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ABSTRACT 

Finite shell elements are widely used in prediction of the structural behaviour of civil 

engineering structures. Over the past decades, many shell elements based on different 

theories and assumptions have been developed either for general or special shell 

structures. However, there still exists a need to develop or improve shell elements so 

that they can capture the critical effects of shell structures with high computational 

efficiency. For example, accurate and efficient shell elements for civil engineering 

structures such as walls, floors, roofs of buildings and thin-walled structures are 

urgently required to consider both the geometric and material nonlinearities. With the 

recently significant improvement of computer hardware, it is possible to perform 

nonlinear analysis and design of structures with thousands of degrees of freedom in 

personal computers even laptops. For building structures, it is vital to develop robust 

shell elements with good convergence to link to advanced beam-column elements for 

second-order direct analysis, so that a safer and more economical design can be 

achieved. Thus, this research project aims to propose high performance flat triangular 

and quadrilateral shell elements with advanced techniques for nonlinear finite element 

analysis. The assumption of large displacements, large rotations, but small strains, 

well accepted in geometrically nonlinear analysis and applicable to most civil 

engineering structures, is adopted in this study. The main contributions of this 

research project are summarised in the following. 

First, a novel pure deformational method is proposed to simplify the shell element 

formulations and as a result the associated quantities and the computational cost are 

significantly reduced. The pure deformational method has been widely utilized in the 
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derivation of both displacement-based and force-based beam-column elements. 

However, the application of this technique in shell elements is not popular as 

beam-column elements due to increasing complexity in shell elements. Thus, 

narrowing the gap will make a significant contribution to the development and 

improvement of finite shell elements. It should be pointed out that the proposed pure 

deformational method has a wide application range since it is independent of the 

element type which may be derived with different assumptions and theories, once the 

element shape (triangle or quadrangle) is known. Also, the pure deformational method 

can contribute to a novel element-independent co-rotational (EICR) formulation, 

which is a well-accepted formulation for geometrically nonlinear finite element 

analysis. The EICR formulation is different from the traditional total Lagrangian (TL) 

and updated Lagrangian (UL) formulations based on the Green-Lagrangian strains. 

Further, the thesis proposes a novel EICR formulation for triangular and quadrilateral 

shell elements based on the proposed pure deformational method. In the EICR 

formulation, the geometrically nonlinear analysis procedure for flat quadrilateral shell 

elements is more complicated than the one for flat triangular shell elements, because 

of the warping phenomenon that the 4 corner nodes of quadrilateral shell element 

being not coplanar may occur during the analysis process. Thus, unlike flat triangular 

shell elements, the warping effect should be considered in the derivation of 

geometrically nonlinear quadrilateral shell elements. In addition, different from the 

traditional EICR formulation, the proposed EICR formulation is simpler by using 

pure deformational method and therefore enhances the numerical efficiency of 

geometrically nonlinear analysis. 

Based on the proposed EICR formulations, a nonlinear triangular shell element and a 
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nonlinear quadrilateral shell element are developed. The elastoplastic behaviour of 

shells is considered based on the layered approach in which a shell will be divided 

into several layers through the thickness. The proposed elements allow for the 

transverse shear effect and the drilling rotations and therefore can be used to analyse 

various civil engineering structures. The inclusion of drilling rotation allows the shell 

elements to effectively connected in-plane to beam-column elements. These 

numerical examples show that the proposed shell elements can analyse thin shell 

structures without locking problems. 

Finally, the proposed nonlinear shell elements based on the simplified EICR method 

are implemented in the program NIDA. A number of benchmark problems are 

provided to verify the proposed shell elements. The present results compared well 

with other elements in commercial software and literature illustrate that the proposed 

nonlinear shell elements are robust, accurate and efficient.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In structural engineering, shells refer to a type of structural elements which are 

defined by their geometries as three-dimensional solids with small thickness relatively 

to other dimensions. In addition, its deformations should not be greater than the 

thickness. The primary difference between a shell structure and a plate structure is 

that, in the unstressed state, the former has a curvature opposed to the latter which is 

assumed to be initially flat. The membrane action in a surface is caused by in-plane 

forces. In a shell structure, these forces may be the primary forces caused by applied 

edge loads or edge deformation, or the secondary forces resulting from flexural 

deformations. In a plate, the membrane action due to secondary forces is neglected 

due to small deflection assumption (Chen, 2005). Thus, a plate can be regarded as a 

special case of a flat shell. 

The in-plane membrane stiffness and the out-of-plane bending stiffness of a shell can 

resist the transverse loads together, which is different from the case of a plate based 

on small deflection theory. Thus, shell structures are widely used in various fields of 

civil, mechanical, architectural, aeronautical, and marine engineering. The common 

applications in civil and architectural engineering are varieties of concrete shell roofs, 

liquid retaining structures and water tanks, concrete silos, cooling towers, 

containment shells of nuclear power plants, concrete arch dams, etc. In mechanical 
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engineering, shell structures are applied to piping systems, curved panels, pressure 

vessels, etc. In aeronautical and marine engineering, shell structures can be used for 

aircrafts, spacecrafts, missiles, ships, submarines, etc (Farshad, 2013). Due to these 

wide and important applications of shell structures in various engineering, the 

development of analysis method for shell structures is vital to provide economical 

design and to ensure the safety either in construction stage or in their whole design 

life. 

The finite element method (FEM) is the preferred numerical procedure for the 

analysis of shell structures, and therefore many different types of finite shell elements 

have been developed based on different theories and assumptions. For example, the 

axisymmetric shell elements can be used in the analysis of axisymmetric shell 

structures, which are efficient and accurate for shell structures with large curvatures, 

even using coarse meshes of shell elements. However, this kind of shell elements 

cannot be used in the unsymmetrical shell structures and, as a result, their application 

is limited and it is adopted only in special structural forms. Alternatively, the flat shell 

elements based on plate/shell theory are applicable for general shell structures. Flat 

shell elements can be used to simulate curved surfaces which are divided into many 

facets. A flat shell element consists of a membrane part and a plate part, in which the 

former reflects the membrane or in-plane effects while the latter simulates the 

bending or out-of-plane effects. Although finer meshes of flat shell elements should 

be used in the simulation of shell structures with large curvatures, they have simpler 

formulations and need less modelling efforts. Therefore, they are widely adopted in 

practical shell structures with different shapes and have been extensively 

implemented in commercial finite element software. Another practical type of shell 
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element is the isoparametric elements based on the degenerated three-dimensional 

stress conditions. Their detailed introduction and pertaining literature reviews are 

presented in the next section. In addition to the basic classification method based on 

the different fundamental theories, there exist other classification methods for shell 

elements according to element shapes (i.e. triangle or quadrangle), number of nodes, 

displacement interpolations, variational principles, etc. 

In history, many research topics on shell elements concerning element performance 

were carried out, including locking phenomenon, shear deformation, spurious zero 

energy modes due to the reduced integration, warping effect, drilling rotations, 

invariance of node ordering, incompatible displacement functions, insensitivity to 

irregular mesh and so on. They attracted great attention with numerous solutions 

provided by researchers worldwide. These problems may interact with each other and 

consequently make shell element formulations more complicated, especially in 

nonlinear analysis. Because of the problems mentioned above, the development of a 

shell element is more difficult than the other finite elements such as beam-column and 

solid elements. 

The selection of a shell element from numerous element types in literature to simulate 

a shell structure may confuse engineers, and worse, a poor or unsuitable shell element 

may bring unsafe design. Chapelle and Bathe (2010) stated that “with the multitude of 

different shells encountered, and the peculiarities in their behaviours, it is difficult, 

but a great intellectual challenge, to develop finite element techniques effective for 

general shell analysis”. Bucalem and Bathe (1997) also suggested that the 

development of finite shell elements should satisfy the following requirements: (1) the 

elements should be reliable, with no spurious zero energy mode, no membrane or 
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shear locking phenomenon, insensitivity to geometric distortions; (2) the elements 

should be computationally effective; (3) the element formulation should be general, 

with being applicable to nonlinear analysis, thin and thick plate/shell situations and 

any shell geometry; (4) the formulation of the elements should be mechanistically 

clear and sufficiently simple to render the element suitable for engineering analysis. 

In addition, as computers become more powerful, performing nonlinear analysis and 

design of large-scale engineering structures is possible. The use of nonlinear analysis 

can get real and accurate responses of structures under design loads, which 

contributes to safe and economical construction and utilization of structures. Thus, the 

development of robust shell elements with simplicity and a wide range of applications 

and pertaining nonlinear analysis schemes with efficiency and accuracy are not only 

challenging but also urgent in civil engineering structures. 

 

1.2 Problem statements 

This thesis aims to develop several advanced technologies for shell elements in the 

linear and nonlinear analysis of shell structures in civil engineering on the basis of the 

finite element program which is named as nonlinear integrated design and analysis 

(NIDA, 2015) and coded specially for simple and handy nonlinear analysis of 

practical and slender structures. The final goal is to improve the accuracy and 

efficiency of finite element analysis of plate/shell structures. Thus, it is essential to 

identify the assumptions and theories which are consistent with the features of civil 

engineering structures. The robust finite shell elements used in NIDA should have the 

following functions and features according to the common civil engineering 
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structures. 

1. The shell element should be able to cooperate with the beam-column element for 

the analysis of building structures without any inconsistent issues. The beam-column 

element can be used to simulate beams and columns, whereas the shell element can be 

used to model roofs, slabs and walls. The flat shell element derived based on stress 

resultants and classical plate/shell theory is more suitable than the other types of shell 

element, since the roofs, slabs and walls of building structures usually are flat, while 

the curved roofs can be simulated by a large number of flat elements. In addition, as 

mentioned early, the flat shell element has the membrane and plate parts, and 

therefore the shear walls are generally modelled by the membrane part while the floor 

slabs and roofs can be simulated by the plate part. 

2. The flat shell element should be able to connect with the beam-column element. 

Like finite shell element, there are also many beam-column elements developed in 

literature for different purposes. The NIDA software adopts an advanced nonlinear 

beam-column element which is a pointwise equilibrating polynomial (PEP) element 

proposed by Chan and Zhou (1994) for nonlinear analysis of frames. The unique 

feature is that one PEP element per member modelling is adequate in most cases. To 

connect with this kind of beam-column element, the proposed shell element should 

have the rotational degrees of freedom without numerical problems. Besides the 

bending rotations provided by plate element, the in-plane rotations (drilling degrees) 

should be considered in the membrane element. 

3. In the NIDA software, the PEP element allows for large displacements and large 

rotations using the element-independent co-rotational (EICR) formulation for 

geometrically nonlinear analysis but is restricted to moderate strains due to the 
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consideration of bowing (P-δ) effect in the local coordinate system. For nonlinear 

analysis and design, the continuous updating of node coordinates by nodal 

displacements reflects the P-△ effects while the local element deformations 

containing the P-δ effect, and as a result, the PEP element is able to capture the 

structural behaviours by one-element-per-member modelling. Technically, the local 

second-order effect (P-δ effect) can be handled by splitting a member into several 

beam-column elements. However, this is an ineffective modelling method and will 

significantly increase the computational cost. In some cases, this method may even 

bring a numerical divergence problem. The small and moderate strains have an 

identical assumption that the local element configuration is constant. For example, the 

beam-column element has the same cross-section and length after deformation, while 

the shell element has the constant thickness, facet and area after deformation. The 

difference between these two strains is that the small one adopts the linear 

strain-displacement relationship (i.e. engineering strains) whereas the moderate one 

uses the nonlinear relationship (i.e. the Green-Lagrangian strains and the von Kármán 

strains). The strain field of a shell element is similar to the beam-column element, but 

a simple shell structure (such as a piece of plate or wall) cannot be accurately 

simulated by only one shell element, since the boundary conditions are very 

complicated and the accuracy of displacement interpolations even being high order 

are inadequate to describe these complicated situations. Compared with the small 

strain assumption, the moderate strain assumption can improve the accuracy of the 

shell element and simulate shell structures using coarser meshes. However, for 

nonlinear analysis of general building structures with flat walls, roofs and slabs, the 

flat shell element using the assumption of large displacements and small strains is 

generally adequate and efficient. 
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4. Both triangular and quadrilateral flat shell elements are effective in the simulation 

of engineering structures and essential in the finite element software such as NIDA to 

cater for different shapes of shell structures. In general, two triangular elements can 

be replaced by a quadrilateral element with saving of computational cost. With the 

same order interpolation functions, quadrilateral elements have higher accuracy. 

However, a mesh of triangular shell elements can be generated more easily and used 

for sharp corners and irregular shell structures. 

 

1.3 Objectives 

Through the problems discussed in the last section, the research scope of the shell 

element can be determined and focussed. The motivation of this research project is to 

propose high-performance finite shell elements for nonlinear analysis of shell 

structures with improvements in terms of efficiency and accuracy. The detailed 

objectives are summarized as follows. 

1. Propose an innovative pure deformational method for shell elements. This new 

method will decrease element quantities and simplify element formulation. The pure 

deformational method, also called the natural method, is often used for the derivations 

of the beam-column elements. For example, the two-node beam-column element in a 

plane has three degrees of freedom (two rotations and one translation) per node, and 

therefore it produces a 6×6 singular stiffness matrix. However, if it is simplified by 

the pure deformational method, it only has three degrees of freedom (two rotations 

and one translation) and gives a 3×3 non-singular matrix with simpler expression. The 

benefits of the pure deformational method are noticeable. This novel method also can 
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be regarded as the extension of an efficient technology used in beam-column elements 

to flat shell elements but results in more complicated derivations. 

2. Propose a new element-independent co-rotational (EICR) formulation for shell 

elements in geometrically nonlinear analyses based on the proposed pure 

deformational method. Compared with the traditional EICR method, the proposed one 

can be derived more easily with simpler expressions, since it is derived based on the 

physical meanings, unlike the traditional one based strictly mathematic derivation. 

3. Propose a simplified element-independent co-rotational formulation on the basis 

of the small strains assumption. With this method, the flat shell elements allowing for 

drilling rotations and transverse shear deformation are adopted and implemented the 

geometrically nonlinear analysis of shell structures in the software NIDA. 

4. Extend the geometrically nonlinear shell analysis into the geometrically nonlinear 

elastoplastic analysis and implement it in the software NIDA. The elastoplastic 

behaviour of the shell elements is modelled by the layered approach, in which shell 

thickness is divided into several layers, with using the plane stress description for 

each layer. 

5. Verify the accuracy and efficiency of the proposed shell elements in nonlinear 

analysis through a batch of benchmark examples. The results obtained by the 

proposed shell elements show good agreement with those from the other commercial 

finite element software and literature. 
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1.4 Organization 

To achieve these objectives, this thesis is divided into eight chapters and organized in 

the following. 

Chapter 1 presents the background of finite shell elements. The functions and 

assumptions of shell elements suitable for civil engineering structures and the NIDA 

software are discussed. The research objectives and the layout of the thesis are 

introduced as well. 

Chapter 2 reviews the development of finite shell elements, key issues and the 

technologies to improve the performance of shell elements. The geometrically 

nonlinear algorithms based on the Lagrangian kinematic description and the methods 

used for elastoplastic analysis are also reviewed in brief in this chapter. 

Chapter 3 presents an innovative pure deformational method for shell elements, which 

is element-independent and suitable for any triangular or quadrilateral shell element. 

The pure deformational method can decrease quantities of an element and simplify an 

element formulation. And the derivation processes for triangular and quadrilateral 

shell elements are detailed respectively, in which the basic coordinate system with 

fewer element quantities is given. 

Chapter 4 proposes a novel element-independent co-rotational formulation, which is 

simpler and can be derived more easily than the traditional one. The method is 

consistent to and can be derived based on the presented pure deformational method in 

Chapter 3. Also, the three-dimensional large rotation formulation used in the 

computational procedure is briefly introduced. Further, a simplified co-rotational 
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formulation with element-independence technique is proposed on the basis of the 

former method and the small strains assumption. The situations for both triangular 

and quadrilateral shell elements are discussed respectively. 

Chapter 5 presents a novel nonlinear triangular shell element named as the SCRT3 

element based on the simplified co-rotational formulation. A linear triangular 

membrane element considering drilling rotations and a plate element allowing for 

shear deformation are combined into the triangular shell element. The proposed pure 

deformational method is applied to simplify the formulations of these triangular 

elements. The method used for elastoplastic analysis is introduced. The computation 

procedures using the SCRT3 element for geometrically nonlinear analysis and 

geometrically nonlinear elastoplastic analysis used in the NIDA software are detailed 

respectively. 

Chapter 6 proposes a novel nonlinear quadrilateral shell element named as the 

SCRQ4 element based on the simplified co-rotational formulation. The local 

quadrilateral shell element consists of a membrane shell element with drilling 

rotations derived on the basis a mixed type variational formulation and a plate 

element considering shear deformation. Different from the simplified co-rotational 

formulation for quadrilateral shell elements introduced in Chapter 3, this chapter 

adopts another local coordinate system and gives a new co-rotational formulation for 

geometrically nonlinear analysis. This local coordinate system makes the SCRQ4 

element is invariant to the nodal ordering and insensitive to irregular geometries. Also, 

the novel co-rotational updated Lagrangian formulation is introduced and compared 

with the simplified co-rotational formulation, demonstrating the advantages of the 

latter formulation. Finally, the computation procedures using the SCRQ4 element for 
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geometrically nonlinear analysis and geometrically nonlinear elastoplastic analysis 

coded in the program NIDA are detailed respectively. 

Chapter 7 analyses several benchmark problems involved with geometrically 

nonlinear elastic and elastoplastic analysis using the SCRT3 and SCRQ4 elements. 

The results and convergence rates obtained by the proposed shell elements are given 

and discussed, against those from the shell elements in the other commercial finite 

element software and literature to verify the accuracy and efficiency of the proposed 

shell elements. 

Finally, Chapter 8 summarizes the contributions and finding of this study. 

Suggestions and recommendations based on the proposed methods for future studies 

are also provided. 
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CHAPTER 2 

LITERATURE REVIEW 

The research and recent development of finite shell elements and relevant methods for 

nonlinear analysis are reviewed in this chapter. A large amount of literature 

concerning finite shell elements has been published during the past decades, and 

therefore, to the best of the author’s knowledge, only the references widely cited and 

adopted in commercial finite element software are introduced and discussed here. 

Specifically, the review covers shell element types based on different theories, 

common shell element issues and pertaining solving techniques, Lagrangian 

kinematic descriptions used for finite element analysis of geometrically nonlinear 

shell structures, effective approaches for consideration of elastoplasticity behaviour. 

 

2.1 Shell element 

In this section, the literature on the development and discussion of shell elements are 

reviewed. Although many shell elements have already been proposed, there are two 

basic approaches to develop shell elements for analysis of general shell structures and 

received extensive attentions of researchers during the past decades. The first one is 

the degenerated solid approach based on three-dimensional stress and strain 

conditions. The second one is the classical shell/plate theory (Bathe and Ho, 1981; 

Bathe et al., 1983; Dvorkin and Bathe, 1984). Four kinds of finite shell elements often 
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used for analysis of general shell structures are derived based on these two basic 

theories. Specifically, the degenerated solid approach leads to the degenerated shell 

element and the solid-shell element, in which the former containing the translational 

and rotational degrees of nodes at mid-surface and the latter has the same nodes and 

only translations as the solid element. Based on the classical shell theory, the 

geometrically exact shell model using curvilinear coordinates can be formulated 

entirely in stress resultants (Simo and Fox, 1989), while the flat shell element 

combined with a membrane element and a plate element is a special case with a more 

simpler formulation (Arciniega and Reddy, 2007). 

 

2.1.1 Degenerated shell element 

For isoparametric shell elements based on the degenerated three-dimensional stress 

and strain conditions, the original version was proposed by Ahmad et al. (1970) for 

linear analysis of moderate thick and thin shells, whose displacement interpolations 

are described by three translations of the mid-surface and two rotations about the local 

axes at each node. This type of shell elements is still one of the fundamental methods 

for modern finite element analysis of shell structures (Dvorkin and Toscano, 2013). 

The original formulation was afterwards extended and applied to nonlinear analysis 

under the assumption of small strains (Bathe and Bolourchi, 1980; Krakeland, 1978; 

Ramm, 1977). 

Although this element proposed by Ahmad et al. (1970) was a breakthrough in the 

field of finite shell element and is applicable to any shell geometry with thin and thick 

thickness, it has the shear locking problem as well as the classical Timoshenko beam 
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element. The shear locking problem describes that the element becomes too stiff when 

the thickness tends to zero. This is due to the incompatibility between the 

displacement and rotation interpolations making the shear deformation incorrect for 

the thin element (Bathe, 2006; Zienkiewicz and Taylor, 2000). A simple method is the 

use of the reduced or selective integration schemes. These two techniques can be used 

to solve many different locking problems for different types of finite elements, while 

the relevant literature is rich. The early works on the reduced integration method can 

be found in references (Hughes et al., 1978; Pawsey and Clough, 1971; Zienkiewicz 

et al., 1971). Although the reduced integration method is simple with saving of 

computation cost, it may lead to spurious zero energy modes causing the rank 

deficiency of the global stiffness matrix and the global mechanism. Moreover, a 

near-mechanism might be activated which leads to unacceptable answers, whereas 

very low convergence rates could occur in some cases (Bucalem and Bathe, 1997). 

Aforementioned, the locking phenomenon is due to the incompatibility between the 

displacement and rotation interpolations, so the reduce integration can fix the locking 

problem through reducing the order of rotation interpolations. Thus, it decreases 

element accuracy and induces a problem that more elements are needed to simulate a 

shell structure. 

The mixed interpolation of tensorial components (MITC) approach is deemed to be a 

valid and successful technique to remove the locking problem, by incorporating the 

displacement and rotation interpolations in the element (Ahmad et al. 1970). It was 

originally proposed for a 4-node and an 8-node shell elements (the MITC4 and 

MTIC8 elements) by Dvorkin and Bathe (Bathe and Dvorkin, 1986; Dvorkin and 

Bathe, 1984) and then was successfully used to reduce both the shear and membrane 
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locking problem for triangular and high order finite shell elements including the 

MITC3, MITC6, MITC7, MITC9 and MITC16 shell elements (Bathe et al., 1989; 

Bathe et al., 2000a, 2000b; Bathe et al., 2003; Bucalem and Bathe, 1993; Bucalem 

and Da Nóbrega, 2000; Da Veiga et al., 2007; Kim and Bathe, 2009; Lee and Bathe, 

2004). Different from the reduced integration method, the MITC family of shell 

elements has a strong mathematical foundation that assures the convergence of 

discretization without causing any spurious zero energy modes, and they are relatively 

insensitive to geometric distortions. 

Recently, based on the MITC3 element, Lee et al. (Jeon et al., 2015; Lee et al., 2015; 

Lee et al., 2014) presented a new effective 3-node triangular shell element which is 

called MITC3+ element and extended into modal analysis and geometrically 

nonlinear analysis. Ko et al. (2016) proposed a new 4-node quadrilateral shell element, 

called MITC4+ element, to improve the performance of the MITC4 element. 

 

2.1.2 Solid-shell element 

Another class of finite elements for analysis of general shell structures is the 

solid-shell element, which is also generally derived based on the degenerated 

three-dimensional stress and strain conditions. However, different from the 

degenerated shell element introduced in Section 2.1.1, they have the same nodes and 

freedom configurations of solid elements, with containing only three translational 

degrees of freedom per node. The early studies on the solid-shell element can be 

found in References (Hauptmann and Schweizerhof, 1998; Hauptmann et al., 2000; 

Miehe, 1998; Parisch, 1995). 
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The solid-shell element can not only account for shell-like behaviour in the thickness 

direction but also connect to solid elements directly. Also, they do not have rotational 

degrees of freedom, so they can avoid the complex procedures for updating rotation 

vectors in geometrically nonlinear analyses. In turn, the lack of rotations is a 

disadvantage in some practical cases. For example, when moments are required to 

apply at nodes and solid-shell elements need to connect with beam-column elements 

with rotational degrees of freedom. For these reasons, solid-shell elements are rarely 

adopted in structural design software. 

Like the aforementioned degenerated shell element, the solid-shell element also has 

several locking problems causing the numerical results to diverge from the analytical 

solutions. There have been a number of studies to find their causes and address these 

locking problems. For example, the Poisson’s thickness locking is due to Poisson’s 

ratio coupling of the in-plane and transverse normal stresses (Hauptmann and 

Schweizerhof, 1998; Parisch, 1995; Schwarze and Reese, 2009). The shear and 

membrane locking can be solved by the enhanced assumed strain (EAS) method 

(Alves De Sousa et al., 2003; Andelfinger and Ramm, 1993; Areias et al., 2003; 

Valente et al., 2004) and assumed natural strain (ANS) method (Cardoso et al., 2008; 

Hauptmann and Schweizerhof, 1998; Kim et al., 2005; Mostafa et al., 2013; 

Norachan et al., 2012; Schwarze and Reese, 2009; Sze and Yao, 2000). The 

trapezoidal locking occurs when the element sides in the thickness direction are not 

perpendicular to the element mid-surface and can be addressed with ANS method 

(Betsch and Stein, 1995; Bischoff and Ramm, 1997; Schwarze and Reese, 2009). The 

volumetric locking occurs when the material is nearly incompressible and can be 
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solved by the EAS method (Simo and Armero, 1992; Simo et al., 1993; Simo and 

Rifai, 1990). 

Recently, Mostafa (2016) presented an eight-node nonlinear solid-shell element for 

static problems, in which the ANS and EAS approaches are used to remedy the 

locking problems while the geometrically nonlinear procedure adopts the 

co-rotational approach. Flores (2016) developed a hexahedral solid-shell element to 

the analysis with moderate and large strains based on the total Lagrangian formulation. 

Cho et al. (2017) proposed a geometrically nonlinear quadratic solid-shell element 

based on the co-rotational formulation. 

 

2.1.3 Flat shell element 

The degenerated shell element once dominated shell analysis since it was first 

proposed by Ahmad et al. (1970). Then, the shell element based on the classical shell 

theory has been increasingly used in the last decades, excited by a series of 

publications of Simo et al. (Simo, 1993; Simo et al., 1989; Simo et al., 1990a, 1992b; 

Simo and Fox, 1989; Simo et al., 1990b; Simo and Kennedy, 1992). The kinematic 

assumptions underlying the variational formulation are essentially the same for both 

elements, but the reduction to stress resultants is carried out numerically in the former 

and analytically in the latter (Betsch et al., 1996). A comparison between both 

element formulations discussed by Buechter and Ramm (1992) reveals that they are 

very close to each other. The only difference remains in the kind of discretization 

(Arciniega and Reddy, 2007). 
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As a special case of the shell element based on the classical shell theory, the flat shell 

element adopts the facet surface rather than the curved surface, and as a result, the 

coupling between the membrane and bending effect disappears. In a flat shell element, 

the stress resultants are directly formulated by superimposing a membrane element 

and a bending element. This assumption makes its formulation much simpler than the 

other kinds of shell element. For a flat shell element, the membrane stiffness and the 

plate bending stiffness can be treated separately when the assumption of small strains 

is adopted. There is no coupling between these two parts consistently in geometrically 

nonlinear analyses. A membrane element is derived based on the classical theory of 

plane stress, while a plate bending element is derived based on the classical plate 

theories. Generally, the Kirchhoff-Love theory is used to thin plates (Timoshenko and 

Woinowsky-Krieger, 1959) and the Mindlin-Reissner plate theory which is an 

extension of the former theory and considers transverse shear deformation through the 

plate thickness (Mindlin, 1951) is for thick plates. Further, based on the theories of 

nonlinear strains, such as the Green-Lagrangian strains and the von Kármán strains 

(degenerated Green-Lagrangian strains), the membrane element and the bending 

element are coupled, and then the shell element can be regarded as the shallowly 

curved shell element. For a shallowly curved shell element, it is still derived with 

direct use of stress resultants and has a simpler formulation than the two types of shell 

elements. The pertaining literature on these topics is extremely large, and therefore 

only the representative works are reviewed according to the author’s best knowledge. 

2.1.3.1 Membrane element 

The membrane element can also be called the plane stress element or the 2D solid 

element. It can be used to simulate the structures which are subjected to in-plane 
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forces and exhibits no stress normal to the surface, such as shear walls, stiffened sheet 

construction and membrane action in shells (Kansara, 2004). 

The simplest membrane element is the constant strain triangle (CST) element for the 

plane stress problem, in which each node has two translational degrees of freedom. 

The displacements of CST are assumed to be linear functions over the element. For 

quadrilateral membrane elements, the simplest one is the four-node isoparametric 

quadrilateral element, in which the displacements are bilinear functions over the 

element. The isoparametric technique is an essential development of the finite 

element method, which can map the simple geometric shape of the element in the 

natural coordinate system into the distorted shape in the local Cartesian coordinate 

system, with making the element can be used for more general shapes. Wilson (1996) 

believed that the introduction of the isoparametric element formulation proposed by 

Irons and Zienkiewicz (1969) was the single most significant contribution to the field 

of finite element analysis and allowed very accurate, higher-order elements of 

arbitrary shape to be developed and programmed with a minimum of effort. 

The simple four-node isoparametric element has the shear locking when the element 

is subjected to pure bending in its plane. This is because its displacement 

interpolations cannot accurately describe the deformation under in-plane pure bending. 

To overcome this problem, Wilson et al. (1973) added incompatible displacement 

modes to the isoparametric element for describing constant curvature modes. 

However, these modes may cause that the edge of two adjacent elements have 

different curvatures, and then the displacement fields of two elements along this edge 

are not incompatible. So, these elements are called incompatible mode elements or 
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nonconforming elements. Similarly, the classical plate being elements demanding C1 

continuous interpolation functions are also incompatible. 

To validate a finite element whether violates compatibility requirements or not, the 

patch test can be used as a quality indicator. The original works was introduced by 

Irons et al. (Bazeley et al., 1966; Irons, 1971; Irons and Razzaque, 1972), in which a 

patch of elements with a constant strain was checked whether it reproduced exactly 

the constitutive behaviour of the material and resulted in correct stresses when it 

became infinitesimally small. If it did, it could then be argued that the finite element 

model can get the exact behaviour of the real structure as the size of the elements 

decreased, even the finite element model was non-conforming (Zienkiewicz et al., 

2013). In addition, the patch test also can be used to check the accuracy of the 

computer program. 

As a part of the flat shell element, the membrane element has another problem that the 

absence of drilling (in-plane rotation) degrees of freedom produces a shell element 

with five degrees of freedom per node and leaves null values in the stiffness matrix. 

Thus, the singularity of the assembled global stiffness matrix arises in shell analysis if 

all shell elements are co-planar. The treatment of drilling rotations in the membrane 

element is another hot issue and has been received several solutions from researchers. 

The simplest technique is to add an artificial drilling stiffness which is a very small 

value in general to the shell element stiffness matrix at the stiffness terms associated 

with the drilling rotations to remove rank deficiency (Zienkiewicz et al., 1967). The 

similar methods also can be found in the references (Bathe and Ho, 1981; Knight, 

1997; Zienkiewicz, 1971), but the suggested values for the stiffness terms associated 

drilling degrees of freedom may be different. Crisfield and Moita (1996) pointed out 
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that, in a non-linear environment, there may be problems with this approach when the 

artificial stiffness is related to the real stiffness of the adjacent elements, especially 

with plasticity involved. Yang et al. (2000) reported that the artificial drilling stiffness 

may render the numerical method inconsistent and degrade convergence properties, 

although the problem of singularity is solved by it. This phenomenon was also 

confirmed by Battini and Pacoste (2006) that the geometrically nonlinear flat shell 

element using the artificial drilling stiffness based on an element-independent 

co-rotational formulation cannot compute the whole equilibrium paths of some 

problems. 

A popular and widely accepted solution for the above problem is the inclusion of 

drilling degrees of freedom in a membrane element with approximations. The 

singularity problem mentioned before can be solved by this method. Also, the shell 

elements formed by this kind of membrane elements can get real drill rotational 

stiffness and accurate results and connect with the beam-column elements with 

rotational degrees of freedom in-plane to do some practical engineering analyses. 

Allman (1984) and Bergan and Felippa (1985) are the pioneers to this method and 

achieved a level of success not previously attained. Their efforts inspired numerous 

works on this subject (Allman, 1987, 1988a; Carpenter et al., 1985; Cook, 1986, 1987; 

Macneal, 1987a, 1987b; Macneal and Harder, 1988; Taylor and Simo, 1985; Taylor, 

1987). However, these early works concentrated solely on the choice of the finite 

element interpolation fields in which the drilling rotation is taken as an independent 

degree of freedom with still based on the conventional displacement-based variational 

principle of minimum potential energy. To pursue this subject mathematically and 

improve the performance of the membrane elements with drilling degrees of freedom, 



Chapter 2  Literature Review 

22 

Hughes and Brezzi (1989) proposed an approach based on a mixed variational 

formulation employing an independent rotation field which was firstly introduced by 

Reissner (1965) where the skew-symmetric part of the stress tensor was used as a 

Lagrange multiplier to enforce the equality of independent rotations with the 

skew-symmetric part of the displacement gradient. Ibrahimbegovic et al. (1990) 

successfully combined the mixed variational formulation by Hughes and Brezzi (1989) 

and an Allman-type interpolation for the displacement field with an independently 

interpolated rotation field and therefore proposed a robust quadrilateral membrane 

element with drilling rotations. The related studies and applications extending the 

membrane elements with drilling degrees of freedom into nonlinear and dynamic 

analyses were described in the references (Hughes et al., 1995a; Hughes et al., 1995b; 

Ibrahimbegović, 1994; Ibrahimbegović and Frey, 1994a, 1994c; Simo et al., 1992a). 

A series of 3-node, 9-DOF triangular membrane elements with drilling rotations were 

proposed by Felippa et al. (Alvin et al., 1992; Felippa, 2003; Felippa and Alexander, 

1992; Felippa and Militello, 1992) on a unified basis, including the free formulation 

(FF), the extended free formulation (EFF) and the assumed natural deviatoric strain 

(ANDES) formulation. In the derivations, the element response was separated into the 

basic and higher orders, with the former taking care of consistency and the latter 

considering stability (rank sufficiency) and accuracy. Based on ANDES formulation, 

the ANDES template for triangular membrane elements, carrying along a set of free 

numerical parameters, was proposed by Felippa (2003), in which the Optimal ANDES 

template (OPT membrane element) was proved to perform well in a constant-moment 

in-plane bending test with high aspect ratio. Also, the ANDES formulation has been 

used to develop plate bending and shell elements (Militello and Felippa, 1991), while 
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the OPT membrane element was commonly used to construct flat triangular shell 

elements and extended to the geometrically nonlinear analysis of shell structures 

(Battini and Pacoste, 2006; Khosravi et al., 2007). 

Besides, a very special approach for drilling rotation problem was proposed by using 

a single rotation about an element side. This method was originally applied in a linear 

context by Herrmann (1967) and in relation to a displacement formulation by Morley 

(1971). Then, these elements were extended to nonlinear shell analysis by many 

researchers (Baecklund, 1973; Kolahi and Crisfield, 2001; Chen, 1979; Peng and 

Crisfield, 1992; Providas and Kattis, 1999; Van Keulen et al., 1993). However, they 

cannot be easily matched with other types of elements in the modelling of complex 

structures. 

Recently, Madeo et al. (2014) proposed a new simple and efficient four-node 

quadrilateral membrane element with drilling rotations based on the strain approach. 

Zouari et al. (2016) presented two four-node quadrilateral membrane elements with 

drilling rotations based on a plane adaptation of the space fibre rotation concept. 

2.1.3.2 Plate bending element 

As the other part of the flat shell element, the plate bending element represents the 

bending behaviour of the shell element and has two out-of-plane rotations and one 

transverse displacement per node. The development of plate bending elements can be 

tracked back to the 1960s (Melosh, 1961) and has received an enormous amount of 

effort from researchers. A large number of plate bending elements using various 

interpolations, theories and variational principles have been developed in the past a 

half century. The development and history of plate bending elements were reviewed 
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by many researchers at different times, such as Batoz et al. (1980a), Hrabok and 

Hrudey (1984) and Cen and Shang (2015). The literature on this topic is extensive and 

therefore only some popular displacement-based formulations are introduced in this 

section. Most plate bending elements are generally formulated by two theoretical 

bases: the Kirchhoff-Love plate theory neglecting transverse shear deformation for 

thin plates and the Mindlin-Reissner plate theory considering transverse shear 

deformation for thick plates. In analogy to beams, the Kirchhoff plate theory can be 

regarded as an extension of the Euler-Bernoulli beam theory, while the 

Mindlin-Reissner plate theory corresponds to the Timoshenko beam theory. For this 

reason, some plate elements were derived and extended on the basis of beam 

elements. 

The early plate elements were presented based on the Kirchhoff-Love thin plate 

theory in which the straight lines are normal to the mid-surface remain straight and 

normal to the mid-surface after deformation, with neglecting the effects due to 

transverse shear deformation. Traditional displacement-based plate bending elements 

generally assume the transversal displacements as polynomial functions over the 

element. And the bending rotation interpolations are the partial derivatives of the 

displacement interpolations, which is called the C1 continuity requirement on the 

interpolation functions and may lead to incompatible elements. Based on the 

displacement-type formulations, one of the most common approaches for deriving 

thin plate elements is the discrete Kirchhoff technique proposed by Baton et al. 

(Batoz, 1982; Batoz et al., 1980a; Batoz and Tahar, 1982). Different from the other 

displacement-based methods, it initially assumes a cubic variation of the transversal 

displacement along the sides and quadratic variations of the bending rotations over 
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the element, including nodal values at the corners and mid-nodes. Thus, when the 

formulation is applied to a one-dimensional beam element, the exact stiffness matrix 

of an Euler-Bernoulli beam element with a cubic polynomial displacement can be 

obtained. Through Kirchhoff hypothesis and simple geometric relationships, the 

bending rotations can be expressed with only the nodal values at the corners and used 

to derive the stiffness matrix of the plate bending element. In this derivation, there is 

no need to define an interpolation function for the displacement of the element, except 

for the assumption of a cubic variation of the transversal displacement along the sides. 

The plate bending elements constructed through this technique have been proved to 

provide high accuracy and good convergence rate for plate bending problems, such as 

the discrete Kirchhoff triangular (DKT) element with 3 nodes and 9 degrees of 

freedom (Batoz, 1982; Batoz et al., 1980a) and the discrete Kirchhoff quadrilateral 

(DKQ) element with 4 nodes and 12 degrees of freedom (Batoz and Tahar, 1982). 

They are also widely used to construct flat shell elements and implemented in 

commercial finite element software due to simplicity and reliability. 

