

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Pathway to Customised Product
Solutions

Yutian Tang

PhD

The Hong Kong Polytechnic University

2018

The Hong Kong Polytechnic University
Department of Computing

The Pathway to Customised Product Solutions

Yutian Tang

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

November 2017

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge
and belief, it reproduces no material previously published or written, nor material
that has been accepted for the award of any other degree or diploma, except where
due acknowledgement has been made in the text.

(Signed)

Yutian TANG (Name of student)

iii

iv

Abstract
Software Product Line Engineering (SPLE) allows variants of a software system to
be created with customised configurations. However, building a software product
line from scratch could be an error-prone task, given the complexity of the task and
lacking of domain knowledge. To reduce the complexity of the task and provide a
complete procedure to build a software product line, in this thesis, we proposed a
strategy to build a software product line from a legacy application. Specifically, we
focus on Java based applications. In a Java based software product line, it consists of
a configuration space and a code space. The configuration space shows how features
are organised and relations between features. Features and the constraints between
them are commonly documented in a feature model. The code space contains the
implementation of the system. In this thesis, we build a software product line from
a legacy application by the following steps: (1) we detect and build the feature
model from the implementation by building a variability-aware module system; (2)
we further propose a conditional probability based approach to locate features in the
legacy system; and (3) at last, we propose a strategy to build variant applications.

For (1), we carefully analyse previous research in building product line feature
model and several representative approaches for recovering software architecture. We
complement these research which are not suitable for building the feature model, by
proposing a novel approach to build variability-aware module system. The program-
ming elements are first composed to be variability-aware modules, then these modules
are merged to compose features. We additionally analyse and extract programming

v

elements and relations between them to build well-typed modules and features. Our
work shows that current approaches in software architecture recovery could be used in
the product line context. We build a prototype tool LoongFMR, which is an Eclipse
plugin to assist the process. Our work also indicates that a fine-granularity approach
to build a feature model could significantly improve the performance comparing to
a coarse-granularity approach. Since at the fine-granularity level, the programming
elements are presented as abstract syntax tree (AST) nodes, and relations between
them can be easily extracted.

For (2), we develop a novel approach to locate feature in the legacy system. To
overcome the main limitations in other works, which cannot locate feature at a fine-
granularity and cannot well-expressed the relation between programming elements,
we propose a feature location technique using conditional probability. As demon-
strated in the case study, our approach could locate the feature correctly with a
performance of 83% for precision and 41% for recall.

For (3), we further propose an effective approach to reengineer an annotated
legacy, which is the output of (2), to product variants. We also ensure the product
variants generated are syntactical correct, well-typed and feature behaviors well-
preserved. The results demonstrate that our approach maintains feature consistency.
Concretely, our approach could reach an accuracy of 88% in terms of creating product
variants without any syntactic errors. As for behaviour preservation, our approach
could pass 93% test cases generated by evosuite tool.

Overall, we provide tools and techniques to help developers create software prod-
uct lines by reusing legacy applications with ease. Our work helps to ensure the
product variants created are well-typed and behaviors preserved during the process.

vi

Publications
1. Yutian Tang, Xiapu Luo, Ting Chen, and Hareton Leung, “Towards Fea-

ture Persistence: From an Annotated Legacy to Product Variants”, in IEEE
Transactions on Software Engineering (under review), 2017.

2. Yutian Tang and Hareton Leung, “Constructing Feature Model by Identi-
fying Variability-aware Modules”, in Proceedings of 25th IEEE International
Conference on Program Comprehension (ICPC), pp 263-274, 2017.

3. Yutian Tang and Hareton Leung, “StiCProb: A Novel Feature Mining Ap-
proach Using Conditional Probability”, in Proceedings of 24th IEEE Internal-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
pp 45-55, 2017.

4. Yutian Tang and Hareton Leung, “Feature Mining for Product Line Con-
struction”, in The First International Conference on Advances and Trends in
Software Engineering, pp 29-33, 2015.

5. Yutian Tang and Hareton Leung, “Top-down Feature Mining Framework for
Software Product Line”, in Proceedings of International Conference on Enter-
prise Information System (ICEIS), pp 71-81, 2015.

vii

viii

Acknowledgements
It is hard to believe that this day has finally come. I know I would not have reached
this stage if it was not for the help, support, and guidance of many great people who
I was lucky to have as part of my life.

My Ph.D. advisors, Dr. Hareton Leung and Dr. Daniel Xiapu Luo, definitely
make the top of the list. Hareton was always generous with his time providing me
the guidance I needed and giving me freedom to pursue my research interests. Also,
I was inspired by Daniel Luo, Daniel always provides useful tips and comments to
help me think differently on the problem. I really miss the blackboard discussions
and drawings with Daniel and Hareton.

I would like to thank my parents for their support in my education when I was
a kid. My parents always offer the best they can in my education. Thank you for
supporting me in my education. Also, I would like to thank my friends in Hong Kong
and Mainland China. Thanks for their help, understanding and support in my life
and help me get out of some tough days.

Last but not least, I would like to thank my wife, Lisa Huang. You have been
my partner during my last year of Ph.D. study. Thanks for always being there, for
taking care of me during my Ph.D. study and daily life. I hope we can have a pleasant
journey for the rest of our lives.

ix

x

Table of Contents

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Software Product Line and Traditional System 1

1.2 Benefits of Adopting Software Product Line 2

1.3 Feature, Feature Model and Variability 5

1.3.1 Feature . 5

1.3.2 Feature Model and Feature Relations 6

1.3.3 Variability, Variant Point and Variant 8

1.3.4 Example . 9

1.3.5 Product Variant . 10

1.4 Building a Software Product Line from a Legacy System 10

1.4.1 Feature Model Construction 11

1.4.2 Feature Mining . 13

1.4.3 Reengineering Features into Product Line Variants 14

1.5 Contribution . 15

1.6 Thesis Organization . 16

xi

2 Literature Review 17

2.1 Building a Software Product Line . 17

2.2 Building the Feature Model . 18

2.2.1 Feature Model Recovery Techniques 18

2.2.2 Software Architecture Recovery Techniques 20

2.3 Mapping features with their implementations 23

2.3.1 Feature Location . 24

2.3.2 Asset Mining . 28

2.3.3 Feature Mining Tools . 28

2.4 Refactoring an annotated legacy application into product variants . . 29

2.4.1 Feature Oriented Reengineering 29

2.4.2 Aspect Oriented Refactoring 30

2.4.3 Reengineering Approaches. 30

2.5 Chapter Summary . 31

3 Feature Model Construction 33

3.1 Overview . 34

3.2 Module Modeling . 35

3.2.1 Feature and Module . 35

3.2.2 Module without Variability 36

3.2.3 Module with Variability . 40

3.2.4 Module Constraints . 45

3.3 Variability-aware Program Dependency Graph (varPDG) 47

3.3.1 Building varPDG . 47

xii

3.3.2 Tracing Options with Pointer Analysis 48

3.4 VMS Feature Model Recovery Approach 51

3.4.1 Overview . 51

3.4.2 Build Module from Source . 52

3.4.3 Module to Feature . 54

3.4.4 VMS . 59

3.5 Case Studies . 61

3.5.1 Experimental Settings . 61

3.5.2 Subject Systems . 62

3.5.3 Tools . 64

3.6 Experimental Result . 64

3.6.1 Related Approaches . 64

3.6.2 Results . 66

3.7 Discussion . 72

3.7.1 Lessons Learned . 72

3.7.2 Threats to Validity . 73

3.8 Chapter Summary . 74

4 Feature Mining 75

4.1 Overview . 75

4.2 Feature Mining Process Overview . 77

4.3 Underlying Model . 78

4.3.1 Basis . 78

4.3.2 Modeling Closeness between Element and Feature 81

xiii

4.3.3 Modeling Closeness between Elements 85

4.4 StiCProb Approach . 91

4.4.1 Selecting Seeds . 92

4.4.2 Building a Uniqueness Table 93

4.4.3 StiCProb . 97

4.4.4 Stopping Criteria . 101

4.5 Case Studies . 101

4.5.1 Experimental Settings . 101

4.5.2 Subject Systems . 102

4.5.3 Tools . 103

4.6 Experimental Result . 103

4.6.1 Related Approaches . 103

4.6.2 Results . 105

4.7 Discussion . 108

4.7.1 Seeds . 108

4.7.2 Threshold . 109

4.7.3 Threats to Validity . 109

4.8 Chapter Summary . 110

5 Reengineering Features into Product Line Variants 111

5.1 Overview . 111

5.2 Motivating Examples . 115

5.2.1 Syntax Error Example . 115

5.2.2 Behaviour Inconsistent Error Example 116

xiv

5.2.3 Type Error Example . 117

5.3 Configurable AST: Outline and Background 118

5.3.1 Procedure At A Glance . 118

5.3.2 Process Modelling . 120

5.3.3 Transforming a Configuration into Operations on AST 121

5.3.4 From t to ∆ (t) . 122

5.4 Configurable AST: Syntactical Correctness 124

5.5 Configurable AST: Behaviours Preserving 127

5.5.1 Assumption . 128

5.5.2 Control Flow Constraint . 128

5.5.3 Data Flow Constraint . 131

5.5.4 Name Binding Constraint . 133

5.5.5 Context-sensitive Constraint 134

5.5.6 Putting All Pieces Together 136

5.6 Configurable AST: Type Checking . 136

5.6.1 φT−VAR . 137

5.6.2 φT−FIELD . 137

5.6.3 φT−INVK . 138

5.6.4 φT−NEW . 138

5.6.5 φCAST . 139

5.6.6 φMETHOD(Mc OK in Cc) . 140

5.6.7 φCLASS . 140

5.6.8 Putting All Pieces Together 142

xv

5.7 Configurable AST: Feature-effect Constraints 142

5.8 Configurable AST: Algorithm . 143

5.8.1 Putting all pieces together . 143

5.8.2 From Annotated Legacy to Product Line 143

5.9 Case Studies . 145

5.9.1 Experimental Settings . 145

5.9.2 Subject Systems . 145

5.10 Experimental Result . 147

5.11 Discussion . 156

5.11.1 Issues Studied . 156

5.11.2 Threats to Validity . 158

5.12 Chapter Summary . 159

6 Conclusion 161

6.1 Summary of Contribution . 163

6.2 Future Work . 163

References 167

xvi

List of Figures

1.1 A sample feature model . 7

3.1 An example of varPDG . 46

3.2 The core idea of VMS approach . 52

3.3 The violin plot for MoJo Similarity 67

3.4 The Heat Map for Cluster-to-cluster Coverage 69

3.5 The violin plot for a2a Measurement 71

4.1 Feature mining process overview . 77

4.2 Example program P with its control dependency graph, data depen-
dency graph, program dependency graph, and the slicing scope for
node 3. 80

4.3 An example of feature model . 81

4.4 The general process of feature annotation 83

4.5 The general process of change on annotation state 84

4.6 Example of context transformation in method invocation 87

4.7 Example of context binding in overriding 88

4.8 A sample code of overriding . 90

4.9 The architecture of FLAT3 . 93

4.10 An example of a call relation . 94

xvii

4.11 Illustration of StiCProb . 97

4.12 Performance Comparison on Subject Systems 106

4.13 Method comparison using notched box plot in recall 106

4.14 Method comparison using notched box plot in precision 107

5.1 The process of transforming annotated legacy to product variants . . 114

5.2 A syntax error example . 115

5.3 A behaviour inconsistent example . 116

5.4 A type error example . 117

5.5 The configuration sample . 119

5.6 The overview of changing process . 121

5.7 The example of code-based reengineering 122

5.8 If-else statement . 130

5.9 For statement . 130

5.10 Switch statement . 131

5.11 Error types of LJAR approach . 149

5.12 No Return Error . 151

5.13 Unreachable Code Error Example . 151

xviii

List of Tables

3.1 Notation of Module Modeling without Variability 36

3.2 Notation of Module Modeling with Variability 41

3.3 Points-to approach . 49

3.4 Syntax of VMS . 53

3.5 Evaluated MoJo Similarity . 67

3.6 Evaluated Project and architecture with a2a 68

3.7 Cluster-to-cluster coverage(majority match(50%), moderate match(33%),weak
match(10%)) . 70

3.8 Runtime Performance in second . 71

4.1 Uniqueness Table: e . 96

4.2 StiCProb Performance with threshold = 0.6 104

4.3 f −measure on all approaches . 106

4.4 Runtime Performance (second) . 107

5.1 Valid AST Fragments Rules . 125

5.2 Error collection and statistics . 148

5.3 Behaviour preserving test and performance 155

xix

xx

Chapter 1

Introduction

Considering software as a composition of features and services can be deemed as

one of the most important shifts in thinking on our road to massive customization

of software. Software Product Line Engineering (SPLE) is deemed as a main ap-

proach to provide a series of products within the same domain to achieve massive

customization [78]. It allows developers to reuse software assets within the applica-

tion systematically. This unique characteristic makes product line itself easier to use

and reduce the maintenance effort in extending the products.

1.1 Software Product Line and Traditional Sys-
tem

With the increasing popularity of traditional software (desk application), mobile

application, cloud service and so forth, software users are increasing rapidly. However,

there are two things are not fully satisfied currently.

1. Although, the end-user brought an application or a mobile app, (s)he might

not need all services, but (s)he still has to pay for the whole package;

1

2. Individual systems are rather expensive and standard application packages

often lack of diversification;

Customers are not content with standardized product modules and like to assem-

ble modules to create their own applications, since different customers have different

concerns. As a result, software product line engineering is a solution for this demand.

Software Product Line Engineering (SPLE) is defined as the engineering of man-

aging a portfolio of related products, which are in the same domain, sharing a set

of software assets and containing unique features for tailored service [78]. It is also

regarded as an effective means for constructing software products within the same

domain that contains multiple customised assets [78].

In software product line engineering, the means of producing software applications

have been changed significantly in favors of customization, personalization, and mass

needs on software and services. In summary, there are two conflicts: (1) customers

bought the functions they do not need; and (2) products lack sufficient customizations

and often costly.

1.2 Benefits of Adopting Software Product Line

Successful adoptions of product lines could assist stakeholders provide applications

with low costs, fast time to market and high quality, since code and design are highly

reused in each variant within a product family[78, 41].

1. Providing tailored services to customers. The key attribute of SPLE, is

providing mass customised applications to customers. This is the main contri-

bution and the motivation of adopting SPL. That is, SPL just provides what

2

users ask for. Previously, the applications are mainly design for two situations:

(1) customers provide the requirements, then developers build the application

based on the requirements; and (2) developers define the domain, and then

provide the software for a group of customers. For example, a software com-

pany develops a personal task management application for people who need it.

However, these two directions suffer from a lack of customisation and difficulty

in responding to change. As a result, it will reduce the product life cycle. Ac-

cordingly, software packages are developed to support common functions and

unique services are provided to different types of customers. Moreover, this

allows customers to purchase these application packages at a reasonable price

and also receive specific the functions they really need;

2. Reduce the development costs. SPLE reduces the development costs by

reusing software artefacts. In a SPL, features are roughly grouped into common

features and optional features. Common features are shared in all product

variants in the product line. Investments are necessary for defining common

features and creating them. Once these features are created, they will be

shared and used in all products. This means that each product reuses the

common features and can reduce the cost per system. For example, if there are

two common features, we can create ten product variants, with each product

contains these two features. It saves 18 development units, if we consider each

feature as one development unit;

3. Reduce time to markets. With the development of agile programming and

its tools, providing applications that can response to timely demand is critical.

3

That means an application its self should be organised well. Apparently, this

can be achieved by having a well-designed architecture. However, with the

increase of components in the architecture, itself becomes more complex and

hard to maintain;

4. Enhance the quality of applications. Software artefacts in the product line

are repeatedly reviewed and tested as, the testing effort needed is system testing

for a product variant to the combination of artefacts in the variant rather than

testing each artefact. For example, given a product contains artefact a and

b, and another product contains artefact b and c. Then, we only need to test

three artefacts in total rather than four. Therefore, the quality assurance of

the software product implies a higher chance of detecting defects in the product

family when compared to testing each product individually;

5. Adaptable to changes and evolutions. The change on the existing ver-

sion will lead to a new version, especially when adding new artefacts into the

platform or changing some components. Another similar case is that develop-

ers want to add new features into the system. Software product lines could

cope with the demand by adding new optional features to the platform and

modifying existing ones without changing the core features; and

6. Cope with the complexity of the system. With the increasing demand

of adding new features, the complexity of a traditional software will increase.

However, in software product line, features are well modularized and organised

in the feature model. Adding new features will increase complexity, however,

since common features are reused and shared among all products within the

4

product family, the overall complexity is not increase that much comparing to

adding features to individual products.

1.3 Feature, Feature Model and Variability
1.3.1 Feature

In product line engineering, features are used to describe all behaviors of a system

[27]. For instance, a business transaction system is normally customized to real-

ize different banking services in various currencies, with each service deemed as a

feature. A feature in the system could be considered as a system property that is

defined by stakeholders and used to represent functions concerned by stakeholders

or discriminate the systems within the same domain [28]. Furthermore, features

could be “user-visible” properties for all types of stakeholders, including developers,

customers, managers, architects, administrators and so forth. As for its source, fea-

tures could be collected from different perspectives in terms of capabilities, domain

technologies, implementation specification, environments and so forth. Specifically,

the capabilities are the functions, which are visible to end users, especially, those

services that directly used by end users. For example, in mobile phone product line,

the feature “call a number” should be a feature that is visible for users to contact a

person. Also, the network type could be 2G, 3G, and 4G. For the mobile product,

whereas, the network type for PCs and laptops could be wireless network or cable

network. Therefore, features are highly dependent on the domain. Implementation

techniques distinguish the techniques used to implement domain functions. Operat-

ing environment shows the environments in which the applications are executed.

5

As for the type of a feature, in the feature oriented domain analysis (FODA)

feature diagram notation, a feature could be mandatory, optional or alternative [45].

Mandatory features are the part of application in the exactly same form. Manda-

tory feature is also known as common feature. For example, in the banking system

product line, the feature “view account” is a common feature, since no matter what

kind of banking system, it must contain this function to allow users to check their

accounts.

For a given parent feature, it often contains a group of sub-features. If any

number of sub-features could be selected in a variant, then these sub-features are

called optional feature. If exactly one feature must be selected from the sub-feature

group, then the feature is called alternative feature.

1.3.2 Feature Model and Feature Relations

Feature model shows the external visible functions and characteristics in the domain

and these functions are organised in a feature model [60]. The main concern in

a feature model is how features are organised and relations or constraints between

features. Normally, a feature model is represented in a hierarchical view as the

example shown in Fig. 1.1.

The relations and constraints in a feature contains the following types: manda-

tory, optional, or, alternative(xor), implies and mutually exclusive. Specifically, the

relations mandatory, optional, or and alternative(xor) describe the relationship be-

tween a parent feature and its child feature. The other two relations, implies and

mutually exclusive, show the cross-tree relations.

The mandatory relation exists between two features, represented as f1 ⇔ f2,

6

Figure 1.1: A sample feature model

if a child feature f2 is a mandatory sub-feature of feature f1. That means, in a

software product line, if feature f1 is selected, feature f2 must also be selected. From

a product perspective, if f1 exists in this product, we can assert that f2 must also

exist in this product. Distinguish from mandatory(common) feature, if a feature

is mandatory (common) feature, it must be contained in all variants. However, the

mandatory relation only shows the relationship between two features. For example, if

child feature f2 is a mandatory sub-feature of feature f1, f2 may not be a mandatory

feature, since f1 may not be selected in some variants.

The optional relation between parent and child features shows that feature f2

is an optional sub-feature of feature f1 as represented by f2 ⇒ f1. If feature f2 is

selected, its parent feature f1 must be selected. The opposite may not be true as

when f1 is selected, f2 could be discarded.

The relation or shows that for a parent feature, there is at least one of its child

features must be selected as represented by f1 ∨ . . . ∨ fn ⇔ f . That is, for parent

feature f, there is at least one feature from its child features (f1 . . . fn) must be

selected. In addition, the relation xor is a special case of or, where it denotes the

case that a parent feature f contains only two sub-features f1 and f2; and at least

7

one sub-feature is selected.

The implies relation describes the cross-tree constraint between two features f1

and f2, where f1 and f2 do not need to follow a “child-parent” relation. It means that

the selection of a feature f1 implies the selection of another feature f2 represented

by f1 ⇒ f2.

The mutually exclusive relation between two features f1 and f2 represents that

both feature f1 and f2 cannot appear together in a product. It is represented as

¬ (f1 ∨ f2).

1.3.3 Variability, Variant Point and Variant

The term “variability” itself is used to describe the capability to change. An object

with high variability means it has a large tendency to change to another object.

As for our context, variability in a software product line represents the ability of

creating customised applications by reusing predefined artefacts. For example, a

banking system could decide which currency to support.

Variability Subject: A variability subject is a variable item of a real world

or an attribute of such an item. The variability subject could be a category or a

variable, which contains a set of variability objects. For example, the “network type”

is a variability subject, since it contains different instances, including 2G, 3G, and

4G.

Variability Object: A variability object is a specific instance of the variability

subject. Followed the network type example, a specific type, like 2G, is a variability

object. In SPLE, variability subjects are not independence objects, because they are

associated with context information, which comes from the domain and the particular

8

software product line.

Variant Point: A variant point represents a variability subject within the do-

main artefacts with the context information. The variant point could be all kinds of

artefacts, including requirement specifications, code assets, test cases, architectures

and so forth. The context information describes the detail of this variant point, such

as, how this variant point is introduced and the type of this variant point. Especially

it introduces the relation with other variant points.

Variant: A variant is variability object within the domain artifact. The variant

in SPL is a concept that highly associated with variant point. That is, a variant is a

concrete option for a variant point and it could be associated or interact with other

variants to compose a particular configuration for the product line.

1.3.4 Example

To further illustrate these concepts, we use an example of variants, variant points,

and features from a feature model. All these subfeatures are variants. Since Fig.1.1

is a feature model, all entities are features. The variant could be the code and other

artefacts. As Fig.1.1 shown, the “algorithms” is a variant point, which contains

several attributes and algorithms, including number, connected, transpose, MSTPrim,

MSTKruskai, shortest, cycle, and stronglyconnected. However, the variant has a

larger scope, as it could be code base, requirement specification, architecture, and

other related software artefacts. For example, the variant number contains the code

fragments that implement feature number, the architecture of feature number, the

test cases of feature number and other artefacts.

9

1.3.5 Product Variant

A product variant is different from variant. The product variant is a software product

within a software product line (or product family), whereas the variant is a compo-

nent in the software product line. More specific, a product variant is an instance of

a software product line and a variant is part of the software product line.

1.4 Building a Software Product Line from a Legacy
System

To construct a software product line, developers could start from building individual

modules and then compose them to a product line. However, this approach seems not

practical especially for the following cases: (1) the total development effort could be

high since it starts from scratch; and (2) since product lines allow developers to reuse

some components, software assets, and architectures, therefore, it might be hard to

figure out the reusable parts at the beginning stage of the software lifecycle. As a

result, developers turn to an alternative approach of migrating a legacy application

to a product line.

To compose a product line by migrating a legacy application, the developers

should have a good overview of the legacy system (understanding the architecture

of the system), understand the code structure and organisation within the system

(code dependency and mapping code to architecture), and use an effective strategy to

reengineer the legacy into a product line. In general, the procedure of building an SPL

from a legacy application contains three steps: (1) constructing the feature model; (2)

mapping the features in the feature model with their implementations (a.k.a feature

10

mining); and (3) reengineering the features into different product variants.

1.4.1 Feature Model Construction

To migrate a legacy application into a product line, the first step is to understand

the legacy system by creating the feature model. To build a feature model, normally

a domain expert identifies features and describes the underlying dependencies and

constraints. The domain expert should define the features required in the product

line and the dependencies and constraints from hierarchical and cross-tree viewpoints

respectively.

The work on constructing a feature model for migrating a legacy system into a

product line system is essential in a lot of cases. For example, if the domain expert

is not available, or if the system documents and other supporting materials are not

reachable, it could be hard to build a feature model for a product line. Therefore, in

this thesis, we first propose an approach to recover the feature model from the source

code. We choose to start from the code base on two concerns: (1) regardless of the

type of the system or the system domain, the source code is always available; and (2)

sometimes, domain experts might make mistakes in identifying features, especially

when defining the underlying constraints between features.

In summary, this part of work is defined as follows:

• Input. The input of a feature model building work is the pure code base.

• Strategy. A strategy is proposed to automatically parse and analyse the

source code and their relations to create a feature model.

• Output. A feature model which describes the features and relations in the

11

product line.

Main challenges. The main challenges for building feature model from code

base are:

1. Features are often scattered among the code base rather than embedded in

specific modules, containers and so forth. Therefore, a suitable approach should

be possible to find the relation at a fine-granularity level. Specifically, relations

are extracted at the AST node level.

2. Feature model is not the same as architecture from the following key perspec-

tives:

(1) Different concerns: A feature model mainly describes the features in the

systems. In practice, these features often represent modules to address the

functional requirements. On the contrast, an architecture focuses more on

both functional and non-functional requirements of the system.

(2) Different granularities: An architecture describes relations at package, class

or method level, whereas, the features, sometimes, are described in fine-granularity,

like a field and an enum constant.

(3) Different relation types and constraint types: The relations in architecture

are used to show the relation from the program structure aspect. For exam-

ple, class A implements interface I. Differently, the relations in the features

model show the relations from the functional perspective. For example, feature

F requires feature T , which means if feature F appears in a product variant,

feature T must also be presented in this variant.

12

1.4.2 Feature Mining

Along with constructing the feature model, to construct a product line from a legacy

system, the mapping between the feature and its implementation should be explored.

The result can serve as the input to reengineering, since a product line is actually a

series of products with different configurations. Therefore, to construct a product line,

Feature location try to build the mapping between a feature and its implementation.

This step aims at finding features’ implementation in the source code, and we name

this procedure as “feature mining”. The resulting feature model can serve as an input

to show the constraints and dependency relations of features.

In summary, this part of work is defined as follows:

• Input. The input for mapping features to code fragments should be: (1) a

feature model; and (2) seed for each feature.

• Strategy. A feature mining approach is based on the feature model and the

seed for each feature to extract features’ implementation.

• Output. An annotated product line, in which codes are annotated with fea-

tures.

Main challenges. The main challenges for feature mining are:

1. As the success of this task is highly influenced by the input seeds for features,

providing a better approach to recommend seeds for features is essential.

2. The proposed feature mining should tackle fine-granularity requirement, as

we observed that features are mostly implemented in fine-granularity. For

13

example, a field, a statement and an expression could be a feature. Therefore,

a qualified feature mining approach should be able to analyse the program at

the statement level.

3. Another challenge is how to describe the relationship between programming

elements. To mine features from the code base, a key component should be

an algorithm to depict the relation between two programming elements, since

programming elements with high similarity should be considered belonging to

the same feature.

1.4.3 Reengineering Features into Product Line Variants

The next step after feature location is transforming the annotated legacy into prod-

uct line variants. Following the previous task, reengineering an annotated legacy

into product variants will generate physical variants rather than separate concerns

virtually. Separating concerns virtually means that features are only separated via

annotations rather than physically into methods, classes or packages.

In summary, this part of work is defined as follows:

• Input. An annotated legacy system and valid configurations

• Strategy. A proposed approach should be able to generate a product variant

with a given configuration.

• Output. Product variants based on valid configurations.

Main challenges. The main challenges for refactoring an annotated legacy into

product variants are:

14

1. Transforming a legacy into product variants should not introduce any compi-

lation errors, parser errors and type errors.

2. The transformation should be at a fine granularity and should be suitable

for AST-based transformation. For example, in some cases, the arguments of

a function could belong to different features, therefore, generating a variant

might need rewriting the function.

3. Behaviour preserving should be considered during the reengineering procedure.

1.5 Contribution

In this thesis, we propose a series of procedures to semi-automatically migrate a

legacy application to product variants. Specifically, our approach starts from the

code base and ends with the code base. Except for domain knowledge and manual

checking needed during the procedure, we do not rely on any other supports from the

documentation, APIs and so forth. The contribution of our work contains following

parts:

1. We propose a fine-granularity approach to build the feature model for a product

line from code base.

2. We design a semi-automatic approach to map the features with their imple-

mentations to generate an annotated product line.

3. We further reengineer the annotated product line to physically separated prod-

uct variants.

15

4. We develop a full set of type checking rules to ensure a software product line

is type safe.

5. We create a variability-aware AST representation for modifying, rewriting, and

updating AST with specific concerns.

