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Abstract

In the past twenty years, reproducing kernels and the kernel-based learning algo-

rithms have been widely and successfully applied to many areas of scientific research

and industry, and are extensively studied. Many of these algorithms take the form of

an optimization problem. Typically, the objective function consists of a fidelity term

for fitting the observations, and a regularization term for preventing over-fitting.

Examples include the support vector machines for classification, and the regularized

least squares for regression. However, in many regression problems, the constant

component should be treated differently in the regression function, and the exist-

ing kernel methods are not perfect tools to model this difference. Examples include

score-based ranking function regression. In this thesis, we study a class of Cen-

tered Reproducing Kernels (CRKs), which separate the constant component from

the reproducing kernel Hilbert spaces. We provide the non-asymptotic convergence

analysis of the empirical CRK-based regularized least squares.
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Chapter 1

Introduction

1.1 Learning Problems

In the era of Big data, one important problem of data analysis is what information

we can learn from massive data through automatic algorithms. The learning pro-

cess through these algorithms is called machine learning. For example, a modern

definition of machine learning is proposed by Mitchell [44]:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in T , as

measured by P , improves with experience E.”

In mathematics, we identify a function in a class T of functions based on a data set

E. The difference between the identified function and the unknown target function

is measured by a distance P , such as the L2 norm based on a probability measure.

Let X denote an input space, and let Y be an output space. Usually, X

is a compact metric space such as a set of genes or a domain in Rn and Y is a

subset of the real line R. Furthermore, we assume that there is an unknown joint

probability distribution ρ on X ˆ Y which can be decomposed as a conditional

distribution ρpy|xq on Y for almost every x and a marginal distribution ρX on X. The

labeled training sample D “ tpx1, y1q, px2, y2q, ..., pxN , yNqu with the size |D| “ N is

assumed to be drawn independently from the distribution ρ. These yi, i “ 1, 2, ..., N
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are referred to as labels or supervised information. The aim of a supervised (or

semi-supervised) learning problem is to find a functional relation f : X Ñ Y between

the input and the output spaces that has the generalization power, i.e., the power

to predict the label fpxq of a new instance x that may not belong to the training

set. The generalization power is pointwisely measured by some problem-specific loss

function

φ : Rˆ RÑ R`,

and the over-all generalization error is defined by

Eφpfq “
ż

XˆY

φpfpxq, yqdρpx, yq.

This quantitative description of the generalization power yields many learning algo-

rithms under the empirical risk minimization scheme, which we will review below.

Based on different types of training data, learning problems can be separated into

the following three parts.

1. Supervised Learning: the training data consist of only labeled data D “

tpxi, yiqu
N
i“1.

2. Unsupervised Learning: the training data consist of only unlabeled data

Dpxq. For example, the clustering problems, and the association analysis prob-

lems belong to this category.

3. Semi-supervised Learning: the training data consist of both labeled and

unlabeled data. In particular, the learning scenarios that have very cheap

unlabeled data but the labels are expensive.

1.1.1 Regression Problems

The classical least squares regression corresponds to the least squares loss

φpfpxq, yq “ py ´ fpxqq2.

2



Consider f P L2
ρX
pXq and let

}f}2ρ “

ż

X

fpxq2dρXpxq

be the square of L2
ρX

norm. Then the least squares error

Epfq “
ż

XˆY

py ´ fpxqq2dρ

is minimized by the regression function

fρpxq :“

ż

Y

ydρpy|xq.

In fact, for any f P L2
ρX
pXq, a straightforward calculation shows that

Epfq “ }fρ ´ f}2ρ ` Epfρq.

It is worthy of mentioning that the regression function is just the conditional expec-

tion of a random variable on Y with distribution ρpy|xq. Compared with learning

the mean, another regression problem is called quantile regression.

Quantile regression aims at learning the τ -quantile, in particular, the median

regression is the 0.5-quantile regression. Precisely, for a real number τ P p0, 1q, the

conditional τ -quantile of ρpy|xq is the number t P Y such that

ρpy ă t|xq ě τ and ρpy ě t|xq ě 1´ τ.

The learning algorithms of τ -quantile (e.g. [36, 59, 49, 56, 68]) are usually based on

the pinball loss

φτ py, fpxqq “

"

py ´ fpxqqτ, y ě fpxq
pfpxq ´ yqp1´ τq, otherwise.

In particular, for τ “ 1{2, the loss function is the absolute loss

φabsolutepy, fpxqq “
1

2
|y ´ fpxq| .
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Another property of quantile regression is the robustness since the outlier doesn’t

affect the median [35].

Combining the least squares regression with the median regression, one obtains

the so-called Huber’s loss

φHuberpy, fpxqq “

"

1{2py ´ fpxqq2, |y ´ fpxq| ď k
k|y ´ fpxq| ´ 1{2k2, otherwise.

The motivation of Huber’s loss comes from a truncation to the outlier by k as a result

the target function is robust to the outlier. Moreover, when k tends to infinity, the

Huber’s loss is close to the least squares loss which leads to learning the conditional

mean [35].

1.1.2 Classification Problems

When Y “ t˘1u, the learning problem is a binary-classification problem whose

target function (or classifier) is the sign of the function f that minimizes the mis-

classification risk

Rpfq :“ ρpy ‰ fpxqq “

ż

X

ρpy ‰ fpxq|xqdρX .

To get the explicit minimizer of the risk, one (e.g. Proposition 9.3 [24]) decomposes

Rpfq as

Rpfq “ 1

2
ρX pKρq `

ż

X{Kρ

ρpy ‰ fpxq|xqdρX

with Kρ “ tx P X : ρ py “ 1|xq “ ρ py “ ´1|xqu. Thus the optimizer of the above

functional is the Bayes Rule

fcpxq “

"

1, ρ py “ 1|xq ą ρ py “ ´1|xq ,
´1, ρ py “ ´1|xq ě ρ py “ 1|xq .

When Y contains k points (k classes) for k ě 3, the classification problem is

called multi-class classification problem. The analysis of multi-class classification are

studied in, for example, [67, 13].
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1.1.3 Ranking Problems

Consider px, yq, px1, y1q „ pX ˆ Y, ρq which are independent of each other. x is

regarded a better instance than x1 when y ą y1. Ranking problems aim at finding

a suitable rule to predict the rank. In this section, we introduce some basic settings

in bipartite ranking, i.e., Y “ t˘1u.

For normalization, let (e.g. [16])

z :“
y ´ y1

2
.

As a result, x is said to be better than x1 if z ą 0. The target function for a bipartite

ranking problem is defined by the minimizer of the ranking risk

Lprq “ ρ pz ¨ rpx, x1q ă 0q ,

which is the probability of ranking mistake. Also in [16], the decomposition of Lprq

can be presented as

Lprq “
ż

XˆX

`

1rrpx,x1q“1sρ´px, x
1
q ` 1rrpx,x1q“´1sρ`px, x

1
q
˘

dρXpxqdρXpx
1
q, (1.1)

where

ρ`px, x
1
q “ ρ pz ą 0|x, x1q and ρ´px, x

1
q “ ρ pz ă 0|x, x1q .

As a consequence of the decomposition above, the minimizer of the ranking risk is

r˚px, x1q “ 2ˆ 1rr`px,x1qěr´px,x1qs ´ 1

and the corresponding ranking risk is

Lpr˚q “
ż

XˆX

mintρ´px, x
1
q, ρ`px, x

1
qudρXpxqdρXpx

1
q.

In the case where there is an optimal scoring function s˚ : X Ñ R such that

r˚px, x1q “ 1 if and only if s˚pxq ě s˚px1q,

the ranking problem is equivalent to a scoring problem which aims at learning the

optimal scoring function s˚.
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1.1.4 Other Learning Problems

There are also some other fields of learning theory such as

1. dimension reduction: reduce the dimenssion of the data points x1, ..., xN (e.g.

[65]), either linearly of nonlinearly, as an approach to reduce computation load,

collinearity, or noise of the data.

2. association analysis (e.g. [60]), which tries to find interesting association rules

hidden in large data sets.

1.2 Kernel-based learning algorithms

Kernel methods have been extensively studied in learning theory literature (e.g.

[23, 62]). Kernel methods was used in support vector machines by Vapnik et al.

in [9, 19]. The implementation of RKHS in regression problems through integral

operators was studied in, for example, [55]. In this section, we will review the

framework of kernel-based learning algorithms.

1.2.1 Reproducing Kernel Hilbert Spaces

In this thesis, the basic tool for analyzing algorithms is reproducing kernel Hilbert

spaces (RKHS) [4, 62].

Let

K : X ˆX Ñ R

be a bivariate function on X. We say K is symmetric if

Kps, tq “ Kpt, sq, for all t, s P X.

Moreover, if K satisfies that

N
ÿ

i,j“1

cicjKpxi, xjq ě 0

6



for any finite set txiu
N
i“1 Ď X and any coefficients ci P R, i “ 1, 2, ..., N , then K is

called a positive semi-definite kernel. A Mercer kernel on X is a positive semi-

definite kernel on X which is continuous. Since we always assume X to be a compact

set, for a Mercer kernel K, we have

κ :“ sup
xPX

a

Kpx, xq ă `8.

For any x P X, we define

Kxptq “ Kpx, tq, t P X.

The reproducing kernel Hilbert space corresponding to the kernel function K is

defined by

pHK , 〈¨, ¨〉Kq “ span tKx, x P Xu,

where the completion is done with respect to the inner product 〈¨, ¨〉K defined on

span tKx, x P Xu that satisfies

〈Ks, Kt〉K “ Kps, tq.

The word “reproducing” comes from the reproducing property

〈f,Kx〉K “ fpxq, for all f in HK and x in X,

which implies that

}f}8 “ ess sup
xPX

|fpxq| ď sup
xPX

}f}K}Kx}K “ }f}K sup
xPX

a

Kpx, xq “ κ}f}K . (1.2)

Define the integral operator

LK :L2
ρX
pXq Ñ L2

ρX
pXq

f ÞÑ

ż

X

fpxqKxdρXpxq.

The integral operator LK is a compact, symmetric, positive semi-definite, and Hilbert-

Schmidt opertor [55]. Thus we can write its eigen-system as tλi, φiu
`8
i“1 with non-

negative eigenvalues λ1 ě λ2 ě ... and eigenfunctions tφiu
`8
i“1 normalized in

7



L2
ρX
pXq. Based on the integral operator, we have the following famous Mercer’s

Theorem [37].

Theorem (Mercer). Let X be a compact metric measure space with finite measure

ρX and let K be a Mercer kernel. Moreover, let tλi, φiu
`8
i“1 denote the eigen-system

of the integral operator LK with }φi}ρ “ 1, for all i “ 1, 2, .... Then

Kps, tq “
8
ÿ

i“1

λiφipsqφiptq, for all s, t P X. (1.3)

Here the series converges absolutely and uniformly.

The RKHS was generalized to the reproducing kernel Banach space (RKBS) BK

in [74] by regarding Kx as a continuous linear functional on its dual space B˚K such

that

Kxpfq “ fpxq, for all f in BK and x in X.

In this chapter, we introduce the regularized learning scheme in learning theory

based on the RKHS. With the RKHS, the regularized learning algorithms have the

form

fDφ,λ “ arg min
fPHK

#

1

N

N
ÿ

i“1

φpyi, fpxiqq

+

` λΩpfq (1.4)

for a given loss function φ and a regularization (or penality) term Ωpfq with functional

Ω : HK Ñ R.

When one takes Ωpfq :“ }f}2K , the well-known representer theorem [51, 62] guaran-

tees that one can always find a solution to (1.4) with the form

fDφ,λ “
N
ÿ

i“1

ciKxi . (1.5)

8



1.2.2 Learning Algorithms for Regression Problems

In the previous section, we introduced two kinds of regression problems: the least

squares regression problems and the quantile regression problems.

For the least squares regression, the regularized least squares (RLS) learning

algorithm

fDλ :“ arg min
fPHK

#

1

N

N
ÿ

i“1

pfpxiq ´ yiq
2
` λΩpfq

+

has been extensively studied. The RLS with penalty term Ωpfq “ }f}2K is also named

as kernel ridge regression (KRR). The convergence of the output function generated

by KRR are studied in [46, 23, 55, 54, 58, 10, 57], with consistency and robustness

[14]. Moreover, the empirical feature based RLS (regularized kernel priciple compo-

nent analysis (RKPCA)) [7, 8, 81, 80] is a powerful tool for solving not only KRR,

but also RLS with l1 penalty [30] and folded concave penalty [28].

