by the DE algorithm gradually decreases before the best result is obtained with 

NP=600, and then slightly increases with the increase of NP. The ABC algorithm has 

similar tendency with the varying NP value and reaches the minimum RMSE value 

when NP=460. However, it is relatively sensitive to the population size when compared 

with the DE algorithm. The RMSE value obtained by the ACO algorithm begins with a 

larger one when NP=100 and decreases to a minimum value when NP=800. The three 

algorithms reveal comparably stable features in terms of the population size, wherein 

the DE and ABC algorithm are more independent.   
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Figure 7.11 The influence of population size on forecasting performances by various 

algorithms for the 16-hour-ahead case in the Altamaha river basin 
 

The performances of DE algorithm regarding two control parameters F and CR are 

demonstrated in Figure 7.12. The RMSE value presents comparably stable with respect 

to F in the interval of [0.2, 2] and the best result is obtained taking F as the value of 0.4. 

As observed in Figure 7.12(b), the RMSE value gradually decreases at the beginning, 

and drops to a small value when CR=0.55. Then it slightly decreases with the increase 
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of CR value. In comparison with the F, the DE algorithm is more sensitive to the CR 

parameter for the present case. The possible reason is that the CR value controls the 

change of the diversity of the population, thus the HNN model is more dependent on the 

CR when forecast lead time is larger. Likewise, the contribution of Limit parameter to 

the ABC algorithm is shown in Figure 7.13. The RMSE value drops sharply with 

increasing Limit firstly, and then fluctuates slightly within a small range. A minimum 

value is obtained when Limit=226 with fixed NP=460. The optimization becomes 

independent when the value of Limit is larger than half of the population size, which is 

exactly the number of employ bees. As aforementioned, the ABC algorithm would not 

undergo the scout bees’ phase when the Limit exceeds the number of employed bees. 

The effects of different influencing parameters on the ACO algorithm are demonstrated 

in Figure 7.14. It is noticed that there is no regular variation for the performances with 

the increasing N value. The ACO algorithm presents stability in terms of the ρ value in 

view of the small change of RMSE values. The pheromone constant Q is highly 

correlated with the fitness value and controls the reinforcement process. As observed in 

Figure 7.14(c), the ACO is quite insensitive when the Q value is larger than 0.10 and the 

RMSE value obtained at Q=0 is deviant.  
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Figure 7.12 The influences of (a) F (b) CR on forecasting performances by DE algorithm 

for the 16-hour-ahead case in the Altamaha river basin  
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Figure 7.13 The influence of Limit on forecasting performances by ABC algorithm for 

the 16-hour-ahead case in the Altamaha river basin  
 

0 200 400 600 8002
3
4
5
6

Values of N

R
M

SE
 (m

3 /s
) (a)

 

0 0.2 0.4 0.6 0.8 12
2.5

3
3.5

4

Values of ρ

R
M

SE
 (m

3 /s
) (b)

 

0 0.2 0.4 0.6 0.8 10
2
4
6
8

10

Values of Q

R
M

SE
 (m

3 /s
) (c)

 
Figure 7.14 The influences of (a) N (b) ρ (c) Q on forecasting performances by ACO 

algorithm for the 16-hour-ahead case in the Altamaha river basin  
 

In short, the DE, ABC and ACO algorithms present their availability in optimizing the 

multi-step-ahead forecasts, and show considerably equal chance of forecast by the DM 

test. The ABC algorithm performs excellently on the forecasting results and parameter 

optimization in particular, which reveals the availability in the HNN model when 

compared with the one-day-ahead case. However, conclusions that the ABC algorithm 

is better in the multi-step-ahead forecast could not be drawn since the single- and 
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multi-step-ahead cases adopt daily and hourly data respectively.  

