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Abstract

Introduction Emerging infectious diseases (EIDs) in recent years have captured worldwide
attention due to their potential for the rapid spread between countries and continents. In this
thesis, we are going to explore the characteristics and try to explain the patterns of infectious
diseases including Yellow Fever (YF) in Luanda, Angola 2015-16, Zika Virus Diseases (ZVD)
in Northeastern (NE) Brazil 2015-16, Japanese Encephalitis (JE) in Hong Kong 2004-16
and Varicella (or chickenpox) in Shenzhen, China 2013-15, in order to further interpret
the features and key factors of infectious diseases including potential impact factors (e.g.,
climatic factors, vector abundance, human behaviors and vaccination programs ... etc.).
We also combined the game theoretical framework with an epidemic model (based on the
compartmental SIR model) to study the decision-making process regarding to travelling
during an outbreak, and to investigate the effects of travel strategies on local disease control.

Data Collection Cases data were collected from various public domains: Center of Health
Protection (CHP) of Hong Kong government, Yellow Fever situation reports of the World
Health Organization (2016), Shenzhen Centers for Disease Control and Prevention (CDC)
and Minister of Health of Brazil. Besides, regional climatic data were also collected for
analysis.

Methods On the basis of classical models in epidemiology, we constructed innovative com-
partmental models and agent-based models for specified infectious diseases and for particular
research goals. For Yellow Fever (YF), a novel compartmental model was built up, which
includes both host and vector populations and time-dependent vector abundance. In addi-
tion, we also considered the local vaccination campaign. For Zika Virus Diseases (ZVD), we
also established compartmental model with hosts’ and time-dependent vectors’ populations,
we model ZVD epidemics according to local GBS time series (in Northeastern Brazil, where
ZVD hit hardest among the world from 2015-16) and we studied the relationship between the
possible infectivity of asymptomatic infection and the final ZVD infection attack rate (IAR).
For Japanese Encephalitis (JE), as the ratio of pig population and human JE cases was also
explored in the same level, we build up an epidemiology model among local pig population
and connect to human cases with a spill-over rate. In the model, we considered long-term
mosquitoes, pigs and humans dynamic, we studied the“skip-and-resurge” of JE epidemics in
Hong Kong and hypothesize that “new JEV strain invaded Hong Kong around 2011”. For
Varicella, an agent-based model is constructed to study the varicella infection among school
children, and simulate the effects of different school-based vaccination programs. Last but
not least, game theory is employed to model the individual decision-making process. A game
theoretical framework is combined with an epidemic model to study the decision-making pro-
cess regarding to travelling during an outbreak. The group optimal strategy that maximizes
overall population utility is also computed.

Results For YF, the local vaccination campaign saved 5.1-fold more people from death
(with 73 death reported originally), the possible human reaction to recent YF deaths (i.e.,
the death-driven transmissibility) is likely to explain the transmission pattern of the YF epi-
demic in Luanda, and we report very low YF IAR (0.09-0.15%) and high YF cases reporting
ratio (71%). For ZVD, we found the exceeding local GBS time series can explain the first
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ZVD epidemics (the first wave) of NE Brazil in 2015-16 and the infectivity of asymptomatic
infections are positively related to the ZVD IAR of 2015-16. For JE, the simple mathemat-
ical model can re-generate the long-term JE epidemics in Hong Kong, we report without
vectors JEV cannot maintain among swine, the dramatical decrease of local living pigs was
likely to be responsible for “skip” of JE from 2006-10, and we show high confidence in the
hypothesis that “the resurge of JE since 2011 was likely due to new strain invaded Hong
Kong”. For varicella, our agent-based (or school-based) model fits the observed cases data
well and introducing school-based vaccination program can effectively prevent large-scale
varicella outbreaks (particularly during summer). At last, for the epidemiological travel-
ling game, we find perfect agreement between individual and group optimal strategies for
a range of epidemiologically and economically plausible values. However, in regions where
disagreement occurs, the conflict between the individual optimum (corresponding to a “vol-
untary entrance” scheme) and the group optimum (a “restricted entrance” scheme) is often
extreme. In this region, model outcomes are highly sensitive to small changes in the infection
transmissibility and traveller costs/benefits.

Conclusion Infectious disease is a great threat to human health all over the world, with
the ability to spread among the population. Simple ODE equations and compartmental
model plays an important role in studying the spreading pattern and transmission of infec-
tious diseases. Our mathematical frameworks have significant theoretical value for exploring
infectious diseases, improving our understanding of the dynamics and helping us to take
appropriate strategies. Regarding to the travelling game theory framework, we conclude
that a conflict between individually optimal and group optimal travel strategies during an
outbreak may not occur under many scenarios, but in other cases, extreme conflicts could
emerge suddenly even under slight changes in epidemiological or economic conditions.
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Chapter 1

Introduction

In recent years, emerging infectious diseases (EIDs) have attracted wide public atten-

tion because of their potential for spread. Because of their epidemic potential, they are

threats to both global and local public health. It is of great importance to ascertain the

transmission and spatial pattern of these EIDs, and to implement effective measures to con-

trol the spread. In this thesis, we are going to explore the characteristics and try to explain

the patterns of infectious diseases including Yellow Fever (YF) in Luanda, Angola 2015-16,

Zika Virus Diseases (ZVD) in Northeastern (NE) Brazil 2015-16, Japanese Encephalitis (JE)

in Hong Kong 2004-16 and Varicella (or chickenpox) in Shenzhen, China 2013-15. These dis-

eases have invaded countries and continents and taken its toll around the world. This chapter

will provide background information of these EIDs and also introduce the key statistical in-

ference approach we applied in modelling frameworks. We will give a brief introduction to

the commonly used models, establish the objectives of this thesis, key biological parameters

of infectious diseases, and summarize some main findings and conclusions in this thesis.

1.1 Backgrounds on Vector-borne Diseases

In this thesis, vector-borne diseases are referring to the infectious diseases that are

transmitted via certain vectors. The possible vector can be in living (e.g., mosquito, tick,

etc.) or non-living (e.g., water, air, etc.) forms, but commonly, the vectors are referring

to some living creatures. Similarly, in this thesis, vector-free diseases are referring to the

infectious diseases that can be transmitted without vectors. These kinds of diseases are

1



2 Chapter 1. Introduction

usually transmitted based on contact (e.g., sexually or non-sexually). If the “vector” of one

disease is in “non-living” form (e.g., air-borne diseases), one can regard this disease as a

vector-free disease because the disease transmission is almost wherever there is a infectious

host.

An infectious disease could also transmitted in both vector-borne and vector-free paths

(e.g., Zika virus). Some other diseases also include additional part in their transmission

path (e.g., Japanese encephalitis virus), for example, reservoirs (in most situations, they are

animals).

1.2 Brief Introduction on Compartmental Models in

Epidemiology

Compartmental models divide the population into different compartments, in this sec-

tion, we will firstly introduce the simplest SIR model, then introduce the simplest SIR-SI

model for vector-borne diseases and finally, use SIR-SI model as an example to derive the

basic reproduction number (R0). These two model is the most direct and simplest way to

study the epidemics of most infectious diseases.

1.2.1 SIR model

Susceptible-infectious-recovered (SIR) model is one of the most basic and commonly

used compartmental models in epidemiology [144]. The standard SIR model divides into

susceptible (S), infectious (I), removed (R) classes and many others under specific assump-

tions. S indicates the class of individuals who are susceptible to the disease but are not

infected yet. I are those have been infected and are able to spread the disease by contacting

the susceptible (S). R are those have been removed from the disease transmission com-

partments (either by recovery, death or leaving the system...etc.) and have gained lifelong

immunity. For most of the vector-free diseases, their transmission pattern can be simply

modelled by SIR model (see Fig 1.1 as the diagram of SIR model). As we are focusing on

the host population (e.g., humans) when modelling vector-free diseases, we denote Sh, Ih

and Rh as susceptible, infectious and removed respectively. The model is as follows (see Eqn.
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Figure 1.1: Diagram of SIR model. Red compartment represents infected class.

(1.1)): 
dSh
dt

= −βh · IhNh · Sh
dIh
dt

= βh · IhNh · Sh − γhIh
dRh
dt

= γhIh

(1.1)

whereNh = Sh+Ih+Rh represents the number of population. βh denotes the effective contact

rate (i.e., term βh and be model in detail as the product of contact rate and the successful

transmission probability per contact) between susceptible and infectious. γh denotes the

average removing rate as γ−1
h can be regarded as the mean removing period from infectious

class to removed class.

1.2.2 SIR-SI model

Similar to the standard SIR model, for vector-borne diseases (e.g., arbovirus diseases),

we add vectors’ classes into the model and further divide into two parts: susceptible (Sv)

and infectious (Iv) (see Fig 1.2 as the diagram of SIR-SI model). Vector-borne diseases can

Figure 1.2: Diagram of SIR-SI model. Black arrows represent infection status transition
paths, red dashed arrows represent transmission paths, and the blue arrows represent the
natural birth and death pathway. Square compartments represent host classes and circular
compartments represent vectors classes. Red compartments represent infectious classes.

be transmitted by either bite of vectors (from vector to host and from host to vector) or by

direct contact between hosts (i.e., like the vector-free transmission), thus, the model is as
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follows (see Eqn. (1.2)): 

dSh
dt

= −(λvh · IvNh + λhh · IhNh ) · Sh
dIh
dt

= (λvh · IvNh + λhh · IhNh ) · Sh − γhIh
dRh
dt

= γhIh

dSv
dt

= bvNv − λhv · IhNh · Sv − µvSv
dIv
dt

= λhv · IhNh · Sv − (γv + µv)Iv

(1.2)

where Nh = Sh + Ih + Rh and Nv = Sv + Iv represents the number of hosts’ and vectors’

population respectively. Subscripts h denotes hosts’ classes and v denotes vectors’ classes.

λxy denotes the effective transmission rate from x to y, specially, λhh represents the same

transmission patch as term βh in Eqn. (1.1). γh and γv denote the removing rate of hosts and

vectors respectively. bv and µv denote the natural birth and death of vectors’ population.

1.2.3 Basic reproduction number

The basic reproduction number, R0, is the expected number of secondary cases pro-

duced by one typical infection joining in a completely susceptible population [68, 221]. When

R0 < 1, the disease would die out in long run. While if R0 > 1, the disease would spread

among the population and may cause a pandemic.

According to [221], a systematic procedure to calculate the R0 by solving the dominant

eigenvalue (i.e., the eigenvalue with the largest real part) of the next generation matrix (G).

Regarding the next generation matrix G = FV−1, matrix F is the new infection matrix and

matrix V is the infection transfer matrix. The entry of i-th row and j-th column of matrix

F: Fi,j = ∂Fi
∂xj

with Fi is the i-th equation of F and xj is the j-th variable of the vector of

infected classes. The entry of i-th row and j-th column of matrix V: Vi,j = ∂Vi
∂xj

with Vi
is the i-th equation of V and xj is the j-th variable of the vector of infected classes. F is

the vector of rate of transmission (i.e., the changing rates from infectious to non-infectious

classes) and V is the vector of rate of transition (i.e., the changing rates among infectious

classes). F is the Jacobian of F and V is the Jacobian of V , and we derive F and V under

the disease free equilibrium [221].



1.3. Partially Observed Markov process 5

For the SIR model (see Eqn. (1.1)), F =
(
βh · IhNh · Sh

)
and V = (γhIh), thus, as

the vector of infected classes is only (Ih), F = (βh) and V = (γh), and we have the next

generation matrix G = FV−1 =
(
βh
γh

)
. According to G, we derive the basic reproduction

number R0 = βh
γh

.

Moreover, for the SIR-SI model (see Eqn. (1.2)), compartment Ih and Iv are regarded

as the infected classes (i.e., should be considered in the vector of infected classes). We have

F =

(λvh · IvNh + λhh · IhNh ) · Sh
λhv · IhNh · Sv

 and V =

 γhIh

(γv + µv)Iv

. Then, F =

λhh mλvh

λhv 0

 and

V =

γh 0

0 γv + µv

. G = FV−1 =

λhh
γh

mλvh
γv+µv

λhv
γh

0

.

Therefore, for SIR-SI model, R0 =
λhh·(γv+µv)+

√
[λhh·(γv+µv)]2+4mγh·(γv+µv)λhvλvh

2γh·(γv+µv)
. Accord-

ing to [111], the basic reproduction number of vector-borne transmission is Rv =
√

mλhvλvh
γh·(γv+µv)

and basic reproduction number of vector-free (i.e., from host to host) transmission is Rh =

λhh
γh

. The basic reproduction number is given as R0 =
Rh+
√
R2
h+4R2

v

2
. Furthermore, if we only

consider the vector-free transmission (i.e., by ignoring the effect of vector-borne transmis-

sion, we set Rv → 0+), we can see the R0 of SIR-SI model (see Eqn. (1.2)) is equivalent to

the R0 of SIR model (see Eqn. (1.1)).

1.3 Partially Observed Markov process

Partially observed Markov process (POMP, i.e., a Markov process with unobserved

states), also known as Hidden Markov Model (HMM), is a state-space model. The time

series being modelled is assumed to be a POMP model (see [133, 146, 147]).

Figure 1.3: Diagram of Partially Observed Markov process.
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Fig 1.3 shows the structure of POMP, where (X0, X1, X2, · · · , XT ) are unobserved and

modelled as the real number of cases, and (y0, y1, y2, · · · , yT ) are simulated and modelled

as the reported number of cases. Based on POMP structure, iterated filtering [147] with

plug-and-play statistical inference framework [133] is applied to solve the fitting problem and

calculate the maximum likelihood estimate (MLE) of parameters. In addition, plug-and-play

likelihood-based statistical inference framework is implemented according to following steps

(this part will also be detailedly explained in each modelling chapters):

• A stochastic simulation model is developed by the fixed-time-step Euler-multinomial

algorithm.

• Probability measurement is assumed to follow a specific probability (e.g., negative

binomial or Poisson) distribution.

• Sequential Monte Carlo (SMC) is employed for likelihood estimation and iterated fil-

tering method is conducted to obtain MLEs.

• The secondary small-sample-size corrected Akaike’s Information Criterion (AICc) or

Bayesian Information Criterion (BIC) are applied to quantify the tradeoff between the

goodness-of-fit of a model and its complexity [205].

• The confidence intervals (C.I.s) of parameters are estimated by using the method of

profile likelihood [132, 133].

• The partial rank correlation coefficients (PRCCs) are adopted for models’ sensitivity

analysis [111].

The above model framework is implemented by using R package “POMP” [146]. We

define Markov process X(t) (i.e., the actual time series at time tn) depends on the state at

time tn−1 and model parameters (denoted as vector Θ) as:

X(tn) = f(X(tn−1); Θ) (1.3)

where Θ is the vector of parameters under estimation, X(tn) is the state of time series at

time tn and function f corresponds to the compartmental models. Initial stages X(t0) at

some time t0 < t1 is specified.
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Fig 1.4 presents detailed steps of iterated filtering. More detailed information about R

package “POMP” can be found via [146, 147].

Figure 1.4: Algorithm of iterated filtering. Figure is from [147].

1.4 Outline of this thesis

Chapter 2 presents a novel compartmental model was built up to study the trans-

mission pattern of yellow fever (YF) in Luanda, Angola from Dec 2015 to Aug 2016, the

model includes both host and vector populations and time-dependent vector abundance.

The model also considered the local vaccination campaign and the possible transmissibility

of asymptomatic infections. According to simulation results, the local vaccination campaign
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saved 5.1-fold more people from death (with 73 death reported originally), the possible hu-

man reaction to recent YF deaths (i.e., the death-driven transmissibility) is likely to explain

the transmission pattern of the YF epidemic in Luanda, and we report very low YF IAR

(0.09-0.15%) and high YF cases reporting ratio (71%).

In chapter 3, we build up an epidemiology model among local pig population and

connect to human cases with a spill-over rate in order to study the long-term “skip-and-

resurge” of Japanese Encephalitis (JE) epidemics in Hong Kong. The model considered the

long-term mosquitoes, pigs and humans dynamic, and hypothesized that “new JEV strain

invaded Hong Kong” around 2011. Model results indicate that the simple mathematical

model can re-generate the long-term JE epidemics in Hong Kong, we report without vectors

JEV cannot maintain among swine, the dramatical decrease of local living pigs was likely to

be responsible for “skip” of JE from 2006-10, and we show high confidence in the hypothesis

that “the resurge of JE since 2011 was likely due to new strain invaded Hong Kong”.

In chapter 4, a compartmental model is established with hosts’ and time-dependent

vectors’ populations, Zika Virus Diseases (ZVD) epidemics, in Northeastern (NE) Brazil

2015-16, is modelled according to local GBS time series and this chapter studies the re-

lationship between the possible infectivity of asymptomatic infection and the final ZVD

infection attack rate (IAR). Model results show the exceeding local GBS time series can

explain the first ZVD epidemics (the first wave) of NE Brazil in 2015-16 and the infectivity

of asymptomatic infections are positively related to the ZVD IAR of 2015-16.

In chapter 5, an agent-based (or school-based) model is constructed to study the vari-

cella infection among school children, and simulate the effects of different school-based vacci-

nation programs. This chapter reports that the proposed agent-based model fits the observed

cases data well and introducing school-based vaccination program can effectively prevent

large-scale varicella outbreaks (particularly during summer).

In chapter 6, a game theoretical framework is combined with an epidemic model to

study the decision-making process regarding to travelling during an outbreak. Travellers

can play an important role in infectious disease transmission, acting both as a source of

case imports and contributing to the susceptible pool at their destination. To balance the

economic benefits of travelling against potential infection risks, game theory is employed to

model the individual decision-making process. The game theoretical framework is combined
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with an epidemic model (based on the compartmental SIR model) to investigate the effects of

travel strategies on local disease control. The group optimal strategy that maximizes overall

population utility is also computed. For this epidemiological travelling game, we find perfect

agreement between individual and group optimal strategies for a range of epidemiologically

and economically plausible values. However, in regions where disagreement occurs, the con-

flict between the individual optimum (corresponding to a “voluntary entrance” scheme) and

the group optimum (a “restricted entrance” scheme) is often extreme. In this region, model

outcomes are highly sensitive to small changes in the infection transmissibility and traveller

costs/benefits. Simulations show how uncontrolled traveller inflow can cause an unexpected

large-scale outbreak when the disease risk level suddenly rises even a small amount, although

government travel restrictions according to group optimal levels can effectively control the

outbreak in this situation. We conclude that a conflict between individually optimal and

group optimal travel strategies during an outbreak may not occur under many scenarios,

but in other cases, extreme conflicts could emerge suddenly even under slight changes in

epidemiological or economic conditions.

Chapter 7 includes summary and introduction of future works based on this thesis.



Chapter 2

Modelling Yellow Fever in Luanda,

Angola

Yellow fever (YF), transmitted via bites of infected mosquitoes, is a life-threatening

viral disease endemic to tropical and subtropical regions of Africa and South America. YF

has largely been controlled by widespread national vaccination. Nevertheless, between De-

cember 2015 and August 2016, YF resurged in Angola, quickly spread and becoming the

largest YF outbreak for the last 30 years. Recently, YF resurged again in Brazil (Decem-

ber 2016). Thus, there is an urgent need to gain better understanding of the transmission

pattern of YF.

The present study provides a refined mathematical model, combined with modern

likelihood-based statistical inference techniques, to assess and reconstruct important epi-

demiological processes underlying Angola’s YF outbreak. This includes the outbreak’s attack

rate, the reproduction number (R0), the role of the mosquito vector, the influence of climatic

factors and the unusual but unnoticed appearance of two-waves in the YF outbreak. The

model explores actual and hypothetical vaccination strategies, and the impacts of possible

human reactive behaviors (e.g., response to media precautions).

While there were 73 deaths reported over the study period, the model indicates that

the vaccination campaign saved 5.1-fold more people from death and saved from illness 5.6-

fold of the observed 941 cases. Delaying the availability of the vaccines further would have

greatly enhanced the epidemic in terms of cases and deaths. The analysis estimated a mean

R0 ≈ 2.6-3.4 and an YF attack rate of 0.09-0.15% (% population infected by YF) over the

10
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whole period from December 2015 to August 2016. Our estimated initial and upper bound

R0 are in line with previous studies.

Unusually, R0 oscillated in a manner that was out-of-phase with the weekly death

reports. High recent numbers of deaths were associated with periods of relatively low disease

transmission and low basic reproduction number, and vice-versa. The time-series of Luanda’s

YF cases suggest the outbreak occurred in two waves, a feature that would have become far

more prominent had there been no mass vaccination. The waves could possibly be due to

protective reactive behavioral changes in the population affecting the mosquito population.

The second wave could well be an outcome of the March-April rainfall patterns in the 2016

El Niño year by creating ideal conditions for the growth of the mosquito vectors.

The modelling framework is a powerful tool for studying future YF epidemic outbreaks,

and provides a basis for future vaccination campaign evaluations.

2.1 Introduction

Yellow fever (YF) is a life-threatening viral disease endemic to tropical regions of

Africa and South America. The disease is transmitted in urban areas primarily via the bites

of infected female Aedes aegypti mosquitoes, which is also the vector of Zika, dengue and

chikungunya viruses [12, 45, 174]. Rural and intermediate YF are transmitted by sylvatic

and peri-domestic aedes species in Africa. For those infected with YF, the disease incubates

in the first 3-6 days of onset, after which there is an abrupt “period of infection” of intense

viremia lasting for 3-4 days (fever, weakness, headache, nausea, muscle pain) [172]. This

is followed by a period of remission in which the symptoms reduce and settle, and most

infected individuals recover at this stage. Thus some 70-85% of individuals infected cases

are asymptomatic or have at most a mild case of YF. However, 15-25% of patients relapse

and move to a “period of intoxication” characterized by abdominal pain, vomiting, jaundice

(yellow skin and eyes) and often culminating in death. The case-fatality-ratio (CFR) in

this latter subset is understood to be approximately 20% among the general population,

and 50% among hospitalized cases [172], although the CFR is well known to be highly

variable, and dependent on the particular circumstances. Like Ebola, YF is classified as a

viral hemorrhagic fever, although it is responsible for a 1000-fold more illness and death than
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Ebola [174].

In 2016, YF resurged in Angola to become the largest YF outbreak on record over

the last 30 years [55]. In swift response, almost all global stocks of the YF vaccine were

exhausted by April 2016. Similar to the Angolan experience, YF recently resurged in Brazil

in December 2016, where it continues to expand towards the Atlantic coast in regions not

previously deemed at risk (as of March 16, 2017) [45]. Thus there is an urgent need to gain

a better understanding of the transmission patterns of YF. Here we develop a mathematical

model to help identify the key epidemic processes behind the Angolan outbreak in 2015-16,

and the impact and effectiveness of the vaccination campaign.

The first case of YF in Angola were seen on December 5, 2015 but reported in the media

only on 20 January 2016 [238]. By November 2016, the large YF epidemic of Angola and the

Democratic Republic of Congo resulted in 962 confirmed infections including 393 reported

deaths [45]. YF is vaccine preventable and the vaccine can confer long-lasting immunity. The

vaccine is suitable for individuals of age 9 months or older. As such, the Angolan government

initiated a vaccination campaign to prevent the spread of yellow fever on the first week of

February 2016 [28, 45]. More than 10 million doses were needed for the whole country [238].

The center of the outbreak was in Angola’s capital, Luanda province. Estimates suggest

that vaccination coverage of Luanda province was 38.0% at the end of January 2016, and

reached 80.0% by mid-March 2016, and 93.0% by mid-June 2016 [8, 9, 27, 45].

Fig. 2.1 graphs the epidemic curve of YF case numbers (probable and confirmed; as

defined in Data section) in Luanda province as obtained from the WHO [8, 9]. The graph

peaks in February 2016, when large-scale vaccination was introduced, and then followed by

a period of rapid decline in case numbers. Despite the major vaccination effort, the epidemic

proved tenacious rather than die out as predicted, and persisted for a sustained period of

time forming a long “tail” in reported case numbers from April to August (see Fig. 2.1). Also

unusual is the minor peak in case numbers that occurred in May, followed soon after by an

increase in deaths, despite the pressure of the vaccination and control efforts. By modelling

YF time series of Luanda, our goal is to reconstruct the important epidemiological processes

that help explain these different and sometimes nonintuitive features. The model allows

estimation of the attack rate of the outbreak, and the basic reproduction number (R0(t)),

which was changing during the epidemic. Moreover, the model is able to explore the role of

the mosquito vector, and the unusual waves of the YF outbreak, which we find would have
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become even more apparent had there been no vaccination. Some exploration of the role of

climatic variables is also possible.

As it is well known, the basic reproduction number (R0) is an important measure to

a disease’s transmissibility, and is one of the first parameters that need to be estimated in

any epidemiological study. Recall that R0 is defined as the number of secondary cases a

single typical infected individual infects over the lifetime of the disease [50]. A recent study

estimated R0 to lie between 5.2-7.1 at the early stage of the 2016 YF outbreak in Angola

[240]. However, R0 was found to decrease with time as the epidemic proceeded. Kraemer et

al. [151] estimated R0 to be 4.8 (95% C.I.: 4.0-5.6) for Angola, although this was possibly an

over-estimate given reporting rates were not stable. In summary, the literature suggests that

YF is highly transmissible with direct estimates of the reproduction number being R0 ≈ 5,

which is almost double that of pandemic influenza (R0 is from 1.5 to 3.6 [116, 159, 170, 234])

and Ebola (R0 is from 1.2 to 2.0 [104, 118, 184, 220]). In this chapter, our analysis uses

modern statistical inference techniques to estimate R0 from the time-series in Fig. 2.1.

Unlike other modelling studies, our procedure also examines how reactive protective behavior

(e.g., insecticide, vector-control, travel restrictions possibly in response to news and media

precautions), may lead to changes in R0, and allows us to explore the implications of this

reaction.

Any model of YF must take into account that most infected individuals are asymp-

tomatic or mild-symptomatic (individuals who show only fever but not jaundice) [12, 88,

173, 175, 182, 224], making the disease difficult to detect and under-reported in the first

phases. With only a slight abuse of terminology, it simplifies the modelling that follows,

to classify mild symptomatic individuals as though they were asymptomatic cases. Thus

asymptomatic cases refer to all individuals who do not have severe YF. It is well understood

that asymptomatic YF infections can be infectious [224] and therefore may act as “silent

sources” of YF virus [224]. Asymptomatic infections, thus, have the potential to play an

important role in disease transmission. It was previously understood that 6 out of 7 YF

infections could be asymptomatic[175]. However, a recent meta-analysis based on 11 inde-

pendent studies, suggested that the asymptomatic ratio should be 55% [142]. Given the lack

of information on the proportion and infectivity of asymptomatic YF cases, we examine a

number of different relevant scenarios.

To the best of our knowledge, this is the first detailed modelling of YF that includes
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both the host and vector populations, and the asymptomatic and severe (those exhibiting

fever and jaundice) cases in the host populations. Previous models that assessed vaccination

impact on YF have not included these fundamental components and pathways in a compre-

hensive approach. By fitting the time-series of the Angola outbreak, its evolution over time

and its curtailment with vaccination, it becomes possible to statistically infer key model

parameters. This, in turn, makes it possible to simulate alternative “what if” scenarios, and

examine what might have happened under different vaccination schemes.

2.2 Data and Methods

2.2.1 Data and case definitions

We study time-series of YF cases from the province of Luanda of Angola with a pop-

ulation of 6,543,000 in 2016 [8, 31, 45]. The African Health Observatory (AHO) published

weekly YF data for Luanda province reporting 941 (confirmed and probable) cases and 73

deaths over the study period from December 5, 2015 to August 18, 2016

Probable cases (see [42]) are those “with acute onset of fever, with jaundice appearing

within 14 days of onset of the first symptoms and one of the followings: (i) presence of yellow

fever IgM antibody in the absence of YF immunization within 30 days before onset of illness;

or (ii) positive postmortem liver histopathology; or (iii) epidemiological link to a confirmed

case or an outbreak.’ Confirmed cases are defined as those positive to serological or PCR

testing.

Similar to the WHO [8] and Kraemer et al. [151], both (weekly) probable cases and

confirmed cases are grouped together and are referred to simply as “YF cases” or equivalently

“severe cases” in this chapter. YF vaccination coverage in Luanda province, obtained from

AHO reports, increased from 38% on February 2, 2016 when the vaccination campaign

started to 93% on August 18, 2016 (see Fig. 2.1) [8] (also see section 2.3.4 for more details of

the local vaccination coverage data). The vaccination coverage was determined by a linear

interpolation of reported data (see the blue squared line in Fig 2.1).



2.2. Data and Methods 15

0

20

40

60

80

100

120

Y
el

lo
w

 F
ev

er
 c

as
es

25

50

75

100

V
ac

ci
na

tio
n 

co
ve

ra
ge

 (
%

)

Vaccination Campaign

0
5
10

D
ea

th
s

Jan Feb Mar Apr May Jun Jul Aug
2016

Confirmed + Probable
Confirmed
Deaths
Vaccination (%)

Figure 2.1: The observed yellow fever outbreak in Luanda from December 5, 2015 to August
18, 2016. Green dots denote the sum of probable and confirmed cases, black dots denote
confirmed cases, red bars denote the confirmed death, and blue squares denote vaccine
coverage. The vertical grey dashed line denotes the time point when the YF vaccination
campaign was initiated.

2.2.2 Methods

Yellow Fever Model

Since YFV is not spread by human-to-human-transmission, the standard SIR type

modelling approaches (which are based solely on human-to-human transmission) are inap-

propriate. Instead, we use a vector-host model of YFV transmission, as illustrated in Fig 2.2,

which is based on well-known models of mosquito-borne diseases (dengue, Zika virus, etc.).

With this two-host model, we are able to explore the impact of different control strategies

(such as vaccination, reducing mosquito abundance and human exposure to mosquito) which

could not be examined with approaches that fail to incorporate vector-host dynamics.

The model applied the following notations. For human host populations, Sh represents

the number of susceptible individuals, Eh is the number of individuals exposed to YF but

not the cases infected, Ah represents the number of asymptomatic cases, Ih the number of

severe infectious individuals, and Th the number of individuals in the toxic stage. Finally,

Rh individuals have either recovered from the disease and/or have been vaccinated.

For the human host population, there are two main transmission pathways, as seen in

Fig. 2.2.

H1) Sh → Eh → Ih → Th → Rh
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Figure 2.2: Flowchart of the yellow fever model. Black arrows represent infection status
transition paths, red dashed arrows represent transmission paths and the blue arrow rep-
resents the vaccination pathway. Square compartments represent host classes and circular
compartments represent vector classes. Red compartments represent infectious classes, and
gray compartments are the simulated weekly reported cases (Zh) and deaths (Yh).

