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Abstract

A wide variety of mathematical models have been proposed to investigate age-

structured population growth for single species. Mathematical models allowing for

more biotic and abiotic factors tend to better describe the complex behaviour of

populations. In this thesis, we attempt to provide a comprehensive mathematical

modelling framework and rigorous theoretical analysis for age-structured populations

with the consideration of various factors regulating population growth such as sea-

sonal variations, intra-specific competition, spatial movements and diapause. It is

worth noting that developmental durations within each age group are assumed vary-

ing with time. Consequently, the model reduced from the classical Mckendrick-von

Foerster equation takes the form of retarded delay differential or reaction-diffusion

equations with time-dependent delays, which brings novel challenges to the theoreti-

cal analysis. By applying the well-developed theory of retarded functional differential

or reaction diffusion equations and the theory of monotone dynamical system in pe-

riodic environment, we establish the well-posedness of the solutions and the global

dynamics involving the global extinction, uniform persistence and global stability of

the trivial and positive periodic solutions in terms of the basic reproduction number.

We begin this thesis with a brief introduction for the development of early and

advanced age-structured population models in Chapter 1. Then, the methodologies

employed in the theoretical analysis of age-structured models are reviewed. Finally,

the motivations of this thesis are illustrated in detail. In Chapter 2, we provide some
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requisite mathematical theories for this thesis, which refer to the theories related to

monotone dynamical systems, uniform persistence and basic reproduction number

in periodic environment.

The work presented in Chapter 3 mainly involves the investigation of the age-

structured population growth based on the assumptions that the birth and death

rate functions are dependent on density and periodic in time. In this work, we pro-

pose a generalised hyperbolic age-structured model, and give a detailed proof for

the existence and uniqueness of the solution by applying the contraction mapping

theorem on the integral form solution obtained through integration along character-

istics. By assuming time-varying developmental durations and age thresholds and

using tick population as a motivative example, we deduce an age-structured model of

four coupled periodic delay differential equations (DDE) with time-dependent delays.

When the immature intra-specific competition is ignored, we obtain a new reduced

periodic DDE model system, the adult system of which can be decoupled. Based on

this decoupled periodic delay differential equations, we show the global existence and

uniqueness of the solution, define the basic reproduction number R0 and prove the

global stability of the positive periodic solution in terms of R0 by defining a periodic

solution semiflow on a suitable phase space and employing the theory of monotone

dynamical systems. Under the consideration of immature intra-specific competition,

the threshold dynamics including population extinction and uniform persistence in

terms of R0 is established.

Chapter 4 is devoted to analyse an age-structured population model with the con-

sideration of spatial movements, seasonal variations, intra-specific competition and

time-varying maturation duration simultaneously. When the competition among

immatures is negligible, the model takes the form of a system of reaction-diffusion

equations with time-dependent delays, in which situation one equation for the adult

population density is decoupled. The well-posedness of the decoupled system is es-
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tablished and the basic reproduction number R0 is defined and shown to determine

the global attractivity of either the zero equilibrium (when R0 ď 1) or a positive

periodic solution (R0 ą 1) by using the dynamical system approach on an appro-

priate phase space. When the immature intra-specific competition is included and

the immature diffusion rate is negligible, the model is neither cooperative (where

the comparison principle holds) nor reducible to a single equation. In this case, the

threshold dynamics about the population extinction and uniform persistence are es-

tablished by using the newly defined basic reproduction number rR0 as a threshold

index.

In Chapter 5, we propose a novel modelling framework to investigate the effects

of diapause on seasonal population growth. Diapause, a period of arrested devel-

opment caused by adverse environmental conditions, serves as a key survival mech-

anism for insects and other invertebrate organisms in temperate and subtropical

areas. In this work, a novel modelling framework, motivated by mosquito species, is

proposed to investigate the effects of diapause on seasonal population growth, where

diapause period is taken as an independent growth process, during which the popu-

lation dynamics are completely different from that in the normal developmental and

post-diapause periods. More specifically, the annual growth period is divided into

three intervals, and the population dynamics during each interval are described by

different sets of equations. We formulate two models of delay differential equations

(DDE) to explicitly describe mosquito population growth with a single diapausing

stage, either immature or adult. These two models can be further unified into one

DDE model, on which the well-posedness of the solution and the global stability of

the trivial and positive periodic solution in terms of an index R are analysed. The

seasonal population abundances of two temperate mosquito species with different di-

apausing stages are simulated to identify the essential role on population persistence

that diapause plays and predict that killing mosquitoes during the diapause period
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can lower but fail to prevent the occurrence of peak abundance in the following sea-

son. Instead, controlling mosquitoes during the normal growth period is much more

efficient to decrease the outbreak size. Our modelling framework may shed light on

the diapause-induced variations in spatiotemporal distributions of different mosquito

species.

Chapter 6 gives the conclusions of the results presented in this thesis and the

discussions of the future work.
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Chapter 1

Introduction

Mathematical models have been extensively developed and effectively applied to the

study of population growth, the recorded history of which can be dated back to thir-

teenth century when Leonardo Pisano (or Fibonacci) proposed the first mathematical

model, the well-known Fibonacci sequence, with the problem of rabbit population as

an example [8, 102]. Five centuries later, a pioneered work of Euler uncovered the ge-

ometric growth of human population, which inspired Malthus to formulate the most

simple population model [22]. The Malthusian model assumed a constant per capita

growth rate and suggested that the size of human population increases or decays

exponentially with time in the case of ignoring the influences of overcrowding and

limited resources [57]. Afterwards, by adding a term describing crowding effects or

competition for resources into the Malthusian model, Verhulst proposed the logistic

model, which predicted that the size of the population tends to a finite number under

appropriate initial conditions other than infinity as time approaches to infinity [1, 17].

The dynamics predicted by the logistic model are in agreement with the behaviours

of many populations. The development of mathematical formulation for population

growth made little progress until Lotka and Volterra pioneered the modern ecology

theory [62]. The classical population models including the Lotka-Volterra (or named

predator-prey) equations and their generalisation have made great contributions to
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the study of population dynamics and ecology [26].

Simplifying assumptions are often made to formulate mathematically tractable

models. Nevertheless, oversimplified assumptions in a model would limit the scope

of its biological accuracy. The first common oversimplification in the aforementioned

models is the assumption of homogeneity for individuals in a population, which

means all individuals of the population are assumed to be physiologically identi-

cal. However, the population dynamics are very complex in the natural world, the

individual developmental processes vary with many biotic and abiotic factors and

therefore, a more realistic way characterising the differences between individuals is

to formulate structured population models. The chronological age is one of the most

natural and important structuring variables. In the natural world, the populations

for many species of animals are structured by age. The human population is the

best-known example. Age-distribution constitutes the most concerned topic in the

study of demography since the age structure determines the future growth pattern

of the population and has profound implications for government policy [23]. For ex-

ample, juveniles have a relatively high developmental rate and low level of fecundity

in comparison with adults. A larger proportion of the human population in elderly

age classes leads to increasingly population aging and slower population growth. In

consequence, the retirement systems and medical facilities must be developed by

government to serve the elder people. Moreover, for some species of insects such

as mosquitoes, in addition to the vital rates, the habitats of immature and mature

individuals are completely different. It would be natural to associate with the ef-

fects of age structure by dividing the population into different age classes. Before

proceeding to further investigations, it is imperative to give a brief introduction of

age-structured population models.
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1.1 Early age-structured population models

Age-structured models can be formulated mathematically in either discrete or con-

tinuous ways, each of which has advantages and drawbacks. Both discrete and con-

tinuous age-structured models have been widely applied in modelling population

growth.

1.1.1 Discrete age-structured models

Leslie matrix model [68] is the classic representative discrete age-structured model.

The population is first classified into a finite number of age groups, labeled by i “

0, 1, ¨ ¨ ¨ ,m. The number of individuals within each age group is counted at discrete

time steps, t “ 0, 1, ¨ ¨ ¨ . At the t-th time step, the number of the population, denoted

by P ptq, is described by a column vector, P ptq “ rP0ptq, P1ptq, ¨ ¨ ¨ , Pmptqs
T , where

Piptqpi “ 0, 1, ¨ ¨ ¨ ,mq represents the number of the population within the i-th age

class at the t-th time step. The number of the population at the next time step t`1,

P pt` 1q, is deduced by the following difference equation:

P pt` 1q “ AP ptq,

where A is the Leslie matrix or projection matrix and the ijth entry of A is deter-

mined by the age-dependent reproductive, developmental and survival rates.

Compared to continuous age-structured models, matrix population models have

the advantage that they are relatively tractable and easy to formulate, simulate and

analyse. However, the matrix models are unable to describe the instantaneous rate

of change and the dynamics occurring between different age groups and discrete time

steps.
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1.1.2 Continuous age-structured models

The first time-continuous model considering age as a continuous structuring variable

was in the formulation of integral equations and introduced by Sharp and Lotka in

1911 [99], where they assumed that fertility and mortality rates are age-dependent.

Based on similar idea, McKendrick in 1926 [84] proposed a first order partial dif-

ferential equation (PDE) to describe the continuous variations of a population with

respect to time and age. The dynamics of an age-structured population described

by the McKendrick model is shown as follows:

$

’

’

’

’

&

’

’

’

’

%

´
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Bt
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¯

ρpt, aq “ ´µpaqρpt, aq,

ρp0, aq “ φpaq, a ě 0,

ρpt, 0q “
ş8

0
bpaqρpt, aqda, t ě 0,

where ρpt, aq represents the density of the population at time t of age a, µpaq and

bpaq are nonnegative age-dependent mortality and fertility rates, φpaq is the non-

negative initial age-distribution of the population. This classical model is named

as McKendrick-von Foerster model since the same partial differential equation was

developed by von Foerster in 1959 to study cellular populations [120]. The investi-

gation of the nonlinear modification and generalisation based on this classical model

has attracted a great deal of attention in recent years. Interested readers can refer to

the wonderful monographs to gain comprehensive understanding of age-structured

models [26, 57, 70, 85, 122].

1.2 Generalised age-structured models in hetero-

geneous environment

Another common simplification in population models is the assumption of homogene-

ity for the environment that organisms inhabit, which is heterogeneously distributed
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in reality. Seasonal variations caused by climatic changes are considered as the

dominant environmental factor shaping annual patterns of the population dynamics

[112]. This is particular true for some insect species such as ticks, serving as the

main vector spreading tick-borne diseases, the distribution and abundance of which

are very sensitive to the climate conditions as they need relatively high humidity and

moderate temperature to survive during their prolonged nonparasitic stages [89]. In-

corporating seasonal effects in age-structured models would be a sensible choice to

better investigate the population dynamics, with all the time-dependent parameter

functions being periodic with the same period.

In the natural world, food and water resources may vary from place to place,

which drive the organisms to keep drifting or dispersing. In addition to the seasonal

effects, spatial diffusion affecting population dynamics and the structures of the com-

munities are of particular interest to scientists. Due to limited available resources

for individuals from the same species, intraspecific competition is a ubiquitous phe-

nomenon in the population growth of a single species. Moreover, diapause, a period

of suspended growth, serving as an surviving mechanism in response to harsh envi-

ronmental conditions, plays significant roles on the persistences of insects or other

invertebrate species. In this thesis, we attempt to investigate the age-structured

population growth of single species subject to various factors such as the seasonal ef-

fects, intra-specific competition, spatial diffusion and diapause on individual growth,

in particular, the birth, death and maturation rates.

1.3 Motivation

The analysis on age-structured models has attracted more attention than on other

kinds of structured models such as size-structured models. This may be attributed to

the predicted linear relation between age and time. Various mathematical method-
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ologies have been applied to analyse the age-structured population models. The

stable age distribution was identified in models with linear birth and death rates

during early developmental period [73, 74]. By applying the methods of Volterra

integral equations and Laplace transforms, rigorous analysis of linear age-structured

models was established [11, 39]. For nonlinear age structured models, the existence,

uniqueness and convergence to equilibrium of solutions was established by utilising

a nonlinear Volterra integral equations approach [50], which was investigated sytem-

atically in [57, 59, 85]. Another classical functional analytic approach, the theory

for semigroups of operators in Banach spaces, was applied to the nonlinear age-

structured models with increasingly complex nonlinearities (see the book of Webb

for details [122]).

Although the operator semigroup theory and the theory of integral renewal equa-

tions are powerful tools to analyse age structured population models, the requisite

sophisticated mathematical technics makes few analysts proficiently apply these two

approaches in dynamical systems to gain heuristic biological insights. Gurney et

al. advocated utilising the delay differential equations framework to model age-

structured populations [49, 88]. For many species with various life stages, the in-

fluences of age differences among individuals within each age group may be trivial

relative to that of intergroup differences. Consequently, the population can be di-

vided into different age groups by different age thresholds. It is reasonable to assume

the vital rates within one age group are independent of age, which means the vital

rates are piecewise functions with jumps at age thresholds. The influences of age

structure on population dynamics can be described by introducing time delays, that

is, the developmental duration within each age group. In this case, the classical

McKendrick-von Foerster model can be reduced into a system of delay differen-

tial (with discrete delays) or integral-differential equations (with distributed delays),

which allows us to apply the well-developed theory of retarded functional differential

6



equations to the complex dynamical systems to draw some useful conclusions.

The aim of this thesis is twofold. On one hand, we aim to provide a comprehensive

modelling framework for age-structured populations growth with the consideration

of time-dependent developmental durations in a general biological setting. In the

natural word, the developmental durations of most species such as mosquitoes [100]

and ticks [89] greatly rely on the temperature, which vary with time. The intro-

duction of time-dependent maturation periods into the age-structured model will

cause time-dependent age thresholds and lead to a system of functional differential

equations with time-varying delays, the formulation of which is quite different from

those with time-independent delay in [2] since we cannot indiscreetly replace the

constant delay with time-changing delay. In this thesis, we start with the gener-

alised McKendric-vonForster equation with age-dependent nonnegative fertility and

mortality functions in periodical environment, then reduce it into a system of re-

tarded functional or delay differential equations with periodic delays by introducing

time-dependent developmental durations, as the work shown in Chapter 3 and 4.

On the other hand, rigorous theoretical analysis is imperative to establish from the

perspective of periodic dynamical systems. Monotone dynamics can be generated by

some special class of retarded functional differential or reaction-diffusion equations,

that is, the solutions of which preserve some kind of order relation on initial and

boundary conditions [106]. This is particular suitable for the mathematical mod-

els describing biological population growth since the population sizes or densities

are intrinsically positive, which facilitates the system gaining monotonicity or order-

preserving properties [105]. In this thesis, we conduct our analysis on systems of

retarded functional differential or reaction diffusion equations with time-varying de-

lays in periodic environment. In light of the theory of retarded functional differential

or reaction diffusion equations and monotone dynamical systems [135], we establish

the well-posedness of the solutions and global dynamics involving the global extinc-
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tion, uniform persistence and global stability of a positive periodic solution in terms

of the basic reproduction number.
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Chapter 2

Preliminaries

In this chapter, we present some terminologies and known results used in the rest of

this thesis, which involve the theory of global attractors, uniform persistence, mono-

tone dynamical systems and basic reproduction number for age-structured population

models in periodic environments.

2.1 Global attractors and uniform persistence

Suppose X is a metric space with metric d. Let f : X Ñ X be a continuous map

and X0 Ă X an open set. Define BX0 :“ XzX0, and MB :“ tx P BX0 : fnpxq P

BX0, @n ě 0u, which may be empty.

Definition 2.1. A bounded set A is said to attract a bounded set B in X if

lim sup
nÑ8, xPB

tdpfnpxq, Aqu “ 0.

A subset A Ă X is said to be an attractor for f if A is nonempty, compact and

invariant pfpAq “ Aq, and A attracts some open neighborhood of itself. A global

attractor for f : X Ñ X is an attractor that attracts every point in X. For a

nonempty invariant set M , the set W spMq :“ tx P X : limnÑ8 dpf
npxq,Mq “ 0u is

called the stable set of M .
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Recall that a continuous mapping f : X Ñ X is said to be point dissipative if

there is a bounded set B0 in X such that B0 attracts each point in X.

Theorem 2.1. [135, Theorem 1.1.3] If f : X Ñ X is compact and point dissipative,

then there is a connected global attractor A that attracts each bounded set in X.

Definition 2.2. f is said to be uniformly persistent with respect to pX0, BX0q if there

exists an η ą 0 such that lim infnÑ8 dpf
npxq, BX0q ě η for all x P X0.

Definition 2.3. Let A Ă X be a nonempty invariant set for f . We say A is

internally chain-transitive if for any a, b P A and any ε ą 0, there is a finite sequence

x1, ¨ ¨ ¨ , xm in A with x1 “ a, xm “ b such that dpfpxiq, xi`1q ă ε, 1 ď i ď m ´ 1.

The sequence tx1, ¨ ¨ ¨ , xmu is called an ε-chain in A connecting a and b.

Definition 2.4. A lower semicotinuous function p : X Ñ R` is called a generalized

distance function for f : X Ñ X if for every x P pX0

Ş

p´1p0qq
Ť

p´1p0,8q, we have

ppfnpxqq ą 0, @n ě 1.

Theorem 2.2. [135, Theorem 1.3.2] (or [107, Theorem 3]) Let p be a generalized

distance function for continuous map f : X Ñ X. Assume that

(P1) f has a global attractor;

(P2) There exists a finite sequence M “ tM1, ¨ ¨ ¨ ,Mku of disjoint, compact, and

isolated invariant sets in BX0 with the following properties:

(a)
Ş

xPMB
ωpxq Ă

Ťk
i“1Mi, where ωpxq represents the omega limit set of x;

(b) no subset of M forms a cycle in BX0;

(c) Mi is isolated in X;

(d) W spMiq
Ş

p´1p0,8q “ H for each 1 ď i ď k, where W spMiq is the stable

set of Mi.
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Then there exists a δ ą 0 such that for any compact chain transitive set L with

L Ć Mi, for all 1 ď i ď k, we have minxPL ppxq ą δ. In particular, f is uniformly

persistent in the sense that there exists an η ą 0 such that lim infnÑ8 dpf
npxq, BX0q ě

η for all x P X0.

Suppose T ą 0, a family of mapping Φptq : X Ñ X, t ě 0, is called a T -periodic

semiflow on X if it possesses the following properties:

(1) Φp0q “ I, where I is the identity map on X;

(2) Φpt` T q “ Φptq ˝ ΦpT q, @t ě 0;

(3) Φptqx is continuous in pt, xq P r0,8q ˆX.

The mapping ΦpT q is called the Poincaré map (or period map) associated with

this periodic semiflow. In particular, if (2) holds for any T ą 0, Φptq is called an

autonomous semiflow.

Theorem 2.3. [135, Theorem 3.1.1] Let Φptq be a T -periodic semiflow on X with

ΦptqX0 Ă X0, @t ě 0. Assume that S :“ ΦpT q is point dissipative in X and

compact. Then the uniform persistence of S with respect to pX0, BX0q implies that

of Φptq : X Ñ X.

Recall that the Kuratowski measure of noncompactness, α, is defined by

αpBq :“ inftr : B has a finite cover of diameter ă ru

for any bounded set B of X. It is not difficult to see that B is precompact if and only

if αpBq “ 0. Let pX, dq be a complete space, and let ρ : X Ñ R` be a continuous

function. We define M0 :“ tx P X : ρpxq ą 0u and BM0 :“ tx P X : ρpxq “ 0u.

Definition 2.5. A continuous map f : X Ñ X is said to be ρ uniformly persistent

if there exists ε ą 0 such that lim infnÑ8 ρpf
npxqq ě ε, @x P M0. The map is said
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to be α-condensing (α-contraction of order k, 0 ď k ă 1) if f takes bounded sets

to bounded sets and αpfpBqq ă αpBq (αpfpBqq ă kαpBq) for any nonempty closed

bounded set B Ă X with αpBq ą 0.

Theorem 2.4. [79, Theorem 4.1 and Theorem 4.7] Assume that f : X Ñ X is

α-condensing. If f : M0 Ñ M0 has a global attractor A0 Ă M0, then f has a fixed

point x0 P A0. The analogous result holds for an autonomous semiflow Φptq : let Φptq

be an autonomous semiflow on X with ΦptqpM0q Ă M0, @t ě 0. Assume that Φptq

is α-condensing for each t ą 0, and that Φptq : M0 Ñ M0 has a global attractor A0.

Then Φptq has an equilibrium x0 P A0, i.e., Φptqx0 “ x0, t ě 0.

Theorem 2.5. [79, Theorem 4.5] Assume that

(1) f : X Ñ X is point dissipative and ρ-uniformly persistent.

(2) fn0 is compact for some integer n0 ě 1.

(3) Either f is α-condensing or f is convex k-contracting.

Then f : M0 ÑM0 admits a global attractor A0, and f has a fixed point in A0.

2.2 Monotone dynamics

Let E be an ordered Banach space with an order cone P having nonempty interior

intpP q. For x, y P E, we write:

• x ě y, if x´ y P P ;

• x ą y, if x´ y P P zt0u;

• x " y, if x´ y P intpP q.

The order interval is defined as: ra, bs :“ tx P E : a ď x ď bu, provided that a ă b.
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Definition 2.6. Let U be a subset of E, and f : U Ñ U a continuous map. The

map f is said to be:

• monotone if x ě y implies that fpxq ě fpyq;

• strictly monotone if x ą y implies that fpxq ě fpyq;

• strongly monotone if x ą y implies that fpxq " fpyq.

Recall that a subset K of E is said to be order convex if ru, vs P K whenever

u, v P K satisfy u ă v.

Definition 2.7. Let U Ă P be a nonempty, closed and order convex set. A contin-

uous map f : U Ñ U is said to be:

• subhomogeneous if fpλxq ě λfpxq for any x P U and λ P r0, 1s;

• strictly subhomogeneous if fpλxq ą λfpxq for any x P U with x " 0 and

λ P p0, 1q;

• strongly subhomogeneous if fpλxq " λfpxq for any x P U with x " 0 and

λ P p0, 1q.

Theorem 2.6. [135, Theorem 2.3.2] Assume that f : U Ñ U satisfies either

(i) f is monotone and strongly subhomogeneous; or

(ii) f is strongly monotone and strictly subhomogeneous.

If f : U Ñ U admits a nonempty compact invariant set K Ă intpP q, then f has

a fixed point e " 0 such that every nonempty compact invariant set of f in intpP q

consist of e.
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Recall that a continuous mapping f : X Ñ X is said to be asymptotically

smooth if for any nonempty closed bounded set B Ă X for which fpBq Ă B, there

is a compact set J Ă B such that J attracts B. Denote the Fréchet derivative of f

at u “ a by Dfpaq if it exists, and let rpDpfpaqqq be the spectral radius of the linear

operator Dfpaq : E Ñ E.

Theorem 2.7. (Threshold dynamics) [135, Theorem 2.3.4] Let V “ r0, bs with b " 0,

and f : V Ñ V be a continuous map. Assume that

(1) f : V Ñ V satisfies either

(i) f is monotone and strongly subhomogeneous; or

(ii) f is strongly monotone and strictly subhomogeneous;

(2) f : V Ñ V is asymptotically smooth, and every positive orbit of f in V is

bounded;

(3) fp0q “ 0, and Dfp0q is compact and strongly positive.

Then there exists threshold dynamics:

(a) If rpDfp0qq ď 1, then every positive orbit in V converges to 0;

(b) If fpDfp0qq ą 1, then there exists a unique fixed point u˚ " 0 in V such that

every positive orbit in V zt0u converges to u˚.

2.3 Basic reproduction number in periodic envi-

ronment

In the study of population dynamics, one of the most important quantity is the basic

reproduction number, R0, defined as the expected number of new offsprings born

by a typical individual during its entire life. In a population, the basic reproduction
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number R0 serving as a threshold value to determine whether the population goes

extinct (if R0 ď 1) or keeps persistent uniformly (if R0 ą 1).

In this section, we present the theory of basic reproduction number for abstract

delay differential equations (including periodic and time-delayed reaction-diffusion

models) developed in [134]. Let τ ě 0 be a given number, X “ Cpr´τ, 0s,Rmq,

and X` “ Cpr´τ, 0s,Rm
` q. Then pX,X`q is an ordered Banach space equipped with

the maximum norm and the positive cone X`. Let F : R Ñ LpX,Rmq be a map

and V ptq be a continuous m ˆ m matrix function on R. Assume that F ptq and

V ptq are T -periodic in t for some real number T ą 0. For a continuous function

u : r´τ, σq Ñ Rm with σ ą 0, define ut P X by

ut :“ upt` θq, @θ P r´τ, 0s

for any t P r0, σq.

By linearizing a population growth model at its population extinction equilibrium,

we have the following linear and periodic function differential system:

duptq

dt
“ F ptqut ´ V ptquptq, t ě 0, (2.1)

where F ptqut describes the newly born individuals at time t linearly dependent on

the reproductive individuals over the time interval rt ´ τ, ts. Further, the inter-

nal evolution of individuals in the reproductive compartments (e.g., natural deaths,

and movements among compartments) is described by the following linear ordinary

differential system:

duptq

dt
“ ´V ptquptq, t ě 0. (2.2)

We assume that F ptq : X Ñ Rm is given by

F ptqφ “

ż 0

´τ

drηpt, θqsφpθq, @t P R, φ P X,
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where ηpt, θq is an mˆm matrix function which is measurable in pt, θq P RˆR and

normalized so that ηpt, θq “ 0 for all θ ě 0 and ηpt, θq “ ηpt,´τq for all θ ď ´τ .

Further, ηpt, θq is continuous from the left in θ on p´τ, 0q for each t, and the variation

of ηpt, ¨q on r´τ, 0s satisfies V arr´τ,0sηpt, ¨q ď mptq for some m P Lloc1 pp´8,8q,Rq,

the space of functions from p´8,8q into R that are Lebesgue integrable on each

compact set of p´8,8q. Since F ptq is T -periodic in t, it follows that

sup
tPR
}F ptq} “ sup

0ďtďT
}F ptq} ď sup

0ďtďT
mptq.

We define the evolution operators Upt, sq on X related to system (2.1) as

Upt, xqφ “ utps, φq, @φ P X, t ě s, s P R,

where upt, s, φq is a unique solution of (2.1) on rs,8q with us “ φ, i.e. utps, φqpθq “

upt` θ, s, φq, @θ P r´τ, 0s. Then, each operator Upt, sq is continuous and

Ups, sq “ I, Upt, sqUps, rq “ Upt, rq, Upt` T, s` T q “ Upt, sq, @t ě s ě r. (2.3)

Let Φpt, sq, t ě s, be the evolution matrices corresponding to system (2.2), that

is, Φpt, sq satisfies

B

Bt
Φpt, sq “ ´V ptqΦpt, sq, @t ě s, and Φps, sq “ I, @s P R,

and ωpΦq be the exponential growth bound of Φpt, sq, that is,

ωpφq “ inf
!

ω̃ : DM ě 1such that}Φpt` s, sq} ďMeω̃t, @s P R, t ě 0
)

.

We assume that the initial distribution of new born individuals, vptq, is T -periodic

in t to allow for the periodic environment. For any given s ě 0, F pt ´ sqvt´s

is the distribution of newly born individuals at time t ´ s, which is born by the

reproductive individuals who were matured over the time interval rt ´ s ´ τ, t ´ ss.
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Then, Φpt, t ´ sqF pt ´ sqvt´s is the distribution of those newborns who were newly

born at time t ´ s and remain in the immature compartments at time t. It follows

that

ż 8

0

Φpt, t´ sqF pt´ sqvt´sds “

ż 8

0

Φpt, t´ sqF pt´ sqvpt´ s` ¨qds

is the distribution of accumulative newborns at time t produced by all those repro-

ductive individuals introduced at all previous times to t.

Let CT be the ordered Banach space of all continuous and T -periodic functions

form R to Rm, which is equipped with the maximum norm and the positive cone

C`T :“ tv P CT : vptq ě 0, @t P Ru. Then, we can define the following linear operator

on CT by

rLvs ptq “

ż 8

0

Φpt, t´ sqF pt´ sqvpt´ s` ¨qds, @t P R, v P CT .

Then, the basic reproduction number for periodic system (2.1) is defined as the

spectral radius of L based on the theory of next generation operators [34, 113, 118],

i.e.

R0 :“ rpLq.

The following theorem shows that R0 is a threshold value for the stability of the

zero solution for periodic system (2.1). Recall that UpT, 0q is the Poincaré (period)

map of system (2.1) on X.

Theorem 2.8. [134, Theorem 2.1] The following statements are valid:

(i) R0 “ 1 if and only if rpUpT, 0qq “ 1.

(ii) R0 ą 1 if and only if rpUpT, 0qq ą 1.

(ii) R0 ă 1 if and only if rpUpT, 0qq ă 1.

Thus, R0 ´ 1 has the same sign as rpUpT, 0qq ´ 1.
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Chapter 3

Age-structured tick population

growth subject to seasonal effects

3.1 Background

Ticks as the primary vector can transmit many tick-borne diseases such as anaplas-

mosis, babesiosis, Lyme disease, tularemia and so on [27]. For the sake of evaluating

the risk of tick-borne diseases, the population growth of ticks has attracted increasing

attentions. The lifecycle of ticks consists of four main stages, which are egg, larval,

nymphal and adult stage. Seasonal effects are recognised as pervasive factors gener-

ating the annual patterns of tick population dynamics particularly the survivability

during non-parasitic periods [90]. Consequently, a large amount of age-structured

models incorporating seasonal variations have been proposed to investigate tick pop-

ulation growth. A computational model with delays dependent on temperature was

formulated by Ogden and coauthors, who took into consideration of twelve tick mu-

tually exclusive states to investigate the effect of temperature on tick population

growth [89]. A continuous age-structured model of twelve ordinary differential equa-

tions was developed in [127] to study the persistence of tick population. Another

similar continuous model with seasonal temperature-driven development and host

biting rates estimated by temperature normals was formulated to evaluate differ-
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ent basic reproduction number at different locations of Eastern Canada [126]. By

utilising the delay differential equations (DDE) framework, Fan et al. proposed a

stage-structured DDE model to study the self-regulation in tick population growth

[37]. With consideration of time dependent developmental durations, Wu et al. de-

veloped a periodic DDE model with temporally periodic delays for tick population

in [128], where the chronological delays and the interstadial developmental delays

were linked. They studied the nonnegativity and boundedness of solutions to such a

system, defined the basic reproduction number R0 and computed it by a simple al-

gorithm, which can be applied to different scenarios [128]. Nevertheless, they did not

investigate the global dynamics, including the extinction, persistence and the global

stability of the positive periodic solutions to the model system in terms of R0, which

motivates us to provide a rigorous mathematical framework to study the population

growth subject to seasonal variations on birth, death and development rates. Al-

though the study is presented in terms of tick population, it is worth remarking that

the theoretical framework is general enough for investigating population growths of

other species.

We organise the rest of this chapter as follows. In Section 3.2, we propose a

generalised hyperbolic age-structured model and show the existence and uniqueness

of the solution to this system. Then, the reduced periodic age-structured DDE model

with periodic delays from the hyperbolic model is derived in Section 3.3. When the

host populations for immature ticks, such as deers, white-footed mice, chipmunks

and shrews [92], are abundant and the density-dependent regulation of immature

ticks can be ignored. In Section 3.4, we prove the global existence of the solutions to

the new DDE model, define the basic reproduction number R0 as the spectral radius

of the next generation operator and establish the global attractivity of a periodic

positive solution by using the theory of monotone dynamical systems for the case

R0 ą 1. In the case of considering the immature intraspecific competition, detailed
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proof of tick extinction and persistence in terms of R0 is provided in Section 3.5. A

brief discussion section is presented in the last section.

3.2 Generalised hyperbolic age-structured model

and well posedness

In this section, we first generalise the McKendrick-von Foerster equation to obtain

a periodic hyperbolic age-structured model, and then show some preliminary results

related to this system including the uniqueness and existence of the solution. In

order to study the long term dynamic behaviour, we reduce the generalised periodic

hyperbolic system into a periodic age-structured DDE model with some reasonable

assumptions.

3.2.1 A generalised hyperbolic age-structured model

Let ρpt, aq be the tick population density at time t of age a. The McKendrick-von

Foerster equation (also named Lotka-McKendrick equation [57, 70, 122]) is known

as a appropriate modelling framework for age structured population growth. In this

work, we attempt to extend it to the following system by incorporating seasonal

effects and intra-specific competitions.

$

’

’

’

’

’

&

’

’

’

’

’

%

p
B

Bt
`
B

Ba
qρpt, aq “ ´µ

´

t, a,
ş8

0
qpt, sqρpt, sqds

¯

ρpt, aq,

ρp0, aq “ φpaq, a ě 0,

ρpt, 0q “ b
´

t,
ş8

0
ppt, sqρpt, sqds

¯

, t ě 0.

(3.1)

Here, b
`

t,
ş8

0
ppt, sqρpt, sqds

˘

denotes the egg production rate, which depends on

time t and population density ρpt, aq with a weight function ppt, aq, the per-capita

mortality rate µpt, a,
ş8

0
qpt, sqρpt, sqdsq varies with time t, age a and the population

density with another weight function qpt, aq. Here and in what follows, the variable
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parameter functions including the birth function b, death function µ and the weight

functions q and p are all periodic in time t with the same period T , taking the

seasonal effects on population growth into account. The function φp¨q gives the non-

negative bounded initial age distribution of the population. It is very natural to have

the following general assumptions on the birth rate, death rate, initial and boundary

conditions as well as kernel functions:

(B1) Both the birth rate b pt, xq and the per-capita death rate µ pt, a, xq are non-

negative and Lipschitzian functions with respect to the x variable with Lip-

schitzian constants b̄ and µ̄ respectively. Moreover, there exists a positive

constant µmin such that µ pt, a, xq ě µmin ą 0 for all x, t ě 0 and a ě 0.

(B2) The inherent relationships between boundary condition and initial condition

must be satisfied, that is

ρp0, 0q “ φp0q “ b

ˆ

0,

ż 8

0

pp0, sqφpsqds

˙

.

(B3) qpt, ¨q and ppt, ¨q are assumed to be non-negative in Lr0,8s.

Based on these assumptions, we can establish some preliminary results for the hy-

perbolic equation (3.1) as below.