Define the empirical integral operator

L
Dpxq
K : HK Ñ HK

f ÞÑ
1

N

N
ÿ

i“1

fpxiqKxi . (1.6)

Since L
Dpxq
K is also a compact positive semi-definite Hilbert-Schmidt operator, we de-

note tλ
Dpxq
i , φ

Dpxq
i ui its eigensystem normalized inHK . These eigenfunctions

!

φ
Dpxq
i

)

i

are called empirical features. The concentration results of λ
Dpxq
i and L

Dpxq
K to λi

and LK , respectively, are well studied in [32, 33].

The output function of the empirical feature based learning algorithm has the

form

fDω,λ “
N
ÿ

i“1

cD,ωi φ
Dpxq
i ,

9



where cD,ω “ pcD,ω1 , ..., cD,ωN q, and

cD,ω “ arg min
cPRN

$

&

%

1

N

N
ÿ

i“1

˜

N
ÿ

j“1

cjφ
Dpxq
j pxiq ´ yi

¸2

` λ
N
ÿ

j“1

ωp|cj|q

,

.

-

with ω : RÑ R. In [30], the RLS with l1 regularization term ωp|ci|q “ |ci| is analyzed

while the convergence of fDω,λ with folded-concave ω was studied in [28].

For the KRR

fDλ “ arg min

#

1

N

N
ÿ

i“1

pfpxiq ´ yiq
2
` λ}f}2K

+

, (1.7)

by taking the gradient with respect to f in HK and letting the gradient vanish, we

have the explicit solution given by

fDλ “ pL
Dpxq
K ` λIq´1 1

N

N
ÿ

i“1

yiKxi . (1.8)

By the representer theorem (1.5), fDλ has the form

fDλ “
N
ÿ

i“1

ciKxi . (1.9)

Substituting (1.9) into (1.7), we obtain

c “ pc1, ..., cNq “ arg min
cPRN

"

1

N
}Krxsc´ y}22 ` λc

TKrxsc

*

“ pNλI `Krxsq
´1y,

with

y “ py1, ..., yNq

and

Krxs “ pKpxi, xjqqNˆN .

The convergence of fDλ to the regression function fρ are widely studied (e.g. [55]).

The convergence analysis of KRR is usually under the assumptions on

10



1. the regularity of fρ (e.g. [55]);

2. the covering numbers of the unit ball in HK (e.g. [79]);

3. the decay of the eigenvalues λi of the integral operator LK ([57]);

4. the effective dimension of LK (e.g. [75]).

In our error analysis, we will use the assmputions on the regularity of fρ, that is,

fρ “ LrKhρ for some hρ P L
2
ρX
pXq and r ą 0. Moreover, we also assume that the

effective dimension

NLK pλq :“ TrppLK ` λIq
´1LKq “ O

`

λ´s
˘

, for some s ą 0. (1.10)

In [10, 57], the optimal convergence rate for KRR in the sense of minimax under

the L2
ρX
pXq norm was obtained

}fDλ ´ fρ}
2
ρ “ O

´

N
2r

2r`s

¯

.

To reduce the memory requirement and computing time for analyzing big data,

distributed learning algorithms have been widely used. A distributed learning algo-

rithm usually consists of the following three steps:

1. partitioning the data set D into subsets D1, ..., Dm;

2. implementing a learning algorithm to the data subset on each computing node

to produce an individual predicted function;

3. synthesizing a global output by, for example, averaging the individual outputs.

For distributed KRR, on each local machine, we use the RLS learning scheme

f
Dj
λ “ arg min

fPHK

$

&

%

1

|Dj|

ÿ

px,yqPDj

pfpxq ´ yq2 ` λ}f}2K

,

.

-

11



to get a local output function. Then we approximate the regression function fρ by

averaging the local output functions as

f̃Dλ “
m
ÿ

i“1

|Di|

|D|
f
Dj
λ .

The convergence of f̃Dλ to the regression function fρ was first studied in [78]. [40]

obtained the minimax optimal rate for distributed KRR. Furthermore, in [11], un-

labeled data (semi-supervised) was used to loosen the restriction of the maximum

possible concurrent computing nodes.

For the quantile regression, the convergence of the output function of the regu-

larized learning scheme with the form

fDφτ ,λ “ arg min
fPHK

1

N

N
ÿ

i“1

φτ pyi ´ fpxiqq ` λ}f}
2
K (1.11)

is studied in [36, 59, 49, 56, 68, 15, 34].

1.2.3 Learning Algorithms for Classification Problems

For classification problems, the loss function can be rewritten as a univariate function

by φpy, fpxqq “ φCpyfpxqq. To approximate the Bayes classifier, in [6, 77], the convex

analysis techniques were applied and several loss functions for binary-classification

problems were studied, including

• Least squares loss: φlsptq “ p1´ tq
2.

• Modified least squares loss: φmlsptq “ maxp1´ t, 0q2.

• Hinge loss: φhptq “ maxp1´ t, 0q.

• Exponential loss: φexpptq “ expp´tq.

• Logistic loss: φlogptq “ logp1` expp´tqq.

12



In particular, the hinge loss φh was employed in the famous supported vector

machines (SVM), introduced by Vapnik and his collaborators [9, 19]. The aim is

to separate two classes CI :“ ti : yi “ 1u and CII :“ ti : yi “ ´1u of a data set

tpxi, yiqu
N
i“1 for X “ Rn by a hyperplane Hb

w :“ tx : w ¨ x´ b “ 0, }w}2 “ 1u, i.e.,

"

w ¨ xi ą b, i P CI,
w ¨ xi ă b, i P CII.

Generally, we say that this two classes are separable if there is a measurable f such

that
"

fpxiq ą 0, i P CI,
fpxiq ă 0, i P CII.

Moreover, the hyperplane Hb
w is called separating hyperplane. The solution of

the linear case was obtained in [61]. Specifically, define the margin ∆pwq as the

distance of two classes to the hyperplane Hb
w, that is,

∆pwq “
1

2

"

min
iPCI

w ¨ xi ´max
iPCII

w ¨ xi

*

.

Let w̃ be the solution of the following minimization problem

min
wPRn,bPR

}w}22

s.t. yipw ¨ xi ´ bq ě 1, i “ 1, 2, ..., N. (1.12)

Then the separating hyperplane is Hb˚

w˚ with

w˚ “
w̃

}w̃}2
,

b˚ “ bpw˚q “
1

2

"

min
iPCI

w˚ ¨ xi `max
iPCII

w˚ ¨ xi

*

.

In this separable case, the margin ∆pwq is called hard margin.

13



For the non-separable case, the minimization problem could be modified by slack

variables ξ P RN by

min
wPRn,bPR,ξPRN

}w}22 `
1

λN

N
ÿ

i“1

ξi

s.t. yipw ¨ xi ´ bq ě 1´ ξi, i “ 1, 2, ..., N,

ξi ě 0, for all i “ 1, 2, ..., N,

whose solution is the same as

min
wPRn,bPR

1

N

N
ÿ

i“1

φhpyipw ¨ xi ´ bqq ` λ}w}
2
2.

Similarly, the regularized SVM based on RKHS is defined by

min
fPHK ,bPR

1

N

N
ÿ

i“1

φhpyipfpxiq ´ bqq ` λ}f}
2
K . (1.13)

For non-linear case, we say that ρ is strictly separable by HK with margin

∆ ą 0 if there is some fsp in HK such that

}fsp}K “ 1

and

yfsppxq ě ∆ almost surely.

The weakly separable classification problems was considered in [12]. Precisely,

ρ is said to be weakly separated by HK if there is an fsp P HK , }fsp}K “ 1 such

that yfsppxq ą 0 a.s.ρ. Moreover, we say that it has separation triple pθ,∆, Cρq

for 0 ă θ ď `8 and 0 ă ∆, Cρ ă `8 if

ρX tx P X : |fsppxq| ă ∆tu ď Cρt
θ, for all t ą 0. (1.14)

The largest θ satisfying (1.14) is called the separation exponent of ρ.

The following comparisom theorem was studied in[12, 6, 77].
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Theorem. For any measurable f : X Ñ R, it holds

Rpsgnpfqq ´Rpfcq ď
b

pEφh
pfq ´ Eφh

pfcqq.

In general, the ψ-transform

ψ : r0, 1s Ñ R`

satisfying

ψ pRpsgnpfqq ´Rpfcqq ď Eφpfq ´ Eφpfcq, for all measurable f : X Ñ R,

where

Eφpfq “
ż

XˆY

φhpyfpxqqdρ.

was studied in [6].

The solution analysis of regularized SVM (1.13) could be found in [22, 52, 61, 76]

while the convergence results are obtained in [25, 42, 61, 62, 63, 77].

1.2.4 Online Learning Algorithms

In the previous section, we considered only learning algorithms handling the whole

data set at one time, which is called batch learning. Meanwhile, there is a large

class of algorithms that use data points one by one. These algorithms are referred to

as online algorithms, and are some times used as fast substitutes for batch learning

algorithms. Another important application of online algorithms is when users need

to update the predicted function on the fly, while they keep obtaining new data

points. In [38, 53, 70], a stochastic gradient descent (SGD) learning algorithm of

least squares loss

ft`1 “ ft ´ ηt ppftpxtq ´ ytqKxt ` λftq , t “ 1, 2, ..., N,

where ηt ą 0 are step sizes, was studied to approximate the regression function fρ.

Furthermore, in [69, 71], an SGD algorithm for a general loss function φ, which is
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convex and differentiable at 0 with

φ1p0q ă 0,

was utilized as

ft`1 “ ft ´ ηt
`

φ1´pytftpxtqqytKxt ` λft
˘

, t “ 1, 2, ..., N,

where φ1´ is the left derivative of φ. For non-strongly convex case, convergence

analysis has been done in [5]. The optimal rate is attained by [26] using an averaged

unregularized least squares algorithm under a large step-size assumption.

1.2.5 Algorithms for Ranking and Pairwise Learning

Bipartite ranking problems have been considered in learning theory for a long history

(e.g. [1, 2, 17, 16, 18, 20, 21]). For learning the scoring functions, a method focused

on maximizing the AUC criterion

AUCpsq “ ρrspxq ě spx1q|y “ 1, y1 “ ´1s

was analyzed in [2, 18], while in [16], the convergence of the empirical version

Lnprq “
1

npn´ 1q

ÿ

i‰j

1tzijfpxi,xjqă0u (1.15)

of Lprq defined by (1.1), where

zij “
yi ´ yj

2
,

was estimated. Note that Lnprq is a U -statistic of order 2, the estimation of training

error between Lnprq and Lprq has been done based on U -statistic theory combined

with VC-dimension techniques by [16]. In [3, 47], the ranking learning problems was

formulated under the framework of pairwise learning with a loss function

φ : RX
ˆ pX ˆ Y q ˆ pX ˆ Y q Ñ r0,`8q

pf, px, yq, px1, y1qq ÞÑ φpf, px, yq, px1, y1qq
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which is symmetric about px, yq and px1, y1q, where RX :“ tf : X Ñ Ru is the set

of all real functions on X and some error analysis based on kernel methods were

achieved. In this settings, define the ranking error as

Lφpfq “
ż

pX,Y qˆpX,Y q

φpf, px, yq, px1, y1qqdρpx, yqdρpx1, y1q.

For pairwise learning, online learning algorithms were used and analyzed in, for

example, [72, 73, 64].

1.2.6 Deep Neural Networks

Artificial neural networks (ANN) dated back to multilayer perceptrons [48, 50].

ANN’s, especially those with many layers (thus called deep neural networks), pro-

vide an alternative way (perhaps more successful nowadays) to generate nonlinear

hypothesis spaces for learning, that parallel kernel methods. In recent years, the

development of computing hardware has boosted a fast development of deep neural

networks and deep learning. Many new algorithms, using different network struc-

tures, are studied and have achieved big successes in speech recognition and natural

language processing (e.g. recurrent neural networks, RNN [27, 66]), and in image

processing and computer vision (e.g. convolutional neural networks, CNN [39, 50]).

However, we will not expand ANN in this thesis.

1.3 Centered Reproducing Kernels

In this Chapter, we first introduce the definition of a class of centered reproducing

kernels and the motivations behind. In Chapter 2, some properties of the CRKs will

be sumarized.
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1.3.1 Centered Reproducing Kernels

Given a Mercer kernel K from X ˆX to R, we define a new kernel K̄ with respect

to the marginal distribution ρX by

K̄px, uq “ Kpx, uq ´

ż

X
Kpξ, uqdρXpξq ´

ż

X
Kpx, ξqdρXpξq `

ż

XˆX
Kpξ, ξ1qdρXpξqρXpξ

1q.