The susceptible hosts become exposed to YF by the bites of infectious mosquitoes, harbor

the virus (move to the Exposed class) and eventually become infected (move to Infected

class), enter the toxic stage (move to Toxic class) and then either eventually recover (move

to Recovered class) and remain immune, or in the case of 5-50% in this stage (as specified

by the CFR), die from the disease (Dh).

H2) Sh → Eh → Ah → Rh

In this second pathway, susceptible hosts become exposed to YF by the bites of infectious

mosquitoes, harbor the virus and eventually become infected but only asymptomatic. The

latter usually recover and gain future immunity.

In the above scheme, the infected and asymptomatic hosts may both infect mosquitoes

should they be bitten, as shown in Fig. 2.2. However, asymptomatic cases have a reduced

transmissibility, ψ, when compared to that of a typical severe case. Also, note that indi-

viduals in the toxic phase no longer have viremia [174], and therefore cannot be infectious

[47, 172, 174].

The vector population has only a single pathway:

V1) Sv → Ev → Iv

As in usual notation, Sv is the number of susceptible mosquitoes. It is assumed that vertical

transmission of YF virus in the mosquito population is relatively small, and could reasonably
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be neglected for the purpose of this model [72, 92, 174]. It is also understood that mosquitoes

are relatively unaffected by the mosquito-borne viruses [136].

Based on the above descriptions, we formulate an ordinary differential equations (ODEs)

system that matches the scheme as illustrated in Fig. 2.2:

S ′h = −ab Iv
Nh

Sh − v(t− t0)

E ′h = ab
Iv
Nh

Sh − σhEh

A′h = (1− δ)σhEh − γhAh

I ′h = δσhEh − γhIh

T ′h = γhIh − κhTh

R′h = v(t− t0) + γhAh + (1− θ)κhTh

D′h = θκhTh

S ′v = Bv(t)− ac
ψAh + Ih

Nh

Sv − µvSv

E ′v = ac
ψAh + Ih

Nh

Sv − σvEv − µvEv

I ′v = σvEv − µvIv

Y
(i)
h =

∫
week i

θκhTh dt

Z
(i)
h =

∫
week i

[θ + ρ · (1− θ)] · γhIh dt

(2.1)

Here, v(t) represents the vaccination rate at time t, and t0 is the mean time period from

receiving vaccination to acquiring full immunity. Y
(i)
h represents the weekly recorded deaths

due to YF for the i-th week. It is calculated as an integral which effectively sums the weekly

number of toxic phase individuals (Th) who leave or are removed from the toxic class (κhTh)

over one week. Only a fraction (θ) of the latter dies, where θ is the CFR for severe cases.

Similarly the variable Z
(i)
h denotes the weekly recorded observed cases. This is determined

through the term [θ + ρ · (1 − θ)] which collects the deaths (through θ) and the non-fatal

severe cases via the severe case reporting ratio ρ (more detailed discussion regarding YF case

counting can be found in section 2.4.5). It is assumed that all deaths are reported, and that

the fitting procedure can estimate the reporting ratio of severe cases ρ.
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In terms of the total host and vector population sizes (Nh and Nv), the following

relations must hold:

Nh = Sh + Eh + Ah + Ih + Th +Rh +
∑
i

Y
(i)
h −→ constant (2.2)

Nv = Sv + Ev + Iv (2.3)

In our model, Nv = Nv(t) is time-dependent in a manner that is controlled by the mosquito

birth rate Bv(t) and death rate µv(t), namely N ′v = Bv(t)− µv(t) ·Nv. Following [111, 132],

we suppose that

Nv(t) = m(t) ·Nh (2.4)

Here the constant Nh = 6, 543, 000 is the number of humans in Luanda province. The

parameter m(t) is the time-dependent ratio of the mosquito-to-human populations that

needs to be estimated. It is assumed that m(t) is an exponential cubic spline function of

time with number of nodes nm (see section 2.2.4). Nodes are distributed uniformly over the

time-domain with values (mi) that are estimated but restricted to lie between 0 and 20. The

range was chosen to reflect reality (where m = 20 implies R0 = 10, which is beyond the R0

upper limit for YF).

Model Parameters

The model is parameterized from prior knowledge of YF, and uses parameter values

that are accepted in the literature. Table 3.1 summarises all model parameters and their

ranges. Table 2.2 summarises parameter values for the different scenarios and model esti-

mates (discussed below).

With regard to parameters for the host population in Eqn. (2.1), σ−1
h and γ−1

h represent

the host latent and infectious period respectively, with both being approximately 4 days. The

latent period also indirectly allows for a four-day reporting delay. Symptoms appear when

patients leave the latent class, but are reported only when they leave the infectious class

which is a four-day period. The toxic phase duration κ−1
h is set to eight days.

The parameters on mosquitoes were taken from the dengue literature, where mosquito

dynamics is also modelled. Since dengue and YF virus belong to the same family of viruses
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Table 2.1: Summary of parameters.
Parameter Notation Value/Range Unit/Remark Source

mosquito biting rate a 0.3 - 1.0 per vector·day [51]
transmission probability from vector to host b 0.10 - 0.75 per bite [51]
transmission probability from host to vector c 0.30 - 0.75 per bite [80]

vaccination rate v 0 - 0.043 per day [8, 45]
host latent period σ−1h 3 - 6 days [12, 45, 141]

vector latent period σ−1v 8 - 12 days [172]
non-severe case relative infectivity ψ 0.1 - 0.5 Nil -

host infectious period γ−1h 3 - 4 days [12, 45]
severe case proportion δ 15% Nil [12, 142]

severe case CFR θ 0% - 50% see text [12, 41, 45, 172]
toxic case duration κ−1h 7 - 10 days [12, 45]

vector lifespan µ−1v 4 - 35 days [51, 80]
severe case reporting ratio ρ 1% - 99% Nil -

initial susceptible host Sh.0/Nh 0.62 fixed, Nil [8]

(i.e., flaviviridae) and share the same type of vectors (i.e., Aedes aegypti), we follow the

practice of previous studies and assume they have similar parameter values. Specifically,

parameter values for the mosquito biting rate (a), the transmission probabilities (b, c), and

the mosquito lifespan (µ−1
v ) were taken from Massad et al. [168], as indicated in Table 3.1.

The vector latent period σ−1
v and lifespan µ−1

v were taken as 10 and 20 days respectively.

Basic Reproduction Number

Here we derive the basic reproductive number R0 for the vector-host model Eqn. (2.1).

Following standard procedures [68, 221], the rate of transmission (i.e., the changing rates

from infectious to non-infectious classes) is given by, F :

F =



ab Iv
Nh
Sh

0

0

acψAh+Ih
Nh

Sv

0
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and the rate of transition (i.e., the changing rates among infectious classes), V :

V =



σhEh

(δ − 1)σhEh + γhAh

−δσhEh + γhIh

(σv + µv)Ev

−σvEv + µvIv


Then, we have two Jacobian matrices, of which F is the Jacobian of F and V is the Jacobian

of V , and we derive F and V under the disease free equilibrium [221] (DFE, by setting the

proportions of susceptible classes to be 100%),

F =



0 0 0 0 ab

0 0 0 0 0

0 0 0 0 0

0 acψm acm 0 0

0 0 0 0 0


(2.5)

where Fi,j = ∂Fi
∂xj

with Fi is the i-th equation of F and xj is the j-th variable of the vector

(Eh, Ah, Ih, Ev, Iv),

V =



σh 0 0 0 0

(δ − 1)σh γh 0 0 0

−δσh 0 γh 0 0

0 0 0 (σv + µv) 0

0 0 0 −σv µv


(2.6)

where Vi,j = ∂Vi
∂xj

with Vi is the i-th equation of V and xj is the j-th variable of the vector

(Eh, Ah, Ih, Ev, Iv). Then, we have the next generation matrix of our model,

FV −1 =



0 0 0 abσv
µv(σv+µv)

ab
µv

0 0 0 0 0

0 0 0 0 0

acm
γh
· (ψ + δ − ψδ) acm

γh
· ψ acm

γh
0 0

0 0 0 0 0


(2.7)
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Since R0 is the spectral radius of FV −1 [221], the basic reproduction number is

R0 =

√
(ψ + δ − ψδ) · a

2bcm

γh
· σv
µv(σv + µv)

(2.8)

where m is the ratio of mosquito-to-human population. R0(t) is calculated as a function of

time, by assuming the mosquito-to-human population ratio to be m = m(t) (see Eqn. (4.2)),

which varies with time in a manner that may be estimated by the model fitting procedures.

When the population is not fully susceptible, it is it is a common practice to make use

of Reff, the effective R0 given by Reff(t) = R0(t) · Sh(t), to describe the ability of a virus to

invade the host population [143]. Reff incorporates both the changes in the intrinsic ability

of the virus, the characteristics of the mosquito vector as well as the availability of human

host susceptibles. We note that the vaccination campaign can only reduce the availability of

human susceptibles but not the intrinsic transmissibility of the virus. Vector control (e.g.,

mosquito fogging) can reduce the transmissibility of the virus, by reducing its vector of

transmission. In our figures we plot both R0(t) and S(t). From these, it is simple to obtain

Reff(t).

Vaccination

The term v(t) appearing in the equation for susceptible host dynamics (Eqn. (2.1)),

represents the time-dependent vaccination rate of the host population (blue arrow in Fig 2.2).

It is determined by considering the equation for susceptible dynamics (from Eqn. (2.1)):

dSh/dt = −abIv/Nh − v(t− t0)

Thus the rate of vaccinating people is v(t) and the total number of people who would

normally be vaccinated by time t is V (t) =
∫ t

0
v(x)dx + V0. Note that t0 is the mean time

taken for an individual to gain full immunity after being vaccinated. Averaging the data

reported by WHO and CDC [12, 45] gives t0 = 20 days. The overall cumulative vaccination

for Luanda province, as reported by WHO, is plotted in Fig. 2.1 as a percentage of the total

population Nh. That is, the y-axis plots V (t)/Nh × 100. Using this graph and the relation

dV (t))/dt = v(t) allows us to reconstruct v(t) which we use when we numerically integrate

Eqn. (2.1).

The constant V0 denotes pre-existing immunity of the population at the beginning of the
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2015-16 YF outbreak. As the attack rate of YF is typically very small and no major outbreaks

occurred in Angola since 1988, we suppose that previously built-up immunity is relatively

small and population immunity waned significantly over the next 27 years. Nevertheless, it

was assumed that at the beginning of each simulation, V0 = 38% of the population is already

vaccinated to be consistent with WHO estimates. [8]. The 38% includes both the outcome

of EPI (WHO’s Expanded Program on Immunization) vaccination and immunity remaining

from the mass campaign in 1988. (This is incorporated by setting Sh.0/Nh = 0.62 as in

Table 3.1.) Wu et al. [240] assumed that initial immunity was equivalent to 28% vaccination

coverage, which under-estimates the WHO data. Section 2.3.4 provides further information

about YF vaccination doses.

The approach for modelling vaccination is adapted from our previous work on influenza

[129], and avoids the need for inclusion of a separate vaccinated compartment in the model

which would result in unnecessary additional complexity.

Different YF vaccination intervention scenarios are compared in order to evaluate the

effectiveness of the actual national vaccination campaign. The best-fitting model to the data

and the actual vaccination coverage will be taken as the “baseline scenario” as experienced

in Luanda, which was initiated on February 2, 2016. This will be compared to three other

additional hypothetical intervention scenarios.

• Actual vaccination campaign as experienced in Luanda (baseline scenario);

• 60, 120 and > 180 days delay of vaccination campaign (hypothetical intervention sce-

narios

The total observed cases, as well as the total deaths, are evaluated by the model for each

vaccination scenario.

The 180-day delay period, in fact, represents a “no-vaccination” scenario. When taking

into account the extra 20 days required for vaccination to be effective, anyone vaccinated 180

days after February 2, 2016, will not gain any protective effect from the vaccination given

the observation study period is only 200 days. Thus, any scenario with a delay greater than

180 days is equivalent to a no-vaccination scenario.
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Fatality per infection and Case-Fatality-Ratio

Monath et al., [172] estimated the fatality per infection of YF for the whole population

to be in the range of 3-7.5% [172], and are variable across time and location. In an earlier

study, Monath et al. estimated the fatality per infection to be in the range of 1-15% for

Nigerian villages [177]. For severe YF cases, the Case-Fatality-Ratio (CFR) resulting in

death (θ) is 20-50% or higher [115, 172, 188, 219], although the CFR is well known to be

highly variable, and dependent on particular circumstances.

Given the large proportion of infected but asymptomatic YF cases, the accurate fatality

per infection in Luanda cannot be determined without a comprehensive serological study,

which to our knowledge has not been undertaken. But the Cases-Fatality Ratio (CFR, cases

refer to severe cases) can be immediately approximated as the ratio of confirmed deaths to the

confirmed (and probable) cases. For the data of Luanda province, the CFR is approximately

7.76%, and thus substantially lower than 20-50%. (Similar low estimates were noted by the

WHO reports throughout the epidemic.) Moreover, because of reporting errors, we would

expect the CFR to be even lower than this empirical estimate.

In this chapter, we choose CFR = 6% for our main simulations. But we have also care-

fully explored other possibilities. For example, in section 2.4.3, we run our fitting procedure

to actually estimate the CFR given the data and find CFR = 4%. We also discuss what

might be expected if the mortality data is under-reported (see section 2.4.4). More data and

research is needed to gain a better understanding of the CFR and to check whether and how

it changes over the study period.

Finally, we note that in our model, the fatality per infection is given by δ · θ, where

the CFR = θ, while δ is the proportion of severe cases. In this chapter, we consider either

fixing the CFR to a value considered realistic or inferring the CFR from the data itself, as

an extra parameter.

Asymptomatic infections

As reported by the CDC, “asymptomatic or clinically unapparent infection is believed

to occur in most YFV infections” [12]. A case is defined as an asymptomatic infection only if

it is confirmed strictly to have no symptoms, but is nevertheless found infectious as confirmed
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by RNA or serological tests. It was previously believed that 6 out of 7 YF infections could

be asymptomatic[175]. Recently, a meta-analysis based on 11 studies suggested that the

asymptomatic ratio should be 55% and mild cases 33% (without jaundice), the rest 12% are

severe cases[142]. As mentioned, to simplify presentation all mild cases (without jaundice)

were considered to belong to the asymptomatic class. Two scenarios were examined:

1 : 85% asymptomatic (δ = 15%) and weak infectivity (ψ = 0.1)

2 : 85% asymptomatic (δ = 15%) and strong infectivity (ψ = 0.5)

The proportion of 85% for asymptomatic infections based on [142]. Scenarios 1 & 2

differ only in terms of their weak (ψ = 0.1) or strong (ψ = 0.5) infectivity. The results for

scenarios 1 and 2 (with fixed CFR = 6%) are presented in the main text, while results of

flexible CFR can be found in the section 2.4.3.

2.2.3 Plug-and-Play Inference Framework

The YF outbreak in Luanda is modelled as a Partially Observed Markov process

(POMP) and makes use of the Iterated Filtering and plug-and-play likelihood-based infer-

ence frameworks to fit the data [111, 133, 147]. These are modern state-of-the-art statistical

methodologies developed for fitting complex epidemiological datasets, and seeking Maximum

Likelihood Estimate (MLE) for model parameters (R package “POMP” is available at [146]).

Bayesian Information Criterion (BIC) is employed as a criterion for model comparison,

and quantifies the tradeoff between the goodness-of-fit of a model and its complexity [205].

The simulations made use of the Euler-multinomial integration method with the time-step

fixed to be one day [48, 133].

The model is first fitted to the observed YF cases and deaths, given knowledge of the

true vaccination coverage. The mosquito abundance is assumed to be unknown but time-

dependent, and is reconstructed. We allow the basic reproduction number of our model to

be time-dependent, given that the mosquito abundance is not fixed and given that human

behavior can impact R0(t) and change over the study period.

The parameter fitting and inference process are carefully checked, thereby giving high

confidence that the fits of the observed time-series are accurate for reasons that are consistent
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with the true underlying epidemiological processes rather than artificial model over-fitting.

We conducted tests to find the best-fit model. For each asymptomatic scenario, we studied

10 different values of nm (degrees of freedom in the m(t)), and compared them with BIC.

BIC quantifies the trade off of the goodness of fitting of the model and the complexity of the

model — penalizing models with more variables. A smaller BIC implies a better-fit model.

For the best-fit model, the profile of maximum log likelihood was calculated as a function

of the reporting ratio (see section 2.4.1 for further details). The profile found is always a

reasonably smooth function. The model was run 1,000 times with the estimated parameters,

and the median of the model simulation matched the reported weekly cases. Thus we can

be confident that the maximization of models log likelihood converged and the estimation is

consistent.

The simulated weekly reported cases Zt are modelled by Eqn 2.1. The corresponding

weekly observed cases, Ct, as given by the WHO, are assumed to follow a Negative-Binomial

(NB) distribution as

Ct ∼ NB

(
n =

1

τ
, p =

1

1 + τZt

)
with mean : µt = Zt (2.9)

where τ denotes an over-dispersion parameter that needs to be estimated.

The weekly observed deaths, Dt, and the corresponding weekly simulated deaths, Yt,

are similarly related. Finally, the overall log-likelihood function, l, is given by

l(Θ|C1, . . . , CN ;D1, . . . , DN) =
T∑
t=1

ln
[
L

(C)
t · L(D)

t

]
(2.10)

where Θ denotes the parameter vector under estimation, and L
(C)
t and L

(D)
t are the probabil-

ity measurement functions associated with Ct vs. Zt, and Dt vs. Yt, respectively. T denotes

the total number of weeks during the study period.

The confidence intervals (C.I.) of parameters are estimated based on parameters’ ranges

in Table 3.1, using the method of profile likelihood confidence intervals [132, 133]. This is

demonstrated in section 2.4.1 for the severe case reporting rate ρ. Parameter estimation and

statistical analysis are conducted using R (version 3.3.3).
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2.2.4 Fitting m(t) with BIC

We performed extensive testing on fitting the model with different degrees of freedom

in m(t), and calculated the BIC as a function of the number of nodes in m(t) from 2 to

10. This ensured that a wide range of possible shapes or profiles for m(t) were explored,

including possible constant, and monotonically increasing or decreasing profiles. The best

model fit was chosen based on the smallest BIC, and the profile maximum log likelihood was

determined as a function of the reporting ratio. The MLL profiles were plotted as a function

of ρ, and yielded a smooth curve, which is an indicator of convergence. We also calculated

the MLL (or BIC) as a function of nm, the MLLs match. Thus we are confident that our

MLL is the true maximum. The convergence of the maximization of log likelihood of the

model given the data is guaranteed.

The median of 1,000 stochastic simulations of the best-fitting model matched the ob-

served data, which indicates that it is the best model in all situations we explored.

All of the above steps were repeated (which involves fitting of dozens of models/parameter

setting) under four different asymptomatic assumptions (as outlined in the main text). The

possible impacts of climate and human behavioral responses (death driven vector control

measure) were also considered (see section 2.3.3). Thus the total computational effort is

huge.

We considered using three well-known test indices: AIC, BIC, DIC but ultimately

decided on using BIC. This is because first, DIC has a number of known problems we prefer to

avoid (see http://avansp.github.io/2014/11/02/DIC-AIC-BIC.html). Second, BIC is more

appropriate than AIC in this chapter here, since the size of the data is relatively small. In

the small sample size situation, a secondary AIC (i.e., AICc) can be considered [73]. Out

investigation have made it clear that both BIC and AICc lead to the same conclusions in

our examples.

2.2.5 Sensitivity Analysis

The Partial Rank Correlation Coefficients (PRCCs) are adopted for the model’s sensi-

tivity analysis [111]. Firstly, 1,000 random samples are taken for each model parameter from

uniform distributions with parameter ranges as set out in Table 3.1. After that, for every

http://avansp.github.io/2014/11/02/DIC-AIC-BIC.html
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random parameter sample set, the YF model was simulated to obtain the target biological

quantities (e.g., R0 and the total number of deaths in this chapter). Finally, PRCCs were

calculated between each parameter and target biological quantities.

2.3 Results and Discussion

2.3.1 Model Fitting

The results for the best-fitting model under the two scenarios are shown in Fig 2.3.

The model simulation median (of 1,000 simulations) of YF cases in Luanda is plotted in red

and matches well with the observed patterns seen in weekly reported cases, both before and

after the national vaccination campaign. The two scenarios (for asymptomatic infectivities)

both model the data with almost the same goodness-of-fit with a ∆BIC ≈ 2 (see section

2.4.2 for the simulation results of strong infectivity scenario, i.e., scenario 2). That is, the

observed and model time series are not significantly different for the two levels of infectivity

[205]. As such the infectivity of asymptomatic cases cannot be accurately inferred from these

data sets.

In Table 2.2, the over-dispersion τ , is notably small, which indicates the measurement

model is close to a Poisson distribution (i.e., minor over-dispersion in measurement noise).

This implies the reporting efforts (i.e., reporting ratios) were reasonably stable over time.

The analysis estimated a mean R0 ≈ 2.6-3.4 and an estimated YF attack rate of the

whole period to be 0.09-0.15% (% population infected by YF) from December 2015 to August

2016. Our estimated initial and upper bound R0 are in line with previous studies.

Asymptomatic cases were not reported, and they might be considered as a completely

hidden variable. However, if the number of asymptomatic cases is very large (e.g., if the

asymptomatic-to-symptomatic ratio is 6:1 or 7:1) with a weak infectivity but full immunity,

this will indirectly slow down the transmission of YF in the later stages, due to herd immunity

built up by these silent asymptomatic cases. If their infectivity is strong, this will increase

the difficulty to control the outbreak.

The model simulations of weekly deaths also fit the observed data well over the period
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Figure 2.3: Model fitting results under two scenarios: scenario 1 in panels (a,b) and scenario
2 in panels (c,d). Black line with circles denote reported cases (in (a), in the form of square-
root) and reported deaths (in (b), in the form of square-root), and red line denotes model
simulation median. Blue dashed line denotes the fitted basic reproduction number, R0(t),
and the green dashed line shows the calculated host susceptible proportion, S(t). Shaded
region represents 95% bound of 1,000 model simulations. Vertical dashed line indicates the
start date of the vaccination campaign. Inset panel shows BIC as a function of the number
of nodes (nm). The lowest BIC is attained at nm = 7 in both scenarios, which is used in the
main panel. Parameter values are listed in Table 2.2.

of the main epidemic until the end of April 2016. While the simulated median (red line)

does not predict the two relatively small and erratic peaks at the beginning of June and end

of July, nevertheless they fit reasonably within the 95% bounds. Note that similar peaks

in death numbers appear in the delayed vaccination scenarios Figs. 2.9 b,d,f, where case

numbers are higher)

The observed YF deaths are relatively “noisy” compared to the continuously observed

YF cases (see red bars versus green dotted line in Fig 2.1), which might be due to the lower

case numbers involved or possibly spatial variation of the YF CFR. The same holds for

individual model simulations. The total number of deaths was only 6% out of all reported

cases (CFR=6%), and 71% of the deaths appeared during the first wave. Although we cannot

fit the final erratic mortality waves with high accuracy, our estimate of the total number of

deaths is still a very good approximation. As can be seen in Table 2.3, the model’s simulated

cumulative death toll matches well with the observed death toll.
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Table 2.2: Parameter Summary for two scenarios. X.0 denotes X(t = 0), which is the
number individuals in X class at the beginning of the study period.

Parameters Notation weak strong Type
mosquito biting rate a (per day) 0.5 0.5 fixed

transmission probability from vector to host b 0.4 0.4 fixed
transmission probability from host to vector c 0.5 0.5 fixed

host latent period σ−1
h (days) 4 4 fixed

host infectious period γ−1
h (days) 4 4 fixed

toxic case duration κ−1
h (days) 8 8 fixed

vector latent period σ−1
v (days) 10 10 fixed

vector lifespan µ−1
v (days) 20 20 fixed

severe case proportion δ 0.15 0.15 fixed
non-severe case relative infectivity ψ 0.1 0.5 fixed

severe case CFR θ 0.06 0.06 fixed
number of nodes nm 7 7 estimated

severe case reporting ratio ρ 0.71 0.72 estimated
mean m(t) 〈m(t)〉 6.34 2.79 estimated

over-dispersion τ 0.002 0.0045 estimated
initial susceptible host Sh.0/Nh 0.62 0.62 fixed

initial exposed host Eh.0/Nh 3e-07 3.2e-07 estimated
initial non-severe host Ah.0/Nh 3e-07 3.2e-07 estimated

initial severe host Ih.0/Nh 3e-07 3.2e-07 estimated
initial toxic host Th.0/Nh 3e-07 3.2e-07 estimated

initial recovered host Rh.0/Nh 0.38 0.38 fixed
initial susceptible mosquito Sv.0/Nh 11.66 3.62 estimated

initial exposed mosquito Ev.0/Nh 1.66e-06 1.93e-06 estimated
initial infectious mosquito Iv.0/Nh 1.66e-06 1.93e-06 estimated

mean basic reproductive number 〈R0〉 3.41 2.57 estimated
infection attack rate (%) AR 0.09 0.15 estimated
maximum log likelihood MLL -166.48 -165.4 estimated

Bayesian Information Criterion BIC 388.9 386.75 estimated

Parameter estimates including the basic reproduction number R0, mean mosquito-to-

human ratio 〈m(t)〉, and disease attack rate are listed in Table 2.2. Our estimated mean

R0 ≈ 3.0 with excursions to R0 ≈ 6.0 matches well other studies in the literature (see

Introduction). The very low attack rate is an outcome of the prompt and effective control

measures of the Angolan government [8, 45, 238].

The estimated mean mosquito-to-human ratio, 〈m(t)〉, is in line with previous work by

Gao et al. (see [110]). The estimated reporting ratio for severe cases, ρ = 70%, is reasonable,

given the easily recognizable symptoms (jaundice), and the control effort by the government,

which managed to push the vaccination coverage to more than 90% of its population within

a very short period of time.
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Association between the spread of YF and local climatic factors has been discussed

frequently in previous studies [154, 194]. As such, we explored the possibility that local tem-

perature and rainfall are potential factors that consistently influence the long-term trans-

mission dynamics. However, the temperature was found to have no significant effect while

rainfall only had a minor long-term effect. A detailed discussion is given in the section 2.5.

The possible reasons could be: i) local precipitation is relatively minor during the study

period (but concentrated in March), and the weather is continuously hot and dry, and ii)

duration of the outbreak is short and other factors (control measures and human reaction)

played a more prominent role. Nevertheless, in what follows, we consider the possibility that

the sporadic March rainfall patterns played an important role.

Estimating the Confidence Interval of R0(t)

Figs 2.4 and 2.5 show the 95% confidence interval (CI) for the estimated R0, obtained

by calculating the 95% CI of m(t), which is obtained from calculating the profile maximum

log likelihood of the model as a function of value of each node of m(t). The width of the

CI became very wide in the last 2/7 (i.e., 28.57%) of the study period because both case

numbers and the number of deaths became relatively small and noisy.
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Figure 2.4: The Confidence Interval (C.I.) estimation plot of R0 under scenario 1.
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Figure 2.5: The Confidence Interval (C.I.) estimation plot of R0 under scenario 2.

Oscillations in R0(t)

For the two scenarios, the analysis revealed thatR0(t) oscillated in the interval [0.8,8.5]

over the 37 weeks with meanR0 ≈ 3.4 of weak infectivity, andR0 ≈ 2.6 for strong infectivity.

The estimated R0 (see blue dashed line in Fig 2.3) is approximately from 5.0-8.5 (see CI

estimate of R0(t) on section 2.3.1), which is in line with Wu et al.’s [151, 240] analysis of

the early stage of the epidemic (R0 is from 5.2-7.1).

We now show that the oscillation in R0(t) is a robust feature of the dataset based on

Fine and Clarkson’s [101] effective and well-known methodology. Fine and Clarkson plotted

Q(t) = Ct+1/Ct (i.e., next weeks reported cases divided by this weeks – as used in many

classic studies of childhood infectious diseases), as a function of time t. This index is usually

regarded as the transmissibility of human-to-human infectious diseases but can be similarly

exploited for vector-borne diseases. In Fig 2.6 we find strong waves in Q(t) (solid green)

that match the oscillations observed in R0(t) (dashed blue). This suggests that the waves

observed in R0 are most likely a feature embedded in the data and are not artificial.

Unusually, the wave-like pattern of R0 in time is out-of-phase with the weekly reported

death rate, as seen in Fig. 2.3. Thus larger number of deaths are associated with periods of

low disease transmission (i.e., low R0), and vice-versa. This is biologically reasonable, and

could well be due to protective behavioral changes such as usage of insecticide, mosquito

repellent, movement restrictions, cordon sanitaire and general vector control. Thus, we

hypothesize that the behavioral response (e.g., usage of mosquito insecticides, repellents and

nets) to cases and deaths witnessed by Luanda’s population, reduced disease transmission
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Figure 2.6: Reconstructed transmission rate Q(t) via Fine & Clakrson’s method (with a
three-week shift to the left) and our estimated R0(t).

in periods of high mortality. Such a process would drive the YF case numbers to follow

dynamics that differ substantially from the standard SIR epidemic curve, and possibly even

induce waves. A similar phenomenon was reported for the 1918 influenza pandemic [66, 128].

In practice, the vector control efforts (i.e. “mosquito-fogging”) was case-driven, and

fogging was implemented in localities where cases and mortality were reported, it is not

unreasonable to link mortality to the mosquito-abundance and the transmission rate (see a

discussion of this in section 2.6). In section 2.3.3, we describe a simple model simulation in

which m(t) is controlled by death rates only, and it is possible to fit the YF datasets just as

convincingly as our earlier fits where m(t) is a free cubic spline best fitting function.

A closer examination of Fig. 2.3 helps explain the oscillations in R0(t) and their impli-

cations. A few weeks after the initiation of the vaccination program in February 2016, the

YF epidemic is seen to curtail its rapid growth and then diminish over March. Unusually,

the epidemic does not rapidly crash to extinction as the usual (SIR) epidemic curve would

predict. Rather, YF cases reduce gently over the next five months in a plateau from April

to September. This behavior is uncharacteristic of the standard SIR epidemic model, and

appears to be an outcome of the oscillations observed in the time-series estimates of R0.

Thus the epidemic begins to rapidly decline and turns-around only after R0 has reduced

considerably (i.e., after the peak of R0 in January). A similar decreasing trend in R0 over

Feb-Mar 2016 was also noted by [240]. This implies that although vaccination was important

for the main epidemic’s demise, the February decline in R0 is also likely to have played an

important role. Interestingly, the sustained period of cases in April (rather than the expected
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drop to disease extinction) occurs when R0 increases again. Since theoretically, R0 should

remain unaffected by vaccination, we suppose the changes in R0 are likely due to changes

in other factors (eg., control measures and behavior, or possibly weather patterns) that may

influence the vector population and its transmission.