1.6 Thesis Organization

The thesis is organized as follows. Chapter 2 presents a review of the related work In

Chapter 3, we proposed an approach to build the feature model from the given system.

Chapter 4 shows the work on mapping features to code fragments, which will guide

developers to locate the code fragments for a specific feature. Chapter 5 follows the

work in Chapter 4 and further physically reengineers the feature-annotated legacy

into product variants. Chapter 6 summarises the thesis and gives the conclusion and

future directions to investigate.

16

Chapter 2

Literature Review

We provide an overview on work related to our study of building an SPL from a

legacy application. First, we describe the existing studies on variability modeling;

second, we describe work on building and modeling feature models; and third, report

on analysis techniques that allow developers to map features with their implemen-

tation. Finally, we describe the related work on reengineering an annotated legacy

into product variants. We carefully anticipate some of our study to explain the

relationship between our work and other discussed publications.

2.1 Building a Software Product Line

As reported in several surveys [40, 98, 11], there is little research on how to build a

software product line exists especially for starting from a legacy system. Specifically,

Batory [9] and Apel [8] applied feature-oriented programming to software artifacts

which are not object oriented composed. This work is not be applied to most modern

programming languages. Instead it mainly works as a modelling approach. The

features in [8, 9] are separated at the beginning, which is not possible for the legacy

17

system. In practice, features will scatter in the system and feature interactions are

more complex [49]. Schaefer et al [91] proposed delta-oriented programming to build

software product lines. In delta-oriented programming, there is a core module, which

is a standard application written in the host language, and a set of delta-modules.

The delta-module can add and remove methods, classes or even change the superclass

of an existing class. However, delta-oriented approach has two limitations: the work

cannot suitable for fine-grained operations and the work requires features are well-

separated at the beginning. For the first limitation, delta-oriented programming does

not support fine-grained feature representation. For example, sometimes a statement

may represents a feature. For this case, it cannot be implemented with delta-oriented

programming. Therefore, it is not a suitable approach to cope with fine-grained task

on building a software product line.

2.2 Building the Feature Model

Since we only rely on the code base to build the software product line, the feature

model is also built based on the code base. Building a feature model is highly related

to research work on architecture recover[21, 65], program understanding[83, 77, 25],

feature identification [31] and other relative subfields.

2.2.1 Feature Model Recovery Techniques

Recover the feature model by analysing all products within the product family

[108, 110]. Specifically, Yang’s work [110] uses data access semantics and formal

concept analysis to build the feature model. First, the data access semantics using

database schema are used to build the database containing all methods in the pro-

18

gram and then the domain experts review the data model and build the mappings

from the application data schema to domain schema usingdata access semantics ,

which specifies how methods access data. Then, all data semantics are merged it-

eratively to generate meaningful clusters for features. Xue’s work [108] adopts a

sandwich approach to recover the feature model. For bottom-up analysis, it uses a

clone detection tool to find the cloned candidates. As for top-down analysis, a set

of product feature models serves as input of this approach to extract features and

relations. Then, these information are combined to build the feature model.

Recover the feature model by tracking the version change [109]. Xue’s work [109]

uses the clone detection approach to track the changes in different versions, then the

changes are mapped to features.

Recover the feature model from requirement specifications[81, 18, 30]. Davril’s

work [30] extracts the feature model from a large collection of product descriptions.

It uses a tool named SoftPedia to parse the description and recommend features.

Then it uses tf-idf to provide weighting information to features. Then features are

formalised and the feature model is built based on the clustering techniques. Stoiber

et al’s work [81] transfers the descriptions into constraints and then checks these

constraints using a boolean satisfiability solving tool to build the feature model.

Buhne et al’s work [18] provides a meta model for extracting and organising the

variability information from requirements and then all information collected to build

the feature model. Yue et al’s work [111] presents a reverse engineering approach to

recover requirement from structured and unstructured code. It uses extract method

to refactor legacy code, and then the refactored code is transformed into an abstract

structured program. The goal model is built from the abstract structured program’s

19

AST. Based on the relation and tracing between these ASTs, the feature model is

extracted.

Other works [92, 1] require multiple input, like source code, requirement speci-

fication, even architecture information, rather than starting from a pure code base.

For example, She et al’s work [92] builds the feature model by identifying parent

candidates for the given feature. Acher et al’s work [1] supports the transition from

descriptions to feature model in tabular format. It also relies on architecture knowl-

edge to reinforce the extraction process.

2.2.2 Software Architecture Recovery Techniques

Software Architecture Recovery (SAR) techniques have been broadly used to rebuild

the product architecture by collecting syntax and structural information from the

system[24, 42, 55, 66, 101].

Granularity. Most architecture recovery techniques are implemented at the

class and file level, which means they parse a single class file as an unit for recovery

[32, 55, 66].

Methodology. For the target of reconstructing or learning architecture, some

approaches deem it as an optimization problem[66, 55, 80], in which some objective

functions, like modularity, fan-in, fan-out, are built and the architecture that satisfies

and offers maximal or minimal target values are considered as solutions; some repre-

sentative works use pattern searching along with users’ instructions to find target pat-

terns and rebuild the architecture by sequentially finding these components[87, 88].

In addition, adopting clustering algorithms to resolve architecture problem is an-

other trend, since programming components, like class with similar function should

20

be grouped into the same cluster[6, 67]. Another direction to achieve the target is

using textual information, namely natural language processing technique, like the

strategies shown in [42, 24]. In the following paragraphs, we will introduce several

representative approaches that are frequently used to abstract program architecture.

Corazza’s work [24] groups the source file based on lexical information. In detail,

it provides a vector representation of each file and weights for each is computed by

EM algorithm based on a probabilistic model. The clustering algorithm is further

applied to these vectors to identify the software clusters.

Garcia’s work [42] uses information retrieval technique, in which a statical lan-

guage model LDA is used to compute the similarity between programming entities.

The clustering is provided by the tool Weka and different clusters are built based on

the topics. That is, each cluster has a main topic and it tries to classify the docu-

ments into different topics, where a programming unit (.java file in the case study)

is treated as a document.

Kobayashi et al.’s work [55] develops the SArF algorithm to build the architec-

ture. Specifically, SArF accomplishes the task for clustering based on computing a

dedication score between programming elements.

Mancoridis et al.’s work[66] regards the recovery task as an optimisation problem.

It starts with a random partition and iteratively updates each cluster by optimizing

the objective function called Modularization Quality (MQ) until it cannot find a

better solution.

Algorithm for Comprehension-Driven Clustering (ACDC) recovers the architec-

ture of system by inspecting certain patterns that could be presented in systems[101].

Specifically, ACDC contains source file pattern, body-header pattern, leaf collection

21

and support library pattern, and ordered and limited subgraph domination. ACDC

identifies clusters by using these patterns with orphan adoption techniques, which

were originally proposed in [100].

Maqbool’s work [67] uses a set of measurement, including distance measurement

(Euclidean distance, Canberra distance, Minkowski distance); association coefficients;

and correlation coefficients to measure the distance between programming elements.

Then, the architecture is built by conducting clustering on the entities.

Sartipi et al’s work [87, 88] first represents the system as a source graph and the

source graph is then separated into different sub-spaces, with each space representing

a main-seed node. An AQL query is proposed and the graph matching engine will

re-organize the sub-spaces to the pattern-graph presented in the AQL query.

Praditwong el al’s work [80] studies two objective functions: Equal-size Cluster

Approach (ECA) and Maximising Cluster Approach (MCA). The two objective func-

tions are tested on both weighted and unweighted module dependency graphs to find

a better solution by optimising the target function.

scaLable InforMation BOttleneck (LIMBO) optimizes the usage of information

loss when conducting clustering on a system. It builds on Information Bottleneck

(IB) framework and can collect relevant information during clustering[6].

Architecture Recovery using Concern (ARC) as defined in [42] uses a generative

probabilistic model for text corpora named Latent Dirichlet Allocation (LDA) to

retrieve concerns and identify programming elements belonging to concerns. It treats

the source as a series of documents that contains various topics and then measures

the similarity using the Jensen-Shannon divergence (Djs).

W-UE and W-UENM Weighted Combined Algorithm(WCA) combine hierarchi-

22

cal clusters into larger sets by computing the inter distance between two possible

variants using Unbiased Ellenberg (UE) and Unbiased Ellenberg-NM(UENM) dis-

tance measurement respectively[67].

However, these architecture recovery techniques could not cope with variability

issues in software product line and normally these approaches are only suitable for

coarse-granularity. That is, they could only collect the relations between program-

ming elements at the method or class level rather than at the statement level. In

addition, current approaches do not consider type safety issue, which is a critical

problem in building a software product line.

2.3 Mapping features with their implementations

Furthermore, features in the feature model should be mapped into the implemen-

tation. To build the mapping between the features and their implementation, the

system will first be analyzed and a typical method involves decomposing a program.

From a large scale, a program could be decomposed into modules and containers.

Whereas, a small scale will separate the system into distinct functions, classes, and

packages. The programming languages usually provide hierarchical decomposition of

the program (eg. packages, classes/interfaces, methods, fields), which is not sufficient

for the task of mapping features into their implementations. We observed that in a

software product line, a feature is often scattered in the system rather than fitting

in fixed classes or modules. Therefore, it would not be appropriate to use a package

or a class to represent a feature.

23

2.3.1 Feature Location

Feature location in the software product line context is very different from the nor-

mal feature mining process, which aims to identify the location in the source base

for a functionality concerned. The work in product line context should also take

the variability and all underlying dependencies and constrains into consideration.

The techniques used in feature location are mainly static analysis[14, 77], dynamic

analysis[105, 25] and hybrid strategies[33].

Static feature location techniques

Static feature location techniques do not rely on the execution of the program. In-

stead, it extracts the relations from the code base directly. During the analysis,

several types of dependencies are extracted, including data dependency, control de-

pendency and so forth. They will be used as a profile of the system and the location

techniques are applied then.

Chen and Rajlich’s work [20] builds a dependency graph named Abstract System

Dependence Graphs (ASDG). ASDG is composed by nodes, which represent functions,

global variables, fields, and edges. Together they indicate the control dependencies

between functions and data flow between variables and function. The seed is a

programming element that developers concern. Then, the engineer searches the

graph and returns the nodes. Users’ feedbacks on these nodes are collected to decide

whether the process should continue. The process will be stopped as controlled by

the users.

Robillard et al’s work [84, 85] gives a presentation of program as a Concern Graph.

The concern graph reorganises the programming elements into a set, which contains

24

programming elements and underlying relations. The concern (a feature in our con-

text) is presented in an abstract way, in which it contains programming elements and

relations. The concern graph is used to guide developers in the maintenance task.

Saul et al’s work [89] (FRAN, Finding with RANdom work) is a random search-

ing based approach starting with an input. It searches the programming elements

associated with the current element under concern. Generally, it extends the work

of[84], ranking the programming elements with scores, and the scores are computed

by random walk algorithm upon the program dependency graph.

In addition, data flow is used in another study from Trifu [99]. Specifically,

developers select a set of variables as input and then the variables will be propagated

and tracked along data flows. During the tracking, developers are required to mark

those programming elements interested.

Dynamic feature location techniques

On the contrast, dynamic feature location techniques rely on the execution of the

system, during which the required information is collected. Several approaches have

been proposed to deal with the feature location problem.

Wong et al.’s work[106] proposes an execution slice-based technique to capture

features’ implementation. This approach requires several test cases for each feature

of interest. The dynamic information collected includes the statements executed.

Then, the mapping between a feature and statements is built.

Eisenbarth et al.’s work[34] generates feature component maps from dynamic

information. Specifically, it uses concept analysis to extract the relations between

features and relations between features and programming elements as well.

25

Safyallah et al.’s work[86] uses a data mining approach upon execution traces.

This approach allows execution patterns to be found in the execution traces. Then

these patterns undergo a refinement upon the execution traces. As a result, a set of

fragments of execution will be extracted to be components.

Bohnet et al[16] proposes an approach to visualise the characteristics of execution

information on how features are implemented. The execution traces served as input

and the visualisation is generated based on these. Views are created for executions,

features, and interactions.

Textual-based mining

Besides relying on the program structure, some approaches treat the program from

a textual prospective[90] or explore some dependency relations[14, 33, 69]. Here, we

introduce two works [79, 7] that are highly related to our work using probability

ranking.

Marcus et al.[68] uses LSI to map the words and features in the text. The corpus

is built based on all identifiers and comments, which could be extracted from the

source code of a system. Each document is built to be a vector based on the corpus.

The feature is described as an input query. Then, the query is transferred to a vector,

and the distance between the query vector and document vectors will be measured.

Poshyvanyk et al.’s work[79] combines formal concept analysis with the infor-

mation retrieval techniques. Specifically, it first creates the corpus of the system,

then the corpus is indexed and the vector space is created. The feature concerned is

represented by a set of terms and they are then further translated into a vector by ref-

erencing the corpus. All documents are ranked by the similarity computed between

26

query and documents. From the top matched documents, the similar attributes(class,

methods) are grouped into the implementation of the feature.

Cleary et al.’s work[23] uses information retrieval to locate features; however

it mainly works on non-source artefacts, including mailing list, documentation, bug

reports and so forth. Then the relations between source code and non-source artefact

are built. The query first finds the non-source artefact, then the corresponding code

artefacts are extracted.

Hill et al’s work[43] proposes an approach using natural language (NL) queries.

Specifically, it captures the nouns, verbs, and phrases from the method and field

signatures. The NL phrase mapping will map the searching query with programming

elements.

Combined approaches

Poshyvanyk et al.’s work[79] is essentially a combined approach of dynamic informa-

tion from execution scenarios and textual information to locate features. Antoniol’s

work [7] combines dynamic and static data to identify the relevant methods. Differ-

ent from these two approaches, which are merely suitable for methods rather than

all types, our approach also contributes the fine granularity elements, like statement

and local variable. Another difference between our approach StiCProb and these ap-

proaches is that the probability in these two approaches are obtained by tracing the

runtime information and our approach collects probability statically. That is, these

two approaches are dynamic approaches, while our approach is a static one, which

collects information from the structure of the program.

27

2.3.2 Asset Mining

Feature mining is sometimes named asset mining[10, 12, 94]. The works in asset

mining mainly recover variant relations and models by locating, documenting and

analyzing features in the feature model. These works contribute to what to mine,

and what should be considered in the process. They could be deemed as preliminary

work to our contribution as Step 1 in our process, and we replace the process by

adopting existing feature models.

2.3.3 Feature Mining Tools

Two tools are closely related to our work: LEADT [50] and CIDE+[102]. In LEADT

and CIDE+, the authors perform the same task of finding the feature code at a

fine granularity. Our work basically contains all strategies in LEADT and adds

our own StiCProb approach. On the contrast, the work in CIDE+ mainly depends

on type-checking-like mechanism assisted with Cerberus’s dependency analysis[33].

Differently, in CIDE+, feature dependency is not explored, and CIDE+ requires a

large number of seeds to reach an acceptable performance.

Even though several approaches have been proposed to locate features in the

system, the main problem of these coarse-granularity approaches in terms of con-

structing a product line is that they cannot recover a feature’s implementation at a

fine granularity. For example, inside a method, statements might belong to various

features.

28

2.4 Refactoring an annotated legacy application
into product variants

In the previous step, we annotate the legacy application with features. The last step

should be refactoring an annotated legacy application into product variants. This

procedure contains following sub-steps:

1. A mapping between features and AST nodes will be extracted from the legacy

system.

2. A configuration is given to build a product variant. Features are categorised

into two groups: the first group contains features that should be preserved in

the variant and the second group should be removed.

3. Generate a series of actions on AST nodes for hiding unselected features in the

configuration.

4. Generate the variant.

During the above transformation, the variant product generated should be checked

in the following perspectives to ensure its quality: (1) syntactical correctness: the

product variant created should not contain any syntax errors, (2) behaviour preser-

vation: during the transformation, the behaviours of features should keep consistent,

and (3) typing safety: the variant created should be well-typed.

2.4.1 Feature Oriented Reengineering

Feature oriented reengineering is also named as feature decomposition(for considering

its purpose), targets on deriving feature in a program. Specifically, Liu’s work[63]

29

builds a mathematical foundation to cope with the fact that features have distinct

implementations in different variants based on the feature expression. Schulze et

al.’s work[90] addresses the same problem but focuses on object-oriented approaches.

Kästner et al.’s work[47] builds a model between physically and virtually separated

features. The task involves refactoring based Lightweight Java and starts refactoring

from the class level and gradually moves to the method level. Also, these works are

either (1) lack of fine-granularity support[4, 56]; or (2) not sensitive to additional

constraints from the code base [63, 90, 47]. We argue that they could not explore

underlying constraints not covered in the feature model.

2.4.2 Aspect Oriented Refactoring

Aspect oriented refactoring is another close area of our work. Current efforts on

aspect-oriented refactoring are mainly focusing on reeningeering #ifdef statements

into aspects [2, 17] with the key concern of exploring the usage of preprocessor. Some

approaches enforce discipline annotation without considering the optional feature

problem[2, 17, 82].

2.4.3 Reengineering Approaches.

During the reengineering, the type-correctness[53, 54, 76, 61] and semantics preservation[53]

are the main concern. However, changing a certain method, class or interface is en-

tirely different from changing the operations in a system as what we do in this work,

since the reengineering process in the legacy system will introduce additional cross-

constraints (i.e. the constraints between programming elements) that need to be

coped with. These approach could not keep features’ behaviour consistent during

30

the reengineering.

2.5 Chapter Summary

Our literature review shows that building a software product line from a legacy appli-

cation is a rich field with many techniques and formalizations. However, some major

research issues in this field remain: building the feature model from the code base,

mapping the features with their implementations at a fine granularity, and keep-

ing features’ behaviour consistent during reengineering them into product variants.

Therefore, in the coming chapters of this thesis, we will describe our approaches to

handle the limitations in current research and how our works fill the gap.

31

32

Chapter 3

Feature Model Construction

The traditional way of building a software product line is using either model-driven

software development (MDSD) or aspect-oriented software development (AOSD).

Specifically, MDSD[13] improves the way of developing software by capturing the

features in a system. It targets at abstracting the knowledge, services, and functions

in an application domain. MDSD is intended to improve the productivity by improv-

ing compatibility between systems. In MDSD, each module is developed and then

the entire product line is composed by synchronising, combining and refining each

module. AOSD[38, 39] focuses on modularising crosscutting concerns. That is, using

AOSD in software product line development, features and concerns are sequentially

added. That is, the software product line is built by composing software artefacts.

Different from these approaches in building a software product line, we start from a

legacy software. To build a software product line, the first step is to understand the

legacy and construct the feature model for the legacy. This chapter describes our

approach to build a feature model from the code base of a legacy system.

33

3.1 Overview

A feature model presents a diagram containing all features along with underlying

dependencies and constraints[78]. Explicitly, the feature model can be recovered ei-

ther from requirement specification[30] or code base. Thereby, recovering the feature

model from legacy code is a primary step to construct a product line system from a

legacy. This task is paramount for working on an open-source project considering the

requirement specification is normally unavailable in that situation. Unfortunately,

current work on recovering the feature model from the source mainly start from a

collection of product variants instead of legacy[3]. To cope with this issue, we aim

at providing a semi-automatic approach to explore legacy source code and construct

a feature model for the system. A fully automatic approach is unrealistic since the

user has to determine the needed features. Specifically, in this work, we target on

Java, and it can be extended to most other object-oriented languages.

Motivation. Constructing feature model is highly related to research work on ar-

chitecture recovery[21, 65], program understanding[83, 77, 25], feature identification[31]

and other relative subfields. However, it is especially different from these works in

the following aspects: (1) it recovers the architecture in a variability fashion, that

means the variability should also be mined during the process; (2) apart from the

hierarchical relations between features, dependencies and constraints should also be

discovered; and (3) in architecture recovery, both functional and non-functional re-

quirements are concerned, but in a product line only functional requirements are

considered.

Our Contributions. The main contributions of this chapter are listed as follows:

34

• We define a variability-aware module system to ensure that each module is well-

typed and interfaces for modules are well-defined; moreover, we give a set of

definitions and a series of constraints to check whether a module is well-formed.

• We give a variability-aware representation of the program to further define a

set of similarity measurement to assist in merging modules into features.

• We provide a comprehensive comparison with six representative approaches for

architecture recovery by investigating four systems and compare performance

from four aspects by constructing over 80 experiments.

This chapter is organised as follows. Section 3.2 shows our variability-aware mod-

ule system. Furthermore, Section 3.3 defines a variability-aware program dependency

graph to support our module system; our variability-aware system (VMS) approach

is introduced in Section 3.4. Section 3.5 and 3.6 exhibit case study and experimental

results respectively. We discuss the results in Section 3.7. We conclude this chapter

in Section 3.8.

3.2 Module Modeling
3.2.1 Feature and Module

In this section, we will first introduce the module, which is an isolated unit, contain-

ing programming elements. To compose a product line, developers usually develop a

module for each configuration option and by combining some modules, the variability

of the product line can be well expressed. For example, in a database product line, it

could contain a storage module persist, an XML module xml, a backup module (from

35

Table 3.1: Notation of Module Modeling without Variability
Notation Remark
e ∈ E expressions
t ∈ T types
x ∈ X function names
Γ ∈ X p→ T import functions/imports
∆ ∈ X p→ T × E function defintion
m = (i, j,Γ,∆) ∈M; i, j ⊆ O module

local history) backup_local, another backup module(from remote) backup_remote

and core module for fundamental architecture core. Different systems are derived

from the product line by combining different modules. For example, the combina-

tion of XML module, backup(local), storage and core module could be a product,

represented as: xml · backup_local · storage · core. However, in the software prod-

uct line, features are used. Note that “feature” is a different mean for representing

the product line. A feature could be a module or a combination of modules, highly

dependent on how features are defined by the domain expert. For example, the mod-

ule storage could be a feature f_storage. Moreover, a backup feature f_back could

contain two modules: backup_local and backup_remote. Specifically, in this chapter,

we adopt Java as the target language for our approach and case study.

3.2.2 Module without Variability

Prior to defining a module with variability, here we first define a normal module with-

out variability concern. Concretely, our module follows Cardelli’s work on modularity

system[19] and Kastner’s work[52]. A module normally contains:

1. a set of imported declarations, in which functions used but are not defined in

36

this module are resolved.

2. a list of functions along with function bodies.

. The notation for module without variability is displayed in Tab.3.1, specifically,

1. the imports are represented by the partial mapping from names to types as

Γ ∈ X p→ T , where X p→ T represents the partial mapping from a function

name to its type.

2. the function definition is a partial mapping from a function name to its function

body, which is a combination of expressions with types as T × E .

The interface of a module should be all exported functions from all functions

declared in the module. However, in a module (abstract level), we do not distinguish

the privacy of a module. The exported functions in a module could be decided by

checking the signature of functions from the code base (implementation level). Here,

we mainly discuss the composition of a module from an abstract level instead of the

implementation level. Therefore, we can omit the discussion on private functions for

now.

Furthermore, the signature of a module represents a list of functions exported

and their binding types. Therefore, the signature is defined as

sigature : (X → E × T)→ X × T (3.1)

Moving on, we will introduce the type checking system on module without vari-

ability. Logically, a module m is well-typed if all functions declared in m are well-

typed in terms of imported contexts or under an empty context. That is, a function

37

is well-typed, if it is well-typed by itself, that means without the input context; or

it is well-typed under the input context.

A well-typed module. First, we provide the type checking for a single module

to determine whether a module is well-typed as (m,OK).

dom (Γ) ∩ dom (∆) = ∅ Γ ⊢ ∆

(∆)OK

Symbol dom(Γ) represents the domain of Γ. When the domains of Γ and ∆ do not

overlap, which means that the function itself does not rely on the input context, and

function ∆ is well-typed under environment Γ, we could derive that the function is

well-typed as (∆)OK.

In addition, when a function(∆)’s typing environment requires extra signatures

from imported functions, its type judgment could be represented as follows.

∀x ∈ dom (∆) .Γ ∪ signature (∆) ⊢ e : t where ∆ (x) = (e, t)

Γ ⊢ (∆)OK

First, for any function x from the function definitions in the module(dom (∆)),

with the overall context coming from the input context Γ and signature from Γ as

signature (Γ), we could always derive that e is under type t. Then, this relation could

be found in function with a name x, as ∆ (x) = (e, t). As a result, the functions in

a module are well-typed under import context Γ as Γ ⊢ (∆)OK.

Modules compatibility. Moving on, we discuss the process of composing two

modules into one as m = m1 · m2 along with the typing issues. To combine two

modules yielding a new module as • : M×M→M, the following checking should

be conducted:

38

1. To combine two modules into one: each module should be checked in isolation

to ensure it is well-typed(mOK).

2. When two modules are well-typed, the imported context should be combined

and any invalid imports be resolved. For example, module m1 may import

functions from module m2, when merging m1 and m2, these cross-imports

should be removed as invalid.

3. Also, we should check the module compatibility to determine whether the

merge should be approved.

4. At last, these two modules are merged and a well-typed module generated. The

process could be represented as: (m1, OK) ∧ (m2, OK) ∧ (m1 ÷m2, OK) →

(m1 ·m2)OK. Where m1 ÷m2 represents module m1 is compatible with m2.

To check whether two modules are compatible, we use the following judgements.

dom (∆1) ∩ dom (∆2) = ∅
compatible(Γ1,Γ2)

compatible(Γ1, signature∆2)

compatible(Γ2, signature∆1)

(Γ1,∆1)÷ (Γ2,∆2)

The compatibility of two modules involves the following checking:

1. First, the domain of functions from two modules should be independent (dom (∆1)

∩ dom (∆2) = ∅), which mean a function cannot exist in both modules.

2. Second, the imported context should be compatible as: compatible(Γ1,Γ2).

39

3. Third, cross checking for imported context from module m1 with the signature

of functions in module m2 as compatible(Γ1, signature∆2).

4. Forth, cross checking for imported context from module m2 with the signature

of functions in module m1 as compatible(Γ2, signature∆1).

After passing these checkings, two modules should be compatible as (Γ1,∆1) ÷

(Γ2,∆2).

In summary, the merging of two modules could be represented as follows.

∆ = ∆1 ∪∆2

Γ = Γ1 ∪ Γ2 \ (signature (∆1) ∪ signature (∆2))
m1 ·m2 = m

Specifically, when two modules are compatible, they could be merged by (1)

combining the functions declared (∆ = ∆1 ∪ ∆2); and (2) resolving the imported

context by combining imported context from two modules Γ1 ∪ Γ2 and removing

those imports found in m1 and m2 as

(signature (∆1) ∪ signature (∆2)).

3.2.3 Module with Variability

As shown in Tab.3.2, a variability-aware module is a five-tuple (v, i, j,Γ,∆) mainly

inspired by Christian’s work [52] and the calculus follows Cardelli’s module system

formalization [19]. v and i represent two sets of configuration options imported

from other modules, j is defined in this module, Γ is the import contexts and ∆

represents functions. We will introduce how to build a module from source in detail
1 i: configuration options imported, j: configuration options defined

40

Table 3.2: Notation of Module Modeling with Variability
Notation Remark
e ∈ E expressions
t ∈ T types
x ∈ X function names
o ∈ O configuration options
c ∈ C = 2O configurations
v ∈ V = 2C variability model
Γ ∈ C p→ X p→ T import functions/imports
∆ ∈ C p→ X p→ T × E function defintion
mv = (v, i, j,Γ,∆) ∈MV ; i, j ⊆ O module1

φDUC∧TC (mv) constraint function

in Section 3.4.2. Besides these fundamental components in a module, we also define

a constraint function φDUC∧TC (m), which will return a boolean value to evaluate

whether a module is in a well-typed status or not.

Specifically, o ∈ O is a possible configuration option. And C = 2O contains all

possible configurations (2O) that could be derived, given a configuration option can

either be selected or unselected. In a module, an import or context Γ describes a

general environment for a module. The import function signature is described as

a continuous projection relation from configurations to function names to types as

Γ ∈ C p→ X p→ T , where p→ shows a projection relation. The method defined in

a module (∆) can only be compiled if the configuration is available as represented

as C p→ X . Furthermore, this projection will be furthermore projected to a set of

expressions under certain types as T × E .

Signature First, we define the signature of module as follows:

signature : (C → X → E × T)→ (C → X → T) (3.2)

41

The signature of a module is a partial mapping from function definition C → X →

E × T to C → X → T .

A well-typed module with variability Thereby, a tuple (v,Γ,∆), which con-

tains a feature model f , function declaration ∆, and import context Γ, could be

used to represent a module mv. Here, different from the notation for a module in

the previous subsection, a module under a variability model v is represented as mv.

