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Abstract 

With the advance of micro/nano fabrication technologies, microphotonic 

devices, such as optical microresonators and microinterferometers, have 

drawn intensive attention in various areas ranging from optical sensors to 

nonlinear optics. Although inorganic materials are widely used in 

microphotonic sensors, polymer materials attract more and more attention 

owing to their advantages including low cost, easy processability, 

mechanical and optical diversity, and biocompatibility. In this thesis, three 

kinds of polymer microphotonic devices were fabricated and systematically 

investigated for sensing applications. 

Firstly, polymer optical whispering-gallery mode (WGM) resonators 

were fabricated by using an own-developed 3D -printing technology 

based on optical maskless exposure approach. Suspended-disk polymer 

WGM resonators with the radiuses of 230 and 160 m were successfully 

fabricated. Optical fiber tapers with the minimum diameter of 2 m were 

used to couple light into and out the polymer WGM resonators. The quality 

factor of the fabricated resonators was measured to be around 6×103. 

Numerical simulations using software COMSOL have been carried out to 

analyze the optical WGM resonators and compare with the measured 

results. The fabricated polymer WGM resonators are appealing for 



 

 II

refractive index sensing and biosensors. 

 Secondly, optical fiber-tip pressure sensors were fabricated by using 

an own-developed in situ -printing technology. SU-8 Fabry-Perot (FP) 

interferometers with sealed air cavities were fabricated on the end face of a 

standard optical fiber for development of pressure microsensors. SU-8 

suspended diaphragms were directly printed by using a dynamic optical 

exposure technology and then were further constructed by a followed 

printing process to form sealed air cavities. Multi-beam FP interferometric 

fringes of reflection spectra were measured for pressure measurement. The 

sensing performance of the optical fiber-tip pressure microsensor was 

tested in the experiments. For a fiber-tip pressure sensor with the air cavity 

length of 93 m and SU-8 diaphragm thickness of 11 m, the measured 

pressure sensitivity was 2.93 nm/MPa. Numerical simulations of a 3D 

structural model have been performed by using commercial software 

COMSOL, and the simulated results agree well with the measured data. 

 Lastly, novel optical fiber-tip CO2 sensors were developed by in-situ 

-printing of a functional polymer material, i.e. poly 

(1-allyl-3-vinylimidazolium bromide) (PAVB), on the end faces of 

single-core/multicore fibers to form micrometer scale FP interferometers. 

The PAVB FP interferometer can absorb CO2 molecules, both physically and 

chemically, which results in an increase of the effective RI of PAVB polymer 
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and a red shift of the resonant wavelength in the reflection spectrum. As such 

FP interferometers are also sensitive to the temperature of the surrounding 

environment, another FP interferometer made of SU-8 was fabricated on 

the end face of the same fiber as a reference temperature sensor. The 

measured spectra were analyzed by using fast Fourier transformation to 

calculate the length of the polymer FP cavities. The fiber-tip CO2 sensors 

show a linear response to the change of CO2 concentration with the 

sensitivity of 34.92 pm/vol% in the range from 0 vol% to 75 vol%. The 

temperature sensitivity of the PAVB FP interferometer is 0.704 nm/C, 

whose cross sensitivity effect can be compensated by the SU-8 FP 

interferometer with the temperature sensitivity of 0.059 nm/C. The rise 

and fall times of the dynamic response of the fiber-tip CO2 sensors were 

measured to be 6.1 and 8.0 min, respectively.  
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Chapter 1  

Introduction 

 

1.1   Background 

Photonics has become one of essential technologies in our daily life and 

has been widely used for lighting, projectors and smartphones. 

Microphotonics is the science and technology exploiting photonics on 

micrometer scale. With the emergence of novel micro/nano fabrication 

technologies, microphotonic devices, such as optical waveguides [4, 5], 

microresonators [6], gratings and interferometers [7-9], have been 

intensively investigated in the areas of nonlinear optics [10], low-threshold 

lasers and dynamic filters [11]. Especially, owing to the small size and high 

energy density in microphotonic devices, microphotonic technologies are 

very appealing for high-sensitivity sensing [12-17].  

Sensors are devices for acquiring quantitative information such as 

pressure, temperature, and force from a target position or object. In recent 

years, microphotonic sensors have drawn a lot of attention owing to their 

small size and high sensitivity. For instances, different kinds of optical 

microcavities have been demonstrated as high-performance microphotonic 
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sensors. When the geometric parameters or optical properties of an optical 

microcavity are changed, the variation will be transferred to a change of the 

optical responses of the microcavity, for example, a shift of its resonant 

wavelength.  

In addition to optical microcavities, fiber-based devices are another 

remarkable kind of microphotonic sensors. With the advantages of optical 

fibers, such as small size, biocompatibility, distributed detection 

capabilities and low cost, many kinds of photonic sensors including fiber 

Bragg gratings, long-period gratings, thin-core-fiber modal interferometers, 

and fiber-based Fabry-Pérot cavities have been used to develop temperature, 

pressure, refractive index and even chemical and biological sensors. A 

number of reviews can be found regarding to the fields of fiber optic 

biosensors [18, 19]. 

To fabricate microphotonic sensors, different kinds of 

microfabrication technologies have been established. In particular, in order 

to overcome the limitations of conventional photomask-based 

photolithography, whose fabrication cost is usually high and lead time is 

commonly long, more and more maskless exposure technologies have been 

developed to fabricate microphotonic sensors. Typical maskless lithography 

technologies mainly include two kinds: (1) charged particles based 

maskless exposure technologies, such as focused ion beam and electron 
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beam lithography; (2) optical maskless exposure techniques, such as digital 

photolithography based on spatial light modulators (SLM), interference 

lithography and two-photon polymerization technology. Maskless exposure 

technologies have been widely used in the fields of microoptics, 

microelectromechanical systems and printed circuit boards.  

The materials of microphotonic devices can be divided into two 

catalogues, inorganic materials and organic materials. Although inorganic 

materials have been widely used in the fabrication of microphotonic 

sensors, polymer materials, a major part of organic materials, attracted 

great attention in recent years. Compared to the inorganic counterparts, 

polymers exhibit many advantages such as low cost, mechanical and 

optical diversity, easy processibility, biocompatibility and functionality, 

which make them very promising for microphotonic sensors. 

1.2   Motivations and Contributions of Research 

Though microphotonic sensors have been intensively investigated in the 

past decades, most of them are made of inorganic materials and the 

fabrication process is relative complex and time-consuming. By using 

maskless exposure technology, novel polymer microphotonic sensors can 

be developed. In particular, specialized types of microphotonic sensors can 

be developed using different kinds of responsive polymers for emerging 
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chemical and biological sensing as well as multi-parameter and remote 

sensing applications. 

In this thesis, three different kinds of polymer microphotonic sensors 

are developed by using the own-established optical -printing technologies 

based on maskless exposure approaches. Firstly, polymer whispering 

gallery mode resonators were demonstrated by using a novel optical 

maskless exposure technology, called optical 3D -printing. Secondly, 

polymer Fabry-Pérot interferometers with sealed air cavities were in situ 

-printed on the end face of a single-mode optical fiber for pressure 

sensing. The fabricated miniature fiber-based pressure sensors showed high 

sensitivity and fast dynamic response. Lastly, a functional polymer material 

with selective CO2 sorption ability was in situ -printed on the end face of a 

multi-core optical fiber to achieve fiber-top multisensory integration for 

simultaneous measurement of temperature and CO2 concentration. The 

fabricated sensors showed a linear response to the change of CO2 

concentration in the range of 0 vol% to 75 vol%. 

1.3   Outline of Thesis 

The chapters of the thesis are organized as below:  

Chapter 1: Introduction. In this chapter, the background of 

microphotonic sensors is reviewed. The objectives of the research project 
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are described, and the outline of the thesis is presented. 

Chapter 2: Overview of polymer microphotonic sensors. In this chapter, 

different kinds of polymer microphotonic sensors including free-standing 

polymer whispering-gallery-mode resonator sensors, fiber-based polymer 

microphotonic sensors, and waveguide-based polymer microphotonic 

sensors are summarized. The sensing mechanisms and structures of 

polymer microphotonic sensors are discussed. 

Chapter 3: Optical -printing based on maskless exposure technology. 

In this chapter, optical -printing technologies using DMD-based maskless 

exposure approach are introduced. The components of the system including 

light source, DMD chip, illumination optics and projection optics and the 

imaging analysis of the projection optics are discussed in detail.  

Chapter 4: Optically 3D µ-printed polymer whispering-gallery-mode 

resonators. In this chapter, polymer optical whispering-gallery mode 

resonators fabricated by an own-developed optical 3D µ-printing 

technology are presented. The fabrication and characterization of polymer 

whispering-gallery mode resonators are described and compared with 

numerical simulation results.  

Chapter 5: Optical fiber-tip pressure sensors with in situ -printed air 

cavities. In this chapter, polymer Fabry-Pérot interferometer pressure 

sensors fabricated by an own-developed optical in situ µ-printing 
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technology are presented. The design and fabrication of the polymer 

Fabry-Pérot interferometer pressure sensors are described in detail. Finally, 

the simulation results using COMSOL software are provided to compare 

with experimental results. 

Chapter 6: Optical fiber-tip CO2 sensors using a photocrosslinkable 

poly(ionic liquid). In the chapter, optical fiber-tip carbon dioxide sensors are 

presented using polymer Fabry-Pérot interferometers. The fabrication 

process and testing of the optical fiber-tip carbon dioxide sensors are 

described at length. The working mechanism of the sensor and the solution 

to compensate its cross sensitivity to temperature are presented. 

    Chapter 7: Conclusions and future outlook. In this chapter, a summary 

of the research results is presented and future outlook of the project is 

discussed. 
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Chapter 2  

Overview of Polymer Microphotonic Sensors 

 

2.1   Introduction 

With the advance of micro/nano fabrication technologies, different kinds of 

polymer microphotonic sensors have been developed. Typical polymer 

microphotonic sensors include free-standing polymer 

whispering-gallery-mode (WGM) resonator sensors, fiber-based polymer 

microphotonic sensors, and waveguide-based polymer microphotonic 

sensors.  

2.2   Free-standing polymer WGM resonator sensors 

2.2.1 Fundamentals of WGM resonators 

Whispering gallery modes (WGMs) are a kind of resonance caused by total 

internal reflection around the boundary of a circular interface [20-23]. 