It’s obvious that K̄ is symmetric. It is shown in [29] that K̄ is also a Mercer kernel

(see Lemma 2.1 below). Since ρX is a probability measure,

c

sup
xPX

K̄px, xq ď
c

4 sup
xPX

Kpx, xq “ 2κ.

For K̄, an important property of the corresponding RKHS HK̄ is that it contains

no non-zero constant function. In fact, a straightforward calculation shows that

ż

X

K̄xdρXpxq “ 0. (1.16)

Since HK̄ is spaned by K̄x and completed with respect to the norm } ¨ }K̄ which is

stronger than the L2
ρX

norm, we have

ż

X

fpxqdρXpxq “ 0, for all f P HK̄ , (1.17)

i.e., HK̄ is perpendicular to the constant function 1 in L2
ρX
pXq.

Since the definition of K̄ is based on the unknown marginal distribution ρX , in

practice, we need to discretize K̄ by

K̂px, uq :“ Kpx, uq ´
1

N

N
ÿ

i“1

Kpx, xiq ´
1

N

N
ÿ

i“1

Kpxi, uq `
1

N2

N
ÿ

i“1

N
ÿ

j“1

Kpxi, xjq.

Similar as (1.16) and (1.17), we have

1

N

N
ÿ

i“1

K̂xi “ 0 (1.18)
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and

1

N

N
ÿ

i“1

fpxiq “ 0, for all f in HK̂ .

The relationship between K̂ and K̄ is given in section 2.1.

1.3.2 The Motivation of CRKs

In many regression problems, such as the score-based ranking problems, the con-

stant component shoule be treated differently from the other part of the regression

function. However, there is no existing approach serving this intuition. For example,

we will give a simulation later which shows that the convergence rate of the output

functions generated by KRR based on Gaussian RBF kernel could be much slower

if we add the original regression function by a constant, since the RKHS spaned by

a Gaussian kernel contains no non-zero constant [43]. Under this circumstance, we

first separate the constant from the RKHS by centering the kernel to K̄, and consider

the constant term independently. Moreover, note that K̄ denpends on the unknown

distribution ρ, we approximate K̄ by the discrete centered kernel K̂.
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Chapter 2

Regularized Least Squares with

Centered Reproducing Kernels

In the previous chapter, we introduced the centered reproducing kernel (CRK) with

respect to the marginal distribution ρX ,

K̄px, uq “ Kpx, uq ´

ż

X
Kpξ, uqdρXpξq ´

ż

X
Kpx, ξqdρXpξq `

ż

XˆX
Kpξ, ξ1qdρXpξqdρXpξ

1q,

and the CRK with respect to the empirical measure 1
N

řN
i“1 δxi concentrated on the

observations,

K̂px, uq “ Kpx, uq ´
1

N

N
ÿ

i“1

Kpx, xiq ´
1

N

N
ÿ

i“1

Kpxi, uq `
1

N2

N
ÿ

i“1

N
ÿ

j“1

Kpxi, xjq.

In this chapter, we first summarize the properties of CRKs. Then we study a modified

kernel ridge regression based on CRKs and give the error analysis.

2.1 Properties of CRKs

Summarized in [29], the centered reproducing kernel K̄ and the corresponding inte-

gral operator LK̄ and RKHS HK̄ possess the following properties.

Lemma 2.1. For a given Mercer kernel K and the corresponding centered kernel K̄,

integral operator LK̄ and the RKHS HK̄, one has
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1. K̄ is a Mercer kernel on X. Moreover, HK̄ is perpendicular to the constant

function 1pxq ” 1 in L2
ρX
pXq.

2. Let P1 : L2
ρX
pXq Ñ L2

ρX
pXq denote the orthogonal projection operator onto the

space spanned by 1pxq ” 1, i.e.,

P1f “

ż

X

fpxqdρXpxq.

Moreover, let I be the identity operator on L2
ρX
pXq. We have

LK̄f “ pI ´ P1qLKpI ´ P1qf, for any f in L2
ρX
pXq.

3. For the eigenvalues tλ̄iu
8
i“1 of LK̄ arranged in decreasing order, one has the

interlacing relationship

λ1 ě λ̄1 ě λ2 ě λ̄2 ě ... ě λn ě λ̄n ě ... (2.1)

between tλ̄iu
8
i“1 and tλiu

8
i“1.

4. For any f in L2
ρX
pXq and 1{2 ď r ď 1, there is a real constant c and a function

g in L2
ρX
pXq with }g}ρ ď }f}ρ such that

LrKg “ LrK̄f ` c.

Moreover, if LK has eigenfunction 1, then the requirement on r can be slacked

to r P p0,`8q.

5. We have

HK
ρX
Ď span t1u `HK̄

ρX
and HK̄

ρX
Ď span t1u `HK

ρX
,

where the completion ¯̈ρX is done with respect to the L2
ρX

norm.

For the relationship between K̂ and K̄, we have the following Lemma.

Lemma 2.2. For K̂ and K̄, we have
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1. If we take the maps K ÞÑ K̄ and K ÞÑ K̂ as transformations of kernels and

denote them by ˆ̈ and ¯̈, respectively, then we have the following relations:

K̂ “ ˆ̄K, K̄ “
¯̂
K, ¯̄K “ K̄,

ˆ̂
K “ K̂. (2.2)

2. Define PN “ eNe
T
N as the matrix of the orthogonal projection onto the space

spanned by eN “
1?
N
p1, ..., 1qT in RN . Let IN : RN Ñ RN be the identity matrix

on RN . Then we have

K̂rxs “ K̄rxs ´ PNK̄rxs ´ K̄rxsPN ` PNK̄rxsPN “ pIN ´ PNqK̄rxspIN ´ PNq,
(2.3)

where K̂rxs “
´

K̂pxi, xjq
¯

NˆN
and K̄rxs “

`

K̄pxi, xjq
˘

NˆN
are the kernel ma-

trices of K̂ and K̄, respectively. As a result, we have

K̂rxseN “ 0, (2.4)

so eN is an eigenvector of K̂rxs associated with the eigenvalue 0.

Proof. We only prove
¯̂
K “ K̄, and the rest proof of Item 1 follows from tedious but

similar calculation.

Note that

¯̂
Kps, tq “ K̂ps, tq ´

ż

X

K̂pξ, tqdρXpξq ´

ż

X

K̂ps, ξ
1

qdρXpξ
1

q `

ż

XˆX

K̂pξ, ξ
1

qdρXpξqdρXpξ
1

q

“Kps, tq ´
1

N

N
ÿ

i“1

Kpxi, tq ´
1

N

N
ÿ

i“1

Kps, xiq `
1

N2

N
ÿ

p,q“1

Kpxp, xqq

´

˜

ż

X

Kpξ, tqdρXpξq ´
1

N

N
ÿ

i“1

Kpxi, tq ´
1

N

N
ÿ

i“1

ż

X

Kpξ, xiqdρXpξq `
1

N2

N
ÿ

p,q“1

Kpxp, xqq

¸
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´

˜

ż

X

Kps, ξ
1

qdρXpξ
1

q ´
1

N

N
ÿ

i“1

ż

X

Kpxi, ξ
1

qdρXpξ
1

q ´
1

N

N
ÿ

i“1

Kps, xiq `
1

N2

N
ÿ

p,q“1

Kpxp, xqq

¸

`

˜

ż

XˆX

Kpξ, ξ
1

qdρXpξqdρXpξ
1

q ´
1

N

N
ÿ

i“1

ż

X

Kpxi, ξ
1

qdρXpξ
1

q

´
1

N

N
ÿ

i“1

ż

X

Kpξ, xiqdρXpξq `
1

N2

N
ÿ

p,q“1

Kpxp, xqq

¸

“Kps, tq ´

ż

X

Kpξ, tqdρXpξq ´

ż

X

Kps, ξ
1

qdρXpξ
1

q `

ż

XˆX

Kpξ, ξ
1

qdρXpξqdρXpξ
1
q

“K̄ps, tq.

Wo obtain
¯̂
K “ K̄ in (2.2).

For Item 2, since

PNK̄rxs “
1
?
N
eN

˜

N
ÿ

i“1

K̄pxi, x1q,
N
ÿ

i“1

K̄pxi, x2q, ...,
N
ÿ

i“1

K̄pxi, xNq

¸

,

K̄rxsPN “
1
?
N

˜

N
ÿ

i“1

K̄px1, xiq,
N
ÿ

i“1

K̄px2, xiq, ...,
N
ÿ

i“1

K̄pxN , xiq

¸T

eTN ,

and

PNK̄rxsPN “

˜

1

N

N
ÿ

i,j“1

K̄pxi, xjq

¸

eNe
T
N ,

we obtain (2.3) by comparing each entry of both sides of the equation.

Equation (2.4) follows from

pIN ´ PNq eN “ eN ´ eN “ 0.
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2.2 CRK-based Modified KRR Learning Algorithms

Recall the classical kernel ridge regression

fDλ “ arg min
fPHK

#

1

N

N
ÿ

i“1

pfpxiq ´ yiq
2
` λ}f}2K

+

. (2.5)

As we mentioned before, to separate the constant component from the RKHS, we

introduced centered reproducing kernels K̂ and K̄ for KRR. Based on K̂, we modify

the classical KRR as

pf̂Dλ , b̂
D
λ q “ arg min

fPHK̂ ,bPR

#

1

N

N
ÿ

i“1

pfpxiq ` b´ yiq
2
` λ}f}2

K̂

+

. (2.6)

Recall that

N
ÿ

i“1

K̂xi “ 0.

Note that

N
ÿ

i“1

fpxiq “ 0, for all f in HK̂ .

By letting the gradient of (2.6) with respect to pf, bq in HK̂ ‘ R vanish, we get

b̂Dλ “
1

N

N
ÿ

i“1

yi ´
1

N

N
ÿ

i“1

fpxiq “
1

N

N
ÿ

i“1

yi, (2.7)

f̂Dλ “
´

L
Dpxq

K̂
` λI

¯´1 1

N

N
ÿ

i“1

pyi ´ bqK̂xi “

´

L
Dpxq

K̂
` λI

¯´1 1

N

N
ÿ

i“1

yiK̂xi . (2.8)

By using (1.18), we get

f̂Dλ “
´

L
Dpxq

K̂
` λI

¯´1 1

N

N
ÿ

i“1

ˆ

yi ´

ż

X

fρpxqdρXpxq

˙

K̂xi .

25



Here the operator L
Dpxq

K̂
is defined similarly as L

Dpxq
K , by replacing K by K̂ in (1.6).

By (1.8), one has

f̂Dλ “ arg min
fPHK̂

#

1

N

N
ÿ

i“1

ˆ

fpxiq ´ yi `

ż

X

fρpxqdρXpxq

˙2

` λ}f}2
K̂

+

.

Thus by the representer theorem (1.9), we can represent f̂Dλ as

f̂Dλ “
N
ÿ

i“1

ĉiK̂xi ,

where ĉ “ pĉ1, ..., ĉNq
T
P RN is the solution to

min
cPRN

"

1

N

›

›

›
K̂rxsc´ ȳ

›

›

›

2

2
` λcT K̂rxsc

*

, (2.9)

with

ȳ “

ˆ

y1 ´

ż

X

fρpxqdρXpxq, ..., yN ´

ż

X

fρpxqdρXpxq

˙T

P RN .

By (2.4) in Lemma 2.2, (2.9) is equivalent to

min
cPRN

"

1

N

›

›

›
K̂rxspIN ´ PNqc´ ȳ

›

›

›

2

2
` λcT pIN ´ PNqK̂rxspIN ´ PNqc

*

.

As a result, pIN ´ PNqĉ is also a solution of (2.9). Since

N
ÿ

i“1

ppIN ´ PNqĉqi “
?
NeTN pIN ´ PNq ĉ “ 0,

without loss of generality, we can assume that ĉ has already been centered, i.e.,

N
ÿ

i“1

ĉi “ 0. (2.10)

So we define

ĉ “ pIN ´ PNq
´

NλIN ` K̂rxs

¯´1

ȳ.
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The output function of CRKs-based learning algorithm is given by

f̂Dλ ` b̂
D
λ .

In classical KRR, the regularization assumption on fρ is

fρ “ LrKhρ, for some hρ in L2
ρX
pXq and r ą 0. (2.11)

Let

f̄ρ :“ fρ ´

ż

X

fρpxqdρXpxq

be the centered regression function. In this work, we modify the regularization

assumption to be

f̄ρ “ LrK̄ h̄ρ, for some h̄ρ in L2
ρX
pXq and r ą 0. (2.12)

Now we demonstrate our main results with the proof deferred to the next section.

Theorem 2.1. Assume that |y| ď M almost surely and (2.12) with 1{2 ď r ď 1.