Note that, here we introduce a new concept variability model, which represents all

valid configurations for the module. It is different from the feature model in two

main aspects:

1. The feature model is the variability representation of the entire product line,

whereas, the variability model is designed for our module system and each

module contains a variability model. The feature model is shared among all

modules; and

2. The variability model is actually a set, which contains all valid configurations

for this specific module mv.

However, when introducing variability, it means only a subset of functions could be

imported rather than all, considering the fact that imported functions are highly

restrained by configuration options. Therefore, the imported functions should be a

partial mapping chain starts from the configuration and ends with a type as

Γ ∈ C → X → T

.

42

Similar to module without variability, for all valid configurations (C), which could

be extracted from the variability model v, imports, declarations, and the mapping be-

tween imports and declarations should be well-defined and well-typed. A well-typed

module with variability requires a two-step verification as: (1) despite variability,

the module should be well-typed, as discussed in module without variability; and

(2) with variability, each configuration c that could be extracted from the variability

model v should be checked and ensure the module mv is well-typed. Therefore, if a

variability module mv is well-typed, it should satisfy the following judgement.

v ⊆ dom (Γ) v ⊆ dom (∆)

∀c ∈ v. (Γ (c) ,∆ (c))OK v ̸= ∅
(v,Γ,∆)OK

Specifically, the variability of the module should be subjected to the domain of

Γ and the domain of ∆. That is, the variability model v should be defined within

the scope of Γ and ∆, with invalid configurations removed from v. Then, for each

configuration c in v (∀c ∈ v), the module should be well-typed as (Γ (c) ,∆ (c))OK,

where v should not be empty.

Modules compatibility with variability. Furthermore, to merge two modules

with variability into one (mv
1 ·mv

2 = mv), the following checking should be conducted.

Two modules are incompatible if there is a conflict when merging them. Conflicts

could happen in two different cases:

1. Two modules import functions are of different types; or

2. A function is defined in one module and imported with a different type in

another module.

43

Specifically, it could be translated into the following checking:

C1: for any configuration, a function should not exist in both modules, which is

represented as follows:

c ∈ dom (Sig(∆1))∩dom (Sig(∆2) | dom (Sig(∆1 (c))∩dom (Sig(∆2 (c)) ̸= ∅ (3.3)

, which means shared configurations (dom (Sig(∆1) ∩ dom (Sig(∆2)) should be sub-

jected to the expression that dom (Sig(∆1 (c))∩dom (Sig(∆2 (c)). It means that the

signatures of two modules are checked with the constraint that for any configura-

tion c from the shared domain of two modules(c ∈ dom (Sig(∆1)) ∩ dom (Sig(∆2)),

the function should not exist in both modules as represented in dom (Sig(∆1 (c)) ∩

dom (Sig(∆2 (c)) ̸= ∅.

C2: there should not be any typing errors for the two input contexts, which is

represented as follows:

conflict (Γ1,Γ2) = {c ∈ dom (Γ1) ∩ dom (Γ2)

| ∃x ∈ dom (Γ1 (c)) ∩ dom (Γ2 (c)) .Γ1 (c) (x) ̸= Γ2 (c) (x)}
(3.4)

which shows a conflict is raised when a configuration c is a shared configuration from

dom (Γ1)∩dom (Γ2) and the types for the same(∃x ∈ dom (Γ1 (c))) imported function

are different ((x) ̸= Γ2 (c) (x)).

C3 and C4: for the conflict that could also come from the import context with

the declarations as conflict(Γ1, Sig (∆2)) and conflict(Γ2, Sig (∆1)).

In summary, we can resolve compatibility issue for modules with variability by:

v′ =
⋃

x ̸=y conflictC1,C2,C3,C4 (Γ1,∆1,Γ2,∆2)

v = v1 ∩ v2 v \ v′ ̸= ∅
÷{(v1,Γ1,∆1) , (v2,Γ2,∆2)}

44

where the function conflictC1,C2,C3,C4 is represented by checking on C1 to C4. And

the overall variability model v is created by combining two variability models (v1∩v2)

and then remove those introduced conflicts as v \ v′ ̸= ∅. The symbol ÷ represents

two modules are compatiable.

3.2.4 Module Constraints

Inspired by conditional compiling in C, which is mainly represented by the#ifdef

directive, in order to include a code fragment at build-time, several constraints should

be satisfied and pre-checked by translation units[72]. We will introduce the constraint

space with a running example.

Def-Use Constraints(DUC): A module, regardless of its size, should be com-

piled safely without any errors. In this part, we try to simulate how JVM converts

source code to bytecode and reports error if necessary. Unlike JVM which really

processes the code, we just record the constraints required in this step. Specifically,

we recover the following constraints as compiling constraints: All variables(global

and local), fields, methods, classes, and interfaces that are used in this module but

not defined should be added as DUC, except those defined in third-party API or

fundamental framework, like JDK. Namely, it mainly includes the constraints from

the def-use chain.

Type Constraints(TC): A parser will return an error when it encounters a

type error, which is further extended as type checker tools in variability context[51].

In type constraints, we consider the program from two perspectives:

• A type error may come from a type used but not defined; technically, no class

or interface can be bound with this type;

45

// #ifdef includePhotoAlbum

if (label.equals("View")) {

 String selectedImageName = getSelectedMediaName();

 showImage(selectedImageName);

 // #ifdef includeSorting

 incrementCountViews(selectedImageName);

 //#endif

 …

}

//#endif

if (label.equals("Save Item")) {

getAlbumData().addNewMediaToAlbum(…);

// #ifdef includeMusic

if (getAlbumData() instanceof MusicAlbumData){

 getAlbumData().loadMediaDataFromRMS(getCurrentStoreName());

 MediaData mymedia = getAlbumData().getMediaInfo(…);

 MultiMediaData mmedi = new MultiMediaData(…);

 getAlbumData().updateMediaInfo(mymedia, mmedi);

}

//#endif

…

}

1

2

3

4

5

6

7

8

9

10

11

en

1
2

4
5

6

7

8

ex/…

PDG

3

9

10
11

mmedi

s.I.Name

s.I.Name

mymedia

en

1
2

4
5

6

7

8

ex/…

varPDG

3

9

10
11

mmedi

s.I.Name

s.I.Name

mymedia

cond[1]

cond[5]

cond[7]

Figure 3.1: An example of varPDG

• When using a type in a module, its parent type should also be covered. We

extend this to three cases: (1) variable/field; (2) method; (3) interface/class.

For example, in (1), a variable in a child class can be used without defined

when it has been defined in its parent class; (2) is simply referred as method

overriding; and (3) is considered as a case of inheritance.

More formally, we create a formula to represent these constraints as:

φDUC∧TC (m) , (3.5)

which will give a boolean value to show whether a module m is well-typed. Techni-

cally, we also use this function to report all missing types. For example, if a method

is used, then the TC will check whether this method is declared under certain type

and the compiler knows the type. If not, this checking will report a type missing.

46

3.3 Variability-aware Program Dependency Graph
(varPDG)

Even with the variability-aware module system, it is not sufficient to recover the

feature model, considering operations are required to be defined on these modules to

compose features. For example, what is a safe scenario to combine two modules into

one, and how to map the source code to modules? In this section, we will illustrate

how to give a variability-aware presentation of source code and how to explore the

configuration options from the source code base.

3.3.1 Building varPDG

A program dependency graph (PDG) is a combination of a program’s control de-

pendency graph (CDG) and its data dependency graph (DDG)[70]. We extend this

graph by associating conditions with method calls, which means that if and only

if several conditions are satisfied the method invocation or instance creation can

occur. For example, considering the code excerpt shown in Fig.3.1, PDG is built

by extracting and tracing the control dependency and data dependency. To build

a variability-aware PDG, namely varPDG, the options within the program should

be tracked. In our example, there are three options at line 1, 5 and 7 respectively,

and the PDG is modified by adding these options as conditions; literately, we use

cond[+](’+’ shows the line number) to depict an option at a certain line.

By tracking all these options in source along with the underlying relations, the

program can be represented in a variational matter, similar to variational Abstract

Syntax Tree (varAST) in C[48]. We label each node in PDG with a presence condition

47

if possible. By tracking these, we can further extend our module system (in Sec.3.2)

with presence condition in a variability-aware manner. Concretely, it helps to define

the conditions that should be satisfied to execute some functions or code fragments.

For example, in Fig.3.1, cond[7] controls node 8 to 11. But there is a dependency

between cond[5] and cond[7] (cond[5]→cond[7]), which leads to a result that

node 8 to 11 can be executed, if and only if the condition cond[7]∧cond[5] is TRUE.

3.3.2 Tracing Options with Pointer Analysis

To build a varPDG, the configuration options should be explored and extracted from

the source code. Unlike the macro strategy used in C, in OO programming language,

like Java, the configuration options are extremely difficult to track and explore.

Listing 3.1: Running example of core idea in option controller
1 if(!batch){...
2 if (doSplash) {
3 splash = initializedSplash (); }
4 }
5 ...
6 if(splash != null){...}

Points-to Analysis

Points-to analysis aims at providing a judgement on whether a variable p can point

to variable q in some execution. This will explore the relation between variables and

how the program is executed. Specifically, the main types of points-to are represented

in Tab.3.3. The type of a points-to analysis could be flow-aware or context-aware

with different concerns for precision. Specifically, the flow-aware points-to analysis

computes a separate solution for each program point. Context-sensitive points-to

48

Table 3.3: Points-to approach
Less Precision High Precision

Flow flow-insensitive context-sensitive
Context context-insensitive context-sensitive

analysis takes the input context as a special concern and the input context will be

propagated during the analysis.

CFL-reachability Points-to Analysis For Controlling

To resolve this, we adopt Context-Free-Language (CFL) reachability points-to anal-

ysis to track options with a higher precision[107]. Specifically, we only use language

LF and discard the regular language RC , which ensures calling context sensitivity.

LF gives a graphical representation G of a Java program. There are four canonical

statements that could define edges:

• Allocation x = new O: edge o
new−−→ x ∈ G

• Assignment x = y: edge y
assign−−−→ x ∈ G

• Field write x.f = y: edge y
store(f)−−−−→ x ∈ G

• Field read x = y.f: edge y
load(f)−−−−→ x ∈ G

Within G, we use the symbol flowsTo→ new (assign)∗ to indicate the new and

assign edges. That is, o flowsTo v in G represents o is within the points-to set of

v. Moreover, the inverse symbol flowsTo is used to trace points-to for field access.

Literately, if there is an flowsTo edge from o to v, there must be a flowsTo relation

49

from v to o. Therefore, we design algorithm Alg. 1 to extract statements under

different cases.

Algorithm 1: Option Controller
Input: cond
Output: StmtcondE,StmtcondUn

1 for each x flowsTo cond do
2 Add x to StmtcondE and StmtcondUn;
3 Add enable statements to StmtcondE, unable statements to StmtcondUn;
4 while TRUE do
5 for statement s in StmtcondE do
6 if there is a c flowsTo or flowsTo s then
7 Add c to StmtcondE;

8 if StmtcondE not change then
9 break;

10 The same process for StmtcondUn(line 4-9);
11 return StmtcondE,StmtcondUn;

Input. The input for this algorithm is the condition expression cond in the

program.

Output. The outputs for this algorithm are: (1) StmtcondE represents state-

ments when this condition is satisfied; and (2) StmtcondUn represent the opposite

case.

Algorithm Body. For StmtcondE, its statements come from two sources: one

from the statements when the condition cond is enabled(line 3), and another is

from points to analysis, which contains (1) the flowTo relation ends with code and

(2) iteratively adding the statements having flowsTo or flowsTo relation to the

statements in StmtcondE until the set does not change (line 4-9). And we apply a

similar process for StmtcondUn.

50

Example. As the code segment shown in List.3.1, the option controller algo-

rithm will extract three options: batch, doSplash and splash. And it can find

the underlying relations between these options as: ¬ batch ∧ doSplash → splash,

which mean the option splash is dependent on both ¬ batch and doSplash being

TRUE.

3.4 VMS Feature Model Recovery Approach
3.4.1 Overview

Now, we will introduce our main idea. Basically, building a feature model from a

legacy source requires processing the source code and clustering similar code frag-

ments into several clusters. However, this faces some obstacles when coping with

certain cases (see Section 3.1 motivation). Our approach, variability-aware feature

model recovery, VMS, will build the variability-aware modules to resolve this. In

general, it contains three steps:

1. Step 1: Initially, VMS will extract all common modules from the system.

For example, in Fig.3.2, VMS will first find the source code for SPL and

PrevalyerSPL without any optional features;

2. Step 2: Then, VMS will enable one configuration option in the common

modules found in Step 1 to trace all optional features. In each iteration, if

there are some modules that become valid during this iteration, we will try

to package these modules into a cluster, which is an optional feature in our

context. In the example, we try to find optional feature like Replication

along with its configuration option; and

51

3. Step 3: For each potential optional feature found in Step 2, we perform a

type-checking and concern separation checking to adjust the modules in each

feature if necessary. For example, this step will check whether the feature

Replication is well-typed and whether there is a need to divide it into two

subfeatures. And we also apply this checking to those common features found

in Step 1.

SPL

PrevaylerSPL

Replication GZip Censor Monitor Snapshot

config::replication config::monitor

Step 1: Common Modules

config::replication:{Replication, SPL, PrevaylerSPL}
config::gzip:{Gzip, SPL, PrevaylerSPL}
config::replication:{Censor, SPL, PrevaylerSPL}
config::monitor:{Monitor, SPL, PrevaylerSPL}
config::replication:{Replication, SPL, PrevaylerSPL}

Step 2: Enable options and find modules affected

Step 3: Clustering under each configuration

Figure 3.2: The core idea of VMS approach

3.4.2 Build Module from Source

First, we will broadly introduce how to construct a module from the source base.

We build a module for each class or interface in a target program P and group the

programming elements parsed by the following syntax. Specifically, in the syntax,

we give an ASTNode expression for the mapping from source code to terms defined

in our variability-aware module system. And all ASTNodes’ types are defined under

Eclipse Java development tools (JDT) 2.
2 Eclipse JDT: http://www.eclipse.org/jdt/

52

http://www.eclipse.org/jdt/

Table 3.4: Syntax of VMS
Notation Syntax Remark Subremark
m ∈M ::= module

v ∈ V varability model
i ∈ O import option
j ∈ O export optio
Γ import func. sig.
∆ func. definition

e ∈ E ::= expression
Exp. Expression

o ∈ O ::= configuration option
pt(Do)
pt(For)
pt(If)
pt(While)
pt(Switch)

∆ ::= function definition
MethDecl.

t ∈ T ::= types
ITypeBind.

Specifically, within a module m, it contains v for variability model, i for import

configuration option, j for export option, Γ for import function signatures and ∆ for

functions defined in the module. The expression e ∈ E in a module could be extracted

from ASTNode Expression. And the option o ∈ O in a module could be obtained by

applying points-to analysis with function pt(A), where pt(A) returns all pointers de-

fined in the conditional expression of A. In detail, it will check all ASTNodes that can

lead to branches, including DoStatement, ForStatement, EnhancedForStatement,

IfStatement, WhileStatement, and SwitchStatement. Here, we define the configu-

ration option as the conditional expression in Java, due to the following reasons: (1)

a conditional expression can lead to a certain path in the control flow graph with a

53

specific context. That means a conditional expression could give a variability context

for configuration according to several empirical studies [103, 36]; and (2) our points-to

analysis gives a comprehensive understanding of underlying relations between these

options. The type t ∈ T could be obtained using type-resolving techniques provided

by Eclipse with an input of the binding of the type. As for the function definition ∆,

it can be extracted by visiting all MethodDeclaration node in the AST. The rest of

components in module m, including, i, j ∈ O, Γ and v ∈ V , could be built based on

these basic elements using our definition in Section 3.2.3.

3.4.3 Module to Feature

Moving on, we will cluster these modules into features, where a feature is composed

of one or more modules. We first introduce the measurement for computing the

distance between a module and a feature. The distance between a module and a

feature (a collection of modules) could be used to decide the feature that a module

should belong to.

Topology based Method Reference

Adopted from Robillard’s topology work[83], we adjust it to compute the uniqueness

of a module to a feature. The core idea of topology analysis is it computes the

similarity using metrics specificity and reinforcement. Specifically, specificity suggests

that the case of an element A only refers to another element B should be ranked

higher comparing with the case that element C refers to many elements including B.

And the intuition behind reinforcement is that if elements refer to (or referred from)

many elements that are in one cluster, possibly they should be considered as a part

54

of that cluster. Therefore, we simply compute the uniqueness of a module m to a

feature f as follows.

wtmr (m, f) =
1 + |targets(m) ∩ f |

|targets (m)| · |sources(m) ∩ f |
|sources (m)| , (3.6)

where targets(m) = {m′ |(m,m′) ∈ R} and sources(m) = {m′ |(m′,m) ∈ R}. Here

(m′,m) ∈ R represent there is a method invocation that starts from m′ and ends

with m.

Type Reference

Type reference ensures consistency and type-safety and works at a fine granularity.

The underlying idea in type reference is that for each module, it looks up all possible

references, such as method reference - from method invocation to method definition,

variable reference - from variable access to its definition, or type reference (from a

type reference to its declaration) and explore the types referred in all these references.

For example, in module m, a method defined in type t is invoked, then we add the

reference from module m to type t. For type reference, we define two types of vectors:

def (X) and ref (X). Specifically, the vector def (X) ∈ Rn defines all types within X,

where n represents the number of types in the subject program. def (X) = [d1, ..., dn]

is defined as if type i is defined in X, then di should be 1; otherwise di is 0. On

the contrast, ref (X) = [r1, ..., rn] shows the reference information. If a type i is

referenced by X, then the ith element ri in ref (X) should be 1, otherwise it should

be 0. Therefore, the type reference distance wtr is defined as follows.

wtr (m, f) =
1

2n

(
∑

mi∈f

(
csd (def (m) , ref (mi))+
csd (ref (m) , def (mi))

))
, (3.7)

55

where n is the number of modules currently in feature f and csd is defined as cosine

similarity between two vectors:

csd (X, Y) =
X · Y
∥X∥ ∥Y ∥ .

The subtlety of this approach is that it uses cross reference to check how a module

mi in feature f relies on m with csd(def(m), ref(mi)) and the opposite case showing

how the module m relies on a module mi. Here, we exclude the type defined outside

of this program, like a type defined in a third-party API or a type defined in Java

runtime environment.

Documental Topic Similarity

In a broader sense, a program can be considered as a set of documents and defined as a

corpus. Upon this corpus, an information retrieval approach named Latent Dirichlet

Allocation (LDA)[95] can be used to extract the topic distribution. Furthermore,

a topic z is given based on a multinomial probability distribution upon a set of

words ws obtained from a Dirichlet distribution with the shape parameter β. For

example, given a topic label “life” and relative words “biology”, “gene”, “water”,

and “oxygen” can be represented with certain probabilities, by learning from the

corpus. Using LDA allows us to build a bridge between a module and a feature.

That is, for each module, a vector is defined with each item inferring the probability

on each topic. For example, if there are 5 topics and a module m is represented as

a topic distribution θm = [0.5, 0.3, 0.1, 0.9, 0.1], which states that this module should

be considered a part of topic with id = 4, then the probability 0.9 from a textual

perspective. Then some similarity measure could be used to measure the distance of

56

two modules’ topic distributions, like cosine distance Kullback-Leibler. Technically,

we use the MALLET tool to create the topic model and adopt an empirical setting

for parameters in LDA with α = 50/T and β = 0.01, since it has shown its strength

across different corpora[95]. Therefore, we define the topic similarity wdt using cosine

similarity as:

wdt (m, f) =
1

n

∑

mi∈f

θmi · θm
∥θmi∥ ∥θm∥

, (3.8)

where θm defines the topic distribution of m and n represents the total number of

modules in feature f .

Putting All Pieces Together

For all distance values extracted (wtmr, wtr and wdt), we denote an overview distance

value as w∗. The overview distance w∗ is defined by following Robillard’s approach,

which uses operator x 1 y = x + y − x · y to combine two values[83]. This operator

yields a result by equally treating all arguments and return its overall result within

the range [0, 1]. Thereby, we calculate the overview distance by: w∗ = wtmr1wdt1wss.

In addition, we have to apply the variability-aware constraints on w∗. w∗ represents

the overall similarity between a module and a feature; the closer w∗ to 1, the more

similar they are.

However, combining two modules with high similarity may still introduce errors,

which may come from: (1) merging import functions’ signature (Γx (c)∪Γy (c)) under

a configuration c ∈ C, (2) combining variability modules (vx ∪ vy) and (3) merging

imported and self-defined configuration options in each module (ix ∪ iy and jx ∪ jy).
2 MALLET: http://mallet.cs.umass.edu/

57

http://mallet.cs.umass.edu/

Therefore, to merge two compatible modules to yield a new one, any potential conflict

should be checked to ensure all modules are well-formed. The conflict checking

process is shown by the following logical proofing.

m′ = (v′, i′, j′,Γ′,∆′)

v′ = vx ∩ vy \ conflict (Γx,∆x,Γy,∆y)

Γ′ (c) = Γx (c) ∪ Γy (c) \(sig (∆x (c)) ∪ sig (∆y (c)))

∆′ (c) = ∆x (c) ∪∆y (c)

i′ = ix ∪ iy\(jx ∪ jy) , j′ = jx ∪ jy
(vx, ix, jx,Γx,∆x) • (vy, iy, jy,Γy,∆y) = m′

The module checking for merging two modules into one is represented with com-

bining option •. The type checking detects the errors in these two modules. Specif-

ically, the module checker will check: (1) the conflicts from two modules’ merged

variability model v′ (v′ = vx ∩ vy \ conflict (Γx,∆x,Γy,∆y)), which mean the new

conflict should merge vx and vy by excluding the conflict from configurations. This

exclusion of configuration ensures that the new variability module v′ can fully map

the functions defined within the new module m′ and all imports. This checks for the

conflict from both modules import functions with the same name but different types;

(2) defining sig gives a mapping sig : (X → E × T) → (X → T). Therefore sig (∆)

returns a mapping X → T , which is a Γ in our definition. Therefore, for the merged

import function Γ′(c) under the configuration c with exclusion of functions required

by one module but defined in another module; (3) merge the configuration-option

defined j′ = jx ∪ jy and functions defined ∆′ (c) = ∆′
x (c)∪∆′

y (c); and (4) merge the

configuration-option imports and remove the import configuration option from one

module, but already defined in another i′ = ix ∪ iy \ (jx ∪ jy). Therefore, we adopt

58

this checking to check whether a module mergings action should be allowed or not.

Formally, we define a function to do this checking as follows.

φ (mx •my) . (3.9)

This function will return a boolean value to show whether the merge will lead to any

conflict. It returns TRUE, if this merge is safe, and FALSE for an unsafe merge.

3.4.4 VMS

Our ultimate target is to build a feature model by analyzing the source base.

Input. The input for VMS approach includes two values: #op representing the

number of option features preferred in this feature model, and #cf showing the

number of common features preferred.

Output. The output returns the feature model fm proposed by VMS automat-

ically.

Algorithm Body. Now, we will introduce the main process of VMS approach

to explore the feature model for source code. Due to the length of algorithm 2, we

separate it into several sections and present them respectively.

• Line 1 - 6: First, extract structural information to build varPDG and for each

class/interface create a module;

• Line 7 - 12: We define the common modules as all modules that must be

executed regardless of the input context. Therefore, we follow a Breadth-First-

Search structure to add the “must” invoked functions into the queue Q itera-

tively. To find these “must” invoked functions, VMS discards method invoca-

tion enclosed in statements under a certain configuration option op ∈ O. With

59

Algorithm 2: VMS feature model constructing approach
Input: #op,#cf ,P
Output: fm

1 Build the varPDG for input program P ;
2 Create an empty module to class/interface mapping D;
3 for class c in P do
4 create a module m using c;
5 add (m, c) to D;
6 Create set CommonM ;
7 Create empty queue Q, add entry class en’s main function main to Q;

/* find common modules */
8 while Q not empty do
9 fhead ← Q.poll;

10 if fhead not visited then
11 Find all functions needprocess, which not defined in the scope of a

condition cond in varPDG;
12 Add all modules contain needprocess to CommonM ;

/* hierarchical clustering all optional module set and common module set
respectively */

13 For each module commonMm in commonM into a cluster commonMi;
14 Let optional modules optionalM be optionalM ← D.keyset() \ commonM ;
15 while commonM.size > #cf do
16 Find two cluster commonMi and commonMj with maximum

w∗ (commonMi, commonMj) and (commonMi · commonMj, OK);
17 Update all reference information;
18 while optionalM.size > #cf do
19 Find two cluster optionalMi and optionalMj with maximum

w∗ (optionalMi, optionalMj) and (optionalMi · optionalMj, OK);
20 Update all reference information;
21 Create fm from cluster recovered;
22 return fm;

that, the modules associated with these functions are considered as common

modules;

60

• Line 13 - 14: As illustrated in the core idea(see Section 3.4.1), we create two

sets: one contains all modules for common features commonM and another

contains all modules for optional features optionalM ;

• Line 15 - 17: We conduct a hierarchical clustering on the common module

set commonM based on our distance measurement w∗ under a module conflict

checking function (X, Y,OK). Here, (X, Y,OK) represents there is no module

conflict between module X and Y ; Specifically, it will do two checking steps:

(1) check the module constraints and (2) check potential errors for variability

merging. Thereby, the conflict checking function could be represented by.

(X, Y,OK) = φDUC∧TC (X) ∧ φDUC∧TC (Y) ∧ φ (X • Y)

• Line 18 - 22: We also apply the hierarchical clustering upon all modules be-

longing to the optional module set optionM .

3.5 Case Studies
3.5.1 Experimental Settings

We will introduce the infrastructure selected for our study, how we do constraints

checking in terms of constraints identified, and the ground truth for assessing the

performance.

Infrastructure and Constraints Checking

To implement our work, we develop an Eclipse plugin system and integrate it with

TypeChef system. The TypeChef system is a variability-aware parsing tool, which

61

gives a customized compiling service and variability-aware presentation for code

fragments[51]. TypeChef3 is used to provide constraint checking for our module

systems. Unlike the normal use of TypeChef, which gives the type error during the

checking, in our work, we only need it to return types required to be resolved at a

certain point.

Ground Truth for Performance Assessment

In order to assess the performance of our work and compare it with other tools,

we select the systems that have been well-researched with two kinds of information

available publicly: (1) given our final target is to build a feature model from source

base, the feature model should be available, which could be used to assess whether

our approach could extract the correct feature relations. For example, if there is an

implies relation from a feature f to feature f ′, ideally a competitive approach should

give this relation as a part of output; and (2) some information should be available

that shows how code fragments and features are mapped.

3.5.2 Subject Systems

We carefully select subject systems from different domains to verify our approach in

multiple dimensions. A special factor to consider is the specific type of subject system,

namely, we want to test our approach using systems from different domains and in

different size scales, including small systems, medium-size systems and large-scale

systems. For subject systems, we mainly target on systems in Java, with systems

in C and CPP out of the scope, since they use directives to implement variability
3 TypeChef is designed in C, a Java version of TypeChef’s core function is implemented as a part

of LEADT tool, available at: https://github.com/ckaestne/LEADT

62

https://github.com/ckaestne/LEADT

and associated with configuration management techniques. Therefore, the following

systems were selected for our study.

• Prevayler4. An open-source object persistence library for Java with 8009 LOC.

It was a well recognized product for product line research[102, 63], although

it is not originally developed as a product line application. It contains five

features: Censor, Gzip,Monitor, Replication, and Snapshot with a dependency

Censor ⇒ Snapshot.

• MobileMedia v8 . Originally developed by University of Lancester, UK as

a product line with 4653 LOC[38]. It contains several features: Photo, Music,

SMS Transfer, Copy Media, Favourites, and Sorting. The dependencies include:

Photo ∨Music, SMS Transfer ⇒ Photo and

Media Transfer ⇔ (SMS Transfer ∨ Copy Media) .

• ArgoUML5 With 120 KLOC, ArgoUML provides modelling support for UML

v1.4 diagrams and supports multiple programming languages. In ArgoUML,

the following seven features are selected: Cognitive, Activity Diagram, State-

Diagram, Collaboration Diagram, Sequence Diagram, Use Case Diagram, and

Deployment Diagram from an empirical research[26]. The feature Logging is not

covered in our mining work, as it is not a callable feature by the end customers.

In another study[102], a dependency ActivityDiagram ⇒ StateDiagram is

added. In our experiment, we adopt the same setting.
4 Prevayler: available at http://prevayler.org
5 ArgoUML: available at: http://argouml.tigris.org

63

http://prevayler.org
http://argouml.tigris.org

• Berkeley DB (in Java)6 It is a database application with 84KLOC and 38

features. Berkeley DB could be an embedded application to other applications.