3.2.2 Local existence and non-negativeness of solutions

In order to obtain the formulation of solutions for system (3.1), we will follow a more

readily comprehensible method of characteristics (for example Li and Brauer [70] and

[122]). Since the time variable t is involved in the right hand side of the hyperbolic

equation and the boundary condition, a careful argument is needed and for reader’s

convenience.
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Set ρ̂phq :“ ρpt0`h, a0`hq and µ̂phq :“ µpt0`h, a0`h,
ş8

0
qpt0`h, sqρpt0`h, sqdsq,

where t0 and a0 are fixed. Differentiating ρ̂phq with respect to h yields

dρ̂phq

dh
“ p

B

Bt
`
B

Ba
qρpt0 ` h, a0 ` hq

“ ´µpt0 ` h, a0 ` h,

ż 8

0

qpt0 ` h, sqρpt0 ` h, sqdsq

“ ´µ̂phqρ̂phq.

(3.2)

Integrating (3.2) from 0 to h, we have

ρ̂phq “ ρ̂p0q exp
´

´

ż h

0

µ̂prqdr
¯

,

that is

ρpt0 ` h, a0 ` hq

“ρpt0, a0q exp
´

´

ż h

0

µpt0 ` r, a0 ` r,

ż 8

0

qpt0 ` r, sqρpt0 ` r, sqdsqdr
¯

.

In case where a ě t, setting pt0, a0q “ p0, a´ tq and h “ t, it follows that

ρpt, aq “ ρp0, a´ tq exp
´

´

ż t

0

µpr, a´ t` r,

ż 8

0

qpr, sqρpr, sqdsqdr
¯

“ φpa´ tq exp
´

´

ż t

0

µpr, a´ t` r,

ż 8

0

qpr, sqρpr, sqdsqdr
¯

.

Similarly, in case where t ą a, setting pt0, a0q “ pt´ a, 0q and h “ a yields

ρpt, aq “ρpt´ a, 0q exp
´

´

ż a

0
µ
´

t´ a` r, r,

ż 8

0
qpt´ a` r, sqρpt´ a` r, sqds

¯

dr
¯

“b
´

t´ a,

ż 8

0
ppt´ a, sqρpt´ a, sqds

¯

ˆ exp
´

´

ż a

0
µ
´

t´ a` r, r,

ż 8

0
qpt´ a` r, sqρpt´ a` r, sqds

¯

dr
¯

.
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Then, (3.1) can be rewritten as following equivalent integral equation:

ρpt, aq “b
´

t´ a,

ż 8

0
ppt´ a, sqρpt´ a, sqds

¯

ˆ exp
´

´

ż a

0
µpt´ a` r, r,

ż 8

0
qpt´ a` r, sqρpt´ a` r, sqdsqdr

¯

1ttąau

` φpa´ tq exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqρpr, sqdsqdr

¯

1taětu,

(3.3)

where the indicator function is shown as follows:

1ttąau “

$

&

%

1, t ą a ě 0,

0, a ě t ě 0,
and 1taětu “

$

&

%

0, t ą a ě 0,

1, a ě t ě 0.

Next, we prove local existence and uniqueness of solutions to system (3.3) and hence

to system (3.1) in the light of Theorem 2.1 in [18].

Theorem 3.1. Let x0 “ φp¨q P L`r0,8q, then there exists ε ą 0 and an open

neighborhood B0 Ă Lr0,8q with x0 P B0 such that there exists a unique continuous

function, χ : r0, εq ˆB0 Ñ Lr0,8q, where χpt, xq is the solution to system (3.3) with

χp0, xq “ x.

Proof. Denote the set of all continuous functions from r0, εq ˆ B0 to Lr0,8q as

Y “ Cpr0, εq ˆB0, Lr0,8qq with the norm } ¨ }Y defined by

}ψ}Y “ sup
tPr0,εs,xPB0

ż 8

0

|ψpt, xqpaq|da,

where ε ą 0 andB0 Ă Lr0,8q is a neighborhood of x0, which will be determined later.

Let B be a subset of Y containing functions whose ranges lie in B Ă Lr0,8q, where

B “ Upφp¨q, rq is the closed ball of radius r centered around the initial function with
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the value of r to be determined later. Then, B is a complete metric space. Define

an operator Λ on B as follows: for any x “ xp¨q P B0 and η P B,

Λpηqpt, xqp¨q “b
´

t´ a,

ż 8

0
ppt´ a, sqηpt´ a, xqpsqds

¯

ˆ exp
´

´

ż a

0
µpt´ a` r, r,

ż 8

0
qpt´ a` r, sqηpt´ a` r, xqpsqdsqdr

¯

1ttąau

` xpa´ tq exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

1taětu.

(3.4)

If Λ admits a fixed point u P B such that Λupt, xqp¨q “ upt, xqp¨q. Let ρ̃pt, aq “

upt, xqpaq, @a ě 0 , then we have

ρ̃pt, aq “b
´

t´ a,

ż 8

0

ppt´ a, sqρ̃pt´ a, sqds
¯

ˆ exp
´

´

ż a

0

µpt´ a` r, r,

ż 8

0

qpt´ a` r, sqρ̃pt´ a` r, sqdsqdr
¯

1ttąau

` xpa´ tq exp
´

´

ż t

0

µpr, a´ t` r,

ż 8

0

qpr, sqρ̃pr, sqdsqdr
¯

1taětu.

Hence, ρ̃pt, aq satisfies equation (3.3), i.e. ρ̃pt, aq is a solution to (3.3) with ρ̃p0, aq “

φpaq.

The subsequent proof is to show that Λ is a contraction mapping on B, which

ensures the existence of a unique fixed point of Λ on B. This conclusion can be

achieved by the following three steps.
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Step (I): For any η P B, it follows from equation (3.4) that

ż 8

0
|Λpηqpt, xqpaq| da

“

ż 8

0

ˇ

ˇ

ˇ

ˇ

b
´

t´ a,

ż 8

0
ppt´ a, sqηpt´ a, xqpsqds

¯

ˆ exp
´

´

ż a

0
µpt´ a` r, r,

ż 8

0
qpt´ a` r, sqηpt´ a` r, xqpsqdsqdr

¯

1ttąau

`xpa´ tq exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

1taětu

ˇ

ˇ

ˇ

ˇ

da

ďbmax

ż t

0
e´µminada`

ż 8

t
exp

´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

|xpa´ tq| da

ďbmax
1´ e´µmint

µmin
`

ż 8

t
e´µmint|xpa´ tq|da

ďbmax
1´ e´µmint

µmin
` }x} ă 8,

for all t P r0, εq, where ε is sufficiently small number, } ¨ } is defined as
ş8

0
|xpaq|da,

and bmax ą 0 is the maximal value of b
`

t,
ş8

0
ppt, sqηpt, xqpsqds

˘

on B0 since the birth

function is continuous in the closed region. Therefore, it can be concluded that

Λpηq P Y for any η P B, that is, Λ : B Ñ Y .
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Step (II): Set B0 “ Bpx0,
r

2
q with x0 “ ρp0, ¨q, then it follows that

}Λpηqpt, xq ´ x0}

“

ż 8

0

ˇ

ˇ

ˇ

ˇ

b
´

t´ a,

ż 8

0
ppt´ a, sqηpt´ a, xqpsqds

¯

ˆ exp
´

´

ż a

0
µpt´ a` r, r,

ż 8

0
qpt´ a` r, sqηpt´ a` r, xqpsqdsqdr

¯

1ttąau

`xpa´ tq exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

1taětu ´ ρp0, aq

ˇ

ˇ

ˇ

ˇ

da

ďbmax
1´ e´µmint

µmin
`

ż 8

0

ˇ

ˇ

ˇ

ˇ

ˇ

xpa´ tq exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

1taětu ´ ρp0, aq

ˇ

ˇ

ˇ

ˇ

ˇ

da

ďbmax
1´ e´µmint

µmin
`

ż 8

0
exp

´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

1taětu

ˇ

ˇ

ˇ
xpa´ tq ´ ρp0, a´ tq

ˇ

ˇ

ˇ
da

`

ż 8

0

ˇ

ˇ

ˇ

ˇ

exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

1taětuρp0, a´ tq ´ ρp0, aq

ˇ

ˇ

ˇ

ˇ

da.

Note that

ż 8

0
exp

´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

1taětu|xpa´ tq ´ ρp0, a´ tq|da

ď}xp¨q ´ ρp0, ¨q},

and

ż 8

0

ˇ

ˇ

ˇ

ˇ

exp
´

´

ż t

0

µpr, a´ t` r,

ż 8

0

qpr, sqηpr, xqpsqdsqdr
¯

1taětuρp0, a´ tq ´ ρp0, aq

ˇ

ˇ

ˇ

ˇ

da

ď

ż 8

0

1taětuρp0, a´ tq

ˇ

ˇ

ˇ

ˇ

exp
´

´

ż t

0

µpr, a´ t` r,

ż 8

0

qpr, sqηpr, xqpsqdsqdr
¯

´ 1

ˇ

ˇ

ˇ

ˇ

da

`

ż 8

0

ˇ

ˇρp0, a´ tq1taětu ´ ρp0, aq
ˇ

ˇ da.
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Hence the dominated-convergence theorem implies

lim
tÑ0

ż 8

0
1taětuρp0, a´ tq

ˇ

ˇ

ˇ

ˇ

exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

´ 1

ˇ

ˇ

ˇ

ˇ

da “ 0.

Therefore, if ε is sufficiently small, the following inequality holds for all t P r0, εq:

ż 8

0
1taětuρp0, a´ tq

ˇ

ˇ

ˇ

ˇ

exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

´ 1

ˇ

ˇ

ˇ

ˇ

da ă
r

16
.

Since the set of all continuous functions with compact support is dense in L, there

exists a continuous function ξ with compact support in [0, 8) such that }ρp0, ¨q´ξ} ď

r

16
. Besides, the function with compact support vanishes at the boundary, which

indicates there exists a bounded and closed interval I Ă r0,8q such that ξpyq “ 0

for @y R I. Then,

ż 8

0

|ρp0, a´ tq1taětu ´ ρp0, aq|da

ď

ż t

0

|ρp0, aq|da`

ż 8

t

|ρp0, a´ tq ´ ρp0, aq|da

ď

ż t

0

|ρp0, aq|da`

ż 8

t

|ρp0, a´ tq ´ ξpa´ tq|da

`

ż 8

t

|ξpa´ tq ´ ξpaq|da`

ż 8

t

|ξpaq ´ ρp0, aq|da

ď

ż t

0

|ρp0, aq|da` 2

ż 8

0

|ξpaq ´ ρp0, aq|da`

ż

I

|ξpa´ tq ´ ξpaq|da

ď
r

32
`
r

8
`

r

32
“

3r

16
,

where ε should be very small.
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Hence,

ż 8

0

ˇ

ˇ

ˇ

ˇ

exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

1taětuρp0, a´ tq ´ ρp0, aq

ˇ

ˇ

ˇ

ˇ

da

ď

ż 8

0
1taětuρp0, a´ tq

ˇ

ˇ

ˇ

ˇ

exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqηpr, xqpsqdsqdr

¯

´ 1

ˇ

ˇ

ˇ

ˇ

da

`

ż 8

0

ˇ

ˇρp0, a´ tq1taětu ´ ρp0, aq
ˇ

ˇ da

ă
r

16
`

3r

16
“
r

4
.

In summary, we have

}Λpηqpt, xq ´ x0} ď bmax
1´ e´µmint

µmin

` }xp¨q ´ ρp0, ¨q} `
r

4
ă
r

4
`
r

2
`
r

4
“ r,

for all t P r0, εq, where constant ε ą 0 is small enough. Therefore, for any η P B, we

have Λpηq P B, that is Λ : B Ñ B.

Step (III): In the final step, we will show that Λ is a contraction mapping on B
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for ε small enough. For any η1, η2 P B, it then follows that

}Λpη1qpt, xq ´ Λpη2qpt, xq}

ď

ż 8

0

ˇ

ˇ

ˇ

ˇ

b
´

t´ a,

ż 8

0
ppt´ a, sqη1pt´ a, xqpsqds

¯

ˆ exp
´

´

ż a

0
µpt´ a` r, r,

ż 8

0
qpt´ a` r, sqη1pt´ a` r, xqpsqdsqdr

¯

´b
´

t´ a,

ż 8

0
ppt´ a, sqη2pt´ a, xqpsqds

¯

ˆ exp
´

´

ż a

0
µpt´ a` r, r,

ż 8

0
qpt´ a` r, sqη2pt´ a` r, xqpsqdsqdr

¯

ˇ

ˇ

ˇ

ˇ

1ttąauda

`

ż 8

0

ˇ

ˇ

ˇ

ˇ

xpa´ tq exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqη1pr, xqpsqdsqdr

¯

1taětu

´xpa´ tq exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqη2pr, xqpsqdsqdr

¯

1taětu

ˇ

ˇ

ˇ

ˇ

da

ď

ż t

0

ˇ

ˇ

ˇ

ˇ

b
´

t´ a,

ż 8

0
ppt´ a, sqη1pt´ a, xqpsqds

¯

´b
´

t´ a,

ż 8

0
ppt´ a, sqη2pt´ a, xqpsqds

¯

ˇ

ˇ

ˇ

ˇ

exp
´

´

ż a

0
µpt´ a` r, r,

ż 8

0
qpt´ a` r, sqη1pt´ a` r, xqpsqdsqdr

¯

da

`

ż t

0
b
´

t´ a,

ż 8

0
ppt´ a, sqη2pt´ a, xqpsqds

¯

ˇ

ˇ

ˇ

ˇ

exp
´

´

ż a

0
µpt´ a` r, r,

ż 8

0
qpt´ a` t, sqη1pt´ a` r, xqpsqdsqdr

¯

´ exp
´

´

ż a

0
µpt´ a` r, r,

ż 8

0
qpt´ a` r, sqη2pt´ a` r, xqpsqdsqdr

¯

ˇ

ˇ

ˇ

ˇ

da

`

ż 8

t
xpa´ tq| exp

´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqη1pr, xqpsqdsqdr

¯

´ exp
´

´

ż t

0
µpr, a´ t` r,

ż 8

0
qpr, sqη2pr, xqpsqdsqdr

¯

ˇ

ˇ

ˇ

ˇ

da
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ďb̄

ż t

0
e´µmina

ż 8

0
ppt´ a, sq |η1pt´ a, xqpsq ´ η2pt´ a, xqpsq| dsda

`

ż t

0
bmax

ż a

0

ˇ

ˇ

ˇ

ˇ

µ
´

t´ a` r, r,

ż 8

0
qpr, sqη1pr, xqpsqds

¯

´µ
´

t´ a` r, r,

ż 8

0
qpr, sqη2pr, xqpsqds

¯

ˇ

ˇ

ˇ

ˇ

drda

`

ż 8

t
xpa´ tq

ż t

0

ˇ

ˇ

ˇ

ˇ

ˇ

µ
´

r, a´ t` r,

ż 8

0
qpr, sqη1pr, xqpsqds

¯

´ µ
´

r, a´ t` r,

ż 8

0
qpr, sqη2pr, xqpsqds

¯

ˇ

ˇ

ˇ

ˇ

ˇ

drda

ďb̄

ż t

0
e´µminapsup}η1 ´ η2}da` bmax

ż t

0

ż a

0
qsupµ̄}η1 ´ η2}drda

`

ż 8

t
xpa´ tq

ż t

0
qsupµ̄}η1 ´ η2}drda

ďpsupb̄
1´ e´µmint

µmin
}η1 ´ η2} `

t2

2
qsupµ̄bmax}η1 ´ η2} ` qsuptµ̄}x}}η1 ´ η2}

ď

ˆ

psupb̄
1´ e´µmint

µmin
`
t2

2
qsupµ̄bmax ` qsuptµ̄}x}

˙

}η1 ´ η2}

ďεM}η1 ´ η2},

with some constant M ą 0, psup “ sup
aě0,tě0

tppt, aqu and qsup “ sup
aě0,tě0

tqpt, aqu. It is

noted that, in the above proof, |e´x ´ e´y| ď |x´ y|, @x, y ą 0 is used.

Thus, Λ is a contraction mapping on B when ε is small enough. The contraction

mapping theorem guarantees the existence of a unique fixed point of Λ in B, denoted

by χ. In conclusion, χpt, xq is the continuous solution to (3.3) on r0, εs ˆ B0 with

χp0, xq “ x for any x P B0.

We can easily check from the integral form (3.3) that this solution to (3.1) remains

nonnegative whenever it exists for any nonnegative initial value ρp0, ¨q. Hence the
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following theorem holds.

Theorem 3.2. Any solution to (3.3) through a non-negative initial value remains

non-negative for every a ě 0 and all t ě 0 on the interval of existence.

3.3 DDE model with time dependent delays

In this section, we shall reduce the hyperbolic equation into a system of delay differ-

ential equations, for which the tick population dynamics is easier to infer. However,

the reduction process involves careful biological justifications. We first assume some

age thresholds in order to stratify the tick growth into some discrete age stages,

and in this project, we divide the ticks into four stages, including egg, larval, pupal

and adult stages. Since the maturation age is determined by weather conditions,

and therefore two periodically time-dependent terms are introduced, which are the

developmental period and the chronological age. We use τiptq to denote the time pe-

riod needed for ticks to develop from the i-th stage (i “ E,L,N , denoting egg-stage,

larval-stage and nymphal-stage respectively) to the pi` 1q-th stage (i` 1 “ L,N,A,

representing larval-stage, nymphal-stage and adult-stage respectively) at time t. In

general, τiptq is determined by ambient environment conditions and can be implicitly

considered as a periodic function of time t with the period T . That is, the ticks

developing to the pi ` 1q-th stage at time t were entering the i-th stage at time

t´ τiptq. Likewise, the threshold age for each stage at the instant time t is a periodic

function of t with the same period T and we assume the maximum chronological ages

at time t are fEptq, fLptq and fNptq for egg, larval and nymphal stages respectively,

which are in order of increasing maturity (e.g. egg, larval and nymphal stages), that

is fNptq ě fLptq ě fEptq for every t ě 0. In addition, we assume the maximum

chronological age of adult ticks is a constant, amax, rather than infinity as the life

span of ticks is between 2 to 4 years [13]. The relationships between time dependent

32



threshold ages and time-varying delays can be formulated as follows:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

fEptq “ τEptq,

fLptq “ τLptq ` τE pt´ τLptqq “ τLptq ` fE pt´ τLptqq ,

fN ptq “ τN ptq ` τLpt´ τN ptqq ` τEpt´ τN ptq ´ τLpt´ τN ptqqq “ τN ptq ` fLpt´ τN ptqq,

1´ f 1Lptq “ p1´ τ
1
Lptqqp1´ f

1
Ept´ τLptqqq,

1´ f 1N ptq “ p1´ τ
1
N ptqqp1´ f

1
Lpt´ τN ptqqq.

(3.5)

These relationships are illustrated in Figure 3.1 and interested readers can also find

another derivation for these relationships in [128].

Moreover, the following arguments guarantee that τiptq must satisfy 1´ τ 1iptq ě 0

(i “ E,L,N). Indeed, this assumption is biologically reasonable since the following

relationship holds:
ż t

t´τiptq

σprqdr “ 1, i “ E,L,N,

where σprq is the developmental proportion at time r. After taking the derivative

with respect to t, we have

1´ τ 1iptq “
σptq

σpt´ τiptqq
, i “ E,L,N,

which indicates 1 ´ τ 1iptq ą 0. Then, it is easy to check that 1 ´ f 1iptq ě 0 (i “

E,L,N). Experimentally, we can measure the developmental proportion to evaluate

the development duration by using the above relationship. However, in our model

system (3.8) presented later, we will use the chronological age thresholds fptq through

the identities in (3.5).

The population size for each stage can be computed as the accumulative density

between two age thresholds, in particular, we have the following mathematical ex-

pressions for the numbers of individuals within the egg (Eptq), larval (Lptq), nymphal
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t

t ´ τEptq

fEptq0

b

b

age

time

Egg Larva

(a)

b

b

b

fEpt ´ τLptqq

fLptq0
age

time

Egg Larva Nymph
t˚ptq

t ´ τLptq

t

(b)

0

t2ptq

t1ptq

t ´ τN ptq

t

fEpt ´ τN ptq ´ τLpt ´ τN ptqqq

fLpt ´ τN ptqq

fN ptq

b

b

b

b

age

time

Egg Larva Nymph Adult

(c)

Figure 3.1: (a) At time t, the ticks reach the threshold age fEptq and develop into the larval
stage. These newly developed larvae are grown from eggs laid at previous time t ´ τEptq. Thus,
the threshold age at time t is fEptq “ t ´ pt ´ τEptqq “ τEptq. (b) At time t, the ticks reach
the threshold age fLptq and develop into nymphal stage. These newly developed nymphs are
grown from ticks entering larval-stage at previous time t ´ τLptq which were developed from eggs
laid at earlier time t˚ptq “ t ´ τLptq ´ τEpt ´ τLptqq. Thus, the threshold age at time t admits
fLptq “ t ´ t˚ptq “ τLptq ` τEpt ´ τLptqq “ τLptq ` fEpt ´ τLptqq. (c) At time t, the ticks reach
the threshold age fN ptq and mature into adults. These newly developed adults are grown from
ticks entering nymphal-stage at previous time t´ τN ptq which were developed from larvae at earlier
time t1ptq “ t´ τN ptq ´ τLpt´ τN ptqq. Likewise, these larvae stem from eggs laid at previous time
t2ptq “ t´ τN ptq ´ τLpt´ τN ptqq ´ τEpt´ τN ptq ´ τLpt´ τN ptqqq. Thus, the threshold age at time t
is fN ptq “ t´ t2ptq “ τN ptq ` τLpt´ τN ptqq ` τEpt´ τN ptq ´ τLpt´ τN ptqqq “ τN ptq ` fLpt´ τN ptqq.
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(Nptq) and adult stage (Aptq):

Eptq “
şfEptq

0
ρpt, aqda, Lptq “

şfLptq

fEptq
ρpt, aqda,

Nptq “
şfN ptq

fLptq
ρpt, aqda, Aptq “

şamax

fN ptq
ρpt, aqda.

(3.6)

Since the solution of equation (3.1) is in L`p0,8q based on Theorem 3.1 and 3.2,

the above terms are all well-defined and remain nonnegative when it exists for all

nonnegative initial values.

Next, we propose natural biological assumptions for the birth and death rates in

the hyperbolic equation (3.1). Since only adults give birth, b
`

t,
şamax

0
ppt, sqρpt, sqds

˘

can be rewritten as bpt, Aq, a periodic function in t. This can be done by choosing

an appropriate weight function ppt, aq in the general model (3.1) as follows.

ppt, aq “

$

&

%

1, if fNptq ă a ă amax,

0, otherwise.

For individuals in each stage, they are subject to a natural death rate µiptq and a

possible density dependent death rate (except eggs) Dipt, iptqqiptq (i “ L, N , A) due

to intra-specific stage competition [75]. This assumption can be formulated in the

general PDE equation by choosing an appropriate kernel function

µ
`

t, a,
şamax

0
qpt, sqρpt, sqds

˘

, that is

qpt, aq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

qEpt, aq, if 0 ď a ď fEptq,

qLpt, aq, if fEptq ă a ď fLptq,

qNpt, aq, if fLptq ă a ď fNptq,

qApt, aq, if fNptq ă a ă amax.

The value of qi (i “ E, L, N , A represent egg, larval, nymphal and adult stages

respectively) is 1 if the ticks develop into the i´ th stage, otherwise the value takes
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0. Furthermore, we choose the function µ
`

t, a,
şamax

0
qpt, sqρpt, sqds

˘

as the following

form:

µpt, a,

ż amax

0
qpt, sqρpt, sqdsq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

µEptq, if 0 ď a ď fEptq,

µLptq `DLpt, LptqqLptq, if fEptq ă a ď fLptq,

µN ptq `DN pt,NptqqNptq, if fLptq ă a ď fN ptq,

µAptq `DApt, AptqqAptq, if fN ptq ă a ă amax.

Differentiating the equations in system (3.6) with respect to time t on both sides

yields

dEptq

dt
“

ż fEptq

0

Bρpt, aq

Bt
da` ρpt, fEptqqf

1
Eptq

“ρpt, 0q ´ ρpt, fEptqq ´ µEptqEptq ` ρpt, fEptqqf
1
Eptq

“bpt, Aptqq ´ µEptqEptq ´ p1´ f
1
Eptqqρpt, fEptqq,

dLptq

dt
“

ż fLptq

fEptq

Bρpt, aq

Bt
da` ρpt, fLptqqf

1
Lptq ´ ρpt, fEptqqf

1
Eptq

“ρpt, fEptqq ´ ρpt, fLptqq ´ µLptqLptq ´DLpt, LptqqL
2
ptq

` ρpt, fLptqqf
1
Lptq ´ ρpt, fEptqqf

1
Eptq

“p1´ f 1Eptqqρpt, fEptqq ´ µLptqLptq ´DLpt, LptqqL
2
ptq

´ p1´ f 1Lptqqρpt, fLptqq,
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dNptq

dt
“

ż fN ptq

fLptq

Bρpt, aq

Bt
da` ρpt, fNptqqf

1
Nptq ´ ρpt, fLptqqf

1
Lptq

“ρpt, fLptqq ´ ρpt, fNptqq ´ µNptqNptq ´DNpt, NptqqN
2
ptq

` ρpt, fNptqqf
1
Nptq ´ ρpt, fLptqqf

1
Lptq

“p1´ f 1Lptqqρpt, fLptqq ´ µNptqNptq ´DNpt, NptqqN
2
ptq

´ p1´ f 1Nptqqρpt, fNptqq,

dAptq

dt
“

ż amax

fN ptq

Bρpt, aq

Bt
da´ ρpt, fNptqqf

1
Nptq

“ρpt, fNptqq ´ µAptqAptq ´DApt, AptqqA
2
ptq ´ ρpt, fNptqqf

1
Nptq

“p1´ f 1Nptqqρpt, fNptqq ´ µAptqAptq ´DApt, AptqqA
2
ptq.

To get the closed form of the above system, ρpt, fiptqq (for i “ E,L,N) is evaluated

by method of integration along characteristics. Setting t “ t0 ` h, a “ a0 ` h and

V phq “ ρpt0 ` h, a0 ` hq. Then,

dV phq

dh
“
` B

Bt
`
B

Ba

˘

ρpt, aq

“ ´µ
´

t0 ` h, a0 ` h,

ż amax

0

qpt0 ` h, sqρpt0 ` h, sqds
¯

ρpt0 ` h, a0 ` hq

“ ´µ
´

t0 ` h, a0 ` h,

ż amax

0

qpt0 ` h, sqρpt0 ` h, sqds
¯

V phq.

(3.7)

Integrating equation (3.7) from h1 to h2, yields,

V ph2q “ V ph1qe
´
şh2
h1
µpt0`r,a0`r,

şamax
0 qpt0`r,sqρpt0`r,sqdsqdr.

For t ě fiptq, setting t0 “ t´ fiptq, h “ fiptq and a0 “ 0, for i “ E,L,N , we have

ρpt, fiptqq “ ρpt´ fiptq, 0qe
´
şfiptq
0 µpt´fiptq`r,r,

şamax
0 qpt´fiptq`r,sqρpt´fiptq`r,sqdsqdr

“ bpt´ fiptq, Apt´ fiptqqqe
´
şfiptq
0 µpt´fiptq`r,r,

şamax
0 qpt´fiptq`r,sqρpt´fiptq`r,sqdsqdr.
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Since we focus on the long-term behavior of population dynamics, the closed form

of the model for t ě fNptq is obtained as follows.

dEptq

dt
“bpt, Aptqq ´ µEptqEptq ´ p1´ f

1
Eptqqbpt´ fEptq, Apt´ fEptqqq

ˆ exp
´

´

ż fEptq

0

µ
´

t´ fEptq ` r, r,

ż amax

0

qpt´ fEptq ` r, sqρpt´ fEptq ` r, sqds
¯

dr
¯

“bpt, Aptqq ´ µEptqEptq ´ p1´ f
1
Eptqqbpt´ fEptq, Apt´ fEptqqq

exp
´

´

ż fEptq

0

µEpt´ fEptq ` rqdr
¯

“bpt, Aptqq ´ µEptqEptq ´ p1´ f
1
Eptqqbpt´ fEptq, Apt´ fEptqqq

exp
´

´

ż t

t´fEptq

µEprqdr
¯

,
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dLptq

dt

“p1´ f 1Eptqqbpt´ fEptq, Apt´ fEptqqq exp
´

´

ż t

t´fEptq

µEprqdr
¯

´ µLptqLptq ´DLpt, LptqqL
2ptq ´ p1´ f 1Lptqqbpt´ fLptq, Apt´ fLptqqq

exp
´

´

ż fLptq

0

µ
´

t´ fLptq ` r, r,

ż amax

0

qpt´ fLptq ` r, sqρpt´ fLptq ` r, sqds
¯

dr
¯

“p1´ f 1Eptqqbpt´ fEptq, Apt´ fEptqqq exp
´

´

ż t

t´fEptq

µEprqdr
¯

´ µLptqLptq ´DLpt, LptqqL
2ptq ´ p1´ f 1Lptqqbpt´ fLptq, Apt´ fLptqqq

exp
´

´

ż t

t´fLptq

µ
´

r, r ´ pt´ τLptqq,

ż amax

0

qpr, sqρpr, sqds
¯

dr
¯

“p1´ f 1Eptqqbpt´ fEptq, Apt´ fEptqqq exp
´

´

ż t

t´fEptq

µEprqdr
¯

´ µLptqLptq ´DLpt, LptqqL
2ptq ´ p1´ f 1Lptqqbpt´ fLptq, Apt´ fLptqqq

exp
´

´

ż t

t´τLptq

pµLprq `DLpr, LprqqLprqqdr ´

ż t´τLptq

t´fLptq

µEprqdr
¯

“p1´ f 1Eptqqbpt´ fEptq, Apt´ fEptqqq exp
´

´

ż t

t´fEptq

µEprqdr
¯

´ µLptqLptq ´DLpt, LptqqL
2ptq ´ p1´ f 1Lptqqbpt´ fLptq, Apt´ fLptqqq

exp
´

´

ż t

t´τLptq

µLprqdr ´

ż t´τLptq

t´fLptq

µEprqdr
¯

exp
´

´

ż t

t´τLptq

DLpr, LprqqLprqdr
¯

,
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dNptq

dt

“p1´ f 1Lptqqbpt´ fLptq, Apt´ fLptqqq

ˆ exp
´

´

ż t

t´τLptq

µLprqdr ´

ż t´τLptq

t´fLptq

µEprqdr
¯

exp
´

´

ż t

t´τLptq

DLpr, LprqqLprqdr
¯

´ µN ptqNptq ´DN pt,NptqqN
2ptq ´ p1´ f 1N ptqqbpt´ fN ptq, Apt´ fN ptqqq

ˆ exp
´

´

ż fN ptq

0

µ
´

t´ fN ptq ` r, r,

ż amax

0

qpt´ fN ptq ` r, sqρpt´ fN ptq ` r, sqds
¯

dr
¯

“p1´ f 1Lptqqbpt´ fLptq, Apt´ fLptqqq exp
´

´

ż t

t´τLptq

µLprqdr ´

ż t´τLptq

t´fLptq

µEprqdr
¯

ˆ exp
´

´

ż t

t´τLptq

DLpr, LprqqLprqdr
¯

´ µN ptqNptq ´DN pt,NptqqN
2ptq

´ p1´ f 1N ptqqbpt´ fN ptq, Apt´ fN ptqqq exp
´

´

ż t

t´τN ptq

pµN prq `DN pr,NprqqNprqqdr

´

ż t´τN ptq

t´τN ptq´τLpt´τN ptqq

pµLprq `DLpr, LprqqLprqqdr ´

ż t´τN ptq´τLpt´τN ptqq

t´fN ptq

µEprqdr
¯

“p1´ f 1Lptqqbpt´ fLptq, Apt´ fLptqqq exp
´

´

ż t

t´τLptq

µLprqdr ´

ż t´τLptq

t´fLptq

µEprqdr
¯

ˆ exp
´

´

ż t

t´τLptq

DLpr, LprqqLprqdr
¯

´ µN ptqNptq ´DN pt,NptqqN
2ptq

´ p1´ f 1N ptqqbpt´ fN ptq, Apt´ fN ptqqq exp
´

´

ż t

t´τN ptq

µN prqdr

´

ż t´τN ptq

t´τN ptq´τLpt´τN ptqq

µLprqdr ´

ż t´τN ptq´τLpt´τN ptqq

t´fN ptq

µEprqdr
¯

ˆ exp
´

´

ż t

t´τN ptq

DN pr,NprqqNprqdr ´

ż t´τN ptq

t´τN ptq´τLpt´τN ptqq

DLpr, LprqqLprqdr
¯

,
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dAptq

dt
“ p1´ f 1N ptqqbpt´ fN ptq, Apt´ fN ptqqq exp

´

´

ż t

t´τN ptq
µN prqdr

´

ż t´τN ptq

t´τN ptq´τLpt´τN ptqq
µLprqdr ´

ż t´τN ptq´τLpt´τN ptqq

t´fN ptq
µEprqdr

¯

exp
´

´

ż t

t´τN ptq
DN pr,NprqqNprqdr ´

ż t´τN ptq

t´τN ptq´τLpt´τN ptqq
DLpr, LprqqLprqdr

¯

´ µAptqAptq ´DApt, AptqqA
2ptq.

There are two different expressions for ρpt, fiptqq for t ą fiptq and t ď fiptq

respectively. Since we focus on the long-term behavior of population dynamics,

without loss of generality, we study the case when t ě fiptqpi “ E,L,Nq, which is

feasible due to the boundedness of fiptq. It follows from the integral form of the

solution 3.3 that when t ě fNptq (note that fNptq ě fLptq ě fEptq), we have:

ρpt, fiptqq “ bpt´ fiptq, Apt´ fiptqqqe
´
şfiptq
0 µ

`

t´fiptq`r,r,
şamax
0 qpt´fiptq`r,sqρpt´fiptq`r,sqds

˘

dr.