When the light propagating along the inner surface of the resonator is in 

phase after each trip, it will generate a constructive interference and thus 

form resonant features. The spectral properties and linewidth of the 

resonance are determined by the geometries of the resonators and the 
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refractive index (RI) of the resonators and surrounding media. By virtue of 

low loss and small mode volume, optical WGM resonators can gain 

ultrahigh quality factor and high optical density. All these properties make 

WGM resonators an optimum platform to delve into the world of advanced 

photonics from low-threshold lasing, nonlinear optics to cavity 

optomechanics. 

    WGMs were first proposed by Lord Rayleigh in 1910-1912 and 

studied in acoustic phenomena in St. Paul’s Cathedral. As shown in Figure 

2.1(a), a whisper can be heard anywhere along the border of the round 

room in St. Paul’s Cathedral. The acoustic wave propagates along a thin 

layer near the curved wall by repeated reflection, which results in the 

whispering gallery phenomenon. Similar propagation modes also exist in 

the optical domain. Richtmyer demonstrated that microspheres could 

support optical WGMs in 1939 [24]. Since then, various structures have 

been developed to sustain optical WGMs, such as microspheres, 

microcapillaries, microtoroids, optical fibers, microbottles and 

microbubbles (as shown in Figures 2.1(b)–(g)). 
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2.2.2 Sensing principles 

In general, the operating principles of the WGM sensors are to monitor the 

spectral response of the WGM resonators with respect to physical stimuli 

from surrounding environment.  

a) Frequency shifts 

Shift of the resonant frequency is the mostly applied demodulation method 

in WGM resonators, which might be caused by the change of the RI of the 

surrounding medium as well as the change of the RI and the size of the 

resonator. This relation can be expressed by [31] 

 
0

= (1 ) ,h r

h r

n n R
F F

n n R




  
   (2.1)

where F is a sensitivity function indicating the gradient of the phase 

jump upon reflection at the resonator surface, nr and nh are the refractive 

indices of the WGM resonator and host medium, respectively, and R is the 

radius of the WGM resonator. Refractometers, a basic type of WGM 

resonators based polymer microphotonic sensors, directly monitor the 

changes in the bulk RI of the surrounding medium. According to Ref. [32], 

smaller resonators and lower RI contrast between the resonators and the 

surrounding medium can result in high RI sensitivity. Substantially, this 

phenomenon results from the further extending of the evanescent wave of 

the WGM resonators to the surrounding medium, which will increase the 
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influence of the surrounding medium in determining the effective RI and 

resonant wavelength of the WGM resonators. 

b) Line broadening 

The adhesion of small particles or analytes on a WGM cavity can also 

induce changes in the linewidth of the resonance, resulting degradation of 

the Q factors of the WGM resonators. In the perturbation process, 

additional scattering and absorption losses will be introduced. The change 

in resonant linewidth caused by additional absorption losses of a bound 

nanoparticle can be expressed as [33] 

 

2

2
0

| ( )|
Im[ ] ,

( ) | ( ) |
pabs

V
d

 
 




E r

r E r r
 

(2.2)

where V and E are the volume of the all space and the unperturbed mode 

distribution, respectively. (r) and  denote the original permittivity 

distribution and the polarizability of the particle, respectively. Meanwhile 

the change of resonant linewidth induced by scattering losses of 

nanoparticles can be solved using a rigorous operator method [34].  

c) Multi-peak sensing 

The sensing principles described above only consider the changes of single 

resonant property using one WGM resonator. Recently many techniques 

have been studied to combine different sensing channels or using multiple 

WGMs. For instance, owing to its self-reference ability, the frequency 
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splitting between two coupled WGMs can be used to detect nanoparticles 

whose radiuses are down to tens of nanometers[35]. When the relative 

mode splitting induced by single or multiple nanoparticles bound to the 

WGM cavity is stronger than the WGM's associated decay rate, a spectral 

doublet is formed. 

2.2.3 Applications of polymer WGM resonator sensors 

Polymer WGM resonators have been widely used as platforms for sensing 

applications. For instance, Dong et al. fabricated a temperature sensor by 

using PDMS microspherical resonators, exhibiting a sensitivity of 0.245 

nm K-1 [36], which is larger by one order of magnitude than WGM 

resonators made of pure silica. Wagner et al. demonstrated a force sensor 

with a force sensitivity of 7.664 nm N-1 by using a hollow polymethyl 

methacrylate (PMMA) sphere, with a resolution of ∼10−5 N [37]. Moreover, 

various biosensors were demonstrated through further functionalizing 

polymer WGM resonators. More details can be found in Ref. [29, 38-40]. 

2.3   Fiber-based polymer microphotonic sensors 

Owing to the ultralow loss, high capacity and small size, optical fibers have 

become a promising platform for optical sensing, where light can be easily 

coupled and transmitted. Typical polymer microphotonic sensors based on 

fiber technology include polymer micro/nano-fiber sensors and optical 
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fiber-tip sensors.  

2.3.1 Polymer micro/nano-fiber sensors 

Polymer micro/nano-fibers usually have diameters ranging from hundreds 

of nanometers to several micrometers, which can be fabricated by drawing 

polymer materials at high temperature [41, 42]. Owing to their low optical 

loss, small size, excellent mechanical flexibility and large ratio of 

evanescent filed in surrounding medium, polymer micro/nano-fibers are an 

ideal component to develop high-sensitivity, low-power-consumption and 

fast-response sensors. 

Various kinds of micro/nano-fiber devices can be adopted for sensing 

applications, such as straight micro/nanofibers, micro/nanofiber gratings, 

micro/nano-fiber circular cavities. What’s more, some functional dopants 

including quantum dots, dye molecules and metal nanoparticles can be 

doped into polymer micro/nano-fibers for biochemical and gas sensing 

[43-46]. In 2008, Gu et al. presented a NH3 sensor with a detection limit of 

3 ppm by doping bromothymol blue in poly (methyl methacrylate) 

micro/nano-fibers [46]. In 2012, Wang et al. demonstrated a humidity 

sensor with low power consumption and fast response through doping gold 

nanorods into polyacrylamide micro/nano-fibers [47]. 

2.3.2 Fiber-tip polymer Fabry-Pérot interferometer (FPI) sensors  
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Because of the tiny size and inherent light collection ability, optical 

fiber-tip sensors have drawn great attentions recently. In this thesis, we 

focus on the fiber-tip polymer FPI sensors and their applications.  

2.3.2.1 Basic principle 

FPIs consist of two reflective surfaces, which can be an optical fiber end 

face or an elastic diaphragm. The reflected lights interfere after reflections 

and form interference pattern in the reflection or transmission spectra, as 

shown in Figure 2.2. The total reflection intensity can be expressed as [48]: 

 
1 2 1 2 0

1 2 1 2 0

4
2 cos( )

,
4

1 2 cos( )
R I

nL
R R R R
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
  


  


  
 

(2.3)

where PR and PI are the intensity of the incident and reflected light, 

respectively, R1and R2 are the reflectivities of the two reflective surfaces, 

respectively, n is the RI of the interferometer, L is the length of the 

interferometer,  is the transmission coefficient of the light traveling forth 

and back through the interferometer, and 0 is a constant phase shift term. 

The shape of the reflection or transmission spectra of FPIs is 

determined by a finesse factor defined as: 

 
4

1 2

1 2

,
1

R R
F

R R





 

(2.4)

where R1 and R2 are the reflectivities of the two reflective surfaces. 
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From Equation 2.4 and Figure 2.3, it can be seen that a higher 

reflectivity of the reflective surfaces leads to a higher finesse F and a 

steeper slope of the interference fringes in the reflection spectrum. For FPIs 

with lower values of R1 and R2, the high-order reflected light of each 

reflective surface can be ignored and then the intensity of the total reflected 

light can be simplified as a two wave interference spectrum as: 

 1 2 1 2 0

4
2 cos( ) .R I

nL
P P R R R R

  


      
(2.5)

The reflection spectrum of such FPIs, which are often called as low-finesse 

FPIs, exhibits a simple sinusoidal curve.  

If the FPIs are fabricated on the end face of optical fibers, one can 

obtain a micrometer scale interferometer device for sensing, called optical 

fiber-tip FPI sensor. For instance, Arregui et al. presented a polymer FPI on 

the end face of an optical fiber by the ionic self-assembly method in 1999 

[49]. Thereafter, Li et al. demonstrated a fiber-tip SU-8 FPI temperature 

sensor by the dip-coating method in 2014 [50]. The reflection or 

transmission spectra of the fiber-tip polymer FPI sensors depend on cavity 

lengths of the FPIs, so any stimulus that changes the cavity length will be 

detected in the reflection or transmission spectrum.  

2.3.2.2 Signal demodulation methods 

Although signal demodulation methods of FPIs can be generally divided 
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into spectrum-based and intensity-based demodulation approaches, we put 

our focus on the review of spectrum-based demodulation method in the 

section.  

a) Peak/valley-tracking method 

In this method, the shift of the peak/valley wavelength in the reflection 

spectrum is employed to monitor the phase change in Equation 2.5, which 

is =4nl/+0. For the peak wavelength in the reflection spectrum, it 

should satisfy the condition 

 0

4
2 ,(m 1,2,3...)

m

nL
m

   


    (2.6)

where m is the peak wavelength and m is the order of the interference. 

Using the shift of the peak wavelength m, the change of the cavity length 

(L) can be calculated as: 

          .m

m

L L




   (2.7)

Though peak/valley-tracking method can achieve high resolution, the 

absolute value of the cavity length cannot be determined by this method. 

Besides, the detection range of this method is limited by the free spectral 

range of the reflection spectrum.  

b) Two adjacent peaks/valleys method 

The cavity length of the FPIs can be determined by using two adjacent peak 

or valley wavelengths in the reflection spectrum. If m and m+1 are used to 
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denote two adjacent peak wavelengths in the refection spectrum, they 

satisfy 
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(2.8)

Then, the cavity length can be deduced as, 
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(2.9)

If the wavelength spacing between two adjacent peaks or valleys is much 

smaller than the absolute values of the peak or valley wavelengths, 

Equation 2.9 can be expressed as, 

 
2

.
2

mL
nFSR


   (2.10)

where FSR is the free spectral range of the reflection spectrum around m. 

