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Abstract

Many computer vision problems can be viewed as image pairwise relationship

learning tasks. They learn a model to predict whether a given image pair belongs to

a particular pairwise relationship. Among the existing image pairwise relationships,

the similarity relationship and relative order relationship are the two most common

pairwise relationships in the computer vision tasks. The similarity learning meth-

ods aim to learn a proper similarity measure, with which the similarity between

images can be more effectively evaluated for classification. It is widely applied in

the computer vision applications such as face verification, person re-identification,

etc. Different from similarity, the relative order is a kind of antisymmetric relation-

ship. The goal of relative order relationship learning is to learn a prediction model

to predict the relative order relationship between two images. It is applied into the

ranking task, e.g. relative attributes, and the regression task, e.g. age estimation and

camera pose estimation.

Although the similarity and relative order relationships learning has been wide-

ly and successfully applied into many computer vision tasks, there are still some

issues to be further studied. The similarity learning can be divided by two cate-

gories, i.e. Mahalanobis distance metric learning and deep similarity learning. For

the Mahalanobis distance metric learning methods, it is important to investigate the

connections between metric learning and kernel classification and explore how to

utilize the kernel classification resources in the research and development of new

metric learning methods. It’s thus interesting to investigate whether we can uni-

fy the similarity learning methods into a general framework, which can provide a

good platform for developing new similarity learning algorithms. As the single im-
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age representation (SIR) and pairwise image representation (PIR) are commonly

utilized in deep learning methods, it’s necessary to design a similarity function by

fusing the SIR and PIR to exploit their advantages. For the relative order relation-

ship learning methods, how to learn the relative order relationship to improve the

performances of both ranking and regression methods is a crucial issue. As in some

applications, there are multiple relative order relationship to be learned, it’s also

important to build a network architecture for better tradeoff between the variances

and connections of different relative order relationships.

In this thesis, we aim to develop the distance metric learning, deep similari-

ty learning, single relative order relationship learning and multiple relative order

relationship learning models for image pairs.

In Chapter 2, we generalize several state-of-the-art metric learning methods,

such as large margin nearest neighbor (LMNN) and information theoretic metric

learning (ITML), into a kernel classification framework. First, doublets and triplets

are constructed from the training samples, and a family of degree-2 polynomial ker-

nel functions are proposed for pairs of doublets or triplets. Then, a kernel classifica-

tion framework is established to generalize many popular metric learning methods

such as LMNN and ITML. The proposed framework can also suggest new metric

learning methods, which can be efficiently implemented, interestingly, by using the

standard support vector machine (SVM) solvers. Two novel metric learning meth-

ods, namely doublet-SVM and triplet-SVM, are then developed under the proposed

framework. Experimental results show that doublet-SVM and triplet-SVM achieve

competitive classification accuracies with state-of-the-art metric learning methods

but with significantly less training time.
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In Chapter 3, we formulate metric learning as a kernel classification problem

with the positive semidefinite constraint, and solve it by iterated training of SVM-

s. The new formulation is easy to implement and efficient in training with the

off-the-shelf SVM solvers. Two novel metric learning models, namely Positive-

semidefinite Constrained Metric Learning (PCML) and Nonnegative-coefficient Con-

strained Metric Learning (NCML), are developed. Both PCML and NCML can

guarantee the global optimality of their solutions. Experiments are conducted on

handwritten digit classification, face verification and person re-identification to e-

valuate our methods. Compared with the state-of-the-art approaches, our methods

can achieve comparable classification accuracy and are efficient in training.

In Chapter 4, we analyze the connection between the SIR and PIR based ap-

proaches, and propose a novel similarity measure by fusing SIR and PIR to exploit

their advantages and boost the matching performance. A convolutional neural net-

work (CNN) based similarity learning approach is proposed to jointly learn the SIR

and PIR to optimize the proposed similarity measure. Our CNN is composed of a

sub-network shared by SIR and PIR, and followed by two concurrent sub-networks

to extract the SIRs of given images and the PIRs of given image pairs, respectively.

To reduce the computational cost, we adopt a shallow PIR sub-network which con-

sists of only one convolutional layer, one pooling layer and one fully-connected

layer. Therefore, both SIR and PIR can be jointly learned for pursuing better

matching accuracy with moderate computational cost. Furthermore, the match-

ing scores learned with pairwise comparison and triplet comparison objectives can

be combined to improve the matching performance. Experiments on the CUHK03,

CUHK01 and VIPeR datasets show that the proposed method can achieve favorable
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accuracy with modest training time.

In Chapter 5, we study to extend the deep siamese network from similarity

learning to relative order relationship learning. We formulate the second-order im-

age representation and the relative order relationship prediction function. Then we

propose an extended deep siamese CNN based method with relative order loss,

mean square error (MSE) loss and softmax loss to learn the relative order relation-

ship. Furthermore, we find that the proposed method can also be applied to the

regression task, e.g. age estimation, although it is not aimed at predicting pair-

wise relationship. We conduct the experiments on relative attribute ranking and age

estimation tasks. The results show that the proposed method achieves the state-of-

the-art performance, and outperforms the competing methods.

In Chapter 6, we study the multiple relative order relationship learning problem

for the camera pose estimation task. We consider the this task as an Multi-Task

Learning (MTL) problem, in which the learning of each pose component is regard-

ed as a learning task, and we propose a camera pose estimation method based on

deep siamese networks. In our proposed method, we use the second-order represen-

tation of images to learn the relative order relationship, and adopt the relative order

loss and mean square error (MSE) loss to make the predicted poses and their rela-

tive order to be consistent with the ground-truth. To jointly learn multiple relative

order relationships of the camera pose, we propose a deep siamese network which

consists of two shared branches. Each branch consists of the spatial sub-network

and regression sub-network, which learn the spatial feature and the regressors, re-

spectively. The spatial sub-network is shared across all the learning tasks, and it

can capture the generality between different pose components. As the regressors
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of the pose components are different, the regression sub-network of different pose

components are separated. So it can capture the specificity of each pose component.

The experimental results show that our proposed method has lower prediction error

than PoseNet [67] and the nearest neighbor approaches.

To sum up, we developed a kernel classification learning framework for metric

learning, and proposed a series of distance metric learning models, i.e. doublet-

SVM, triplet-SVM, PCML and NCML, based on the framework. We also proposed

a new similarity measure by fusing the SIR and PIR, and build a CNN to jointly

learn these representations and the similarity measure. On the basis of the deep

siamese network, we proposed a single relative order relationship learning model

and applied it into the ranking and regression tasks. For the camera pose estimation

task, we extended the single relative order relationship learning model into multiple

relative order relationship learning, and developed a CNN to model the variances

and connections between different relationships. In the future, we will study the

new image pairwise relationship indicators and the new learning models. We will

also investigate the new applications of similarity and relative order relationships

learning.
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Chapter 1

Introduction

1.1 Overview of image pairwise relationship

Image pairwise relationship is widely existed in the computer vision applications,

e.g. face verification, person re-identification, relative attributes, age estimation,

image quality assessment, camera pose estimation, etc. So far, there are many com-

puter vision tasks aim to learn the pairwise relationship of images. Given an image

pair, they learn a function to predict whether it belongs to a particular pairwise

relationship or not.

In the computer vision applications, there are many kinds of image pairwise

relationships. The most commonly used are the similarity relationship and the rel-

ative order relationship. The similarity relationship learning is mainly used in the

image classification or matching task, e.g. face verification [112] and person re-

identification [35], while the relative order relationship learning is mainly applied

in the ranking task, e.g. relative attributes [101]. In this section, we give an intro-

1
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duction of similarity and relative order relationship learning methods, respectively.

1.1.1 Similarity relationship learning

The similarity relationship is one of the most important and commonly used pair-

wise relationship in computer vision. How to measure the similarity between t-

wo images is a fundamental issue in image classification. The similarity learning

method learns the appropriate similarity or distance function s : X × X → R from

the image space X, which makes the similarity of the similar pair higher and the

similarity of dissimilar pair lower, or reduce the distance of similar pair while en-

large the distance of dissimilar pair [8]. Given an image pair (x, y), we can predict

whether they are similar or dissimilar by computing their learned similarity s(x, y).

The desired similarity measure can vary a lot in different applications due to the

underlying data structures and distributions, as well as the specificity of the learning

tasks. Learning the similarity from the given training images has been an active

topic in the past decade [8], and it can substantially improve the performance of

many clustering (e.g., k-means) and classification [e.g., k-nearest neighbors (NNs)]

methods. Similarity learning has been successfully adopted in many real world

applications, e.g., face identification [48], face verification [112], image retrieval

[10, 55], and activity recognition [126].

Among all kinds of similarity functions, the most commonly used is Maha-

lanobis distance, which is formulated as

sMahal(x, y) = (x − y)T M(x − y) (1.1)

where M is a positive semidefinite (PSD) matrix. We factorize the matrix M as
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M = LT L, and Eq. (1.1) can be rewritten as the following equivalent form

sMahal(x, y) = (x − y)T LT L(x − y) = ‖L(x − y)‖2
2 (1.2)

From Eq. (1.2), we can see that the Mahalanobis distance between x and y is

equivalent to the Euclidean distance between the transformed samples x′ = Lx and

y′ = Ly, where L is regarded as a linear transformation matrix.

When Mahalanobis distance metric learning is applied on computer vision, most

approaches extract the features of images in advance, and then learn the distance

metric based on the image features. Therefore, the performance of Mahalanobis

distance metric learning is largely relied on the image feature extraction process.