Therefore, we can obtain a closed form, in terms of delay differential equations, to

describe the tick population growth when t ě fNptq :

dEptq

dt
“bpt, Aptqq ´ µEptqEptq ´ p1´ f

1
Eptqqh1ptqbpt´ fEptq, Apt´ fEptqqq,

dLptq

dt
“p1´ f 1Eptqqh1ptqbpt´ fEptq, Apt´ fEptqqq ´ µLptqLptq ´DLpt, LptqqL

2ptq

´ p1´ f 1Lptqqh2ptqg1pt, Lptqqbpt´ fLptq, Apt´ fLptqqq,

dNptq

dt
“p1´ f 1Lptqqh2ptqg1pt, Lptqqbpt´ fLptq, Apt´ fLptqqq ´DN pt,NptqqN

2ptq

´ µN ptqNptq ´ p1´ f
1
N ptqqh3ptqg2pt, Lptq, Nptqqbpt´ fN ptq, Apt´ fN ptqqq,

dAptq

dt
“p1´ f 1N ptqqh3ptqg2pt, Lptq, Nptqqbpt´ fN ptq, Apt´ fN ptqqq

´ µAptqAptq ´DApt, AptqqA
2ptq,

(3.8)
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where

h1ptq “ exp
´

´

ż t

t´fEptq
µEprqdr

¯

,

h2ptq “ exp
´

´

ż t

t´τLptq
µLprqdr ´

ż t´τLptq

t´fLptq
µEprqdr

¯

,

h3ptq “ exp
´

´

ż t

t´τN ptq
µN prqdr ´

ż t´τN ptq

t´τN ptq´τLpt´τN ptqq
µLprqdr

´

ż t´τN ptq´τLpt´τN ptqq

t´fN ptq
µEprqdr

¯

,

are probabilities surviving through natural death during development while

g1pt, Lptqq “ exp
´

´

ż t

t´τLptq
DLpr, LprqqLprqdr

¯

,

g2pt, Lptq, Nptqq “ exp
´

´

ż t

t´τN ptq
DN pr,NprqqNprqdr

´

ż t´τN ptq

t´τN ptq´τLpt´τN ptqq
DLpr, LprqqLprqdr

¯

,

represent the probabilities surviving through additional death due to competition.

Alternatively, Eptq, Lptq, Nptq and Aptq can be expressed into integral forms.

Note that τEptq is the developmental time for eggs at time t. Hence, the eggs at time

t consist of all eggs laid at previous time ξ with ξ P pt ´ τEptq, tq and survived to

time t. We have

Eptq “

ż t

t´τEptq

exp
´

´

ż t

ξ

µ
´

r, a,

ż amax

0

qpt, sqρpt, sqds
¯

dr
¯

bpξ, Apξqqdξ

“

ż t

t´τEptq

exp
´

´

ż t

ξ

µEprqdr
¯

bpξ, Apξqqdξ.

(3.9)

All the larvae at time t are developed from eggs laid at previous time pξ´ fEpξqq

with ξ P pt´ τLptq, tq and successfully survived in the egg stage for τEpξq (i.e. fEpξq)

time period, then matured into larvae with a “maturation rate” p1´ τ 1Epξqq at time
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ξ and remain alive in the larval stage until time t. Thus, the number of larvae at

time t can be expressed as follows.

Lptq “

ż t

t´τLptq
exp

´

´

ż t

ξ´fEpξq
µ
´

r, a,

ż amax

0
qpt, sqρpt, sqds

¯

dr
¯

bpξ ´ fEpξq, Apξ ´ fEpξqqqp1´ τ
1
Epξqqdξ

“

ż t

t´τLptq
exp

´

´

ż t

ξ
pµLprq `DLpr, LprqqLprqqdr ´

ż ξ

ξ´fEpξq
µEprqdr

¯

bpξ ´ fEpξq, Apξ ´ fEpξqqqp1´ f
1
Epξqqdξ.

(3.10)

Similarly, nymphs at time t contain all newly developed nymphs at previous time

ξ with ξ P pt ´ τNptq, tq and survived to time t. These newly developed nymphs

are grown from larvae produced at time pξ ´ τLpξqq, which developed through τLpξq

time period in the larval stage and matured into nymphs at time ξ with “maturation

rate” p1 ´ τ 1Lpξqq. Likewise, the larvae produced at time pξ ´ τLpξqq come from the

eggs laid at time pξ ´ τLpξq ´ τEpξ ´ τLpξqqq, i.e. pξ ´ fLpξqq, which experience

through pτEpξ´ τLpξqqq time period and matured into larvae at time pξ´ τLpξqq with

“maturation rate” p1 ´ τ 1Epξ ´ τLpξqqq. Therefore, the total number of nymphs at

time t is given as follows.

Nptq “

ż t

t´τN ptq
exp

´

´

ż t

ξ´fLpξq
µ
´

r, a,

ż amax

0
qpr, sqρpt, sqds

¯

dr
¯

bpξ ´ fLpξq, Apξ ´ fLpξqqqp1´ τ
1
Lpξqqp1´ τ

1
Epξ ´ τLpξqqqdξ

“

ż t

t´τN ptq
exp

´

´

ż t

ξ
pµN prq `DN pr,NprqqNprqqdr ´

ż ξ

ξ´τLpξq
pµLprq

`DLpr, LprqqLprqqdr ´

ż ξ´τLpξq

ξ´fLpξq
µEprqdr

¯

bpξ ´ fLpξq, Apξ ´ fLpξqqqp1´ f
1
Lpξqqdξ.

(3.11)

While for adult ticks, the total number Aptq can be computed in the following
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integral form:

Aptq “ exp
´

´

ż t

0
pµApξq `DApξ, ApξqqApξqqdξ

¯

«

ż t

0
p1´ f 1N pξqqbpξ ´ fN pξq, Apξ ´ fN pξqqq

ˆ exp
´

´

ż ξ

ξ´τN pξq
pµN prq `DN pr,NprqqNprqqdr

´

ż ξ´τN pξq

ξ´τN pξq´τLpξ´τN pξqq
pµLprq `DLpr, LprqqLprqqdr

´

ż ξ´τN pξq´τLpξ´τN pξqq

ξ´fN pξq
µEprqdr

¯

exp
´

ż ξ

0
µAprq `DApr,AprqqAprqqdr

¯

dξ `A0

ff

,

(3.12)

where A0 “ Ap0q is the initial value of Aptq.

Combining with the relationships between fiptq and τiptq (i “ E,L,N) shown in

(3.5), it is easy to check by differentiation that the system of integration-differential

equations consists of (3.9), (3.10), (3.11) and (3.12) is equivalent to the system (3.8).

We would like to draw readers’ attention the fact that a similar model system

was formulated in project [128]. The main focus of the current project is on the

mathematical analysis of this kind of model system to get the global properties of

solutions. Moreover, we will link the relationships between the basic reproduction

number and the population dynamics of ticks. Here, we reformulate the model

system for readers’ convenience. In the subsequent section, we will first investigate

the dynamics of a special case for (3.8) when the immature intra-specific competition

is not considered.

3.4 Global dynamics without immature intraspe-

cific competition

We will establish the global stability in terms of the basic reproduction number for a

special case when there is no intra-specific competition in the immature stages, which
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means the density dependent death coefficients Dipt, iq (i “ L,N) take 0. Indeed,

this assumption makes sense in biology when the host community, which includes

a group of small mammals such as deers, white-footed mice, chipmunks and shrews

[92], is very rich. If the host density is very high, the intra-specific competition during

immature stages can be ignored and system (3.8) can be reduced into the following

one:

dEptq

dt
“ bpt, Aptqq ´ µEptqEptq ´ p1´ f

1
Eptqqh1ptqbpt´ fEptq, Apt´ fEptqqq,

dLptq

dt
“ p1´ f 1Eptqqh1ptqbpt´ fEptq, Apt´ fEptqqq ´ µLptqLptq

´ p1´ f 1Lptqqh2ptqbpt´ fLptq, Apt´ fLptqqq,

dNptq

dt
“ p1´ f 1Lptqqh2ptqbpt´ fLptq, Apt´ fLptqqq ´ µNptqNptq

´ p1´ f 1Nptqqh3ptqbpt´ fNptq, Apt´ fNptqqq,

dAptq

dt
“ p1´ f 1Nptqqh3ptqbpt´ fNptq, Apt´ fNptqqq ´ µAptqAptq ´DApt, AptqqA

2
ptq.

(3.13)

Since variables E, L and N in system (3.13) do not appear in equation related to A,

it suffices to study the decoupled system:

dAptq

dt
“ p1´ f 1N ptqqh3ptqbpt´ fN ptq, Apt´ fN ptqqq ´ µAptqAptq ´DApt, AptqqA

2ptq.

(3.14)

To investigate the long-term dynamics of system (3.14), we make the following

assumptions:

(H1) The birth rate bpt, Aq satisfies:

(i) bpt, 0q ” 0,
Bbpt, 0q

BA
“ βptq ą 0 for all t P R, where βptq is a T -periodic
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continuous function;

(ii) bpt, Aq is increasing with respect toA for allA ą 0 and bpt, Aq ď
Bbpt, 0q

BA
A “

βptqA for all pt, Aq P Rˆ R`.

(H2) The per-capita natural death rate µAptq and density dependent death coefficient

DApt, Aq are non-negative T -periodic continuous functions with respect to time

t. In addition, DApt, Aq is non-decreasing with respect to A.

(H3) There exist positive constantsDmin andA˚ such that bpt, Aq ă β̂A andDApt, Aq ą

Dmin hold for all t P R when A ą A˚, where β̂ “ max
tPr0,T s

βptq.

Let f̂ “ maxtPr0,T s fNptq, define X :“ Cpr´f̂ , 0s,Rq with the norm }ψ}X “

max
θPr´f̂ ,0s

}ψpθq}R. Then X is a Banach space. Let X` “ Cpr´f̂ , 0s,R`q, then pX,X`q

is a strongly ordered space. Given a function wptq : r´f̂ , σq Ñ R for σ ą 0, define

wt P X by wtpθq “ wpt ` θq for all θ P r´f̂ , 0s and t P r0, σq. We firstly verify the

global existence of the solution to system (3.14).

Lemma 3.1. A unique solution Aptq of system (3.14) exists globally on r0,8q with

the initial data ψpθq P X`. Moreover, system (3.14) generates a T -periodic semiflow

Ψt : X` Ñ X`, i.e. Ψtpψqpθq “ Apt` θ;ψq, @ψ P X`, t ě 0, θ P r´f̂ , 0s.

Proof. Set A˚˚ “ maxt
β̂

Dmin

γ̂N , A
˚u, where γ̂N “ max

tPr0,T s
p1´ f 1Nptqq. Based on as-

sumptions (H1) and (H3), we can show that r0, ρA˚˚s is positively invariant for system

(3.14) with any given ρ ě 1, that is, the unique solution Aptq with 0 ď Apθq ď ρA˚˚

satisfies 0 ď Aptq ď ρA˚˚ for all t ě 0 and for any θ P r´f̂ , 0s. It easily follows

from Theorem 3.2 that Aptq is nonnegative. We claim Aptq ď ρA˚˚ by argument

of contradiction. Assume the contrary, there exists t0 such that Aptq ă ρA˚˚ when
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t ă t0, while Apt0q “ ρA˚˚ and
dAptq

dt

ˇ

ˇ

ˇ

t0
ą 0. However, it follows from assumptions

(H1) and (H3) that

dAptq

dt

ˇ

ˇ

ˇ

t0
ď p1´ f 1Npt0qqbpt0 ´ fNpt0q, Apt0 ´ fNpt0qqq ´DApt0, Apt0qqA

2
pt0q

ď γ̂N β̂ρA
˚˚
´DminpρA

˚˚
q
2
ă 0.

Therefore, Aptq P r0, ρA˚˚s for all t provided that 0 ď Apθq ď ρA˚˚ for any θ P

r´f̂ , 0s. Due to the arbitrariness of ρ (can be as large as you wish), the non-negativity

and boundedness of solutions of system (3.14) hold in r0,8q. Thus, a unique solution

Aptq of system (3.14) exists globally on r0,8q with the initial data ψpθq P X`.

Define the solution map of system (3.14) as

Ψtpψq “ Apt` θ;ψq, @t ě 0, θ P r´f̂ , 0s, ψ P X`,

where Apt;ψq is the solution of system (3.14) with the initial data ψpθq for all θ P

r´f̂ , 0s. Due to the periodicity of the variable coefficients, it easily follows that Ψt

is a T -periodic semiflow on X`.

3.4.1 The basic reproduction number, R0

It follows from the assumption (H1) that system (3.14) has the extinction equilibrium

0. The linearized system of system (3.14) at the population extinction equilibrium

is shown as follows:

dAptq

dt
“ p1´ f 1Nptqqh3ptqβpt´ fNptqqApt´ fNptqq ´ µAptqAptq. (3.15)

Since all time-dependent coefficients are non-negative T -periodic functions, both

systems (3.14) and (3.15) are T -periodic. Let CT be the ordered Banach space of all

T -periodic continuous functions from R to R, which is equipped with the maximum

norm } ¨ } and the positive cone

C`T :“ tφ P CT : φptq ě 0, @t P Ru.
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Let F ptqpφq “ p1 ´ f 1Nptqqh3ptqβpt ´ fNptqqφp´fNptqq and V ptq “ µAptq, then the

next generation operator L : CT Ñ CT is defined as

rLφs ptq “
ż 8

0

e´
şt
t´s V prqdrF pt´ sqφpt´ s` ¨qds

“

ż 8

0

e´
şt
t´s µAprqdrp1´ f 1Npt´ sqqh3pt´ sq

βpt´ s´ fNpt´ sqqφpt´ s´ fNpt´ sqqds.

We then define the basic reproduction number as the spectral radius of L, i.e.

R0 “ rpLq. Let Pptq be the solution maps of the linear periodic equation (3.15) on

X, that is, Pptqφ “ wtpφq, t ě 0, where wtpφqpθq “ wpt ` θ, φq, @θ P r´f̂ , 0s, is

the unique solution semiflow of (3.15) satisfying w0 “ φ P X. Hence, P :“ PpT q

is the Poincaré map associated with system (3.15). Let rpP q be the spectral radius

of P . The following Lemma shows that the system admits a special solution, which

is the key technique for investigating the long-term dynamics in later proofs. The

argument below is motivated by the treatment in [130].

Lemma 3.2. There exists a positive T -periodic function vptq such that wptq “ eµtvptq

is a positive solution of (3.15), where µ “
ln rpP q

T
.

Proof. Since p1 ´ f 1Nptqqh3ptqβpt ´ fNptqq ą 0, then P is a positive operator on

X. It then follows from Krein-Rutman theorem [47, Theorem 3.1] that rpP q is an

eigenvalue of P with a positive eigenfunction ψ˚. In addition, it is easy to check that

the linear operator P is strongly monotone when t ą 2f̂ . Therefore, there exists an

integer n, such that nT ą 2f̂ , guaranteeing that P n is strongly positive and compact.

Applying Krein-Rutman theorem again, we can get the spectral radius of P n, rpP nq,

is a simple eigenvalue of P n with a strongly positive eigenfunction ψ˚n. It is noted

that P nψ˚ “ rpP nqψ˚ “ prpP qqnψ˚ “ P nψ˚n. Then, we have ψ˚ “ s0ψ
˚
n " 0 for some

positive constant s0. Thus, it can be concluded that ψ˚ " 0.
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Let µ “
ln rpP q

T
. Suppose wptq is the particular solution of (3.15) through ψ˚,

that is wpθq “ ψ˚pθq and wpT ` θq “ P pψ˚qpθq “ rpP qψ˚pθq for all θ P r´f̂ , 0s. Let

vptq “ e´µtwptq, then vpθq “ e´µθwpθq “ e´µθψ˚pθq for all θ P r´f̂ , 0s. Furthermore,

for all θ P r´f̂ , 0s we have

vpT ` θq “ e´µpT`θqwpT ` θq “ e´µpT`θqrpP qψ˚pθq “ e´µθψ˚pθq “ vpθq.

Based on the uniqueness of solutions, we know vptq is periodic and wptq “ eµtvptq.

3.4.2 Global dynamics in terms of R0

We will show the main focus of this section, that is, the positive periodic solution is

globally attractive when R0 ą 1. To do this, we will employ the theory of monotone

and subhomogeneous semiflows [135, Section 2.3]. To employ this result, the key idea

is to show that the periodic semiflow of the decoupled system (3.14) is (eventually)

strongly monotone in a suitable phase space. However, in the natural space X :“

Cpr´f̂ , 0s,Rq, the periodic semiflow is monotone but not strongly monotone. As a

matter of fact, a solution periodic semiflow Φ̃t can also be defined through a new

phase Y :“ Cpr´fNp0q, 0s,Rq with maximum norm } ¨ } and positive cone Y ` :“

tφ P Cpr´fNp0q, 0s,Rq : φpθq ě 0u, see [77]. Then we can show that the periodic

semiflow Φ̃t is strongly monotone and strictly subhomogeneous. Now we have two

phase spaces for (3.14), X and Y with the following observation for the solution in

these two phase spaces [77, Lemma 3.3 and 3.5]:

Apt, φq “ Apt, ψq, @ψ P X, @φ P Y, provided that φpθq “ ψpθq, @θ P r´fNp0q, 0s.

However, since different phase spaces are used, R0 may not determine the stability

of the linear periodic system of (3.14) on Y . It is necessary to prove the equivalence

of stability properties for the linear periodic system of (3.14) in two different spaces.

Recall that P ptq is already defined as the solution map of linear periodic system
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(3.15) on X in the above proof. We denote Qptq as the solution map of the linear

periodic system of (3.14) on Y . Let Q̃ :“ QpT q be the Poincaré map related to

system (3.15) on Y . Its spectral radius is denote by rpQ̃q. The following lemma

reveals the equivalence of stability properties for the linear periodic system in these

two spaces, which can be obtained by an argument similar to that in [77].

Lemma 3.3. Poincaré map P and Q̃ has the same spectral radius, that is, rpP q “

rpQ̃q.

The subsequent two theorems show that Φ̃t is a strongly monotone and strictly

subhomogeneous periodic semiflow in Y .

Theorem 3.3. For any φ1 and φ2 in Y ` with φ1 ą φ2 (that is, φ1 ě φ2 but φ1 ‰

φ2), the solutions u1ptq and u2ptq of system (3.14) with u1p¨q “ φ1 and u2p¨q “ φ2,

respectively, satisfy u1ptq ą u2ptq for all t ą f̂ , and hence Φ̃tpφ1q " Φ̃tpφ2q in Y for

all t ě 2f̂ .

Proof. It is easy to prove u1ptq ě u2ptq for all t ě 0 by a repeated comparison

argument on each interval rnfNp0q, pn ` 1qfNp0qs, n P N. Since uiptq (i “ 1, 2) is

bounded on r0,8q, then uiptq (i “ 1, 2) can be restricted in an order interval r0, hs

for all t ě 0, where h is a positive real number. Hence, we can construct a function

gpt, Aq “ ´µAptqA´DApt, AqA
2`HA, where H ą 0 is a large number to guarantee

g is increasing with respect to A when A P r0, hs. It is noted that uiptq (i “ 1, 2) for

all t ě 0 satisfies the integral equation:

Aptq “e´HtAp0q `

ż t

0

e´Hpt´sqgps, Apsqqds

`

ż t

0

e´Hpt´sqp1´ f 1Npsqqh3psqbps´ fNpsq, Aps´ fNpsqqqds.

(3.16)

It is apparent that r´fNp0q, 0s Ă mApr0, f̂ sq, where mAptq :“ t´ fNptq is increasing

with respect to t P R. Since φ1 ą φ2, there exists an η P r´fNp0q, 0s such that
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u1pηq ą u2pηq. It follows from equation (3.16) and the comparison theorem [105,

Theorem 5.1.1] that u1ptq ą u2ptq for all t ą f̂ . Thus, the solution map Φ̃t is

strongly monotone if t ą 2f̂ .

Before conducting the proof of strictly subhomogeneous, we need to make some

assumption about the birth rate bpt, Aq, that is,

(S1) The birth rate bpt, Aq can be expressed as follows,

bpt, Aq “ Bpt, AqA,

where Bpt, Aq is the per-capita birth rate and nonincreasing in A for all t P R.

This assumption is reasonable for ticks according to [89], as the per-capita birth rate

for ticks is decreasing with respect to the number of adults due to host grooming or

host resistance. With this assumption, we can show that Φ̃ is strictly subhomoge-

neous by the following theorem.

Theorem 3.4. For any ψ " 0 in Y and any r P p0, 1q, the following two results

hold, that is,

(i) upt, rψq ą rupt, ψq for all t ą f̂ ;

(ii) Φ̃n
T prψq " rΦ̃n

T pψq in Y , where the integer n satisfies that nT ą 2f̂ .

Proof. Let upt, ψq be the unique solution of system (3.14) with u0 “ ψ " 0 in Y . For

notational simplification, we use wptq “ upt, rψq and vptq “ rupt, ψq. It then follows

from Theorem 3.2 that uptq ą 0 and vptq ą 0 for all t ě 0 and wpθq “ rψpθq “ vpθq

for all θ P r´fNp0q, 0s.
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Note that

dv

dt

ˇ

ˇ

ˇ

t“0
“rp1´ f 1Np0qqh3p0qBp0´ fNp0q, up0´ fNp0qqqup0´ fNp0qq ´ µAp0qvp0q

´
DAp0, up0qq

r
v2
p0q

ăp1´ f 1Np0qqh3p0qBp´fNp0q, rup´fNp0qqqvp´fNp0qq ´ µAp0qvp0q

´DAp0, up0qqv
2
p0q

ďp1´ f 1Np0qqh3p0qBp´fNp0q, rup´fNp0qqqvp´fNp0qq ´ µAp0qvp0q

´DAp0, rup0qqv
2
p0q

“p1´ f 1Np0qqh3p0qbp´fNp0q, wp´fNp0qqq ´ µAp0qwp0q ´DAp0, vp0qqw
2
p0q

“
dw

dt

ˇ

ˇ

ˇ

t“0
.

It follows from wp0q “ vp0q ą 0 that there must be an ξ P p0, f̂q such that wptq ą

vptq ą 0 holds for all t P p0, ξq. We can further conclude that wptq ą vptq holds for

all 0 ă t ď fNp0q. If we assume the contrary, then there is a t̃ P p0, fNp0qs such

that wptq ą vptq for all t P p0, t̃q and wpt̃q “ vpt̃q, which indicates
dv

dt

ˇ

ˇ

ˇ

t“t̃
ě
dw

dt

ˇ

ˇ

ˇ

t“t̃
.
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However,

dv

dt

ˇ

ˇ

ˇ

t“t̃
“rp1´ f 1Npt̃qqh3pt̃qBpt̃´ fNpt̃q, upt̃´ fNpt̃qqqupt̃´ fNpt̃qq ´ µApt̃qvpt̃q

´
DApt̃, upt̃qq

r
v2
pt̃q

ăp1´ f 1Npt̃qqh3pt̃qBpt̃´ fNpt̃q, upt̃´ fNpt̃qqqvpt̃´ fNpt̃qq ´ µApt̃qvpt̃q

´DApt̃, upt̃qqv
2
pt̃q

ďp1´ f 1Npt̃qqh3pt̃qBpt̃´ fNpt̃q, rupt̃´ fNpt̃qqqvpt̃´ fNpt̃qq ´ µApt̃qvpt̃q

´DApt̃, rupt̃qqv
2
pt̃q

“p1´ f 1Npt̃qqh3pt̃qbpt̃´ fNpt̃q, wpt̃´ fNpt̃qqq ´ µApt̃qwpt̃q ´DApt̃, wpt̃qqw
2
pt̃q

“
dw

dt

ˇ

ˇ

ˇ

t“t̃
,

which is a contradiction. Similarly, we can repeat this procedure to prove wptq ą vptq

for all t P pnfNp0q, pn`1qfNp0qs, where n can be any integer. Note that t´fNptq ą 0

when t ą f̂ . Thus, upt, rψq ą rupt, ψq for all t ą f̂ and Φ̃n
T prψq “ Φ̃nT prψq "

rΦ̃nT pψq “ rΦ̃n
T pψq in Y , where the integer n satisfies that nT ą 2f̂ .

We now prove the global stability of system (3.14) when R0 ą 1 bu focusing on

the positive cone Y ` :“ tφ P Cpr´fNp0q, 0s,Rq : φpθq ě 0u.

Theorem 3.5. If R0 ą 1, then system (3.14) has a unique positive T -periodic

solution A˚ptq, which is globally asymptotically stable in Y `zt0u.

Proof. Note that Φ̃t can be regarded as an n0T -periodic semiflow in Y ` if we choose

proper integer n0 such that n0T ą 2f̂ . It follows from Theorems 5.2 and 3.4 that Φ̃n0T

is a strongly monotone and strictly subhomogeneous map on Y `. It is shown that the

sign of R0´1 is the same as rpDΦ̃n0T p0qq´1 [134], where rpDΦ̃n0T p0qq “ rpQpn0T qq “

prpQ̃qqn0 . Based on [135, Theorem 2.3.4] for periodic maps, if rpDΦ̃n0T p0qq ą 1,
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system (3.14) admits a unique positive n0T -periodic solution A˚ptq, which is globally

asymptotically stable for system (3.14) in Y `zt0u. In addition, A˚ptq is T -periodic.

This is true since

Φ̃n0
T pΦ̃Tψ

˚
q “ Φ̃T pΦ̃

n0
T ψ

˚
q “ Φ̃T pΦ̃n0Tψ

˚
q “ Φ̃T pψ

˚
q,

where ψ˚ “ A˚0 P Y guarantees Φ̃n0Tψ
˚ “ ψ˚. It follows from the uniqueness of

positive fixed point of Φ̃n0
T “ Φ̃n0T that Φ̃Tψ

˚ “ ψ˚ holds. Thus, A˚ptq is a T -

periodic solution of system (3.14).

Based on the information about the undecoupled equation (3.14) for Aptq, we can

also deduce the solution property for other variables Eptq, Lptq and Nptq by their

integral expressions:

Eptq “

ż t

t´τEptq

exp
´

´

ż t

ξ

µEprqdr
¯

bpξ, Apξqqdξ,

Lptq “

ż t

t´τLptq

p1´ f 1Epξqq exp
´

´

ż t

ξ

µLprqdr ´

ż ξ

ξ´fEpξq

µEprqdr
¯

bpξ ´ fEpξq, Apξ ´ fEpξqqqdξ,

Nptq “

ż t

t´τN ptq

p1´ f 1Lpξqq exp
´

´

ż t

ξ

µNprqdr ´

ż ξ

ξ´τLpξq

µLprqdr ´

ż ξ´τLpξq

ξ´fLpξq

µEprqdr
¯

bpξ ´ fLpξq, Apξ ´ fLpξqqqdξ.

It easily follows from the global stability of Aptq that

lim
tÑ8

rEptq ´ E˚ptqs “ 0, lim
tÑ8

rLptq ´ L˚ptqs “ 0, and lim
tÑ8

rNptq ´N˚ptqs “ 0,
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where

E˚ptq “

ż t

t´τEptq

exp
´

´

ż t

ξ

µEprqdr
¯

bpξ, A˚pξqqdξ,

L˚ptq “

ż t

t´τLptq

p1´ f 1Epξqq exp
´

´

ż t

ξ

µLprqdr ´

ż ξ

ξ´fEpξq

µEprqdr
¯

bpξ ´ fEpξq, A
˚
pξ ´ fEpξqqqdξ,

N˚
ptq “

ż t

t´τN ptq

p1´ f 1Lpξqq exp
´

´

ż t

ξ

µNprqdr ´

ż ξ

ξ´τLpξq

µLprqdr ´

ż ξ´τLpξq

ξ´fLpξq

µEprqdr
¯

bpξ ´ fLpξq, A
˚
pξ ´ fLpξqqqdξ,

are all positive T -periodic functions. Thus, the global attractivity of the full system

(3.13) can be obtained.

Theorem 3.6. If R0 ą 1, then system (3.13) has a unique positive T -periodic

solution pE˚ptq, L˚ptq, N˚ptq, A˚ptqq, which is globally attractive for all nontrivial

solutions.

3.5 Dynamics under immature intraspecific com-

petition

Under the consideration of competitions among immature individuals, the model

(3.8) is composed of four coupled delay differential equations with time-dependent

delays. We will conduct a series of rigorous analysis including the well-posedness and

threshold dynamics in terms of the basic reproduction number, which constitutes the

main focus of our project. To investigate the long-term dynamics of system (3.8),

we make the additional assumptions for the immature mortality rates based on the

assumptions made in last section:

(C1) All the mortality rates including per-capita natural death rates µiptq (i “

E,L,N) and density dependent death coefficients Dipt, iq (i “ L,N) are non-
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negative T -periodic continuous functions with respect to time t. In addition,

Dipt, iq is non-decreasing with respect to i for i “ L,N .

Define Cf̂ :“ Cpr´f̂ , 0s,R4q with the norm }φ}Cf̂ “ max
θPr´f̂ ,0s

}φpθq}4R. Then Cf̂ is a

Banach space. Let C`
f̂
“ Cpr´f̂ , 0s,R4

`q, then pCf̂ , C
`

f̂
q is a strongly ordered space.

Given a function uptq : r´f̂ , σq Ñ R4 for σ ą 0, define ut P Cf̂ by utpθq “ upt ` θq

for all θ P r´f̂ , 0s and t P r0, σq. Before exploring the long-term dynamics, we firstly

verify the global existence of the solution to (3.8) defined on.

Lemma 3.4. A unique solution pEptq, Lptq, Nptq, Aptqq of system (3.8) exists globally

on r0,8q with the initial data φpθq P C`
f̂

. Moreover, system (3.8) generates a T -

periodic semiflow Φt : C`
f̂
Ñ C`

f̂
, i.e. Φtpφqpθq “ pEpt ` θ;φq, Lpt ` θ;φq, Npt `

θ;φq, Apt` θ;φqq, @φ P C`
f̂

, t ě 0, θ P r´f̂ , 0s.

Proof. Based on assumptions (H1) and (H3), we can show that r0, ρA˚˚s is posi-

tively invariant for the last equation of system (3.8) with any given ρ ě 1, which is

analogous to the proof of Lemma 3.1 in the previous section.

Likewise, Eptq, Lptq and Nptq are bounded since

Eptq ď

ż t

t´τEptq

bpξ, Apξqqdξ ď

ż t

t´τEptq

βpξqApξqdξ ď ρτ̂Eβ̂A
˚˚,

Lptq ď

ż t

t´τLptq

p1´ f 1Epξqqbpξ ´ fEpξq, Apξ ´ fEpξqqqdξ

ď

ż t

t´τLptq

p1´ f 1Epξqqβpξ ´ fEpξqqApξ ´ fEpξqqdξ ď ρτ̂Lγ̂Eβ̂A
˚˚,

Nptq ď

ż t

t´τN ptq

p1´ f 1Lpξqqbpξ ´ fLpξq, Apξ ´ fLpξqqqdξ

ď

ż t

t´τN ptq

p1´ f 1Lpξqqβpξ ´ fLpξqqApξ ´ fLpξqqdξ ď ρτ̂N γ̂Lβ̂A
˚˚,
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where τ̂E “ max
tPr0,T s

τEptq, τ̂L “ max
tPr0,T s

τLptq, τ̂N “ max
tPr0,T s

τNptq, γ̂E “ max
tPr0,T s

p1´ f 1Eptqq and

γ̂L “ max
tPr0,T s

p1´ f 1Lptqq. Hence,

S :“ Cpr´f̂ , 0s, r0, ρτ̂Eβ̂A
˚˚
s ˆ r0, ρτ̂Lγ̂Eβ̂A

˚˚
s ˆ r0, ρτ̂N γ̂Lβ̂A

˚˚
s ˆ r0, ρA˚˚sq,

is positively invariant for system (3.8). Due to the arbitrariness of ρ (can be as large

as you wish), the non-negativity and boundedness of solutions of system (3.8) hold in

r0,8q. Thus, a unique solution pEptq, Lptq, Nptq, Aptqq of system (3.8) exists globally

on r0,8q with the initial data φpθq P C`
f̂

.

Define the solution map of system (3.8) as

Φtpφq “ pEpt` θ;φq, Lpt` θ;φq, Npt` θ;φq, Apt` θ;φqq, @t ě 0, θ P r´f̂ , 0s, φ P C`
f̂
,

where pEpt;φq, Lpt;φq, Npt;φq, Apt;φqq is the solution of system (3.8) with the initial

data φpθq for all θ P r´f̂ , 0s. Due to the periodicity of the variable coefficients, it

easily follows that Φt is a T´ periodic semiflow on C`
f̂

.

It follows from the assumption (H1) that system (3.8) has the extinction equilib-

rium (0, 0, 0, 0). The linearized system of system (3.8) at the population extinction

equilibrium is shown as follows:

dEptq

dt
“ βptqAptq ´ µEptqEptq ´ p1´ f

1
Eptqqh1ptqβpt´ fEptqqApt´ fEptqq,

dLptq

dt
“ p1´ f 1Eptqqh1ptqβpt´ fEptqqApt´ fEptqq ´ µLptqLptq

´ p1´ f 1Lptqqh2ptqβpt´ fLptqqApt´ fLptqq,

dNptq

dt
“ p1´ f 1Lptqqh2ptqβpt´ fLptqqApt´ fLptqq ´ µNptqNptq

´ p1´ f 1Nptqqh3ptqβpt´ fNptqqApt´ fNptqq,

dAptq

dt
“ p1´ f 1Nptqqh3ptqβpt´ fNptqqApt´ fNptqq ´ µAptqAptq.

(3.17)
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The last equation in (3.17) is decoupled, giving a linear scalar delay differential

equation as below:

dAptq

dt
“ p1´ f 1Nptqqh3ptqβpt´ fNptqqApt´ fNptqq ´ µAptqAptq.

Note that the linearized system for system (3.8) at the population extinction equilib-

rium is precisely (3.15). Therefore, the formulation of the basic reproduction number,

R0, serving as a threshold parameter, and the related theoretical results involving

Lemma 3.2 in the previous section remain valid.

3.5.1 Extinction and persistence

The following theorem deals with extinction and uniform persistence in terms of R0.

Let

M0 :“ tφ “ pφ1, φ2, φ3, φ4q P Cf̂ : φip0q ą 0, @i P t1, 2, 3, 4uu,

and

BM0 :“ Cf̂zM0 “ tφ “ pφ1, φ2, φ3, φ4q P Cf̂ , φip0q “ 0, for some i P t1, 2, 3, 4uu.