Take λ “ N´ 1
2r`1 . Then

E}f̂Dλ ` b̂Dλ ´ fρ}ρ ď CN´ r
2r`1 ,

where C is a constant independent of D,N, or λ, and it is specified in the proof.

In this work, we always assume |y| ďM almost surely for px, yq „ ρ.

2.3 Error Analysis for the CRK-based Learning

Algorithm

For error analysis, we insert a sample free analogue of pf̂Dλ , b̂
D
λ q based on K̄. Define

pf̄λ, b̄λq “ arg min
fPHK̄ ,bPR

"
ż

XˆY

pfpxq ` b´ yq2dρpx, yq ` λ}f}2K̄

*

.

Recall the centered regression function

f̄ρ :“ fρ ´

ż

X

fρpxqdρXpxq.
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Parallel to pf̂Dλ , b̂
D
λ q in (2.7), as a consequence of

ż

X

fpxqdρXpxq “ 0, for all f in HK̄ ,

we obtain

b̄λ “

ż

X

fρpxqdρXpxq,

f̄λ “ pLK̄ ` λIq
´1 LK̄ f̄ρ “ pLK̄ ` λIq

´1 LK̄fρ.

Moreover, based on K̄, we define the empirical analogue of f̄λ as

f̄Dλ “
´

L
Dpxq

K̄
` λI

¯´1 1

N

N
ÿ

i“1

yiK̄xi ,

where L
Dpxq

K̄
is defined similarly as L

Dpxq
K , by replacing K by K̄ in (1.6). It is easy to

see that f̄Dλ is the solution to the minimization problem

min
fPHK̄

#

1

N

N
ÿ

i“1

pfpxiq ´ yiq
2
` λ}f}2K̄

+

.

We do the error analysis by using the decomposition
›

›

›
f̂Dλ ` b̂

D
λ ´ fρ

›

›

›

ρ
“

›

›

›
f̂Dλ ` b̂

D
λ ´ f̄ρ ´ b̄λ

›

›

›

ρ

ď

›

›

›
f̂Dλ ´ f̄

D
λ

›

›

›

ρ
`
›

›f̄Dλ ´ f̄λ
›

›

ρ
`
›

›f̄λ ´ f̄ρ
›

›

ρ
`

ˇ

ˇ

ˇ
b̂Dλ ´ b̄λ

ˇ

ˇ

ˇ
. (2.13)

By the interlacing relationship (2.1) in Lemma 2.1 between LK̄ and LK , we have

the effective dimension of LK̄ satisfies that

NLK̄ pλq ď NLK pλq.

The norms }f̄Dλ ´ f̄λ}ρ and }f̄λ ´ f̄ρ}ρ have already been well bounded in literature

under the regularization assumption on f̄ρ (2.12) and the assumption on effectice

dimension (1.10). The second term in the right-hand side of (2.13) was bounded by

[11, 40] while the third term was bounded by [54]. Precisely, we have the following

Lemma.
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Lemma 2.3 (Smale & Zhou, [54]). If we assume (2.11) with 0 ă r ď 1, then

}fλ ´ fρ}ρ ď λr}hρ}ρ.

Moreover, for 1{2 ď r ď 1, we have

}fλ ´ fρ}K ď λr´1{2
}hρ}ρ.

We prepare some notations for the next Lemma. Define the sampling operator

SD : HK Ñ RN

f ÞÑ pfpx1q, ..., fpxNqq
T . (2.14)

So the adjoint operator of SD has the form

STD : RN
Ñ HK

y ÞÑ
N
ÿ

i“1

yiKxi . (2.15)

Let S̄D and S̄TD denote the sampling operator and the adjoint sampling operator on

HK̄ , respectively. The relation between the sampling operator and the empirical

integral operator can be described as

L
Dpxq
K “

1

N
STDSD.

In what follows, for any Mercer kernel G on X, we let }¨}oppGq denote the operator

norm on the RKHS pHG, 〈¨, ¨〉G , }¨}Gq associated with G. That is

}L}oppGq “ sup
fPHG,}f}Gď1

}Lf}G ,

for any bounded linear operator L : HG Ñ HG.

Chang et al. [11] studied the classical KRR (2.5) without the offset term b, with

the help of fλ, defined by

fλ “ arg min
fPHK

"
ż

XˆY

pfpxq ´ yq2 dρpx, yq ` λ }f}2K

*

“ arg min
fPHK

!

}f ´ fρ}
2
ρ ` λ }f}

2
K

)

, (2.16)

and obtained the following Lemma.
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Lemma 2.4 (Chang et al., [11], Proposition 6). We have

max
!

›

›fDλ ´ fλ
›

›

ρ
,
?
λ
›

›fDλ ´ fλ
›

›

K

)

ď Q2
D,λpPD,λ ` SD,λ}fλ}Kq, (2.17)

where

PD,λ :“

›

›

›

›

pLK ` λIq
´1{2

pLKfρ ´
1

N
STDyq

›

›

›

›

K

, (2.18)

QD,λ :“ }pLK ` λIq
1{2
pL

Dpxq
K ` λIq´1{2

}oppKq, (2.19)

SD,λ :“
›

›

›
pLK ` λIq

´1{2
pLK ´ L

Dpxq
K q

›

›

›

oppKq
. (2.20)

Moreover, from (2.16), with assumption (2.11) for r ě 1{2,

}fλ ´ fρ}
2
ρ ` λ }fλ}

2
K ď 0` λ }fρ}

2
K ,

so

}fλ}K ď }fρ}K ď }L
r
Khρ}K ď κ2r´1

›

›

›
L

1{2
K hρ

›

›

›

K
ď κ2r´1

}hρ}ρ , (2.21)

where the last equality comes form [23], see also Corollary 4.13 in [24], and the second

inequality follows from the estimate }LK}oppKq ď κ2, in fact,

}LKf}K “

›

›

›

›

ż

X

fpxqKxdρXpxq

›

›

›

›

K

ď }f}K sup
x
}Kx}

2
K “ κ2

}f}K .

Similar as Lemma 2.4, we define

P̄D,λ “
›

›

›

›

pLK̄ ` λIq
´1{2

pLK̄fρ ´
1

N
S̄TDyq

›

›

›

›

K̄

,

Q̄D,λ “ }pLK̄ ` λIq1{2pL
Dpxq

K̄
` λIq´1{2

}oppK̄q,

S̄D,λ “
›

›

›
pLK̄ ` λIq

´1{2
pLK̄ ´ L

Dpxq

K̄
q

›

›

›

oppK̄q
.

Lemma 2.4 implies that

max
!

›

›f̄Dλ ´ f̄λ
›

›

ρ
,
?
λ
›

›f̄Dλ ´ f̄λ
›

›

K

)

ď Q̄2
D,λpP̄D,λ ` S̄D,λ}f̄λ}K̄q. (2.22)

We cite from [11] the following Lemma, which is a summary of several results

proved in [10, 31, 40].
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Lemma 2.5. Assume that |y| ď M almost surely and 0 ă δ ă 1. Then each of the

following inequality holds with probability at least 1´ δ,

PD,λ ď 2Mpκ` 1qAD,λ logp2{δq, (2.23)

Q2
D,λ ď 2

ˆ

2pκ2 ` κqAD,λ logp2{δq
?
λ

˙2

` 2, (2.24)

SD,λ ď 2pκ2
` κqAD,λ logp2{δq, (2.25)

where

AD,λ “
1

N
?
λ
`

a

NLK pλq?
N

. (2.26)

As a result of

NLK̄ pλq ď NLK pλq,

we have

1

N
?
λ
`

a

NLK̄ pλq?
N

ď AD,λ.

Moreover, since

c

sup
xPX

K̄px, xq ď 2κ,

we obtain that each of the following inequality holds with probability at least 1´ δ,

P̄D,λ ď 2Mp2κ` 1qAD,λ logp2{δq, (2.27)

Q̄2
D,λ ď 2

ˆ

4p2κ2 ` κqAD,λ logp2{δq
?
λ

˙2

` 2, (2.28)

S̄D,λ ď 4p2κ2
` κqAD,λ logp2{δq. (2.29)

To carry out the error analysis, we use the following first order and second

order decomposition. In general, for two invertible operators on a Banach space,

we have the following Lemma [40].
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Lemma 2.6 (Lin et al., [40]). For A and B being two invertible operators on a

Banach space, we have

A´1
´B´1

“ B´1
pB ´ AqA´1

“ A´1
pB ´ AqB´1. (2.30)

Moreover, we have

A´1
´B´1

“ B´1
pB ´ AqB´1

`B´1
pB ´ AqA´1

pB ´ AqB´1. (2.31)

As a direct use of the first and second order decomposition, we have the following

Lemmas, which will be used to estimate the term f̂Dλ ´f̄
D
λ . Before giving the Lemmas,

we first introduce some notations.

Define

ŷi “ yi ´ fρpxiq, ŷ “ pŷ1, ..., ŷNq
T ,

ỹ “
1
?
N

ŷ. (2.32)

We decompose f̄Dλ as

f̄Dλ “
´

L
Dpxq

K̄
` λI

¯´1 1

N

N
ÿ

i“1

ȳiK̄xi ` b̄λ

´

L
Dpxq

K̄
` λI

¯´1 1

N

N
ÿ

i“1

K̄xi . (2.33)

By the representer theorem (1.9), we have

´

L
Dpxq

K̄
` λI

¯´1 1

N

N
ÿ

i“1

ȳiK̄xi “

N
ÿ

i“1

c̄iK̄xi ,

where the coefficients

c̄ :“ pc̄1, ..., c̄Nq
T
“
`

K̄rxs `NλIN
˘´1

ȳ. (2.34)

For simplicity, we define

Ḡ “ Ḡrxs “
1

N
K̄rxs, (2.35)

Ĝ “ Ĝrxs “
1

N
K̂rxs. (2.36)
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Recall that f̂Dλ is a part of the solution in (2.6), and we have defined the vector

ĉ “ pĉ1, ..., ĉNq such that

f̂Dλ “
N
ÿ

i“1

ĉiK̂xi .

From (2.34) we have c̄ “ 1
N

`

Ḡ` λIN
˘´1

ȳ. Recall that ĉ “ 1
N
pIN ´ PNq

´

Ĝ` λIN

¯´1

ȳ.

According to (2.2), (2.10) and (2.33), we have

f̂Dλ ´ f̄
D
λ “

N
ÿ

i“1

ĉiK̂xi ´

N
ÿ

i“1

c̄iK̄xi ´ b̄λ

´

L
Dpxq

K̄
` λI

¯´1 1

N

N
ÿ

i“1

K̄xi

“

N
ÿ

i“1

ĉi

˜

K̄xi ´
1

N

N
ÿ

j“1

K̄xj ´
1

N

N
ÿ

j“1

K̄pxi, xjq `
1

N2

ÿ

1ďp,qďN

K̄pxp, xqq

¸

´

N
ÿ

i“1

c̄iK̄xi ´ b̄λ

´

L
Dpxq

K̄
` λI

¯´1 1

N

N
ÿ

i“1

K̄xi

“

N
ÿ

i“1

`

ĉiK̄xi ´ c̄iK̄xi

˘

´
1

N

ÿ

1ďi,jďN

ĉiK̄pxi, xjq ´ b̄λ

´

L
Dpxq

K̄
` λI

¯´1 1

N

N
ÿ

i“1

K̄xi

“: J1 ` J2 ` J3. (2.37)

We bound the three terms separately below.

To bound J1, we need the following concentration inequality.

Lemma 2.7 (Pinelis-Hoeffding [45]). Let tξiu be a sequence of independent random

variables in a Hilbert space pH, }¨}Hq with Eξi “ 0 and }ξi}H ď ci ă 8 almost surely

for every i. Then for any ε ą 0 and N ě 1,

Prob

#
›

›

›

›

›

N
ÿ

i“1

ξi

›

›

›

›

›

H

ě ε

+

ď 2 exp

#

´
ε2

8
řN
i“1 c

2
i

+

. (2.38)

As a direct application of the Pinelis-Hoeffding inequality, we have the following

lemma.
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Lemma 2.8. For any vector η “ pη1, ..., ηNq
T
P RN of coefficients, and ε ą 0, we

have

Prob
 ˇ

ˇηT ỹ
ˇ

ˇ ě ε|Dpxq
(

ď 2 exp

#

´
Nε2

2M2 }η}22

+

, (2.39)

or equivalently, for 0 ă δ ă 1,

Prob

#

ˇ

ˇηT ỹ
ˇ

ˇ ě 2M }η}2

c

2 logp2{δq

N

ˇ

ˇ

ˇ

ˇ

ˇ

Dpxq

+

ď δ. (2.40)

Proof. Recall that ỹ “ pỹ1, ..., ỹNq
T with

ỹi “
1
?
N
pyi ´ fρpxiqq , 1 ď i ď N.