In recent years, the deep learning approaches have been successfully applied in

computer vision applications. The core of deep learning is to learn the nonlinear

representation to adapt the complex distribution of images. Many works combine

the learning of similarity and deep neural networks together, and propose a series

of deep similarity learning methods. They can not only learn the similarity measure

of two images, but also learn the deep representations from raw images. Most of

deep similarity learning methods formulate the similarity of image pairs as follows

sDeep

(
xi, x j

)
=

∥∥∥f(xi) − f(x j)
∥∥∥2

2
(1.3)

where f(xi) and f(x j) are the deep representations of images xi and x j.

1.1.2 Relative order relationship learning

It’s clear that similarity is the symmetric relationship since s(x, y) = s(y, x). How-

ever, in some applications, the relationship of two images is not symmetric. For
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example, the relative attribute ranking task aims to predict the relative order of at-

tributes, e.g. natural, perspective, etc., of two images. In this task, the prediction

function is defined as r(x, y), which denotes the relative attribute value of x com-

pared with y. Different from the similarity, this relationship is antisymmetric, since

r(x, y) = −r(y, x). Here we call this relationship r(x, y) as the relative order rela-

tionship.

To predict the relative order of two images, most of the relative order relation-

ship learning approaches formulate the prediction function as the indicator of rela-

tive order [101, 121, 146]. Given two images x and y, their relative order prediction

function is formulated as

r(x, y) = h(f(x)) − h(f(y)) (1.4)

where f(x) and f(y) are the image representations of x and y, which can be extracted

by the hand-crafted feature extractor or learned by the deep neural networks. h is

the prediction function of image representation.

1.2 Related works

1.2.1 Similarity learning

As we have mentioned in Section 1.1.1, the most frequently used similarity mea-

sures are Mahalanobis distance and deep representation based similarities. So we

review the related works about the similarity learning methods based on these two

measures, respectively.
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Mahalanobis distance metric learning

Compared with nonconvex metric learning models [45, 125], convex formulation

of metric learning [44, 119, 140, 142, 149] has drawn increasing attentions due

to its desired properties such as global optimality. Most convex models can be

formulated as SDP or quadratic SDP problems. Standard SDP solvers, however,

are inefficient for metric learning, especially when the size of training samples is

big or the feature dimension is high. Therefore, customized optimizer is developed

for each specific metric learning model. For LMNN, Weinberger et al. developed an

efficient solver based on sub-gradient descent and active set [139]. In ITML, Davis

et al. [33] suggested an iterative Bregman projection algorithm. Iterative projected

gradient descent method [63, 142] has been widely employed for metric learning but

it requires an eigenvalue decomposition in each iteration. Other algorithms such as

block-coordinate descent [104], smooth optimization [148], and Frank-Wolfe [149]

have also been studied for metric learning. Unlike the customized algorithms, we

formulate metric learning as a kernel classification problem with PSD constraint

and solve it using the off-the-shelf SVM solvers, which can guarantee the global

optimality and the PSD property of the learned M, and is easy to implement and

efficient in training.

Another line of work aims to develop metric learning algorithms by solving the

Lagrange dual problems. Shen et al. derived the Lagrange dual of the exponential

loss based metric learning model, and proposed a boosting-like approach, namely

BoostMetric[118, 119]. MetricBoost [9] and FrobMetric [115, 117] were further

proposed to improve BoostMetric. Liu and Vemuri incorporated two regularization

terms in the duality for robust metric learning [85]. Note that BoostMetric [118,
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119], MetricBoost [9], and FrobMetric [117] are proposed for metric learning with

triplet constraints, whereas in many applications such as verification, only pairwise

constraints are available in the training stage.

Studies have also given to connect SVM with metric learning [14, 36, 96]. Using

SVM, Nguyen and Guo [96] formulated metric learning as a quadratic SDP, and

adopted a projected gradient descent algorithm. They select the farthest neighbors

for each sample to construct similar pairs, while we select the nearest neighbors in

PCML and NCML. Moreover, the formulations and optimizers of our models are

different from the model in [96]. Brunner et al. [14] proposed a pairwise SVM to

learn a dissimilarity function. Their metric learning pairwise kernel is similar to

that used in our models, but the PSD property is not considered in their model. Do

et al. [36] analyzed the relation of LMNN and SVM, where LMNN is interpreted

as the joint learning of multiple local SVM-like models. By studying SVM from

a metric learning perspective, they presented an improved SVM for single sample

classification. Different with [36], we explain metric learning as a SVM for sample

pair classification with the PSD property, and propose two novel metric learning

methods, i.e., PCML and NCML, together with optimization algorithms.

Deep representation based similarity learning

Due to the achievement of deep CNNs in learning discriminative features from

large-scale visual data, many methods have adopted the deep architecture to jointly

learn the representation and the classifier [1, 28, 76, 112, 147]. Some of them focus

on learning the single image representation (SIR) together with the similarity func-

tion. Schroff et al. proposed a FaceNet model for face verification [112], which
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adopts a deep CNN to learn the Euclidean embedding per image by using the triplet

comparison loss. Online triplet generation is also developed to gradually increase

the difficulty of the triplets in training. Ding et al. proposed a deep SIR learning

model based on relative distance comparison for person re-identification [35]. It

first presents an effective triplet generation strategy to construct triplets, which con-

tains one image with a matched image and a mismatched image. For each triplet,

this model learns the SIR by maximizing the relative distance between the matched

pair and the mismatched pair. Cheng et al. proposed a multi-channel part-based

CNN method to jointly learn the features of the global and local human body im-

ages, and used an improved triplet loss for network training [29]. McLaughlin et

al. developed a framework consisting of the CNN, recurrent neural network and

temporal pooling layer to learn from the video sequence of a person [90]. It com-

bines the pairwise contrastive loss and cross-entropy loss, which are designed for

verification and identification tasks respectively, to train the whole network.

Despite learning SIR, some other methods are suggested to perform person re-

identification based on pairwise image representation (PIR). Li et al. proposed a fil-

ter pairing neural network (FPNN) [76], which learns the PIRs by a patch matching

layer followed by a maxout-grouping layer. In FPNN, the patch matching layer is

used to model the displacement of each horizontal stripe in the images across views,

the maxout-grouping layer improves the robustness of patch matching, and finally

a softmax classifier is imposed on the learned PIR for person re-identification. The

work in [1] shares the similar idea, but introduces a new layer to learn the pairwise

image representation by computing the neighborhood difference between two input

images. The work in [28] learns the PIR by formulating the person re-identification
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task as a learning-to-rank problem. For each image pair, this model first stitchs its

two images horizontally to form a holistic image, then feeds these images to a CNN

to learn their representations. Finally the ranking loss is used to ensure that each

sample is more similar to its positive matched image than its negative matched im-

age. Liu et al. proposed a Matching CNN (M-CNN) architecture for human parsing

[86], which learns the PIR of the image and a semantic region by a multi-layer cross

image convolutional path to predict their matching confidence and displacements.

Chen et al. learn multiple PIRs for an image pair with each corresponding to a local

region, and combine the local and global similarities to match the image pairs [24].

1.2.2 Relative order relationship learning

The relative order relationship learning methods can be divided into two categories,

i.e. single relative order relationship learning and multi relative order relationship

learning. The single relative order relationship learning method is mainly applied in

relative attribute ranking, and we will also apply it into age estimation in this thesis,

while the general application of multi relative order relationship learning method is

camera pose estimation. So we review the related works of these three tasks in this

section.

Relative attribute ranking

The relative attribute ranking methods can be traced back to 2011, when Parikh

and Grauman [101] learned a linear ranking function for relative attributes by an

SVM-like problem. They extracted the gist [99] and Lab color histogram features

of images, and then predicted the attribute values by the learned ranking function.
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To utilize the correlation among different attributes, Chen et al. [27] proposed a

multi-task learning method for relative attributes. Yang et al. [146] extended [101]

to the deep CNN scheme to realize end-to-end learning of deep feature and ranking

function.

These methods are based on global feature of images. Besides that, some meth-

ods learn the relative attribute based on image local parts. Sandeep et al. [109] used

the part detector to detect the landmark points, then learn the significance coefficient

and ranking model for relative attributes. Xiao and Lee [141] proposed a relative

attribute ranking method which can discover the spatial extend of relative attributes

without relying on the pre-trained detectors. Singh and Lee [121] developed a deep

learning model for part-based relative attributes. It integrates the spatial transformer

network [60] into CNN to localize and rank the relative attributes.

There are significant differences between these existing methods and our pro-

posed method. First, we formulate the prediction function based on the second-

order image representation, while the prediction functions of most existing methods

are based on first-order image representation. Second, our proposed method adopt

the MSE loss and softmax loss to employ the ground-truth label of each images,

while most of the existing methods only use the relative orders of image pairs as

the supervisory signal in training.

Age estimation

The earlier age estimation methods usually cast the age estimation as a classifica-

tion problem by using the Active Appearance Models [32], which can integrate the

texture and shape information of face images [73]. Fu and Huang [41] proposed a
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multiple linear regression procedure on the discriminative aging manifold for age

estimation. Guo et al. adopted some traditional regression methods, e.g. Support

Vector Regression (SVR) [50, 52], Canonical Correlation Analysis (CCA) [53] and

Partial Least Squares (PLS) [51], for age estimation.

Recently, some works about ordinal regression are proposed for age estimation.

Chang et al. [19] proposed an ordinal hyperplanes ranker for age estimation. They

used SVM to learn a series of functions to predict whether the age of input image

is older than the various given ages, and combine the outputs of these functions to

predict the age. Niu et al. [98] shared the similar idea of [19], but they used the

CNN with cross-entropy loss to learn the prediction age.

Due to the advantage of deep CNN with large-scale data training, Rothe et al.

[107] proposed an age estimation model based on the VGG-16 [120] architecture.

They casted age estimation as a classification task and use the softmax loss to train

the network. Antipov et al. [3] proposed a children-specialized age estimation

method by integrate a particular network for children images.