On the other hand, the Mindlin-Reissner plate theory for thick plates assumes that the 

normal to the mid-surface remains straight, but not perpendicular to the mid-surface 

due to transverse shear deformation. Many plate elements based on this theory have 

been developed like the Kirchhoff plate elements. A simple displacement-based 

method adopts independent interpolation functions for transversal displacement and 

rotations over the element, and only C0 continuity is required. However, the lower 

order elements using this method without special treatments have the shear locking 

phenomenon for thin plates, and the mechanism has been introduced in Section 2.1.1. 

In analogous to the degenerated shell elements, the Mindlin-Reissner plate elements 
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can also overcome this difficulty using the reduced integration (Pugh et al., 1978; 

Zienkiewicz et al., 1971) and the selected reduced integration (Hughes et al., 1978; 

Malkus and Hughes, 1978). Although these two methods eliminate or alleviate the 

shear locking problem and save computational cost, they cannot always ensure the 

absence of shear locking. Most importantly, they may lead to rank insufficiency of 

element stiffness matrices and the spurious zero energy modes under some situations. 

In order to keep rank sufficiency of element stiffness matrices on the basis of the 

reduced integration, Belytschko et al. (Belytschko et al., 1984; Belytschko et al., 

1981; Belytschko and Tsay, 1983) proposed the stabilization method where a 

stabilizing stiffness matrix is superimposed to the element stiffness matrix obtained 

using the reduced integration.  

An alternative approach to remedy the shear locking problem is the assumed natural 

strain (ANS) method firstly proposed by Hughes and Tezduyar (1981) for the 

four-node bilinear isoparametric element based on the Mindlin-Reissner plate theory. 

The ANS method assumes the shear strains independent of the displacement 

interpolations, and the shear strains are determined by the strain-displacement 

relationship at certain discrete points of the element. Thus, the accuracy of the ANS 

method highly depends on the selection of discrete points. The successful 

Mindlin-Reissner plate elements using this method can be found in the references 

(Sze and Zhu, 1998; Sze et al., 1997; Tessler and Hughes, 1983, 1985). A well-known 

variation of the ANS method is the mixed interpolated tensorial components (MITC) 

method proposed by Bathe et al. (Bathe and Dvorkin, 1985; Brezzi et al., 1989) for 

the Mindlin-Reissner plate elements, in which the covariant tensor shear strain 

components were defined and independent of the displacement interpolations. The 
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MITC method was also applied to the degenerated shell elements (Bathe and Dvorkin, 

1986; Dvorkin and Bathe, 1984) as introduced in Section 2.1.1. 

Following the discrete Kirchhoff technique by Batoz et al. (1980a) for thin plates, 

many researchers adopted similar derivation procedures and extended this method to 

thick plates based on the Mindlin-Reissner plate theory. For example, Chen and 

Cheung (2000, 2001) used the exact displacement function of the Timoshenko’s beam 

to derive the displacement interpolations of plate elements, and the re-constituting 

shear-strain technique was used to derive a 3-node triangular and a 4-node 

quadrilateral Mindlin-Reissner plate element, respectively named RDKTM and 

RDKQM. The similar works also can be found in the references (Aalto, 1988; Batoz 

and Lardeur, 1989; Batoz and Katili, 1992; Cai et al., 2011; Ibrahimbegović, 1993; 

Katili, 1993a, 1993b). These plate elements can converge towards the discrete 

Kirchhoff plate bending elements when the plate thickness is very thin. 

 

2.2 Geometrically nonlinear shell element 

In contrast to the geometrically linear analysis assuming infinitesimally small 

displacements and strains, the geometrically nonlinear analysis is based on the 

assumption of large deflections in which the element maintains equilibrium after 

deformation. In continuum mechanics, there are two basic kinematic descriptions to 

determine how the body moves. One is the Lagrangian kinematic description where 

all physical quantities are expressed with initial coordinates, and the other one is the 

Eulerian kinematic description which uses current coordinates. For solid and 

structural mechanics problems, both descriptions can be used. However, the 
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Lagrangian description is more suitable and widely used in commercial finite element 

software. On the other hand, the Eulerian description is commonly used in fluid 

mechanics problems. In terms of the strain measures, except for the engineering strain 

which is a linear strain measure, the other nonlinear strain measures for nonlinear 

structural and solid mechanics problems are the Green strain, Almansi strain and 

logarithmic strain. The Green strains are referred to the initial coordinates and used 

with the Lagrangian kinematic description, while the Almansi strains are referred to 

the current coordinates and used with the Eulerian kinematic description. Thus, 

several different geometrically nonlinear analysis schemes can be developed based on 

the different descriptions and measures. 

Generally, there are two types of geometrically nonlinear analyses: (1) large 

displacements, large rotations, but small strains; (2) large displacements, large 

rotations, and large strains. The difference between these two types of analyses is 

whether the strains are assumed to be large or small. In the former type, 

displacements and rotations of fibres are large, but fibre extensions and angle changes 

between fibres are small, while large strains mean that fibre extensions and angle 

changes between fibres are large (Bathe, 2016). The latter analysis type is more 

general and can be applied to problems of small strains, but the former type is 

computationally more effective and may also provide more insight into the response 

prediction. The assumption of large displacements, large rotations, but small strains is 

suitable for the design and analysis of most civil engineering structures. Thus, this 

section only reviews the geometrically nonlinear analysis formulations based on the 

small strains assumption. 
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The common formulations in present used in the geometrically nonlinear analysis of 

structural and solid mechanics problems with small strains are the total Lagrangian 

(TL) and updated Lagrangian (UL) formulations based on the Green strains and the 

co-rotational (CR) formulation. The published literature on geometrically nonlinear 

shell elements based on these formulations is reviewed in the following. 

 

2.2.1 Total and Updated Lagrangian formulations 

The total and updated Lagrangian formulations use the Green-Lagrangian strains and 

the 2nd Piola Kirchhoff stresses. Both formulations are based on the same process, 

except that the only theoretical difference is the choice of reference configurations. 

The total Lagrangian (TL) formulation is referred to the initial configuration, while 

the updated Lagrangian (UL) formulation is referred to the last calculated 

configuration. Indeed, identical results can be obtained if appropriate constitutive 

tensors are adopted in the numerical solution. The choice of using either the TL or the 

UL formulation in a finite element solution depends on their relative numerical 

effectiveness. In general, the strain displacement matrix is more complicated in the 

TL formulation than in the UL formulation, since the initial strain effect is contained 

in the TL formulation. 

Early geometrically nonlinear shell elements using the TL and UL formulations were 

proposed by Bathe et al. (Bathe and Bolourchi, 1980; Bathe et al., 1983; Dvorkin and 

Bathe, 1984) based on the degenerated shell approach where the shell element is 

formulated by three-dimensional stress and strain conditions. However, Surana (1983) 

pointed out that these formulations are restricted to small rotations between two load 
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increments since the element displacement field is linearized with respect to nodal 

rotations. Thus, Surana (1983) adopted general nonlinear functions of nodal rotations 

in the element displacement field and enabled the element to allow for large load 

steps and permit large rotations between successive load increments with good 

convergence based on the previous works. But the nonlinear functions of nodal 

rotations have three cases according to the sequence of rotations, and therefore the 

element must determine the rotation sequence, which brings inconvenience to 

practical applications. Thus, developing an effective and accurate formulation of large 

rotations in three-dimensional space for geometrically nonlinear finite element 

analysis was an imperative task. 

There are numerous formulations to deal with large rotations in geometrically 

nonlinear finite element analysis and need not to determine the rotation sequence, 

such as the references (Ibrahimbegovic, 1997; Ibrahimbegović et al., 1995). The most 

popular one was proposed by Argyris (1982), in which any spatial rotation vector in a 

Cartesian system can be assumed as a rotation about an axis and expressed as a 

rotation matrix. The formulation of finite rotations is computationally convenient and 

has been widely used in geometrically nonlinear analysis schemes for beam and shell 

elements containing rotational degrees of freedom. For example, using the rotation 

formulation, Dvorkin et al. (1995) developed a finite strain elastoplastic formulation 

based on the MITC4 shell element; recently, Jeon et al. (2015) presented the MITC3+ 

finite shell element for geometrically nonlinear analysis; Ko et al. (2017) presented 

geometrically nonlinear formulation of the MITC4+ shell element. At present, the TL 

and UL formulations combined with the vector-like parameterization of finite 

rotations have become basic geometrically nonlinear analysis schemes and 
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extensively used by researchers to develop novel geometrically nonlinear shell 

elements, reviewed by Bathe (2016). 

The TL and UL formulations are also widely used in the shell elements based on the 

classical shell theory since the works by Simo and Fox (1989). For example, 

Ibrahimbegović et al. (Ibrahimbegović, 1994; Ibrahimbegović and Frey, 1994a, 1994b) 

presented a consistent theoretical framework for a novel stress resultant geometrically 

nonlinear shell theory considering the drilling rotations around the shell normal; 

Arciniega et al. (Arciniega and Roman, 2006; Arciniega and Reddy, 2007) proposed a 

tensor-based shell element formulation to describe the mathematical model of a shell 

in a natural and simple way by using curvilinear coordinates. Gruttmann and Wagner 

(2006) developed a shell element for geometrically nonlinear analysis of thin 

composite structures based on a Hu-Washizu variational function with independent 

displacements, stress resultants and shell strains. 

The co-rotational procedure can be incorporated into the TL and UL formulations, in 

which the total deformations of an element are divided into rigid body motions and 

pure deformations. When the rigid body motion part is removed from the total 

deformations, the deformational part is always small relative to the local element 

system which is attached to the element. In the general TL and UL formulations, the 

displacement interpolations and the variational functions using the TL or UL 

descriptions are directly formulated in the global coordinate system. However, in the 

co-rotational procedure, the formulations are established in the local element system 

firstly and then transformed into the global coordinate system. Thus, the co-rotational 

TL and UL formulations are simpler than the general formulations, while the tangent 

stiffness and the internal force in these formulations are not exactly consistent, which 
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may lead to numerical problems in some cases. An early co-rotational UL formulation 

is proposed by Hsiao (1987) based the geometrically nonlinear flat triangular shell 

element proposed by Bathe and Ho (1981) which is restricted to small rotations 

between two load steps. Hsiao (1987) used the co-rotational procedure to eliminate 

the rigid body motions and get the element internal nodal forces, therefore removing 

the restriction. The other applications of the co-rotational TL or UL formulations can 

be found in the references (Alves De Sousa et al., 2006; Hsiao and Hung, 1989; Hsiao, 

1987; Jiang et al., 1994; Kebari and Cassell, 1992; Khosravi et al., 2007, 2008; Kim 

et al., 2007; Kim and Lomboy, 2006; Kim et al., 2003; Masud et al., 2000; Norachan 

et al., 2012). In addition, it should be noted that the co-rotational TL and UL 

formulations are different from the element-independent co-rotational formulation 

which is introduced and discussed in the following section. 

 

2.2.2 Element-independent co-rotational formulation 

In addition to the total Lagrangian (TL) and updated Lagrangian (UL) formulations 

based on the Green-Lagrangian strains for geometrically nonlinear analysis, another 

well-accepted method is the element-independent co-rotational (EICR) formulation 

which is the latest one and attracted extensive discussion recently. The basic idea of 

the co-rotational method is that the total motions of an element can be divided into 

rigid body movements and deformational motions. For the decomposition, a local 

frame is attached to the element and consistently co-rotating with the element. Then, 

the translations and rotations of the local frame can be regarded as the rigid body 

movements, while the motions of the element producing in the local frame can be 
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taken as the deformational motions. In the following, some respective works involved 

with this formulation are reviewed. 

The co-rotational procedure was firstly introduced by Wempner (1969), and then by 

Belyschko and his co-workers (Belytschko and Hsieh, 1973; Belytschko et al., 1977). 

As far as the development of the co-rotational approach, there are many different 

versions proposed for different kinds of finite elements, such as treatment of large 

rotations, simplification of procedure, derivation of geometric stiffness, selection of 

the local coordinate system, consideration of large strains etc. The co-rotational TL 

and UL formulations mentioned before also belong to this procedure. 

For geometrically nonlinear analysis with large displacements, large rotations but 

small strains, a family of co-rotational procedure called element-independent 

co-rotational (EICR) algorithm was first proposed and named by Rankin and Brogan 

(1986). Through this procedure, existing linear finite elements can be upgraded to 

geometrically nonlinear analysis allowing for arbitrarily large rotations. Basically, the 

property of the element-independence comes from that the geometric stiffness 

formulated by the nodal internal forces rather than the stresses at integration points in 

the TL and UL formulations. Thus, the geometric stiffness matrix in the EICR 

algorithm is explicit and there is no need to conduct the numerical integration, which 

makes the geometric stiffness matrix is independent of the local element formulation 

and any geometrically linear element can be upgraded to realize geometrically 

nonlinear analysis with the EICR algorithm. Generally, due to the omission of the 

numerical integration of the geometric stiffness, the EICR formulation is more 

efficient than the TL and UL formulations. 
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After Rankin and Brogan (1986) presented the EICR algorithm as a general 

framework, Nour-Omid and Rankin (1991) and Rankin and Nour-Omid (1988) 

improved this algorithm and pointed out that the EICR formulation presented in the 

previous work (Rankin and Brogan, 1986) cannot keep equilibrium of the element 

internal force vector, so the projector operator was proposed to improve the finite 

element performance. In addition, due to the non-additivity of large rotations in 

three-dimensional space, a pertaining transformation matrix was also presented. 

Detailed introduction of the EICR approach is also presented by Felippa and Haugen 

(2005) in a great review article where the authors discussed several related techniques 

used in the EICR algorithm, such as mathematics of finite rotations, fitting methods to 

satisfy invariance to nodal ordering, etc. Following this standard EICR formulation, 

the pertaining studies for shell elements in geometrically nonlinear analysis also can 

be found in the publications (Almeida and Awruch, 2011; Areias et al., 2011; Battini, 

2007, 2008; Battini and Pacoste, 2006; Battini and Pacoste, 2004; Dal Cortivo et al., 

2009; Eriksson and Pacoste, 2002; Pacoste, 1998; Pajot and Maute, 2006; Skallerud 

and Haugen, 1999). 

A similar co-rotational procedure used with a flat triangular shell element was 

proposed by Levy and co-workers (Gal and Levy, 2005; Gal and Levy, 2006; Levy 

and Gal, 2001, 2003, 2006; Levy and Spillers, 2013), whose derivation of the 

geometric stiffness matrix is somewhat different but consistent with the EICR 

algorithm. The formulation in these papers is based on the load perturbation of the 

linear equilibrium equations for a flat triangular shell element in the local coordinate 

system. The flat shell element consists of the constant stress triangular (CST) 

membrane element described by Zienkiewicz et al. (1977) and the discrete Kirchhoff 
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flat triangular (DKT) plate element proposed by Batoz et al. (1980a). In the derivation, 

the local geometric stiffness matrix of the flat triangular shell element is derived as 

the gradient of the nodal force vector and divided into three parts: the in-plane 

geometric stiffness matrix of a membrane element, the in-plane geometric stiffness 

matrix of a plate element and the out-of-plane geometric stiffness matrix of a shell 

element. Specifically, the first two parts represent the changes of the element 

dimensions respectively, whereas the out-of-plane geometric stiffness matrix of the 

shell element is due to the rigid body rotations of the element. The drawback of this 

formulation compared with the standard EICR formulation introduced in the last 

paragraph is that the first two parts of the geometric stiffness matrices are not 

element-independent since they are related to the formulations of the membrane and 

the plate elements. However, the formulation provides another thought to derive the 

geometric stiffness, with taking the gradients of the nodal internal forces in the local 

coordinate system directly. So, it is easier to visualize through physical interpretation 

than the standard formulation. 

Crisfield and Moita (1996) presented a unified co-rotational framework for solids, 

shells and beams, which has strong links with the work by Nour-Omid and Rankin 

(1991) and inherits the properties of element-independence. It is a simplified 

formulation since some terms are omitted in the derivation of the internal forces and 

the tangent stiffness. In addition, Crisfield et al. (1995) pointed out that the 

co-rotational technique cannot be restricted in the local element with small strains, 

while it can be extended to the analysis of large strains, in which the Biot-stress 

formulation describing large strains was used in the local element. Similar to the 

simplified co-rotational framework, Izzuddin (2005) defined a new local co-rotational 



Chapter 2  Literature Review 

36 

system and used vectorial rotations for quadrilateral shell elements, not only the 

invariance to nodal ordering but also a symmetric tangent stiffness matrix can be 

achieved. Following this thought, some studies for geometrically nonlinear analysis of 

shell structures were presented in the references (Izzuddin and Liang, 2016; Li et al., 

2008; Li et al., 2011a; Li and Vu-Quoc, 2007; Li et al., 2015; Li et al., 2013; Li et al., 

2011b; Li and Vu-Quoc, 2007; Li et al., 2013; Liang and Izzuddin, 2015, 2016). 

An alternative approach for geometrically nonlinear shell elements was proposed by 

Argyris et al. (Argyris et al., 2003; Argyris et al., 2002a; Argyris et al., 1997; Argyris 

et al., 1998; Argyris et al., 2000b; Argyris et al., 2002b). The methodology is based 

on the physical inspirations of the natural-mode finite element method (NM-FEM) 

which shares the same concept with the co-rotational method that the total motions of 

an element can be divided into rigid body movements and natural motions. Also, in 

this method, the geometric stiffness is nearly generated by the rigid body motions of 

the element, so the geometric stiffness includes only natural forces which produce 

rigid body moments. This characteristic is close to the EICR formulation rather than 

the TL and UL formulations. Thus, the method can be regarded as an alternative 

simplified EICR method. 

 

2.3 Elastoplastic analysis for shell structures 

2.3.1 Basic concepts of elastoplasticity 

Material nonlinearity where the stress-strain relationship is nonlinear is essential to 

the nonlinear analysis of practical shell structures because it significantly influences 
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ultimate loads and buckling behaviours of structures. Elastoplasticity belongs to 

material nonlinearity, in which material follows a linear stress-strain relationship for 

low-stress levels and has a decrease in stiffness as the stress increases when exceeding 

yield strength. Also, unloading of the elastoplastic material initiates a new branch on 

the stress-strain curve where the material is again elastic until exceeding yield 

strength, often with a stiffness equal to the initial elastic stiffness.  

In addition to these basic characteristics, the mathematical theory of elastoplastic 

models has some the fundamental concepts: the yield criterion determining when the 

material becomes plastic, the flow rule describing the relationship between stresses 

and strains once the material has become plastic, and the hardening rule establishing 

conditions for subsequent yielding from the previous plastic straining history 

(Krabbenhøft, 2002; Marques, 1984). 

The yield function depends on stresses and plastic strains and may be related to the 

past material history via the hardening parameter. There are four common yield 

criteria used in the current elastoplastic analysis, including Tresca (Tresca, 1869), von 

Mises (Mises, 1913), Mohr-Coulomb (Coulomb, 1773; Mohr, 1900) and 

Drucker-Prager (Drucker and Prager, 1952), in which the first two are applied to 

ductile material such as steel and aluminium, while the last two can describe the 

response of brittle material such as concrete and soils. The flow rule relates stress to 

plastic strain increments and is generally established by using the plastic potential. 

When the flow rule is associated with a particular yield criterion it is an associated 

flow-rule, otherwise, it is a non-associated flow rule. The hardening rule has two 

basic modes, including the isotropic hardening where the yield surface is assumed to 

expand uniformly about the stress space origin during plastic flow and kinematic 
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hardening which corresponds to a translation preserving the initial shape. Also, the 

two models can be combined and become a more complex hardening rule (Marques, 

1984). 

 

2.3.2 Finite element implementation 

The implementation of the elastoplastic constitutive relations in a finite element 

context has two different levels, including the global level and the material level. On 

the global level, the equilibrium must be satisfied in any other linear or nonlinear 

finite element computation, whereas on the material level the elastoplasticity relations 

must be satisfied (Krabbenhøft, 2002; Zienkiewicz and Taylor, 2000). In analyses, the 

elastoplastic constitutive model is considered at each numerical integration point of 

the element. From the global level, the displacement increments corresponding to the 

applied load vector can be obtained and then the strains can be computed. Since the 

constitutive matrix depends on the current state of stress, the stiffness matrix is 

nonlinear and iterative procedures should be used at the global level. In addition, on 

the material level, the stresses should be determined via the elastoplastic constitutive 

relationship after a global iterative procedure. 

For a given strain increment, there are many procedures to update the current stress 

state, relating to the integration of the constitutive relations which are rate equations. 

For instance, a forward-Euler scheme can be used when the stress and strain 

increments are small and a return to the yield surface is needed to avoid the stresses 

lying outside the yield surface. However, the stress and strain increments are not 

infinitesimal and errors would accumulate. To address the problem of increment sizes, 
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a backward-Euler return-mapping scheme can be employed to evaluate the 

elastoplastic stress state (Crisfield, 1991). 

For the elastoplastic analysis of shell elements, two approaches are usually used by 

researchers. One is the layered approach, also referred to as 

“through-the-thickness-integration”, while the other one is the non-layered approach. 

In the following, some articles regarding these two methods are reviewed. 

 

2.3.3 Layered approach 

In the layered approach, a shell element can be divided into any desired number of 

layers. To represent the actual behaviour of the shell, increasing the number of layers 

can reduce the error due to the approximation that each layer is assumed to be in a 

state of plane stress. Strains and stresses are calculated and the elastoplastic analysis 

is performed for each layer separately. Then, the element material stiffness, nodal 

forces and moments are calculated by integration through the thickness. The layered 

approach can provide very accurate results when the number of layers is sufficient, 

but it is demanding on computation compared with the non-layered approach.  

An early work regarding shells with large displacements including elastoplastic 

material behaviour was performed by (Parisch, 1981) based on the degenerated shell 

element, in which both the TL and UL formulations were used to considered large 

deflections and a layered approach was proposed for the treatment of elastoplastic 

behaviour. The similar studies using the layered approach can also be found in the 

references (Argyris et al., 2002b; Bathe and Dvorkin, 1985; Dal Cortivo et al., 2009; 
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Dvorkin and Bathe, 1984; Dvorkin et al., 1995; Kebari and Cassell, 1992; Li et al., 

2013; Montag et al., 1999). 

In addition, the layered approach is also extensively used in analysis of laminated 

composite shell structures, which can be found in the references (Argyris et al., 1997; 

Cinefra and Carrera, 2013; Ferreira et al., 2011; Han et al., 2008; Hossain et al., 2004; 

Khosravi et al., 2008; Kim et al., 2003; Liang and Izzuddin, 2015, 2016; Sessa et al., 

2017; Zallo and Gaudenzi, 2003). 

 

2.3.4 Non-layered approach 

The non-layered approach, also called the stress resultant approach, which avoids the 

integration over shell thickness and saves computational cost. However, the yield 

function and the rate equation should be formulated with the stress resultants and 

become more complicated than those in a state of plane stress used in the layered 

approach. Moreover, the non-layered approach is less accurate than the layered 

approach, since the yield function formulated with the stress resultants is approximate 

and hard to accurately describe the plastic zone spreading process through the shell 

thickness. Thus, proposing a more accurate stress resultant yield function suitable for 

more general cases of shell structures has received a lot of attention from researchers. 

An early attempt was presented by Ilyushin (1956) where a complicated yield 

function formulated directly in terms of stress resultants was proposed based on the 

thin shell theory and the von Mises yield criterion. After that, Robinson (1971) 

examined the yield function proposed by Ilyushin (1956) and found that it is very 

close to the exact one in all cases and should prove useful for practical application, 
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whereas a modification to consider the effect of transverse shear was presented. 

Crisfield (1981) and Bieniek and Funaro (1976) also modified the Ilyushin yield 

function to accurately capture the progressive development of the plastic curvatures 

across the shell thickness. Shi and Voyiadjis (1992) further modified the yield 

function to account for the effect of transverse shear forces based on the 

Mindlin-Reissner plate theory. 

The geometrically nonlinear elastoplastic analysis of shell structures using the 

non-layered approach can be found in the references (Simo et al., 1989; Simo et al., 

1990a, 1992b; Simo and Fox, 1989; Simo et al., 1990b; Simo and Kennedy, 1992; 

Skallerud and Haugen, 1999). 
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CHAPTER 3 

A PURE DEFORMATIONAL METHOD FOR 

SHELL ELEMENTS 

The pure deformational method, also called the natural mode method, was firstly 

proposed by Argyris et al. (1979), in which the pure deformation modes are separated 

from the rigid body movements of the element. This method has substantial 

computational advantages, compared with the conventional finite element 

formulations. This is because the variables based on the pure deformational mode are 

less and the corresponding formulation is simpler when the rigid body movements are 

removed. The associated applications of this method for shell elements in nonlinear 

analysis are introduced by Argyris and his co-workers in the references (Argyris et al., 

2000a; Argyris et al., 2003; Argyris et al., 2002a; Argyris et al., 1997; Argyris et al., 

1998; Argyris et al., 2002b). However, the pure deformations of the element in this 

method are different from the general local deformations in the co-rotated local 

system, and Argyris did not extend this method to be an element-independent method 

that can be used to any finite element. 

In this chapter, a pure deformational method commonly used in beam-column 

elements is extended into triangular and quadrilateral shell elements. Different from 

the method presented by Argyris and his co-workers, the proposed method uses the 

local coordinate system as the basic coordinate system, and the corresponding pure 

deformations are easier to be extracted and identical to the local deformations. 
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Moreover, the proposed method is element-independent and can be used for any finite 

element. 

The pure deformational method has been extensively used in the derivation of 

beam-column elements, but it has not been used for shell elements. The geometric 

displacement relationships of shell elements are more complicated than beam-column 

elements and for this reason, the pure deformational method faces more difficulties 

when applying it to shell elements. The simplicity for derivation and formulation of 

an element with computational efficiency by the pure deformational method motivate 

the author to extend it to shell elements. 

 

3.1 A pure deformational method for beam-column 

elements 

To fully illustrate the merits of the pure deformational method, the derivations for a 

2D beam-column element using the general method and the pure deformational 

method are presented respectively in this section. The beam-column element consists 

of the linear column element and the cubic beam element (Hermit beam element) 

based on the Euler-Bernoulli hypotheses. 

 

3.1.1 General derivation 

For the general derivation of an element, there is no constraint applied on it and the 

rigid body movements should be considered. Thus, the displacement interpolations 
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must be able to describe the rigid body movements of the element. Figure 3.1 shows 

that a 2D beam-column element has two nodes and six degrees of freedom, in which 

the axial displacement interpolation is linear, and the transverse displacement 

interpolation is cubic, then we have 

 0 1u a a x   (3.1a) 

 
3

0

i
i

i

v b x


  (3.1b) 

To solve the coefficients, taking advantage of the Euler-Bernoulli hypothesis 
dv

dx
   

and substituting the boundary conditions into Eqs. (3.1) give 

 1 2(1 )u u u     (3.2a) 

 

2 3 2 3

1 1

2 3 3 2

2 2

(1 3 2 ) ( 2 )

(3 2 ) ( )

v v L

v L

     

    

     

   
 (3.2b) 

in which 
x

L
  . 

 

Figure 3.1 A 2D beam-element element 
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Based on the principle of minimum potential energy, the functional of the 

beam-column element can be given by 

 

22 2

20 0

1 1

2 2

L L Tdu d v
EA dx EI dx

dx dx

        
   

  d f  (3.3) 

in which E is the elastic Young’s modulus, A is the cross-sectional area, I is the 

second moment of the cross section,  1 1 1 2 2 2

T
= u v u v d  is the displacement 

vector and f  is the external force vector corresponding to d . 

Substituting Eqs. (3.2) into Eq. (3.3) and using the condition 0  , the stiffness 

matrix can be obtained as follows, 

 =Kd f  (3.4a) 

 

3 2 3 2

2 2

3 2 3 3

2 2

0 0 0 0

12 6 12 6
0 0

6 4 6 2
0 0

0 0 0 0

12 6 12 6
0 0

6 2 6 4
0 0

EA EA

L L
EI EI EI EI

L L L L
EI EI EI EI

L L L L=
EA EA

L L
EI EI EI EI

L L L L
EI EI EI EI

L L L L

  
 
  
 
 
 
 
 
 
 

   
 
   

K  (3.4b) 

This formulation is very classical and can be found in so many publications. It can be 

seen that K  is a 6×6 singular stiffness matrix and its rank is 3, which means that the 

pure deformational beam-column element only has 3 degrees of freedom. 
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3.1.2 Derivation based on the pure deformational method 

Figure 3.2 shows a pure deformational beam-column element, in which three degrees 

of freedom are restrained. Thus, the rigid body motions are removed and the rest of 

deformations  2 1 2=
T

u    d  are pure. Thus, the displacement interpolations 

become 

 2u u   (3.5a) 

 2 3 3 2

1 2( 2 ) ( )v L L            (3.5b) 

Compared with Eqs. (3.2) in the general derivation, Eqs. (3.5) are simpler and can be 

obtained by directly removing the terms involving the restrained degrees of freedom 

in Eqs. (3.2). By the principle of minimum potential energy, the stiffness matrix for 

the pure deformational element can be given by 

 = Kd f  (3.6a) 

 

0 0

4 2
0

2 4
0

EA

L
EI EI

=
L L
EI EI

L L

 
 
 
 
 
 
 
  

K  (3.6b) 

where the stiffness matrix K  is a 3×3 non-singular matrix. 
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Figure 3.2 A pure deformational 2D beam-element element 

Although the stiffness matrix K  is simpler, it should be transformed into the one 

obtained by the general derivation, K , to assemble the global stiffness matrix of the 

whole structure. Thus, the relationship between the pure deformational element in the 

basic coordinate system and the general element in the local coordinate system should 

be established. The pure deformations are identical to the corresponding local 

deformations, but their variations are different. The variations of the pure 

deformations can be given by 

 2 2 1u u u     (3.7a) 

 2 1
1 1

v v

L

   
   (3.7b) 

 2 1
2 2

v v

L

   
   (3.7c) 

Then, the basic-to-local transformation matrix can be obtained as follows, 
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1 0 0 1 0 0

1 1
0 1 0 0

1 1
0 0 0 1

T L L

L L

 
 
     

  
 

 
 

d
L

d


 (3.8) 

Thus, the relationship between these two systems can be given by 

   d L d  (3.9a) 

 Tf L f  (3.9b) 

 TK L KL  (3.9c) 

The derivation of the 2D beam-column element can be conducted in the basic 

coordinate system and makes the formulation simpler. Also, this pure deformational 

method is element-independent and can be used for any beam-column element with 

different displacement interpolations, even for the elements considering second order 

effect and material nonlinearity. For example, Chan (Chan, 1992) investigates the 

cubic beam-column element with second order effect in the large deflection analysis 

based on the co-rotational method; Chan and Zhou (Chan and Zhou, 1994) propose a 

fifth-order polynomial beam-column element with second order effect; Tang et al. 

(Tang et al., 2015) propose a cubic beam-column element allowing for shear 

deformation and second order effect simultaneously; also, the stability function can be 

derived by the pure deformational element model as investigated by Chan and Gu 

(Chan and Gu, 2000). 

Additionally, the pure deformational method can be naturally integrated into the 

element-independent co-rotational (EICR) formulation for geometrically nonlinear 
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analysis, as shown in the work by Meek (Meek and Tan, 1983) and Crisfield 

(Crisfield, 1991b). The co-rotational method decomposes the total element 

deformations into the large rigid body movements and the small pure deformations, 

which is consistent with the concept of the pure deformational method. Thus, the pure 

deformational method is very efficient for the derivations of novel elements and it is 

very significant to extend this method to shell elements. 

 

3.2 A pure deformational method for triangular shell 

elements 

Generally, a flat shell element consists of a membrane element and a plate element. 

Thus, this section is divided into two parts to discuss the proposed pure deformational 

methods for triangular membrane and plate elements respectively. 

 

3.2.1 Triangular membrane elements 

The pure deformational methods for triangular membrane elements with and without 

drilling rotations are presented respectively. Similar to the pure deformational method 

for beam-column elements, the crucial step is to derive the basic-to-local 

transformation matrix to transfer the quantities from the basic coordinate system 

corresponding to the pure deformational element model to the local coordinate 

system. 
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3.2.1.1 Triangular membrane elements without drilling rotations 

As shown in Figure 3.3, a triangular membrane element is defined in the basic 

coordinate system with a simple support on one side and its rigid body movements are 

removed. 

The coordinates of the three corner nodes in the basic and local coordinate systems 

are identical and can be given by 

  1 0 0
Tx ,  2 2 0

T
xx ,  3 3 3

T
x yx  (3.10a, b, c) 

 

 

Figure 3.3 A triangular membrane element with a simple support on one side 

The basic internal force and displacement vectors are denoted by 

  2 3 3

T

m x x yf f f   f  (3.11a) 

  2 3 3

T

m u u vd     (3.11b) 
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 m m m f K d   (3.11c) 

where the tilde “~” means that the variables belong to the pure deformational element 

model in the basic coordinate system, and m
K  is the stiffness matrix of a triangular 

membrane element without drilling rotations in the basic coordinate system. 

Besides, the displacement and internal force vectors defined in the local coordinate 

system containing the rigid body movements are denoted by 

  1 1 2 2 3 3

T

m x y x y x yf f f f f ff  (3.12a) 

  1 1 2 2 3 3

T

m x y x y x yu u u u u ud  (3.12b) 

 m m m f K d  (3.12c) 

To construct the relationship between the basic and local coordinate systems, the 

variation of the rigid body rotation about the local z-axis z  of a membrane 

element is need. And z  can be expressed with the variations of the local 

displacements as follows, 

 2 1

2

y y
z

u u

x

 



  (3.13) 

Then, the variations of the pure deformations can be given by 

 2 2 1x xu u u     (3.14a) 

 3 3 1 3x x zu u u y       (3.14b) 
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 3 3 1 3y y z
v u u x       (3.14c) 

Through Eqs. (3.13) and (3.14), we have 

 m m m
 d L d  (3.15a) 

in which 

 
3 2 3 2

3 2 3 2

1 0 1 0 0 0

1 / 0 / 1 0

0 1 / 0 / 0 1
m y x y x

x x x x

 
    

    

L  (3.15b) 

By the principle of virtual work, the relationship of the force vectors between these 

two different systems can be given by 

 
T

m m m
f L f  (3.16) 

in which the basic internal forces m
f  can be seen as the action forces at the free 

degrees of freedom of a pure deformational triangular membrane element. And it can 

be noticed that 1 1x xf f , 2 2x xf f , 3 3x xf f  from Eq. (3.16). In addition, the 

other forces in the vector mf  can be regarded as the reaction forces at the restrained 

degrees of freedom of a pure deformational triangular membrane element, which can 

also be obtained by the equilibrium equations of a membrane element. Thus, the 

equilibrium equations can verify the basic-to-local transformation matrix mL . 

Taking a variation of Eq. (3.16) gives 

 
T

1

T T

m m m m m m m m m m
     f L f L K d L K L d    (3.17a) 
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 T
m m m m K L K L  (3.17b) 

in which mK  is a 6×6 singular stiffness matrix in the local coordinate system, 

whereas m
K  is a 3×3 non-singular stiffness matrix in the basic coordinate system. 

The relationship in Eqs. (3.17) is applicable to any triangular membrane element 

without drill rotations, since it is not related to displacement interpolations. 

The constant stress triangular (CST) plane element (Zienkiewicz et al., 1977) with 

linear displacement interpolations over the element area is used for demonstration 

herein. The stiffness matrix of the triangular membrane element without rigid body 

movements in the basic coordinate system can be given by 

 

   
   

2
3 2 3 3 2 3 3

32

2 3

3 2 3

1 2 / 1

1

/ / 2

/ / 0
4(

1
1 )

2 0 2 /
m

x x y y x x y

x y

v v v
E

x
t

v v
v

v x y

y

  
   
 

 
 



K  (3.18) 

in which E is the elastic Young’s modulus, t is the thickness of membrane and v  is 

the Poisson’s ratio. It can be seen that the expression of this stiffness matrix is much 

simpler than the traditional derivation. 

To assemble the global stiffness matrix of the whole structure, the 3×3 non-singular 

matrix in Eq. (3.18) needs to be transformed into the 6×6 singular matrix by the 

basic-to-local transformation matrix in Eqs. (3.17). However, in terms of coding, the 

former matrix is more concise. Moreover, when the stiffness matrix needs numerical 

integration, the 3×3 stiffness matrix can save computational cost. 

3.2.1.2 Triangular membrane elements with drilling rotations 



Chapter 3  A Pure Deformational Method for Shell Elements 

54 

As a part of a shell element, a membrane element should allow for the in-plane 

drilling rotations, so that a shell element has six degrees of freedom per node. An 

usual method is to introduce fictitious stiffness at the drilling degrees of freedom. 

However, the magnitude of this fictitious stiffness is questionable and induces 

numerical problems very often. An advanced technique is to contain the drilling 

rotations in the displacement interpolations, such as the element presented by Allman 

(1988b), whereas the relevant application is discussed in Chapter 5. 

When the drilling rotations are considered, the basic internal force and displacement 

vectors for a pure deformational membrane element can be denoted by 

  2 3 3 1 2 3

T

m x x y z z zf f f m m mf        (3.19a) 

  2 3 3 1 2 3

T

m x x y z z zu u v   d        (3.19b) 

The internal force and displacement vectors in the local coordinate system containing 

rigid body movements are 

  1 1 1 2 2 2 3 3 3

T

m x y z x y z x y zf f m f f m f f mf  (3.20a) 

  1 1 1 2 2 2 3 3 3

T

m x y z x y z x y z
u u u u u u  d  (3.20b) 

To establish the relationship of the displacement vectors between the basic and local 

coordinate systems, Eqs. (3.13) and (3.14) are still valid here and we also have 

 1 1z z z
     (3.21a) 

 2 2z z z
     (3.21b) 
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 3 3z z z
     (3.21c) 

Though Eqs. (3.13), (3.14) and (3.21), the basic-to-local transformation matrix for a 

triangular membrane element with drilling rotations can be given by 

 

3 2 3 2

3 2 3 2

2 2

2 2

2 2

1 0 0 1 0 0 0 0 0

1 / 0 0 / 0 1 0 0

0 1 / 0 0 / 0 0 1 0

0 1/ 1 0 1 / 0 0 0 0

0 1/ 0 0 1 / 1 0 0 0

0 1/ 0 0 1 / 0 0 0 1

m

y x y x

x x x x

x x

x x

x x

 
   
   

   
 
 

  

L  (3.22) 

 

3.2.2 Triangular plate elements 

The basic-to-local transformation matrix for triangular plate elements is derived in 

this section. To exclude rigid body movements from a triangular plate element, the 

vertical displacements in the local coordinate system are restrained, while all of the 

bending rotations are free in this pure deformational element model, as shown in 

Figure 3.4. Besides, the definition of local coordinate system and the local node 

coordinates are the same as the ones for triangular membrane elements. 