So Eηiỹi “ 0 and |ηiỹi| ď
2M?
N
|ηi| almost surely. One applies Lemma 2.7 to obtain

that for ε ą 0,

Prob
 
ˇ

ˇηT ỹ
ˇ

ˇ ě ε|Dpxq
(

ď 2 exp

#

´
Nε2

8M2 }η}22

+

.

This proves (2.39), and (2.40) is obtained by letting the right-hand side of (2.39)

equal δ.

The following Lemma estimates J1 in HK̄ .

Lemma 2.9. Assume f̄ρ P HK̄. We have

›

›

›

›

›

N
ÿ

i“1

pĉi ´ c̄iq K̄xi

›

›

›

›

›

K̄

ď
2
›

›Ḡ1{2eN
›

›

2?
λ

˜

1
?
λ

ˇ

ˇ

ˇ

ˇ

ˇ

eTN

ˆ

1

λ
Ḡ` IN

˙´1

ỹ

ˇ

ˇ

ˇ

ˇ

ˇ

`
›

›f̄ρ
›

›

K̄

¸

. (2.41)

Proof. As a result of (2.3), we get

´

Ĝ` λI
¯´1

pIN ´ PNq “ pIN ´ PNq
´

Ĝ` λI
¯´1

.
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By (2.30), one has

›

›

›

›

›

N
ÿ

i“1

pĉi ´ c̄iq K̄xi

›

›

›

›

›

2

K̄

“ pĉ´ c̄qT K̄rxs pĉ´ c̄q “
›

›

›
K̄

1{2
rxs pĉ´ c̄q

›

›

›

2

2

“

›

›

›

›

Ḡ1{2

„

pIN ´ PNq
´

Ĝ` λIN

¯´1

´
`

Ḡ` λIN
˘´1



1
?
N

ȳ

›

›

›

›

2

2

“

›

›

›

›

Ḡ1{2
´

Ĝ` λIN

¯´1
“

pIN ´ PNq ḠPN ´ λPN
‰ `

Ḡ` λIN
˘´1 1

?
N

ȳ

›

›

›

›

2

2

.

(2.42)

Recall that 1?
N

ȳ “ ỹ` 1?
N
S̄Df̄ρ (see (2.14), (2.15) and the paragraph below for the

definition of S̄D). We decompose the right-hand side of (2.42) above, to give

›

›

›

›

›

N
ÿ

i“1

pĉi ´ c̄iq K̄xi

›

›

›

›

›

K̄

ď S1 ` S2,

with

S1 :“

›

›

›

›

Ḡ1{2
´

Ĝ` λIN

¯´1
“

pIN ´ PNq ḠPN ´ λPN
‰ `

Ḡ` λIN
˘´1

ỹ

›

›

›

›

2

,

S2 :“

›

›

›

›

Ḡ1{2
´

Ĝ` λIN

¯´1
“

pIN ´ PNq ḠPN ´ λPN
‰ `

Ḡ` λIN
˘´1 1

?
N
S̄Df̄ρ

›

›

›

›

2

.

Below we abuse the notations by letting } ¨ }2 also denote the spectral norm of a

matrix (i.e. the maximum singular value). This will not introduce ambiguity. Recall

that
›

›AAT
›

›

2
“
›

›ATA
›

›

2
for any matrix A, and that Ĝ “ pIN ´ PNq Ḡ pIN ´ PNq. We

have
›

›

›

›

Ḡ1{2
´

Ĝ` λIN

¯´1

pIN ´ PNq Ḡ
1{2

›

›

›

›

2

“

›

›

›

›

Ḡ1{2
pIN ´ PNq

´

Ĝ` λIN

¯´1{2 ´

Ĝ` λIN

¯´1{2

pIN ´ PNq Ḡ
1{2

›

›

›

›

2

“

›

›

›

›

´

Ĝ` λIN

¯´1{2

Ĝ
´

Ĝ` λIN

¯´1{2
›

›

›

›

2

ď 1. (2.43)
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Now we apply (2.43) to obtain

S1 ď

›

›

›

›

Ḡ1{2
´

Ĝ` λIN

¯´1

pIN ´ PNq ḠPN
`

Ḡ` λIN
˘´1

ỹ

›

›

›

›

2

` λ

›

›

›

›

Ḡ1{2
´

Ĝ` λIN

¯´1

PN
`

Ḡ` λIN
˘´1

ỹ

›

›

›

›

2

ď

›

›

›
Ḡ1{2PN

`

Ḡ` λIN
˘´1

ỹ
›

›

›

2
` λ

›

›Ḡ1{2eN
›

›

2

ˇ

ˇ

ˇ

ˇ

eTN

´

Ĝ` λIN

¯´1

eN

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
eTN

`

Ḡ` λIN
˘´1

ỹ
ˇ

ˇ

ˇ

ď 2
›

›Ḡ1{2eN
›

›

2

ˇ

ˇ

ˇ
eTN

`

Ḡ` λIN
˘´1

ỹ
ˇ

ˇ

ˇ
, (2.44)

and

S2 ď

›

›

›

›

Ḡ1{2
´

Ĝ` λIN

¯´1

pIN ´ PNq ḠPN
`

Ḡ` λIN
˘´1 1

?
N
S̄Df̄ρ

›

›

›

›

2

` λ

›

›

›

›

Ḡ1{2
´

Ĝ` λIN

¯´1

PN
`

Ḡ` λIN
˘´1 1

?
N
S̄Df̄ρ

›

›

›

›

2

ď

›

›

›

›

Ḡ1{2PN
`

Ḡ` λIN
˘´1 1

?
N
S̄Df̄ρ

›

›

›

›

2

` λ
›

›Ḡ1{2eN
›

›

2

ˇ

ˇ

ˇ

ˇ

eTN

´

Ĝ` λIN

¯´1

eN

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

eTN
`

Ḡ` λIN
˘´1 1

?
N
S̄Df̄ρ

ˇ

ˇ

ˇ

ˇ

.

Note that
›

›

›

›

`

Ḡ` λI
˘´1{2 1

?
N
S̄Df̄ρ

›

›

›

›

2

2

“

〈
`

Ḡ` λI
˘´1{2 1

?
N
S̄Dfρ,

`

Ḡ` λI
˘´1{2 1

?
N
S̄Df̄ρ

〉
2

“
1

N

〈
S̄TD

`

Ḡ` λI
˘´1

S̄Df̄ρ, f̄ρ

〉
K̄
“

1

N

〈
S̄TD

ˆ

1

N
S̄DS̄

T
D ` λI

˙´1

S̄Df̄ρ, f̄ρ

〉
K̄

“
1

N

〈
ˆ

1

N
S̄TDS̄D ` λI

˙´1 ˆ
1

N
S̄TDS̄D ` λI

˙

S̄TD

ˆ

1

N
S̄DS̄

T
D ` λI

˙´1

S̄Df̄ρ, f̄ρ

〉
K̄

“

〈
ˆ

1

N
S̄TDS̄D ` λI

˙´1
1

N
S̄TDS̄Df̄ρ, f̄ρ

〉
K̄

ď
›

›f̄ρ
›

›

2

K̄
.
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So,

S2 ď 2
›

›Ḡ1{2eN
›

›

2

›

›

›

`

Ḡ` λIN
˘´1{2

eN

›

›

›

2

›

›

›

›

`

Ḡ` λIN
˘´1{2 1

?
N
S̄Df̄ρ

›

›

›

›

2

ď
2
›

›Ḡ1{2eN
›

›

2?
λ

›

›f̄ρ
›

›

K̄
. (2.45)

This completes the proof.

Lemma 2.10. Recall Ḡ “ 1
N
K̄rxs. We have

EeTNḠeN ď
4κ2

N
, E

`

eTNḠeN
˘2
ď

48κ2

N2
.

So, according to H:older’s inequality, Er
›

›Ḡ1{2eN
›

›

r

2
s ď

´

2κ?
N

¯r

, for any r P p0, 2s.

Proof. Since

eTNḠeN “
1

N2

N
ÿ

i,j“1

K̄pxi, xjq “
1

N2

N
ÿ

i“1

K̄pxi, xiq `
1

N2

ÿ

i‰j

K̄pxi, xjq,

and

E
“

K̄pxi, xjq|xj
‰

“ 0, for i ‰ j, (2.46)

we have

EeTNḠeN “
1

N
EK̄pxi, xiq ď

p2κq2

N
.

Moreover, we have

`

eTNḠeN
˘2
“

˜

1

N2

N
ÿ

i,j“1

K̄pxi, xjq

¸2

“

˜

1

N2

N
ÿ

i“1

K̄pxi, xiq `
1

N2

ÿ

i‰j

K̄pxi, xjq

¸2

“
1

N4

$

&

%

˜

N
ÿ

i“1

K̄pxi, xiq

¸2

` 2

˜

N
ÿ

i“1

K̄pxi, xiq

¸˜

ÿ

k‰l

K̄pxk, xlq

¸

`

˜

ÿ

i‰j

K̄pxi, xjq

¸2
,

.

-
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Also by the degenerate property (2.46), we obtain

E

˜

N
ÿ

i“1

K̄pxi, xiq

¸˜

ÿ

k‰l

K̄pxk, xlq

¸

“ 0,

and

E

˜

ÿ

i‰j

K̄pxi, xjq

¸2

“ E
ÿ

i‰j,k‰l

K̄pxi, xjqK̄pxk, xlq “ 2E
ÿ

i‰j

K̄pxi, xjq
2
ď 32κ4NpN ´ 1q.

Since

˜

N
ÿ

i“1

K̄pxi, xiq

¸2

ď 16N2κ4,

we get

E
`

eTNḠeN
˘2
ď

48κ4

N2
.

Now we estimate the error between f̂Dλ and f̄Dλ .

Proposition 2.1. Assume |y| ďM almost surely and f̄ρ P HK̄. We have

E
›

›

›
f̂Dλ ´ f̄

D
λ

›

›

›

ρ
ď C

1

1

ˆ

1
?
Nλ

`
1

Nλ
`
AD,λ
λ
?
N

˙

,

where C
1

1 is a constant independent of D,N, or λ, and it will be specified in the proof.

Proof. Recall the decomposition (2.37). We have

}J1}ρ “

›

›

›
LK̄

1{2J1

›

›

›

K̄
ď 2κ }J1}K̄

ď
4κ

›

›Ḡ1{2eN
›

›

2?
λ

˜

1
?
λ

ˇ

ˇ

ˇ

ˇ

ˇ

eTN

ˆ

1

λ
Ḡ` IN

˙´1

ỹ

ˇ

ˇ

ˇ

ˇ

ˇ

`
›

›f̄ρ
›

›

K̄

¸

. (2.47)
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Obviously
›

›

›

`

1
λ
Ḡ` IN

˘´1
eN

›

›

›

2
ď }eN}2 “ 1. We apply Lemma 2.8 to obtain

E

»

–

˜

eTN

ˆ

1

λ
Ḡ` IN

˙´1

ỹ

¸2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dpxq

fi

fl

“

ż 8

0

Prob

˜
ˇ

ˇ

ˇ

ˇ

ˇ

eTN

˜

1

λ
Ḡ` IN

˙´1

ỹ

ˇ

ˇ

ˇ

ˇ

ˇ

ą
?
t

ˇ

ˇ

ˇ

ˇ

ˇ

Dpxq

¸

dt

ď2

ż 8

0

exp

"

´
Nt

2M2

*

dt “
4M2

N
.

We apply H:older’s inequality to give

E

«ˇ

ˇ

ˇ

ˇ

ˇ

eTN

ˆ

1

λ
Ḡ` IN

˙´1

ỹ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dpxq

ff

ď
2M
?
N
.

According to the decomposition Er}J1}K̄s “ ErEr}J1}K̄ |Dpxqss, we use (2.47) and

Lemma 2.10 to obtain

E
”

}J1}ρ

ı

ď
8κ2

?
Nλ

ˆ

2M
?
Nλ

`
›

›f̄ρ
›

›

K̄

˙

.

Obviously,

´J2 “
1
?
N
eTNK̄rxs

1

N
pIN ´ PNq

´

Ĝ` λIN

¯´1

ȳ

“ eTNḠ pIN ´ PNq
´

Ĝ` λIN

¯´1 1
?
N

ȳ.