Camera pose estimation

The camera pose estimation task, which is also known as metric localization, aims

to estimate the camera position and orientation from the image. The earlier ap-

proaches usually uses the descriptor matching method to achieve this goal [30, 77,

78, 110, 122]. They build the 3D representation of scene images by Structure-from-

Motion (SfM) technique, and then match the 2D query image and the 3D scene rep-

resentation. However, this approach needs the 3D model which is relatively difficult

to obtain.
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In recent years, the deep learning approaches for camera pose estimation have

been proposed. Kendall et al. [67] proposed the PoseNet method. It uses the deep

CNN to learn the camera pose in an end-to-end manner. Melekhov et al. [91]

proposed an end-to-end approach based Siamese CNN to estimate the relative pose

of cameras. It makes the estimated relative pose and the ground-truth relative pose

as close as possible.

1.3 Motivation

1.3.1 The framework of Mahalanobis distance metric learning

From the literature review, it can be seen that most of the existing Mahalanobis dis-

tance metric learning methods are formulated as convex programming problems of

distance metric. They usually consists of a regularization term, a margin loss term

and a series of doublet or triplet constraints. Besides, both of the Mahalanobis dis-

tance metric learning methods and most of the supervised learning methods learn

the appropriate classifiers from the training data. So it is interesting to unify the

distance metric learning methods into a general framework by casting it as a stan-

dard supervised learning problem. It is also highly expected that the new distance

metric learning methods can be generated based on the framework.
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1.3.2 The training efficiency of Mahalanobis distance metric learn-

ing

In recent years, the image data scale is rapidly increasing. So training on large-scale

image data becomes a crucial task of computer vision, and the training efficiency

is an important issue. For the Mahalanobis distance metric learning task, most of

the existing methods formulate it as a convex positive semidefinite programming

(SDP) problem. Many solvers have been proposed to obtain their global optimum

solutions, e.g. projected gradient descent [142], iterative Bregman projection [33]

and online solver [21, 69, 92, 116]. However, most of them are not efficient in train-

ing with large-scale image data. In this case, developing the efficient Mahalanobis

distance metric learning method is fundamental and crucial in similarity learning.

1.3.3 The combination of single image and pairwise image rep-

resentations in deep similarity learning

The existing deep learning methods usually learn the single image representation

(SIR), which is the deep representation of a single image. Some other deep learning

methods learn the pairwise image representation (PIR), which is the deep represen-

tation of an image pair, to predict whether the image pair is positive or negative.

These two kinds of representations have their own advantage. The SIR is relatively

efficient in matching, while the PIR is effective in capture the relationship of the

image pair. Therefore, it’s important to propose a new similarity measure and de-

velop its learning algorithm to combine SIR and PIR, which takes the advantage of

both representations.
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1.3.4 The extension of deep siamese network for relative order

relationship learning

The deep siamese network is widely and successfully used in deep similarity learn-

ing. As the relative order relationship is also a widely existing pairwise relationship,

it is important to extend the deep siamese network from similarity learning to rela-

tive order relationship learning. In the ranking task and regression task, the image

pairs satisfy the relative order relationship. Thus it’s also necessary to investigate

how to apply the relative order relationship learning method to the ranking and

regression tasks.

1.3.5 The multiple relative order relationship learning

In some computer vision tasks such as camera pose estimation, we need to learn and

predict the relative order relationships of multiple components. However, using the

single relative order relationship learning method will loss the potential connec-

tions of different relative order relationships, and the traditional multiple regression

methods haven’t taken the relative order relationship of image pairs into consider-

ation. Therefore, it is necessary to develop a multiple relative order relationship

learning method which can model the generality and specificity of each relative

order relationship learning tasks.
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1.4 Contributions of the Thesis

This thesis focuses on proposing the learning models of similarity and relative order

relationships of image pair. The framework of this thesis is illustrated in Fig. 1.1.

The main contributions of this thesis are listed as follows.

Image Pairwise Relationship 
Learning

Similarity Learning Relative Order 
Relationship Learning

Mahalanobis 
Distance Metric 

Learning

Deep Similarity 
Learning

Single Relative 
Order Relationship 

Learning

Multiple Relative 
Order Relationships 

Learning

From 

similarity 

relationship 

to relative 

order 

relationship

From hand-crafted 

feature to deep feature

From single relative 

order relationship to 

multiple relative order 

relationships

Figure 1.1 The framework of the thesis.

In Chapter 2, we develop a kernel classification framework for Mahalanobis dis-

tance metric learning by casting it as a standard supervised learning problem. This

framework can unify many state-of-the-art distance metric learning methods, such

as large margin nearest neighbor (LMNN) [138–140], information theoretic metric

learning (ITML) [33], and logistic discriminative based metric learning (LDML)

[48]. It also provides a platform for developing new distance metric learning meth-
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ods. We developed two methods, i.e. doublet-SVM and triplet-SVM, based on

the proposed framework. These two distance metric learning methods can be im-

plemented using the off-the-shelf Support Vector Machine (SVM) solvers, and is

efficient in training.

In Chapter 3, we proposed the Positive-semidefinite Constrained Metric Learn-

ing (PCML) method by formulating distance metric learning as a positive semidef-

inite programming problem, and it is solved by the iterated training of SVM and

positive semidefinite projection. It can be easily implemented by the SVM solvers

such as LibSVM [17]. By re-parameterizing the distance metric, we formulate the

Nonnegative-coefficient Constrained Metric Learning (NCML) model, and it can be

solved by iterated training of two SVMs. As PCML and NCML are convex model-

s, their global optimal solutions can be obtained. The experiments on handwritten

digit classification, face verification and person re-identification demonstrate that

PCML and NCML can achieve favorable classification accuracy and efficient in

training.

In Chapter 4, we formulate a new deep similarity measure by combining the

SIR and PIR. To exploit the advantage of these two representations, we develop

a framework to joint learn SIR and PIR with deep CNN. The network is trained

based on pairwise comparison objective and triplet comparison objective, respec-

tively. The pairwise comparison objective makes the deep similarities of the similar

image pairs higher than a threshold, and those of the dissimilar image pairs lower

than the threshold. The triplet comparison objective makes the deep similarity of

each similar image pair is higher than that of the dissimilar pair. The similarities

learned by the two objectives are combined to boost the performance. The experi-
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mental results on person re-identification show that the proposed methods perform

favorably compared with the state-of-the-art approaches.

In Chapter 5, we extend the deep siamese network from similarity learning to

relative order relationship learning. We first design the second-order representation

of images and formulate the relative order relationship prediction function. Then we

design loss function of our extended deep siamese network which is composed of

the relative order loss, mean square error (MSE) loss and softmax loss. They make

the predicted relative order of each image pair to be consistent with the ground-

truth and minimize the the error between the predicted value and the ground-truth

label. We also demonstrate that the proposed method can be not only applied in the

ranking task, but also applied in the regression task. The experiments on relative

attributes and age estimation demonstrate the effectiveness of our proposed model

in terms of prediction accuracy.

In Chapter 6, we study the multiple relative order relationship learning problem

for the camera pose estimation task. We consider the this task as an Multi-Task

Learning (MTL) problem, in which the learning of each pose component is regard-

ed as a learning task. We aim to learn these tasks jointly to discover the potential

connection of pose components. Therefore, we propose a camera pose estimation

method based on deep siamese networks. Similar to Chapter 5, we also use the

second-order representation of images to learn the relative order relationship, and

adopt the relative order loss and mean square error (MSE) loss to make the predict-

ed poses and their relative order to be consistent with the ground-truth. Different

from Chapter 5, the multiple relative order relationships are jointly learned using

one deep siamese network. Our deep siamese network consists of two branches
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which share the same parameters. Each branch consists of the spatial sub-network

and regression sub-network, which learn the spatial feature and the regressors, re-

spectively. The spatial sub-network is shared across all the learning tasks, and it

can capture the generality between different pose components. As the regressors

of the pose components are different, the regression sub-network of different pose

components are separated. So it can capture the specificity of each pose component.

The experimental results show that our proposed method has lower prediction error

than PoseNet [67] and the nearest neighbor approaches.



Chapter 2

A Kernel Classification Framework

for Metric Learning

2.1 Introduction

How to measure the distance (or similarity/dissimilarity) between two data points

is a fundamental issue in unsupervised and supervised pattern recognition. The

desired distance metrics can vary a lot in different applications due to the underly-

ing data structures and distributions, as well as the specificity of the learning tasks.

Learning a distance metric from the given training examples has been an active

topic in the past decade [44, 142], and it can improve much the performance of

many clustering (e.g., k-means) and classification (e.g., k-nearest neighbors) meth-

ods. Distance metric learning has been successfully adopted in many real world

applications, e.g., face identification [48], face verification [149], image retrieval

[10, 55], and activity recognition [126].

18
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Generally speaking, the goal of distance metric learning is to learn a distance

metric from a given collection of similar/dissimilar samples by punishing the large

distances between similar pairs and the small distances between dissimilar pairs. So

far, numerous methods have been proposed to learn distance metrics, similarity met-

rics, and even nonlinear distance metrics. Among them, learning the Mahalanobis

distance metrics for k-nearest neighbor classification has been receiving consid-

erable research interests [33, 45, 48, 59, 105, 116, 118, 133, 138]. The problem

of similarity learning has been studied as learning correlation metrics and cosine

similarity metrics [5, 7, 20, 42, 95]. Several methods have been proposed for non-

linear distance metric learning [61, 64, 132]. Extensions of metric learning have

also been investigated for multiple kernel learning [132], semi-supervised learning

[55, 97, 135], multiple instance learning [49], and multi-task learning [100, 145],

etc.