It performs safe transaction and offers several useful APIs to cope with IO,

logging, memory and so forth. A full feature list and feature relation is enclosed

in our project webpage7.

3.5.3 Tools

We have implemented a prototype of our work and integrated other related ap-

proaches into an Eclipse plug-in named LoongFMR. We have released the exper-

imental data, ground truth, and source code on our project page: http://www.

chrisyttang.org/loong_fmr/.

3.6 Experimental Result

In this section, we will first introduce several related approaches for comparing with

our approach in Sec. 3.6.1. Then we list the results in Sec.3.6.2.

3.6.1 Related Approaches
ACDC

Algorithm for Comprehension-Driven Clustering (ACDC) recovers the architecture

of a system by inspecting certain patterns that could exist in systems[101]. Specif-

ically, ACDC contains source file pattern, body-header pattern, leaf collection and
6 Berkeley DB: http://www.oracle.com/technetwork/database/database-technologies/

berkeleydb/
7 LoongFMR: http://www.chrisyttang.org/loong_fmr/

64

http://www.chrisyttang.org/loong_fmr/
http://www.chrisyttang.org/loong_fmr/
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/
http://www.chrisyttang.org/loong_fmr/

support library pattern, and ordered and limited subgraph domination. ACDC iden-

tifies clusters by using these patterns with orphan adoption techniques, which were

originally proposed in [100].

LIMBO

scaLable InforMation BOttleneck (LIMBO) optimizes the usage of information loss

when conducting clustering on a system. It builds on Information Bottleneck (IB)

framework and can collect relevant information during clustering[6].

ARC

Architecture Recovery using Concern (ARC) as defined in [42] uses a generative

probabilistic model for text corpora named Latent Dirichlet Allocation (LDA) to

retrieve concerns and identify programming elements belonging to concerns. It treats

the source as a series of documents that contain various topics and then measures

similarity using Jensen-Shannon divergence (Djs).

Bunch

Bunch regards the recovery task as an optimization problem[66]. It starts with a

random partition and iteratively updates each cluster by optimizing the objective

function called Modularization Quality (MQ) until it cannot find a better solution.

W-UE and W-UENM

Weighted Combined Algorithm(WCA) combines hierarchical clusters into larger sets

by computing the inter distance between two possible variants using Unbiased Ellen-

berg (UE) and Unbiased Ellenberg-NM(UENM) distance measurement respectively[67].

65

3.6.2 Results

We measure the performance of different approaches by four aspects. We adopt

three metrics from software architecture recovery: MoJo similarity,architecture-to-

architecture measurement and cluster-to-cluster coverage. The runtime performance

returns the execution speed of the algorithm.

MoJo Similarity

The SimilarMoJo metric[104] gives a representation of closeness between two archi-

tectures with a percentage. It helps to analyze two different architecture strategies.

SimilarMoJo is defined as:

SimilarMoJo (A,B) =

(
1− MoJo (A,B)

N

)
× 100%, (3.10)

where MoJo(A,B) = min (mno (A,B) ,mno (B,A)), mno (A,B) represents the min-

imum number of Move or Join operations needed to transform from A to B and N

represents the number of units in the system. The algorithm in [112] gives a way

to calculate mno (A,B). Furthermore, the symbol ∀A in the denominator repre-

sents a partition of A and max (mno (∀A,B)) means the maximal distance from any

partition A to B.

66

Table 3.5: Evaluated MoJo Similarity
Algorithm Prevayler MobileMedia ArgoUML BerkeleyDB
ACDC 83.0 75.0 63.69 83.93
LIMBO 55.56 68.75 52.03 78.31
Bunch 74.07 68.42 63.92 88.77
ARC 59.25 73.43 53.09 84.95
VMS 83.33 71.87 79.78 81.62
W-UE 66.67 78.12 51.66 83.41
W-UENM 68.52 71.87 51.66 82.14

50

60

70

80

90

ACDC LIMBO Bunch ARC VMS W.UE W.UENM
Methods

Sim
ila
rity

Methods
ACDC

LIMBO

Bunch

ARC

VMS

W.UE

W.UENM

Figure 3.3: The violin plot for MoJo Similarity

Architecture-to-architecture Measurement(a2a)

a2a is developed to overcome the limitation of MoJo measuring discrepancy of files

between the recovered result and ground truth[59]. a2a measures two architectures

67

Ai and Aj, one is the recovered and another is the ground truth by computing:

a2a (Ai, Aj) =

(
1− mto (Ai, Aj)

aco (Ai) + aco (Aj)

)
× 100% (3.11)

mto (Ai, Aj) = remC (Ai, Aj) + addC (Ai, Aj) + remE (Ai, Aj) + addE (Ai, Aj) +

movE (Ai, Aj) and aco (Ai) = addC (A,Ai) + addE (A,Ai) + movE (A,Ai), where

the symbol mto (Ai, Aj) is the number of minimum changes from architecture Ai to

Aj and aco (Ai) represents the total number of operations from a “null” architecture

A into Ai. There are five operations that could be used to transform an architecture

to another including additions(addE), removals(remE), and moves(movE) from one

cluster to another.

Table 3.6: Evaluated Project and architecture with a2a
Algorithm Prevayler MobileMedia ArgoUML BerkeleyDB
ACDC 21.18 30.31 51.46 17.97
LIMBO 47.19 63.68 47.67 55.57
Bunch 45.07 56.75 49.06 49.08
ARC 49.23 67.39 49.76 63.48
VMS 52.16 67.70 52.87 62.92
W-UE 50.0 73.56 49.90 62.01
W-UENM 50.0 73.56 49.90 61.64

The results shown in Tab.3.5 and Tab.3.6, and associate violin plots, including

Fig.3.3 and Fig.3.5, indicate that at the system level8, our VMS approach could

reach a competitive result and more importantly the result is stable comparing to

others. From these two violin plots, we can draw the following conclusions: (1) the

median value from VMS gives a better performance than others; and (2) from the
8 Metrics MoJo and arch2arch give a system-level assessment, and cluster2cluster coverage returns

a cluster-level assessment

68

Figure 3.4: The Heat Map for Cluster-to-cluster Coverage

distribution and range between first and third quartiles, our VMS shows its strength

in providing stable results.

Cluster-to-cluster Coverage(c2ccvg)

c2ccvg explores the component-level accuracy and is given as[59]:

c2c (ci, cj) =
|entities (ci) ∩ entities (cj)|

max (|entities (ci)| , |entities (cj)|)
× 100%, (3.12)

where ci is a cluster generated by clustering techniques and cj is the cluster from the

ground-truth. The entities(c) represents all candidates in the cluster c. The archi-

69

Table 3.7: Cluster-to-cluster coverage(majority match(50%), moderate
match(33%),weak match(10%))

Algorithm Prevalyer MobileMedia
Major Moderate Weak Major Moderate Weak

ACDC 13.64% 18.18% 54.55% 0.00% 0.00% 30.00%
LIMBO 0.00% 0.00% 80.00% 0.00% 0.00% 28.57%
Bunch 5.26% 15.79% 47.37% 0.00% 14.29% 42.86%
ARC 0.00% 0.00% 20.00% 0.00% 14.29% 57.14%
VMS 16.67% 16.67% 83.33% 0.00% 14.29% 71.43%
W-UE 40.00% 40.00% 60.00% 0.00% 28.57% 71.43%
W-UENM 40.00% 40.00% 60.00% 14.29% 14.29% 71.43%
Algorithm ArgoUML BereleyDB
ACDC 4.55% 4.55% 22.73% 0.00% 0.00% 7.32%
LIMBO 0.00% 0.00% 66.67% 0.00% 0.00% 14.63%
Bunch 0.00% 3.03% 21.21% 0.00% 0.00% 9.76%
ARC 0.00% 0.00% 22.22% 2.38% 7.14% 45.24%
VMS 0.00% 22.23% 77.78% 2.44% 4.88% 46.34%
W-UE 0.00% 0.00% 11.11% 0.00% 4.17% 54.17%
W-UENM 0.00% 0.00% 11.11% 0.00% 0.00% 50.00%

tecture coverage c2ccvg is a metric that extend the clusters overlap as:c2ccvg (c1, c2) =
|simC(A1,A2)|

|A2.C| ×100%, where simC (A1, A2) = {ci|(ci ∈ A1, ∃cj ∈ A2)∧(c2c (ci, cj) > thcvg)}.

A1 is the recovered architecture and A2 is the architecture from the ground-truth.

The symbol A2.C represents all clusters in A2, and thcvg shows the threshold that

indicates the bottomline that for the clustering approach must achieve in order to

count for similar clustering when comparing to A2. The detailed performance of

our approach and other related approaches are shown in Tab.3.7. In addition, the

heat map in Fig.3.4 indicates VMS returns a better performance in terms of weak

match(> 10%) and majority match(> 50%). For example, as for the weak match,

VMS overwhelmingly performs better than other approaches, including W-UE, W-

70

20

40

60

ACDC LIMBO Bunch ARC VMS W.UE W.UENM
Methods

Sim
ila
rity

Methods
ACDC

LIMBO

Bunch

ARC

VMS

W.UE

W.UENM

Figure 3.5: The violin plot for a2a Measurement

UENM, LIMBO and ARC.

Run-time Performance

Run-time performance explores the execution time under the same environment. In

this study, all algorithms are run on a MacOS 10.12 with Intel i5 2.6GHz, 8G 1600

MHz DDR3, and targeting on Eclipse 4.5 with JRE 7.

Table 3.8: Runtime Performance in second
Algorithm Prevayler MobileMedia ArgoUML BerkeleyDB
ACDC 6 2 461 13
LIMBO 5 1 26296 13
Bunch 1 2 252 2
ARC 23 32 1398 64
VMS 1 3 4532 218
W-UE 2 1 303 7
W-UENM 1 1 320 5

71

As the runtime performance presented in Tab.3.8, a potential bottleneck for

VMS is it requires more resource when processing large-scale systems, which might

due to computation for the conflict checking and also computing the complicated

model (w∗) to measure module similarity. Specifically, we found that if a system

is not large, then the run-time performance of VMS behaves compatible with other

approaches. Whereas the main bottleneck for VMS is for a more complex system, it

has to compute and extract all relations between programming elements.

3.7 Discussion
3.7.1 Lessons Learned

In this section, we describe the experience learned from this study and share several

empirical understandings in feature model building by answering following research

questions. By answering these questions, the strengths and potential weaknesses of

VMS are also presented.

RQ1: Is current architecture recovery technique qualified for constructing feature

model?

As the results shown in the previous section, we can conclude that traditional

techniques designed for architecture recovery cannot meet the need of feature model

construction. The main limitations of these approaches include the following:

1. These approaches do not consider typing issue. To recover the feature model

from the system, each feature should be well-typed, which could not be handled

in those approaches.

2. These approaches mainly work at a coarse-granularity level, which means some

72

relations cannot be covered in those approaches. That in return weaken the

performance of those approaches.

Another apparent limitation of these approaches is that they cannot ensure all pro-

gramming elements in a cluster are well-typed, which is solved in our approach.

Therefore, our strategy could be a better choice for product line feature model build-

ing.

RQ2: What are the potential limitations of VMS approach?

Although VMS returns a competitive result on four case studies, it still has its

limitations. The limitations are two parts: (1) the first limitation is the runtime

performance as we described in the previous section; and (2) another limitation is

that it is still a coarse-granularity approach. After we carefully check the ground-

truth, we found that some programming elements are shared by different features.

This can only be resolved using a fine-granularity strategy. Whereas given the goal

of building a feature model, a fine-granularity work might be overfit considering we

only need to build a feature model to provide an overview of the system, for which

our approach is fully qualified. Since, the feature model only requires features are

identified and how these features are implemented is out of scope.

3.7.2 Threats to Validity

Construct and Internal Validity. The metrics, including SimilarMoJo, cluster-to-

Cluster, and achitecture-to-architecture are broadly adopted in architecture recovery

performance collection and have been tested on various target systems. The bench-

marks are collected from other researchers’ work, which are theoretically acceptable.

Nevertheless, they may be incorrect as there is a widely recognized truth that there

73

is no single “correct” architecture.

External Validity. (1) Even though the size of our subject systems includes

two small systems (4K, 8KLOC), a medium-size system (84KLOC) and a large-scale

system (120KLOC), due to the small number of cases, the experimental results are

not intended to be generalised to all systems. This is mainly because we have to

restrict the systems to those with ground truth available. (2) Further in the assess-

ment, we adopt the common architecture recovery performance metrics to testify our

approach to reduce the bias of using a self-defined approach. Clearly, the correctness

of ground truth can highly influence the performance.

3.8 Chapter Summary

Constructing a feature model and modeling variability are promising and worth inves-

tigating in product-line oriented research. In this chapter, we proposed an approach

for constructing feature model by investigating variability-aware modules. As our

results suggest, traditional methods used in architecture recovery could not reach a

stable and competitive performance compared to our variability-aware approach.

74

Chapter 4

Feature Mining

In the previous chapter, we discussed how to build the feature model from source

base by creating type safe variability-aware modules. We noted that traditional

approaches in software architecture recovery are not suitable for building the feature

model for the following main reasons: (1) software architecture recovery approaches

do not consider relations at a fine-granularity level; and (2) architecture recovery

approaches could not ensure each feature is well-typed. Given our target is to form

a software product line from a legacy system, the next step should be matching

features with their implementations. We define this process as feature mining. This

chapter addresses how to match the features with their implementations.

4.1 Overview

Currently, most works in constructing a product line are primarily concentrated on

solutions on analyzing product lines and building product lines from an abstract as-

pect, for instance, from the architecture or module level, including model checking,

refactoring and so forth, to analyze variability in the product line[51, 29, 22]. The

75

main problem of these coarse-granularity approaches in terms of constructing a prod-

uct line is that they cannot recover a feature’s implementation in a fine granularity

manner.

The task of mining features in code base could be considered a clustering problem.

The goal of feature mining is mapping features with code, which could be deemed as

grouping programming elements into different groups that represent features. Pro-

gramming elements represent all possible programming units can be found in a pro-

gram. For example, “class Tool” is a programming element. Therefore, the main

problem is giving a quantified presentation for two programming elements rather

than merely detecting their relations. For example, given two method invocations

A.act() and B.act(), if A also invokes other five functions, but B only call method

act(), B should be considered before A when checking the related programming el-

ement for method act. In this chapter, we propose a probability-based approach to

address this issue.

To further assess our approach, we developed an Eclipse plug-in tool to obtain

code fragments from the code base for the feature concerned, and we compared

the performance with three other feature mining approaches, including type check,

topology analysis and text comparison, with several case studies.

This chapter is organised as follows. Section 4.2 provides a bird’s eye view of

the feature mining process. Section 4.3 introduces the underlying model, and two

research questions are raised. Our approach is introduced and explained in Section

4.4. We conduct case studies and exhibit our experimental results in Section 4.5

and 4.6 respectively and discuss the results in Section 4.7. We conclude this work in

Section 4.8.

76

4.2 Feature Mining Process Overview

The procedure of detecting potential variants from legacy could be deemed as identi-

fying assets from an application. Particularly, in this chapter, we focus on deriving

features’ implementation from the source base.

As illustrated in Fig.4.1, the whole feature mining process consists of four steps

as follows:

feature model

Domain
Expert

defines

Step 1 Step 2 Step 3

Developers/Tool

Step 4

Domain
Expert

select

feature seeds

feature
mining
strategy

A

B

C

Product Variants

Figure 4.1: Feature mining process overview

1. A domain expert models the product and describes features and their underly-

ing relationships and constraints in a feature model.

2. Moving on, for each feature, developers have to select an initial seed to represent

this feature. For example, a method named “Lock” could be used to represent

feature locking.

3. For each feature, the feature mining strategy expands the known code range

for the feature iteratively until some stopping criteria are met.

4. Finally, developers rewrite code fragments with different configurations, that is,

77

using some variants from the variants set to generate members in the product

family.

Within this process, we focus on Step 3, which is to obtain all code that im-

plements a feature starting with an input seed and a feature relation model defined

by the domain expert. As mentioned in Step 2, with the selection of seed for each

feature, the feature mining task has been transformed to finding all related code

fragments based on the given seed.

4.3 Underlying Model
4.3.1 Basis

Programming Elements. To retrieve code fragments that describe variants and

their internal relationships, we use a graph-based representation of the system, in

which nodes denote programming elements and links stand for dependences. Cur-

rently, most source-based tools (such as Suade[83] and Cerberus[33]) merely focus on

methods and fields, which may lead to inaccurate results. In our approach, program-

ming elements include local variables, fields, statements, types, methods, classes and

interfaces. We denote the set of programming elements in a system as E. Techni-

cally, we use abstract syntax tree(AST) nodes to represent programming elements,

since using AST nodes as basic units could contribute to finding relations between

programming elements at a fine-granularity level.

Among these programming elements, relationship (R ⊆ E × E) indicates how

they are linked and impact each other. Contain relation shows the hierarchical struc-

ture between elements. For instance, import a package or API in a class (import

78

java.util.Map;). This relation could be discovered in class import (API import

is covered), class instance declaration, enumeration, and inner class. Reference de-

notes a use relation, which could be method invocation, field use and type reference,

for example, a relation from a local variable cfg to a field controlFlowGraph using

this.controlFlowGraph = cfg, where a field named controlFlowGraph is accessed

and updated with local variable cfg. In addition, usage provides an indirect refer-

ence between elements, that is, one element might reference another’s attributes

or functions. This relationship mainly includes cast, instanceof, super and child

class.
Listing 4.1: The data structure of programming elements

e :<
ast id , // the unique i d e n t i f i e r o f t h i s
parent_e ,// the parent AST node o f t h i s
r e l a t i o n : {

<re la t i on_1 : target1 >,
<re la t i on_2 : target2 >,
. . . .

} ,// the r e l a t i o n t a r g e t mapping
f ea ture , // f e a t u r e annoated
. . .

>

The data structure shown in listing 4.1 indicates that a programming element is

stored with following key attributes: (1) astid:String: the unique identifier of this

AST node; (2) parent_e:ASTNode: the parent AST node of this AST node; (3)

relation:Map: the relation is map, which contains all valid mappings from relations

to target AST nodes; and (4) feature: represents the features assigned to this AST

node.

Feature. In our product-line setting, we require additional domain knowledge

79

Program P

(1) s = 0

(2) i = 0

(3) while (i < 5)

(4) if (i < 3)

(5) t = 1

(6) else t = i - 2

(7) s = s + t

(8) i = i + 1

(9) return s

en
CFG

1

2

3

4

5

6

7

8
9

ex

en

1

2

3

4

5
6

7

8

ex

9

CDG DDG
en

1

2

3

4

5
6

7

8

ex

9

s

t

i

i

en

1

2

3

4

5
6

7

8

ex

9

PDG

s

i

t

i

en

1

2

3

4

5
6

7

8

ex

9

i

i

SS: 3

Figure 4.2: Example program P with its control dependency graph, data dependency
graph, program dependency graph, and the slicing scope for node 3.

by defining the feature model[78], which describes how features enclosed in products

are organized and their underlying dependencies and constraints. The feature model

consists of a set of features (F) and relations between these features. Two funda-

mental relations: mutual exclusion and implications are frequently used in feature

models. mutual exclusion (M ⊆ F × F) denotes two features are mutually excluded

and code segments belonging to one feature cannot be part of another. Whereas,

implications (⇒⊆ F × F), which initially come from the “if feature f is included

in some variants, f ’s implied feature g must be covered in these variants”, is use-

ful in terms of setting seeds, since it would be redundant to provide seeds for an

implied feature. Implication is a typical relation between features in a hierarchical

relationship.

In the previous chapter, we discussed how to build the feature model from the

code base. In this chapter, we will extract the features from the feature model built.

For example, for the feature model presented in Fig.4.3, the following features can

be extracted: structures, options, plus, neg, numbers, tostring, eval and expression.

80

Figure 4.3: An example of feature model

Annotation. Annotation describes the mapping beFtween a feature and pro-

gramming elements. That is, annotation (A ⊆ E × F) shows programming elements

that have been assigned to features during the seed selection. Each programming

element could be attached to multiple features during the mining process.

For the relations (⇒ and M) mentioned, we extend the annotation as A∗ =

{(e, f) |(e, g) ∈ A, g ⇒∗ f} to represent the closure of A with implication relation,

where ⇒∗ is the reflexive closure representation of ⇒. In detail, a feature f ’s ⇒∗

relation contains all features that implies f , that is (g ⇒∗ f), along with f itself.

Thereby, A∗ relation contains two parts: (1) all elements that are directly annotated

to feature f as (e, f); and (2) all elements that are indirectly annotated to feature f

using implications relation as {(e, f) |(e, g) ∈ A, g ⇒ f}.

4.3.2 Modeling Closeness between Element and Feature

RQ1: How to measure the probability that a programming element should be anno-

tated to a certain feature?

Considering the whole process of feature mining approach as steps of annotating

programming elements to feature, this section starts from raising a question on how

to measure the probability that a programming element should be annotated to a

81

certain feature. Moreover, we introduce the concept of annotation state and feature-

element correlation coefficient for modeling this question.

Definition 1 (Annotation State). An annotation state of a feature f is defined as

a set of elements that have been annotated to f . It is represented by

S (A∗, f, i) = {e|(e, f) ∈ A∗}

Here, i represents a certain annotation iteration. Specifically, the feature mining

process for a single feature could be deemed as a series of transformation of annota-

tion states as shown in Fig.4.4. In detail, at the beginning, seeds are selected and

annotated to a feature. Then, one or more programming elements are annotated to

this feature at each iteration, which transforms the current annotation state to its

immediate successor, such as from S (A∗, f, i) to S (A∗, f, j) in the example. Thereby,

the mining process for a feature f could be regarded as a series of annotation state

transformation from S (A∗, f, 0) to S (A∗, f, Stp). The symbol S (A∗, f, 0) represents

the initial state in which only seeds are annotated to f . The state S (A∗, f, Stp) is the

final state, and it contains all code fragments that have been annotated to f when

the mining process stops. For an adjacent transformation, like from annotation state

i to j, the feature mining approach will look up all candidate elements which could be

annotated to the current feature and annotate those with high likelihood. Therefore,

we define the feature-element correlation coefficient to express this likelihood.

82

Annotation
State (i)

Annotation
State (j)

start end

mining process for a single feature

Candidate
Elements

Figure 4.4: The general process of feature annotation

Definition 2 (Feature-Element Correlation Coefficient). A measure of the probabil-

ity that a programming element e should be annotated to feature f at an annotation

state S (A∗, f, i), and is represented in the form of a conditional probability as

p (e|S (A∗, f, i))

Given the correlation coefficient represented as p (e|S (A∗, f, i)), where S (A∗, f, i)

is a set of programming elements at ith iteration that has been annotated to f , there

should be a method to measure “closeness” between two programming elements.

Here, “closeness” indicates the degree that two programming elements belong to the

same feature. And this conditional probability representation is designed to simulate

this “closeness”.

Therefore, the feature-element correlation coefficient could be regarded as the

probability required in RQ1. To compute this correlation coefficient, another re-

search question, that is how to capture the “closeness” between two programming

elements, should be answered first.

83

Annotation State (i+1)

Annotation State (i)
ToString

Figure 4.5: The general process of change on annotation state

Example. As shown in Fig.4.5, the annotate state changes from i to i + 1. In

this iteration, the programming element “public String toString()...” is annotated

to feature “ToString”. Therefore, the entire procedure of feature mining could be

considered as a series of actions shown in the change on annotation status. At the

beginning, seeds are annotated to features manually, which will create an annotation

state change from state 0 to state 1. Furthermore, the feature mining approach will

automatically make the transformation of annotation state from state 1 to the end

of annotation. At last, when the annotation state does not change any more, the

feature mining process is finished. Therefore, the main services provided by a feature

mining approach should be finding the next programming element to be annotated

to a specific feature. Considering the transformation from state i to i+1 for a specific

feature is a process to infer the next element based on current state i. Therefore, to

recommend the next elements to be annotated, an approach which could measure

the “distance” between programming elements is essential as the next element is the

one which is strongly related to elements at state i.

84

4.3.3 Modeling Closeness between Elements

RQ2: How to provide a mathematical representation to capture the “closeness” be-

tween two programming elements?

For the research question (RQ2) and the requirements presented above, we in-

troduce two key concepts, slicing scope and binding.

Definition 3 (Slicing Scope). For a programming element, its slicing scope is defined

as

sscope (e) = e ∪
{
s|s df→ e ∨ s

cf→ e, s ∈ E
}
,

where s
df→ e represents a data dependency flow from s to e and s

cf→ e shows a

control dependency flow from s to e.

Example. In the definition of slicing scope, control dependency graph (CDG)

is a data structure which describes the control dependencies for operations in a

program[74]. In addition, data dependency graph (DDG) shows data flow dependen-

cies between statements [37]. A program dependency graph (PDG) contains all nodes

defined in CDG and DDG, with edges in PDG all inherited from CDG and DDG.

As shown in Fig.4.2, the PDG is used to compute the slicing scope. For instance,

for the programming element i<5 (line: 3), we obtain the slicing scope as a set of

coloured nodes sscope(3) = {en, 2, 3, 8}. The entry en is covered by referencing the

control dependency and nodes 2 and 8 are included due to data dependency.

Theoretically, for a given program p, the slicing scope of a programming element

e in p returns a program slice with respect to a slicing criterion on that element
0 Tool JayFX (http://cs.mcgill.ca/~swevo/jayfx/.) is integrated in our tool to extract and

build CDG and PDG

85

http://cs.mcgill.ca/~swevo/jayfx/.

e. Program slicing[15, 93] is a well-defined program transformation approach with

respect to a given slicing criterion. Since the definition of slicing scope follows the

same principle in building a program slice, program slicing serves as a theoretic

footstone of concepts we defined and their extensions. Besides, it also indicates that

approaches for building the program slice could be reused to obtain the slicing scope

in our paper. Specifically, we use the program slicing approach defined in [15] to find

the slicing scope with a given programming element.

Definition 4 (Binding). For a programming element e, its binding bind (e) is defined

as all variables and fields defined or used in e’s slicing scope as

bind(e) = def(e) ∪ use(e)

Intuitively, our binding definition of a programming element e could represent e in

a broad sense, considering all variables or fields, for both use and define, are covered.

And their types are covered, since the type information is binding with the program-

ming element. However, it is still insufficient to describe a complex relation between

two programming elements (m,n) by just using their bindings (bind (m) , bind (n)),

such as, method invocation, class inheritance, and method overriding. To resolve

this, we further reinforce the binding definition by adding another factor “input con-

text” to describe how a given programming element affects the current element. For

example, for a call from method m to n, the call site in m is an “input context” for

n. As other methods may also invoke n, each caller brings its unique “input context”

to n.

Definition 5 (Context Binding). For a programming element e, its context binding

86

main(){
 A a = new A();
 z = wrapper(a);
}

wrapper (A b){
 y = bar(b);
 return y;
}

bar (A c){
 x = c.f
 return x;
}

ContextProgram

⟪? | [∅]⟫

⟪b | [b]⟫

⟪a | [∅]⟫

⟪c | [c]⟫
⟪c.f,c | [c]⟫

⟪? | [b]⟫

⟪c.f|[c]⟫

⟪b.f | [b]⟫

⟪a,a.f | [∅]⟫

Path Edge: Callback :

Figure 4.6: Example of context transformation in method invocation

contbind(e, [c]) is defined as all variables and fields defined (def (e)) or used (use (e))

in e’s slicing scope under an input context from programming element c.

In context binding, context gives an unique identifier for a programming element

at runtime. For example, given two contexts a.f() and b.f() for two different cases:

one is function f is invoked by instance a and another is by b. Note that the inherent

properties are dependent on object-oriented languages, as different programming

languages have their own unique specification for implementing them. For example,

multiple inheritances from classes are allowed in Python, but not allowed in Java.

Here, we use the language specification defined in Java for illustration.

Method Invocation. Method invocation could bring context change espe-

cially when parameters are passed[70] from a call site to its callee. A call site

l=r0.m(r1, ..., rn) will connect the parameters in the call site with arguments in

invoked method m and m receives the run-time parameters (r1, ..., rn) from this call

site. Therefore, the invoked method obtains a unique input context from the call

site. To resolve this, we follow Andersen’s[5] context-aware analysis and dispatch the

87

binding of the call site into callee as:

contbind(m, [r1, ..., rn]) = dispatch (pi = ri)→ bind (m) ,

where the context [r1, r2, ...rn] is dispatched to method m by mapping all parameters

in the call site to the arguments in the callee.