The traceable resolution of the change of cavity length can be expressed as, 
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2
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 
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
 

  (2.11)

Compared with peak/valley-tracking method, the relative error is 

magnified by 1.414m/(m-m+1) times.  

c) Fourier transform method 

Equation 2.5 can be rewrite as, 
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 1 2 1 2 02 cos(4 ) .R IP P R R RR nkL          
(2.12)

where the intensity of the reflected light is a cosine function of the 

wavenumber k=1/. The period of the cosine function depends on the 

cavity length L, which can be obtained from the peak position in 

“frequency” domain by taking Fourier transform [51]. Theoretically, 

Fourier transform method is an absolute and wide-range method. However, 

owing to the limitations of the spectral width of the light source and the 

spectral range and resolution of optical spectrum analyzer, the resolution of 

Fourier transform method is usually not high. The resolution of Fourier 

transform method for spectrum demodulation can be approximated as 

 
0 1

1
L

 



(2.13)

where 0 and 1 are the starting and stop wavelengths of the light source. In 

addition to the above mentioned methods, curve fitting method and a 

combination of the methods mentioned above are widely adopted. 

2.3.2.3 Applications 

Fiber-tip polymer Fabry-Pérot sensors can be applied in different areas 

such as pressure, temperature, humidity, pH, RI, and numerous kinds of 

gases sensing. In 1996, Beard et al. fabricated a polymer FPI using a slim 

transparent polymer film for ultrasound sensing [52]. It is noteworthy that 

they used a sealed water cavity to improve the fringe visibility of the 
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interference pattern. Ionic self-assembly technology was also proposed by 

Arregui et al to fabricate polymer FPI on fiber end for humidity sensing in 

1999 [49]. With the advance of micro/nano fabrication technology, polymer 

FPI can be fabricated separately and then integrated with optical fiber. In 

2007, Hill et al. presented a pressure sensor by fabricating an SU-8 cap and 

then assembled it on the end face of an optical fiber [53]. The fabricated 

device showed a linear response in the range of 0 to 125 mmHg with a 

resolution of 1~2 mmHg. In addition, Chen et al. developed a method to 

fabricate fiber-tip polymer FPI pressure sensor. A fiber-end air cavity was 

formed by wet etching process, and then UV adhesive (Norland, NOA68) 

was dipped and cured on the fiber end face to form a miniature FPI sensor 

[54]. The sensor showed a pressure sensitivity of −40.94 nm MPa-1. 

2.4   Polymer waveguide-based microphotonic sensors 

Another typical kind of microphotonic sensors is optical waveguide devices. 

In this section, two kinds of polymer waveguide-based microphotonic 

sensors, including polymer waveguide-based microring-resonator sensors 

and polymer waveguide-baser interferometer sensors, are discussed.  

2.4.1 Polymer waveguide-based microring-resonator sensors  

A waveguide-based microring resonator is composed of an input/output bus 

waveguide and a microring (with a typical 1-μm gap away from the bus 
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of microrings. The effective interaction length Leff of the microring 

resonator can be expressed by: 

 ,
2eff

eff

L Q
n




  (2.15)

The Q factor depends on the optical loss of the resonator and describes the 

lifetime of the photon existing in the resonator. Typical Q factors of 

microring resonators range from 103 to 108.  

Polymer microring resonators have drawn a lot attention in RI and 

biosensing applications recently. In 2006, Chao et al. fabricated polystyrene 

microring resonator sensors, whose RI detection limit is 10−7 refractive 

index unit (RIU) and a biomolecular detection limit is ∼250 pg mm-2 

(detecting streptavidin molecules) [55]. In 2012, using a thermal reflow 

process, Wang et al. demonstrated a polymer microring resonator with a Q 

factor of 5 × 104, and achieved a bulk RI sensitivity of 49.75 nm/RIU, 

which was comparable with the silicon-on-insulator based microring 

resonators [56]. Owing to the advantages of low cost and easy fabrication, 

polymer microring resonators are very promising in vast applications, such 

as disease diagnosis, environment monitoring, and food safety control. 

2.4.2 Polymer waveguide-based interferometer sensors 

2.4.2.1 Integrated Mach-Zehnder interferometer sensors 

As shown in Figure 2.5(a), an integrated Mach-Zehnder interferometer 
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 T S R S R= + +2 cos ,I I I I I  (2.16)

where IS and IR are the intensity of the optical modes in the sensing and 

reference arms of the MZI, respectively, and  is the phase difference 

between the light waves travelling in sensing and reference arm. So the 

phase difference caused by the change of the RI surrounding the sensing 

arm will result in a variation of the optical intensity detected by the photo 

detector in the output port. In general, increasing the length of the sensing 

arm will enlarge the sense signal. However, due to the nature of the cosine 

function of the output intensity, an integrated MZI sensor has limited linear 

response range, which is a common disadvantage of MZI-based sensors.  

Owing to the advantages of easy processibility, biocompatibility and 

versatility, polymer MZIs have attracted much attention in the past decades. 

Although polymer MZI was first proposed by Girton et al. in 1991 [57], it 

was not until 2005 when Shew et al. presented the first integrated polymer 

MZI sensor using SU-8 and achieved a detection limit of 10−9 g l-1 (dilute 

NaCl solution) [58]. The polymer MZIs can also be used as biosensors, for 

example, Shew et al. fabricated a SU-8 MZI to detect rabbit IgG with an 

maximum sensitivity of 1 ng ml-1[59]. In addition, Lapsley et al. exhibited 

an optofluidic MZI made of PDMS, and showed a RI detection limit of 

1.24 10-4 RIU [60].  
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2.4.2.2 Integrated Young’s interferometer sensors 

Besides MZIs, Young's interferometers (YI) can also be integrated on a chip 

for sensing applications. As shown in Figure 2.5(b), a coherent laser light 

is coupled into the input waveguide and then split into a sensing arm and a 

reference arm using a Y branch. The light waves from the two arms are then 

projected onto a charge-coupled device (CCD) camera, which forms an 

interference pattern. The optical intensity distribution, I(x), on the CCD 

screen can be expressed as [61]: 

 
0

2
(x) 1 cos( x ),

nd
I

f

 


   (2.16)

where d is the distance between the sensing arm and reference arm, f is the 

gap between the output of the YI and the CCD, 0 is wavelength in vacuum, 

n is the effective RI, and δ is the phase shift caused by a RI change. The 

equation shows that by means of monitoring the changes of interference 

pattern in the CCD camera, the phase changes of the light in the sensing arm 

can be measured. 

Integrated polymer YI sensor was presented in 2012 by Wang et al. 

with a detection limit of 1.2  10-5 RIU [62]. Although its detection limit is 

lower than the silicon-based devices, polymer YI-based sensor has 

advantages of easy fabrication and low cost and thus is promising for 

disposable devices. 
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2.4.2.3 Other interferometer-type waveguide sensors 

Besides MZIs and YIs, many other types of interferometers, such as 

Hartman interferometer, dual-polarized interferometer, and bimodal 

waveguide (BiMW) interferometer, can also be used as polymer waveguide 

sensors. In the BiMW interferometer, two guide modes of the same 

polarization (TE00 and TE10 mode) interfere within a straight waveguide, as 

shown in Figure 2.5(c) [63]. For instance, Zinoviev et al. fabricated a 

BiMW interferometer sensor and achieved a sensitivity of 2.5 × 10-7 RIU.  

2.5   Summary 

In summary, different kinds of polymer microphotonic sensors including 

free-standing polymer WGM resonator sensors, fiber-based polymer 

microphotonic sensors and polymer waveguide-based microphotonic 

sensors are reviewed in this chapter. Although different polymer 

microphotonic sensors are with different structures, they are commonly 

based on interaction between the optical field and the stimulus, which 

induces a variation on spectra response such as shift of the resonant 

wavelength (frequency), broadening of the resonant peak, and change the 

intensity of the peak or dip in the spectrum. With the advance of 

micro/nano technology and the emergence of new functional polymers, 

polymer microphotonic sensors are under massive development and have 
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great potentials in biochemical sensing, environment monitoring, and food 

safety control. 
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Chapter 3  

Optical -Printing Based on Maskless 

Exposure Technology 

 

3.1   Introduction 

Photolithography is not only the key step in large-scale integrated circuits 

manufacturing, but also plays an important role in the development of 

various micro/nano-photonic devices. In typical photolithography processes, 

the patterns on the photomask are transferred to the photoresist on the 

substrate in three steps: photoresist coating, exposing after alignment, and 

development [64]. To overcome the mask contamination problem in contact 

exposure, proximity exposure and projection exposure technologies are 

developed, as shown in Figure 3.1. 

The photomasks used in lithography are usually expensive and the 

design and fabrication of a new mask is time consuming. Therefore, 

maskless exposure technology is highly demanded in the areas that 

photomask need frequently revised, such as prototyping[65]. Typical 

maskless lithography technologies can be divided into two kinds: (1) 

charged particles based maskless exposure technologies, such as electron 
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sources, and it has multiple peaks in the UV and visible ranges. In one of 

our platforms, we use a high-pressure mercury lamp, OmniCure® S2000, 

from Lumen Dynamics. The wavelength of the emission light is mainly in 

the UV (190 nm ~380 nm) and visible (380 nm ~770 nm) bands. By using 

optical filters, the emission light of different bands can be selected 

accordingly. A high-power fiber light guide is used to guild the light from 

the mercury lamp to the illumination optics. 

b) UV LEDs 

Because of the advantages of long lifetime and low power consumption, 

LEDs have been widely used in not only daily light but also optical 

manufacturing. By the recombination of the electrons and holes generated 

in AlGaInN material, blue light and UV light can be generated. Since the 

light emitted by the UV LED is partly coherent, the interference speckle 

effect of UV LED is not as severe as laser source. In one of our platforms at 

the lab, the UV LED from Hamamatsu Photonics (Model No.: LC-C2) is 

used.  

3.2.2 Digital micromirror devices 

The spatial light modulator (SLM) is the core part for generation of optical 

patterns in an optical maskless exposure system. Through liquid crystal 

display (LCD) was first used as SLM in maskless exposure system [68, 69]. 

However, it has some disadvantages including large pixel size, low filling 
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rate, long response time and strong absorption in UV band. These 

shortcomings limit its application in lithography applications. In 1987, Dr. 

Larry J. Hornbeck of Texas Instruments, USA invented a reflective SLM 

called DMD. Because of its small size, high speed and high reflectivity in 

UV range, DMDs have been widely used in projectors and maskless 

exposure system for optical image generation. 