Despite that many metric learning approaches have been proposed, there are

still some issues to be further studied. First, since metric learning learns a distance

metric from the given training dataset, it is interesting to investigate whether we can

recast metric learning as a standard supervised learning problem. Second, most ex-

isting metric learning methods are motivated from specific convex programming or

probabilistic models, and it is interesting to investigate whether we can unify them

into a general framework. Third, it is highly demanded that the unified framework

can provide a good platform for developing new metric learning algorithms, which

can be easily solved by standard and efficient learning tools.

With the above considerations, in this chapter we present a kernel classifica-

tion framework to learn a Mahalanobis distance metric in the original feature s-
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pace, which can unify many state-of-the-art metric learning methods, such as large

margin nearest neighbor (LMNN) [138–140], information theoretic metric learning

(ITML) [33], and logistic discriminative based metric learning (LDML) [48]. This

framework allows us to easily develop new metric learning methods by using exist-

ing kernel classifiers such as the support vector machine (SVM) [128]. Under the

proposed framework, we consequently present two novel metric learning methods,

namely doublet-SVM and triplet-SVM, by modeling metric learning as an SVM

problem, which can be efficiently solved by the existing SVM solvers like LibSVM

[17].

The remainder of this chapter is organized as follows. Section 2.2 presents the

proposed kernel classification framework for metric learning. Section 2.3 intro-

duces the doublet-SVM and triplet-SVM methods. Section 2.4 presents the experi-

mental results, and Section 2.5 summarizes the chapter.

2.2 A Kernel Classification based Metric Learning

Framework

Current metric learning models largely depend on convex or non-convex optimiza-

tion techniques, some of which are very inefficient to solve large-scale problems.

In this section, we present a kernel classification framework which can unify many

state-of-the-art metric learning methods. It also provides a good platform for de-

veloping new metric learning algorithms, which can be easily solved by using the

efficient kernel classification tools. The connections between the proposed frame-

work and LMNN, ITML, and LDML will also be discussed in detail.
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2.2.1 Doublets and Triplets

Unlike conventional supervised learning problems, metric learning usually con-

siders a set of constraints imposed on the doublets or triplets of training samples

to learn the desired distance metric. It is very interesting and useful to evaluate

whether metric learning can be casted as a conventional supervised learning prob-

lem. To build a connection between the two problems, we model metric learning as

a supervised learning problem operating on a set of doublets or triplets, as described

below.

Let D = {(xi, yi) |i = 1, 2, · · · , n } be a training dataset, where vector xi ∈ R
d

represents the ith training sample, and scalar yi represents the class label of xi. Any

two samples extracted from D can form a doublet
(
xi, x j

)
, and we assign a label h

to this doublet as follows: h = −1 if yi = y j and h = 1 if yi � y j. For each training

sample xi, we find fromD its nearest similar neighbor, denoted by xs
i , and its nearest

dissimilar neighbor, denoted by xd
i , and then construct 2 doublets {(xi, xs

i ), (xi, xd
i )}.

By combining all such doublets constructed from all training samples, we build a

doublet set, denoted by {z1, · · · , zNd}, where zl = (xl,1, xl,2), l = 1, 2, · · · ,Nd. The

label of doublet zl is denoted by hl. Note that doublet based constraints are used in

ITML [33] and LDML [48], but the details of the construction of doublets are not

given.

We call
(
xi, x j, xk

)
a triplet if three samples xi, x j and xk are from D and their

class labels satisfy yi = y j � yk. We adopt the following strategy to construct a

triplet set. For each training sample xi, we find its nearest neighbor xs
i which have

the same class label as xi, and the nearest neighbors xd
i which have different class

labels from xi. We can thus construct a triplet (xi, xs
i , x

d
i ) for each sample xi. By
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grouping all the triplets, we form a triplet set {t1, · · · , tNt}, where tl = (xl,1, xl,2, xl,3),

l = 1, 2, · · · ,Nt. Note that for the convenience of expression, here we remove the

super-script “s” and “d” from xl,2 and xl,3, respectively. A similar way to construct

the triplets was used in LMNN [138] based on the k-nearest neighbors of each

sample.

2.2.2 A Family of Degree-2 Polynomial Kernels

We then introduce a family of degree-2 polynomial kernel functions which can op-

erate on pairs of the doublets or triplets defined above. With the introduced degree-2

polynomial kernels, distance metric learning can be readily formulated as a kernel

classification problem.

Given two samples xi and x j, we define the following function:

K(xi, x j) = tr(xixT
i x jxT

j ), (2.1)

where tr (•) represents the trace operator of a matrix. One can easily see that

K(xi, x j) = (xT
i x j)

2 is a degree-2 polynomial kernel, and K(xi, x j) satisfies the Mer-

cer’s condition [114].

The kernel function defined in (2.1) can be extended to a pair of doublets or

triplets. Given two doublets zi = (xi,1, xi,2) and z j = (x j,1, x j,2), we define the corre-

sponding degree-2 polynomial kernel as

KD(zi, z j) = tr
(
(xi,1 − xi,2)(xi,1 − xi,2)T (x j,1 − x j,2)(x j,1 − x j,2)T

)
=

[
(xi,1 − xi,2)T (x j,1 − x j,2)

]2
. (2.2)

The kernel function in (2.2) defines an inner product of two doublets. With this

kernel function, we can learn a decision function to tell whether the two samples of
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a doublet have the same class label. In Section 2.2.3 we will show the connection

between metric learning and kernel decision function learning.

Given two triplets ti = (xi,1, xi,2, xi,3) and t j = (x j,1, x j,2, x j,3), we define the

corresponding degree-2 polynomial kernel as

KT (ti, t j) = tr
(
TiT j

)
, (2.3)

where

Ti =
(
xi,1 − xi,3

) (
xi,1 − xi,3

)T − (
xi,1 − xi,2

) (
xi,1 − xi,2

)T , (2.4)

T j =
(
x j,1 − x j,3

) (
x j,1 − x j,3

)T −
(
x j,1 − x j,2

) (
x j,1 − x j,2

)T
. (2.5)

The kernel function in (2.3) defines an inner product of two triplets. With this

kernel, we can learn a decision function based on the inequality constraints imposed

on the triplets. In Section 2.2.3 we will also show how to deduce the Mahalanobis

metric from the decision function.

2.2.3 Metric Learning via Kernel Methods

With the degree-2 polynomial kernels defined in Section 2.2.2, the task of metric

learning can be easily solved by kernel methods. More specifically, we can use any

kernel classification method to learn a kernel classifier with one of the following

two forms

gd (z) = sgn
(∑

l
hlαlKD (zl, z) − b

)
, (2.6)

gt (t) = sgn
(∑

l
αlKT (tl, t)

)
, (2.7)

where zl, l = 1, 2, · · · ,N, is the doublet constructed from the training dataset, hl is

the label of zl, tl is the triplet constructed from the training dataset, z =
(
x(i), x( j)

)
is

the test doublet, t is the test triplet, αl is the weight, and b is the bias.
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For doublet, we have

∑
l
hlαl tr

(
(xl,1 − xl,2)(xl,1 − xl,2)T (x(i) − x( j))(x(i) − x( j))T

)
− b

=(x(i) − x( j))T M(x(i) − x( j)) − b,
(2.8)

where

M =
∑

l
hlαl(xl,1 − xl,2)(xl,1 − xl,2)T (2.9)

is the matrix M of the Mahalanobis distance metric. Thus, the kernel decision

function gd (z) can be used to determine whether x(i) and x( j) are similar or dissimilar

to each other.

For triplet, the matrix M can be derived as follows.

Theorem 2.2.1 Denote by t =
(
x(i), x( j), x(k)

)
the test triplet and by tl =

(
xl,1, xl,2, xl,3

)
the lth triplet in the training set. Let Tl =

(
xl,1 − xl,3

) (
xl,1 − xl,3

)T−(xl,1 − xl,2
) (

xl,1 − xl,2
)T ,

and T =
(
x(i) − x(k)

) (
x(i) − x(k)

)T −
(
x(i) − x( j)

) (
x(i) − x( j)

)T
. For the decision func-

tion defined in Eq. (2.7), if we re-parameterize the Mahalanobis distance metric

matrix M as

M =
∑

l
αlTl

=
∑

l
αl

[(
xl,1 − xl,3

) (
xl,1 − xl,3

)T − (
xl,1 − xl,2

) (
xl,1 − xl,2

)T
], (2.10)

then there is

∑
l
αlKT (tl, t) =

(
x(i) − x(k)

)T M
(
x(i) − x(k)

) − (
x(i) − x( j)

)T
M

(
x(i) − x( j)

)
.

(2.11)
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Proof On the basis of the definition of KT (tl, t) in (2.3), we have

∑
l
αlKT (tl, t) =

∑
l
αl tr (TlT)

=
∑

l
αl tr

(
Tl

((
x(i) − x(k)

) (
x(i) − x(k)

)T −
(
x(i) − x( j)

) (
x(i) − x( j)

)T
)T

)

=
∑

l
αl tr

(
Tl

(
x(i) − x(k)

) (
x(i) − x(k)

)T
)
−

∑
l
αl tr

(
Tl

(
x(i) − x( j)

) (
x(i) − x( j)

)T
)

=
(
x(i) − x(k)

)T
(∑

l
αlTl

) (
x(i) − x(k)

) − (
x(i) − x( j)

)T (∑
l
αlTl

) (
x(i) − x( j)

)
=

(
x(i) − x(k)

)T M
(
x(i) − x(k)

) − (
x(i) − x( j)

)T
M

(
x(i) − x( j)

)

.

(2.12)

End of proof.