 

7.4 Applications on sediment load estimation 

A further analysis on the applications of optimization algorithms on the HDFNN model 

for sediment load estimation is presented in this section. When compared with the HNN 

model, the problem of the HDFNN arises with features of more complex and 

discontinuous since double neural networks are employed. The stations 06088300 and 

06088500 on the Muddy Creek in Montana are considered as study case sites. The same 

daily data are applied in the estimation model, and the best input combinations 

determined in Chapter 5 are adopted for single- and multi-step-ahead cases.  

 

7.4.1 Performances on single-step-ahead estimation 

It has been reported in Chapter 5 that the DE algorithm yields the best estimation results 

with NSEC=0.9762 for the one-day-ahead case on the Muddy Creek. The corresponding 

performances are summarized in Table 7.11 when optimizing the same HDFNN model 

by ABC, ACO and PSO algorithms. It is observed that the DE algorithm outperforms 

others in view of lowest RMSE and highest NSEC value in both training and testing 

periods. The ACO comes in second place for the generalization and estimation abilities, 

whose NSEC value in the testing period is 0.21% smaller than that by the DE algorithm. 

The ABC and PSO algorithms enjoy comparable performances during the testing period, 

and yet the ABC is preferred because of more fully trained. More insights on the 

estimation performances can be obtained in Table 7.12 through a partitioning analysis. 

The ACO algorithm shows its superiority in the low and medium loads particularly 

whereas the DE tends to better approximate the high loads. The results could be 

observed in Figure 7.15 by the scatter plots of the observed and estimated sediment 
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loads. The ABC over-estimates many observations below 500 tons/day and the PSO 

visibly under-estimates some dots near 1500 tons/day. The four algorithms tend to yield 

unsatisfactory under-estimated results since the computed dots in the lower-right  

corner of the figures are located far from the ideal line. The above results are obtained 

with MI =500, NP=600, F=0.4 and CR=1.0 in the DE algorithm; MI =2000, NP=500 

and Limit=248 in the ABC algorithm; MI =500, NP=720, N=250, ρ=0.35 and Q=0.07 in 

the ACO algorithm.   

 
Table 7.11 Training and testing performances by various algorithms in terms of RMSE 
and NSCE for the one-day-ahead case on the Muddy Creek  

Algorithm Training Testing 
RMSE (tons/day) NSEC RMSE (tons/day) NSEC 

DE 284.9112 0.9922 362.8466 0.9762 
ABC 316.6352 0.9903 393.3081 0.9720 
ACO 316.5997 0.9903 377.9417 0.9742 
PSO 351.5354 0.9881 392.7150 0.9721 

 

Table 7.12 Partitioning analysis by various algorithms for the one-day-ahead case on the 
Muddy Creek 

Algorithm Low load 
RMSE (tons/day) 

Medium load 
RMSE (tons/day) 

High load 
RMSE (tons/day) 

DE 112.2258 161.2308 776.1632 
ABC 142.3585 255.5686 800.1699 
ACO 71.3035 140.8372 829.8670 
PSO 147.0277 162.3081 833.1924 

 

Statistical analysis is conducted in terms of the mean, variance and mean of 95% 

confidence interval of the observed and estimated sediment loads. As seen in Table 7.13, 

the four algorithms do not present significant differences with the observations, 

indicating their reliability in optimizing the HDFNN model. The DM test for the 

estimation accuracy between each pair of algorithms is provided in Table 7.14, which 

also proves the equality of each algorithm for the HDFNN model when the significance 

level of the test is supposed as 0.05. The similarity of estimation ability between ABC 
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and PSO algorithms is verified by the small DM statistic (i.e., 0.0431). The DE 

algorithm presents best accuracy in view of the negative DM statistics.  
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Figure 7.15 Observed and estimated sediment loads by (a) DE (b) ABC (c) ACO and 

(d) PSO algorithm for the one-day-ahead case on the Muddy Creek 
 

Table 7.13 Statistical analysis by various algorithms for the one-day-ahead case on the 
Muddy Creek 

Algorithm Mean 
(tons/day) 

Variance 
(tons2/day2) 

Mean of 95% confidence 
interval (tons/day) 