The internal force and displacement vectors in the basic coordinate system without 

rigid body movements can be denoted by 

  1 1 2 2 3 3

T

p x y x y x ym m m m m m      f  (3.23a) 

  1 1 2 2 3 3

T

p x y x y x y     d        (3.23b) 
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 p p p f K d   (3.23c) 

The internal force and displacement vectors in the local coordinate system with rigid 

body movements are 

  1 1 1 2 2 2 3 3 3

T

p z x y z x y z x yf m m f m m f m mf  (3.24a) 

  1 1 1 2 2 2 3 3 3

T

p z x y z x y z x yu u u     d  (3.24b) 

 p p p f K d  (3.24c) 

 

 

Figure 3.4 A triangular plate element with vertical displacements restrained 

The variations of the rigid body rotations of a triangular plate element in the local 

coordinate system can be given by 

 3 1 32 1

3 3 2

z z z z
x

u u xu u

y y x

     
   (3.25a) 
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 1 2

2

z z
y

u u

x

  
  (3.25b) 

Then, the variations of the pure deformational rotations are 

 xi xi x     (i=1,2,3) (3.26a) 

 yi yi y     (i=1,2,3)  (3.26b) 

The basic-to-local transformation matrix can be rearranged from Eqs. (3.25) and (3.26) 

as 

 p p p d L d  (3.27a) 

where 

 

3 3 2 3 3 2 3 3

2 2

3 3 2 3 3 2 3 3

2 2

3 3 2 3 3 2 3 3

2 2

1 / / 1 0 / 0 0 1 / 0 0

1 / 0 1 1 / x 0 0 0 0 0

1 / / 0 0 / 1 0 1 / 0 0

1 / 0 0 1 / x 0 1 0 0 0

1 / / 0 0 / 0 0 1 / 1 0

1 / 0 0 1 / x 0 0 0 0 1

p

y x x y x x y y

x

y x x y x x y y

x

y x x y x x y y

x

  
  

  
   
  
  

L  (3.27b) 

By the principle of virtual work, the relationship of the internal force vectors between 

the two different systems can be given by 

 T

p p pf L f  (3.28) 

Eq. (3.28) can also be verified by the equilibrium equations of a triangular plate 

element. And the moments in these two systems are identical at the same degrees of 

freedom, such as xi xim m , yi yim m . 
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Then, the relationship of the stiffness matrices of a triangular plate element between 

these two systems can be given by 

 
T

p p p p
K L K L  (3.29) 

in which pK  is a 9×9 singular matrix in the local coordinate system, whereas 
p

K  

is a 6×6 non-singular matrix in the basic coordinate system. 

 

3.3 A pure deformational method for quadrilateral shell 

elements 

In this section, a pure deformational method for quadrilateral shell elements is 

presented, whose derivation process is similar to the one for triangular shell elements. 

However, it is more complicated, because the warping phenomenon exists in a 

quadrilateral shell element, in which the 4 corner nodes are not coplanar. Thus, 

different from the pure deformational method for flat triangular shell elements in 

which a membrane element and a plate element can be separately discussed, the 

coupling of a membrane element and a plate element due to warping effect makes the 

pure deformational method for quadrilateral shell elements should be discussed as a 

whole entity. The local coordinate system for a quadrilateral shell element, which is 

related to the variations of the rigid body rotations, should be determined at first. 
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3.3.1 Definition of the local coordinate system 

 

 

Figure 3.5 Local coordinate system of a quadrilateral shell element 

As shown in the Figure 3.5, xgygzg refers to the global coordinate system, while xyz 

the local coordinate system. In terms of the local coordinate system, the origin is 

located at the node 1 and the x-axis is aligned to the side 1-2 of the quadrilateral shell 

element, whereas the z-axis is normal to the side 1-2 and the side 1-4. Based on the 

local coordinate system, the nodes 1, 2, 4 are always coplanar and the warping occurs 

only in the node 3. Knowing the global coordinates of the 4 corner nodes of a warping 

quadrilateral shell element,  Tg g g g
i i i ix y zx  (i=1,2,3,4), the axis vectors of the 

local coordinate system can be given by 

 2 1

2 1

g g

x g g





x x

e
x x

 (3.30a) 



Chapter 3  A Pure Deformational Method for Shell Elements 

60 

 
 
 

4 1

4 1

g g
x

z g g
x

 


 

e x x
e

e x x
 (3.30b) 

 y z x e e e  (3.30c) 

Then, the local-to-global transformation matrix for a quadrilateral shell element is 

 
T

e x y z  =T e e e  (3.31) 

Then, the local node coordinates can be obtained as follows, 

  1
g g

i e i -=x T x x  (i=1,2,3,4) (3.32) 

in which  T

i i ii x y zx , and it can be noticed that 1 2 4 0z z z   . A limitation 

for this definition of local coordinate system is that the analysis results obtained by 

the quadrilateral shell element may depend on the nodal ordering. However, it can be 

applied for many cases except for some certain stability problems with symmetry 

(Battini and Pacoste, 2004), while the effect of nodal ordering dependence is not 

obvious when meshes are refined. The most important reason for using this definition 

of local coordinate system is that the pure deformational method can be more easily 

applied for quadrilateral shell elements. 

According to Eq. (3.32), the nodal coordinates in the local coordinate system can be 

given by 

        1 2 2 3 3 3 3 4 4 40 0 0 , 0 0 , , 0
T T T T

x x y z x y= = = =x x x x  (3.33) 
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It can be noted that there are six entries of the local node coordinates are zeros, which 

means that the corresponding degrees of freedom are restrained in the basic 

coordinate system. The symbols referring to the displacement and the internal force 

vectors of a quadrilateral shell element in the basic coordinate system are listed in the 

following. For a membrane element with drilling rotations, the displacement vector 

and the corresponding internal force vector are 

  2 3 3 4 4 1 2 3 4

T

m z z z zu u v u v    d           (3.34a) 

  2 3 3 4 4 1 2 3 4

T

m x x y x y z z z zf f f f f m m m mf           (3.34b) 

For a plate element, the displacement vector and the corresponding internal force 

vector are 

  3 1 1 2 2 3 3 4 4

T

p x y x y x y x yw        d           (3.35a) 

  3 1 1 2 2 3 3 4 4

T

p z x y x y x y x yf m m m m m m m mf           (3.35b) 

Every vector of a membrane element and a plate element only has 9 entries. Then, the 

displacement vector and the internal force vector of a quadrilateral shell element 

based on the basic coordinate system can be given by 

  TT T
m pd d d    (3.36a) 

  TT T
m pf f f    (3.36b) 

In the local coordinate system, the displacement and the internal force vectors of a 

quadrilateral shell element are denoted by d and f as follows, 
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  1 2 3 4

TT T T T=d d d d d  (3.37a) 

  T

i xi yi zi xi yi ziu u u   d  (3.37b) 

  1 2 3 4

TT T T T=f f f f f  (3.37c) 

  T

i xi yi zi xi yi zif f f m m mf  (3.37d) 

The relationship of the variables between the basic and local coordinate systems is 

detailed in the next section. 

 

3.3.2 Relationship between local and basic coordinate 

systems 

First, the variations of the rigid body rotations of a quadrilateral shell element in the 

local coordinate system can be expressed with the variations of the local translational 

displacements as 

 4 1 2 1 4

4 4 2

z z z z
x

u u u u x

y y x

     
   (3.38a) 

 1 2

2

z z
y

u u

x

  
  (3.38b) 

 2 1

2

y y
z

u u

x

 



  (3.38c) 
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As shown in Figure 3.6, for a quadrilateral membrane element, the variations of the 

pure deformations can be given by 

 2 2 1x xu u u     (3.39a) 

 3 3 1 3 3x x z yu u u y z         (3.39b) 

 3 3 1 3 3y y z xv u u x z         (3.39c) 

 4 4 1 4x x zu u u y       (3.39d) 

 4 4 1 4y y zv u u x       (3.39e) 

 zi zi z
     (i=1,2,3,4) (3.39f) 

where the warping in the node 3 is considered in Eqs. (3.39b, c). 

 

Figure 3.6 Deformation of a quadrilateral membrane element 
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Then, the transformation matrix from local to basic coordinate system can be derived 

as 

 
T

m

m






d
L

d


 (3.40a) 

 m m d L d  (3.40b) 

in which mL  is a 9×24 matrix. 

By the principle of virtual work, the relationship of the internal force vectors between 

these two different systems can be given by 

 T
m mf L p  (3.41) 

 

 

Figure 3.7 Deformation of a quadrilateral plate element 
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With the similar way used in a membrane element, the variations of the pure 

deformations of a plate element as shown in Figure 3.7 can be given in the following, 

 3 3 1 3 3z z x yw u u y x         (3.42a) 

 xi xi x     (i=1,2,3,4) (3.42b) 

 xi xi y     (i=1,2,3,4) (3.42c) 

Because there is no restraint on the node 3, so the vertical deflection of the node 3 

occurs and is given in Eq. (3.42a). The basic-to-local transformation matrix can be 

given by 

 
T

p
p





d

L
d


 (3.43a) 

 p p d L d  (3.43b) 

in which the matrix pL  is also a 9×24 matrix as well as mL . 

Like a membrane element, the internal force vectors of a plate element in these two 

coordinate systems have the relationship as 

 T

p pf L p  (3.44) 

Combining the variables of a membrane element and a plate element together, we 

have 

  d L d  (3.45a) 
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 Tf L f  (3.45b) 

 
18 24

m

p 

 
  
 

L
L

L
 (3.45c) 

 

3.3.3 Local stiffness matrix 

In this thesis, the stiffness matrix of a quadrilateral shell element is derived based on 

the flat facet which is the projection of a warping shell element and the warping effect 

is regarded as eccentricities at nodes. Thus, different for flat triangular shell elements, 

quadrilateral shell elements have one more local system which the projection under 

the basic coordinate system. Thus, the relationship between the projection and the 

basic coordinate system should be established. 

The warping only existing at the node 3 is regarded as an eccentricity, which means 

that there is a rigid beam between the real node and the projected node. With this 

assumption, the displacements of the projection of the membrane element can be 

given by 

 3 3 3 3yw w z      (3.46a) 

 3 3 3 3yw w z      (3.46b) 

in which the horizontal line “-” above a variable means that it belongs to the 

projection. 

Then, through Eqs. (3.45) and (3.46), we have 
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  d E L d  (3.47a) 

 T Tf L E f  (3.47b) 

 , 1i i E  (i=1~18); 2,16 3z E ; 3,15 3zE  (3.47c) 

where the matrix E represents the transformation matrix from the projection to the 

warping shell element. It can be seen that a plate element is not affected by the 

warping, in which the local vertical deflections and the pure bending rotations at the 

node 3 are the same as those in the projection. 

Getting rigid of the restrained degrees of freedom as shown in Figures 3.6 and 3.7, the 

pure deformational stiffness matrix for the projection, which is an 18×18 non-singular 

matrix, can be obtained and has the relationship in the following, 

  f K d  (3.48) 

Because the pure deformational method is element-independent, the stiffness matrix 

K  can be formulated by any 4-nodes flat quadrilateral membrane element and plate 

element. If needed, the stiffness matrix K  can also allow for material nonlinearity. 

Through Eqs. (3.47) and (3.48), the tangent stiffness matrix of a warping quadrilateral 

shell element based on the local coordinate system can be derived as follows, 

 
T T

T T

 

  

f = L E f

L E KE L d K d
 (3.49a) 

 T TK L E KE L  (3.49b) 
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in which K  is the stiffness matrix of a warping quadrilateral shell element based on 

the local coordinate system and a 24×24 singular matrix used to assemble the global 

stiffness matrix of the whole structure after being transformed into the global 

coordinate system. 

 

3.4 Summary 

In this section, the pure deformational method often adopted in the derivation of 

beam-column elements is extended to triangular shell elements and quadrilateral shell 

elements. The pure deformational stiffness matrix should be transformed into the 

singular stiffness matrix in the local coordinate system for assembling the global 

stiffness matrix of the whole structures, so it seems that the pure deformational 

method is useless. However, there are several advantages can be obtained using this 

method.  

Firstly, the proposed pure deformational method is element-independent, so any 

membrane element and plate element can be simplified using this method. Secondly, 

it decreases the number of degrees of freedom of an element, so makes the derivation 

and formulation simpler, especially for the elements having complicated displacement 

interpolations, while the pertaining application for the derivation of shell elements is 

shown in Chapter 5. Thirdly, for geometrically nonlinear analysis, the initial local 

linear stiffness matrix of an element may be stored for calling in the computational 

process, so the pure deformational stiffness matrix whose dimensions are decreased 

can save computer storage. Fourth, the pure deformation method is not only for the 

elements with linear strains, the second order effect of the local element can also be 
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considered. Because the formulations considering nonlinear strains, such as the 

Green-Lagrangian strains, are very complicated, the pure deformational method is 

helpful to simplify them through decreasing element variables. Finally, the pure 

deformational method is intimately related to the element-independent co-rotational 

(EICR) algorithm and can contribute to a novel EICR formulation which is simpler 

than the conventional one firstly introduced by Rankin and Brogan (1986), while the 

relevant derivation is presented in the next chapter. 
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CHAPTER 4 

NOVEL EICR FORMULATIONS BASED ON 

PURE DEFORMATIONAL METHOD 

In this chapter, the novel element-independent co-rotational (EICR) formulations for 

triangular and quadrilateral shell elements are proposed based on the proposed pure 

deformational method. They are consistent with the conventional EICR method firstly 

proposed by Rankin and Brogan (1986) but become much simpler. The proposed two 

EICR formulations for triangular and quadrilateral shell elements respectively 

introduced in Chapters 5 and 6 are novel general frameworks for geometrically 

nonlinear shell elements and inherit the property of element-independence from the 

conventional method. 

Different from the conventional EICR method with the strictly physical and 

mathematical derivation, the proposed EICR method follows another kind of 

co-rotational method introduced by Levy and Gal (2001). Its derivation of the 

geometric stiffness matrix is on the basis of load perturbation of linear equilibrium 

equations of a shell element in the local coordinate system and the local geometric 

stiffness matrix is derived as the gradients of the nodal internal forces, which is 

similar to the approach proposed by Meek and Tan (1983) to derive the geometric 

stiffness matrix of a beam-column element. In the derivation, the local geometric 

stiffness is divided into three parts: the in-plane geometric stiffness matrix of the 

membrane element, the in-plane geometric stiffness matrix of the plate element and 
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the out-of-plane geometric stiffness matrix of the shell element. However, the 

formulation is only used for flat triangular shell elements and is not a completely 

element-independent co-rotational algorithm. Thus, this chapter not only follows the 

idea to derive the geometric stiffness matrix for triangular shell elements but also 

extends it into quadrilateral shell elements based on the pure deformational modes. 

Further, a simplified element-independent co-rotational formulation degenerated from 

the proposed method is introduced. The presented formulations are simpler than the 

existing co-rotational formulations and save computational cost. 

 

4.1 Large rotations 

In a 2D plane shown in Figure 4.1, an arbitrary position vector x , pointing from the 

fixed origin to an arbitrary point, can be defined by a given parameter angle α in the 

global coordinate system as 

 
cos

sin




 
 
 

=x x  (4.1) 

 

Figure 4.1 A unit vectors in a 2D plane 
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When the vector x  rotates to a new position with an incremental rotation θ, it 

becomes 

 
cos( )

sin( )
n  

 
 

  
=x x  (4.2) 

The incremental rotation can be directly added to the initial angle regardless of its size 

since there is only one parameter θ to define the new position. The situation is 

completely different when incremental rotations occur in a 3D space, due to the 

non-commutative nature of 3D large rotations. 

As shown in Figure 4.2, if there is an arbitrary position vector x  in a 3D space 

having angles α, β, γ between the vector and the X-axis, the Y-axis, and the Z-axis, 

respectively, then we have 

 
cos

cos

cos





 
 
 
 
 

=x x  (4.3) 

 

Figure 4.2 A unit vector in a 3D space 
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When the vector x  moves to a new position with an incremental rotation vector 

 T

x y z    in the global coordinate system, the new angles between the vector 

nx  and the global axes could not be updated correctly by directly adding the 

incremental rotations to the initial angles. Thus, it is a problem to obtain the new 

vector nx  for an incremental rotation vector  . 

In fact, there is not only one path for an incremental rotation vector to determine the 

new position of the vector x  in a 3D space. The new vector nx  cannot be 

uniquely defined by incremental rotations including three parameters, while the 

history of incremental rotations should also be considered. Generally speaking, there 

are two common methods to define the history of incremental rotations. 

 

4.1.1 Rotations around global axes 

This method assumes that the incremental rotations   are around the global X-axis, 

Y-axis and Z-axis, or other orders, sequentially. Similar applications by the approach 

for beam-column elements are discussed by Chan and Chui (2000) and Chan (1992), 

whereas for shell elements by Surana (1983). 

For example, it is assumed that the vector x  rotates around the X-axis by x , 

around the Y-axis by y , and around the Z-axis by z  to a new position and becomes 

the new vector nx . So, the vector x  rotates three times to the final position, and the 

corresponding transformation matrix for each rotation around the global axes can be 

given by 
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  
1 0 0

0 cos sin

0 sin cos
x x x

x x

  
 

 
   
  

R  (4.4a) 

  
cos 0 sin

0 1 0

sin 0 cos

y y

y

y y

 



 





 
 
 
  

R  (4.4b) 

  
cos sin 0

sin cos 0

0 0 1

z z

z z z

 
  

 
   
  

R  (4.4c) 

Then, the new vector can be determined by 

        n

z y x xyz  x = R R R x = R x  (4.5a) 

with 

 
cos cos cos sin sin cos sin cos cos sin sin sin

cos sin cos sin sin sin cos cos sin sin cos sin

sin cos sin cos cos

y z z x y x y x z y x z

y z x z x y z x y z z x

y y x x y

xyz

           

           

    

 

 



 
 
 
  

R =  

 (4.5b) 

When the rotation order is changed to be around the Z-axis firstly, then the Y-axis, 

then the X-axis, the transformation matrix becomes 

 
cos cos cos sin sin

cos sin sin sin cos cos cos sin sin sin sin cos

sin sin cos sin cos sin cos cos sin sin cos cos

y z y z y

x z x y z x z x y z x y

x z x y z x z x y z x y

zyx

    

           

           



  

 

 
 
 
  

R =  

 (4.5c) 
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It can be seen that different rotation orders with identical rotations lead to different 

transformation matrices, due to the non-commutative nature of 3D large rotations. In 

a word, this method is simple and approximate and sometimes the order of the 

rotations should be discussed in the derivation of geometrically nonlinear analysis 

scheme. 

 

4.1.2 Rotations around a unit axis 

The other technique to derive the transformation matrix is based on assumption that 

the incremental rotations are around a unit vector by an angle of rotation, which is the 

Euler theorem (Brannon, 2002) and detailed by Argyris (1982) for its application in 

geometrically nonlinear finite element method. Figure 4.3 shows a vector x  rotates 

about a unit axis n  by a rotation angle   and becomes the new vector nx . And 

the unit axis n  and the rotation angle   can be defined by the incremental 

rotations  T

x y z    as 

 
1

2

3

/
= /

/

x

y

z

n
n
n

 
 
 

        
      

n  (4.6a) 

 2 2 2
x y z       (4.6b) 

where the rotation angle   obeys the right-hand screw rule about the unit axis n . 
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Figure 4.1 Rotation of a vector x  around a unit axis n  by a rotation angle   

The projection of x  on the unit axis n , OA


, can be given by 

 ( )OC  x n n


 (4.7a) 

Then, the vector CA


 on the plane of rotation CAB is 

 ( )CA OA OC    x x n n
  

 (4.7b) 

The vector CD


, which is on the plane of rotation CAB and perpendicular the plane 

OCA, can be determined by 

 CD  


n x  (4.7c) 

Then, the vector CB


 can be obtained by 

    
cos sin
cos ( ) sin

CB CA CD 
 

 
    

  

x x n n n x  (4.7d) 
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Finally, the new vector nx  after rotation is 

    ( ) cos ( ) sin

n OC CB
 

  
      

 
x Rx

x n n x x n n n x  (4.7e) 

Rearrangement of Eq. (4.7e) gives the so-called Euler-Rodrigues formula as 

    ( ) cos ( ) sin       Rx n n x x n n x n x  (4.7f) 

Substituting the vector identities given in Eqs. (4.8a to 4.8d) into Eq. (4.7f), the 

Euler-Rodrigues formula can be rewritten in Eq. (4.8e). 

  n x Nx  (4.8a) 

 
3 2

3 1

2 1

0
( ) = 0

0

n n
n n
n n

 
 
  

SpinN = n  (4.8b) 

 ( ) ( )     x n n x n n x  (4.8c) 

 
3 2

3 1

2 1

0
( ) = 0

0

n n
n n
n n

 
 
  

SpinN = n  (4.8d) 

 
   

  
  2

( ) 1 cos 1 ( ) sin
( ) ( ) + 1 cos ( ) sin
+ 1 cos sin

 
 

 

       
        
  

Rx n n x n n x Nx
n n x n n x n n x Nx
x N x Nx

 (4.8e) 

Finally, the transformation matrix R can be given by 

     2sin + 1 cos   R I N N  (4.8f) 
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The operational symbol Spin(∙) in Eq. (4.8d) refers to a skew-symmetric spin tensor 

from a three-dimensional rotation vector, while the transformation matrix R is also 

regarded as the rotation matrix and called the Rodrigues-Cayley representation. 

In turn, the rotation vector   can be obtained from the rotation matrix R. It can be 

noted that 

 
2sin

T





R R

N  (4.9a) 

Thus, the corresponding rotation vector can be evaluated as follows, 

  
32 23 32 23

13 31 13 31

21 12 21 12

arcsin
2 sin 2

x

y

z

R R R R
R R R R
R R R R

  
 

     
     
     
         

 
   

 
=R  (4.9b) 

in which      2 2 2
23 32 13 31 21 12= - + - + -R R R R R R  and ijR (i,j=1,2,3) is the entry 

of rotation matrix R. In the equation, the range of  is [0, 90]. 

It should be noted that numerical instability would occur when  is closed to zero, so 

the Taylor expansion of Equation (4.9b) is adopted. In program, when 0.05  , the 

coefficient in Equation (4.9b) becomes 

 2 41 1 7

2sin 2 12 720

  

    (4.10) 

This method is used more often in recent years by many researchers for geometrically 

nonlinear finite element method, such as the TL, UL and EICR formulations. The 

co-rotational methods with the 3D rotation description in beam, triangular and 

quadrilateral shell elements have been detailed by Nour-Omid and Rankin (1991) and 
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Felippa and Haugen (2005), whereas the 3D rotation description is also used in the 

present studies. 

 

4.2 Conventional co-rotational formulations 

Three common element-independent co-rotational (EICR) formulations are reviewed 

and introduced for comparison with the proposed methods in the thesis. Different 

from the classical total Lagrangian (TL) and updated Lagrangian (UL) formulations, 

the geometric stiffness of the EICR algorithm is formulated by the nodal internal 

forces rather than the stresses at element integration points. Thus, its geometric 

stiffness formulation is not directly related to stresses and displacement interpolations, 

and this is the basis for element-independence of these formulations. Also, due to the 

avoidance of numerical integration for the geometric stiffness, the EICR formulation 

can save computational cost when compared with the TL and UL formulations. 

Strictly speaking, not all of these three common EICR formulations are completely 

element-independent due to various problems. However, they have the identical 

property that their geometric stiffness matrices are all explicit and formed by nodal 

internal forces, and they all need to derive the variations of rigid body rotations for 

the local element frame. 

 

4.2.1 General formulation 

The concept of “element-independent co-rotational (EICR) formulation” was first 

introduced by Rankin and Brogan (1986) and improved by Nour-Omid and Rankin 
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(1991). A detailed discussion of the method was given by Felippa and Haugen (2005). 

The pertaining studies and applications of the general EICR formulation for different 

shell elements allowing for geometrical nonlinearity or material nonlinearity are 

numerous, including the references (Battini and Pacoste, 2006; Eriksson and Pacoste, 

2002; Pacoste, 1998; Skallerud and Haugen, 1999). Recently, the approach was still 

used by Zhou et al. (2016) to test the performance of several existing linear shell 

elements in geometrically nonlinear analyses. 

As mentioned previously, the basis of the method is to separate rigid body motions 

from pure deformations. So, the existing linear elements could be utilized to describe 

pure deformational part and extended to geometrically nonlinear analyses by the 

EICR formulation directly. The derivation of the EICR algorithm is strict and 

complete, involved with complicated operations. A brief introduction of the 

formulation is given in the following. 

Considering a shell element with the initial configuration C0, its global coordinates 

are g
ix  at each node i. Then, the element has a new configuration Cn after 

movements and deformations, while the node i has a total translation vector g
iu  and 

a total rotation matrix g
iR  in the global coordinate system. In addition to the global 

coordinate system, there are two additional local coordinate systems for the 

configuration C0 and Cn attached to the shell element, whereas their local-to-global 

transformation matrices are 0T  and nT  respectively. Thus, the local deformational 

translation vector at each node can be given by 

    0
d g g g g g g
i n i i o o i o    =u T u x x u T x x  (4.11) 
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in which g
ox  and g

ou  are the global coordinates and the total translation vector of 

the origin of the local coordinate system respectively. Additionally, the tilde  in the 

parameters means that they are based on the local coordinate system at configuration 

Cn, and the superscript “d” means the variables belong to local pure deformational 

part. 

In terms of the local deformational rotation matrix attached to the node i, it can be 

derived by the theory of large rotation introduced in Section 4.1.2 as follows, 

 0
d g T
i n i=R T R T  (4.12) 

To obtain the tangent stiffness matrix of the shell element, the relationship between 

the variations of the global displacement vector and the local deformational 

displacement vector should to be established. Then, taking a variation of Eq. (4.11) 

gives 

 

   
 

 ( )

d g g g g g g
i n i i o o n i o

T
n n i i o

i i o

   

  

  

    

  

  

=

Spin



  
   

u T u x x u T u u

T T x u u

x ω u u

 (4.13) 

in which i
x  is the node coordinates based on the configuration Cn, and  ω  is the 

variation of rigid body rotation vector of the shell element based on the configuration 

Cn. 

Taking a variation of Eq. (4.12), we have 

 
   

T
0 0

d T
i n i n i

d
i i

  

 



   

=

Spin Spin

R T R T T R T

R


  

 (4.14) 
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With the equation 

  d d d
i i i = SpinR R   (4.15) 

we have 

 d
i i         (4.16) 

where d
i   and i   are the variations of the deformational and total rotation 

vectors at the node i based on the local coordinate system at the configuration Cn 

respectively. 

Combining all the translations and rotations shown in Eq. (4.14) and Eq. (4.16) into 

the elemental displacement vectors, we can obtain the relationship as follows, 

 d d P d   (4.17) 

in which dd  and d  are the deformational and total displacement vectors based 

on the configuration Cn respectively. The matrix P  is the projector operator 

obtained by Eqs. (4.13) and (4.16) which reflects the changes of element dimensions 

between the configuration C0 and Cn. 

In addition, it should be noted that the local deformational rotations d
i   are 

non-additive, which means that they cannot be directly used to derive the internal 

forces by the stiffness matrix of the local shell element. Thus, they should be 

modified to be additive and corresponding to the local deformational internal forces in 

the following, 

 d d HP d    (4.18) 
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in which the matrix H  is to transform non-additive rotations into the additive ones. 

The detailed derivation and expression of the matrix H  can be found in the 

publications by Felippa and Haugen (2005) and Skallerud and Haugen (1999). 

However, it is not used in the proposed co-rotational formulation, since it has little 

influence on results. 

Finally, the relationship between the variations of the local deformational 

displacement vector and global total displacement vector can be given by 

 d d HPT d    (4.19) 

in which the matrix T  is composed of nT  along diagonal. 

Through the principle of virtual work, the corresponding transformation of internal 

force vectors between these two coordinate systems can be obtained by 

 T T T df T P H f   (4.20) 

Then, the global tangent stiffness can be obtained by taking a variation of Eq. (4.20) 

as 

  
+ + +

=

T T T d T T T d T T T d T T T d

GR GP GM M

    





  

f T P H f T P H f T P H f T P H f

K K K K d

          
 (4.21) 

where KGR is the rotational geometric stiffness, KGP the equilibrium projection 

geometric stiffness, KGM the moment-correction geometric stiffness and KM the 

material stiffness. 
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Some researchers omit the matrix H  and the moment-correction geometric stiffness 

KGM to simplify the general EICR formulation. The omission may have little impact 

on accuracy when a single load-step is not large. In addition, it is worth noting that 

the tangent stiffness matrix in Eq. (4.21) is non-symmetric, which is not suitable for 

the commonly used symmetric solver. However, Nour-Omid and Rankin (1991) 

proved that the symmetric part of the tangent stiffness allows Newton iteration to 

retain its quadratic rate of convergence. 

 

4.2.2 Co-rotational method based on load perturbation 

Another co-rotational method used in a flat triangular shell element was presented by 

Levy and Gal (2001), Levy and Spillers (2003) and Gal and Levy (2006). In their 

method, the derivation of the geometric stiffness matrix is somewhat different but 

consistent with the approach described in Section 4.2.1, in which the formulation is 

based on the load perturbation of the linear equilibrium equations for a flat triangular 

shell element in its local coordinate system. In addition, the local flat triangular shell 

element combines the constant stress triangular (CST) flat triangular membrane 

element introduced in the book wrote by Zienkiewicz (1977) and the discrete 

Kirchhoff flat triangular (DKT) plate element proposed by Batoz et al. (1980b). 

The local geometric stiffness matrix of the flat triangular shell element is derived as 

the gradient of the nodal force vector and divided into three parts as follows, 

 
shell mem plate shelle e e e

G G G GTOTAL IP IP OP
                K K K K  (4.22) 
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in which the three matrices on the right of Eq. (4.22) are the in-plane geometric 

stiffness matrix of the membrane element, the in-plane geometric stiffness matrix of 

the plate element and the out-of-plane geometric stiffness matrix of the shell element, 

respectively. Specifically, the first two parts are due to the changes of the dimensions 

of the flat triangular membrane and plate elements respectively, whereas the physical 

meanings of their sum are the same as the equilibrium projection geometric stiffness 

KGP in Eq. (4.21), although their expressions are different. The matrix H , which is 

used to transform non-additive rotations into additive ones, is omitted, so the 

moment-correction geometric stiffness does not exist in Eq. (4.22). Also, the 

out-of-plane geometric stiffness matrix of the shell element in Eq. (4.22) is equal to 

the rotational geometric stiffness KGR in Eq. (4.21) when they are transformed in the 

same coordinate system and both are due to the rigid body rotations of the shell 

element on its nodal forces. 

Compared with the first co-rotational formulation introduced in Section 4.2.1, this 

formulation has a drawback that the geometric stiffness matrices due to the changes of 

the dimensions of the membrane and plate elements are not element-independent 

since the in-plane geometric stiffness matrices are related to the formulations of the 

membrane and plate elements. But the method provides another thought to derive the 

geometric stiffness by taking the gradient nodal forces through load perturbation of 

the shell element, which is easier to visualize through physical interpretation than the 

first method. Further, the derivation contributes to the proposed co-rotational method. 
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4.2.3 Co-rotational method without removing rigid body 

motions completely 

This is another EICR algorithm for shell element frame which was firstly introduced 

by Izzuddin (2005), whereas the pertaining applications for many different shell 

element studies can be found in the references (Izzuddin and Liang, 2016; Li et al., 

2011b; Li and Vu-Quoc, 2007; Li et al., 2013; Liang and Izzuddin, 2015, 2016). 

Unlike the former two co-rotational formulations, it does not extract pure 

deformations from total deformations completely. Like the first co-rotational method, 

this algorithm starts from the establishment of the relationship between the local and 

global variables, but the local deformations in the formulation are not pure. For 

convenient comparison between these two different co-rotational methods, the 

formulation presented by Izzuddin and Liang (2016) is introduced with the notations 

used in the first co-rotational formulation. 

Firstly, the relationships between the local and global nodal variables are given by 

    0
d g g g g g
i n i i o i o   =u T u x x T x x  (4.23a) 

 i n ir T n , [ ]T

x yn  e eT  (4.23b, c) 

where the subscript i means that the variables belong to the node i, the superpose tilde 

“” in the variables means that they are local;  T

i xi yi r    represents the two 

rotations at the node i in the local yz and xz planes, respectively; in  represents the 

normal vector at the node i and is related to global rotations; The local-to-global 

transformation matrix nT  used in Eq. (4.23b) consists of the two triad vectors along 
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the local x-axis and y-axis, while the drilling rotations about the local z-axis are not 

taken into account. 

The following derivation is identical to the first classical method and the relationship 

between the local and global internal forces is given by 

 Tf L f  (4.24a) 

 T




=

d
L

d


 (4.24b) 

in which d  and d  are the displacement vectors in the local and global coordinate 

system respectively. 

Thus, the element tangent stiffness matrix in the global coordinate system can be 

obtained as follows, 

 
T

g T

t eT T

 
 
 

f L
K = L K L f

d d
  (4.25) 

in which eK  is the local material stiffness matrix. 

Compared with Eq. (4.11) used in the general method, Eq. (4.23) neglects the global 

translations of the origin of the local coordinate system. Also, the large rotation tensor 

is not used and the drilling rotations are not considered. Thus, it very clearly shows 

that the co-rotational algorithm is only suitable for shell elements without drilling 

rotations and the local deformations are not pure. Actually, using the local 

deformations shown in Eq. (4.23) to obtain the local internal forces is also correct in 

some situations since the local material stiffness matrix allows for small rigid body 
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rotations of the element. However, the co-rotational formulation may not have good 

performance in problems involved with large rotations in a single large load-step. 

Additionally, the global tangent stiffness matrix in Eq. (4.25) is seemingly more 

concise than the first method, but this is not true because their derivation processes 

are similar. Except for the difference on the local deformations, this method simply 

uses one single transformation matrix to establish the relationship between the local 

and global coordinate systems, while the general method divides the transformation 

matrix into several parts with concise physical interpretation. In fact, in this 

formulation, the derivations of the transformation matrix and the geometric stiffness 

matrix are still very complicated as well as the general EICR formulation. Although 

this method has some limitations listed above, it produces a symmetric tangent 

stiffness matrix, which is a great advance in terms of storage requirement and 

computational efficiency. 

 

4.3 A novel EICR formulation for triangular shell elements 

Different from the existing co-rotational methods introduced in Section 4.2, the 

proposed EICR method takes advantage of the pure deformational method proposed 

in Chapter 3. In the pure deformational method, the stiffness matrices of the 

membrane and plate elements are constructed on the basis of the basic coordinate 

system without rigid body motions and further transformed into the local coordinate 

system allowing for rigid body motions. Thus, the definition of the local coordinate 

system is identical to the one used in Chapter 3, while the local frame attached to a 

flat triangular shell element is defined as shown in Figure 4.2. The triad vectors for 
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the local coordinate system (xyz) of a shell element are expressed with the nodal 

coordinates  Tg g g g
i i i ix y zx  (i=1,2,3) in the global coordinate system (xgygzg) as 

 2 1

2 1

g g

x g g





e

x x
x x

 (4.26a) 

 3 1

3 1

g g

z x g g


 


e e

x x
x x

 (4.26b) 

 y z x e e e  (4.26c) 

 

 

Figure 4.2 Definition of the local coordinate system of a triangular shell element 

Then, the local-to-global transformation matrix of a flat triangular shell element can 

be given by 

 
T

e x y z  =T e e e  (4.27) 
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As the origin of the local coordinate system is set to the node 1, the corner node 

coordinates in the local coordinate system (xyz) can be given by 

  1= g g

i e i x T x x  (i=1,2,3) (4.28) 

in which  T

i i ii x y zx . Also, it can be noted that 1 1 1 2 3 0x y z z z     . 

Before the derivation of the proposed EICR formulation, the relationship between the 

global and basic coordinate systems should be established. In Chapter 3, Eq. (3.42b) 

has introduced how to transform the internal forces from the basic coordinate system 

into the local coordinate system. Then, the internal forces in the global coordinate 

system can be given by 

 g T Tf T L f  (4.29a) 

  1 2 3

Tg gT gT gT=f f f f  (4.29b) 

  Tg g g g g g g
i xi yi zi xi yi zif f f m m mf  (4.29c) 

in which the transformation matrix T  is composed of 6 matrices eT  in Eq. (4.27) 

along diagonal. The symbol gf  is the internal force vector in the global coordinate 

system and the corresponding displacement vector in the global coordinate system is 

detailed as follows, 

  1 2 3

Tg gT gT gT=d d d d  (4.29d) 

  Tg g g g g g g
i xi yi zi xi yi ziu u u   d  (4.29e) 
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Figure 4.3 Relationships between three coordinate systems 

Thus, the relationships between these different systems by making use of the previous 

equations are concluded in Figure 4.3. 

Different from the general EICR formulation with strict derivation introduced in 

Section 4.2.1, the non-additive property of the pure deformational rotations is omitted 

herein since it has little influence on results. The omission is also adopted by many 

other kinds of co-rotational formulations. 

 

4.3.1 Tangent stiffness 

Following the derivation of the general EICR formulation introduced in Section 4.2.1, 

taking a variation of Eq. (4.29a) gives 

 g T T T T T T     f T L f T L f T L f    (4.30) 

where the first term leads to the material stiffness, and the last two terms refer to the 

changes of rigid body motions and the changes of element dimensions respectively. 
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Moreover, Eq. (4.30) can yield 

  g T r m p g

e g g g f T K + K + K + K T d  (4.31) 

in which eK  is the material stiffness matrix of a triangular shell element based on 

the local coordinate system; r

gK  is due to the rigid body motions of the element, 

corresponding to the second term in Eq. (4.30); m

gK  and p

gK  are caused by the 

changes of dimensions of the membrane and plate elements respectively, while the 

sum of them similar to the third term in Eq. (4.30). 

However, different from the general EICR formulation, the proposed co-rotational 

method adopts the derivation similar to the method introduced in Section 4.2.2, in 

which the local geometric stiffness is derived by taking the gradient of nodal forces 

through the load perturbation of a shell element. In addition, the pure deformational 

method is integrated to make the derivation and formulation simpler than the other 

co-rotational methods. In the next, every part of the tangent stiffness in the local 

coordinate system shown in Eq. (4.31) is presented. 