Theorem 3.7. Let (H1 ´ H3) and (C1) hold. Then the following statements are

valid:

(1) If R0 ă 1, then the population extinction equilibrium p0, 0, 0, 0q is globally

attractive for system (3.8) on Cf̂ .

(2) If R0 ą 1, then system (3.8) admits a positive T -periodic solution

pE˚ptq, L˚ptq, N˚ptq, A˚ptqq in M0 and there exists a real number η ą 0 such

that the solution pEptq, Lptq, Nptq, Aptqq with φ P M0 satisfies lim inf
tÑ8

iptq ě η

for i “ E,L,N,A.

Proof. In the case whereR0 ă 1, we have rpP q ă 1 since sign(R0´1)=sign(rpP q´1)

in light of [134, Theorem 2.1]. Based on Lemma 3.2, there is a positive T -periodic
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function vptq such that wptq “ eµtvptq is a positive solution of (3.15), where µ “

lnrpP q

T
ă 0. Then, the positivity of Aptq and assumption (H1) indicate that

dAptq

dt
ď p1´ f 1Nptqqh3ptqbpt´ fNptq, Apt´ fNptqqq ´ µAptqAptq

ď p1´ f 1Nptqqh3ptqβpt´ fNptqqApt´ fNptqq ´ µAptqAptq,

since

h3ptq exp
´

´

ż t

t´τN ptq
DN pr,NprqqNprqdr´

ż t´τN ptq

t´τN ptq´τLpt´τN ptqq
DLpr, LprqqLprqdr

¯

ď h3ptq.

Hence, the comparison theorem [105, Theorem 5.1.1] implies that there exists a

constant K ą 0 such that Apθq ď Keµθvpθq for all ´f̂ ď θ ď 0 guaranteeing that

Aptq ď Kwptq “ Keµtvptq,

and further, lim
tÑ8

Aptq “ 0.

Besides, based on equation (3.9), (3.10) and (3.11), it follows from assumption (H3)

that

Eptq ď

ż t

t´τEptq

bpξ, Apξqqdξ ď

ż t

t´τEptq

βpξqApξqdξ,

Lptq ď

ż t

t´τLptq

p1´ f 1Epξqqbpξ ´ fEpξq, Apξ ´ fEpξqqqdξ

ď

ż t

t´τLptq

γ̂Eβpξ ´ fEpξqqApξ ´ fEpξqqdξ,

Nptq ď

ż t

t´τN ptq

p1´ f 1Lpξqqbpξ ´ fLpξq, Apξ ´ fLpξqqqdξ

ď

ż t

t´τN ptq

γ̂Lβpξ ´ fLpξqqApξ ´ fLpξqqdξ.

Thus, when R0 ă 1,

lim
tÑ8

pEptq, Lptq, Nptq, Aptqq “ p0, 0, 0, 0q.
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In the case where R0 ą 1, we have rpP q ą 1. Then, there exists a sufficiently

small ε ą 0, such that rε, the spectral radius of the Poincaré map corresponding to

u1ptq “ p1´ f 1Nptqqh3ptqpβpt´ fNptqq ´ εqupt´ fNptqq ´ pµAptq ` εquptq, (3.18)

satisfies rε ą 1. Similarly, there is a positive T -periodic function vεptq such that

uptq “ eλtvεptq is a positive solution of equation (3.18) with λ “
ln rε
T

ą 0.

Based on the continuity of g2pt, ¨, ¨q and differentiability of bpt, ¨q, for any ε ą 0, we

can choose a sufficiently small number η1 ą 0 such that for all i P r0, η1s (i “ L,N,A)

g2pt, L,Nqbpt, Aq ě pg2pt, 0, 0q
Bbpt, 0q

BA
´ εqA “ pβptq ´ εqA,

and DApt, AqA ă DApt, η1qη1 ă ε hold according to assumption (H2).

Recall that the solution semiflow Φtpφq (defined in Lemma 3.4) tends to 0 uni-

formly for all t P r0, T s when φ approaches to 0, then there exists η0 ą 0 such that

for any }φ} ď η0, we have

}Φtpφq} ď η1, @t P r0, T s.

Furthermore, we can prove the following claim to obtain weak persistence when

R0 ą 1.

Claim: There exists η0 ą 0 such that lim sup
nÑ8

}ΦnT pφq} ě η0 for all φ PM0.

Suppose the claim is false, then lim sup
nÑ8

}ΦnT pφq} ă η0 for some φ PM0. Hence, there

exists a positive integer N1, such that }ΦnT pφq} ă η0 when n ě N1. Thus, for any

t “ nT ` t1 with n ě N1 and t1 P r0, T s, we have }Φtpφq} “ }Φt1pΦnT pφqq} ď η1 and

dAptq

dt
ě p1´ f 1N ptqqh3ptqpβpt´ fN ptqq ´ εqApt´ fN ptqq ´ pµAptq ` εqAptq.

Again, by the comparison theorem [105, Theorem 5.1.1], we can conclude that there

exists a constant L ą 0 such that Apθq ě Leλθvεpθq for all ´f̂ ď θ ď 0, which implies
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that

Aptq ě Luptq “ Leλtvεptq.

However lim
tÑ8

eλtvεptq “ 8 holds, which contradicts to the uniform boundedness of

Aptq.

Define P̃ptq as the solution map for the linear periodic system of (3.8) on Cf̂ , that

is, P̃ptqφ “ wtpφq, t ě 0, where wtpφqpθq “ wpt ` θ;φq, @θ P r´f̂ , 0s is the unique

solution of system (3.17). Denote P̃ :“ P̃pT q as the Poincaré map associated with

system (3.17). Let M1 “ p0, 0, 0, 0q. It then follows from the above claim that M1 is

a isolated invariant set for P̃ on Cf̂ and W spM1q XM0 “ ∅, where W spM1q is the

stable set of M1 for P̃ . Define

MB :“ tφ P BM0 : P n
pφq P BM0, @n ě 0u.

Then YφPMBωpφq “ M1. In addition, it is easy to see that no subset of M1 forms a

cycle in MB, which also holds in BM0. According to the acyclicity theorem on uniform

persistence for maps in [135], we have P̃ : Cf̂ Ñ Cf̂ is uniformly persistent with

respect to M0. Thus, Theorem 3.1.1 of [135] implies that the semiflow Φt : Cf̂ Ñ Cf̂

is also uniformly persistent with respect toM0. Based on [133, Theorem 3.1], it can be

concluded that system (3.8) admits a T -periodic solution pE˚ptq, L˚ptq, N˚ptq, A˚ptqq

with pE˚pθq, L˚pθq, N˚pθq, A˚pθqq PM0.

In order to obtain the practical uniform persistence, we define a continuous func-

tion p : Cf̂ Ñ R` by

ppφq “ minpφ1p0q, φ2p0q, φ3p0q, φ4p0qq, @φ “ pφ1, φ2, φ3, φ4q P Cf̂ ,

with maximum norm } ¨ }. By applying similar arguments with the proof of [76,

Theorem 3.2], we can obtain the existence of a positive T -periodic solution and the

practical uniform persistence, that is, there exists η ą 0 such that

lim inf
tÑ8

minpEpt, φq, Lpt, φq, Npt, φq, Apt, φqq “ lim inf
tÑ8

ppΦtpφqq ě η for all φ PM0.
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This completes the proof.

3.6 Discussion

This chapter started from a periodic version of McKendrick-von Foerster equation

with periodic coefficients to describe the population growth with seasonal effects.

Using the equivalent integral equation obtained by the method of integration along

characteristics, we presented a detailed proof of the uniqueness and existence of the

solution in the light of contraction mapping theorem. It is worth noting that the age-

dependent models can also be studied by using the semigroup theory [94] and similar

models have been extensively studied in [122]. Our approach is highly motivated by

[18, 122]. Then the hyperbolic equation was reduced to a periodic differential system

with periodic delays through rigorous biological and mathematical arguments, with

the tick population growth as our motivating example. The derived age-structured

model with time-dependent periodic delays is quite different from previous time-

independent delay system.

When the host community for immature ticks is very rich, the intra-specific com-

petition between immature stages of ticks is negligible. In this scenario, the basic

reproduction numberR0 is defined as the spectral radius of the next generation oper-

ator following the work [134]. We should mention that the study [128] has also used

the approach in [7] to define and derive the basic reproduction number for tick popu-

lation dynamics, with some numerics for the model parameterized by the blacklegged

ticks. The formulation of the basic reproduction number for models with periodic

coefficients has been extensively studied and interesting readers can find more details

from [9, 10, 58, 121] and references therein. Even though the specific form of R0 is

not known, it is shown that R0 is a threshold value for the stability of zero solu-

tion of the corresponding linear equation [134, Theorem 2.1]. Given this, we further

62



obtain the global stability of the positive periodic solution with the following two

steps. Firstly, we investigate the global attractivity on this decoupled scalar subsys-

tem when R0 ą 1 by applying the theory of monotone systems. We showed that the

solution semiflow is strongly monotone and strictly subhomogeneous in a novel space

Y :“ tCr´fNp0q, 0s,Ru, different from the usual space X :“ tCr´f̂ , 0s,Ru. Then,

we extended the result to the full system as the other variables can be represented

by the decoupled variable for adult size. However, the introduction of novel phase

space introduces new challenges and we need to argue the following facts: (1) show

that the solution can define a periodic semiflow; (2) the basic reproduction number

R0 can not only determine the stability of the system on Y , but also determined the

stability in X; and (3) the periodic semilfow is (eventually) strongly monotone and

strictly subhomogeneous. When the immature competition is included, we proved

the global existence and uniqueness of the solution, and found that the basic repro-

duction number in this case is the same as in the previous case. The extinction and

uniform persistence of tick population was further shown in terms of R0.
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Chapter 4

A nonlocal reaction-diffusion
growth model with periodic delay

and competition

4.1 Background

The environment that organisms inhabit in the natural world is heterogeneously

distributed. Many physiological factors such as climates and food resources may

differ from place to place, which drive the organisms to keep drifting or dispersing.

Spatial effects affecting population dynamics and the structures of the communities

are of particular interest to scientists. Different kinds of models can be formulated to

incorporate spatial effects explicitly. The patchy framework [46, 69, 108] involving

a system of ordinary or delay differential equations describes the movement in a

discontinuous spatial region consisting of multiple patches. Alternatively, spatial

effects can be treated as a continuum and described appropriately by a reaction-

diffusion model [21, 46], which is the main tool we are going to employ in this

chapter.

Different reaction diffusion models with age-structure and nonlocal terms have

been derived and investigated theoretically in the bounded or unbounded domain

[44, 108, 114, 131]. For example, a stage structured nonlocal reaction diffusion model
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was proposed in [129], where the threshold dynamics and global attractivity of the

positive steady state were investigated through the decoupled equation for adult

variable as the immature intra-specific competition was ignored. By generalizing the

model in [129] to a nonautonomous version, authors in [61] established the existence

of the asymptotic speed of spread in an unbounded domain and a threshold result

on the global attractivity of either zero or a positive periodic solution in a bounded

domain. Authors in [131] studied the global dynamics of a class of age-structured

reaction diffusion models with a fixed temporal delay and a nonlocal term in an

unbounded domain.

In order to simplify the analysis, two significant factors regulating population

growth were ignored in these stage structured nonlocal reaction diffusion models.

One factor is the immature intra-specific competition, which enables these models to

be reduced into only one equation for mature variable. However, the intra-specific

competition within one stage, especially the immature stage, will generate a series of

variations in successive stages and greatly influences the dynamics of organisms with

complex life cycles [6]. For example, the body size and longevity of adult mosquitoes

are to a large extent affected by the larval competition [4, 96]. The alteration of

susceptibility of adult mosquitoes to dengue virus may be induced by the competi-

tion among larval mosquitoes [5]. The density-dependent acquired host resistance

to ticks leads to the increased deaths of feeding and developing ticks [24, 123, 124].

Models incorporating density dependent death terms for immature individuals are

more realistic to describe complex population dynamics of some species experiencing

intra-specific competition. In this study, we assume that immature (mature) indi-

viduals only compete with all other individuals in the same stage and there is no

competition between immature and mature stages. This assumption is biologically

reasonable since the intra-specific competition within one stage rather than between

stages can be commonly founded in species such as some insects and amphibious
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animals, which immature and mature individuals live in different environments and

have quite different requirements for food or resources [38].

The other negligible factor is the time varying maturation period, which serves

as a developmental index measuring the developmental progression and addresses

the timing of the transition from the previous life stage [87]. In this chapter, we

assume the maturation duration for juveniles is dependent on time, which is par-

ticular suitable for insects subject to climatic factors. For instance, the maturation

periods of mosquitoes [100] and ticks [89] greatly rely on the temperature, which

varies with time. Time-dependent maturation durations were considered in [45],

where the authors derived a size structured delay differential equation (DDE) model

with state-dependent delays to describe the population growth of a single species

experiencing larval competition. To investigate the population growth influenced by

seasonality, authors in [128] also took into account intra-specific competition and

time varying development durations within each developmental stage of ticks and

developed a stage-structured DDE model with periodic delays by building a link

between time dependent age thresholds and developmental durations. Based on a

similar model, authors in [72] provided a rigorous analysis involving the well posed-

ness of the solution and threshold dynamics for tick populations subject to seasonal

effects.

For these aforementioned models involving time-varying maturation period, spa-

tial movement of individuals is not considered, which motivates us to formulate an

age structured nonlocal reaction diffusion growth model with consideration of imma-

ture intra-specific competition and time dependent maturation duration simultane-

ously. In addition, it is well known that the annual trends of population dynamics

are greatly affected by the seasonal changes in rainfall, temperature and accessible

food or resources. This is particular true for some insect species such as ticks, the

primary vector transmitting tick-borne diseases, the distribution and abundance of
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which are very sensitive to the climate conditions as they need relatively high hu-

midity and moderate temperature to survive during their prolonged nonparasitic

stages [89]. Incorporating seasonal effects in the model would be a sensible choice to

better investigate the population dynamics, with all the time-dependent parameter

functions in our model being periodic with the same period T . The main focus of

this chapter is to provide a rigorous and detailed theoretical analysis on a delayed

nonlocal reaction diffusion population model with age structure and time dependent

delays from the perspective of periodic dynamical systems.

In the next section, a closed system related to the densities of immatures Ipt, xq

and adults Mpt, xq is formulated in terms of a system involving time-periodic delays

due to the seasonal juvenile maturation period. The time-dependent periodic delay

in our model brings novel challenges to the theoretical analysis. Section 4.3 con-

ducts theoretical analysis on the model ignoring juvenile intra-specific competition,

making the model reducible to one equation for Mpt, xq, based on which, the well

posedness of the system and the existence of the global attractor are established. In

addition, the basic reproduction number R0 is formulated and the global stability of

one equation in terms of R0 is obtained by employing the theory of monotone and

subhomogeneous semiflows. In section 4.4, we investigate the threshold dynamics for

the obtained model under the consideration of immature intra-specific competition

when the immature individuals have limited dispersal ability. It is impossible to

decouple the equation for the matured population density Mpt, xq from the model

system as usual due to the existence of the intra-specific juvenile competition. A

discussion session in the final part concludes this chapter.
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4.2 Model formulation

We start with a well-accepted age-structured framework proposed in [85] and gen-

eralize it into the following spatial model with periodic coefficients to study the

interactive effects of the age structure and spatial dispersal on population growth

subject to seasonal effects:

p B
Bt
` B

Ba
qρpt, a, xq “ Dpaq B

2

Bx2
ρpt, a, xq ´ µ

`

t, a,
ş8

0
qpt, sqρpt, s, xqds

˘

ρpt, a, xq,

(4.1)

where ρpt, a, xq is the population density of one species at time t, age a (ě 0) and

location x in a bounded spatial domain Ω with smooth boundary BΩ, Dpaq (ě 0)

is the age-dependent diffusion rate, µ
`

t, a,
ş8

0
qpt, sqρpt, s, xqds

˘

(ě 0) represents the

per-capita death rate, which varies with the time t, age a and a weighted population

density with kernel qpt, aq (ě 0).

By choosing appropriate weight functions as in [72], the specific form of the per-

capita death rates µ
`

t, a,
ş8

0
qpt, sqρpt, s, xqds

˘

for immature and mature stages are

assumed to be:

µ

ˆ

t, a,

ż 8

0

qpt, sqρpt, s, xqds

˙

“

$

&

%

µIptq ` fpIpt, xqq, t ą ´τp0q, 0 ă a ď τptq, x P Ω,

µMptq ` gpMpt, xqq, t ą ´τp0q, a ą τptq, x P Ω.
ll

In this formula, µIptq and µMptq are density-independent per capita death rates

for immature and mature individuals respectively, while fp¨q and gp¨q are density-

dependent death rates, which represent the intra-specific competition between indi-

viduals within the immature and mature stages respectively.

Let τptq denote the juvenile maturation period at time t, that is, a newly matured

individual at time t is developed from an immature individual born at time t´ τptq.
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That is, the age threshold classifying the population into immature and mature

stages at time t is τptq. In other words, the chronological age at time t for adults

should be greater than τptq. Thus, the densities of individuals within the immature

stage Ipt, xq and mature stage Mpt, xq at time t and location x can be represented

as follows:

Ipt, xq “
şτptq

0
ρpt, a, xqda and Mpt, xq “

ş8

τptq
ρpt, a, xqda. (4.2)

Provided that the developmental proportion during juvenile stage at day t is σptq,

the immature individuals attain maturity when the corresponding accumulative de-

velopmental proportion during the interval rt´ τptq, ts is unity, that is

ż t

t´τptq

σprqdr “ 1.

By taking the derivative with respect to t, it follows that

1´ τ 1ptq “
σptq

σpt´ τptqq
.

This indicates 1´ τ 1ptq ą 0, which guarantees that developmental processes proceed

according to the chronological order and never develop back to the previous stage.

Based on (4.1), the population model incorporating both seasonal effects and

spatial movements is presented as the following reaction diffusion equations with no
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flux boundary condition:
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p
B

Bt
`
B

Ba
qρpt, a, xq “ D1∆ρpt, a, xq ´ pµIptq ` fpIpt, xqqqρpt, a, xq,

t ą ´τp0q, 0 ă a ď τptq, x P Ω,

p
B

Bt
`
B

Ba
qρpt, a, xq “ D2∆ρpt, a, xq ´ pµMptq ` gpMpt, xqqqρpt, a, xq,

t ą ´τp0q, a ą τptq, x P Ω,

ρpt, 0, xq “ b pt,Mpt, xqq , t ě ´τp0q, x P Ω,

ρp´τp0q, a, xq “ φpa, xq, a ě 0, x P Ω,

Bρpt, a, xq

Bn
“ 0, t ą ´τp0q, x P BΩ,

(4.3)

where ∆ is the laplacian operator, n is the outward normal vector on BΩ, D1 (ą 0

or “ 0) and D2 (ą 0) denote the diffusion coefficients for immature and mature

individuals respectively, b pt,Mpt, xqq is the birth rate, which is dependent on the

density of matured individuals, φpa, xq is the initial distribution. Note that all above

functions are non-negative. Due to the seasonal factors regulating the population

growth, we assume that τptq, bpt,Mq, µIptq and µMptq are periodic in time t with the

same period T . Moreover, the inherent relationships between boundary and initial

condition must be satisfied in order to keep the system consistent, that is,

ρp´τp0q, 0, xq “ b p´τp0q,Mp´τp0q, xqq “ φp0, xq.

In addition, for the sake of clarity, we introduce the following notations:

τ̂ “ max
tPr0,T s

tτptqu, τ “ min
tPr0,T s

tτptqu. (4.4)

The basic assumptions for the coefficients are made as below, with the birth and

death functions illustrated in Figure 5.3.
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(A1) The birth rate bpt,Mq is H:older continuous on R ˆ R, periodic in time t with

the period T ą 0, and increasing with respect to M ě 0. Moreover, bpt, 0q ” 0,

bpt,Mq ą 0 when M ą 0, Bbpt,0q
BM

“ βptq ą 0 for all t P R and bpt,Mq ď βptqM

for all t P R and M ą 0, where βptq is a T -periodic continuous function.

Furthermore, there exists a number ĂM ě 0 such that for all H ą ĂM , p1 ´

τ 1ptqqbpt´ τptq, Hq ´ pµMptq ` gpHqqH ă 0.

(A2) All the per-capita death rates including natural death rates µIptq and µMptq

and density dependent death rates fpIq and gpMq are H:older continuous. In

particular, µIptq and µMptq are positive functions and periodic in time t with

the same period T ą 0. Function gpMq is non-decreasing with respect to M .

In addition, fp0q “ 0, gp0q “ 0, fpIq ě 0 and gpMq ą 0 when I ą 0 and

M ą 0 respectively.

Birth rate

Death rate

M0

Figure 4.1: Model assumption for the birth rate bpt,Mq and death function pµMptq`
gpMqqM for fixed time instant t.

By differentiating (4.2) with respect to time t and combining with (4.3), we obtain
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the following system:

BIpt, xq

Bt

“

ż τptq

0

Bρpt, a, xq

Bt
da` τ 1ptqρpt, τptq, xq

“

ż τptq

0

ˆ

´
Bρpt, a, xq

Ba
`D1∆ρpt, a, xq ´ pµIptq ` fpIpt, xqqqρpt, a, xq

˙

da` τ 1ptqρpt, τptq, xq

“D1∆Ipt, xq ` ρpt, 0, xq ´ ρpt, τptq, xq ´ pµIptq ` fpIpt, xqqqIpt, xq ` τ
1ptqρpt, τptq, xq

“D1∆Ipt, xq ` bpt,Mpt, xqq ´ pµIptq ` fpIpt, xqqqIpt, xq ´ p1´ τ
1ptqqρpt, τptq, xq,

and

BMpt, xq

Bt

“

ż 8

τptq

Bρpt, a, xq

Bt
da´ τ 1ptqρpt, τptq, xq

“

ż 8

τptq

ˆ

´
Bρpt, a, xq

Ba
`D2∆ρpt, a, xq ´ pµM ptq ` gpMpt, xqqqρpt, a, xq

˙

da´ τ 1ptqρpt, τptq, xq

“D2∆Mpt, xq ` ρpt, τptq, xq ´ ρpt,8, xq ´ pµM ptq ` gpMpt, xqqqMpt, xq ´ τ
1ptqρpt, τptq, xq

“D2∆Mpt, xq ` p1´ τ 1ptqqρpt, τptq, xq ´ pµM ptq ` gpMpt, xqqqMpt, xq,

where the reasonable biological assumption guarantees that ρpt,8, xq is zero since

no individual can survive forever.

To get the closed form of the above system, we need to determine ρpt, τptq, xq by

integrating along characteristics. For any ξ ě ´τp0q, let vpξ, xq “ ρpt0` ξ, a0` ξ, xq,
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where t0 and a0 are fixed. Then, when 0 ă a0 ` ξ ď τptq, we have,
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B

Bξ
vpξ, xq “

ˆ

B

Bt
`
B

Ba

˙

ρpt0 ` ξ, a0 ` ξ, xq

“ D1∆ρpt0 ` ξ, a0 ` ξ, xq ´ pµIpt0 ` ξq ` fpIpt0 ` ξ, xqqq ρpt0 ` ξ, a0 ` ξ, xq

“ D1∆vpξ, xq ´ pµIpt0 ` ξq ` fpIpt0 ` ξ, xqqq vpξ, xq,

vp´τp0q, xq “ ρpt0 ´ τp0q, a0 ´ τp0q, xq.

(4.5)

Clearly, the expression of the solutions vpξ, xq of (4.5) depends on coefficients D1

and fpIq. More precisely, the fundamental solution corresponding to the partial dif-

ferential operator L :” rBt´D1∆´µIptq´fpIpt, ¨qqs involves D1 and fpIq. Especially,

when D1 ą 0 and fpIq ą 0, it is very challenging for us to show such fundamental

solution (see [41]). At what follows, we study the equation (4.5) in terms of D1 and

fpIq with three cases: (I) D1 ą 0, fpIq ” 0 for I ą 0; (II) D1 “ 0, fpIq ” 0 for I ą 0;

(III) D1 “ 0, fpIq ą 0 for I ą 0, and then we show the closed form of the system

on I and M. As a matter of fact, the fundamental solution based on (II) is a special

case of it involved with (I) due to fpIq ” 0. Hence, we mainly concern cases (I) and

(III).

Case I: D1 ą 0 and fpIq ” 0. For some species such as mammals [42] and

raptor [83], the juvenile individuals have the ability to disperse, which alleviates the

intra-specific competition within immature stages [86]. Consequently, the juvenile

intra-specific competition can be ignored when immature individuals can move or

disperse efficiently, that is, fpIq ” 0 when D1 ą 0. In view of (4.5), we have

vpξ, xq “

ż

Ω

Γpt0 ` ξ, t0 ´ τp0q, x, y,D1qvp´τp0q, yqdy

“

ż

Ω

Γ pt0 ` ξ, t0 ´ τp0q, x, y,D1q ρpt0 ´ τp0q, a0 ´ τp0q, yqdy,

where Γpt, s, x, y,D1q represents the fundamental solution corresponding to the par-
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tial differential operator L :” rBt ´ D1∆ ´ µIptqs (see [41, Chapter 1]). For all

t ě 0, let t0 “ t ` τp0q ´ τptq, ξ “ τptq ´ τp0q and a0 “ τp0q, then ξ ě ´τp0q and

ξ ` a0 “ τptq. In this case,

ρpt, τptq, xq “ vpτptq ´ τp0q, xq

“

ż

Ω

Γpt, t´ τptq, x, y,D1qρpt´ τptq, 0, yqdy,

“

ż

Ω

Γ pt, t´ τptq, x, y,D1q bpt´ τptq,Mpt´ τptq, yqqdy.

Therefore, the closed form of the system describing the population growth when

t ě 0 can be written as:
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BIpt, xq

Bt
“D1∆Ipt, xq ` bpt,Mpt, xqq ´ µIptqIpt, xq

´ p1´ τ 1ptqq

ż

Ω

Γ pt, t´ τptq, x, y,D1q bpt´ τptq,Mpt´ τptq, yqqdy,

t ą 0, x P Ω,

BMpt, xq

Bt
“D2∆Mpt, xq ´ pµMptq ` gpMpt, xqqqMpt, xq

` p1´ τ 1ptqq

ż

Ω

Γ pt, t´ τptq, x, y,D1q bpt´ τptq,Mpt´ τptq, yqqdy,

t ą 0, x P Ω,

BIpt, xq

Bn
“
BMpt, xq

Bn
“ 0, t ą 0, x P BΩ,

(4.6)

WhenD1 “ 0 and fpIq ” 0, the fundamental solution operator Γ pt, t´ τptq, x, y,D1q

is reduced to

Γ pt, t´ τptq, x, y,D1q “ e
şt
t´τptq µIpsqds,
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and hence, we have the following system:
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BIpt, xq

Bt
“D1∆Ipt, xq ` bpt,Mpt, xqq ´ µIptqIpt, xq

´ p1´ τ 1ptqqe
şt
t´τptq µIpsqdsbpt´ τptq,Mpt´ τptq, yqq, t ą 0, x P Ω,

BMpt, xq

Bt
“D2∆Mpt, xq ´ pµMptq ` gpMpt, xqqqMpt, xq

` p1´ τ 1ptqqe
şt
t´τptq µIpsqdsbpt´ τptq,Mpt´ τptq, yqq, t ą 0, x P Ω,

BIpt, xq

Bn
“
BMpt, xq

Bn
“ 0, t ą 0, x P BΩ,

(4.7)

Case III: D1 “ 0, fpIq ą 0. For some species such as mosquitoes [66] or frogs

[35], the immature individuals are often restricted in a limited area due to inefficient

dispersal ability, which would intensify the competition for food and resources among

immature individuals. In this scenario, the diffusion rate for immature individuals

is negligible (i.e. D1 ” 0) while the immature intra-specific competition is taken

into consideration, that is, fpIq ą 0 for I ą 0. Then, the fundamental solution

corresponding to the differential operator L “ rBt ´ µIptq ´ fpIpt, ¨qqs is given by

exp
´

şt

t´τptq
pµIpsq ` fpIps, ¨qqq ds

¯

. Similar to the former arguments, we obtain that

ρpt, τptq, xq “ vpτptq ´ τp0q, xq

“ exp

ˆ
ż t

t´τptq

pµIpsq ` fpIps, ¨qqq ds

˙

ρpt´ τptq, 0, yq,

“ exp

ˆ
ż t

t´τptq

pµIpsq ` fpIps, ¨qqq ds

˙

bpt´ τptq,Mpt´ τptq, yqq.

Consequently, the closed form of the system describing the population growth when
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t ě 0 can be written as:
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BIpt, xq

Bt
“bpt,Mpt, xqq ´ pµIptq ` fpIpt, xqqqIpt, xq ´ p1´ τ

1
ptqq

ˆ exp

ˆ

´

ż t

t´τptq

pµIpsq ` fpIps, xqqqds

˙

bpt´ τptq,Mpt´ τptq, xqq,

t ą 0, x P Ω,

BMpt, xq

Bt
“D2∆Mpt, xq ´ pµMptq ` gpMpt, xqqqMpt, xq ` p1´ τ

1
ptqq

ˆ exp

ˆ

´

ż t

t´τptq

pµIpsq ` fpIps, xqqqds

˙

bpt´ τptq,Mpt´ τptq, xqq,

t ą 0, x P Ω,

BIpt, xq

Bn
“
BMpt, xq

Bn
“ 0, t ą 0, x P BΩ.

(4.8)

Notice that during derivation of the above system, it is not difficult to see that

ρpt, a, xq “ exp

ˆ

´

ż t

t´a

pµIprq ` fpIpr, xqqqdr

˙

bpt´ a,Mpt´ a, xqq

for t ě τptq ě a, while

Ipt, xq “

ż τptq

0

ρpt, a, xqda

“

ż τptq

0

exp

ˆ

´

ż t

t´a

pµIprq ` fpIpr, xqqqdr

˙

bpt´ a,Mpt´ a, xqqda

“

ż t

t´τptq

exp

ˆ

´

ż t

s

pµIprq ` fpIpr, xqqqdr

˙

bps,Mps, xqqds

for t ě τptq ě a. Letting t “ 0 in the above equation for I, we obtain the following

constraint:

Ip0, xq “

ż 0

´τp0q

exp

ˆ

´

ż 0

s

pµIprq ` fpIpr, xqqqdr

˙

bps,Mps, xqqds. (4.9)
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When the competition among immature individuals is non-negligible, that is,

fpIq ą 0 provided I ą 0, the model (4.8) consists of two coupled equations which is

not reducible to a single equation. The model structure of (4.8) is quiet different from

systems (4.6) and (4.7). A series of rigorous analysis including the well-posedness

and threshold dynamics in terms of the basic reproduction number will be conducted,

which constitutes the main focus of our chapter. In the subsequent section, we will

first investigate systems (4.6) and (4.7) where the immature intra-specific competi-

tion is negligible.

4.3 Dynamics for the model without immature

intra-specific competition

In this section, we establish the global dynamics for (4.6) via the basic reproduction

number. It is easy to check that the system is reducible to one single equation for

Mpt, xq. In fact, since the M equation in (4.6) is independent of I, it suffices to

study the decoupled system:
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BMpt, xq

Bt
“ D2∆Mpt, xq ´ pµMptq ` gpMpt, xqqqMpt, xq

` p1´ τ 1ptqq

ż

Ω

Γ pt, t´ τptq, x, y,D1q bpt´ τptq,Mpt´ τptq, yqqdy,

t ą 0, x P Ω,

BMpt, xq

Bn
“ 0, t ą 0, x P BΩ.

(4.10)

4.3.1 Global existence and uniqueness of solutions

Without loss of generality, we choose the initial timing as the global maximum point

of τptq in r0, T s, that is, τp0q “ maxtPr0,T stτptqu “ τ̂ , which is feasible with solution
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evolution. Let Y :“ CpΩ,Rq be the Banach space of continuous functions with the

supremum norm } ¨ }Y. Define C “ Cpr´τp0q, 0s,Yq. For any ψ P C, define the

norm }ψ} “ maxθPr´τp0q,0s }ψpθq}Y. Then, C is a Banach space. Let Y` :“ CpΩ,R`q

and C` “ Cpr´τp0q, 0s,Y`
q, then pY,Y`

q and pC, C`q are both strongly ordered

spaces. Given a function uptq : r´τp0q, σq Ñ Y for σ ą 0, define ut P C by utpθ, xq “

upt` θ, xq, for all θ P r´τp0q, 0s, x P Ω and t P r0, σq.

Define the linear operator A by

DpAptqq “ tψ P C2
pΩq :

Bψ

Bn
“ 0 on BΩu,

Aptqψ “ D2∆ψ ´ µMptqψ, @ψ P DpAptqq.

Define the nonlinear operator F : Rˆ C` Ñ Y by

Fpt, ψq “ ´ gpψp0, ¨qqψp0, ¨q ` p1´ τ 1ptqq
ż

Ω

Γ pt, t´ τptq, ¨, y,D1q bpt´ τptq, ψp´τptq, yqqdy,

for t ě 0 and ψ P C`.

Then, system (4.10) can be reformulated as the following abstract functional

differential equation:

#

BMpt,¨q
Bt

“ AptqMpt, ¨q ` Fpt,Mtq, t ą 0, x P Ω,

Mpθ, xq “ ψpθ, xq, θ P r´τp0q, 0s, x P Ω.
(4.11)

Let W pt, sq be the evolution operator determined by the following linear reaction-

diffusion equation

#

BMpt,xq
Bt

“ D2∆Mpt, xq ´ µMptqMpt, xq, t ą 0, x P Ω,

BMpt,xq
Bn

“ 0, t ą 0, x P BΩ.
(4.12)

The equivalent integral form of system (4.11) is shown as follows:

Mpt;ψq “ W pt, 0qψp0q `

ż t

0

W pt, sqFps,Msqds, t ě 0, ψ P C`,
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and the solution of which is a mild solution of (4.10).