As shown in Figure 3.1(b) and (c), the DMD chip is an array of 

micron-sized micromirror, protected by a glass window [66, 67]. Typical 

pixels of DMD chips include 640 × 480, 800 × 600, 1024 × 768, 1280 × 

1024 and 1920 × 1080. Those micromirrors are arranged in rows and 

columns, with a fill rate of more than 90%. Each micromirror represents 

one DMD pixel and is controlled by the corresponding memory cell. Each 

micromirror has three possible states, namely, on, off, and reset, which are 

controlled by the binary signal input to the address electrode. When there is 

no binary signal, the micromirror is in the “reset” state; if the binary signal 

is 1, the micromirror is in the “on” state and rotates about 12° from the axis. 

The irradiated light beam is then reflected to the projection optics; if the 

binary signal is 0, the mirror element will be in the “off” state and rotate 

around -12° from the axis. The irradiated light beam is then reflected 

outside the aperture of the projection optics and absorbed by the absorber. 

DMD chip can control each micromirror individually to generate any 
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user-defined patterns.  

To conclude, DMD chips have the following advantages: 

1) High resolution 

Owing to its small pixel size and unique manufacturing process, DMD 

can attain a very high resolution. The commercial DMD chips have 

different pixel sizes including 10.8 m, 13.68 m and 17 m. Because 

of its small pixel size and high resolution, DMD chip can be used to 

accurately display small features of patterns. 

2) High efficiency 

DMD chips are commonly with fast response, high filling factor and 

high reflectivity. In general, owing to the light weight and thus small 

inertia of micromirrors, the response time of switching is short. 

Compared with other SLMs, the filling factor of DMD is very high, 

which can reach 98%, while it is only 56% for LCD. Thus, DMD 

chips have high optical efficiency and can decrease the power 

consumption for maskless lithography applications. 

3) High contrast ratio 

The contrast ratio of DMD chips can reach as high as 2000: 1, while 

that of LCD SLMs is commonly lower than 700: 1.  

3.2.3 Illumination and projection optics 

a) Illumination optics 
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The illumination optics of optical maskless exposure systems is used to 

provide uniform light beam, which mainly includes a beam homogenizer 

and expanding optics. Traditional illumination approaches include critical 

illumination and Kohler illumination. With the advance of modern 

lithography, the requirement of uniformity of illumination optics greatly 

increased to exceed the performance of those two traditional illumination 

approaches. Therefore, overlapping illumination approaches based on light 

pipes and microlens array have been widely used. In these approaches, the 

input light beams are divided into a large number of beamlets, and all those 

beamlets will recombine around the output to form a homogeneous light 

beam. 

If light pipes were used to homogenize the light beam, the light beam 

reflects many times on the inner surface of the light pipes and then 

redistributes among abundant optical modes of the light pipe. The output 

spot is the combined light beam of all those optical modes, which is usually 

uniform because of the huge number of modes. The light pipes are 

commonly divided into two types: solid-core and hollow-core light pipes. 

Solid-core light pipes are based on total internal reflection principle, which 

has advantages like high reflectivity, easy processing and low cost. 

Hollow-core light pipes rely on the inner metallic surface to achieve high 

reflection. Though the reflectivity of the hollow-core type light pipes is 
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micromirror array with approximately 1-m gap between adjacent 

micromirrors. When the DMD is directly imaged by high-resolution 

projection optics on the substrate, a grid structure might form and affect the 

quality of exposure results.  

A typical projection optics for DMD based maskless exposure system 

is double-telecentric lens. The axial magnification of double-telecentric lens 

depends on the focal length ƒ1 of the front lens and the focal length ƒ2 of the 

rear lens as: 

 
2

1

.
f

f
   (3.1)

Figure 3.5 is a schematic of a double-telecentric lens. Its aperture is at 

the coincident point of the back focal point F1
′ of the front lens G1 and the 

front focal point F2 of the rear lens G2. Both the entrance pupil and the exit 

pupil are at infinity. Since both the incident and output chief ray are parallel 

to the optical axis, even if the object or the image is slightly defocused, the 

ratio of reduction keeps the same. Thus, double-telecentric lens usually has 

a long depth of focus.  

The reduction of the projection optics depends on the focal length of 

the front and back lenses. For instance, for a DMD chip with the pixel size 

of 13.68 m, a reduction 0.1 of the projection optics results in an optical 

resolution of 1.34 m. The aberration of the projection optics can be 

controlled within 1 m with careful optimization of the relative positions of 
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 2 2( , ) { } b sinc(b)sinc(b) c sinc(c)sinc(c),0 0R F r(x ,y )     (3.4)

where  and  indicate the spatial frequency in the direction of x0 and y0, 

respectively. By taking the effect of the filter (p(, )) into consideration, 

the intensity in the image place can be calculated as: 

 
2 ( x y)( , ) ( , ) ( , )e ,ih x y R p d d       






  
 

(3.5)

where h(x, y) is the point extended function of single micromirror. The total 

intensity distribution on the imaging plane can be calculated by 

superposing the light energy emitted from each micromirror, which can be 

expressed as: 
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(3.6)

where M and N are the number of pixels of the DMD chip in x and y 

direction, and W denotes the width of the entire DMD array, I0(n, m) is used 

to indicate the intensity of the designed pattern in the (n, m) pixel of the 

DMD chip. The total intensity distribution on the imaging plane can be 

calculated by the equations mentioned above. 

3.2.5 Optical exposure testing 

The optical exposure experiments were carried out to test the performance 

of the own-established maskless lithography setup. The lithography 
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processes includes the following steps: substrate cleaning, photoresist 

coating, pre-bake, exposure, post-bake and development. Silica is chosen as 

the material of the substrate. First, the substrate was ultrasonically cleaned 

with acetone, DI water and isopropanol sequentially to clean the substrate. 

A positive photoresist called AZ-5214, which is a commercial photoresist 

with high resolution and good attachment to silica substrate, was used in 

the experiments. A thin layer of photoresist was coated on the cleaned 

substrate through spin coating. The speed of rotation was optimized to 

ensure that the thickness of photoresist layer was around 1 m. Thereafter, 

the samples were prebaked at 105 C for 2 min to remove solvent. After 

prebake, the samples were exposed by using the maskless exposure system. 

The light intensity and exposure time are 33.6 mW cm-2 and 40 s, 

respectively.  

Figure 3.8 (a) is the pattern with segments of different linewidths for 

the testing exposures. Figure 3.8 (b) shows the fabricated result, which 

minimum linewidth is around 1.57 m. Thus, the estimated minimum 

feature seize of our maskless exposure platform is able to reach is around 

1.57 m. Besides, the vertical resolution of the -printing technology is 

determined by the minimum expose dose and its corresponding light 

penetration depth in polymer material. For instance, typical vertical 

resolution shown in the -printing of SU-8 3D microstructures is a few 
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technique for processing functional materials for direct fabrication of 

microdevices, which is usually called as optical -printing technology. 

Compared with other optical printing technologies, this technology has the 

advantages of high speed and high flexibility. 

For instance, with a DMD-based maskless exposure setup, Shaochen 

Chen’s group demonstrated a polymer (1,6-hexanediol diacrylate) 

microlens array with a diameter of 230 m for optoelectronics and 

integrated optics application [70]. In their work, grayscale images were 

prepared according to the design of microlens and then were used to create 

dynamic photomasks so as to control the cured depth of each pixel to 

achieve the designed microlens, which are one of typical 2.5D structures. 

Other types of polymer microoptic devices such as Fresnel microlens, 

Fresnel zone plates and diffraction gratings have been also demonstrated 

[71, 72]. 

Optical -printing technology is also an ideal technology to process 

polymer functional materials. For instance, Zhang et al. developed a 

DMD-based optical bioprinting technology to process biomaterials like 

polyethylene glycol diacrylate (PEGDA) and gelatin methacrylate. With the 

developed bioprinting technology, complex 3D extracellular 

microenvironments can be quickly fabricated in a very short time. 

Moreover, Soman et al. fabricated 3D PEGDA scaffolds to investigate 
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immigration behavior of cancer cells; Gou et al. fabricated functional 

polydiacetylene nanoparticles-mixed PEGDA microstructures to investigate 

a bio-inspired detoxification [73]; Kim et al. developed a 3D piezoelectric 

devices using barium titanate nanoparticles-incorporated EGDA [74]. 

In a short, DMD-based optical -printing technology provides a new 

way to flexibly and directly process functional material for abundant 

applications ranging from micro-optics to tissue engineered scaffolds and 

microelectromechanical systems. 

3.4   Summary 

In summary, optical -printing technologies based on maskless exposure 

approaches was introduced in this Chapter. Firstly, the background of 

maskless exposure technology was introduced. Secondly, different parts of 

an optical maskless exposure system, including the light source, DMD chip, 

illumination optics, projection optics and its imaging model were discussed 

and in detail. Then, the optical exposure testing results were presented. 

Finally, DMD-based optical -printing technology and its applications were 

introduced.  
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Chapter 4  

Optically 3D µ-Printed Polymer 

Whispering-Gallery-Mode Resonators  

 

4.1   Introduction 

Optical WGMs are resonances of an optical field near the circular ring 

boundary of a resonator by total internal reflection [75, 76]. Optical WGM 

resonators are named after the acoustic whispering galleries, where a 

whisper can be heard anywhere along the border of a round room. The 

optical properties of optical WGM resonators mainly depend on the 

geometries of the resonators, including spherical [77-79], microdisk 

[80-82], microtoroid [21, 83, 84], microbottle [85, 86], microring [87-89] 

and microbubble [90-92]. As their evanescent fields reaching out to 

surrounding environment are enormously sensitive to external disturbance, 

the induced shift or broadening of the resonant peaks or valleys can be used 

for ultrasensitive detecting, e.g. the identification of a single particle or 

virus [93-95], and the detecting of various gases [12, 96-98]. Additionally, 

owing to the low loss and small mode volume, optical WGM resonators 

can achieve ultrahigh Q values and high energy density [21, 22]. All these 
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factors make WGM resonators a perfect platform to exploit emerging 

photonic concepts and phenomena ranging from nonlinear optics [99] and 

low-threshold lasing [100, 101] to cavity optomechanics [102, 103].  