Observed 385.0736 5.5440×106 231.1238 
DE 354.6502 5.0528×106 215.0894 

ABC 435.1645 5.4230×106 293.0341 
ACO 364.5258 5.1173×106 224.1479 
PSO 362.9237 4.8201×106 227.3404 

 

Table 7.14 DM test for the estimation accuracy between each pair of algorithms for the 
one-day-ahead case on the Muddy Creek  

Algorithms DE ABC ACO PSO 
DE  -1.2926 -1.4864 -1.6245 

ABC 1.2926  0.7053 0.0431 
ACO 1.4864 -0.7053  -0.8199 
PSO 1.6245 -0.0431 0.8199  
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Likewise, the convergence speed and result of the four optimization algorithms are 

compared. It can be noticed in Figure 7.16 that the training error optimized by each 

algorithm decreases to a minimum value after running 2000 times in which the one 

obtained by the PSO algorithm is slightly larger than the others. None of the algorithms 

rapidly attain its minimum training error, which is obviously larger than the others, 

suggesting that premature convergence does not happen. The DE and PSO have fast 

speed to achieve convergence while the ACO algorithm presents inefficiency at the first 

200 iterations. The rate of convergence by the ABC is not as high as that by the other 

three algorithms, but their degrees of convergence are quite similar. Results in Table 

7.15 reveal that the ABC takes almost 8 hours to achieve convergence by running 2000 

iterations. The other three algorithms demonstrate comparably high computational 

efficiency. The values of special parameters optimized by various algorithms are 

provided in Table 7.15 as well. The ABC and ACO algorithms obtain approximated 

values of a0, b0 and initial sediment deposition sDS 0 , and the recession coefficients are 

respectively 0.4796 and 0.7149. The four parameters attained by the DE and PSO are 

quite different from those by the former two algorithms, revealing the difficulty and 

complexity of the HDFNN model in parameter optimization.   
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Figure 7.16 Training errors (RMSE) by various algorithms versus running iteration for 

the one-day-ahead case on the Muddy Creek 
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Table 7.15 Running time and values of special parameters by various algorithms for the 
one-day-ahead case on the Muddy Creek  

Algorithm 
Maximum 
iteration 

(MI) 

Running 
time 

(hour) 

Parameters 

a0 b0 
recession 

coefficient λ 
initial storage 

sDS 0  
DE 500 1.32 0.0547 5.2456 0.6504 0.0091 

ABC 2000 8.00 0.4794 2.3475 0.4796 0.0200 
ACO 500 1.97 0.4780 2.9265 0.7149 0.0202 
PSO 500 1.07 0.1643 4.3540 0.5391 0.1573 

 

The dependence of DE, ABC and ACO algorithms on their control parameters is of 

concern for the HDFNN model. The influence of population size on the model 

performances is illustrated in Figure 7.17. The RMSE value by the DE and ABC 

algorithms has similar variation with increasing NP, and it fluctuates within a narrow 

range when the NP value falls in [220, 800]. The ACO algorithm is highly sensitive to 

the NP value, and the best result is attained when NP=720. This might be attributed to 

the mechanism of the ACO algorithm, in which the times of updating pheromone 

intensity depend on the NP value. The stability of the three algorithms in terms of other 

control parameters will be discussed in conjunction with the multi-step-ahead estimation 

in the following, since the three-day-ahead case on the Muddy Creek is considered as a 

study case which shares the same daily data as the present one-day-ahead case.  
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Figure 7.17 The influence of population size on estimation performances by various 

algorithms for the one-day-ahead case on the Muddy Creek 
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7.4.2 Performances on multi-step-ahead estimation  

The model performances by the four optimization algorithms with respect to the 

three-day-ahead case on the Muddy Creek are summarized in Table 7.16. The DE 

outperforms others in the testing period in view of a reduction of 7.42%, 18.37% and 