Clearly, equations (2.6)∼(2.12) provide us a new perspective to view and under-

stand the distance metric matrix M under a kernel classification framework. Mean-

while, this perspective provides us new approaches for learning distance metric,

which can be much easier and more efficient than the previous metric learning ap-

proaches. In the following, we introduce two kernel classification methods for met-

ric learning: regularized kernel SVM and kernel logistic regression. Note that by

modifying the construction of doublet or triplet set, using different kernel classifier

models, or adopting different optimization algorithms, other new metric learning

algorithms can also be developed under the proposed framework.
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Kernel SVM-like Model

Given the doublet or triplet training set, an SVM-like model can be proposed to

learn the distance metric:

min
M,b,ξ

r (M) + ρ (ξ)

s.t. f (d)
l

(
(xl,1 − xl,2)T M(xl,1 − xl,2), b, ξl

)
≥ 0 (doublet set),

or f (t)
l

(
(xl,1 − xl,3)T M(xl,1 − xl,3) − (xl,1 − xl,2)T M(xl,1 − xl,2), ξl

)
≥ 0 (triplet set),

ξl ≥ 0,
(2.13)

where r (M) is the regularization term, ρ (ξ) is the margin loss term, the constraint

f (d)
l can be any linear function of (xl,1 − xl,2)T M(xl,1 − xl,2), b, and ξl, and the con-

straint f (t)
l can be any linear function of (xl,1 − xl,3)T M(xl,1−xl,3)−(xl,1 − xl,2)T M(xl,1−

xl,2) and ξl. To guarantee that (2.13) is convex, we can simply choose convex regu-

larizer r (M) and convex margin loss ρ (ξ). By plugging (2.9) or (2.10) in the model

in (2.13), we can employ the SVM and kernel methods to learn all αl to obtain the

matrix M.

If we adopt the Frobenius norm to regularize M and the hinge loss penalty on

ξl, the model in (2.13) would become the standard SVM. SVM and its variants have

been extensively studied [94, 111, 128] and various algorithms have been proposed

for large-scale SVM training [31, 127]. Thus, the SVM-like model in (2.13) can

allow us to learn good metrics efficiently from large-scale training data.
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Kernel logistic regression

Under the kernel logistic regression model (KLR) [65], we let hl = 1 if the samples

of doublet zl belong to the same class and let hl = 0 if the samples of it belong to

different classes. Meanwhile, suppose that the label of a doublet zl is unknown, and

we can calculate the probability that zl’s label is 1 as follows:

P(pl = 1|zl) =
1

1 + exp (
∑

i αiKD (zi, zl) + b)
. (2.14)

The coefficient vector α and the bias b can be obtained by maximizing the fol-

lowing log-likelihood function:

(α, b) = arg max
α,b

{
l(α, b) =

∑
l
hl ln P(pl = 1|zl) + (1 − hl) ln P(pl = 0|zl)

}
.

(2.15)

KLR is a powerful probabilistic approach for classification. By modeling metric

learning as a KLR problem, we can easily use the existing KLR algorithms to learn

the desired metric. Moreover, the variants and improvements of KLR, e.g., sparse

KLR [68], can also be used to develop new metric learning methods.

2.2.4 Connections with LMNN, ITML, and LDML

The proposed kernel classification framework provides a unified explanation of

many state-of-the-art metric learning methods. In this subsection, we show that

LMNN and ITML can be considered as certain SVM models, while LDML is an

example of the kernel logistic regression model.



28

LMNN

LMNN [138] learns a distance metric that penalizes both large distances between

samples with the same label and small distances between samples with different

labels. LMNN is operated on a set of triplets
{(

xi, x j, xk

)}
, where xi has the same

label as x j but has different label from xk. The optimization problem of LMNN can

be stated as follows:

min
M,ξi jk

∑
i, j

(
xi − x j

)T
M

(
xi − x j

)
+C

∑
i, j,k
ξi jk

s.t. (xi − xk)T M (xi − xk) −
(
xi − x j

)T
M

(
xi − x j

)
≥ 1 − ξi jk,

ξi jl ≥ 0,

M � 0.

(2.16)

Since M is required to be positive semidefinite in LMNN, we introduce the

following indicator function:

ι� (M) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if M � 0,

+∞, otherwise,
(2.17)

and choose the following regularizer and margin loss:

rLMNN (M) =
∑

i, j

(
xi − x j

)T
M

(
xi − x j

)
+ ι� (M) , (2.18)

ρLMNN (ξ) = C
∑

i, j,k
ξi jk. (2.19)

Then we can define the following SVM-like model on the same triplet set:

min
M,ξ

rLMNN (M) + ρLMNN (ξ)

s.t. (xi − xk)T M (xi − xk) −
(
xi − x j

)T
M

(
xi − x j

)
≥ 1 − ξi jk,

ξi jk ≥ 0.

(2.20)



29

It is obvious that the SVM-like model in (2.20) is equivalent to the LMNN

model in (2.16).

ITML

ITML [33] is operated on a set of doublets
{(

xi, x j

)}
by solving the following mini-

mization problem:

min
M,ξ

Dld (M,M0) + γ · Dld
(
diag (ξ) , diag (ξ0)

)
s.t. (xi − x j)T M(xi − x j) ≤ ξu(i, j) (i, j) ∈ S,

(xi − x j)T M(xi − x j) ≥ ξl(i, j) (i, j) ∈ D,
M � 0,

(2.21)

where M0 is the given prior of the metric matrix, ξ0 is the given prior on ξ, S is

the set of doublets where xi and x j have the same label, D is the set of doublets

where xi and x j have different labels, and Dld (·, ·) is the LogDet divergence of two

matrices defined as:

Dld (M,M0) = tr
(
MM−1

0

)
− log det

(
MM−1

0

)
− n. (2.22)

Davis et al. also proposed an iterative Bregman projection algorithm for ITML

to avoid the positive semidefinite projection of the distance metric matrix M [33].

By introducing the following regularizer and margin loss:

rITML (M) = Dld (M,M0) + ι� (M) , (2.23)

ρITML (ξ) = γ · Dld
(
diag (ξ) , diag (ξ0)

)
, (2.24)
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we can then define the following SVM-like model on the same doublet set:

min
M,ξ

rITML (M) + ρITML (ξ)

s.t. (xi − x j)T M(xi − x j) ≤ ξu(i, j) (i, j) ∈ S,
(xi − x j)T M(xi − x j) ≥ ξl(i, j) (i, j) ∈ D,
ξi j ≥ 0,

(2.25)

where zi j =
(
xi, x j

)
. One can easily see that the SVM-like model in (2.25) is equiv-

alent to the ITML model in (2.21).

LDML

LDML [48] is a logistic discriminant based metric learning approach based on a

set of doublets. Given a doublet zl =
(
xl(i), xl( j)

)
and its label hl, LDML defines the

probability that yl(i) = yl( j) as follows:

pl = P(yl(i) = yl( j)|xl(i), xl( j),M, b)

= σ(b − dM(xl(i), xl( j))),
(2.26)

whereσ(z) is the sigmoid function, b is the bias, and dM(xl(i), xl( j)) = (xl(i) − xl( j))T M(xl(i)−
xl( j)). With the pl defined in (2.26), LDML learns M and b by maximizing the fol-

lowing log-likelihood:

max
M,b

{
l(M, b) =

∑
l
hl ln pl + (1 − hl) ln(1 − pl)

}
. (2.27)

Note that M is not constrained to be positive semidefinite in LDML.

With the same doublet set, let α be the solution obtained by the kernel logistic

model in (2.15), and M be the solution of LDML in (2.27). It is easy to see that:

M =
∑

l
αl(xl(i) − xl( j))(xl(i) − xl( j))T . (2.28)
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Thus, LDML is equivalent to kernel logistic regression under the proposed kernel

classification framework.

2.3 Metric Learning via SVM

The kernel classification framework proposed in Section 2.2 can not only generalize

the existing metric learning models (as shown in Section 2.2.4), but also be able to

suggest new metric learning models. Actually, for both ITML and LMNN, the pos-

itive semidefinite constraint is imposed on M to guarantee that the learned distance

metric is a Mahalanobis metric, which makes the models unable to be solved using

the efficient kernel learning toolbox. In this section, a two-step greedy strategy is

adopted for metric learning. We first neglect the positive semidefinite constraint

and use the SVM toolbox to learn a preliminary matrix M, and then map M onto

the space of positive semidefinite matrices. The projected sub-gradient algorithm

used in many metric learning methods [140] share similar spirits with the two-

step greedy strategy. As examples, we present two novel metric learning methods,

namely doublet-SVM and triplet-SVM, based on the proposed framework. Like in

conventional SVM, we adopt the Frobenius norm to regularize M and employ the

hinge loss penalty, and hence the doublet-SVM and triplet-SVM can be efficiently

solved by using the standard SVM toolbox.
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2.3.1 Doublet-SVM

In doublet-SVM, we set the Frobenius norm regularizer as rSVM (M) = 1
2 ‖M‖2

F , and

set ρSVM (ξ) = C
∑

l ξl as the margin loss term, resulting in the following model:

min
M,b,ξ

1
2
‖M‖2

F +C
∑

l
ξl

s.t. hl

(
(xl,1 − xl,2)T M(xl,1 − xl,2) + b

)
≥ 1 − ξl,

ξl ≥ 0, ∀l,

(2.29)

where ‖·‖F denotes the Frobenius norm.

We solve this problem by its Lagrangian dual problem. According to the origi-

nal problem of doublet-SVM in (2.29), its Lagrangian can be defined as follows:

L (M, b, ξ,α,β) =
1
2
‖M‖2

F +C
∑

l
ξl −

∑
l
βlξl

−
∑

l
αl

[
hl

(
(xl,1 − xl,2)T M(xl,1 − xl,2) + b

)
− 1 + ξl

]
,

(2.30)

where α and β are the Lagrange multipliers which satisfy αl ≥ 0 and βl ≥ 0, ∀l.