Optical WGM resonators have come into existence for a long time, 

especially the spherical ones. The most common fabrication method for 

spherical WGM resonators is thermal or electric-arc melting of silica 

material [77, 78]. However the fabrication technique for nonspherical 

optical WGM resonators usually contains four stages: photolithography, 

pattern transfer, selective etching, and thermal reflow [21, 75, 104]. These 

procedures are fairly time-consuming and might limit their practical 

applications, especially for large-scale cases. The aforementioned issues can 

be addressed by using polymer optical WGM microresonators [105-107]. 

Compared with microresoantor made of inorganic materials, polymer WGM 

resonators have the merits of biocompatibility, low cost, and processibility. 

For example, a replica-molding approach was employed to fabricate 

toroid-shape PDMS WGM resonators [106]. Granting that the above 

mentioned strategy is a fast and effective method to fabricated PDMS WGM 

resonators in a large scale, this approach is limited in shape and material. 

In this Chapter, we present an optical 3D -printing technique to rapidly 

fabricate polymer optical WGM resonators and resonator arrays. Figure 4.1 

demonstrates the setup of the optical 3D -printing system, 
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fabrication of complex WGM resonators. It is especially reasonable for 

directly printing of polymer WGM resonators for on-chip integration. 

4.2   Fabrication of polymer suspended-disk WGM resonators 

A typical epoxy-based negative photoresist SU-8 was utilized to fabricate 

polymer WGM resonators. Owing to its excellent optical property in both 

visible and near infrared ranges, good chemical resistance and mechanical 

property [53, 58, 133], SU-8 is an ideal material for permanent polymer 

optical micro/nano devices. The SU-8 photoresist used in our experiments 

is a mixture of epoxy resin, solvent, photoacid generator and inhibitor, 

where octoxyphenylphenyliodonium hexafluoroantimonate (OPPI) from 

Hampford Research Inc. and tributylamine from Meryer Chemical 

Technology Co., Ltd. were utilized as photoacid generator and inhibitor, 

respectively. These components were dissolved in cyclopentanone in the 

weight ratio of OPPI/tributylamine/SU-8/cyclopentanone = 

2:0.014:100:98. Before the fabrication process of the WGM resonators, a 

2-m thin layer of SU-8 was spin coated and cured to improve the adhesion 

between SU-8 photoresist and glass substrate. Then, a 100-m thick layer 

of SU-8 photoresist was spin coated upon the buffer layer. Thereafter, the 

substrate was soft baked at 65 C for 7 min and 95 C for 20 min in sequence 

to get rid of the solvent. 
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Dynamic optical exposure setup, as appeared in Figure 4.1, was then 

employed to exposure the SU-8 photoresist by using a dynamic optical 

projection method. In order to fabricate a predefined WGM resonator, its 3D 

model was first designed by using commercial CAD software (Solidworks). 

The 3D model was then sliced into 200 layers of image data by in-house 

add-on software. These image data was loaded to the DMD chip in 

sequence, to dynamically produce predefined light patterns. The designed 

3D microstructures were fabricated based on the additive penetration depth 

of light in the photoresist. Both the projection system and the substrate kept 

still in the exposure process. The light intensity of the UV lamp adopted in 

the experiments was 104.85 mW cm-2. The exposure time of each layer of 

the WGM resonators was adjusted according to the relationship 

between the cured depth and the total exposure time, which was 

measured by a trail fabrication of micropillars with incremental 

exposure time. As shown in Figure 4.2, the cured depth increases 

logarithmically with the increase of exposure time. The slope of 

cured-depth line can be tuned by the concentrations of absorption dye and 

photoinitiator. 
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4.3   Simulation of the WGM resonator 

The electromagnetic field in the SU-8 WGM can be depicted by 

time-dependent Maxwell’s equations. In a source-free and insulating media, 

the wave equation can be rewritten as: 

 
, 

(4.1)

where n and c are the RI of the media and the speed of light in free space, 

respectively. For time-harmonic fields, where E (r, t) = E(r)e−iωt, equation 

4.1 can be rewritten as: 

 
. 

(4.2)

Assume the resonance plane of the WGM resonator is placed in the (x, 

y) plane, the transverse electric (TE) field can be described by E(r) = E(x, 

y)z . In this instance, the equation 4.2 turns into a scalar Helmholtz 

equation: 

 , (4.3)

where k0 is the wave number in free space.  

To investigate the optical field distribution and spectral properties of the 

suspended-disk WGM resonators, a numerical simulation based on finite 

element method (FEM) was adopted. Commercial software, COMSOL 

Multiphysics, was used to resolve the possible resonant modes and their 
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the electromagnetic field (transverse magnetic or transverse electric 

polarization); q denotes the radial order number signifying the number of 

maxima the radial direction; m indicates the azimuthal mode number 

showing the quantity of maxima in the equatorial plane; l is the polar mode 

number meaning the number of wavelengths packed along the periphery of 

the resonators.  

The details of the simulation are shown in Figure 4.6. Figure 4.6(a) 

demonstrates the 3D model of the suspended-disk WGM resonator, and 

Figure 4.6 (c)-(e) displays the intensity profile of three typical resonance 

modes at the wavelengths of 1500.412 nm, 1495.568 nm and 1490.994 nm, 

respectively. Simulation results indicate that the optical intensity field of its 

fundamental TE mode has 1490 maxima in the equational plane, and 

evanescent field leaking from the resonator to outer environment 

accumulate to around 0.062% energy of the entire mode. 

4.4   Testing of the polymer WGM resonator 

4.4.1 Coupling and testing setup 

The schematic illustration of the testing system is shown in Figure 4.7(a). 

Though various methods have been proposed to couple light into and out of 

WGM resonators [22, 136, 137], the optical fiber taper method is still the 

most efficient one. So we adopted a biconically tapered optical fiber with 
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respectively. It can be seen that WGMs can be efficiently excited with the 

aid of the optical fiber taper. 

4.4.2 Measured transmission spectra and Q factors 

After precise adjustment, an amplified spontaneous emission (ASE) light 

source (around 1550 nm) and an optical spectrum analyzer (OSA) with a 

resolution of 0.02 nm were then used to measure the transmission spectra 

of the WGM resonators. Figure 4.9 indicates two measured transmission 

spectra of two SU-8 WGM resonators with the radiuses of 230 nm and 160 

nm, respectively. Evidently, WGM resonant wavelength can be clearly 

noticed in the measured transmission spectra. The full width at half 

maximums (FWHMs) of the WGMs resonant peaks of the two resonators 

are measured to be 0.23 nm and 0.31 nm, and their free-space ranges (FSRs) 

are 1.00 nm and 1.44 nm, respectively. The measured FSRs agree well with 

their theoretical estimations of 1.01 and 1.47 nm which are computed by:  

 , (4.4) 

where n is the RI of SU-8 photoresist at 1500 nm, R is the radius of the 

WGM resonator, and  is the resonant wavelength. Owing to the high-order 

radial and azimuthal modes of the WGM resonators, subsidiary peaks were 

also observed in the transmission spectra, which were in agreement with 

the simulation results. 
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, 

(4.5) 

where  and  is the central wavelength and angular frequency of the 

measured resonance peak, and FWHM and FWHM is the FWHM in 

wavelength units and angular frequency units of the Lorentzian-shape 

resonance peak, respectively. Based on the measured FWHMs of the two 

resonators, the calculated Q-factors of the two SU-8 WGM resonators are 

6.4×103 and 4.9×103, respectively. 

4.4.3 Discussions and sensing potential 

The measured Q factors of the fabricated SU-8 WGM resonators are not high 

in comparison with some high-quality WGM resonators [24, 138]. There are 

several factors contributing to this result: 1) relatively low resolution of the 

OSA equipped in our lab. The optical resolution of the OSA in our lab is 

0.02 nm, which is only one twelfth of the FWHMs of the resonant peaks in 

the transmission spectra. In spite of the fact that it can marginally resolve the 

transmission spectra of the fabricated WGM resonators, a spectrum analyser 

with higher resolution or a tunable laser based testing setup would be able to 

reveal the profile of resonant peaks more precisely; 2) mode mismatch 

between the tapered optical fiber and the WGM resonators. As the RI 

differences between the silica optical fiber and SU-8 photoresists are 

relatively large, the mode mismatch between the tapered optical fiber and 

FWHM FWHM

Q
 

 
 
 
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the WGM resonators will degrade the Q-factor of the resonators [19, 139]; 

3) surface scattering caused by the surface roughness and contaminants. 

Other than the measurement errors, the main contributors to the Q-factor 

corruption of WGM resonators are known as material absorption and surface 

scattering [140, 141]. According to previous literature [142], the material 

absorption coefficient of the cured SU-8 photoresist at 1500 nm is around 

2.0 dB/cm. The material-absorption limited Q value can be valued by: 

 
, 

(4.6)

where  and  is the material absorption loss and resonant wavelength, 

respectively. So the Q factors of the fabricated SU-8 WGM resonators are 

mainly limited by the surface roughness-induced scattering loss. Therefore, 

the Q-factor of the SU-8 WGM resonators can be further improved by 

decreasing the surface roughness and reducing the contamination. The 

surface smoothness can be decreased by means of improving the fabrication 

resolution of the optical 3D -printing system and optimizing the 

fabrication parameters and the contamination issue can be eliminated if the 

whole experiment can be conducted in a high-class cleanroom. 

Since the evanescent fields of the modes in the inner surface of WGM 

resonators reach out to the surrounding environment, the variation of the 

environment induced by external stimulus will result in a shift or 

broadening of the resonant peaks or dips of the resonant spectra. By 

52
1.43 10effn

Q
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  
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applying this principle, high performance microphotonic sensors can be 

made to detect various gases or identify single particle or virus. Besides, 

for some polymeric WGM resonators, the geometry deformation can also 

be utilized to form high-performance microphotonic sensors, the variation 

of the geometry will be transferred to the change in the resonant parameters, 

such as peak wavelength or FWHM. 

4.5   Summary 

In summary, we have fabricated polymer WGM resonators using optical 3D 

-printing technology. It is demonstrated that optical 3D -printing can 

fabricate SU-8 WGM resonators and resonator arrays in a short time. 