32.54% in RMSE value when compared with ABC, ACO and PSO algorithms 

respectively. It yields the best performance in the training period as well, revealing the 

generalization and estimation ability of the DE algorithm for the HDFNN model with 

large lead time. The PSO algorithm presents conflicting results between the training and 

testing periods, in which the model is trained excessively and yet the estimation is not as 

good as expected. The ABC is a preferred algorithm when compared with the ACO, in 

which there is a reduction of 15.55% and 11.82% in terms of RMSE value respectively 

in the training and testing period. The excellent performances of the ABC algorithm in 

the present study case disaccord with the one-day-ahead estimation, which might be due 

to the ability of effectively providing solutions even when the lead time is large. That is, 

multi-step-ahead estimations might increase dispersion and uncertainty to the 

optimization problem, nevertheless the operation of abandoning exhausted solutions in 

the ABC algorithm might avoid the possibility. Furthermore, the partitioning analysis 

provided in Table 7.17 reveals that the excellent performance of the DE algorithm 

primarily relies on its capability in accurately fitting the high loads. Its RMSE values in 

low and medium loads are not unsatisfactory, yet they are larger than those attained by 

the PSO algorithm. It is worthwhile to note that the DE algorithm consistently presents 

superiority in computing the high values for the sediment load. This might be attributed 

to the crossover process of the DE algorithm in which the diversity of the population is 

satisfied. On the other hand, the high RMSE value in high loads seems to be the reason 

for the poor performances of the PSO algorithm. Despite that, the PSO is an appropriate 
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algorithm for the HDFNN model the same as the other algorithms, since the NSEC 

value obtained is as high as 0.9360. The scatter plots of observed and estimated 

sediment loads by the four algorithms are demonstrated in Figure 7.18. The ABC and 

PSO algorithms improperly under-estimate some dots as near-zero values. The DE 

algorithm can fit the observations without too much over-estimation while the ACO 

presents excellent performances instead of unduly under-estimating the observations.  

 
Table 7.16 Training and testing performances by various algorithms in terms of RMSE 
and NSCE for the three-day-ahead case on the Muddy Creek  

Algorithm Training Testing 
RMSE (tons/day) NSEC RMSE (tons/day) NSEC 

DE 274.5113 0.9927 402.3409 0.9709 
ABC 352.6813 0.9880 434.6173 0.9658 
ACO 417.6449 0.9832 492.8989 0.9563 
PSO 307.0586 0.9909 596.3998 0.9360 

 

Table 7.17 Partitioning analysis by various algorithms for the three-day-ahead case on 
the Muddy Creek  

Algorithm Low load 
RMSE (tons/day) 

Medium load 
RMSE (tons/day) 

High load 
RMSE (tons/day) 

DE 101.8828 169.0317 868.8377 
ABC 97.3824 217.8088 933.3839 
ACO 186.6741 302.9915 1004.208 
PSO 97.0076 148.0918 1325.044 

 

In addition, the significance of the differences of the four algorithms is investigated in 

terms of statistical analysis and DM test, the results of which are presented in Tables 

7.18 and 7.19. As can be seen, the mean values of total and 95% confidence interval by 

the ACO algorithm are not close to the observations most. The PSO algorithm obtains a 

discrete variance value when compared with the others. Thus the ACO and PSO 

algorithms seem to have inferior performances in estimation accuracy. This conclusion 

is further substantiated by the positive DM statistics attained between ACO/PSO and 

the other two algorithms. Despite that, the equal chance of estimation accuracy of the 

four algorithms is confirmed since all the DM statistics outlined in Table 7.19 are within 
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the range of -1.96 and 1.96. The priority of the DE algorithm is verified by the negative 

DM statistics between DE and the other three. The PSO yields worse accuracy than the 

ACO algorithm with DM statistic=0.6230, which is highly consistent with results in 

Table 7.16. The above results are on the basis of computation with MI =500, NP=520, 

F=0.4 and CR=1.0 in the DE algorithm; MI =2000, NP=500 and Limit=244 in the ABC 

algorithm; MI =500, NP=760, N=400, ρ=0.35 and Q=0.07 in the ACO algorithm.   
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Figure 7.18 Observed and estimated sediment loads by (a) DE (b) ABC (c) ACO and (d) 