Example. As the example shown in Fig.4.6, we use the label

(≪ curbind|[context]≫) to mark binding computed at a program point. In this tag,

curbind represents the context binding collected at this program point, and [context]

shows the input context to this method. For example, in Fig.4.6, method main gives

a context [a] to its callee wrapper. In wrapper, this context [a] is dispatched to the

method body of wrapper as a→ b. And this initial context [a] will continue be passed

to bar from the method wrapper. Take the method bar as an example, its context

binding contbind (bar, [a]), which represents the call path main→wrapper→bar, is

{a.f, a}. Here we use [a] just to provide a simplified representation of the context

given by main; in practice, we use unique identifiers to encode contexts from different

sources.

def(m) use(m) def(p(1))∼>use(m)

def(p(2))∼>use(m)

def(p(n))∼>use(m)def(c)-def(m)

def(m)∪use(m)

Figure 4.7: Example of context binding in overriding

Overriding. The context of an overriding method m defined in class c, is defined

by all classes or interfaces that c inherited from. The context binding of a method

88

overriding contbind (m) in a class c contains two parts: (1) programming elements

defined and used in m, and (2) elements defined in c’s parent class or interface and

used in m. Therefore, a general representation of the context binding of an overriding

method could be denoted as:

contbind (m, [p1, · · · , pn]) = def (m)∪

n⋃

i=1

(use(m)! def (pi))

,where the symbol ! is used to specify the source of the context. We illustrate

this formula using the example in Fig.4.7. Based on our definition on binding, it

contains two parts: the variables and fields defined and used in m. Particularly, the

variables defined in the overriding method could be directly represented as def (m).

for the variables and fields used in m, they potentially come from three sources: (1)

variables defined and used in method m as shown in the overlap area; (2) fields

defined in class c as shown by def (c) − def (m); and (3) all fields inherited from

its parent classes and interfaces p1, p2, · · · pn. For example, def (p (i)) ! def (m)

indicates all variables or fields used in m but defined in pi.

Example. Considering a fragment of overriding given in Fig.4.8,

class FlyingCar is inherited from interface OperateCar. startEngine’s binding

contains two “encryptedValue” in different contexts, one is defined in

FlyingCar.startEngine, and another in OperateCar. Thereby, the context binding

of method startEngine (contextbind(startEngine)) should be

{OperateCar.encryptedValue,encryptedValue}.

89

1 public class FlyingCar implements OperateCar {
2 public int startEngine(int encryptedValue) {
3 OperateCar.super.startEngine(OperateCar.encryptedValue);
4 }
5 }
——————————————————————————————————
6 public interface OperateCar {
7 int encryptedValue = 1;
8 default public int startEngine(int value) {…}
9 }

Figure 4.8: A sample code of overriding

Inheritance. Different from overriding, for inheritance, we are interested in

providing a context binding for the inherited class. The context binding of the

inherited class c consists of the binding in c and all fields defined in all its parent

classes and interfaces that c inherited from. It is defined as:

contbind (c, [p1, · · · , pn]) = bind (c) ∪
n⋃

i=1

def(pi),

where def(pi) represents all fields defined in pi. The context binding of inherited class

contains all fields inherited from pi, along with all the variables and fields originally

defined in c, as bind (c).

Now, we are able to provide a representation of an annotation status S (A∗, f, i)

of the feature f as

S (A∗, f, i) =
a∈S(A∗,f,i)⋃

a

contextbind(a),

which is a collection of context bindings of all programming elements within the

annotation status S (A∗, f, i). However, in our model, p (e|S (A∗, f, i)) is an exact

value to indicate the probability that a programming element belongs to the feature

90

f based on the annotation status S (A∗, f, i). Therefore, in the coming section, we

will show how our approach works in exploring code fragments for features, and how

the condition probability p (e|S (A∗, f, i)) serves a major role in the mining process.

4.4 StiCProb Approach

We first provide an overview of the “STatIc feature location with Conditional Prob-

ability” (StiCProb) approach, and then all its steps. Specifically, it contains three

steps.

1. The first step is to build a database for the system, which contains all program-

ming elements and their underlying relations. This part has been covered in

Section 4.3.1.

2. The second step is to build a uniqueness table, in which the major task is to

show the uniqueness between two programming elements with a relation.

3. At last, we use the feature-element correlation coefficient defined as an indicator

to mine code fragments for features concerned.

The key characteristics of our approach is that it learns the probability from the

context of each programming element (step 2) to seek potential elements to annotate.

For example, given a call relation from method m to n and another call from j to

n, if there are 5 call relations start from m and only 2 call relations start from j, j

should be more unique to n in terms of call relation. And StiCProb is able to collect

this kind of context information to be used for the feature mining.

91

Knowing that RQ1 can be answered only if RQ2 is answered first, this section

starts from addressing RQ2.

4.4.1 Selecting Seeds

In this chapter, the seeds are collected by using a tool named FLAT3. FLAT3 com-

bines the IR and dynamic techniques to provide recommendations. As the architec-

ture shown in Fig.4.9, FLAT3 works as follows: (1) an input query received from the

user for the description of feature concerned; (2) users are required to execute a series

of actions in the application for the function described in the query, during which

scenarios are captured with relations between related programming elements are col-

lected. For example, if a user wants to find the programming elements associated to

feature “save” in a text editor, what (s)he has to do is a series of actions, including

open, edit and save, which describe the intent of feature “save”. During the execu-

tion, these actions are captured by FLAT3. Along with these actions, from the code

perspective, they are indirectly represented by a set of method invocations. FLAT3

keeps trace of the executions, and a list of methods that executed are collected as

shown in step 3 to 5. In the previous step (dynamic), programming elements related

to the feature concerned are collected, but not ranked. Therefore, FLAT3 adopts

the Lucene library1 to rank all these candidates as shown in the unit “Information

Retrieval Engine”. Moving on, it will return the ranked results to developers.
1 Apache Lucene: available at: https://lucene.apache.org/core/

92

https://lucene.apache.org/core/

Source
CodeFLAT^3User

Information
Retrieval
Engine

Tracer

5 Indexes

6 Ranks

4 Execution Traces

7 Results
8 Annotations

9 Visualisation

3 Events2 Scenarios

1 Query

Figure 4.9: The architecture of FLAT3

4.4.2 Building a Uniqueness Table

We reserve a uniqueness table for the system to describe the cross uniqueness for any

two programming element(s,t) under a relation r (s r→ t). In detail, a relation table

could be represented as a five-tuple U (E, T,R, Pforward, Pbackward). For a specific

element u ∈ U , it is represented as u (s, t, r, pforward, pbackward), which means there is

a relation r from the programming element s to t. The definition of pforward could

show the uniqueness of s to t for relation r. We could define the probability pbackward

as

pbackward

(
s

r→ t|(t, f) ∈ A∗
)
=

contbind (t, [s])⋃
i
r→t contbind(t, [i])

,

where
⋃

i
r→t contbind(t, [i]) represents a collection of context binding from all pro-

gramming elements, which have relation r with t.

The uniqueness of t to s for relation r if s has been annotated to feature f is

93

represented by pforward. Thereby, we define probability pforward as

pforward

(
s

r→ t|(s, f) ∈ A∗
)
=

contbind (t, [s])

contbind (s)
,

where contbind (t, [s]) represents the context binding of t given a context from s

according to our previous definition on contbind.

Example. As shown in Fig.4.10, for the call from s to t (s call→ t), the forward

probability pforward

(
s

call→ t|(s, f) ∈ A∗
)

describes the uniqueness of t to s. That

is, there might be multiple call relations starting from s as shown in the exam-

ple, the value of pforward indicates the weight of the call from s to t in terms of

all method call relations starting from s. On contrast, the backward probability

pbackward

(
s

call→ t|(t, f) ∈ A∗
)

depicts the uniqueness of s to t as the weight of the call

from s to t referencing all method-call relations that end with t.

call
s

t

backward forward

Figure 4.10: An example of a call relation

The strength of forward and backward probability for a relation (s r→ t) from s to

t is that they can capture s and r’s surrounding information respectively. Specifically,

the backward probability pbackward could explore the relative context information of t

as the left side shown in Fig.4.10. And the forward probability pforward could explore

the relative context information of s as the right side shown in Fig.4.10. Thereby,

94

with the forward and backward probability, the research question RQ2 is solved.

Moving on, we will answer RQ1 by introducing the detail of StiCProb.

Example. Furthermore, we will use a running example to show how the unique-

ness table is built and illustrate why it would be useful to give a more accurate

representation of relations between programming elements.

Listing 4.2: Running example of uniqueness table
static Exp e
static void evaltest (){

e = new Num (1);
System.out. println ("eval (1)␣=␣" + e.eval ());
e = new Neg(new Num (1));
System.out. println ("eval(Neg (1))␣=␣" + e.eval ());
e = new Plus(new Num (1), new Num (2));
System.out. println ("eval (1+2)=" + e.eval ());
e = new Neg(new Plus(new Num (1), new Num (2)));
System.out. println ("eval (-(1+2))=" + e.eval ());

}

As the example shown in listing 4.2, the method evaltest() is “related to” the

following types: Num, Neg, Plus, e and method eval. In detail, in method evaltest,

1. e is defined 4 times, and e is accessed 4 times. (8 times in total);

2. Num’s constructor Num() is invoked 6 times;

3. Neg’s constructor Neg() is invoked 2 times;

4. Plus’s constructor Plus() is invoked 2 times;

5. method eval() is invoked 4 times;

95

Table 4.1: Uniqueness Table: e
Num Neg Plus e eval()

evaltest() 6 2 2 8 4

Therefore, the uniqueness of Num to method evaltest() can be computed by:

6

6 + 2 + 2 + 8 + 4
= 27%. (4.1)

As for the uniqueness of evaltest() to Num, it can be computed by looking at the

class Num.

The example shown just briefly presents the uniqueness table. However, the

subtleness of uniqueness table not well described,

1. First, the example just shows a snippet of a program, but our uniqueness

table will check the whole system. The values computed are also based on the

information collected from the whole system.

2. Second, as shown in the example, we compare the relation between a method

(evaltest()) and a type (Num). That is, our approach could compute the

relations across types, which is not possible for other approaches.

3. Third, our approach could present the uniqueness of relations with a real value.

For example, some approaches count the method invocation from evaltest()

to eval() as 1 rather than 4; in our approach, we try to collect the number of

occurrence from the program. However, as our approach is still a static analysis

strategy, it cannot cope with those cases that can only be decided dynamically.

96

4. Forth, our approach considers a relation from two directions rather than one

and also we could detect the “environment”. Normally, to compute the “close-

ness” between two programming elements, only these two elements are con-

sidered, without considering others. In our approach, for two programming

elements A and B, we check both A and B’s surrounding environments as well

rather than only A and B.

5. Finally, for two programming elements, the relations between them could be

multiple types rather than one. Our approach could detect all types of relations

between two programming elements and compute the relation based on the

information collected from the entire project.

4.4.3 StiCProb

candidate set

f - annotation state (i)

f - annotation state (i+1)
me

e

mn

Figure 4.11: Illustration of StiCProb

We use Fig.4.11 to illustrate the underlying idea of StiCProb. As introduced pre-

viously (see Section 4.3), the mining process for a feature could be regarded as a

series of transformation of annotation states. For a feature f , at the beginning,

seeds are selected for this feature, which gives the initial annotation state of f as

S (A∗, f) = seeds. Iteratively, the annotation state transforms from one state to an-

other and at each transformation one or more programming elements are annotated

97

to f . For an annotate state transformation, as shown in Fig.4.11, the candidate

set covers all elements that have direct relations with elements in annotation state

(i). And then StiCProb categorizes the candidate set into two parts. The first part

includes relation starts from an element in the candidate set, like m → e, with the

backward probability pbackward to represent the closeness of this relation, which indi-

cates the uniqueness of m to e. The second part includes a relation that starts from

elements in the annotation state and ends with an element inside the candidate set,

such as e→ n, with the forward probability pforward to describe this relation, which

shows the uniqueness of n to e. In other words, StiCProb assesses all candidates by

giving a probability description of how they are unique to elements in the current

annotation state.

The pseudo code of StiCProb approach is shown in Alg.3. The detailed intro-

duction of StiCProb is separated into three components: input, main procedure and

output.

Input. The input to algorithm StiCProb is the program, containing the follow-

ings:

1. Feature model (fm): A feature model is given to show all features required

to mine and their underlying relations. Proposing approaches to obtain the

feature model is out of scope of this capture. In the case study, we adopt the

feature model defined for subject systems from other research works.

2. Feature seeds (seeds): The seeds (represented by seeds in algorithm) selected

for each feature. For each feature, one or more programming elements are

selected as seeds to represent a feature. We leave the discussion on how to

98

Algorithm 3: StiCProb feature mining approach
Input: seeds, fm, threshold, U
Output: all annotation states for features Sset in fm

1 Create a set of annotation states as Sset =
⋃f∈features

f S (A∗, f);
2 Assign seeds to each feature as S (A∗, f) = seeds (f);
3 Create feature set features with all features in fm;
4 while features not NULL do
5 for feature f in features do
6 Create set waitList = ∅;
7 Create candidate set C (S, f) = ∅ for f ;
8 Add all elements have relations with elements in S (A∗, f) to C (S, f) ;

// initialize C (S, f)

9 for element m in C (S, f) do
10 if there is a relation r from m to the element e in S (A∗, f) then
11 Let value = pbackward

(
m

r→ e|(e, f) ∈ A∗
)

;

12 else
13 Let value = pforward

(
e

r→ m|(e, f) ∈ A∗
)

;

14 if value > threshold then
15 Add m to waitList;

16 Update S (A∗, f)← S (A∗, f) ∪ waitList;
17 if StopCheck(f) is TRUE then
18 Remove f from features;

19 return Sset;

select seeds for a feature in section 4.5.1: Experimental Setting.

3. threshold: It is used to decide whether a programming element could be anno-

tated to a feature.

4. Uniqueness table (U): The uniqueness table U is built for all element-relation

tuples (m,n, r), where there is a relation r from m to n.

Main procedure. We will introduce how StiCProb contributes to feature mining.

99

Due to the length of the algorithm, we separate it into four sections and present them

seperately.

1. Line 1− 3: For each feature, an annotation state S (A∗, f, i) is created. And a

set Sset is used to store all these annotation states. Each annotation state is

initialized with seeds for feature f .

2. Line 4−8: For each feature, a candidate set C is created by adding all elements

having relations with the elements in the current annotation state S. And

relations could be covered in both directions. That is, an element that either

has a relation targeted at an element inside S or has a relation from an element

inside S should be covered in C.

3. Line 9 − 15: Following the previous step, it iterates over all elements in the

candidate set. If there is a relation from an element m within the candidate

set to an element e in the annotation state (Line 10 − 11), the backward

probability pbackward is used to capture the relation. For opposite direction, the

forward probability is used. In addition, Line 10−13 is the kernel of StiCProb,

since it shows how the feature-element correlation coefficient (see Def.2) is

implemented in our approach. It also gives the answer to research question

RQ1.

4. Line 16 − 18: Line 16 will update the annotation state for each feature by

adding the waitList, which contains all elements that should be annotated to

this feature. The rest (Line 17 − 18) checks whether it can stop the current

mining process using a function StopCheck(f). The concrete description of

100

function StopCheck is introduced in section 4.4.4: Stopping Criteria.

Output. The output returns the set (Sset) of all annotation states for all features

in the feature model. The feature mining process for all features are finished and

each annotation state S (A∗, f, Stp) gives all elements that have been annotated to

feature f .

4.4.4 Stopping Criteria

Stopping criteria is shown as the StopCheck function in Alg.3. We use the threshold

as an indicator to stop the mining process for a feature. For a feature f , if all values

(Line 11, 13) computed in the algorithm are lower than the threshold defined, the

mining process is halted. value is computed based on either forward or backward

probability to determine whether a candidate element should be annotated to a

certain feature.

4.5 Case Studies
4.5.1 Experimental Settings
Defining Feature Model and Selecting Seeds

In principle, a domain expert should be involved in the experiment and contribute

to two parts: (1) defining the feature model for the legacy system. and (2) helping

to select seeds for each feature. Therefore, the domain knowledge of features and

their relation will have a significant impact on the performance of the feature mining

approach. Considering our target is to verify StiCProb’s performance, it will be wise

to reduce all human bias by using the feature model that has been well adapted

101

and learned by other research works and selecting seeds using automatic tools. In

this study, we use the feature model built by other research works and a tool named

FLAT3[90] to obtain the seeds for each feature. This is done to exclude bias, and

make the semi-automatic (see Section 4.3) process repeatable.

Other Settings

We list settings for other factors which could influence the performance of feature

mining approach as follows.

• Number of seeds for each feature. As mentioned we use FLAT3 to provide

seeds for each feature. In the experiment, we select the top three items returned

by FLAT3.

• Threshold. In StiCProb, we use a threshold of 0.6. Intuitively, a higher

threshold will make the annotation more precise and a lower one will annotate

more programming elements. Here, in the experiment, the threshold is set to

a median value and its influence on performance is discussed later in section

4.7.

The first setting (number of seeds) is suitable for all approaches, including our

StiCProb and other three related approaches. However, the second setting for thresh-

old is specific to StiCProb. With all these settings, we try to exclude the possible

biases in conducting our experiment in selecting seeds and subject systems.

4.5.2 Subject Systems

Note that not all legacy systems are qualified for our experiment, as we need a

specific benchmark for the system to be available. The benchmark contains a set

102

of files that describe how programming elements are mapped to features. Without

the benchmark, it would not be possible to assess the performance of our approach.

Thereby, we use those systems that have been analyzed and learned in other works

to exclude the bias in creating the benchmark on our own. However, this, in return,

limits the scope of subject systems. As a result, we carefully select subject systems

that have been developed and well-researched by others, from academic and industrial

systems. These subject systems are described and listed in Sec. 3.5.

4.5.3 Tools

We have implemented our StiCProb and other related approaches with an Eclipse

plug-in tool named Loong following the feature mining process defined in Fig.4.1.

We have released the source code, a full tutorial for this tool, and experimental data

on the project host page: http://www.chrisyttang.org/loong/.

4.6 Experimental Result
4.6.1 Related Approaches

We carefully select 3 related approaches used in [50] for performance comparison.

• Type System. Type system [48] is initially designed to bring a type-checking

system to product line that ensures all variant products generated are type

safe. It has been re-implemented to cope with the feature mining task, and

the underlying idea is to look up definition from references. For example, if

a type reference is annotated to a feature f , the type declaration of this type

should also be annotated to f . The type system checks all these relations,

103

http://www.chrisyttang.org/loong/

Table 4.2: StiCProb Performance with threshold = 0.6

Feature Size Mining Result
Project Feature LOC FR FI IT Recall Precision
Prevalyer Censor 105 10 5 3 17% 60%

Gzip 165 4 4 2 16% 100%
Monitor 240 19 8 2 17% 82%
Replication 1487 37 28 26 79% 98%
Snapshot 263 29 5 9 42% 99%

MobileMedia CopyMedia 79 18 6 4 43% 95%
Sorting 85 20 6 4 32% 100%
Favorites 63 18 6 12 20% 100%
SMS Transfer 714 26 14 23 91% 49%
Music 709 38 16 4 39% 90%
Photo 493 35 13 5 63% 61%
MediaTransfer 153 4 3 14 97% 94%

Lampiro Compression 5155 33 20 34 40% 82%
ArgoUML Cognitive 16319 285 233 127 70% 92%

Activity 2282 115 80 17 26% 74%
State 3917 115 88 18 33% 82%
Collaboration 1579 53 40 40 17% 72%
Sequence 5379 65 53 98 33% 89%
Use-Case 2712 59 49 39 19% 70%
Deployment 3147 57 47 36 22% 67%

such as, from method invocation to declaration, from variable/field access to

its declaration, and from type access to its declaration.

• Topology Analysis. Originally designed by Robillard[83] and adjusted to the

feature mining task in [50], topology analysis explores all structural neighbors,

such as caller method and related fields, for a given programming element. It

then ranks related programming elements according to two metrics specificity

and reinforcement.

104

• Text Comparison. Text comparison defined in [50] reserves a vocabulary

list for each feature. It ranks the substring based on a relative weight and its

occurrence.

4.6.2 Results

Our definitions for recall and precision are specific to the feature mining procedure.

Our framework returns all lines that could belong to the features at the statement

level. In a binary mapping context, a single statement could either belong to a

feature or not. In our framework, precision and recall are defined as:

Precision =
Correct recommendations

All recommendations provided
(4.2)

Recall =
Correct Linesofannotatedwhenstop

Lines of code annotated in benchmark
(4.3)

Another indicator for comparison is f-measure, which measures the performance

of a model regarding to both precision and recall as:

f −measure =
2 ∗ Precision ∗Recall

Precision+Recall
(4.4)

The experimental result is shown in Tab.4.2, where StiCProb receives an average

precision of 83% and an average recall of 41% on four subject systems with a threshold

of 0.6. Furthermore, we compare SticProb with other approaches on all four systems

with the same experimental settings as depicted in Fig.4.12. SticProb generally gives

a better result comparing to type system (pre.:80%, recall:22%), topology (pre.:69%,

recall:33%), and text comparison (pre. 6%, recall: 84%) average.

105

���������	�
������
���

��
��

��
�	

�

��

�

���

���

���

���

�

����
��	���
��� ��� ��� ��� �

�	
�

��
�

��
�

��	�

TS: type system; SP:
StiCProb(threshold = 0.6); TP: topology analysis; TC: text comparison.

Figure 4.12: Performance Comparison on Subject Systems

For the f-measure shown in Tab.4.3, StiCProb returns a competitive performance

in terms of both precision and recall.

Table 4.3: f −measure on all approaches
SP TS TP TC

f −measure 0.55 0.45 0.44 0.12

���
���

�

���

���

���

���

�

��
��
��
�	

TS: type system; SP:
StiCProb(threshold = 0.6); TP: topology analysis; TC: text comparison.

Figure 4.13: Method comparison using notched box plot in recall

In addition, as the notched box plot for recall shown in Fig.4.13, at 95% con-

fidence interval of median, StiCProb performs better than both type system and

topology analysis for most cases. From another aspect, the notched box plot for pre-

106

cision in Fig.4.14 indicates that StiCProb works better than both topology analysis

and text comparison.
���
�����

�

	

	
�

	
�

	

	
�

�
��
��
��
��

TS: type system; SP:
StiCProb(threshold = 0.6); TP: topology analysis; TC: text comparison.

Figure 4.14: Method comparison using notched box plot in precision

Runtime Performance. We also evaluate the performance in terms of run-time.

We test all algorithms on a Mac(10.12) machine with Intel i5 2.6GHz, 8G 1600 MHz

DDR3, and targeting on Eclipse 4.5 with JRE 7. The result is shown in Tab.4.4.

Table 4.4: Runtime Performance (second)
TS SP TP TC

Pervalyer 1 2 2 71
MobileMedia 2 2 3 21
Lampiro 1 29 13 135
ArgoUML 254 1500 1980 5415

In summary, based on the recall performance, all methods could be ranked

as TC (0.77,0.80,0.93) ≫ SP (0.29,0.33,0.53) ≫ TP (0.12,0.32,0.41) ≫ TS

(0.12,0.21,0.37). Here, we use a three-element tuple (first,median, third) to indicate

the first quartile(first), the median value(median) and the third quartile(third) of

data.

For precision performance, TS (0.66,0.92,1)≫SP (0.71,0.85,0.96)≫ TP (0.42,0.84,0.95)

≫ TC (0.02,0.02,0.11). We can conclude that StiCProb could return a competitive

107

and stable performance comparing to others. However, StriProb sometimes spends

extra time in generating binding and contexts, which could be a potential drawback.

4.7 Discussion

Beyond the default settings, we investigate how the two independent variables, seeds

and threshold, influence the performance. Due to space restriction, we provide a

general discussion on these factors and put the details on the project page2.

4.7.1 Seeds

In our feature-mining process, the seeds could strongly influence the performance. In

our experiment, we adopted first three items returned by FLAT3. By increasing the

number of seeds, the performance can hardly be improved and sometimes becomes

significantly worse. After a careful inspection on seeds, we discovered the following

principles, which could be used to guide developers in seeds selection. First, seeds

recommended by FLAT3 might not be correct, which causes the feature mining

strategy performs poorly. That is, if the quality of seeds can be improved, the

performance may improve. Second, the seeds in coarse granularity could improve

the recall, but sometimes at the cost of precision.

In addition, a well-performed approach could be created by combining the returns

from different tools. In this study, we highly rely on top seeds returned by FLAT3. As

the experimental experience tells us, FLAT3 could return incorrect seeds, and even

worse the incorrect seeds will lead to poor performance in feature mining. However,

another strategy could somewhat prevent this problem, that is combining the results
2 http://www.chrisyttang.org/loong/

108

http://www.chrisyttang.org/loong/

by different tools. In the literature review, we listed several related tools beyond

FLAT3. We could use the top n returns from different tools. Let us assume that we

use four different tools, and for each tool we reserve the top 10 recommendations.

Then, we rank all forty entities by occurrences. The first 5 items can be the input

seeds. We also test this strategy using the project Prevalyer. Unfortunately, we

found that it still identifies incorrect seeds. As a result, a better approach is strongly

suggested, which is filtering the result with the help of a domain expert.

4.7.2 Threshold

In StiCProb, we select a threshold of 0.6 as the stopping criteria. That is, for an

iteration, if all candidates cannot reach the threshold, the mining process for the

current feature will stop. Intuitively, by setting a higher threshold, the precision

can reach a higher value, and the recall drops down. However, we found that by

increasing the threshold, the precision is not significantly improved. For example, in

Prevalyer, with a change of threshold from 0.6 to 0.8, the precision merely increases to

85% from 83%. That is mainly due to the use of forward and backward probabilities.

And it makes the threshold contributes less to the performance since the forward and

backward probabilities are directly decided by the structure of the system.

4.7.3 Threats to Validity

Construct and Internal Validity. The measure of performance is dependent on

the quality of benchmarks. The benchmarks are selected from systems that have

been researched by others. Nevertheless, it is possible that the selected benchmarks

might not be entirely accurate. The measurements on recall and precision are based

109

on line of code, which are intuitively reasonable.

External Validity. (1) Due to the relatively small number of cases selected

and the size of subject systems (4-120KLOC), the experimental results could not

be generalized to all systems. However, this is mainly because we can only select

systems that have already been researched to obtain the benchmarks. In addition,

the two systems (Lampiro and MobileMedia) that are initially developed as a product

line system might bring bias on performance, considering their architectures could

be optimised, like following certain design patterns, and might make feature mining

approach performs well. (2) For each system, as seeds are decided using FLAT 3, it

excludes the bias from selecting seeds by the experimenters. Moreover, the number of

seeds and threshold used in our approach could affect the performance, but we have

discussed their impact earlier. (3) To assess the performance, we use benchmarks

from others’ work, which eliminates the bias introduced by providing benchmarks on

our own.

4.8 Chapter Summary

Product line engineering has been broadly adopted to developing applications with

high customization at a low cost. To reduce the barrier in adopting product lines by

migrating legacy software, we provide a novel approach named SticProb to extract

related code fragments for feature concerned with a tool named Loong. SticProb

uses the conditional probability to direct the feature mining process. Unlike all

other approaches, SticProb can learn the environment of a programming element

before annotating it to a feature. In this way, SticProb performs competitively in

both precision and recall.

110

Chapter 5

Reengineering Features into
Product Line Variants

With the approach presented in the previous chapter, we are now able to annotate

code fragments with features. However, this procedure is only a virtual separation of

features rather than separating into executable product variants[47]. Unfortunately,

a straightforward approach to generating physically separated product variants could

make the variants invalid or may not be what users expect. Here, invalid means the

product variants could not be executed due to errors. In this chapter, we will propose

an approach to reengineer annotated legacy system into product variants.

5.1 Overview

To successfully reengineer an annotated legacy application into a product line, three

obstacles have to be overcome. First, the reengineering process for a legacy system

to product variants could introduce unexpected syntax errors. Since the input con-

figuration will hide irrelevant features and preserve features needed in the annotated

legacy system to create a variant, syntax errors may result in undisciplined annota-

111

tion (see Sec.5.2.1 for an example). Undisciplined annotation represents the case that

only parts of an AST node are annotated[62]. For example, given a if statement

as if (cond) stmt, if only cond is annotated to a feature rather than the entire

statement, it is considered as undisciplined annotation. Such syntactical errors are

fatal to the variants and could make them invalid.