Optical fiber tapers were employed to couple light from an ASE source into 

the WGM resonators, and the measured transmission spectra were used to 

analysis the performance of the polymer WGM resonators. The measured 

results were in good agreement with the theoretical estimation, and 

numerical simulations using commercial software COMSOL reveal the 

mode profile of the supporting modes in the WGM resonators. The 

proposed 3D fabrication method is not limited in materials; therefore, it has 

great potential in fabricating WGM resonators of different polymers for the 

development of different novel photonic devices and sensors.  
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Chapter 5  

Optical Fiber-Tip Pressure Sensors with  

In Situ µ-Printed Air Cavities 

 

5.1   Introduction 

Pressure sensors have widespread applications in biomedicine [113], civil 

engineering [114], automobile [115] and oil and gas industries [116]. 

Recently, pressure sensors based on optical fiber-tip Fabry-Pérot (FP) cavity 

have attracted much attention, because of its unique properties including 

ultra-small size, remote detection capability, electromagnetic immunity, 

biocompatibility and chemical inertness.  

Fiber-tip FP pressure sensors can be divided into two types: sensors 

based on the change of cavity RI [117-119] and sensors based on the induced 

change of cavity length [120-122]. Optical fiber FP pressure sensors based 

on RI changes usually exhibit a large measurement range, up to 500 MPa, 

and a relatively low sensitivity in a few tens of pm MPa-1 [118, 123]. For 

optical fiber Fabry-Pérot interferometer (FPI) pressure sensors relying on the 

change of cavity length, their performances are determined by the materials 

and thicknesses of the thin diaphragms forming the FP cavities. Although a 

variety of thin diaphragms made of inorganic materials have been explored, 
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including silicon membranes [124, 125], graphene thin layer [122], silver 

diaphragms [121, 126], and silica membranes [127-129], the mechanical 

strength of these nano/micrometer-scale diaphragms is poor because of their 

fragile nature. Besides, some optical fiber FP pressure sensors based on thin 

films has limited linear detection range, usually in tens of kPa [121, 122]. 

Fiber-optic FPI pressure sensors typically are composed of an air-cavity 

FPI formed by a diaphragm of different materials attached to the fiber end. In 

view of the design and fabrication of the sensors, different methods are used 

including direct laser micromaching, wet chemical etching, electric arc 

fusion splicing of different kinds of fibers together, standard 

microfabrication techniques such as photolithography and bonding, 

conventional machining and assembly techniques, and thin 

polymer/silver/graphene diaphragm covered on the end of a hollow glass 

tube or other types of spacer. However, most of these fabrication processes 

are complicated and time-consuming. 

In this Chapter, we present a fiber-tip SU-8 FP pressure sensor with a 

directly printed air cavity. With the own-established optical in-situ 

-printing technology, SU-8 FPIs with diaphragms of controllable thickness 

were printed on the end face of standard single-mode optical fiber (SMF). 

The FP reflection spectra of the SU-8 FPIs were measured, and the responses 

of the fabricated fiber-tip SU-8 FP pressure sensors to the changes of 
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pressure and temperature were tested.  

5.2   Design and analysis of SU-8 FPI pressure sensor 

5.2.1 Mechanical properties of thin SU-8 diaphragms 

For FPI pressure sensors based on thin diaphragms, the diaphragms serve as 

the transducing elements to pressure variations. The changes of the 

environmental pressure will induce the deflection of the thin diaphragms. 

For a circular diaphragm, the induced deflection can either linearly or 

nonlinearly depend on the applied pressure according to the pre-strain and 

load as well as the materials and boundary condition [130].  

Our fiber-tip pressure sensors are formed by SU-8 caps on the top face 

of SMFs, as shown in Figure 5.1. The pressure induced deflection of SU-8 

diaphragm results a decrease of the cavity length between the fiber end and 

the SU-8 diaphragm. If the deflection is smaller than 30% of the diaphragm 

thickness, the deflection d with respect to the pressure P can be expressed as 

[131]:  

 
2

2 2 2
3

3(1 )
( ) ,

16

P
d R r

Et


  (5.1) 

where R is the radius of the diaphragm, t is the thickness, and r is the radial 

distance of the measured point, ν is the Poisson’s ratio and E is the Young’s 

modulus of SU-8. If the SU-8 cap concentrically aligns on the end face of 
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pressure are numerically simulated by using the commercial software 

COMSOL Multiphysics. The thickness t and radius R of the SU-8 diaphragm 

are assumed to be 11 and 50 m, respectively. When the applied pressure is 

700 kPa, the maximum deflection of the SU-8 diaphragm is calculated as 

0.145 m, as shown in Figure 5.3(a).  

As shown in Figure 5.3(b), the maximum von Mises stress of the SU-8 

diaphragm is at the center of the structure. As the maximum strength of the 

SU-8 is 60 MPa, as given in Table 5.1, the maximum allowable pressure of 

the SU-8 FP pressure sensor is calculated to be ~1.67 MPa. 

Figure 5.4(a) shows the simulated deflection distributions of the 

11-m thick SU-8 diaphragm under different maximum pressures. Figure 

5.4(b) depicts the linear relationship between the maximum deflections of 

the 11-m thick SU-8 diaphragm and the applied pressures. The calculated 

pressure sensitivity (ratio between the deflection of the SU-8 diaphragm and 

the applied pressure) of the 11-m thick SU-8 diaphragm is 0.207 m MPa-1. 
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components were dispersed in cyclopentanone in the weight proportion of 

PC-2506:TBA:SU-8:cyclopentanone = 2.5:0.014:100:233. After 

preparation of the photocrosslinkable SU-8 epoxy, a thin SU-8 layer was 

prepared on the end face of an optical fiber by a dip-coating method. Then 

the optical fiber was mounted by using an own-designed holder and heated at 

65 C for 15 min and 95 C for 35 min successively to remove the solvent. It 

is noteworthy that the concentration of SU-8 solution can be properly 

adjusted if the desired thickness of the SU-8 layer need changed. 

Figure 5.5(a) shows the optical in situ u-printing setup for the 

fabrication of the SU-8 FP pressure sensors. A two-step exposure process 

was adopted to fabricate the SU-8 diaphragm and sealing part sequentially, 

as shown in Figures 5.5(b)~(e). The 3D models of the pressure sensors were 

first built by using commercial CAD software Solidworks. The 3D model 

was then sliced into image data of 100 layers by using an own-developed 

add-on software. After a proper alignment, these image data was then loaded 

to the DMD chip sequentially for a dynamic exposure process. Due to the 

additive penetration property of UV light in the polymer material and the 

long depth of focus of the exposure setup, the designed suspended SU-8 

diaphragm can be directly printed on the end face of optical fibers.  

The optimized exposure light intensity and exposure time are 281 mW 

cm-2 and 58 s, respectively. After exposure, the sample was post heated at 65 
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The length of the sealed air cavity and the thickness of the SU-8 

diaphragm can also be estimated by using the FSRs of the interference 

fringes and their envelope by: 

 1 2 ,
2

L
nFSR

 


 
(5.3)

where 1 and 2 are the starting and ending wavelength of the calculation 

FSR, respectively, and n is the RI of the cavity material. The calculated 

length of the sealed air-cavity and the thickness of the SU-8 diaphragm are 

93 and 11 m, respectively, for the sample shown in Figure 5.7(a), and 57 

and 8 m, respectively, for the sample shown in Figure 5.7(c). And the 

calculated results agree well with the peaks shown in Figure 5.7(b) and (d). 

5.4.2 Testing Results 

The responses of the SU-8 FP pressure sensors to the change of pressure and 

temperature were tested by using a sealed gas chamber connected to a high 

pressure nitrogen gas cylinder, as shown in Figure 5.8. Due to the small 

thickness of the SU-8 diaphragms, the light reflected from the outer surface 

of the SU-8 diaphragm modulates the entire reflection spectrum with a 

slowly varying envelope [134]. Hence, we directly monitor the shift of the 

peak/valley wavelength of the reflection spectrum to interrogate the SU-8 FP 

pressure sensors. A commercial pressure meter was connected to the gas 

chamber to provide a reference. The pressure in the gas chamber was 



adjusted 

the comm

Fig

sensor, w

respectiv

waveleng

shorter w

by a valv

mercial pr

ure 5.9(a

whose air c

vely. With

gth of the

wavelength

Figure 

e with a st

ressure me

) shows th

cavity len

h the inc

e spectral 

h). The SU

5.8 Experim

7

tep of 50 

eter).  

the measu

ngth and d

crease of

dip under

U-8 FP pre

mental setup

 

 77

kPa from 

ured respon

diaphragm

f the pre

r monitor 

essure sen

p for the pre

0 kPa to 7

nse of the

thickness

ssure in 

shows a 

nsor showe

essure meas

700 kPa (l

e SU-8 FP

s are 93 an

the cham

blue shift

ed good li

surement. 

limited by

P pressure

nd 11 m,

mber, the

t (towards

nearity  

 

y 

e 

, 

e 

s 



Figu

leng

and rever

sensitivit

the simu

sensitivit

diameter

respectiv

The

was also

response

~38 pm/º

ure 5.9 Pres

gth of 75μm

shift 

rsibility w

ty of the p

lated resu

ty of the f

r of the S

vely.  

e temperat

o measured

e in the ran

ºC. Theore

ssure respon

and SU-8 d

of the reflec

with both in

pressure se

lt, i.e. 3.3 

fiber-tip p

SU-8 diap

ture respo

d. As sho

nge of 30 

etically, th

7

nse of the S

diaphragm t

cted spectru

ncrease an

ensor is 2

nm MPa-

pressure se

phragm, w

onse of th

own in Fig

to 65ºC, a

he tempera

 

 78

U-8 FPI pre

thickness of

um when inc

 

nd decreas

.93 nm M

1. Accordi

ensor is at

which are

he fabricat

gure 5.10

and shows

ature respo

essure senso

f 11 m. Th

creasing pre

e of the ap

MPa-1, whic

ing to equ

ttributed to

around 1

ted SU-8 

, the sens

s a temper

onse of th

 

or with air c

he inlet show

essure. 

pplied pres

ch agrees 

uation 5.3, 

o the thick

11 m an

FP pressu

or exhibit

rature sen

he SU-8 FP

cavity 

ws the 

ssure. The

well with

the lower

kness and

nd 80 m

ure sensor

ts a linear

nsitivity of

P pressure

e 

h 

r 

d 

m 

r 

r 

f 

e 



sensor ca

pressure 

calculate

Figu

with

inle

5.5   Su

In this C

fabricate

The FP p

fabricate

interferen

spectral 

an be attri

sensor m

ed as ~ 12.