The fact
›

›

›

1?
N

ȳ
›

›

›

2
ď 2M implies that

|J2| ď
›

›Ḡ1{2eN
›

›

2

›

›

›

›

Ḡ1{2
pIN ´ PNq

´

Ĝ` λIN

¯´1{2
›

›

›

›

2

1
?
λ

›

›

›

›

1
?
N

ȳ

›

›

›

›

2

ď
2M

›

›Ḡ1{2eN
›

›

2?
λ

›

›

›

›

´

Ĝ` λIN

¯´1{2

pIN ´ PNq Ḡ pIN ´ PNq
´

Ĝ` λIN

¯´1{2
›

›

›

›

1{2

2

ď
2M
?
λ

›

›Ḡ1{2eN
›

›

2
.
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We use Lemma 2.10 to get

Er|J2|s ď
4Mκ
?
Nλ

.

Now we estimate }J3}ρ. Since J3 P HK̄ and |b̄λ| ďM ,

}J3}ρ ď

›

›

›

›

›

pLK̄ ` λIq
1{2

´

L
Dpxq

K̄
` λI

¯´1 b̄λ
N

N
ÿ

i“1

K̄xi

›

›

›

›

›

K̄

ď Q̄D,λ

›

›

›

›

›

´

L
Dpxq

K̄
` λI

¯´1{2

b̄λ
1

N

N
ÿ

i“1

K̄xi

›

›

›

›

›

K̄

ď
MQ̄D,λ
?
λ

›

›

›

›

›

1

N

N
ÿ

i“1

K̄xi

›

›

›

›

›

K̄

“
MQ̄D,λ
?
λ

›

›Ḡ1{2eN
›

›

2
. (2.48)

Let ϑ “ 2
λ
p4p2κ2 ` κqAD,λq2. We rewrite (2.28) as

Prob

ˆ

Q̄2
D,λ ě 2` ϑ log2 2

δ

˙

ď δ.

Let x “ ϑ log2 2
δ
`2 P r2`ϑ log2 2,`8q to obtain a solution δ “ 2 expp´

a

px´ 2q{ϑqq.

By letting u “
b

x´2
ϑ

, we have

ErQ̄2
D,λs ď

ż 2`ϑ log2 2

0

dx` 2

ż 8

2`ϑ log2 2

exp

#

´

c

x´ 2

ϑ

+

dx

“ 2` ϑ log2 2` 4ϑ

ż 8

log 2

ue´udu

“ 2` ϑ log2 2` 2ϑ plog 2` 1q ď 4ϑ` 2.

We apply H:older’s inequality to (2.48) to give

Er}J3}ρs ď
M
?
λ

c

8

λ
p4p2κ2 ` κqAD,λq2 ` 2

2κ
?
N

ď
2κM
?
Nλ

ˆ

?
2`

8
?

2p2κ2 ` κq
?
λ

AD,λ
˙

.
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The proof is completed by letting

C
1

1 “ max
!

8κ2
›

›f̄ρ
›

›

K̄
` 4Mκ` 2

?
2κM, 16κ2M, 16

?
2κMp2κ2

` κq
)

.

Proof of Theorem 2.1. We decompose the norm
›

›

›
f̂Dλ ` b̂

D
λ ´ fρ

›

›

›

ρ
according to (2.13),

of which the four terms at the right-hand side are estimated one by one below. First,

take λ “ N´ 1
2r`1 . Recall the definition ofAD,λ and the fact thatNLK̄ pλq ď NLK pλq ď

1
λ
. We have

AD,λ “
1

N
?
λ
`

a

NLK pλq?
N

ď N´1` 1{2
2r`1 `N´ 1

2
`

1{2
2r`1 ď 2N´ r

2r`1 .

Proposition 2.1 implies

E
›

›

›
f̂Dλ ´ f̄

D
λ

›

›

›

ρ
ď C

1

1

´

N´ r
2r`1 `N´ 2r

2r`1 ` 2N´
2r´1{2
2r`1

¯

ď 4C
1

1N
´ r

2r`1 .

Similar as (2.21), we have
›

›f̄λ
›

›

K̄
ď p2κq2r´1}h̄ρ}ρ. We substitue the estimates

(2.27), (2.28), and (2.29) into (2.22) to give that with confidence 1´ δ,

›

›f̄Dλ ´ f̄λ
›

›

ρ
ď Q̄2

D,λpP̄D,λ ` S̄D,λ}f̄λ}K̄q

ď

ˆ

2p4p2κ2
` κqq2

A2
D,λ

λ
log2 6

δ
` 2

˙

ˆ

ˆ

2Mp2κ` 1qAD,λ log
6

δ
` 4p2κ2

` κqAD,λ
ˆ

log
6

δ

˙

p2κq2r´1
}h̄ρ}ρ

˙

ďC˚1N
´ r

2r`1 log3 6

δ
, (2.49)

where we have used the fact that
A2
D,λ

λ
ď 4N´ 2r´1

2r`1 ď 4 thanks to the assumption

r ě 1{2, and the constant C˚1 is defined by

C˚1 “ p8p4p2κ
2
` κqqq2 ` 2qp4Mp2κ` 1q ` 8p2κ2

` κqp2κq2r´1
}h̄ρ}ρq.

41



We write (2.49) equivalently as

Prob

ˆ

›

›f̄Dλ ´ f̄λ
›

›

ρ
ě C˚1N

´ r
2r`1 log3 6

δ

˙

ď δ.

Let x “ C˚1N
´ r

2r`1 log3 6
δ
P rC˚1N

´ r
2r`1 log3 6,`8q to obtain a solution δ “

6 exp

"

´
3

b

xN
r

2r`1 pC˚1 q
´1

*

. We let u “ 3

b

xN
r

2r`1 pC˚1 q
´1 to obtain

E
›

›f̄Dλ ´ f̄λ
›

›

ρ
ď C˚1N

´ r
2r`1 log3 6` 6

ż 8

C˚1 N
´ r

2r`1 log3 6

e´udu

“C˚1N
´ r

2r`1 log3 6` 18N´ r
2r`1C˚1

ż 8

log 6

e´uu2du

ď33C˚1N
´ r

2r`1 . (2.50)

For the third term at the right-hand side of (2.13), we use Lemma 2.3 to give

›

›f̄λ ´ f̄ρ
›

›

ρ
ď λr

›

›h̄ρ
›

›

ρ
“
›

›h̄ρ
›

›

ρ
N´ r

2r`1 .

The fourth term at the right-hand side of (2.13) is estimated by considering

b̂Dλ ´ b̄
D
λ “

1

N

N
ÿ

i“1

ˆ

yi ´

ż

X

fρpxqdρXpxq

˙

as the average of N i.i.d. zero-mean random numbers, each of which has the variance

Var

ˆ

yi ´

ż

X

fρpxqdρXpxq

˙

“ Varpyiq ď Ey2
i ďM2.

So

E|b̂Dλ ´ b̄Dλ | ď
a

Varpyiq{N ď
M
?
N
ďMN´ r

2r`1 .

We summarize the above analysis and complete the proof by letting

C “ 4C
1

1 ` 33C˚1 ` }h̄ρ}ρ `M.
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2.4 A Simulation under Gaussian RBF kernel

Theorem 2 in [43] tells us that the RKHS generated by the Gaussian RBF kernel

Kps, tq “ exp

ˆ

´
ps´ tq2

2

˙

contains no non-zero polynomial on X, including the non-zero constant. This phe-

nomenon inspires us to consider the case where the regression funcion is added by a

constant.

To verify the intuition, we run a simulation under the gaussian RBF kernel as

following. First, we generated a regression function fρ using the empirical feature

methods by Remark 1 in [30] by 3000 points uniformly distributed on r0, 1s. The

samples txiu
N
i“1 are generated randomly according to the uniform distribution on

r0, 1s. We set the output yi as

yi “ fρpxiq ` εi

where noise εi is Gaussian with variance σ2 “ 0.01 and is independent of all txiu
N
i“1.

Then we use another regression function

f const
ρ “ fρ ` 10

and the same inputs txiu
N
i“1 and the outputs

yconst
i “ yi ` 10.

The errors of each case is defined as

error “

˜

1

3000

3000
ÿ

j“1

pfDλ px
error
j q ´ fρpx

error
j qq

2

¸1{2

or

error.const “

˜

1

3000

3000
ÿ

j“1

pfD.constλ pxerror
j q ´ fρpx

error
j qq

2

¸1{2

,
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respectively, to arrpoximate the L2
ρX
pXq norm with txerror

j u3000
j“1 generated by the

uniform distribution on r0, 1s. Moreover, we take the regularization parameter λ “

N´4{5. The results are displayed in the following table.

N error error.const

100 0.06679019 0.3580925
300 0.05064902 0.2502581
500 0.03951036 0.2118137
1000 0.03089287 0.1768217

Through the simulation results, we find that the convergence rate becomes much

slower when the regression function is replaced by the original one plus a constant.
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Chapter 3

Distributed KRR

In this chapter, we get convergent results for the output function of distributed

kernel ridge regression with high probability and get the almost sure convergence for

distributed KRR as a result of the Borel-Cantelli Lemma.

3.1 The Convergence with High Probability of DKRR

Let D “ tpxi, yiqu
|D|
i“1 be a labeled training sample. For the purpose of distributed

learning, we divide D evenly into m disjoint subsets D “
Ťm
j“1Dj (so that Di

Ş

Dj “

H whenever i ‰ j). Without loss of (too much) generality, in this thesis, we assume

|D1| “ ... “ |Dm|. Recall the KRR on a single machine

f
Dj
λ “ arg min

fPHK

1

|Dj|

ÿ

px,yqPDj

pfpxq ´ yq2 ` λ}f}2K

“

´

L
Djpxq
K ` λI

¯´1 1

|Dj|

ÿ

px,yqPDj

yKx.

To approximate the regression function fρ, we synthesize these output functions by

f̃Dλ “
m
ÿ

j“1

|Dj|

|D|
f
Dj
λ .

The convergent results with high probability for DKRR could be described as the

following Theorem and its Corollary.
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Theorem 3.1. Assume that

fρ “ LrKhρ, for some hρ P L
2
ρX
pXq and 1{2 ď r ď 1,

and that |y| ď M almost surely. For 0 ă δ ă 1
20m

, the following estimate holds true

with confidence 1´ δ.

›

›

›
f̃Dλ ´ fρ

›

›

›

ρ
ď C̃1 max

1ďjďm

#

ˆ

1`
ADj ,λ
?
λ

˙ A2
Dj ,λ
?
λ

log3
p16m{δq

+

` C̃2

ˆ

1`
AD,λ
?
λ
`
A2
D,λ

λ

˙

AD,λ log3
p20{δq ` }hρ}ρλ

r, (3.1)

where C̃1 and C̃2 are constants independent of m, |D|, |Dj|, λ, or δ, and they will be

specified in the proof.

Corollary 3.1. Let |y| ďM almost surely and

NLK pλq ď C0λ
´s, for some s ą 0.

Moreover, assume that

fρ “ LrKhρ, for some hρ P L
2
ρX
pXq and 1{2 ă r ď 1,

|D1| “ |D2| “ ... “ |Dm|, and

m ď
|D|

r´1{2
2r`s

log3
|D| ` 1

. (3.2)

If we take λ “ |D|´
1

2r`s , then for any 0 ă δ ă 1
20m

, we have

}f̃Dλ ´ fρ}ρ ď C̃|D|´
r

2r`s log3 20

δ

with probability at least 1 ´ δ, where C̃ is a constant independent of m, |D|, |Dj|, λ,

or δ, and it will be specified in the proof.
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3.2 Error Analysis for DKRR

Introduce the sample free analogue of fDλ

fλ :“ arg min
fPHK

"
ż

XˆY

pfpxq ´ yq2 dρ` λ}f}2K

*

“ pLK ` λIq
´1 LKfρ.

We decompose the difference between f̃Dλ and fρ as

f̃Dλ ´ fρ “ f̃Dλ ´ f
D
λ ` f

D
λ ´ fλ ` fλ ´ fρ.

The approximation error }fλ ´ fρ}ρ has already been bounded in Lemma 2.3.

Now we are going to bound the sampling error }f̃Dλ ´ fλ}ρ for distributed KRR.

Let

QDpxq “ pL
Dpxq
K ` λIq´1

´ pLK ` λIq
´1. (3.3)

Moreover, by first order decomposition (2.30), we have

QDpxq “ pLK ` λIq
´1

´

LK ´ L
Dpxq
K

¯´

L
Dpxq
K ` λI

¯´1

, (3.4)

and by the second order decomposition (2.31), we have

QDpxq “ pLK ` λIq
´1

´

LK ´ L
Dpxq
K

¯

pLK ` λIq
´1

` pLK ` λIq
´1

´

LK ´ L
Dpxq
K

¯´

L
Dpxq
K ` λI

¯´1 ´

LK ´ L
Dpxq
K

¯

pLK ` λIq
´1 .