PSO algorithm for the three-day-ahead case on the Muddy Creek 

 

Table 7.18 Statistical analysis by various algorithms for the three-day-ahead case on the 
Muddy Creek  

Algorithm Mean 
(tons/day) 

Variance 
(m6/s2) 

Mean of 95% confidence 
interval (tons/day) 

Observed 387.1635 5.5740×106 232.3700 
DE 363.6521 4.7464×106 228.0751 

ABC 381.3827 4.4618×106 251.3216 
ACO 464.1081 4.6973×106 334.2639 
PSO 340.3519 3.4365×106 224.7561 
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Table 7.19 DM test for the estimation accuracy between each pair of algorithms for the 
three-day-ahead case on the Muddy Creek  

Algorithms DE ABC ACO PSO 
DE  -0.9092 -1.1528 -1.0940 

ABC 0.9092  -1.0739 -1.0459 
ACO 1.1528 1.0739  -0.6230 
PSO 1.0940 1.0459 0.6230  

 

When examining the convergence of the four algorithms, the results of training error 

versus running iteration are illustrated in Figure 7.19. It is observed that the ACO 

algorithm yields a relatively larger training error after running 2000 times. The 

performances of the training errors produced by the four algorithms are in agreement 

with the training performances provided in Table 7.16. The convergence speed is 

another index of training ability, revealing the computational efficiency of optimization 

algorithms. The PSO, DE, ACO and ABC are accordingly placed in order in terms of 

fast convergence speed for the present case. Likewise, the running times as well as the 

values of optimization parameters are presented in Table 7.20. The ABC algorithm 

presents feature of most time consumption, however, has comparable ability in finding 

the parameters with the PSO algorithm. The DE algorithm obtains quite different 

parameters, and they might be the most adaptive ones since they are accompanied by 

the best estimation performances.  
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Figure 7.19 Training errors (RMSE) by various algorithms versus running iteration for 

the three-day-ahead case on the Muddy Creek 
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Table 7.20 Running time and values of special parameters by various algorithms for the 
three-day-ahead case on the Muddy Creek  

Algorithm 
Maximum 
iteration 

(MI) 

Running 
time 

(hour) 

Parameters 

a0 b0 
recession 

coefficient λ 
initial storage 

sDS 0  
DE 500 1.13 0.3162 3.4912 0.7238 0.0412 

ABC 2000 8.44 0.1993 5.0023 0.4789 0.0024 
ACO 500 2.08 0.0352 4.7520 0.5514 0.1079 
PSO 500 1.03 0.1977 5.3080 0.2612 0.0656 

 

The stability of DE, ABC and ACO algorithms in terms of the population size NP is 

outlined in Figure 7.20. Similar to the one-day-ahead case, the ACO is relatively 

sensitive to the NP value in comparison with the other two algorithms. The influences 

of F and CR of the DE algorithm on the model performances are demonstrated 

respectively for the one- and three-day-ahead cases in Figure 7.21. They enjoy similar 

tendency with increasing F and CR, and both obtain best results when F=0.4 and 

CR=1.0. When compared with the CR value, the F seems to have more influences on 

the model performances. This might be a common specialty for the DE algorithm. 

Likewise, the sensitivity of ABC algorithm to the Limit value is depicted in Figure 7.22. 