. 

ure 5.10 Tem

h air cavity l

et shows the

ummary 

Chapter, w

ed by using

pressure se

ed and te

nce fringe

features o

ibuted to 

mentioned 

.97 kPa/ºC

mperature r

length of 75

e shift of the

we present

g an own-

ensors with

sted in th

es were me

on the refle

7

the therm

above, its

C. 

response of t

5μm and SU

e reflected s

t a novel 

-developed

h SU-8 dia

he experim

easured an

ections fro

 

 79

mal expans

s tempera

the fabricate

U-8 diaphrag

spectrum wh

fiber-tip p

d optical i

aphragms 

ments. R

nd analyze

om differe

sion of air

ature-cross

ed SU-8 FP

gm thicknes

hen increasi

polymer F

in-situ -p

of differe

eflection 

ed to revea

ent interfa

r cavity. F

s sensitivi

 

PI pressure s

ss of 11 m

ing tempera

FPI pressu

printing te

ent thickne

spectra w

al the depe

aces. Becau

For the FP

ity can be

sensor 

m. The 

ature.  

ure sensor

chnology.

esses were

with clear

endence of

use of the

P 

e 

r 

. 

e 

r 

f 

e 



 

 80

lower Young’s modulus of SU-8, the fiber-tip polymer FP pressure sensors 

show high sensitivity.  
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Chapter 6  

Optical Fiber-Tip CO2 Sensors Using a 

Photocrosslinkable Poly(ionic fluid)  

 

6.1   Introduction 

Carbon dioxide (CO2) is the fifth largest gas composition in atmosphere on 

earth, which is a raw material for photosynthesis of plants, thus vital to lives 

on earth [135-137]. According to the U.S. Occupational Safety and Health 

Administration, a CO2 concentration above 4 vol% has been defined as 

“dangerous to life and health”. Besides, CO2 sensors play a crucial role in 

agricultural and food industry [138-140], environment and safety monitoring 

[141, 142], the volcanic activity [143], vehicle exhaust detection [144], and 

human healthcare [145]. For example, CO2 is not only one of the outcomes 

of food putrefaction but also an ordinarily employed gas for the suppression 

of the metabolic rates of microorganisms in food packaging applications 

[138, 139]. Thus, it is very desirable and necessary to monitor CO2 

concentration in agriculture and intelligent food quality control.  

Until now, the most commonly used techniques for CO2 sensing can be 

divided into electrochemical and optical types according to their sensing 

mechanisms. A large portion of the presently using CO2 sensors, for example, 
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the potentiometric, amperometric, and conductometric sensors, apply 

electrochemical mechanism [145]. Typical potentiometric CO2 sensors, e.g. 

Severinghaus CO2 sensors, utilize a circuitous strategy for detection [146], 

which measures the difference in pH value caused by the sorption of CO2 in 

electrolyte solutions. With great progress in microtechnologies, solid state 

electrolyte sensors are quickly taking over CO2 sensors using wet 

electrochemical procedures. Nevertheless, solid state electrolyte sensors are 

generally required to be warmed at high temperature (300 C– 800 C) to 

start chemical reactions [147-150], which brings about long haul instability 

issues and few areas of applications. 

Optical CO2 sensors usually don’t need electrical power, and show low 

activity to chemicals, conceivably permitting to overcome the shortcomings 

of electrochemical sensors for harsh conditions as well as remote detecting 

applications. Most commonly used optical CO2 sensors are based on infrared 

detectors. Though they typically have fast response, the bulky size and high 

cost of the instruments limit their applications. Because of its low cost, low 

loss, small size and high performance, optical fibers are the most popular 

optical waveguides, which are promising in fabricating miniature optical 

CO2 sensors. For example, Munkholm et al. proposed an optical fiber-tip 

CO2 sensor made by depositing a polymer layer with a pH-sensitive 

fluorescent dye on the end face of an optical fiber [151]; Segawa et al. built a 



 

 83

fiber-tip CO2 sensor utilizing a polymer film containing indicative dyes by 

means of dip-coating technology [152]. The primary disadvantages of the 

dye-containing polymer based CO2 sensors are their low biocompatibility 

and unsatisfactory long-term performance. Moreover, due to the fluctuation 

of light source, the accuracy of these intensity-based optical sensors is not 

stable over time. 

In this Chapter, we present a new type of fiber-optic CO2 sensor by 

using a photocrosslinkable poly(ionic liquid), i.e. 

poly(1-allyl-3-vinylimidazolium bromide) (PAVB), which has strong CO2 

sorption ability. It should be noted that the synthesis and characterization of 

PAVB was conducted by our collaborator, Dr. Yuan Jiayin’s group in Max 

Planck Institute of Colloids and Interfaces. To fabricate miniature 

fiber-optic sensors, it is imperative to pattern PAVB with size of less than 

100 µm on the endfaces of optical fibers. Therefore, we adopt an optical 

in-situ -printing technique to prepare Fabry-Pérot interferometers (FPIs) 

based fiber-optic CO2 sensors by in situ and directly patterning PAVB and 

SU-8 FPIs (≈ 60 m in diameter) on the top face of an optical fiber, as shown 

in Figure 6.1. The microsensors show simultaneous measurement of CO2 

concentration and temperature with good sensitivity and selectivity as well 

as a wide dynamic operation range.  
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quaternization with allyl bromide to produce the photo-crosslinkable PIL. 

In previous studies, PILs were found to own high CO2 sorption capacity 

[154-159], and the anions contained in the PILs have some effects on their 

CO2 sorption property. Thus, in our study, we characterized the CO2 sorption 

property of the photo-crosslinked PAVB at 273 K using Quadrasorb and 

Autosorb 1-MP machines (Quantachrome Instruments). Isosteric heats of 

sorption of CO2 were plotted using the AS1Win software (Quantachrome 

Instruments). Prior to the sorption experiments, all the samples were 

degassed overnight at 363 K under dynamic vacuum system. Besides, 

high-purity gases were utilized in all measurements.  

The measured sorption and desorption isotherms are shown in Figure 

6.2, collected through pressure increasing and dumping cycles with various 

highest CO2 pressures, i.e. 0.3, 0.6, 0.9, and 1.0 bar. One can see that the 

sorption of CO2 normally rises when CO2 pressure increases. In terms of 0.3 

and 0.6 bar (maximum pressure), the sorption and desorption isotherms 

depend nearly linearly on the CO2 pressure, and the corresponding greatest 

sorptions are 1.14 and 2.15 cc g-1, respectively. In both cases, hysteresis 

phenomena are observed, which demonstrates that the sorption of CO2 in 

PAVB is a result of both physisorption and chemisorption. For maximum 

pressure of 0.9 and 1.0 bar, the measured greatest sorptions are 4.81 and 6.99 

cc g-1, respectively. Under the conditions of these higher pressures, the 
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Irgacure 2959 were 30 wt% and 5 wt%, respectively, in 3D -patterning 

experiments. Firstly, small amounts of the PAVB aqueous solution was 

dropped on a glass slide with spacers, and afterward a cover glass was put 

upon the solution. An optical μ-printing system with a UV light source (at 

the wavelength of 365 nm) and a digital-micromirror device (DMD, 

DLi4120 0.7" XGA, Texas Instruments), as shown in Figure 6.1, has been 

utilized to optically pattern the own-synthesized PAVB solution. The 

pre-designed microstructures were converted into image data and then 

loaded onto the DMD chip for generation of optical patterns. UV light (365 

nm) penetrated the cover glass and crosslinked the PILs on the bottom side 

of the cover glass, forming the predesigned microstructures after 

developing.  

Figure 6.3 shows images of the fabricated PAVB microstructures, 

taken with a laser scanning confocal microscope (VK-X200, KEYENCE, 

Japan). Figure 6.3(a) and Figure 6.3(b) are the logos of The Hong Kong 

Polytechnic University (PolyU) and Max Planck Institute (MPI), our 

collaborative partner. It can be seen that both the simple and complex 2D 

microstructures can be fabricated precisely in very short time (around 10 s) 

under a UV intensity of 96.89 mW cm-2. 3D microstructures can also be 

fabricated using the PAVB solution. Figure 6.3(c) and Figure 6.3(d) show 

some fabricated PAVB micro-nozzle and micro-flower arrays, in which data 
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images of polymer FPIs fabricated on a standard single-mode fiber and a 

multicore fiber, respectively. As we can see, the surfaces of the polymer 

FPIs are smooth, leading to high reflectivity of the incident light at the 

polymer/air interfaces. Figure 6.6(b) shows the measured reflection 

spectrum and its FFT results, where the FSR of the reflective spectrum is 

about 17.67 µm. After the FFT calculation and Lorentzian fitting, the length 

of the PAVB interferometer can be calculated to be 42.21 µm, which agrees 

well with the values measured in an optical microscope image.  

In order to accomplish a miniature fiber-optic CO2 sensor, we 

fabricated three optical interferometric sensors on the top face of a 

multicore optical fiber for simultaneous measurement of CO2 and 

temperature. Figure 6.6(c) shows the false-color SEM images of fabricated 

miniature fiber-optic CO2 sensors. The two longer interferometers were 

fabricated using the PAVB, while the shorter one was made of commercial 

SU-8 epoxy resin. The material proportion and fabrication conditions for 

the SU-8 FPI are the same as the previous work [165]. The three polymer 

FPIs were fabricated on the top face of a multicore fiber in two separate 

cycles, and the PAVB FPIs were first fabricated. Since the parameters of 

the two PAVB interferometers are almost the same, just one single 

reflection fringe of PAVB FPIs is displayed in Figure 6.6(d). The FSRs of 

the reflection spectra of the PAVB and SU-8 interferometers fabricated on 
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6.3.2 Testing of the optical fiber-tip CO2 sensors  

The schematic of the experimental setup for the testing of the fiber-optic 

CO2 sensor is shown in Figure 6.7, where a stainless-steel gas chamber 

was utilized to seal the fiber-optic FPI CO2 sensor. The CO2 gas mixtures 

of various concentrations were prepared by mixing pure CO2 gas with pure 

nitrogen at different flow-rate proportions at atmospheric pressure through 

two flow regulators. The gas mixture flowed into the cylinder chamber at a 

fixed speed in all the tests. A multicore fiber fan-in/out device was used to 

couple light into and out of the multicore fiber. The reflection spectra of the 

fiber-optic CO2 sensors were measured by an optical spectrum analyzer 

(AQ6370, YOKOGAWA, Japan) with a resolution of 0.02 nm. 

