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Abstract 

Rural areas surrounding Nigeria’s second largest city, Kano, in the northern 

Nigeria, have some of the highest rural population densities in the world, and 

these have been increasing rapidly in recent decades, with as yet, no signs of 

stabilising. The subsistence nature of livelihoods in this semi-arid region 

bordering the African Sahel zone, where rainfall is known to be highly variable, 

introduces considerable risk for crop and woody vegetation productivity. A 

scenario of recent high rural and urban population growth in and around the city 

of Kano, set in context of predicted temperature increase and greater rainfall 

variability due to climate change, may give cause for concern. As almost all rural, 

and the vast majority of urban households still use wood fuel for cooking, lighting 

and heating (although Nigeria is the world’s 6th largest oil producer), a return to 

the rainfall amounts of the drought decades of the 1970s and 80s could cause 

widespread economic and social distress. There are many accounts of rainfall 

trends in the northern Nigeria, many observing severe declines, and others a 

decline in recent decades followed by a return to normal. Almost all studies 

report great spatial variation in rainfall amounts and trends, with large 

differences in nearby areas, or conflicting results for the same regions. 

Furthermore, these reported statistics appear in many cases to be conflicting 

with farmers’ perceptions of rainfall trends and its effects on their lives and 

livelihood. This study evaluates the available sources of rainfall data over recent 

decades in the northern Nigeria, using both climate station data and satellite-

based rainfall products, as satellite rainfall variables are spatially superior to 

point-based ground stations. These rainfall data are first compared with satellite-

based vegetation indices NDVI products such as GIMMS 3g and MODIS, extending 

back several decades to the early 1980s. They are also compared with several 

satellite-based rainfall products such as ARC, CHIRPS, TARCAT and TRMM, 

covering the same decades.  

The second part of the study evaluates climatic impacts on the rural landscape 

and thus on the agricultural economy, specifically on farmland trees, which are 

used by farmers for fuelwood for own use as well as for sale to supplement farm 

incomes. This part of the study focuses on the “Kano Close Settled Zone”, due to 
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its high rural population density as a case study example for savanna Africa. It 

evaluates high resolution remotely sensed images for tree inventory and changes 

in woody biomass, in terms of tree density and species composition, in the 

intensively farmed parklands surrounding Kano City. The objective is to observe 

trends in the woody vegetation surrounding Kano City from the 1960s onwards, 

which may be related to climatic trends.  

The last part of the study evaluates the use of Geographic Object Based Image 

Analysis (GEOBIA) for delineation of tree crown cover in the agroforestry 

landscape of the Kano Close-Settled Zone (KCSZ) using high resolution 

WorldView-2 image and modelling of above ground biomass (AGB) using tree 

crown cover.  

Results of the study indicate a recovery of rainfall across northern Nigeria in the 

past three decades, although not back to 1960s levels. This recovery is observed 

from both ground station and CHIRPS satellite data, to be due to a longer rainy 

season, with higher rainfall amounts toward the end of the growing season in 

August to October. Vegetation indices from AVHRR GIMMS 3g and MODIS 

satellite products across the West African Sahel and Sudan zones confirm this 

recovery in terms of increased biomass. To evaluate the impacts of rainfall trends 

on the rural landscape and economy at local level, trends in farmland tree stocks 

around Kano, were determined from field data and high resolution images 

including archived aerial photographs and recent satellite images. Field survey 

was conducted in 1981 and 2016, and the images covered the 1960s pre-drought 

period, the 1970s to 80s drought period, and recent period of 2013-15. Contrary 

to other work on woody vegetation in West Africa, mostly from the Sahel Zone, a 

substantial increase in tree densities was observed since the 1960s and 

continuing through the drought decades, with at least a doubling of farmland tree 

densities at the present time. This observed increase is surprising in view of high 

population growth and reports of increased temperatures due to global warming. 

This increase in tree densities around Kano is attributed to continued reliance on 

wood as the main energy source, by a still rapidly growing population, with a 

more than doubling of Kano city’s population in the 15 years up to the last 

population census in 2006. This growth would not have been possible without a 
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parallel increase in the main energy source. Observations of a decline in a wide 

range of traditional tree species and replacement by fewer fast-growing and 

drought-tolerant species parallel recent reports from other parts of West Africa.  

The overall finding of the study is that trends in farmland tree stocks are less 

related to long term climatic trends, than to the Nigerian socio-economy, as 

farmers make decisions about the numbers and species of trees on their farms 

according to their own domestic needs and from sale of wood. The continued 

overwhelming dependence on biomass for fuel by a still rapidly growing 

population across northern Nigeria may be a cause for concern. Return to the 

drought conditions of previous decades coupled with tree death due to climate 

change may have serious consequences for rural households for whom the 

longevity of woody vegetation offers security against rainfall variability and crop 

failure. 

Key Words: Northern Nigeria, Sudano-Sahelian zone, Woody Biomass, Tree 

density, Species composition, Rainfall variability, Vegetation trends, Remote 

Sensing.
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      Chapter 01 

1. Introduction 

1.1. Introduction  

More than 50% of the African continent is classified as dryland and a large 

portion of the population in sub-Saharan Africa lives in rural drylands where 

agriculture is the primary source of livelihoods (Abdi, 2017). According to 

Behnke and Mortimore (2016), dryland is characterized by low precipitation and 

high potential evapotranspiration and having an aridity index value of <0.65. The 

aridity index is a measure of the ratio between average annual precipitation and 

annual potential evapotranspiration (Behnke and Mortimore, 2016). Climate 

change is predicted to affect all parts of the world by the end of the 21st century, 

but sub-Saharan Africa is likely to be one of the hardest-hit regions due to its 

marginal climate and high rural population densities. The Fifth Assessment 

Report (AR5) of the International Panel on Climate Change (IPCC) predicts that 

temperatures in dryland Africa will rise faster than the global average during the 

21st century (IPCC, 2014). Predicted changes in the rainfall regime suggest up to 

20% decline in the length of growing season across the arid Sudan and Sahel 

zones of West Africa (Thornton et al., 2006). Furthermore, increasing 

temperatures and changes in precipitation along with a projected increase in 

crop pests and weeds, are very likely to reduce cereal crop production. These 

climatic impacts are expected to endanger food security of both urban and rural 

households. In this region where rainfall is already highly variable on both 

annual and decadal timescales, peoples’ livelihoods are still closely tied to 

biomass production. Therefore such predictions need to be considered in the 

context of social and economic trends. At national level, these trends cannot be 

divorced from government policies which, whether intended or incidental, often 

have repercussions at village level. 

West Africa south of the Sahara experiences decreasing rainfall northwards, 

from the tropical rain forest, through the Guinea and Sudan savanna zones, to the 
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Sahel zone where rainfall declines to 100 mm at its northern edge (Figure 1.1). 

The Sudan zone, with mean annual rainfall of 500-1000 mm is densely 

populated, with rural population densities up to 300-500 persons per square 

kilometre (km2) surrounding Kano, Nigeria’s second city, and the largest city in 

savanna Africa.  

 

 

 

 

 

 

 

 

 

 

 

Kano has some of the highest rural population densities in the world. The 

number of persons per km2 almost doubled from 169 in 1991 (Tiffen, 2001) to 

308 in 2006 (National Population Commission, 2006). Kano city itself grew 

rapidly from the late 1950s, with annual growth rates rising to approximately 

6% from 2% in earlier decades. The city’s population grew from 0.13 million in 

1952, saw a tenfold increase over the next 40 years to 1.36 million in 1991 and 

then more than doubled to 2.83 million over the next 15 years up to 2006 

(National Population Commission, 2006). The rural population has increased 

correspondingly though there are few reliable data. Since 47% of the population 

of Kano region was below 15 years of age in 2006 (National Population 

Commission, 2006), there is potential for further rapid growth. Indeed, by 2050 

Nigeria’s population is expected to be 2.5 times its current size, reaching 440 

million, and to account for 10% of all births in the world (UNICEF, 2014). 

Figure 1.1 West Africa climatological zones based on mean annual 

rainfall 1961-90 [Source: http://www.fao.org/giews/en/] 
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Many studies have examined the relationship between biomass and climate in 

arid West Africa over the last three decades since satellite images were available, 

and certain trends are now recognised. Following many reports of rapid human-

induced desertification which was being reported as recently as 2007 (UNEP, 

2007), satellite observations suggest a greening trend originating in the 1980s 

decade, and continuing to present. This greening is seen as a response to 

increasing rainfall after severe droughts in the 1970s and 1980s (Anyamba & 

Tucker, 2005; Brandt et al., (2014a, 2014b); Hiernaux et al., 2009; Mishra et al., 

2015; Olsson et al., 2005; Tappan et al., 2004), rather than to human land use 

pressures. But how this satellite-observed greening based on the Normalised 

Difference Vegetation Index (NDVI) is related to ground conditions and to local 

household economies has not been rigorously examined. Furthermore, it is 

acknowledged that the NDVI’s ability to represent biomass is more 

representative of the green herbaceous layer than the mainly non-green biomass 

of woody vegetation, and the short-approximately 3-decade record of satellite 

images is shorter than the lifespan of many trees (Gonzalez et al., 2012). 

By far the majority of studies of biomass trends in West Africa have been in 

Sahelian countries, where mean annual rainfall is around 400-500 mm and 

grazing of perennial grasses and woody shrubs is the main land use activity. Few 

studies are available for the moister and more densely populated Sudan zone. In 

a review of remotely sensed vegetation dynamics in West Africa (Karlson & 

Ostwald, 2016; Knauer et al., 2014), only three of over 100 studies were of 

Africa’s most populous country, Nigeria, where over 40% of land area lies within 

the Sudan zone (Figure 1.1). Moreover, it is likely that climate-controlled 

biomass impacts on local economies will be country-specific due to differing 

government policies, particularly those relating to energy distribution and 

energy subsidies, and particularly in Nigeria where government energy policies 

determine fuel options (Cline-Cole and Maconachie, 2016). 

In spite of Nigeria’s position as the world’s 6th largest oil producer, wood 

remains by far the most common energy source for cooking and heating, even in 

major cities. Nigeria’s northwestern states with 37% of the national population 

receive only 6% of Nigeria’s fossil fuel supply (Naibbi and Healey, 2013), thus 
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urban areas experience frequent blackouts and electricity supply is rare in rural 

areas. Due to the unreliability or absence of electricity in Kano, and fluctuating 

price of kerosene, 95% of energy used for cooking is from wood (National Bureau 

of Statistics, 2011). 

Wood fuel in Kano has traditionally been derived from trees grown and 

maintained by farmers in the farmed parklands surrounding the city (Figure 1.2). 

Rural households derive a large variety of other basic necessities and additional 

income from farmland trees, which provide food, fodder, medicines, fibre and 

building materials (Boffa, 1999; Timberlake et al, 2010). Thus the current 

scenario of high and still increasing population growth combined with 

predictions of higher temperatures and decreased rainfall, may pose a major 

challenge to food security in coming decades. 

 

Figure 1.2 A fallow agricultural field with different tree species in the Kano Close Settled 

Zone, Northern Nigeria during the dry season (January 2016). Photo: Muhammad 

Usman 

 

A few more recent studies have specifically examined trends in woody 

vegetation (Brandt, et al., 2014a; Gonzalez et al., 2012; Hänke et al., 2016; 

Hiernaux et al., 2009) using time-series of images combining archived aerial 
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photographs and recent high resolution satellite images. Such higher resolution 

datasets have enabled the estimation of tree cover and density. As with satellite-

based NDVI, trends in tree cover and tree density appear to be aligned with 

climatic trends. Gonzalez et al. (2012), working in three Sahelian villages in 

Senegal and Mauritania found an overall long term decline in tree cover in the 

second half of the twentieth century, and Audu (2013) gives similar warnings for 

northern Nigeria, although no recent research has been done. Brandt et al. 

(2014a) and Hänke et al. (2016), report similar declines in Sahelian tree cover in 

the later twentieth century. However, while Brandt et al. (2014a) note that tree 

densities are still far below the levels of the 1960s, Hänke et al. (2016) and 

Brandt et al. (2017) observe recovery back to 1960s levels by 2006 and 2015, 

respectively. 

Recognising that tree densities alone may not fully represent social-ecological 

interactions, several studies have also considered trends in tree species 

composition, comparing recent field inventory with past field inventory 

(Herrmann and Tappan, 2013) or with informant recollection (Gonzalez et al., 

2012; Brandt et al., 2014a; Hänke et al., 2016; Tappan et al., 2004; Vincke et al., 

2010). Overall, a decline and shift in species diversity related to increasing 

aridity is reported, entailing a trend to fewer, and more drought-tolerant species 

at the expense of those with more southerly distributions. 

The aim of this study is firstly to evaluate the available sources of rainfall data 

over recent decades in northern Nigeria using both climate station rainfall data 

and satellite-based rainfall products to study inter-annual variability and 

temporal trends in rainfall. Secondly to evaluate high resolution remotely sensed 

images for changes in woody biomass, in terms of tree density and species 

composition, in the intensively farmed parklands surrounding “Kano Close-

Settled Zone (KCSZ)”, due to its high rural population density as a case study for 

savanna Africa. Finally, to evaluate the use of Geographic Object Based Image 

Analysis (GEOBIA) for delineation of tree crown cover in the agroforestry 

landscape of the KCSZ and modelling of above ground biomass (AGB) using tree 

crown cover. 
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1.2. Research objectives  

There are many accounts of rainfall trends in northern Nigeria (Buba, 2010; Hess 

et al., 1995; Mortimore, 2000; Olaniran, 1991, 1988; Tarhule and Woo, 1998; 

Tomlinson, 2010), many observing severe declines, and others decline in recent 

decades followed by a return to normal. Almost all studies of rainfall in northern 

Nigeria report great spatial variation in rainfall amounts and trends, with large 

differences in nearby areas, or conflicting results (Buba, 2010; Mortimore, 2000; 

Tomlinson, 2010) for the same regions. Additionally, previous studies have been 

confined to data from a few climate stations, and are therefore spatially 

incomplete. Furthermore, these reported statistics appear in many cases to be 

conflicting with farmers’ perceptions of rainfall trends and its effects on their 

lives and livelihood. Local farmers in Nigeria perceive a long term decreasing 

rainfall trends (Bose et al., 2014; Falaki et al., 2011; West et al., 20018), while 

rainfall analysis based on gauge and satellite data over the last three decades 

show recovery in rainfall after the severe droughts of 1970s and 1980s. This 

study aims to evaluate available sources of rainfall data over recent decades in 

the Kano region of northern Nigeria, and to assess their impacts on the rural 

landscape and thus on the agricultural economy. The specific objectives are: 

1. To evaluate rainfall data from ground stations compared to satellite-

based estimates at daily, dekadal, monthly and annual time scales, and to 

analyse inter-annual variability and temporal trends over a 30-year 

period (1984-2013). 

2. To calculate vegetation trends across the drylands of northern Nigeria 

using MODIS (2000-2015) and AVHRR GIMMS 3g (1982-2015). 

3. To examine trends in woody biomass, in terms of farmland tree density 

and species composition in the ‘Kano Closed Settled Zone’ of northern 

Nigeria as a case study, due to its high rural population density. This is 

based on historical data from archived aerial photographs and satellite 

images, as well as field data collected in the early 1980s and 2016. 
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4. To delineate tree crown cover through GEOBIA using high resolution 

WorldView-2 image and modelling of above ground biomass using tree 

crown cover. 

 

1.3. Dissertation Overview 

The dissertation consists of following chapters.  

Chapter 1 is an introductory chapter, with brief literature review and 

objectives. 

Chapter 2 describes the ecological zones of Africa and gives a brief 

overview of the geography of Northern Nigeria. 

Chapter 3 is a brief overview of the overall methodology. 

Chapter 4 examines relationship between gauge rainfall and satellite 

rainfall products from daily to annual scale and long term trends of 

rainfall and vegetation. 

Chapter 5 deals with the use high resolution remotely sensed images 

along with field survey for tree inventory and changes in woody biomass, 

in terms of tree density and species composition, in the intensively 

farmed parklands surrounding Kano City. 

Chapter 6 is about delineation tree crown cover through GEOBIA using 

high resolution WV-2 images and modelling above ground biomas using 

tree crown cover. 

Chapter 7 deals with overall conclusion and limitations of this study. 
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Chapter 02 

2. Characteristics of the Study area and Methodology 

2.1. Ecological Zones of West Africa 

In West Africa, decreasing rainfall and increasing temperature northward 

differentiates vegetation into three latitudinal ecological zones: the Guinea, the 

Sudan and Sahel zones. Figure 1.1 shows these three major ecological zones of 

West Africa, within which the vegetation and economy are largely determined by 

rainfall. The most southerly, Guinea zone is forested, grading into tree savanna 

at its northern edge. Shifting cultivation is the main traditional land use and land 

cover type, with crops and economic trees planted in clearings. 

The Sudan Zone, with mean annual rainfall of approximately 500 to 1000 mm, 

supports a tree savanna vegetation with flat-topped trees browsed extensively 

by the savanna fauna and domestic livestock, when the grassy ground cover dries 

during the winter dry season. 

The Sahel Zone is the most northerly ecological zone and borders the Sahara 

Desert on its northern edge. The rainfall from 100 to 500 mm annually is only 

adequate to support a low and discontinuous shrub canopy and herbaceous 

ground flora of dry grasses. The region supports less fixed cultivation, but the 

native shrubs and grasses are browsed by cattle owned by the Fulani nomadic 

pastoralists. 