To convert the original problem to its dual, we let the derivative of the Lagrangian

with respect to M, b and ξ to be 0:

∂L (M, b, ξ,α,β)
∂M

= 0 ⇒ M −
∑

l
αlhl

(
xl,1 − xl,2

) (
xl,1 − xl,2

)T
= 0, (2.31)

∂L (M, b, ξ,α,β)
∂b

= 0 ⇒
∑

l
αlhl = 0, (2.32)

∂L (M, b, ξ,α,β)
∂ξl

= 0 ⇒ C − αl − βl = 0 ⇒ 0 < αl < C, ∀l. (2.33)

Equation (2.31) implies the relationship between M and α as follows:

M =
∑

l
αlhl

(
xl,1 − xl,2

) (
xl,1 − xl,2

)T . (2.34)
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Substituting (2.31)∼(2.33) back into the Lagrangian, we get the Lagrange dual

problem of doublet-SVM as follows:

max
α

− 1
2

∑
i, j
αiα jhih jKD

(
zi, z j

)
+

∑
i
αi

s.t. 0 ≤ αl ≤ C, ∀l,∑
l
αlhl = 0.

(2.35)

which can be easily solved by many existing SVM solvers such as LibSVM [17].

2.3.2 Triplet-SVM

In triplet-SVM, we also choose rSVM (M) = 1
2 ‖M‖2

F as the regularization term, and

choose ρSVM (ξ) = C
∑

l ξl as the margin loss term. Since the triplets do not have

label information, we choose the linear inequality constraints which are adopted in

LMNN, resulting in the following triplet-SVM model:

min
M,ξ

1
2
‖M‖2

F +C
∑

l
ξl

s.t. (xl,1 − xl,3)T M(xl,1 − xl,3) − (xl,1 − xl,2)T M(xl,1 − xl,2) ≥ 1 − ξl,
ξl ≥ 0, ∀l.

(2.36)

Actually, the proposed triplet-SVM can be regarded as a one-class SVM model,

and the formulation of triplet-SVM is similar to the one-class SVM in [111]. We

also attempt to solve it by its Lagrangian dual problem. According to the original

problem of triplet-SVM in (2.36), its Lagrangian can be defined as follows:

L (M, ξ,α,β) =
1
2
‖M‖2

F +C
∑

l
ξl

−
∑

l
αl

[
(xl,1 − xl,3)T M(xl,1 − xl,3) − (xl,1 − xl,2)T M(xl,1 − xl,2)

]
+

∑
l
αl −

∑
l
αlξl −

∑
l
βlξl,

(2.37)
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where α and β are the Lagrange multipliers, which satisfy αl ≥ 0 and βl ≥ 0, ∀l.

To convert the original problem to its dual, we let the derivative of the Lagrangian

with respect to M and ξ to be 0:

∂L (M, ξ,α,β)
∂M

= 0 ⇒

M −
∑

l
αl

[(
xl,1 − xl,3

) (
xl,1 − xl,3

)T − (
xl,1 − xl,2

) (
xl,1 − xl,2

)T
]
= 0,

(2.38)

∂L (M, ξ,α,β)
∂ξl

= 0 ⇒ C − αl − βl = 0 ⇒ 0 < αl < C, ∀l. (2.39)

Equation (2.38) implies the relationship between M and α as follows:

M =
∑

l
αl

[(
xl,1 − xl,3

) (
xl,1 − xl,3

)T − (
xl,1 − xl,2

) (
xl,1 − xl,2

)T
]
. (2.40)

Substituting (2.38) and (2.39) back into the Lagrangian, we get the Lagrange

dual problem of triplet-SVM as follows:

max
α

− 1
2

∑
i, j
αiα jKT

(
ti, t j

)
+

∑
i
αi

s.t. 0 ≤ αl ≤ C, ∀l.
(2.41)

which can also be efficiently solved by existing SVM solvers [17].

2.3.3 Discussions

The matrix M learned by doublet-SVM and triplet-SVM may not be positive semidef-

inite. To learn a Mahalanobis distance metric, which requires M to be positive

semidefinite, we can compute the singular value decomposition of M = UΛV,

where Λ is the diagonal matrix of eigenvalues, and then preserve only the positive

eigenvalues in Λ to form another diagonal matrix Λ+. Finally, we let M+ = UΛ+V

be the Mahalanobis metric matrix.
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The proposed doublet-SVM and triplet-SVM are easy to implement since the

use of Frobenius norm regularizer and hinge loss penalty allows us to readily em-

ploy the available SVM toolbox to solve them. A number of efficient algorithms,

e.g., sequential minimal optimization [103], have been proposed for SVM training,

making doublet-SVM and triplet-SVM very efficient to optimize. Moreover, using

the large-scale SVM training algorithms [12, 31, 37, 127], we can easily extend

doublet-SVM and triplet-SVM to deal with large-scale metric learning problems.

A number of kernel methods have been proposed for supervised learning [114].

With the proposed framework, we can easily couple them with the degree-2 polyno-

mial kernel to develop new metric learning approaches. Semi-supervised, multiple

instance, and multi-task metric learning have been investigated in [4, 49, 55, 100].

Fortunately, the proposed kernel classification framework can also allow us to de-

velop such kind of metric learning approaches based on the recent progress of k-

ernel methods for semi-supervised, multiple instance, and multitask learning [2, 6,

38, 43]. Taking semi-supervised metric learning as an example, based on Lapla-

cian SVM [6] and doublet-SVM, we can readily extend the kernel classification

framework for semi-supervised metric learning.

Let {(zi, hi)}Li=1 be a set of L labeled doublets, and {zi}i=L+U
i=L+1 be a set of U unla-

beled doublets. With the degree-2 polynomial kernel KD

(
zi, z j

)
, the decision func-

tion can be expressed as:

f (z) =
∑L

i=1
αihiKD (z, zi) +

∑L+U

i=L+1
αiKD (z, zi), (2.42)

where z =
(
x( j), x(k)

)
, zi =

(
xi,1, xi,2

)
. Analogous to Laplacian SVM, one can com-
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bine the Frobenius norm regularizer and the manifold regularizer:

r ( f ) = γA ‖ f ‖2
K +

γI

(U + L)2 fT (D − W) f, (2.43)

where ‖ f ‖K denotes the norm in the kernel feature space, fi =
∑L+U

j=1 α jKD

(
zi, z j

)
,

f = ( f1, · · · , fL+U)T , W is introduced to model the adjacency between doublets with

Wi j = exp
((
−KD (zi, zi) + 2KD

(
zi, z j

)
− KD

(
z j, z j

))
/4t

)
(t is the constant parame-

ter), where D is a diagonal matrix with Dii =
∑L+U

j=1 Wi j. By using hinge loss as

the margin loss term ρ (ξ) and introducing the Laplacian matrix L = D − W, semi-

supervised metric learning can then be formulated as Laplacian SVM:

min
f
γA ‖ f ‖2

K +
γI

(u + l)2 fT Lf +C
∑

i
ξi

s.t. hi ( f (zi) + b) ≥ 1 − ξi,
ξi ≥ 0, i = 1, · · · , L.

(2.44)

The Lagrange dual problem of Laplacian SVM can be represented as

min
α

∑L

i=1
αi − 1

2
αT Qα

s.t. 0 ≤ αi ≤ C, i = 1, · · · , L,∑L

i=1
αihi = 0,

(2.45)

where Q = YJK
(
2γAI + 2 γI

(L+U)2 LK
)−1

JT Y, K is the kernel Gram matrix with Ki j =

KD

(
zi, z j

)
, Y is an (L + U) × (L + U) diagonal matrix with Yii = hi when i ≤ L and

0 otherwise, J is an (L + U) × (L + U) diagonal matrix with Jii = 1 when i ≤ L and

0 otherwise.

The above Laplacian SVM problem can be solved by the standard SVM solver

[6]. Given the optimal solution on α, the positive semidefinite matrix M can be
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obtained by

M =
∑L

i=1
αihi

(
xi,1 − xi,2

) (
xi,1 − xi,2

)T

+
∑L+U

i=L+1
αi

(
xi,1 − xi,2

) (
xi,1 − xi,2

)T .

(2.46)

Similarly, one can extend the kernel classification framework for multiple in-

stance and multi-task metric learning based on the multiple instance and multi-task

kernel learning methods [2, 38, 43].

2.4 Experimental Results

In the experiments, we evaluate the proposed doublet-SVM and triplet-SVM for

k-NN classification with k = 1 on the handwritten digit classification and person

re-identification tasks. We implemented doublet-SVM and triplet-SVM based on

the popular SVM toolbox LibSVM1. In the training stage, the doublet set used in

doublet-SVM is exactly the same as that used in ITML, but is different from that

used in the other models. The triplet set used in triplet-SVM is different from that

used in LMNN. The reason that we do not use the same doublet or triplet sets as the

other methods is that the released codes of these approaches either include inherent

default doublet or triplet sets, or dynamically tune the doublet or triplet sets during

the training stage.

2.4.1 Handwritten Digit Recognition

We perform the experiments on three widely used large scale handwritten digit sets,

i.e., MNIST, USPS, and Semeion, to evaluate the performances of doublet-SVM

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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and triplet-SVM. On the MNIST and USPS datasets, we use the defined training

and test sets to train the models and calculate the classification error rates. On the

Semeion datasets, we use 10-fold cross validation to evaluate the metric learning

methods, and the error rate and training time are obtained by averaging over the

10 runs. Table 2.1 summarizes the basic information of the three handwritten digit

datasets.