Clearly, Fpt, ¨q is locally Lipschitz continuous on C`, and hence for any ψ P

C`, system (4.10) admits a unique non-continuable mild solution Mpt;ψq such that

Mtpψq P C for all t in its maximal interval of existence r0, σψq for σψ ą 0. Since

W pt, sq is compact and analytic for t ą s, t, s P R, Mpt;ψq is compact and a classical

solution of (4.11) for t ą τ̂ . In view of assumption (A1), it easily follows that for

any H ě ĂM , ΣH :“ tψ P C` : 0 ď ψ ď Hu is a positively invariant set for (4.11)

(see, e.g. [82] and [125]). Thus, for any ψ P C`, Mpt;ψq globally exists on r0,8q,

and hence the equation (4.10) can define a periodic semiflow Ψt : C` Ñ C` by

Ψtpψqps, xq “Mpt` s, x;ψq, @s P r´τp0q, 0s, x P Ω.

Consider the following time-periodic and delayed differential equation:

$

&

%

9vptq “ ´pµMptq ` gpvptqqqvptq ` p1´ τ
1
ptqqbpt´ τptq, vpt´ τptqqq

vpsq “ ϕpsq P Cpr´τp0q, 0s,R`q, @s P r´τp0q, 0s.
(4.13)

Note that the function bpt, ¨q is Lipschitz in any bounded subset of R` as defined in

Assumption (A1). Consequently, for any ϕ P Cpr´τp0q, 0s,R`q, the equation (4.13)

admits a unique bounded solution vpt;ϕq with vps;ϕq “ ϕpsq, @s P r´τp0q, 0s, which

globally exists on r0,8q. In the following, we state a comparison theorem associated

with the solutions of equations (4.10) and (4.13).

Lemma 4.1. For any given ξ P C`, let pHpsq “ maxtξps, xq, x P Ωu, @s P r´τp0q, 0s.

Let vpt; pHq be the solution of the following differential equation:

$

&

%

9vptq “ ´pµMptq ` gpvptqqqvptq ` p1´ τ
1
ptqqbpt´ τptq, vpt´ τptqqq,

vpsq “ pHpsq P Cpr´τp0q, 0s,R`q, @s P r´τp0q, 0s.

Then the solution Mpt, x; ξq of (4.10) with M0 “ ξ satisfies Mpt, x; ξq ď vpt; pHq for

all pt, xq P p0,8q ˆ Ω.
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Proof. Let gαpt, uq “ αu ´ pµMptq ` gpuqqu, where α is a sufficiently large number

that makes gαpt, uq increasing with respect to all u P r0, Hs. Note that,

9vptq “ ´αvptq ` gαpt, vq ` p1´ τ
1
ptqqbpt´ τptq, vpt´ τptqqq,

and

BMpt, xq

Bt
“D2∆Mpt, xq ´ αMpt, xq ` gαpt,Mpt, xqq

` p1´ τ 1ptqq

ż

Ω

Γ pt, t´ τptq, x, y,D1q bpt´ τptq,Mpt´ τptq, yqqdy,

Let Qptq (t ě 0) be the strongly continuous semigroups generated by D2∆ and

the Neumann boundary condition. Thus,

vptq “ e´αpt´sqvpsq `

ż t

s

e´αpt´rq rgαpr, vprqq ` p1´ τ
1
prqqbpr ´ τprq, vpr ´ τprqqqs dr

and

Mpt, xq “e´αpt´sqQpt´ sqMps, xq `
ż t

s

e´αpt´rqQpt´ rq

«

gαpr,Mprqq ` p1´ τ
1
prqq

ż

Ω

Γ0 pr, r ´ τprq, x, y,D1q bpr ´ τprq,Mpr ´ τprq, yqqdy

ff

pxqdr.

Set wpt, xq “Mpt, x; ξq ´ vpt; pHq for any pt, xq P r0, τ s ˆ Ω. Then, we have

wpt, xq ď e´αpt´sqQpt´ sqwps, xq `
ż t

s

e´αpt´rqQpt´ rqpgαpr,Mprqq ´ gαpr, vprqqqpxqdr,

(4.14)

for 0 ď s ă t ď τ , where τ is defined as in (4.4). Let ŵptq “ sup
xPΩ

wpt, xq for

t P r´τp0q, τ s. It is obvious that ŵptq ď 0 for t P r´τp0q, 0s. We first prove ŵptq ď 0

for any t P p0, t̃s, where t̃ “ mintτ , 1
ρ
u with ρ ą 0 being a constant determined later.
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Suppose, by contradiction, that there exist a positive number δ and a t0 P p0, t̃s

such that 0 ă ŵpt0q ă δ and ŵpt0q ě ŵptq for t P p0, t0s. By the definition of gαpt, uq,

there is a ρ ą 0 such that 0 ď Bgα
Bu
pt, uq ď ρ for t ě 0 and u P r0, Hs. Thus,

gαpt,Mpr, xqq ´ gαpt, vprqq “
Bgα
Bu
pt, ζpr, xqqpMpr, xq ´ vprqq

ď
Bgα
Bu
pt, ζpr, xqqŵpt0q ď ρŵpt0q,

for any r P p0, t0s and x P Ω, where ζpr, xq is between upr, xq and vprq. It then follows

from (4.14) that

ŵpt0q ďsup
xPΩ

e´αt0Qpt0qwp0qpxq ` sup
xPΩ

ż t0

0

e´αpt0´rqpgαpr,Mprqq ´ gαpr, vprqqqpxqdr

ďe´αt0ŵp0q ` ρŵpt0q

ż t0

0

e´αpt0´rqdr

ďρŵpt0q

ż t0

0

e´αpt0´rqdr

ďρt0ŵpt0q

ăŵpt0q,

which is a contradiction, and hence, ŵptq ď 0 for any t P p0, t̃s. By repeating the

above arguments for finite times, we can prove that ŵptq ď 0 for any pt, xq P r0, τ̂ sˆΩ.

This means that

Mpt, xq ď vptq for pt, xq P r0, τ̂ s ˆ Ω.

Now we prove that Mpt, x; ξq ď vpt, pHq holds for t P pτ̂ ,8q. In this situation,

Mpt, x; ξq is a classical solution of (4.10). Let wpt, xq “ Mpt, x; ξq ´ vpt; pHq. Then
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we have
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B

Bt
wpt, xq ´D2∆wpt, xq ` µMptqwpt, xq ` hpt, xqwpt, xq

“
B

Bt
wpt, xq ´D2∆wpt, xq ` µMptqwpt, xq ` pgpMqM ´ gpvqvq ď 0, @x P Ω,

B

Bn
wpt, xq “ 0, @x P BΩ,

for t P pτ̂ , τ̂ ` τq, where hpt, xq “ G1pMpt, xq ` %rvptq ´ Mpt, xqsq, % P p0, 1q, is

bounded and Gpuq “ gpuqu. Thus, the parabolic maximum principle implies that

wpt, xq ď 0, and hence, Mpt, x; ξq ď vpt; pHq for any t P pτ̂ , τ̂ ` τ s. Continuing this

procedure on t P rτ̂ ` nτ, τ̂ ` pn ` 1qτ s, n “ 1, . . . ,8, respectively, we can obtain

that Mpt, x; ξq ď vpt; pHq holds for t P pτ̂ ,8q.

Remark 4.1. Note that vpt, xq “ vpt, pHq for all x P Ω also satisfies the reaction-

diffusion equation (4.10) and the comparison principle for reaction-diffusion systems

with time delays [82] can also be used to establish this result. Here we use a basic

approach for reader’s interest.

On the basis of the above discussion and Lemma 4.1, we show the following results

on the existence of a global attractor of ΨT : C` Ñ C`.

Theorem 4.1. For each ψ P C`, the equation (4.10) admits a unique solution

Mpt, x;ψq on r0,8q ˆ Ω with M0 “ ψ. Moreover, equation (4.10) generates a T -

periodic semiflow Ψt “Mtp¨q : C` Ñ C`, i.e. Ψtpψqpθ, xq “Mpt` θ, x;ψq, @ψ P C`,

t ě 0, θ P r´τp0q, 0s, x P Ω, and ΨT : C` Ñ C` has a global compact attractor in C`.

Proof. Here we only prove the existence of a global attractor as the global existence

of solutions was argued earlier. To do that, we first show the solutions of (4.10) are

eventually uniformly bounded.
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Note that the equation (4.13) admits a unique bounded solution vpt;ϕq with

vps;ϕq “ ϕpsq, @s P r´τp0q, 0s, which globally exists on r0,8q. Therefore, for

any ϕ P Cpr´τp0q, 0s,R`q, the omega limit set ωpϕq of the positive orbit γ`pϕq “

tvtpϕq : t ě 0u is nonempty, compact and invariant. Let G :“ tψpsq : ψ P ωpϕq, s P

r´τp0q, 0su. On the basis of the compactness of ωpϕq, it follows that G is compact. As

a result, there exist s0 P r´τp0q, 0s and ψ P ωpϕq such that ψps0q “ maxtGu :“ HG.

For any t P r0, τ̂ s, since t´ τptq is increasing with respect to t, we have

´τp0q “ 0´ τp0q ď t´ τptq ď τ̂ ´ τpτ̂q while τ̂ ´ τpτ̂q ě τ̂ ´ τ̂ “ 0.

Hence there exists t0 P r0, τ̂ s such that t0 “ τpt0q. By means of the invariance

of ωpϕq, there exists ψ˚ P ωpϕq such that vt0pψ
˚q “ ψ, i.e. vpt0 ` s;ψ˚q “ ψpsq,

@s P r´τp0q, 0s. Without loss of generality, we assume that ψp0q “ HG. Assume that

HG ą ĂM , it then follows from assumption (A1) that

9vpt0;ψ˚q ď ´ pµMpt0q ` gpvpt0;ψ˚qqqvpt0;ψ˚q ` p1´ τ 1pt0qqbp0, vp0;ψ˚qq

ď ´ pµMpt0q ` gpHGqqHG ` p1´ τ
1
pt0qqbp0, HGq ă 0.

Hence, there exists some s P r´τp0q, 0q such that ψpsq ą ψp0q “ HG, a contradiction.

Thus,

lim sup
tÑ8

vpt;ϕq ď ĂM, @ϕ P Cpr´τp0q, 0s,R`q.

For any given φ P C`, let pφpθq :“ maxtφpθ, xq : x P Ωu, @θ P r´τp0q, 0s. Then,

lim sup
tÑ8

vpt; pφq ď ĂM . By Lemma 4.1, we have lim sup
tÑ8

Mpt, x;φq ď lim sup
tÑ8

vpt; pφq ď

ĂM , @x P Ω, which means that Ψt : C` Ñ C` is point dissipative. According to

[132, Lemma 4.1] and [135, Section 3.5], ΨT : C` Ñ C` is κ-contraction and hence

asymptotically smooth. Therefore, it follows from [135, Theorem 1.1.2] that ΨT :

C` Ñ C` has a global compact attractor.
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We further show that the periodic semiflow Ψt : C` Ñ C` is strongly monotone

and strictly subhomogeneous in C`.

Lemma 4.2. For any φ and ψ in C` with φ ą ψ (that is, φ ě ψ but φ ‰ ψ), the

solutions upt, x;φq and vpt, x;ψq of system (4.10) with upθ, xq “ φpθ, xq and vpθ, xq “

ψpθ, xq, for all θ P r´τp0q, 0s and x P Ω respectively, satisfy that upt, x;φq ą vpt, x;ψq

for all t ą τ̂ , and hence Ψtpφq " Ψtpψq in C for all t ą 2τ̂ .

Proof. By a comparison argument on each interval rnτp0q, pn` 1qτp0qs, @n P N as in

the proof of Lemma 4.1, it is not difficult to show that upt, x;φq ě vpt, x;ψq for all

t ě 0. Note that ut and vt satisfy the following integral equation for all t ě 0:

Mptqpxq “e´αtQptqMp0qpxq `
ż t

0

e´αpt´sqQpt´ sq
”

gαps,Mpsqq ` p1´ τ
1
psqq

ż

Ω

Γ0 ps, s´ τpsq, x, y,D1q bps´ τpsq,Mps´ τpsq, yqqdy
ı

pxqds,

(4.15)

where gαpt, uq and Qptq are defined as in the proof of Lemma 4.1. Then for any φ and

ψ in C` with φ ą ψ, it follows from (4.15) and the strong positivity of Qptq, t ą 0

that

wpt, xq :“ upt, x;φq ´ vpt, x;ψq ě e´αtQptq pφp0, ¨q ´ ψp0, ¨qq ą 0, t ą 0

provided that φp0, ¨q ı ψp0, ¨q.

In the following, we show that for any φ and ψ in C` with φ ą ψ and φp0, ¨q “

ψp0, ¨q, there exists t0 P r0, τ̂ s such that wpt0, ¨q ą 0. Suppose, by contradiction, that

for a pair of initial values φ, ψ P C` with φ ą ψ and φp0, ¨q “ ψp0, ¨q, there holds
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wpt, ¨q ” 0 for t P r0, τ̂ s. In view of (4.15), we have that

0 “ wptqpxq “

ż t

0

e´αpt´sqQpt´ sq rgαps, ups, ¨;φq ´ gαps, vps, ¨;ψqqs pxqds

`

ż t

0

e´αpt´sqQpt´ sqp1´ τ 1psqq
ż

Ω

Γ ps, s´ τpsq, x, y,D1q

”

bps´ τpsq, ups´ τpsq, yqq ´ bps´ τpsq, vps´ τpsq, yqq
ı

pxqdyds

for t P r0, τ̂ s. Since e´αpt´sqQpt ´ sq is strongly positive for t ą s ě 0, and both

gαpt, uq and bpt, uq are increasing functions with respect to the variable u, we must

have

bps´ τpsq, ups´ τpsq, yqq ´ bps´ τpsq, vps´ τpsq, yqq ” 0

for any s P r0, τ̂ s and y P Ω, which implies that ups´ τpsq, yq “ vps´ τpsq, yq for any

s P r0, τ̂ s and y P Ω. This contradicts to φ ą ψ. Consequently, we have wpt0, ¨q ą 0

for some t0 P r0, τ̂ s. Applying the strong positivity of e´αpt´sqQpt ´ sq for t ą s ě 0

and (4.15) again, for any t ą t0, we see that

wpt, xq ě e´αpt´t0qQpt´t0q pupt0, ¨, φq ´ vpt0, ¨, ψqq “ e´αpt´t0qQpt´t0qwpt0, ¨q ą 0, t ą t0.

Therefore, for any φ and ψ in C` with φ ą ψ, there holds upt, x;φq ą vpt, x;ψq for

all t ą τ̂ and x P Ω, which further implies that Ψt is strongly monotone whenever

t ą 2τ̂ .

In order to show the periodic semiflow is strictly subhomogeneous, a further

assumption about the birth rate bpt,Mq should be imposed:

(A3) The birth rate bpt,Mq is strictly subhomogeneous in M in the sense that for

any k P p0, 1q, bpt, kMq ą kbpt,Mq for all M ą 0 and t ě 0.

Based on this assumption, we can show Ψt is strictly subhomogeneous through the

following lemma.
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Lemma 4.3. For each t ą 2τ̂ , Ψt : C` Ñ C` is strictly subhomogeneous.

Proof. For any ψ P C` with ψ ı 0, let upt, x;ψq be the solution of system (4.10)

with upθ, xq “ ψpθ, xq for all θ P r´τp0q, 0s and x P Ω. For a fixed k P p0, 1q, by (A2)

and (A3), we have

Bpkupt, xqq

Bt
“D2∆pkupt, xqq ´ pµMptq ` gpupt, xqqqpkupt, xqq

` kp1´ τ 1ptqq

ż

Ω

Γ pt, t´ τptq, x, y,D1q bpt´ τptq, upt´ τptq, yqqdy

ďD2∆pkupt, xqq ´ µMptqpkupt, xqq ´ gpkupt, xqqpkupt, xqq

` p1´ τ 1ptqq

ż

Ω

Γ pt, t´ τptq, x, y,D1q bpt´ τptq, kupt´ τptq, yqqdy.

By a similar comparison argument to the proof of Lemma 4.1, it is not difficult to see

from the above inequality that kupt, x;ψq ď upt, x; kψq for t ě 0, where upt, x; kψq is

the solution of (4.10) with upθ, x; kψq “ kψpθ, xq for pθ, xq P r´τp0q, 0s ˆ Ω.

Let wpt, xq “ upt, x; kψq´kupt, x;ψq. Then wpθ, xq “ 0 for pθ, xq P r´τp0q, 0sˆΩ

and wpθ, xq ě 0 for pθ, xq P r´τp0q,8qˆΩ. In the following, we show that wpt, xq ą 0

for all t ą τ̂ , x P Ω. Let

Ppt, upt, xq, upt´ τptq, xqq

“ ´ gpupt, xqqupt, xq ` p1´ τ 1ptqq

ż

Ω

Γpt, t´ τptq, x, y,D1qbpt´ τptq, upt´ τptq, yqqdy.
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Then we have

Bwpt, xq

Bt

“
Bupt, x; kψq

Bt
´ k

Bupt, x;ψq

Bt

“D2∆upt, x; kψq ´ µMptqupt, x; kψq `Ppt, upt, x; kψq, upt´ τptq, x; kψqq

´ krD2∆upt, x;ψq ´ µMptqupt, x;ψq `Ppt, upt, x;ψq, upt´ τptq, x;ψqqs

“D2∆wpt, xq ´ µMptqwpt, xq ´ gpupt, x; kψqqupt, x; kψq ` kgpkupt, x;ψqqupt, x;ψq

`Rpt, xq ` p1´ τ 1ptqq

ż

Ω

Γpt, t´ τptq, x, y,D1q

”

bpt´ τptq, upt´ τptq, y; kψqq

´ bpt´ τptq, kupt´ τptq, y;ψqq
ı

dy

ěD2∆wpt, xq ´ µMptqwpt, xq ´ gpupt, x; kψqqupt, x; kψq ` kgpkupt, x;ψqqupt, x;ψq `Rpt, xq

where

Rpt, xq “ Ppt, kupt, x;ψq, kupt´ τptq, x;ψqq ´ kPpt, upt, x;ψq, upt´ τptq, x;ψqq.

Note that

gpkupt, x;ψqqpkupt, x;ψqq ´ gpupt, x; kψqqupt, x; kψq

“ ´G1pkupt, x;ψq ` %rupt, x; kψq ´ kupt, x;ψqsqwpt, xq, % P p0, 1q,

where Gpζq “ gpζqζ, and G1pζq is bounded, that is, there exists a positive number

l ą 0 such that ´l ď G1pζq ď l. Consequently, we have

Bwpt, xq

Bt
ě D2∆wpt, xq ´ µMptqwpt, xq ´ lwpt, xq `Rpt, xq.

In view of the assumption (A3), we have Rpt, xq ą 0 for t ą τ̂ and x P Ω. Consider

the following equation

#

Bw̌pt,xq
Bt

“ D2∆w̌pt, xq ´ µMptqw̌pt, xq ´ hpt, xqw̌pt, xq `Rpt, xq, t ą 0,

w̌p0, xq “ 0, x P Ω,
(4.16)
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which can be rewritten as

w̌pt, ¨;ψq “

ż t

0

Upt, sqRps, ¨qds, t ě 0,

where Upt, sq, 0 ď s ď t is the evolution operator generated by

#

Bw̌pt,xq
Bt

“ D2∆w̌pt, xq ´ µMptqw̌pt, xq ´ hpt, xqw̌pt, xq, t ą 0,
Bw̌pt,xq
Bn

“ 0, t ą 0, x P BΩ.

Since Rpt, xq ą 0, @t ą τ̂ , x P Ω, we can conclude from the strong positivity of

Upt, sq, 0 ď s ă t that the solution of (4.16) satisfies w̌pt, xq ą 0 for all t ą τ̂ and

x P Ω. It then follows from the comparison principle that wpt, xq ě w̌pt, xq ą 0 for all

t ą τ̂ and x P Ω. Therefore, upt, x; kψq ą kupt, x;ψq for all t ą τ̂ , x P Ω, and hence,

Ψtpkψq ą kΨtpψq for all t ą τ̂ , which implies that for each t ą 2τ̂ , Ψt is strictly

subhomogeneous.

4.3.2 Basic reproduction number

Set the ordered Banach space consisting of all T -periodic continuous functions from

R to Y as CT pR,Yq, where }φ}CT pR,Yq :“ maxθPr0,T s }φ}Y for any φ P CT pR,Yq. The

positive cone of CT pR,Yq is defined as follows:

C`T pR,Yq :“ tφ P CT pR,Yq : φptqpxq ě 0, @t P R, x P Ωu.

The linearized system for (4.10) at the population extinction equilibrium M “ 0
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is shown as follows:
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’

’

’
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’

’

’

’

’

’

’

’

’

%

Bwpt, xq

Bt
“D2∆wpt, xq ´ µMptqwpt, xq

` p1´ τ 1ptqq

ż

Ω

Γ pt, t´ τptq, x, y,D1q βpt´ τptqqwpt´ τptq, yqdy,

t ą 0, x P Ω,

Bwpt, xq

Bn
“0, t ą 0, x P BΩ,

wpθ, xq “ϕpθ, xq, ϕ P C, θ P r´τp0q, 0s, x P Ω.

(4.17)

Similar to the previous subsection, we know that (4.17) has a unique mild solution

wpt, x;ϕq with w0p¨, ¨;ϕq “ ϕ and wtp¨, ¨;ϕq P C` for all t ě 0. Moreover, wpt, x;ϕq

is a classical solution when t ą τ̂ , and wtp¨, ¨;ϕq is strongly positive and compact

on C` for all t ą 2τ̂ . Define P : C Ñ C by P pϕq “ wT pϕq for all ϕ P C, where

wT pϕqpθ, xq “ wpT `θ, x;ϕq for all pθ, xq P r´τp0q, 0sˆΩ, and wt is the solution map

of (4.17). Thus, we have P n0 “ wn0T is compact and strongly positive, where n0 :“

mintn P N : nT ą 2τ̂u. Let rpP q be the spectral radius of P . By virtue of [71, Lemma

3.1] that rpP q is a simple eigenvalue of P having a strongly positive eigenvector ϕ̄,

and the modulus of any other eigenvalue is less than rpP q. Let wpt, x; ϕ̄q be the

solution of (4.17) with wps, x; ϕ̄q “ ϕ̄ps, xq for all s P r´τp0q, 0s, x P Ω. By the strong

positivity of ϕ̄, we have wp¨, ¨; ϕ̄q " 0. Inspired by [130, Proposition 2.1], we can

prove the following observation, which indicates the existence of a special solution of

system (4.17).

Lemma 4.4. There exists a positive T -periodic function v˚pt, xq such that eµtv˚pt, xq

is a solution of (4.17), where µ “ ln rpP q
T

.

Proof. Since ϕ̄ is the eigenvector of P , we have Pϕ̄ “ rpP qϕ̄. That is

wps` T, x; ϕ̄q “ rpP qϕ̄psqpxq, @s P r´τp0q, 0s.
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Let µ “ ln rpP q
T

and v˚pt, xq “ e´µtwpt, x; ϕ̄q for all t ě ´τp0q, x P Ω. Then rpP q “ eµT .

By a following simple calculation, we can see that v˚pt, xq is periodic. In fact, for all

s P r´τp0q, 0s, we have

wps` T, x; ϕ̄q “ Pϕ̄psqpxq “ rpP qϕ̄psqpxq.

Then, for all t ě 0,

wpt` T, x; ϕ̄q “ rpP qwpt, x; ϕ̄q.

This indicates that

v˚pt` T, xq “ e´µpt`T qwpt` T, x; ϕ̄q “ e´µte´µT rpP qwpt, x; ϕ̄q “ e´µtwpt, x; ϕ̄q “ v˚pt, xq.

Thus, the equation (4.17) admits a positive solution e´µtv˚pt, xq with v˚pt, xq being

periodic in t.

Let φps, xq “ φpsqpxq P CT pR,Y`
q be the initial distribution of adult individuals

at time s P R and the spatial location x P Ω. Define an operator Cptq : Y Ñ Y as

follows:

pCptqϕqpxq :“ p1´ τ 1ptqq

ż

Ω

Γpt, t´ τptq, x, y,D1qβpt´ τptqqϕpyqdy, @ϕ P Y.

Recall that W pt, sq is the evolution operator determined by the following linear

reaction-diffusion equation:

#

Bwpt,xq
Bt

“ D2∆wpt, xq ´ µMptqwpt, xq, t ą 0, x P Ω,

Bwpt,xq
Bn

“ 0, t ą 0, x P BΩ.

Then, W pt ´ τptq, sqφpsqpxq represents the density distribution of the individuals

who matured into adults at previous time s (s ă t ´ τptq) and survived to time

t ´ τptq at location x. Hence,
şt´τptq

´8
W pt ´ τptq, sqφpsqpxqds denotes the density
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distribution of the accumulative individuals who matured into adults at all previous

time s ă t´ τptq and survived to time t´ τptq at location x. Thus, the distribution

of new-born individuals at location x and time t can be represented as follows:

p1´ τ 1ptqq

ż

Ω
Γpt, t´ τptq, x, y,D1qβpt´ τptqq

´

ż t´τptq

´8

W pt´ τptq, sqφpsqpyqds
¯

dy

“p1´ τ 1ptqq

ż

Ω
Γpt, t´ τptq, x, y,D1qβpt´ τptqq

´

ż 8

τptq
W pt´ τptq, t´ sqφpt´ sqpyqds

¯

dy

“

ż 8

τptq
p1´ τ 1ptqq

ż

Ω
Γpt, t´ τptq, x, y,D1qβpt´ τptqqW pt´ τptq, t´ sqφpt´ sqpyqdyds

“

ż 8

τptq

”

CptqpW pt´ τptq, t´ sqφpt´ sqq
ı

pxqds

“

ż 8

0

”

Hpt, sqφpt´ sq
ı

pxqds,

where Hpt, sq, t P R, s ě 0 is defined as follows:

Hpt, sq :“

"

CptqW pt´ τptq, t´ sq, s ą τptq,
0, s P r0, τptqs.

Thus, the next generation operator L can be defined as

Lpφqptq :“

ż 8

0

Hpt, sqφpt´ sqds, @t P R, φ P CT pR,Yq.

It easily follows that L is a positive and bounded linear operator on CT pR,Yq. The

basic reproduction number can be defined as the spectral radius of L, that is,

R0 :“ rpLq.

In the light of [132, Theorem 3.4] and [134, Remark 2.1], we obtain the subsequent

result, which implies that R0 serves as a threshold value for the stability of the zero

solution for system (4.17).

Lemma 4.5. R0 ´ 1 has the same sign as rpP q ´ 1.
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4.3.3 Global dynamics

The main focus of this section is to show the global attractivity of the system (4.10)

in terms of R0 by employing the theory of monotone and subhomogeneous semiflows

[135, Section 2.3]. Since the strong monotonicity and strict sub-homogeneity of the

periodic semiflow Ψt has been proven (see Lemmas 4.2 and 4.3), it is time to show

the global stability of system (4.10) when R0 ą 1 in C`.

Theorem 4.2. If R0 ą 1, then system (4.10) admits a unique positive T -periodic

solution M˚pt, xq, which is globally asymptotically stable in C`zt0u.

Proof. We can fix an integer n0 such that n0T ą 2τ̂ , then Ψt can be regarded as an

n0T -periodic semiflow on C`. Furthermore, Ψn0T is a strongly monotone and strictly

subhomogeneous map on C` as a consequence of Lemma 4.2 and 4.3. It follows

from [135, Theorem 2.3.4] that system (4.10) admits a unique positive n0T -periodic

and globally asymptotically stable solution M˚pt, xq when rpDΨn0T p0qq ą 1. Note

that rpDΨn0T p0qq “ rpP pn0T qq “ prpP pT qqq
n0 . It then follows from Lemma 4.5 that

signpR0 ´ 1q “ signprpDΨn0T p0qq ´ 1q. Hence, it suffices to show the existence of

the unique T -periodic positive solution M˚pt, xq when R0 ą 1. This is true since

Ψn0
T pΨTψ

˚
q “ ΨT pΨ

n0
T ψ

˚
q “ ΨT pΨn0Tψ

˚
q “ ΨT pψ

˚
q,

where ψ˚ps, ¨q “ M˚ps, ¨q for all s P r´τp0q, 0s guaranteeing that Ψn0Tψ
˚ “ ψ˚.

Therefore, the uniqueness of the positive fixed point of Ψn0
T “ Ψn0T implies that

ΨTψ
˚ “ ψ˚ holds, which indicates that M˚pt, xq is a T -periodic solution of system

(4.10).

By implying [135, Theorem 2.3.4] and a similar argument as in the previous proof,

we can establish the following result:

Theorem 4.3. If R0 ď 1, then the zero equilibrium 0 is globally attractive for all

solutions of system (4.10).
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It can be easily checked that Ipt, xq can be represented by the following equivalent

integral form:

Ipt, xq “

ż t

t´τptq

ż

Ω

Γpt, s, x, y,D1qbps,Mps, yqqdyds, t ą 0, x P Ω.

When R0 ą 1, as a consequence of the global stability of Mpt, xq, we can obtain

the property of the solution for the other variable Ipt, xq as well by using its integral

form:

lim
tÑ8

”

Ipt, xq ´ I˚pt, xq
ı

“ 0,

where

I˚pt, xq “

ż t

t´τptq

ż

Ω

Γpt, s, x, y,D1qbps,M
˚
ps, yqqdyds

is a positive T -periodic function. The scenario when R0 ď 1 can be discussed in a

similar way. Thus, the global attractivity of the full system (4.6) can be obtained

and summarized in the following theorem.

Theorem 4.4. If R0 ą 1, then system (4.6) admits a unique positive T -periodic

solution pI˚pt, xq, M˚pt, xqq, which is globally attractive to all nontrivial solutions. If

R0 ď 1, then the population extinction equilibrium p0, 0q is globally attractive for all

solutions.

Remark 4.2. The main analytic methodologies for the system (4.6) are also applica-

ble to (4.7). In fact, due to the absence of the intra-specific competition (fpIq ” 0),

the I equation can be decoupled from (4.7).

In the next section, we will establish the well-posedness and threshold dynamics

for the model when the intra-specific competition is included and the immature

dispersal ability is negligible.
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4.4 Dynamics under immature intra-specific com-

petition

In this section, we devoted to dynamics for system (4.8) with the constraint (4.9),

namely, intra-specific competition is taken into account. As the beginning of this

section, we introduce several notations. Let X :“ CpΩ,R2q be the Banach space of

continuous functions with the supremum norm } ¨ }X. Define E “ Cpr´τp0q, 0s,Xq.

For any φ P E , define the norm }φ} “ maxθPr´τp0q,0s }φpθq}X. Then, E is a Banach

space. Let X` :“ CpΩ,R2
`q and E` “ Cpr´τp0q, 0s,X`

q, then pX,X`
q and pE , E`q

are both strongly ordered spaces. Given a function uptq : r´τp0q, σq Ñ X for σ ą 0,

define ut P E by utpθ, xq “ upt` θ, xq, for all θ P r´τp0q, 0s, x P Ω and t P r0, σq.

Define the linear operator A “ pA1,A2q by

DpA1ptqq “ tφ P C
2
pΩq :

Bφ

Bn
“ 0 on BΩu,

A1ptqφ “ ´µIptqφ, @φ P DpA1ptqq,

and

DpA2ptqq “ tφ P C
2
pΩq :

Bφ

Bn
“ 0 on BΩu,

A2ptqφ “ D2∆φ´ µMptqφ, @φ P DpA2ptqq.

respectively. Define the nonlinear operator Fpt, ¨q “ pF1pt, ¨q,F2pt, ¨qq : E` Ñ X by

F1pt, φq “bpt, φ2p0, ¨qq ´ fpφ1p0, ¨qqφ1p0, ¨q ´ p1´ τ
1
ptqq

ˆ exp

ˆ

´

ż t

t´τptq

pµIpsq ` fpφ1ps, xqqqds

˙

bpt´ τptq, φ2p´τptq, xqq,

F2pt, φq “ ´ gpφ2p0, ¨qqφ2p0, ¨q ` p1´ τ
1
ptqq exp

ˆ

´

ż t

t´τptq

pµIpsq ` fpφ1ps, xqqqds

˙

ˆ bpt´ τptq, φ2p´τptq, xqq,

for t ě 0, x P Ω and φ “ pφ1, φ2q P E`.
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Then, system (4.8) can be reformulated as the following abstract functional dif-

ferential equations:

#

Bupt,¨q
Bt

“ Aptqupt, ¨q ` Fpt,utq, t ą 0, x P Ω,

upθ, xq “ φpθ, xq, θ P r´τp0q, 0s, x P Ω.
(4.18)

Let V pt, sq be the evolution operators determined by the following linear reaction-

diffusion equations

#

BIpt,xq
Bt

“ ´µIptqIpt, xq, t ą 0, x P Ω,

BIpt,xq
Bn

“ 0, t ą 0, x P BΩ.

Then, an evolution operator on X for pt, sq P R2 with t ě s can be defined as

Upt, sq :“

ˆ

V pt, sq 0
0 W pt, sq

˙

, where W pt, sq is the same as defined in (4.12). Hence,

the integral form of system (4.18) is shown as follows:

upt, φq “ Upt, 0qφp0q `

ż t

0

Upt, sqFps,usqds, t ě 0, φ P E`,

and the solution of which is a mild solution of (4.18).

Clearly, Fpt, ¨q is locally Lipschitz continuous on E`, and hence for any φ P E`,

system (4.8) admits a unique non-continuable mild solution upt;φq such that utpφq P

E for all t in its maximal interval of existence r0, σφq for σφ ą 0 (see [125]).

It is obvious that the constraint (4.9) is equivalent to

φ1p0, xq “

ż 0

´τp0q

exp

ˆ

´

ż 0

s

pµIprq ` fpφ1pr, xqqqdr

˙

bps, φ2ps, xqqds. (4.19)

Denote X as the set of all φ P E` such that (4.19) holds. It follows that X is a

nonempty and closed subset of E . Let upt, φqpxq “ pIpt, xq,Mpt, xqq for φ P X , and

define

wpt, xq “

ż t

t´τptq

exp

ˆ

´

ż t

s

pµIprq ` fpIpr, xqqqdr

˙

bps,Mps, xqqds, @t P r0, σφq.
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Thus,

Bwpt, xq

Bt
“bpt,Mpt, xqq ´ pµIptq ` fpIpt, xqqqIpt, xq ´ p1´ τ

1
ptqq

ˆ exp

ˆ

´

ż t

t´τptq

pµIpsq ` fpIps, xqqqds

˙

bpt´ τptq,Mpt´ τptq, xqq,

and hence,

BpIpt, xq ´ wpt, xqq

Bt
“ ´pµIptq ` fpIpt, xqqqpIpt, xq ´ wpt, xqq, @t P r0, σφq.