2.2. Study Area 

The study area covers the Sudano-Sahelian savanna ecological zone of northern 

Nigeria between latitude 8°-16° N and longitude 1°-17° E. This zone covers the 

northern states and the Federal Capital Territory Abuja of Nigeria (Figure 2.1). 

The landscape comprises rolling or gently undulating plains often referred to as 

the “High Plains of Hausaland” (Mortimore, 1962). The ‘Kano Close-Settled Zone’ 

(KCSZ) of northern Nigeria (Mortimore and Wilson, 1965) surrounds Nigeria’s 

second largest city, Kano, is situated in the northern part of the Sudan zone. The 
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KCSZ describes the densely populated agricultural region influenced by the 

proximity of Kano and serving as its hinterland in terms of interdependency of 

products and trade, good and services. In this zone over 80 % of the land is 

cultivated in the April to September rainy season. The main crops are cereals of 

Maize (Guinea corn), Millet and Sorghum, which are grown for subsistence, along 

with a few field crops of root vegetables, beans, and a few vegetables. Green 

vegetables are grown along valleys such as the Jakara valley to the east of Kano 

city using river water, as well as on irrigation schemes. The ‘parkland’ landscape 

is defined by the large variety of trees grown and maintained on farmland, which 

are used for a very wide variety of purposes including medicinal, food, fiber, 

construction and as fuelwood (Boffa, 1999; Timberlake et al., 2010). Three study 

areas were selected within Kano’s hinterland to examine long term trends in tree 

density and species composition (Figure 2.1).  

Most rainfall in Nigeria comes from southwesterly winds from the tropical 

Atlantic Ocean, thus the annual rainfall amount and duration of rainy season 

decreases from south to north, with greater variability northward (Anyadike, 

1993; Hess et al., 1995). Rainfall is highly variable both inter-annually and on a 

decadal timescale. The most southerly Guinea zone receives more than 1500 mm 

rainfall falling to 250 mm at the northern boundary. Severe drought in the 1970s 

and 80s was experienced throughout West Africa. 

 

 

Figure 2.1 Climatological zones of West Africa showing location of study areas. 
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2.3. Overall Methodology 

This chapter describes the overall methodology used for this study. As it is not 

convenient to explain all of the methodological steps used to fulfil all three 

objectives, a schematic diagram of the overall methodology is presented (Figure 

2.2). However, details of the processing steps of each sub-study are described in 

respective sections. 
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Figure 2.2 Flowchart of overall methodology. 
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Chapter 03 

3. Spatio-temporal analysis of changes in rainfall regime 

using long term satellite based rainfall and NDVI data in 

the Sudano Sahelian zone of Nigeria  

3.1. Introduction  

The Sudano-Sahelian ecological zone of Sub-Saharan Africa at Latitude (12°-20° 

N), is well known for its variable climate, where rainfall variability in the last 

three decades of the 20th century exceeded that in other parts of the world 

(Sanogo et al., 2015). The period 1931-1960 was considered to have above 

average rainfall, but an abrupt change occurred in the late 1960s, with up to 30% 

decline in average rainfall between 1961 and 1990 (Hulme, 1992; Fink et al., 

2010). Severe droughts occurred during the 1970-1990 period (Nicholson, 

2000), and those of 1972-1974 and 1983-1985 entailed severe food shortages, 

and loss of human life and livestock (Mortimore, 2000). After several decades of 

dry conditions, farmers in drought-hit areas appear to have adapted to the 

general increase in rainfall variability (Mortimore and Adams, 2001). 

Northern Nigeria’s climate is semi-arid, and rural livelihoods depend mainly on 

rain-fed agriculture (Hess et al., 1995; Tarhule and Woo, 1998), thus rainfall 

variability, which increases northwards, and changes in rainfall threaten the 

livelihoods of local people (Mortimore, 2000, Zhang et al., 2017). Variability of 

rainfall appears to be inversely proportional to the total amount of rainfall, with 

the lesser the amount, the greater the variability (Buba, 2010). As rainfall in 

Nigeria decreases northwards, there is much rainfall variability in the northern 

Nigerian states. Timing of the start of the rainy season is important, as farmers 

make decisions about cropping and livestock movement which affect 

productivity, based on the first rains (Ingram et al., 2002). The major 

determinant of crop production is soil moisture, but the region’s variable rainfall 

makes prediction of drought stress difficult. Drought stress during the seedling 
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stage of the main cereal staples millet and sorghum results in reduced grain yield. 

For millet, a drought period of 15 to 20 days in mid-season, which extends to the 

post-flowering period, would cause severe reduction in grain yield, and drought 

just before the flowering period may reduce yields by up to 70% (Seetharama et 

al, 1984). Sorghum in particular is sensitive to late season rainfall, as sorghum 

does not enter the high water use period during its life cycle until August. Thus 

in addition to total seasonal rainfall and timing of rainy season onset, other 

important rainfall variables include the number, timing and length of dry spells, 

and seasonal distribution of rainfall is also an important variable. 

There are many accounts of rainfall trends in northern Nigeria (Buba, 2010; 

Mortimore, 2000; Tomlinson, 2010), mainly observing severe declines in the last 

decades of the 20th century, followed by a return to normal (Hess et al., 1995; 

Olaniran, 1991, 1988; Tarhule and Woo, 1998). However, none provide a detailed 

study of the last 2 decades for different rainfall variables specific to crop 

production and rural livelihoods. For this, accurate rainfall data with high 

temporal, as well as spatial resolution is required. 

Most of the rainfall in Africa is formed by convective clouds, thus rainfall amount 

can vary over a few tens of km (Nicholson, 2000). However, the spatial 

distribution of rain gauge stations in West Africa is very sparse and these were 

significantly reduced over the last 3-4 decades (Sanogo et al., 2015). Also, as the 

number of rain gauge stations in Nigeria has decreased significantly over the last 

3-4 decades, the spatial inadequacy has increased. For example the number of 

gauges returning rainfall records in northern Kaduna state (now Katsina state) 

diminished from about 50 in 1941-70 to only 12 by 1999 (Tomlinson, 2010). 

Satellite based precipitation estimates provide an alternative to sparse, 

traditional gauge-based rainfall measurements. They are at continental and 

global scale and have high spatial and -temporal resolution. Thus they provide 

timely, repetitve and cost effective information about rainfall at different time 

scales from daily to annual for applications in climate change, Famine Early 

Warning Systems (FEWS), and hydrological studies (Maidment et al., 2014). It is 

therefore necessary to assess the accuracy of different satellite based rainfall 

products compared to gauge rainfall, before they can be considered operational 
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for local crop production forecasting and rural productivity assessments. A few 

previous studies have evaluated satellite-based rainfall products at continental 

scale: for West Africa (Sanogo et al., 2015), and for three different river basins in 

Africa (Thiemig et al., 2012). Also there are some studies at country level 

including Burkina Faso (Dembélé and Zwart, 2016), Ethiopia (Bayissa et al., 

2017) and Mozambique (Toté et al., 2015). 

However, evaluation of satellite based rainfall products show large differences in 

algorithm performances depending on location, local climate, season and 

topography (Maidment et al., 2013; Toté et al., 2015). Also choice of the best 

rainfall product depends on the specific application. For drought monitoring 

studies, the accuracy of low rainfall is the main requirement, and for hydrological 

and flood forecasting application, the accuracy of high rainfall events is crucial 

(Toté et al., 2015). 

Dembélé and Zwart (2016) evaluated rainfall estimates from seven different 

operational satellites with rainfall from gauges in Burkina Faso for the period 

2001-2014 at daily to annual time scales. Poor performance was observed at 

daily scale, with best performance of r=0.47, for the Climate Hazards group Infra-

red Precipitation with Stations (CHIRPS), but performance improved as the time 

scale increase from monthly to seasonal. Bayissa et al (2017) assessed 

meteorological droughts at dekadal to seasonal scales, and also found best 

performance for CHIRPS, compared to four other satellite-based rainfall products 

(ARC, PERSIANN, TARCAT and TRMM) in the Upper Blue Nile Basin in Ethiopia. 

Toté et al (2015) also report better performance for CHIRPS than for RFE and 

TARCAT, compared to independent gauge rainfall data at dekadal and total 

seasonal time scales in Mozambique. 

Almost all studies of rainfall in northern Nigeria report great spatial variation in 

rainfall amounts and trends, with large differences in nearby areas, and many 

conflict with other studies (Buba, 2010; Mortimore, 2000; Tomlinson, 2010) for 

the same regions. Additionally, previous studies have been confined to data from 

a few climate stations, and are therefore spatially incomplete. Furthermore, these 

reported statistics appear in many cases to be conflicting with farmers’ 

perceptions of rainfall trends and its effects on their lives and livelihood. This 
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study aims to evaluate the available sources of both spatial and temporal rainfall 

data over recent decades in northern Nigeria, and to assess impacts on the rural 

landscape and agricultural economy. 

The Normalized Difference Vegetation Index (NDVI) is a normalized ratio 

derived using red and near-infrared band reflectance, which indicates the 

amount of vegetation on the ground (Tucker, 1979). The satellite-based NDVI has 

long been used as a major source of ecological information about arid West 

Africa, as it provides information about ecological conditions on the ground over 

wide areas, and the AVHRR GIMMS NDVI3g has been available over three 

decades, along with the availability of satellite-based rainfall products. During 

the 1972-73 drought in the Sahel, the NDVI from satellite images gave rise to 

concerns about human-induced desertification (Herrmann and Hutchinson, 

2005; Lamprey, 1988), and the subsequent NDVI-based 'greening' of the Sahel 

(Anyamba and Tucker, 2005; Olsson et al., 2005) appeared to contradict this 

theory of human-induced degradation. Although satellite-based rainfall products 

are now available, and cover large areas, NDVI data indicate trends in ecological 

health and biomass productivity which are more directly relevant to livelihoods, 

than rainfall alone. Therefore in this study, both the NDVI and satellite-based 

rainfall products are examined, to set in context the observed trends in tree 

stocks and woody biomass productivity in the Sudan Zone of northern Nigeria. 

 

3.1.1. Objectives 

The specific objectives of this study are to:  

• compare temporal trends in rainfall data from ground stations at daily, 

dekadal, monthly and annual time scales, with satellite-based estimates 

which use a combination of thermal infra-red and radar images, and 

ground station data, as satellite rainfall estimates can increase the spatial 

coverage if proved to be reliable, 

• evaluate satellite rainfall products for retrieval of seasonal rainfall 

variables, 
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• analyse inter-annual variability and temporal trends over a 30-year 

period (1984-2013) from gauge-based rainfall variables, 

•  analyse both spatial and temporal variability (over the same 30-year 

period (1984-2013)) using satellite derived rainfall variables, and 

• analyse long term vegetation trends across the drylands of northern 

Nigerian using AVHRR GIMMS3g NDVI (1982-2015) and MODIS NDVI 

(2000-2015). 

3.2. Materials and Methods 

3.2.1. Study Area 

The study area covers the Sudano-Sahelian savanna ecological zone of northern 

Nigeria between latitude 8°-16° N and longitude 1°-17° E. This zone covers the 

northern states and the Federal Capital Territory Abuja of Nigeria (Figure 3.1). 

The landscape comprises rolling or gently undulating plains often referred to as 

the “High Plains of Hausaland” (Mortimore, 1965).  

Most rainfall in Nigeria comes from southwesterly winds from the tropical 

Atlantic Ocean, thus the annual rainfall amount and duration of rainy season 

decreases from south to north, with greater variability northward (Anyadike, 

1993; Hess et al., 1995). The more southerly Sudan zone receives more than 650 

mm average annual rainfall falling to 400 mm in the Sahel zone. In the northern 

states of Nigeria, over 80% of the land is cultivated in the April to September 

rainy season. The main subsistence crops are cereals of Millet and Sorghum 

(Guinea corn), along with field crops of root vegetables, beans, and a few 

vegetables. Over the 35 years of this study, northern Nigeria has seen large 

increase in rural population densities (Tiffen, 2001; National Population 

Commission, 2006), accompanied by intensification of agriculture. Kano’s rural 

population density was reported as 308 persons per km2 in 2006 (National 

Population Commission, 2006). However as nutritional status across northern 

Nigeria is low, with 20 to 50 % of children showing some degree of stunting 

and/or underweight (Hall and Bohen, 2009), return to the drought conditions of 

the 1970s and 80s, could be disastrous for farming families.  
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Figure 3.1 Location of northern Nigerian states and weather station rain gauges. Grey 
circles denote availability of daily and dekadal data, and red circles denote the location 
of available monthly data. 

 

3.2.2. Datasets 

In-situ gauge rainfall data 

Daily rainfall data were obtained for 10 weather stations, including six (Bauchi, 

Gombe, Ibi, Nguru, Maiduguri, and Yola) from the Nigerian Meteorological 

Agency (NIMET) and four (Kadawa, Minjibir, IAR Kano, Zaria) from the Institute 

of Agricultural research (IAR) (Figure 3.1 and Table 3.1). The quality of daily 

rainfall data was checked and only stations with above 80% data availability 

were considered for comparison with satellite based rainfall estimates. Daily 

rainfall data from weather stations were accumulated to form dekadal (10 days), 

monthly and seasonal (Apr-Oct) rainfall for comparison with satellite based 

rainfall estimates. Another 8 stations (Bida, Daura, Gusau, Kaduna, Katsina, 

Potiskum, Sokoto and Yelwa) having only monthly rainfall data were acquired 

from NIMET. However, the temporal coverage of weather stations is not uniform, 

varying from station to station (Table 3.1). 
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Table 3.1 Overview of rain gauge stations. 

No. 
Weather 
station 

Data 
availability 

Temporal 
coverage 

Latitude 
(° N) 

Longitude 
(° E) 

Elevation 
(m a.s.l) 

1 Bauchi Daily 1984-2013 10.27 9.82 584 
2 Maiduguri Daily 1984-2013 11.85 13.10 337 
3 Nguru Daily 1984-2013 12.96 10.46 343 
4 Minjibir Daily 1973-2015 12.12 8.70 429 
5 IAR Kano Daily 1998-2010 11.98 8.55 484 
6 Kadawa Daily 1984-2007 11.67 8.42 489 
7 Zaria Daily 1965-2015 11.14 7.67 660 
8 Gombe Daily 1984-2013 10.46 11.25 407 
9 Yola Daily 1984-2013 9.22 12.46 156 

10 Ibi Daily 1984-2013 8.17 9.74 107 
11 Daura Monthly 1951-2002 12.97 8.30 476 
12 Bida Monthly 1981-2015 9.10 5.63 190 
13 Kaduna Monthly 1981-2015 10.58 7.43 621 
14 Katsina Monthly 1981-2015 13.01 7.68 501 
15 Sokoto Monthly 1981-2015 12.91 5.20 307 
16 Gusau Monthly 1981-2015 12.01 6.70 508 
17 Potiskum Monthly 1981-2015 11.71 11.11 432 
18 Yelwa Monthly 1981-2015 10.88 4.75 160 

 

Satellite based rainfall products 

Satellite-based rainfall products typically exploit a combination of data from 

thermal infrared (TIR), passive microwave (PMW), and ground-based gauge 

observations, and these datatypes are often combined to create an optimal 

product. A variety of rainfall datasets has been produced using convective cloud 

top temperature by applying the cold cloud duration (CCD) technique (Maidment 

et al., 2014). In this study, the four satellite-based rainfall products (Table 3.2), 

were selected for evaluation against rainfall gauge data, because of their long 

time series, near-real time data availability and free access. 

TAMSAT African Rainfall Climatology and Time series (TARCAT) 

The TARCAT v2.0, TIR based precipitation dataset at a spatial resolution of 4 km 

is based on the TAMSAT (Tropical Applications of Meteorology using Satellite 

and ground-based observations) rainfall estimation algorithm, which was 

constructed by archived Meteosat TIR imagery CCD, and locally calibrated 

against rain gauge records. It was developed by the University of Reading, UK, for 

Africa only, and is available from 1983 onwards at daily, dekadal, monthly and 

yearly scales (Maidment et al., 2014; Tarnavsky et al., 2014). 
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African Rainfall Climatology Version 2 (ARC2) 

The ARC v2.0 (African Rainfall Climatology Version 2) satellite based daily 

gridded precipitation dataset centered over Africa at a spatial resolution of 10 

km is also available from 1983 onwards, and uses inputs from three sources: 1) 

3-hourly geostationary thermal infrared (TIR) data from the European 

Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), 2) 

data from TRMM’s microwave sensors and 3) quality controlled Global 

Telecommunication System (GTS) gauge observations reporting 24-h rainfall 

accumulations over Africa (Novella and Thiaw, 2013). 

Tropical Rainfall Measuring Mission (TRMM) 

The Tropical Rainfall Measuring Mission (TRMM) is joint mission between 

National Aeronautics and Space Administration (NASA) and the Japan Aerospace 

Exploration Agency (JAXA) aimed at improving observations of precipitation 

across the globe between 45° N and 45° S. The most widely used outputs are the 

TRMM Multi-satellite Precipitation Analysis (TMPA) 3-hourly (3B42) product 

accumulated to daily and monthly (3B43) products, which are available from 

1998 to 2014 at spatial resolution of 25 km (Huffman et al., 2007; Maidment et 

al., 2014). The TMPA product depends on input from a combination of optical, 

thermal and microwave sensors, as well as gauge data (Dembélé and Zwart, 

2016). Daily TRMM 3B42 V7 and monthly 3B43 V7 products were used in this 

study. 