4.3.1.1 Material stiffness 

In terms of the material stiffness matrix of a triangular shell element in the local 

coordinate system, eK , the proposed pure deformational method in Chapter 3 is also 

used here. When the stiffness matrices of a membrane element and a plate element in 

the basic coordinate system, mK  and 
pK , are obtained, they can be transformed into 

the local coordinate system as follows, 

 T
m m m mK = L K L  (4.32a) 
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 T
p p p pK = L K L  (4.32b) 

in which the matrices mL  and pL  are the basic-to-local transformation matrices for 

a membrane element and a plate element respectively. 

It should be noted that the stiffness matrices mK  and 
pK  are calculated based on 

the initial dimensions of the triangular element and fixed in the whole progress of the 

geometrically nonlinear analysis. However, the basic-to-local transformation matrices 

mL  and pL  should be updated in accordance with the local nodal coordinates at the 

current time, so that the local material stiffness can consider the changes of element 

dimensions. In addition, it should be noted that the transformation matrices mL  and 

pL  have the same function as the projector matrix used in the general EICR 

formulation introduced in Section 4.2.1. However, the general method uses the 

projector matrix to keep the element self-equilibrated and modify the variables which 

are affected by the changes of element dimensions, while the transformation matrices 

mL  and pL  in the proposed method are utilized to generate the variables which are 

not included in the basic coordinate system. Thus, the proposed method is more 

concise and simpler than the general method. In terms of each part of the geometric 

stiffness, they should also be updated with the changes of element dimensions. 

4.3.1.2 Geometric stiffness due to rigid body rotations of the element 

In the local coordinate system, the variations of the local forces and moments at the 

node i due to small rigid body rotations of the element are given by Goldstein (1950) 

as follows, 
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 ( )i i i     Spinn n n   (4.33a) 

 ( )i i i     Spinm m m   (4.33b) 

in which  T

i xi yi zif f fn  and  T

i xi yi zim m mm  (i=1,2,3) are the internal 

forces and moments at the node i respectively;  T

x y z     is the variation 

of rigid body rotation vector based on the local coordinate system and its entries are 

shown in Eqs. (3.4) and (3.21). 

Combining all the local nodal forces and moments into the local internal force vector 

of a triangular shell element and taking advantage of Eqs. (4.33) give 

 
r

g
= - =  f A G d K d  (4.34a) 

with 

  1 1 2 2 3 3=
TT T T T T Tf n m n m n m  (4.34b) 

in which the local displacement vector of a triangular shell element, d , can be 

detailed by 

  =
T

i xi yi ziu u uu  (4.34c) 

  =
T

i xi yi zi    (4.34d) 

  1 1 2 2 3 3=
TT T T T T Td u u u    (4.34e) 
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Also, the matrix A containing the internal forces at the current time is 
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Spin

Spin

Spin

Spin

Spin

Spin

n

m

n
A

m

n

m

 (4.35a) 

and the matrix G connecting the variations of rigid body rotations to the variations of 

local displacements can be given by 

 
1 1 2 2 2 3
T T T T T T

      
        

G
u u u

     
  

 (4.35b) 

Substituting Eqs. (3.4) and (3.21) into the matrix G, we have 

 
1
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2 3

2

2

0 0

1
0 0

1
0 0

T

x x

x y

x

x

 
 
 
 

    
 
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 (4.35c) 
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2 3

2

2

0 0

0 0

1
0 0
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T

x
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 (4.35d) 
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3

3

0 0

0 0
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1

0

0
T

y
 
 
 

  
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 
  

u


 (4.35e) 

 3 3
1 2 3
T T T 

  
  

  
0

  
  

 (4.35f) 

Finally, the geometric stiffness matrix of a flat triangular shell element due to rigid 

body rotations of the element in the local coordinate system, r
gK , can be determined. 

4.3.1.3 Geometric stiffness due to changes of dimensions of a membrane element 

 

 

Figure 4.4 A pure deformational membrane element 

Figure 4.4 depicts the pure deformations of a membrane element due to the applied 

forces and moments in the basic coordinate system. In the model, the basic internal 

forces f  can be regarded as the constant action forces, while the reaction forces 

varied with the changes of element dimensions to keep the element-equilibrium. 
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Hence, the gradients of the reaction forces can be used to derive the geometric 

stiffness due to the changes of element dimensions. 

For the current configuration of a membrane element, the equilibrium equations can 

be established by 
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After deformation, the equilibrium equations become 
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in which the internal forces without tilde “~” are the reaction forces at the restrained 

degrees of freedom and they are equal to the internal forces at the same degrees of 

freedom in the local coordinate system. 

It can also be noticed that the basic internal forces have the same values as the local 

internal forces at the same degrees of freedom. The superscript “n+1” refers to the 

variables based on the deformed configuration. Thus, the variables with superscript 

“n+1”, including the reaction forces and the node coordinates, can be given by 

      1
var. var. var.

n     (4.38) 

Substituting Eqs. (4.36) and (4.38) into Eqs. (4.37) and neglecting the high order 

variations, then the variations of the reaction forces can be obtained as follows 

 1 0xf   (4.39a) 

 3 3 2
2

1 3 3 2)
1

(y x yyf f v u
x

f f u         (4.39b) 

 2 1y yf f    (4.39c) 

where the local internal force 
2yf  can be obtained by = T

m m mf L f  based on the 

current configuration. The local geometric stiffness due to the changes of element 

dimensions can be derived by Eqs. (4.39), m m m d L d  and m
g T





f
K

d
. It can be 

noticed that the 18×18 geometric stiffness matrix, m
gK , has only two non-zero rows 

involved with 1yf  and 2yf  respectively. Also, the internal forces and the nodal 
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coordinates in the stiffness matrix should be updated in the procedure of nonlinear 

analysis. 

4.3.1.4 Geometric stiffness due to changes of dimensions of a plate element 

A pure deformational plate element is shown in Figure 4.5, in which the vertical 

displacements are constrained. Similar to the derivation for a membrane element, the 

basic internal moments can be regarded as action moments and the reaction forces at 

the restrained degrees of freedom are the shear forces  1 2 3

T

z z zf f f  as same as the 

corresponding local internal forces. 

 

 

Figure 4.5 A pure deformational plate element 

The equilibrium equations based on the current configuration of the plate element can 

be established as 

 
1 2 3

0:

0

z

z z z

f

f f f



  


 (4.40a) 
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
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For the deformed configuration, the equilibrium equations are 

 
1 1 1

1 2 3
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0
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n n n
z z z

f

f f f  


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
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Substituting Eqs. (4.38) and (4.40) into Eqs. (4.41) and ignoring the high order 

variations, then the variations of the reaction shear forces can be given by 

 3 3 3 2
3

2 2
23

3 2
1 1( )z z z

z

f x f
f

f
v u u

y x x x
          (4.42a) 

 3
3 3 32 23 2

2 3

1
( )z x zz

x
f v f u ff u

x y
        (4.42b) 

 3
33

3

z
z

f
vf

y
     (4.42c) 



Chapter 4  Novel EICR Formulations Based on Pure Deformational Method 

101 

in which the local internal forces zif  can be obtained by = T
p p pf L f  based on the 

current configuration. Then, the geometric stiffness matrix can be derived through 

Eqs. (4.42), m m m d L d  and p
g T





f
K

d
. It also can be seen that the number of the 

non-zero rows in the matrix p
gK  are only three. Also, the internal forces and nodal 

coordinates in the stiffness matrix should be updated in the procedure of nonlinear 

analysis. 

 

4.3.2 Internal forces 

The general EICR formulation should use the total pure deformations since the 

beginning of nonlinear analysis to get the internal forces, since the rotation corrector 

utilized to correct non-additive local rotations should be computed by the total local 

rotations. For the proposed co-rotational method, the rotation corrector is neglected 

and the incremental pure deformations can be used to calculate and update the internal 

forces, and the incremental deformations avoid recording rotation matrix for every 

node in the procedure of nonlinear analysis. Moreover, the total deformations can also 

be used for the proposed method. In the Section, three ways to obtain the internal 

forces are introduced and they have different accuracy and computational cost. 

Additionally, with the help of the pure deformational method, only 12 values of the 

basic internal forces rather than 18 values of the local internal forces are recorded for 

a shell element in analysis procedure, which significantly saves computer storage. 

4.3.2.1 Total deformation 
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The general EICR method adopts the total pure deformations to get the internal forces, 

while the proposed method can also use them to obtain more accurate results. Due to 

the non-additive and non-commutative properties of 3D rotations, the rotation matrix 

rather than the rotation vector for every node is recorded during nonlinear analysis. 

First, the initial data for a shell element should be computed and recorded, including 

the local-to-global transformation matrix 0
eT , the rotation matrix for the node i in the 

global coordinate system, 0g
iR , which is set to the identity matrix, and the global 

coordinates 0g
ix . Also, for the last iteration, the known corresponding data are 

denoted as n
eT , g n

iR  gn
ix . 

After one iterative process, the incremental displacement vector of a shell element in 

the global coordinate system can be obtained as follows, 

  1 2 3=
Tg gT gT gT   d d d d  (4.43a) 

  =
Tg g g g g g g

i xi yi zi xi yi ziu u u         d  (4.43b) 

  =
Tg g g g

i xi yi ziu u u   u  (4. 43c) 

  =
Tg g g g

i xi yi zi       (4. 43d) 

Then, the global nodal coordinates can be updated as 

 1g n g n g
i i i

   x x u  (4.44) 

and the local-to-global transformation matrix can be updated by the new global nodal 

coordinates as 1n
e

T . 
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The local nodal coordinates can be always obtained by  1

g g

i e i
 x T x x , so the 

non-zero local nodal coordinates at the initial and updated configurations are 

 0 0 0
2 3 3

T
x x y ,  1 1 1

2 3 3

Tn n nx x y    respectively. The total pure displacements can be 

given by 

 

1 0
2 2 2

1 0
3 3 3

1 0
3 3 3

n

n

n

u x x

u x x

v y y







    
           
          





 (4.45) 

In terms of the rotation matrix at the node i, the incremental global rotation vector 

should be transformed into the incremental rotation matrix by Eq. (4.8f) as 

  g g

i i
  R R   (4.46a) 

and the global rotation matrix can be updated as 

 1g n g g n
i i i

  R R R  (4.46b) 

Then, the total pure rotation matrix at the node i is given by 

 1 1 0n g n T
i e i e

 R T R T  (4.47a) 

and the corresponding rotations can be extract through the total pure rotation matrix 

by Eq. (4.9b) as follows 

  
i i
 R   (4.47b) 
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After that, the total pure displacements and rotations can be integrated into the basic 

displacement vectors for a membrane element and a plate element, md  and 
pd , 

respectively. 

Next, the basic internal forces can be given by 

 1 0n
m m m
 f K d   (4.48a) 

 
1 0n

p p p

 f K d   (4.48b) 

in which the superscript “0” means that the stiffness matrix is formed by the initial 

dimensions of a shell element. 

Transforming the basic internal forces into the local coordinate system gives 

 1 1n T n
m m m

 f L f  (4.49a) 

 
1 1n T n

p p p

 f L f  (4.49b) 

Finally, these local internal force vectors can be combined to the internal force vector 

of a shell element and then transformed into the global coordinate system to assemble 

the global internal force vector of the whole structures. 

4.3.2.2 Directly Incremental deformation 

Different from the former way, the incremental deformation method is used here to 

find the differences between the last and the updated configurations. For the 

incremental pure displacements, we have 
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1
2 2 2

1
3 3 3

1
3 3 3

n n

n n

n n

u x x

u x x

v y y







    
            
          





 (4.50) 

There is no difference for the final internal forces between the total and incremental 

displacements as displacements are additive, while the difference is only on the 

rotations. Specifically, this method does not need to record the rotation matrix at the 

node i. Once the incremental rotation matrix  g g

i i
  R R   is obtained, the 

incremental pure rotations can be given by 

 1n g n T
i e i e

  R T R T  (4.51a) 

  
i i

  R   (4.51b) 

Thus, the incremental pure deformation vector for a membrane element and a plate 

element, md  and pd , can be acquired and the incremental basic internal forces 

are 

 0
m m m  f K d   (4.52a) 

 
0

p p p
  f K d   (4.52b) 

Then, the total internal forces in the basic coordinate system can be updated by 

 1n n
m m m
   f f f    (4.53a) 

 1n n
p p p
   f f f    (4.53b) 
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in which the basic internal forces should be recorded during the iterative process in 

the method, different from the former method. However, recording the basic internal 

forces uses less computer storage than the rotation matrix at every node. And the 

flowing analysis procedure is identical to the former method. 

The drawback of this method is that it involves the addition of pure rotations through 

the addition of basic internal forces, which violates the non-additive property of 3D 

rotations. However, pure rotations are small and should be small due to the plate 

theory. So, the treatment of this method to pure rotations is acceptable and has little 

impact on accuracy. 

4.3.2.3 Indirectly Incremental deformation 

The indirectly incremental deformation method is similar to the second one, except 

that there is a difference on the derivation of the incremental pure rotations. Through 

the local-to-global transformation matrices for the last and updated configurations of a 

shell element, n
eT  and 1n

e
T , the incremental rigid body rotation matrix between 

these two configurations in the local coordinate system can be given by 

 1n n T
e e e

 R T T  (4.54a) 

Then, the incremental rigid body rotations of a shell element are 

  
e

  R   (4.54b) 

and the incremental pure rotations at the node i can be given by 

 
1n g

i e i

   T    (i=1,2,3) (4.54c) 
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It can be seen that the indirectly incremental deformation method is the simplest 

among these three methods, in which the transformation between the rotation matrix 

and the vector is only performed once for the rigid body rotations of a shell element. 

However, its accuracy is worst. Considering both efficiency and accuracy, this thesis 

uses the second method, the directly incremental deformation method, to update 

internal forces in nonlinear analysis procedure. 

 

4.4 A novel EICR formulation for quadrilateral shell 

elements 

In this section, a novel co-rotational algorithm for quadrilateral shell elements is 

derived based on the pure deformational method, allowing for the warping 

phenomenon. The internal forces for the projection of a warping shell element, f , 

can be transformed into the warping shell in the global coordinate system as 

 g T T Tf T L E f  (4.55a) 

  1 2 3 4

Tg gT gT gT gT=f f f f f  (4.55b) 

  Tg g g g g g g
i xi yi zi xi yi zif f f m m mf  (4.55c) 

in which T  is composed of 8 matrices eT  in Eq. (3.28) along diagonal, L  is the 

basic-to-local transformation matrix, E  is the eccentricity matrix transforming the 

variables from the projection into the warping shell element. 
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The corresponding displacement vector in the global coordinate system is 

  1 2 3 4

Tg gT gT gT gT=d d d d d  (4.55d) 

  Tg g g g g g g
i xi yi zi xi yi ziu u u   d  (4.55e) 

Then, the relationships between these different systems by taking use of the previous 

equations can be concluded in Figure 4.6 as follows 

 

 

Figure 4.6 Relationships between different systems 

 

4.4.1 Tangent stiffness 

Taking a variation of Equation (4.55a), we have 

 g T T T T T T T T T T T T       f T L E f T L E f T L E f T L E f  (4.56a) 

where the first term yields the material stiffness matrix and the remained three terms 

can deduce the geometric stiffness matrices which are formulated by the internal 

forces at the current time. 
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Then, we have 

  g T r m p w g

e g g g g
 f T K + K + K + K + K T d  (4.56b) 

in which the notions of matrices used in this equation is identical to the co-rotational 

formulation for triangular shell elements, in addition, w
gK  is the geometric stiffness 

due to warping effect. Also, it should be noted that this equation has one more system, 

the projection, than the equation for triangular shell elements in Eq. (4.31). 

In the next, the derivation of every part of the local tangent stiffness is detailed with 

the novel co-rotational method based on pure deformational element model in the 

following. 

4.4.1.1 Material stiffness 

Different from triangular shell elements, quadrilateral shell elements have the warping 

effect. First, the material stiffness matrices of a membrane element and a plate 

element, mK  and pK , are formulated based on the projection which is also a pure 

deformational system with rigid body movements restrained. Due to the coupling of 

membrane and plate stiffness, they should be integrated together in the projection 

system as the 18×18 material stiffness eK . Transforming it into the warping shell 

element based on the basic coordinate system gives 

 T
e eK = E K E  (4.57a) 

Then, it can be transformed into the local coordinate system by 

 T
e eK = L K L  (4.57b) 
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and becomes a 24×24 matrix. It should be noted that the material stiffness matrix eK  

is computed based on the projection of the shell element based on the initial 

configuration and constant for the whole nonlinear analysis procedure. Besides, the 

transformation matrices E  and L  should be updated according to the current 

configuration to reflect the changes of element dimensions and are detailed in Chapter 

3. 

4.3.1.2 Geometric stiffness due to rigid body rotations of the element 

The derivation of this part of the geometric stiffness is the same as that for triangular 

shell elements and its expression can be obtained as follows, 

 r
g= -   f A G d K d  (4.58a) 

 

1

1

4

4
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 
  

Spin

Spin

Spin

Spin

n

m

A

n

m

  (4.58b) 

in which the matrix G  is used to connect the variations of the rigid body rotations of 

the element to the variations of the local nodal displacements and can be given by 

 
1 1 2 2 3 3 4 4

T T T T T T T T T

         
            

G
d u u u u

        
   

 (4.59a) 

With the help of Eqs. (3.35), the submatrices of G  can be detailed as follows, 

 

4 2 2 4

2
1

2

0 0

0 0 1/

0 1

(

/

) /

0
T

x

x

x x x y 
    

  



u


  (4. 59b) 
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 (4. 59c) 

 

4

4

0 0

0 0 0

0 0

1/

0
T

y 
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  
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
  (4. 59d) 

 3 3
3 1 2 3 4
T T T T T 

    
    

    
0

u

    
   

 (4. 59e) 

The internal forces and the local nodal coordinates used in this matrix should be 

updated according to the warping shell element at current configuration. 

4.3.1.3 Geometric stiffness due to changes of element dimensions 

 

 

Figure 4.7 A pure deformational membrane element 

As a quadrilateral shell element consists of a membrane element and a plate element, 

this part of the geometric stiffness is discussed separately. Based on a pure 
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deformational membrane element as shown in the Figure 4.7, three degrees of 

freedom are restrained, while the internal forces at the free degrees of freedom are 

regarded as action forces and invariant after deformation. Also, the internal forces at 

the constraints are the reaction forces which change after deformation to keep the 

element-equilibrium. Thus, the gradients of the reaction forces due to deformation can 

be used to deduce this part of geometric stiffness. 

For the current configuration of a memb rane element, the equilibrium equations can 

be given by 

 
1 2 3 4

0 :

0

x

x x x x

f

f f f f



   


    (4.60a) 
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
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


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
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 (4.60c) 

After deformation, the action forces are invariant and the three reaction forces 1xf , 

1yf  and 2yf  change into 1
1
n

xf  , 1
1
n

yf   and 1
2

n
yf  . Thus, the equili brium equations 

become 
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1 2 3 4
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x

n
x x x x
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 (4.61a) 
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 (4.61c) 

Following the co-rotational method for triangular elements and substituting Eqs. (4.60) 

into Eqs. (4.61), the variations of the reaction forces can be obtained as follows, 

 1 0xf   (4.62a) 

 1 4 4 42 2 3 3 3 3 4
2

1
( )y y x yy xf u f u f v f uf f v

x
                  (4.62b) 

 2 1y y
f f   (4.62c) 

Then, the geometric stiffness matrix due to the changes of dimensions of a membrane 

element in the local coordinate system, m
gK , can be obtained by Eqs. (4.62), 

= T Tf L E f ,  d L d  and m
g T





f
K

d
. 

In terms of the geometric stiffness due to changes of dimensions of a plate element, 

the warping phenomenon should be considered, since it affects the equilibrium of a 

plate element. The derivation is similar to the one for a membrane element, which is 

to find the variations of the reaction forces of a plate element. Figure 4.8 shows that 

the nodal vertical displacements are restrained except the node 3, whereas the reaction 

forces are the shear forces  1 2 4

T

z z zf f f  at these three restrained nodes. For 

consideration of the warping effect at the node 3, the in-plane action forces, including 

3xf  and 3yf , should be considered in the equilibrium equations. 
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Figure 4.8 A pure deformational plate element 

For the current configuration of a pure deformational plate element as shown in 

Figure 4.8, the equilibrium equations can be established as 

 
1 2 4 3

0 :

0

z

z z z z

f

f f f f



   


  (4.63a) 
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x
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



   



  
 (4.63b) 

 4

2 2 4 4 3 3 3 3
1

0 :

0

y

z z z x yi
i

m about x axis

f x f x f x f z m




     



  
 (4.63c) 

After deformation, the equilibrium equations change into 

 
1 1 1

1 2 4 3

0 :

0

z

n n n
z z z z

f

f f f f  



   


  (4.64a) 
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 (4.64c) 

Through Eqs. (4.63) and (4.64) and omitting the high order variations, we have 

  4 3 3 4 4 3 3

4

1
z z z y

y
f f v f v f w           (4.65a) 

4 4 4
2 2 2 3 3 3 3 4 4 4 4 3 3

2

3

4 4 4

1
z z z z z z x yf u f u f u

x x x
f f v f v f f w

x y y y
           

  
  

  
       

 (4.65b) 

 1 2 4z z zf f f      (4.65c) 

Then, the geometric stiffness matrix due to the changes of dimensions of a plate 

element in the local coordinate system, p
gK , can be obtained by Eqs. (4.66), 

= T Tf L E f ,  d L d  and p
g T





f
K

d
. 

4.3.1.4 Geometric stiffness due to warping effect 

The bending moments on the warping node 3 varies when the local coordinate 3z  

changes. Thus, the load perturbation can deduce the geometric stiffness due to 

warping effect. The relationship of the virtual displacements and rotations at the node 

3 between a warping shell element and its projection has been given in Eqs. (3.43), 
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then the corresponding forces and m oments in these two systems have the 

relationship as follows, 

 3 3 3 3=x y xm z f m  (4.66a) 

 3 3 3 3=-y x ym z f m  (4.66b) 

Like the previous derivations, the forces and moments at the free DOF of the 

projection are active and do not change after deformation, while the moments at the 

node 3 vary and their variations are 

 3 3 3=x ym w f     (4.67a) 

 3 3 3=-y xm w f     (4.67b) 

Then, the geometric stiffness matrix due to warping effect in the local coordinate 

system can be derived by Eqs. (4.67), = T Tf L E f ,  d L d  and w
g T





f
K

d
. 

 

4.4.2 Internal forces 

To update the internal forces of a warping quadrilateral shell element in the global 

coordinate system, the key point is how to extract pure deformations of a shell 

element’s projection from its global deformations. Then, through the known material 

stiffness matrix of a flat quadrilateral flat shell element, the internal forces of the 

projection f  can be acquired, then obtaining the global internal forces of the 

warping shell element. Similar to the co-rotational method for triangular shell 
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elements presented in Section 4.3, all the three methods to update internal forces can 

be used for quadrilateral shell elements. For the sake of simplification, the internal 

forces of quadrilateral shell element are presented here with the method of the directly 

incremental deformation introduced in Section 4.3.2.2. 

After one iterative process, the incremental displacement vector of a warping 

quadrilateral shell element in the global coordinate system can be obtained as follows, 

  1 2 3 4=
Tg gT gT gT gT    d d d d d  (4.68a) 

  =
Tg g g g g g g

i xi yi zi xi yi ziu u u         d  (4.68b) 

  =
Tg g g g

i xi yi ziu u u   u  (4.68c) 

  =
Tg g g g

i xi yi zi       (4.68d) 

Then, the global nodal coordinates can be updated as 

 1g n g n g
i i i

   x x u  (4.69) 

The local-to-global transformation matrix can be updated by the new global nodal 

coordinates and Eqs. (3.30) as 1n
e
T , then the new local coordinates 1n

i
x  and the 

eccentricity matrix 
1nE  can be obtained by Eqs. (3.47). 

Following the same way presented in Section 4.3.2.2, the incremental pure 

deformation between the last and updated configurations can be obtained as d , 

which can be transformed into the corresponding projection and used to compute the 

incremental internal forces of the projection as follows, 
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 0 0 1n
e e

    f K d K E d  (4.70) 

in which the stiffness matrix of the warping quad rilateral shell element’s projection, 

0
eK , is calculated based on initial dimensions all the time, so it can be recorded during 

elastic analyses. Also, there is no doubt that the 18×18 stiffness matrix 0
eK  needs 

less computer storage than the 24×24 stiffness matrix in a conventional method. 

Then, the internal forces for the projection can be updated and recorded for the next 

iteration as follows, 

 1n n   f f f  (4.71) 

Finally, the internal force vector of a warping quadrilateral shell element in the global 

coordinate system for the updated configuration can be given by 

 1 1 1 1 1g n n T n T n T n    f T L E f  (4.72) 

 

4.5 A novel simplified EICR formulation 

In this section, the simplified element-independent co-rotational formulations for 

triangular and quadrilateral shell elements are proposed, based on the novel 

formulations presented in Sections 4.3 and 4.4. Both the conventional and the 

proposed co-rotational methods are derived based on the assumption of large 

displacements, but small strains. With the assumption of small strains, the proposed 

co-rotational algorithms can be simplified further. 
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4.5.1 Triangular shell elements 

As mentioned previously, the local geometric stiffness matrix of a flat triangular shell 

element can be divided into three parts, including the geometric stiffness matrix due 

to changes of dimensions of a membrane element and a plate element respectively and 

the geometric stiffness matrix due to rigid body rotations of a shell element. In the 

case of quadrilateral shell elements, the local geometric stiffness matrix has one more 

part which is due to the warping effect. In fact, based on the assumption of small 

strains, the dimensions of a shell element can be fixed and then the geometric stiffness 

matrices due to changes of element dimensions can be neglected, while the local 

internal forces should be revised correspondingly. 

Thus, for a triangular shell element at the current configuration, the tangent stiffness 

in the global coordinate system can be given by 

  0g n T r n n g

e g
 f T K + K T d  (4.73) 

in which the local material stiffness matrix 0
eK  is assembled by the stiffness 

matrices of a membrane element and a plate element as follows, 

 0 0 0 0T
m m m mK = L K L  (4.74a) 

 
0 0 0 0T

p p p p
K = L K L  (4.74b) 

where the superscript “0” means that these matrices are always formed based on the 

initial configuration in the whole analysis, which is different from the co-rotational 
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methods introduced previously. The superscript “n” means that the matrices are 

calculated based on the current configuration. 

After defamation, the local and global internal forces can be updated by 

 
1 0 1n T n

m m m

 f L f  (4.75a) 

 
1 0 1n T n

p p p

 f L f  (4.75b) 

 1 1 1gn n T n  f T f  (4.75c) 

in which the basic-to-local transformation matrices adopt the initial dimensions of a 

shell element. This is because the changes of element dimensions are neglected in the 

simplified co-rotational method. 

 

4.5.2 Quadrilateral shell elements 

In terms of the simplified co-rotational algorithm for quadrilateral shell elements, the 

tangent stiffness matrix in the current configuration can be given by 

  g n T rn w n n g

e g g
 f T K + K + K T d  (4.76a) 

 0 0 0T n T n
e eK L E K E L  (4.76b) 

After deformation, the local internal forces can be updated by 

 1 1 0 1 1g n n T T n T n   f T L E f  (4.77) 
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in which the local-to-global transformation matrix and the eccentricity matrix should 

be updated based on the current configuration, while the basic-to-local transformation 

matrix L  reflecting the changes of element dimensions still adopt the initial 

dimensions and becomes the matrix only expanding degrees of freedom of a 

quadrilateral shell element. 

 

4.6 Summary 

A novel element-independent co-rotational formulation based on the pure 

deformational method is proposed in this chapter, in which the geometric stiffness is 

regarded as the gradients of nodal forces and derived through load perturbation of 

equilibrium equations for a shell element. The proposed co-rotational method has a 

clear physical meaning than the other conventional methods, and its derivation is 

simpler and does not need many complicated mathematical processes like the general 

co-rotational formulation. In addition, unlike the conventional methods, in which the 

projector is used to modify the internal forces and keep the self-equilibrium of a shell 

element, the proposed approach adopts the basic-to-local transformation matrix to 

compute the internal forces at the restrained degrees of freedom and transform the 

basic internal forces into the local internal forces. Although the projector and the 

basic-to-local transformation matrix have the same function, the latter one is simpler. 

Also, the proposed method only needs to record the internal forces at the free degrees 

of freedom in the basic coordinate system, which can save computer storage. Thus, 

the novel EICR method can improve the computational efficiency of geometrically 

nonlinear analysis. 
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Based on the physical interpretation of the novel EICR method and the assumption of 

small strains, the simplified EICR method is proposed, which is much simpler than 

the other co-rotational methods. Thus, the simplified co-rotational method is used for 

the computational procedure of nonlinear analysis in the next chapters and 

implemented in the program NIDA. Its good performance on accuracy and efficiency 

is validated in Chapter 7 by numerical examples. 
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CHAPTER 5 

A NONLINEAR TRIANGULAR SHELL ELEMENT 

BASED ON SIMPLIFIED EICR METHOD 

In this chapter, a novel geometrically nonlinear triangular shell element is proposed, 

which is based on the simplified element-independent co-rotational (EICR) 

formulation introduced in Section 4.5. The local linear flat triangular shell element 

consists of a membrane element and a plate bending element. Many studies have 

shown that the two elements are reliable with good performances. The membrane 

element is the Optimal Triangle (OPT) element with drilling degrees of freedom 

proposed by Felippa (2003), while the plate element is the refined discrete Kirchhoff 

triangular (RDKTM) element allowing for transverse shear deformation. The 

RDKTM element was developed on the basis of the discrete Kirchhoff triangular 

(DKT) element and proposed by Chen and Cheung (1998). 

Thus, the flat triangular shell element proposed herein can consider drilling degrees of 

freedom and transverse shear deformation. The significant improvement is that the 

proposed element is locking-free without the use of reduced integration. Also, the 

pure deformational method is used to simplify the local element formulations and the 

novel simplified element-independent co-rotational (EICR) algorithm is adopted to 

consider geometrically nonlinearity of shell structures. 

 



Chapter 5  A Nonlinear Triangular Shell Element Based on Simplifed EICR Method 

124 

5.1 Optimal Triangle (OPT) membrane element with 

drilling rotations 

The Optimal Triangle (OPT) element with drilling degrees of freedom is introduced 

in this section. The element is derived by the assumed natural deviatoric strain 

(ANDES) formulation and composed of a basic component and a higher order 

component. Besides, at least ten parameters are used in the stiffness matrix to make 

the element as a template and then the expression of the stiffness matrix is more 

complicated than the other triangular membrane elements. For this reason, the pure 

deformational method is adopted in the OPT element in order to significantly simplify 

its formulation and enhance the computational efficiency. To highlight the merits of 

the pure deformational method, the general formulation presented in literature is also 

introduced and further compared with the proposed simplified formulation based on 

the pure deformational method. 

 

5.1.1 Formulation of the OPT membrane element 

In the section, the ANDES (assumed natural deviatoric strain) membrane element 

template is introduced, in which the OPT membrane element is one of instances 

befitting the ANDES template. The ANDES template was derived by Felippa (2003) 

based on the membrane element with nine degrees of freedom including six nodal 

translations and three nodal rotations. Several parameters are contained in the 

template element and different membrane elements can be obtained according to the 

values of these parameters. Membrane elements based on the ANDES template were 
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incorporated into the general element-independent co-rotational (EICR) formulation 

to test their performance in geometrically nonlinear analysis by Zhou et al. (2016), in 

which the OPT and the ALL-3I membrane elements predict better results than the 

others. The ALL-3I refers to Allman element (Allman, 1988b) integrated by 3-point 

interior rule. The proposed simplified co-rotational formulation adopts the OPT 

membrane element to conduct geometrically nonlinear analysis of shell structures. 

As shown in Figure 5.1, the OPT membrane element is a 3-node triangular element 

with drilling rotations and is described in a 2D plane. So, its nodal displacement 

vector can be given by 

  1 1 1 2 2 2 3 3 3

T

m z z zu v u v u v  d  (5.1) 

 

 

Figure 5.1 OPT membrane element in a 2D plane 

The stiffness template consists of a basic and a higher order component as follows, 

 m mb mh K K K  (5.2) 
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in which mbK  is the basic stiffness matrix taking care of consistency and mhK  is 

the higher order stiffness matrix taking care of rank sufficiency and accuracy. 

The basic stiffness is given by 

 
1 T

mb mb m mbA
K B D B  (5.3) 

in which A is the element area, mbB  and mD  are the strain-displacement matrix and 

the elastic constitutive matrix respectively and can be expressed as 
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 (5.4) 
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Et

v
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v

 
   

  

D  (5.5) 

in which ij i jx x x  , ij i jy y y   (i, j=1,2,3) and b  is a free parameter for the 

template, whereas E and v are the Young’s modulus and the Poisson’s ratio 

respectively and t refers to the element thickness. 
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The higher order component of the ANDES template developed by Felippa and 

Militello (1992) is derived based on the natural strains along the three side directions 

of the element as shown in Figure 5.2. The relationship between the natural strain 

vector  12 23 31

T     and Cartesian strain vector  xx yy xy

T
  

 
in the local 

coordinate system can be given by 

 e T   (5.6a) 
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   
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T  (5.6b) 

in which ijl  is the length of the element side between the node i and j and equals to 

2 2
ij ijx y . 

 

 

Figure 5.2 Directions of the natural strains 
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Thus, the elastic constitutive matrix natD  used for the natural stresses and strains is 

given as 

 T
enat em TD D T  (5.7) 

The drilling rotations in the higher order component are hierarchical and the 

hierarchical nodal drilling rotations zi  can be extracted from the total nodal 

rotations zi  by subtracting the mean rotation 0z  as follows 

 0zi zi z     (5.8) 

where 

  0 23 1 31 2 12 3 23 1 31 2 12 3

1

4z x u x u x u y v y v y v
A

        (5.9) 

Introducing Eq. (5.9) into Eq. (5.8) for the three nodes of the element gives 

 
1 32 32 13 13 21 21
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d T d
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

 (5.10) 

Before the presentation of the higher order stiffness matrix, three matrices 1Q , 2Q  

and 3Q  depending on the nine free non-dimensional parameters 1  through 9  

are introduced in the following, 
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The matrix iQ  relates the natural strain vector i  at the node i to the hierarchical 

nodal drilling rotation vector  . Thus, the natural strain vector   at the point with 

area coordinates  1 2 3

T    within the triangular membrane element can be 

expressed as follows 

  Q   (5.12) 

where 

 1 1 2 2 3 3    Q Q Q Q  (5.13) 
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The 3×3 higher order stiffness matrix K , associated with the hierarchical drilling 

rotations, can be evaluated by the numerical integration using the midpoints of the 

three element sides in the following, 

  4 4 5 5 6 6
T T T

nat nat natA   K Q D Q Q D Q Q D Q  (5.14) 

where 

  4 1 2

1

2
 Q Q Q  (5.15a) 

  5 2 3

1

2
 Q Q Q  (5.15b) 

  6 3 1

1

2
 Q Q Q  (5.15c) 

Transforming the higher order stiffness matrix K  into the matrix mhK  

corresponding to the displacement vector mu , we have 

 0

3

4 uh
T

um  T TK K  (5.16) 

Finally, the stiffness template of ANDES membrane element containing 11 free 

parameters can be detailed as follows, 

  0 1 9 0

1 3
, , ,...,

4
T

m b mb m
T

mb u uA       K B D B TKT  (5.17) 

For the OPT membrane element adopted in this thesis, the 11 free parameters are 

defined in Table 5.1. 
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Table 5.1 Values of the 11 free parameters for the OPT membrane element 

b  0  1  2  3  4  5  6  7  8  9  

3/2 
21 4

2

v
 1 2 1 0 1 -1 -1 -1 -2 

 

5.1.2 Simplification of the OPT element based on the pure 

deformational method 

It can be seen that the original OPT membrane element is complicated, since several 

matrices with large sizes are used in the expression of the stiffness matrix mK . Thus, 

in this section, the pure deformational method proposed in Chapter 3 will be used to 

simplify the expression of the stiffness matrix and further decrease its size. 

 

 

Figure 5.3 Basic coordinate system of the triangular membrane element 
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First, as the x-axis of the local coordinate system is aligned with the element side 1-2 

and the origin is set to the node 1 as shown in Figure 5.3, three nodal coordinates are 

known and equal to zero as follows, 

 1 1 2 0x y y    (5.18) 

Then, the basic displacement vector of the triangular shell element is defined by 

  2 3 1 2 33 z z z

T

m u u v   d        (5.19) 

Thus, the stiffness template of the ANDES element in the basic coordinate system can 

be simplified with the above conditions and becomes 

  0 1 9 0

1 3
, , ,...,

4
T

m b mb
T

u um mbA        TB TK D B K      (5.20a) 
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B  (5.20b) 
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0 0 4 0
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0 0 0 4
u

x x A

x x A
A

x x A


 
   
  

T  (5.20c) 

in which the matrices m bB  and uT  are degenerated from the matrices m bB  and 

uT , respectively, while the other matrices in the right side of Eq. (5.17) do not need 

to change and can be used directly in the new expression. 
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Compared with the 12×12 matrix mK  in Eq. (5.17), the 9×9 matrix mK  in Eq. 

(5.20a) is much simpler. Also, according to Chapter 3, the two matrices have the 

relationship in the following, 

 T
m m m mK L K L  (5.21a) 
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3 2 3 2
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2 2
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x x x x

x x
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x x

 
   

   
   
 
  

L  (5.21b) 

 

5.2 Refined triangular Mindlin plate element 

In this section, the refined triangular Mindlin plate element, so-called RDKTM, is 

introduced. The element is proposed by Chen and Cheung (2001) based on the 

Mindlin-Reissner plate theory. As a three-node triangular element, it is accurate for 

both thin and thick plates and free of locking for very thin plates. Furthermore, 

different from the classical Mindlin plate elements which require C0 continuity, it 

does not need reduced or selective integration to overcome transverse shear locking, 

and therefore the zero energy modes causing mechanisms of structures can be 

avoided. 

The derivation of the element is similar to the DKT (discrete Kirchhoff triangular) 

element which is a well-known three-node triangular plate element proposed by Batoz 

et al. (1980a) based on the Kirchhoff hypothesis. In the derivation of the DKT 



Chapter 5  A Nonlinear Triangular Shell Element Based on Simplifed EICR Method 

134 

element, the six-node triangular element including three corner nodes and three 

mid-side nodes is adopted at first and the interpolation functions for the bending 

rotations are quadric. Then, the variables at the mid-side nodes can be eliminated 

using the cubic functions for the element sides referring to the classical Euler–

Bernoulli beam element. Finally, the six-node element can degenerate into the 

three-node element, i.e. only corner nodes. As the RDKTM element is based on the 

Mindlin-Reissner plate hypothesis, its derivations are similar to conventional DKT 

element. The basic difference is that the functions for the element sides are based on 

the Timoshenko beam hypothesis and transverse shear strains should be considered 

and constituted. 