Table 2.1 The handwritten digits datasets used in the experiments

Dataset # of training

samples

# of test

samples

Feature dimension PCA dimension # of classes

MNIST 60,000 10,000 784 100 10

USPS 7,291 2,007 256 100 10

Semeion 1,434 159 256 100 10

Table 2.2 The classification error rates (%) and average ranks of the competing methods

on the handwritten digit datasets

Dataset Doublet-SVM Triplet-SVM NCA LMNN ITML MCML LDML

MNIST 3.19 2.92 5.46 2.28 2.89 - 6.05

USPS 5.03 4.93 5.68 5.38 6.63 5.08 8.77

Semeion 5.21 4.46 8.60 6.09 5.71 11.23 11.98

Average Rank 2.67 1.67 5.00 3.00 3.67 - 6.67

As the dimensions of digit images are relatively high, PCA is utilized to reduce

the feature dimension. The metric learning models are trained in the PCA subspace.

Both doublet-SVM and triplet-SVM involve the parameter C. Using the USP-

S dataset as an example, we analyze the sensitivity of classification error rate to
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this parameter. Fig. 2.1 shows the curves of classification error rate versus C for

doublet-SVM and triplet-SVM. One can see that the error rate is insensitive to C in

a wide range, but it jumps when C is no less than 103 for doublet-SVM and no less

than 100 for triplet-SVM. Thus, we set C = 10−2 for doublet-SVM and C = 10−4

for triplet-SVM in our experiments.
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Figure 2.1 Classification error rate (%) versus C for doublet-SVM and triplet-SVM.

We compare the proposed methods with five representative and state-of-the-art

metric learning models, i.e., LMNN [138], ITML [33], LDML [48], neighbourhood

component analysis (NCA) [45] and maximally collapsing metric learning (MCM-

L) [44], in terms of classification error rate and training time (in seconds). The

source codes of LMNN2, ITML3, LDML4, NCA5 and MCML6 are online avail-

2http://www.cse.wustl.edu/˜kilian/code/code.html
3http://www.cs.utexas.edu/˜pjain/itml/
4http://lear.inrialpes.fr/people/guillaumin/code.php
5http://www.cs.berkeley.edu/˜fowlkes/software/nca/
6http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_

Reduction.html
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able. Table 2.2 lists the classification error rates on the handwritten digit datasets.

On the MNIST dataset, LMNN achieves the lowest error rate; on the USPS dataset,

doublet-SVM achieves the lowest error rate; and on the Semeion dataset, triplet-

SVM obtains the lowest error rate. We do not report the error rate of MCML on

the MNIST dataset because MCML requires too large memory space (more than 30

GB) on this dataset and cannot be run in our PC.

The last row of Table 2.2 lists the average ranks of the seven metric learn-

ing models. We can see that triplet-SVM can achieve the best average rank, and

doublet-SVM achieves the second best average rank.

We then compare the training time of these metric learning methods. All the

experiments are executed in a PC with 4 Intel Core i5-2410 CPUs (2.30 GHz) and

16 GB RAM. We compare the five doublet-based metric learning methods and the

two triplet-based methods, respectively. Fig. 2.2 shows the training time of doublet-

SVM, ITML, LDML, MCML, and NCA. We can see that doublet-SVM is much

faster than the other four methods. In average it is 2,000 times faster than the

second fastest algorithm, ITML. Fig. 2.3 shows the training time of triplet-SVM

and LMNN. One can see that triplet-SVM is about 100 times faster than LMNN on

the three datasets.

2.4.2 Doublets/Triplets Construction

Let’s first compare the classification performance by using different strategies to

construct the doublet set. Using Doublet-SVM as an example, we consider the

following two strategies to construct the doublet set:

1. Nearest neighbor (NN) selection: As described in Section 2.2.1, for each
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Figure 2.2 Training time (sec.) of doublet-SVM, NCA, ITML, MCML and LDML. From

1 to 3, the Dataset ID represents USPS, MNIST and Semeion.
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Figure 2.3 Training time (sec.) of triplet-SVM and LMNN. From 1 to 3, the Dataset ID

represents USPS, MNIST and Semeion.

training sample xi, we construct 2 doublets {(xi, xs
i ), (xi, xd

i )}, where xs
i de-

notes the similar nearest neighbor of xi, and xd
i denotes the dissimilar nearest
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neighbor of xi. By constructing all such doublets from the training samples,

we build a doublet set using the NN strategy.

2. Random selection: Given a training set of n samples, we randomly select 2n

doublets from all the n(n − 1)/2 possible doublets.

Table 2.3 lists the classification error rates of doublet-SVM by using the NN

and the random selection strategies to construct the doublet set. The NN selection

outperforms the random selection on all the three handwritten digit datasets. One

can conclude that for doublet-SVM, the NN selection is better than the random

selection to construct doublet set.

We then compare the classification performance by using different strategies to

construct the triplet set. Using Triplet-SVM as an example, we also consider the

NN selection and random selection strategies to construct triplet set:

1. Nearest neighbor (NN) selection: For each training sample xi, we construct a

triplet (xi, xs
i , x

d
i ), where xs

i denotes the similar nearest neighbor of xi, and xd
i

denotes the dissimilar nearest neighbor of xi. By constructing all such triplets

from the training samples, we build a triplet set using the NN strategy.

2. Random selection: Given a training set of n samples, we randomly select n

triplets from all the possible triplets.

Table 2.3 lists the classification error rates of doublet-SVM and triplet-SVM by

using the NN and the random selection strategies. The NN selection outperforms

the random selection on 2 out of the 3 handwritten digit datasets. One can conclude

that the NN selection strategy is also a better choice than the random selection

strategy for triplet-SVM to construct triplet sets.
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Table 2.3 The classification error rates (%) by using the random selection strategy and

the NN selection strategy to select doublets/triplets on the handwritten digit datasets

Method Doublet-SVM

(Random)

Doublet-SVM

(NN)

Triplet-SVM

(Random)

Triplet-SVM

(NN)

MNIST 3.41 3.19 3.84 2.92

USPS 5.49 5.43 5.65 5.78

Semeion 6.43 5.09 6.96 4.71

2.4.3 Person Re-identification

We evaluate our proposed doublet-SVM and triplet-SVM on the person re-identification

task. We use the CUHK03 dataset in our evaluation. The CUHK03 dataset consists

of 14,096 images taken from 1,467 pedestrians by two disjoint cameras [76]. We

randomly select the images of 1,367 pedestrians as the training set, and use the

rest images of 100 pedestrians as the testing set. By this strategy, 20 partitions of

training and testing sets are constructed, and the reported performances are aver-

aged over all the partitions. In the testing stage, we adopt the single-shot setting

for evaluation, which randomly select one image from each pedestrian taken by one

camera as the probe set, and select one image from each pedestrian taken by another

camera as the gallery set.

We report the rank-1 accuracies and training time of doublet-SVM, triplet-SVM

and the competing methods, i.e. ITML [33], DML-eig [149], LMNN [140], RANK

[89], LDML [48], symmetry-driven accumulation of local features (SDALF) [39],

eSDC [155], KISSME [69], XQDA [81], filter pairing neural network (FPNN) [76]

and Zhang et al. [151], on CUHK03 database with manually labeled and detect-
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ed bounding boxes in Table 2.4 and Table 2.5. For the methods with the rank-1

accuracy higher than 30%, we also report their CMC curves in Fig. 2.4. For our

proposed doublet-SVM method, we select 5 nearest positive neighbors and 10 near-

est negative neighbors of each sample to construct the doublet set. For our proposed

triplet-SVM method, we select 3 nearest positive neighbors and 5 nearest negative

neighbors of each sample to construct the triplet set. For FPNN [76], RANK [89],

SDALF [39] and eSDC [155], we use the results in their original papers. As to the

other methods, the results are obtained by using an effective feature representation

named Local Maximal Occurrence (LOMO) [81].

Table 2.4 Rank-1 accuracies (%) on the CUHK03 database

Methods CUHK03-Labeled CUHK03-Detected

Doublet-SVM (LOMO) 51.25 45.05

Triplet-SVM (LOMO) 51.15 45.15

ITML (LOMO) [33] 46.40 43.25

DML-eig (LOMO) [149] 17.70 13.90

KISSME (LOMO) [69] 45.95 38.25

XQDA (LOMO) [81] 52.20 46.25

Zhang et al. (LOMO) [151] 58.90 53.70

LDML (LOMO) [48] 51.20 45.40

LMNN (LOMO) [140] 51.08 44.64

FPNN [76] 20.65 19.89

Euclidean (LOMO) 11.05 10.95

RANK [89] 10.42 8.52

SDALF [39] 5.60 4.87

eSDC [155] 8.76 7.68

We can see that the recognition accuracies of doublet-SVM and triplet-SVM
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Table 2.5 Training time (s) on the CUHK03 database with LOMO feature [81]

Methods Training Time (s)

Doublet-SVM 227.54

Triplet-SVM 190.72

ITML [33] 1228.50

DML-eig [149] 523.33

KISSME [69] 0.85

XQDA [81] 902.35

Zhang et al. [151] 1954.60

LDML [48] 794.38

LMNN [140] 8383.60

are higher than most of the other state-of-the-art methods, comparable to LDML

[48], XQDA [81], and lower than the method by Zhang et al. [151]. The possible

reason is that the method in [151] learns a discriminative null space by the kernel

trick, while doublet-SVM and triplet-SVM learns the Mahalanobis distance metric

or the linear subspace. We can also see that the training time of doublet-SVM

and triplet-SVM are shorter than most of the other comparison methods except

KISSME [69], because KISSME has its analytical solution, while the solutions of

doublet-SVM and triplet-SVM should be obtained by SVM training and singular

value decomposition.

2.5 Summary

In this chapter, we proposed a general kernel classification framework for dis-

tance metric learning. By coupling a degree-2 polynomial kernel with some kernel
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methods, the proposed framework can unify many representative and state-of-the-

art metric learning approaches such as LMNN, ITML and LDML. The proposed

framework also provides a good platform for developing new metric learning al-

gorithms. Two metric learning methods, i.e., doublet-SVM and triplet-SVM, were

developed and they can be efficiently implemented by the standard SVM solver-

s. Our experimental results on the handwritten digit classification and person re-

identification tasks showed that doublet-SVM and triplet-SVM are much faster than

most of the state-of-the-art methods in terms of training time, while they achieve

very competitive results in terms of classification error rate.