Since Ip0, ¨q “ wp0, ¨q, we have

Ipt, ¨q ´ wpt, ¨q “ V pt, 0qpIp0, ¨q ´ wp0, ¨qq “ 0, @t P r0, σφq,

which implies that for any φ P X , the solution upt, x, φq satisfies

Ipt, xq “

ż t

t´τptq

exp

ˆ

´

ż t

s

pµIprq ` fpIpr, xqqqdr

˙

bps,Mps, xqqds, @t P r0, σφq.

By virtue of the maximum principle (see [55, Proposition 13.1]), it follows from (4.8)

that Mpt, xq is nonnegative. Thus, the above integral equation on I indicates that

Ipt, xq is also nonnegative, and hence, utpφq P E` for all t P r0, σφq.

Recall that a family of operators tQtutě0 is an T -periodic semiflow on a metric

space pZ, ρq with the metric ρ, provided that tQtutě0 satisfies: (i) Q0pvq “ v, @v P

Z; (ii) QtpQT pvqq “ Qt`T pvq, @t ě 0, @v P Z; (iii) Qtpvq is continuous in pt, vq on

r0,8q ˆ Z.

The following results asserts the existence of global solutions of system (4.8).

Theorem 4.5. Let (A1) and (A2) hold. For each φ P X , the system (4.8) admits a

unique solution upt, x;φq on r0,8qˆΩ with u0 “ φ. Moreover, system (4.8) generates

a T -periodic semiflow Φt “ utp¨q : X Ñ X , i.e. Φtpφqpθ, xq “ upt` θ, x;φq, @φ P X ,

t ě T , θ P r´τp0q, 0s, x P Ω.
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Proof. For any φ P X , let upt, x;φq “ pIpt, x;φq,Mpt, x;φqq “ pIpt, φqpxq,Mpt, φqpxqq

be the unique solution of (4.8) with (4.9) satisfying u0 “ φ with the maximal interval

of existence r0, σφq for σφ ą 0. Note that

Ipt, x;φq ě 0, Mpt, x;φq ě 0, @t P r0, σφq, x P Ω.

Since fpIq ą 0 for I ą 0, the second equation of system (4.8) gives rise to

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

BMpt, xq

Bt
ďD2∆Mpt, xq ´ pµMptq ` gpMpt, xqqqMpt, xq ` p1´ τ

1
ptqq

ˆ exp

ˆ

´

ż t

t´τptq

µIpsqds

˙

bpt´ τptq,Mpt´ τptq, xqq, t ą 0, x P Ω,

BMpt, xq

Bn
“0, t ą 0, x P BΩ.

Thus, for any H ą ĂM , it follows the parabolic comparison principle and the proof of

Theorem 4.1 that Mpt, xq satisfies 0 ďMpt, xq ď H for all t ě 0 and x P Ω whenever

0 ď M0pθ, xq ď H for θ P r´τp0q, 0s and x P Ω. Moreover, by assumption (A1), we

have

0 ď Ipt, xq ď

ż t

t´τptq

bps´ τpsq,Mps´ τpsq, xqqds

ď

ż t

t´τptq

βps´ τpsqqMps´ τpsq, xqds

ď β̂τ̂H,

for t P p0, σφq and x P Ω, where β̂ “ maxtPr0,T s βptq. Hence,

rΣH :“ Cpr´τp0q, 0s, r0, Hs ˆ r0, β̂τ̂Hsq,

is positively invariant for system (4.8). Since H can be chosen as large as we can,

upt;φq globally exists on r0,8q for any φ P X . Hence, (4.8) can define a semiflow

Φt : X Ñ X , t ě T by

Φtpφqps, xq “ upt` s, x;φq, @s P r´τp0q, 0s, x P Ω.
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It easily follows from the periodicity of the variable coefficients that Φt is a T -period

semiflow.

Since the first equation in system (4.8) has no diffusion term, the solution semiflow

Φt is not compact. We impose the following condition on the immature intra-specific

competition fpIq in this section:

(A4) f P C1pR`,R`q and f 1pIq is bounded on r0,8q.

Lemma 4.6. Assume that (A1), (A2) and (A4) hold. For any φ P X , let pIpt, x;φq,Mpt, x;φqq

be the solutions of system (4.8) with initial data φ. Then there exist positive constants

C and C 1 such that

}Ipt, ¨;φq|CαpΩq, }Mpt, ¨;φq|CαpΩq ď C

and
ˇ

ˇ

ˇ

ˇ

BIpt, x;φq

Bt

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

BMpt, x;φq

Bt

ˇ

ˇ

ˇ

ˇ

ď C 1

for t ą 2τ̂ , x P Ω and φ P X , where α P p0, 1q.

Proof. In view of Theorem 4.1, for any given φ “ pφ1, φ2q P X , there exists η ą 0

such that

|Ipt, x;φq| ď η, |Mpt, x;φq| ď η, @t ě 0, x P Ω.

Let pIpt, xq,Mpt, xqq “ pIpt, x;φq,Mpt, x;φqq for @φ P X , t ě 0, x P Ω. By the

assumption (A4), it follows that there exists a positive constant C0 such that |f 1pIq| ď
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C0 for I ě 0. In view of the integral form of I, we have

|Ipt, xq ´ Ipt, yq|

“

ˇ

ˇ

ˇ

ˇ

ż t

t´τptq

”

e´
şt
spµIprq`fpIpr,xqqqdrbps,Mps, xqq ´ e´

şt
spµIprq`fpIpr,yqqqdrbps,Mps, yqq

ı

ds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż t

t´τptq

”

e´
şt
spµIprq`fpIpr,xqqqdrbps,Mps, xqq ´ e´

şt
spµIprq`fpIpr,yqqqdrbps,Mps, xqq

`e´
şt
spµIprq`fpIpr,yqqqdrbps,Mps, xqq ´ e´

şt
spµIprq`fpIpr,yqqqdrbps,Mps, yqq

ı

ds

ˇ

ˇ

ˇ

ˇ

ˇ

“ e´
şt
s µIprqdr

ż t

t´τptq

ˇ

ˇ

ˇ
e´

şt
s fpIpr,xqqdr ´ e´

şt
s fpIpr,yqqdr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
bps,Mps, xqq

ˇ

ˇ

ˇ
ds

`

ż t

t´τptq

e´
şt
spµIprq`fpIpr,yqqqdr

ˇ

ˇ

ˇ
bps,Mps, xqq ´ bps,Mps, yqq

ˇ

ˇ

ˇ
ds

ď

ż t

t´τptq

e´
şt
spµIprq`fpθIpr,xq`p1´θqIpr,yqqqdr

ˇ

ˇ

ˇ
bps,Mps, xqq

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ
f 1pθIpr, xq ` p1´ θqIpr, yqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ipt, xq ´ Ipt, yq

ˇ

ˇ

ˇ
ds pθ P p0, 1qq

`

ż t

t´τptq

ˇ

ˇ

ˇ
bps,Mps, xqq ´ bps,Mps, yqq

ˇ

ˇ

ˇ
ds

ď C0η

ż t

t´τptq

ˇ

ˇ

ˇ
Ipt, xq ´ Ipt, yq

ˇ

ˇ

ˇ
ds`

ż t

t´τptq

ˇ

ˇ

ˇ
bps,Mps, xqq ´ bps,Mps, yqq

ˇ

ˇ

ˇ
ds

for t ě 0, x, y P Ω. By virtue of (A1), (A2) and Theorem 4.5, we can conclude from

the second equation of system (4.8) and [78, Theorem 5.1.11] that Mpt, ¨q is Hölder

continuous on Ω for t ě 2τp0q “ 2τ̂ , that is, there exist a positive constant l and

α P p0, 1q such that for any x, y P Ω,

|Mpt, xq ´Mpt, yq|

|x´ y|α
ď l, for t ą 2τ̂ .

In addition, there is a positive constant η̃ such that |bpt,Mq| ď η̃ for t P R due to
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(A1) and the boundedness of M . As a consequence, it follows from the inequality of

|Ipt, xq ´ Ipt, yq| that

|Ipt, xq ´ Ipt, yq|

|x´ y|α

ď C0η

ż t

t´τptq

|Ipt, xq ´ Ipt, yq|

|x´ y|α
ds`

ż t

t´τptq

|bps,Mps, xqq ´ bps,Mps, yqq|

|x´ y|α
ds

ď C0η

ż t

t´τptq

|Ipt, xq ´ Ipt, yq|

|x´ y|α
ds` lτ̂

for t ą 2τ̂ , x, y P Ω and α P p0, 1q. Then the Gronwall’s inequality yields that for any

x, y P Ω,

|Ipt, xq ´ Ipt, yq|

|x´ y|α
ď lτ̂ eτ̂ ,

for t ą 2τ̂ and α P p0, 1q. Set C :“ maxtl, lτ̂ eτ̂u. Then we have

}Ipt, ¨;φq|CαpΩq, }Mpt, ¨;φq|CαpΩq ď C

for t ą 2τ̂ and α P p0, 1q.

In view of the I equation of system (4.8) and the boundedness of I and M , we

see that there exists a positive constant C1 such that for any φ P X ,

ˇ

ˇ

ˇ

ˇ

BIpt, x;φq

Bt

ˇ

ˇ

ˇ

ˇ

ď C1 for t ą 2τ̂ , x P Ω.

Additionally, Theorem (4.5) and [78, Theorem 5.1.11] indicate that there exists a

C2 ą 0 such that
ˇ

ˇ

ˇ

ˇ

BMpt, x;φq

Bt

ˇ

ˇ

ˇ

ˇ

ď C2 for t ą 2τ̂ , x P Ω

due to the diffusion term in M equation of system (4.8). This completes the proof.
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Recall that the Kuratowski measure of noncompactness (see [29] ) κ, is defined

by

κpBq :“ inftr : B has a finite cover of diameter ă ru,

for any bounded set. We set κpBq “ 8 whenever B is unbounded. It is easy to

see that B is precompact (i.e., B is compact) if and only if κpBq “ 0. The following

statement is the immediate conclusion of Lemma 4.6.

Corollary 4.1. Let (A1), (A2) and (A3) hold. Then the map ΦT is κ-contracting

in the sense that

lim
nÑ8

κpΦn
T pBqq “ 0

for any bounded set B Ă X , where κ is the Kuratowski measure of noncompactness.

Proof. LetB be a given bounded subset in X . Let pInpt, xq,Mnpt, xqq “ Φtpφnqpxq, @φn P

B, t ě 2τ̂ , x P Ω. By Lemma 4.6, it follows that for any φn P B, there exists a subse-

quence of tpInptn, ¨q, Mnptn, ¨quně1, which is still labelled as tpInptn, ¨q,Mnptn, ¨quně1,

such that it converges in X as nÑ 8. This implies that Φt is asymptotically compact

on B.

Define the omega limit set of B for the map ΦT on X :

ωpBq “ tφ P E` : lim
kÑ8

Φnk
T pφkq “ φ for some sequences φk P B and nk Ñ 8u.

In view of the above discussion, it is easy to see that Φn
T “ ΦnT is asymptotically

compact on B in the sense that for any sequences φk P B and nk Ñ 8, there exists a

subsequence, which is still labelled as φk and nk Ñ 8, such that Φnk
T pφkq converges

in X as k Ñ 8. This implies that ωpBq is a nonempty, compact and invariant set

for ΦT in X , and ωpBq attracts B (see, e.g., [98, Lemma 23.1(2)]). By [79, Lemma

2.1(b)], we have

κpΦn
T pBqq ď κpωpBqq ` δpΦn

T pBq, ωpBqq “ δpΦn
T pBq, ωpBqq Ñ 0 as nÑ 8.
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This completes the proof.

Theorem 4.6. Let (A1), (A2) and (A4) hold. The map ΦT admits a global attractor

on X .

Proof. We first show the solutions of (4.8) are eventually uniformly bounded. By

modifying the arguments in Lemma 4.1 and Theorem 4.1 slightly, we have

lim sup
tÑ8

Mpt, x;φq ď ĂM, @φ P X , x P Ω,

which means there exists a positive number l0, such that for any t ą l0T , x P Ω and

φ P X , Mpt, x;φq ď ĂM . We further obtain the following inequalities for Ipt, xq when

t ą l0T ` τ̂ and x P Ω:

Ipt, xq ď

ż t

t´τptq

bps´ τpsq,Mps´ τpsq, xqqds

ď

ż t

t´τptq

βps´ τpsqqMps´ τpsq, xqds

ď β̂τ̂ĂM.

Thus, Φt : X Ñ X is point dissipative. Moreover, the positive orbits of bounded

subsets of X for ΦT are bounded, and ΦT is κ-contracting on X (see Lemma 4.1).

Therefore, it follows from [79, Theorem 2.6], ΦT has a global attractor which attracts

each bounded set in X .

4.4.1 Basic reproduction number

Based on assumption (A1), it is easy to check that system (4.8) has a population

extinction equilibrium E0 “ p0, 0q. Linearizing system (4.8) at the extinction equi-
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librium E0, we obtain the following linear system for adults:
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Bvpt, xq

Bt
“D2∆vpt, xq ´ µMptqvpt, xq ` p1´ τ

1
ptqq

ˆ exp
´

´

ż t

t´τptq

µIpsqds
¯

βpt´ τptqqvpt´ τptq, xq,

t ą 0, x P Ω,

Bvpt, xq

Bn
“0, t ą 0, x P BΩ,

(4.20)

It easily follows that (4.20) has a unique mild solution vpt, x;ϕq with v0p¨, ¨;ϕq “ ϕ

and vtp¨, ¨;ϕq P C` for all t ě 0, and when t ą τ̂ , vpt, x;ϕq is a classical solution and

vtp¨, ¨;ϕq is strongly positive and compact on C` for all t ą 2τ̂ . Define rP : C Ñ C

by rP pϕq “ vT pϕq for all ϕ P C, where vT pϕqpθ, xq “ vpT ` θ, x;ϕq for all pθ, xq P

r´τp0q, 0s ˆ Ω, and vt is the solution map of (4.20). Thus, we have rP n0 “ vn0T

is compact and strongly positive, where n0 :“ mintn P N : nT ą 2τ̂u. Let rp rP q

be the spectral radius of rP . In view of [71, Lemma 3.1] that rp rP q is a simple

eigenvalue of rP having a strongly positive eigenvector ϕ̃, which means the modulus

of any other eigenvalue is less than rp rP q. Let vpt, x; ϕ̃q be the solution of (4.20) with

vps, x; ϕ̃q “ ϕ̃ps, xq for all s P r´τp0q, 0s, x P Ω. The strong positivity of ϕ̃ implies

that vp¨, ¨; ϕ̃q " 0. Thus, we can apply analogous arguments as in Lemma 4.4 to

prove the following observation, which indicates the existence of a special solution of

system (4.20).

Lemma 4.7. There exists a positive T -periodic function ṽpt, xq such that eµ̃tṽpt, xq

is a solution of (4.20), where µ̃ “ ln rp rP q
T

.

Denote the initial distribution of adult individuals at time s P R and the spatial

location x P Ω by φps, xq “ φpsqpxq P CT pR,Y`
q. Define an operator rCptq : Y Ñ Y
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as follows:

p rCptqϕqpxq :“ p1´ τ 1ptqq exp
´

´

ż t

t´τptq

µIpsqds
¯

βpt´ τptqqϕpxq, @ϕ P Y.

Recall the arguments in section 4.3.2, we know that
şt´τptq

´8
W pt ´ τptq, sqφpsqpxqds

denotes the density distribution of the accumulative individuals who matured into

adults at all previous time s ă t ´ τptq and survived to time t ´ τptq at location

x. Hence, the distribution of new-born individuals at location x and time t can be

represented as follows:

p1´ τ 1ptqq exp
´

´

ż t

t´τptq
µIpsqds

¯

βpt´ τptqq
´

ż t´τptq

´8

W pt´ τptq, sqφpsqpxqds
¯

“p1´ τ 1ptqq exp
´

´

ż t

t´τptq
µIpsqds

¯

βpt´ τptqq
´

ż 8

τptq
W pt´ τptq, t´ sqφpt´ sqpxqds

¯

“

ż 8

τptq
p1´ τ 1ptqq exp

´

´

ż t

t´τptq
µIpsqds

¯

βpt´ τptqqW pt´ τptq, t´ sqφpt´ sqpxqds

“

ż 8

τptq

”

rCptqpW pt´ τptq, t´ sqφpt´ sqq
ı

pxqds

“

ż 8

0

”

rHpt, sqφpt´ sq
ı

pxqds,

where rHpt, sq, t P R, s ě 0 is defined as follows:

rHpt, sq :“

"

rCptqW pt´ τptq, t´ sq, s ą τptq,
0, s P r0, τptqs.

The next generation operator L̃ in this case can be defined as

L̃pφqptq :“

ż 8

0

rHpt, sqφpt´ sqds, @t P R, φ P CT pR,Yq.

It can be easily shown that L̃ is a positive and bounded linear operator on CT pR,Yq.

We can define the basic reproduction number as the spectral radius of L̃, that is,

rR0 :“ rpL̃q.
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Based on [132, Theorem 3.4] and [134, Remark 2.1], we can also obtain the

following similar result as in the previous section, which indicates that rR0 serves as

a threshold value for the stability of the zero solution for system (4.17).

Lemma 4.8. rR0 ´ 1 has the same sign as rp rP q ´ 1.

In what follows, we establish the threshold dynamics of system (4.8) in terms of

the basic reproduction number rR0. Let

W0 “ tφ P X : φ2p0, ¨q ı 0, @i “ 1, 2u,

and

BW0 “ E`zW0 “ tφ P X : φ2p0, ¨q ” 0u.

Theorem 4.7. Let upt, x;φq be the solution of (4.8) with u0 “ φ P X , then the

following statements are valid:

(1) If rR0 ă 1, the population extinction equilibrium E0 “ p0, 0q is globally attractive

in X ;

(2) If rR0 ą 1, there exists an η ą 0 such that for any φ P W0 guaranteeing that

lim inf
tÑ8

uipt, x;φq ě η, @i “ 1, 2

holds uniformly for all x P Ω.

Proof. (1) In the case of rR0 ă 1, we have µ̃ “ ln rp rP q
T

ă 0. Note that the second
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equation of (4.8) for Mpt, xq is dominated by (4.20), that is, Mpt, xq satisfies
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BMpt, xq

Bt
ďD2∆Mpt, xq ´ µMptqMpt, xq

` p1´ τ 1ptqq exp

ˆ

´

ż t

t´τptq

µIpsqds

˙

bpt´ τptq,Mpt´ τptq, xqq,

t ą 0, x P Ω,

BMpt, xq

Bn
“0, t ą 0, x P BΩ.

(4.21)

It follows from Lemma 4.7 that there exists a positive T -periodic function ṽpt, xq such

that wpt, xq “ eµ̃tṽpt, xq is a positive solution of (4.20). In view of the comparison

principle for (4.21), we have

Mpt, xq ď Kwpt, xq “ Keµ̃tṽpt, xq,

with a constant K ą 0 satisfying M0pθ, xq ď Keµ̃θv0pθ, xq for all θ P r´τp0q, 0s.

Thus, it follows that

lim
tÑ8

Mpt, xq “ 0, @x P Ω.

Recall the integral form of Ipt, xq, we have

Ipt, xq ď

ż t

t´τptq

βpsqMps, yqdyds,

and therefore limtÑ8 Ipt, xq “ 0 holds when rR0 ď 1.

(2) In the case of rR0 ą 1, we have rp rP q ą 1, which results in µ̃ “ ln rp rP q
T

ą 0. It

can be easily shown that the positivity of uipt, x;φq (i “ 1, 2) holds for any φ P W0,

t ą 0 and x P Ω, which implies that Φn
T pW0q Ď W0 for any n P N.

Define rPε : C Ñ C as the Poincaré map of the following system with a small
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positive parameter ε:
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Bvpt, xq

Bt
“D2∆vpt, xq ´ pµMptq ` εqvpt, xq ` p1´ τ

1
ptqq

ˆ

”

e´
şt
t´τptq µIpsqdsβpt´ τptqq ´ ε

ı

vpt´ τptq, xq, t ą 0, x P Ω,

Bvpt, xq

Bn
“0, t ą 0, x P BΩ,

vpθ, xq “ϕpθ, xq, ϕ P C, θ P r´τp0q, 0s, x P Ω.

(4.22)

Then, rPεpϕq “ vT pϕq, where vT pϕqpθ, xq “ vpT ` θ, x;ϕq for pθ, xq P r´τp0q, 0s ˆ Ω,

and vpt, x;ϕq is the solution of (4.22) with vpθ, xq “ ϕpθ, xq for all θ P r´τp0q, 0s,

x P Ω. The continuity of the spectral radius indicates that there exists a sufficiently

small positive number ε1 such that the spectral radius of rPε, rp rPεq, satisfies rp rPεq ą 1

for all ε P r0, ε1s. Based on assumptions (A1) and (A2), we may choose some η1 ą 0

such that

e´
şt
t´τptqpµIpsq`fpIps,xqqqdsbpt,Mpt, xqq ě pe´

şt
t´τptq µIpsqdsβptq ´ εqMpt, xq,

and gpMq ă gpη1q ă ε1 hold for all I ď η1 and M ď η1. Moreover, according to the

continuous dependence of solutions on the initial value, there exists η0 P p0, ε1q such

that for any |φps, xq| ă η0, s P r´τp0q, 0s, x P Ω,

|pIpt, x;φq,Mpt, x;φqq| ď η1, @t P r0, T s, x P Ω.

Next, we prove the weak persistence when rR0 ą 1 through the following claim:

Claim: lim sup
nÑ8

}Φn
T pφq} ě η0 for all φ P W0.

Suppose the claim is false, there exists some φ0 P W0 such that

lim sup
nÑ8

}Φn
T pφq} ă η0.
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Hence, there exists a positive integer n1, such that }uipnT ` θ, x;φ0q} ă η0 for all

n ě n1, i “ 1, 2, θ P r´τp0q, 0s and x P Ω. Then for φ0 P W0, we have

0 ă uipt, x;φ0q ă η1, @t ą n1T, x P Ω, i “ 1, 2. (4.23)

Then, Mpt, x;φ0q satisfies
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%

BMpt, xq

Bt
ěD2∆Mpt, xq ´ pµMptq ` ε1qMpt, xq ` p1´ τ

1
ptqq

ˆ

”

e´
şt
t´τptq µIpsqdsβpt´ τptqq ´ ε1

ı

Mpt´ τptq, xq, t ą pn1 ` 1qT, x P Ω,

BMpt, xq

Bn
“0, t ą pn1 ` 1qT, x P BΩ.

(4.24)

Let ψ˚ be the positive eigenfunction of rPε1 corresponding to rp rPε1q. For all t ą τ̂

and x P Ω, the positivity of Mpt, x;φ0q gives rise the existence of a constant ς ą 0

such that

Mppn1 ` 1qT ` θ, x;φ0q ě ςψ˚, @θ P r´τp0q, 0s, x P Ω.

Then, based on the comparison principle for (4.24), we have

Mpt, x;φ0q ě ςvpt´pn1`1qT, x;ψ˚q “ ςrp rPε1q
t´pn1`1qTψ˚p0, xq, @t ě pn1`1qT, x P Ω,

where vpt, x;ψ˚q is a solution for (4.22) with vpθ, xq “ ψ˚pθ, xq for all θ P r´τp0q, 0s

and x P Ω. Thus, it follows that

lim
tÑ8

Mpt, x;φ0q “ 8,

a contradiction to (4.23).

Let M “ p0, 0q. The above claim shows that M is a weaker repeller for W0 and

the stable set of M, W spMq satisfies that W spMq XW0 “ ∅. Moreover, M is an

isolated invariant set for ΦT in E`. Define

MB :“ tφ P BW0 : Φn
T pφq P BW0, @n P Nu,
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and ωpφq be the omega limit set of the positive orbit γ`pφq :“ tΦn
T pφq : @n P Nu. It

then follows from Theorem 4.1 that

MB :“ tφ P BW0 : φ2 ” 0u,

and hence
ď

ψPMB

ωpψq “ tp0, 0qu.

In the light of the acyclicity theorem on uniform persistence for maps [135, The-

orem 1.3.1 and Remark 1.3.1], we obtain the uniform persistence for ΦT : X Ñ X

with respect to pW0, BW0q due to Corollary 4.1, that is, there exists an η̂ ą 0 such

that

lim inf
nÑ8

dpΦn
T pφq, BW0q ě η̂, @φ P W0.

Define a continuous function p : X Ñ r0,8q by

ppφq :“ min
xPΩ

φ2p0, xq, @φ “ pφ1, φ2q P X .

It follows fromA “ ΦT pAq that φ ą 0 for all φ P A. We further obtain lim
nÑ8

dpΦn
T pφq,Aq “

0. The compactness of A implies that min
φPA

ppφq ą 0, which further indicates that

there exists an η̂ ą 0 such that

lim inf
nÑ8

pIpnT, x;φq,MpnT, x;φqq ě pη̂, η̂q, @φ P W0, i “ 1, 2.

This indicates that there exists n1 P N` such that for any n ě n1,

pIpnT, x;φq,MpnT, x;φqq ě pη̂, η̂q, @φ P W0, i “ 1, 2. (4.25)

Note that

#

BMpt,xq
Bt

ě D2∆Mpt, xq ´ pµ̂M ` gpHqqMpt, xq, t ě n1T, x P Ω,
BMpt,xq
Bn

“ 0, t ě n1T, x P BΩ,
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where µ̂M :“ maxtPr0,T s µMptq and H is defined in Theorem 4.5. Then the parabolic

comparison principle and (4.25) imply that

Mpt, xq ě η̂e´pµ̂M`gpHqqpt´n1T q ě η11 ą 0, t ě n1T, x P Ω,

where η1 is a positive constant. Furthermore, on the basis of the integral form I, it

is easy to see that there exists an η12 ą 0 such that

Ipt, x;φq ě η12, @t ě n1T, x P Ω, φ P W0.

Set η :“ mintη11, η
1
2u. Then we can obtain the practical uniform persistence stated in

the theorem.

4.5 Discussion

In this chapter, a reaction-diffusion population model with the consideration of sea-

sonal effects, intra-specific competition, age structure and seasonal maturation dura-

tion based on a generalized age-structured modeling framework was formulated. By

applying the method of integration along characteristics, the full system related to

the population densities of juveniles Ipt, xq and adults Mpt, xq at time t and loca-

tion x was obtained with two nonlocal periodic reaction diffusion equations involving

periodic delays and no flux boundary condition. The introduction of juvenile intra-

specific competition and periodic delays, making the system non-cooperative and

irreducible, bring more challenges to the theoretical analysis of our model.

It is worth mentioning that our model involves time-varying delays τptq. An ap-

propriate space for theoretical analysis should be introduced to analyze it. In this

chapter, without loss of generality, the initial timing was chosen as the maximum

point of τptq in r0, T s, that is, τp0q “ maxtPr0,T stτptqu “ τ̂ , which is feasible by consid-

ering the evolution of solutions. If the initial timing instant t0 “ 0 does not satisfies

τpt0q “ τ̂ , by applying similar arguments in [72, 77], we may need to introduce two
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spaces. One is Cpr´τ̂ , 0s,Yq to show the existence and uniqueness of the solution.

To verify the global attractivity of the positive periodic solution, the other space

Cpr´τp0q, 0s,Yq is needed, on which we can show the solution semiflow is eventually

strongly monotone and strictly homogeneous. Besides that, we need to confirm that

the solution can define a periodic semiflow on the new space Cpr´τp0q, 0s,Yq and

R0 can determine the stability of the system on both phase spaces.

112



Chapter 5

Modeling diapause in population

growth

5.1 Background

Diapause is a neurohormonally mediated dynamic state of low metabolic activity,

associated with a reduced morphogenesis, increased resistance to environmental ex-

tremes and altered or reduced physical activity [111]. As an adapting mechanism to

the unfavourable environmental conditions such as harsh winters and dry seasons,

this process of physiological rest can be commonly found among invertebrate organ-

isms, which include temperate zone insects or some tropical species occasionally and

their arthropod relatives [30, 63], such as mosquitoes [3], ticks [12], ladybirds [56],

dragonflies [95] and silkworms [54]. Recent extensive studies on different aspects of

diapause contributed to understanding how inherent mechanisms regulate organisms

surviving through diapause [30, 32, 33, 51, 97] and the critical roles of diapause

stage on linking the favourable and adverse seasons, and synchronising the life cycle

of organisms with seasonal environmental variations [3, 31, 110, 111].

Mathematical models are believed to be efficient and indispensable tools for bet-

ter understanding of population dynamics [17, 85]. However, few population models

focus on exploring the impact of diapause on population persistence. In this chap-
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ter, we attempt to investigate how diapause influences seasonal population patterns

by constructing mathematically tractable models, with mosquito species as a moti-

vating example. Mosquitoes act as pathogen vectors to transmit various infectious

diseases including dengue fever, malaria, West Nile fever, Japanese encephalitis, Zika

and chikunguya, which pose great challenges to human health [103]. Due to their

epidemiological significance, the study of mosquitoes attracts increasing attention

and makes mosquitoes to be the most concerned model group among aquatic in-

sects. Even though there are huge investments in mosquito research, relatively a

small number of population models evaluate the effects of diapause on mosquito

persistence.

Our literature review indicates that there were two possible ways employed to

incorporate the diapause effects into the population model. One way was using

piecewise parameter functions to differ either the survival or the development rates

between the normal growth and diapause periods. Gong et al. developed two discrete

difference models with a piecewise death rate function characterising the impact of

adult mosquito diapause to investigate the temporal dynamics of Culex mosquito

populations [43]. A stage-structure, climate-driven population model of ordinary

differential equations (ODE) with a piecewise egg production rate function describ-

ing diapause-induced differences was formulated in [116] to simulate Culex mosquito

population abundance in the Northeastern US. Another temperature-dependent, de-

lay differential equation (DDE) model with piecewise developmental rate functions

accounting for the effects of diapause was proposed to demonstrate the sensitivity of

seasonal mosquito patterns to annual changes in temperature [36]. However, consid-

erable observational studies suggest that not only the developmental rate but also

the reproduction and mortality rates are altered simultaneously when organisms en-

ter into diapause [31, 52, 101]. Consequently, the other fairly reasonable way was

to regard the diapause period as an independent dynamic process, during which the
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population dynamics are completely different from that in the normal growth period.

Cailly et al. [20] built two different stage-structured temperature-driven ODE models

to predict seasonal mosquito abundance during favourable and unfavourable periods

respectively. Based on the above two models, two new fine-tuned ODE models were

constructed in [60] to explore the relationships between major climatic variables and

diapause related parameters. Following this point of view, we aim to propose a novel

and comprehensive framework for modelling diapause in the population growth.

The occurrence of diapause is caused by the advent of adverse environmental

conditions such as winter seasons in temperate zones and dry seasons in tropical

zones. As such, the organisms surviving through diapause must experience a fixed

period of latency before their normal growth resumes [31]. In addition, several ob-

servations [31, 63, 64] indicate that normal growth cannot resume immediately after

the termination of diapause. It would make sense to classify the annual growth pe-

riod into three intervals, that is, the normal growth period, the diapause period and

the post-diapause period. Population dynamics during each interval are described

by different sets of differential equations. Since mosquito diapause is restricted to a

single stage for most species, on either immature (mostly egg) or adult stage [19, 31],

we attempt to investigate two distinct cases of mosquito diapause separately, that

is, adult diapause and immature diapause. Consequently, the population is struc-

tured into immature and mature classes to explicitly describe different diapausing life

stages. In view of the developmental delays induced by the maturation and diapaus-

ing time period respectively, it seems the stage-structured DDE framework is more

suitable and reasonable. Two distinct DDE models with two different delays are

formulated from the continuous age-structured partial differential equations (PDEs)

to explicitly describe mosquito growth with either diapausing adults or immatures.

Furthermore, we formulate a unified DDE model, which can reflect population dy-

namics with adult diapause and immature diapause separately, by assuming different
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diapause-related parameters. Although the motivative example of this work is the

mosquito species, our modelling framework can be applied to other species including

ticks [12], silkworms [54] and flesh flies [40], which are capable of diapause to survive

through unfavourable seasons.

The formulations of three DDE models are derived elaborately in Section 5.2.

Theoretical analysis on the unified model including the well-posedness of the solutions

and global stability of the trivial and positive periodic solutions in terms of an index

R is presented in Section 5.3. Numerical simulations are performed in Section 5.4 to

show the seasonality of population abundances of two temperate mosquito species,

the sensitivity of the diapause-related parameters and implications for controlling

mosquito population. Discussions are provided in the final section.

5.2 Model formulation

We first derive the formulation describing the growth of population with only one

diapausing stage, either adult or immature diapause. A unified model capable of

describing both adult and immature diapause cases is then proposed. The mosquito

population is stratified into two different age classes: immature (Iptq) and mature

(Mptq) classes with a threshold age τ , which represents the development duration

from egg to adult. Within each age group, all individuals share the same birth and

death rates. We denote the population density at time t of age a by upa, tq. Then

the population sizes for immature and adult individuals are represented respectively

by the following integrations:

Iptq “
şτ

0
upa, tqda, Mptq “

ş8

τ
upa, tqda. (5.1)

The annual growth period consists of three intervals, that is, the normal growth

period, the diapause period and the post-diapause period, the lengths of which are

denoted by T1, T2 and T3 respectively. Here, to derive the closed system, the post-

116



diapause period is set to be only one developmental duration, i.e. T3 “ τ . The length

of the (irrespective of adult diapause or immature) diapause duration is assumed to

be τd, i.e. T2 “ τd. Biological observations indicate that τd ą τ [31, 100]. It then

follows that the length of the remaining period, i.e. the normal growth period, is

T1 “ 1´ τ ´ τd. In this chapter, we set the starting time t “ 0 of the annual growth

period at the termination of the post-diapause period.