After that, Batoz (1982) proposed a new version of DKT element with explicit 

expression to replace numerical integration for the stiffness matrix. The new 

formulation is simple with significantly reduction of computer time compared with 

the previous study using three numerical integration points. Thus, the method is also 

adopted in this thesis to present the explicit expression of the RDKTM element. The 

difference is that the proposed pure deformational method is applied here to further 

simplify the formulation of the RDKTM element. 

 

5.2.1 Timoshenko beam function 

As mentioned before, the DKT element which is based on the Kirchhoff hypothesis 

successfully employs the cubic function in Euler–Bernoulli beam element to establish 

its formulation. By contrast, the interpolation function for the Timoshenko beam 

element is adopted in the RDKTM element. However, like classical Mindlin plate 



Chapter 5  A Nonlinear Triangular Shell Element Based on Simplifed EICR Method 

135 

elements, the shear locking phenomenon also exists in the classical Timoshenko beam 

element which uses two independent linear interpolation functions to describe the 

deflections and rotations over the element respectively. Thus, the reduced numerical 

integration should be used in the classical Timoshenko beam element to remove the 

shear locking. 

An alternative method to make the Timoshenko beam element locking-free and obtain 

accurate solutions for both thin and thick plates is via the consistent displacement 

function (Tang et al., 2015) to derive the formulation. In this method, the deflection 

of the Timoshenko beam element is still assumed as a cubic function. However, 

different from the displacement-based method, except for the nodal displacement 

values, the governing equations are also used in the derivation. Thus, the derivation 

belongs to the mixed type element method and is detailed in the following. 

First, for using the Timoshenko beam function in the derivation of the RDKTM plate 

element, a strip plate with Length L, width b and thickness t is considered, as shown 

in Figure 5.4. 

 

 

Figure 5.4 Timoshenko beam element 
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According to the Timoshenko beam hypothesis, when the pressure load is neglected, 

the governing differential equations can be given in the following, 

 
2

2
2e

dw d
L

dx dx

    (5.22a) 

 
2

2
0

d d w

dx dx


   (5.22b) 

where w and θ are the displacement and rotation at the point x along the neutral axis 

respectively and 
2

25 (1 )e

t

L v
 


. 

Assuming the displacement function is cubic and taking use of Eq. (5.22b), we have 

 3 2
3 2 1 0w c x c x c x c     (5.23a) 

 2
3 2 43 2c x c x c     (5.23b) 

It can be seen that there are five uncertain coefficients 0c  to 4c . Taking use of Eq. 

(5.22a) and the boundary conditions given in Eq. (5.24), we can solve these five 

coefficients and further obtain the displacement and rotation functions expressed in 

Eq.(5.25). 

 0 1|xw w  , 0 1|x    (5.24a) 

 2|x Lw w  , 2|x L    (5.24b) 
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 

     

  

   

 (5.25a) 
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   
   
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1 3 1 3
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e e
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  

   

  

   
 (5.25b) 

in which 1 1 /L x L  , 2 /L x L , 
1

1 12e
e

 


. 

Then, the shear strain of the strip plate, which is constant without pressure load, is 

obtained as 

   2 1 1 21
2e

dw w w

dx L

           
 

 (5.26) 

 

5.2.2 Derivation of the RDKTM plate element 

 

Figure 5.5 A six-node triangular plate element with mid-side nodes 

Figure 5.5 shows a six-node triangular plate element and the displacement functions 

can be defined by 

 
3 6

1 4
x i xi k xk

i k

N N  
 

    (5.27a) 
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3 6

1 4
y i yi k yk

i k

N N  
 

    (5.27b) 

 
3 6

1 4
i i k k

i k

w N w N w
 

    (5.27c) 

in which Ni and Nk are the shape functions expressed with the area coordinate ξi and 

can be detailed as follows, 

 1 1 1(2 1)N    , 2 2 2(2 1)N    , 3 3 3(2 1)N     (5.28a, b, c) 

 4 1 24N   , 5 2 34N   , 6 3 14N    (5.28e, f, g) 

Then, to eliminate the displacement and rotation values at the mid-side node k on the 

side i-j, the interpolation function given in Eq. (5.25b) should be used. According to 

Eq. (5.25b), the normal rotation of the side i-j at the mid-side node k can be given by 

    1.5 1 1.5

2nk i ni nj j
i ij

ij

j

S
w w








    (5.29a) 

where i=1,2,3; j=mod(i,3)+1; k=i+3; 2 2( ) +( )ij j i j iS x x y y    is the length of the 

side i-j; the parameter 
1

1 12ij
ij







, 
2

25 (1 )ij
ij

t

S v
 


; and ni , nj  are the normal 

rotations at the corner node i and j on the side i-j respectively. 

Assuming the tangential rotation s  along a side of the element varies linearly, the 

tangential rotation sk  at the mid-side node k can be given by 

  1

2sk si sj     (5.29b) 
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in which si  and sj  are the tangential rotations at the corner node i and j on the 

side i-j respectively. 

Consequently, as shown in Figure 5.5, the rotations ni  and si  at the corner node 

i on the side i-j can be expressed as 

 ij ij xini

ij ij jisi

l m

m l



   

        
 (5.30) 

where cos j i
ij ij

ij

y y
l

S



   and sin i j

ij ij
ij

x x
m

S



   are the direction cosine and 

the direction sine of the side i-j respectively. 

For the interpolation functions of the six-node triangular element shown in Eqs. 

(5.27a, b), the rotations xk  and yk  at the mid-side node k can be eliminated by 

the relationship as follows, 

 xk ij ij nk

yk ij ij sk

l m

m l

 
 

     
    

    
 (5.31) 

Taking use of Eqs. (5.29) and (5.30), the rotation interpolation functions of the plate 

element can be modified as 

 1 2 3
ˆ ˆ ˆx

p
y



 

    
 

N N N d  (5.32a) 

 1 2 3

1 2 3

ˆ i i i
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i i i

P P P

Q Q Q

 
  
 

N  (5.32b) 

 1 3 3i i i j jP d N d N     (5.32c) 
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 3 32 i i ii j jN NP e e N    (5.32d) 

 3 33 ji i i jb NP b N   (5.32e) 

 3 31 ji i i ja NQ a N   (5.32f) 

 3 32 ji i i jb NQ b N   (5.32g) 

 3 33 i i ii j jN NQ c c N    (5.32h) 

 1,2,3i  ; 3floor(1 / ) 1j i i   . (5.32i) 

in which  1 1 1 2 2 2 3 3 3

T

p x y x y x yw w w     d is the displacement vector of the 

three-node triangular plate element and the coefficients used in Eq. (5.32b) to (5.32h) 

are given by 
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 , 

3

4 i i ji j j il mb  , 23
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2 ij ji ic m   (5.33a, b, c) 
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2
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i

j

i

d
l

S


 , 23

4

1

2 i iji jme     (5.33d, e) 

Thus, the six-node triangular plate element shown in Figure 5.5 has degenerated into 

the three-node element. Then, the bending strains which are the curvatures of the 

triangular plate element can be given by 
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B , i=1,2,3 (5.34b) 

where the matrix bB  is the bending strain-displacement matrix. 

Regarding the shear strains of the triangular plate element, its derivation is also 

started from the shear strains of the element sides. Through the shear strain of a strip 

plate shown in Eq. (5.26), the constant shear strain along the side i-j can be given by 

  1
2

j i ni nj
ij ij

ij

w w

S

 
 

  
    

 
 (5.35a) 

Also, the shear strain along the side j-k is also constant and equals to 

  1
2

k j nj nk
jk jk

jk

w w

S

 
 

  
    

 
 (5.35b) 
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Figure 5.6 Shear strains of triangular plate element 

Assuming that the projections of the shear strains at the node j on the side i-j and j-k 

are equal to the constant shear strains of these two sides respectively according to 

Figure 5.6, we have 

 ij ij yzj ij xzjl m     (5.36a) 

 jk jk yzj jk xzjl m     (5.36b) 

Thus, the shear strains at the node j can be solved by Eqs. (5.36) and given by 

 
1xzj jk ij ij

yzj jk ij jkij jk jk ij

l l

m ml m l m

 
 

    
        

 (5.37) 

in which i=1,2,3; j=mod(i,3)+1; k=mod(j,3)+1. 

Then, the shear strains of the triangular plate element can be linearly interpolated by 

the nodal shear strains as follows, 
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 1 12 31 31 12C l m l m   (5.38c) 

 2 23 12 12 23C l m l m   (5.38d) 

 3 31 23 23 31C l m l m   (5.38e) 

Through Eqs. (5.30) and (5.35), the constant shear strains along each side of the plate 

element can be given by 
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Finally, the shear strain-displacement matrix can be given by 

 s p B d  (5.40a) 

 s sB NB  (5.40b) 

To derive the stiffness matrix of the three-node triangular plate element, the 

variational formulation including the bending and shear modes over the plate element 

area A is given by 

 T T T
p b s p pA A A

dA dA dA     D D d f     (5.41) 

where bD  and sD  are the constitutive matrices as follows, 
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  

D  (5.42a) 
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D  (5.42b) 

Taking variation of Eq. (5.41) gives 

 p p pK d f  (5.43a) 
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 p b s K K K  (5.43b) 

in which pK  is the stiffness matrix of the plate element including two parts, i.e. the 

bending stiffness matrix bK  and shear stiffness matrix sK . The matrices bK  and 

sK . are given by 

 T
b b b bA

dA K B D B  (5.44a) 

 T
s s s sA

dA K B D B  (5.44b) 

The two matrices can be computed by the numerical integration and alternatively, 

their explicit expressions can be derived and directly inputted in the program for 

elastic analyses. It is clear that the explicit expressions are more efficient than the 

numerical integration. However, the formulations of the strain-displacement matrices 

bB  and sB  are very complicated and therefore it is difficult to obtain their explicit 

expressions. Thus, in the thesis several effective measures are used to derive and 

simplify the explicit expressions of the stiffness matrices of the RDKTM plate 

element based on the proposed pure deformational method. 

 

5.2.3 Simplification of the RDKTM plate element based on 

the pure deformational method 

In this section, the proposed pure deformational method is used to decrease the 

dimensions of the strain-displacement matrices bB  and sB . Their expressions are 

based on the basic coordinate system which is same as the OPT membrane element as 
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shown in Section 5.1. Further, the method proposed by Batoz (1982) is adopted here 

to derive the explicit formulations of the stiffness matrices bK  and sK  of the 

RDKTM plate element. 

 

 

Figure 5.7 Basic coordinate system of the triangular plate element 

Figure 5.7 depicts the basic coordinate system of the triangular plate element which is 

identical to the triangular membrane element and has the same coordinate values, 

including 1 1 2 0x y y   . Also, the vertical translations are restrained and only 

bending rotations are remained in the pure deformational model. The displacement 

vector in the basis coordinate system can be given by 

 1 1 2 2 3 3{ }x y x yp x y
T     d        (5.45) 

in which these rotations in pd  are identical to those in pd  in the local coordinate 

system. 

Thus, the strain-displacement matrices in the basic coordinate system can be directly 

obtained through bB  and sB , without the columns associated with the translational 
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degrees of freedom. Then, the bending strain-displacement matrix in the basic 

coordinate system can be given by 

 1 2 3b b b b   B B B B     (5.46a) 

 

2 3

2 3

2 2 3 3

i i

i i
bi

i i i i

Q Q

x x
P P

y y

Q P Q P

y x y x

  
 

  
       

          

B , i=1,2,3 (5.46b) 

The shear strain-displacement matrix in the basic coordinate system is 

 s sB NB  (5.47a, b) 

 1 2 3s s s s
   B B B B     (5.47a, b) 

 

   
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1 1
1

1
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 

   
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B  (5.47c) 
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1 1
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  

B  (5.47d) 

    
   

23 23 23 23

31 31 31 31

3

1
0 0

1 1
2

1 1
s l m

l m
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 
   
 

   
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B  (5.47e) 
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It can be seen that the 3×9 matrices bB  and sB  have been degenerated into the 3

×6 matrices b
B  and s

B . The operation can simplify the derivation of the explicit 

formulation for the triangular plate element. 

According to the method proposed by Batoz (1982), the matrix b
B  can be 

decomposed into the product of the 3×9 matrix bh  and the 9×6 matrix b , in 

which the matrix b  is independent of the area coordinate i . The decomposition 

can be given by 

 
1

2b b bA
B h   (5.48a) 

 
1 1 3

1 2 3

1 2 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
b

  
  

  

 
   
  

h  (5.48b) 

in which the components of the matrix b  only are dependent on the geometry and 

the Poisson’s ratio of the plate element. Because the matrix b  is large, it is divided 

into two parts for easy presentation in the following, 

  1 2b b b    (5.49a) 
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 (5.49b) 
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  (5.49c) 

in which      . . .
ij i j
  . 

Through the decomposition of the matrix b
B , the integration of the stiffness matrix 

becomes more easily. In the basic coordinate system, the stiffness matrix can be 

integrated as follows, 

 
1

2
T T T

b b b b b b bA
dA

A
   K B D B H   (5.50a) 

 
1

2
T

b b b bA
dA

A
 H h D h  (5.50b) 

Also, we have the equations as 

 3 1 21      (5.51a) 

 1 22dA Ad d   (5.51b) 

Introducing Eqs. (5.51) into Eqs. (5.50), it gives 

 11 1

2 10 0

T
b b b bd d


 


  H h D h  (5.52a) 
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1

24 12(1 )
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b
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 
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0
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H R R
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 (5.52b) 

 
2 1 1

= 1 2 1

1 1 2

 
 
 
  

R  (5.52c) 

in which bH  is a 9×9 matrix. 

Finally, the bending stiffness matrix in the basic coordinate system can be explicitly 

given. In fact, the derivation introduced in the last section can be directly conducted 

based on the pure deformational model instead of the element model with rigid body 

movements, which can simplify the derivation process further. 

For the shear stiffness matrix, the 2×3 matrix N  can be decomposed into the 

product of the 2×6 matrix sh  and the 6×3 matrix s  using the same method, in 

which the matrix s  is independent of the area coordinate i . Then, we have 

 
1

2 s sA
N = h  (5.53a) 

 1 2 3

1 2 3

0 0 0

0 0 0s

  
  

 
  
 

h  (5.53b) 

in which the matrix s  can be simplified with the known coordinate values, 

1 1 2 0x y y   , as follows, 
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Then, the shear stiffness matrix in the basic coordinate system can be given by 

 
1

2
T T T

s s s s s s s s sA
dA

A
 K B D B B H B       (5.54a) 
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 (5.54b) 

in which sH  is a 6×6 matrix. 

Thus, based on the basic coordinate system, the 6×6 stiffness matrix of the triangular 

Mindlin plate element with bending and shear parts can be given by 

 p b s K K K    (5.55) 

The matrix pK  should be further transformed to the local coordinate system by 

 T
p p p pK L K L  (5.56a) 
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The proposed triangular plate element can provide accurate solutions for both thin and 

thick plates. Moreover, when the shear deformation could be neglected, it can 

automatically degenerate into the DKT element if the parameter ij  for each side is 

set to 0, which can further simplify the formulation and enhance the computational 

efficiency. 

In addition, the pure deformational method is very different from the general method. 

For the former approach, the complicated and redundant derivation process can be 

conducted based on the pure deformational model with less degree of freedom than 

the general method. Thus, there is no doubt that the pure deformational method can 

make the derivation of elements easier and produces simpler formulations. 

 

5.3 Geometrically nonlinear analysis 

In this section, the procedure of geometrically nonlinear analysis for the triangular 

shell element is detailed, which has been coded in the nonlinear finite element 

program NIDA (2015). The whole procedure is based on the simplified co-rotational 

formulation introduced in Chapter 4, which is a simplified version of the co-rotational 

method and inherits the property of element-independence. Thus, the triangular shell 

element which consists of the OPT membrane element and the RDKTM plate element 

can be easily embedded into the simplified co-rotational algorithm to conduct the 

geometrically nonlinear analysis of shell structures. Two key factors for geometrically 

nonlinear analysis scheme, the tangent stiffness matrix and the internal forces, are 

respectively introduced in the following. 
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5.3.1 Tangent stiffness 

Compared to the general EICR formulation, the simplified EICR formulation neglects 

the projector matrix which reflects the changes of element dimensions and the 

operation greatly decreases the computation of the tangent stiffness matrix. In the 

process of nonlinear analysis, the tangent stiffness matrix of the shell element is 

continually updated based on the current configuration Cn, in which the global 

coordinates are  Tg g g g
i i i ix y zx  and the local internal force vector is 

  1 1 2 2 3 3

TT T T T T Tf n m n m n m  (5.57) 

in which  T

i xi yi zif f fn and  T

i xi yi zim m mm  represent the local internal 

forces and moments at the node i (i=1,2,3) respectively. 

 

The definition of the local coordinate system should be identical to that of the OPT 

membrane element and the RDKTM plate element introduced before, in which the 

local x-axis is aligned to the side 1-2 and the plane xy coincides with the triangular 

facet. Then, the triad vectors for the local coordinate system of the triangular shell 

element at current configuration can be given by 

 2 1

2 1

g g

x g g





x x

e
x x

 (5.58a) 

 3 1

3 1

g g

z x g g


 


x x

e e
x x

 (5.58b) 
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 y z x e e e  (5.58c) 

Then, the corresponding local-to-global transformation matrix can be written as 

 
T

e x y z  =T e e e  (5.59) 

The local tangent stiffness matrix of the triangular shell element based on the 

simplified co-rotational algorithm as introduced in Chapter 4 has two parts. One is the 

local material stiffness matrix of shell element eK , which is assembled by the 

stiffness matrices of the OPT membrane element and the RDKTM plate element 

shown in Eqs. (5.21) and (5.56) respectively. The local material stiffness matrix is 

always computed using the initial local coordinates and does not need to be modified 

by the projector matrix used in the general EICR formulation. Thus, for elastic 

problems, the local material stiffness matrix could be stored in the process of 

nonlinear analysis to save computational cost. Moreover, the material stiffness matrix 

based on the pure deformational model can be stored to save computer storage, 

although it needs the transformation from the basic to the local coordinate system and 

re-assembles the local material stiffness matrix. 

The other part of the local tangent stiffness matrix in the simplified EICR formulation 

is the local geometric stiffness matrix introduced in Chapter 4 and can be given by 

 g = -K AG  (5.60a) 
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  1 3 3 2 3 3 3 3 3   0 0 0G G G G  (5.60c) 
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y
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G  (5.60f) 

in which 3 30  is the 3×3 matrix whose components are all zero. Also, it should be 

noted that the matrix G  is calculated by the initial local coordinates during the 

whole nonlinear analysis as same as the local material stiffness matrix of the shell 

element. 
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As mentioned before, the co-rotational algorithm has the drawback that its tangent 

stiffness matrix is unsymmetrical and it can be noticed that the local geometric 

stiffness matrix gK  is either unsymmetrical herein. However, most commercial 

finite element packages, including the program NIDA, use solvers requiring a 

symmetric matrix to save computer storage. Thus, the local geometric stiffness matrix 

gK  can be symmetrized as follows, 

 
1

( )
2

sym T
g g g= K K K  (5.61) 

Finally, the tangent stiffness matrix of the shell element in the global coordinate 

system is 

 ( )T sym
t e g= K T K K T  (5.62) 

where the matrix T  is composed of the local-to-global transformation matrix eT  

along diagonal. 

The symmetrized stiffness can keep the convergence rate and obtain accurate 

solutions as same as the original unsymmetrical one, which was proved by 

Nour-Omid and Rankin (1991). However, in my experience, the symmetrized 

stiffness in the simplified EICR formulation is hard to get convergence for some very 

extreme cases which may never happen in practical engineering structures. The 

problem is discussed with numerical examples in Chapter 7. 

 

5.3.2 Internal forces 
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The internal forces in the simplified EICR formulation are different from that in the 

general EICR formulation and neglect the changes of element dimensions. For the 

process of extracting local pure deformations from the global total deformations, the 

simplified method is identical to the general one, which is detailed in Chapter 4. Thus, 

the process to get the internal forces of the triangular shell element in the simplified 

EICR formulation is briefly introduced in the following. 

In the nonlinear analysis, the incremental displacements and rotations of the triangular 

shell element in the global coordinate system can be expressed as 

  1 2 3=
Tg gT gT gT   d d d d  (5.63a) 

  =
Tg g g g g g g

i xi yi zi xi yi ziu u u         d  (5.63b) 

  =
Tg g g g

i xi yi ziu u u   u  (5.63c) 

  =
Tg g g g

i xi yi zi       (5.63d) 

Then, the global coordinates of the node i can be updated as 

 1g n g n g
i i i

   x x u  (5.64) 

After that, the local-to-global transformation matrix eT  and local coordinates ix  

can be updated with the new global coordinates. 

With the procedure proposed in Chapter 4, the increments of the pure deformation 

vectors corresponding to the membrane element and the plate element denoted as 

md  and pd  respectively can be extracted from the incremental displacements 
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and rotations in the global coordinate system. Then, the associated incremental 

internal forces of the OPT membrane element and the RDKTM plate element in the 

basic coordinate system can be given by 

 0
m m m  f K d   (5.65a) 

 0
p p p  f K d   (5.65b) 

where the matrices 0
mK  and 0

pK  refer to the material stiffness matrix of the OPT 

membrane element and the RDKTM plate element computed based on the initial local 

nodal coordinates, respectively. 

Transforming these incremental internal forces into the local coordinate system, there 

follows 

 0= T
m m m f L f  (5.66a) 

 0= T
p p p f L f  (5.66b) 

in which the basic-to-local transformation matrices 0
mL  and 0

pL  are computed by 

the initial local nodal coordinates. After using them to assemble the incremental 

internal forces of the shell element, f , the internal force vector in the local 

coordinate system can be updated as follows, 

 1 = +n n f f f  (5.67) 

Finally, transforming the local internal force vector into the global coordinate system 

gives 
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 1 1 1n n T n  F T f  (5.68) 

 

5.3.3 Computational procedure 

The iterative-incremental procedure of geometrically nonlinear analysis based on the 

simplified co-rotational triangular shell is used for elastic problems and has been 

implemented in the program NIDA. Under the New-Raphson solution, the procedure 

is summarized in the following. 

 

1. Define and initialize the global variables and parameters. 

 Ninc = the total number of load increments 

 Nite = the maximum iteration number 

 n = the nth load step 

 i = the ith iteration 

 Ki = the assembled global tangent stiffness matrix at the ith iteration 

 Pn = the externally applied global nodal force vector at the nth load step 

 Fi = the global internal forces for the whole structure at the ith iteration 

 U = the global nodal displacements for the whole structure 

 

2. Define and compute the local variables and parameters for each shell element. 

(a) Compute the local-to-global transformation matrix eT . 
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(b) Compute the initial local coordinates  2 3 3

T
x x yx . 

(c) Compute the basic-to-local transformation matrices 0
mL  and 0

pL  for the 

membrane element and the plate element respectively with the initial local 

coordinates. They can be stored and called for the following procedure. 

(d) Compute and store the stiffness matrices of the membrane element and plate 

element in the basic coordinate system, 0
mK  and 0

pK , respectively, with the 

initial local coordinates. 

(e) Initialize the local internal forces f . 

 

3. Start loop over load increments (for n=1 to Ninc). 

(a) Update external load 1n n  P P P . 

(b) Set residual forces i ng P . 

(c) Start iterations begin with i=1 (while divergence and i≤Nite) 

i. For each shell element, get the tangent stiffness through 

( )T sym
t e g= K T K K T . 

ii. Assemble the global tangent stiffness matrix Ki. 

iii. Solve for the incremental global nodal displacements 1( i i U K ) g  

and update :  U U U . 
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iv. For each shell element, extract incremental pure deformations md  and 

pd  from U , get the incremental local internal forces f  and 

update :  f f f . 

v. Assemble the global internal forces iF . 

vi. Update geometry. 

vii. Computer residual forces i n i g P F . 

viii. Terminate iterative process if converged, otherwise go to next iteration. 

 

4. Terminate whole analysis process. 

 

It is worth to point out that several details could be changed in the computational 

procedure according to the needs of programmers. For example, in the previous 

procedure, the local material stiffness matrices of the membrane and plate elements, 

0
mK  and 0

pK , are computed and stored in the beginning, so that the local material 

stiffness matrix of the shell element, eK , should be re-assembled for every iteration, 

although it does not change during the whole analysis. The operation can save 

computer storage, since the storage of eK  is larger than the sum of 0
mK  and 0

pK , 

but needs more computations. Alternatively, we could record the initial local 

coordinates, repeatedly compute the matrices 0
mK  and 0

pK , and then assemble eK  

for every iteration to save more storage, but need more computational cost. Thus, this 

is a trade-off between computer storage and computational cost. 
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It should be also pointed out that the variables need to be updated carefully. The 

global displacements U and local internal forces f are constantly updated during 

iterations in the computational procedure. Alternatively, these variables could be 

updated until a load increment iterates successfully. The latter way is very useful 

when material nonlinearity is considered, which is discussed in the next section. 

However, for the elastic problems, these two methods are the same for the accuracy 

and convergence rate. Further, the former does not need to define more variables and 

then can save computer storage. 

It can be found that the computational procedure is very concise. Compared with the 

general EICR formulation whose tangent stiffness matrix contains four parts with 

complicated expressions, the proposed formulation just needs two parts including the 

material stiffness and the geometric stiffness. Both two stiffness matrices are explicit 

and do not need numerical integration, meanwhile, the pure deformational method is 

used to make the local material stiffness simpler. In addition, the numerical examples 

introduced in Chapter 7 show that the procedure has good performances on accuracy 

and efficiency for geometrically nonlinear analysis of shell structures. 

 

5.4 Geometrically nonlinear elastoplastic analysis 

In this section, the geometrically nonlinear formulation of the triangular shell element 

based on the simplified co-rotational algorithm is extended to consider material 

elastoplasticity. In the co-rotational algorithm, the large rigid body motions and the 

pure deformations producing strains are separated. Thus, it is very convenient to 

derive the formulation of the local shell element allowing for elastoplasticity in the 



Chapter 5  A Nonlinear Triangular Shell Element Based on Simplifed EICR Method 

163 

basic coordinate system, taking advantage of the existing simplified EICR 

formulation to implement geometrically nonlinear elastoplastic analysis of shell 

structures. 

There are two widely used approaches to consider material nonlinearity in shell 

elements, i.e., the layered approach and the non-layered approach. The layered 

approach, as its name implies, means that the shell thickness is divided into some 

layers, using actual plane stress description at each layer and each integration point of 

shell elements. The method can depict the plastic zone spreading along the shell 

thickness, obtaining approximately exact results. On the other hand, the non-layered 

approach does not need the division of shell thickness and are directly formulated 

with stress resultants, but the yield surface expressed with stress resultants is very 

complicated, which may lead to numerical problems. This thesis uses the layered 

approach, in which the elastoplastic constitutive model is on the basis of the von 

Mises yield criterion, the associated flow rule and the linear isotropic hardening. 

Further, a backward Euler return-mapping integration algorithm (Crisfield and 

Ciampi, 1997) is used to trace the yield surface. 

As shown in Section 5.3, the whole computational procedure of geometrically 

nonlinear analysis based on the simplified co-rotational algorithm can proceed with 

using the explicit elastic material stiffness matrix. However, when the elastoplasticity 

is considered, the numerical integration over the shell element thickness and area 

should be used. In this chapter, the Allman membrane element (Allman, 1988b) is 

used instead of the OPT membrane element in the proposed procedure for 

geometrically nonlinear elastoplastic analysis. Although the performance of Allman 

membrane element is slightly worse than the OPT membrane element in terms of 
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drilling rotations, it is acceptable for practical applications of civil engineering 

structures. 

In the next, the elastoplastic material model is introduced first. Then, the tangent 

stiffness matrix and the internal force vector of the triangular shell element for the 

geometrically nonlinear elastoplastic analysis scheme are presented. Finally, the 

pertaining computational procedure coded in the program NIDA is detailed. 

 

5.4.1 Elastoplastic material behaviour 

5.4.1.1 Elastoplastic theory for plane stress 

In this study, the stresses located in the middle of a layer at an integration point of the 

local shell element are described with the plane stress state. Although transverse shear 

strains are considered in the RDKTM plate element, the plasticity due to the 

transverse shear stresses is neglected, which is feasible for most practical engineering 

structures. Because the maximum plane stresses due to membrane forces and bending 

moments always occur at the outermost surface, while the transverse shear stresses 

reach the maximum at the middle surface and the minimum at the outermost surface. 

Thus, neglecting transverse shear stresses in the elastoplastic analysis may not cause 

large errors but can simplify computations. 

The plane stresses located in the middle of a layer at an integration point of the shell 

element in the local coordinate system at the current time can be denoted by 
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xx

yy

xy





 
   
 
 

  (5.69) 

The von Mises yield function for the plane stress state can be given by 

 e yf =    (5.70a) 

in which e  and y  are the equivalent stress and the yield stress at the current time 

respectively. 

Because the kinematic hardening is not considered, the current equivalent stress can 

be expressed by 

  1/22 2 23e xx yy xx yy xy          (5.70b) 

Based on the linear isotropic strain hardening, the yield stress can be given by 

 0y epH     (5.70c) 

in which 0  is the initial yield stress, H  is the constant hardening parameter and 

ep  is the equivalent plastic strain. 

The one-dimensional stress-strain relationship is depicted in Figure 5.8 as follows, 
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Figure 5.8 One-dimensional stress-strain relationship with linear isotropic hardening 

From Figure 5.8, the constant isotropic hardening parameter can be expressed by 

 
1 /

y t

ep t

E
H

E E





 
 

 (5.71) 

in which ep  is the equivalent plastic strain, E  is the elastic modulus and tE  is the 

elastoplastic tangent modulus. 

Adopting the Prandtl-Reuss flow rule which is an associated flow rule, the plastic 

material strain rate can be expressed as 

 
px

p py

pxy

f




 
        

 

a


  





 (5.72) 

where a superpose dot indicates the ‘rate’ form, so   is the plastic strain rate 

multiplier, while a  is a vector normal to the yield surface f=0 which can be detailed 

by 
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 (5.73) 

The equivalent plastic strain rate due to the von Mises criterion is calculated from 

 
1/2

2 22 1

43
ep px py px py px          

 
       (5.74) 

Through Eqs. (5.72) and (5.74), we can get 

 ep   , ep    (5.75a, b) 

The stress changes are related to the strain changes via 

 ( ) ( )p   C C a        (5.76) 

in which   is the total strain changes and has two parts including the elastic strain 

changes e
  and plastic strain changes p , whereas C  is the isotropic elastic 

modular matrix expressed by 

 
2

1 0

1 0
1

0 0 0.5(1 )

v
E

v
v

v

 
   
  

C  (5.77) 

When plastic flow occurs, the stresses should stay on the yield surface, which means 

that the change of the yield function should be zero, thus 

 
T

Tf f
f             

a    


 (5.78) 
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Pre-multiplying Eq. (5.76) by the row vector Ta  and taking advantages of Eq. (5.78), 

we have 

 
+

T

T H
 

a C

a Ca

 
 (5.79) 

Accordingly, substitution into Eq. (5.76) gives 

 ( ) =
+

T

tT H
 

a Ca
C I C

a Ca
     (5.80) 

in which the symbol tC  is the tangential modular matrix. 

5.4.1.2 Integration algorithm 

The implicit backward Euler numerical integration algorithm is adopted for the 

integration of the rate equations. 

For a layer at an integration point of the shell element, it is assumed that its state at 

the last time step tn is known, which means that the quantities including the stresses 

n , the plastic strain multiplier n  are given. When the incremental strains   

occur at the current time step tn+1, the problem to determine the state can be solved by 

the integration of Eq. (5.76) as follows 

 
1n

n

tn

t
dt


  C C a      (5.81) 

Through the backward Euler integration theory, the equation can be rewritten as 

 n tr      C Ca Ca      (5.82) 
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in which tr  is the trial elastic stresses, 
1n

n

t

t
dt


     and the normal vector a  is 

determined by the stresses   at the current time step tn+1. 

Thus, Eq. (5.82) is an implicit function. To solve this equation and update the state at 

the current time step tn+1, the two-step predictor-corrector return mapping algorithm is 

used and introduced in the following. 

5.4.1.3 Return mapping algorithm 

First, in the predictor step, the trial elastic stresses tr  can be used to judge whether 

the plastic strains are produced at the current time. If the trial stresses are found to lie 

within the yield surface, the trial state represents the solution at the current time step 

tn+1. Otherwise, the real stresses are corrected in the iterations with the trial stresses as 

initial conditions. 

To establish an iterative loop to get the final real state at the current time step tn+1, the 

residual stresses can be set up to represent the difference between the real stresses and 

the backward Euler stresses as follows 

 ( )tr  r Ca    (5.83) 

in which r  should be reduced to zero through iterations and the final stresses should 

stay on the yield surface. 

A first-order Taylor expansion of Eq. (5.83) can be given by 

 0


    


a

r r Ca C   


 (5.84) 
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in which 0r  is the updated value of r . 

Setting r = 0  gives 

  
1

1
0


          

a
I C Q r Ca


 (5.85a) 

 

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

a
Q I C


 (5.85b) 

Also, a first order Taylor series on the yield function (5.70a) gives 

 0 0
T

ep
ep

f f
f f f H


 

      
 

a   


 (5.86) 

in which 0f  is the updated value of f . 

Through Eqs. (5.84) and (5.85), we have 

 
1

0 0
1

T

T

f

H






 

a Q r

a Q Ca +
  (5.87) 

Then, the current state can be updated with these incremental quantities. The detailed 

state updated procedure used in the program NIDA is introduced in the following. 

 

1. Predictor step: 

(a) Compute the trial elastic stresses tr n  C    . 

(b) Compute and check the yield function )trf  : 
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i. If ) 0trf   , update the stresses as 1n tr   , while the other plastic 

quantities remain the same as the last time step tn. Meanwhile, the elastic 

modular matrix is stored for the next load step. 

ii. If ) 0trf   , yielding occurs and go to the corrector step. 

 

2. Corrector step: 

(a) In the initial step, use tr  to get )trf   and )tra  , and the incremental 

plastic strain multiplier can be obtained by 
T

f

H
 

a Ca +
. 

(b) Compute the updated stresses tr  Ca   , the updated yield stress 

0 ( n
y H       and the updated yield function  0f f  . 

(c) Set i tr  , 1i   . 

(d) Start iterations with i=1 (while 4
0 10 yf  ). 

i. Compute 1 1
0 ( )i i i   r Ca    and 

1i      

a
Q I C


. 

ii. Compute 
1

0 0
1

T

T

f

H






 

a Q r

a Q Ca +
  and  1 1

0
i    Q r Ca . 

iii. Update 1 1i i      ,      . 

iv. Compute 0 ( n
y H       and  1

0
if f   . 

v. Terminate iterative process if converged, otherwise go to next iteration. 

(e) Updated the current state as 1 1n i   , 1n n     . 
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(f) Compute and store the tangent modular matrix in Eq. (5.80) for the next load 

step. 

 

5.4.2 Tangent stiffness 

5.4.2.1 Membrane element with drilling rotations 

Different from the elastic analysis scheme introduced in Section 5.3, the membrane 

element with drilling rotations proposed by Allman (1988b) is used to replace the 

OPT membrane element, and the stresses and strains at integration points are needed 

to consider material nonlinearity. To simplify the formulation, the pure deformational 

method can also be used here. Unlike the original formulation, the membrane element 

is formulated in the basic coordinate system as shown in Figure 5.3, with 6 rather than 

9 degrees of freedom. The displacement interpolations defined with area coordinates 

 1 2 3    can be given by 
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 (5.88b) 

in which the coefficients ija  and ijb  are 

   0

1

2ij zi zja       (5.89a) 

  1

2ij zj zib      (5.89b) 
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where i=1,2,3, j=mod(i,3)+1 and 0  is the rotation of the constant strain triangular 

membrane element with area A as 

  20 233

1

4
xu u x

A
     (5.90) 

These formulations have used the displacement boundary conditions 1 1 2 0x y y   . 

It is clear that the proposed formulations are much simpler than the original method. 

After that, the strain-displacement matrix of the membrane element based on the basic 

coordinate system can be given by 
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with 
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 (5.92b) 

5.4.2.2 Layered shell element 
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To reflect the spreading plasticity through the thickness, the shell element is divided 

into m layers with equal thickness, as shown in Figure 5.9. 

 

 

Figure 5.9 Layered shell element 

The strains of the jth layer using the values at the mid-point of the layer can be given 

by 
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Then, the stresses of the jth layer are 

 j j m m j j b pz C CB d B d    (5.94a) 

  2 1
2 2j

t t
z j

m
   , j=1 to m (5.94b) 
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in which jC  is the tangential modular matrix for the jth layer given in Eq. (5.80) 

under plasticity and the elastic modular matrix shown in Eq. (5.77) under elasticity, 

and t is the thickness of the shell element. 

The virtual work due to membrane and bending strains over the shell element area can 

be expressed as 
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 (5.95) 

where extf  is the external forces and 
t

t
m

   is the layer thickness. 

Through Eq. (5.95), the material stiffness matrix due to membrane and bending 

effects in the basic coordinate system can be given by 

 1 2

3 4

e

 
  
 

K K
K

K K

 
   (5.96a) 

 
1

1

m
T
m j mA

j

t dA


 
  

 
 CK B B    (5.96b) 

 
2

1

m
T
m j j bA

j

z t dA


 
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 
 CK B B    (5.96c) 

 
3

1
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T
b j j mA

j

z t dA


 
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 
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 2
4

1

m
T
b j j bA

j

z t dA


 
  

 
 CK B B    (5.96e) 

in which the material stiffness matrix eK  is 12×12 in the basic coordinate system, 

corresponding to the basic displacement vector  TT T
m pd d  . To solve these integrations 

over the shell element area, the numerical integration with 3 interior points are used, 

including the points expressed with area coordinates: 
1 1 2

, ,
6 6 3

 
 
 

, 
1 2 1

, ,
6 3 6

 
 
 

, 

2 1 1
, ,

3 6 6
 
 
 

. In addition, the shear stiffness matrix sK  shown in Eq. (5.54a) can be 

add to 4K  when transverse shear deformation is considered, while sK  is still 

elastic here, since the plasticity due to transverse shear stresses is neglected. 