Climate Hazards group Infrared Precipitation with Stations (CHIRPS) 

The CHIRPS Version 2.0 rainfall dataset was developed by US Geological Survey 

(USGS) and Climate Hazard Group at the University of California, Santa Barbara. 

It is available from 1981 onwards at spatial resolution of 5 km.  

The CHIRPS algorithm incorporates i) satellite thermal IR data to represent 

sparsely gauged locations, ii) blends station data to produce a preliminary 

information product with a latency of about 2 days and a final product with an 

average latency of about 3 weeks, and iii) uses a novel blending procedure 
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incorporating the spatial correlation structure of CCD-estimates to assign 

interpolation weights. CHIRPS also uses the TRMM’s TMPA product, which 

includes several microwave sources, to calibrate global CCD rainfall estimates 

(Funk et al., 2015). 

Satellite based NDVI products 

GIMMS3g  

Data of different spatial resolution and temporal coverage were used to assess 

vegetation changes at different levels. Coarse scale third generation Global 

Inventory Modeling and Mapping Studies (GIMMS3g) NDVI dataset produced 

with AVHRR sensor onboard NOAA satellites 7-18. GIMMS3g with its latest 

version (v 1.0) at 1/12° or 8-km resolution provided the only available long-term 

NDVI time series from 1982 to 2015 for studying long term trends. GIMMS data 

is bimonthly (or 15 days Maximum Value Composite (MVC)) NDVI product with 

corresponding quality flags, so there are total 24 images in one year. MVC method 

select pixel with maximum value over the 15 days, so excluding cloud affected 

NDVI values. 

MODIS MOD13Q1 

The Moderate Resolution Imaging Spectroradiometer (MODIS) with moderate 

resolution at 250 m provides short-term trends with higher level of spatial detail 

for the period 2000-2015. MOD13Q1 is a 16-days MODIS NDVI product with 

corresponding quality flags. 

Table 3.2 Summary of satellite products used in this study. 

No. 
Satellite rainfall 

products 
Temporal 
coverage 

Data 
Input 

Spatial 
Covera

ge 

Spatial 
resolutio

n 

Temporal 
resolution 

1 
TARCAT Version 

2.02 
1983-2015 TIR, gauge Africa 

0.0375° 
(~4 km) 

Daily 

2 CHIRPS Version 2.01 1981-2015 TIR, gauge Africa 
0.05° 

(~5 km) 
Daily 

3 ARC Version 2 1983-2015 

TIR, 
gauge, 
TMPA 

3B42 v7 

Global 
0.1° 

(~10 km) 
Daily 

4 

TRMM Multi-satellite 
Precipitation 

Analysis version 7 
(TMPA 3B42 v7) 

1998-2014 
TIR, VIS, 
TMI, PR, 

gauge 
Global 

0.25° 
(~25 km) 

Daily 
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3.3. Methods 

3.3.1. Evaluation of satellite based rainfall products 

Previous studies have found only weak relationships between satellites and 

gauge data for daily rainfall comparisons (Dembélé and Zwart, 2016; Sanogo et 

al., 2015). In this study we compare gauge rainfall against satellite data on daily, 

dekadal, monthly and seasonal time scales, for four different satellite-based 

rainfall products (ARC, CHIRPS, TAMSAT and TRMM). The period 1998 to 2014 

was examined as TRMM data were only available for this period. Eighteen 

weather stations (Figure 3.1) were used, except for daily and dekadal (10 days) 

comparisons which were conducted for only ten weather stations which have 

daily rainfall data for this period (Table 3.1). Pixel values at gauge locations were 

extracted for comparison of gauge data with satellite rainfall estimates and 

accumulated into dekadal, monthly and seasonal values. For every month, the 

first two dekads comprise ten days with 1-10 and 11-20 dates of months, while 

last dekad comprises 8-11 days depending on the month. 

Satellite rainfall estimates were compared with gauge rainfall using pairwise 

comparison statistical measures such as Pearson product-moment coefficient of 

linear correlation (r), Bias, Mean Error (ME) and Root Mean Square Error 

(RMSE). 

Pearson correlation coefficient (r) measures the strength of linear relationship 

between satellite and gauge rainfall. Values of ‘r’ close to 1 indicate a perfect 

relationship between satellite and gauge rainfall estimates. The statistical 

significace of correlation (R) is represented by asterisks (** = p < 0.01 and * = p 

<0.05) 

R  =  
𝛴(𝐺−�̅�)(𝑆−�̅�)

√𝛴(𝐺−�̅�)2√𝛴(𝑆−�̅�)2
          Equation 3.1 

Where G = gauge rainfall amount, �̅�= average gauge rainfall amount, S = satellite 

rainfall estimates, 𝑆̅ = average satellite rainfall estimates, n = total number of 

data. 
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Bias indicates how well the average of satellite rainfall estimates corresponds 

with average of gauge rainfall. Its value close to 1 shows cumulative satellite 

rainfall estimates is closer to cumulative gauge rainfall measures. A bias value 

greater than 1 indicates satellite overestimates, while less than 1 indicate 

satellite underestimates. 

Bias    =  
𝛴𝑆

𝛴𝐺
                                   Equation 3.2 

Mean error (ME) is the measure of average difference between satellite and 

gauge rainfall amounts. A positive value reflects an overestimation of satellite 

rainfall whereas negative indicates underestimation of satellite rainfall 

compared to gauge rainfall. 

ME= 
1

𝑛
∑ (𝑆 − 𝐺)𝑛
𝑖=1                   Equation 3.3 

Root mean square error (RMSE) is the standard deviation of the difference 

between satellite rainfall estimates and gauge rainfall. A higher value of RMSE 

indicates large difference between satellite and gauge rainfall measures. 

RMSE =  √
1

𝑛
∑ (𝑆 − 𝐺)2𝑛
𝑖=1              Equation 3.4 

 
According to Toté et al (2015), some statistics measures can be more useful than 

others depending on the specific application. For drought monitoring studies, 

overestimation of satellite rainfall (ME > 0) must be avoided and for hydrological 

and flood forecasting studies, underestimation of satellite rainfall estimate (ME 

< 0) should be avoided. For general purposes, rainfall products with high R and 

low RMSE are preferred. 

3.3.2. Evaluation of seasonal rainfall variables 

For analysis of changes in rainfall regime across northern Nigeria, seasonal 

rainfall variables were calculated based on daily rainfall events. There are several 

criteria for selection of onset and end of rainy season based on thresholds of 

rainfall amount during consecutive days (Fitzpatrick et al., 2015; Omotosho et al., 

2000; Sivakumar, 1988). Fitzpatrick et al., (2015) compared 18 different 

definitions for onset of rainy season on regional, local and intermediate scales for 
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datasets of varying resolution and found that the choice of definition of rainy 

season depends on local pattern of the onset dates. In this study, we used the 

definitions of seasonal rainfall variables by (Zhang et al., 2017), as follows. Rainy 

season onset was defined as the first occurrence of at least 20 mm cumulative 

rainfall within seven consecutive days after May 1, followed by at least 20 mm 

rainfall in the next 20 days to avoid “false starts”. Rainy season cessation was 

defined as the occurrence of less than 10 mm cumulative rainfall in 20 

consecutive days after September 1. Length of rainy season was defined by the 

number of days between onset and cessation of rainy season. Season rainfall 

amount was defined by accumulating all daily rainfall events above 1 mm rainfall 

over the whole rainy season. Frequency of rainy season was defined by number 

of rainy days with rainfall amount ≥ 1 mm divided by the length of rainy season. 

Intensity of rainfall was defined as the total amount of rainfall during rainy 

season divided by the number of rainy days with rainfall ≥ 1 mm. The number of 

rainy days was calculated according to different levels of rainfall amount with 1-

10, 10-20, 20-30 and >30 mm/day separately. Seasonal distribution was defined 

by the ratio of amount of rainfall in the first and second halves of the rainy season 

(calculated based on onset and length of season). Dry spells within the rainy 

season were defined as rainfall less than 1 mm in at least seven consecutive days. 

Three variables were used to characterize dry spells: firstly, the number of dry 

spells, secondly mean length of dry spells by number of days, and thirdly 

cumulative dry days was defined by the total number of dry days in each dry spell 

during the rainy season. Ten weather stations with long term daily rainfall were 

used to derive season rainfall variables (Table 3.1). Similarly, for three different 

satellite based rainfall gridded data (TARCAT, CHIRPS and ARC), pixel values 

corresponding to the location of rain gauges were extracted for the period 1984-

2013 to examine the agreement between satellite and gauge based rainfall 

variables. 

3.3.3. Temporal trends estimation from gauge based rainfall variables 

To place satellite-based rainfall estimates in long term context, temporal trends 

in rainfall over northern Nigeria were calculated from gauge based rainfall 

variables for those stations which fall within Sanogo et al’s (2015) definition of 
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the West African Sahel between latitudes 9° and 20° N, in terms of rainfall 

variability. Trend analysis was conducted using a non-parametric linear 

regression model, with the rainfall variables as the dependent variable and time 

as the independent variable.  The output of trend analysis was a regression slope 

indicating the magnitude and direction of changes in rainfall variables. Normally 

slope is computed by least square estimates from linear regression, but the 

method is sensitive to outliers and assumes there is no serial autocorrelation. 

Since time series of season rainfall variables often do not meet parametric 

assumptions of normality and homoscedasticity (Hirsch et al., 1984; Horion et al., 

2014), a median trend (Theil-Sen) procedure was applied to estimate the 

magnitude and direction of changes in seasonal rainfall variables in 

corresponding units per year. The Theil-Sen or Sen Slope method is a linear 

regression model which calculates slope using the median value of slopes from 

all pairs of observations in a time series (Equation 3.5). Sen Slope is known to be 

free from serial autocorrelation, seasonality (both inter-annual and intra-

annual), non-normality and heteroscedasticity, and is also resistant to outliers 

and missing data within the time series (Sen, 1968). The significance of the trends 

in rainfall variables based on Sen Slope was assessed by a nonparametric trend 

test, the Mann–Kendall (MK) significance test, which accounts for the effect of 

serial correlation (Salmi et al., 2002; Westra et al., 2013). 

The slope Q between two time periods is calculated as 

Q = 
𝑌𝑗−𝑌𝑖

𝑡𝑗−𝑡𝑖
                                   Equation 3.5 

 

Where Yj and Yi are values of time series, where j is greater than i. There will be 

a total of N data pairs for which j is greater than i. The Sen Slope is the median 

of N values of Q. 

3.3.4. Calculation of standardized anomalies for studying inter-annual 

variability 

To study inter-annual variability over the long term, the standardized anomaly 

was calculated for every rainfall variable using standardized rainfall index 
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(Agnew, 2000; Lamb, 1982). The standardized rainfall index uses average and 

standard deviation of long term rainfall variable to quantify rainfall variable in 

relation to their long term climatology. Most frequently, rainfall anomalies are 

computed by arithmetic mean of normalized rainfall variables recorded at 

several rain gauge stations over the region of interest (Hulme, 1992; Zhang et al., 

2017). However, due to strong spatial variability and uneven spatial distribution 

of rain gauges in Sudano-Sahelian region, we applied the Standardized 

Precipitation Index (SPI) proposed by (Ali and Label, 2009) to all stations 

independently, to the rainfall variables using equation 3.6. 

SPI = 
𝑋𝑖−𝑋

𝜎(𝑋)
                                                 Equation 3.6 

 

Where 𝑋𝑖= regional rainfall variable for year i, where region refers average value 

of all rain gauge stations over the region of interest, 

 𝑋 = average of the inter-annual regional rainfall variable, 

 𝜎(𝑋) = standard deviation of inter-annual regional rainfall variable. 

3.3.5. Spatio-temporal trends for satellite rainfall variables 

Based on comparison of satellite rainfall products against gauge rainfall on daily, 

dekadal, monthly and seasonal time scales, we selected the best satellite rainfall 

product (CHIRPS) to represent the per pixel spatio-temporal trends of rainfall 

variables for the whole of northern Nigeria. For every pixel in the study area, 

trends were estimated for the time period 1981-2015 using Sen slope (Sen, 

1968) and the significance of these trends was assessed using the Mann–Kendall 

(MK) significance test which accounts for the effect of temporal autocorrelation 

(Westra et al., 2013). 

3.3.6. Smoothing of NDVI time series using Savitzky–Golay filter 

Due to cloud cover, varying atmospheric conditions, and bi-directional effects 

there are some disturbances in the NDVI time series. During the rainy season, 

clouds are a major problem and often prevail for more than two weeks. Although 

NDVI data sets are a MVC product (selection of maximum NDVI value over 16 
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days), there is still noise in NDVI time series represented by negatively biased 

NDVI values. To overcome this noise, a Savitsky–Golay filter was applied to 

smooth the NDVI time series pixel-wise and to construct high-quality NDVI time-

series datasets for further analysis. The Savitsky–Golay filter is a moving filter 

that fits local polynomial regression to replace negatively biased NDVI values 

with upper an envelope of NDVI time series (Jonsson and Eklundh, 2004). For 

every pixel, values of quality flags were used to assign particular weights for the 

calculation of new NDVI time series. 

3.3.7. Spatio-temporal vegetation trends using satellite based NDVI 

In this study, vegetation trends were estimated using filtered NDVI time series 

after a applying Savitzky–Golay filter to both AVHRR GIMMS3g (1982-2015) and 

MODIS (2000-2015). The annual time series was divided into two seasons: wet 

season (May-October) and dry season (November-April). Seasonal average NDVI 

values were computed for both wet and dry season of each year, as 

autocorrelation might be present with individual images. Vegetation trends were 

computed using Sen Slope, and the Mann–Kendall (MK) significance test. The 

output of trend analysis was a regression slope indicating the magnitude and 

direction of change in NDVI per year. 

3.4. Results 

3.4.1. Evaluation of satellite rainfall estimates 

In this study four satellite-based rainfall products were evaluated against gauge 

rainfall from weather stations (Figure 3.1), to identify the best rainfall product 

(in terms of closely representing rainfall patterm from gauges) for northern 

Nigeria at daily, dekadal, monthly and seasonal time scales. Also satellite rainfall 

products were evaluated for different rainy season variables to find the best 

product for analyzing temporal trends in rainy season characteristics over space. 

For all the plots (Figures 3.2-3.12), the red line is the 1:1 line, the solid blue is 

linear regression line between gauge and satellite estimates and the dashed blue 

lines are 95 % confidence intervals (CI). 
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Daily comparison 

Comparison between satellite-based daily rainfall estimates from ARC, CHIRPS, 

TARCAT and TRMM and individual rain gauge stations for the period 1998-2014 

shows only weak relationships, with correlation coefficient ‘R’ values ranging 

from 0.3 to 0.5 (Figure 3.2). The best performance was observed for TARCAT (R 

= 0.45), followed by CHIRPS (R = 0.35), ARC (R = 0.34) and TRMM (R = 0.33), 

although TARCAT showed the greatest bias (0.90). The lowest RMSE value was 

found for TARCAT (8.1 mm/daily), followed by CHIRPS (8.7 mm/daily), ARC (8.9 

mm/daily) and TRMM (10.0 mm/daily). All of the satellite products show 

substantial overestimation of low rainfall events and underestimation of high 

rainfall events. This accords with Sanogo et al (2015), who also found weak 

relationships between daily gauge rainfall and ARC2 satellite measurements in 

northern Nigeria, with R values below 0.1, and Dembélé and Zwart (2016) in 

Burkina Faso who observed best performance for CHIRPS (R=0.47), compared to 

other satellite products. 

Dekadal comparison 

Dekadal (10 days) comparison (Figure 3.3) shows a good agreement between 

gauge rainfall, and CHIRPS and TARCAT satellite estimates respectively, with 

correlation coefficient ‘R’ values between 0.50 and 0.80 for the majority of 

weather stations. Correlation values for TRMM (0.49-0.73) and ARC (0.24-0.69) 

were somewhat lower. CHIRPS was also found to have the best mean bias close 

to one (0.79-1.10), followed by ARC (0.74-1.12), TARCAT (0.60-1.17) and TRMM 

(0.73-1.21). The lowest RMSE values were found for CHIRPS (35.16 mm.dekad-

1), followed by TARCAT (36.37 mm.dekad-1), TRMM (39.53 mm.dekad-1) and ARC 

(42.28 mm.dekad-1). The superior overall performance of CHIRPS for dekadal 

rainfall was also noted for Ethiopia (Bayissa et al, 2017) and Mozambique (Toté 

et al, 2015). All of the satellite products show overestimation of low dekadal 

rainfall amounts, and underestimation of high rainfall amounts, with overall 

negative values of mean error indicative of underestimation of dekadal rainfall 

by satellite for the majority of weather stations. 
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Figure 3.2 Comparison of daily rainfall, between rain gauge and satellite rainfall 

estimates for 1998-2014. 

 

 
Figure 3.3 Comparison of dekadal (10 days) rainfall, between rain gauge and 

satellite rainfall estimates for 1998-2014. 
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In terms of agricultural yield prediction, such underestimation of dekadal rainfall 

by satellite products is not as critical as overestimation, as the major stress on 

the main cereal crops sorghum and millet is drought especially 15 to 20 days of 

no rain in mid-growing season. Thus overestimation of rainfall would tend to 

overlook drought periods. 