Generation Time The generation time (GT, i.e., the time between two successive infec-

tions) equals the sum of latent and infectious periods of the host [213], and the sum of latent

and infectious periods of the mosquito. However, mosquitoes have a short lifespan and die

before the loss-of-infectiousness of YF. Precisely, the life of adult (female) mosquito includes

three parts: pre-infection, latent and infectious period. In this chapter, we fix the mean

lifespan (Lv) of a mosquito to be 20 days, and the mean latent period to be 10 days. For

the pre-infection period, we use the formula of mean age at infection (for typical childhood

infections): Lv/(1 +R0) [143]. If we fix R0 = 3.0 (see Table 2.2), the mean age at infection

of mosquito is 5 days. Thus, the sum of latent and infection periods of mosquito will be

20 − 5 = 15 days. The sum of latent and infectious periods of human is 4 + 4 = 8 days.

Thus, the GT of YF is 23 days, which explains the time delay between the maxima of R0(t)

and the maxima of reported weekly cases. GT will be between 18 and 28 days.

2.3.2 Potential causes of the second wave of R0(t)

For most years in Luanda, the rainy season is between November-May but the most

accumulation of rain occurs in March-April. The year 2016 was an El Niño year and it

brought dramatic and unpredictable flooding events especially in the March-April period,

thereby leading to conditions ideal for the growth of mosquito populations. As in the 1971

YF outbreak in Luanda, local water-storage containers (mainly the larger ones) serving the

community but also in most homes, accounted for 85% of the Ae. aegypti larval breeding.

As vividly described by Moreira [178] that “The 2016 outbreak coincided with unusually

heavy rains and a severe El Niño weather pattern. We are also suffering from an economic

crisis and poor sanitary conditions. All these factors created a fertile environment for an

increase in the mosquito population. The outbreak reached its peak in February and has

been declining since (i.e., population numbers, not R0). We have much more vaccine now

(in September 2016) than we had earlier in the epidemic. The response interventions are
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involving communities successfully. The dry season arrived in May (2016) and since then

the mosquito population has diminished.”

Thus after the peak of the YF outbreak had passed, and the vaccination program was in

progress, the local March-April El Niño rains were enhancing mosquito breeding conditions.

It is not unsurprising that simultaneously one of Luanda’s largest malaria epidemics ever was

underway (see “During the first quarter of 2016, the number of cases of malaria increased

dramatically to 1,531,629, up from 980,192 ” of [34]). We suggest that these conditions were

responsible for the unusual and robust second wave that is observed in the time series of

R0(t).

Since we only model a single province, Luanda, and the YF transmission spread rela-

tively rapidly throughout the province, we might assume the effects of spatial heterogeneity

are likely to be minimal. However, we do not possess sufficiently detailed data to perform

a careful analysis of spatial effects, and effects at the micro-scale may be important as in

other diseases such as dengue. Kraemer et al. [151] have discussed the importance of spatial

effects for YF over all provinces of Angola, and there is a possibility that geographic waves

generated from surrounding provinces could play some part in the appearance of multiple

YF waves in Luanda province. Hence future work and more comprehensive data are needed

to examine these possibilities.

2.3.3 Underlying Oscillation in Basic Reproductive Number

Import of New Susceptibles

In order to explain the multiple waves in R0, one might speculate that there were

additional inflows of new susceptibles in the later stage of the epidemic. But we show that

even if there are, the estimated R0 still exhibits features of multiple waves. We examined

the addition to the system of a continuous inflow (daily 10,000 after Apr 09) or a square-

wave inflow (daily 20,000 for the period Mar 30 - Apr 29 and Jun 08 - Jul 07) of imported

host susceptibles (as well as cross-border infections from confirmed cases outside Luanda

province). These input of new susceptibles resulted in little difference to the baseline scenario

(see Fig. 2.7. Parameters of scenario 1 were used here).
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Figure 2.7: Fitting results for model including a continuous (a,b) or square-wave(c,d) inflow
of new susceptibles. Weekly reported cases (a,c) and deaths cases (b,d) in Luanda province,
Angola. Black line with circles denotes reported cases, and red line denotes model simula-
tion median, blue dashed line denotes the fitted basic reproduction number, R0, and green
dashed line shows the calculated host susceptible proportion, S(t). Shaded region represents
95% bound of 1000 simulations. The vertical dashed line indicates the starting date of the
vaccination campaign. Inset panel shows the BIC as a function of the number of nodes (nm).
The lowest BIC is attained at nm = 7, which is used in the main panel.

Modelling Human reaction to mortality

We have seen that the reproductive number R0(t) exhibits multiple waves. An exami-

nation of the weekly YF mortality reveals possibly related oscillations. High weekly mortality

corresponds to high transmission rate later in the following week. Given that in practice,

the vector control (mosquito-fogging) was case-driven (fogging was implemented in localities

where cases and mortality were observed), it is not totally unreasonable to link mortality to

the mosquito-abundance and the transmission rate (see a discussion of this in section 2.6).

In this section, we use a simple model simulation to demonstrate this possibility.

We replace the cubic spline function (with 7 nodes) for m(t) (Eqn. (4.2)) with a simple

function based on the YF mortality and obtain almost identical results. We set:

m(t) = mbase + k · exp
[
−Dh(t− tlag)

]
(2.11)
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Here mbase is a constant term, k is a parameter controlling the strength of the death-induced

human reaction, Dh(t) is the yellow fever deaths of week t and tlag is the lag time for the

population response in reaction to mortality levels. The fitting results for this simple human

behavior model are shown in Figure 2.8, with tlag = 1 week fixed. We see that a simple

behavior model achieved very similar fitness as our original model in Fig. 2.3. Thus we

illustrated that death-driven oscillation in R0 is possible.
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Figure 2.8: Fitting results implementing humans reaction to mortality (with a time lag of
one week, tlag = 1), scenario 1 (a,b) and scenario 2 (c,d). The black line with circles denotes
reported cases, and red line denotes model simulation median, blue dashed line denotes
the fitted basic reproduction number, R0, and green dashed line shows the calculated host
susceptible proportion, S(t). The shaded region represents 95% bound of 1000 simulations.
The vertical dashed line indicates the start date of the vaccination campaign. Inset panel
shows the MLL as a function of the mild YF infections counting ratio (ρ). The highest MLL
is used in the main panel.

2.3.4 Vaccine usage

As discussed in the main text, we examined scenarios when an identical vaccination

scheme to that observed in Luanda was delayed by 60 and 120 days. Here we show the

number of doses given in these delayed schemes is almost identical to the baseline scheme

varying at most by 5% (for delay of 120 days; 3.44 million doses). The 180-day delay is

included because, as explained in the text, it is so late that it is effectively a no-vaccination

scenario (see below).
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The calculations are based on Luanda having a population size of 6,543,000, with 38%

of the population having immunity before the epidemic (November 2015). The baseline

scenario characterized what happened in practice between December 2015 and August 2016.

By August 2016, 93% of the population was vaccinated according to the WHO reported

baseline scenarios: (0.93− 0.38)× 6543000 = 3, 598, 650 person doses used.

When the vaccination scheme was delayed by 60 days, in August 2016, 91% of the

population was vaccinated. Thus,

Delay by 60 days: (0.91− 0.38)× 6543000 = 3, 467, 790 person doses used.

Similarly, when the vaccination scheme was delayed by 120 days, in August 2016, 90.5%

of the population was vaccinated. Thus,

Delay by 120 days: (0.905− 0.38)× 6543000 = 3, 435, 075 person doses used.

Delay by 180 days: (0.54− 0.38)× 6543000 = 1, 046, 880 person doses used.

The total reported observed cases, as well as total deaths, are evaluated by the model

for each different vaccination scenario.

A 180-day delay period is considered a no-vaccination scenario. When taking into

account the extra 20 days required for the vaccine to be effective, anyone vaccinated 180

days after the December 2015, will not gain any protective effect from the vaccination given

the observation study period is only 200 days. The impact of the vaccination goes beyond

the study period. Anyone vaccinated in the last twenty days will change their status from

susceptible to recovered after 15 August 2016 (i.e., the end of the study period).

2.3.5 Vaccination and Vector Control

There are many possible ways to evaluate the effects of a delayed vaccination campaign

when compared to the baseline scenario that was implemented in practice in Luanda. The

approach followed here is to simply delay the exact same baseline scenario (in terms of doses

per week) by a fixed time interval until the end of the observation period arrives. It is

difficult to extend beyond the observation period without introducing an unacceptable rate

of errors. This can be seen in the large confidence intervals for R0 towards the end of the

observation period (see section 2.3.1).
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The results of 60, 120, and 180 days delay of the vaccination campaign for the 2016

yellow fever outbreak are presented in Fig 2.9 for the scenario 1 (ψ = 0.1). The total reported

cases and total deaths are calculated for four vaccination scenarios (including the baseline)

and outcomes are listed in Table 2.3. The 180-day delay is included because it gives an

impression of what might happen when vaccination is unavailable, as mentioned.

The baseline scenario (actual vaccination or 0-delay) results in an estimated 73 deaths

associated with YF in the study period, which matches the observed number. With a 60-day

delay to the vaccination roll-out, YF deaths saved were 2.2-fold of the observed number (see

Fig. 2.9 (a,b)). With a 120-day delay, the YF death saved were 4.5-fold of the observed

number (see Fig. 2.9 (c,d)). With a 180-day delay, YF deaths saved were 5.1-fold of the

observed number (see Fig. 2.9 (e,f)). The latter result is a good approximation to what might

have occurred if there were no vaccination campaign in Luanda up to August 2016. All of

these results show that delaying the vaccination campaign would have greatly enhanced the

epidemic in terms of infectious cases and mortality. We also investigated the “vaccination

delay” situation under different scenarios (see sections 2.4.2 and 2.4.3), and found our main

results of “deaths prevented” largely holds. In addition, we also considered the scenario of

“what if deaths were underreported” (i.e., there was a constant proportion of YF deaths not

reported, see sections 2.4.4 for details), we report our main results are also robust.

A clear feature of the simulated outcomes with delayed vaccination (red lines in Fig. 2.9),

is the noticeable second wave of YF cases and deaths that appear. This feature becomes

even more prominent in a situation of no vaccination (see Fig. 2.9e and 2.9f). Returning to

Figure 2.1, we also see strong signs from the observed time series of YF in Luanda, that the

outbreak may have indeed occurred over two waves. Hence, even with Luanda’s large-scale

vaccination campaign, the multiple-wave feature is noticeable in the observed time series,

which implies considerable fluctuations in the driving force (R0) or other factors.

The multiple-waves may also be in part due to the interference of multiple disease

control strategies. The control efforts on mosquito eradication increased as the number of

YF cases and deaths increased. After the national vaccination campaign began in the first

week of February, 2016, and reported death decreased, the mosquito eradication effort may

have also slowed down (possibly due to limited funding and resources). Additionally, human

reaction in responding to YF deaths (i.e., “recent death-driven” human reaction) could also

be involved in this complex wave-like behavior, as studied in the context of other infectious
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diseases [66, 128], and discussed further in 2.6.1.
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Figure 2.9: Simulation results of scenario 1 under three deferred vaccination campaign sce-
narios: 60 day delay in panels (a,b), 120 day delay in panels (c, d) and 180 day delay in panels
(e,f). Black line with circles denote reported cases (eg., in (a), in the form of square-root)
and reported deaths (in (b), in the form of square-root), red line denotes model simulation
median and blue dashed line is the fitted basic reproduction number, R0. Shaded region
represents 95% range of 1,000 simulations. The vertical dashed line represents initiation of
the vaccination campaign. The number of nodes, nm = 7, is adopted.

Table 2.3: Impacts of vaccination campaign delay under scenario 1: weak infectivity.

Scenario Total reported cases Total deaths
Observed 941 73

Baseline model 1026 [ 540 , 1797 ] 77 [ 35 , 139 ]
60 days delay 3143 [ 1604 , 5584 ] 233 [ 119 , 411 ]
120 days delay 5450 [ 2751 , 9611 ] 400 [ 203 , 724 ]
180 days delay 6242 [ 3139 , 10919 ] 444 [ 226 , 787 ]

2.3.6 Sensitivity Analysis

Results of sensitivity analysis are presented in Fig. 2.10 and indicate how model pa-

rameters impact the basic reproduction number R0 and the death toll. R0 is most sensitive

to vector biting rate (a) and the vectors’ lifespan (µ−1
v ), indicating the importance of the

mosquitoes role in disease transmission. The total deaths are considerably sensitive to the

proportion of severe cases (δ), the case-fatality rate of severe cases (θ) and the initial number

of susceptibles (i.e. the ratio Sh.0/Nh).
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Figure 2.10: The Partial Rank Correlation Coefficients (PRCCs) of basic reproduction num-
ber (panel (a)) and total deaths (panel (b)) with respect to model parameters. Sh.0 denotes
the initial susceptible ratio (Sh.0/Nh). The black circle is the estimated correlation and the
bar represents the 95% C.I.. The ranges of parameters are given in Table 3.1.

2.4 Different model scenarios

2.4.1 Confidence Interval of ρ

Fig. 2.11 shows the maximum log likelihood as a function of reporting ratio ρ. The

95% confidence interval of ρ is (0.52, 0.95) for weak infectivity and (0.51, 0.99) for strong

infectivity.
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2
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function). Panel (a) is under weak infectivity and panel (b) strong infectivity.
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2.4.2 Scenario 2: strong infectivity ψ = 0.5

Fitting results of scenario 2 (strong infectivity) are shown in Fig. 2.3 (c,d). Parameter

estimates are listed in Table 2.2. The estimated basic reproduction number, R0 (see blue

dashed line in Fig. 2.12, rises to over 8.5 at the first peak and exhibits two major waves

during the study period. The estimated reporting ratio for severe YF cases is similar to the

weak infectivity scenario (see Table 2.2).

The results of 60, 120 and 180 days delay of the vaccination campaign are presented

in Fig. 2.12 and Table 2.4.

Table 2.4: Impacts of vaccination campaign delay under strong infectivity scenario.
Scenario Total reported cases Total deaths
Observed 941 73

Baseline model 984 [ 540 , 1537 ] 80 [ 41 , 131 ]
60 days delay 3026 [ 1651 , 4717 ] 238 [ 128 , 378 ]
120 days delay 4522 [ 2465 , 7219 ] 354 [ 194 , 568 ]
180 days delay 4682 [ 2541 , 7312 ] 362 [ 199 , 587 ]
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Figure 2.12: Simulation results (strong infectivity) under deferred vaccination campaign for
60 days in panels (a,b), 120 days in panels (c, d) and 180 days in panels (e,f). The observed
cases (in the form of square-root) given by black circles, model simulation median (in the
form of square-root) is in red and the fitted basic reproduction number, R0, is blue dashed
line. Shaded region represents 95% range of 1,000 simulations. The vertical dashed line
is the time point when the vaccine campaign started. The number of nodes, nm = 7, is
adopted.

For ψ = 0.95, we also examined the outcome when non-severe case relative infectivity

was extremely large (or strong), namely ψ = 0.95. The results so obtained were very similar
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to results for ψ = 0.5. The mean R0 reduced to 2.47 from 2.57, and the infection attack rate

increased to 0.13% from 0.12%. The deaths prevented was almost the same.

2.4.3 Fitting CFR

Here we give results for fitting CFR, rather than fixing CFR to the constant θ =

0.06. The model simulation results are summarized in Table 2.5, Table 2.6, Table 2.7, and

Figs. 2.13, 2.14 and 2.15.
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Figure 2.13: Model fitting results for fitting CFR with weak infectivity (a,b) and strong
infectivity (c,d) of non-severe cases. Panels’ information and color code are same as in
Fig. 2.3. Parameter values are listed in Table 2.5.

Weak infectivity scenario With a 60-day delay to the vaccination roll-out, YF deaths

saved were 2.3-fold of the observed number (see Table 2.6). With a 120-day delay, the YF

death saved were 4.4-fold of the observed number (see Table 2.6). With a 180-day delay, YF

deaths saved were 4.7-fold of the observed number (see Table 2.6).

Strong infectivity scenario With a 60-day delay to the vaccination roll-out, YF deaths

saved were 2.3-fold of the observed number (see Table 2.7). With a 120-day delay, the YF
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Table 2.5: Parameters summary for fitting CFR. X.0 denotes X(t = 0), which is the number
individuals in X class at the beginning of the study period.

Parameters Notation weak strong Type
mosquito biting rate a (per day) 0.5 0.5 fixed

transmission probability from vector to host b 0.4 0.4 fixed
transmission probability from host to vector c 0.5 0.5 fixed

host latent period σ−1
h (days) 4 4 fixed

host infectious period γ−1
h (days) 4 4 fixed

toxic case duration κ−1
h (days) 8 8 fixed

vector latent period σ−1
v (days) 10 10 fixed

vector lifespan µ−1
v (days) 20 20 fixed

severe case proportion δ 0.15 0.15 fixed
non-severe case relative infectivity ψ 0.1 0.5 fixed

severe case CFR θ 0.04 0.04 estimated
number of nodes nm 7 7 estimated

severe case reporting ratio ρ 0.51 0.46 estimated
mean m(t) 〈m(t)〉 6.68 3.12 estimated

over dispersion τ 0.0047 0.0037 estimated
initial susceptible host Sh.0/Nh 0.62 0.62 fixed

initial exposed host Eh.0/Nh 2.9e-07 5e-07 estimated
initial non-severe host Ah.0/Nh 2.9e-07 5e-07 estimated

initial severe host Ih.0/Nh 2.9e-07 5e-07 estimated
initial toxic host Th.0/Nh 2.9e-07 5e-07 estimated

initial recovered host Rh.0/Nh 0.38 0.38 fixed
initial susceptible mosquito Sv.0/Nh 16.26 6.06 estimated

initial exposed mosquito Ev.0/Nh 1.24e-06 1.33e-06 estimated
initial infectious mosquito Iv.0/Nh 1.24e-06 1.33e-06 estimated

mean basic reproductive number 〈R0〉 3.37 2.82 estimated
infection attack rate (%) AR 0.16 0.12 estimated
maximum log likelihood MLL -165.44 -164.52 estimated

Bayesian Information Criterion BIC 391.14 389.3 estimated

Table 2.6: Impacts of vaccination campaign delay (fitting CFR) with weak infectivity of
non-severe cases.

Scenario Total reported cases Total deaths
Observed 941 73

Baseline model 991 [ 535 , 1659 ] 76 [ 36 , 138 ]
60 days delay 3142 [ 1698 , 5255 ] 240 [ 126 , 403 ]
120 days delay 5287 [ 2839 , 8885 ] 396 [ 201 , 676 ]
180 days delay 5514 [ 2974 , 9170 ] 413 [ 223 , 709 ]

death saved were 4.1-fold of the observed number (see Table 2.7). With a 180-day delay, YF

deaths saved were 4.4-fold of the observed number (see Table 2.7).

There were differences in estimates of death prevented, but after considering the width
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Figure 2.14: Simulation results for fitting CFR (weak infectivity) under delayed vaccination
campaign for 60 days in panels (a,b), 120 days in panels (c, d) and 180 days in panels
(e,f) delay. The case is black dotted line, model simulation median is in red and the fitted
basic reproduction number, R0, is blue dashed line. Shaded region represents 95% range of
1,000 simulations. The vertical dashed line is the time point when the vaccination campaign
started. Number of nodes, nm = 7.
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Figure 2.15: Simulation results for fitting CFR (strong infectivity) under delayed vaccination
campaign for 60 days in panels (a,b), 120 days in panels (c, d) and 180 days in panels (e,f)
delay. The case is black dotted line, model simulation median is in red and the fitted basic
reproduction number, R0, is blue dashed line. Shaded region represents 95% range of 1,000
simulations. The vertical dashed line is the time point when the vaccination campaign
started. Number of nodes, nm = 7.
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Table 2.7: Impacts of vaccination campaign delay (fitting CFR) with strong infectivity of
non-severe cases.

Scenario Total reported cases Total deaths
Observed 941 73

Baseline model 1046 [ 593 , 1582 ] 78 [ 40 , 122 ]
60 days delay 3290 [ 1859 , 5030 ] 238 [ 133 , 373 ]
120 days delay 5162 [ 2910 , 7837 ] 372 [ 211 , 580 ]
180 days delay 5638 [ 3205 , 8621 ] 397 [ 224 , 602 ]

of the 95% CI, the differences were small.

2.4.4 Assuming deaths were under-reported (CFR=15%)

To further test the robustness of our conclusion, we assume that deaths were under-

reported. We assume the “actual” YF-related deaths were double the confirmed deaths, so

that the “actual” death toll is 2 × 73 = 146. We then set the CFR = 15%, which is in

line with previous studies in Africa (see “the historic estimate of 200,000 cases and 30,000

deaths annually, which was based on serological survey data obtained from children in Nigeria

between 1945 and 1971 ” of Ref. [115]). Results are summarized in Fig. 2.16 and Tables 2.8

and 2.9. Our key conclusions still hold, namely the deaths prevented are approximately

5,6-fold times the reported “actual” death toll.
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Figure 2.16: Fitting a model with mocked deaths data and CFR = 15%.
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Table 2.8: Impacts of vaccination campaign delay under weak infectivity scenario and CFR =
15%.

Scenario Total reported cases Total deaths
Observed 941 146

Baseline model 938 [ 486 , 1669 ] 149 [ 76 , 264 ]
60 days delay 3425 [ 1736 , 6168 ] 538 [ 263 , 962 ]
120 days delay 5906 [ 2829 , 10529 ] 917 [ 450 , 1678 ]
180 days delay 6266 [ 3104 , 11220 ] 957 [ 481 , 1684 ]

Table 2.9: Impacts of vaccination campaign delay under strong infectivity scenario and
CFR = 15%.

Scenario Total reported cases Total deaths
Observed 941 146

Baseline model 896 [ 431 , 1611 ] 148 [ 69 , 271 ]
60 days delay 3325 [ 1579 , 5846 ] 538 [ 250 , 984 ]
120 days delay 5508 [ 2676 , 9995 ] 910 [ 443 , 1618 ]
180 days delay 6146 [ 2932 , 11034 ] 978 [ 450 , 1779 ]

2.4.5 The basic equations - reporting severe cases

Given the definition for YF reported cases corresponds to severe cases (as opposed to

all infections), we seek the most natural tapping point to identify them in the equations (see

Fig. 2.2 and Eqn. (2.1)). We assume that to be identified as severe, they would have to

reside in the infected compartment for some time. As such we have allowed case reporting

to be proportional to the rate at which individuals move into the toxic phase (γ · Ih). Note

that similar results would be obtained had we let cases be proportional to arise (δ · σ · Eh)

but may induce a time shift of several days which is relatively small.

2.5 Impacts of Temperature and Rainfall

Climatic data for Luanda Angola were obtained from Weather Underground Orga-

nization (https://www.wunderground.com). Fig. 2.17 shows the weekly reported cases and

deaths and daily mean air temperature and rainfall (in mm). Over the study period, the air

temperature decreased and the rainfall concentrated in a few months. There is no evident

association between temperature/rainfall and reported cases/deaths by inspection, except

that the rainfall in April/May might be associated with the second wave in reported cases.

Daily temperature and rainfall are obtained for Luanda airport, Angola. We assume

https://www.wunderground.com
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Figure 2.17: Weekly reported cases and deaths in Luanda Angola (a) and daily mean air
temperature and rainfall (mm) (b).

the mosquito human population size ratio is:

m(t) = mbase(t) + ξ1 · [TEMP(t)−min{TEMP}] + ξ2 · RAIN(t− td) (2.12)

where mbase(t) is an exponential cubic spline function with nm = 7 nodes, TEMP (with

minimum value, min{TEMP}) and RAIN are daily temperature (in ◦C) and rainfall (in

mm) respectively, and ξ1 and ξ2 are parameters to be estimated. A time delay td = 14 days

is considered for rainfall. In this simulation, we integrated the model with a time-step-size

of 1 day. If temperature or rainfall played a significant role, we expect to detect a non-zero

ξ1 or ξ2 with a significantly improved fitting. But the fitting is not improved significantly

(see Fig 2.18 with an estimated ξ1 = 0.05 and ξ2 = 0.2. It appears that rainfall has a slight

and probably minor role. Thus we conclude that the effect of climate factors are likely to be

weak. Rainfall could have a marginal role.

The results of correlation tests between climatic time series and YF time series (see

Table 2.10) shows that none of the correlations are significant.
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Figure 2.18: Fitting results with climate factors: local temperature (a,b) and rainfall (c,d).
Inset panel shows the profile MLL as a function of ξ1. Black line with circles denotes
reported cases, and red line denotes model simulation median, blue dashed line denotes
the fitted basic reproduction number, R0. Inset panel shows the MLL as a function of the
temperature parameter (ξ1). The highest MLL is used in the main panel.

Table 2.10: Correlation results
Correlations weekly cases weekly deaths

weekly temperature −0.1756 (p-value=0.30) −0.2451 (p-value=0.14)
weekly rainfall −0.1659 (p-value=0.33) −0.0740 (p-value=0.66)

weekly rainfall (lagged 14 days) −0.0290 (p-value=0.86) −0.1058 (p-value=0.53)

2.6 Impact of vector control and possible impact of

climate

We discuss how controlling mosquito eradication programs could also substantially

influenced mosquito populations. Note that the government programs on vector control

are often driven by reported cases and deaths. When deaths were reported from a local

community, the vector control team was sent on location for fogging the streets with chemical

spray as a means of destroying mosquitos. Other factors controlling the vector population

might also have an impact. Dr. Moreira has outlined that the WHO’s response was organized

into five different stages and that the reaction and support of the public were varied at

different times from strong resistance to cooperation.
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Dr. Moreira states: “The government set up a task force to lead the response and

launched a five-part plan. The first part was active surveillance. We reinforced laboratory

capacity to allow for early detection and notification of new cases.”

“The outbreak coincided with unusually heavy rains and a severe El Niño weather

pattern. We are also suffering from an economic crisis and poor sanitary conditions. All

these factors created a fertile environment for an increase in the mosquito population. The

outbreak reached its peak in February and has been declining since. We have much more

vaccine now in September 2016 than we had earlier in the epidemic. The response interven-

tions are involving communities successfully. The dry season arrived in May 2016 and since

then the mosquito population has diminished.”

The second cycle The rainy season is between November - May but the most accumu-

lation of rain in Luanda occurs in March - April.

2.6.1 Details of control program

As discussed, major control efforts aimed to control the mosquito vector population

Aedes aegypti (which transmits the YF virus) were ongoing during the observation period.

The Mission Report of the European Centre for Disease Prevention and Control “Assessing

the yellow fever outbreak in Angola” [5] outlines the control efforts.

Suspected case: inspection of the case’s residence and the surrounding homes within a

200 m radius; calculation of larval and adult infestation levels.

Confirmed case: indoor fogging of the case’s residence and surrounding homes within

a 200 m radius.

Neighborhoods with a high infestation level: truck-fogging with cypermethrine, door-

to-door visits to inspect potential breeding sites, Bti application, and informing household

members about control measures for Aedes control.

In remote areas: fogging of residence and surroundings when a resident returned from

Luanda. Information/education/communication messages on household control measures

distributed through various channels to achieve community actions.
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Bti or cypermethrine are not always available because purchase depends on the mu-

nicipality’s priority settings. Application is hampered by the high cost of fuel which needs

to be mixed with the adulticide. The municipal vector control teams are often not aware

of the main Aedes breeding sites or geographical high-risk pockets. Aedes infestation levels

are reaching a Breteau index of 50 to 103 in some geographical pockets while in other areas

no Aedes mosquitoes were present. Only Aedes aegypti has been identified, with neither

Aedes albopictus nor Aedes africanus found. All in all, it remains difficult to determine

the geographical distribution of the vector, the corresponding infestation levels, and the

entomological risk for local transmission.

Vector control/entomology during the epidemic: As confirmation of cases is often only

available after several days, it is essential to ensure that fogging is performed as soon as a

suspected case is detected; waiting for case confirmation results in losing valuable time.

The vector control measure was driven by reported cases (see the above), and also by

reported deaths, but also under limited resources. We, therefore, make the not unreasonable

assumption that R0 may be driven by reported deaths, as has been done in the past in a

number of studies [66, 128]. (It was thought that the CFR of YF could be as high as 47%.

Thus it should not be surprising if there were panic at the initial stage of the outbreak.)

Dr. Moreira’s account of vector control and vaccination

Dr. Moreira has outlined that the WHO’s response was organized into five different

stages and that the reaction and support of the public was varied at different times from

strong resistance to cooperation [178].

Dr. Moreira states: “The government set up a task force to lead the response and

launched a five-part plan. The first part was active surveillance. We reinforced laboratory

capacity to allow for early detection and notification of new cases. The second part was case

management. With the help of Moreira Sans Frontieres, we developed case management

guidelines and distributed these to different provinces because there is no specific treatment

for yellow fever. We also provided health workers with a flowchart indicating six health

facilities where people with severe disease should be referred. By February, about 30% of

some 300 people with confirmed yellow fever had died. After implementing our plan, cases’

fatality dropped to 11%. The third part was mass vaccination, and the fourth was integrated
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vector control measures to lower the density of the Aedes aegypti mosquito that carries yellow

fever, as well as dengue, chikungunya and Zika viruses. The fifth part of the strategy was

risk communication and social mobilization.”

“We began working in Viana, a marketplace attracting people from all over Angola. It

is difficult to control the movement of people and the area has major sanitation problems.

Mosquito density was high, so we carried out a mass distribution of larvicide and a social

mobilization campaign to explain to people how to use it. We also did indoor and outdoor

spraying with insecticides. Initially, we faced resistance: some people kept the larvicide at

home and did not use it. So we asked community leaders to help us persuade people to join

the campaign. As a result of these vector control measures, the mosquito density level fell

substantially.”

“We have been conducting fixed post and mobile vaccination campaigns in 73 districts.

By September 7, around 16 million individuals, 65% of the Angolan population, had been

vaccinated with most of them in reactive campaigns, where local transmission was confirmed.

In addition, 3 million of these individuals were vaccinated in a preventive campaign in August

and September.”

2.7 Conclusion

Using modern likelihood-based statistical inference techniques, it was possible to fit a

vector-host epidemic model successfully to the surveillance data collected for the YF outbreak

in Luanda, Angola in 2016. We were thus able to assess the success of the vaccination

campaign as rolled out in Luanda. While there were in reality 73 deaths reported over the

37-week study period, the model showed that the vaccination campaign saved from death 5.1-

fold of observed deaths and prevented from illness 5.8-fold of observed cases, over the study

period, and no doubt much more if we were to extrapolate beyond the study period. This

was determined by simulating Luanda’s YF outbreak in the absence of any vaccination. The

national vaccination campaign was also found to be timely, in that delaying the availability

of the vaccination any further would have greatly enhanced the epidemic in terms of the

number of YF cases and mortality.