After integration, the material stiffness matrix in the basic coordinate system should 

be transformed into the local coordinate system as follows, 

 T
e eK L K L  (5.97) 

where L  is the basic-to-local transformation matrix with 12×18 sizes and is derived 

in line with the matrix mL  and pL  with 

 T




d
L =

d
 (5.98) 

Finally, the tangent stiffness matrix in the global coordinate system can be given by 

 ( )T sym
t e g= K T K K T  (5.99) 
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Compared with the elastic analysis scheme introduced in Section 5.3, the material 

stiffness matrix allowing for plasticity is computed based on the layered shell element 

rather than the local elastic shell element, but the geometric stiffness matrix is 

identical. 

 

5.4.3 Internal forces 

In the procedure of geometrically nonlinear elastic analysis introduced in Section 5.3, 

the iterative displacements which are the incremental displacements between two 

iteration steps are used to compute the internal forces based on the results of the last 

iteration. For the elastoplastic analysis, the iterative displacements cannot be used, 

since they may lead to “spurious unloading” during iterations. Specifically, in a 

geometrically nonlinear elastic problem, a solution with larger displacements than the 

real ones may be obtained in the first iteration. Then, opposite unloading 

displacements will be got in the next iteration to correct the solution. There is no 

problem for elastic analysis. However, when the plasticity is considered, this situation 

may cause numerical problems. It is well known that the plastic problems are related 

to the loading history. Using the iterative displacements, each iteration step is 

recorded in the loading history, including spurious unloading to revise results. The 

process may be far from reality, which will increase the computational cost and lead 

to a wrong solution. Thus, the incremental displacements rather than the iterative 

displacements should be used for elastoplastic problems to update the internal forces. 

Different from the iterative displacements, the incremental displacements are 

accumulated from the first iteration to the current iteration at the current load step, 
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thus the starting point of the incremental displacements is fixed at the beginning of 

the current load step and therefore avoids the influence of spurious unloading to the 

loading history. 

In the computational procedure, the iterative pure deformations in the basic 

coordinate system can be extracted from the iterative global displacements. Then, 

adding the iterative pure deformations to the incremental pure deformations of the last 

iteration, so the incremental pure deformations of the membrane element md  and 

the plate element pd  since the beginning of the current load step can be obtained. 

The incremental strains of the jth layer at the integration point k at the current time can 

be given by 

 ,j k m m j b pz    B d B d   , j=1 to m, k=1 to 3 (5.100) 

Then, the trial stresses of the jth layer at the integration point k at the current time can 

be obtained as follows, 

 , , ,Ctr n
j k j k j k      (5.101) 

in which ,
n
j k  is the stresses determined at the last load step. 

After that, the two-step predictor-corrector return mapping algorithm introduced in 

Section 5.4.1 is used to determine the real stresses ,j k . The internal forces of the 

membrane and plate elements based on the basic coordinate system can be obtained 

by 
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3

1
,
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m m j k k
k j

t w A
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 
  

 
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m
n T

p b j j k k
k j

z t w A

 

 
  

 
 f B    (5.102b) 

in which kw  is the weight factor and equal to 
1

3
. 

When transverse shear deformation is considered, the internal forces due to the 

transverse shear effect can be updated as 1n n
s s s p

   f f K d   , and accordingly the 

internal force vector of the plate element should be modified as 

 
3

1 1
,

1 1

m
n T n

p b j j k k s
k j

z t w A 

 

 
   

 
 f B f    (5.102c) 

where the internal force vector due to the transverse shear effect n
sf  is determined at 

the last load step. 

Transforming the basic internal force vectors into the local coordinate system gives 

 1 0 1=n T n
m m m

 f L f  (5.103a) 

 1 0 1=n T n
p p p

 f L f  (5.103b) 

Combining them to get the internal force vector of the shell element, 1nf , and then 

the global internal force vector at current time can be given by 

 1 1 1n n T n  F T f  (5.104) 
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5.4.4 Computational procedure 

The computational procedure of geometrically nonlinear elastoplastic analysis with 

the simplified EICR formulation and the incremental displacements has been 

implemented in the program NIDA. The procedure based on the New-Raphson 

solution is detailed in the following. 

 

1. Define and initialize the global variables and parameters. 

 Ninc = the total number of load increments 

 Nite = the maximum iteration number 

 m = the number of layers for a shell element 

 n = the nth load step 

 i = the ith iteration 

 j = the jth layer of a shell element 

 k = the kth integration point 

 Ki = the assembled global tangent stiffness matrix at the ith iteration 

 Pn = the externally applied global nodal force vector at the nth load step 

 Fi = the global internal forces at for the whole structure at the ith iteration 

 U = the global nodal displacements for the whole structure 

 

2. Define and compute the local variables and parameters for each layered shell 

element. 
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(a) Compute the local-to-global transformation matrix eT . 

(b) Compute the initial local coordinates  2 3 3

T
x x yx . 

(c) Compute the basic-to-local transformation matrices 0
mL  and 0

pL  for the 

membrane element and the plate element respectively with the initial local 

coordinates. They can be stored and called for the following procedure. 

(d) Initialize the stresses ,j k  of the jth layer at the integration point k. 

(e) Initialize the elastic modular matrix ,j kC  of the jth layer at the integration 

point k. 

 

3. Start loop over load increments (for n=1 to Ninc). 

(a) Update external load 
1n n P P P. 

(b) Set residual forces i ng P . 

(c) Start iterations begin with i=1 (while divergence and i≤Nite). 

i. For each layered shell element, get the tangent stiffness through 

( )T sym
t e g= K T K K T . 

ii. Assemble the global tangent stiffness matrix Ki. 

iii. Solve for the incremental global nodal displacements 1( i i U K ) g  

and update :  U U U . 

iv. For each shell element, extract iterative pure deformation i
md  and 

i
pd  from U  and add them to the incremental pure deformations 
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accumulated from the first iteration as 1i i
m m m

    d d d   , 

1i i
p p p

    d d d   . 

v. For the jth layer at the integration point k, compute the incremental 

strains 
,j k m m j b pz    B d B d    and the trial stresses

, , ,Ctr n
j k j k j k     . 

vi. Determine the real stresses ,j k  with the two-step predictor-corrector 

return mapping algorithm. If the point yields, ,j kC  is the tangential 

modular matrix, otherwise, is the elastic modular matrix for the next 

iteration. 

vii. Compute the internal forces through 
3

,
1 1

m
T

m m j k k
k j

t w A
 

 
  

 
 f B   , 

3

,
1 1

m
T

p b j j k k
k j

z t w A
 

 
  

 
 f B    and then the internal force vector in the 

global coordinate system F . 

viii. Assemble the global internal forces 
iF . 

ix. Update geometry. 

x. Compute residual forces i n i g P F . 

xi. Terminate iterative process if converged, otherwise go to next iteration. 

 

4. Terminate whole analysis process. 
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5.5 Summary 

In this chapter, the simplified EICR formulation for triangular shell elements is used 

to realize geometrically nonlinear elastic and elastoplastic analysis of shell structures, 

with a simple and explicit geometric stiffness matrix. Besides, the pure deformational 

method is adopted to simplify the formulations of local triangular shell element and 

decrease the size of the material matrix accordingly. Thus, the presented formulations 

and computational procedures are simpler than the traditional nonlinear analysis 

schemes, such as the conventional (EICR) formulation, the total Lagrangian (TL) 

formulation and the updated Lagrangian (UL) formulation based on the 

Green-Lagrangian strains. In addition, the performances of the proposed formulations 

on accuracy and efficiency are validated in Chapter 7 through numerical examples. 

Thus, these proposed techniques are robust and significant for nonlinear analysis of 

civil engineering structures. 
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CHAPTER 6 

A NONLINEAR QUADRILATERAL SHELL 

ELEMENT BASED ON SIMPLIFIED EICR 

METHOD 

In this chapter, a novel nonlinear analysis scheme for quadrilateral shell elements with 

drilling rotations is proposed based on the simplified EICR formulation, which is 

similar to the nonlinear triangular shell element introduced in Chapter 5. However, 

the pure deformational method is not used here, because a quadrilateral shell element 

is sensitive to nodal ordering due to the warping effect when using an element side as 

one axis of the local coordinate system. Thus, to overcome the nodal ordering 

dependency, the bisector definition of the local coordinate system is used here, 

although it makes the derivation of the local geometric stiffness matrix more 

complicated. Note that the proposed simplified co-rotational formulation for 

quadrilateral shell elements is also element-independent, since its geometric stiffness 

matrix is formed by the nodal internal forces rather than the stresses at integration 

points. Thus, different from the total Lagrangian (TL) and updated Lagrangian (UL) 

formulations, the proposed geometrically nonlinear formulation has an explicit 

geometric stiffness matrix and does not need numerical integration, with saving 

computational cost. 
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In this study, the membrane element with drilling rotations proposed by 

Ibrahimbegovic et al. (1990) and the plate element allowing for transverse shear 

deformation presented by Chen and Cheung (2000) are used to generate a new flat 

quadrilateral shell element. The two local elements will be introduced in Section 6.1 

and 6.2 respectively. Note that they are derived based on a facet which is the 

projection of shell element. Thus, the warping effect of the quadrilateral shell element 

should be taken into account, and its contribution to the local geometric stiffness is 

derived in the simplified co-rotational formulation for quadrilateral shell elements. 

To fully interpret the advances of the proposed simplified co-rotational formulation 

for quadrilateral shell elements, the updated Lagrangian (UL) formulation for a 

quadrilateral shell element with transverse shear, warping and drilling rotations in 

geometrically nonlinear analysis, proposed by author of the thesis (Tang et al., 2016), 

is introduced in Section 6.3. The UL formulation also adopts the co-rotational concept, 

in which the geometric stiffness is formulated by the UL formulation in the local 

coordinate system and needs numerical integration, unlike the EICR formulation. 

Through comparison of the derivations between these two different geometrically 

nonlinear analysis schemes, it is easy to find the advances of the simplified EICR 

formulation for quadrilateral shell elements. Further, the novel simplified EICR 

formulation is used to implement geometrically nonlinear analysis in Section 6.4 and 

geometrically nonlinear elastoplastic analysis in Section 6.5. The elastoplastic 

analysis procedure for the quadrilateral shell element is identical to that for the 

triangular shell element shown in Chapter 5 and briefly introduced in Section 6.5. 

 



Chapter 6  A Nonlinear Quadrilateral Shell Element Based on Simplifed EICR Method 

186 

6.1 A four-node quadrilateral membrane element with 

drilling rotations 

An accurate 4-node quadrilateral membrane element containing drilling degrees of 

freedom by Ibrahimbegovic et al. (1990) is adopted here and shown in Figure 6.1. 

The classical displacement interpretations including drilling rotations proposed by 

Allman (1988a) expressed with the isoparametric coordinates (r, s) can be given by 

      
4 4

4
1 1

, , cos
8
ij

x i xi i ij zj zi
i i

S
u N r s u N r s   

 

     (6.1a) 

      
4 4

4
1 1

, , sin
8

ij
y i yi i ij zi zj

i i

S
u N r s u N r s   

 

     (6.1b) 

  
4

1

,z i zi
i

N r s 


  (6.1c) 

 1,2,3,4; mod( ,4) 1i j i    (6.1d) 

in which ijS  is the length of the element side associated with the nodes i and j, i j  

represents the angle between the outward unit normal vector on the element side i-j 

and the x-axis, so cos j i
ij

ij

y y

S



  and sin i j

ij
ij

x x

S



 . 
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Figure 6.1 A quadrilateral membrane element 

The shape functions are given as follows, 

   1
, (1 )(1 ); 1, 2,3,4

4i i iN r s rr s s i     (6.2a) 

   21
, (1 )(1 ); 5,7

2i iN r s r s s i     (6.2b) 

   21
, (1 )(1 ); 6,8

2i iN r s rr s i     (6.2c) 

in which ir  and is  are the isoparametric coordinates at the node i. 

The relationship between strains and displacements are 
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 
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   
 

  

  (6.3) 

Substituting Eqs. (6.1) into (6.3), the strain-displacement matrix can be given by 

 m m B d  (6.4a) 

  1 2 3 4m m m m mB B B B B  (6.4b) 

4 4

4 4

4 4 4 4
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N N N
x x

y y y

N N N N N N
y y x x

y x y y x x
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 
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          
    

       
                      

B  

 (6.4c) 

 1,2,3,4; mod( ,4) 1; 4floor( ,4) 1i j i k i i       (6.4d) 

  1 1 1 2 2 2 3 3 3 4 4 4=
T

m x y z x y z x y z x y zu u u u u u u u   d  (6.4e) 

in which md  is the displacement vector of a 4-node quadrilateral membrane element, 

while the local nodal coordinates having two subscripts refer to the subtraction of two 

coordinates, e.g., ij i jx x x  , ij i jy y y  . 

Also, the relationship of partial derivatives between the local and isoparametric 

coordinate systems is 
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in which the interpolations for the local coordinates (x, y) are still bilinear, since the 

sides of the quadrilateral membrane element are assumed as straight. 

The elastic stress-strain law for a membrane element can be written as 
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mD   (6.6a) 
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   
  

mD  (6.6b) 

where E and v are Young’s modulus and Poisson’s ratio respectively. 

For the 4-node quadrilateral membrane element, a mixed variational formulation of 

linear elastic behaviour with independent rotation fields proposed by Hughes and 

Brezzi (1989) is used, which also combines the displacement field with an 

independent rotation interpolation to get accurate results. With the index-free notion 

in references (Hughes and Brezzi, 1989; Ibrahimbegovic et al., 1990), the mixed 

variational formulation can be given by 
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 (6.7a) 

in which v, ω and τ are trial displacements, rotations and stresses respectively in the 

region Ω;   is a problem-dependent parameter and C  is the constitutive modulus 

tensor.   refers to the vector differential operator, while the symbol “symm” and 

“skew” mean the symmetric and skew-symmetric part of a second-rank tensor 

respectively, e.g., 

 
1

= ( + )
2

symm T  v v v  (6.7b) 

 
1

skew = ( - )
2

T    (6.7c) 

Then, the mixed variational formulation is modified to a simplified form for easy 

visualization and adopts the unified notions used in the thesis. The tensor skew  in 

Eq. (6.7a) is an independent field for an element, whereas every entry of the tensor 

T( - )   is assumed as a constant parameter 0
e  over the element. Then, the 

membrane element with thickness t and area A can be given as follows, 
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(6.8) 

where   shown in the third integral term is a problem-dependent parameter which 

was advised by Hughes and Brezzi (1989) to be replaced by shear modulus G for 
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isotropic elasticity and Dirichlet boundary value problems. The last term is the 

external work, in which md  and mf  are the nodal displacement and internal force 

vectors for the membrane element, respectively. 

Taking a variation of Eq. (6.8) gives 
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 (6.9) 

After simplification and rearrangement of Eq. (6.9), we have 
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 T
mm m m mA

t dA K D   (6.10b) 

 mh hA
t dA k b  (6.10c) 

in which mmK , mhk , T
mhk  and 1At   are obtained by the first to fourth terms in 

Eq. (6.9), respectively, the vector hb  can be detailed as follows, 

  1 2 3 4=
TT T T T

h h h h hb b b b b  (6.11a) 
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1

2

1
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2

1 1

16 16

i

i
hi

k i k i
ik ji ki ij i

N

y

N

x

N N N N
y y x x N

y y x x
   

 
  

 
  
                   

b  (6.11b) 

 1,2,3,4; mod( ,4) 1; 4floor( ,4) 1i j i k i i       (6.11c) 

Through the static condensation to eliminate the skew-symmetric part of the stress 0
e  

for Eq. (6.10a), we have 

 m m mK d f  (6.12a) 

 m mm mh K K K  (6.12b) 

 T
mh mh mhAt


K k k  (6.12c) 

To solve the matrix mmK  and the vector mhk , the two-dimensional 8-point 

integration rule having the same accuracy as the 3×3 Gauss rule is adopted. The 

8-point integration rule in the isoparametric coordinate system is shown in Figure 6.2, 

in which the weight factors w  and w  are used for the solid and hollow points, 

respectively. 
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Figure 6.2 The two-dimensional 8-point integration rule 

 

6.2 A four-node quadrilateral plate element with shear 

deformation 

The plate element used in the thesis is derived based on the Mindlin-Reissner plate 

theory with consideration of transverse shear deformation. Similar to the derivation of 

the triangular plate element introduced in Section 5.2, the exact displacement function 

of the Timoshenko’s beam is used to derive the displacement interpolations of the 

plate element, in which the plate element sides have the same deformation as the 

Timoshenko’s beam element using a cubic interpolation. 

As shown in Figure 6.3, the quadrilateral plate element has 4 corner nodes and 4 

mid-side nodes, and its rotation interpolations in the isoparameter coordinate system 

(r, s) can be given by 
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    
4 8

1 4

, ,x i xi k xk
i k

N r s N r s  
 

    (6.13a) 

    
4 8

1 4

, ,y i yi k xk
i k

N r s N r s  
 

    (6.13b) 

The shape functions are 

      1
, 1 1 ( 1); 1, 2,3,4

4i i i i iN r s rr s s rr s s i       (6.14a) 

     21
, 1 1 ; 5, 7

2k kN r s r s s k     (6.14b) 

     21
, 1 1 ; 6,8

2k kN r s r r s k     (6.14c) 

in which ir  and is  are the isoparametric coordinates at the corners node i, kr  and 

ks  the isoparametric coordinates at the mid-side node k. 

 

Figure 6.3 A quadrilateral plate element 
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To eliminate the rotations at the mid-side nodes, we should use the expressions of 

normal and tangential rotations at the mid-side nodes as follows, 

    1.5 1 1.5

2nk z
i

i ni nj
i

j ij
z

j
ju u

S

 
    


  (6.15a) 

 
2

si sj
sk

 



  (6.15b) 

 1,2,3,4;i    mod , 4 1j i  ; 4k i  . (6.15c) 

in which Eq. (6.15a) is derived from the Timoshenko’s beam element, Eq. (6.15b) 

assumes the tangential rotations vary linearly along the element sides, ijS  is the side 

length between the node i and j, i j  is the parameter determined by the element side 

as 

 
1

1 12ij
ij







 (6.16a) 

 
2

25 (1 )ij
ij

t

S v
 


 (6.16b) 

where t is the plate thickness and v is the Poisson ratio. 

Besides, along the element side between the node i and j, the tangential and normal 

rotations at the corner nodes in Eqs. (6.15) can be transformed into the local 

coordinate system by 

 ij ij xini

ij ij yisi

l m

m l




    
         

 (6.17a) 
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while at the mid-side nodes, we have 

 xk ij ij nk

yk ij ij sk

l m

m l

 
 

     
    

    
 (6.17b) 

in which cos j i
ij ij

ij

y y
l

S



   and sin i j

ij ij
ij

x x
m

S



   are the direction cosine 

and direction sine of the element side i-j, respectively. 

Then, substituting Eqs. (6.17) and (6.15) into the rotation interpolations shown in Eqs. 

(6.13) gives 

  1 2 3 4

x

p
y



 

 
 

N N N N d  (6.18a) 

 1 2 3

1 2 3

i i i
i

i i i

P P P

Q Q Q

 
  
 

N  (6.18b) 

 1 4 4i i i j jP d N d N     (6.18c) 

 4 42 i i ii j jN NP e e N    (6.18d) 

 4 43 ji i i jb NP b N   (6.18e) 

 4 41 ji i i ja NQ a N   (6.18f) 

 4 42 ji i i jb NQ b N   (6.18g) 

 4 43 i i ii j jN NQ c c N    (6.18h) 

 1,2,3,4i  ; 4floor(1/ ) 1j i i   . (6.18i) 
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in which  1 1 1 2 2 2 3 3 3 4 4 4

T

p z x y z x y z x y z x yu u u u       u is the displacement 

vector of the four-node quadrilateral plate element in the local coordinate system, 

while the coefficients are given by 

 
3

2
i

ij
i

j ija
m

S


  (6.19a) 

 
3

4 i i ji j j il mb   (6.19b) 

 23

4

1

2 ij ji ic m   (6.19c) 

 
3

2
ij i

j
i

j

i

d
l

S


  (6.19d) 

 23

4

1

2 i iji jme     (6.19e) 

The bending curvatures of the plate element can be given by 

  1 2 3 4

y

x

x
y b p b b b b p

xy
y x

x

y

y x







 

 
 

  
            

    
 

  

B d B B B B d  (6.20a) 

 

1 2 3

1 2 3

1 1 2 2 3 3

i i i

i i i
bi

i i i i i i

Q Q Q

x x x
P P P

y y y

Q P Q P Q P

y x y x y x

   
 

   
          

               

B  (6.20b) 
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where the matrix bB  is the bending strain-displacement matrix and the 

transformation of partial derivatives between the isoparameter and local coordinate 

systems can be referred to Eqs. (6.5). 

 

 

Figure 6.4 Shear strains of a quadrilateral plate element 

Figure 6.4 interprets how to determine the shear strains at corner nodes. Referring to 

the Timoshenko’s beam element, the constant shear strains along the sides i-j and k-i 

can be respectively given by 

  1
2

zj zi ni nj
ij ij

ij

u u

S

 
 

  
    

 
 (6.21a) 

  1
2

zi zk nk ni
ki ki

ki

u u

S

  
  

   
 

 (6.21b) 

At the node i, these two shear strains in Eqs. (6.21) can be transformed into the local 

coordinate system by 
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 ki ki ki xi

ij ij ij yi

l m

l m

 
 

     
    

     
 (6.22a) 

 i=1,2,3,4; j=mod(i,4)+1; k=4floor(1/i)+i-1 (6.22b) 

After rearrangement of Eq. (6.22a) , we have 

 1xi ij ki ki

yi ij ki ijki ij ij ki

m m

l ll m l m

 
 

     
         

 (6.22c) 

Note that the direction of shear strains at the node i, corresponding to the shear 

stresses in the local coordinate system, should be 

 1xzi ij kiyi ij

yzi ij kixi kiki ij ij ki

l l

m ml m l m

  
  

      
             

 (6.22d) 

The shear strain interpolations over the 4-node quadrilateral element is assumed to be 

bilinear, so we have 

  
4

1

,xz xzi

i
iyz yzi

N r s
 
 

   
    
   

   (6.23) 

where the shape functions are the same as Eq. (6.2a). 

Substituting Eq. (6.22d) into (6.23) gives 

 

12

23

34

41

xz

yz


 
 



 
        

   
  

N  (6.24a) 
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1 12 2 12 2 23 3 23 3 34 4 34 4 41 1 41

1 2 2 3 3 4 4 1

1 12 2 12 2 23 3 23 3 34 4 34 4 41 1 41

1 2 2 3 3 4 4 4

N l N l N l N l N l N l N l N l

C C C C C C C C

N m N m N m N m N m N m N m N m

C C C C C C C C

 
    

 
 

    
 

N

       


       

 (6.24b) 

 i ki ij ij kiC l m l m   (6.24c) 

 i=1,2,3,4; j=mod(i,4)+1; k=4floor(1/i)+i-1 (6.24d) 

Substituting Eq. (6.17a) into (6.21a), the constant shear strains along each side of the 

plate element can be expressed with the displacement vector as 

 

12 1

23 2

34 3

41 4

s

s
s p p

s

s






  
                

B

B
B d d

B

B






 (6.25a) 

   23 2312 12
1 12

12 12

1 1
1 0 0 0 0 0 0

2 2 2 2s

l ml m

S S


   
   

 
B  (6.25b) 

   23 23 34 34
2 23

23 23

1 1
1 0 0 0 0 0 0

2 2 2 2s

l m l m

S S


    
   

 
B  (6.25c) 

   34 34 41 41
3 34

34 34

1 1
1 0 0 0 0 0 0

2 2 2 2s

l m l m

S S


    
   

 
B  (6.25d) 

   12 12 41 41
4 41

41 41

1 1
1 0 0 0 0 0 0

2 2 2 2s

l m l l

S S


    
   

 
B  (6.25e) 

Finally, the shear strain-displacement matrix can be given by 

 s p B d  (6.26a) 
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 s s  B NB  (6.26b) 

The variational formulation considering bending and shear strains over the plate 

element is 

 T T T
p b s p pA A A

dA dA dA     D D d f     (6.27) 

where bD  and sD  are the constitutive matrices as follows 

 
3

2

1 0

1 0
12(1 )

0 0 0.5(1 )
b

v
Et

v
v

v

 
   

  

D  (6.28a) 

 
1 05
0 112(1 )s

Et

v

 
    

D  (6.28b) 

Taking a variation of Eq. (6.27), the stiffness matrix of the linear elastic plate element 

allowing for transverse shear deformation can be given by 

 p p pK d f  (6.29a) 

 p b s K K K  (6.29b) 

 T
b b b bA

dA K D   (6.29c) 

 T
s s s sA

dA K D   (6.29d) 

in which the bending stiffness matrix Kb and the shear stiffness matrix Ks can be 

derived from the first and second terms in Eq. (6.27), respectively. Also, the 
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two-dimensional 8-point integration rule is used to calculate these two stiffness 

matrices similar to the quadrilateral membrane element introduced in Section 6.1 

 

6.3 Updated Lagrangian formulation 

In this section, the quadrilateral shell element consisting of the membrane element 

and the plate element introduced previously is extended to geometrically nonlinear 

analysis with the updated Lagrangian (UL) formulation based on the degenerated 

Green-Lagrangian strains. Different from the traditional UL method, the co-rotational 

concept used here allows for large rotations, while the tangent stiffness matrix is 

derived from the degenerated Green-Lagrangian strains based on the local coordinate 

system. The difference between the UL formulation and the EICR formulation lies in 

the latter does not use nonlinear strains to derive the tangent stiffness. In the 

calculation of the internal forces, the UL formulation uses pure deformations 

extracted from total deformations, which is identical to the EICR formulation. 

 

6.3.1 Definition of local coordinate system 

Different from the pure deformational method introduced in Chapter 3, a new 

definition of the local coordinate system, called bisector definition, is introduced here 

to eliminate the nodal ordering dependency, as shown in Figure 6.5. 
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Figure 6.5 Definition of local coordinate system 

The coordinates of the 4 corner nodes of the quadrilateral shell element in the global 

coordinate system (xgygzg) are  Tg g g g
i i i ix y zx , i=1,2,3,4. Firstly, we define two 

normalized unit vectors in the followings, 

 3 1
13

3 1

g g

g g





x x

e
x x

 (6.30a) 

 4 2
24

4 2

g g

g g





x x

e
x x

 (6.30b) 

Then, the triad vectors of local coordinate system (xyz) are given by 

 13 24

13 24
x





e e

e
e e

 (6.31a) 

 13 24

13 24
y





e e

e
e e

 (6.31b) 

 z x y e e e  (6.31c) 
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Thus, the local-to-global transformation matrix for the quadrilateral shell element can 

be expressed as 

 
T

e x y z  =T e e e  (6.32) 

The origin of the local coordinate system is set to the centre of the quadrilateral shell 

element, so the local coordinates of the corner nodes can be given by 

 ( )g g
i e i c x T x x , i=1,2,3,4 (6.33a) 

 1 2 3 4

1
( )

4
g g g g g
c    x x x x x  (6.33b) 

where the local coordinates at the node i,  T

i i i ix y zx . 

The projection of the warping shell element can be determined by the plane 

coordinates  T

i i ix yx , which can be used to compute the stiffness matrices of the 

membrane and the plate elements. In addition, the warping at corner nodes may occur, 

while it can be noticed that the local z-coordinates at every corner node having 

identical absolutely value, so we use the parameter d to denote the local z-coordinates 

with z1=-z2=z3=-z4=d. 

 

6.3.2 Tangent stiffness based on the updated Lagrangian 

formulation 

For a plate with large deflection, its vertical displacement component produces 

additional in-plane deformations. Thus, in the local coordinate system, the 
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strain-displacement relationship of the membrane element could be modified to 

account for the additional deflections via the degenerated Green-Lagrangian strains as 

follows, 

 
2

1

2
x z

x

u u

x x
        

 (6.34a) 

 
2

1

2
y z

y

u u

y y


  
     

 (6.34b) 

 
yx z z

xy

uu u u

y x x y


  
  
   

 (6.34c) 

In the traditional UL formulation, the full expression of Green-Lagrangian strains 

should be used in large rotation problems, since the strains have the ability to remove 

rigid body movements from total deformations. However, the degenerated strains 

cannot completely meet this requirement. With the co-rotational technique, the 

degenerated Green-Lagrangian strains can be used to describe the small local 

displacements. Moreover, the complicated expression of 3D large rotations is avoided 

in the displacement interpolations, so the tangent stiffness matrix becomes simpler. 

For the plate element, the relationship between the bending curvatures and the 

displacements does not change. 

Referring to the classical updated Lagrangian formulation expressed in tensor form, 

which is presented by Bathe et al. (Bathe, 2006; Bathe and Bolourchi, 1979), the 

equilibrium equation of the deformed configuration is established with the geometry 

and variables at the current time as 
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 1n
ijrs rs ij ij ij ij ijV V V

C e e dV dV e dV        R  (6.35) 

in which ij  denotes the Cauchy stress tensor at the current time, ije  and ij  are the 

linear and nonlinear components of the Green-Lagrange strain increments, 

respectively; ijrsC  is the components of the constitutive tensor and 1nR  is the 

externally applied load vector. 

For the projection of a warping shell element in the local coordinate system, the first 

term of Eq. (6.35) leads to the linear strain incremental stiffness matrix eK  

assembled by the material stiffness matrices of the membrane and plate elements 

introduced previously. The second term can be used to derive the geometric stiffness 

matrix gK  as follows, 
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







C 

 

 (6.36a) 
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C  (6.36b) 
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  
z

y

z x

u

x
u

y




 
           
  

  (6.36c) 

in which xN , yN , and xyN  are the membrane forces of the shell element at the 

current time, respectively. 

The vector    contains the local rotations and can be expressed with the rotation 

interpolations given in Eqs. (6.18). With regard to a plate element without considering 

transverse shear deformation, it yields 

    
l
y

l
x




 
  
 

G d  (6.37) 

in which d is the displacement vector of the shell element in the local coordinate 

system, and the matrix  G  can be easily obtained by Eqs. (6.18). 

For the plate element allowing for transverse shear deformation, we have 

    y xz

shear
x yz

 
 

  
   

G d  (6.38) 

in which the matrix  shear
G  can be derived with Eqs. (6.18) and (6.26). 

To obtain the geometric stiffness matrix, taking a variation of Eq. (6.36a) gives 

 

   

   
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A
xy y
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T x xyT

t tA
xy y
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t dA
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 


 


 
 
 

 
  

 



 G Gd d

 

 (6.39a) 
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    
t t

T x xy
g t tA

xy y

N N
t dA

N 
 

  
 

 G GK  (6.39b) 

in which the membrane forces are averaged over the projection of a warping shell 

element at the current time, while how to update them is introduced in the next 

section. The geometric stiffness matrix is also calculated by the two dimensional 

8-point integration rule as same as the material stiffness matrices of the membrane 

and plate elements. 

Then, the tangent stiffness matrix for the projection of the warping quadrilateral shell 

element in the local coordinate system can be given by 

 t e g K K K  (6.40) 

In this chapter, the warping effect of the quadrilateral shell element is assumed to be 

small and regarded as eccentricities at nodes, so the relationship of displacement 

vectors between the projection and the warping shell element at the node i can be 

given by 

 i i i d E d  i=1,2,3,4 (6.41a) 

 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

i

i

i

z
z

 
 
 

  
 
 
  

E  (6.41b) 

  T

i xi yi zi xi yi ziu u u   d  (6.41c) 

  T

i xi yi zi xi yi ziu u u   d  (6.41d) 
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where the parameter having a superposed horizontal line “-” means that it belongs to 

the projection. 

Then, the tangent stiffness matrix of the warping shell element in the local coordinate 

system can be modified as follows, 

  T
t e g K E K K E  (6.42a) 

 

1

2

3

4

 
 
 
 
 

0 0 0
0 0 0

=
0 0 0
0 0 0

E
E

E
E

E

 (6.42b) 

Finally, transforming the local tangent stiffness matrix into the global coordinate 

system gives 

  g T T
t e g K T E K K ET  (6.43) 

in which the transformation matrix T  is composed of eT  along diagonal and 

calculated based on the current configuration. In the incremental-iterative analysis 

procedure, the global tangent stiffness matrix is used to assemble the global stiffness 

matrix of the whole structure in every iteration step of the nonlinear analysis. Further, 

with the assumption of small strains, the local tangent stiffness matrix should be 

computed based on the initial dimensions of the shell element during the whole 

analysis process, while the transformation matrix and the eccentricity matrix are 

formed based on the current geometry. 

 

6.3.3 Internal forces and element stresses 
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In the iterative procedure of nonlinear analysis, the resistant force vector of a structure 

model is assembled by the internal force vector of shell elements and used to check 

the convergence of calculations. After an iteration step, the incremental pure 

deformations are extracted from the incremental global displacements to compute the 

internal forces of the quadrilateral shell element based on the co-rotational concept. 

6.3.3.1 Extraction of incremental pure deformations 

The method of directly incremental deformation, introduced in Section 4.3.2.2, is 

used here to extract the incremental pure deformations and update the internal forces 

and stresses. 

For the quadrilateral shell element in the last iteration, the local-to-global 

transformation matrix n
eT , the rotation matrix at the node i in the global coordinate 

system g n
iR , the global nodal coordinates g n

ix  and the local nodal coordinates n
ix  

are known. After one iterative process, the incremental displacements of the 

quadrilateral shell element in the global coordinate system can be expressed as 

follows, 

  1 2 3 4=
Tg gT gT gT gT    d d d d d  (6.44a) 

  =
Tg g g g g g g

i xi yi zi xi yi ziu u u         d  (6.44b) 

  =
Tg g g g

i xi yi ziu u u   u  (6.44c) 

  =
Tg g g g

i xi yi zi       (6.44d) 
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Then, the global nodal coordinates can be updated as below. 

 1g n g n g
i i i

   x x u  (6.45) 

The local-to-global transformation matrix 1n
e

T  and the local nodal coordinates 

1n
i
x  of the quadrilateral shell element can be updated by the new global nodal 

coordinates accordingly. 

Thus, the incremental pure displacements at the node i are 

 1n n
i i i

  u x x  (6.46a) 

  T

i xi yi ziu u u    u  (6.46b) 

In terms of the incremental pure rotations at the node i, they can be computed by the 

process in the following, 

  g g
i i  R R   (6.47a) 

 1n g n T
i e i e

  R T R T  (6.47b) 

  i i  R   (6.47c) 

  T

i xi yi zi        (6.47d) 

in which the mutual transformation between a rotation vector and a rotation matrix is 

introduced in Chapter 4. 

Note that the pure deformations in Eqs. (6.46) and (6.47) belong to the warping shell 

element and should be transformed into the projection as follows, 
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 1n  d E d  (6.48) 

6.3.3.2 Stresses updating 

Different from the EICR formulation, the membrane stresses should be computed and 

recorded in the process of geometrically nonlinear analysis to formulate the geometric 

stiffness matrix. Based on the projection of the warping shell element, the increments 

of membrane stresses, bending moments and shear stresses can be respectively given 

by 

  0 ,
x

y m m m

xy

N
N r s

N

 
    
  

D B d  (6.49a) 

  0 ,
x

y b b p

xy

M
M r s

M

 
    
  

D B d  (6.49b) 

  ,xy
s s p

xz

Q
r s

Q
     

D B d  (6.49c) 

in which  0 ,m r sB ,  0 ,b r sB  and  0 ,s r sB  are the generalized strain-displacement 

matrices of the membrane and the plate elements introduced previously and computed 

based on the initial dimensions of the shell element due to the small strains 

assumption, while r and s are the isoparametric coordinates. Then, the stresses can be 

updated by adding the incremental stresses to those from last iteration. 

Besides, to achieve fast convergence in practical analyses, the averaged membrane 

stresses are used in the computation of the geometric stiffness matrix as follows, 



Chapter 6  A Nonlinear Quadrilateral Shell Element Based on Simplifed EICR Method 

213 

 

 
 
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,
1

,

,

xx

y yA

xy xy

N r sN
N N r s dA

A
N N r s

   
        
       

  (6.50a) 

 

1

1

1

n n
x x x
n n
y y y
n n
xy xy xy

N N N
N N N

N N N







     
            
          

 (6.50b) 

6.3.3.3 Internal forces updating 

The internal forces for both the UL and the EICR formulations should be calculated in 

the process of nonlinear analysis. Although the internal forces are not needed in the 

UL formulation to get the geometric stiffness, they are required in the computation of 

the residual forces to check the system equilibrium and continue iterations. 

The incremental internal forces of the projection of the shell element are 

 0
m m m  f K d  (6.51a) 

 0
p p p  f K d  (6.51b) 

Due to the assumption of small strains, the incremental internal forces are achieved 

based on the linear elastic stiffness of the shell element with initial geometry. The 

internal force vector of the projection of the shell element is recorded and 

accumulated after every iteration as 

 1n n   f f f  (6.52) 

Then, the internal force vector of the warping shell element in the local coordinate 

system is 
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 1 1 1n n T n  f E f  (6.53) 

in which the eccentricity matrix is formed by the updated local z-coordinates. 

Finally, to assemble the global internal force vector of the whole structure, the local 

internal force vector should be transformed into the global coordinate system as 

 1 1 1g n n n  f T f  (6.54) 

in which the transformation matrix 
1nT  is composed of 1n

e
T  along diagonal. 

 

6.4 Simplified co-rotational formulation 

The simplified EICR formulation is different from the UL formulation introduced in 

the last section, in which the geometric stiffness is derived from the load perturbation 

of equilibrium equations for the shell element. However, the two formulations have 

the identical procedure to get the internal forces of the shell element. Thus, this 

section only details the derivation for the tangent stiffness based on the simplified 

EICR method. 

 

6.4.1 Tangent stiffness 

As previously in Chapter 4, the simplified co-rotational method neglects the change of 

element dimensions due to the small strain assumption, different from the general 

EICR formulation. Thus, the tangent stiffness of the warping quadrilateral shell 

element has three parts, including the material stiffness, the geometric stiffness due to 
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rigid body rotations and the geometric stiffness due to warping. In the global 

coordinate system, the tangent stiffness matrix can be given by 

  g T
t e gr gwK T K + K + K T  (6.55) 

in which T  is the transformation matrix transforming the local tangent stiffness into 

the global coordinate system; eK  the local material stiffness matrix; grK  and gwK  

the local geometric stiffness matrices due to rigid body motions and warping, 

respectively. 

Also, the definition of the local coordinate system used in the UL formulation rather 

than the one introduced in Chapter 4 is used here. This is because the bisector 

definition can overcome the nodal ordering dependency, although it makes the 

derivation of the geometric stiffness more complicated. 