Second, product variants generated from an annotated legacy system may be ill-

typed: i.e. lacking declarations of classes, methods, variables, or fields for references[35].

For example, a method m is annotated to a certain feature f ; however, the access of

m is not bound to any features. Therefore, unselecting feature f will make the access

of m fail to find the declaration of m (see Sec.5.2.3 for a detailed example). This will

introduce a type error, which means some types are unresolved in the system.

Third, the behaviour of some features may be interfered with the given configu-

ration during reengineering. That is, a feature’s behaviour in a product variant may

be different from what it intends to do in the legacy (see Sec.5.2.2 for an example).

The change upon code fragments during reengineering could make features perform

unexpectedly and deviate from its intent.

Unfortunately, existing approaches in building software product lines from legacy

systems have several limitations. For example, unsuitable for fine-granularity[63, 8,

57], behaviour preservations for feature are not discussed[63, 8, 96, 71, 50, 46], not

able to achieve well-typed and cannot exclude syntactical errors [63, 96, 50, 57].

In this chapter, we develop a safe reengineering engine to guarantee syntax cor-

rectness, behaviour consistency and well-typed during the reengineering procedure.

Unlike some works that target at locating features or concern separation, the ul-

timate goal of this work is generating valid product variants and also ensuring all

112

generated variants are syntactically correct (Sec. 5.4), behaviour-preserving (Sec.

5.5), and well-typed (Sec. 5.6). From the perspective of the compiler and type, each

feature should not contain compiling errors, should execute correctly and be type

safe. From an abstract level, the behaviour of each feature should be preserved.

Compared with other related approaches, our approach has the following advan-

tages:

1. Our approach works directly on the source code, because a source code based

approach could reduce the complexity of building a product line. It is worth

noting that since the reengineering process from a legacy application to a soft-

ware product line would be intractable for developers, who often have limited

domain knowledge about the system, an aspect-oriented approach could in-

crease the required efforts.

2. Rather than only keeping the product variant well-typed, our approach also

explore the feature consistency, which means during the reengineering process,

the features’ implementation should be consistent with regard to behaviour

preserving, syntactical correctness, and well-typing.

Contribution. We propose an adaptive procedure to guarantee feature consis-

tency with the target during the reengineering procedure, which could avoid compil-

ing errors as well as typing inconsistency and preserve features’ behaviours.

We will discuss how our approach could overcome these limitations in a later

section (Sec. 5.11.1).

Specifically, in this chapter, we make following contributions:

113

• To our best knowledge, this is the first work to describe the issue of feature

consistency during reengineering.

• We develop a tool to support the procedure of keeping feature consistency for

reengineering legacy applications to product lines.

• We conduct empirical studies on 9 real-world systems and discuss reengineering

experiences in migrating a legacy system into a product line.

1

OperationList

Supported

Input Output

Configuration C

Valid Checker

Annotated Legacy Variant Products

Type-Safety
Checking

Syntactical Correctness

Behaviour Preservation

2

Behaviour Checking
Syntactical Checking

Type Checking

Checked by IDE
Test Cases

3OperationList’

Phase 1 Phase 2

V1 V2

V3 !

Experimental Results

4

Figure 5.1: The process of transforming annotated legacy to product variants

We implement our method in an Eclipse plugin with over 36 KLOC Java code.

For our context, Syntactical correctness module is implemented by extending the

JDT framework in Eclipse, then the relations between programming elements and

type checking system are built by referencing the implementation of tool CIDE [46]

and a fact extractor JayFX 1 is used to build the behaviour preserving and type-safety

checking modules.

Sec.5.2 presents several motivating examples to further illustrate the necessity of

a novel approach and how our approach handle these problems. Sec. 5.3 gives an

overview of our approach. Sec.5.4 to Sec.5.8 describes the strategy we adopted to
1 JayFx: available at http://www.cs.mcgill.ca/~swevo/jayfx.

114

http://www.cs.mcgill.ca/~swevo/jayfx

avoid syntactic error, inconsistency of features’ behaviour and typing errors respect

to underlying relations between features respectively. In addition, to evaluate our

approach with nine test cases as described in Sec. 5.9. We test our approach with

176 configuration options and 37115 test cases in Sec. 5.10.

5.2 Motivating Examples

The ultimate goal of this chapter’s work is reengineering a feature-annotated legacy

system to product variants at the code base level with additional auxiliary functions

to ensure syntax correctness, behaviour preservation and well-typed. However, this

procedure might introduce unexpected errors in the variant products created. In this

section, we use three examples with different concerns to motivate the importance

and necessity of our work.

5.2.1 Syntax Error Example

remove state

else if (Model.getFacade().isARelationship(edge)

 || (true? Model.getFacade().isATransition(edge) :false)

 || Model.getFacade().isAAssociationEnd(edge)) {

 return Model.getUmlHelper().getDestination(edge);}

syntax error

else if (Model.getFacade().isARelationship(edge)

 || Model.getFacade().isAAssociationEnd(edge)) {
 return Model.getUmlHelper().getDestination(edge);}

|| (true?:false)

Figure 5.2: A syntax error example

Error. Fig.5.2, a code fragment from ArgoUML product line v1.42, shows a fragment

of a transformation from an annotated legacy into a variant, where feature state is
2 http://argouml.tigris.org.

115

http://argouml.tigris.org

disabled. The removal of segment Model.getFacade().isATransition(edge) will

create a syntax error as presented in true?false. A correct transformation should

be true? Model.getFacade().isATransition(edge):false to false. This is be-

cause, in the ternary expression a ? b : c, if a is true, b will be executed; other-

wise c. In this example, since the condition is always true and the removal of positive

path will always lead to the negative one, which means the correct transformation

should result in false statement itself.

Explanation. This kind of error is raised when an AST node is partially an-

notated and the corresponding actions introduced by a configuration option (i.e.

removing feature state in this example) will make the product variant incorrect.

5.2.2 Behaviour Inconsistent Error Example

SocketChannel.bytes_received++;

if (sockInstream instanceof TlsInputStream == false) {

} else if (sockInstream instanceof TlsInputStream == true) {

}

BaseChannel.bytes_received++;

BaseChannel.bytes_received =
SocketChannel.handler.getBytes_received();

(box1)

(box2)

Clause 2: public static int
bytes_received = 0;

Clause 1: class
SocketChannel extends
BaseChannel

Figure 5.3: A behaviour inconsistent example

Error. A behaviour inconsistent error is shown in Fig.5.3 from Lampiro product

line3, with two segments defined as box1, and box2 respectively. Different background

colours show these segments are annotated to three features. The error arises when

removing the feature for box1.

Explanation. The code fragment in Fig.5.3 gives two clauses:
3 http://lampiro.bluendo.com/.

116

http://lampiro.bluendo.com/

1. class SocketChannel is a subclass of BaseChannel;

2. global variable bytes_received is defined in class BaseChannel and inherited

by SocketChannel.

Therefore, both read and write on the global variable bytes_received from

box1 and box2 will access the same variable. Then, box1 will update the value of

bytes_received and the removal of box1 will make this update invisible and affect

the value of bytes_received in box2.

5.2.3 Type Error Example

public StrictTransactionCensor(GenericSnapshotManager
snapshotManager) {
 _king = snapshotManager.recoveredPrevalentSystem();
 _snapshotSerializer = snapshotManager.primarySerializer();
}

type error

public class StrictTransactionCensor
implements TransactionCensor {
 …
 public StrictTransactionCensor
()
 {…}
 …

public class
GenericSnapshotManager {
 …
}

GenericSnapshotManager snapshotManager

remove snapshot

Figure 5.4: A type error example

Error. A type error arises when an object is presented with an unexpected type or

the type of the object is not available[46]. For example, in Fig.5.4,

class StrictTransactionCenso is annotated to feature Censor and

class GenericSnapshotManager is associated with feature Snapshot. Therefore the

removal of feature Snapshot will make a type error in

class StrictTransactionCenso.

Explanation. If feature Snapshot is unselected, then the

117

class GenericSnapshotManager will be removed, which will make the variable “snap-

shotManager”s type GenericSnapshotManager not found.

The above errors are real-world errors collected by using tool CIDE to create

product variants. And the tool CIDE implements the LJAR approach, which will

be introduced later in Section 5.10. Given the samples above, without a complete

approach to inspect the reengineering, it would be easy to introduce errors to the

target variants and makes the reengineering process unsuccessful.

In this chapter, we propose a new strategy with a set of constraints to resolve

these potential errors, which can be used to assist the process of reengineering an

annotated legacy to product variants.

5.3 Configurable AST: Outline and Background
5.3.1 Procedure At A Glance

The reengineering process starts from a virtual feature separation to a series of prod-

uct variants [47]. Specifically, “virtual feature separation” indicates that the features

in the legacy system are represented in annotations, rather than being physically

separated into methods, classes, or even packages. For example, background colours

could be used to annotate features in the program, and we assign different background

colours to show different features in the IDE. However, those implementations are

merely distinguished from different colours, not physically separated. Fig.5.1 shows

the procedure of our approach.

118

Figure 5.5: The configuration sample

Input: The input for reengineering an annotated legacy to product variants

should be a configuration and the annotated legacy. In the configuration, the stake-

holder should specify those features that compose a product variant. For example,

as shown in Fig. 5.5, a configuration given as Replication ∧ ¬GZip ∧ ¬Censor

∧ Monitor ∧ Snapshot could be adopted to create a product variant with only

features Replication, Monitor and Snapshot selected. Specifically, the input con-

figuration will be verified first and any invalid configuration will be rejected (Sec.

5.9.1).

Output: The output for this procedure is a variant product according to the

input configuration.

STEP 1: The configuration will be transformed into a set of operations, as

OperationList in Fig.5.1, on the annotated legacy (Sec. 5.3.3).

STEP 2: For each operation generated in STEP 1, our approach performs

a two-phase checking. STEP 2 shows the first phase and STEP 3 shows the

second phase. In the first phase (STEP 2), syntactical correctness and behaviour

preservation module will be active. The syntactical correctness module is used to

ensure that the process will not introduce syntax errors. The behaviour preservation

119

module ensures behaviours of the features in target variant product are not changed.

Each operation will be checked with the syntactical correctness module (Sec. 5.4),

and behaviour preservation module (Sec. 5.5) respectively.

STEP 3: In the second phase, the type-safety checking module is used. The

type-safety checking module, which will be active to remove actions that will lead to

typing errors.

STEP 4: All approved and checked actions will be executed on the annotated

legacy to create the product variant as the output (Sec.5.9.1).

The experimental results are collected based on the product variants generated

by our approach. The performance of our syntactical correctness and type-safety

checking modules are checked with IDE. To access the behaviour checking module,

unit test cases generated by evosuite are used.

5.3.2 Process Modelling

Recall our target is to create an engine that enables safe reengineering from an

annotated legacy to product variant. On the one hand, an annotated legacy could

be represented by a combination of all features’ implementation as:

T = TF1 + TF2 + · · ·+ TFn + TFcore , (5.1)

where TFi is the implementation of feature Fi and TFcore represents the base architec-

ture. On the other hand, from the implementation perspective, it could be deemed

as a combination of AST nodes as:

T = t0 + t1 + · · ·+ tn, (5.2)

120

△ (t)
φcflow φdflow φnbindφcontext

Type-Safety Checking

Syntactical Correctness

Behaviour Preservation
t

φsyntax

φbehaviour

φtype

N

Y
N

Y

Op(t)

2 3
4

Figure 5.6: The overview of changing process

where ti represents an AST node and ti ̸= tj for any i ̸= j. Therefore, given a con-

figuration c = {F1, F3}4, the change at modularity perspective could be considered

as a projection from T to Tc, where Tc = TF1 + TF3 . However, changes at the code

level is represented as the changes on some AST nodes. Technically, the change is

denoted by the equation (5.3).

Tc = ∆(t0) +∆(t1) + · · ·+∆(ti) + tj + · · ·+ tn, (5.3)

where ∆(ti) represents corresponding AST node of t for the given configuration c.

As shown in Fig. 5.1, the OperationList denotes the change from ti (i = 0 · · ·n) to

∆(ti) (i = 0 · · ·n).

5.3.3 Transforming a Configuration into Operations on AST

Moving on, we will illustrate the approach to translate a given configuration into

a series of operations on the AST nodes for the annotated legacy. Basically, the

annotated legacy contains all features’ implementation and the configuration gives

the selected features and unselected features. Therefore, our approach remove all
4 For brevity, we just show the features selected in the configuration. A complete configuration

could contain all features and use labels to distinguish enabled and disabled features.

121

package tmp;
class Neg implements Exp {
 Exp x;
 Neg(Exp x) { this.x = x; }

}

public int eval() { return -
x.eval(); }

public String toString() { return "
-(" + x + ") "; }

feature:Eval,Neg

feature:ToString,Neg

feature:Neg

Figure 5.7: The example of code-based reengineering

unselected features’ implementation from the annotated legacy. For example, in Fig.

5.7, there are three features associated with the code snippet. If the feature Neg

is unexpected/unselected in a variant, then the method eval() should be removed

in the legacy system to create the variant. As a result, our approach removes the

corresponding code for the feature Neg.

Therefore, ∆(t) could be “null” means that AST node t is removed in the variant

product.

5.3.4 From t to ∆ (t)

Recall the process defined in Fig.5.1, in STEP 2, each operation (t to ∆ (t)) on the

annotated legacy will pass through three checking modules. In detail, the operation

will only be approved if and only if it passes the following conditions.

1. Syntactical correctness is ensured by φsyntax constraints. The detailed descrip-

tion of φsyntax is presented in Sec.5.4;

2. To ensure feature behaviours during reengineering, we check the control-flow

(implemented by φcflow), data-flow (φdflow), name-binding (φnbind) and context-

sensitive relations (φcontext) for t represented by φbehaviour as presented in Sec.5.5;

122

3. During the transformation, the typing should be assessed by φtype as presented

in Sec.5.6.

Furthermore, from Sec.5.4 to 5.7, we explore corresponding conditions and con-

straints which should be satisfied when a given AST node t is changed to ∆(t). The

constraint will be described with the following format:

φcons (t→ ∆ (t)) =

{
{(t′, opt′) | opt} ; syntax/behaviour

typing-rules; type , (5.4)

where cons could be syntax, behaviour and type.

The syntax and behaviour constraint, represented as (t→ ∆ (t)), shows the addi-

tional operations needed to make these constraints satisfied. In detail, opt means the

operations needed on t to become ∆ (t) under this constraint, which will be used to

update OperationList in Fig.5.1. It will return a mapping set as (t′, opt′) for a given

condition opt, where opt represents the operations on node t. In addition, t′ is the

affected AST nodes, and opt′ is the corresponding operations on t′. As mentioned in

Sec.5.3.3, the operation on the AST node should be “removed”, since the associated

AST nodes should be removed from the system. Therefore, equation 5.4 should be

rewritten as

φcons (t→ ∆ (t)) =

{
{(t′, opt′) | rm} ; syntax/behaviour

typing-rules; type , (5.5)

where rm represents “remove”. In addition, the return of φcons could be “null”,

which means it is impossible to satisfy this constraint and this operation (from t

to ∆(t), also removal of t) should be prevented. However, the type constraint will

123

be a set of typing rules to prevent insecure operations that cause type errors, to be

discussed in Sec.5.6.

5.4 Configurable AST: Syntactical Correctness

The transformation from a legacy to a product variant could be achieved by tak-

ing actions upon AST nodes. In a corpus of a syntactically correct program, the

manipulation on AST nodes should be executed safely and the program generated

after transformation should also be syntactically correct. To ensure a syntactically

correct AST, also known as valid AST fragments, we adopt the valid AST fragment

rules presented in [73] as shown in Tab.5.1. The new rules defined in this work are

highlighted.

The main motivation for proposing the valid AST fragment rules strategy is to

ensure syntactical correctness. As mentioned in Sec. 5.3.2, the configuration will be

translated to a set of operations on AST nodes. These operations may break the

structure or change the AST node. The valid AST fragment rules will private a set of

valid AST fragment rules to construct an AST node without introducing syntactical

errors. For example, the syntax error in the motivating example shown in Sec.5.2.1

is due to the remaining AST nodes in true?Model.getFacade()...:false are not

well-rewriten after the removal of Model.getFacade().isATransition(edge).

In Tab.5.1, we extended the “valid AST fragment rules” in [73] by adding auxil-

iary rules for generating valid fragments. Specifically, it examines the AST node, and

considers all possible valid combinations of its children nodes to form a syntactically

correct AST node. Specifically,

124

Table 5.1: Valid AST Fragments Rules
Syntax Valid AST Fragments

if (s) then s′ else s′′
If → s
If → s,s′
If → ¬s,s′′(rewrite)
If → s,s′,s′′

do{s} while(s)
while(s) do{s} While/Do → s,s

for(s;s′;s′′):s
For→s′,s′′
For→s,s′,s′′
For→s′,s′′:s
For→s,s′,s′′:s

switch(v):case(s)
{

s′
} Switch→v

Switch→v,s,
{

s′
}

Switch→v,s0 ∈ s,
{

s′0
}

(rewrite)

try{s} catch(vd)
{

s′
}
|finally

{
s′′
} Try→ {s} ,

{
s′
}

Try→ {s} ,
{

s′′
}

Try→ {s} ,
{

s′
}
,
{

s′′
}

TernaryOp: x Op y Op z
y
z
TernaryOp→x,y,z

M::=C m(C v) {s return y; } M→C m(C′ v′)
{

s′ return y;
}

M→C m(C v) {s return y; }

inheritance C▹D ▹E

C▹D ▹E → C(rewrite)
C▹D ▹E → D(rewrite)
C▹D ▹E → E
C▹D ▹E → C▹D
C▹D ▹E → D▹E
C▹D ▹E → C▹E(rewrite)
C▹D ▹E → C▹D ▹E

1. if : the if statement contains four valid fragments by combining different com-

ponents in the if statement. Especially, the if statement could be reorganised

to

125

if (¬s) then s′′;

2. do ... while .../while ...: the structure of do and while statements should not

be changed and changing of s or s′ will make the entire statement invalid or

the behaviour of the statement changed;

3. for : as for the valid extension upon for statement, the execution condition s′

and loop update s′′ should be preserved at least. Otherwise, it may lead to a

potential problem that the loop is invalid and cause an infinite loop;

4. switch ... case...: the valid AST fragments for switch-case statement should be

the change upon any case. For example, if a case is removed in the statement,

its corresponding statement should be deleted as well;

5. try ... catch ... finally ...: the valid AST fragments for

try-catch-finally statement could contain the following cases: (1) a valid variant

of try-catch-finally statement could be one without finally branch; (2) remove

some catch branches should also be a valid fragment; and (3) itself (nothing

change);

6. ternary operation: the ternary operation should be in a format of cond ? x :

y, therefore, the valid AST fragments should either be x or y;

7. method: as for a method declaration, a valid fragment could be removing some

parameters and rewriting the method body correspondingly; and

8. class inheritance: direct and indirect inheritance relations between classes and

126

interfaces could be altered via rewriting the attributes and functions in class-

es/interfaces as shown in Tab. 5.1.

Example. Given an if statement, as if (s)then s′ else s′′, we can compose four

valid AST fragments: (1) a single s, with the then statement empty; (2) s,s′: for

having if condition and then statement; (3) s,s′′: a specific case, in which s′′ is the

else statement, then it will be rewritten to if ¬s then s′′.

However, not all AST nodes can be expanded to have valid AST fragments, as

some are atomic and there is no way to use its children to compose a valid AST

with its original type. For example, for the field access v = x.f , any combination of

children in this AST node will introduce a syntax error.

As a result, we define a syntactical constraint φsyntax as:

φsyntax =

{
{(par (t) , Rewriterule) | rm} valid actions

null; others , (5.6)

where par (t) represents the parent AST node of t and Rewriterule means rewrite the

AST node par (t) based on the “valid AST fragment” rule. That is, to remove an

AST node t, the corresponding operation should be conducted on t’s parent node and

the operation is based upon the rules in Tab.5.1; otherwise, the operation should be

rejected.

5.5 Configurable AST: Behaviours Preserving

Operations on an AST node demand the full checking on constraints and dependen-

cies of the AST node being processed since we expect to reengineer an annotated

legacy into a product line without introducing any parser errors. However, the brute

127

force approach for removing or adding an AST node is risky, because it can break

the AST structure and affect its behaviours. To preserve the behaviours during

the reengineering, we need to check the control flow, data flow, type reference and

context-sensitive relations. Specifically, control flow, data flow, and type reference

are used to ensure behaviour preserving.

5.5.1 Assumption

In the coming sections (Sec. 5.5.2 to Sec. 5.5.5), we intend to discover the corre-

sponding actions that should be taken, in order to satisfy behaviour preserving, when

an action is taken upon an AST node t.

5.5.2 Control Flow Constraint

The constraints with control-flow might not be strict and strongly dependent on the

structure of code.

Listing 5.1: Sample Code: Variability-aware Control Flow Constraint
i f (a < 0)

b = 1 ;
e l s e

b = 2 ;
c = 2 ;

As shown in the above sample code, the statement b = 1 is conditionally depen-

dents on the value of a in a < 0, and b = 1 depends on a ≥ 0. The statements

b = 1 and b = 2 are defined as control dependent branch and c = 2 is control inde-

pendent[58]. If c is a control condition, we define the control-flow constraint as:

128

φcflow =

⎧
⎨

⎩

{(dbranch, rm) | rm} ; t = c

{(dbranch, rm) | rm} ; t
du→ c

rewrite; t ∈ others
, (5.7)

where

dbranch =
⋃

t′

t
cflow−−−→
ctdep

t′. (5.8)

If t is a control condition, the remove operation on t will require the corresponding

removal of dbranch. The symbol dbranch represents all control dependent branch

under t. In addition, if t has the def-use relation with the condition c, the value used

in c is defined in t, the corresponding changes should include removing the affected

branches.

Furthermore, we list several representative programming elements affected by the

variability-aware control flow constraints.

If-then-else. As the diagram shown in Fig. 5.8, the control flow graph for a

basic if-then-else statement, the control flow constraint on if statement will ensure

that the change on the if structure will not result in errors. On the left side of Fig.

5.8, it shows the control flow graph and the operations, with corresponding actions

represented on the right side.

While/Do. As for do ... while(cond) and while(cond)... statement, the removal

of the condition will make the whole block invalid and our strategy is to remove the

entire statement.

For. As the For statement’s CFG shown in Fig.5.9,

1. Removal of the condition cond: it will make the entire for loop invalid or lead

129

if

then

cond

T F

block1 block2

block3

else

- if (cond) block 3

+ cond
- block1
+ block2

~ !cond
+ block2
+ block3

+ cond
+ block1
- block2

+ cond
+ block1
+ block3

Figure 5.8: If-else statement

to an infinite loop; therefore, to satisfy the control-flow constraint, the entire

loop should be removed.

2. Removal of the loop update update: it could make the for loop into an infinite

loop; therefore, the entire loop should also be removed.

for cond

block

update

- if (cond) Nil

- !"#$%& Nil

control
cond.?

Y

control
cond.?

decide
cond.?

YN

Figure 5.9: For statement

Swith-Case. As the diagram of switch... case ... statement shown in Fig. 5.10,

it contains two main cases:

1. the removal of any case: if one case is removed, then it can be removed safely;

and

2. the removal of the switch condition cond: this will make the entire switch-case

statement invalid, and the entire statement should be removed.

130

switch

case case case case

cond

case1 case2 case3 case4

block

- if (cond) +block

- case (i)
+ cond
+block
+

Figure 5.10: Switch statement

Example. For our sample code presented earlier, removing if-condition a < 0

will remove the corresponding statement b = 1 and the else-branch should also be

changed accordingly.

5.5.3 Data Flow Constraint

In data flow analysis, the def-use relation is the main concern, in which the def-

use(du) relation represents the link from a definition to its usage. However, the def-

use relation is not sufficient to capture pointer information. Therefore, to preserve

behaviour during reengineering, a flow-insensitive approach for data-flow analysis

is required to capture the transformation[97]. Hence, our flow-insensitive data-flow

constraint is computed by:

φdflow =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
⋃

t′; t, rm) | rm} ; t ∈ def, t′ /∈ c, t
du→ t′

{null | rm} ; t ∈ def, t′ ∈ c, t
du→ t′

{(
⋃

t′; t, rm) | rm} ; t ∈ use, t′ /∈ c, t′
du→ t

{(t, rm) | rm} ; t ∈ use, t′ ∈ c, t′
du→ t

{null | rm} ; t, t′ ∈ use, t′ ∈ c, t ≺ t′

{(t, rm) | rm} ; t, t′ ∈ use, t′ ∈ c, t′ ≺ t
{(
⋃

t′; t, rm) | rm} ; t, t′ ∈ use, t′ /∈ c

, (5.9)

131

where t ∈ def represents that t is a definition and t ∈ use means that t is an usage.

The def-use relation t
du→ t′ represents the def-use relation starts from t and ends

with t′. The symbol t′ ≺ t represents t is executed after t′. Concretely, we discuss

the following cases.

1. t ∈ def, t′ /∈ c, t
du→ t′: this case represents that t will be removed and t’s access

t′ will be removed in the variant product. The removal of t and t′ will be

approved, since t′ is the use of t in the program. Removing a variable and its

use will not introduce syntax errors.

2. t ∈ def, t′ ∈ c, t
du→ t′: this case means t will be removed and t’s access t′ will

be will be preserved in the variant product. This operation will be rejected,

because it will make the declaration of t not available;

3. t ∈ use, t′ /∈ c, t′
du→ t: same as the first case;

4. t ∈ use, t′ ∈ c, t′
du→ t: the case represents a variable/field’s declaration (t′) is

preserved in the variant product and its use is removed. This operation will

be approved due to the declaration is preserved;

5. t, t′ ∈ use, t′ ∈ c, t ≺ t′: if t is executed before t′ and t′ should be preserved,

then the removal of t will make t′’s value incorrect. This is because t will

change the value that used in t′. Therefore, this operation will be rejected;

6. t, t′ ∈ use, t′ ∈ c, t′ ≺ t: if t′ ≺ t, then the removal of t will not affect the value

of t′ as {(t, rm) | rm} show;

132

7. t, t′ ∈ use, t′ /∈ c: as t′ and t are both use and t′ will be removed, then they

will be removed.

Example. Recall our example in Fig.5.3, both bytes_received in box1 and

box2 are use of object bytes_received. If the feature of box1 is unselected (t /∈ c)

and box2 is preserved(t′ ∈ c) in the configuration, the operation on box1 will be

rejected. Because base on equation 5.9, approval of the operation will change the

behaviour of code in box2.

5.5.4 Name Binding Constraint

The name binding constraint for a given AST node t could be represented as:

φnbind =

⎧
⎪⎪⎨

⎪⎪⎩

{null | rm} ; t ∈ bind, t′ = use (t) , t′ ∈ c
{(t; t′, rm) | rm} ; t ∈ bind, t′ = use (t) , t′ /∈ c
{(t, rm) | rm} ; t /∈ bind, t′ = bind (t) , t′ ∈ c

{(t; t′, rm) | rm} ; t /∈ bind, t′ = bind (t) , t′ /∈ c

, (5.10)

where the function bind(t) will return the binding of an AST node t. The binding

of an AST node could be a variable, a field, a method, an interface, a class, or a

type declaration. If t itself is a declaration, bind(t) will be t; if t is an access of a

declaration, bind(t) will give the declaration. And use(t) will return all accesses of

this binding.

Example. If a class t’s declaration should be removed in a configuration, but

t’s access ts is persevered, then t should be preserved to make ts points to class t

correctly.

133

5.5.5 Context-sensitive Constraint

Context-sensitive analysis distinguishes the calling context from the same caller.

Here, we propose a variability-aware context-sensitive constraint, which encapsulates

context-sensitive analysis in a variability-aware context. This relation is proposed to

distinguish the calling context for methods and ensure that features’ behaviours are

preserved under each calling context. For example, given a method m and its call

sites cs1 and cs2, s and cs1 are annotated to the same feature f1 and cs2 belongs to

feature f2. If feature f1 is unselected and f2 is selected in a configuration, then by

default m and cs1 will be removed in the variant application. However, our context-

sensitive constraint will prevent the removal of method m due to cs2 is preserved.

This can only be achieved by using context-sensitive analysis. Context-insensitive

analysis is not qualified for our purpose.

Our variability-aware context-sensitive constraint is defined as equation (5.11).

1. t is a call site and its callee function t′ is preserved in the variant product.

Operations on t (change t into ∆(t)) can be approved, because t′ will not affect

the operations on t;

2. t is a call site and its callee function t′ is not preserved in the variant product.