The change in the number of YF cases over time in Luanda suggests the possibility
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that the outbreak occurred in two waves over the 37-week study period. The modelling and

sensitivity analysis demonstrated that this is a robust feature (see section 2.3.3), which would

have become far more prominent had the vaccination campaign been reduced in intensity.

The appearance of waves implies that R0 must oscillate to some degree in time. Reconstruc-

tion of the underlying dynamics reveals that R0 is strongly out of phase with mortality, so

that R0 decreases when the number of deaths increase, and vice versa. Thus we hypothesize

that the high death rates and the number of cases influenced Luanda’s population behav-

ioral response which in turn led to some reduction of disease transmission during the years of

high mortality. Behavioral responses may typically involve using more insecticide, mosquito

repellent, insecticide-treated bednets and broader vector-control programs, as outlined in

section 2.6.1. In Luanda, it also involved cordon sanitaire, and movement restriction with

the aim of reducing transmission through the wider population [46].

Such behavioral changes are able to modulate the basic reproduction number, which in

turn can lead to waves in the YF case numbers. A similar phenomenon was reported for the

deadly pandemic influenza (e.g., 1918 influenza pandemic with a fatality rate (per infection)

2% and an attack rate 1/3) [66, 128] but never in mosquito-borne diseases since either the

CFR or the AR is typically low. Moreover, we showed how a simpler model that explicitly

incorporated human behavior reproduces the observed data in Figure 2.1 (see section 2.3.3).

This may be the first example of mortality-driven basic reproduction number in a mosquito-

borne disease outbreak. While this possibility appears to hold in other epidemiological

contexts (e.g., Spanish flu [66, 128]), it would be beneficial to check this further for vector-

host systems. In the case of Luanda’s YF outbreak, R0 is likely to have also been affected by

the sporadic but heavy El Niño rainfall, which in turn could influence mosquito population

numbers. Such a process could occur even if there is no visible long-term correlation between

climate (rainfall) and the vector dynamics.

The modelling approach described here provides a basis for future vaccination campaign

evaluations. Since the YF mortality appeared to lead to oscillations in the basic reproduc-

tion number (R0), this possibility should be considered in the development of short-term

prediction tools of the spread of YF. The general approach should be of benefit in mitigating

the spread and impact of YF outbreaks in the future.



Chapter 3

Modelling Japanese Encephalitis

Virus in Hong Kong

Japanese encephalitis virus (JEV) is a mosquito-borne virus, which causes annual epi-

demics in Southern and Eastern Asia. Human JEV cases could be severe or deadly. Local

JEV human cases were reported in Hong Kong annually in recent years with a skip between

2006 and 2010 (when non-local human cases were reported). However, the mechanism be-

hind the “skip-and-resurgence” behavior of JEV in Hong Kong is unclear, which motivates

the current study. This chapter formulates a refined mathematical model, combined with

modern likelihood-based inference approaches to identify the main factors behind the van-

ishment and reemergence of JEV in Hong Kong. The model indicates that: (a) vector-free

transmission (i.e., without mosquitoes) increases the size of JEV epidemics but is unlikely to

maintain outbreaks among pigs; (b) the vanishment of JEV human case in 2006-10 could be

due to the rapid decrease of local living pigs’ population; (c) the JEV re-emergence could be

due to the invasion of a new JEV strain in 2011, which, increases both the transmissibility

of the virus and/or the spill-over ratio from reservoirs to hosts.

3.1 Introduction

Japanese encephalitis virus (JEV), from the family flavivirus, can cause Japanese en-

cephalitis, one of the deadly infectious diseases popular in southern and eastern Asia, as

the clinical fatality rate was reported as 20-30% [10, 24, 43, 53, 161, 165, 208] and over

53
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35% of children [153]). JEV exists in a transmission cycle among mosquitoes, pigs and/or

water birds which is transmitted to humans through bites from infected female mosquitoes

of the Culex species (mainly Culex tritaeniorhynchus) [10, 16, 43]. Humans are incidental

and dead-end hosts, and can not develop sufficient viraemia to infect feeding mosquitoes

[10, 43, 137].

The vertical transmission of JEV exists between mosquitoes and their eggs [202, 203,

214]. Ricklin et al.’s recent study revealed the existence of swine-to-swine, the vector-free,

transmission path among pigs [197]. Vectors’ population increases during spring, peaks in

summer and decreases during fall of each year [199, 201]. Therefore, vertical transmission and

vector-free transmission are believed to be the driving source of next year’s JEV transmission.

Reports from the government of Hong Kong suggest that the seroprevalence of JEV

antibodies among swines throughout rainy season (May-July of each year) is up to 91%

compared with 34% seroprevalence reported throughout the dry season [21]. The seropreva-

lence of JEV antibodies among swines is roughly from 80% to 90% in July and August of

2000-04 (see Fig 2A of [201]). Previous local serological surveys conducted by Hong Kong

government indicate that 23.5% of pig farmers and 5.9% abattoir workers in Hong Kong

are seropositive to JEV antibody, and, by contrast, 0% seropositive cases are reported from

30 blood donors [21]. Although JEV vaccine is reported to have a high effective protection

rate (93.3% by 5 years after injection and estimated 85.5% by 10 years [91]), a review study

estimates that only 2.4% JEV seropositive cases are found from 1,547 serum samples [155],

which indicates that most inhabitants in Hong Kong are immunologically naive to JEV.

One recent vaccine protection rate evaluation on the newly introduce genotype 5 (G5, the

new wild JEV strain) JEV strain conducted by Cao et al. [75] concludes that current JEV

vaccine (G3-based doses) has low protection rate, lower than 50% and even much lower for

pediatric patients against G5 strain.

The recent press on JEV transmission via human blood transfusion in Hong Kong

caught wide media coverage, which, to the best of our knowledge, is the first human-to-

human JEV transmission (of serological level) reported in the world [35]. Counting on the

two JEV cases found in June 2017, 17 local JEV cases in Hong Kong from 2011 to 2016 is

considerably more than that from 2006 to 2010 (with no cases reported). More interestingly,

the observed sustained JEV cases for recent seven years from 2011 to 2017 appear after a

long period of no JEV cases from 2006 to 2010. Considering the decreasing tendency of
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local living pigs from 350,000 in 2004 to 60,000 in 2017 [13, 15, 26, 29, 30], the decrease and

vanishment of JEV cases is expected, but the JEV re-emergence is unexpected. It is pivotal

to investigate the underlining mechanism of this skip-and-resurgence behavior.

Previous work on the skip-and-resurgence pattern of JEV during 1969 and 2004 by

Riley et al. suggested the main reason of JEV vanishment from 1990-2002, with only 1 local

JEV case reported in 1996, was likely due to the lack of local rice production [201] as the

major vectors of JEV breed principally in rice fields [217], and they also proposed that the

reemergence from 2003-04 of JEV could be due to increased awareness of emerging infectious

diseases as there was a huge SARS epidemic in Hong Kong in 2002-03, and local government

indeed strengthened their reporting efforts. However, the mechanism behind the most recent

JEV skip-and-resurgence behavior in Hong Kong is unclear.

The re-emergence of local JEV cases (since 2011) in Hong Kong associated with the

recent blood-transfusion induced infections poses serious public health issues. This chapter

attempts to identify the main factors underlining the observed JEV skip-and-reemergence

pattern, and attributed the reason as the pig rearing policy in 2006 and new JEV strain in-

vasion around 2011. The proposed hypothesis will be justified to be plausible and reasonable

through a simple mathematical model.

3.2 Theoretical Model

3.2.1 Data

The monthly JEV cases during December 2003 and May 2017 are obtained from [17, 21]

for Hong Kong and [22] for mainland China. The weekly JEV cases from December 2003 to

May 2017 of Taiwan are obtained from [23]. Furthermore, the monthly regional mosquito

ovitrap index in Hong Kong from December 2003 to December 2016 is obtained from [20].

Figs. 3.1 and 3.2 show the annual pattern of reported JEV cases and regional mosquito

ovitrap indexes in Hong Kong.

The population information of local living pigs in Hong Kong (Fig 3.3) are obtained

from several governmental reports and local news reports [13, 15, 18, 19, 26, 29, 30, 36, 37].

The rapid decrease in the number of local living pigs, as shown in the vertical grey line in
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Figure 3.1: The skip-and-resurge pattern of Japanese encephalitis epidemics and its cor-
responding factors in Hong Kong from 1980 to 2017. Panel (a) shows the local vegetable
self-support ratio and area (in hectare) of rice fields (dashed line represents estimation).
Panel (b) shows the number of local farm pigs (dashed line represents estimation). Panel
(c) shows the annually reported JEV (local in red and imported in purple).
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Fig 3.3, is mainly due to the pig rearing licences surrender policy posed by the Hong Kong

government in May 2006 [30], under which, a large part of pig farms would terminate rearing

pigs and it was reported that 243 out of the total 265 pig farms applied for turning over the

license.
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Figure 3.3: Local living pigs’ population and daily local living pigs’ consumption in Hong
Kong from Jan 2004 to May 2017. The line and dots (and circles) in purple represent local
living pigs’ population (Np). The line and dots in violet red represent daily local living pigs’
consumption (νpNp). The vertical grey dashed line marks the time point when Hong Kong
government triggered the pig rearing licences surrender policy.
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3.2.2 JEV model

Figure 3.4: The JEV model diagram. Black arrows represent infection status transition
paths, red dashed arrows represent transmission paths and light blue arrows represent the
birth and death of reservoirs (including slaughter). Red compartments represent infectious
classes, and grey compartment is simulated JEV human cases (i.e., Zh or Zi in Eqn. (3.2)).

Ricklin et al.’s recent study reveals the swine-to-swine, that is, the vector-free trans-

mission path of the virus among pigs and also illustrates the existence of JEV convalescent

period (JEV shedding phase) during which JEV can be found at swine oronasal, follow-

ing the infection period (viraemic phase) during which JEV in swine serum is infectious

to mosquitoes [197]. Therefore, the host population (pigs or swine) is categorized into five

classes: susceptible, exposed, infectious, convalescent and recovered ones, with the respective

size denoted as Sp, Ep, Ip, Cp and Rp. Moreover, we consider two transmission routes in the

model, swine-to-swine and vector-borne transmissions. Fig 3.4 shows the model diagram of

the JEV disease transmission paths among reservoirs, vectors and humans. Then the JEV

transmission cycle can be described by the following system (see Eqn. (3.1)).

S ′p = (1− η) ·Bp(t) ·Np − νpSp −
(
λvp + βp ·

Cp
Np

)
Sp,

E ′p =

(
λvp + βp ·

Cp
Np

)
Sp − (σp + νp)Ep,

I ′p = η ·Bp(t) ·Np + σpEp − (γp + νp)Ip,

C ′p = γpIp − (δp + νp)Cp,

R′p = δpCp − νpRp.

(3.1)

The model parameters are summarized in Table 3.1. In this model, the total pig population

Np = Sp + Ep + Ip + Cp +Rp

is time-dependent referring to the observed pigs population in Hong Kong (see the purple
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dashed line in Fig 3.3). Since JEV human infections can not transmit disease to others

[10, 43, 137], we can simply model human cases by directly referring to the pig infections

with a variable spill-over ratio (ρ) in week i ρi (see Eqn. (3.2)):

Zi =

∫
week i

ρiγpIp dt. (3.2)

Table 3.1: Model parameters. In this table, “v→p” and “p→h” denotes JEV is transmitted
from vectors to pigs, and from pigs to humans, respectively.

Parameter Notation Value/Range Remark/Unit Source(s)
Force of transmission λvp time-dependent v→p, per year Eqn. (3.3)
Pig latent period σ−1p 1-2 days [148, 197]
Pig infection period γ−1p 2-4 days [24, 148, 197, 198, 237]
Pig convalescent period δ−1p 1-4 days [197]
Imported infection ratio η 0.43%-1.45% pigs, Nil Eqn. (3.7)
Effective contact rate βp 0.0-0.4 pigs, per days assumed
Pig living period ν−1p 234.0 days Eqn. (3.6)
Pig population Np time-dependent Nil [13, 15, 21, 26, 29, 30]
Spill over ratio ρ time-dependent p→h, Nil Eqn. (3.4)

3.2.3 Parameter estimation

In this subsection, we are going to estimate the force of transmission from vectors

to reservoirs λvp, spill-over rate from reservoirs to hosts ρ, living period of swine ν−1
p , pig

population Np, imported infection ratio η.

Force of transmission from vectors to reservoirs λvp: Theoretically, one can

express λvp as detailed as λvp = aϑvp · IvNp , where a is the mosquito biting rate, ϑvp is the

successful JEV transmission probability per mosquito bite and Iv is the number of infected

mosquitoes. However, in this paper, we are employing a vector-free modelling framework by

simplifying λvp as a function of the mosquito ovitrap index over time. This is justified by

observing that a and ϑvp are constant, while Iv
Np

is roughly proportional to the ovitrap index.

In short, we assume

λvp = k · ω(t) + b (3.3)

where ω is the time series of ovitrap index in Hong Kong, k and b are model parameters

under estimation. The constant b represents the contribution of the vertical transmission
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from adult mosquitoes to their eggs since the average vertical transmission ratio of Culex

tritaeniorhynchus is reported from 12% to nearly 100% [202, 214]. By using Eqn. (3.3), we

also incorporate the case that although the ovitrap index becomes very low or approximately

zero in the dry season, the transmission rate can still be non-zero because of the effect of

vectors’ vertical transmission.

Spill-over rate from reservoirs to humans ρ: In equation (3.2), the reported

JEV human cases are proportional to swine infections weighted with a time-dependent spill-

over rate (ρ) since human JEV infections can not transmit disease to others (i.e., there is no

human-to-human transmission path) [10, 43, 137]. Since human cases are also largely related

to the total number of vectors, we can further model the spill-over rate (ρ) as a function of

ovitrap index:

ρ = ξ · ω(t− τ) (3.4)

where ξ is the infectivity strength parameter under estimation and τ is the summation of

mosquito’s incubation period (6-12 days [150, 150, 214, 222]), human latent period (5-13

days [10, 16, 24]) and case reporting delay. In this chapter, we fix τ = 15 days for simplicity.

In this chapter, to investigate the mechanism of the observed re-emergence of JEV in

Hong Kong after 2011, we are going to use the partitioned spill-over rate with the hypothesis

that JEV re-emergence was due to the invasion of a new JEV strain. This hypothesis will be

validated later through statistical approach. Theoretically, the spill-over ratio (ρ) under the

new JEV strain invasion scenario is significantly higher than the non-invasion scenario, since

the pig population is immune-naive to new strains for the first few years after the invasion.

Following Tien et al.’s cholera modeling study [218], we assume the spill over ratio ρ under

new JEV strain invasion scenario takes the following form

ρ =

 ξ1 · ω(t− τ), t < T0

ξ2 · ω(t− τ), t > T0

(3.5)

where T0 is the starting time instant when new JEV strain invaded. According to [218],

high confidence level of the new strain invasion hypothesis is associated with ξ2 > ξ1 > 0

(or almost equivalently, the average spill-over ratio over time 〈ρ〉 before invasion should be

significantly less than that after invasion). The normal situation without new strain invasion

(Eqn. (3.4)) can be regarded as the special case when ξ1 = ξ2 in Eqn. (3.5).
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Living period of pigs ν−1
p : According to the Hong Kong government [18] and local

press reports [19, 36], the pork consumption is around 265 living local/domestic pigs per

day in Hong Kong from 2016-17. One can also compute, according to dated governmental

report [30], that around 1,450 living local pigs were consumed per day in Hong Kong back to

2004. The total swine population was around 350,000 in 2004-05 [15, 29, 30], around 65,000

in 2012 [13] and around 60,000 during 2016-17 [26]. Therefore, the average living period of

pigs 〈ν−1
p 〉 can be estimated as

During 2004-05 : 〈ν−1
p 〉 =

Np

daily consumptions
=

350000

1450
≈ 241.38 days,

In 2012 : 〈ν−1
p 〉 =

Np

daily consumptions
=

65000

275
≈ 236.36 days,

During 2016-17 : 〈ν−1
p 〉 =

Np

daily consumptions
=

60000

265
≈ 226.42 days.

(3.6)

Taking the average of three numbers, we have the average living period of pigs ν−1
p ≈ 234

days.

Pigs’ population Np: Given the Hong Kong’s daily local living pig consumption is

600-700, with average 650 pigs per day, in 2007 [30] (Fig 3.3), we can infer that total number

of pigs in 2007 is Np = 152100 by using Eqn. (3.6) backwardly. The rapid decrease in the

total rearing number of pigs (from 2006 to 2007) was mainly due to the reduced swine rearing

licenses in earlier 2006 [30], which resulted in that 243 out of the total 265 pig farms applied

for turning over the license. Although the daily living pigs consumption is not included in

the model, given the pigs’ living period, we can infer the population number according to

the daily consumption amount.

Imported infection ratio among swine η: The imported infection ratio (η) can be

computed as

η = 〈IARp〉 ·
γ−1
p + δ−1

p

〈ν−1
p 〉

, (3.7)

where 〈IARp〉 is the average attack rate over the average living period of pigs 〈ν−1
p 〉. Intu-

itively, the proportion of the infectious pigs among all imported living pigs (η) is averagely

the the JEV infection attack rate (IARp) multiplies the probability of the infection is still

on-going (
γ−1
p +δ−1

p

〈ν−1
p 〉

). For example, if γ−1
p = 1.5 days, δ−1

p = 2.5 days, 〈ν−1
p 〉 = 234 days and

〈IARp〉 ∈ [25%, 85%] [16, 145], we can estimate η ∈ [0.43%, 1.45%].
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3.3 Model Validation and Results

3.3.1 Fitting procedures

The JEV cases in Hong Kong are modeled as a Partially Observed Markov process

(POMP), also known as hidden Markov model, with R package “POMP” available at [146].

The Iterated Filtering and plug-and-play likelihood-based inference frameworks are employed

to fit the time series [111, 133, 147]. Furthermore, the Maximum Likelihood Estimate (MLE)

is used to estimate model parameters. To quantify the tradeoff between the goodness-of-

fit of a model and its complexity [205], Bayesian information criterion (BIC) is employed

as a criterion for model comparison. Simulations are performed by deploying the Euler-

multinomial integration method with a fixed time-step one day [48, 133].

The model is first validated with the observed JEV cases in Hong Kong, given knowl-

edge of the swine population information. The mosquito abundance is time-dependent,

smoothed over time line based on the local ovitrap index ω. The time-dependent force of

transmission from vectors to reservoirs λvp and the spill-over rate ρ can then be estimated

through ω.

The monthly observed cases, Ci, are assumed to follow a Poisson distribution (denotes

Poi) with the mean Zi, the real monthly cases modelled by Eq (3.2). Hence, we have

Ci ∼ Poi (λ = Zi) with mean : µi = Zi.

Then the overall log-likelihood function l is given by

l(Θ|C1, . . . , CN) =
n∑
i=1

ln f(Ci|C1:(i−1),Θ)

where Θ denotes the parameter vector under estimation, f(Ci|C1:(i−1),Θ) is the posterior

probability measurement function for Ci given C1:(i−1), which will be numerically computed

by Sequential Monte Carlo (SMC, also known as particle filter) [133], and n denotes the

total number of months during the study period.

The confidence intervals (C.I.) of parameters are estimated based on parameters’ ranges

in Table 3.1 by using the method of profile likelihood confidence intervals [132, 133]. Param-
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eter estimation and statistical analysis are conducted using R (version 3.4.1).

3.3.2 Fitting results

In addition to showing simulation median, we also present annual mean of the model

prediction by the approach in [74], since simulation mean demonstrates fitting results more

consistently when the data are restricted as integers and relatively noisy.

The fitting results of the model under new JEV strain invasion scenario are shown in

Fig 3.5. Estimated results of model parameters are summarized in Table 3.2. Although the

long-term fitting is roughly acceptable due to numbers of local JEV cases are very noisy

(either 0, 1 or 2 per month), the 95% simulation quantile interval covers all observed data,

and the average annual pattern is consistent.
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Figure 3.5: Fitting results of JEV local cases in Hong Kong from 2004 to 2016 under new
JEV strain invasion scenario. Panel (a) and (b) are the scaled force of transmission (from
vectors to pigs, scaled by the population size of pigs) and simulation results from 2004 to
2016 respectively. Panel (c) and (d) are the one-year-average scaled force of transmission
and simulation results from 2004 to 2016 respectively. In panel (a) and (b), black dashed
lines are the scaled force of transmission. In panel (b) and (d), blue lines are the simulation
results, shaded regions are 95% quantile interval from simulation, pink dots are the reported
(observed) JEV local cases and red lines are the smoothed (by loess function) reported JEV
cases. The vertical grey dashed line marks the time point when Hong Kong government
posed the pig rearing licences surrender policy. The vertical dark green dashed line marks
the time point when the new JEV strain introduced to the pigs’ population. The inset panel
shows the maximum log-likelihood (MLL) values of different ks, the red dot with the highest
MLL are selected for fitting in main panels.

We find BIC reduces over 28 units compared to the baseline no invasion scenario, which
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Table 3.2: Summary table of parameter estimation under new JEV strain invasion scenario.
Xp0 denotes the initial proportion of class Xp.

Parameter Notation Value Type Initial status Unit/Remarks
Average force of transmission 〈λvp〉 0.0042 estimated time-dependent per year
Pig latent period σ−1p 1.5 fixed 1-2 days
Pig infection period γ−1p 3 fixed 2-4 days
Pig convalescent period δ−1p 2.5 fixed 1-4 days
Imported infection ratio η 1.0% fixed 0.43%-1.45% Nil
Effective contact rate βp 0.0011 estimated 0.0-0.4 per days
Pig living period ν−1p 234 fixed 234 days
Pig population Np - - time-dependent pigs
Average spill over ratio 2004-10:〈ρ〉 0.0002 estimated time-dependent before invasion
Average spill over ratio 2011-16:〈ρ〉 0.0024 estimated time-dependent after invasion
Average ovitrap index 〈ω〉 0.0564 given time-dependent Nil
Initial susceptible Sp0 0.6818 estimated 45-75% Nil
Initial exposed Ep0 0.001 assumed 0.0-0.25% Nil
Initial infectious Ip0 0.001 assumed 0.0-0.25% Nil
Initial convalescent Cp0 0.001 assumed 0.0-0.25% Nil
Initial recovered Rp0 0.3152 estimated 25-55% Nil
BIC BIC 140.2633 estimated - Nil

is presented in 3.4.1. In order to avoid the over-fitting problem, we also conduct another

invasion scenario where only the force of transmission λvp is partitioned, and find that BIC

is in line with the main results (around 1 unit BIC difference implies almost equivalent

goodness-of-fit). The result of partitioned force of infection with no partition on spill-over

rate as in Eqn. (3.5) is presented in 3.4.2. Furthermore, an additional invasion scenario with

time-dependent λvp and ρ is investigated in 3.4.3, and the difference of BIC is 4.55.

3.3.3 Estimate basic reproduction number of vector-free trans-

mission

According to the next generation matrix method [68, 221], the basic reproduction

number Rpp of pig-to-pig transmission, that is the vector-free transmission route, can be

calculated as

Rpp =
βpγp · (ηνp + σp)

[(1− η)(γp + δp + νp)νp + γpδp](νp + σp)
. (3.8)

It is easy to see that Rpp ≈ βp
δp+νp

when imported infections are rare (η ≈ 0+), both the

incubation and infection periods of JEV in pigs are negligible (σ−1
p ≈ 0+ and γ−1

p ≈ 0+). We

estimate Rpp to be 0.0026 (95% C.I.: [0.00,0.30]) under the invasion scenario (see Fig 3.6).
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Furthermore, the range of effective contact rate (βp ∈ [0.0, 0.4], see Table 3.1 and 3.2) is set

correspondingly to Rpp ∈ [0.0, 1.0].
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Figure 3.6: The estimation result of the basic reproduction number of pig-to-pig transmission
Rpp under new JEV strain invasion scenario with variable ρ. The horizontal blue dashed
line is the 95% confidence threshold from the profiles likelihood approach.

3.3.4 Critical community size

Nasell’s study [181] formulated the approximation of critical community size (CCS)

from simple compartmental models. Although Nasell’s work is based on directly-transmitted

(i.e., transmitted without vectors) diseases, we adopt the idea of CCS approximation formula

for the vector-borne diseases, since the JEV model in this chapter does not include vectors’

compartments (the effects of vector-borne transmission is modelled by parameter λvp in Eqn.

(3.3)). The CCS approximation value can be formulated as

CCS ≈ 2π

ln 2
·
R0 · α1.5

p

(R0 − 1)1.5
(3.9)

where αp = γp+νp
νp

denotes the ratio of the average living period (rearing period for pigs ν−1
p )

to the average duration of infections. Further, the basic reproduction number of pig-to-pig

transmission path Rpp in Eq (3.8) is relatively small compared to the basic reproduction

number of vector-borne transmission path Rvp. If we directly plug in the parameter values

under new JEV strain invasion scenario in Table 3.2 to Eqn. (3.8), Rpp is only 0.0026,

which is much less than Rvp. Rvp is believed to be greater than 1.0, otherwise JEV would

not spread during every rainy season, for example, Khan et al.’s recent modelling study
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estimates Rvp to be 1.2 among pigs [145]. By using the next generation matrix approach

[68, 111], the basic reproduction number is

R0 =
Rpp +

√
R2
pp + 4R2

vp

2
.

Therefore, we further have R0 ≈ Rvp if we ignore the effect of Rpp (i.e., Rpp ≈ 0+ as in

[111]). If we fix ν−1
p = 234.0, set R0 ∈ [1.10, 1.40] and γ−1

p ∈ [2.0, 4.0], then the relationship

among αp, R0 and CCS in Eqn. (3.9) can be illustrated in Fig 3.7.

50

150

250

350

450

550

650

C
rit

ic
al

 C
om

m
un

ity
 S

iz
e:

 C
C

S
 (

x 
1,

00
0)

58 64 70 76 82 88 94 100 106 112 118
1.075

1.105

1.135

1.165

1.195

1.225

1.255

1.285

1.315

1.345

1.375

ap=(g p + np) np

B
as

ic
 R

ep
ro

du
ct

io
n 

N
um

be
r

Figure 3.7: Contour plot of the relationship among critical community size (CCS), αp and
the basic reproduction number R0. Color code from green (the lowest CCS) to gray (the
highest CCS) is shown on right.

We can further predict that CCS is around 150,000, which is the rough number of

local living pigs in Hong Kong after the rearing license surrender policy [30] (note that the

number of local living pigs was from 60,000 to 80,000 since 2008, see Fig 3.3), which could

explain the local JEV case vanishment from 2006 to 2010 in Hong Kong.

Moreover, for the invasion scenario, we find that the force of transmission λvp can

largely increase after the introduction of new JEV strain with the fixed spill-over rate ρ.

The fitting results of the partitioned force of infection, with no partition on spill-over rate,

are presented in the 3.4.2, which yields an almost equivalent goodness of fitting as in the

previous case.

We also test the partitioned λvp and ρ scenario in 3.4.3. Although the fitting result is

not as good as that predicted with the invasion scenario case, it is still significantly improved

compared to the baseline no invasion scenario since BIC has improved 24 units. We find the
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estimated force of transmission λvp also increases after introducing new JEV strain (see the

Table in 3.4.3). Therefore, with increased R0, CCS level would become lower than the local

living pigs’ population level (see Fig 3.7), which explains the reemergence of JEV cases.

3.4 More Fitting Results Under Different Scenarios

3.4.1 Baseline fitting results

In this case, the force of transmission from mosquitoes to pigs is set as

λvp = k · ω(t) + b

where ω is the time series of ovitrap index in Hong Kong, k and b are model parameters

under estimation. The baseline fitting results of the model are shown in Fig 3.8. Estimated

results of model parameters are in Table 3.3.
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Figure 3.8: Fitting results of JEV local cases in Hong Kong from 2004 to 2016 under baseline
scenario. Panels’ information and color code are same as in Fig. 3.5.
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Table 3.3: Summary table of model parameters’ estimates under baseline scenario. Xp0

denotes the initial proportion of class Xp.

Parameter Notation Value Type Initial status Unit
Average force of transmission 〈λvp〉 0.0019 estimated time-dependent per year

Pig latent period σ−1p 1.5 fixed 1-2 days
Pig infection period γ−1p 3 fixed 2-4 days

Pig convalescent period δ−1p 2.5 fixed 1-4 days
Imported infection ratio η 1.0% fixed 0.43%-1.45% Nil

Effective contact rate βp 0.0098 estimated 0.0-0.4 per days
Pig living period ν−1p 234 fixed 234 days

Pig population Np - - time-dependent pigs
Average spill over ratio 〈ρ〉 0.0008 estimated time-dependent Nil
Average ovitrap index 〈ω〉 0.0564 given time-dependent Nil

Initial susceptible Sp0 0.5847 estimated 45-75% Nil
Initial exposed Ep0 0.001 assumed 0.0-0.25% Nil

Initial infectious Ip0 0.001 assumed 0.0-0.25% Nil
Initial convalescent Cp0 0.001 assumed 0.0-0.25% Nil

Initial recovered Rp0 0.3123 estimated 25-55% Nil
BIC BIC 168.7009 estimated - Nil

3.4.2 Fitting results of partitioned force of transmission

In this case, fixing the spill-over ratio, we assume the force of transmission under new

JEV strain invasion scenario is

λvp =

 k1 · ω(t) + b, t < T0

k2 · ω(t) + b, t > T0

(3.10)

where T0 is the starting time instant when new JEV strain joined the system. The situation

with no invasion of new strains can be regarded as the special case that k1 = k2 in Eqn.

(3.10).

The fitting results of the new JEV strain invasion scenario with variable force of trans-

mission are shown in Fig 3.9. Estimated results of model parameters are in Table 3.4. The

estimate of Rpp is 0.0053 (95% C.I.: [0.00,0.31]) under the invasion scenario with partitioned

force of transmission (see Fig (3.10)).
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Figure 3.9: Fitting results of JEV local cases in Hong Kong from 2004 to 2016 under new
JEV strain invasion scenario with variable force of transmission (λvp). Panels’ information
and color code are same as in Fig. 3.5.
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Figure 3.10: The estimation result of the basic reproduction number of pig-to-pig transmis-
sion (Rpp) under new JEV strain invasion scenario with variable λvp. The horizontal blue
dashed line is the 95% confidence threshold.

3.4.3 Fitting results of partitioned λvp and ρ

For partitioned λvp and ρ, similar to (3.10), we also assume ρ is increased after new

strain invasion as:

ρ =

 ξ1 · ω(t− τ), t < T0

ξ2 · ω(t− τ), t > T0

where τ is the time delay and T0 is the starting time instant when new JEV strain joined

the system. The force of transmission (λvp) is modelled as in Eqn. (3.10).