6.4.4.1 Local material stiffness matrix 

The local material stiffness matrix is identical to the one used in the UL formulation, 

which is assembled by the stiffness matrices of the membrane and plate elements. 

Although it is always computed using the initial dimensions of the projection of the 

quadrilateral shell element, the eccentricity matrix should be updated according to the 

current local z-coordinates. Thus, the local material stiffness matrix can be given by 

 0T
e eK E K E  (6.56) 

in which the material stiffness matrix 0
eK  is calculated based on the initial 

dimensions of the projection. Thus, 0
eK  can be computed in the beginning of 

nonlinear analysis, stored and called in the following analysis procedure. 
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6.4.4.2 Geometric stiffness matrix due to rigid body rotations 

Following the derivation introduced in Chapter 4, the geometric stiffness matrix due 

to rigid body rotations of the shell element can be given by 

 -gr =K AG  (6.57a) 

 

1

1

4

4

( )

( )

( )
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 
 
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 
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Spin

Spin

Spin

Spin

n

m

A

n

m

  (6.57b) 

 
1 1 2 2 4 4
T T T T T T

      
        

G
u u u

     
  

 (6.57c) 

in which the matrix A  is formulated by the internal forces at the current time, and 

the matrix G  connects the variations of rigid body rotations to the variations of 

nodal displacements based on the local coordinate system. 

Thus, the variations of rigid body rotations are crucial in obtaining the geometric 

stiffness matrix. To derive the matrix, Figure 6.6 shows that a quadrilateral shell 

element moves from the initial configuration C0 to the current configuration Cn. The 

variations of rigid body rotations are derived based on the local coordinate system. 

 

 

 

 

 



Chapter 6  A Nonlinear Quadrilateral Shell Element Based on Simplifed EICR Method 

217 

 

 

Figure 6.6 Deformation of a quadrilateral shell element 

The local translational displacement vector at the node i is expressed as 

 T

i i i iu v wu . Thus, the initial and current local nodal coordinates are 0
ix  and 

0
i i i x x u , respectively. In the procedure of derivation, the current local coordinate 

system is regarded as the global coordinate system, so the local-to-global 

transformation matrix is an identity matrix as follows, 

 3

T

e x y z    =T e e e I  (6.58) 

The current local nodal coordinates are 

  1 1 1

T
x y dx ,  2 2 2

T
x y d x  (6.59a) 

  3 3 3

T
x y dx ,  4 4 4

T
x y d x  (6.59b) 
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The origin of the local coordinate system is set to the element centre, so the centre 

coordinates can be given by 

  1 2 3 4

1
( ) 0 0 0

4
T

c     x x x x x  (6.60) 

Through Eqs. (6.59) and (6.60), we can obtain the equations as follows, 

 31 42x x

a b


  (6.61a) 

 31 42y y

a b
  (6.61b) 

in which 2 2
31 31a x y  , 2 2

42 42b x y  , 
ij i jx x x  , 

ij i jy y y  . 

Then, taking variations of the triad vectors, we have 

 
     31 42 31 423

31 423
31 42 31 42

T

x  
   

     
=

e e e eI
e e e

e e e e
 (6.62a) 

 
     31 42 31 423

31 423
31 42 31 42

T

y  
   

     
=

e e e eI
e e e

e e e e
 (6.62b) 

 z x y x y    =e e e e e  (6.62c) 

in which   denotes Kronecker product, 3 1
31

3 1





x x

e
x x

 and 4 2
42

4 2





x x

e
x x

. 

Besides, we have 
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     3 1 3 13

31 3 13
3 1 3 1
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x x x xI
e x x
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 (6.63a) 
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  
   

     
=

x x x xI
e x x
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 (6.63b) 

 3 1 3 1     x x u u  (6.63c) 

 4 2 4 2     x x u u  (6.63d) 

Finally, the variations of triad vectors can be given by 

 
   42 42 31 42 31 42 42 31

2
42

0
2 2x

x a v b v y b u a u a w b w

ab ax

   
    

 
 


=

     
e  (6.64a) 

 
   42 31 42 42 42 31 31 42

2
422 2

0y

y b u a u x a v b v b w a w

ab ay

   
   




 




=




    
e  (6.64b) 

 
31 42 31 42

42 42

0
2 2z

b w a w b w a w

ax ay

     
 

 
=    

e  (6.64c) 

With the help of the following relationship 
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y z x

z y x

  
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 (6.65) 

the variations of local rigid body rotations are 
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  (6.66) 

Substituting Eq. (6.66) into Eq. (6.57c), the detailed expression of the matrix G can be 

given as follows, 

  1 3 2 3 3 3 4 3 0 0 0 0G G G G G  (6.67a) 
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G  (6.67c) 

 3 1 G G  (6.67d) 

 4 2 G G  (6.67e) 

6.4.4.3 Geometric stiffness matrix due to warping 

As introduced in Chapter 4, the variations of plate moments at the node i due to 

warping can be given by 
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 =xi zi yim u f   (i=1,2,3,4)  (6.68a) 

 =yi zi xim u f   (i=1,2,3,4)  (6.68b) 

in which 
ziu  is the variation of pure displacement along the local z-axis at the node 

i. 

Based on the local coordinate system, the local z-coordinate at the node i can be given 

by 

  T
i z i cz  e x x  (i=1,2,3,4)  (6.69) 

in which  0 0 1
T

z e  and  0 0 0
T

c x , following the assumption that the 

local-to-global transformation matrix is the Identity matrix. 

Taking a variation of Eq. (6.69) gives 

 
   

 1 2 3 4

1

4

T T
zi z i c z i c

y i x i zi z z z z

u

x y u u u u u

   

      

   

      

e x x e u u
 (6.70) 

Substituting Eqs. (6.66) and (6.70) into (6.68), the local geometric stiffness matrix 

due to warping effect, 
gwK , can be given by 

 gw T





f
K

d
  (6.71) 

in which the non-zero entries of 
gwK  can be detailed as follows, 

   1
1

1 1 13 1 1 1
, , ,

2 4 2 4 2 4 2
4;3,9,1

4
5,21gw y

bp q b q

a
f

p

a
     





 K  (6.72a) 
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   1
1 1 1 13 1 1 1

, , ,
2 4 2 4 2 4

5;3,9,15, 1
2

2
4gw x

bp q b

a
-

a
f

p q
     





 K  (6.72b) 

   2
2 2 2 21 3 1 1

, , ,
2 4 2 4 2 4 2

10;3,9,1
4

5,21gw y

bp q bp q

a a
f        

 
K  (6.72c) 

   2 2 2 2
2

1 3 1 1
,11; ,3,9,15,2 ,

2 4 2 4 2
1

4 2 4gw x

bp q b
-

p q

a a
f        

 
K  (6.72d) 

   3
3 3 3 31 1 3 1

, , ,
2 4 2 4 2 4 2

16;3,9,1
4

5,21gw y

bp q bp q

a a
f        

 
K  (6.72e) 

   3 3 3 3
3

1 1 3 1
,17; ,3,9,15,2 ,

2 4 2 4 2
1

4 2 4gw x

bp q b
-

p q

a a
f        

 
K  (6.72f) 

   4
4 4 4 41 1 1

, , ,
2 4 2 4 2 4 2

3
22;3,9,15

4
,21gw y

bp q bp q

a a
f        

 
K  (6.72g) 

   4
4 4 4 41 1 1

,
3

23 , ,
2 4 2 4

;3,9,15,2
2 4 2

1
4gw x

bp q bp q

a a
-f       

 
 K  (6.72h) 

 
42 42

i i
i

x y
p

x y
  , 

42 42

i i
i

x y
q

x y
   (6.72i) 

6.4.4.4 Symmetrized geometric stiffness 

Like the simplified co-rotational formulation for triangular shell elements, the local 

geometric stiffness matrix for quadrilateral shell elements is also unsymmetrical and 

cannot be calculated in conventional solver. Thus, the local tangent stiffness should 

be modified as 

 g gr gw= K K K  (6.73a) 
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  1

2
sym T
g g g= K K K  (6.73b) 

 sym
t e g= K K K  (6.73c) 

Then, the global stiffness matrix is 

 g T
t t=K T K T  (6.74) 

Nour-Omid and Rankin (1991) proved that the unsymmetrical term becomes zero 

when computations are converged, which is a sufficient condition for a quadratic rate 

of convergence in a Newton-Raphson type iteration. 

 

6.4.2 Computational procedure 

The simplified EICR formulation is coded into the program NIDA, and the procedure 

is similar to the nonlinear triangular shell element introduced in Chapter 5. However, 

the warping effect for the quadrilateral shell element should be noted and the pure 

deformational method is not used here, since the bisector definition of the local 

coordinate system is adopted to overcome the nodal ordering dependency. Also, the 

quadrilateral shell does not have the basic coordinate system, but the system is 

replaced by the projection of the shell element. Taking the New-Raphson solution for 

example, the procedure is summarized in the following. 

 

1. Define and initialize the global variables and parameters. 

 Ninc = the total number of load increments 
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 Nite = the maximum iteration number 

 n = the nth load step 

 i = the ith iteration 

 Ki = the assembled global tangent stiffness matrix at the ith iteration 

 Pn = the externally applied global nodal force vector at the nth load step 

 Fi = the global internal forces for the whole structure at the ith iteration 

 U = the global nodal displacements for the whole structure 

 

2. Define and compute the local variables and parameters for each shell element. 

(a) Compute the local-to-global transformation matrix eT . 

(b) Compute the initial local node coordinates. 

(c) Compute the stiffness matrices of the membrane and plate elements in the 

projection with the initial local node coordinates, assemble them into the 

stiffness matrix for the projection of the shell element, 0
eK , and store it. 

(d) Initialize the local internal forces f  for the projection of the shell element. 

 

3. Start loop over load increments (for n=1 to Ninc). 

(a) Update external load 1n n  P P P . 

(b) Set residual forces i ng P . 

(c) Start iterations beginning with i=1 (while divergence and i≤Nite). 
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i. For each shell element, get the global tangent stiffness matrix by 

0( )g T T sym
t e g= K T E K E K T . 

ii. Assemble the global tangent stiffness matrix for the whole structure iK . 

iii. Solve for the incremental global nodal displacements 1( i i U K ) g . 

iv. Update geometry. 

v. For each warping shell element, extract incremental local deformations 

d  from U , transform it into the projection and get d , compute 

the incremental local internal forces for the projection by 0
e f = K d , 

update and store 1i i  f f f . 

vi. For each shell element, compute the global internal force vector by 

gi i T i T if T E f , and assemble it into iF . 

vii. Compute residual forces i n i g P F . 

viii. Terminate iterative process if converged, otherwise go to next iteration. 

 

4. Terminate whole analysis process. 

 

For the other technologies to solve finite element equations, such as the 

displacement-control and arch length methods, the processes to formulate the tangent 

stiffness matrix and the internal force vector are identical. 
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6.5 Geometrically nonlinear elastoplastic analysis 

In this section, the proposed simplified co-rotational method for quadrilateral shell 

elements is extended into the geometrically nonlinear elastoplastic analysis. The 

procedure is similar to the nonlinear triangular shell element introduced in Chapter 5. 

Specifically, they both adopt the simplified co-rotational method to conduct 

geometrically nonlinear analysis, while the material nonlinearity is taken into account 

in the local material stiffness matrix. Following Chapter 5, the material nonlinear 

analysis adopts the layered approach, elastoplastic constitutive model based on the 

von Mises yield criterion, the associated flow rule and linear isotropic hardening, 

while a backward-Euler return-mapping integration algorithm is used to trace the 

yield surface. Also, to avoid the “spurious unloading” during analysis, the incremental 

displacements accumulated from the beginning of a load step is used, which is 

different from the analysis scheme with only geometrical nonlinearity introduced in 

Section 6.4. In addition, transverse shear deformation of the plate element is 

considered and assumed to be elastic. 

However, several issues different from the nonlinear triangular shell element should 

be noted. First, the nonlinear quadrilateral shell element does not use the pure 

deformational method, since the bisector definition of the local coordinate system is 

used to overcome the nodal ordering dependency. Second, the quadrilateral 

membrane element adopts the mixed variational formulation, in which the linear 

stiffness has two parts, one is due to the strains and the other one is due to the 

skew-symmetric stresses, as introduced in Section 6.1. In the elastoplastic analysis, it 

is assumed that the stiffness due to the skew-symmetric stresses keeps elastic during 

the whole nonlinear analysis procedure. Third, the warping phenomenon exists in the 
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quadrilateral shell element. In the elastic analysis, the linear stiffness of the 

quadrilateral shell element is computed based on the projection and transformed into 

the warping shell element, so the strains and stresses at the projection rather than the 

warping shell element are obtainable and the elastoplasticity is considered in the 

projection. Although the operation is different from realistic situation, the numerical 

examples in Chapter 7 show that the results obtained by the quadrilateral shell 

element are very close to the proposed triangular shell element. 

 

6.5.1 Tangent stiffness 

Identical to the geometrically nonlinear elastoplastic analysis scheme for the 

triangular shell element in Chapter 5, the projection of the warping quadrilateral shell 

element is divided into m layers with equal thickness, as shown in Figure 5.9. 

The strains at the midpoint of the jth layer in the projection represent the whole layer 

as 

 
x x

j y j y m m j b p

xy xy

z z

 
 
 

   
         
   
   

B d B d  (6.75a) 

  2 1
2 2j

t t
z j

m
   , j=1 to m (6.75b) 

in which mB  and bB  have been introduced previously and are the 

strain-displacement matrix for the membrane element and the plate element 

corresponding to the projection, respectively. They are both computed by the initial 
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dimensions of the shell element during the whole nonlinear analysis procedure. Also, 

the displacement vectors md  and pd  belong to the membrane and plate elements 

corresponding to the projection, respectively. 

Then, the stresses at the jth layer are 

 j j j j m m j j b pz  C C CB d B d   (6.76) 

in which jC  is the tangential modular matrix for the jth layer shown in Eq. (5.80) 

under plasticity and the elastic modular matrix shown in Eq. (5.77) under elasticity. 

The virtual work due to membrane and bending strains for the projection of the shell 

element can be expressed as 

 

1

1

2
1

( ) ( )

m
T T
j j extA

j

m
T

j m m j j b p m m j b pA
j

T T T Tm
m m j m m j p b j m m T

extT T T TA
j j m m j b p j p b j b p

W tdA

z z tdA

z
tdA

z z

  

 

 


 







  

   

 
   

   







C C

C C

C C

f d

B d B d B d B d

d B B d d B B d
f d

d B B d d B B d

 

 (6.77) 

where extf  is the external forces and 
t

t
m

   is the layer thickness. 

Then, the local material stiffness matrix due to membrane and bending strains can be 

given by 

 1 2

3 4
e

 
  
 

K K
K

K K
 (6.78a) 
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1

1

m
T
m j mA

j

t dA


 
  

 
 CK B B  (6.78b) 

 
2

1

m
T
m j j bA

j

z t dA


 
  

 
 CK B B  (6.78c) 

 
3

1

m
T
b j j mA

j

z t dA


 
  

 
 CK B B  (6.78d) 

 2
4

1

m
T
b j j bA

j

z t dA


 
  

 
 CK B B  (6.78e) 

in which the matrix 
eK  is the material stiffness based on the projection of the shell 

element. Note that it is corresponding to the displacement vector of the projection 

 TT T
m pd d . In the program, these four submatrices should be assembled into the 

matrix responding to the displacement vector d . 

In addition, due to the mixed variational formulation for the membrane element, 
1K  

should be modified as 

 1
1

m
T
m j m mhA

j

t dA


 
   

 
 CK B B K  (6.79) 

in which the matrix mhK  can be found in Eqs. (6.12). 

When the shear deformation is considered, 4K  should be modified as 

 2
4

1

m
T
b j j b sA

j

z t dA


 
   

 
 CK B B K  (6.80a) 
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 T
s s s sA

dA K D   (6.80b) 

in which sK  is the shear stiffness matrix introduced in Section 6.2. 

All of these stiffness matrices adopt the two dimensional 8-point integration rule. 

After integration, the material stiffness matrix for the projection should be 

transformed into the warping shell element as 

 T
m mK E K E  (6.81) 

where the matrix E  is the eccentricity matrix introduced in the last section and 

should be formulated by the current local z-coordinates. 

Finally, the tangent stiffness matrix in the global coordinate system can be given by 

 ( )g T sym
t m g= K T K K T  (6.82) 

in which the symmetrized local geometric stiffness matrix sym
gK  has been given in 

the last section. 

 

6.5.2 Internal forces 

To avoiding the “spurious unloading”, the incremental displacements, accumulated 

from the first iteration to the current iteration in a load step, is used to update the 

internal forces. 
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Assuming the incremental local displacements of the membrane and plate elements 

(the projection of the shell element) are md  and pd , the incremental strains of the 

jth layer at the integration point k can be given by 

 ,j k m m j b pz    B d B d , j=1 to m, k=1 to 8 (6.83) 

Then, the trial stresses are 

 , , ,
tr n
j k j k j k  C    (6.84) 

in which ,
n
j k  is the stresses determined at the last load step, C  is the elastic 

modular matrix. 

The two-step predictor-corrector return mapping algorithm introduced in Section 

5.4.1 is used to determine the real stresses ,j k . Then, the internal forces of the 

projection can be obtained by 

 
8

1
,

1 1

m
n T

m m j k k mh m
k j

t w A

 

 
   

 
 f B K d  (6.85a) 

 
3

1
,

1 1

m
n T

p b j j k k
k j

z t w A

 

 
  

 
 f B   (without shear deformation) (6.85b) 

 
3

1
,

1 1

m
n T

p b j j k k s p
k j

z t w A

 

 
  

 
 f B + K d  (with shear deformation) (6.85c) 

where the displacement vectors md  and pd  are accumulated from the beginning of 

the nonlinear analysis procedure. 
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After assembling 1n
m

f  and 1n
p

f  into 1nf , the global internal force vector can be 

given by 

 1 1 1 1g n n T n T n   f T E f  (6.86) 

in which the transformation matrix 1nT  and the eccentricity matrix 1nE  should be 

updated based on the current geometry. 

 

6.5.3 Computational procedure 

The computational procedure for the quadrilateral shell element in geometrically 

nonlinear elastoplastic analysis has been implemented in the program NIDA. The 

procedure based on the New-Raphson solution is detailed in the following. 

 

1. Define and initialize the global variables and parameters. 

 Ninc = the total number of load increments 

 Nite = the maximum iteration number 

 m = the number of layers for a shell element 

 n = the nth load step 

 i = the ith iteration 

 j = the jth layer of a shell element 

 k = the kth integration point 

 Ki = the assembled global tangent stiffness matrix at the ith iteration 
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 Pn = the externally applied global nodal force vector at the nth load step 

 Fi = the global internal forces at for the whole structure at the ith iteration 

 U = the global nodal displacements for the whole structure 

 

2. Define and compute the local variables and parameters for each layered shell 

element. 

(a) Compute the local-to-global transformation matrix eT . 

(b) Compute the initial local node coordinates. 

(c) Initialize the stresses ,j k  and the elastic modular matrix ,j kC  at the jth 

layer and the integration point k. 

 

3. Start loop over load increments (for n=1 to Ninc). 

(a) Update external load 1n n  P P P . 

(b) Set residual forces i ng P . 

(c) Start iterations beginning with i=1 (while divergence and i≤Nite). 

i. For each shell element, get the tangent stiffness through 

( )g T sym
t m g= K T K K T . 

ii. Assemble the global tangent stiffness matrix for the whole structure iK . 

iii. Solve for the incremental global nodal displacements 1( i i U K ) g . 

iv. Update geometry. 
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v. For each shell element, compute the iterative deformation of projection 

i
md  and i

pd  from U , and add them to the incremental deformation 

accumulated from the first iteration as 1n i i
m m m

    d d d , 

1n i i
p p p

    d d d . 

vi. For the jth layer at the integration point k, compute the incremental 

strains ,
n n

j k m m j b pz    B d B d  and then the trial stresses

, , ,Ctr n
j k j k j k     . 

vii. Determine the real stresses ,j k  with the two-step predictor-corrector 

return mapping algorithm. If the point yields, ,j kC  uses the tangential 

modular matrix; otherwise, uses the elastic modular matrix for the next 

iteration. 

viii. For each shell element, compute the internal forces of projection mf  

and pf , and then assemble them into if . 

ix. For each shell element, compute the global internal force vector by 

gi i T i T if T E f , and assemble it into iF . 

x. Compute residual forces i n i g P F . 

xi. Terminate iterative process if converged, otherwise go to next iteration. 

 

4. Terminate whole analysis process. 
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6.6 Summary 

In this chapter, the nonlinear quadrilateral shell element based on the simplified EICR 

formulation is proposed and coded into the program NIDA. Its performance will be 

verified in the numerical examples presented in Chapter 7. 

From the previous chapters, it can be seen that the proposed simplified co-rotational 

formulation is simpler than the traditional co-rotational formulations. In this chapter, 

the co-rotational UL formulation is detailed and compared with the proposed 

simplified EICR formulation. Thus, the comparisons between the co-rotational UL 

and the proposed simplified EICR regarding their derivations and expressions are 

discussed in the following. 

The proposed UL formulation is not like the traditional one but adopts the 

co-rotational concept, which is also proposed by author (Tang et al., 2016). However, 

its core is not changed. The Green-Lagrangian strains are used to describe the 

kinematics of a shell element and consider the geometrical nonlinearity. Then, it 

produces the geometric stiffness matrix formulated by the Cathy stresses with the 

adoption of numerical integration. Thus, the geometric stiffness matrix is related to 

the displacement interpolations. Even using same displacement interpolations, the 

geometric stiffness matrices with and without transverse shear deformation are 

different. 

For the simplified EICR formulation for quadrilateral shell element, it focuses on the 

element frame. The geometric stiffness matrix is derived by the load perturbation of 

the equilibrium equations of a shell element, so it is formed by the nodal internal 

forces rather than stresses at the integration points, with explicit expression. Therefore, 
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the formulation is element-independent and any existing linear element can be 

extended into the geometrically nonlinear analysis. In addition, the geometric stiffness 

and the local material stiffness can be treated separately, no matter whether the local 

shell element considers transverse shear deformation or material nonlinearity. 

In summary, the simplified EICR formulation is simpler and more efficient than the 

UL formulation, since the former has an explicit geometric stiffness matrix which 

does not need the numerical integration. However, the simplified EICR formulation 

has a drawback that the geometric stiffness matrix is not symmetric, like the general 

co-rotational method. In the program, the symmetric part of the stiffness is used to 

replace the unsymmetrical one, since finite element program usually uses a symmetric 

solver to save computer storage. Fortunately, the unsymmetrical part becomes zero 

when the system is in equilibrium and the symmetrized stiffness still can keep a 

quadratic rate of convergence. The differences regarding the accuracy and 

convergence between the unsymmetrical and symmetrized geometric stiffness are 

discussed in Chapter 7. 
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CHAPTER 7 

VERIFICATION EXAMPLES 

In this chapter, a batch of benchmark problems are solved with the proposed 

nonlinear triangular and quadrilateral shell elements coded in the program NIDA to 

verify their accuracy and efficiency. Sections 7.1 and 7.2 present the examples of 

geometrically nonlinear analysis and geometrically nonlinear elastoplastic analysis, 

respectively. To distinguish from the other shell elements in the existing literature and 

the commercial finite element packages, the proposed nonlinear shell elements in the 

program NIDA are named as SCRT3 and SCRQ4 for short, respectively, which 

means that they are the 3-node triangular and the 4-node quadrilateral shell elements 

respectively and consider geometrical nonlinearity based on the simplified EICR 

formulation. 

In these examples, the convergence in iterations can be measured using the following 

criteria, 

    Norm NormTOLER  U U  (7.1a) 

    Norm NormTOLER  F F  (7.1b) 

in which ΔU and U are the incremental and total displacement vectors of the whole 

structure, respectively. Similarly, ΔF is the residual force vector and F is the external 

load vector. For all the examples presented in the following, an iteration progress 
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terminates when the conditions in Eqs. (7.1) are met, and TOLER is taken as 0.001 in 

this thesis. 

 

7.1 Geometrically nonlinear analysis of shell structures 

The presented numerical examples of geometrically nonlinear analysis cover the 

problems of large displacements, large rotations, snap-through buckling, lateral 

torsional buckling, etc. The results obtained by the proposed shell elements are 

compared with those available in the existing literature and with those obtained using 

the SHELL181 element of the commercial finite element package ANSYS based on 

the same solution procedure and convergence criterion. SHELL181 is a four-node 

element with six degrees of freedom at each node and can degenerate into a triangular 

form, but the use of the triangular form is not recommended. Thus, only the 

quadrilateral form of the SHELL181 element is adopted in the following numerical 

examples, and the full integration method is used. Also, the SHELL181 element is 

suitable for analysing thin to moderately-thick shell structures and can be applied to 

linear, large rotation, and/or large strain nonlinear applications (ANSYS, 2017). 

For the first three examples, the results obtained by the unsymmetrical geometric 

stiffness matrix and the symmetrized one are compared, and then the effects of the 

symmetrized geometric stiffness matrix on the accuracy and efficiency are discussed 

and evaluated. After that, the proposed shell elements only adopt the symmetrized 

geometric stiffness matrix for the following numerical examples unless otherwise 

stated. 
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7.1.1 Cantilever beam under an end moment 

Figure 7.1 shows a cantilever beam subjected to a concentrated end moment M. This 

is a classical problem to examine the performance of an element undergoing large 

rotations. The geometric and material properties are given below. 

Length L=10, width b=1, thickness t=0.1. 

Young’s modulus of elasticity E=1.2×106, Poisson’s ratio v=0. 

Based on the theoretical solution, the cantilever plate becomes a circular arc with 

radius R due to the applied moment M, and the analytical solution can be given in the 

following, 

 
1

=
M

R EI
 (7.2) 

When the cantilever plate rolls up into a complete circle, the applied end moment is 

 max 2
EI

M
L

  (7.3) 

The analytical tip displacements along the horizontal and vertical directions can be 

expressed with the load factor max/M M   as 

 
 sin 2

1
2

u L



 

  
 

  ( 0 1  ) (7.4a) 

  1 cos 2

2
w L




 
  

 
  ( 0 1  ) (7.4b) 

 0u w    ( 0  ) (7.4c) 
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(a) SCRT3 

 

(b) SCRQ4 

Figure 7.1 Cantilever beam subjected to an end moment 

In this study, the cantilever plate is modelled with the SCRT3 and SCRQ4 elements 

respectively, using a 10×1 mesh as shown in Figure 7.1. The maximum end moment 

is divided into 5 equal load steps in the analysis. Figure 7.2 indicates that the 

load-displacement curves of this model meshed with the proposed shell elements 

using the unsymmetrical geometric stiffness matrices are very close to the exact 

solutions, even with such coarse meshes and only 5 load steps required. 

Deformed shape 

Initial shape 

Deformed shape 

Initial shape 
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Next, to study the influence of the symmetrized geometric stiffness on the accuracy 

and convergence rate, the detailed results and the numbers of iteration obtained by the 

proposed shell elements using the unsymmetrical and symmetrized geometric 

stiffness matrices are listed in Table 7.1 and Table 7.2, respectively. 

 

 

 

Figure 7.2 Load-displacement curves for cantilever beam subjected to an end 

moment 
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Table 7.1 Tip vertical displacements (w) obtained by different methods 

λ Exact SCRT3 
(uns.) 

SCRT3 
(sym.) 

SCRQ4 
(uns.) 

SCRQ4 
(sym.) 

0.2 5.4987 5.5023 5.5067 5.5023 5.5024 

0.4 7.1979 7.2168 7.2184 7.2168 7.2234 

0.6 4.7986 4.8272 4.8158 4.8271 4.8360 

0.8 1.3747 1.3894 - 1.3893 1.3978 

1.0 0.0000 0.0001 - 0.0000 0.0023 

 

Table 7.2 Numbers of iteration needed by different methods 

λ SCRT3 
(uns.) 

SCRT3 
(sym.) 

SCRQ4 
(uns.) 

SCRQ4 
(sym.) 

0.2 8 14 6 6 

0.4 6 16 6 13 

0.6 6 17 6 6 

0.8 6 - 6 6 

1.0 6 - 6 6 

Total 32 - 30 37 

 

Table 7.1 shows that the results from different methods are close to the exact 

solutions, so the symmetrized geometric stiffness has insignificant effects on the 

accuracy. In terms of the convergence rates as shown in Table 7.2, the proposed 

SCRQ4 elements using the unsymmetrical and the symmetrized geometric stiffness 
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matrices are close. However, the SCRT3 element using the symmetrized geometric 

stiffness matrix decreases the convergence rate in this example and cannot get 

convergence in the fourth and fifth steps. The whole analysis process can be 

completed when more load steps are used, although the convergence rate is always 

lower than the SCRT3 element using the unsymmetrical geometric stiffness matrix. 

Thus, it is interesting to find that the symmetrized geometric stiffness has different 

performances for the triangular and quadrilateral shell elements. This may be because 

the triangular meshes for this example are not symmetrical and the proposed 

triangular shell element adopts the element side 1-2 as the local x-axis, which is not 

invariant to nodal ordering. In addition, it can be noted that this example is only 

subjected to a pure moment, so the symmetrized geometric stiffness matrix may 

produce unbalanced forces. Although the SCRT3 element using the symmetrized 

geometric stiffness matrix performs not well here, it is impossible to find a practical 

engineering structure like this example having so large rotations. 

 

7.1.2 Cantilever beam subjected to a shear force 

This model is the same as the one in Section 7.1.1, and the cantilever has the identical 

material properties, geometrical dimensions and meshes, except that Poisson’s ratio is 

set to 0.3. In addition, a concentrated shear force is applied to the free end as shown in 

Figure 7.3. This is another classical benchmark example for checking the capability of 

an element undergoing large displacements and large rotations. 
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(a) SCRT3                    (b) SCRQ4 

Figure 7.3 Cantilever beam subjected to a shear force 

 

 

Figure 7.4 Load-displacement curves of cantilever beam under a shear force 

Initial shape Initial shape 

Deformed shape Deformed shape 
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In the simulation, the maximum shear force is set to 10 and divided into 5 equal load 

steps. Then, the load-displacement curves at the tip obtained by the proposed shell 

elements using the unsymmetrical geometric stiffness are depicted in Figure 7.4, 

compared with the SHELL181 element in ANSYS. Note that the SHELL181 element 

uses 20 equal load steps in the simulation, since it cannot get convergence with only 5 

equal load steps. 

It can be seen that the results obtained by the proposed shell elements and the 

SHELL181 element are in close agreement with each other. The detailed results and 

the convergence rates obtained by the proposed shell elements using the 

unsymmetrical and symmetrized geometric stiffness matrices are listed in Table 7.3 

and 7.4, respectively. 

 

Table 7.3 Tip vertical displacements (w) obtained by different methods 

Shear force SHELL181 SCRT3 
(uns.) 

SCRT3 
(sym.) 

SCRQ4 
(uns.) 

SCRQ4 
(sym.) 

2 4.9107 4.8862 4.8867 4.8995 4.8995 

4 6.6777 6.6561 6.6561 6.6624 6.6625 

6 7.4253 7.4094 7.4082 7.4120 7.4120 

8 7.8299 7.8169 7.8168 7.8173 7.8174 

10 8.0863 8.0764 8.0764 8.0755 8.0755 
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Table 7.4 Numbers of iterations used by different methods 

Shear force SCRT3 
(uns.) 

SCRT3 
(sym.) 

SCRQ4 
(uns.) 

SCRQ4 
(sym.) 

2 7 8 6 6 

4 6 6 6 6 

6 4 6 4 4 

8 4 4 4 4 

10 4 4 4 4 

Total 25 28 24 24 

 

In this example, the symmetrized geometric stiffness for the proposed shell elements 

has little influence on both the results and the convergence rates. In terms of the 

SHELL181 element in ANSYS, 20 equal load steps and 100 total iterations are 

needed to complete the whole analysis. Further, use of the automatic time stepping 

decreases the number of load step for the SHELL181 element, because the 

displacements of the first load step are very large and harder to get convergence than 

the following load steps. The SHELL181 element cannot get convergence for a large 

load step, while the proposed shell elements can handle this situation, using only 5 

equal load steps and no more 30 total iterations. Thus, the advantages of the proposed 

shell elements in this example are obvious. 

Further, to increase the effect of transverse shear deformation to the results and 

demonstrate the accuracy of the proposed shell elements considering shear 

deformation, the thickness of the cantilever beam is set to 1.0, which makes the beam 

cross section become square, meanwhile, the applied shear force F is changed to 400 
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and 2000 respectively. The final results obtained by the proposed shell elements using 

symmetrized geometric stiffness and the beam-column (BC) element proposed by 

Tang et al. (2015) are listed in Table 7.5. 

 

Table 7.5 Tip vertical displacements (w) solved by different elements 

Element Type 
F=400 F=2000 

w/  
shear 

w/o 
shear 

relative 
error 

w/  
shear 

w/o 
shear 

relative 
error 

SCRT3 1.3017 1.2913 0.81% 4.9252 4.8952 0.61% 

SCRQ4 1.3084 1.2987 0.75% 4.9397 4.9115 0.57% 

BC 1.3199 1.3100 0.76% 4.9739 4.9451 0.58% 

 

It cannot be expected that the results obtained by these different types of elements 

completely agree well with each other. However, the relative errors show that the 

transverse shear deformation has similar influences on these different elements in 

these two load cases. Thus, the proposed shell elements can consider shear 

deformation correctly. Also, it can be noted that the effect of transverse shear 

deformation is smaller when the shear force is 2000, since the membrane contribution 

to the overall deflection becomes larger as the shear force increases. 

 

7.1.3 Pinched hemispherical shell with a hole 
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A pinched hemispherical shell with a hole is a well-known and demanding benchmark 

example used to test shell elements. The hemispherical shell has an 18˚ hole at its top 

and is subjected to two inward and two outward radially applied forces F=400 along 

the X-axis and Y-axis respectively. The geometric and material properties are listed 

below. 

Radius R=10, thickness t=0.04. 

Elastic modulus E=6.825×107, Poisson’s ratio v=0.3. 

 

 

Figure 7.5 Pinched hemispherical shell with a hole 

Due to the symmetry of this example, only one quarter is modelled with a 16×16 

mesh of the SCRT3 and SCRQ4 elements respectively, as shown in Figure 7.5. 

Unlike the first two examples, warping phenomenon occurs in the quadrilateral shell 
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element. Thus, this example can verify the method dealing with warping effect used 

in the SCRQ4 element. 

 

 

Figure 7.6 Load-displacement curves of pinched hemispherical shell with a hole 

This example is analysed by the proposed shell elements using the symmetrized 

geometrically stiffness and only 10 equal load steps in NIDA, compared with the 

SHELL181 element using 20 equal load steps in ANSYS. It is found that the 

SHELL181 element cannot get convergence with 10 equal load steps. The radial 

displacements of the points A and B are monitored. The load-displacement curves at 

the points A and B for different shell elements are plotted in Figure 7.6, while the 

deformed shapes of the proposed shell elements are shown in Figure 7.7. 
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(a) SCRQ4 

 

(b) SCRQ3 

Figure 7.7 Deformed shapes of pinched hemispherical shell 

Figure 7.6 shows that results obtained by the SCRQ4 element are very close to the 

SHELL181 element, while the SCRT3 is slightly stiffer. This may be due to the local 

triangular shell element formulation and its definition of the local coordinate system. 

In the following, to study the effect of the symmetrized geometric stiffness, the 

detailed results and the numbers of iterations for every load step obtained by the 

proposed shell elements using the unsymmetrical and symmetrized geometric 

stiffness matrices are listed in Table 7.6 and 7.7, respectively. 
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Table 7.6 Displacements at the point B obtained by different methods 

F SHELL181 SCRT3 
(uns.) 

SCRT3 
(sym.) 

SCRQ4 
(uns.) 

SCRQ4 
(sym.) 

40 1.8309 1.7305 1.7308  1.7842 1.7951 

80 3.2468 3.0903 3.0912  3.1862 3.2065 

120 4.3208 4.1120 4.1131  4.2621 4.2843 

160 5.1751 4.9090 4.9101  5.1241 5.1455 

200 5.8779 5.5517 5.5529  5.8370 5.8567 

240 6.4691 6.0833 6.0845  6.4395 6.4573 

280 6.9748 6.5316 6.5328  6.9568 6.9729 

320 7.4128 6.9158 6.9169  7.4065 7.4210 

360 7.7963 7.2492 7.2503  7.8014 7.8145 

400 8.1349 7.5419 7.5429  8.1511 8.1630 

 

Table 7.7 Numbers of iterations used by different methods 

F SCRT3 
(uns.) 

SCRT3 
(sym.) 

SCRQ4 
(uns.) 

SCRQ4 
(sym.) 

40 12 12 10 16 

80 8 9 11 11 

120 8 9 9 9 

160 7 8 8 9 

200 7 7 7 8 

240 6 6 6 7 
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280 6 5 6 6 

320 6 6 6 7 

360 5 5 5 7 

400 5 5 5 7 

total 70 72 73 87 

 

It can be seen that the symmetrized geometric stiffness has insignificant influence on 

the accuracy and efficiency of the SCRT3 element, although its solutions are not as 

good as the SCRQ4 element. The SCRQ4 element using the symmetrized geometric 

stiffness boosts the numbers of iterations in this example, probably due to the warping 

phenomenon. However, when the applied forces are divided into 20 equal load steps, 

both the unsymmetrical and symmetrized geometric stiffness matrices use 105 

iterations in total. This illustrates that the warping effect on the convergence rate can 

be decreased by using more load steps. Also, the SHELL181 element requires 20 

equal steps and 130 iterations in this example, performing worse than the proposed 

shell elements. 

Although the symmetrized geometric stiffness has some influences on the accuracy, it 

is hard to come across displacements and rotations in practical civil engineering 

structures as large as those in the first three examples. Moreover, the convergence rate 

can be decreased or removed by using more load steps in the analysis. Thus, it is 

acceptable that the proposed shell elements using the symmetrized geometric stiffness 

matrices, and they are used in the following numerical examples by default. 
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7.1.4 Clamped semi-cylindrical shell under a point load 

A semi-cylindrical shell is fully clamped at one end and subjected to a point load at 

the other free end, whereas its bottom is under a symmetrical condition, as shown in 

Figure 7.8. The geometric and material properties are shown below. 

Radius R=1.016, thickness t=0.03, length of cylinder L=3.048. 

Elastic modulus E=2.0685×107, Poisson’s ratio v=0.3. 