During the normal growth period, there is no difference in the model formulations

between these two different diapause mechanisms. The McKendrick-von Foerster

equation can be used to describe the dynamics of an age-structured population (see,

e.g., [26, 48, 77] and the references therein):

$

’

’

&

’

’

%

ˆ

B

Ba
`
B

Bt

˙

upa, tq “ ´µpaqupa, tq,

up0, tq “ bpMptqq,
upa, 0q “ u0paq.

(5.2)

The birth rate function is bpMptqq, dependent only on the adult population size,

and u0paq is the initial age distribution. The death rates during the normal growth

period are stage-dependent, and µpaq “ µI for a ă τ while µpaq “ µM for a ě τ . In

view of (5.2), differentiating the integral equations in (5.1) with respect to time t on

both sides yields

dIptq

dt
“ up0, tq ´ upτ, tq ´ µIIptq “ bpMptqq ´ upτ, tq ´ µIIptq,

dMptq

dt
“ upτ, tq ´ up8, tq ´ µMMptq.

It is natural to assume that up8, tq “ 0 as no individual can live forever. To close

the system, we need to figure out upτ, tq, the maturation rate at time t, which can be

achieved by the technique of integration along characteristics (see for example [104]).
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To proceed, let ξsptq “ upt´ s, tq, then for t´ s ď τ , we have

dξsptq

dt
“ ´µpt´ sqξsptq,

where ξspsq “ up0, sq “ bpMpsqq. Therefore, setting s “ t ´ τ pě 0q, we have the

following expression for upτ, tq when t ě τ ,

upτ, tq “ bpMpt´ τqqe´µIτ .

The following system describes the population dynamics taking into consideration

of seasonal effects during the normal growth period, i.e. when n ď t ď n ` T1 “

n` 1´ τ ´ τd, here n (ě 0) is an integer representing the n-th year:

dIptq

dt
“ bpMptqq ´ bpMpt´ τqqe´µIτ ´ µIIptq,

dMptq

dt
“ bpMpt´ τqqe´µIτ ´ µMMptq.

However, the population dynamics during the diapause and post-diapause periods

are completely different from both immature and mature diapause individuals. In

the next subsection, we start from the model formulation for adult diapause case.

5.2.1 Adult diapause

Once the diapause period is initiated, all individuals cease their developmental ac-

tivities due to harsh environmental conditions. For adult diapause case, adult indi-

viduals can survive with a diapausing mortality rate dM while the immature pop-

ulation becomes extinct [109]. Consequently, we assume that the number of im-

matures Iptq decreases to zero continuously during the diapause period, i.e. when

n` 1´ τ ´ τd ď t ď n` 1´ τ , moreover, Iptq ” 0 when t P rn` 1´ 2τ, n` 1´ τ s.

During the post-diapause period, i.e. when n`1´τ ď t ď n`1, the maturation rate

is 0 as no immature survives through the diapause period. The annual growth of the
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mosquito population when adults enter into diapause is illustrated in Fig. 5.1(a). In

this case, the population dynamics subject to seasonal effects can be described by

the following system (A), consisting of (A1), (A2) and (A3).

One year

M(t)

( ( ))b M t

I(t)

I

M

1T

M(t)

( ( ))b M t

I(t)

I

M

( ( )) Ib M t e
  



M(t)

I(t) goes 

extinct 

continuously

Md

No birth and 

development

3T
2T(normal growth) (diapause) (post-diapause)

(a)

3T
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M(t)

( ( ))b M t

I(t)

I

M
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I
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mosquitoes born in 

period T1

M(t)

( ( ))b M t
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( ( )) I I dd

db M t e
     

 

I(t)
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No birth and 

development
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2T
1T (normal growth) (diapause) (post-diapause)

(b)

Figure 5.1: Diagrams depicting the annual growth of mosquito populations with single diapausing
stage. (a) Diagram for adult diapause; (b) Diagram for immature diapause. The one year period
is divided into three intervals with different growth rates for immatures Iptq and adults Mptq on
different intervals. Moreover, the lengths of these three intervals T1, T2, T3 are 1 ´ τd ´ τ , τd and
τ respectively.

119



1) During the normal growth period T1, i.e. when t P rn, n` 1´ τ ´ τds :

$

’

’

&

’

’

%

dIptq

dt
“ bpMptqq ´ bpMpt´ τqqe´µIτ ´ µIIptq,

dMptq

dt
“ bpMpt´ τqqe´µIτ ´ µMMptq.

(A1)

2) During the adult diapause period T2, i.e. when t P rn` 1´ τ ´ τd, n` 1´ τ s,

there is no developmental activity, immatures go extinct and adults survive

through diapause:

$

’

’

’

&

’

’

’

%

Iptq decreases to zero continuously and
Iptq ” 0, @ t P rn` 1´ 2τ, n` 1´ τ s,

dMptq

dt
“ ´dMMptq.

(A2)

3) During the post-diapause period T3, i.e. when t P rn`1´τ, n`1s, no immatures

develop to adults since the longest age for newborns in this period is τ :

$

’

’

&

’

’

%

dIptq

dt
“ bpMptqq ´ µIIptq,

dMptq

dt
“ ´µMMptq.

(A3)

5.2.2 Immature diapause

In the case that immature individuals diapause, the annual growth of mosquito pop-

ulation is illustrated in Fig. 5.1(b). During the diapause period, all individuals stop

growing, immatures (eggs or larvae) enter into diapause with a diapausing mortality

rate dI while the adult population goes extinct due to harsh environmental conditions

[67, 115]. Therefore, we assume that Mptq decreases to zero continuously during the

diapause period, i.e. when n ` 1 ´ τ ´ τd ď t ď n ` 1 ´ τ , and Mptq ” 0 when

t P rn ` 1 ´ 2τ, n ` 1 ´ τ s. Different from the adult diapause case, the maturation

rate during the post-diapause period is bpMpt´ τ ´ τdqqe
´µIτ´dIτd other than 0. The

120



dynamics of seasonal mosquito population when immatures enter into diapause can

be described by the following system (I), consisting of (I1), (I2) and (I3).

1) During the normal growth period T1, i.e. when t P rn, n` 1´ τ ´ τds:

$

’

’

&

’

’

%

dIptq

dt
“ bpMptqq ´ bpMpt´ τqqe´µIτ ´ µIIptq,

dMptq

dt
“ bpMpt´ τqqe´µIτ ´ µMMptq.

(I1)

2) During the immature diapause period T2, i.e. when t P rn`1´τ´τd, n`1´τ s,

no adult gives birth since all adults die:

$

’

’

&

’

’

%

dIptq

dt
“ ´dIIptq,

Mptq decreases to zero continuously and
Mptq ” 0, @ t P rn` 1´ 2τ, n` 1´ τ s.

(I2)

3) During the post-diapause period T3, i.e. when t P rn ` 1 ´ τ, n ` 1s, juveniles

born at previous time instant t ´ τ ´ τd survive through the diapause period

and mature into adults at time t:

$

’

’

&

’

’

%

dIptq

dt
“ bpMptqq ´ bpMpt´ τ ´ τdqqe

´µIτ´dIτd ´ µIIptq,

dMptq

dt
“ bpMpt´ τ ´ τdqqe

´µIτ´dIτd ´ µMMptq.

(I3)

5.2.3 A unified model

In this subsection, we will explore the formulation of a unified model, which is capable

of describing both the immature (Model (I)) and adult (Model (A)) diapause cases

respectively. The annual growth of mosquito population is shown in Fig. 5.2.

1) During the normal growth period T1, i.e. when n ď t ď n`T1 “ n`1´ τ ´ τd,

the population dynamics are described by the following system, which are the
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Figure 5.2: Diagram illustrating the annual growth for the mosquito population when both
immatures and adults can survive through diapause. The one year period is divided into three
intervals with different growth rates for immatures Iptq and adults Mptq on different intervals.
Moreover, the lengths of these three different intervals T1, T2, T3 are 1´τd´τ , τd and τ respectively.

same as previous two cases.

$

’

’

&

’

’

%

dIptq

dt
“ bpMptqq ´ bpMpt´ τqqe´µIτ ´ µIIptq,

dMptq

dt
“ bpMpt´ τqqe´µIτ ´ µMMptq.

(U1)

2) Afterwards, all mosquitoes evolve into the diapause period with the advent

of unfavourable seasons. During this period T2, the development of all indi-

viduals is arrested and we assume both immature and mature mosquitoes can

survive through the diapause period suffering the mortality rate dI and dM , re-

spectively. Then, the population dynamics for mosquitoes during the diapause

period (i.e. when n` 1´ τd´ τ ď t ď n` 1´ τ) are described by the following

system:
$

’

’

&

’

’

%

dIptq

dt
“ ´dIIptq,

dMptq

dt
“ ´dMMptq.

(U2)
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3) For the post-diapause period T3, i.e. when n`1´τ ď t ď n`1, the population

dynamics can be represented by the following system:

$

’

’

&

’

’

%

dIptq

dt
“ bpMptqq ´ bpMpt´ τ ´ τdqqe

´µIτ´dIτd ´ µIIptq,

dMptq

dt
“ bpMpt´ τ ´ τdqqe

´µIτ´dIτd ´ µMMptq.

(U3)

By assuming dI " 1 (dM " 1), we can investigate the population dynamics for

individuals experiencing adult (resp. immature) diapause in the previous cases via

this unified model. In fact, when only adults diapause, Iptq declines to zero very

quickly in (U2), as expressed in (A2). Moreover, the term bpMpt´ τ ´ τdqqe
´µIτ´dIτd

is close to zero in (U3) in terms of a threshold, which approximates to (A3). Similarly,

when immatures diapause, the dynamics of system (I) can be approximated by those

of system (U) with the assumption of dM " 1. In summary, we may use system (U)

to reflect the dynamics of systems (A) and (I) and conduct theoretical analysis on

the unified model (U) in the next section, where the detailed proofs for the well-

posedness of the solutions and global stability of the trivial and positive periodic

solutions in terms of a threshold parameter R are provided. The persistence and

extinction of population is totally dependent on the sign of R´ 1. When R ą 1, the

population will eventually oscillate at an annual cycle.

123



5.3 Model analysis

Since the equations for Mptq can be decoupled in system (U), it suffices to analyse

the equations for adult population in the unified model:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

dMptq

dt
“ bpMpt´ τqqe´µIτ ´ µMMptq, t P rn, n` 1´ τ ´ τds,

dMptq

dt
“ ´dMMptq, t P rn` 1´ τ ´ τd, n` 1´ τ s,

dMptq

dt
“ bpMpt´ τ ´ τdqqe

´µIτ´dIτd ´ µMMptq, t P rn` 1´ τ, n` 1s,

(5.3)

where n P N. It is worth noting that only one-sided derivative is considered at all

break points in our model.

We make the following biologically plausible assumptions on the birth rate and

the periods, which are justified in the existing literature [76]:

(H1) bpMq is a non-negative locally Lipschitz continuous function in M . In particu-

lar, we assume that bpMq is strictly increasing with respect to M ą 0. Furthermore,

bp0q “ 0 and there exists M ą 0 such that bpMqe´µIτ ą µMM when 0 ă M ă M ,

and bpMqe´µIτ ă µMM whenever M ąM .

(H2) 2τ ` τd ă 1.

In fact, any desired birth rate function can be constructed with appropriate pa-

rameter values alternatively. In general, our assumptions for the birth rate function

can be deduced from Fig. 5.3. Furthermore, the mosquito diapause is usually ini-

tiated when the cold and dry season comes and halted when the environment is

suitable for reproduction and development [31]. The length of the diapause period

may range from 3 to 5 months among different species and geographies. The lifes-

pan of mosquitoes is very short, which varies with different species and is averaged

at around 2-4 weeks [100]. Thus, it is reasonable to assume that the dimensionless
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parameters (divided by one year), the developmental duration and the period for

diapause, satisfy assumption (H2).

 M

birth rate : b(M)

death rate : µ
M

 M

Figure 5.3: A schematic illustration of the birth rate function that satisfies assumption (H1).

5.3.1 The well-posedness

Based on the variation of constant formulae, system (5.3) can be written as the

following equivalent integral form:

Mptq “ e´µM pt´nq
„
ż t

n
bpMps´ τqqe´µIτeµM ps´nqds`Mpnq



, t P rn, n` 1´ τd ´ τ s,

(5.4a)

Mptq “ e´dM pt´pn`1´τ´τdqqMpn` 1´ τ ´ τdq, t P rn` 1´ τ ´ τd, n` 1´ τ s,

(5.4b)

Mptq “e´µM pt´pn`1´τqq
”

ż t

n`1´τ
bpMps´ pτ ` τdqqqe

´µIτ´dIτdeµM ps´pn`1´τqqds

`Mpn` 1´ τq
ı

, t P rn` 1´ τ, n` 1s.

(5.4c)
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Define Y “ Cpr´τ, 0s,R`q with the usual supremum norm. For a function up¨q P

Cpr´τ,8q,R`q, define ut P Y by utpθq “ upt ` θq, @θ P r´τ, 0s, t ě 0. In what

follows, the well-posedness of system (5.3) is established.

Theorem 5.1. Suppose that assumptions (H1) and (H2) hold, then for any φ P Y ,

system (5.3) admits a unique non-negative and bounded solution upt, φq with u0 “ φ

on r0,8q.

Proof. Denote f by

fpt,Mptq,Mpt´ τqq “ bpMpt´ τqqe´µIτ ´ µMMptq.

For any given ρ ě 1 and any φ P Y satisfying 0 ď φ ď ρM , where M is defined in the

assumption (H1), system (5.3) becomes the initial-value problem for the following

ordinary differential equation (ODE) on t P r0, τ s:

dMptq

dt
“ fpt,Mptq, φpt´ τqq, Mp0q “ φp0q, @ t P r0, τ s.

It follows from assumption (H1) that f is Lipschitz in M , then system (5.3) admits

a unique solution on its maximal interval of existence. It can be easily checked by

differentiation that (5.4a) with n “ 0 satisfies system (5.3) on r0, τ s. Moreover, it

follows from the assumption (H1) that the following holds for t P r0, τ s:

uptq “e´µM t
„
ż t

0

bpups´ τqqe´µIτeµMsds` up0q



“e´µM t
„
ż t

0

bpφps´ τqqe´µIτeµMsds` φp0q



ďe´µM t
„
ż t

0

bpρMqe´µIτeµMsds` ρM



“
bpρMqe´µIτ

µM
e´µM tpeµM t ´ 1q ` e´µM tρM

ďρMp1´ e´µM tq ` e´µM tρM “ ρM.
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Hence, system (5.3) admits a unique solution uptq P r0, ρM s for t P r0, τ s. Further-

more, the existence of a unique solution upt, φq can be extended to r0, 1´ τ ´ τds by

the similar approach.

For t P r1´ τ ´ τd, 1´ τ s, the solution of system (5.3) can be determined uniquely

by the initial-value problem for the following linear ODE:

dMptq

dt
“ ´dMMptq, Mp1´ τ ´ τdq “ up1´ τ ´ τdq, @ t P r1´ τ ´ τd, 1´ τ s,

which implies that (5.4b) with n “ 0 is the solution of system (5.3) on r1´τ´τd, 1´τ s.

In view of (5.4b) with n “ 0, we have the solution 0 ď uptq ď ρM . It then follows

that system (5.3) has a unique solution upt, φq on r0, 1´ τ s.

Denote g by

gpt,Mptq,Mpt´ pτ ` τdqqq “ bpMpt´ pτ ` τdqqqe
´µIτ´dIτd ´ µMMptq.

For t P r1 ´ τ, 1s, the solution of system (5.3) must satisfy the initial-value problem

for the following ODE:

dMptq

dt
“ gpt,Mptq,Mpt´ pτ ` τdqqq, Mp1´ τq “ up1´ τq, @ t P r1´ τ, 1s.

According to assumption (H1), g is also Lipschitz in M . It then follows that there

is a unique solution on its maximal interval of existence for system (5.3). It is easy

to verify by differentiation that (5.4c) with n “ 0 satisfies system (5.3) on r1´ τ, 1s.

Furthermore, based on assumption (H1), for all t P r1´ τ, 1s, we have

uptq “e´µM pt´p1´τqq
„
ż t

1´τ
bpups´ pτ ` τdqqqe

´µIτ´dIτdeµM ps´p1´τqqds` up1´ τq



ďe´µM pt´p1´τqq
„
ż t

1´τ
bpρMqe´µIτeµM ps´p1´τqqds` ρM



“
bpρMqe´µIτ

µM
e´µM pt´p1´τqqpeµM pt´p1´τqq ´ 1q ` e´µM pt´p1´τqqρM

ďρMp1´ e´µM pt´p1´τqqq ` e´µM pt´p1´τqqρM “ ρM.
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Thus, system (5.3) admits a unique solution upt, φq on r0, 1s.

Next, we can show the existence of a unique solution 0 ď upt, φq ď ρM with

0 ď u0 “ φ ď ρM for all t ě 0 by applying the method of steps on each interval

rn, n` 1s. Since ρ can be chosen sufficiently large, it then follows that system (5.3)

admits a unique solution upt, φq with u0 “ φ P Y on r0,8q.

Define Φt as the solution semiflow for system (5.3) on Y , that is, Φtpφqpθq “

utpθ, φq “ upt ` θ, φq for t ě 0, θ P r´τ, 0s, where upt, φq is the unique solution of

system (5.3) on r0,8q with u0 “ φ P Y . The following lemma implies that Φt is a

1-periodic semiflow on Y .

Lemma 5.1. Φt is a 1-periodic map on Y , that is, piq Φ0 “ I, where I is the identity

map; piiq Φt`1 “ Φt ˝ Φ1, @t ě 0; piiiq Φtpφq is continuous in pt, φq P r0,8q ˆ Y .

Proof. It is obvious that property (i) is true. Property (iii) can be easily verified by

applying a standard argument [81, Theorem 8.5.2]. Now, we show that property (ii)

holds. For any φ P Y and all t ě 0, let vptq “ upt` 1, φq and wptq “ upt, u1pφqq with

vpθq “ upθ ` 1, φq “ wpθq for θ P r´τ, 0s. For all t P rn, n ` 1 ´ τ ´ τds with n P N,

we have

dvptq

dt
“
dupt` 1, φq

dt
“bpupt` 1´ τ, φqqe´µIτ ´ µMupt` 1, φq

“bpvpt´ τqqe´µIτ ´ µMvptq

and for all t P rn` 1´ τ ´ τd, n` 1´ τ s:

dvptq

dt
“´ dMupt` 1, φq “ ´dMvptq

and for all t P rn` 1´ τ, n` 1s:

dvptq

dt
“
dupt` 1, φq

dt
“bpupt` 1´ pτ ` τdq, φqqe

´µIτ´dIτd ´ µMupt` 1, φq

“bpvpt´ pτ ` τdqqqe
´µIτ´dIτd ´ µMvptq.
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This indicates that vptq is a solution of system (5.3) with the same initial condition

as another solution wptq. The uniqueness of the solution indicates that vptq “ upt`

1, φq “ wptq “ upt, u1pφqq, @t ě 0. Thus, ut ˝ u1pφq “ ut`1pφq, which further implies

that Φt`1 “ Φt ˝ Φ1, @t ě 0.

5.3.2 Threshold dynamics

In order to investigate the global dynamics of system (5.3), we employ the theory

of strongly monotone and sub-homogeneous semiflows (see [135, Section 2.3]). The

next two lemmas show that the periodic semiflow Φt is eventually strongly monotone

and strictly subhomogeneous on Y .

Lemma 5.2. For any φ and ψ in Y with φ ą ψ (that is, φpsq ě ψpsq for s P r´τ, 0s

with φ ı ψ), there are two solutions upt, φq and vpt, ψq of system (5.3) with u0 “ φ

and v0 “ ψ, respectively, that satisfy upt, φq ą vpt, ψq for all t ą τ ` τd, and hence

Φtpφq " Φtpψq on Y for all t ą 2pτ ` τdq.

Proof. For any φ and ψ in Y with φ ą ψ, it can be easily shown that uptq ě vptq for

all t ě 0 by applying the comparison argument [106, Theorem 5.1.1] on each interval

rn, n` 1s for all n P N. In view of (5.4a) with n “ 0 and assumption (H1), we have

upτq “ e´µM τ
„
ż τ

0

bpups´ τqqe´µIτeµMsds` up0q



“ e´µM τ
„
ż τ

0

bpφps´ τqqe´µIτeµMsds` φp0q



ą e´µM τ
„
ż τ

0

bpψps´ τqqe´µIτeµMsds` ψp0q



“ vpτq.

By the continuity of solutions, there must exist some ξ P pτ, 1 ´ τ ´ τds such that

uptq ą vptq for all t P pτ, ξq. This claim can be further extended to all t P pτ, 1´τ´τds.

129



If we assume the contrary, then there exists a t0 P pτ, 1´τ ´τds such that uptq ą vptq

for all τ ă t ă t0 and upt0q “ vpt0q. However,

upt0q “ e´µM pt0´τq
„
ż t0

τ

bpups´ τqqe´µIτeµM ps´τqds` upτq



ě e´µM pt0´τq
„
ż t0

τ

bpvps´ τqqe´µIτeµM ps´τqds` upτq



ą e´µM pt0´τq
„
ż t0

τ

bpvps´ τqqe´µIτeµM ps´τqds` vpτq



“ vpt0q,

which is a contradiction. For t P r1´ τ ´ τd, 1´ τ s, it follows from (5.4b) that

uptq “e´dM pt´p1´τ´τdqqup1´ τ ´ τdq ą e´dM pt´p1´τ´τdqqvp1´ τ ´ τdq “ vptq.

For t P r1´ τ, 1s, based on assumption (H1) and (5.4c), we have

uptq “e´µM pt´p1´τqq
„
ż t

1´τ
bpups´ pτ ` τdqqqe

´µIτ´dIτdeµM ps´p1´τqqds` up1´ τq



ěe´µM pt´p1´τqq
„
ż t

1´τ
bpvps´ pτ ` τdqqqe

´µIτ´dIτdeµM ps´p1´τqqds` up1´ τq



ąe´µM pt´p1´τqq
„
ż t

1´τ
bpvps´ pτ ` τdqqqe

´µIτ´dIτdeµM ps´p1´τqqds` vp1´ τq



.

Subsequently, we can show that uptq ą vptq for all t ą τ by applying the method

of induction on each interval rn, n ` 1s with 1 ď n P N. In particular, s ´ τ ą 0

and s ´ pτ ` τdq ą 0 hold when s ą τ ` τd, then we have ups ´ τq ą vps ´ τq and

ups´pτ `τdqq ą vps´pτ `τdqq for s ą τ `τd. Thus, it easily follows that uptq ą vptq

for all t ą τ ` τd. Therefore, the solution map Φt is strongly monotone on Y when

t ą 2pτ ` τdq.
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We need to make additional assumptions on the birth rate function before inves-

tigating the subhomogeneity of Φt.

(H3) The birth rate bpMq can be expressed as bpMq “ BpMqM , where BpMq is

the per-capita birth rate and is strictly decreasing with respect to Mpą 0q.

Lemma 5.3. For any φ " 0 in Y and any λ P p0, 1q, we have upt, λφq ą λupt, φq

for all t ą τ ` τd, and therefore, Φn
1 pλφq " λΦn

1 pφq in Y for any integer n with

n ą 2pτ ` τdq.

Proof. Let upt, φq be the unique solution of system (5.3) with u0 “ φ " 0 in Y .

Denote wptq “ upt, λφq and vptq “ λupt, φq, then for all θ P r´τ, 0s, wpθq “ λφpθq “

vpθq. Since φ " 0, the proof of Theorem 5.1 implies that vptq ą 0 and wptq ą 0 hold

for all t ě 0. In consideration of assumption (H3), it follows that vptq satisfies the

following system of differential equations:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

dvptq

dt
“ B

´1

λ
vpt´ τq

¯

vpt´ τqe´µIτ ´ µMvptq, t P rn, n` 1´ τ ´ τdq,

dvptq

dt
“ ´dMvptq, t P rn` 1´ τ ´ τd, n` 1´ τq,

dvptq

dt
“ B

´1

λ
vpt´ pτ ` τdqq

¯

vpt´ pτ ` τdqqe
´µIτ´dIτd ´ µMvptq,

t P rn` 1´ τ, n` 1q,

where n P N. Then, the corresponding equivalent integral forms are shown as follows:
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vptq “e´µM pt´nq
„
ż t

n

B
´1

λ
vps´ τq

¯

vps´ τqe´µIτeµM ps´nqds` vpnq



,

t P rn, n` 1´ τ ´ τds,

vptq “e´dM pt´pn`1´τ´τdqqvpn` 1´ τ ´ τdq, t P rn` 1´ τ ´ τd, n` 1´ τ s,

vptq “e´µM pt´pn`1´τqq

«

ż t

n`1´τ

B
´1

λ
vps´ pτ ` τdqq

¯

vps´ pτ ` τdqq

ˆ e´µIτ´dIτdeµM ps´pn`1´τqqds` vpn` 1´ τq

ff

, t P rn` 1´ τ, n` 1s.

(5.5)

For all t P p0, τ s, it follows from assumption (H3) and the first equation of (5.5) that

vptq “e´µM t
„
ż t

0

B
´1

λ
vps´ τq

¯

vps´ τqe´µIτeµMsds` vp0q



“e´µM t
„
ż t

0

Bpφps´ τqqwps´ τqe´µIτeµMsds` wp0q



ăe´µM t
„
ż t

0

Bpλφps´ τqqwps´ τqe´µIτeµMsds` wp0q



“e´µM t
„
ż t

0

Bpwps´ τqqwps´ τqe´µIτeµMsds` wp0q



“wptq.

Then, there must exist some ξ1 P pτ, 1 ´ τ ´ τds such that 0 ă vptq ă wptq for all

t P pτ, ξ1q due to the continuity of the solution. This claim can be further extended

to all t P pτ, 1 ´ τ ´ τds. If not, then there exists a t1 P pτ, 1 ´ τ ´ τds such that
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vptq ă wptq for all τ ă t ă t1 and vpt1q “ wpt1q. However,

wpt1q “e
´µM pt1´τq

„
ż t1

τ

bpwps´ τqqe´µIτeµM ps´τqds` wpτq



ąe´µM pt1´τq
„
ż t1

τ

bpvps´ τqqe´µIτeµM ps´τqds` vpτq



“e´µM pt1´τq
„
ż t1

τ

Bpvps´ τqqvps´ τqe´µIτeµM ps´τqds` vpτq



ąe´µM pt1´τq
„
ż t1

τ

B
´1

λ
vps´ τq

¯

vps´ τqe´µIτeµM ps´τqds` vpτq



“vpt1q,

which is a contradiction. For all t P r1´ τ ´ τd, 1´ τ s, in view of the second equation

of (5.5), we have

vptq “e´dM pt´p1´τ´τdqqvp1´ τ ´ τdq ă e´dM pt´p1´τ´τdqqwp1´ τ ´ τdq “ wptq.
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For all t P r1´ τ, 1s, assumption (H3) and the third equation of (5.5) imply that

wptq “e´µM pt´p1´τqq

«

ż t

1´τ

bpwps´ pτ ` τdqqqe
´µIτ´dIτdeµM ps´p1´τqqds

` wp1´ τq

ff

ąe´µM pt´p1´τqq

«

ż t

1´τ

bpvps´ pτ ` τdqqqe
´µIτ´dIτdeµM ps´p1´τqqds

` vp1´ τq

ff

“e´µM pt´p1´τqq

«

ż t

1´τ

Bpvps´ pτ ` τdqqqvps´ pτ ` τdqq

ˆ e´µIτ´dIτdeµM ps´p1´τqqds` vp1´ τq

ff

ąe´µM pt´p1´τqq

«

ż t

1´τ

B
´1

λ
vps´ pτ ` τdqq

¯

vps´ pτ ` τdqqe
´µIτ´dIτd

ˆ eµM ps´p1´τqqds` vp1´ τq

ff

“vptq.

Similarly on each interval pn, n` 1s, we have 0 ă vptq ă wptq for all t P pn, n` 1s

with npě 0q P N. Note that s ´ τ ą 0 and s ´ pτ ` τdq ą 0 hold when s ą τ ` τd,

which imply that wps ´ τq ą vps ´ τq and wps ´ pτ ` τdqq ą vps ´ pτ ` τdqq for

s ą τ ` τd. Thus, we have wptq ą vptq for any t ą τ ` τd, that is, upt, λφq ą λupt, φq

for all t ą τ ` τd, and hence, Φn
1 pλφq “ Φnpλφq " λΦnpφq “ λΦn

1 pφq holds for all

integer n satisfying n ą 2pτ ` τdq.

Motivated by the theory of threshold dynamics in [135] (or those in [136]) for
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strongly monotone and strictly sub-homogeneous semiflows, we investigate the global

dynamics for system (5.3) in the rest of this section. Based on assumption (H1), it

is easy to verify that system (5.3) has a population extinction equilibrium 0. Then,

the corresponding linearised system is
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dMptq

dt
“ b1p0qe´µIτMpt´ τq ´ µMMptq, t P rn, n` 1´ τ ´ τds,

dMptq

dt
“ ´dMMptq, t P rn` 1´ τ ´ τd, n` 1´ τ s,

dMptq

dt
“ b1p0qe´µIτ´dIτdMpt´ pτ ` τdqq ´ µMMptq, t P rn` 1´ τ, n` 1s,

(5.6)

where n P N. For any given t ě 0, let P ptq be the solution map of the linear system

(5.6) on Y . Then, P p1q is the Poincaré map associated with system (5.6) with its

spectral radius denoted as R.

We now prove the main result of this section, that is, the global stability of system

(5.3) in terms of R.

Theorem 5.2. The following statements hold for system (5.3):

piq If R ď 1, then 0 is globally asymptotically stable in Y .

piiq If R ą 1, then system admits a unique positive 1-periodic solution M˚ptq, which

is globally asymptotically stable in Y zt0u.

Proof. For a fixed integer n1 satisfying n1 ą 2pτ ` τdq, it follows from Lemma 5.1

that Φt can be a n1-periodic semiflow on Y . In view of Lemmas 5.2 and 5.3, Φn1 is

a strongly monotone and strictly subhomogeneous map on Y . Let DΦn1p0q be the

Fréchet derivative of Φn1 at 0 if it exists, and denote the spectral radius of this linear

operator DΦn1p0q as rpDΦn1p0qq. In light of Theorem 2.3.4 in [135], we have:

(i) If rpDΦn1p0qq ď 1, then 0 is globally asymptotically stable for system (5.3) in

Y .
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(ii) If rpDΦn1p0qq ą 1, then system (5.3) admits a unique positive n1-periodic

solution M˚ptq, which is globally asymptotically stable in Y zt0u.

Since rpDΦn1p0qq “ rpP pn1qq “ prpP p1qqq
n1 “ Rn1 , it then follows that the above

statements remain valid when the threshold value is R. Moreover, it is necessary to

show that M˚ptq is 1-periodic. Let φ˚ “M˚p0q in Y zt0u, then we have Φn1pφ
˚q “ φ˚.

Since

Φn1
1 pΦ1pφ

˚
qq “ Φ1pΦ

n1
1 pφ

˚
qq “ Φ1pΦn1pφ

˚
qq “ Φ1pφ

˚
q,

the uniqueness of the positive fixed point of Φn1
1 “ Φn1 implies that Φ1pφ

˚q “ φ˚.

Thus, M˚ptq is a positive period-1 solution for system (5.3) with M˚p0q “ φ˚.

5.4 Numerical simulations

In this section, some numerical simulations are carried out to show how the mosquito

population fluctuates with the diapause-related parameters. In this work, we focus

on simulating the population dynamics of two temperate mosquito species. One is

Aedes albopictus, only the immature individuals (restricted in egg stage) of which can

survive by entering diapause with the advent of unfavourable seasons [119]. The other

is Culex pipiens, only the adults of which undergo diapause to maintain viability in

response to harsh environmental conditions [119]. The seasonal patterns of these two

mosquito species with different diapausing stages will be simulated. The sensitivity

analysis is then performed to exhibit how diapause-related parameters affect the

population dynamics. Some implications for controlling mosquitoes can be obtained

from the further check of the integrated effects of the diapausing and natural death

rates.

Parameter values are adopted from existing biological literatures. In virtue of the

habitats for Aedes albopictus and Culex pipiens are distributed in similar latitudes

[80], there may be subtle differences between these two species in the developmental
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rates during the normal growth and diapause periods, and therefore, related param-

eters for these two species are set at the same values. Due to the lack of diapause-

related parameters, some reasonable assumptions are made based on current un-

derstanding of mosquito diapause. Since the two species are mostly distributed in

temperate zone, diapause serves as an overwintering strategy. As such, the duration

of diapause period particularly depends on the length of winter season, which is fixed

as 3 months for both immature and adult diapause cases. During the diapause pe-

riod, the mortality rates of immatures and adults rely on their diapausing ability. For

diapausing immatures (adults), we presume that the mortality rate during diapause

period is slightly larger than that in normal growth duration even though their resis-

tance to harsh environmental conditions is enhanced [53, 97]. The mortality rate for

non-diapausing mosquitoes is assumed as ten-fold of the death rate during the nor-

mal developmental period. In consideration of the density-dependence in mosquito

reproduction, the well-known Beverton-Holt function may be a good choice for the

birth rate function, which is widely applied in modelling the recruitment of fishes

[14] and insects [65]. In this work, the birth rate function is constructed as a special

case of Beverton-Holt function, that is, bpMq “ pM{pq `M rq, which only depends

on the adult population M with the maximum recruitment rate p “ 120 (month´1),

the maximum capacity related parameter q “ 5 and the dimensionless parameter

r “ 0.5. The detailed descriptions of parameters are provided in Table 5.1.