The fitting results of the new JEV strain invasion scenario with increased λvp and ρ

after invasion are shown in Fig 3.11. Estimated results of model parameters are in Table
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Table 3.4: Summary table of model parameters’ estimates under new JEV strain invasion
scenario with variable force of transmission (λvp). Xp0 denotes the initial proportion of class
Xp.

Parameter Notation Value Type Initial status Unit/Remarks
Average force of transmission 2004-10:〈λvp〉 0.0044 estimated time-dependent before invasion
Average force of transmission 2011-16:〈λvp〉 0.1763 estimated time-dependent after invasion

Pig latent period σ−1p 1.5 fixed 1-2 days
Pig infection period γ−1p 3 fixed 2-4 days

Pig convalescent period δ−1p 2.5 fixed 1-4 days
Imported infection ratio η 1.0% fixed 0.43%-1.45% Nil

Effective contact rate βp 0.0022 estimated 0.0-0.4 per days
Pig living period ν−1p 234 fixed 234 days

Pig population Np - - time-dependent pigs
Average spill over ratio 〈ρ〉 0.0003 estimated time-dependent Nil
Average ovitrap index 〈ω〉 0.0564 given time-dependent Nil

Initial susceptible Sp0 0.5767 estimated 45-75% Nil
Initial exposed Ep0 0.001 assumed 0.0-0.25% Nil

Initial infectious Ip0 0.001 assumed 0.0-0.25% Nil
Initial convalescent Cp0 0.001 assumed 0.0-0.25% Nil

Initial recovered Rp0 0.4203 estimated 25-55% Nil
BIC BIC 141.2743 estimated - Nil

3.5. The estimate of Rpp is 0.014 (95% C.I.: [0.00,0.31]) under this scenario (see Fig 3.12).

3.5 Discussion

This chapter develops a simple mathematical model to investigate the mechanisms to

derive the skip-and-resurgence pattern of Japanese encephalitis virus in Hong Kong. The

critical community size (CCS) estimated through the model indicates that the pig rearing

licence surrender policy in May 2006 could be responsible for the JEV vanishment during

2006-10. Compared to the results of baseline scenario (see 3.4.1), our hypothetical fitting

results imply that the re-emergence of JEV in 2011 was likely due to the introduction of new

JEV strains.

We estimate the basic reproduction number Rpp of pig-to-pig vector-free transmission

route to be 0.0026 (95% C.I.: [0.00,0.30]). Although the vector-free JEV transmission exists

[197], which can increase the epidemic size and prolongs the outbreak, JEV is unable to

spread among pigs without vectors.

By implementing the Mann-Whitney U-test approach, Riley et al. suggests the JEV
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Figure 3.11: Fitting results of JEV local cases in Hong Kong from 2004 to 2016 under new
JEV strain invasion scenario with both variable λvp and ρ. Panels’ information and color
code are same as in Fig. 3.5.
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Figure 3.12: The estimation result of the basic reproduction number of pig-to-pig trans-
mission (Rpp) under new JEV strain invasion scenario with both variable λvp and ρ. The
horizontal blue dashed line is the 95% confidence threshold.

skip in 1990 was in line with the cease of local rice production in Hong Kong [201] as JEV

vectors principally breed in rice fields [217] (also see Fig. 3.1). Since the cease of local rice

production was due to urbanization in Hong Kong, it is unlikely that the rice production

came back after 2003. Therefore, cease of local rice production is reasonable to explain

the 1990-2002 skip, with only one local JEV case reported in 1996. Riley et al. attributes

the 2003-04 reemergence to the increase of public awareness and improvement of diseases

surveillance system after 2002-03 SARS epidemic [201] (see Fig. 3.1), we also notice that JEV

was included in the local monthly infectious disease reports of Center for Health Protection,

the Hong Kong government since 2004 [16].

In this paper, we claim that the dramatical decrease of local living pigs’ population
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Table 3.5: Summary table of model parameters’ estimates under new JEV strain invasion
scenario with both variable λvp and ρ. Xp0 denotes the initial proportion of class Xp.

Parameter Notation Value Type Initial status Unit/Remarks
Average force of transmission 2004-10:〈λvp〉 0.0043 estimated time-dependent before invasion
Average force of transmission 2011-16:〈λvp〉 0.0071 estimated time-dependent after invasion

Pig latent period σ−1p 1.5 fixed 1-2 days
Pig infection period γ−1p 3 fixed 2-4 days

Pig convalescent period δ−1p 2.5 fixed 1-4 days
Imported infection ratio η 1.0% fixed 0.43%-1.45% Nil

Effective contact rate βp 0.0058 estimated 0.0-0.4 per days
Pig living period ν−1p 234 fixed 234 days

Pig population Np - - time-dependent pigs
Average spill over ratio 2004-10:〈ρ〉 0.0002 estimated time-dependent before invasion
Average spill over ratio 2011-16:〈ρ〉 0.0013 estimated time-dependent after invasion
Average ovitrap index 〈ω〉 0.0564 given time-dependent Nil

Initial susceptible Sp0 0.6470 estimated 45-75% Nil
Initial exposed Ep0 0.001 assumed 0.0-0.25% Nil

Initial infectious Ip0 0.001 assumed 0.0-0.25% Nil
Initial convalescent Cp0 0.001 assumed 0.0-0.25% Nil

Initial recovered Rp0 0.3400 estimated 25-55% Nil
BIC BIC 144.8174 estimated - Nil

could be responsible for the newest 2006-10 JEV skip. Furthermore, with such a low pigs’

population, the newest JEV reemerge from 2011 onwards was probably due to new JEV

strain invasion. Although we can not find local genetic studies to support the new strain

invasion hypothesis, interestingly, following studies present positive side of our hypothesis:

(i) JEV genotype 1 (G1) strain since 2000: As genotypes 1 and 3 occurred principally

in temperate, epidemic areas [165], JEV studies of southeastern Asia reported that genotype

3 (G3) JEV was predominant during the later 20th century, then, G1 strain started replacing

G3 around 2000 and became dominate thereafter [113, 165, 189]. One genetical study (Table

2 of [114]) found that G1 strain was not observed until 2008-10 in the majority of Chinese

regions surrounding Hong Kong. In addition, the immune response of the existing JEV

vaccine (based on G3 strain) against G1 was less pronounced [98, 245]. Thus, it is very

likely that the possible newly introduced JEV strain was from these surrounding Chinese

regions (specifically, it could be due to living pigs imported from mainland China and/or

Taiwan [14]); (ii) JEV genotype 5 strain (G5): Similar JEV epidemics re-emergences

were observed twice in South Korea in 1998 and 2010 (Fig A of [212]). The reemergence in

1998 is likely due to the introduction of G1 strain in the mid-90s [114, 165]. Interestingly, the

first isolated local G5 strain was reported in 2010 in South Korea, matching the reemergence

of JEV in 2010 [215] as the average number of annual JEV cases increased roughly 6- to
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8-fold [212]. This also supports the main results of increasing the spill-over rate (Table 3.2)

and the force of transmission in 3.4.3. The JEV G5 strain was also first isolated in 2009 in

China [114]. The bird migration might bring the new JEV strain from the departure places

(e.g., southeastern China, northern Thailand and/or Vietnam [114, 215]).

Given the almost equivalent goodness of fitting of both results under the invasion

scenario (main results with partitioned ρ and other results with partitioned λvp), there exist

at least three possible explanations to the JEV re-emergence since 2011: (E1) The newly

introduced JEV strain has slightly increased the transmissibility from vectors to pigs, and

largely increased the spill-over ratio from pigs to humans; (E2) The newly introduced JEV

strain has largely increased the transmissibility from vectors to pigs, but the spill-over ratio

from pigs to humans held steady; (E3) The newly introduced JEV strain has increased both

transmissibilities from vectors to pigs and spill-over ratio from pigs to humans.

The symptomatic ratio of JEV can be employed to further refine these factors. Most

JEV infections develop no symptoms, and around 30% of clinical JEV cases die (Table 3.6).

We presume the JEV symptomatic ratio among pigs is in line with that of humans, and

asymptomatic pigs have negligible JEV transmissibility to vectors due to low within-host

viral load.

Table 3.6: Table of symptomatic JEV infection ratio and case-fatal rate (CFR) of JEV with
clinical illness from different sources. The numbers in brackets (i.e., (·)) are the geometric
average of the upper and lower bounds of the ranges.

Symptomatics
Total Infections

(Symptomatic%) CFR = Mortality
Clinical Illness

Source(s)

(0.48%) 0.4%-0.5% 30% [24, 43]
< 1% 20%-30% [10, 53]

(0.81%) 0.33%-2% 25% [161]
(0.63%) 0.1%-4% 25%-30% [165, 208]
(0.63%) 0.1%-4% - [78, 122, 123, 125, 149]

- 35% [176]
- 36.4% (children) [153]

4% (occasionally) - [222]

Our main results are derived from E1 (Fig 3.5). In Table 3.2, we assume the yearly

force of transmission 〈λvp〉 is 0.0042 and fix the proportion of susceptible swine Sp0 to be

68% at the beginning of every year [16, 150, 201], the annually average JEV infection attack
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rate (IARp) among pigs can be roughly calculated as

IARp =
〈λvp〉 · Sp0

Symptomatic%
(3.11)

where Symptomatic% is the JEV symptomatic rate, by which IARp is estimated from 35.26%

to 59.50% (with Symptomatic% ∈ [0.48%, 0.81%]), which is consistent with [16, 145, 201].

The results corresponding to E2 scenario are presented in 3.4.2, where the yearly transmis-

sion rate 〈λvp〉 is set to be 0.0044 and 0.1763 for time instants before and after invasion re-

spectively. The larger yearly force of transmission after invasion, for example 〈λvp〉 = 0.1763,

produces unreasonable IARp (3.4.2), which would be strictly larger than 100%. The mech-

anism E3 implies increase in both λvp and ρ after invasion (see 3.4.3). With Sp0 = 64%,

IARp is increased from the interval [33.98%,57.33%] to [56.10%, 94.67%] after invasion, with

its range being acceptable since Symptomatic% can increase up to 4.0% occasionally [222].

Hence, E1 and E3 are likely to be the real situation of new JEV strain invasion in 2011

while E2 is unlikely since it predicts unrealistic IARp. Comparing E1 with E3, we can see

that CCS is very easy to increase (could be due to transmission seasonality and/or changing

of pigs’ herd immunity to new strain) to local pigs’ population size in scenario E1.

Since the scenario of E1 would not change the value of CCS (but E3 could), we further

propose that E3 is more likely to be the real situation that is responsible for the resurgence

of JEV in Hong Kong. Further work is needed in order to identify the biological mechanisms

regarding to E3.



Chapter 4

Modelling Zika Virus in Northeast

Brazil

Between January 2015 and August 2016, two epidemic waves of Zika virus (ZIKV)

disease swept Northeast region of Brazil. As a result, two waves of Guillain-Barré Syndrome

(GBS), a type of severe acute paralytic neuropathology, were observed in this region. On

the one hand, the mandatory reporting of ZIKV disease was started region-wide in February

2016 which means that the ZIKV cases could be highly underreported (or misdiagnosed as

dengue) before that. On the other hand, the diagnosis and reporting of GBS cases was

most likely reliable given the severity and the easily recognizable symptoms. It is now well-

accepted that those excess GBS cases were mainly induced by ZIKV infection. Thus we

propose to infer the true epidemic of ZIKV cases from the two waves of excess GBS cases.

To reconstruct the epidemic of ZIKV disease is essential to assess the risk of GBS per ZIKV

infection and the risk of microcephaly per ZIKV infection in this region. We modified our

previous ZIKV model to allow the asymptomatic (human) cases of ZIKV infection to be

infectious. We found that the estimate of the infection attack rate is dependent on the

proportion and infectivity of the asymptomatic cases. We found that the overall infection

attack rate of ZIKV could be lower than 50% after the two waves if the asymptomatic cases

were equal or greater than 50% and their infectivity is low.

75
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4.1 Introduction

Since 2013, Zika virus (ZIKV) disease has caused tremendous impact to global public

health and the impact is still ongoing, due to its ability that may induce neurological illness

(e.g. Guillain-Barré Syndrome, GBS) in adults and birth defects (e.g. microcephaly) in

newborns.

French Polynesia A ZIKV wave hit French Polynesia from October 2013 to April 2014

and induced 42 GBS cases and the risk of GBS is about 0.24 per 1,000 ZIKV infections

[76], when the ZIKV infection attack rate was assumed 66%. This risk is 0.32 per 1,000

ZIKV infections when the ZIKV IAR was adjusted to 49% according to a recent serological

study [54]. It was found that the asymptomatic : symptomatic ratio is about 1:1 in general

population and 1:2 among school children [54], and these findings are different from a previous

study in the 2007 ZIKV outbreak in Yap Island during 4.4:1 [93]. The overall attack rate of

the 2007 Yap Island ZIKV outbreak was 1.46% [93].

Following the ZIKV wave, a Chikungunya virus (CHIKV) wave with an estimated

66,000 cases hit French Polynesia from October 2014 to March 2015, and induced 9 GBS

cases [186]. A crude risk of GBS is 0.136 per 1,000 CHIKV infections. Thus a ZIKV infection

is 2.35-fold likely to induce to GBS compared to a CHIKV infections based on the studies

in French Polynesia. No epidemiological cluster of GBS induced by dengue outbreaks had

been reported to our knowledge.

Northeast Brazil The Northeast (NE) region of Brazil is the hardest-hit region in Amer-

ica during the 2015-16 ZIKV outbreak. Three mosquito-borne infections (dengue, ZIKV and

CHIKV) co-circulated and weekly cases are available, so are weekly cases of GBS and micro-

cephaly in NE Brazil [89]. In particular, two waves of ZIKV disease were accompanied by

two waves of reported GBS cases, which suggests an epidemiological association. One wave

of microcephaly cases with a 23-week delay to the first ZIKV wave was reported. The delay

was due to that ZIKV infection in the first trimester are most likely to induce microcephaly

[67, 77, 96, 185]).

A substantial CHIKV wave was also observed during the second ZIKV wave in 2016.

CHIKV could induce GBS with a smaller risk ratio (1 to 2.35) as ZIKV according to previous
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studies [95, 156, 186, 226, 235]. Moreover, a study conducted in Rio de Janeiro (the largest

city in the East region of Brazil) among 345 pregnant women (with rash observed) [67]

revealed that the infection attack rate (IAR) of CHIKV was about 16.87%, and, in contrast,

IAR of ZIKV is 53% according to PCR testing results. In addition, strong cross-protection

between ZIKV and CHIKV was observed, but no cross-protection was observed between

ZIKV and DENV. Thus we suspected that the two wave of excess GBS in NE Brazil was

mainly due to ZIKV outbreaks, due to two reasons: (i) ZIKV is 2.35-fold likely to induce

GBS than CHIKV; (ii) ZIKV IAR could be three times higher than that of CHIKV if we

used Rio de Janeiro study to project the situation in NE Brazil.

The ZIKV cases were almost surely underreported before February 2016 [39]. This can

also be observed from the high number of microcephaly cases (with around 23-week delay)

and GBS cases in contrast to a relatively small number of reported ZIKV cases in 2015 in

NE Brazil. If one ignores the possible regional difference and adopts the 0.032% GBS-ZIKV

risk ratio from French Polynesia 2013-14 [76], one could immediately infer the total cases of

ZIKV given the reported GBS cases for 2015 and conclude that the ZIKV cases were heavily

underreported by whatever stretch in 2015.

The reporting policy of ZIKV had changed in NE Brazil. The microcephaly cases were

also reported with an inconstant reporting criteria [225]. Thus it is not sensible to estimate

Zika infection based on reported microcephaly cases.

Alternatively, if we assume the GBS-ZIKV risk ratio is an unknown constant for NE

Brazil, given the two waves of weekly GBS cases, we could fit a ZIKV model and infer

this ratio. The reporting of GBS was most likely accurate due to its medical (patients are

paralyzed) features [25]. ZIKV was the major source of the excess GBS reports during the

most parts of the two waves [89]. Since the co-circulation and similar symptoms of dengue

fever and ZIKV in the two waves, misdiagnoses of ZIKV could happen [67, 89, 185], but

DENV induced GBS was not reported in these two waves.

In this chapter Mathematical modelling simulation provides a possible way to infer the

epidemic waves of ZIKV (or together with a small proportion of CHIKV). Thus, it is reason-

able to use weekly excess GBS to infer weekly ZIKV infection and the overall IAR of ZIKV.

First, we assume a constant risk ratio between a symptomatic ZIKV case and a reported



78 Chapter 4. Modelling Zika Virus in Northeast Brazil

GBS (ZIKV-GBS ratio in short), denoted as ρ. Namely ρ proportion of the symptomatic

ZIKV infections will lead to reported GBS cases. Second, we simulate our ZIKV model

and fit the model to observed GBS cases and we allow the transmission rate to vary. Using

Iterated Filtering technique, we yield the maximum likelihood estimate of ρ and the overall

IAR of ZIKV during the two waves.

In this chapter, we use the excess GBS cases which are obtained by removing the

normal level of GBS from the raw GBS cases (see details in subsection: Data). As these

excess GBS cases were most likely due to the new factor: ZIKV infection (and to a small

extend CHIKV infection).

4.2 Data and Methods

4.2.1 Epidemic Data

The reported weekly excess (or surplus) GBS cases from NE Brazil, between Jan 2015

and Nov 2016, are kindly provided by Professor Oliveira which was used in [89] (see Fig 4.1).

We observe the GBS-to-ZIKV ratio of 2016 became significantly lower than of 2015, which

is likely due to the under-report of ZIKV epidemic in 2015 [39].

4.2.2 Methods

In previous works [111, 132], we have developed a ZIKV transmission model, which

includes both hosts and vectors, and considers both mosquito-borne transmission and sexual

(human-human) transmission, but we assumed the asymptomatic cases are not infectious.

In this chapter, we allow the asymptomatic cases to be infectious and study the impact on

the estimation of IAR. We applied the plug-and-play likelihood-based inference framework

(see details in Model Framework below). The basic reproduction number (R0) of the model

is derived and estimated. The Partial Rank Correlation Coefficients (PRCC) are adopted

for sensitivity analyses.
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Figure 4.1: The suspected (or reported) ZIKV disease cases, excess (or surplus) GBS cases
and GBS-to-ZIKV ratio in the NE region of Brazil from Jan 2015 to Nov 2016. The red
dotted line represents weekly ZIKV disease cases, the dark blue dotted line represents weekly
surplus GBS cases and the light blue bars are GBS-to-ZIKV ratios. The “major” (with
weekly cases over 1000) chikungunya virus (CHIKV) disease outbreak of 2016 are shaded in
green regarding to CHIKV disease level. The light green area denotes time periods when the
weekly reported CHIKV cases were between 1000 and 5000, green denotes weekly reported
CHIKV cases between 5000 and 7500 and dark green denotes weekly reported CHIKV cases
over 7500. The GBS-to-ZIKV ratios are not plotted out for the start few weeks due to the
scale of ZIKV data are not large enough to compute the ratio.

ZIKV-GBS Model

As in [111], we continue to assume that infected hosts are infectious during the con-

valescent stage to other susceptible hosts through sexual transmission but noninfectious to

susceptible vectors [54, 119, 180]. Fig 4.2 shows the model diagram of the disease transmis-

sion paths. Different from our previous model, instead of assuming exposed cases (latent

period) to be infectious, we assume the asymptomatic cases to be infectious to a weaker

extend compared to symptomatic cases but do not develop to the convalescent stage. This

is reasonable since after all there was ZIKV in their blood and sero-conversion. Therefore,



80 Chapter 4. Modelling Zika Virus in Northeast Brazil

Figure 4.2: ZIKV-GBS model diagram. Black arrows represent infection status transition
paths, red dashed arrows represent transmission paths and the light blue arrows represent the
natural birth and death of vectors. Square compartments represent host’s classes and circular
compartments represent vector’s classes. Red compartments represent infective classes, and
gray compartment is simulated weekly excess GBS cases (ZGBS).

we have following ordinary differential equation (ODE) system (see Eqn. (4.1)).

S ′h = −ab · Iv
Nh

Sh − β ·
ηAh + Ih1 + τIh2

Nh

Sh

E ′h =

(
ab · Iv

Nh

+ β · ηAh + Ih1 + τIh1

Nh

)
Sh − σhEh

A′h = (1− θ) · σhEh − γhAh

I ′h1 = θ · σhEh − γh1Ih1

I ′h2 = γh1Ih1 − γh2Ih2

R′h = γhAh + γh2Ih2

Z
(i)
GBS =

∫
week i

ργh1Ih1 dt

S ′v = Bv(t)− ac ·
ηAh + Ih1

Nh

Sv − µvSv

E ′v = ac · ηAh + Ih1

Nh

Sv − (σv + µv)Ev

I ′v = σvEv − µvIv

(4.1)

where, Sh is susceptible host class, Eh is the host within ZIKV infection latent period, Ah

denotes the asymptomatic host class, Ih1 denotes the infectious host class, Ih2 denotes the

convalescent host class, Rh denotes recovered class and Z
(i)
GBS denotes the simulated weekly

excess reported GBS cases (or surplus) for the ith week during the study period. Sv is

susceptible vector class, Ev is the vector within zika infection latent period and Iv denotes
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infectious vector class. Here, parameter ρ denotes the ratio of reported excess GBS cases

per symptomatic ZVD infections. The model (see Eqn. (4.1)) parameters are summarized

in Table 4.1.

Table 4.1: Summary table of model parameters. “H” denotes hosts and “V” denotes vectors.
“X→Y” denotes ZVD infectious X infects susceptible Y.

Parameter Notation Value/Range Description/Unit Source
Mosquito biting rate a 0.3 - 1.0 per vector·day [51]

Transmission prob. of host b 0.10 - 0.75 per bite [51]
Transmission prob. of vector c 0.30 - 0.75 per bite [80]
Transmission rate by contact β 0.001 - 0.10 per day [111]

Host latent period σ−1h 2 - 7 days [44, 63]
Vector latent period σ−1v 8 - 12 days [51, 65]

Asymptomatic infectious period γ−1h 5 - 10 days assumed
Infectious period γ−1h1 3 - 7 days [63]

Convalescent infectious period γ−1h2 14 - 30 days [119, 180]
Proportion of symptomatic θ (50%) 20% - 80% Nil [54]

Relative infectivity of asymptomatic η 0.0 - 0.99 H→H & H→V, Nil to be estimated
Relative infectivity of convalescent τ (0.3) 0.01 - 0.99 H→H, Nil [111]

Vector lifespan µ−1v 4 - 35 days [51, 80]

Ratio: reported GBS
symptomatic ZVD ρ 0.0075% - 0.05% Nil [54, 76]

Initial host susceptible proportion Sh.0/Nh 0.75 - 0.9999 Nil [111]

In addition,

Nh = Sh + Eh + Ah + Ih1 + Ih2 +Rh

Nv = Sv + Ev + Iv

where, Nh and Nv represent the total number of hosts and vectors respectively, of which Nv

is time-dependent. The population of the Northeastern region of Brazil in 2011 was 53.6

million [40].

For the mosquito population, as we assume mosquitoes population (Nv(t))

Nv = m(t) ·Nh (4.2)

where m(t) is the time-dependent ratio of mosquitoes population to humans population.

We realize this but increasing the susceptible (through birth) when m(t) is increasing, and

removing all susceptible and infectious (through vector control measures) mosquitoes when

m(t) is decreasing. m(t) is realized as an exponential cubic-spline function with certain

nodes which are uniformly distributed over the study period.
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Basic Reproduction Number

Following previous studies [68, 111, 221], we derive the basic reproduction number (R0)

formula by next generation matrix method,

R0 =
Rhh +

√
R2
hh + 4R2

hv

2
(4.3)

where,

Rhh = β·
[
η · 1− θ

γh
+ θ ·

(
1

γh1

+
τ

γh2

)]
and Rhv = a·

√
bcm · θγh + (1− θ)ηγh1

γhγh1

· σv
µv · (µv + σv)

where m is the ratio of mosquitoes to humans population (see Eq 4.2).

Model Framework

The ZIKV epidemics in NE Brazil is modelled as a Partially Observed Markov process

(POMP, also known as hidden Markov model), and we deploy Iterated Filtering and plug-

and-play likelihood-based inference frameworks to fit reported excess GBS cases [111, 133,

147]. The Maximum Likelihood Estimates (MLE) for model parameters are adopted. R

package “POMP” is available via [146].

The mosquito abundance (m) is assumed to be unknown but variable over our study

period, and reconstructed. Given the mosquito abundance (m(t)) is time-dependent, we

allow the basic reproduction number (R0(t)) also to be time-dependent. The parameter

fitting and inference process are rigorously and exhaustively checked. Therefore, the fits of

observed time-series are accurate with high confidence because of the consistency with true

underlying epidemiological processes rather than because of artificial model over-fitting.

Bayesian Information Criterion (BIC) is employed as a criterion for model comparison,

and quantifies the trade-off between the goodness-of-fit of a model and its complexity [205].

The simulations were conducted deploying the Euler-multinomial integration method with

the time-step fixed to be one day [48, 133].

The simulated weekly reported excess GBS cases (ZGBS) are modelled by Eq 4.1. The

corresponding weekly observed GBS cases of the ith week, C
(i)
GBS, are assumed to follow a
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Negative-Binomial (NB) distribution as

C
(i)
GBS ∼ NB

(
n =

1

τ
, p =

1

1 + τZ
(i)
GBS

)
with mean : µi = Z

(i)
GBS (4.4)

where τ denotes an over-dispersion parameter that needs to be estimated.

Finally, the overall log-likelihood function, l, is given by

l
(

Θ|C(1)
GBS, . . . , C

(N)
GBS

)
=

T∑
i=1

lnLi (4.5)

where Θ denotes the parameter vector under estimation, and Li is the probability measure-

ment functions associated with C
(i)
GBS vs. Z

(i)
GBS. T denotes the total number of weeks during

the study period.

We assume that m(t) is an exponential cubic spline function of time with number of

nodes, nm over the study period. Nodes are distributed evenly over the time-domain with

values (mi) that are estimated but restricted between 0 and 20. The range was selected

according to that, as m = 20, R0 = 8.5 (which is higher than the reasonable range of ZIKV

disease’s basic reproduction number [108, 111, 152, 166]) by fixing θ = 0.5, τ = 0.3 and

η = 0.3 (see Table 4.1).

The confidence intervals (C.I.) of parameters are estimated based on parameters’ ranges

in Table 4.1, using the method of profile likelihood confidence intervals [132, 133]. Parameter

estimation and statistical analysis are conducted using R (version 3.3.3).

Sensitivity Analysis

The Partial Rank Correlation Coefficients (PRCC) are adopted for the model’s sen-

sitivity analysis [111]. Firstly, 1,000 random samples are taken for each model parameter

from uniform distributions with parameter ranges as set out in Table 4.1. Secondly, for ev-

ery random parameter sample set, the ZVD-GBS model was simulated to obtain the target

biological quantities (e.g., R0 and the total number of GBS cases in this chapter). Finally,

PRCCs were calculated between each parameter and target biological quantity.
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4.3 Results

4.3.1 Results of Infection Attack Rate

The infection attack rate (IAR) of ZIKV are estimated regarding to total 21 pairs of

(η, θ) (i.e., three different values of θ and seven different values of η). Under high proportion

of symptomatic scenario (i.e., θ = 0.8), the estimated range of IAR is from 35.82% to

48.19% (see Fig 4.3a). Under moderate proportion of symptomatic scenario (i.e., θ = 0.5),

the estimated range of IAR is from 10.26% to 49.02% (see Fig 4.3b). Under low proportion

of symptomatic scenario (i.e., θ = 0.2), the estimated range of IAR is from 0.01% to 15.33%

(see Fig 4.3c).
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Figure 4.3: Infection attack rate (IAR) as a function of the relative infectivity of asymp-
tomatic cases (η) under three scenarios with different symptomatic ratio (θ) fixed to be 0.8
in panel (a), 0.5 in panel (b) and 0.2 in panel (c).

With the proportion of symptomatic infections (θ) fixed, the estimated IAR is increas-

ing (except the result of η from 0.05 to 0.1 and θ = 0.5, which could be due to simulation

error) as η increases. Similarly, the width of confidence intervals (CI) of IAR are also in-

creasing as η becoming larger. Interestingly, we can observe from Fig 4.3 that, given θ fixed,

there appears to be a sub-range of η such that IAR increasing faster (i.e., the increasing

rate of IAR is larger) than other η values. In this chapter, we simply name this observed

sub-range of η to be “η-IAR increasing interval”. For θ = 0.8, η-IAR increasing interval is

from 0.05 to 0.3. For θ = 0.5, η-IAR increasing interval is from 0.1 to 0.5. For θ = 0.2,

η-IAR increasing interval is from 0.3 to 0.7.
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Table 4.2: Summary of parameter estimates. nm, θ, and η are fixed. Since BIC attains
minimum when nm = 6 with η = 0.5, nm = 6 is used for all simulation. AR stands for
infection attack rate of ZVD. ρ stands for the ratio of reported GBS cases to symptomatic
infections. MLE stands for maximum log likelihood.

nm θ η IAR 95% CI ρ 95% CI MLL
6 0.8 0.99 0.4819 ( 9e-04 , 0.8087 ) 1.9e-05 ( 1.1e-05 , 0.010298 ) -160.653
6 0.8 0.7 0.4715 ( 8e-04 , 0.7913 ) 1.9e-05 ( 1.1e-05 , 0.011421 ) -160.684
6 0.8 0.5 0.4594 ( 7e-04 , 0.6951 ) 1.9e-05 ( 1.2e-05 , 0.011421 ) -160.772
6 0.8 0.3 0.4401 ( 6e-04 , 0.6004 ) 1.9e-05 ( 1.4e-05 , 0.012667 ) -160.775
6 0.8 0.1 0.3899 ( 7e-04 , 0.5319 ) 1.9e-05 ( 1.4e-05 , 0.010298 ) -160.777
6 0.8 0.05 0.3676 ( 7e-04 , 0.4521 ) 1.9e-05 ( 1.5e-05 , 0.009285 ) -160.72
6 0.8 1.0e-10 0.3582 ( 8e-04 , 0.4406 ) 1.9e-05 ( 1.5e-05 , 0.008372 ) -160.812
6 0.5 0.99 0.4902 ( 0.001 , 0.9124 ) 3.1e-05 ( 1.7e-05 , 0.015581 ) -160.712
6 0.5 0.7 0.4868 ( 7e-04 , 0.8169 ) 3.1e-05 ( 1.9e-05 , 0.021257 ) -160.857
6 0.5 0.5 0.4781 ( 0.001 , 0.6523 ) 3.1e-05 ( 2.3e-05 , 0.015581 ) -160.895
6 0.5 0.3 0.2923 ( 9e-04 , 0.544 ) 5.2e-05 ( 2.8e-05 , 0.017281 ) -161.002
6 0.5 0.1 0.1019 ( 8e-04 , 0.3916 ) 0.000148 ( 3.8e-05 , 0.019166 ) -161.224
6 0.5 0.05 0.1029 ( 7e-04 , 0.3566 ) 0.000148 ( 4.3e-05 , 0.021257 ) -161.601
6 0.5 1.0e-10 0.1026 ( 9e-04 , 0.3204 ) 0.000148 ( 4.7e-05 , 0.017281 ) -162.062
6 0.2 0.99 0.1533 ( 8e-04 , 0.7246 ) 0.000248 ( 5.2e-05 , 0.048666 ) -160.65
6 0.2 0.7 0.1545 ( 7e-04 , 0.7303 ) 0.000248 ( 5.2e-05 , 0.053975 ) -160.808
6 0.2 0.5 0.0915 ( 7e-04 , 0.5902 ) 0.000416 ( 6.4e-05 , 0.053975 ) -160.91
6 0.2 0.3 0.0321 ( 5e-04 , 0.3133 ) 0.001171 ( 0.00012 , 0.073637 ) -162.159
6 0.2 0.1 1e-04 ( 1e-04 , 2e-04 ) 0.282915 ( 0.186978 , 0.282915 ) -177.93
6 0.2 0.05 1e-04 ( 1e-04 , 2e-04 ) 0.282915 ( 0.229998 , 0.282915 ) -188.368
6 0.2 1.0e-10 1e-04 ( 1e-04 , 1e-04 ) 0.282915 ( 0.282915 , 0.282915 ) -197.022

The range corresponding basic reproduction number (R0) for all pairs (i.e., total

21 pairs) of (η, θ) is from 1.21 to 2.95, which is computed by fixing the average ratio of

mosquitoes to humans as m = 2.0 (which is in the range according to [108]).