The RMSE values gradually decrease when Limit increases, and fluctuate within a small 

range when the Limit value approaches the half of the population size, both for the one- 

and three-day-ahead estimations. This fairly agrees with the cases for the river flow 

forecasting, where the ABC algorithm is quite dependent of the Limit parameter. Details 

regarding the control parameters of the ACO algorithm are shown in Figure 7.23. The 

one- and three-day-ahead estimations still enjoy similar performances with the changes 

of N, ρ and Q. The RMSE decreases rapidly at the beginning and becomes relatively 

stable with the increase of N value. In addition, the ACO algorithm appears to be 

insensitive to the ρ value within the range of [0.1, 0.8]. The minimum RMSE values are 

attained with Q=0.07, and the model performances are independence of the Q value 

after the best results are achieved.            
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Figure 7.20 The influence of population size on estimation performances by various 

algorithms for the three-day-ahead case on the Muddy Creek 
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Figure 7.21 The influences of (a) F (b) CR on estimation performances by DE algorithm 

for the cases on the Muddy Creek 
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Figure 7.22 The influence of Limit on estimation performances by ABC algorithm for 

the cases on the Muddy Creek 
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Figure 7.23 The influences of (a) N (b) ρ (c) Q on estimation performances by ACO 

algorithm for the cases on the Muddy Creek 
 

7.5 Summary 

The applications of population-based optimization algorithms in hydrology community 

have been a great interest for decades. However, there is a lack of systematical 

investigation on the performances of the algorithms coupled with neural network 

models. In this chapter, the performances of three population-based optimization 

algorithms, namely DE, ABC and ACO, are compared when evolving the HNN and 

HDFNN models. The computation efficiency and parameter optimization is examined 

as well. Besides, the effects of control parameters on each algorithm are quantified 

additionally to improve the understanding about the optimization process. Thus this 

study attempts to determine a relatively reliable and stable algorithm for the nonlinear 
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and non-differentiable optimizations. From the results on the HNN and HDFNN models, 

following conclusions are drawn: 

(a) The chance of accuracy of the DE, ABC and ACO algorithms in optimizing the 

HNN and HDFNN models is comparably equal by the DM test when the 

significance level is assigned as 0.05. The reliability of the present comparative 

study on the optimization algorithms is confirmed accordingly.  

(b) The DE is found to be a more appropriate algorithm in terms of generalization and 

estimation. Particularly, the high values of the HNN and HDFNN models are 

consistently best fitted by the DE algorithm. The crossover process aiming at 

providing diversity of the population might be a possible reason. 

(c) The ABC algorithm appears to be more capable in optimizing the multi-step-ahead 

cases. This may be explained by the fact that the solutions of the ABC algorithm are 

effectively provided without exhausted ones even when the cases are dispersed and 

uncertain with large lead time. On the other hand, the ABC algorithm presents 

computational inefficiency since it achieves the convergence slowly. 

(d) The results of parameter optimizations in the HDFNN model are more dependent on 

the algorithms when compared with those in the HNN model because of the more 

complicated and discontinuous problems in the sediment load estimation.    

(e) The DE and ABC algorithms are more adaptive than the ACO with the population 

size. The dependence of ACO algorithm on the NP value is attributed to the 

mechanism that NP specifies the times of updating pheromone intensity. Besides, 

the ACO is inferior to the other two algorithms with the noteworthy drawback of 

employing more control parameters.  

(f) The dependences of control parameters on each algorithm are generally quite similar 

in single- and multi-step-ahead cases. In particular, the DE algorithm is more 

sensitive to the CR in comparison with the F parameter when lead time is larger. 
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7 Comparative Study on Population-based Optimization Algorithms 

The probable reason is that the CR value controlling the change of the diversity of 

the population is more influencing in multi-step-ahead cases. 
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8 Conclusions and Future Work 

8.1 Conclusions  

River flow forecasting and sediment load estimation have been recognized as significant 

issues in the hydrological field, and customarily undertaken by data-driven models. 

Despite the considerable amount of research on these models, most of them are totally a 

“black box” which could not reflect the physical relations between the input and output 

variables. Besides, these models tend to be processed with inappropriate input data and 

over-simplified assumptions, thus coupled with substantial uncertainty. The present 

thesis has advanced flexible hybrid models in which physical activation functions are 

introduced into the neural networks for river flow and sediment load. In this regards, the 

highly nonlinear, time-varying and fuzzy features of flow and sediment data are taken 

into account. Additionally, the determination of input variables, uncertainty analysis of 

proposed models and optimization algorithms employed in the calibration have been 

included in this study.  