Operations on t can be approved and removal of t′ can also be approved;

3. t is a function and its call site t′ is preserved in the variant product. Because

t’s call site t′ is preserved in the variant product, then the function t is present

in the variant. Therefore, the operations on t should be blocked;

4. t is a function and its call site t′ should not be preserved in the variant. Op-

134

erations on t can be approved because its call site t′ does not present in the

variant;

5. t is a parameter in function m, and m is preserved in the variant. As shown

in listing 5.2, the removal of parameter will lead to a rewrite of the function;

6. t is a parameter in function m, and m is removed in the variant. Operations

on t can be approved because its corresponding function m is removed.

Listing 5.2: Edge constructor in Edge.java
pub l i c Edge (Vertex the_start ,
Vertex the_end , int aweight){
s t a r t = the_start ;
end = the_end ;
weight = aweight;

}

φcontext =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{(t, rm) | rm} ; t ∈ caller, t′ ∈ c
{(t, t′, rm) | rm} ; t ∈ caller, t′ /∈ c

{null | rm} ; t ∈ func, t′ ∈ c
{(t, t′, rm) | rm} ; t ∈ func, t′ /∈ c

{(m, rewrite) | rm} ; t ∈ par.,m ∈ fun,m ∈ c
{(t, rm) | rm} ; t ∈ par.,m ∈ fun,m /∈ c

, (5.11)

Example. Assuming a method m is annotated to feature f , and it has two callers

c1 and c2 associated to feature f and f ′ respectively, then the method m should not

be removed in presence of the removal of feature f , since the caller c2 in f ′ requires

the existance of m.

135

5.5.6 Putting All Pieces Together

In summary, to preserve the behaviour during the reengineering the transformation

should satisfy the following constraints.

φbehaviour = φcflow ∧ φdflow ∧ φnbind ∧ φcontext. (5.12)

Considering our behaviour preservation module will try to guarantee that the op-

eration on an AST node will not interfere features’ behaviour in the variant product,

an operation on an AST node can be approved if and only if it is possible to satisfy

all constraints as presented in equation (5.12).

5.6 Configurable AST: Type Checking

Type constraints are collected from the perspective of preventing ill-typed AST node.

To avoid creating ill-typed AST nodes during transformation, we define several rules

for type checking any AST node t in the annotated legacy and its mapping AST

node tc, if exists, in the product variant under configuration c. As the reengineering

procedure from an annotated legacy to a product variant is achieved by a series of

operations on AST nodes, tc could be “null”, which means t is removed during the

reengineering process. Therefore, we mainly do the checking where tc is reachable.

Specifically, our type checking rules are inspired by the rules defined in [46, 44, 35].

On the constrast, we are interested in conducting type checking for both t and tc.

That is, our type checking ensures that transforming from t to tc will not lead to any

typing errors.

136

5.6.1 φT−VAR

The typing of variables is variability-unaware to annotation, with the transformation

from t to tc, the type for tc could be extended to C ′ as C ′ is a subtype of C. Therefore,

it can be described as

t : C ∈ Γ

Γ ⊢ t : C tc : C ∈ Γ C <: C ′

Γ ⊢ tc : C ′

5.6.2 φT−FIELD

For a field access, including field read and write, x0.fi (represents t in our context)

is transformed to xc0.fci (tc). It requires to look up the annotation of this access

AT (x0.fi) and the annotation of AT (xc0.fci)) in xc0.fci.

Therefore, we do a three-step mapping:

1. The target instance xc0 should be well-typed: as the process shown in φT−VAR;

2. Get all fields with desired feature A′: within the field list, the fields annotated

to A′ should be extracted. Here, function filter(A,B) returns those members

that, within A, satisfy condition B. Function fields(A) returns the fields in A;

and

3. Filter the target field fci: search target field fci in the field list C′
0 f , and

ensure it is well-typed.

137

Γ ⊢ xc0 : C
′
0 AT (x.fi) = A

A⇒ A′ filter (fields (C ′
0) ,A′) = C′ f AT (C ′

i, fci)⇒ A′

Γ ⊢ xc0.fci : C
′
i

5.6.3 φT−INVK

Type checking for method invocations xc0.mc (yc) (tc in our context) is similar to

checking a normal method invocation. In detail, it contains the following steps.

1. Method mc’s type is filtered and obtained by mtype function;

2. The invocation parameters of ms should match the parameter declarations (yc)

and this mapping should also support the override function (A⇒
(
AT (yc) ≡ AT

(
D′
))

);

and

3. The type of parameters should be checked as well.

Γ ⊢ xc0 : C
′
0 AT (x.m(y)) = A A⇒ A′ mtype (m,C0,A) = D → C
mtype (mc,C ′

0,A′) = D′ → C ′ Γ ⊢ y : C C <: D
Γ ⊢ yc : C ′ C ′ <: D′ A′ ⇒

(
AT (yc) ≡ AT (D′)

)
AT (yc)⇒ A′

Γ ⊢ xc0.mc (yc) : C ′

5.6.4 φT−NEW

Type checking (from new C (y) to new (Cc (yc))) for typing object creation contains

the following steps:

1. The target class Cc should be annotated to A′;

138

2. The provided parameters for Cc’s constructor should be matched with expected

parameters as A′ ⇒
(
AT (yc) ≡ AT (Dc fc)

)
; and

3. In addition, the types of parameter and constructor are checked.

AT (new C(y)) = A
A⇒ A′ AT (new Cc(yc)) = A′ filter(fields(Cc),A′) = Dc fc Γ ⊢ y : C
y : C ⊢ yc : Cc Cc <: Dc A′ ⇒ AT (Cc) A′ ⇒

(
AT (yc) ≡ AT (Dc fc)

)

Γ ⊢ new Cc (yc) : C
′

5.6.5 φCAST

For casting, we check two cases in terms of changes:

Case (1) (C) x→ (Cc) x: It means that the casting target has been changed to

(Cc). The expression of T-UCAST(left) and T-DCAST(right) can be represented as

follows (AT (Cc) = A and AT (Ccx) = B):

Γ ⊢ x : C
C <: Cc B ⇒ A

Γ ⊢ (Cc) x : Cc

Cc <: C Cc ̸= C
Γ ⊢ x : C B ⇒ A

Γ ⊢ (Cc) x : Cc

Case (2) (C) x→ (C) xc: It means that the casting object has been changed to

xc. The change that occurs to a variable should be type checked to confirm it is still

compatible with the original type C for T-UCAST(top) and T-DCAST(bottom) as

follows:

Γ ⊢ x : D D <: C
AT ((C)xc)⇒ AT (C)

Γ ⊢ (C) xc : (C)

Γ ⊢ x : D
C <: D C ̸= D

AT ((C)xc)⇒ AT (C)

Γ ⊢ (C) xc : (C)

139

5.6.6 φMETHOD(Mc OK in Cc)

The method typing constraints check the change on the M to (Mc) with the following

checking rules:

1. The override function gives a method’s parameter type C, return type C (C →

C) and a super class D. If Mc is an overriding function, it should be checked

in override
(
mc,Dc, Cc → (Cc)0,A′);

2. The class that corresponds to the return type of Mc should be checked as (Cc)0;

and

3. Each parameter in method Mc should be well-type as AT
(
Cc xc

)
⇒ AT

(
Cc

)
;

Mc = (Cc)0 mc
(
Cc xc

)
{return tc0; }

AT (M) = A AT (Mc) = A′ A⇒ A′

AT
(
Cc xc

)
⇒ A′ filter

(
Cc xc,A′) = Dc yc yc : Dc, this : Cc ⊢ tc0 : (Ec)0

(Ec)0 <: (Cc)0 CT (Cc) = class Cc extends Dc{....}
override

(
mc,Dc, Cc → (Cc)0,A′) A′ ⇒ AT ((Cc)0) AT

(
Cc xc

)
⇒ AT

(
Cc

)

Mc OK in Cc

5.6.7 φCLASS

Type checking for the transformation from a well-typed class declaration (C OK) to

class Cc should be considered as the checking upon all AST nodes within C and Cc.

It contains the following steps:

1. Checks the type of Cc as its super class is present;

2. Cc and its super class/interface should be well-typed;

140

3. Cc’s annotation should be compatible with C’s annotation;

4. The typing rules specify that super constructor (of (Cc)super) call receives ex-

actly the parameters from constructor (of Cc);

5. As rule (K.2[46]) specifies in the field assignment(this.f = f), the constructor

parameters must match the field declared;

6. All types associated with the constructors’ parameters must be present; and

7. In addition, methods, fields, and constructors within the class should be checked

as well.

K = C
(
D g,C f

)
{super

(
g′
)
; this.f=f;}

M OK in C K ′ = Cc

(
D′ gc, Cc fc

)
{super

(
gc′
)
; this.fc = fc}

MC OK in Cc AT (C) = A AT (Cc) = A′

A⇒ A′ filter (fields (D) ,A) = D g′′ filter(fields (D′) ,A′) = D′ gc′′

A⇒ AT (D) AT
(
C f
)
≡ AT

(
this.f=f

)
≡ AT

(
C f’

)

A′ ⇒ AT (D′) AT
(
Cc fc

)
≡ AT

(
this.fc=fc

)
≡ AT

(
C_c fc’

)

A⇒
(
AT (D g) ≡ AT (g′) ≡ AT (D g′′)

)

A′ ⇒
(
AT (D′ gc) ≡ AT (gc′) ≡ AT (D′ gc′′)

)

AT
(
C_c fc

)
⇒ AT (Cc) AT

(
D_c gc

)
⇒ AT (Dc)

AT
(
Cc fc′

)
⇒ A′ AT

(
Mc

)
⇒ A′ AT

(
D′ gc

)
⇒ A′

AT
(
Cc fc

)
⇒ A′ AT (gc′)⇒ A′ AT (this.fc = fc)⇒ A′

classCcextendsDc{Cc f ′
c;Kc Mc} OK

141

5.6.8 Putting All Pieces Together

In summary, type checking constraint φtype is defined as a specific checking based

on types of t and tc.

φtype (t, tc) =
TY PE⋂

tsub

φtsub(t, tc);

TY PE = {T-V,T-F,T-I,T-N,CAST,METHOD,CLASS};

(5.13)

which means the type checking constraint only checks typing errors related to t and

tc. Here, the type checking is conducted on both t and tc to ensure that the AST

nodes in the legacy and the variant products are well-typed.

5.7 Configurable AST: Feature-effect Constraints

The feature effect constraints are collected based on the constraints and dependen-

cies covered in a feature model. However, this type of constraint has already been

covered in the given configuration. That is, a given configuration is “valid” if and

only if it satisfies the constraints from the feature model. In feature model analysis

and transformation, the problem could be transformed into a boolean satisfaction

problem and then it can be resolved by a satisfiable problem solver. As shown in

the process displayed in Fig.5.1, we add a validity check to check whether the input

configuration is correct, and the invalid configuration will be rejected. Hence, this

checking will resolve feature effect constraints.

As for the valid configurations, the constraints are automatically resolved during

constraints checking as described in Sec.5.5 to Sec. 5.6, since these constraints also

consider the side-effect from feature annotations.

142

5.8 Configurable AST: Algorithm
5.8.1 Putting all pieces together

To achieve our goal of generating product variants respect to syntax correctness,

behaviour preserving and well-typed, the constraints required to be satisfied is shown

in equation (5.14). That is a reengineering action will be approved if and only if it

meets the requirements from the constraints.

φfull = φsyntax ∧ φbehaviour ∧ φtype ∧ φfeature (5.14)

5.8.2 From Annotated Legacy to Product Line

Algorithm 4: Annotation2Variants
Input: annotated AST ,nodetofeature, configuration c
Output: variantc

1 if c is invalid then
2 return error in configuration c;
3 Create an action list action_list;
4 Extract actions from c, store in actions;
5 action_list← actions;
6 forall act ∈ actions do
7 if φsyntax,behaviour,feature(act) not pass then
8 delte act in action_list and continue;
9 Add ∆(act) to action_list;

10 forall act ∈ action_list do
11 if φtype(act) not pass then
12 delete act in action_list;

13 Execute action_list;
14 return variantc;

To further present the overall constraint φfull (Eq.(5.14)) as a practical approach,

we define the procedure in Alg.4.

143

• Line 1:2: Check whether the input configuration is valid;

• Line 3:5: The manipulating of an annotated legacy will be transformed to

a set of actions, which could be extracted in configuration c. And then store

these actions in actions and action_list respectively;

• Line 6:9: The syntax, feature and behaviour constraints are checked in this

step. If it is not possible to satisfy these constraints, then it will skip this

action; otherwise, corresponding actions are added back to action_list. Here,

the corresponding actions could be additional actions taken to satisfy these

constraints;

• Line 10:12: The type constraint is checked; if it could not be satisfied, then

delete this action; and

• Line 13:14: Based on all valid actions, the variant variantc is created.

In summary, our approach tries to prevent unexpected problems generated from

syntax, behaviour, feature and typing. Our approach avoids generating any syntax

errors by referencing “valid AST fragment rules”, which guides the actions taken upon

AST nodes are acceptable iff they follow the rules; otherwise, this action should not

be allowed. As for behaviour and typing errors, we consider the following constraints:

control flow, data flow, name binding, context-sensitive relations, and type checking.

The feature related issue is resolved by feature-effect constraint.

144

5.9 Case Studies
5.9.1 Experimental Settings
Input Configurations

Generating and testing all valid configurations require extremely large effort as the

number of features increases. For example, a feature model with 27 features will

create 227 combinations, although the constrains will reduce this, still it will require

a lot of effort. Therefore, in this chapter, we adopt a specific pair-wise testing for

product line as described in [75] to reduce the test cases required and try to cover

each configuration option at least once.

Generate Variants

After all checking are conducted and the OperationList is updated correspondingly,

our engine will generate the product variant based on OperationList as shown in

STEP 4 of Fig.5.1. The Eclipse Java development tools (JDT) provides APIs to

rewrite ASTs and generate code fragments based on the given AST.

5.9.2 Subject Systems

As the focus of this work is to generate product variant from an annotated legacy

application, we first find suitable benchmarks. The benchmark contains a set of

files that describe how programming elements are mapped to features. Without

the benchmark, it would not be possible to assess the performance of our approach.

Thereby, we use those systems that have been analysed and learned in other works

to exclude the bias in creating the benchmark on our own. And the benchmarks are

selected based on following criteria:

145

1. A benchmark system should be well-analysed by other research works;

2. Along with the benchmark system, the feature model, which shows all fea-

tures and relations between them, should also be available, since, we will check

whether a configuration is valid by referencing the feature model.

3. In addition, mapping between features and their implementation should also

be available.

By referencing the selection criteria, we carefully select 9 different subject systems

that have been developed and well-researched by others, from academic and industrial

systems. Four of these systems are early described in Sec. 3.5.

• Graph Product Line. Lopez-Herrejon et. al. developed a Graph Product

Line to illustrate the problem in product line design [64] with 1350 LOC in

Java.

• HSQLDB. Hyper SQL Database5 is a relational database written in Java.

It offers a small, fast multithreaded and transactional database engine with

in-memory and disk-based tables and supports embedded and server modes.

• MobileRSS. It is an open-source project with portable RSS reader for mobile

phones on Java ME platform. The core features include: MIDP1.0, MIDP2.0,

CLDC1.1, JSR 75 and JSR 238. Other features supported include logging,

testing, memory capacity and compatibility features.
5 HyperSQL: available at:http://hsqldb.org.

146

http://hsqldb.org

• Sudo. With 1975 LOC, Sudo is designed as a student project containing five

features: States,Undo, Solver, Generator and Variable Size. It also contains

the following relations: Generator → Solver, Solver → Undo, and Undo →

States.

• Lampiro6. An open-source instant-messaging client with 44584 LOC. Here

feature Compression without dependency is selected, as others are affected by

limited code fragments or cannot be deemed as debugging features. Here, a

debugging feature represents a feature that provides an “invokable” service to

end-users rather than assisting the workflow. Some other small features have

already been tested in other cases.

5.10 Experimental Result

We experimentally investigate the following research questions in order to test our

approach:

[RQ1]: Can our approach successfully ensure the syntactic correctness and well-

typed in the variants created?

[RQ2]: Can our approach successfully ensure the feature behaviours are well

preserved during reengineering?

RQ1: Syntactical and Type Checking Results

We compare our approach CAST, with LJAR as shown in Tab.5.2 with two metrics: (1)

#valid to show the percentage of valid variants created for configurations tested; and
6 Lampiro v9.6.0 available at https://code.google.com/archive/p/lampiro/

147

https://code.google.com/archive/p/lampiro/

Table 5.2: Error collection and statistics
#Valid ErrorsSystem #TestV LJAR CAST LJAR CAST

GPL 32 0% 75% 6.1±3.0 0.4±0.8
BerkeleyDB 14 100% 100% 0 0
HSQLDB 14 60% 100% 0.9±1.0 0
MobileRss 18 78% 100% 1.2±1.7 0
Sudo 6 100% 100% 0 0
Prevalyer 30 10% 100% 2.7±1.6 0
MobileMedia 12 8% 100% 4.5±3.1 0
Lampiro 11 90% 90% 0.4±1.2 0.3±0.1
ArgoUML 22 31% 73% 1.5±1.5 0.4±0.7
Avg./Overall 17 31% 88% 10.1±4.8 0.1±0.5

(2) error in a format of “mean±std” to show the mean value(mean) and standard

deviation(std) of the number of errors.

148

(a) method not found error (b) no return stat. found

(c) parameters not matched (d) syntax errors

(e) types not found (f) multiple returns

(g) unreachable code fragments (h) variables not initialized

Figure 5.11: Error types of LJAR approach

From the performance of LJAR and CAST shown in Tab.5.2,

1. For most cases, LJAR can only generate valid product variants for 22% (2/9)

of all systems. Whereas CAST could reach 67% (6/9) on average;

149

2. For the performance of # valid configuration, LJAR could only reach 31%,

whereas CAST reaches 88%;

3. For 44% cases, LJAR’s performance is less than 50%. Whereas, all CAST’s

performance is larger than 50%; and

4. The error of LJAR ranges a lot (10.1±4.8), which means the performance is

unstable. However, our approach seems to give a more stable performance

(0.1±0.6).

The errors found in LJAR as shown in Fig.5.11 could be grouped into the following

types:

1. Fig.5.11-(a): methods are not implemented, representing two cases:

(a) methods defined in parent classes are not found in the current class;

(b) method’s invocations are found, whereas its declaration is removed;

2. Fig.5.11-(b): no return statements;

3. Fig.5.11-(c): parameters are not matching. The parameter not match problem

is generated in the case that an access of a method maccess is preserved, where

its declaration m has been removed. Therefore, the method’s access will lead

to a “parameters are not matching” problem, where m’s overriding method m′

exists;

4. Fig.5.11-(d): syntax error. Additionally, some syntax errors could be generated

when using LJAR.

150

5. Fig.5.11-(e): types are not found. Types are used without declaration;

6. Fig.5.11-(f): unreachable code error. The unreachable code error arises when

the code fragment appears after “return” statement;

7. Fig.5.11-(g): multiple returns. The “multiple returns” problem arises when a

series of “return” statements appear;

8. Fig.5.11-(h): variables/fields/instances are not initialised;

Our approach could resolve these problems by applying additional constraints

during transformation. Specifically, these problems could be resolved partially in

our approach.

Vertex

 public Vertex getStart() {

 }

if (true)
return this;

else
return null;

Figure 5.12: No Return Error

EdgeIfc addEdge(Vertex start, Vertex end, int weight){
...
if(true)

return (EdgeIfc)start;

//GN
Neighbor e = new Neighbor(end,weight);
addEdge(start,e);
if(true)

return e;
// GEN
Edge theEdge = new Edge(start,end,weight);
...

}

if(true)

//GN
Neighbor e = new Neighbor(end,weight);
addEdge(start,e);
if(true)

return e;
// GEN

Edge theEdge = new
Edge(start,end,weight);

...

remove

unreachable

Figure 5.13: Unreachable Code Error Example

1. Fig.5.11-(a): as for the methods are not implemented issue:

151

(a) for the case that methods are defined in the parent classes/interfaces

but could not be found in the current class, it could be assessed and

prevented by constraint φMETHOD(∆(M) OK in C ′
0), in which the rule

“override(∆(m),D,C’→ C ′
0,A′)” will do the checking. In detail, it will

check the method that is overridden;

(b) for the second case, it is resolved by both name binding constraint

and φT−INV K constraint for method invocation;

2. Fig.5.11-(b): as for no return problem, it occurs in a variant of GPL as shown

in Fig.5.12. The removal of this code snippet will make our algorithm check

“this” statement and resolve this to type Vertex. Since type Vertex is preserved

during reengineering, our algorithm is fraud as this removal is safe;

3. Fig.5.11-(c): the parameters are not matched problem is also an issue, which is

part of method problem, and it is resolved by the name binding constraint

in our approach. Therefore, if a method invocation existed in a variant, its

method declaration with matching parameter set should also be preserved in

the variant by using this rule;

4. Fig.5.11-(d): to prevent syntax errors, our valid AST fragments rules will avoid

unsafe actions and generate a valid AST based on the rules;

5. Fig.5.11-(e): type not found problem is handled by the type checking constraint

in our approach;

6. Fig.5.11-(f): the essence of “multiple returns” problem is same as the unreach-

able code error, since it can be considered as all return statements after the

152

first return are unreachable;

7. Fig.5.11-(g): the unreachable code error is introduced by inconsistent annota-

tion for the benchmark. For example, in the case that if condition expression

is annotated, but then branch is not annotated, which contains a return state-

ment. As a result, removal of a feature could make some code fragments

unreachable, which is a false-positive case. As the code snippet shown in

Fig.5.13(found in project GPL product line), the removal of feature with pink

colour could make the rest of the code in the function unreachable. Fortunately,

the inconsistent annotation could be resolved in our approach, since we define

a set of valid AST fragment rules for preventing syntax problem and unsafe

actions;

8. Fig.5.11-(h): for variables/fields/instances are not initialised issues, it could be

checked by the data flow constraint in our approach;

9. In addition, we found another issue “method not found for casting”. This

problem arises in a format of “((A’)a).m()”, which means an object in type

A is casted to A′, and the method m() has been removed in type A′. For

example, in the MobileMedia product line, we found an error statement “(Pho-

toViewScreen)this.getCurrentScreen()”, where the method PhotoV iewScreen

has been removed in class PhotoViewScreen.

In summary, our approach could resolve the following issues that cannot be fully

solved by other approaches:

1. The syntax errors introduced by inconsistent annotation: the “inconsistent

153

annotation” is defined as a use of variable/field v is annotated to a feature f ,

but its definition is not annotated to f . The operation upon v could be risky

since it may generate potential typing errors. This could be solved by data

flow and name binding constraint; and

2. The syntax errors introduced by partial AST node annotation: the partial AST

node annotation could also be found in the benchmark. For example, in a try

... catch ... statement, if and only if try block is annotated to feature

f , but not the catch part. The actions on try block could lead to a potential

error that “no try statement found for the catch”. This could be handled by

valid AST rules in our approach;

Unfortunately, there is still an issue that cannot be resolved by applying our

approach since we do not enforce the structure to check all requisite components,

which might lead to “no return” statement error.

RQ2: Behaviour Preservation Checking Results

Besides the syntax and type checking for transformation from an annotated legacy to

product variants as shown in Fig.5.1 and the previous section, more importantly, we

also check whether the feature’s behaviour is consistent during the transformation by

running some test cases. In our study, the checking is achieved by test cases, which

are automatically generated by evosuite framework7. Specifically, the statistics of

test cases and pass rates are available in Tab.5.3. In Tab.5.3, “#Method, #Class,

#Package” show the basic information of the subject project, including the total

number of methods, the number of classes, and the count of packages.
7 evosuite:http://www.evosuite.org.

154

http://www.evosuite.org

Table 5.3: Behaviour preserving test and performance

Cases #Method #Class #Pack. LRAR

#Test(Pass) Avg.Test Mean±Std
GPL 89 14 1 512(512) 100% 1± 0
BerkeleyDB 3116 268 16 3276(3013) 85% 0.85± 0.26
HSQLDB 4186 292 14 3184(2630) 80% 0.8± 0.29
MobileRss 928 96 14 13703(13537) 87% 0.87± 0.30
Sudo 121 25 1 597(542) 79% 0.79± 0.38
Prevalyer 571 127 21 9856(9593) 84% 0.84± 0.33
MobileMedia 274 50 9 2960(2960) 100% 1± 0
Lampiro 1482 188 12 378(90) 7% 0.07± 0.42
ArgoUML 9740 1665 80 2649(2027) 73% 0.73± 0.42
Average 2279 303 19 4124(3878) 77% 0.77± 0.29

Cases #Method #Class #Pack. CAST
#Test(Pass) Avg.Test Mean±Std

GPL 89 14 1 512(512) 100% 1± 0
BerkeleyDB 3116 268 16 3276(3248) 92% 0.92± 0.19
HSQLDB 4186 292 14 3184(2958) 90% 0.9± 0.24
MobileRss 928 96 14 13703(13645) 95% 0.95± 0.07
Sudo 121 25 1 597(560) 88% 0.88± 0.30
Prevalyer 571 127 21 9856(9797) 95% 0.95± 0.09
MobileMedia 274 50 9 2960(2960) 100% 1± 0
Lampiro 1482 188 12 378(350) 87% 0.87± 0.31
ArgoUML 9740 1665 80 2649(2481) 85% 0.85± 0.21
Average 2279 303 19 4124(4067) 93% 0.93± 0.15

Our approach could reach a precision of 93% on average, which means that on

average for 93% test cases, the program could output the values expected. This

suggests that our approach could successfully preserve features’ behaviour during

the reengineering procedure. As the result shown, our performance is better than

LJAR approach (77%) for the subject systems explored.

155

5.11 Discussion
5.11.1 Issues Studied

To further illustrate our research purpose and discuss our findings, we try to fill the

gap and provide direction to future work below.

I1: What are the limitations of current research?

The limitations of current work motivate our work. That is, to compose or

reengineer features’ implementation, the constraints and dependencies arise not only

from the feature model but also from the code base. Therefore, a qualified approach

should combine the constraints from the feature model and the code base, which has

not been well considered in current studies. For example, given an annotated legacy

with three features a,b, and c. To create a variant with a configuration c = a∧b∧! c, by

merely preserving code for features a and b are not sufficient, as some code fragments

from c is also required, even if no relation could be detected from the feature model.

I2: What are the potential limitations of our work?

1. The test cases for configurations are generated based on the all-pair testing

strategy, which might not be suitable for all configurations. This means that

not all valid configurations are tested and the actual performance might be

different from the results shown in Tab.5.3; and

2. Our approach tries to create valid AST fragments; however, this may violate the

feature annotation. That is, we try to generate syntactically correct, typing safe

variant and preserving features needed at the large extent; however, sometimes

it will violate the essences that features trying to express. Unfortunately, this

156

dilemma could not be solved without the domain experts, since only they know

what the features are trying to express.

I3: How do the benchmarks influence the performance?

In the experiment, we found inconsistent feature annotation problem in the bench-

mark. For example, in the annotated legacy, a method m is annotated to feature f ;

however, m’s invocation is not annotated. But, our approach could cope with this

inconsistent annotation issue by checking all types of constraints and try to generate

valid ASTs based on valid AST rules. Whereas LJAR could not solve this. However,

the feature inconsistent annotation issue could be resolved by our approach.

I4: Behaviour preserving and behaviour tolerance issue.

Behaviour preserving is another critical concern in our approach. Our approach

uses test cases to automatically check whether the behaviours are persevered during

the transformation. As the testing results partially reflect that the behaviours could

be kept during transformation, our approach could be a qualified approach for gener-

ating variants from annotated legacies. However, in some cases methods’ structures

might be changed with certain configuration.

For example, a method m(a, b, c) might be changed to m′(a, b) for c is associated

with a feature not covered in the configuration. For this change, the statements,

rewrite and read argument a and b, are left in the variant. As the code snippet

shown in Edge class in Graph Product Line product line, the last argument aweight

is annotated to a feature different from the rest; therefore, removal of this feature

could result in the creation of new constructor Edge with only two arguments: Vertex

the_start and Vertex the_end. We can ensure there is no interaction with argu-

157

ment c; otherwise c should be kept in the variant. Whereas, the potential risk could

be we try to keep a feature’s implementation consistent with respect to the program-

ming logic, which might change the original intention of the feature.

l5: Can our approach resolve the limitations in other works?