Range of Basic Reproduction Number The range of basic reproduction number of

ZVD (R0 is from 1.21 to 2.95) is biologically reasonable regarding to each pair of (η, θ) (see

Table 4.3). The average mosquitoes to humans ratio is fixed to be m = 2.0.

4.3.2 Robustness of IAR Estimation

If only focusing on the time period from Feb to Aug, 2016 (when the official ZIKV re-

porting program has already launched [39]), and further provided CHIKV-GBS : ZIKV-GBS =

1 : 2.35 (note that the number of CHIKV cases was roughly 2.12-multiple of the number
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Table 4.3: Table of ZIKV disease R0 regarding to each pair of (η, θ).

θ
η 0.2 0.5 0.8

1e-10 1.211010 1.968412 2.539856
0.05 1.369865 2.035759 2.561801
0.1 1.512870 2.101087 2.583575
0.3 1.989813 2.345526 2.669037
0.5 2.379394 2.568616 2.752072
0.7 2.718815 2.775473 2.832893
0.99 3.153805 3.053182 2.946523

of ZIKV cases, the data of CHIKV cases can also be found in SI of [89]), one can have a

intuitive calculation of symptomatic ZIKV induced GBS rate (or risk of symptomatic ZIKV

infection to GBS, i.e., ρ = GZ
Z

) by solving:



GC +GZ

Z · rZ
= 0.3040%

GC

C
:
GZ

Z
= 1 : 2.35

C · rC
Z · rZ

≈ 2.12

(4.6)

where GC and GZ is the number of GBS cases induced by CHIKV and ZIKV respectively, C

and Z are the actual number of symptomatic CHIKV and ZIKV infections respectively and

rC and rZ are the reporting ratio of symptomatic CHIKV and ZIKV infections (i.e., reported

cases over total symptomatic infections) respectively. The 0.3040% is the approximated

GBS-to-ZKIV ratio from Fig 4.1 (see light blue bars in 2016). Solving Eqn. (4.6), we have:

ρ =
GZ

Z
≈ 0.3040% · rZ ·

2.35rC
2.12rZ + 2.35rC

, rZ , rC ∈ (0, 1). (4.7)

Fig 4.4 shows the relationship (see Eqn. (4.7)) between symptomatic ZIKV induced GBS

rate (ρ = GZ
Z

) and the reporting rate of symptomatic CHIKV (rC) and ZIKV (rZ).

One reasonable assumption is that we consider the reporting rate of symptomatic

CHIKV and ZIKV to be the same (i.e., rC = rZ = r, then the corresponding values of

ρ are along the diagonal of Fig 4.4) in NE Brazil, then, we can simply derive a theoretical

relationship among IAR, symptomatic (ZIKV and/or CHIKV) reporting rate (r) and weekly
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Figure 4.4: The contour plot of the relationship between symptomatic ZIKV induced GBS
rate (ρ = GZ

Z
) and the reporting rate of CHIKV (rC) and ZIKV (rZ). The axises’ labels are

all presented in percentage scale (%).

reported (ZIKV+CHIKV) cases.

53.6× 106 × IAR× θr = 87× cases

where 53.6× 106 is the population of NE Brazil according to [40] and 87 is the total number

of weeks from Jan, 2015 to Aug, 2016 and cases is the average number of weekly reported

(ZIKV+CHIKV) cases. One can directly calculate from raw ZIKV and CHIKV reported

data (see Fig 4.1 and Supplementary Information of [89]) that cases = 6123.45 for time

period from Feb to Aug, 2016. With ZIKV symptomatic ratio to be 50% (i.e., θ = 0.5) [54],

we have:

53.6× 106 × IAR× 50%× r = 87× 6123.45

IAR× r = 0.0199
(4.8)

With Eqn. (4.8), one can find an explicit relation between ρ and IAR according to Eqn. (4.7)

(under assumption: rC = rZ = r). If we choose the situations that the reduce infectivity

of asymptomatic ZIKV infections to be mildly weaker than symptomatic infections (i.e.,

η ∈ [0.1, 0.3]), which the recent Gao et al.’s work deployed similar treatment with respected

to the reduce infectivity (see the parameter list of [111]), the corresponding IAR is from

10.19% to 29.23%. We can further derive from Eqn. (4.8):

r ∈ [6.81%, 19.53%] (4.9)
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The reporting ratio results are consistent with Kucharski et al.’s previous modeling study of

2013-14 ZIKV outbreak in French Polynesia (8%-22%) [152]. Combining Eqn. (4.7) and 4.9

(note that we have further treat rC = rZ = r in Eqn. (4.7)), the symptomatic ZIKV induced

GBS rate (ρ) is appropriated to be ρ ∈ [0.0109%, 0.0312%], which is in line with one recent

metadata study [76] and one recent serological study [54]. Backwardly speaking, given the

symptomatic ZIKV induced GBS rate (ρ) from 0.0075% to 0.05% according to [54, 76] (see

Table 4.1), one can similarly derive the IAR to be ρ ∈ [6.36%, 42.41%] which is consistent

with our model estimation (see Table 4.2 for detail). Therefore, with reasonable selection of

parameters’ values (i.e., θ = 0.5 and η = 0.1 to 0.3), we robust our IAR estimation results.

4.3.3 Sensitivity Analysis Results

Results of the sensitivity analysis are presented in Fig 4.5, which indicates how model

parameters impact the basic reproduction number (R0) and the total reported GBS cases.

R0 is most sensitive to vectors’ biting rate (a), vectors to hosts ratio (m) and the vectors’

lifespan (µ−1
v , or vectors’ natural death rate, µv), indicating the importance of the mosquitoes

role in disease transmission. The total reported GBS cases are considerably sensitive to the

proportion of symptomatic cases (θ), the ratio (or risk) of excess GBS cases to symptomatic

ZIKV infections (ρ).

4.4 Discussion

In this chapter, we showed that the asymptomatic infections and their infectivity can

be very important in the estimation of infection attack rate (IAR). The proportion of asymp-

tomatic Zika virus disease (ZVD) infections out of all ZVD infections is chosen to be 50%,

based on a recent serological study [54].

Wang et al.’s recent genetic study suggests that the ZIKV strains in Brazil are genet-

ically close to the ZIKV strains of past outbreak in French Polynesia, the ZIKV strains of

both regions are classified into Asian lineage (see Fig 1 of [228]).

The estimated IAR is sensitive to both the proportion of asymptomatic ZIKV infections

as well as their relative infectivity. If the proportion of symptomatic ZIKV infections (θ)
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Figure 4.5: The Partial Rank Correlation Coefficients (PRCC) of basic reproduction
number,R0, (panel (a)) and total GBS cases (panel (b)) with respect to model parame-
ters. Sh(0) denotes the initial susceptible ratio (Sh.0/Nh). The black circle is the estimated
correlation and the bar represents 95% C.I.. The ranges of parameters are given in Table 4.1.

are presumed to be 50% according to recent serological study of French Polynesia [54], the

IAR is estimated to be from 10.19% to 29.23% corresponding to the reduced infectivity of

asymptomatic ZIKV infections (η) fixed at 0.05, 0.1 and 0.3, which also corresponds to a

reasonable symptomatic ZIKV induced GBS rate’s range.

“Ae. aegypti was competent for both viruses with transmission rates up to 73% (ZIKV)

and 21% (CHIKV). A substantial proportion of mosquitoes became saliva-positive for both

viruses (12%), suggesting that Ae. aegypti can transmit both CHIKV and ZIKV via a single

bite. Additionally, co-infections did not influence the infection or transmission rates of either

ZIKV or CHIKV.” [117].

Previous experimental study [236] suggested that moderate saline water can be in favor

of mosquitoes’ oviposition, which could be the reason behind the relatively high ZIKV IAR

in French Polynesia (since FP is surrounded by ocean). The saline water induced mosquito

over-breed situation has been reported in Kaohsiung city, Taiwan, which resulted in a huge

local dengue epidemic [38].
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4.5 Conclusion

The proposed simple mathematical model can successfully reproduce the exceeding

GBS pattern, and further infer the local IAR of ZVD of NE Brazil from 2015-16. The

estimated IAR is sensitive to both the proportion of asymptomatic ZIKV infections as well

as their relative infectivity. Since the estimated ZVD IAR is more likely to be less than 50%,

there still exists likelihood of ZVD outbreak in coming years.



Chapter 5

Modelling Childhood Infection of

Varicella in Shenzhen, China

Varicella (chickenpox) is a highly transmissible childhood disease. Between 2010 and

2015, it displayed two epidemic waves annually among school populations in Shenzhen,

China. However, their transmission dynamics remain unclear and there is no school-based

vaccination programme in Shenzhen to-date. In this chapter, we developed a mathematical

model to compare a school-based vaccination intervention scenario with a baseline (i.e. no

intervention) scenario.

Data on varicella reported cases were downloaded from the Infectious Disease Reporting

Information Management System. We obtained the population size, age structure of children

aged 15 or under, the class and school distribution from Shenzhen Education Bureau. We

developed an Agent-Based Susceptible-Exposed-Infectious-Recovered (ABM-SEIR) Model

that considered within-class, class-to-class and out-of-school transmission modes. The inter-

vention scenario was that school-wide vaccination intervention occurred when an outbreak

threshold was reached within a school. We varied this threshold level from five to ten cases.

We compared the reduction of disease outbreak size and estimated the key epidemiological

parameters under the intervention strategy.

Our ABM-SEIR model provided a good model fit to the two annual varicella epidemic

waves from 2013 to 2015. The transmission dynamics displayed strong seasonality. Our

results suggested that a school-based vaccination strategy could effectively prevent large

outbreaks at different thresholds.

91
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There was a considerable increase in reported varicella cases from 2013 to 2015 in

Shenzhen. The proposed modelling framework provides important theoretical support for

disease control decision making during school outbreaks and the development of a school-

based vaccination programme.

5.1 Introduction

Varicella (chickenpox) is caused by the varicella zoster virus (VZV) of the Herpesviri-

dae family. It spreads by direct contact and airborne droplets [134]. Varicella is highly

transmissible during childhood, thus it has the potential to cause outbreaks at schools [134].

In China, varicella outbreaks pose serious public health threats to the school popu-

lations. The National Immunization Program does not cover vaccination against varicella,

and they are only available as self-paid vaccines for children between one and 12 years of age

[105]. Varicella uptake rate remains low in China, and most children only receive a single-

dose vaccine [6], which, according to a recent meta-analysis, is only about 81% effective [167].

In October 2015, China introduced a two-child policy to replace its one child policy [244].

This policy change has led to increase in fertility rate and is expected to increase the future

size of school populations. Thus, it is imminent to examine public health control strategies

of varicella among schools in Shenzhen, China.

Transmission dynamics of infectious diseases had been investigated in previous stud-

ies. [160, 210, 211, 241]. Several studies had explored the impact of vaccination on varicella

transmission [70, 71, 187, 223]. These studies applied a Who-Acquired-Infection-from-Whom

(WAIFW) contact matrix, combined with age-specific transmission parameter following the

methodology of Wallinga et al. [227], was primarily used empirical age-specific social con-

tact data of European populations but failed to account for the class and school structure

of student populations. Jackson et al. developed two mathematical models to study the

effects of school holidays on the spread of varicella, and found that there were 22% to 31%

reduction in student contacts during summer holidays, that led to a lower rate of varicella

transmission [140]. A surveillance study was conducted at elementary schools, found school

nurse surveillance and tracking of varicella cases are effective in lowering annual varicella

incident cases [157].
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In this chapter, we modelled the transmission dynamics of varicella among school chil-

dren in 2013-2015 in Shenzhen, China. We considered two scenarios: (i) baseline (no inter-

vention) scenario; (ii) school-based vaccination scenario, where all students within a school

were vaccinated once the number of varicella cases were beyond a stated threshold. Here, an

Agent-Based Susceptible-Exposed-Infectious-Recovered(ABM-SEIR) Model was developed,

and we showed that reasonable modelling estimates could be achieved with this model by

specifying individual level and group-level contact patterns [138, 171, 179]. This paper is

structured as follows: First, we described the data source, model population and model

structure. Next, we described the model parameters and model fitting. It is then followed

by the estimation of reproduction number under different intervention scenarios. Lastly, we

discussed the implications of our findings.

5.2 Data and Methods

5.2.1 Data

The varicella reported cases were obtained from Infectious Disease Reporting Informa-

tion Management System in Shenzhen, China, on a weekly basis from 2010 to 2015. These

reported cases included both clinically diagnosed cases and laboratory confirmed cases, which

were voluntarily reported by local medical doctors. In Fig 5.1, we show the weekly reported

cases per 1,000,000 population, and an increasing trend is observed from 2013 to 2015. The

reported cases show a peak-to-trough pattern from school terms to school holidays. We also

collected data on the monthly total number of school outbreaks from January 1, 2010 to De-

cember 31, 2015 from Shenzhen Center for Disease Control and Prevention (SZCDC). The

school outbreaks were reported under a compulsory surveillance system. A school outbreak

is defined as five or more varicella cases within a seven day period that occurs at a school

or kindergarten.

In Fig 5.2, we used a locally weighted scatterplot smoothing model (LOESS) to show

the monthly school outbreaks from 2010 to 2015. We found that both reported cases and

school outbreaks displayed two epidemic waves annually. Apparently, the trend in weekly

reported cases lagged behind the school outbreaks.
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Figure 5.1: Number of weekly varicella confirmations from 2010 to 2015 per 1,000,000 pop-
ulation in Shenzhen from 2013 to 2015. Weekly population is computed using loess model.
School holidays are shaded in yellow.
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Figure 5.2: Weekly number of varicella confirmations in each year from 2010 to 2015, per
1,000,000 population. Weekly varicella cases is computed using LOESS model.

In Fig 5.3, we show the number of varicella school outbreaks from 2010 to 2015 in

a boxplot. We could see that there are two epidemic peaks in April and November and a

trough in July and August annually.

Fig 5.4 shows the distribution of varicella incidence in different districts from 2013 to

2015. We observe higher varicella incidence near Luohu which borders Hong Kong. There

were substantial geographical variations. Information about the population size of those

ages under 15, age structure and distribution of the number of classes and schools were

downloaded from the website of Shenzhen Education Bureau [7].
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Figure 5.3: Boxplot of the number of varicella school outbreaks from 2010 to 2015, which
displays similar patterns as in Fig 5.2. The number of school outbreaks per 30 days is
displayed, to adjust for the variations of the number of days in each month.

Figure 5.4: Varicella incidence distribution in Shenzhen by district from 2013 to 2015. The
shade represents the levels of varicella incidence, cases are per 100,000 population within
each district.

5.2.2 Target Population

Our model population consisted of individuals from 0 to 15 years old in Shenzhen, as

varicella primarily affects this age range. We did not consider the effects due to Herpes Zoster

caused by VZV because of its extremely low incidence within this age range. For the school

populations and the students’ age, class and school structure, we made adjustments including

approximation and averaging to the official data [7]. Table 5.1 displays the distribution of

the adjusted number of schools, classes and students by types of school.
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Table 5.1: A summary table of the adjusted average number of schools, classes, and distri-
bution of students in Shenzhen. Students per class, Nj,i, was given by Eqn. (5.2)). The
information was obtained from Shenzhen Education Bureau [7].

Age groups (years) 0 - 3 4 - 6 7 - 12 13 - 15
Student status Pre-school Kindergarten Primary school Secondary school

Schools in Shenzhen 300 1500 550 250
Classes per school 25 10 24 20

Students per class: Nj,i 20 30 45 60
Proportion: pj 0.1004 0.3012 0.3976 0.2008

Note: The age group from 0 to 3 years consist of mainly pre-school children. Therefore, “schools in

Shenzhen” actually reflects the number of street blocks, “classes in school” represent the number of

communities per street block and “students per class” refers to the number of children in that age group

within each community [138].

5.2.3 Model Structure

We developed an ABM-SEIR model for school students in Shenzhen. The overall model

structure could be conceptualized as follows: students are nested within classes, classes

within schools, and schools within Shenzhen’s school students population. A classical SEIR

compartmental model was fitted to each class, while considering the different age structures

and grade levels.

Students ∈ Classes ⊂ Schools ⊂ Shenzhen

Within-class Transmission

As there were frequent social contacts and interactions with other classmates during a

school day, each class was treated as a group-level unit for human-to-human transmission.

Thus we applied a SEIR model to each class, and the classes were expressed as the following

set of non-linear ordinary differential equations (ODE):

dS

dt
= −θ(a) · βSI

dE

dt
= θ(a) · βSI − σE

dI

dt
= (1− η) · σE − γI

dR

dt
= ησE + γI

(5.1)
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Here, S, E, I and R denoted the number of Susceptible, Exposed, Infected and Recov-

ered individuals respectively. The total number of students in each class was given by:

Nj,i = S + E + I +R (5.2)

where, j denotes the jth school and i denoted the ith class within the jth school.

The other parameters were as follows: average transmission rate (β), average infectious

rate (σ), average recovery rate (γ) and beta multiplier (θ(a)), the last of which was dependent

on the student’s age (a). η was the average rate of losing infectiousness due to hospitalization,

medical treatment or contact isolation [158].

We did not consider birth and death processes in the model, since our study period was

relatively short compared with the average lifespan. The epidemiological effects of seasonal

oscillations in birth rates were negligible [130]. Furthermore, once a student recovers from

varicella, he or she would be immunized for 20 to 40 years, which is much longer than our

study period. In effect, students entering the Recovered (R) compartment left the system.

Class-to-class Transmission

The next level of transmission would be class-to-class varicella transmission which

involved social contacts and mixing of students between different classes. Such activities

include assembly gathering, having meals at school canteens, taking school buses and at-

tending extra-curricular activities. We adopted the same operational definition by SZCDC

and previous studies [6, 70, 157], where an outbreak threshold was reached when there were

five or more varicella cases within a class, i.e. Ilimit = 5 cases.

The spread rate, δ, between classes was low under current disease control measures.

Otherwise, large outbreaks could occur among school populations.

Out-of-school Transmission

The third level of transmission would be out-of-school transmission due to student

contacts between different schools. Inter-school activities and private group tutorials would

be examples of such. Also, Shenzhen is a popular city with many tourists, businessmen and
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students visiting every year. Thus it was important to consider imported varicella cases

to Shenzhen. However, the imported rate, τ , would be relatively low because out-of-school

transmission was not a predominant transmission route in our model. Fig 5.2 shows obvious

annual periodicity of the weekly reported varicella cases. These patterns were especially

remarkable from 2013 to 2015. Previous studies attributed these to the seasonality of school

terms [102, 131, 171]. We incorporated this factor in to the ABM-SEIR. Fig 5.5 shows the

schematic diagram for the ABM-SEIR describing within-class transmission, class-to-class

transmission and out-of-school transmission within Shenzhen’s school age populations.

Figure 5.5: The structural diagram of the ABM-SEIR in Shenzhen. Within each classes,
SEIR model structure is applied (see ODE system (5.1)). Within a school, if a class
reaches the pre-defined outbreak threshold, there will be possible disease transmission to
non-outbreak classes, to which we name “class-class transmission”. This transmission will
vanish whenever the number of cases in the outbreak classes becomes lower than the outbreak
threshold.

5.2.4 Model Parameters

Del Fava et al. [90] found that varicella transmissibility would be the strongest within

the youngest age groups. Thus we applied a beta multiplier (θ) to represent the relative

transmissibility within each age group (See Table 5.2)

Table 5.2: Table of beta (or β) multiplier (θ) with respect to different age groups
Age groups (year) 0 - 3 4 - 6 7 - 12 13 - 15
beta multiplier (θ) 0.625 1.000 0.750 0.500
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The transmission rate, β, is defined as the probability of a susceptible to be infected

after an effective contact with one infectious individual. This is a time-dependent func-

tion. Class-to-class transmission rate, δ, is estimated according to the best-fitted varicella

transmission model. Table 5.3 summarizes the list of model parameters:

Table 5.3: Summary table of parameters
Parameter Notation Value Source

Latent period σ−1 14 (day) [139]
Infectious period γ−1 7 (day) [139]

Transmission rate β to be estimated -
Beta multiplier θ Table 5.2 [90]

Initial immune percentage R0 65.00% [223]
Initial infectious percentage I0 0.05% [158]

Initial exposed percentage E0 0.00% assumed
Initial susceptible percentage S0 34.95% [1− (E0 + I0 +R0)]

Class-to-class transmission rate δ to be estimated -
Ratio of school cases to total cases ρ 90.00% [71, 193, 223]

Importing rate τ 5.00% assumed
Rate of losing infectiousness η 30.00% [158]

We initialize the ODE system (see Eqn. (5.1)) with the following values:

{S0, E0, I0, R0} = {34.95%, 0.00%, 0.05%, 65.00%}

According to SZCDC [6], it was common for children to be vaccinated or recovered from a

varicella episode before entering schools, thus we assumed R0 to be 65%. As in Lenne et al.,

we assumed the rate of losing infectiousness to be η = 30% [158]. This rate represented the

losses due to medication, contact isolation and/or hospitalization.

5.2.5 Steps for Parameter Estimation

The steps for parameter estimation are outlined as follows (See Algorithm 5.1). We

evenly divide each parameter (Θ = [θ1, · · · , θp]T ) into partitions, which is denoted as total Ki

partitions for the ith parameter. At the initial step, we use the current parameter range (θi ∈[
θ

(L)
i , θ

(U)
i

]
. For each of the total

∏p
i=1 Ki combinations of parameters (θis), the simulation

fitting is being run for N times, where N is a sufficiently large number. We compute

the mean squared error for each run, i.e. m̃sej for the jth combination of parameters.
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After simulating all
∏p

i=1Ki combinations of parameters, we identify the jth parameters

combination Θ̂ = [θ1q1 , · · · , θpqp ]
T that has the smallest m̃sej. (denoted as (MSEmin =

min
{

m̃sej
∣∣j ∈ {1, . . . ,∏p

i=1Ki}
}

)). Parameter ranges are then updated according to the

current best-fitted parameter combination (Θ̂) and the updated ranges are re-applied in the

next step. When an updated range are within the acceptable error level (denoted as εi for the

ith parameter), this parameter estimate is considered as a “acceptable”. It is then output

as a parameter estimate and is used to infer the rest of parameters.

Algorithm 5.1

input: parameter, Θ = [θ1, · · · , θp]T ; runs for simulation, N ; set of parameter index, P = {1, . . . , p};
ranges of parameters, θi ∈

[
θ
(L)
i , θ

(U)
i

]
; number of partitions for parameters, Ki > 2;

error level, 0 < εi < (θ
(U)
i − θ(L)

i ); estimator, Θ̂ = [θ̂1, · · · , θ̂p]T

Do {
For i ∈ P

{Θi} =
{
θi1 = θ

(L)
i , θi2, . . . , θiKi

= θ
(U)
i

}
, with Ki partitions evenly distributed in

[
θ
(L)
i , θ

(U)
i

]
record {Θi}

end For

For each Θ (where, θi ∈ {Θi} with i ∈ P and there are
∏p
i=1Ki combinations of θis)

given Θj , where j ∈ {1, . . . ,
∏p
i=1Ki}, do N runs of simulation

find the median of mean squared error, m̃sej , from N runs of simulation
record (Θj , m̃sej), with j ∈ {1, . . . ,

∏p
i=1Ki}

end For

Find MSEmin

MSEmin = minimum of all m̃sejs, with j ∈ {1, . . . ,
∏p
i=1Ki}

reset Θ̂ = [θ1q1 , · · · , θpqp ]T for the combination of parameter that have achieved MSEmin

end Find

Set parameter range
For i ∈ P

update θ
(L)
i = θi(qi−1) and θ

(U)
i = θi(qi+1), where qi ∈

{
2, . . . , (Ki − 1)

}
If εi > (θ

(U)
i − θ(L)

i )
P = P/{i}

end If
end For

record θ
(L)
i and θ

(U)
i , with i ∈ P

end Set

} While
(
P 6= ∅

)
output: estimator: Θ̂

5.2.6 Model Fitting

Fitting transmission rate

We proposed a continuous linear structure to our beta function:

β(tweek) = c
′

i + ki · tweek
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where, β(tweek) was the transmission rate function, c
′
i was the constant term, ki was the slope

and tweek was the week number of the current year. The subscript i represented the ith week

segment of the school term, which was segregated by two longer school holidays. In China,

summer breaks last for two months from July to August. Winter breaks are usually from

mid-January to mid-February, and takes place around the lunar new year. For convenience,

we converted the beta function into the following form:

β(tweek) = ci + ki(tweek − ti) i ∈ {1, 2, 3, ...,M} & tweek ∈ [ti, ti+1) (5.3)

where ti is the starting week number of the ith week segment in current year and there are

total M week segments in the current year. Since the beta function was continuous within a

year, our model only needed to fit the constant term (ci) at the start of each week segment,

i.e. node, such that, for the ith week segment, the estimated slope is given by:

k̂i =
ĉi+1 − ĉi
ti+1 − ti

(5.4)

where ĉi represents the fitted constant term for the ith week segment and the ti is the starting

week number of the ith week segment.

For each of the M nodes (ci), we assumed they were ranged between 0.00 and 0.50.

The Monte Carlo (MC) method was applied to estimate the best-fitted ĉi which had the

smallest mean squared error.

School Terms

In our model, we divided each school year into M segments (Eqn. (5.3)) according to

the school calendar in China: within a school year there were two semesters, each containing

three segments: school vacation, beginning of semester, and end of semester, resulting in a

total of six segments per year, i.e. M = 6.

The transmission rate (β) between a school term and vacation were different due to

the differences in contact frequencies and patterns [102, 131, 138]. We separated each school

term into two segments for two reasons: (i) decrease in contact between the susceptible and

infected on the onset of an outbreak; and (ii) difference in seasonality due to climatic factors
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such as temperature. Both reasons could lead to a change in the beta function.

Model Simulation

We ran the simulation 1000 times for each node (or ci) combination. The Mean Squared

Error (MSE) was the model fitting criteria between the weekly reported cases number and

the model simulation median. A small number of cases in 2011 and 2012 were ignored, and

the ABM-SEIR was only fitted to the reported cases from 2013 to 2015. The algorithm of

parameter estimation were described in more details in S1 File.

The total number of infection cases, N , in Shenzhen, was given by:

N =

∑
j

∑
iNj,i

ρ
(5.5)

where, Nj,i was given by Eqn. (5.2). The cis’ combination with the smallest MSE was

selected as the best-fitting model, and was adapted to the school-based vaccination scenario.

R software (version 3.3.1.) and Java (version 8) were used for modelling and computa-

tions.

5.2.7 Estimation of Basic Reproduction Number

Within our ABM, an infectious individual at model initialization could induce three

levels of transmission. For the jth age group, the reproduction number for within class

transmission is Rclassj:

Rclassj =
(1− η) · θjβ̄S0nj

γ
(5.6)

The reproduction number for class-to-class transmission, Rc-cj, is:

Rc-cj =
δ̂ · (Nclassj − 1) · Pr(Ij > Ilimit)

γ
(5.7)

For out-of-school transmission, or imported cases, the reproduction number, Rimportj,
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is:

Rimportj = τ(Rclassj +Rc-cj)

= τ
θjβ̄S0nj + δ̂ · (Nclassj − 1) · Pr(Ij > Ilimit)

γ

(5.8)

Based on Eqns. (5.6), 5.7 and 5.8, and by considering the effects from initial immunity

and loss-of-infectiousness rate, the basic reproduction number of the jth age group, R0j, is

derived as follows:

R0j =
Rclassj +Rc-cj +Rimportj

(1−R0)(1− η)

= (1 + τ) ·
θjβ̄S0nj + δ̂ · (Nclassj − 1) · Pr(Ij > Ilimit)

γ · (1−R0)(1− η)
j ∈ {1, 2, ..., J}

(5.9)

where, R0j was the basic reproduction number for the jth age group, θj was the beta

multiplier, and β̄ was the average transmission rate over a one-year period. S0 was the initial

percentage of Susceptible, and we set S0 = 34.95%. δ̂ was the fitted class-to-class spread

rate. ni was the number of students per class of the ith age group, Nclassj was the number

of classes per school for the jth age group (Table 5.1). Ij was the number of secondary

infected cases within a class during the infectious period of the initial infected case, Ilimit

was the pre-defined outbreak threshold, Ilimit = 5 in the ABM, which was also the trigger of

class-to-class transmission. We set R0, the initial percentage of Recovered, to 65.00%. η, the

rate of losing transmissibility, to 30%; τ , the importing rate, to 5%. J was the total number

of age groups, and we have J = 4 in ABM.

Within the probability term, Pr(Ij > Ilimit), we assumed that Ij follows a Binomial

distribution, where Ij ∼ Bino(n = S0nj, p =
θj β̄

γ
). Poisson distribution was not assumed

because Ij should be a finite integer for any given class of ABM.

R0 is given by:

R0 =
J∑
j=1

pjR0j (5.10)

where, R0j was the basic reproduction number for the jth age group. pj was the proportion

of the model population who belonged to the jth age group (Table 5.1).
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5.2.8 Intervention Scenarios

In this chapter, we compared two scenarios:

• “No intervention” (baseline) scenario

• “School-based vaccination” scenario

“No intervention” scenario is the current status quo in Shenzhen. According to the

Shenzhen Education Bureau, specific guidelines for handling varicella outbreaks at schools

are not currently available. The “school-based vaccination” scenario is a hypothetical sce-

nario where a school has reported varicella cases beyond the outbreak threshold level, in

which case vaccination will be applied to all students within that school, except for the

infected or recovered students.