  

The thesis first proposes a novel hybrid neural network (HNN) model by integrating 

with the fuzzy pattern-recognition concept and continuity equation, which work as 

activation functions in the hidden and output layers directly. The model is therefore, 

capable of reflecting fuzzy and time-varying features of river flows, by classifying 

inputs into different patterns and assuming the downstream station as a nonlinear 

storage reservoir. Three benchmarking models (namely ANN, FPNN and HYMN) are 

employed and two study cases are investigated under both daily and hourly scenarios. 

With respect to forecasting high flow values, the HNN model is identified as the 
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preferred tool which mainly benefits from the introduction of fuzzy pattern-recognition. 

It appropriately fits the total observations with the best accuracy since the continuity 

equation produces consistent computation. As forecasting lead time increases, the 

performance of the HNN model does not markedly deteriorate. Further, the superiority 

of HNN model over the other three is more salient in the case with larger storage 

capacity of the reservoir, particularly from the perspective of multi-step-ahead 

forecasting.  

 

A hybrid double feedforward neural network (HDFNN) model is then developed for 

suspended sediment load (SSL), by combining fuzzy pattern-recognition and continuity 

equation into a structure of double neural networks. The upstream sediment and flow 

inputs solely contribute to the output in terms of double neural network, since the 

upstream sediment is not a connatural variable with the flows and can not be employed 

in the pattern classification. The estimates based on HDFNN models are compared with 

three benchmark models (namely MFNN, DPFNN and HFNN) using daily dataset in 

two study cases. The generalization and estimation abilities of HDFNN model are 

attested with the lowest RMSE and highest NSEC values. Besides, it can reproduce 

medium and high loads appropriately as indicated by the partitioning analysis. The 

HDFNN model is also observed to present excellent performances in multi-step-ahead 

estimations, particularly in high loads, owing to the effective displayed storage capacity 

of the reservoir with large lead time. The case with a larger recession coefficient renders 

greater advantage of the HDFNN model over the others as well.  

  

The request of determining the best input variables for the HNN and HDFNN models 

has been processed. River flow and precipitation data from the upstream sections are 

imposed as potential inputs for downstream river flow. It is found that the efficiency of 
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the input variables depends on the basin boundary. Areal precipitation is an appropriate 

input variable coupled with all observed upstream flows in general. The upstream flows 

may be redundant and uncertain with increasing lead time. When the studied river basin 

is small, the contribution of upstream flow inputs to the output seems to be insensitive 

and areal precipitation may not be an acting input variable. Observations on the hourly 

forecasts reveal that certain input variables, including the precipitation may be uncertain 

and unstable for the HNN model when forecast lead time is shorter than the flow travel 

time. For the sediment load estimation, river flows from the upstream and downstream 

stations with different ahead of times are selected to formulate possible input 

combinations. The downstream sediment seems to be more sensitive to upstream flows 

when the studied area is small. The downstream flow is a critical factor affecting high 

sediment loads substantially. With the increase of lead time, the best performances on 

low, medium and high loads tend to be attained from the different input combinations, 

revealing the fuzzy feature of the sediment loads.  

 

The reliability of the proposed models is evaluated by uncertainty analysis, so as to 

attain interval predictions of the flow and sediment. The LUBE is a straight-forward 

method that can construct neural network based models with two output neurons and 

directly approximate the lower and upper bounds of PIs. Applications on the river flow 

forecasting models reveal the viability of HNN model from the perspective of 

one-day-ahead and 16-hour-ahead cases with 90% and 95% confidence level. In regard 

to the 99% CL case, the HNN model generates valid and narrow PIs with a lead time of 

one day, although the improvements over the other three models are not as significant. 