(3.5)
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Let

∆
1

j “
1

|Dj|
STDjyj ´ L

Djpxq
K fρ “

1

|Dj|

ÿ

px,yqPDj

py ´ fρpxqqKx,

∆
1

D “
1

|D|
STDy ´ L

Dpxq
K fρ “

1

|D|

ÿ

px,yqPD

py ´ fρpxqqKx “

m
ÿ

j“1

|Dj|

|D|
∆
1

j,

∆
2

j “

´

L
Djpxq
K ´ LK

¯

pfρ ´ fλq,

∆
2

D “

´

L
Dpxq
K ´ LK

¯

pfρ ´ fλq “
m
ÿ

j“1

|Dj|

|D|
∆
2

j ,

∆j “ ∆
1

j `∆
2

j ,

∆D “ ∆
1

D `∆
2

D “

m
ÿ

j“1

|Dj|

|D|
∆j.

Then we have the following error decomposition.

Lemma 3.1 (Lin et al. [40]). If Ey2 ă `8, then we have

f̃Dλ ´ f
D
λ “

m
ÿ

j“1

|Dj|

|D|

„

´

L
Djpxq
K ` λI

¯´1

´

´

L
Dpxq
K ` λI

¯´1


∆j

“

m
ÿ

j“1

|Dj|

|D|
QDjpxq∆j ´QDpxq∆D

“

m
ÿ

j“1

|Dj|

|D|
QDjpxq∆

1

j `

m
ÿ

j“1

|Dj|

|D|
QDjpxq∆

2

j ´QDpxq∆D, (3.6)

and

fDλ ´ fλ “
´

L
Dpxq
K ` λI

¯´1

∆D

“ QDpxq∆D ` pLK ` λIq
´1∆D. (3.7)
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Proposition 3.1. Assume |y| ďM almost surely. For any λ ą 0, we have

›

›

›
f̃Dλ ´ f

D
λ

›

›

›

ρ
ď max

1ďjďm

#˜

SDj ,λ
?
λ
`
S2
Dj ,λ

λ

¸

`

RDj ,λ,fρ ` PDj ,λ `RDj ,λ,fλ´fρ

˘

+

`

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

`

RD,λ,fρ ` PD,λ `RD,λ,fλ´fρ

˘

, (3.8)

where

RD,λ,g :“
›

›

›
pLK ` λIq

´1{2
pLK ´ L

Dpxq
K qg

›

›

›

K
, for any g in HK ,

and PD,λ, QD,λ, SD,λ are defined by (2.18), (2.19) and (2.20), respectively.

Proof. Using Lemma 3.1, we bound each term in the right-hand side of (3.6), respec-

tively.

To bound QDpxq∆
1

D, use the second order decomposition (3.5) techniques in [40]

and we get
›

›

›
QDpxq∆

1

D

›

›

›

ρ
“

›

›

›
L

1{2
K QDpxq∆

1

D

›

›

›

K
“

›

›

›
L

1{2
K

´

pL
Dpxq
K ` λIq´1

´ pLK ` λIq
´1
¯

∆
1

D

›

›

›

K

ď

›

›

›
L

1{2
K pLK ` λIq

´1
´

LK ´ L
Dpxq
K

¯

pLK ` λIq
´1 ∆

1

D

›

›

›

K

`

›

›

›

›

L
1{2
K pLK ` λIq

´1
´

LK ´ L
Dpxq
K

¯´

L
Dpxq
K ` λI

¯´1 ´

LK ´ L
Dpxq
K

¯

pLK ` λIq
´1 ∆

1

D

›

›

›

›

K

ď

›

›

›
L

1{2
K pLK ` λIq

´1{2
›

›

›

oppKq
SD,λ

›

›

›
pLK ` λIq

´1{2
›

›

›

oppKq

›

›

›
pLK ` λIq

´1{2 ∆
1

D

›

›

›

K

`

›

›

›
L

1{2
K pLK ` λIq

´1{2
›

›

›

oppKq
SD,λ

›

›

›

›

´

L
Dpxq
K ` λI

¯´1
›

›

›

›

oppKq

SD,λ
›

›

›
pLK ` λIq

´1{2 ∆
1

D

›

›

›

K

ď
SD,λ
?
λ

›

›

›
pLK ` λIq

´1{2 ∆
1

D

›

›

›

K
`
S2
D,λ

λ

›

›

›
pLK ` λIq

´1{2 ∆
1

D

›

›

›

K

“

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

›

›

›
pLK ` λIq

´1{2 ∆
1

D

›

›

›

K
, (3.9)

where we have used the following properties since both LK and L
Dpxq
K are positive
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semi-difinite,
›

›

›
L

1{2
K pLK ` λIq

´1{2
›

›

›

oppKq
ď 1,

›

›

›
pLK ` λIq

´1{2
›

›

›

oppKq
ď

1
?
λ
,

›

›

›

›

´

L
Dpxq
K ` λI

¯´1
›

›

›

›

oppKq

ď
1

λ
.

Moreover, since

∆
1

D “
1

|D|
STDy ´ L

Dpxq
K fρ “

1

|D|
STDy ´ LKfρ ` LKfρ ´ L

Dpxq
K fρ,

we obtain
›

›

›
pLK ` λIq

´1{2 ∆
1

D

›

›

›

K
ď

›

›

›
pLK ` λIq

´1{2
pLK ´ L

Dpxq
K qfρ

›

›

›

K

`

›

›

›

›

pLK ` λIq
´1{2

pLKfρ ´
1

|D|
STDyq

›

›

›

›

K

“ RD,λ,fρ ` PD,λ.

Thus

›

›

›
QDpxq∆

1

D

›

›

›

ρ
ď

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

`

RD,λ,fρ ` PD,λ
˘

. (3.10)

Similarly, we have

›

›

›
QDpxq∆

2

D

›

›

›

ρ
“

›

›

›
L

1{2
K QDpxq∆

2

D

›

›

›

K
ď

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

›

›

›
pLK ` λIq

´1{2∆
2

D

›

›

›

K

“

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

›

›

›
pLK ` λIq

´1{2
pLK ´ L

Dpxq
K qpfλ ´ fρq

›

›

›

K

“

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

RD,λ,fλ´fρ . (3.11)

Note that

∆D “ ∆
1

D `∆
2

D.
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By (3.10) and (3.11), we have

›

›QDpxq∆D

›

›

ρ
ď

›

›

›
QDpxq∆

1

D

›

›

›

ρ
`

›

›

›
QDpxq∆

2

D

›

›

›

ρ

ď

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

`

RD,λ,fρ ` PD,λ `RD,λ,fλ´fρ

˘

. (3.12)

The same is true if we replace D with Dj, i.e.,

›

›QDjpxq∆j

›

›

ρ
ď

˜

SDj ,λ
?
λ
`
S2
Dj ,λ

λ

¸

`

RDj ,λ,fρ ` PDj ,λ `RDj ,λ,fλ´fρ

˘

. (3.13)

Thus by Lemma 3.1, (3.10), (3.11), (3.12) and (3.13) , we have

›

›

›
f̃Dλ ´ f

D
λ

›

›

›

ρ
“

›

›

›
L

1{2
K

´

f̃Dλ ´ f
D
λ

¯›

›

›

K

ď

m
ÿ

j“1

|Dj|

|D|

˜

SDj ,λ
?
λ
`
S2
Dj ,λ

λ

¸

`

RDj ,λ,fρ ` PDj ,λ `RDj ,λ,fλ´fρ

˘

`

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

`

RD,λ,fρ ` PD,λ `RD,λ,fλ´fρ

˘

ď max
1ďjďm

˜

SDj ,λ
?
λ
`
S2
Dj ,λ

λ

¸

`

RDj ,λ,fρ ` PDj ,λ `RDj ,λ,fλ´fρ

˘

`

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

`

RD,λ,fρ ` PD,λ `RD,λ,fλ´fρ

˘

.

The estimation of PD,λ and SD,λ has already been given in Lemma 2.5. Estimating

RD,λ,g is similar and was given in [40].

Lemma 3.2 (Lin et al. [40], Lemma 18). For any 0 ă δ ă 1, it holds with probability

at least 1´ δ that

RD,λ,g ď 2}g}8 pκ` 1qAD,λ logp2{δq. (3.14)
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Proof of Theorem 3.1. We use Proposition 3.1, Lemma 2.4, and Lemma 2.3 to obtain

›

›

›
f̃Dλ ´ fρ

›

›

›

ρ
ď

›

›

›
f̃Dλ ´ f

D
λ

›

›

›

ρ
`
›

›fDλ ´ fλ
›

›

ρ
` }fλ ´ fρ}ρ

ď J
1

1 ` J
1

2, (3.15)

where

J
1

1 “ max
1ďjďm

#˜

SDj ,λ
?
λ
`
S2
Dj ,λ

λ

¸

`

RDj ,λ,fρ ` PDj ,λ `RDj ,λ,fλ´fρ

˘

+

J
1

2 “

ˆ

SD,λ
?
λ
`
S2
D,λ

λ

˙

`

RD,λ,fρ ` PD,λ `RD,λ,fλ´fρ

˘

`Q2
D,λpPD,λ ` SD,λ}fλ}Kq ` λr}hρ}ρ.

Since 1{2 ď r ď 1, we use the estimate }fλ}K ď κ2r´1}hρ}ρ from (2.21). With the

assumption that |y| ďM almost surely, we have

}fρ}8 “ ess sup
xPX

ˇ

ˇ

ˇ

ˇ

ż

Y

ydρpy|xq

ˇ

ˇ

ˇ

ˇ

ďM,

so (recall (1.2)),

}fλ ´ fρ}8 ď κ}fλ}K ` }fρ}8 ď κ2r
}hρ}ρ `M.

With the above estimates, Lemma 2.5, and Lemma 3.2, we have that with probability

at least 1´ 4mδ,

J
1

1 ď max
1ďjďm

"ˆ

2pκ2 ` κq
?
λ
ADj ,λ log

2

δ
`

4pκ2 ` κq2

λ
A2
Dj ,λ

log2 2

δ

˙

ˆ

ˆ

2}fρ}8pκ` 1qADj ,λ log
2

δ
` 2}fλ ´ fρ}8pκ` 1qADj ,λ log

2

δ
` 2Mpκ` 1qADj ,λ log

2

δ

˙*

.

We scale δ to δ
8m

to see that with confidence 1´ δ
2
,

J
1

1 ď C̃1 max
1ďjďm

#

ˆ

1`
ADj ,λ
?
λ

˙ A2
Dj ,λ
?
λ

log3 16m

δ

+

, (3.16)
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with

C̃1 “ 2pκ2
` κqp1` 2pκ2

` κqqp2Mpκ` 1q ` 2pκ` 1qpκ2r
}hρ}ρ `Mq ` 2Mpκ` 1qq.

Similarly, with probability at least 1´ 5δ,

J
1

2 ď

ˆ

2pκ2 ` κq
?
λ
AD,λ log

2

δ
`

4pκ2 ` κq2

λ
A2
D,λ log2 2

δ

˙

ˆ

ˆ

2}fρ}8pκ` 1qAD,λ log
2

δ
` 2}fλ ´ fρ}8pκ` 1qAD,λ log

2

δ
` 2Mpκ` 1qAD,λ log

2

δ

˙

`

˜

2

ˆ

2pκ2 ` κq
?
λ
AD,λ log

2

δ

˙2

` 2

¸

ˆ

2Mpκ` 1qAD,λ log
2

δ

`2}fλ}Kpκ
2
` κqAD,λ log

2

δ

˙

` λr}hρ}ρ.

We scale δ to δ
10

to see that with confidence 1´ δ
2
,

J
1

2 ď C̃2

ˆ

1`
AD,λ
?
λ
`
A2
D,λ

λ

˙

AD,λ log3 20

δ
` λr}hρ}ρ, (3.17)

with

C̃2 “ maxtC̃1, p2` 2p2pκ2
` κqq2qp2Mpκ` 1q ` 2pκ2

` κqκ2r´1
}hρ}ρqu.

Proof of Corollary 3.1. By taking

λ “ |D|´
1

2r`s

and the assumption

NLK pλq ď C0λ
´s,

we have

ADj ,λ ď
m

|D|
?
λ
`

d

C0m

|D|λs
“ m|D|´

2r`s´1{2
2r`s `

a

C0m|D|
´ r

2r`s ,
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and

AD,λ ď |D|´
4r`2s´1

4r`2s `
a

C0|D|
´ r

2r`s ď p1`
a

C0q|D|
´ r

2r`s . (3.18)

Since (3.2) and r ą 1{2, we obtain

m|D|´
2r`s´1{2

2r`s ď
?
m|D|´

r
2r`s .