We made simplifying assumptions by considering “single dose” vaccine only. We also

ignored “breakthrough cases” where individuals could still get infected after vaccination

[6, 70, 223], since they are negligible in numbers. Due to the short time period modelled, we

ignored the effects of vaccine waning rate.

5.3 Results

5.3.1 Model Fitting Result

We fitted the reported cases on a weekly basis from 2013 to 2015 in Shenzhen, consid-

ering a summer wave and a winter wave each year. In Fig 5.6, the weekly reported cases

were compared with the simulation median and their 95% CI from the ABM.

The beta function displays similar patterns in spring and fall semesters, and it appears

to be lower during the school holidays than in school terms (see blue-dotted line in Fig 5.6).

Thus, our simulated transmission pattern was biologically reasonable [102, 103, 131]. As

described above, awareness of disease outbreaks and seasonality could explain the turning

point during mid-semester [128].

The best-fitted average class-to-class transmission rate was, δ = 1.0 per class·week.
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Figure 5.6: The ABM simulation results of varicella reported cases in Shenzhen from 2013
to 2015. The simulation median is plotted in red, reported cases are in black dashed line,
the fitted transmission rate, β(t), is the blue line at the bottom and the 95% Confidence
Interval (C.I.) is in grey. School holidays are shaded in yellow.

5.3.2 Estimated Basic Reproduction Numbers

The basic reproduction numbers, R0j, for each age group are shown in Table 5.4. We

could see that there were wide variations in R0j among different age groups. This could be

due to differences in class size (Nj,i) and school sizes (as in Table 5.1), or differences in beta

multipliers, θ(a), among each age group (as in Table 5.2).

Table 5.4: Table of the basic reproduction numbers, R0j, for the jth age group in Shenzhen.

Age groups (years) 0 - 3 4 - 6 7 - 12 13 - 15
R0j 2.4597 6.4670 8.0892 6.6028

Based in Table 5.1, Table 5.4 and Eq 5.10, we estimated the overall basic reproduction

number in Shenzhen as

R0 = 6.73.

Larger R0 was found among older age groups, which was consistent with earlier studies [243].
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5.3.3 Impacts of Intervention and Varying Outbreak Thresholds

on Transmission Dynamics

Fig 5.7 shows the simulation results for the intervention scenario, varying the outbreak

threshold that triggered school-based vaccination from five to ten cases. We found that

school-based vaccination intervention could effectively prevent large varicella outbreaks. Our

results were shown in Table 5.5. By lowering the outbreak threshold, the school-based

vaccination intervention could control the size of outbreaks more tightly. At an outbreak

threshold of 5, varicella outbreaks could be reduced by 37% whereas a large school-level

outbreak could be effectively controlled with a probability of 97%.(see Table 5.5 and panel

(a) of Fig 5.7).
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Figure 5.7: Simulation results with “vaccination” strategy from 2014-2015. The black dashed
line is the confirmed cases which could be regarded as the baseline (i.e. no intervention)
scenario. Simulation median is plotted in blue with 90% C.I. in grey. Panel (a), (b), (c),
(d), (e) and (f) are simulation results with vaccination threshold set to be 5,6,7,8,9 and 10
(cases per week per school) respectively. The red dashed lines are the maximum weekly
varicella cases during the simulation period (blue line), which represents the outbreak size
under different outbreak thresholds.



5.4. Discussion 107

Table 5.5: Summary table of the impact of intervention at various outbreak thresholds
that triggered school-based vaccination. At each threshold level, we defined the “Maximum
outbreak size” as the size of the largest outbreaks from 2014 to 2015, based on the simulation
median. “Case reduction” was the percentage of varicella cases reduced due to the school-
based vaccination strategy. “Reduction in Size of Outbreaks” was the percentage reduction
in the size of the maximum outbreak compared with the baseline scenario. “Proportion of
effective control” was the proportion of simulation runs that have simulated cases smaller
than the reported cases, a proxy measure that the intervention could effectively bring the
number of reported cases under control.

Outbreaks threshold 5 6 7 8 9 10
Maximum outbreaks size 381 435 447 464 461 497

Case reduction 27% 17% 12% 9% 3% 2%
Reduction in size of outbreaks 37% 28% 26% 23% 23% 17%
Proportion of effective control 0.97 0.93 0.89 0.80 0.88 0.75

5.4 Discussion

In this chapter, we developed a ABM-SEIR model to the reported varicella cases from

2013 to 2015 in Shenzhen. Our model adopted three transmission modes: within-class,

class-to-class and out-of-school transmission. We also considered the age structure and an

age-specific transmission rate. Our modelling structure is more biologically reasonable than

previous studies [71, 138, 187, 223].

The key feature of our model was that the fitting of the transmission rate, β(t), was

strictly referred to as the segment of school terms in Shenzhen. The turning points of the

beta function we identified when fitting transmission rate were compared to changes in school

terms. Previous studies have applied more flexible time-dependent functions, such as cubic

spline functions, to fit the beta function. However, cubic spline functions could possibly

result in an over-fitting problem, and in some cases, the trends in transmission rates were

not well-observed [49, 162]. We adopted a linear structure in our model fitting, which

could offer apparent periodic dynamics in the transmission rate. Our fitted transmission

rate function was the same each year, which demonstrates strong seasonality in varicella

transmission (Fig 5.7). The changing dynamics of our fitted beta function were consistent

with previous studies [102, 131, 171]. The annual pattern could be due to the school terms,

seasonal factors (such as weather) and holiday schedules.

The estimated basic reproduction number, R0 = 6.73, was consistent with previous
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works [138, 193, 243], suggesting that our model fitting was biologically reasonable. By

varying the vaccination thresholds (Table 5.5 and Fig 5.7) and re-running the two scenarios,

we show that lowering vaccination thresholds could incrementally lead to more effective

varicella outbreak control. Our results were both logical and biologically reasonable. We

further showed that it was not necessary to conduct school-based vaccination during non-

epidemic periods.

Our results add to the varicella modelling literature in two ways. First, our use of

ABM-SEIR model considered three levels of transmission that were more realistic than the

WAIFW matrix used in previous studies [70, 71, 187, 223]. Second, our transmission rate

function accounted for major school holidays and provided reasonable model fitness.

Our results of the impact of school-based vaccination (Table 5.5) were biological reason-

able and logical, which provided important theoretical support of disease control decision-

making among school population and development of school-based vaccination program.

Our model was subject to some limitations. Household transmission, such as those between

siblings, as well as reactive behavioral responses during a varicella outbreak, such as con-

tact avoidance, taking medications or seeking clinical treatment, were not considered in this

chapter. These factors could have altered the transmission rate function and the modelling

parameters in our ABM-SEIR, and should be a focus in future studies.

5.5 Conclusions

There was a considerable increase in reported varicella cases from 2013 to 2015 in

Shenzhen. Our ABM-SEIR was able to fit the two varicella confirmation waves from 2013 to

2015. The results showed that implementing a school-based vaccination intervention could

effectively prevent large outbreaks at various vaccination thresholds. This chapter provides

important theoretical support for disease control decision making during school outbreaks

and the development of a school-based vaccination programme.



Chapter 6

An Epidemic Model with Theory of

Game on Travelling

The conflict between what is best for the group and what populations do when indi-

viduals act in self-interest is a common research topic in socio-epidemiology. Most previous

research studies how this conflict plays out in a closed population, but visitors can also

play an important role in socio-epidemiology. Here, we study an “epidemiological travelling

game”. Individuals must decide whether or not to travel to an area affected by an infectious

disease outbreak. To balance the benefits of travelling against potential disease risks, we

regard the decision to travel as a game played against other visitors. The game theoretical

framework is combined with an epidemic model to investigate the effects of travel strategies

on local infection control. In contrast to many game theoretical analysis in a closed popula-

tion, we find perfect agreement between individual and group optimal strategies for a broad

range of epidemiologically and economically plausible values. However, extreme conflicts

between individual and group optimal strategies emerge suddenly in other conditions, even

under slight changes in epidemiological or economic conditions. Hence, game theoretical

frameworks may be useful for anticipating when governments need to act during outbreaks

to maximize population utility and when this may conflict with population behaviour.

109
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6.1 Introduction

Visitors may play important roles in infectious disease transmission and spread. They

can serve as susceptible hosts and be infected while staying in one place, and act as mobile

sources of case imports to other populations [69, 86, 231]. On the one hand, more passen-

gers or visitors could lead to substantial benefits of local economy and business. On the

other hand, some infectious diseases spread aggressively in main tourism cities (e.g., Bei-

jing, Hong Kong, Singapore, New York, Toronto), and a large number of passengers could

bring unexpected impacts on public health [86, 97, 126], for example, Severe Acute Respira-

tory Syndromes (SARS) outbreaks in 2003 [62, 81, 124, 163, 190, 204], pandemic influenza

[84, 120, 192], recent Ebola fever [107] and Middle East respiratory syndrome coronavirus

(MERS-CoV) outbreaks. For example, SARS was introduce to population in Beijing, China

by few infected visitors around early March, 2003 [190], which caused a large SARS en-

demic. Enforced travelling restriction could, in contrast, be an effective way to implement

local disease control [52, 62, 127, 135].

Game theory attempts to analyse situations where individuals must make decisions

in a group environment and where individual decisions influence the payoff received by the

others in the group [183]. Many interventions such as vaccination and social distancing create

positive externalities-benefits to those who did not take up the intervention because of herd

immunity. Hence, many previous models have illustrated a conflict or discrepancy between

the optimal individual strategy that maximizes personal interest, and the strategy that is

best for the group as a whole [60, 61, 79, 83, 100, 196]. Although any number of factors

may complicate this picture and have been explored in successive work, these models often

illustrate this conflict occurring across a very broad region of parameter space, covering most

epidemiologically and economically relevant regimes [60, 61, 79, 83]. However, previous works

mostly concerned with individuals making decisions in the same population when the disease

is spreading [57, 60, 61, 109, 196, 232], and did not consider multi-population interactions,

or the strategic considerations faced by a visitor deciding whether to travel to an affected

area during an outbreak.

In the context of travel decisions, game theory can be used to answer questions such as

“whether or not to travel a place during an epidemic”, “what is the optimal decision (to travel

or not) based on individual interests”, and “what should be the optimal control strategy for
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government in response to minimize epidemic risks”. In this work, we incorporate a game

theoretical framework in an epidemic model (based on the classic SIR model) to investigate

the effects of travelling strategies on local disease control. We found the positive relationship

between incoming passengers rate (rate of visitors entering the border of the target place)

and the possibility of passengers being infected during their staying.

Many previous game theoretical analyses of decision-making in epidemiological systems

in a closed population find a significant discrepancy between individual and group optima,

across a broad range of parameter values [57, 60, 61, 79, 83, 100, 109, 232, 233]. In contrast,

for this visitor’s game, we find perfect agreement between individual and group optimal

strategies for a range of epidemiologically and economically plausible values. This agree-

ment can be observed in two forms, namely: both individual and group optimal strategies

completely reject travelling when real or perceived disease risk level are sufficiently high, or

both strategies completely accept travelling when real or perceived disease risk level are suffi-

ciently low (across epidemiologically plausible parameter ranges). Disagreement (or conflict)

between individual visitor strategies and the group optimal strategy are found in two forms,

namely: overload and deficit of visitors, compared to the group optimum. In regions where

disagreement occurs, the disagreement between the individual optimum (corresponding to

a “voluntary entrance” scheme) and the group optimum (corresponding to a “restricted en-

trance” scheme) is significant. During an outbreak, this conflict is likely to appear at any

real or perceived disease risk level. More importantly, in this region, the model outcomes are

highly sensitive to small changes in the infection transmissibility and visitor costs/benefits.

Uncontrolled visitors’ inflow could bring unexpected large-scale outbreaks when disease

risk level suddenly rises even a small amount, and local government’s travel restrictions could

effectively control the disease outbreaks when visitors’ inflow is considered as “overload”

during epidemics. Interestingly, the rate (or efficiency, in term of λ) of the disease risk

information transmission to travelling population is find related to the conflict of interest

between individual visitors and the whole visitors’ population. The faster the disease risk

information is updated, the more likely the conflict of interest could occur. Moreover, disease

risk information being updated faster could effectively avoid visitors’ inflow “overload”, and

thereby stop the outbreak.

The remaining parts of this work are organized as follows. In the next two sections,

we establish the game theory framework to model the individual decision-making process
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that incorporates an epidemic model including both travelling and local populations. In the

subsequent section, the results are presented with detailed discussions. A summary on the

major findings are provided at the end.

6.2 Travelling Game

Individuals in a travelling population (i.e., members of the population making a trav-

elling decision and having the possibility to travel) can move through the following states:

potential visitor→ visitor outside→ visitor inside→ removed visitor. (6.1)

The “potential visitor” corresponds to N1 in Eqn. (6.8), “visitor outside” (i.e., visitor outside

border, ρN1 in Eqns. (6.10)), “visitor inside” (i.e., visitor inside border) correspond to (S1 +

I1 +R1) from Eqns. (6.10), and “removed visitor” means that visitors leave or are removed

from the system. Fig. 6.1 also presents the procedures of a “travelling” individual joining

the epidemic system (i.e., from “potential visitor” to “removed visitor”).

Figure 6.1: The epidemic model diagram. Black arrows represent infection status transition paths

and red dashed arrows represent transmission paths. The light blue arrows represent the natural

birth and death, and green arrows represent the visitors entry and leaving. Square compartments

represent local classes, circular compartments represent visitors (travellers) classes, and the dia-

mond denotes the “decision” procedure of potential visitors. Red compartments represent infective

(or infectious) classes. The light grey area (rounded by grey dashed line) represents “inside bor-

der”. The horizontal black dashed line separated the total population as “local population” (or

local residence) and “travelling population” (as in Path (6.1)).
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6.2.1 Description of the Game

In this travelling game, for simplicity, we suppose every individual receives the same

information and makes decisions (or strategies) in the same way (i.e., equivalent payoff for

the same strategy). An individual can make a decision whether to travel (i.e., “travelling”

strategy) or not to travel (i.e., “non-travelling” strategy) the target place. We use r1 to

denote the perceived payoff of morbidity and/or mortality risk (i.e., the risk of disease, or as

a term of “health cost”) from infection and use r0 to denote the perceived payoff of the risk

of utility loss (as a measurement of “unsatisfactory”) due to the failure of travel. Therefore,

the payoff to an individual playing travelling strategy is presented as

E1 = −α · φ(ρ;P ) · r1, (6.2)

where α is the probability of an attack occurs (α = 1, if the epidemic is ongoing), φ(ρ;P )

is the probability that a visitor becoming infected after an attack if (given) the pre-existing

immunity level in the population is P , and ρ is the overall proportion of visitors of all

travelling-players (i.e., all game participants, the total number of individuals playing trav-

elling or non-travelling strategies). Hence, for a disease with basic reproduction number:

R0 > 1 (defined as: the expected number of secondary cases generated by a typical pri-

mary case during his/her infectious period in an otherwise susceptible population.), we have

φ(ρ;P ) = 0 if parameter P >
(

1− 1
R0

)
(see Fig. 6.2), because an outbreak can not per-

sist when the disease-protecting level reaches
(

1− 1
R0

)
(thus, no visitor will be infected)

[48, 143]. We also have the payoff to an individual playing non-travelling strategy as

E0 = −r0, (6.3)

and note that E0 may, but not necessarily equal to E1.

There exist a mixed strategy (namely, “p strategy”) with a probability p to play trav-

elling strategy (i.e., becoming a visitor), and a probability (1 − p) to play non-travelling

strategy (i.e., becoming a non-visitor, who will not travel after making this decision). The

payoff function can be obtained by mixing the payoff functions of two pure strategies (see

Eqns. (6.2)-(6.3)),
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E(p, ρ;P ) = pE1 + (1− p)E0

= −pαr1 · φ(ρ;P )− (1− p)r0,
(6.4)

and the game will hold unchanged if we scale the payoff function by a constant, thus, we

eliminate one parameter of Eqn. (6.4) by leaving only a relative risk, r = r0
r1

(normally,

0 < r0 � r1 due to the payoff of utility loss, r0 in Eqn. (6.3), should be less than that of

health loss, r1 in Eqn. (6.2), hence 0 < r � 1), and we have

E(p, ρ;P ) = p · [r − αφ(ρ;P )]− r. (6.5)

For convenience, we denote φ(ρ;P ) as φ(ρ) and E(p, ρ;P ) as E(p, ρ) because parameter

P will be fixed for the rest of this work.

6.2.2 Individual Equilibrium

Suppose that a proportion ε (0 < ε < 1) of travelling population would travel with a

probability p (i.e., playing p strategy) and the rest of population (1 − ε) would travel with

a probability q 6= p, then, the overall proportion of visitors (ρ̄) of all travelling-players is

ρ̄ = εp+ (1− ε)q. (6.6)

Therefore, the payoff to individuals playing p strategy (formulated in Eqn. (6.5)) and q

strategy are E(p, ρ̄) and E(q, ρ̄) respectively. The payoff gain (or loss if negative) to an

individual playing p strategy against q strategy is the difference of two payoff functions (see

Eqn. (6.5)),

∆E = E(p, ρ̄)− E(q, ρ̄) = (p− q) [r − αφ(ρ̄)] . (6.7)

Existence of Nash Equilibria The probability of a visitor becomes infected after an

attack (0 < φ(ρ) < 1) must increase strictly (which is in line with [124], please also refer

to Epidemic Model section for details) with a proportion (ρ) of travelling-players choosing
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Figure 6.2: Schematic diagram of Nash equilibria under three situations (panel (a) and (b))
and numerical results of the relation between φ(ρ) and ρ (panel (c)). In order to have a clear
illustration of three kinds of Nash equilibria, panel (a) and (b) show the rough (relations)
trends among φ(ρ;P ), ρ and P . Panel (c) shows the relation between scaled φ(ρ) and ρ under
state E (3) (see Eqn. (6.13)). The scaled φ(ρ) = 1000× φ(ρ). In panel (c), the transparently
blue line are from 1,000 random samples with parameter sets, and the black dotted line is
the result with fixed parameter values. The parameters’ values and ranges can be found in
Table 6.1.

travelling strategy (see Fig. 6.2). Hence, as P fixed, the minimum of φ(ρ) occurs at ρ = 0

and the maximum of φ(ρ) occurs at ρ = 1. Here, we show the existence of the unique Nash

equilibria (by achieving ∆E > 0 of Eqn. (6.7)) under three situations:

• If α ·min{φ(ρ)} = αφ(ρ = 0) > r, αφ(ρ) > r for all 0 < ρ < 1, so for any 0 < ε < 1

of Eqn. (6.6), ∆E > 0 for any q 6= p if and only if p = 0 (such that p − q < 0 for all

0 < q < 1), thus, p∗ = 0 is the unique Nash equilibrium.

• If α ·max{φ(ρ)} = αφ(ρ = 1) 6 r, αφ(ρ) < r for all 0 < ρ < 1, so for any 0 < ε < 1

of Eqn. (6.6), ∆E > 0 for any q 6= p if and only if p = 1 (such that p − q > 0 for all

0 < q < 1), thus, p∗ = 1 is the unique Nash equilibrium.

• If α ·max{φ(ρ)} = αφ(ρ = 1) > r > αφ(ρ = 0) = α ·min{φ(ρ)}, there exist one and

only one p∗ such that αφ(ρ = p∗) = r. For all q < p, we have ρ̄ < p (according to

Eqn. (6.6)) for any 0 < ε < 1 and, similarly, for all q > p, we have ρ̄ > p for any

0 < ε < 1. Hence, for αφ(ρ = 1) > r > αφ(ρ = 0), we always have ∆E > 0 for all

q 6= p if and only if p = p∗, so p∗ is the unique Nash equilibrium such that αφ(p∗) = r.

The various situations of the relationship between αφ(ρ) and r is due to different values of

the pre-existing immunity level in population (i.e., P , also see Fig. 6.2(a)-(b)) and different

values of model parameters (see Fig. 6.2(c) and Table. 6.1).
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Convergent Stability Follow previous work [60], let p be closer than q to p∗ (the unique

Nash equilibrium of Eqn. (6.7)), which means q < p 6 p∗ or q > p > p∗ (note that p

may not necessarily equal to p∗). Given φ(ρ) increases with respect to ρ, if q < p 6 p∗,

(r − αφ(ρ̄)) > 0 for all ε in Eqn. (6.6), thus we have ∆E > 0, and, similarly, we can also

have ∆E > 0 if q > p > p∗ as desired. Therefore, the existed Nash equilibria for all three

scenarios are convergently stable.

6.2.3 Travelling Optimum
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Figure 6.3: The optimal proportion of travelling-players becoming visitors (i.e., ρ∗ cor-
responding to Eqn. (6.9)) during epidemic (i.e., α = 1). Panel (a)-(c) corresponds to
R0 = 1.0, 2.5 and 10.0 respectively. Blue lines are Υ(ρ) in Eqn. (6.9) with respect to
different values of r and red dots are the minima (when ρ = ρ∗) of Υ(ρ), of which ρ ∈ [0, 1].
The values of r are shown on each blue line. The range of R0 and values of other parameters
are in Table 6.1.

On the standpoint of the travelling population, we aim to minimize the overall risk level

of all travelling-players as a whole, which also appears to be the goal of government control.

We further assume that infected visitors do not pass the disease in the origin region, where

the visitors come from (see more details in Discussion section). We can express the expected

risk level due to the possible epidemic and the utility loss from non-travelling strategy in

term of ρ (i.e., the overall proportion of visitors of all travelling-players),

Υ(ρ) = N1 · [ρα · φ(ρ) · r1 + (1− ρ)r0] , (6.8)

where N1 is the ratio of total number of travelling-players to the total local population

capacity (i.e., sum of maximal visitors capacity and the number of local population) and
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other terms have same meaning as in Eqns. (6.2) and (6.3). We can further scale Υ(ρ) by

eliminating N1 (because N1 can be fixed as a constant) and one risk term (replacing r0 and

r1 by r = r0
r1

, similar to the approach from Eqn. (6.4) to Eqn. (6.5)) [61], thus, the expected

overall risk of visitors population is

Υ(ρ) = ρα · φ(ρ) + (1− ρ)r, (6.9)

where all terms have same meaning as in Eqn. (6.5). The optimal travelling proportion (i.e.,

the ratio of successful entered visitors against the total travelling-players, if the government

restriction on border entry is implemented), ρ∗, can be obtained by minimizing Υ(ρ) (see Fig

6.3 as numerical examples with the basic reproduction number R0 = 1.0, 2.5, 10.0) on the

interval ρ ∈ [0, 1], which should correspond to the minimal expected risk based on population

level.

6.3 Epidemic Model

6.3.1 Formulation of Epidemic Model

To achieve a better understanding of infection probability φ(ρ), we develop an epidemi-

ological model based on the standard susceptible-infectious-removed (SIR) model. Individ-

uals are either susceptible (S, can be infected) to the disease, infectious (I, i.e., capable to

transmit disease to susceptible individuals) and removed (R, either recovered or died, and

cannot be infected). Additional susceptible (S1), infectious (I1) and removed (R1) classes

are included as the visitors (this patchy environmental mechanism was proposed previously

in [69, 112, 229, 231]) who are considered to be totally susceptible when joining in the model

system. Fig. 6.1 presents the modelling mechanism of this “local-and-travelling population”

interactive epidemic system. The changing rates of the population in each compartment

correspond to the transmission pattern of the disease (see Eqns. (6.10)). The susceptible

visitors (S1) are further assumed to be subject to the logistic growth.
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S ′ = µ · (1−K1 − S)− βS · (I + I1)

S ′1 = fρ ·
(

1− S1 + I1 +R1

K1

)
− βS1 · (I + I1)− νS1

I ′ = βS · (I + I1)− (γ + µ)I

I ′1 = βS1 · (I + I1)− (γ + ν)I1

R′ = γI − µR

R′1 = γI1 − νR1

(6.10)

where fρ = f(ρ) = ρλN1 represents the rate of travelling entry (i.e., input visitors to the

target place), K1 is the ratio of maximal capacity of visitors to the total population capacity

(i.e., the maximal number of individuals can be contained in the target place) and N1 has

the same meaning as in Eqn. (6.8). K1 controls the upper bound of the magnitude of

visitors in the model system (thus, generally, K1 could be fixed) and N1 is responsible to

the magnitude of potential visitors, for simplicity, we fix N1 in this work. Model parameters

are summarized in Table 6.1. Most of visitors are staying inside border (i.e., in the target

place) for a considerably short period (3 days, see ν−1 in Table 6.1). In model (6.10), since

(S + I + R) + K1 ≡ 1 (i.e., the population threshold, or the total population capacity, is

scaled to unity, 1) and S1 + I1 +R1 6 K1 < 1, we have (S + I +R) + (S1 + I1 +R1) 6 1.

Basic reproduction number Using the next generation matrix method [221], the basic

reproduction number (defined as: the average number of secondary cases generated by one

case joining a completely susceptible population over its infectious period) of the epidemic

model (Eqns. (6.10)) can be derived as

R0 = β ·
[

(1−K1)

γ + µ
+

K1

γ + ν

]
, (6.11)

and thus, β ∝ R0 when other parameters are fixed.

Elimination of Eqn. R′1 Under quasi-steady-state assumption (which is widely adopted

in within-host modelling studies [64, 82]), we replace the term S1+I1+R1

K1
(in model (6.10))

by
S1+(1+ γ

ν )I1
K1

(by forcing R′1 = 0) in order to eliminate equation of R1. This approximation

can be interpreted as that all R1 come from I1 and only γ
γ+ν

of I1 could transit to R1 at

any time (other part of I1 simply leaving the system at rate ν). Thus, R1 6 γ
γ+ν

I1 6 γ
ν
I1
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Table 6.1: Summary table of model parameters. The ranges of parameters are used for
sensitivity analysis.

Parameter Notation Value Range Source(s)

Basic reproduction number R0 2.5† [1.0, 10.0] [116, 159, 170, 234]
Mean period: visitors outside border λ−1 3 days [0.1, 10] [4]

Ratio: travelling-players
population threshold N1 7.5% [5.0%, 15.0%] assumed

Ratio: visitors capacity
population threshold K1 7.0% [5.0%, 15.0%] [1]

Mean infectious period γ−1 5 days [2.0, 10.0] [11]
Mean human lifespan µ−1 70 years fixed -

Mean period: visitors inside border ν−1 3 days [0.5, 15.0] [3]
Relative risk (as in Eqn. (6.5)) r = r0

r1
10−3 [10−4, 10−2] [2]

Probability to travel (as in Eqn. (6.4)) p - [0.0, 1.0] defined
Proportion of visitors (as in Eqn. (6.2)) ρ - [0.0, 1.0] defined

Probability: disease outbreaks occur α 0.01‡ [0.001, 0.02] assumed

The values of disease’s parameters refer to influenza, and ranges of parameters refer to the majority of
infectious diseases.
The values and ranges of parameters related to travel (i.e., K1, r, ν−1 and λ−1) refer to Hong Kong as the
default destination.
† One can determine the function of β against R0 (i.e., β(R0)) explicitly from Eqn. (6.11), and R0 = 2.5 is
also applied to 2003 SARS epidemic according to [62, 81, 124, 190, 200, 204]
‡ α = 1.0 during epidemics.

(both γ and ν are positive), and then, S1 + I1 + R1 6 S1 +
(
1 + γ

ν

)
I1. Since infected (I1)

visitors will quickly join R1 class at the rate γ and the proportion of recovered visitors are

relatively small, term S1 + I1 + R1 is very close to S1 +
(
1 + γ

ν

)
I1. Note that γ

ν
I1 is simply

the upper bound of R1, and, after all, the effects of both I1 and R1 are small (compared

with S1) regarding to the visitors input.

Since equations of R and R1 can be eliminated, we reformulate the epidemic model as,



S ′ = µ · (1−K1 − S)− βS · (I + I1)

I ′ = βS · (I + I1)− (γ + µ)I

S ′1 = fρ ·

[
1−

S1 +
(
1 + γ

ν

)
I1

K1

]
− βS1 · (I + I1)− νS1

I ′1 = βS1 · (I + I1)− (γ + ν)I1

(6.12)

where β is a function of R0 due to Eqn. (6.11).
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6.3.2 Model Equilibria

The disease-free equilibrium (DFE, with I = I1 = 0) is E (1) =
(
S(1), I(1), S

(1)
1 , I

(1)
1

)
=(

(1−K1), 0, fρK1

fρ+νK1
, 0
)

, and in particular, S
(1)
1 = fρK1

fρ+νK1
< K1. The DFE (E (1)) is globally

stable when R0 < 1, but unstable when R0 > 1.

When R0 > 1, there is an endemic, pure non-visitor equilibrium (with S1 = I1 = 0),

E (2) =
(
S(2), I(2), S

(2)
1 , I

(2)
1

)
=
(
γ+µ
β
, µ ·

(
1−K1

γ+µ
− 1

β

)
, 0, 0

)
. Specifically, S(1) = γ+µ

β
is the

reciprocal of R0 of the standard SIR model [143]. E (2) can be realized when fρ in S ′1 (see

Eqns. (6.12)) becomes 0 and it is locally stable.

When R0 > 1, there also exist an endemic equilibrium corresponding to a mixed state

of local and visitor’s infections (i.e., infected visitors), denoted as E (3) =
(
S(3), I(3), S

(3)
1 , I

(3)
1

)
.

The solution of E (3) can be obtained explicitly by taking the non-negative root of [S ′, I ′, S ′1, I
′
1]T =

0 (0 represents the zero vector) with both I, I1 6= 0.

There also exist two special kinds of equilibria: one with only susceptible local popu-

lation (i.e., S 6= 0 and I = S1 = I1 = 0), and another one with only susceptible travelling

population (i.e., S1 6= 0 and S = I = I1 = 0). Since this work aims to study the pattern of

interaction between local and travelling population during epidemics, we ignore these two

types of equilibria.

6.3.3 Infected Probability of Visitors

During an epidemic (i.e., α = 1), for E (3), we have S1 = S
(3)
1 and I = I(3) 6= 0 to be

constant. Thus the probability that a visitor becomes infected after an attack if (given) the

immunity level in the population equals P is, according to Eqns. (6.12), the proportion of

S1 becoming infected versus leaving the place at any time as susceptibles [60],

φ(ρ) =
βS

(3)
1 (I(3) + I

(3)
1 )

βS
(3)
1 (I(3) + I

(3)
1 ) + νS

(3)
1

= 1− ν

β(I(3) + I
(3)
1 ) + ν

,

thus, αφ(ρ) = α− να

β(I(3) + I
(3)
1 ) + ν

,

(6.13)

we also show numerical results of the relation between φ(ρ) and ρ in Fig. 6.2(c). Provided

the relation between β (the effective contact rate) and R0 (the basic reproduction number,
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see Eqn. (6.11)), one can also derive the relation between R0 and φ(ρ) explicitly. Note that

during an epidemic (outbreak, i.e., α = 1), αφ(ρ) = φ(ρ), and in this case, φ(ρ) can directly

reflect the probability of infection after travel.