The large lead time in the 16-hour-ahead case increases the uncertainties in the inputs, 

and thus leads to failure to ensure the required coverage probability with confidence 

level 99%. As for the sediment load estimation, the superiority degree of the HDFNN 
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over its counterparts does not significantly mitigate with the increase of lead time for 

the 90% and 95% CL cases. The more compact structure of HDFNN model renders 

narrower PIs entailing less uncertainty. Further, it could produce better lower bounds of 

PIs owing to the integration of the continuity equation and the employment of the 

recession coefficients. Partitioning analysis reveals that the HDFNN consistently 

constructs narrow PIs with 100% enclosed observations in low and medium loads, 

although with invalid PIs in high loads with 95% CL. 

 

The performances of three population-based optimization algorithms, namely 

differential evolution (DE), artificial bee colony (ABC) and ant colony optimization 

(ACO) for evolving the HNN and HDFNN models are compared. It is firstly indicated 

by the DM test that the chance of accuracy of the three algorithms in optimizing the 

HNN and HDFNN models is comparably equal when the significance level is assigned 

as 0.05. The DE is found to be a more appropriate algorithm in terms of generalization 

and estimation, particularly for fitting the high values of the two models. The ABC 

algorithm appears to be more capable in optimizing the multi-step-ahead cases, but on 

the other hand, presents computational inefficiency. As far as the stability of the 

algorithms is concerned, the DE and ABC algorithms are more adaptive than the ACO 

with the population size. Besides, the ACO is inferior to the other two algorithms with 

the noteworthy drawback of employing more control parameters.  

 

One of the major contributions of this research is to explore hybrid neural network 

models with conceptual activation functions for river flow and sediment load. The 

effectiveness and reliability of the proposed HNN and HDFNN models have been 

verified respectively by the point and interval predictions, involving single- and 

multi-step-ahead cases. The LUBE method has proven as a promising technique 
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coupling with hybrid neural network models for uncertainty analysis. In addition, the 

DE algorithm has been identified as an appropriate optimization method in solving the 

highly nonlinear, non-differential and time-varying problems of the proposed models.   

 

8.2 Suggestions and future work 

More studies as an attempt to improve the accuracy of hydrological predictions and 

elucidate physical mechanisms in data-driven models can be explored in the future. The 

followings are the suggestions for research.  

 

Firstly, conceptual principles such as the continuity equations of momentum and energy 

are satisfied in a river system, which are worth being considered in the river flow and 

sediment modeling in addition to the mass conservation. The major challenge is how to 

directly increase the physical-plausibility of the data-driven models, in which 

integrating conceptual activation functions in neural networks has already been 

implemented in this study. Furthermore, the present work is the first application of 

considering the physics embedded with the structure of double neural network for 

modeling suspended sediment. This idea can be referred and extended for other 

hydrological models when the input variables have different effects on the output and 

suggested to be separately imported to the models.   

 

Secondly, it can be observed that the peak values of the flow and sediment are generally 

poorly fitted although the HNN and HDFNN models yield the best performances in 

comparison with their counterpart models. New methods that could better capture the 

fuzzy feature of the flow and sediment and improve the prediction of peak values are 

suggested to be developed in future. In order to explore the potential of physical 
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input-output relation, it is strongly recommended that data preprocessing techniques be 

employed to reduce redundant inputs and improve the mapping ability. The partitioning 

analysis in the sediment estimation encourages the employment of modular approaches, 

which could produce the sediment load separately in terms of low, medium and high 

loads. 

 

Third, the current study does not take into account the rainfall as an input variable on 

the sediment load, which may be as important in the river flow forecasting applications. 

Also owing to the scarcity of relevant data, the spatial variability of the flow and 

sediment inputs on the downstream sediment load has not been sufficiently examined. 

The hourly sample sediment estimation should be undertaken as well to ensure a wider 

application of the HDFNN model.  

 

Finally, the LUBE is found to be effective in this study using DE algorithm to minimize 

the objective function. Further research is recommended to focus on the other 

optimization algorithms in addressing the highly nonlinear, discontinuous and 

non-differentiable problem in LUBE method. In addition, the identification of optimal 

input variables for the interval predictions should be undertaken using appropriate input 

selection techniques.     
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