Monthly comparison 

Monthly satellite estimates show better performance than at daily or dekadal 

scales, with correlation values between 0.55-0.86 for all satellite products except 

for ARC (Figure 3.4). This improvement is because aggregation of daily or 

dekadal data into monthly values cancels out errors at daily or dekadal scales 

(Dembélé and Zwart, 2016). The monthly satellite estimates for all 18 weather 

stations for the period 1998-2014 in mm/month, compare well with gauge 

rainfall. Overall CHIRPS give the best results with the highest correlation value of 

0.81 and lowest RMSE value of 63.47 mm/month, and for CHIRPS, the red 1:1 line 

is closest to the blue trend line. Lower correlation values were observed for 

TARCAT, TRMM and ARC of 0.77, 0.75 and 0.64 respectively. These findings are 

in agreement with Bayissa et al (2017) and Toté et al (2015) who reported that 

CHIRPS performed better than other satellite estimates at monthly scale. 

Yearly comparison 

Monthly rainfall data from April to October were accumulated for both satellites 

and gauges, to produce seasonal (yearly) rainfall totals, for the 17 years, 1998 to 

2014 for the 18 weather stations. A good agreement was observed between 

satellite and gauge rainfall data with correlation values ranging between 0.62-

0.79 (Table 3.3). 
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Figure 3.4 Comparison of monthly rainfall, between rain gauge and satellite rainfall 
estimates for 1998-2014. 

 

Highest correlation values were observed for CHIRPS (0.79) and lowest for ARC 

(0.62), and a mean bias close to 1 was found both for CHIRPS and TRMM (0.97), 

followed by ARC (0.93) and TARCAT (0.84) respectively. The observed negative 

values of ME (Table 3.3) indicate that all satellite datasets underestimate 

seasonal rainfall compared to gauge measurements. The lowest value of mean 

error was observed for CHIRPS (-27.3 mm/season) followed by TRMM (-29.7 

mm/season), ARC (-58.7 mm/season) and TARCAT (-141.3 mm/season) 

respectively. Similarly the lowest value of RMSE was found for CHIRPS (196.6 

mm/season), followed by TRMM (214.3mm/season), ARC (264.4 mm/season) 

and TARCAT (274.3 mm/season) respectively. These findings accord with those 

of Bayissa et al (2017), who observed best correspondence of CHIRPS with gauge 

data at seasonal time scale compared to other products in Ethiopia, but disagree 

Dembélé and Zwarts’ (2016), whose seasonal satellite indicate overestimation of 

annual rainfall in Burkina Faso, as our data indicate underestimation. 
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Table 3.3 Yearly comparison of satellite rainfall products. 

 TRMM TARCAT CHIRPS ARC 

Correlation (R) 0.75** 0.69** 0.79** 0.62** 

Bias (no units) 0.97 0.84 0.97 0.93 

Mean Error 
(mm/season) 

-29.7 -141.3 -27.3 -58.7 

RMSE 
(mm/season) 

214.3 273.9 196.6 264.4 

** Statistically significant at 0.01 level. 

3.4.2. Seasonal rainfall variables 

A spatial correlation between three satellite datasets (TARCAT, CHIRPS and ARC) 

and gauge based rainfall variables for 10 weather stations was undertaken for 

the period 1984-2013. TRMM data are data not included as they are not available 

for the earlier years 1984-1997, and we observed the TRMM data quality to be 

consistently inferior to CHIRPS and TARCAT. For the onset and cessation of rainy 

season the satellite estimates compare fairly well with the gauge-based data, with 

correlation coefficient R values ranging between 0.53 and 0.65 for onset, and 0.59 

and 0.70 for cessation, with ARC showing the lowest values (Figure 3.5). 

 

 

Figure 3.5 Comparison between gauge and satellite, for onset of rainy season (a-c) 
and cessation of rainy season (d-f) for all weather stations (1984-2013). 
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Similarly for length of season and amount of rainfall, a linear relationship 

between satellite and gauge based rainfall measures is observed with R values 

between 0.63 and 0.74 for season length, and 0.57 and 0.78 for rainfall amount. 

Again ARC indicates relatively low values of R (0.63, 0.57) for length and seasonal 

amount of rainfall compared to CHIRPS (0.71 and 0.78) and TARCAT (0.74 and 

0.61) (Figure 3.6). 

 

Figure 3.6 Comparison between gauge and satellite, for length of rainy season (a-c) 
and seasonal rainfall amount (d-f) for all weather stations (1984-2013). 

 

For the total number of rainy days per season, a high value of R = 0.79 was 

observed for CHIRPS compared to ARC (0.74) and TARCAT (0.72) (Figure 3.7). 

However, a marked discrepancy existed for rainy days with given stepped 

intervals of rainfall (Figures 3.8-3.9). For rainy days with low rainfall amounts of 

1-10 and 10-20 mm/day, a higher number of rainy days were observed for 

satellite products compared to gauge measurements (Figure 3.8), and this is in 

agreement with Zhang et al (2017) who also report a higher number of small 

rainfall events estimated by satellite compared to gauge data. 
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Figure 3.7 Comparison between gauge and satellite, for the total number of rainy 
days with at least 1 mm rainfall (a-c). 

 

However, although rainfall variables based on single-day rainfall events may 

show bias due to difference in scale between point-based gauge and large pixel 

size of satellite data, the temporal trends in rainfall variables from satellite data 

are still expected to be valid. It is interesting to note that the error in satellite 

estimates for high rainfall events > 30 mm/day is totally reversed, with lower 

frequency observed for satellite measurements than for ground stations (Figure 

3.9), and this is in line with the findings of Toté et al (2015), who reported large 

underestimation of high rainfall events by the satellite product. In this study, 

CHIRPS outperformed ARC and TARCAT for all stepped intervals of rainfall 

events, (Figures 3.8-3.9) except for the lowest class 1-10mm/day (Figure 3.8 a-

c), when TARCAT obtained the lowest error.. 

 

Figure 3.8 Comparison between gauge and satellite, for the number of rainy days 
with 1-10 mm (a-c) and 10-20 mm (d-f) for all weather stations (1984-2013). 
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Figure 3.9 Comparison between gauge and satellite, for the number of rainy days 
with 10-30 mm (a-c) and >30 mm rainfall (d-f) for all weather stations (1984-2013). 

 
Due to the higher representation of low rainfall events by satellite products, a 

higher total number of rainy days (Figure 3.7a-c) and higher frequency of rainfall 

(Figure 3.10 a-c) are observed for satellite products. Correspondingly a lower 

representation of intensity (Figure 3.10 d-f) of rainfall events for satellite 

products is observed, as Intensity is the ratio between seasonal rainfall amount 

and total number of rainy days per season. 

 

Figure 3.10 Comparison between gauge and satellite, for frequency (a-c) and 
intensity of rainy season (d-f) for all weather stations (1984-2013). 
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The higher number of low rainfall events captured by satellite products affects 

the estimation of dry spell variables, with a lower representation of dry spells. 

Thus we observe a very weak correlation for number of dry spells (0.02-0.09), 

mean length of dry spells (0.03-0.13) and cumulative length of dry spells (-0.005-

0.03) for all of the three satellite datasets (Figures 3.11a-f and 3.12 d-f). Toté et 

al (2015) also found a large error in the detection of dry spells, with RFE data 

(only available since 2001) show the best performance compared to CHIRPS and 

TARCAT.  

The satellite rainfall variables best representing gauge data were total annual 

(seasonal) rainfall, the total number of rainy days, and length of rainy season. 

These good results for variables measured across the whole rainy season, may 

be due to some extent, to positive and negative errors cancelling out.  

 

Figure 3.11 Comparison between gauge and satellite, for number of dry spells (a-c) 
and mean length of dry spell (d-f) for all weather stations (1984-2013). 
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Figure 3.12 Comparison between gauge and satellite, for seasonal distribution (a-c) 
and cumulative dry days of all dry spells during rainy season (d-f) for (1984-2013). 

 

The overestimation of rainy days by satellites is due to detection of low and 

patchy rain within a pixel, compared to a ground point where no rain has fallen. 

However, this is a serious shortcoming of satellite estimates, as this could suggest 

adequate rainfall during a drought. Notwithstanding, although rainfall variables 

based on single-day rainfall events may show bias due to difference in scale 

between point-based gauge and large area satellite data, the temporal trends in 

rainfall variables from satellite data are still expected to be valid. 

3.4.3. Temporal trends for northern Nigeria using gauge based rainfall 

variables 

Temporal trends over northern Nigeria were estimated over three decades, from 

1984 to 2013 using the average value of all nine gauges for every year. Those 

stations within northern Nigeria are Nguru, Maiduguri, Minjibir, IAR Kano, 

Kadawa, Zaria, Gombe, Bauchi and Yola. Trends were estimated using Sen’s slope 

(with slope expressing changes in units per year). Positive (negative) values 

indicate increasing (decreasing) rainfall variable trends and statistically 

significant changes are denoted by asterisks (+=p≤0.1, * =p≤ 0.05; ** =p≤ 0.01; 

*** =p ≤ 0.001) with respect to the Mann-Kendall test accounting for temporal 

autocorrelation. Clear significant and positive trends were observed for the 

seasonal rainfall amount, cessation and length, as well as for rainfall intensity, 
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the total number of rainy days and rainy days with more than 30 mm rainfall 

(Table 3.4). Our findings support those of Sanogo et al (2015), who observed 

similar trends from 1980 to 2010, using all gauges averaged over the West 

African Sahel region (Latitude 9°-20° N). 

The rainy season starting date, which is critical for farming showed non-

significant trends (Table 3.4), which is in agreement with Sanogo et al’s (2015) 

gauge-based observations in the Sahel. Even during the drought decades of 

1970s and 80s, no changes in rainy season onset were observed for north 

western Nigeria (Hess et al, 1995). We also observed significant positive trends 

for number of days of heavy rainfall over 30 mm, and in consecutive wet days, 

but insignificant trends for dry spells (Table 3.4) which accords with Sanogo et 

al’s (2015) observations for the Sahel. This suggests that recovery of rainfall in 

northern Nigeria since the drought decades of 1970s and 80s is mainly related to 

increase in number of rainy days, a higher number of extreme rainfall events and 

later cessation of rainy season, rather than earlier onset of rains, or a reduction 

in the length or number of dry spells. 
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Table 3.4 Trends from 1984 to 2013 for gauge based rainfall variables (averages over 
all stations).  

 
Season rainfall variables Gauge- trends 

1 Onset of Rainy Season (day of year) -0.18 

2 Cessation of Rainy Season (day of year) 0.44* 

3 Length of Rainy Season (days) 0.53* 

4 Season rainfall amount (mm year-1) 8.2** 

5 Frequency 0 

6 Intensity (mm day-1) 0.12** 

7 Number of rainy days with 1-10 mm 
(days) 

0 

8 Number of rainy days with 10-20 mm 
(days) 

0.02 

9 Number of rainy days with 20-30 mm 
(days) 

0.02 

10 Number of rainy days > 30 mm (days) 0.11** 

11 Season distribution -0.001 

12 Total number of rainy days with > 1mm 
(days) 

0.18+ 

13 Cumulative dry days (days) 0.21 

14 Length of Dry Spell (days event-1) 0.03 

15 Number of Dry Spells (events year-1) 0.002 

 

On the other hand, while Hess et al. (1995) studied rainfall trends based on three 

raing gauges (Daura, Maiduguri and Nguru) in northern Nigeria from 1961 to 

1990, in terms of the number of rainy days per season. They found a dramatic fall 

in the average number of rainy days per rainy season between the 1960s and the 

1980s. However our study which extends to 2015, indicates a recovery in the 

number of rainy days per rainy season in the last two decades (Table 3.5). 
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Table 3.5 Average number of rainy days per year for five different decades. 

 1951-
1960 

1961-
1970 

1971-
1980 

1981-
1990 

1991-
2000 

2001-
2010 

Maiduguri  47 35 30 42 41 

Nguru  36 27 20 29 27 

Daura 46.7 42.4 37 29.9 35.5  

3.4.4. Spatial distribution of monthly and annual rainfall trends 

Monthly rainfall data are required to investigate trends in total annual rainfall as 

well as its seasonal distribution. Thus the spatial aspects of trends in monthly 

and total annual rainfall between 1984 and 2013 were investigated based on 

both rain gauge data and CHIRPS data for the period 1981-2015 (Table 3.6 and 

Figures 3.13), as CHIRPS proved to be the most robust satellite rainfall product, 

and can be used to represent the typical performance of satellite rainfall datasets. 

CHIRPS satellite data for the 35-year period 1981 to 2015, show clear positive 

trends in annual rainfall over most of northern Nigeria (Figure 3.14b). The 

CHIRPS observations are supported by clear positive trends in annual rainfall 

evident at stations across northern Nigeria (Table 3.6), which confirms rainfall 

recovery after the droughts of the 1980s. Indeed, for the period 1984 to 2013, 

our gauge data indicate an increasing trend for annual rainfall by 10.2, 4.4 and 

4.2 mm/year for Maiduguri, Nguru and Potiskum respectively (Table 3.6). 

Our satellite and gauge-based results conflict with Sanogo et al's (2015) and 

Zhang et al's (2017) ARC-based estimates of rainfall trends for northern Nigeria, 

as they report negative but insignificant trends for areas surrounding our climate 

stations of Kaduna, Zaria, Kano, Minjibir and Gusau. They suggest that decline in 

the number of GTS ground stations for these areas explained the observed 

negative trends using ARC-based satellite data. The reliance of CHIRPS on 

multiple satellite products including visible, thermal infra-red and microwave as 

opposed to ARC’s emphasis on ground station data may explain the better result 

for long-term rainfall trends from CHIRPS. Our CHIRPS satellite-based trends of 

increasing rainfall (Figure 3.13 and 3.14b) are in line with our gauge-based 

observations (Table 3.6). 
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Table 3.6 Trends for gauge based total annual and monthly rainfall using Sen’s slope 
for the period 1981-2015. Statistically significant changes are denoted by asterisks 

(+=p≤0.1, * =p≤ 0.05; ** =p≤ 0.01; *** =p ≤ 0.001) with respect to the Mann-Kendall test 
accounting for temporal autocorrelation. 

Station 
Total 

Annual 
April May June July August September October 

Sokoto 5.6* 0 0.9 0.2 0.2 2.1* 0.9 0.3** 

Nguru 4.4+ 0 0.3 1.1+ -0.02 1.9 1.23 0.2* 

Gusau 2.6 0 0.4 -0.2 0.7 1.1 -1.6 0.9* 

Katsina 7.5** 0 0.3 0.9 -0.06 4.3** 0.4 0.3** 

Minjibir 8.1+ 0 -0.06 1.0 2.5* 3.2 1.7+ 0.4* 

Kano 11.2** 0 0.3 2.7* 3.1* 3.9 1.6 0.07 

Maiduguri 10.2*** 0 0.2 1.8 2.6 3.2 2.1 0.6 

Kadawa 6 0 -0.2 -0.8 -0.3 4.8+ 1.4 1.2 

Potiskum 4.2 0 0.2 1.7* 1.3* 0.6 2.7* 0.1 

Zaria 9.9*** 0.3 0.9 -0.07 0.7 2.9 4.6** 1.4+ 

Yelwa 4.1 0.3 0.4 -0.002 -0.4 3.6 2.5* 0.6 

Kaduna 1.7 0.07 -0.08 -0.4 0 -0.9 1.7 2.1* 

Bauchi 21.4*** 0.3 -0.8 3.3* 3.7 6.2* 2.3 0.8 

Yola -5.7 -0.9 -1.3+ 2.2+ -3.2** -1.3 1.1 0.9 

Ibi -1.2 0.1 -1.4 -0.1 -0.5 -3.2* 0.9 0.9 

Daura 3.9+ 0 0.28 1.0 1.3* 4.1** 0.5* 0.33** 

Gombe 0.69 0.33 -1.4+ 0.09 -1.58 1.96 0.61 1.3+ 

Bida 0.81 -0.75 -0.41 0.75 0.76 0.28 0.18 3.3* 

 

Our CHIRPS satellite data observe a trend of increased rainy season length, with 

more rain in the months of August to October (Figures 3.13 and 3.15), and this is 

supported by our ground stations (Table 3.7). Based on gauge rainfall 

observations for the period 1984-2013, trends were also calculated for monthly 

regional rainfall (averaged over all stations in northern Nigeria) over the period 

1984-2013 (Table 3.7). Our gauge observations indicate that the observed 

increase in annual rainfall is due to increases of 1-2 mm/year in each of the 

months August to October (Table 3.7) and these months contribute over 50% of 

annual rainfall amount. This observed stronger rainfall recovery in the months 

of August and September, supports observations by Sanogo et al (2015).  

In August, the month with greatest overall increase in rainfall, distribution of the 

increase is extremely patchy, with large increases of over 4 mm in the northeast, 

but non-significant trends in many other areas. A marked decrease in September 

around the Federal Captal Territory in the south, is also evident. Thus CHIRPS 

satellite products give a better spatial representation of overall long term rainfall 
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trends, growing season length, and distribution of rainfall within the growing 

season, than ground station data. 

Hess et al’s (1995) gauge observations indicate a reduction in the length of rainy 

season in northeast Nigeria over the period 1961 to 1990. However our gauge 

data for the later period 1984 to 2013, for northeast Nigeria represented by 

Nguru and Maiduguri show a trend for increased length of rainy season by 1.33 

days/year. These findings are also supported by our satellite-based CHIRPS data 

which confirm the trend of increased rainy season length computed from ground 

stations (Figure 3.15). 

Table 3.7 Trends for gauge based monthly rainfall (average for all gauges in northern 
Nigeria) for the period 1984-2013. 