As a result,

ADj ,λ ď p
a

C0 ` 1q
?
m|D|´

r
2r`s (3.19)

and

ADj ,λ
?
λ
ď p

a

C0 ` 1q
?
m|D|´

r´1{2
2r`s ď

a

C0 ` 1. (3.20)

Also we have

1`
ADj ,λ
?
λ
ď
a

C0 ` 2.

Since for 0 ă δ ă 1
20m

, logp16{δq ą 1, by the inequality

pa` bq3 ď 8pmaxta, buq3 ď 8pa3
` b3

q, for a, b ą 0,

we have

log3
p16m{δq ď 8

`

log3
p16{δq ` log3m

˘

ď 8 log3
p16{δqplog3m` 1q ď 8 log3

p16{δqplog3
|D| ` 1q. (3.21)

Substitute (3.2), (3.19), (3.20), (3.18) and (3.21) into (3.1), we obtain

›

›

›
f̃Dλ ´ fρ

›

›

›

ρ
ď C̃1 max

1ďjďm

#

ˆ

1`
ADj ,λ
?
λ

˙ A2
Dj ,λ
?
λ

log3
p16m{δq

+

` C̃2

ˆ

1`
AD,λ
?
λ
`
A2
D,λ

λ

˙

AD,λ log3
p20{δq ` }hρ}ρλ

r

ď 8C̃1

´

a

C0 ` 2
¯

p1`
a

C0q
2
|D|´

r
2r`sm|D|´

r´1{2
2r`s plog3

|D| ` 1q log3
p16{δq

` C̃2

´

2p
a

C0 ` 2q2
¯

p1`
a

C0q|D|
´ r

2r`s log3
p20{δq ` }hρ}ρ|D|

´ r
2r`s

ď C̃|D|´
r

2r`s log3
p20{δq,
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with

C̃ “ max
!

8C̃1

´

a

C0 ` 2
¯

p1`
a

C0q
2, C̃2

´

2p
a

C0 ` 2q2 ` 1q
¯

p1`
a

C0q, }hρ}ρ

)

.

3.3 The Semi-supervised Learning For DKRR

To analyze the almost sure convergence of the semi-supervised learning scheme, we

adopt the method developed in [11] which introduced a new training set as following.

If on each local processor, we have labeled data Dj “ tpxji , y
j
i qu

|Dj |
i“1 and unla-

beled data D̃jpxq “ tx̃
j
iu
|D̃j |
i“1 , we introduce a new training set based on Dj Y D̃jpxq.

Specifically, let D˚j “ tpx
˚
i , y

˚
i qu

|D˚j |

i“1 with

x˚i “

"

xi, if 1 ď i ď |Dj|,
x̃i´|Dj |, if |Dj| ` 1 ď i ď |D˚j |,

and y˚i “

#

|D˚j |

|Dj |
yi, if 1 ď i ď |Dj|,

0, if |Dj| ` 1 ď i ď |D˚j |,

(3.22)

be the training data set on each machine. The whole training set is written as

D˚ “
m
ď

j“1

D˚j .

The output function of the KRR based on each training set is

f
D˚j
λ “ arg min

fPHK

$

&

%

1

|D˚j |

ÿ

px,yqPD˚j

pfpxq ´ yq2 ` λ}f}2K

,

.

-

.

Moreover, we synthesize these functions by

f̃D
˚

λ “

m
ÿ

j“1

|D˚j |

|D˚|
f
D˚j
λ .

The almost sure convergence of the output function of semi-supervised distributed

KRR are given as follows.
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Theorem 3.2. Assume that

fρ “ LrKhρ, for some hρ P L
2
ρX
pXq and 1{2 ď r ď 1,

and that |y| ď M almost surely. For 0 ă δ ă 1
20m

, the following estimate holds true

with confidence at least 1´ δ.

›

›

›
f̃D

˚

λ ´ fρ

›

›

›

ρ
ď C̃1 max

1ďjďm

#˜

1`
AD˚j ,λ
?
λ

¸

ADj ,λAD˚j ,λ
?
λ

log3
p16m{δq

+

` C̃2

ˆ

1`
AD˚,λ
?
λ
`
A2
D˚,λ

λ

˙

AD,λ log3
p20{δq ` }hρ}ρλ

r, (3.23)

where C̃1 and C̃2 are the same constants as in Theorem 3.1.

Proof. By (3.22), we have

1

|D˚|
STD˚y

˚
“

1

|D˚|

ÿ

px˚,y˚qPD˚

y˚Kx˚ “
1

|D|
STDy.

Thus (3.9) becomes

›

›

›
L

1{2
K

“

QD˚pxq

‰

∆
1

D˚

›

›

›

K
ď

ˆ

SD˚,λ
?
λ
`
S2
D˚,λ

λ

˙

›

›

›
pLK ` λIq

´1{2∆
1

D˚

›

›

›

K
.

Moreover,
›

›

›
pLK ` λIq

´1{2∆
1

D˚

›

›

›

K
ď

›

›

›
pLK ` λIq

´1{2
pLK ´ L

D˚pxq
K qfρ

›

›

›

K

`

›

›

›

›

pLK ` λIq
´1{2

pLKfρ ´
1

|D|
STDyq

›

›

›

›

K

“ RD˚,λ,fρ ` PD,λ.

Note that the label of data doesn’t appear in ∆
2

D. Thus by (3.11), we have

›

›

›
L

1{2
K

“

QD˚pxq

‰

∆D˚

›

›

›

K
ď

ˆ

SD˚,λ
?
λ
`
S2
D˚,λ

λ

˙

pRD˚,λ,fρ ` PD,λ `RD˚,λ,fλ´fρq.

Since

AD˚,λ ď AD,λ
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similarly to (3.16), by replacing D˚ with D˚j , we have

›

›

›
f̃D

˚

λ ´ fD
˚

λ

›

›

›

ρ
ď C̃1 max

1ďjďm

#˜

1`
AD˚j ,λ
?
λ

¸

AD˚j ,λADj ,λ
?
λ

logp16m{δq

+

with probability at least 1´ δ
2
. Moreover, similarly to (3.17), we get

}fD
˚

λ ´ fλ}ρ ď C̃2

ˆ

1`
AD˚,λ
?
λ
`
A2
D˚,λ

λ

˙

AD,λ log3
p20{δq

with probability at least 1´ δ
2
. In conclusion, it holds with confidence 1´ δ that

›

›

›
f̃Dλ ´ fρ

›

›

›

ρ
ď C̃1

#

max
1ďjďm

˜

1`
AD˚j ,λ
?
λ

¸

AD˚j ,λADj ,λ
?
λ

log3
p16m{δq

+

` C̃2

ˆ

1`
AD˚,λ
?
λ
`
A2
D˚,λ

λ

˙

AD,λ log3
p20{δq ` λr}hρ}ρ. (3.24)

Corollary 3.2. Let |y| ďM almost surely and

NLK pλq ď C0λ
´s for some s ą 0.

Moreover, assume that

fρ “ LrKhρ, for some hρ P L
2
ρX
pXq and 1{2 ă r ď 1,

|D1| “ |D2| “ ... “ |Dm|, |D
˚
1 | “ |D

˚
2 | “ ... “ |D˚m|, and

m ď min

#

|D˚|1{2|D|´
s`1

4r`2s

log3
|D| ` 1

,
|D˚|1{3|D|´

2r`s´2
6r`3s

log3
|D| ` 1

, |D|

+

. (3.25)

If we take λ “ |D|´
1

2r`s , then for any 0 ă δ ă 1
20m

, we have

}f̃D
˚

λ ´ fρ}ρ ď C̃|D|´
r

2r`s log3 20

δ

with probability at least 1´δ, where C̃ is the same constant as in Corollary 3.1 which

is independent of m, |D|, |Dj|, |D
˚|, |D˚j |, λ, or δ.
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Proof. By taking λ “ |D|´
1

2r`s , we get

AD˚j ,λ ď m|D˚|´1
|D|

1
4r`2s `

a

C0m|D
˚
|
´1{2

|D|
s

4r`2s ,

and

ADj ,λ ď m|D|´
2r`s´1{2

2r`s `
a

C0m|D|
´ r

2r`s .

Moreover, since

m ď min

#

|D˚|1{2|D|´
s`1

4r`2s

log3
|D| ` 1

,
|D˚|1{3|D|´

2r`s´2
6r`3s

log3
|D| ` 1

, |D|

+

,

we obtain

m|D˚|´1
|D|

1
4r`2s ď

?
m|D˚|´1{2

|D|
s

4r`2s .

Thus

AD˚j ,λ ď p
a

C0 ` 1q
?
m|D˚|´1{2

|D|
s

4r`2s ,

AD˚j ,λ
?
λ
ď p

a

C0 ` 1q
?
m|D˚|´1{2

|D|
1`s

4r`2s .

Note that

AD˚,λ ď AD,λ,
AD˚j ,λ
?
λ
ď
a

C0 ` 1

and

log3
p16m{δq ď 8

`

log3
p16{δq ` log3m

˘

ď 8 log3
p16{δqplog3m` 1q ď 8 log3

p16{δqplog3
|D| ` 1q.
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Thus we obtain

›

›

›
f̃D

˚

λ ´ fρ

›

›

›

ρ
ď C̃1

#

max
1ďjďm

˜

1`
AD˚j ,λ
?
λ

¸

AD˚j ,λADj ,λ
?
λ

log3
p16m{δq

+

` C̃2

ˆ

1`
AD˚,λ
?
λ
`
A2
D˚,λ

λ

˙

AD,λ log3
p20{δq ` λr}hρ}ρ

ď 8C̃1

´?
C0 ` 2

¯´

1`
a

C0

¯´

m
?
m|D|´

2r`s´1{2
2r`s |D˚|´1{2

|D|
s`1

4r`2s

`
a

C0m|D
˚
|
´1{2

|D|
1`s

4r`2s |D|´
r

2r`s

¯

plog3
|D| ` 1q log3

p16{δq

` C̃2

ˆ

2
´

a

C0 ` 2
¯2
˙

´

1`
a

C0

¯

|D|´
r

2r`s log3
p20{δq ` |D|´

r
2r`s

ď C̃|D|´
r

2r`s log3
p20{δq.

3.4 The Almost Sure Convergence of DKRR

Based on the convergent results with high probability in the previous section, in this

section, we utilize the Borel-Cantelli Lemma to get the almost sure convergence of

distributed kernel ridge regression whose convergence rate could be arbitrarily close

to the optimal minimax rate. The tenique of using the Borel-Cantelli Lemma to get

the almost sure convergence via the convergence with high probability is adopted in

[41].

Recall the Borel-Cantelli Lemma.

Lemma 3.3 (Borel-Cantelli). Let tξnu be a sequence of random variables and tµnu

be a sequence satisfying lim
nÑ8

µn “ 0. If

8
ÿ

n“1

Pr|ξn ´ ξ| ą µns ă 8,

then ξn Ñ ξ almost surely.
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Using this Lemma, we get the following almost sure convergence.

Corollary 3.3. Assume that |y| ďM almost surely and

NLK pλq ď C0λ
´s.

Moreover, assume that

fρ “ LrKhρ, for some hρ P L
2
ρX
pXq and 1{2 ă r ď 1.

If |D1| “ |D2| “ ... “ |Dm| and (3.2) holds, by taking

λ “ |D|´
1

2r`s ,

we have

lim
|D|Ñ`8

|D|
rp1´εq
2r`s }f̃Dλ ´ fρ}ρ “ 0 (3.26)

almost surely for arbitrary ε ą 0.

Furthermore, if |D1| “ |D2| “ ... “ |Dm|, |D
˚
1 | “ |D

˚
2 | “ ... “ |D˚m| and (3.25)

holds, we also have

lim
|D|Ñ`8

|D|
rp1´εq
2r`s }f̃D

˚

λ ´ fρ}ρ “ 0 (3.27)

almost surely for arbitrary ε ą 0.

Proof. By Theorem 3.1, for N “ |D| and δ “ N´2, we have

P
„

N´
rp1´εq
2r`s }f̃Dλ ´ fρ}ρ ą C̃N´ rε

2r`s

ˆ

log
20

N´2

˙

ď N´2.

Thus

8
ÿ

N“1

P
„

N´
rp1´εq
2r`s }f̃Dλ ´ fρ}ρ ą C̃N´ rε

2r`s

ˆ

log
20

N´2

˙

ď

8
ÿ

N“1

N´2
ă 8.

By Borel-Cantelli’s Lemma, we get (3.26).

Similarly, by Theorem 3.2, we obtain (3.27) .
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