6.4 Results and Discussion

6.4.1 Results of Individual Equilibrium and Travelling Optimum

During an epidemic (i.e., α = 1), Fig. 6.4(a) shows the relationships between relative

risk (r, see Eqn. (6.5)), basic reproduction number (R0) and individual equilibrium (p∗, see

Eqn. (6.7)), and Fig. 6.4(b) shows the relationships between r (Eqn. (6.5)), R0 and travelling

optimum (or population optimum, ρ∗, Eqn. (6.9)). Other parameters are fixed according to

Table 6.1, and the variations of other parameters’ values do not change the trend of these

relationships.
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Figure 6.4: Individual and population travelling optima, as functions of the basic reproduc-
tion number and the relative risk. Panel (a) shows the relationships between r (Eqn. (6.5)),
R0 and p∗ (Eqn. (6.7)); panel (b) shows the relationships between r, R0 and ρ∗ (Eqn. (6.9))
during epidemic (i.e., α = 1). The value of r is in “log10” form. The color code of the
optimal individuals travelling probability, p∗, and the optimal travelling proportion, ρ∗, are
shown on the color key of each panel. The range of R0 and values of other parameters are
in Table 6.1.

Both individual and population optima have qualitatively the same relationships with

R0 and r, where optima are a monotonically decreasing function of R0, but a monotonically

increasing function r. Besides, the transition from 0 to 1 of individual optimum is sharper

(abrupt) in panel (a) than the transition of population optimum in panel (b).
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For the individual equilibrium (see Fig. 6.4(a)), if the relative risk (r) is fixed, decreasing

the basic reproduction number (R0) increases the individual travelling probability (p∗), which

could be due to some seasonal factors that decline R0. However, the decline of visitors’

perceived knowledge about disease risk (leads to the decline of r1), which could be due to

lack of media coverage on outbreak and relevant education programs [58, 59, 85, 87, 164, 216],

will rise the relative risk (r), thus, rise the optimal individual travelling probability (p∗).

For the travelling optimum (see Fig. 6.4(b)), if the relative risk (r) is fixed, increasing

the basic reproduction number (R0) decreases the optimal travelling proportion (ρ∗), which

could be due to the unnoticed evolution of disease factors such that rising R0. In contrast,

the decline of disease risk (leads to the decline of r1, because disease risk should be positively

related to r1), which could be due to increasing of effective vaccination uptake of potential

visitors (i.e., travelling-players), will rise the relative risk (r), thus, rise the optimal travelling

proportion (ρ∗). Fig. 6.3 also shows the relation of ρ∗ and r with the basic reproduction

number fixed to be 1.0, 2.5 and 10 respectively.

6.4.2 Conflict between Individual Equilibrium and Travelling Op-

timum

In this subsection, local travelling optimum and individual equilibrium are compared

by taking the difference, denoted as ∆ρ, between the optimal local travelling proportion (ρ∗,

based on population level, see Eqn. (6.9)) and probability (p∗, based on individual interest,

see Eqn. (6.7)),

∆ρ = ρ∗ − p∗. (6.14)

During an epidemic (i.e., α = 1), Fig. 6.5 shows the relationships between relative risk

(r, see Eqn. (6.5)), basic reproduction number (R0) and ∆ρ (Eqn. (6.14)). When ∆ρ =

0, both population optimum (ρ∗) and individual equilibrium (p∗) have reached a perfect

agreement such that ρ∗ = p∗ = 0 or 1 (see white area in Fig. 6.5). These two situations

could be attributed to both disease risk (reflected by R0) and perceived disease risk to

be considerably high (corresponding to ρ∗ = p∗ = 0, in which no one intends to travel

and complete restriction of border-entrance should be implemented) or considerably low
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(corresponding to ρ∗ = p∗ = 1, in which everyone would like to travel and there is totally

unrestricted border-entrance). The change in other parameters’ values will not change the

trend of these relationships.
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Figure 6.5: Conflict of interest between individual and population travel optimum as a func-
tion of the basic reproduction number and the relative risk. Panel (a) shows the relationships
between r (Eqn. (6.5)), R0 and ∆ρ (Eqn. (6.14)); and panel (b) shows the relationships be-
tween r and ∆ρ for R0 = 1.0, 2.5, 5.0, 10.0 during epidemic (i.e., α = 1). The value of r is
in “log10” form. In panel (a), the color code of the difference of individual and population
strategy, ∆ρ, is shown on the color key. The white area represents ∆ρ = 0 under two situ-
ations that ρ∗ = p∗ = 0 or 1. In panel (b), ρ∗ is in green, and p∗ is in purple. For both of
panels, the range of R0 and values of other parameters are in Table 6.1.

With large ongoing epidemics, most of the places are expected to be at a deficit of

visitors state in which limited visitor entrance (i.e., only a small proportion of potential

visitors are intend to travel) would be unrestricted (i.e., ∆ρ > 0 and 0 < ρ∗ < 1, see blue

area in Fig. 6.5). If either disease risk (reflected byR0) or perceived payoff to disease risk (r1)

slightly declines (could be due to seasonal factors and/or lack of relevant media coverage),

it could make the conflict of interest (∆ρ) change from ∆ρ > 0 to ∆ρ < 0 (i.e., ρ∗ < p∗). In

this case, local governments are suggested to enhance travelling entrance restriction (with

only ρ∗

p∗
proportion of visitors should be allowed to enter the destination) to achieve minimal

population payoff, see Eqn. (6.9). Otherwise, this could result in an overload of visitors state

(i.e., ∆ρ < 0, see red area in Fig. 6.5).

6.4.3 Numerical Examples

Fig. 6.6(a) shows a numerical example of epidemic worsening as the basic reproduction

number (R0) declines from 2.5 to 2.4 while the enhancement of local travelling entrance
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restriction fails (see the red line), and the outbreak can be effectively controlled if the pre-

vious entrance restriction maintains (i.e., hold ρ = 0.1 unchange, see the green line). The

occurrence of this conflict between local travelling optimum (ρ∗) and individual equilibrium

(which is also the individuals’ optimum, p∗) is due to p∗ being more sensitive than ρ∗ with

respect to R0 and r.
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Figure 6.6: The simulation results of local infections (I) of epidemic model (panel (a) and (b), see

Eqns. (6.12)) and the SARS epidemic in China in 2002-03 (panel (c)). The baseline scenario contains that

initial states are set as [S(0), I(0), S1(0), I1(0)] =
[

1
R0
, 1× 10−4,

(
K1 − 5× 10−6

)
, 5× 10−6

]
; with R0 = 2.5

and ρ = 0.1 for panel (a) and (c), and R0 = 1.1 and ρ = 0.99 for panel (b). Values of other parameters are

in Table 6.1. In panel (a), the blue line is the simulation results under baseline scenario of panel (a); the

green line is of basic reproduction number (R0) decreasing to 2.4 since the 201-st day (vertical green dashed

line); based on the change of green line, the red line is of travelling proportion (ρ) increasing to 0.99 since

the 301-st day (vertical red dashed line). In panel (b), the blue line is the simulation results under baseline

scenario of panel (b); the green line is of basic reproduction number (R0) increasing to 1.2 since the 701-st

day (vertical green dashed line); based on the change of green line, the red line is of travelling proportion

(ρ) decreasing to 0.50 since the 751-st day (vertical red dashed line); based on the change of red line, the

purple line is of travelling proportion (ρ) continually decreasing to 0.10 since the 801-st day (vertical purple

dashed line). In panel (c), the blue line is the simulation results under baseline scenario of panel (c); the

green line is of travelling proportion (ρ) increasing to 0.99 since the 301-st day (vertical green dashed line).

It is plausible that the optimal individual traveling probability, ρ∗ (equivalent to ρ in

Fig. 6.4(a)), could change from 0.1 to 0.99 provided R0 varies from 2.5 to 2.4. This is due

to ρ∗ is considerably sensitive to both R0 and r (see Fig. 6.4(a)), and notice that ρ∗ changes

extremely fast from 0 to 1 within a small range of either R0 or r. However, practically, only

the decline of disease risk (R0) might not cause this conflict immediately (or simultaneously)

because potential visitors (or travelling-players, N1) could be informed with delay (due to
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untimely news or notices, see the gap between the vertical green and red dashed lines in

Fig. 6.6(a)), thus, holding R0 unchanged (also r fixed as default) would not yield decrease

of p∗.

When a place is currently at a state with relatively low epidemic level (i.e., the white

area with ρ∗ = p∗ = 1, in which disease risk, R0, is relatively lower than the perceived

disease risk), local government would consider to adopt border-entrance control measures in

response to the slight rise of epidemic risk (reflected by R0). Fig. 6.6(b) shows a numerical

example of epidemic worsening as the basic reproduction number (R0) slightly rises from 1.1

to 1.2 without any local travelling entrance restriction (see the green line), and the outbreaks

situation can be controlled by even implementing a “non-strict” entrance restriction (see the

red and purple lines). Increasing of either R0 or r1 that leads to ∆ρ > 0, implies individual

equilibrium (p∗) decreases much faster (see Fig. 6.4) than population (i.e., group) optimum

(ρ∗).

Fig. 6.6(c) shows the similar trend as the early stage of SARS epidemic (in Jan - Feb,

2003), which could be mainly due to the increased travelling flow during Chinese new year

(see Fig. 2(a) of Ref. [99]). This indicates the increase of visitors could lead to disease

outbreak.

6.4.4 Example of the 2003 SARS Outbreaks in Beijing

Fig. 6.7(a) shows the reported cases during the 2003 SARS outbreak in Beijing, China

(this figure is revised from Ref. [190]). The time point where knowledge of the epidemic

was first made public (see event “SARS made reportable (Apr 10)” in Fig. 1 of Ref. [190])

is referring to news press [33]. The time point of the official start of restrictions on travel

is referring to the events “outbreak announced publicly by government (Apr 20)” and “fever

check at airport begin (Apr 22)” in Fig. 1 of Ref. [190] (these two events resulted in almost

no one travelling to Beijing, ρ = 0, until the end of SARS [32]).

Fig. 6.7(b) shows an epidemic curve from the model that qualitatively matches the

SARS epidemic curve in Beijing. Ignoring the latent period, we adjust the values of two

parameters (i.e., R0 and ρ, where R0 quantifies disease transmissibility and ρ quantifies

the travelling proportion) qualitatively according to the recorded government policies. The
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(a) The 2003 SARS in Beijing, China
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Figure 6.7: The 2003 SARS outbreak in Beijing, China. Panel (a) shows the reported cases
during 2003 SARS outbreak in Beijing, China (this panel is revised from Ref. [190]); and
panel (b) shows the numerical results of the epidemic model (see Eqns. (6.12)). In both
panels, the vertical lines represent the starting points of events, and the vertical dashed
lines represent the time-points with lag to be 3 days. In panel (a), the epidemic of SARS
and intervention of government are given on timeline from Mar 05 to May 29, 2003. The
back dashed line is the smoothed time series by using loess function. In panel (b), the
initial states are set as [S(0), I(0), S1(0), I1(0)] = [(1−K1), 0, (K1 − 1× 10−8) , 1× 10−8],
with R0 = 2.5, N1 = 15% and ρ = 0.5 (see grey parts of the bars on the top). The blue and
red dashed lines are the simulations under “what if” scenarios that travel restriction policies
were implemented earlier. The black and gold dashed lines are under “what if” scenario that
travel restriction (or reduction) was failed and travel input suddenly increased respectively.
The values of other parameters are assumed to be same as in Table 6.1, and the changes
of parameters are marked on the top of panel. Note that the timelines are the same and
consistent in panel (a) and (b).

decrease of ρ from 0.5 to 0.25 (i.e., decrease of travel input, see the blue dashed vertical

line in Fig. 6.7(b)) could be mainly due to public awareness of the SARS risk in Beijing

after it was revealed [33]. Similarly, the decrease of R0 from 2.5 to 1.75 (i.e., decrease of

infectivity, see the blue dashed vertical line in Fig. 6.7(b)) could also be mainly due to

the reduction of effective contacts (i.e., the product of the contact rate and transmission

probability per contact, which is believed to be (thus modelled) non-positively related to
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the disease incidence [85, 87, 112, 164, 242]) among the population as a consequence of the

increase of public awareness of SARS risk after it was revealed [33]. The trends of numerical

results hold under changing magnitudes of R0 and ρ. The time lag (see the gaps of vertical

lines and vertical dashed lines of the same color in Fig. 6.7) is fixed to be 3 days under due

to the mixed effects of incubation period (or exposed period) of SARS infections and delay

of human reaction to the events. Similar patterns can be observed between the numerical

results and SARS cases time series in Mar - May, 2003 (see Fig. 6.7(a)-(b) and Fig. 8 of

[230]).

The results of earlier implementation of travel restriction (see blue and red dashed lines

in Fig. 6.7(b)) are obtained under “what if” scenario by fixing the structures of R0 and N1,

and setting ρ = 0 (i.e., nobody is able or willing to cross the border due to travel restriction

or caution of SARS risk). We found that the earlier the implementation of travel restrictions

is, the more effectively the disease outbreak level is reduced. By contrast, uncontrolled

sudden increase of the proportion of visitors (by increasing ρ from 0.5 to 0.75) could lead to

larger outbreaks (see gold dashed lines in Fig. 6.7(b)).

6.4.5 Sensitivity Analysis of Payoffs

Partial rank correlation coefficient (PRCC) are used to assess the dependence of the

model results on the parameters [82, 111, 239]. The range of model parameters used for

sensitivity analysis are summarized in Table 6.1.

Fig. 6.8 shows the PRCCs between model parameters and individual payoff (E, see

Eqn. (6.5)), and population risk level (Υ, see Eqn. (6.9)) respectively. Since “payoff” (the

term in Fig. 6.8(a)) is the defined as the opposite number of “risk level” (the term in

Fig. 6.8(b)), some model parameters have symmetric PRCC results with respect to level

“0” (see the vertical grey dashed line in Fig. 6.8) on both panels. The PRCCs show that

the results are most sensitive to the group of the relative risk (r), the basic reproduction

number (R0), and the rate at which individuals leave the destination country (ν). Hence,

these parameters should be the focus of data collection efforts during outbreaks when a travel

policy must be decided. In Fig. 6.8(b), the basic reproduction number (R0) and relative risk

(r) is strongly positively related to the population risk level (Υ), and the visitors leaving

rate (ν) is negatively related to Υ. Opposite results can be seen in Fig. 6.8(a) for individual



128 Chapter 6. An Epidemic Model with Theory of Game on Travelling

−1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

●

●

●

●

●

●

●

●

●

●

●

R0

p

ρ

λ

γ

N1

K1

µ

ν

α

r

individual payoff

(a)

−1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

●

●

●

●

●

●

●

●

●

●

●

R0

p

ρ

λ

γ

N1

K1

µ

ν

α

r

population (group) risk level

(b)

Figure 6.8: Sensitivity analysis results of (PRCCs) between model parameters and individual
payoff (panel (a), see Eqn. (6.5)), and population risk level (panel (b), see Eqn. (6.9)). The
black dots are the estimated correlations and the bars represent 95% C.I.s.

payoff.

6.4.6 Results and Discussion on Model Parameters

Relative risk r = r0
r1

(see Eqns. (6.2)-(6.5) and Table 6.1) is the ratio of the “non-

travelling” payoff (E0 = −r0, see Eqn. (6.3)) to the maximum (or upper bound) of the

“travelling” payoff (i.e., E1 = −r1 on the condition that a visitor is known to be infected,

see Eqn. (6.2)). Its (r) range could be obtain via referring to the claim-settlement-odds of

the travel insurance with regard to the travelling destination (normally, r ≈ 10−3, e.g., see

note [2]).

Number of visitors N1 is the ratio of total number of potential visitors (i.e., travelling-

players, see Path (6.1)) to the total population capacity (i.e., sum of maximal visitors capac-

ity and the number of local population, see Eqn. (6.8) and corresponding to (S+I+R+K1) in

model (6.10)). Provided total population capacity can be fixed in short term, the magnitude

of N1 is proportional to the number of potential visitors. We fixed N1 in this work, however,

the number of potential visitors could be affected by seasonal factors (such as weather, school

terms, holidays) and economic and political factors (such as traffic expenditures, hotel fees,

travelling policies [86]), thus N1 could be time-dependent in reality.
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Agreement and conflict between ρ and p In Eqns. (6.10), fρ
λ

= ρN1 is the proportion

of visitors (outside border and about to be inside border shortly) to the total population

capacity. ρ (see Eqns. (6.5), (6.9) and (6.10)) is the proportion of potential visitors eventually

becoming visitors correspond to the optimal travelling strategy selection. Therefore, we have

ρ = p∗ (where p∗ is individual’s optimal travelling probability, see Eqn. (6.7), e.g., white area

of ρ∗ = p∗ = 1 in Fig. 6.5) under normal scenario (i.e., no serious disease outbreak, in which

there is no restriction on visitor entry). However, during a serious disease outbreak, the

local government will consider restricting travelling entry (in order to lower the number of

visitors inside border) according to population’s optimal travelling proportion (i.e., ρ∗, see

Eqn. (6.9)), and this would change ρ = min{p∗, ρ∗}. Fig. 6.6(b) shows a numerical example of

local governmental intervention on travelling entry (i.e., ρ). Note that, under governmental

intervention scenario, ρ should only equal to ρ∗ if ρ∗ < p∗ (otherwise ρ∗ > p∗, ρ = p∗ is

equivalent to normal scenario), which is the red area in Fig. 6.5.

Period of visitors staying outside the border λ−1 is defined as the mean period of

staying outside border for a visitor (see Table 6.1). Since we can divide the “travelling”

populations as in Path (6.1), λ−1 represents the mean period for a visitor evolving from a

“visitor outside” border to a “visitor inside” border. Note that a “potential visitor” can only

become a “visitor outside” if he has made his last decision (i.e., travelling strategies selection),

which means only a “potential visitor” who confirms to play “travelling” strategy (i.e., will

travel eventually) can then, be regarded as a “visitor outside”. One can have knowledge of

the range of λ−1 by referring to the “deadline” of withdrawal of various travelling “services”

(e.g., see note [4]). Therefore, the efficiency of disease risk information transmission could be

related to λ−1 because that updating of relevant information can “update” individual’s last

decision (i.e., force individual to re-choose strategy), then higher efficiency of information

transmission is corresponding to lower value of λ−1.

Fig. 6.9 shows the relationships between relative risk (r, see Eqn. (6.5)), rate of visitors

pass border (λ, and λ−1 is the mean period of a visitor staying outside border, see Table 6.1)

and ∆ρ (Eqn. (6.14)) during an epidemic (i.e., α = 1). When λ increases (i.e., visitors’

pass-border rate rises), the discrepancy (∆ρ) of individual and group optimum (p∗ and

ρ∗ respectively) appears under a wider range of relative risk (r). The discrepancy (∆ρ)

shifts towards left (the direction r increases) as R0 increasing. Particularly, p∗ and ρ∗ meet
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Figure 6.9: The relationships between r (Eqn. (6.5)), λ and ∆ρ (Eqn. (6.14)) during epidemic
(i.e., α = 1) with R0 = 1.0, 2.5, 5.0, 10.0 for panel (a)-(d) respectively. The values of r and λ
are in “log10” form. The color code of the difference of individual and population strategy,
∆ρ, is shown in the color key. The white area (in each panel) represents ∆ρ = 0 under two
situations that ρ∗ = p∗ = 0 or 1. The values of other parameters are in Table 6.1.

agreement (i.e., no discrepancy as ρ∗ = p∗ = 1) when R0 = 1.0 (which means disease

cannot spread). The change of other parameters’ values will not change the trend of this

relationship.

6.4.7 Model Limitations and Further Discussion

Risk of disease spread at origin We have assume that “infected visitors do not pass

the disease in the origin” (in Eqn. (6.8)). Nevertheless, there exist some chances that the

disease could be “passed” from travelling destination to the origin via visitors. To address

this point, one additional probabilistic factor of risk level are needed in Eqn. (6.8), hence, the

improved travelling risk function Υ = Υ(ρ, π) = N1 ·
[
ρ · αφ(ρ) · (1 + π · %

r1
) · r1 + (1− ρ)r0

]
.

Here, π is the average probability of the disease is “passed” to one of the original places,

and % is the average payoff of disease spreading in one (i.e., a random-selected one) of the

origin. Generally, % > r1 because, speaking from utilitarianism, the consequence of disease

spreading in regional level are presumed to be more serious than one individual infected.
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One can fix the ratio of %
r1

(the similar idea as r = r0
r1

), and term (1 + π · %
r1

) is considered

as a scalar (by further assigning a value to π), so that the results of original framework still

hold. In this work, the simplified version of epidemic risk level of travelling population (as

of Eqn. (6.8)) can be interpreted as π = 0 as assumed.

Pre-existing immunity among visitors In model (6.10), we assumed that visitors are

totally susceptible when entering the population. In practice, there is probably pre-existing

immunity among visitors during an on-going epidemic, and the protection level of visitors’

population could be obtained from previous outbreaks and/or vaccination programs. We

denote PT as the proportion of the disease protections out of visitors population, PO as

the non-visitors population of the original places (i.e., where the visitors come from), and

PD = P (as the same as in Eqn. (6.2)) as for the local population of travelling destination.

Then, it is unnecessary that PD = PT or PD = PO (i.e., the disease protection level of

travelling destination are probably not as the same as that of the origin). Moreover, it is also

unnecessary that PT = PO because, considering the effects of human behavior, individuals

with disease protection (mostly obtained by vaccination) are relatively more likely to travel

than those without protection (or do not know they are under protection), thus we could

have PT > PO for the most of situations.

Provided the knowledge of PT , the revised epidemic model (6.10) is



S ′ = µ · (1−K1 − S)− βS · (I + I1)

S ′1 = (1− PT )fρ ·
[
1− S1 + I1 +R1

(1− PT )K1

]
− βS1 · (I + I1)− νS1

I ′ = βS · (I + I1)− (γ + µ)I

I ′1 = βS1 · (I + I1)− (γ + ν)I1

R′ = γI − µR

R′1 = γI1 − νR1

with all terms unchanged except for including two factors (1−PT ) in (1−PT )fρ·
[
1− S1+I1+R1

(1−PT )K1

]
.

We note that, in principle, there is supposed to be one more equation: X ′1 = PTfρ ·[
1− S1+I1+R1+X1

(1−PT )K1

]
−νX1, where the additional state X1 denotes the visitors being protected

from disease, and the term S1+I1+R1

(1−PT )K1
(in the revised model) should originally be written as

S1+I1+R1+X1

K1
(same as in Eqn. X ′1). Since the magnitude of both I1 and R1 are relatively



132 Chapter 6. An Epidemic Model with Theory of Game on Travelling

small with respect to S1 and X1, we ignore the effect of I1 and R1 on the visitors incoming

rate, thus we have S ′1 ≈ (1− PT )fρ ·
[
1− S1+I1+R1+X1

K1

]
− νS1. We can easily see that PT of

fρ joins in X1, (1 − PT ) of fρ joins in S1, and the leaving rates of X1 and S1 are same as

ν. To eliminate term X1, we have X1 ≈ PTS1

(1−PT )
, and therefore, S1+I1+R1+X1

K1
≈ S1+I1+R1

(1−PT )K1
as

appeared in the above revised model.

The term (1−PT ) could be interpreted as that the protected visitors (PT ) are directly

removed from the system (not by joining R1, but “completely” removed from the model

system), and the effect on visitors incoming rate is partially reflected by “reducing” the local

visitors’ capacity (i.e., replacing K1 by (1 − PT )K1). In this work, PT is fixed to be 0 as

assumed. Then, the revised model (6.12) can also be derived following the same way from

model (6.10) to (6.12). Since we regard PT as a fixed non-zero constant (i.e., PT 6= 0) during

a short time period, and in mathematical terms, the effect of PT can be transform into the

reduction of the magnitude of fρ and K1 [94], thus the main results in this work will hold

for the revised epidemic model.

Difference and delay between real situation and human perspective We treated

R0 as the real basic reproduction number (or the real risk level) of a disease of the target

epidemic. Due to human perspective is probably different from the real situations (i.e.,

an imbalance between perception and reality) [56, 207, 209], we denote R̃0 as the perceived

“reproduction number” (i.e., the perceived risk level) of a disease. Normally, R̃0 is positively

correlated with R0 for most of cases because human’s perspective is based on facts, thus we

have R̃0(R0) is a non-decreasing function of R0. Provided the perceived disease risk (R̃0),

the payoff of disease risk (r1

(
R̃0

)
, i.e., r1 as a function of R̃0, as of Eqn. (6.2)) is expected

to be a non-decreasing function of R̃0, and thus also non-decreasing with respect to R0. One

simple form of r1

(
R̃0

)
could be modelled as r1 ∝ R̃0 with a positive scalar.

In addition, there could be time delay between R0 and R̃0 due that travelling-players

may not always be informed timely with disease events, thus we wrote R̃0(t; τ) = R̃0(R0(t−

τ)) where τ > 0 is the time lag between occurrence of facts and human perceived knowledge

of facts. If we set τ = 0 for all t by assuming human receiving the correct knowledge of

a disease event while it occurs, we have limτ→0+ R̃0(t; τ) = R̃0(R0(t)). In this work, we

considered a limiting case of τ = 0, in reality it is likely to be nonzero and it depends

on many factors. The value of τ depends on the impacts and efficiency of the relevant
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information transmission (e.g., news press coverage [60, 85, 87, 112], educational programs

[59, 60, 169], communication effectiveness in social networks [58, 59, 106, 121, 191, 206] and

public health awareness [58, 84, 106], etc.).

Various patchy risk preference In this work, we assumed the same information set

as well as the same strategic response of the whole visitor’s population (see Eqn. (6.2) and

(6.3)). There could be different perspective (i.e., risk preference) of different groups of people,

and various perspective on costs and benefits (i.e., payoff) in the context of game theory

which may lead to different results of equilibria and optima regarding to human response

to epidemics [195, 196]. Consider the situation that E1 = E0 (see Eqns. (6.2) and (6.3)),

individuals may prefer “travelling” strategy (i.e., risk seeking preference), however, others

may prefer “non-travelling” strategy (i.e., risk averse preference). Future studies with more

detailed patchy preferential environment could improve the rationale of the initial settings

in this work.

6.4.8 Conclusions

Many game theoretical studies of closed socio-epidemiological systems find a significant

discrepancy between individual and group optima across a broad range of economic and epi-

demiological parameters values. However, in this work, we studied an open socio-ecological

system where visitors decide whether or not to travel to a location with an on-going outbreak,

and the local government of the outbreak decides whether or not let more visitors in, and

surprisingly we found perfect agreement between individual and group optimal strategies

across similarly broad ranges of parameters values. When a discrepancy exists between the

individual and group optimal strategies, their conflict is likely to be very large and highly

sensitive to small changes of disease transmissibility and visitor costs/benefits. For instance,

if disease transmissibility rises even a small amount, uncontrolled visitor inflow is capable of

causing an unexpected outbreak. This suggests that a conflict between individual and group

optima could emerge suddenly in real-world settings, provided slight changes in economic

and epidemiological parameters. However, timely implementation of travel restriction by

governments may effectively prevent large-scale outbreaks. The earlier the restrictions are

implemented, the better the outcomes will be.



Chapter 7

Summary and Future Works

This chapter will summarize the major findings of this thesis and suggest some direc-

tions for further research.

7.1 Summary

Infectious diseases pose a serious health risk to human society due to their potential

for rapid spread between countries and continents and the increasing population density.

This thesis shed lights on the understanding of the transmission patterns of yellow fever,

Japanese encephalitis virus, Zika virus disease and varicella focusing on explore and explain

the risk level of infectious diseases, how virus transmission will be affected the potential

non-epidemical factors, how to evaluate the effects of public health control measures and the

potential cause of the complex epidemic dynamics. The proposed model framework in this

thesis will be applicable to many other vector-borne diseases (and many infectious diseases)

that are affected by other non-epidemical risk factors, and the framework will be of value

to other works in mathematical epidemiology field. Overall, this work contributes to the

understanding of the vector-borne diseases dynamics and childhood infections, and provides

theoretical backup for the design of effective prevention and control strategies.
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7.2 Future works

Current modelling works on yellow fever epidemics focuses on the regional mosquitos’

dynamics as will as the effects of vaccination programs. However, the factors including

“human behaviors” proposed in this thesis (see Chapter 2 section 2.3.3) implies the possibility

of short-term human reactions to vector-borne diseases, which reflects on the population

perspective to yellow fever deaths data. Future works could look into details on this sides.

The JEV modelling framework avoids including mosquitos’ population explicitly, in-

stead, the mosquitos’ dynamics are modelled based on regional ovitrap index. The human

cases are simulated according to pig’s infection with a spill-over rate. The framework simpli-

fied the biological mechanism of JEV transmission and fitted the observed data well. Further

studies focusing on the possible newly invade JEV strain are needed.

The model of Zika virus disease contains both vector-borne transmission path and

the vector-free (i.e., human sesxual) transmission path, as well as the possible infectivity of

asymptomatic infections. The studies in the future may consider the effects (i.e., proportion

and infectivity) of asymptomatic infections and the biological supports on this side are

necessary.

Since school-based varicella vaccination program can prevent large-scale outbreak among

schools children, further works focusing on the associated cost-effective evaluation are worth-

while. Network framework can be further included into the agent-based model to explore

the potential spatial pattern of the varicella epidemics.

The proposed simplified travelling game theory associated with simple epidemic model

framework is well-discussed in this thesis (please see Chapter 6). Furthermore, an interesting

idea (proposed by Prof. Chris T. Bauch) for future work is that there are two games going

on at the same time. Then, we have two patches where individuals in each patch can adopt

a traveller or non-traveller strategy, for travel to the other patch. At the same time, each

government plays a game of restrict/do not restrict travel. The Nash equilibrium government

strategy depends on what is optimal for the individuals, and vice versa. To the best of my

knowledge, this approach has not been done before so far, but it is for sure to leave for the

future.

One of the major and common challenges about the modelling framework adopted in
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this thesis is to balance the model complexity and the its fitting performance. Although

several criteria were implemented to measure the tradeoff between the the model complexity

and performance, numbers of approaches can be considered to further avoid overfitting. In

addition to the methods in this thesis, one also could:

• determine the values of model parameters from biological or medical studies,

• simplify the models based on soundable reasons,

• cross validate the fitting performance,

• include various sensitivity analysis,

• consider more modelling scenarios based on different model parameters.
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