Months March April May June July Augus
t 

Septembe
r 

Octobe
r 

Trend 
Slope 

-0.08** -0.06 -0.07 0.74** 0.78 2.22** 1.40+ 1.05** 

Contributio
n to annual 
rainfall (%) 

0.37 2.28 7.90 13.46 23.36 30.25 18.24 4.10 
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Figure 3.13 Spatial temporal trends in CHIRPS based monthly rainfall between 1981 
to 2015 based on Sen’s slope expressing change in monthly rainfall in mm/year. 

White areas showing non-significant trends at 90% confidence level with respect to 
the Mann–Kendall test. 
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3.4.5. Spatial temporal trends in CHIRPS rainfall variables (1981-2016) 

In order to understand detailed spatial distribution and trends in rainfall 

characteristics over the whole of northern Nigeria, spatio-temporal trends of 

CHIRPS-based rainfall variables were calculated for those variables which 

showed a good agreement between satellite and gauge data. CHIRPS satellite-

based observations indicate significant positive changes between 1981 and 2015 

for seasonal rainfall amount, which represents the traditional May to September 

growing season, and these increases are most marked in northeastern and north 

central Nigeria (Figure 3.14) around the cities of Maiduguri and Kano, with dense 

rural populations dependent on agriculture. A significant but less marked 

increase in seasonal rainfall is also evident in the extreme northwest of Nigeria 

around the city of Sokoto, also with a densely settled rural hinterland. Significant 

positive changes across the whole region are also observed for total annual 

rainfall amount and the total number of rainy days (Figure 3.14). However, the 

distributions are extremely patchy, with some areas gaining over 9 mm annual 

rainfall, adjacent to areas with no gain. 

The length of rainy season also showed significant positive trends over most of 

northern Nigeria (Figure 3.15), indicating that the rainy season has become 

longer in recent years, due to a late ending. The onset of rainy season shows non-

significant trends in most parts of northern Nigeria, so indicating little change in 

the start of the rainy season, thus the longer rainy season appears mainly due to 

later cessation of rains. 

Because discrepancies between gauge and satellite data for stepped rainfall 

amounts observed in section 3.4.2 and Table 3.4, (with a satellite bias towards 

observing a higher number of low, and lower number of high, rainfall events 

compared to gauge data) are consistent, and thus thought not to affect the 

detection of trends, these data are also considered here. Other variables which 

proved to have large discrepancies, namely length and number of dry spells are 

also considered. 

The number, cumulative length and average length of dry spells (Figure 3.17) 

show a decreasing trend over the whole area but especially in northwestern 
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Nigeria. This would have favourable implications for crop production and crop 

security, as a non-interrupted supply of moisture throughout the growing season 

is essential for a good yield. 
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Figure 3.14 Spatial temporal trends for seasonal rainfall, total annual rainfall and 
number of rainy days using CHIRPS data between 1981 and 2015 based on Sen’s 

slope. 
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Figure 3.15 Spatial temporal trends for seasonal onset, cessation and length of rainy 
season using CHIRPS data between 1981 and 2015 based on Sen’s slope expressing 

changes in days/year. 
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Figure 3.16 Spatial temporal trends for number of days with rainfall 1-10, 10-20, 
20-30 and > 30 mm/day using CHIRPS data between 1981 and 2015 based on Sen’s 

slope expressing changes in days/year. 
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Figure 3.17 Spatial temporal trends for total number, cumulative length and mean 
length of dry spells using CHIRPS data between 1981 and 2015 based on Sen’s slope. 
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Figure 3.18 Spatial temporal trends for rainfall frequency and intensity using 
CHIRPS data between 1981 and 2015 based on Sen’s slope. 

 

3.4.6. Vegetation trends using NDVI 

Despite widespread droughts in the 1970s and 1980s, along with dramatic 

reduction in rainfall during those drought decades, vegetation trends in the 

Sudan zone of Nigeria based on coarse resolution GIMMS 3g NDVI show 

significant greening for both wet (May-October) and dry (November-April) 

seasons over the 34 period 1982 to 2015 (Figure 3.19). A significant increase in 

annual rainfall during this period partly explains most of these greening trends. 

However, there is no close spatial correspondence between rainfall and NDVI 

trends (Figures 3.14 and 3.19), because the spatial pattern is controlled by 

human factors. According to Herrmann et al (2005), most of the observed 

greening in the Sahel is not only by increasing rainfall, even though there is a high 

correlation between vegetation and rainfall. The lack of correspondence may be 
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because the NDVI depends both on natural vegetation (grasses, shrubs, forest 

and plantations) as well as cultivated vegetation, and in northern Nigeria 

cultivated vegetation takes up more land space than the natural vegetation. 

Varying tree cover (natural regeneration and plantation program) and land cover 

(increase in agricultural or farmland areas due to large increase in population) 

also play an important role for the spatial variability in vegetation trends. 

Moreover due to population growth, planting of crops in the rainy season has 

increased and a greater percentage of land is planted and thus supporting 

vegetation, leading to higher NDVI over the 35-year period. So the observed 

pattern is not controlled by climate, but by human factors. 
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Figure 3.19 Spatial temporal trends for wet and dry season using GIMMS 3g NDVI 

between 1982 and 2015 based on Sen’s slope expressing NDVI changes per year. 
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3.5. Discussion 

Of the four satellite rainfall products examined, CHIRPS demonstrated the best 

results with consistently higher correlation, a Bias closest to 1 and lower error, 

when compared to ground station data. The robustness of satellite rainfall 

estimates increased with increasing aggregations of daily data, due to cancelling 

out of positive and negative errors. Thus for dekadal (monthly) data, CHIRPS, 

with R of 0.67 (0.81) and Bias close to 1, of 0.95 (0.98)) observed good results. 

The observed underestimation of dekadal rainfall by all four satellite products, 

with ME <1, is not as critical for agricultural yield prediction as overestimation, 

as the major stress on the main cereal crops of northern Nigeria, sorghum and 

millet is drought, especially 15 to 20 days of no rain in mid-growing season. For 

drought monitoring, overestimation of satellite rainfall (ME >1) should be 

avoided, as it would tend to overlook drought periods. 

All the satellite products appear to overestimate low rainfall events, leading to 

overestimation of the number of rainy days in a season. This may be the result of 

the sensors’ inability to differentiate between drizzly days and rainy days 

(Dembélé and Zwart, 2016; Thiemig et al., 2012; Toté et al., 2015) as their spatial 

scales are much larger than the point locations of rain gauges, and drizzle is likely 

to be more patchy than heavier rainfall. Additionally, comparing point based 

measurements with large area pixel values would lead to a positive bias for 

variables with high spatial variability like rainfall in West Africa which occurs by 

local convective clouds (Fensholt et al., 2006). Thus events with low rainfall of 1-

10 and 10-20 mm are overestimated by satellite products due to large pixel size 

of the satellite product compared to point based gauge locations. Although this 

overestimation appears to be a serious deficiency of satellite-based estimates of 

drought during the growing season, with consequences for crop yields, all 

satellite products have the opposite tendency for high rainfall events, with 

underestimation. Thus for dekadal, monthly and seasonal rainfall the overall 

tendency is slight underestimation, and the overall estimates of rainfall amounts 

are good. 

The satellite rainfall variables best representing gauge based data were variables 

which are measured across the whole rainy season, probably due to positive and 
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negative errors cancelling out. Thus good results were obtained for total annual 

(seasonal) rainfall, the total number of rainy days, and length of rainy season. 

For estimating temporal trends for rainfall variables averaged over stations in 

northern Nigeria, our gauge data indicate recovery of rainfall in northern Nigeria 

since the drought decades of 1970s and 80s. This recovery, observed from both 

gauge and CHIRPS data between 1981 and 2015 appears to be due to increases 

of about 2 mm a year in the later part of the rainy season from August to October, 

with these months now contributing over 50% of annual rainfall. Thus both data 

types observed stronger rainfall recovery in the months of August and 

September, and CHIRPS data suggest particularly strong recovery in the 

northeastern states. Since sorghum enters a high water use period in the late 

growing season in August, this reduces the risk of late drought impeding the 

swelling of grain which affects dry weight production. 

Furthermore, our observed significant positive trends for number of days of 

heavy rainfall over 30 mm, and for consecutive wet days, but insignificant trends 

for dry spells suggests that this recent rainfall recovery may be related to 

increase in number of rainy days, a higher number of extreme rainfall events and 

later cessation of rainy season, rather than a reduction in the length or number 

of dry spells. The onset of rainy season shows small negative (earlier start), but 

non-significant trends in most parts of northern Nigeria, so indicating little 

change in the start of the rainy season. Thus longer rainy season in recent years, 

appears to be due to a later cessation of rains. 

Conversely to gauge data averaged over the whole of northern Nigeria, which 

indicate a slight but non-significant increase in the number and average length of 

dry spells, CHIRPS data indicate a significant and decreasing trend in the number 

and average length of dry spells in some areas, but especially in northeastern 

Nigeria around the city of Sokoto and in the southern part of the study areas 

around the cities of Jos and Abuja. This would have favourable outcomes for crop 

production and crop security, as a non-interrupted supply of moisture 

throughout the growing season is essential for a good yield. The drought 

tolerance of one of the main cereal staples, sorghum does not enter the high 
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water use period during its life cycle until August. This gives producers a better 

window to receive some much needed precipitation and rebuild soil moisture. 

CHIRPS-based rainfall variables indicate spatial differences in the observed large 

increases in seasonal rainfall. The increase is especially marked in northeastern 

and north central Nigeria around the cities of Maiduguri and Kano, both of which 

have dense rural populations dependent on agricultural produce for their 

livelihoods. Kano’s rural population density is reported as 308 persons per km2 

in 2006 (National Population Commission, 2006). The patchy nature of rainfall 

variables across northern Nigeria affirms the need for the spatial perspective 

offered by satellite observations. 

3.6. Conclusion 

The only other satellite-based studies of rainfall trends in West Africa (Sanogo et 

al, 2015; Zhang et al, 2017) were at continental scale, and used ARC satellite 

product, which is at a coarser (10 km) resolution, and is more reliant on the 

sparse network of ground stations across West Africa, than CHIRPS. The ARC 

products were found to be consistently inferior to CHIRPS, when compared to 

data from 18 rain gauges across northern Nigeria over a 30-year period, and the 

study did not address regional or local implications of observed trends. The 

CHIRPS data at 5 km resolution rely on a wider variety of satellite data inputs, as 

well as ground stations. The CHIRPS data were in agreement with gauge data, 

observing an increase in annual rainfall over the last 35 years, whereas Sanogo 

et al (2015) observed a slight decrease over our study area. 

The study indicates that all satellite products slightly underestimate dekadal, 

monthly and annual rainfall. This is due to detection of a higher number of rainy 

days due to recording a higher number of low rainfall events than at ground 

stations. Consequently they also retrieve a higher number of rainy days and 

fewer and shorter drought spells during the growing season, than do ground 

stations, which may have serious implications for crop yield prediction and 

consequent perceptions of food security. However, since satellites tend to also 

underestimate high rainfall events, the over-and under-prediction cancel out 
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when considered at dekadal, monthly and seasonal time scales, thus the overall 

prediction of rainfall amounts by satellite products is good. 

For trends in seasonal rainfall variables, both gauge and satellite data show 

increased growing season length over the last 35 years, which is due to increases 

in rainfall in the later part of the rainy season. This is expected to have favourable 

implications for local subsistence crops, especially sorghum which has lower 

drought tolerance at the ripening stage. Although satellite data do not show 

significant correlation with gauge data for number and length of dry spells, 

because the data are consistent among satellite products, this is not thought to 

affect the detection of trends. CHIRPS data indicate a decrease in the number and 

length of dry spells across northern Nigeria, and especially in northwest and 

north central Nigeria around the cities of Sokoto, Jos and Abuja, all in the densely 

populated Sudan zone and northern Guinea. This reduction in dry spells is 

potentially favorable for crop yields, and could have played a role in the increase 

in rural population densities over these 35 years of the study. The currently low 

nutritional status combined with a return to the drought conditions of earlier 

decades, could therefore bring severe hardship to rural households. 
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Chapter 04 

4. Long term changes in tree density and species 

composition in ecological zones of Kano-Katsina  

4.1. Introduction 

In the past few decades a downward trend in rainfall and an increase of 

temperature in the West African Sudano-Sahelian ecological region were 

observed (Hulme et al., 2001; Dai et al., 2004). Also, this region was affected by 

severe droughts in the 1970s and 1980s that caused degradation in vegetation 

cover (Spiekermann et al, 2015). Besides climate change, anthropogenic 

activities have caused several environmental changes. Most of the natural forests 

have been cleared for agriculture, to meet the requirements of population and 

settlement growth in the region (Brandt et al., 2014a). According to Gonzalez et 

al. (2012), the decrease in tree density and species richness underwent several 

changes across the different parts of the Sahel region in the last few decades of 

the twentieth century. Although there is a large body of research on climate and 

the rural economy of the Sahel Zone of West Africa, much less attention has been 

paid to the more densely populated agricultural landscape and economy of the 

Sudan zone. The Sudan zone, with mean annual rainfall of 500-1000 mm is 

densely populated, with rural population densities up to 300-500 persons per 

square kilometer surrounding Kano. 

In northern Nigeria, rural households depend mainly on subsistence agriculture, 

with rainy season cultivation of a limited number of cereals, root and leguminous 

crops, for their survival. Rural electrification is almost non-existent, thus wood 

fuel is widely used, and harvesting of fuelwood from rural farm trees, as well as 

its sale to city fuelwood merchants, provides a valuable additional income for 

farmers. In the face of climate change and the threat of greater climate variability 

and longer drought periods, the possibility of a major food and population crisis 

is a real threat. This study examines trends in woody vegetation and tree species 

composition in the Sudan zone of West Africa, using the Kano closed settled zone 
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of northern Nigeria as a case study. The study compares data on tree density, 

fuelwood production and tree species composition from fieldwork conducted in 

1981 and 2016, as well as from several dates of aerial and satellite images since 

the 1960s. Recent satellite-based reports of greening in arid West Africa as a 

response to recovery from droughts in the 1970s and 1980s, are examined to 

explain the observed trends.  

The main objective is to examine trends in woody vegetation abundance and 

composition in the farmed parklands of three study areas surrounding the KCSZ. 

Kano’s status as the largest city in savanna Africa, with probably the highest rural 

population densities, provides a model for understanding social-ecological 

interactions under a scenario of climate change and population pressure. 

4.2. Materials and Methods 

4.2.1. Study area 

The research was conducted in three study areas surrounding Kano city (Figure 

4.1), which is situated at 12° N in the northern Sudan Zone of West Africa. These 

study areas are influenced in terms of land use and economic activities, by the 

proximity of Kano city. The mean annual rainfall of 750 mm at Kano, supports a 

natural vegetation of tree savanna, with flat-topped trees browsed by savanna 

fauna and livestock, when grass is unavailable during the winter dry season (Oct-

Apr). Traditionally, goods were brought to Kano markets by donkey, limiting the 

fuelwood hinterland to around 50 km, but replacement by pickup trucks over the 

last two decades has expanded this to over 100 km. Questionnaires to farmers in 

the Kano Close Settled Zone (Maconachie et al., 2009; Maconachie and Binns, 

2006; Maconachie, 2013) indicate that farmers perceive declining tree cover on 

farmlands, as well as reductions in tree species diversity in recent decades. Three 

study areas (Figure 4.1, Table 4.1) were selected within Kano’s hinterland as 

follows. Study area 1, Kano West at 11.96° N, 8.38° E extends westwards from 

Kano city covering 100 km2, and Study area 2, Kano East at 12.25° N, 8.75° is 

situated in the region of the Jakara river, 30 km northeast of Kano city and covers 

110 km2. These two study areas represent the long-established Kano Close 

Settled Zone of intensive agriculture and high rural population within a day’s 

walking or donkey distance to the city market. They were selected based on their 
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geographical differences, with mainly red, well-drained sandy loam soils in Kano 

West, compared to Kano East dominated by the Jakara river lowlands draining 

into the Hadejia river and ultimately, Lake Chad. Soils in Kano East are heavier, 

yellow-red to grey in colour, with more clay. Study area 3, Daura, at 13.0° N, 8.25° 

E covering 200 km2, was selected farther north bordering the more arid Sahel 

Zone, where population densities are lower and land use is somewhat less 

intensive. At 100 km northward from Kano, the area has become a source of rural 

produce by pickup truck for Kano city over the last two decades. The 

geographical differences between the three study areas provide a range of social-

ecological conditions, within which human responses to climatic and economic 

pressures may differ. 

 

Figure 4.1 Location of the study areas surrounding Kano city. 

4.2.2. Field data collection 

Fieldwork conducted in the three study areas during the 2015-16 dry season 

provides the basis for the study, and historical trends are observed from field 

data collected 34 years earlier in 1981 in Study areas 1 and 3 (Nichol, 1989). Field 

survey quadrats in each study area (Table 4.1) were selected by stratified 

random sampling in order to ensure a representative range of tree densities. The 
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stratification was performed by dividing the study area into four classes of tree 

canopy cover based on an NDVI image derived from WV-2 data. Approximately 

even numbers of quadrats per strata were randomly selected for all study areas 

according to Karlson et al. (2014). Rectangular quadrats of different size were 

selected according to tree density variations among study areas. Field data 

collected included enumeration of tree numbers for trees > 5 cm in diameter, 

height of trees, measurement of Diameter at Breast Height (DBH), as well as 

species identification. For each field surveyed quadrat, the location of every 

individual tree was manually located on a color print of a Worldview-2 (WV-2) 

pan-sharpened image of 0.5 meter resolution. From this, a GIS based point 

shapefile of field tree locations was generated for further analysis. 

Table 4.1 Image datasets and field survey. 