As presented and discussed in the results,

1. the issues with the syntax errors introduced by inconsistent annotation and er-

rors introduced by partial AST node annotation are resolved by the syntactical

correctness module;

2. as demonstrated by the test cases, our behaviour preserving module could pre-

serve the feature behaviours during the reengineering; and

3. the type checking module ensures that all types used in the variant applications

are well-resolved;

In summary, comparing to related approach, our strategy could perform better in

terms of reducing syntax errors[47], and we also contribute the behaviour preserving

and typing safety, which have not been discussed in other research works[63, 8, 96,

71, 50, 46, 47, 57].

5.11.2 Threats to Validity

The validity issues may exist in following aspects: (1) limited case studies: even

though the experiments are conducted based on nine systems with size ranging from

1K to 120KLOC, the performance of our approach still could not be extended to all

applications; (2) single language: in this work, our case studies are all in Java. The

performance bottleneck and scalability have not been tested in other languages; (3)

158

the configurations are created using all-pairs testing and invalid configurations are

removed. Since not all configurations are tested, this might affect the performance

of our approach; and (4) the tools could also affect the performance. CIDE as a

prototype tool of LJAR might not strictly follow the definitions and rules in LJAR,

which might impact LJAR’s performance.

5.12 Chapter Summary

The reengineering of legacy systems requires features’ implementation and behaviours

be well preserved. To ensure this, in this work, we propose a feature persistent

approach for migrating an annotated legacy into a product line. As demonstrated in

the experimental results, our approach could preserve feature’s implementation and

behaviour during the transformation from an annotated legacy.

159

160

Chapter 6

Conclusion

Software product lines are difficult to build compared to developing a single system,

considering that several issues should be resolved, including domain requirements,

feature model, feature interaction and variability. Building a software product line

from an existing system is a helpful and practical step in terms of constructing

the software product line by reusing software artefacts. In this way, the legacy

applications could be reused as a product line, which will extend the life cycle of

the application, supporting the extension of the system and contributing to software

ecosystem.

This thesis has presented the migrating procedure from the code base of a legacy

application to a software product line. This work is intended to bridge the gap

between a normal system and a software product line. If successful, it can improve

the construction of a product line and make it easier to develop a software product

line rather than building every artifact in a product line. And it improves the current

research in software product line engineering in following ways:

1. It can provide a guide on how to build a software product line by reusing

161

existing resources, and it can also be extended to legacy understanding. That

is, without the help of documentation, domain experts and developers can start

the learning process of a new system by mainly referencing the source code;

2. How to conduct the type checking on a software product line, and a legacy

system, and how to reengineer a legacy system into a software product line?

This part will make the product line created are well-typed. Specifically, in

Chapter 3, when we build the feature model, our work ensures that each feature

is well-typed; and in Chapter 5, when the features are reengineered to product

variants, we guarantee that each product variant is well-typed;

3. To map features with their implementations, in Chapter 4, we proposed a

novel approach based on conditional probability. With this approach, the per-

formance has been strongly improved, since it can extract and compute the

relation between programming element at a fine-granularity;

4. We distinguish the feature model and software architecture, we argue that the

approaches in the software architecture domain are not suitable for building

feature models; and

5. Our tools provide a complete process to build product variants from the legacy

source and assist developers in understanding the functions, features, relations

and other underlying constraints to build the product line.

Section 6.1 reviews the most important contributions of this thesis and discusses

how these contributions solve the problems in practice. Section 6.2 gives some direc-

tions and perspectives for future work.

162

6.1 Summary of Contribution

In this thesis, we try to compose a software product line by reengineering a legacy

application. We explore the path from a legacy application to a software product line,

and the solution on generating well-typed product line application and customised

product variants. Specifically, we make the following contributions in building a

product line from a legacy application:

1. We build a type checking system to ensure the product variants created are

well-typed;

2. We develop a variability-aware module system to build the feature model from

the code base;

3. Based on the feature model built from previous step, we develop an approach

using conditional probability to locate features in the code base;

4. With features and their implementations extracted. We further create a tool

to extract all valid configurations for the product line;

5. With the help of the configuration tool, we propose an approach to reengineer-

ing the legacy system to product variants; and

6. To support all these processes, we develop several prototype tools.

6.2 Future Work

We have provided a series of approaches for transformation a legacy application into

a software product line. Our approach provides a general procedure for building the

163

product line from a legacy application.

Transferring our study and experience to other works should be a promising

direction. Nowadays, software products are often provided as services in the cloud;

therefore, building services for cloud could be an interesting direction to consider.

Composing modules for cloud applications with modularity concern by systematically

reusing existing legacy could save the development effort in terms of building cloud

applications.

Also, feature model in a software product line is essential, since it represents all

the features in the system and how they are organised in the software product line.

However, it is still unknown whether there exists a better representation comparing

to the feature model. Some research efforts are required to check attributes that are

essential but cannot be captured by the feature model.

Furthermore, working on presenting features and underlying relations should be

an open challenge for developers. Currently, features are presented and organised

using the feature model. Although in this thesis we build the mapping between

feature and code fragments, there is still a long way to go for presenting features and

visualising them. In addition, more effort are needed to visualise the features. In our

approach and other approaches, features are annotated directly in the code. To view

a features’ implementation, normally a developer has to switch between different

files. However, a better practice could be building a tool to index all code fragments

grouped by features.

Finally, there are many related challenges from building the software product

line and feature annotation, especially for software evolutions. For example, adding

additional features to the existing software product, removing features from the

164

product line or updating features may introduce potential defects to the feature

itself, including whether a feature’s consistent is preserved. In the future, we intend

to build tools and models to develop an integrated system for building adaptable

software product lines, in which developers are allowed to make changes to the feature

model, and the system will automatically transform the code base.

165

166

References

[1] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire. Reverse
Engineering Architectural Feature Models. In 5th European Conference of
Software Architecture (ECSA), volume 6983, pages 220–235, 2011.

[2] B. Adams, W. De Meuter, H. Tromp, and A. Hassan. Can we refactor condi-
tional compilation into aspects? In Proceedings of the 8th ACM International
Conference on Aspect-oriented Software Development, AOSD ’09, pages 243–
254, 2009.

[3] R. Al-Msie’Deen. Mining feature models from the object-oriented source code
of a collection of software product variants, 2013.

[4] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena. Refac-
toring product lines. In Proceedings of the 5th International Conference on
Generative Programming and Component Engineering, GPCE ’06, pages 201–
210, 2006.

[5] L. Andersen. Program analysis and specialization for the C programming lan-
guage. Thesis, 1994.

[6] P. Andritsos and V. Tzerpos. Information-theoretic software clustering. IEEE
Transactions on Software Engineering, 31(2):150–165, 2005.

[7] G. Antoniol and Y. G. Gueheneuc. Feature identification: An epidemiological
metaphor. IEEE Transactions on Software Engineering, 32(9):627–641, Sept
2006.

167

[8] S. Apel, C. Kästner, and D. Batory. Program refactoring using functional
aspects. In Proceedings of the 7th International Conference on Generative
Programming and Component Engineering, GPCE ’08, pages 161–170, 2008.

[9] D. Batory. Feature models, grammars, and propositional formulas, 2005.

[10] J. Bayer, J. Girard, M. Wurther, J. DeBaud, and M. Apel. Transitioning legacy
assets to a product line architecture. SIGSOFT Softw. Eng. Notes, 24(6):446–
463, 1999.

[11] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. A survey of variability modeling
in industrial practice. In Proceedings of the Seventh International Workshop on
Variability Modelling of Software-intensive Systems, VaMoS ’13, pages 7:1–7:8,
2013.

[12] J. Bergey, L. Brien, and D. Smith. Mining existing assets for software product
lines, 2000.

[13] S. Beydeda, M. Book, and V. Gruhn. Model-driven software development,
volume 15. Springer, 2005.

[14] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The concept assignment
problem in program understanding, 1993.

[15] S. Blazy, A. Maroneze, and D. Pichardie. Verified validation of program slicing,
2015.

[16] J. Bohnet, S. Voigt, and J. Doellner. Locating and understanding features
of complex software systems by synchronizing time-, collaboration- and code-
focused views on execution traces. In 2008 16th IEEE International Conference
on Program Comprehension, pages 268–271, June 2008.

[17] M. Bruntink, A. van Deursen, M. D’Hondt, and T. Tourwé. Simple crosscutting
concerns are not so simple: Analysing variability in large-scale idioms-based
implementations. In Proceedings of the 6th International Conference on Aspect-
oriented Software Development, AOSD ’07, pages 199–211, 2007.

168

[18] S. Buhne, K. Lauenroth, and K. Pohl. Modelling requirements variability
across product lines. In 13th IEEE International Conference on Requirements
Engineering (RE’05), pages 41–50, Aug 2005.

[19] L. Cardelli. Program fragments, linking, and modularization. In Proceedings of
the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’97, pages 266–277, 1997.

[20] K. Chen and V. Rajlich. Case study of feature location using dependence
graph. In Proceedings IWPC 2000. 8th International Workshop on Program
Comprehension, pages 241–247, 2000.

[21] E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery: a
taxonomy. Software, IEEE, 7(1):13–17, 1990.

[22] A. Classen, P. Heymans, P. Y. Schobbens, A. Legay, and J. F. Raskin. Model
checking lots of systems: Efficient verification of temporal properties in soft-
ware product lines. In Proceedings of the 32Nd ACM/IEEE International Con-
ference on Software Engineering - Volume 1, ICSE ’10, pages 335–344, 2010.

[23] B. Cleary, C. Exton, J. Buckley, and M. English. An empirical analysis of infor-
mation retrieval based concept location techniques in software comprehension.
Empirical Software Engineering, pages 93–130, 2009.

[24] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello. Investigating the use
of lexical information for software system clustering. In Software Maintenance
and Reengineering (CSMR), 2011 15th European Conference on, pages 35–44,
2011.

[25] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A
systematic survey of program comprehension through dynamic analysis. Soft-
ware Engineering, IEEE Transactions on, 35(5):684–702, 2009.

[26] M. V. Couto, M. T. Valente, and E. Figueiredo. Extracting software product
lines: A case study using conditional compilation. In Software Maintenance
and Reengineering (CSMR), 2011 15th European Conference on, pages 191–
200.

169

[27] K. Czarnecki and U. Eisenecker. Generative programming : methods, tools,
and applications. Boston Mass. : Addison Wesley., 2000.

[28] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through
specialization and multilevel configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[29] K. Czarnecki and K. Pietroszek. Verifying feature-based model templates
against well-formedness ocl constraints, 2006.

[30] J. M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Clelang-Huang, and P. Hey-
mans. Feature model extraction from large collections of informal product
descriptions, 2013.

[31] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source
code: a taxonomy and survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

[32] S. Ducasse and D. Pollet. Software architecture reconstruction: A process-
oriented taxonomy. IEEE Transactions on Software Engineering, 35(4):573–
591, 2009.

[33] M. Eaddy, A. V. Aho, G. Antoniol, and Y. G. Gueheneuc. Cerberus: Tracing
requirements to source code using information retrieval, dynamic analysis, and
program analysis. In Program Comprehension, 2008. ICPC 2008. The 16th
IEEE International Conference on, pages 53–62.

[34] T. Eisenbarth, R. Koschke, and D. Simon. Derivation of feature component
maps by means of concept analysis. In Proceedings Fifth European Conference
on Software Maintenance and Reengineering, pages 176–179, 2001.

[35] S. Erdweg, O. Bračevac, E. Kuci, M. Krebs, and M. Mezini. A co-contextual
formulation of type rules and its application to incremental type checking. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
pages 880–897, 2015.

[36] M. Erwig and E. Walkingshaw. The choice calculus: A representation for
software variation. ACM Trans. Softw. Eng. Methodol., 21(1):6:1–6:27, 2011.

170

[37] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–
349, 1987.

[38] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia,
S. Soares, F. Ferrari, S. Khan, F. Castor, and F. Dantas. Evolving software
product lines with aspects: An empirical study on design stability. In Proceed-
ings of the 30th International Conference on Software Engineering, ICSE ’08,
pages 261–270, 2008.

[39] R. Filman, T. Elrad, S. Clarke, and M. Akşit. Aspect-oriented Software Devel-
opment. Addison-Wesley Professional, 2004.

[40] W. B. Frakes and Kyo Kang. Software reuse research: status and future. IEEE
Transactions on Software Engineering, 31(7):529–536, 2005.

[41] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou. Variability in
software systems-a systematic literature review. 2013.

[42] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and C. Yuanfang. En-
hancing architectural recovery using concerns. In Proceedings of the 2011
26th IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 552–555, 2011.

[43] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically capturing source code
context of nl-queries for software maintenance and reuse. In 2009 IEEE 31st
International Conference on Software Engineering, pages 232–242, 2009.

[44] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: A minimal core
calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450,
2001.

[45] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-
021, Software Engineering Institute, Carnegie Mellon University, 1990.

[46] C. Kastner and S. Apel. Type-checking software product lines - a formal ap-
proach. In Proceedings of the 2008 23rd IEEE/ACM International Conference

171

on Automated Software Engineering, ASE ’08, pages 258–267, Washington, DC,
USA, 2008. IEEE Computer Society.

[47] C. Kästner, S. Apel, and M. Kuhlemann. A model of refactoring physically
and virtually separated features. In Proceedings of the Eighth International
Conference on Generative Programming and Component Engineering, GPCE
’09, pages 157–166, 2009.

[48] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking annotation-based
product lines. ACM Trans. Softw. Eng. Methodol., 21(3):14:1–14:39, 2012.

[49] C. Kastner, A. Dreiling, and K. Ostermann. Variability mining: Consistent
semi-automatic detection of product-line features. IEEE Trans. Softw. Eng.,
40(1):67–82, January 2014.

[50] C. Kästner, A. Dreiling, and K. Ostermann. Variability mining: Consistent
semi-automatic detection of product-line features. IEEE Transactions on Soft-
ware Engineering, 40(1):67–82, 2014.

[51] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-aware parsing in the presence of lexical macros and
conditional compilation. In Proceedings of the 2011 ACM International Con-
ference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’11, pages 805–824, 2011.

[52] C. Kästner, K. Ostermann, and S. Erdweg. A variability-aware module system.
In Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’12, pages 773–792,
2012.

[53] R. Khatchadourian and H. Masuhara. Automated refactoring of legacy java
software to default methods. In 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering (ICSE), pages 82–93, 2017.

[54] J. Kim, D. Batory, D. Dig, and M. Azanza. Improving refactoring speed by 10x.
In Proceedings of the 38th International Conference on Software Engineering,
ICSE ’16, pages 1145–1156, 2016.

172

[55] K. Kobayashi, M. Kamimura, K. Kato, K. Yano, and A. Matsuo. Feature-
gathering dependency-based software clustering using dedication and modular-
ity. In Software Maintenance (ICSM), 2012 28th IEEE International Confer-
ence on, pages 462–471. IEEE, 2012.

[56] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A case study in refactoring
a legacy component for reuse in a product line. In 21st IEEE International
Conference on Software Maintenance (ICSM’05), pages 369–378, Sept 2005.

[57] M. Kuhlemann, D. Batory, and S. Apel. Refactoring Feature Modules, pages
106–115. Springer Berlin Heidelberg, 2009.

[58] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In Proceed-
ings of the 19th Annual International Symposium on Computer Architecture,
ISCA ’92, pages 46–57, 1992.

[59] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and N. Med-
vidovic. An empirical study of architectural change in open-source software
systems. In Proceedings of the 12th Working Conference on Mining Software
Repositories, pages 235–245. IEEE Press, 2015.

[60] K. Lee, K. C. Kang, and J. Lee. Concepts and guidelines of feature modeling
for product line software engineering. In Proceedings of the 7th International
Conference on Software Reuse: Methods, Techniques, and Tools, pages 62–77,
2002.

[61] J. Liebig, A. Janker, F. Garbe, S. Apel, and C. Lengauer. Morpheus:
Variability-aware refactoring in the wild. In 2015 IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering, volume 1, pages 380–391, 2015.

[62] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer.
Scalable analysis of variable software. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 81–
91, 2013.

[63] J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of legacy
applications. In Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, pages 112–121, 2006.

173

[64] R. E. Lopez-Herrejon and D. Batory. A standard problem for evaluating
product-line methodologies. In Proceedings of the Third International Con-
ference on Generative and Component-Based Software Engineering, GCSE ’01,
pages 10–24, 2001.

[65] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidović, and
R. Kroeger. Comparing software architecture recovery techniques using accu-
rate dependencies, 2015.

[66] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: a clus-
tering tool for the recovery and maintenance of software system structures.
In Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International
Conference on, pages 50–59, 1999.

[67] O. Maqbool and H. A. Babri. The weighted combined algorithm: a linkage
algorithm for software clustering. In Software Maintenance and Reengineering,
2004. CSMR 2004. Proceedings. Eighth European Conference on, pages 15–24,
2004.

[68] A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maletic. An information retrieval
approach to concept location in source code. In Proceedings of the 11th Working
Conference on Reverse Engineering, pages 214–223, 2004.

[69] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu. Portfolio:
finding relevant functions and their usage, 2011.

[70] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity
for points-to analysis for java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41,
2005.

[71] M. Mortensen, S. Ghosh, and J. Bieman. Aspect-oriented refactoring of legacy
applications: An evaluation. IEEE Transactions on Software Engineering,
38(1):118–140, 2012.

[72] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki. Where do configuration
constraints stem from? an extraction approach and an empirical study. IEEE
Transactions on Software Engineering, 41(8):820–841, Aug 2015.

174

[73] A. T. Nguyen and T. N. Nguyen. Graph-based statistical language model
for code. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, pages 858–868, 2015.

[74] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis.
Springer, Berlin ; New York, 1999. Includes bibliographical references and
index.

[75] S. Oster, F. Markert, and P. Ritter. Automated Incremental Pairwise Testing
of Software Product Lines, pages 196–210. Springer Berlin Heidelberg, 2010.

[76] J. L. Overbey, F. Behrang, and M. Hafiz. A foundation for refactoring c with
macros. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014, pages 75–85, 2014.

[77] M. Petrenko and V. Rajlich. Variable granularity for improving precision of
impact analysis, 2009.

[78] K. Pohl, G. Böckle, and F. Linden. Software product line engineering founda-
tions, principles, and techniques, 2005.

[79] D. Poshyvanyk and A. Marcus. Combining formal concept analysis with infor-
mation retrieval for concept location in source code. In 15th IEEE International
Conference on Program Comprehension, pages 37–48, 2007.

[80] K. Praditwong, M. Harman, and X. Yao. Software module clustering as a
multi-objective search problem. IEEE Transactions on Software Engineering,
37(2):264–282, 2011.

[81] M. Glinz R. Stoiber. Modeling and managing tacit product line requirements
knowledge. In Managing Requirements Knowledge (MARK), 2009 Second In-
ternational Workshop on, pages 60–64, Sept 2009.

[82] A. Reynolds, M. Fiuczynski, and R. Grimm. On the feasibility of an aosd ap-
proach to linux kernel extensions. In Proceedings of the 2008 AOSD Workshop
on Aspects, Components, and Patterns for Infrastructure Software, ACP4IS
’08, pages 8:1–8:7, 2008.

175

[83] M. P. Robillard. Topology analysis of software dependencies. ACM Trans.
Softw. Eng. Methodol., 17(4):1–36, 2008.

[84] M. P. Robillard and G. C. Murphy. Representing concerns in source code. ACM
Trans. Softw. Eng. Methodol., 16(1), 2007.

[85] M. R. Robillard and G. C. Murphy. Concern graphs: finding and describing
concerns using structural program dependencies. In Proceedings of the 24th
International Conference on Software Engineering. ICSE 2002, pages 406–416,
May 2002.

[86] H. Safyallah and K. Sartipi. Dynamic analysis of software systems using ex-
ecution pattern mining. In 14th IEEE International Conference on Program
Comprehension, pages 84–88, 2006.

[87] K. Sartipi. Alborz: a query-based tool for software architecture recovery. In
Program Comprehension, 2001. IWPC 2001. Proceedings. 9th International
Workshop on, pages 115–116, 2001.

[88] K. Sartipi. Software architecture recovery based on pattern matching. In Soft-
ware Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on, pages 293–296, 2003.

[89] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird. Recommending random walks.
In Proceedings of the the 6th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC-FSE ’07, pages 15–24, 2007.

[90] T. Savage, M. Revelle, and D. Poshyvanyk. Flat3: feature location and textual
tracing tool. In 2010 ACM/IEEE 32nd International Conference on Software
Engineering, volume 2, pages 255–258, 2010.

[91] Ina Schaefer, Lorenzo Bettini, Ferruccio Damiani, and Nico Tanzarella. Delta-
oriented programming of software product lines. In Proceedings of the 14th
International Conference on Software Product Lines, pages 77–91, 2010.

[92] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki. Reverse engi-
neering feature models. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, pages 461–470, 2011.

176

[93] J. Silva. A vocabulary of program slicing-based techniques. ACM Comput.
Surv., 44(3):1–41, 2012.

[94] D. Smith, L. Brien, and J. Bergey. Mining components for a software architec-
ture and a product line: the options analysis for reengineering (oar) method,
2001.

[95] M. Steyvers and T. Griffiths. Probabilistic topic models. Handbook of latent
semantic analysis, 427(7):424–440, 2007.

[96] Y. Tang and H. Leung. Sticprob: A novel feature mining approach using con-
ditional probability. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 45–55, 2017.

[97] R. Thiessen and O. Lhoták. Context transformations for pointer analysis. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, pages 263–277, 2017.

[98] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
A classification and survey of analysis strategies for software product lines.
ACM Comput. Surv., 47(1):6:1–6:45, 2014.

[99] M. Trifu. Using dataflow information for concern identification in object-
oriented software systems. In 2008 12th European Conference on Software
Maintenance and Reengineering, pages 193–202, 2008.

[100] V. Tzerpo. The orphan adoption problem in architecture maintenance. In
Proceedings of the Fourth Working Conference on Reverse Engineering (WCRE
’97), WCRE ’97, pages 76–82, 1997.

[101] V. Tzerpos and R. C. Holt. Acdc: An algorithm for comprehension-driven
clustering, 2000.

[102] M. T. Valente, V. Borges, and L. Passos. A semi-automatic approach for
extracting software product lines. IEEE Transactions on Software Engineering,
38(4):737–754, 2012.

177

[103] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden. Variational
data structures: Exploring tradeoffs in computing with variability. In Proceed-
ings of the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! 2014, pages 213–226,
2014.

[104] Z. Wen and V. Tzerpos. An effectiveness measure for software clustering al-
gorithms. In Program Comprehension, 2004. Proceedings. 12th IEEE Interna-
tional Workshop on, pages 194–203, 2004.

[105] N. Wilde and M. C. Scully. Software reconnaissance: mapping program features
to code. Journal of Software Maintenance: Research and Practice, 7(1):49–62,
1995.

[106] W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S. Trivedi. Locating program
features using execution slices. In Application-Specific Systems and Software
Engineering and Technology, 1999. ASSET ’99. Proceedings. 1999 IEEE Sym-
posium on, pages 194–203, 1999.

[107] G. Xu, A. Rountev, and M. Sridharan. Scaling cfl-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In Proceedings of the
23rd European Conference on ECOOP 2009 — Object-Oriented Programming,
Genoa, pages 98–122, 2009.

[108] Y. Xue. Reengineering legacy software products into software product line
based on automatic variability analysis. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE ’11, pages 1114–1117, 2011.

[109] Y. Xue, Z. Xing, and S. Jarzabek. Understanding feature evolution in a family
of product variants. In 2010 17th Working Conference on Reverse Engineering,
pages 109–118, 2010.

[110] Y. Yang, X. Peng, and W. Zhao. Domain feature model recovery from multiple
applications using data access semantics and formal concept analysis. In 2009
16th Working Conference on Reverse Engineering, pages 215–224. IEEE, 2009.

[111] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, and J. C. S.
do Prado Leite. Reverse engineering goal models from legacy code. In 13th

178

IEEE International Conference on Requirements Engineering, pages 363–372,
2005.

[112] W. Zhihua and V. Tzerpos. An optimal algorithm for mojo distance. In Pro-
gram Comprehension, 2003. 11th IEEE International Workshop on, pages 227–
235, 2003.

179

	Declaration
	Abstract
	Publication
	Acknowledgement
	List of Figures
	List of Tables
	1 Introduction
	1.1 Software Product Line and Traditional System
	1.2 Benefits of Adopting Software Product Line
	1.3 Feature, Feature Model and Variability
	1.3.1 Feature
	1.3.2 Feature Model and Feature Relations
	1.3.3 Variability, Variant Point and Variant
	1.3.4 Example
	1.3.5 Product Variant

	1.4 Building a Software Product Line from a Legacy System
	1.4.1 Feature Model Construction
	1.4.2 Feature Mining
	1.4.3 Reengineering Features into Product Line Variants

	1.5 Contribution
	1.6 Thesis Organization

	2 Literature Review
	2.1 Building a Software Product Line
	2.2 Building the Feature Model
	2.2.1 Feature Model Recovery Techniques
	2.2.2 Software Architecture Recovery Techniques

	2.3 Mapping features with their implementations
	2.3.1 Feature Location
	2.3.2 Asset Mining
	2.3.3 Feature Mining Tools

	2.4 Refactoring an annotated legacy application into product variants
	2.4.1 Feature Oriented Reengineering
	2.4.2 Aspect Oriented Refactoring
	2.4.3 Reengineering Approaches.

	2.5 Chapter Summary

	3 Feature Model Construction
	3.1 Overview
	3.2 Module Modeling
	3.2.1 Feature and Module
	3.2.2 Module without Variability
	3.2.3 Module with Variability
	3.2.4 Module Constraints

	3.3 Variability-aware Program Dependency Graph (varPDG)
	3.3.1 Building varPDG
	3.3.2 Tracing Options with Pointer Analysis

	3.4 VMS Feature Model Recovery Approach
	3.4.1 Overview
	3.4.2 Build Module from Source
	3.4.3 Module to Feature
	3.4.4 VMS

	3.5 Case Studies
	3.5.1 Experimental Settings
	3.5.2 Subject Systems
	3.5.3 Tools

	3.6 Experimental Result
	3.6.1 Related Approaches
	3.6.2 Results

	3.7 Discussion
	3.7.1 Lessons Learned
	3.7.2 Threats to Validity

	3.8 Chapter Summary

	4 Feature Mining
	4.1 Overview
	4.2 Feature Mining Process Overview
	4.3 Underlying Model
	4.3.1 Basis
	4.3.2 Modeling Closeness between Element and Feature
	4.3.3 Modeling Closeness between Elements

	4.4 StiCProb Approach
	4.4.1 Selecting Seeds
	4.4.2 Building a Uniqueness Table
	4.4.3 StiCProb
	4.4.4 Stopping Criteria

	4.5 Case Studies
	4.5.1 Experimental Settings
	4.5.2 Subject Systems
	4.5.3 Tools

	4.6 Experimental Result
	4.6.1 Related Approaches
	4.6.2 Results

	4.7 Discussion
	4.7.1 Seeds
	4.7.2 Threshold
	4.7.3 Threats to Validity

	4.8 Chapter Summary

	5 Reengineering Features into Product Line Variants
	5.1 Overview
	5.2 Motivating Examples
	5.2.1 Syntax Error Example
	5.2.2 Behaviour Inconsistent Error Example
	5.2.3 Type Error Example

	5.3 Configurable AST: Outline and Background
	5.3.1 Procedure At A Glance
	5.3.2 Process Modelling
	5.3.3 Transforming a Configuration into Operations on AST
	5.3.4 From t to (t)

	5.4 Configurable AST: Syntactical Correctness
	5.5 Configurable AST: Behaviours Preserving
	5.5.1 Assumption
	5.5.2 Control Flow Constraint
	5.5.3 Data Flow Constraint
	5.5.4 Name Binding Constraint
	5.5.5 Context-sensitive Constraint
	5.5.6 Putting All Pieces Together

	5.6 Configurable AST: Type Checking
	5.6.1 _T-VAR
	5.6.2 _T-FIELD
	5.6.3 _T-INVK
	5.6.4 _T-NEW
	5.6.5 _CAST
	5.6.6 _METHOD(M_c OK in C_c)
	5.6.7 _CLASS
	5.6.8 Putting All Pieces Together

	5.7 Configurable AST: Feature-effect Constraints
	5.8 Configurable AST: Algorithm
	5.8.1 Putting all pieces together
	5.8.2 From Annotated Legacy to Product Line

	5.9 Case Studies
	5.9.1 Experimental Settings
	5.9.2 Subject Systems

	5.10 Experimental Result
	5.11 Discussion
	5.11.1 Issues Studied
	5.11.2 Threats to Validity

	5.12 Chapter Summary

	6 Conclusion
	6.1 Summary of Contribution
	6.2 Future Work

	References