It is known that the wavelength shift Δ of the interference fringe of a 

fiber-optic FPI is 

  Δ ,4 /eff bn l    (6.1)

where (neff l) and b are the change of optical path length and the phase 

bias of specific interference peak or valley, respectively [53, 166-168]. FPI 

can convert molecular interactions between the polymer and the exposed 

gas into a change of RI, which will be translated to changes in the 

phase-matching conditions of the FP resonance. In the existence of CO2 gas, 

the PAVB FPI will absorb the CO2 molecules, both physically and 

chemically, which will result in an increase of the effective RI of PAVB 
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sensor can detect wide range concentration of CO2 gas from 0 vol% to 75 

vol%, which makes it useful in many fields. The little hysteresis in the CO2 

response test is attributed to several reasons: 1) a total amount of 150 mg 

PAVB was used for the measurement of isotherms, while the mass of PAVB 

used in the fabrication of single fiber-tip FPI sensor is around 0.11 µg only; 

2) PAVB was put in a camber with 100 vol% CO2 to measure isotherms, 

where the concentration of CO2 for testing of the sensors was from 0 vol% 

to 75 vol% only; 3) Enough long time (i.e. 10 minutes) has been used for 

the measurement of two adjacent points in the testing of the sensor. The 

dynamic response of the sensor is shown in Figure 6.8(b). The results reveal 

that the fiber-optic polymer FP sensor has a very fast response to CO2. The 

rise and fall time of the sensor’s dynamic response are 6.1 min and 8.0 min, 

respectively. It is much faster than other PIL-based CO2 sensors [169], 

owing to the micrometer-scale size of the microsensor achieved by 

-patterning technique.  

As temperature is a key parameter in real applications, the 

temperature response of the sensor is also studied. The results in Figure 6.9 

suggest that the PAVB sensor has an obvious response to the temperature 

change due to its high thermooptic coefficient, while the SU-8 FPI shows a 

smaller sensitivity to the environmental temperature. Both the PAVB and 

SU-8 FPIs show a linear response to temperature change with sensitivities of 
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appealing way to develop new microdevices and sensors. In this work, we 

developed an in situ optical μ-printing technology to process 

photocrosslinkable PAVB to develop a fiber-optic CO2 sensor. It is revealed 

that CO2 had larger polarizability and quadrupole momentum than other 

common gases in atmosphere, e.g. N2 and O2 [170]. As PAVB is an 

imidazolium-based polycation, CO2 can be effectively polarized in PAVB. 

Meantime, the cation groups in PAVB and their sp3 hybridizations can be 

promptly rearranged into various configurations for CO2 gas sorption [171]. 

Besides, CO2 gas can weakly react with the imidazolium rings in the main 

chain [158]. All these interactions give PAVB an excellent CO2 sorption 

capacity and selectivity. In addition, compared to other polymers containing 

amino groups for CO2 detecting [172, 173], PAVB won't generate toxic 

carbamates.  

In spite of the fact that the limit of detection (LOD) of a fiber-optic 

sensor normally relies upon the overall performance of both the sensor and 

the signal interrogation system, it is worthy of finding a rough estimation of 

such a limit for comparison with other sensors. It is known that the LOD 

can be estimated by using LOD=3Sa/b, where Sa is the standard deviation 

of the response and b is the slope of the calibration curve. As the standard 

deviation is calculated from the linear regression to be 9.9 pm, the LOD is 

estimated to be around 0.85 vol%. This value is lower than the previously 
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reported PIL-based CO2 sensors [169], especially the one using 

PIL-wrapped single-walled carbon nanotubes (SWCNTs), whose detection 

limit is 50 ppb [174]. However, such a CO2 sensor need utilized without the 

existence of oxygen and saturates at 50 ppm. While our optical fiber-tip 

CO2 sensor has a wide detection range from 0 vol% to 75 vol%, which is 

highly desired for many practical applications such as coal mine safety 

monitoring and food quality control. 

The sensing optical fiber used in our work is a seven-core optical fiber. 

In spite of the fact that we utilized just three cores of the optical fiber to 

fabricate two types of polymer FPIs for simultaneous detection of CO2 and 

temperature, the previously mentioned technique can be employed to 

integrate more kinds of functional polymers to detect an number of 

parameters, for example, humidity or other gas components. Combined 

with the remote-control ability and small size of optical fiber, our 

PAVB-based fiber-optic CO2 sensor shows great potential in the areas of 

healthy monitoring and intelligent food quality control. 

6.4   Summary 

In summary, a photo-crosslinkable PIL was synthesized and used as a 

negative resist to create complex patterns. Both 2D and 3D PAVB 

micropatterns with high resolution were rapidly fabricated by the 
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own-developed optical in-situ -printing system. With the novel optical 

printing technology, PAVB and SU-8 FPIs were fabricated on the end faces 

of miniature optical fibers for simultaneous measurement of CO2 

concentration and temperature. The PAVB based CO2 microsensor shows 

very fast response, wide detection range. Thus, it shows great potential in 

areas of healthy monitoring, safety control in mines and intelligent food 

quality control. 
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Chapter 7  

Conclusions and Future Outlook 

 

7.1   Conclusions 

In this thesis, optical -printing technologies have been developed to 

fabricate three kinds of polymer microphotonic devices, including polymer 

optical WGM resonators, fiber-tip pressure sensors, and fiber-tip CO2 

sensors. Compared to conventional photomask-based lithography 

technologies, the developed optical -printing technologies based on 

maskless exposure approach can not only offer new pathways for device 

design and fabrication but also significantly reduce the cost and time for 

prototyping and optimization (as the photomasks used in mask-based 

exposure technologies are usually expensive and need long lead time).  

Firstly, the 3D microfabrication capability of the developed optical 

-printing technologies has been demonstrated by rapid fabrication of 

polymer suspended-disk WGM resonators and resonator arrays. The 

WGMs in the fabricated polymer resonators were excited by using optical 

fiber tapers. The quality factors and free spectral ranges of the fabricated 

resonators were calculated according to the measured transmission spectra. 
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The mode distributions and resonant wavelengths of the optical WGM 

resonators were analyzed by using software COMSOL. The polymer WGM 

resonators are promising in the applications such as refractive index 

sensing and biosensors. 

Secondly, the in-situ microfabrication capacity of optical -printing 

technologies has been demonstrated by the fabrication of microscale 

polymer FPIs with sealed air cavities on the end faces of SMFs for pressure 

sensing. In the fabrication process, SU-8 suspended diaphragms were 

directly printed by using a dynamic optical exposure technology and then 

were further enclosed by a following in-situ -printing process to form 

sealed air cavities. FP interferometric fringes in the reflection spectra were 

recorded for pressure measurement. The sensing performance of the 

fiber-tip pressure microsensor was investigated using an own-developed 

testing setup. A 3D model was built and utilized to analyze the deformation 

using the structural mechanics module of commercial software COMSOL. 

The simulated results agree well with the measured data and reveal that the 

fiber-tip pressure can achieve much higher sensitivity with a thinner SU-8 

diaphragm. 

 Finally, optical in situ -printing technology has been applied to 

process functional polymer materials, i.e. poly(1-allyl-3-vinylimidazolium 

bromide) (PAVB), to develop fiber-tip CO2 sensors. The optical in situ 
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µ-printing technology enables to process CO2 sensitive PAVB on the tiny 

surface area of optical fiber to fabricate micrometer-scale FPI microsensors. 

As the PAVB FPI sensors were also sensitive to the temperature of the 

surrounding environment, another SU-8 FPI was fabricated on the same 

end face of the multicore fiber as a reference temperature microsensor. The 

polymer microphotonic CO2 sensors show a linear response to the change 

of CO2 concentration in the range of 0 vol% to 75 vol%. Such a tiny 

fiber-tip CO2 sensor is very appealing in widespread applications ranging 

from industrial waste gas detection to food quality control. 

7.2   Future Outlook 

In this thesis, three kinds of polymer microphotonic sensors, with the 

common advantages of rapid fabrication, miniature size and high sensitivity, 

have been successfully fabricated and intensively investigated.. Several 

outlooks for future investigation are given as follows: 

1) The Q values of polymer WGM resonators can be improved from 

different aspects. First, the material-absorption limited Q can be further 

improved if another polymer material with lower absorption coefficient 

can be used for the WGM resonator fabrication. Second, the geometric 

parameters and exposure parameters can be further optimized to 

improve the waveguide property of the WGM resonators. Third, some 
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post-processing techniques, e.g. thermal reflow or post dip-coating, can be 

applied to further smoothen the surface of the polymer WGM resonators. 

Last, the potential contamination of the fabricated WGM resonators can be 

alleviated if the experiments are conducted in a cleanroom environment. 

2) Optical fiber-tip pressure sensor with an open FP cavity can be 

developed to extend the measurement range of the closed-cavity optical 

fiber-tip pressure sensor demonstrated in Chapter 5. Owning to the limit of 

mechanical strength, optical fiber-tip FPI pressure sensor with closed 

air-cavity has limited maximum bearing pressure. One of potential 

solutions to the problem is to use an open-cavity optical fiber-tip pressure 

sensor. When the pressure of the surrounding gas or liquid increases, the RI 

of the gas or liquid will rise accordingly. Therefore, the resonant wavelength 

in the reflection spectrum of the fiber-tip FPI will shift towards the longer 

wavelength, which can thus be used for monitoring the pressure. The 

pressure sensitivity of such open-cavity optical fiber-tip pressure sensor can 

be expressed as: 

 ,m m md d dn dn

dP dn dP n dP

  
   

 
(7.1) 

where dn/dP is the coefficient of the RI of the gas or liquid related to its 

pressure, m is the resonant wavelength of the FPI, n is the RI of the gas or 

liquid and P is the pressure. 

3) More fiber-tip sensors can be developed through printing different 
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functional polymer materials on the end face of optical fibers. The sensing 

performance of the fiber-tip sensors demonstrated in Chapter 6 depends 

very much on the selective CO2 sorption properties of the 

photocrosslinkable poly(1-allyl-3-vinylimidazolium bromide) (PAVB). 

Similar process can be applied to process a wide range of functional 

materials for sensor fabrication. For example, as a pH responsive hydrogel, 

poly(acrylic acid) can be used to develop pH sensor; as a thermal 

responsive hydrogel, poly(N-isopropyl acrylamide) can be adopted to 

fabricate miniature temperature sensors.  
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