Study areas 

Population 

density 

(persons/km2)# 

Corona 

satellite 

images 

Aerial 

photographs 

Recent 

satellite  

images 

Field 

Survey 

Date 

Field 

Survey 

area 

(ha) 

No. 

of 

Plots 

 Study Area 1 454 1967 1981 
2014 

(WV2) 

1981, 

2015-

16 

37 21 

Study Area 2 397 NA 1972, 1981 
2013 

(WV2) 

2015-

16 
137 25 

Study Area 3 232 1967 1991 

2015 

(Google 

Earth) 

2015-

16 
60 31 

#(National Population Commission, 2006). 

For study area 1, field survey was conducted for 21 quadrats (each 1-2 ha in area, 

totaling 37 ha), and these were then located on the archived images of 1967 

(Corona images), 1981 (aerial photographs) and 2014 (WV-2). For study area 2, 

field survey was conducted for 25 quadrats (each 2-10 ha in area, totaling 137 

ha), and these were then located on archived aerial images of 1972, 1981 and 

2013 (WV-2). For study area 3, field survey was conducted for 31 quadrats (each 

2 ha in area, totaling 62 ha), and these were then located on the archived images 

of 1967 (Corona), 1991 and 2015. 

As the very marked increase in tree densities observed in all three study areas 

was surprising, especially when compared with other reports of trends in woody 

vegetation in West Africa, it was decided to extend the survey to a larger area 

outside the study area plots using images alone. Therefore, an additional 67 
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square plots each of 1 ha area, 35 plots of 4 ha and 20 plots of 4 ha were randomly 

selected for study areas 1, 2 and 3 respectively, and tree densities were calculated 

for three different time periods, by manual counting of trees on images. 

To supplement and confirm observed trends in farmland trees, 40 questionnaires 

were administered to farmers in 20 different villages in each of study areas 1 and 

3. Farmers selected were over the age of 40, to allow for recollection over 

previous decades. 

4.2.3. Image datasets 

Remote sensing images were used to survey areas beyond the actual field plots, 

as well as for years when field data were unavailable (Table 4.1). Thus for Study 

area 1, past tree densities were determined from Corona satellite images of 

September 1967, aerial photos at 1:25000 scale by Kenting Africa in 1981, and 

recent tree density from a WV-2 image of 2014 (panchromatic band at 0.5 m 

resolution and multispectral bands at 2 m). Pan-sharpened images at 0.5 m 

resolution were produced using the Hyperspherical Color Space (HCS) method 

(Padwick et al., 2010) by fusing multispectral bands at 2 m with the 

panchromatic band at 0.5 meter. For Study area 2, Kano East, aerial photos of 

March 1972 at 1:40000 scale and 1981 by Kenting Africa at 1:25000 scale, and 

recent WV-2 imagery of 2013 were used. For Study area 3, Daura, Corona satellite 

images of September 1967, aerial photographs of 1991 at 1:25000 scale acquired 

by Geonex during the Katsina Arid Zone Programme, and recent high resolution 

IKONOS satellite images in Google Earth of 2015 were available. Corona images 

were acquired by U.S. earth observation satellites with a ground resolution of 1.8 

meter (McDonald, 1995). 

As raw Corona images and aerial photographs lack positional information, these 

were georeferenced using Google Earth images as a reference. For each aerial 

photograph, 20-25 ground control points (GCP) were selected and rectification 

was performed with a first order affine transformation method (Hazewinkel, 

2001), rounding the input cell size to 0.5 meter. As the Corona images covered a 

larger area, they were divided into small sections of 25 km2, and individually 

georeferenced using 20-25 controls points with input cell sizes rounded to 2 m. 

For direct comparison between years, image-to-image registration was carried 
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out to an accuracy of 2-3 meters for aerial photographs, and less than 5 meters 

for Corona images. 

4.2.4. Recording of tree densities 

Tree counting on images was validated using the field plots as the reference 

dataset. It was observed from this, that at least 4 pixels are required for 

identifying a tree using the sharp contrast between the dark tree crown and its 

bright soil background on dry season images. Therefore on the 0.5 m resolution 

of the more recent (1980s to 2015) images a small tree with crown size of 4 m2 

area covers 16 pixels and can be easily identified. However, as the Corona images 

of 1960s used in Study areas 1 to 3, and the aerial photographs of 1972 for study 

area 2, had lower resolution than the more recent aerial photographs and high 

resolution satellite images, some undercounting of smaller trees may have 

occurred for the pre-drought period. 

For all three study areas, Corona satellite images obtained in the 1960s and aerial 

photographs obtained in the 1980s and 1990s respectively, provide information 

on tree densities before and during the 1970s to 1980s drought, whereas recent 

satellite images and field data indicate post-drought conditions. 

4.2.5. Timber volume and fuelwood volume 

Not all species are used for fuel, for a variety of reasons from poor burning 

properties to local folklore. Thus it is important to distinguish between timber 

volume which includes all species, and fuelwood volume only those species used 

for fuel. For this reason, the tree Adansonia digitata, (Baobab), is not included 

with fuelwood volume (Table 4.3), as its wet and spongy wood precludes it from 

fuel use. The definition ‘fuelwood volume’ here could strictly be defined as 

‘potential fuelwood volume’, as wood may also be used for boundary markers, 

fencing and furniture. However, as these are one-off uses whereas fuelwood 

demand is continuous, it is likely that the woody component of trees whose 

leaves, fruits and bark are used for medicinal, food and other purposes, would be 

periodically lopped and eventually felled for fuel. 

Although wood volume includes canopy as well as trunk wood, since we were 

unable to carry out destructive sampling, volume is computed from πR2H for the 
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volume of a cylinder, based on field measurement of DBH and tree height. This 

also allows direct comparison with the 1981 field data. 

4.2.6. Tree species compositon 

To evaluate tree species composition for trees recorded in fieldwork of 1981 and 

2016, the Importance Value Index (IVI) (Kershaw, 1974) was calculated 

(Equation 4.1), using data from all quadrats in a study area. 

IVI = (%) Basal Area + (%) Density + (%) Frequency   (Equation 4.1)  
 

Histograms of DBH size spectra by division of the total DBH values for each 

species into six size classes were constructed, to indicate the approximate 

relative age and thus the regeneration status within a study area. In many natural 

situations such as undisturbed woodland small trees would comprise the largest 

size class with an even rate of decrease to the largest class, resulting in a smooth 

L-shaped curve. In human disturbed situations a smooth curve is rarely seen and 

in farmed parkland where farmers protect trees, more large and old trees would 

be expected (Condit et al., 1998; Lykke, 1998). 

 

4.3. Results 

4.3.1. Tree densities 

The objective of tree enumeration was to identify individual trees on time-series 

of images before, during and after the 1970s to 80s drought, to set recent 

satellite- and field-based observations of greening in context of long term climate 

variability. Therefore the results (Table 4.2) are grouped according to pre-

drought, drought and post-drought periods. 

In study area 1, fieldwork conducted during the 2015-16 dry season indicated 25 

trees per ha, which represented a doubling in tree numbers since the previous 

fieldwork in this study area in 1981, when 12.3 trees/ha were recorded. Aerial 

photographs of 1980 (but from different plot locations within the study area) 

indicate 14.9/ha, which is a similar order of magnitude to the 1981 fieldwork. 

Tree density in the pre-drought year of 1967 appears similar to the 1970s to 80s 
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drought period (confirmed from both fieldwork and air photos), with 12 

trees/ha, but again far below the 25 trees/ha recorded in the recent 2015-16 dry 

season. The field survey of 2015-16 shows a 31 % increase from the WV-2 image 

of 2014, which may represent a recent upturn in the increasing trend in tree 

densities (Figure 4.2). 

In study area 2, tree densities have been 50% lower than in Study area 1 for all 

three periods, thought to be due to the heavier clay soils which are more difficult 

to cultivate and may prevent natural seedling regeneration. However trends in 

tree densities are similar in that tree numbers held constant from the 1960s up 

to and including the drought period, with only a 5% increase, and a doubling of 

tree numbers has occurred since the drought years up to the present period 

(Figure 4.3). As in Study area 1, the field survey of 2016 shows a marked increase 

in tree numbers (of 18%) since the WV-2 image of 2013, which may represent a 

recent upturn in the long term increasing trend in tree densities (Figure 4.2). 

In Study area 3, the 25-year period from 1967 to 1991 saw a significant 

(approximately 35%) increase in tree density, and in the following 24 years from 

the post-drought period to present, a doubling of tree densities is observed. Thus 

the rate of increase observed between the 1960s up to the drought period, has 

itself substantially increased since the drought. 

 

Table 4.2 Tree Density from field survey plots and aerial photographs. 

Period Pre-drought Drought period Post-drought 

 1967 1981 
Field survey 

1981 
2014 

Field Survey 
2016 

Study Area 1 12.5 14.9 12.3 19 25 

Study Area 2 5.6 (1972) 5.9 NA 
11 

(2013) 
13 

Study Area 3 7.8 
10.6 

(1992) 
NA 

20.9 
(2015) 

22 

 

The results for the additional three extended study areas surveyed on images 

alone, confirmed the observations of large increases in tree numbers over the 

study period, with similar trends of an approximate doubling in tree densities in 

Study areas 1 and 2, and a threefold increase in Study area 3. 
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Figure 4.2 Trends in tree density for 3 study areas. 

 

Previous reports from farm questionnaires have indicated declining tree stocks 

around Kano (Maconachie and Binns, 2006; Maconachie et al, 2009). Our study 

observed a large increase in tree numbers over the last 5 decades. To supplement 

and confirm observed trends in farmland trees, 40 questionnaires were 

administered to farmers in 20 different villages in both study areas 1 and 3. 

Farmers selected were over the age of 40, to allow for recollection over previous 

decades. Responses to questions about tree densities initially indicated that 

farmers perceived trees to be declining. However, typical replies to question 

about changes in the total numbers of trees, was mainly answered not in terms 

of tree numbers, but by mentioning which species had declined or disappeared. 

This led us to suspect that the discrepancy between our data and farmers’ 

perceptions may, at least in part, arise from inability to distinguish between the 

concepts of tree numbers and tree species due to a sense of alarm at the 

disappearance of many valuable indigenous species such as Parkia biglobosa, 

Ceiba pentandra , and Adansonia digitata, given the role of trees of different 

species in the Hausa cultural and religious heritage (Cline-Cole, 1998; Etkin, 

2002; Tomomatsu, 2014). 

 

 

 

 



81 

4.3.2. Fuelwood volume 

Study area 1, with the highest tree density, also has much higher fuelwood 

production than the other two study areas (Table 4.3). Study area 2, with 

approximately half the tree density of study area 1, has correspondingly, roughly 

only half the timber volume, but 62% of the fuelwood volume, which may suggest 

the importance of wood fuel among tree products in the local economy even in 

an area with fewer trees. 

 

Figure 4.3 Change in tree stocks over 45-year period in Study area 2- at 1:2500 scale, 
size of rectangle 3 by 2 ha. 

 

In study area 3, with similar tree densities to study area 1, both timber volume 

and fuelwood volume are significantly less (64% and 67% respectively) than in 

Study area 1, due to the smaller size of trees in this northerly study area 

bordering the Sahel zone. In terms of trends it is remarkable that fuelwood 

production has tripled since 1981 in Study area 1 and increased by 6 times in 

Study area 3. In 1981 study area 3 was not within the fuelwood hinterland of 

Kano which was then defined by donkey distance per day, but has now expanded 

to over 100 km with pickup trucks. Discussions with farmers indicated that they 

rarely purchase wood, suggesting a plentiful on-farm supply. 
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Table 4.3 Timber volume and Fuelwood volume (cubic meter per hectare) from 
fieldwork in 1981 (in brackets) and 2016. 

Study areas Timber volume Fuelwood volume 
Study Area 1: 2016 (1981) 40.3 (12) 27 (8.9) 
Study Area 2: 2016 20 16.8 
Study Area 3: 2016 (1981) 25.7 (5.4)* 18.2 (3.3) 

* The field data reported for Study area 3 in 1981 were collected from a different location, north 
of Kano but at the same latitude as Study area 3. 

4.3.3. Species trends 

Table 4.4 shows the IVI for the ten most important tree species in each study area. 

The baobab tree Adansonia digitata appears over-represented due to its swollen 

trunk, thus large DBH, which is disproportionate to its crown size. It is retained 

in the tables due to its diverse non-fuel (including food, fibre, and medicinal) 

uses. Besides baobab, the common dominants in all three study areas are the 

exotic Neem tree, Azadirachta indica, and the Sudan zone species Piliostigma 

reticulatum (Appendix 1), both of which are highly valued for fuelwood use. Both 

species show active regeneration in all three study areas, with many trees in the 

lower DBH classes (Figure 4.4), and all size classes strongly represented. Table 

4.5 also suggests that these two species have become dominant recently, as they 

were absent from the dominant species recorded in Study area 1 in 1981. 

Table 4.4 Tree species dominance in farmed parkland. 

No. Study Area 1 IVI Study Area 2 IVI Study Area 3 IVI 
1 Adansonia digitata 49.5 

 
Parkia biglobosa 70.3 

 
Piliostigma 
reticulatum* 

66.5 
 

2 Azadirachta indica*  44.8 
 

Azadirachta  indica* 39.8 
 

Adansonia digitata 
 

47.4 
 

3 Piliostigma 
reticulatum* 

24.4 Adansonia digitata 34.0 Azadirachta indica* 37.5 
 

4 Anogeissus  
leiocarpus* 

20.9 
 

Piliostigma 
reticulatum* 

16.7 
 

Hyphaene thebaica 25.1 
 

5 Diospyros 
mespiliformis* 

17.3 
 

Diospyros 
mespiliformis* 

16.0 
 

Diospyros 
mespiliformis*  

20.4 
 

6 Parkia biglobosa 16.1 Tamarindus indica*  14.5 Lannea acida 18.9 
7 Faidherbia albida 15.6 Ficus platyphylla 13.1 Parkia biglobosa 13.0 
8 Tamarindus  indica* 15.3 

 
Anogeissus  
leiocarpus* 

13.1 
 

Borassus aethiopum 
 

7.5 
 

9 Ceiba pentandra 10.9 Sclerocarya birrea 6.5 Anogeissus leiocarpus* 7.0 
 

10 Butyrospermum 
paradoxum 

5.8 Butyrospermum 
paradoxum 

4.6 Acacia nilotica 
5.9 

* Species preferred for fuelwood use 
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The DBH spectra (Figure 4.4) show that only four of the dominant ten species in 

Study area 1, and three of the dominant ten species in Study are 2 are actively 

regenerating and all these are preferred fuelwood species Neem (Azadirachta 

indica A.Juss), Kargo (Piliostigma reticulatum), the African Ebony (Diospyros 

mespiliformis) and the Chewstick Tree (Anogeissus leiocarpus). D. mespiliformis 

has high importance and appears to be actively regenerating in all three study 

areas. With an IVI of 19.3 in 1981 and 17.3 in 2015-16, this preferred fuelwood 

species has retained its importance among tree products in the local economy. 

On the other hand the dominant tree in Study area 2, the African Locust Bean 

(Parkia biglobosa) used traditionally for food and fibre, comprises mainly old 

trees with no evident regeneration, similar to Study areas 1 and 3 where its DBH 

spectrum is dominated by the largest class. Similarly, the dominant species 

recorded in Study area 1 in 1981, Faidherbia albida, which is traditionally valued 

for its retention of leaves in the dry season, providing fodder and shade, is now 

only 7th in importance, with its DBH spectrum dominated by large old trees and 

no evident regeneration. The non-fuelwood tree A. digitata, although occupying 

1st, 3rd and 2nd places in importance in study areas 1, 2 and 3 respectively, is 

heavily weighted to the largest DBH class suggesting its declining importance in 

recent decades. Discussions with local farmers indicated a decline in species 

diversity, with loss of many traditionally protected species and shift toward 

preferred fuelwood species Neem and P. reticulatum. These two species are fast-

growing and well adapted to drought. 

Table 4.5 Species trends (1981-2016) for Kano west area. 

No. 1981 IVI 2015-2016 IVI 
1 Faidherbia albida 37.5 Adansonia digitata 49.5 
2 Adansonia digitata 37.4 Azadirachta indica* 44.7 
3 Parkia biglobosa 29.0 Piliostigma reticulatum* 24.4 
4 Diospyros mespiliformis* 19.3 Anogeissus leiocarpus* 20.9 
5 Anogeissus leiocarpus* 16.7 Diospyros mespiliformis* 17.3 
6 Tamarindus indica* 15.1 Parkia biglobosa 16.1 

* Species preferred for fuelwood use 

4.4. Discussion 

Previous reports of greening in the Sahel based on NDVI, as well as increasing 

tree numbers since the 1970s to 80s drought period, conclude that biomass 

trends, whether woody or herbaceous, follow trends in rainfall. For example 



84 

Brandt et al. (2014a) observe that tree densities have recovered somewhat since 

the drought period but are still below those of the 1960s pre-drought period, 

while Hänke et al. (2016) and Brandt et al. (2017) observe recovery back to 

1960s levels by 2006 and 2015 respectively. Therefore, the marked increase in 

tree numbers in the Kano region over the last 5 decades observed here is 

surprising when set in the context of recent work in West Africa. 

While it is true that rainfall in Kano region generally has recovered since the 

1980s, back to 1960s levels, tree densities in the farmed parkland hinterlands of 

Kano city, are at least double those of the 1960s. A steady increase is observed, 

even through the drought decades, when all other reports indicate severe decline 

in tree numbers and woody vegetation.   
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Figure 4.4 DBH spectra for ten dominant species in Study area 1 (a), Study area 2 (b) 
and Study area 3 (c). 