 

(a) SCRQ4 

 

(b) SCRT3 

Figure 7.8 Clamped semi-cylindrical shell under a point load 
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The maximum applied point load is F=2000. In the program NIDA, the shell structure 

is modelled with a 20×20 mesh of the proposed elements, while the maximum applied 

load is equally divided into 20 load steps. 

The results obtained by the proposed shell elements are plotted in Figure 7.9, 

compared with the SHELL181 element in ANSYS. It can be seen that all of these 

elements are in good agreement. In addition, the SCRT3 and SCRQ4 elements need 

115 and 142 iterations in total to finish the whole analysis respectively, in which the 

SCRQ4 element may be disturbed by the warping effect. It is found that the 

SHELL181 element cannot finish the analysis with a 20×20 mesh, so a 32×32 mesh is 

used, with 23 program-chosen load steps and 150 iterations. 
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Figure 7.9 Load-displacement curves of clamped semi-cylindrical shell 

 

 

Figure 7.10 Deformed shapes of clamped semi-cylindrical shell 
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In this example, the proposed shell elements in NIDA are easier to get convergence 

with coarse meshes in a larger load step, compared with the SHELL181 element in 

ANSYS. In addition, the deformed shapes obtained by the SCRQ4 element in NIDA 

are shown in Figure 7.10, when the point load is F/4, F/2, 3F/4 and F. 

 

7.1.5 Annular plate under a line load at the free edge 

Figure 7.11 shows annular plates modelled with SCRQ4 and SCRT3 elements in the 

program NIDA, respectively. This example suggested by Başar and Ding (1992) was 

widely used to test shell elements. One end of this structure is subjected a transverse 

line load and the other end is fully clamped. The annular plate undergoes large 

displacements and large rotations. The geometric and material properties are given 

below. 

External diameter Re=10, internal diameter Ri=6, thickness t=0.03. 

Elastic modulus E=2.1×108, Poisson’s ratio=0. 

In the analysis, the maximum transverse line load is set to 6, while the annular plate is 

modelled with a 4×30 mesh of the proposed shell elements, as shown in Figure 7.11. 
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(a) SCRQ4 

 

 

(b) SCRT3 

Figure 7.11 Annular plate under a line load 

 

 

 

 

A 

A 
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Figure 7.12 Load-displacement curves of annular plate under a line load 

The load-displacement curves at the point A obtained by the proposed shell elements 

in NIDA are depicted in Figure 7.12, compared with the SHELL181 element. The 

results obtained by an 8×60 mesh of the SHELL181 element are also taken as 

reference. It can be seen that the results obtained by the proposed shell elements are 

close to the reference solutions, whereas the annular plate modelled with the 

SHELL181 element using a 4×30 mesh is slightly stiffer than the other elements. In 

addition, based on the combined arc-length with minimum residual displacement 

method in the program NIDA, the SCRT3 element totally needs 26 load steps and 215 

iterations, while the SCRQ4 element needs 25 load steps and 203 iterations. For the 

SHELL181 elements using the program-chosen load stepping in ANSYS, the model 

using a 4×30 needs 31 load steps and 190 iterations, while an 8×60 mesh needs 25 

load steps and 209 iterations. 
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(a) SCRQ4 

 

(b) SCRT3 

Figure 7.13 Deformed shapes of annular plate 

Thus, these different elements have similar iterations and computational efficiency, 

while the proposed shell elements perform better than the SHELL181 element in 

terms of accuracy in this example. Besides, the deformed shapes obtained by the 

proposed shell elements under the maximum load in the program NIDA are shown in 

Figure 7.13. It can be seen that these two deformed shapes are close to each other. 
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7.1.6 Clamped square plate under a concentrated force 

Figure 7.14 depicts a square plate clamped along two opposite sides and subjected to 

a concentrated force at a point on the centreline. This example was used by Izzuddin 

(2005) to test his proposed co-rotational approach introduced in Section 4.2.3 under 

an irregular mesh. The geometric and material properties are shown below.  

Side length L=400mm, thickness t=1.98. 

Young’s modulus E=2.15×104N/mm2, Poisson’s ratio v=0.3. 

As shown in Figure 7.15, only half of the plate is modelled due to symmetry, in which 

a regular mesh and an irregular mesh of 10×5 elements are used. Also, the maximum 

concentrated force F is set to 250N and divided into 5 equal steps. 

 

 

Figure 7.14 Clamped square plate subjected to a concentrated force 
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The results at the point A obtained by different methods are plotted in Figure 7.16, in 

which the solutions given by Izzuddin (2005) using a co-rotational approach with the 

quadratic (QD) Mindlin-Reissner local formulation for the regular mesh of 20×10 

elements (20e) and increments of 5 equal load steps (5i) are captured from the figure 

in his paper. 

    

(a) Regular meshes 

 

    

(b) Irregular meshes 

Figure 7.15 Different meshing schemes of clamped square plate 

0.2L 

0.2L 

0.5L 
0.6L 
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Figure 7.16 shows that the vertical displacements at the point A obtained by the 

models using the regular mesh of different elements are close, except that the 

SHELL181 element is slightly stiffer. Further, the detailed results obtained by the 

regular and the irregular meshes of the proposed shell elements are listed in Table 7.8 

 

 

Figure 7.16 Load-displacement curves of clamped square plate 

 

Table 7.8 Vertical displacements (-w) at the point A obtained by different models 

F SCRT3 
(regular) 

SCRT3 
(irregular) 

SCRQ4 
(regular) 

SCRQ4 
(irregular) 

SHELL181 
(regular) 

50 2.9137 2.9115 2.9095 2.9187 2.8252 

100 4.1598 4.1567 4.1692 4.1802 4.0379 

150 5.0309 5.0261 5.0530 5.0647 4.8830 
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200 5.7224 5.7156 5.7565 5.7684 5.5619 

250 6.3048 6.2960 6.3506 6.3625 6.1267 

 

Table 7.8 shows that the results obtained by the irregular mesh of the proposed shell 

elements are close to the regular mesh, so the proposed shell elements are insensitive 

to irregular meshes. In addition, using 5 equal load steps, both regular and irregular 

meshes of the proposed shell elements need 19 iterations in total, while the 

SHELL181 element needs 11 iterations. In summary, the proposed shell elements are 

more accurate than the SHELL181 element, but the latter is more efficient in this 

example undergoing relatively small displacements and rotations compared with the 

previous examples. This is maybe the stiffer element is helpful to get convergence 

quickly in this problem. 

 

7.1.7 Clamped strip under torsion 

Figure 7.17 shows a clamped flat strip subjected to a force couple at the free end. This 

example was used by Izzuddin and Liang (2016) to test the validity of shell elements 

against the invariance of nodal ordering, which showed that a shell element using one 

element side to define the local x-axis has different solutions after re-ordering of 

nodal numbering. Similarly, the validation is repeated here to test the proposed 

quadrilateral shell element, SCRQ4. The geometric and material properties are listed 

below. 

Length L=12, width b=1, thickness t=0.1. 
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Young’s modulus E=1.2×106, Poisson’s ratio v=0. 

 

 

Figure 7.17 Clamped flat strip under torsion 

In this example, the flat strip is modelled by a 12×1 mesh of the SCRQ4 element, 

while the maximum force couple is set to 100 and divided into 10 equal load steps in 

the program NIDA. Two different nodal ordering schemes are used to test the SCRQ4 

element, as seen in Figure 7.18. 

 

 

 

Figure 7.18 Nodal ordering 
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Figure 7.19 Load-displacement curves of clamped flat strip under torsion 

The vertical displacements at the point A obtained by the SCRQ4 element using 

different nodal orderings in the program NIDA are plotted in Figure 7.19, compared 

with the solutions of the bisector quadrilateral (BSQ) shell element by Izzuddin and 

Liang (2016) and the SHELL181 element in ANSYS, in which the model in ANSYS 

uses a 24×2 mesh of the SHELL181 element. In Figure 7.19, SCRQ4-1 and SCRQ4-2 

refer to the models adopting the 1st and the 2nd nodal ordering, respectively. These 

elements are in good agreement with each other. Further, to illustrate the good 

performance of the SCRQ4 element, the detailed results of the points A and B at 

every two load steps are listed in Table 7.9. Note that the load values of the 

SHELL181 element in this table are approximate except 100, since the 

program-chosen time stepping is used in ANSYS. 
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Table 7.9 Vertical displacements (w) at the points A and B 

F SCRQ4-1 
A 

SCRQ4-1 
B 

SCRQ4-2 
A 

SCRQ4-2 
B 

SHELL181 
A 

SHELL181 
B 

20 0.3632 -0.3632 0.3632 -0.3632 0.3632 -0.3632 

40 0.4440 -0.4440 0.4440 -0.4440 0.4471 -0.4471 

60 0.4705 -0.4705 0.4705 -0.4705 0.4725 -0.4725 

80 0.4826 -0.4826 0.4826 -0.4826 0.4838 -0.4838 

100 0.4892 -0.4892 0.4892 -0.4892 0.4894 -0.4894 

 

Table 7.9 shows that the SCRQ4 element is invariant to nodal ordering as same as the 

SHELL181 element and their results are very close to each other. In terms of the 

convergence rate, the SCRQ4 element uses 10 equal load steps and 73 iterations to 

complete the whole analysis for both the nodal orderings. However, in ANSYS, a 

12×1 mesh of the SHELL181 element cannot conduct the analysis even using a very 

small increment of load step, while a 24×2 mesh of the SHELL181 element cannot 

get convergence using only 10 equal load steps. When the initial load step is set to 10, 

39 program-chosen load steps and 263 iterations are needed to complete the analysis 

using the SHELL181 element in ANSYS. Note that the SCRQ4 element adopts the 

symmetrized geometric stiffness matrix by default in this example, while the SCRQ4 

element is more efficient when using the unsymmetrical geometric stiffness matrix, 

with only 5 equal load steps and 28 iterations in total. This is because the wrapping 

effect makes the SCRQ4 element using symmetrized geometric stiffness matrix need 

more iterations, but it is still more accurate and efficient than the SHELL181 element 

in this example. 
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7.1.8 Cylindrical shell segment under a concentrated force 

Figure 7.20 depicts that a cylindrical shell segment is subjected to a concentrated 

force at the centre, while its two sides are hinged and the other two are free. This is a 

well-known problem used to check the ability of a shell element against instability 

behaviour, whose equilibrium path exhibits a snap-through response with two limit 

points. The material properties are given below. 

Elastic modulus E=3.10275 kN/mm2, Poisson’s ratio v=0.3. 

 

 

Figure 7.20 Cylindrical shell segment under a concentrated load 
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In this example, two different thicknesses (i.e. 6.35 mm and 12.7 mm) are considered. 

Due to the symmetry, a quarter part of the cylindrical shell segment is modelled with 

a 4×4 mesh of the proposed shell elements, while the vertical concentrated force is 

applied to the point A, as shown in Figure 7.21. 

 

 

(a) SCRQ4 

 

(b) SCRT3 

Figure 7.21 Meshing details of cylindrical shell 

In the program NIDA, the combined arc-length with minimum residual displacement 

method is adopted to trace the whole equilibrium paths of these models. The vertical 

displacements at the points A and B obtained by the proposed shell elements are 
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plotted in Figure 7.22, while the solutions obtained by the SHELL181 element in 

ANSYS are taken as reference. The results obtained by these different shell elements 

are close to each other. Thus, the proposed shell elements can accurately describe the 

instability behaviour of shell structures. 
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Figure 7.22 Load-displacement curves of cylindrical shell segment under a 

concentrated force 



Chapter 7  Verification Examples 

271 

7.1.9 Clamped right-angle frame under an in-plane load 

Figure 7.23 shows that a right-angle frame is clamped on one end and subjected to an 

in-plane force at the other free end. The geometric properties are given in Figure 7.23. 

The material properties are given below. 

Elastic modulus E is 71240 N/mm2 and Poisson’s ratio v is 0.3. 

 

 

Figure 7.23 Right angle frame under an in-plane force 

The frame is modelled by a 2×30 mesh of the proposed shell elements in the program 

NIDA, as shown in Figure 7.24. In addition, the right-angle frame is analysed using 

the identical mesh of the SHELL181 element in ANSYS for comparison. In the 
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simulation, an out-plane imperfect load equal to one thousandth of the in-plane force 

is applied at the point of the in-plane force to initiate the lateral buckling of the frame. 

 

 

(a) SCRQ4 

 

(b) SCRT3 

Figure 7.24 Meshes and deformed shapes of right angle frame 

To trace the whole equilibrium path, the program NIDA adopts the combined 

arc-length with minimum residual displacement method and the load-displacement 

curves at the point applied loads are plotted in Figure 7.25. These different shell 

elements are in good agreement with each other. Also, the deformed shapes obtained 

Initial shape 

Initial shape 

Deformed shape 

Deformed shape 
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by the SCRT3 and the SCRQ4 elements in the program NIDA are shown in Figure 

7.24, when the in-plane force F=2N. 

 

 

 

 

Figure 7.25 Load-displacement curves of right angle frame under an in-plane force 
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7.1.10 Channel section beam under compression 

Figure 7.26 depicts that a channel section beam is subjected to an axial compressed 

load uniformly applied at the end sections. In addition, two small forces are applied at 

the midsection (x=550) to introduce torsional imperfections. The values of the two 

small forces are set to λ, while the compressed load is set to 125λ. The boundary 

conditions are u(550,0,0)=0, v(0,0,0)=v(1100,0,0)=0, w(0,y,0)=w(1100,y,0)=0. A 

(3+8+3)×56 mesh is used to model this example, as shown in Figure 7.27. The 

material properties are given below. 

Elastic modulus E is 2.1×106 and Poisson’s ratio v is 0.3. 

 

 

Figure 7.26 Channel section beam under compression 
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(a) SCRQ4 

 

 

(b) SCRT3 

Figure 7.27 Meshing details of channel section beam 

The results of the vertical displacements at the points A and B, obtained by the 

proposed shell elements in NIDA, are plotted in Figure 7.28 and compared with the 

results obtained by the SHELL181 element in ANSYS. Also, the values of λ at the 

limit point are given in Table 7.10 which shows that the results obtained by these 

different elements are close to each other. 
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Figure 7.28 Load-displacement curves of channel section beam under compression 

 

Table 7.10 Values of λ at the limit point 

 SCRT3 SCRQ4 SHELL181 

λ 971.2 964.8 960.2 
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7.2 Geometrically nonlinear elastoplastic analysis of shell 

structures 

Several elastoplastic shell problems involved with large displacements and large 

rotations are analysed using the proposed SCRT3 and SCRQ4 elements considering 

elastoplasticity by layered approach. The obtained results are compared with those 

available in the existing literature. For all examples, the thickness of shell element is 

equally divided into 10 layers, and only the von Mises yield criterion with the 

associated flow rule and the isotropic hardening is taken into account. 

 

7.2.1 Cantilever beam under bending 

A cantilever beam subjected to a shear force at its free end for four different 

length/thickness ratios of L/t=10/3, 10, 100 and 1000, respectively, is analysed using 

the proposed shell elements, while a 10×1 mesh of the SCRQ4 and SCRT3 shell 

elements in the program NIDA are shown in Figure 7.29. The geometric and material 

properties are given below. 

Length L=10, width b=1. 

Young’s modulus E=1.2×107, Poisson’s ratio v=0. 

Initial yield stress σy=1.2×106, hardening parameter H=1.2×105. 
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Figure 7.29 Meshing details of cantilever beam 

The load-displacement curves at the free ends obtained by the proposed shell 

elements in the program NIDA are plotted in Figure 7.30, while the results obtained 

by Eberlein and Wriggers (1999) using 20 five-parameter quadrilateral 4-node shell 

elements are taken as reference. 

 

 

 

SCRQ4 SCRT3 
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Figure 7.30 Load-displacement curves of cantilever beam subjected to a shear force 

for different length/thickness ratios 

It can be seen that the results obtained by the proposed shell elements are close to 

each other, but they are slightly stiffer than those by Eberlein and Wriggers (1999) 

when the cantilever beam is in the hardening phase. This is because the proposed shell 

elements use a method different from the literature to conduct the elastoplastic 

analysis. However, the yield points obtained by the proposed shell elements are very 

close to those in literature. 

 

7.2.2 Pinched cylinder under a pair of point loads 

This example investigates a short cylindrical shell under a pair of point load at the 

midsection for large displacements, large rotations and elastoplastic behaviour. Its 
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two ends are supported by two rigid diaphragms, where only the displacements along 

the longitudinal axis are allowed. It is a classical benchmark problem in shell element 

researches, firstly presented Simo and Kennedy (1992) and then followed by many 

researchers (Brank et al., 1997; Eberlein and Wriggers, 1999; Fontes Valente et al., 

2005; Miehe, 1998; Sansour and Kollmann, 2000; Sorić et al., 1997; Wriggers et al., 

1996). The geometric properties and the material properties are listed below. 

Length L=600, radius R=300, thickness t=3. 

Young’s modulus E=3000, Poisson’s ratio v=0.3. 

Initial yield stress σy=24.3 and hardening parameter H=50. 

 

 

Figure 7.31 Pinched cylinder under a pair of point loads 
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Due to symmetry, only one eighth of the cylinder is analysed with a regular mesh of 

32×32 elements, as depicted in Figure 7.31. The results of vertical displacements 

under the point load obtained by the proposed shell elements are plotted in Figure 

7.32, compared with those obtained by Brank et al. (1997) where the same mesh of a 

nonlinear 4-node isoparametric quadrilateral shell element was used to model the 

pinched cylinder. 

 

 

Figure 7.32 Load-displacement curves of pinched cylinder 

The result obtained by the SCRT3 element is close to those observed by Brank et al., 

while the SCRQ4 element is slightly softer. However, the snap-through response of 

the cylinder can be accurately observed by these shell elements with the similar limit 

points and stiffening behaviour. The deformed shapes obtained by the SCRT3 
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element in the program NIDA at the Points a, b, c and d and the corresponding values 

of the vertical displacements are shown in Figure 7.33 respectively. 

 

  

  

Figure 7.33 Deformed shapes of pinched cylinder 

 

7.2.3 Scordelis-Lo roof under a gravity load 

Point c 
-w=246.6 

 

Point d 
-w=284.4 

 

Point a 
-w=110.5 

 

Point b 
-w=184.0 
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The Scordelis-Lo roof subjected to a uniform gravity load is a classical benchmark 

problem for testing geometrically nonlinear elastoplastic shell elements, with 

performed by many researchers (Argyris et al., 2002b; Battini and Pacoste, 2006; 

Brank et al., 1997; Kim and Lomboy, 2006; Peric and Owen, 1991; Roehl and Ramm, 

1996). The roof has a half-length of L=7.6m, radius of R=7.6m, thickness of 

t=0.076m and half-angle of θ=40˚. It is subjected to a uniform gravity load on the roof 

with a reference value p0 = 4.0kN/m2 and supported by rigid diaphragms at its ends. 

The material properties are listed below. 

Length L=600, radius R=300, thickness t=3. 

Young’s modulus E=2.1×104kN/m2, Poisson’s ratio v=0. 

Initial yield stress σy=4.2kN/m2, hardening parameter H=0. 

Due to symmetry, only one quarter of the roof is modelled with the proposed shell 

elements using a 16×16 mesh in the program NIDA and the symmetric boundary 

conditions are applied along the lines X=0 and Y=0, while the mesh of the SCRQ4 

element in NIDA is shown in Figure 7.34. 

The gravity load versus vertical displacement curves at the point A obtained by the 

proposed shell elements are plotted in Figure 7.35. For comparison, the results from a 

50×50 mesh of a quadrilateral shell element by Brank et al. (1997), a 12×12 mesh of a 

seven-parameter shell element by Roehl and Ramm (1996) and a 32×32 mesh of a 

co-rotational quasi-conforming 4-node shell element with 7 stress points by Kim and 

Lomboy (2006) are also shown in Figure 7.35. 
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Figure 7.34 Scordelis-Lo roof 

 

 

Figure 7.35 Load-displacement curves of Scordelis-Lo roof 
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Figure 7.36 Deformed shapes of Scordelis-Lo roof 

Actually, it has been found by many researchers that this problem has two solution 

trends. One has a sudden drop in load carrying capacity, such as the results obtained 

by Brank et al. (1997). The other one has a less drastic loss capacity with a gain in 

stability as the deflection increases. The results obtained by the proposed shell 

elements in NIDA are the latter solution type, as well as those obtained by Roehl and 

Ramm (1996) and Kim and Lomboy (2006). This example is sensitive to meshing 

size, element type, number of integration points through the thickness, etc. In any case, 

the limit points of load factor obtained by these different elements are close, while 

Load factor=0.57 Load factor=1.58 

Load factor=1.30 Load factor=1.61 
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both proposed shell elements have the similar limit points of load factor slightly larger 

than others. This may be due to the coarse mesh or the stiffness of drill rotations 

considered. The deformed shapes of the Scordelis-Lo roof at different load steps 

obtained by the SCRT3 element in the program NIDA are shown in Figure 7.36. 

 

7.2.4 Shallow cylindrical shell under a point load 

The geometrically nonlinear elastoplastic analysis of a shallow cylindrical shell under 

a concentrated vertical load F=1kN is performed in this example. As shown in Figure 

7.37, the curved edges of the shell are free in all directions, while the longitudinal 

edges are hinged. The geometric properties and the material properties are listed 

below. 

Length L=254mm, radius R=2450mm, thickness t=6.35mm and half-angle of 

θ=5.729578˚. 

Young’s modulus E=3.103kN/mm2 and Poisson’s ratio v=0.3. 

Initial yield stress σy=0.001kN/mm2 and hardening parameter H=0. 

Due to symmetry, only one quarter of the shell is modelled with a 20×20 mesh of the 

proposed shell elements, as shown in Figure 7.37. The results obtained by the 

proposed shell elements in the program NIDA are compared with those from the same 

mesh of a quadrilateral shell element by Montag et al. (1999). The load-displacement 

curves at the centre of the shell are plotted in Figure 7.38 which shows that the 

solutions obtained by these elements are close to each other. 
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Figure 7.37 Shallow cylindrical shell under a point load 

 

 

Figure 7.38 Load-displacement curves of shallow cylindrical shell 
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7.2.5 Square plate under pressure 

A simply-supported square plate under uniform pressure load is analysed in this 

example. It is pinned along all four edges, while the pressure load with a reference 

value p0 = 0.01 is deformation independent. Only a quarter of the plate is modelled 

with a 16×16 mesh of the proposed shell elements in the program NIDA due to 

symmetry. Figure 7.39 depicts the mesh of the SCRQ4 element and boundary 

conditions. The load factor versus the vertical displacement at the centre of the square 

plate is plotted in Figure 7.40, and the presented results in NIDA are compared with 

those from a 24×24 mesh of an eight-node C0 shell element by Schieck et al. (1999). 

The geometric properties and the material properties are listed below. 

Length of the plate 2L=508, thickness t=2.54. 

Young’s modulus E=6.9×104 and Poisson’s ratio v=0.3. 

Initial yield stress σy=248 and hardening parameter H=0. 

 

 

Figure 7.39 Simply-supported square plate under pressure 
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Figure 7.40 Load-deflection curve of simply-supported square plate 

 

 

 

Figure 7.41 Deformed shapes of simply-supported square plate 

Load factor=7.8 Load factor=15.0 

Load factor=22.6 Load factor=30.0 
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7.2.6 Pinched hemispherical shell 

A hemispherical shell subjected to two pairs of inward and outward forces at the 

quarter points of its open edge is analysed in this example. The two applied loads 

have a reference value of F=0.001. The geometric properties and the material 

properties are listed below. 

Radius R=10, thickness t=0.5. 

Young’s modulus E=10.0 and Poisson’s ratio v=0.2. 

Initial yield stress σy=0.2 and hardening parameter H=9.0. 

 

 

Figure 7.42 Pinched hemispherical shell 

Due to symmetry, only one quarter of the hemispherical shell is modelled with a 

12×12 mesh of the proposed shell element in the program NIDA, as shown in Figure 
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7.42. The load factors versus the normal displacements at the pinching points A and B 

are plotted in Figure 7.43. The results obtained by the proposed shell elements are 

compared with those from a 12×12 mesh of a 3-node flat triangular shell element by 

Argyris et al. (2002b). And Figure 7.43 shows that these different shell elements are 

in good agreement with each other. 

 

 

Figure 7.43 Load-displacement curves of pinched hemispherical shell 

 

7.2.7 Angle section beam under compression 

The elastic and elastoplastic buckling analyses of angle section beam are performed in 

this example. As shown in Figure 7.44, the angle section beam is fixed at one end and 
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free at the other end, and a compression load P is applied to the point A at the free 

end section. The material properties are listed below. 

Young’s modulus E=2.1×106 and Poisson’s ratio v=0.3. 

Initial yield stress σy=500 and hardening parameter H=48325. 

 

 

Figure 7.44 Angle section beam 

 

  

(a) SCRQ4                         (b) SCRT3 

Figure 7.45 Meshes of angle section beam 

In the program NIDA, the angle section beam is modelled with a (4+6)×60 mesh of 

the proposed shell elements, as shown in Figure 7.45. The compression load versus 
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the axial displacement at the point A for elastic and elastoplastic analyses are depicted 

in Figure 7.46 and compared with the results obtained by Battini and Pacoste (2006) 

where a nonlinear flat triangular shell element, consisting of the OPT membrane 

element with drilling rotations (Felippa, 2003) and the DKT plate element (Batoz et 

al., 1980a), was proposed based on the general EICR formulation. 

Figure 7.46 shows that the results obtained by the SCRQ4 element are slightly softer 

than those in the reference, while the results obtained by the SCRT3 element are 

slightly stiffer. This problem is a membrane-dominated case, so that the difference 

between these shell elements may be mainly due to the membrane elements. It also 

can be noticed that considering of the elastoplastic behaviour decreases the limit point 

of the compression load in this example. 

 

 

Figure 7.46 Load-displacement curves of angle section beam 
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7.3 Summary 

In this chapter, the proposed SCRT3 and SCRQ4 shell elements are extensively 

verified by many numerical examples. It is shown that the proposed simplified EICR 

formulations with the proposed triangular and quadrilateral shell elements are not 

only concise but also accurate and efficient. 

Although the simplified EICR formulations lead to unsymmetrical geometric stiffness 

matrices which cannot be used in the conventional solvers only allowing for 

symmetric matrices, the numerical examples demonstrate that the unsymmetrical part 

of geometric stiffness has insignificant impacts on the accuracy and efficiency of 

most problems, except for the problem of a cantilever beam rolling up to a circle 

using large load steps. In this example, the proposed shell elements using the 

symmetrized geometric stiffness matrices cannot complete the whole analysis due to 

large load steps. However, when smaller load steps are used, the difference between 

the unsymmetrical geometric stiffness matrices and the symmetrized ones can be 

decreased or removed. Moreover, for some elastic numerical examples, the proposed 

shell elements with the symmetrized geometric stiffness matrices perform better than 

the SHELL181 element in ANSYS in terms of accuracy and efficiency. 

As mentioned in the previous chapter, the proposed simplified co-rotational method is 

element-independent. Particularly, its geometric stiffness matrix is independent of the 

local shell element formulation. This is very different from the conventional 

geometrically nonlinear analysis based on the total and updated Lagrangian 

formulations with Green-Lagrangian strains. Thus, when transverse shear deformation 
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or material nonlinearity is taken into account based on the EICR formulations, it 

merely needs to modify the local shell element formulation. In addition, the numerical 

examples show that the proposed shell elements can accurately and efficiently solve 

the problems allowing for transverse shear deformation and elastoplastic behaviour. 

This chapter covers membrane-dominated, bending-dominated and mixed shell 

problems. All these problems can be solved by the proposed shell elements accurately, 

although there are small differences between the SCRQ4 and SCRT3 shell elements 

in some cases which mainly are membrane-dominated and mixed problems. This is 

because the membrane elements adopted in the SCRQ4 and SCRT3 shell elements are 

derived based on different methods, especially for the problems in which the drilling 

stiffness plays an important role. Thus, it is important to select accurate local shell 

elements for the EICR formulations. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

This thesis focuses on the development of shell elements and the formulations for 

nonlinear analysis. Specifically, this research is devoted to: (1) propose a novel pure 

deformational method for shell elements which is element-independent and consistent 

with the co-rotational formulation; (2) formulate a novel element-independent 

co-rotational formulation based on the presented pure deformational method, whose 

derivation is much simpler than the traditional method; (3) simplify the co-rotational 

formulation based on the physical interpretation and the small strains assumption and 

therefore proposing a simplified co-rotational formulation; (4) develop a 3-node 

geometrically nonlinear triangular shell element allowing for drilling rotations and 

transverse shear deformation based on the simplified co-rotational formulation, which 

is named as SCRT3 and further simplified by using the proposed pure deformational 

method; (5) derive a 4-node geometrically nonlinear quadrilateral shell element based 

on the simplified co-rotational formulation, which is named as SCRQ4 and allows for 

drilling rotations, transverse shear deformation, invariance to nodal ordering and 

insensitivity to irregular meshes; (6) consider material nonlinearity in the SCRT3 and 

SCRQ4 shell elements through the layered method; (7) code the proposed shell 

elements into the program NIDA to realize geometrically nonlinear elastic and 

elastoplastic analyses of shell structures and verifying their accuracy and efficiency 
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through a number of benchmark problems. The main contributions and conclusions of 

this dissertation are summarized as follows. 

1. A novel pure deformational method for 3-node triangular and 4-node 

quadrilateral shell elements based on the first-edge definition of the local coordinate 

system, in which the x-axis is aligned with one side, is proposed. The new method is 

different from the traditional natural mode method by Argyris et al. (1979). The local 

displacements of a shell element can be regarded as pure deformations through the 

first-edge definition of the local coordinate system. This is because there are six 

degrees of freedom of a shell element are restrained and the corresponding local 

displacements are zero. Compared with the conventional isoparametric finite element 

formulation, the pure deformational method separates the pure deformations from the 

rigid body movements of an element and then decreases the element quantities, so the 

local element formulation based on the basic coordinate system with fewer qualities is 

simpler and has substantial computational advantages, especially for the elements 

requiring numerical integration and having complicated formulations. Also, the new 

pure deformational method for shell elements is element-independent and can be 

applied for any 3-node triangular and 4-node quadrilateral shell elements. However, 

compared with the method used for beam-column elements, the derivation of the 

proposed method is more complicated, since a beam-column element can be 

simplified as a 2D problem while a shell element is a 3D problem. 

2. A novel co-rotational method with element-independence for geometrically 

nonlinear analysis is proposed, which is consistent with the proposed pure 

deformational method. Different from the traditional co-rotational method firstly 

introduced by Rankin and Brogan (1986) with a strict and complete derivation, the 
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proposed one is derived from the physical interpretations based on the local 

coordinate system of a shell element. The geometric stiffness of a triangular shell 

element has three parts. They are due to the rigid body movements of the shell 

element, the changes of dimensions of the membrane and plate element, respectively. 

The geometric stiffness of a quadrilateral shell element has one more part due to the 

change of warping. The proposed co-rotational method has clear physical meanings 

and is simpler and easier to visualize than the traditional one. It is also consistent with 

the proposed pure deformational method. Compared with the total and updated 

Lagrangian formulations based on Green-Lagrangian strains, the co-rotational 

formulation is easier to be integrated with many existing linear elements to extend 

them to conduct geometrically nonlinear analysis as the local element formulations 

and the geometrically nonlinear procedure are separated. The geometric stiffness in 

the element-independent co-rotational formulation is explicit and formulated by the 

nodal internal forces of the element rather than the stresses at the integration points 

used in the TL and UL formulations. Also, material nonlinearity only need to be 

considered in the local element formulation and treated separately from geometrical 

nonlinearity in the element-independent co-rotational formulation. Thus, simplifying 

the co-rotational formulation is vital to finite element nonlinear analysis. 

3. Based on the former proposed co-rotational method, a simplified co-rotational 

method inheriting the property of element-independence is proposed. The simplified 

one neglects the change of dimensions of the membrane and plate elements in the 

derivation of the geometric stiffness according to the small strain assumption, which 

makes its formulation simpler again. Finally, in the simplified co-rotational 

formulation, triangular shell elements merely need the geometric stiffness due to the 
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rigid body movements, while the geometric stiffness of quadrilateral shell elements is 

contributed by rigid body movements and warping. 

4. A 3-node triangular shell element is developed for geometrically nonlinear 

analysis based on the simplified EICR formulation, named as SCRT3 shell element. 

The new shell element consists of the optimal triangular (OPT) membrane element 

with drilling rotations by Felippa (2003) and the refined triangular (RDKT) 

Mindlin-Reissner plate element allowing for transverse shear deformation by Chen 

and Cheung (2001). Both the membrane and the plate elements have good 

performances and were usually extended into nonlinear analysis for shell structures by 

many researchers. Further, these elements are simplified using the proposed pure 

deformational method. It is clear to see the effect of simplification through the 

comparison in Chapter 5. 

5. A 4-node quadrilateral shell element is developed for geometrically nonlinear 

analysis based on the simplified EICR formulation, named as SCRQ4 shell element. 

The membrane part of SCRQ4 with drilling rotations was proposed by 

Ibrahimbegovic et al. (1990) based on a mixed variational formulation with 

independent rotation fields. The plate part of SCRQ4 allowing for transverse shear 

deformation was developed by Chen and Cheung (2000) based on the 

Mindlin-Reissner plate theory, in which the exact displacement function of the 

Timoshenko’s beam is used to derive the displacement interpolations of the plate 

element. For the SCRQ4 shell element, the bisector definition of the local coordinate 

system is used. Although the variations of the rigid body rotations are more 

complicated than the one for the first-edge definition of the local coordinate system, 
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the bisector definition makes the SCRQ4 shell element invariant to the nodal ordering 

and more accurate for coarse-mesh models. 

6. The proposed geometrically nonlinear shell elements based on the simplified 

co-rotational formulation are extended to geometrically nonlinear elastoplastic 

analysis. In the computational procedure, material and geometrical nonlinearities can 

be separated. The elastoplastic behaviour only needs to be considered in the local 

element formulation. Specifically, the layered approach is used to simulate the 

elastoplastic behaviour through the thickness, in which the thickness is divided into 

several layers and each layer uses the plane stress description. For the elastoplastic 

constitutive model, the von Mises yield criterion, the associated flow rule and the 

linear isotropic hardening are assumed. An implicit backward Euler return-mapping 

integration algorithm is used to update stresses in plastic deformation. To avoid the 

spurious unloading phenomenon, the incremental displacements rather than the 

iterative displacements should be used in the procedure of updating internal forces. 

7. The proposed shell elements for geometrically nonlinear elastic and elastoplastic 

analysis were implemented in the NIDA software. To comply with the solver for 

symmetric matrices in most programs like NIDA and improve computational 

efficiency, the unsymmetrical geometric stiffness matrix derived by the simplified 

co-rotational formulation is symmetrized. A number of numerical examples are 

performed to verify the efficiency and accuracy of the proposed shell elements. It is 

proved that the symmetrized geometric stiffness matrix has insignificant effects on the 

results and the numbers of load steps for most problems. The presented benchmark 

problems contain membrane-dominated, bending-dominated and mixed shell 

situations. All of them can be solved by the proposed shell elements with efficiency 
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and accuracy in NIDA. Some of these examples have very large displacements and 

large rotations, far beyond the requirements of civil engineering structures. Thus, the 

proposed nonlinear shell elements are fully suitable for civil engineering structures. 

Most importantly, the proposed simplified co-rotational formulation with acceptable 

accuracy is much simpler than the traditional formulations for geometrically nonlinear 

analysis, and therefore it can improve the efficiency of nonlinear analysis and design 

for plate and shell structures in civil engineering. 

 

8.2 Recommendations for future work 

Although some unique works and improvements for nonlinear analysis of shell 

structures have been made in this thesis, there are several important issues requiring 

future studies. 

1. The novel pure deformational technique has been successfully applied in the 

triangular and quadrilateral shell elements and it contributes to a novel derivation of 

the element-independent co-rotational algorithm. However, it only can be used in the 

elements using the first-edge definition of the local coordinate system where one axis 

is aligned with one element side, and the first-edge definition often makes the element 

sensitive to the nodal ordering in some cases. The other definitions of the local 

coordinate system cannot restrain the displacements and rotations of the element, as a 

result, the element quantities cannot be reduced. However, the derivation by the 

proposed pure deformational method can be used to find the relationship between 

these element quantities. In a word, more works are needed to extend the pure 
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deformational method into the other definitions of local coordinate system and make 

the element invariant to the nodal ordering. 

2. The proposed simplified co-rotational algorithm is much simpler than the 

conventional one and keeps element-independence, efficiency and accuracy. However, 

it produces unsymmetrical geometric stiffness like the conventional method. This is 

not good for matrix computation. Although the symmetrized geometric stiffness has 

little influence on results and convergence, it cannot be eliminated completely. This 

problem needs more discussions. 

3. The local triangular and quadrilateral shell elements are flat, and the warping 

phenomenon in the quadrilateral shell element is regarded as eccentricities at nodes. 

Thus, for the flat shell structures with large curvature, refined meshes of the proposed 

shell elements should be used to obtain acceptable results. To improve their 

performance in the simulations of shell structures with large curvature, the total 

Lagrangian formulation based on the degenerated Green-Lagrangian strains, known 

as the shallowly curved shell theory, can be used to establish the local shell element 

formulation and then consider moderate strains. Although the local material stiffness 

matrix becomes complicated and nonlinear, it does not affect the geometric stiffness 

derived based on the simplified co-rotational method. 

4. To consider material nonlinearity in the proposed shell elements, this thesis 

adopts the layered approach. The relevant computational procedure is easily extended 

to that for composite shell elements. The main difference is that layers of a composite 

shell element may have different thicknesses and material properties. 
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5. In addition to the layered approach to consider material nonlinearity, an 

alternative method is the non-layered approach which use stress resultants to take into 

account the elastoplastic behaviour and does not need the division of shell element 

thickness. Thus, the non-layered approach which is more efficient can be integrated 

with the simplified co-rotational formulation. 

6. For the elastoplastic constitutive model, this thesis adopts the von Mises yield 

function, the associated flow rule and the linear isotropic hardening. Actually, more 

formulations and theories about nonlinear constitutive modelling can be used here, 

such as the Mohr-Coulomb failure criterion describing the response of concrete, the 

non-associated flow rule, kinematic hardening, multilinear hardening, etc. Moreover, 

even damage constitutive equations can be used with the proposed simplified 

co-rotational method. 

7. The proposed simplified co-rotational formulation can be extended to the 

dynamic nonlinear analysis. 

8. Design methods such as shear wall design can be integrated into the proposed 

geometrically nonlinear elastoplastic analysis procedure. 
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