5.4.1 Seasonal population pattern

We first check the seasonality of the population abundance for Aedes albopictus and

Culex pipiens with different stages entering diapause respectively. For each species,

the population dynamics of immatures and adults are simulated on the unified model

(U) by adjusting the diapause-related death rates dI and dM as in Table 5.1. The

patterns of the periodic solutions are illustrated as red dashed curves in the top four
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Table 5.1: Parameter values of the model for mosquito population dynamics

Parameter Definition Range Value Reference
τ Developmental duration

for immature mosquitoes
(month)

0.4 „ 1 0.5 [100]

τd Diapause period for
immature (mature)
mosquitoes (month)

2.5 „ 5 3 [31]

µI Mortality rate for im-
mature mosquitoes dur-
ing normal growth period
(month´1)

0.3 „ 1.8 0.6 [25, 28, 93]

µM Mortality rate for ma-
ture mosquitoes during
normal growth period
(month´1)

0.6 „ 2.1 0.7 [25, 28, 93]

dI Mortality rate for im-
mature mosquitoes
during diapause period
(month´1)

ě 0.8 Diapause:
0.8

Otherwise: 6

Assumed

dM Mortality rate for mature
mosquitoes during dia-
pause period (month´1)

ě 0.9 Diapause:
0.9

Otherwise: 7

Assumed

figures of Fig. 5.4. Moreover, we plot the curves of the periodic solutions (illustrated

as blue dotted lines in Fig. 5.4) to the other two models (A) and (I) since fur-

ther check is needed to verify whether our unified model can characterise them. The

curves of the periodic solutions to the unified model (U) overlap with those simulated

by the other two models, which validates that our unified model (U) is reasonable

to characterise the dynamics of population experiencing immature and mature dia-

pause respectively, by using different mortality rates in the diapause period. In what

follows, all the mentioning simulations are carried out on the unified model (U). Fig.

5.4 also shows that the population dynamics of Aedes albopictus and Culex pipiens

eventually stabilise at seasonal patterns, that is, fluctuating periodically between

maximum and minimum values.

The mosquito abundance bears a dramatic increase and reaches the peak at the

end of the normal growth period, then experiences a sharp decline when diapause
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period begins. The subtle differences in post-diapause period between these two

mosquito species begin to emerge when we zoom in on the dynamics during only

one period containing 12 months in our simulations (Fig. 5.4(e) and 5.4(f)). The

number of both immature and adult Culex pipiens drop substantially in the diapause

period. Unlike the immatures, the minimum adult Culex pipiens population size

appears at the end of post-diapause period as the decreasing trend in the diapause

period is still maintained until the post-diapause period ends (shown in Fig. 5.4(e)).

For Aedes albopictus, the population size of immatures and adults both undergo

similar decline, different from Culex pipiens, the number of juveniles and adults both

bounce back immediately after diapause (shown in Fig. 5.4(f)). Different diapausing

stages may contribute to the subtle difference between these two species. For Culex

pipiens, no immature individuals surviving at the end of the diapause period leading

to zero maturation rate during the post-diapause period, which results in further

decline in the number of adults. After one developmental duration (the post-diapause

period T3), the number of adults starts to increase as the new-born immatures attain

maturity and mature into adults. However, for Aedes albopictus, immatures survive

through diapause. At the end of the diapause period, some immatures born τ ` τd

time earlier survive and develop into adults leading to the increased number of adults

during the post-diapause period. Owing to these newly matured adults which can

give birth, the number of immatures can resume growing after the diapause period

ends.

The global stability of the periodic solutions can be demonstrated intuitively by

two phase portraits of systems with respect to immature and adult diapause cases.

The phase portraits sketched in Fig. 5.5, show similar qualitative features. All so-

lutions with different initial conditions converge towards a stable positive periodic

solution, which can be seen as the solid closed curve in Fig. 5.5. The stable periodic

orbit in Fig. 5.5(b) passing the bottom boundary of the axis related to adult popu-
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lation size implies that adult Aedes albopictus die while immatures enter diapause,

whereas, for Culex pipiens experiencing adult diapause, this periodic orbit may reach

the leftmost boundary of the axis referring to the extinction of immatures (shown in

Fig. 5.5(a)).

These simulations are as expected and consistent with our theoretical analysis,

which further demonstrate that the modelling framework is valid to capture the

dynamic behaviour of diapausing species. In the next subsection, sensitivity analysis

reveals how the mosquito population dynamics changes due to the variations of

specific parameters related to diapause.

5.4.2 Sensitivity analysis

The survivability of mosquitoes under adverse environmental conditions is believed

to be the vital factor preserving the population size and maintaining the succeeding

normal development [97]. The sensitivity analysis mainly investigates the impacts

of the mortality rates during diapause period and the length of diapause duration,

which are strongly relevant to the diapausing survivability. To evaluate effects of the

variations of diapause-related parameters on population dynamics, four indexes char-

acterising mosquito population abundance are mainly concerned, which involve the

maximum population abundance, the minimum population abundance, the time of

mosquito population attaining its maximum and minimum values during one period.

(1) Effects of the death rates during the diapause period

For adult diapause case, all immature Culex pipiens die at the end of the diapause

period while some adults can survive through diapause. In this case, the survivabil-

ity of diapausing adults other than immatures during the diapause period is crucial

for subsequent population growth. We first examine how the population dynamics

change when we vary the diapausing adult death rate and fix the immatures dying
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Figure 5.4: Simulated mosquito population abundance. (a) and (c): Immature and adult Culex
pipiens population dynamics, simulated by systems (A) and (U). dI “ 6, dM “ 0.9. (b) and
(d): Immature and adult Aedes albopictus population dynamics, simulated by systems (I) and (U).
dI “ 0.8, dM “ 7. (e): Culex pipiens population dynamics in one period with adult diapause.
(f): Aedes albopictus population dynamics in one period with immature diapause. T1, T2 and T3
represent the normal growth period, diapause period and post-diapause period respectively. Here,
the values of all other parameters are following Table 5.1.
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Figure 5.5: Phase portraits for systems with respect to the adult and immature diapause case
respectively. (a) In the case of adult Culex pipiens diapause, phase-portraits of the solutions with
three different positive initial conditions. (b) In this case, dI “ 0.8, dM “ 7. In the case of
immature Aedes albopictus diapause, phase-portraits of the solutions with three different positive
initial conditions. Here, dI “ 6, dM “ 0.9. The values of all other parameters are following Table
5.1. For these two cases, all solutions with different initial conditions converge to a positive periodic
solution (shown as the solid closed curve).

at a speed of non-diapausing rate, i.e., dI “ 6. The consequences of varying adult

mortality rate dM during diapause period are shown in Fig. 5.6. The curves clearly

show that increasing the survivability of diapausing mature mosquitoes during dia-

pause period may benefit the succeeding normal growth, which is embodied in the

larger maximum (Fig. 5.6(a)) and minimum population abundance (Fig. 5.6(b))

with lower diapausing adult mortality rate. The decreasing trend of the maximum

and minimum population abundance will slow down when dM is greater than some

threshold value. The possible reason may be that dM only determines the surviv-

ability of adults during the diapause period. Once the adult population size drops

substantially to a very small number at the end of the diapause period, the impact

of the increased diapausing adult death rate on the population dynamics is not sig-

nificant. Compared to the peak of immature population, the wider range of the

variations in the peak adult population abundance suggests that it is more sensitive

to changes in adult death rate dM as shown in Fig. 5.6(a). Along with the increasing

diapausing adult death rate, the difference between the immature and adult peak
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population sizes is diminishing. Fig. 5.6(c) shows that the peak population sizes

for both immatures and adults are always attained at the end of the normal growth

period, which is completely irrespective of the diapausing adult death rate. In view

of the monotonicity of the unified model (U), this result is as expected since the im-

mature and adult population sizes will both keep increasing until the normal growth

stops. Due to the fact that the immatures fail to survive through diapause, the min-

imum immature population size always appears at the end of the diapause period

(Fig. 5.6(d)). However, the timing of the minimum adult population size is shifted

forward from the end of the post-diapause period to the end of the diapause period

when the adult death rate is larger than some threshold value (Fig. 5.6(d)), which

further extends the results on the timing of minimum adult size in Fig. 5.4(f). The

cause of this phenomenon may be that the enlarged adult death rate during diapause

period accelerates the decreasing speed of the adult population size, which in turn

increases the density-dependent per capita adult recruitment rate to be greater than

the density-independent per-capita death rate.

In the case of immature Aedes albopictus entering diapause, the ability of the im-

matures surviving though diapause becomes the major concern. In order to explore

the influences of immature mortality rates during diapause period on mosquito pop-

ulation dynamics, we vary the diapausing immature death rate by fixing the adult

death rate of dM “ 7 during the diapause period. Compared with the adult diapaus-

ing case, the curves in Fig. 5.7 suggest that the diapausing immature death rate

influences the population dynamics in similar ways. Increasing the survivability by

lowering the immature death rate dI during diapause period can raise the maximum

(see Fig. 5.7(a)) and minimum population sizes (see Fig. 5.7(b)) for both imma-

tures and adults. The varying diapausing immature death rate has no effects on the

timing of the peak immature and adult population sizes, as shown in Fig. 5.7(c).

Adult peak population size is more influenced than the immature peak population
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Figure 5.6: In the case of adult diapause for Culex pipiens, four summary statistics characterising
mosquito population abundance vary with the adult death rates during adult diapause period. (a)
Maximum Culex pipiens population size varies with changing dM . (b) Minimum Culex pipiens
population size changes with varying dM . (c) The timing of maximum Culex pipiens population
size varies with changing dM . (d) The timing of minimum Culex pipiens population size changes
with varying dM . Here, we fix dI “ 6, the values of all other parameters are following Table 5.1.

size by the diapausing immature death rate dI . The minimum mature population

size always appears at the end of the diapause period since all adults fail to survive

through diapause, while the timing of minimum immature population size is shifted

earlier when the diapausing immature death rate is enlarged (Fig. 5.7(d)).

(2) Effects of the length of the diapause period

In addition to the diapausing death rates, the length of the diapause duration τd also

plays an important role on the survivability. To evaluate the impacts, we change the

values of τd to see how the length of diapause period affects the mosquito population
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Figure 5.7: In the case of immature diapause for Aedes albopictus, the statistics of mosquito
population abundance vary with the immature death rates during adult diapause period. (a)
Maximum Aedes albopictus population size varies with changing dI . (b) Minimum Aedes albopictus
population size changes with varying dI . (c) The timing of peak Aedes albopictus population size
varies with changing dI . (d) The timing of minimum Aedes albopictus population size changes with
varying dI . Here, we fix dM “ 7, the values of all other parameters are following Table 5.1.

dynamics. The curves in Fig. 5.8 describe the fluctuations of the population dynam-

ics during one period with three different values of τd. There is little difference in

the effects of varying diapause durations on the population dynamics of these two

species. For each species, the lengthened diapause period lowers the peak and bottom

population abundances and brings forward the peak time of each stage. Adult peak

population abundance is more sensitive to the variations of diapause durations in

comparison to immature peak. The possible reason is that longer diapause duration

results in relatively low survivability during diapause period and shortening normal
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development time for mosquito population to rebounce.
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Figure 5.8: The mosquito population abundance in one period with three different diapausing
durations. (a) Population dynamics of adult Culex pipiens, which can survive through diapause.
Here, dI “ 6 and dM “ 0.9. (b) Population dynamics of adult Aedes albopitus, which fail to survive
during diapause period. Here, dI “ 0.8 and dM “ 7. (c) Population dynamics of immature Culex
pipiens population, which cannot survive during diapause period. Here, dI “ 6 and dM “ 0.9.
(d) Population dynamics of immature Aedes albopitus, which can survive through diapause. Here,
dI “ 0.8 and dM “ 7.

It is worth noting that the decline in the peak population abundance for both

cases (as shown in Fig. 5.6(a) and Fig. 5.7(a)) becomes inconspicuous when the

diapausing death rate is above some threshold value. The peak population sizes for

both immatures and adults tend to keep unchanged at a positive value rather than

zero even if the death rate becomes very large, which means that the extremely low

survivability during the diapause period is still hard to cause the extinction of the

population. Once the environment conditions become suitable for development, the

146



mosquito population will resume growing rapidly as long as there are few mosquitoes

surviving through diapause. On account of the short developmental durations for

mosquitoes, the normal growth period is long enough for mosquitoes to rebounce

and new outbreaks of mosquitoes will emerge again. The above sensitivity analysis

indicates that the mosquito population growth can benefit from the enhanced dia-

pausing survivability. Diapause plays a significant role in preventing the extinction

of the population from harsh environmental conditions.

5.4.3 Controlling adult mosquito population

Since all mosquito-borne pathogens such as dengue, West Nile, Japanese encephalitis,

Zika and chikunguya viruses are transmitted by adult mosquitoes [103], controlling

or reducing the adult mosquito population size is an indispensable tool to fight

against the transmission of the mosquito-borne diseases. Based on the sensitivity

analysis in the previous subsection, the larger decline in the peak adult population

size indicates that reducing the survivability by increasing the diapausing death rate

may be an alternative way to lower the peak of adult population size and prevent

the transmission of the infectious diseases. However, for the sake of controlling

efficiency, focusing on killing mosquitoes during the diapause period alone may not

be an effective strategy as it is impossible to wipe out all the mosquitoes. It would

be better to take consideration of the effects of eliminating mosquitoes in the normal

growth period. To verify this conjecture, we perform a series of numerical simulations

to investigate the integrated affects of the natural death rate and the diapausing

death rate on the peak and average adult population sizes.

(1) Controlling peak adult population size

In this subsection, we mainly investigate how the peak adult population sizes of

these two species changes with the simultaneous variations of normal and diapausing
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death rate. The surfaces illustrated in Figs. 5.9 and 5.10 depict the fluctuations of

peak adult Culex pipiens and Aedes albopictus population size respectively. For each

species, the peak shows apparent decreasing trend when the normal and diapausing

death rates are increasing respectively. In accordance with the aforementioned re-

sults, the peak adult Culex pipiens drops substantially when dM is less than 5 and

remains unchanged when the diapausing death rate is greater than 5 (Fig. 5.9(b) and

5.9(d)). The narrower range of variations in the natural death rate lead to the same

decline in the peaks of both species (see contour plots in Figs. 5.9(b), 5.9(d), 5.10(b)

and 5.10(d)), which indicate that reducing the immature or adult death rate during

the normal growth period is more effective than reducing the diapausing death rate

to control the peaks of these two species. The contour plots in Fig. 5.9(f) and 5.10(f)

suggest that increasing the adult death rate other than immature death rate during

the normal growth period is relatively efficient to reduce the adult outbreak size for

both species. Compared with the effects of diapausing adult death rate on the peak

of adult Culex pipiens, the diapausing immature death rate dI has a relatively larger

effects on the peak of adult Aedes albopictus (see Fig. 5.9 and 5.10). Even though

increasing the mortality rate during the diapause period will lower the peak of adult

population, the more efficient way to control the adult outbreak size is to increase

the mortality rate during the normal developmental period, particularly the normal

adult death rate.

(2) Controlling average adult population size

In this subsection, the investigation involves the effects of varying normal and di-

apausing death rates on the average adult population sizes of both species during

one period. For each species, the average adult population size is decreasing with

respect to the normal and diapausing death rates respectively, which can be seen

from the surfaces in Fig. 5.11 and 5.12. By comparing with the effects of diapausing
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Figure 5.9: The surfaces and contour plots depicting the variations of peak adult Culex pipiens
population size with varying death rates. (a) The peak varies with changing µI and dM . (b)
The contour map of the surface in (a). (c) The peak varies with changing µM and dM . (d) The
contour map of the surface in (c). (e) The peak varies with changing µI and µM . In this case,
we fix dM “ 0.9. (f) The contour map of the surface in (e). Here, dI “ 6, the values of all other
parameters are following Table 5.1.
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Figure 5.10: The surfaces and contour maps describing the fluctuations of peak adult Aedes
albopictus population size with varying death rates. (a) The peak varies with changing µI and dI .
(b) The contour map of the surface in (a). (c) The peak varies with changing µM and dI . (d) The
contour map of the surface in (c). (e) The peak varies with changing µI and µM . In this case,
we fix dI “ 0.8. (f) The contour map of the surface in (e). Here, dM “ 7, the values of all other
parameters are following Table 5.1.
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death rate on the peak in previous analysis, it is apparent that the influences of

the diapausing death rate especially the diapausing adult death rate dM on reducing

the average adult population is stronger. Similarly, the corresponding contour plots

show that less efforts is needed if we focus on controlling the average population size

by increasing the death rate during the normal growth period.

5.5 Discussion

Diapause acting as a survival strategy in response to the adverse environment con-

ditions is believed to play significant roles in preserving population size and main-

taining the population growth. The effects of this survival mechanisms on species

persistence remain unclear so far. In this project, we attempted to explore how dia-

pause influences the population dynamics by constructing mathematically tractable

models. Our results indicated that increasing the survivability during diapause pe-

riod by either reducing the diapausing death rate or shortening the length of diapause

period may benefit the following normal growth, which was embodied in the larger

outbreak size with lower diapausing mortality rate and shorter diapause duration.

These sensitivity results further demonstrated that mosquito diapause is crucial for

the sake of population persistence.

Adult mosquitoes as the main source of many mosquito-borne diseases pose a

big threat to human life. Controlling the adult population size is believed to be an

effective way to prevent the disease transmission. Hence, we further investigated

the integrated effects of the diapausing and natural death rates on the peak and

average adult population sizes for these two species. These results indicate that

the more effective approach to lower the peak of these two species is to reduce the

death rate during the normal growth period especially the normal adult death rate

rather than the diapausing death rate. However, the diapausing death rate tends to
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Figure 5.11: The surfaces and contour plots depicting the variations of average adult Culex
pipiens population size with varying death rates. (a) The average varies with changing µI and dM .
(b) The contour map of the surface in (a). (c) The average varies with changing µM and dM . (d)
The contour map of the surface in (c). (e) The average varies with changing µI and µM . In this
case, we fix dM “ 0.9. (f) The contour map of the surface in (e). Here, dI “ 6, the values of all
other parameters are following Table 5.1.
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Figure 5.12: The surfaces and contour maps describing the fluctuations of average adult Aedes
albopictus population size with changing death rates. (a) The average varies with changing µI and
dI . (b) The contour map of the surface in (a). (c) The average varies with changing µM and dI .
(d) The contour map of the surface in (c). (e) The average varies with changing µI and µM . In
this case, we fix dI “ 0.8. (f) The contour map of the surface in (e). Here, dM “ 7, the values of
all other parameters are following Table 5.1.
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have a stronger negative effects on the average adult population size compared with

the effects on the peak. As an assistant intervention, killing mosquitoes during the

diapause period to decrease the survivability of diapausing mosquitoes is feasible to

lower the peak and average adult population sizes, which can prevent the massive

outbreaks of mosquitoes to some extent.

Based on our unified model, future stochastic simulations with true climatic data

may contribute to understanding the crucial ecological roles that diapause plays in

response to spatiotemporal climatic changes [16]. Beyond the aspect of controlling

mosquitoes, our modelling framework may shed light on the mechanisms for the dif-

ferences in temporal or geographic distributions of different mosquito species due to

diapause-related variations in seasonal abundance, which will further help us predict

the spread of mosquito-borne diseases [15, 31].
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Chapter 6

Conclusions and Future Work

In this chapter, we give some conclusions of this thesis and list a few interesting and

challengeable research topics for future work.

6.1 Research summary

Even though various continuous age-structured models have been proposed to inves-

tigate the population dynamics for single species, few models take into consideration

of other factors regulating population growth such as seasonal effects, spatial move-

ment, intra-specific competition and diapause. In particular, the time-varying devel-

opmental durations or chronological age thresholds are rarely considered in modelling

and analysing age-structured population growth as the induced time-dependent de-

lays would challenge the model derivation and theoretical analysis. In this thesis,

we analysed the age-structured population growth subject to the factors mentioned

above through three different projects.

The first project (as shown in Chapter 3) was devoted to the analysis of an age-

structured model subject to seasonal effects and time-dependent maturation period,

with the application of tick population. We started from a generalised McKendrick-

von Foerster equation with periodic age and time dependent coefficients to describe

the population growth subject to seasonal effects. By employing the method of in-
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tegration along characteristics, we obtained the equivalent integral equation, based

on which we presented a detailed proof of the uniqueness and existence of the so-

lution by applying contraction mapping theorem. With some reasonable biological

assumptions and the tick population growth as our motivating example, we reduced

the hyperbolic equation to a periodic age-structured model of four coupled delay

differential equations with periodic delays, which was quite distinct from previous

constant delay systems. For the long-term dynamics, we first analysed a special

case, that is, the immature intra-specific competition is negligible due to abundant

hosts for immature ticks. In this case, the pervious DDE model can be simplified

into a new DDE model, the adult system of which can be decoupled. Based on this

decoupled scalar subsystem, we defined the basic reproduction number R0 as the

spectral radius of the next generation operator. To obtain the global attractivity of

the positive periodic solution, we showed the solution semiflow is strongly monotone

and strictly subhomogeneous in a novel space. Since other variables can be described

by the integral form of the decoupled adult variable, the above result can be further

extended to the full DDE system. In the case of considering immature intra-specific

competition, the DDE model is challenging to conduct global analysis as it consists

of a system of four coupled delay differential equations. Nevertheless, we obtained

the global existence and uniqueness of the solution and showed the extinction and

uniform persistence of tick population in terms of R0. Other than that, we acquired

the existence of at least one positive periodic solution.

The second project (as shown in Chapter 4) mainly involved the analysis of a

generalised age-structured model in the first project with the consideration of spa-

tial movements regulating population growth. As a start, a simple case when the

immature competition can be ignored due to dispersal capability of immature indi-

viduals, reduces the model to one equation for the density of matured individuals.

For this single equation, the global existence, uniqueness of the solution and the
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existence of a global attractor were first shown. Inspired by the work [132, 134], the

basic reproduction number R0 as the spectral radius of the next generation operator

was defined and the global attractivity of the single equation in terms of R0 was

established by exploring the theory of monotone and subhomogeneous semiflows.

When immature competition exists, the analysis becomes somewhat tough as it is

impossible to decouple two equations. In this case, we assumed the immature diffu-

sion rate is negligible, which is justified biologically as follows: For some species such

as mosquitoes and frogs experiencing the immature intra-specific competition, their

juveniles have to compete food and resources with conspecifics in a restricted area

due to inefficient mobility. Consequently, the new model consists of a delay differen-

tial equation coupled with a delayed reaction diffusion equation with periodic delays.

We obtained the global existence, uniqueness of the solution and the existence of a

global attractor. Moreover, the extinction and uniform persistence of the population

were proved in terms of the newly defined basic reproduction number rR0.

In the last project (as shown in Chapter 5), we proposed a novel modelling frame-

work to explore how diapause influences the age-structured population growth sub-

ject to seasonal effects. Diapause period is taken as an independent dynamic process,

during which the population growth is completely different from that in the normal

developmental and post-diapause periods. Consequently, the annual growth period

was divided into three different intervals, with respective sets of equations in each

interval. To explicitly describe population growth with different diapausing stage, we

constructed three different models with an emphasis on mosquitoes, which are model

(A) with consideration of the adult diapause case, model (I) taking into account the

immature diapause case and the unified model (U) characterising both the immature

and adult diapause cases respectively. This project dealt with discontinuous growth

rate of age-structured populations due to the occurrence of diapause, which is slightly

different from the first two projects. In addition to the theoretical analysis, the nu-
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merical simulations were carried out on our unified model (U). We used the unified

model (U) to simulate the population dynamics of two temperate mosquito species

respectively, that is, Aedes albopictus experiencing immature diapause and Culex

pipiens undergoing adult diapause. The simulated mosquito population abundance

of these two species from the unified model and the other two models supported

our expectations that the unified model (U) remains valid to describe the dynamics

of diverse mosquito populations with different diapausing stages. The sensitivity

analysis was then performed to check how the diapause-related parameters influence

the population dynamics of these two mosquito species. The fluctuations of four

statistics characterising mosquito population dynamics were mainly concerned. Our

results indicated that increasing the survivability during diapause period by either

reducing the diapausing death rate or shortening the length of diapause period may

benefit the following normal growth, which was embodied in the larger outbreak size

with lower diapausing mortality rate and shorter diapause duration. These sensi-

tivity results further demonstrated that mosquito diapause is crucial for the sake

of population persistence. We further investigated the integrated effects of the dia-

pausing and natural death rates on the peak and average adult population sizes for

these two species. These results indicated that the more effective approach to lower

the peak of these two species is to reduce the death rate during the normal growth

period especially the normal adult death rate rather than the diapausing death rate.

However, the diapausing death rate tends to have a stronger negative effects on the

average adult population size compared with the effects on the peak.

6.2 Future Work

In this section, we list several interesting and challenging topics related to the projects

in this thesis for future work.
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In the first project, the basic reproduction number R0 is defined through a scalar

periodic delay system. However, we can not conclude that its value is equal to the

coefficient-averaged system as that for a periodic ordinary differential equation in

[121, Lemma 2.2] since a delay is involved. This remains a future question. This

project is focused on the mathematical analysis of the model and simulations have

not been presented. Interesting simulations can also be performed for the model

system to study the effects of seasonal weather variations and global warming on

the population growth, as done in [91, 126]. Furthermore, in the current study, the

global stability of the positive periodic solution is obtained when R0 ą 1, under

the condition that the intra-specific competition for immature ticks is negligible

due to the sufficient availability of immature tick hosts. When the competition

exists, we only show the uniform persistence of the system and existence of positive

periodic solution in this scenario. The number of the positive periodic solutions is

an interesting question to address in the future.

The diffusion coefficients of the model in the second project are assumed to be

constant. In reality, the spatial dispersion and diffusion are greatly influence by the

seasonal variations in biotic or abiotic factors such as resources and climate [132].

Organisms have a high mobility with warmer temperature and tend to keep motion-

less for the sake of saving energy to survive in colder days. Due to the heterogeneity

of resource distribution in spatial scale, nonlinear diffusion or spatial dependent co-

efficients can also be incorporated in the system. Moreover, in various stages of

some species, one stage, such as the immature stage of mosquitoes, is immobile and

the diffusion rate can be negligible. Incorporating these biological factors in model

formulation and analyzing the resultant models would be good topics for further

studies. Furthermore, we focused on the mathematical analysis of the model in the

case of D1 ¨ fpIq ” 0 and did not consider the case of D1 ¨ fpIq ą 0, which will be

another interesting problem for future investigation.
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In the last project, we ignored the intra-specific competition among immatures

during the normal population growth although the density-dependent self-regulation

is accounted by assuming that the per-capita birth rate is a decreasing function

of the adult density. In mosquitoes, intra-specific competition often occurs during

the immature stage [117]. One feasible way to incorporate the immature intra-

specific competition is to change the death term in system (5.2) into immature density

dependent such as µpaq ` gpIptqq, where gpIptqq represents the additional deaths

due to intra-specific competition among immatures [38]. Then, the resulted model

will contain a term involving the survivability due to intra-specific competition, i.e.

expp´
şτ

0
gpIpt´ τ ` rqqdrq, which brings challenges to the theoretical analysis of the

model. In this case, it is impossible to decouple the adult population size Mptq from

the whole system, which makes the model much more difficult to analyse. Moreover,

it would be more reasonable to incorporate time varying death rate, µpa, tq, lengths

of maturation period, τptq, and the diapause period, τdptq, which are strongly related

to the variations of environmental conditions such as temperature, humidity and

photoperiod. These improvements will result in a more complex DDE model with

time-dependent delays, which gives rise new challenges to the derivation of the model

formulations and the theoretical analysis of the model. These interesting topics will

be considered in our future work.
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A. Rizzoli, S. Merler, and R. Rosà. The effect of interspecific competition on
the temporal dynamics of Aedes albopictus and Culex pipiens . Parasit. Vectors,
10(1):102, 2017.

[81] R. H. Martin. Nonlinear Operators and Differential Equations in Banach
Spaces. Wiley, New York, 1976.

[82] R. H. Martin and H. L. Smith. Abstract functional-differential equations and
reaction-diffusion systems. Trans. Am. Math. Soc., 321(1):1–44, 1990.

[83] M. J. Mcgrady, M. Ueta, E. R. Potapov, I. Utekhina, V. Masterov, A. La-
dyguine, V. Zykov, J. Cibor, M. Fuller, and W. S. Seegar. Movements by
juvenile and immature Steller’s Sea Eagles Haliaeetus pelagicus tracked by
satellite. Ibis, 145(2):318–328, 2003.

[84] A. G. McKendrick. Applications of mathematics to medical problems. Proc.
Edinburgh Math. Soc., 44:98–130, 1926.

[85] J. A. J. Metz and O. Diekmann. The Dynamics of Physiologically Structured
Populations. Springer-Verlag, Berlin Heidelberg, 1986.

[86] H. Mooney. Invasion Dynamics: From Invasion Biology to Invasion Science,
2017.

[87] R. M. Nisbet. Delay-differential equations for structured populations. In
Structured-Population Models in Marine, Terrestrial, and Freshwater Systems,
pages 89–118. Springer, 1997.

[88] R. M. Nisbet and W. S. C. Gurney. The systematic formulation of population
models for insects with dynamically varying instar duration. Theor. Popul.
Biol., 23(1):114–135, 1983.

[89] N. H. Ogden, M. Bigras-Poulin, C. J. O’callaghan, I. K. Barker, L. R. Lindsay,
A. Maarouf, K. E. Smoyer-Tomic, D. Waltner-Toews, and D. Charron. A
dynamic population model to investigate effects of climate on geographic range
and seasonality of the tick Ixodes scapularis . Int. J. Parasitol., 35(4):375–389,
2005.

[90] N. H. Ogden, L. R. Lindsay, G. Beauchamp, D. Charron, A. Maarouf, C. J.
O’Callaghan, D. Waltner-Toews, and I. K. Barker. Investigation of relation-
ships between temperature and developmental rates of tick Ixodes scapularis
(Acari: Ixodidae) in the laboratory and field. J. Med. Entomol., 41(4):622–633,
2004.

167



[91] N. H. Ogden, M. Radojevic, X. Wu, V. R. Duvvuri, P. A. Leighton, and J. Wu.
Estimated effects of projected climate change on the basic reproductive num-
ber of the Lyme disease vector Ixodes scapularis . Environ. Health Perspect.,
122(6):631, 2014.

[92] R. S. Ostfeld. Lyme Disease: The Ecology of a Complex System. Oxford
University Press, New York, 2010.

[93] K. A. Pawelek, P. Niehaus, C. Salmeron, E. J. Hager, and G. J. Hunt. Mod-
eling dynamics of Culex pipiens complex populations and assessing abatement
strategies for West Nile Virus. PloS One, 9(9):e108452, 2014.

[94] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differ-
ential Equations, volume 44. Springer-Verlag, New York, 1983.

[95] G. Pritchard. The roles of temperature and diapause in the life history of
a temperate-zone dragonfly: Argia vivida (Odonata: Coenagrionidae). Ecol.
Entomol., 14(1):99–108, 1989.

[96] M. H. Reiskind and L. P. Lounibos. Effects of intraspecific larval competition
on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus . Med.
Vet. Entomol., 23(1):62–68, 2009.

[97] J. P. Rinehart, R. M. Robich, and D. L. Denlinger. Enhanced cold and des-
iccation tolerance in diapausing adults of Culex pipiens, and a role for Hsp70
in response to cold shock but not as a component of the diapause program. J.
Med. Entomol., 43(4):713–722, 2006.

[98] G. R. Sell and Y. You. Dynamics of Evolutionary Equations, volume 143.
Springer Science & Business Media, 2013.

[99] F. R. Sharpe and A. J. Lotka. A problem in age-distribution. Lond. Edinb.
Dubl. Phil. Mag., 21(124):435–438, 1911.

[100] J. B. Silver. Mosquito Ecology: Field Sampling Methods. Springer Science &
Business Media, 2007.

[101] C. Sim and D. L. Denlinger. Insulin signaling and FOXO regulate the over-
wintering diapause of the mosquito Culex pipiens . Proc. Natl. Acad. Sci. U.
S. A., 105(18):6777–6781, 2008.

[102] D. Smith and N. Keyfitz. Mathematical Demography: Selected Papers, vol-
ume 6. Springer Science & Business Media, 2012.

[103] D. L. Smith, T. A. Perkins, R. C. Reiner Jr, C. M. Barker, T. Niu, L. F.
Chaves, A. M. Ellis, D. B. George, A. Le Menach, J. Pulliam, et al. Recasting
the theory of mosquito-borne pathogen transmission dynamics and control.
Trans. R. Soc. Trop. Med. Hyg., 108(4):185–197, 2014.

168



[104] H. L. Smith. Reduction of structured population models to threshold-type
delay equations and functional differential equations: A case study. Math.
Biosci., 113(1):1–23, 1993.

[105] H. L. Smith. Monotone Dynamical Systems: An Introduction to the Theory of
Competitive and Cooperative Systems. Mathematical Surveys and Monographs,
volume 41. American Mathematical Society, 1995.

[106] H. L. Smith. An Introduction to Delay Differential Equations with Applications
to the Life Sciences, volume 57. Springer, New York, 2010.

[107] H. L. Smith and X.-Q. Zhao. Robust persistence for semidynamical systems.
Nonlinear Anal. Theory Methods Appl., 47(9):6169–6179, 2001.

[108] J. W.-H. So, J. Wu, and X. Zou. Structured population on two patches: Mod-
elling dispersal and delay. J. Math. Biol., 43(1):37–51, 2001.

[109] A. Spielman. Structure and seasonality of nearctic Culex pipiens populations.
Ann. N. Y. Acad. Sci., 951(1):220–234, 2001.

[110] M. J. Tauber and C. A. Tauber. Insect seasonality: Diapause maintenance,
termination, and postdiapause development. Annu. Rev. Entomol., 21(1):81–
107, 1976.

[111] M. J. Tauber, C. A. Tauber, and S. Masaki. Seasonal Adaptations of Insects.
Oxford University Press on Demand, 1986.

[112] R. A. Taylor, A. White, and J. A. Sherratt. How do variations in seasonality
affect population cycles? Proc. R. Soc. B, 280(1754):2012–2714, 2013.

[113] H. R. Thieme. Spectral bound and reproduction number for infinite-
dimensional population structure and time heterogeneity. SIAM J. Appl.
Math., 70(1):188–211, 2009.

[114] H. R. Thieme and X.-Q. Zhao. Asymptotic speeds of spread and traveling
waves for integral equations and delayed reaction–diffusion models. J. Differ.
Equ., 195(2):430–470, 2003.

[115] L. Toma, F. Severini, M. Di Luca, A. Bella, and R. Romi. Seasonal patterns of
oviposition and egg hatching rate of Aedes albopictus in Rome. J. Am. Mosq.
Control Assoc., 19(1):19–22, 2003.

[116] A. Tran, G. L’Ambert, G. Lacour, R. Benôıt, M. Demarchi, M. Cros, P. Cailly,
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