 

Accompanying this increase in tree density has been an even greater increase in 

potential fuelwood production which has increased by approximately 300% in 

study area 1 and 600% in Study area 3, since 1981. Decline in the non-fuelwood 

species Adansonia digitata as well as other non-preferred fuelwood species, 

indicated by their non-regeneration in all three study areas (Figure 4.4), points 

to the demand for wood fuel as a likely explanation of the observed trends. 
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However, all similar recent studies have all been carried out in the less densely 

populated Sahel, rather than Sudan zone, and none in Nigeria, where government 

energy policies largely determine fuel options (Cline-Cole and Maconachie, 

2016). Given that electricity is rare in rural areas, and kerosene prices 

unpredictable, a rural population of 7 million in Kano region relies on wood for 

cooking and heating, and the urban population now estimated at over 3.8 million 

(Geonames, 2017) relies on wood due to its affordability and availability. The 

recent rapid growth of population in Kano city and region would not have been 

possible without a parallel increase in the main energy source, wood fuel. The 

six-fold increase in fuelwood volume observed in the outer hinterlands 

compared to three-fold increase nearer the city since 1981, attests to the growing 

demand, as nearby sources would be exploited before more distant ones. The 

observed increased importance of preferred fuelwood species A. indica and P. 

reticulatum, among farmland trees has resulted in decline of other species 

traditionally valued for their food, fibre, fodder and medicinal uses. Cheap 

alternatives to products traditionally derived from trees, such as stock cubes, 

beverages, painkillers, petroleum jelly, foam stuffing and plastics are now 

available in the consumer economy, and affordable from the sustained income 

farmers gain from selling wood. 

The on-going, apparent reduction in species diversity observed in this study, also 

noted by studies in the Sahel zone (Brandt et al., 2014a; Gonzalez et al., 2012; 

Hänke et al., 2016), has largely been attributed to a climate-induced shift towards 

more drought-tolerant species. Observations of higher recovery from drought 

nearer to houses (Hänke et al., 2016) and to villages (Brandt et al., 2014a) 

recognize that human factors play a role in areas where population growth has 

led to agricultural intensification. However, the recent concentration on species 

valued for fuel concurrent with rapid population growth observed in this study, 

strongly suggests the dominant role of socio-economic factors, possibly with 

climate playing a minor role. 

It is also surprising that the tree surveys from fieldwork and time series of images 

in this study, conflict with farmers’ perceptions of tree stocks, both from this 

study and those of previous researchers (Maconachie et al., 2009; Maconachie 
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and Binns, 2006). Farmers apparently perceive tree stocks on farmland to be 

declining, accompanied by a loss of traditional parkland species such as P. 

biglobosa, F. albida and A. digitata. However, as farmers rarely buy wood, and the 

rural population has doubled between 1991 and 2006, a corresponding increase 

in farmland tree stocks does seem inevitable. Farmers’ responses may be 

influenced by mixed perceptions comprising insecurity in the face of current and 

impending climate change and increasing aridity, as well as insecurity at the 

disappearance of traditional trees such as P. biglobosa, A. leiocarpus and A. albida, 

which supply many free products and are part of their heritage. The practice 

known as wankan jegu whereby newly delivered mothers bathe twice daily for 

40 days in scalding hot water, requiring an enormous amount of fuelwood 

(Maconachie and Binns, 2006), may also influence respondents’ perceptions 

about fuelwood availability, as births in Kano region more than doubled between 

1991 and 2006. Perceptions that interviewers have influence, and are thus able 

to alleviate long-standing frustrations at the fluctuating price of kerosene and 

lack of electric power supply, may also prompt farmers to indicate that trees are 

disappearing. 

4.5. Conclusion 

The findings of this study conflict with other similar work carried out in West 

Africa, which has mainly attributed changes in greenness and woody vegetation, 

to climatic fluctuations such as decadal droughts and recent global warming. 

Gonzalez et al. (2012) attribute their observed declining tree densities and 

species richness across the West African Sahel, to climatic, rather than human 

factors. They especially invoke global climate change, consistent with other 

reports of drought-induced tree dieback from around the world (Allen et al., 

2010). 

The reduction in species diversity noted in this study, and by others (Brandt et 

al., 2014a; Gonzalez et al., 2012; Hänke et al., 2016) may not be so alarming given 

the available supply from other sources, of traditional tree products, although 

market fluctuations may dictate future prices. Of greater concern is the continued 

overwhelming dependence on biomass for fuel by a still rapidly growing 

population across northern Nigeria. Return to the drought conditions of previous 
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decades coupled with tree death due to climate change may have serious 

consequences for rural households for whom the longevity of woody vegetation 

offers security against rainfall variability and crop failure. Urbanites’ reliance on 

wood may be less affected, as the fuelwood hinterland of Kano has expanded with 

modern transport, to the more wooded Guinea zone, and has potential to expand 

and contract according to demand. 

The Sudan zone comprises 40% of Nigeria’s land area, and in view of the 

geographical diversity among the three study areas, it is likely that the trends in 

tree stocks observed here are applicable to other parts of Nigeria’s Sudan zone. 

However, whether they are applicable to other parts of savanna Africa is 

probably dependent on national government energy policies, as Nigeria's 

continued dependence on biomass fuel is clearly both unfortunate and unusual. 
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Chapter 05 

5. Mapping tree crown cover and above ground biomass 

using high resolution WorldView-2 imagery in the agro-

forestry landscape of West Africa 

5.1. Introduction 

In the semi-arid Sudano-Sahelian ecological zone of West Africa, trees 

maintained by farmers on their farmed plots are an important element of the 

local livelihood (Boffa, 1999). Tree cover provides fuel wood, timber for building 

materials, food, fodder, fibre and medicines. Additionally, the large areal extent 

of farmed parkland landscapes in the Sudano-Sahelian ecological zone makes 

them an important component of the global climate system, as they store and 

sequester large amounts of carbon in the woody biomass and soils (Karlson et al., 

2015; Lal, 2004). Therefore mapping and quantification of tree parameters such 

as tree crown cover and above ground biomass (AGB) is important for both 

regional socio-economic resource management, as well as terrestrial carbon 

accounting in environmental assessment. Tree Crown Cover (TCC) is defined as 

percentage of land area covered by tree crown, when viewed from above 

(Chidumayo and Gumbo, 2010). AGB is defined as the dry weight of all above 

ground live mass including wood, bark, branches, twigs and stumps (Dong et al., 

2003; Zhu and Liu, 2015). Such spatial and quantitative assessments are 

especially urgent since climate change and intensified land use in recent decades 

have put increasing pressure on tree cover. 

5.1.1. AGB estimation using allometric equations 

Traditionally, AGB is estimated by destructive sampling, by harvesting all trees 

in a field plot to determine their total biomass (Henry et al., 2011). Although this 

method is very accurate, it is often impractical as it is time consuming, labor 

intensive and also destroys a large number of trees (Zhu and Liu, 2015). 

Alternatively a nondestructive method using allometric equations can help to 

determine AGB in the field. Allometric equations use dendrometric parameters 
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(height and Diameter at Breast Height (DBH) of individual trees), which are easy 

to measure in the field for estimating AGB (Henry et al., 2011). The term 

allometry is defined as ‘the relationship between part of an organism and its 

whole’ (West, 2009). Therefore the development of allometric equations relies 

on the harvesting of trees of varying sizes (for each species, or for a stand of 

mixed species) by selecting varying classes of DBH, for the measurement of above 

ground dry weight of different parts of a tree. Then a functional relationship 

between total dry weight of the tree and its DBH and height, is developed, using 

different mathematical models. In Sub-Saharan Africa, there are already 

developed species specific allometric equations for different countries (Henry et 

al., 2011). Although allometric equations provide fairly accurate estimation of 

AGB for the field plots, they are limited to the field plots where the DBH and 

height have been measured. 

5.1.2. AGB estimation using Remote Sensing 

In the last few years, there has been a growing interest in the use of satellite 

remote sensing for estimation of AGB (Karlson et al., 2015; Qazi et al., 2017; 

Sarker and Nichol, 2011; Schucknecht et al., 2017; Zhu and Liu, 2015), because 

remote sensing satellites provide timely, repetitive and large area coverage from 

local to global scales. However, remote sensing observations do not provide 

direct information about AGB, but use empirical models to relate AGB 

measurements on the ground, to predictor variables derived from remote 

sensing data. Therefore field measurement of AGB is a prerequisite for remote 

sensing based estimation of AGB. The empirical models range from simple 

parametric linear regression models (Sarker and Nichol, 2011) to complex non-

parametric machine learning models like Random Forest (Karlson et al., 2015; 

Zhu and Liu, 2015). 

For empirical models, remote sensing based predictors are derived from high 

and medium resolution optical images, Lidar and RADAR data. In West Africa, 

there are some previous studies of biomass estimation using low resolution 

SPOT-VEGETATION (1 km resolution) in Senegal (Diouf et al., 2015) and MODIS 

(250 meter) in Niger (Schucknecht et al., 2017) as well as medium resolution 

Landsat data (30m) in Burkina Faso (Karlson et al., 2015). 
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5.1.3. Tree crown extraction using high resolution imagery 

Over the last few years, there has been an enormous development in the field of 

remote sensing with the launch of high spatial resolution commercial satellites. 

For high resolution satellite images, the use of traditional statistical analysis of 

single pixels is not appropriate as the pixel under consideration and its 

neighboring pixels may differ sprectrally but belong to the same land cover class 

(Blaschke and Strobl, 2001). The high spectral variability within the same land 

cover class in high resolution satellite images creates a “salt-and-pepper” effect 

during classification. As human beings normally recognize patterns in a 

landscape by their spatial relationship to neighbourhood objects, it is useful to 

use spatial and contextual information for characterization of land use classes, 

along with spectral information (Blaschke, 2010). Spatial relationships between 

adjacent pixels in the form of texture provide an important information for 

identification of individual objects, which is building blocks of original features 

of interest (Thomas et al., 2003). In this way, homogeneous objects based on 

spatially connected groups of pixels with similar spectral characteristics, can be 

identified. Image segmentation is the process by which homogeneous image 

objects are created by aggregating groups of pixels with regard to spectral and 

spatial characteristics. The term ‘homogeneous’ implies that within-object 

variance is low compared to that between objects, and those identified objects 

also contain additional information about geometry (size and shape), contextual, 

textural besides spectral information (Laliberte et al., 2004). These 

homogeneous objects reflect real-world objects of interest (Blaschke and Strobl, 

2001). 

5.1.4. Use of Geographic Object Based Image Analysis (GEOBIA) for tree 

crown delineation 

Historically, panchromatic aerial photography was used to estimate tree 

parameters (Laliberte et al., 2004), such as crown area (m2), tree canopy cover 

(%) and tree density (number of trees per hectare). However in the last 15 years, 

the launch of high resolution commercial satellites with pixel sizes ≤ 4 m, such as 

IKONOS, Quickbird, OrbView, GeoEye and WorldView, make it possible to 

estimate tree parameters from space using multispectral and/or panchromatic 
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data. In contrast to pixel based approaches, object based image analysis is very 

effective for classifying different objects at multiple scales. This means that tree 

crowns of different sizes can be delineated separately, from individual tree 

crowns to large-sized clusters of tree crowns. Numerous studies have found high 

accuracies and low error, for classification of tree species using GEOBIA as 

compared pixel based approaches (Bunting and Lucas, 2006; Immitzer et al., 

2012).  

Many studies have used high spatial resolution satellite images for tree crown 

delineation (Bunting and Lucas, 2006; Karlson et al., 2014; Rasmussen et al., 

2011). Bunting and Lucas (2006) extracted and classified different tree crown 

species in Australian mixed forests using the Compact Airborne Spectrographic 

Imager (CASI) hyperspectral data through GEOBIA. Rasmussen et al (2011) used 

QuickBird imagery for extracting tree crowns in northern Senegal, and Karlson 

et al (2014) used WorldView-2 data for tree cover extraction in Burkina Faso 

using GEOBIA. In an agroforestry landscape, there is a variety of deciduous trees 

with varying crown sizes and ages, therefore GEOBIA is well suited for such tree 

crown cover mapping. 

The main objectives of this study are to  

• delineate tree crown cover through GEOBIA using high resolution WV-2 

images in the agroforestry landscape of the Kano Closed Settle Zone of 

northern Nigeria,  

• estimate AGB using already developed allometric equations for the 

reference field plots, and  

• develop a linear model for AGB estimation using Crown area (CA) 

extracted from WV-2 data. 

5.2. Study area and Datasets 

5.2.1. Study area  

The research was conducted in a farmed parkland area (100 km2) surrounding 

Kano city in northern Nigeria (Figure 5.1), which is situated at 12° N in the 

northern Sudan Zone of West Africa. The mean annual rainfall of 750 mm at Kano, 
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supports a natural vegetation of tree savanna, with flat-topped trees browsed by 

savanna fauna and livestock, when grass is unavailable during the winter dry 

season. 

5.2.2. WorldView-2 satellite data 

For this study, a cloud free WorldView-2 image was acquired on 02 February, 

2014. WV-2 has eight multispectral bands at 2 meter and panchromatic band at 

0.5 meter resolutions (Table 5.1). For this study, pan-sharpened images at 0.5 m 

resolution were produced using the Hyperspherical Color Space (HCS) method 

(Padwick et al., 2010) by fusing multispectral bands at 2 m with the 

panchromatic band at 0.5 meters. 

 

 
Figure 5.1 Map showing the study area located in Kano state of 

Nigeria (left). False colour composite image of WV-2 (right). 
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Table 5.1 Specifications of WorldView-2 satellite image. 

Image parameters Bands (μm) 
Acquisition date  February 02, 

2014 
Coastal Blue 
(0.40-0.45) 

Acquisition time  10:24:00 Blue (0.45-0.51) 
Off-nadir angle 26.06 Green (0.51-0.58) 
Mean sun azimuth 139.50 Yellow(0.58-0.62) 
Mean sun elevation 60.40 Red (0.63-0.69) 
Cloud Cover (%) 0 Red Edge (0.705-

0.745) 
Map projection UTM WGS 84 NIR 1 (0.77-0.89) 
Location:  
NW (Lat, Long) 
SE (Lat, Long) 

(12.01, 8.34) 
(11.92, 8.43) 

NIR 2 (0.86-1.04) 
Pan (0.45-0.80) 

 

5.2.3. Reference field inventory data 

Fieldwork conducted during the 2015-16 dry season provided the reference data 

for AGB estimation. Fifty square plots (about 50 m × 50 m) were randomly 

selected for field survey. For every individual tree in a field plot, the height of 

trees, Diameter at Breast Height (DBH), as well as species identification were 

noted. 

5.3. Methodology 

5.3.1. Tree crown delineation in parkland using GEOBIA 

In this study tree crown areas were extracted from WV-2 data using Geographic 

Object Based Image Analysis (GEOBIA) by modifying the method of Bunting and 

Lucas (2006) which they proposed for tree crown delineation in Australian 

mixed species forests. Their method was adapted for tree characteristics found 

in the parklands of Nigeria.  

First image objects were created and vegetation areas were masked using an 

NDVI threshold to separate them from non-vegetation areas (bare soil, 

settlements and water). The value of NDVI threshold was based on field data of 

trees. All of the spatially connected objects in the vegetation areas were merged 

for further analysis. As there were some patches of shrubs and grass in the 

vegetation masked objects, size and standard deviation of NIR band were used as 

object features, to exclude patches of shrubs and grasses from the masked 

vegetation areas. Since the reflectance of a tree crown is derived from both 
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photosynthetic materials (green leaves) and non-photosynthetic materials 

(branches), they have high variation in NIR reflectance compared to 

homogeneous features like patches of background soil, grass and shrubs (Karlson 

et al., 2014). In next step, we delineated shadows from non-vegetation areas 

based on thresholding the Blue band, and their relative border with masked 

vegetation areas, these shadows of individual trees used for separating trees 

from shrubs. In the next step, multi resolution segmentation was applied to 

vegetation objects to generate homogeneous objects for subsequent 

classification into tree crowns. We used field data for defining the scale 

parameter in multi resolution segmentation according to size of trees, by a trial 

and error approach. Geometric object features of roundness and elliptical fit 

were used to identify those objects of vegetation areas approximately circular in 

shape, to represents individual tree crowns or grouped tree crown clusters. 

These resulting objects were considered as potential candidates for tree crown 

delineation in the next step. 

A local maxima algorithm was used to identify a pixel within every potential 

candidate object for tree crown based on NDVI. These pixels are referred as seed 

pixels, and are assumed to be the top of the tree crown. A region growing process 

was used to expand the seed into its neighboring pixels based on NDVI and NIR 

thresholds. The values of NDVI and NIR thresholds were selected based on the 

difference between seed pixels and adjacent pixels. After completing the first step 

of the region growing process, a new seed was generated, and expanded into 

neighboring pixels. These two processes of seed identification and region 

growing were iterated until a realistic and reasonable form of individual or group 

of tree crowns was delineated.  

As some shrubs were also included in the final tree crown objects, these shrubs 

were excluded using shadow information, as trees have distinct shadows 

according to their size and height. The size and relational border between the 

shadow and tree crown were used as features to separate shrubs from trees. 

Individual tree crowns were separated from crown clusters using geometric 

features of roundness, ratio of length to width, elliptical fit and size of objects. 

Normally individual tree crowns has circular shape with values of roundness 
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close to zero and relatively small sizes, while crown clusters have elongated 

shape with high value of roundness and ratio of length to width with large size of 

object. For crown cluster objects, a morphological watershed segmentation 

method was applied to separate crown clusters into individual tree crowns based 

on shape characteristics, and further refinement were made using geometric and 

contextual information. In the final step, manual editing was performed to 

remove false detection of tree crowns. Crown cover in percentage was calculated 

in 50 m grid by cumulating the CA of individual trees divided by size of 50 m grid. 

5.3.2. AGB estimation using allometric equations 

Tree level above ground biomass (AGB) was calculated using already developed 

species specific allometric equations. These equations were derived within 

similar climatic zones as the current study areas (Table 5.2). These allometric 

equations used height and Diameter at Breast Height (DBH) of trees for 

calculation of AGB in tons per hectare. In cases, where species specific allometric 

equations were not available, generalized equations were used from (Mbow et 

al., 2014, 2013). 

The AGB of individual trees lying within a 50 m plot were accumulated to 

determine the total AGB per 50 m plot. 
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Table 5.2 Summary of allometric equation used for tree computing tree level AGB, 
DBH- Diameter at breast height, H – Height of tree. 

Tree Species 
Input 

variables 
Location Source 

Vitellaria paradoxa, 
Anogeissus leiocarpus, 

Parkia biglobosa 
DBH Nigeria 

(Jibrin and 
Abdulkadir, 2015) 

Tamarindus  indica DBH Madagascar 
(Ranaivoson et al., 

2015) 
Balanites aegyptiaca DBH Senegal (Poupon, 1980) 

Ceiba pentandra, 
Diospyros  

mespiliformis 
DBH, H Benin 

(Guendehou et al., 
2012) 

Faidherbia albida, 
Piliostigma 
reticulatum 

DBH Niger 
(Larwanou et al., 

2010) 

Sclerocarya birrea, 
Commiphora africana 

DBH, H South Africa (Colgan et al., 2013) 

Combretum 
glutinosum, 
Combretum 

micrantum, Entada 
africana 

DBH, H Burkina Forest 
(Sawadogo et al., 

2010) 

Azadirachta  indica DBH, H India 
(Kumar and Tewari, 

1999) 

Others DBH, H Senegal 
(Mbow et al., 2014, 

2013) 

 

5.3.3. AGB estimation using CA – Modelling and Validation 

A simple linear regression model was used to relate the AGB from field survey 

plots to the CA derived from WV-2 data. The significant correlation obtained 

between AGB and crown area allowed modelling of AGB based on crown area. 

AGB was modelled using simple linear regression, with crown area as the 

predictor variable. A total of 50 plots was randomly divided into two groups: of 

30 (for model training) and 20 (for model testing). Finally the AGB was estimated 

for the whole WV-2 image over a 50 m grid using the model developed using CA 

as the predictor variable. 

5.4. Results and discussion 

For the accuracy assessment of tree crown area delineated using WV-2 data 

through GEOBIA, an independent reference tree crown area measured during 

field survey was compared with satellite image based crown area by a linear 

regression line. A significant value of R2 of 0.88 was found (Figure 5.2). Tree 
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crowns delineated using the satellite image tended to underestime the tree 

crown area measured in the field. This is in line with the findings of Karlson et al 

(2014) for tree crowns delineated in the parklands of Burkina Faso. 

Underestimation of small tree crown area from satellite image appears to be 

affected by the time difference between acquisition of the satellite image 

(February 02, 2014) and field survey (January 2016), as tree crown may be 

expected to have grown during about 2 years period between image acquisition 

and field survey.  

 

 
 

Figure 5.2 Linear correlation between field-based and image-based crown area 

(m2). 

 

Figure 5.3 shows results of observed and predicted AGB from linear model for 

both model training and testing. A good linear relationship was found between 

observed and predicted AGB (ton.ha-1) for both training (left) and training (right) 

with R2 values of 0.72 and 0.69 respectively. Finally tree crown area was 

calculated for the whole area of WV-2 satellite image based on a 50 m grid, and 

similarly AGB (ton.ha-1) was computed for the whole image using crown area 

extracted from the high resolution WV-2 image as the predictor variable. 

 



99 

 

Figure 5.3 Observed versus predicted AGB (ton.ha-1) from a simple linear regression 

model for model training (left) and model testing (right). 

 

Highest tree cover and AGB are found in the East and NE areas where there are 

densely populated settlements compared to the sparsely populated western and 

SE areas (Figure 5.4). This agrees with the findings of Herrmann et al (2013) of 

highest tree cover in the densely population western portion of Senegal. Highest 

values of AGB were found in areas where dense Mangoes tree orchards are 

planted. However, there was overestimation of tree cover in some low lying 

valley areas where dry season agriculture is common, causing inclusion of some 

agriculture fields along with the tree crowns, due to similar reflectance. 
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Figure 5.4 Map of above ground biomass in tons per ha estimated using tree crown 

cover extracted from WV2 satellite image. 
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5.5. Conclusion 

 

Tree crown mapping using high spatial resolution WV-2 satellite imagery 

through GEOBIA shows acceptable accuracy and therefore has potential for 

automated delineation of tree crowns in the agroforestry landscape of the 

Sudano-Sahelian zone. GEOBIA can be successfully used for tree cover extraction 

in other similar dryland environments which exist throughout many African 

savanna regions. However the quality of tree cover extraction depends on many 

factors, including acquisition time of the satellite imagery, phenology, type of 

trees, and complexity of the landscape. In our study area of Kano west, a WV-2 

imagery was available during the peak dry season when the majority of trees 

have full leaf, except for Adansonia digitata. Although our study area is flat, the 

accuracy of tree crown extraction could be further increased using tree structure 

information like Digital Surface Model (DSM) data from LIDAR in areas where 

agricultural activities during the dry season makes it difficult to discriminate 

trees from background agricultural fields.  

A map of AGB (ton.ha-1) for agroforestry landscape in KCSZ was produced by tree 

crown area extracted with GEOBIA using a WV-2 satellite imagery. A high value 

of AGB was observed in areas with densely populated settlements. The proposed 

method of AGB modelling based on tree crown area can be helpful for locating 

areas of high and low AGB in drylands of the Sudan zone, and provide a guide to 

promote integration of different trees species in the agricultural farms. However 

the cost of high spatial resolution satellite images from commercial satellites 

along with large volume for processing limits their potential for large geographic 

areas. Mapping of AGB at high spatial resolution (50 m) provides a baseline for 

monitoring long term changes due to extreme events like drought in future. It can 

also be helpful for evaluation of afforestation projects. In addition to the fact that 

field trees are an integral part of traditional farmed parklands and they have 

multiple benefits to local people, increasing or maintaining tree cover in 

agriculture fields will help to strengthen resilience to climate change in the 

future. 
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Chapter 06 

Summary and Conclusions 

Rainfall and its variability drive the rural economies across the Sudano-Sahelian 

zone of northern Nigeria, where drought strategies largely determine crop yields 

and woody vegetation productivity. The increasing scarcity of rain gauges in 

West Africa generally limits assessments of the degree and spatial extent of 

hardship arising from rainfall deficiency. However, the improved availability and 

robustness of satellite-based rainfall products since the early 1980s, offers an 

alternative source of rainfall data which is spatially, and often temporally, more 

complete than rain gauges. 

The consistency between gauge and satellite based derived rainfall variables 

trends suggest that change in rainfall regime analysis can be done in other similar 

dryland environments of the world, where rainfall has profound impacts on local 

livelihoods. The study indicates that after the severe droughts of 1970s and 

1980s, both gauge and satellite rainfall showed an increasing rainfall. This 

increasing rainfall was supported by greening trends over the last 35 years 

derived using GIMMS 3g NDVI datasets. The increase in annual rainfall is due to 

increase of length of rainy season, total number of rainy days and extreme rainfall 

events. The study also indicates that increase in rainfall in the later part of rainy 

season, especially marked in northern and northeastern states of Nigeria. This is 

expected to have favourable implications for local subsistence crops, especially 

sorghum which has lower drought tolerance at the ripening stage.  

From a policy point of view, the extended late rainy season may offer farmers 

flexibility to reduce risk in planting too early, as planting too early would be 

subject to failure and crop loss if the early rains are not sustained. It may be 

possible that the increase in the total number of rainy days and consequent 

reduction in dry spells in recent decades evident from the CHIRPS data, is one 

factor underlying the vast increase in both urban and rural populations in Kano 
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region. If so, a return to the drought conditions of earlier decades would be 

disastrous. 

Since satellite rainfall products over northern Nigeria have been shown to be 

robust, with high accuracies especially for deckadal, monthly and seasonal 

products, they can be used to evaluate growing conditions, including drought 

across the northern agricultural regions. This would give insight into potential 

crop failures and exposure of rural households to economic hardship in the 

following months. The use of satellite rainfall products at government level 

would therefore permit early intervention by government and NGOs, given that 

the droughts of 1972-1974 and 1983-1985 entailed severe food shortages, and 

loss of human life and livestock (Mortimore, 2000). 

As the satellite-based long term NDVI datasets of West Africa have coarse 

resolution (8 km) and cover heterogeneous land cover types within a single pixel, 

this study used fine resolution old aerial photographs, recent satellite images and 

field data. The study of long term trends in tree density and species composition 

indicated that tree densities in the hinterland of Kano city have at least doubled 

since drought period, and no decline, rather a slight increase was observed 

during the drought decades. This contradicts reports of woody vegetation trends 

from the more arid and less densely populated Sahel zone, which generally 

observed decline during the drought years and current recovery to pre-drought 

levels. 

Most studies across the West African Sahel zone (Gonzalez et al., 2012) have 

attributed their observed declining tree density and species composition to 

climatic change rather than human factors. But in the Sudan zone of northern 

Nigeria, government energy policies and growing population cause farmers to 

grow more trees in the farmlands according to their household fuel 

requirements, as well as for sale. The remarkable increase in tree numbers in 

Kano region is accompanied by increasing fuelwood production as evidenced 

from greater concentration by farmers on tree species highly valued for fuel (e.g., 

Azadirachta indica), at the expense of other traditional species. In case of Nigeria, 

climate is thought to play only a minor role in explaining increasing trends in tree 

density and fuelwood productivity, rather human factors play a major role.  
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The observed increase in tree densities in the face of massive population growth, 

supports work in Kano region over three decades ago (Cline-Cole et al., 1990), 

which challenged long-held attitudes that farmers caused land degradation 

through loss of plant productivity. As this study shows, since trees are an integral 

part of farm livelihoods and the only source of energy for most households it 

appears inevitable that as population grows, so must the supply of wood fuel to 

meet increased demand. The study’s observations of increased concentration on 

a few fast-growing species at the expense of a large number of traditional species 

supplying a wide range of ‘free’ products is however a cause for concern. The last 

two decades in northern Nigeria have seen high population growth rates 

accompanied by high rainfall levels, giving rise to a potential Malthusian 

situation. Thus in an era of increasing global temperatures which IPCC expects to 

be above average in arid west Africa, coupled with periodic drought typical of the 

region, continued dependence on biomass productivity for both food and fuel 

appears dangerous, given the present high rural population levels. 

In the face of changing climate and intensified land use in recent decades that 

have put increasing pressure on tree cover, automated mapping of the crown 

cover area of individual trees and biomass, can enable understanding of the 

viability of the farmed parkland system over large areas, as tree are essential 

components of the farming system. In this study, the application of GEOBIA to 

high spatial and spectral resolution WV-2 imagery shows good accuracy (R2 = 

0.88) for automated delineation of tree crown cover. Above Ground Biomass 

(AGB) at high resolution (50 m) was estimated using crown area with R2 value of 

0.70 and shows pockets of high tree cover in farmlands in and around densely 

populated rural areas. This further supports our overall conclusion that increase 

in tree densities is a response to population growth. The proposed method for 

AGB estimation based on tree crown area can be successfully used in other 

similar dryland environments. However, tree crown mapping using a single 

panchromatic band aerial photographs shows unsatisfactory results, because of 

the inability to distinguish shadows and agricultural fields from the tree canopy 

using a single band. This would restrict the ability to detect trends in tree canopy 
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cover and biomass to the last two decades since 2000 when high resolution 

multispectral satellite images have been available. 

In view of the continued intra- and inter-annual rainfall variability across 

northern Nigeria, and amid rapid rural population growth recently, a return to 

the rainfall levels of the drought decades, would require informed response at 

government level, because the majority of rural and urban population in 

northern Nigeria still rely on wood fuel and agricultural products for basic 

subsistence. The study suggests that greater use of remote sensing including 

satellite rainfall estimates, and tree density monitoring, can offer such 

information, especially since we observed high spatial variability in rainfall 

distributions and trends, as well as in tree densities. Accurate monitoring of 

trends in rainfall, crop productivity and tree stocks is now possible using remote 

sensing datasets, and is potentially executable from Nigeria’s Remote Sensing 

Centre established at Abuja in 1999. Although Nigeria’s own satellite 

NIGERIASAT-2 With 2.5 m for panchromatic (and 5 m for multispectral) spatial, 

spectral (4 Multispectral bands) and 2 days temporal resolutions may not be 

capable of providing rainfall and tree density estimates, the rainfall products 

used in this study are largely free of charge and can be downloaded in near-real 

time For tree density monitoring across the northern Nigerian states, although 

the required fine resolution satellite images are expensive, an update every five 

years would provide the necessary insights into trends in woody biomass. 
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Appendix 1 Field inventoried tree species, families, abundance and their ecological 

zone. 

Tree species Family 
Ecological 

Zone 
Study Area 1     

(37 ha) 

Study Area 
2 (137 

ha) 

Study Area 3 

(60 ha) 

Acacia albida Mimosaceae Sudan 38 10 8 

Acacia nilotica Mimosaceae Sahel 14 7 17 

Acacia seyal Mimosaceae Sahel 6 0 0 

Acacia sieberiana Mimosaceae Guinea 8 0 6 

Acacia senegal Mimosaceae Sahel 0 0 3 

Adansonia digitata Bombacaceae Sudan 94 157 166 

Albizia chivalieri Mimosacea Sahel 3 0 15 

Anacardium 
occidentali 

Anacardiaceae Sudan 0 0 3 

Anogeissus leiocarpus Combretacea Guinea 84 51 21 

Anona senegalensis Annonaceae Guinea 0 1 0 

Azadirachta indica Meliacea Exotic 236 338 212 

Balanites aegyptiaca Balanitaceae Sahel 5 3 5 

Bauhinia rufescens Caesalpiniaceae Sudan 0 1 0 

Bombax costatum Bombacaceae Guinea 1 0 0 

Borassus aethiopum Arecaceae Sudan 4 5 16 

Boswellia dalzielli Burseraceae Sudan 0 24 0 

Calotropis procera Asclepiadaceae Guinea 3 1 1 

Carica papaya Caricaceae Guinea 0 2 4 

Cassia sieberiana Caesalpiniaceae Guinea 0 0 34 

Cassia singueana Leguminosae Guinea 1 0 0 

Ceiba pentandra Malvaceae Guinea 16 11 0 

Combretum 
glutinosum 

Combretaceae Sudan 1 11 0 

Combretum 
micranthum 

Combretaceae Sudan 3 2 4 

Commiphora africana Burseraceae Sahel 8 17 0 

Detarium microptera Caesalpiniaceae Guinea 2 1 3 

Dichrostachys cinerea Mimosaceae Sudan 4 0 0 

Diospyros 
mespiliformis 

Ebenaceae Guinea 60 93 65 

Entada africana Mimosaceae Guinea 7 4 0 
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Euphorbia 
kamerunica 

Euphorbiaceae Sahel 0 0 1 

Ficus sycomorus Moraceae Sudan 6 1 7 

Ficus glumosa Moraceae Sudan 0 3 0 

Ficus iteophylla Moraceae Sudan 3 4 1 

Ficus platyphylla Moraceae Guinea 1 16 1 

Ficus polita Moraceae Guinea 0 1 0 

Ficus populifolia Moraceae Sudan 2 0 0 

Ficus thonningii Moraceae Guinea 15 3 0 

Gardenia erubescens Rubiaceae Guinea 1 2 0 

Hyphaene thebaica Arecaceae Sahel 10 9 118 

Ipomoea 
argentaurata 

Convolvulaceae Sudan 1 0 0 

Jatropha curcas Euphorbiaceae Sudan 1 0 0 

Khaya senegalensis Meliaceae Guinea 0 0 15 

Lannea acida Anacardiaceae Guinea 2 19 75 

Mangifera indica Anacardiaceae Sudan 17 37 7 

Moringa oleifera Moringaceae Sudan 0 1 7 

Parkia biglobosa Mimosaceae Guinea 43 435 31 

Phoenix dactilifera Arecaceae Sahel 1 2 0 

Piliostigma 
reticulatum 

Caesalpiniaceae Sudan 116 114 431 

Sclerocarya birrea Anacardiaceae Sudan 18 20 10 

Steriospermum 
kunthianum 

Bignoniaceae Guinea 0 1 0 

Strychnos spinosa Loganiaceae Guinea 0 4 0 

Tamarindus indica Caesalpiniaceae Sudan 32 50 7 

Terminalia 
macroptera 

Combretaceae Guinea 2 5 0 

Viteralleria paradoxa Sapotaceae Sudan 19 16 1 

Vitex doniana Verbenaceae Guinea 8 11 1 

Ziziphus spina-cristi Rhamnaceae Sudan 3 9 1 

Zizyphus mauritiana Rhamnaceae Sahel 1 0 0 
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