The proposed kernel classification framework provides a new perspective on

developing metric learning methods via kernel classifiers. By incorporating the

kernel learning methods for semi-supervised learning, multiple instance learning,

etc., the proposed framework can be adopted to develop metric learning approaches

for many other applications. By replacing the degree-2 polynomial kernel with

nonlinear kernel functions which satisfy the Mercer’s condition [114], the proposed

framework can also be extended to nonlinear metric learning.
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Figure 2.4 The CMC curves of different methods on the CUHK03 database with (a)

manually labeled bounding box and (b) automatically detected bounding box.



Chapter 3

Distance Metric Learning via

Iterated Support Vector Machines

3.1 Introduction

Distance metric learning aims to train a valid distance metric which can enlarge

the distances between samples of different classes while reducing the distances be-

tween samples of the same class [8, 158]. Metric learning is closely related to other

learning problems, including k-Nearest Neighbor (k-NN) classification [140] and

clustering [142], and has also been widely applied in many image classification

tasks, e.g., face recognition [48] and person re-identification [69, 79]. One popular

metric learning approach is Mahalanobis distance metric learning, which is to learn

a linear transformation matrix L or a matrix M = LT L from the training data. Given

two samples xi and x j, their Mahalanobis distance is defined as:

d2
M

(
xi, x j

)
=
∥∥∥L(xi−x j)

∥∥∥2

2
=
(
xi−x j

)T
M

(
xi−x j

)
. (3.1)

48
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To satisfy the nonnegative property of a distance metric, M should be positive

semidefinite (PSD). According to which one of M and L is learned, Mahalanobis

distance metric learning methods can be grouped into two categories. Methods that

learn L, including neighborhood components analysis (NCA) [45], large margin

components analysis (LMCA) [125] and neighborhood repulsed metric learning

(NRML) [87], are mostly formulated as nonconvex optimization problems, which

are solved by gradient descent optimizers. Taking the PSD constraint into accoun-

t, methods that learn M, including large margin nearest neighbor (LMNN) [138]

and maximally collapsing metric learning (MCML) [44], are mostly formulated as

convex semidefinite programming (SDP), which can be optimized by standard SDP

solvers [138], projected gradient [142], Boosting-like [119], or Frank-Wolfe [149]

algorithms. Davis et al. [33] proposed an information-theoretic metric learning

(ITML) model with an iterative Bregman projection algorithm to avoid the projec-

tions onto the PSD cone. Besides, the use of online solvers has been discussed in

[21, 69, 92, 116].

On the other hand, the Mahalanobis distance in (3.1) can be equivalently written

as:

d2
M

(
xi, x j

)
= tr

(
MT (xi − x j)(xi − x j)T

)
=

〈
M,Xi j

〉
, (3.2)

where M is a PSD matrix, Xi j = (xi − x j)(xi − x j)T , 〈A,B〉 = tr
(
AT B

)
is defined as

the Frobenius inner product of two matrices A and B, and tr(•) stands for the matrix

trace operator. By defining the following kernel function

K
((

xi, x j

)
, (xk, xl)

)
=

〈
Xi j,Xkl

〉
=

((
xi − x j

)T
(xk − xl)

)2
, (3.3)

we can cast the Mahalanobis distance in (3.2) as a kernel classifier. For convenience,
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we rewrite K
((

xi, x j

)
, (xk, xl)

)
as Ki jkl in the following sections.

As kernel methods [2, 6] have been widely studied in many learning tasks, e.g.,

semi-supervised learning, multiple instance learning, multitask learning, etc. Ker-

nel learning methods, such as support vector machine (SVM), exhibit good gen-

eralization performance. There are many open resources on kernel classification

methods, and a variety of toolboxes and libraries have been released [11, 17, 113,

124, 127]. It is thus important to investigate the connections between metric learn-

ing and kernel classification and explore how to utilize the kernel classification

resources in the research and development of new metric learning methods. In

Chapter 2, we made an attempt on developing a kernel classification framework for

metric learning. However, in their heuristic two-step greedy scheme, the PSD con-

straint is ignored in the first step, and then they simply project the learned matrix

onto the PSD cone to obtain the final valid distance metric.

In this chapter, we propose a novel formulation of metric learning by casting

it as a kernel classification problem with PSD constraint, which allows us to ef-

fectively and efficiently learn valid distance metrics by iterated training of SVM.

The off-the-shelf SVM solvers such as LibSVM [17] can be employed to solve the

metric learning problem. Specifically, we propose two novel methods to bridge

metric learning with the well-developed SVM techniques, and they are easy to im-

plement. First, we propose a Positive-semidefinite Constrained Metric Learning

(PCML) model, which can be solved via iterating between PSD projection and

dual SVM learning. Second, by re-parameterizing the matrix M, we propose a

Nonnegative-coefficient Constrained Metric Learning (NCML) model, which can

be solved by iterated learning of two SVMs. Both PCML and NCML have globally
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optimal solutions. Compared with [131], our PCML and NCML provide princi-

pled schemes to exploit SVM solver for metric learning with guarantee on global

optimum. Our experiments on handwritten digit recognition, face verification and

person re-identification tasks clearly demonstrate the effectiveness of our methods.

The contribution of this chapter is three-fold:

1. Two models, i.e., PCML and NCML, are proposed by formulating metric

learning as kernel classification problem with PSD constraint. Both PCML

and NCML models are convex, and can guarantee the PSD property of the

learned distance metric.

2. An optimization algorithm is developed for solving PCML by iterating be-

tween SVM training and PSD projection. It has the computational complex-

ity of O(d3) per iteration w.r.t the feature dimension d, and can converge to

global optimum.

3. An optimization algorithms is developed for NCML by iterating between the

training of two SVMs. It has the computational complexity of O(d) per iter-

ation w.r.t d, and can guarantee the global optimality of the solution.

3.2 Positive-semidefinite Constrained Metric Learn-

ing (PCML)

In this section, we formulate metric learning as a convex SDP, and propose the

PCML model. We then develop a learning algorithm by alternatively iterating be-

tween SVM training and PSD projection, and discuss the convergence of PCML.
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Figure 3.1 Schematic illustration of the constraints of similar and dissimilar pairs.

3.2.1 PCML Problem

Denote by { (xi, yi)| i = 1, 2, ...,N} a training set, where xi ∈ R
d is the ith train-

ing sample, and yi is the class label of xi. Let S = {
(
xi, x j

)
: xi and x j have the

same class label } be the set of similar pairs,D = {
(
xi, x j

)
: xi and x j have different class labels}

be the set of dissimilar pairs, and b is the distance threshold. We hope the Maha-

lanobis distance of a similar pair should be lower than b−1, and that of a dissimilar

pair should be higher than b+ 1 (see Fig. 3.1). By introducing an indicator variable

hi j,

hi j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if (xi, x j) ∈ D
−1, if (xi, x j) ∈ S,

(3.4)

the PCML model can be formulated as:

min
M,b,ξ

1
2
‖M‖2

F +C
∑

i, j
ξi j

s.t. hi j

(〈
M,Xi j

〉
− b

)
≥ 1 − ξi j, ξi j ≥ 0, ∀i, j

M � 0,

(3.5)

where ξi j denotes the slack variables, and ‖�‖F denotes the Frobenius norm.
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3.2.2 PCML Dual Problem

The PCML model is convex and can be solved by standard SDP solvers. Howev-

er, the high complexity of general-purpose interior-point SDP solver makes it only

suitable for small-scale problems. In order to improve the efficiency, we first ana-

lyze the Lagrange duality of the PCML model, and then propose an algorithm to

iterate between SVM training and PSD projection to learn the distance metric.

From the PCML model in Eq. (3.5), we derive the Lagrangian of PCML as

follows,

L (λ, κ,Y,M, b, ξ) =
1
2
‖M‖2

F +C
∑

i, j
ξi j −

∑
i, j
λi j

[
hi j

(〈
M,Xi j

〉
− b

)
− 1 + ξi j

]
−

∑
i, j
κi jξi j − 〈Y,M〉 ,

(3.6)

where λi j ≥ 0, κi j ≥ 0,∀i, j, and Y � 0 are the Lagrange multipliers. Converting

the primal problem to its dual problem needs the following KKT conditions:

∂L (λ, κ,Y,M, b, ξ)
∂M

= 0 ⇒ M −
∑

i, j
λi jhi jXi j − Y = 0, (3.7)

∂L (λ, κ,Y,M, b, ξ)
∂b

= 0 ⇒
∑

i, j
λi jhi j = 0, (3.8)

∂L (λ, κ,Y,M, b, ξ)
∂ξi j

= C − λi j − κi j = 0 ⇒ 0 ≤ λi j ≤ C, ∀i, j, (3.9)

hi j

(〈
M,Xi j

〉
− b

)
− 1 + ξi j ≥ 0, ξi j ≥ 0, (3.10)

λi j ≥ 0, κi j ≥ 0, Y � 0, (3.11)

λi j

[
hi j

(〈
M,Xi j

〉
− b

)
− 1 + ξi j

]
= 0, κi jξi j = 0. (3.12)

(3.7) implies the following relationship:

M =
∑

i, j
λi jhi jXi j + Y. (3.13)
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Substituting (3.7)∼(3.9) back into the Lagrangian, we get the Lagrange dual prob-

lem of PCML:

max
λ,Y

− 1
2

∥∥∥∥∥∑i, j
λi jhi jXi j + Y

∥∥∥∥∥2

F
+

∑
i, j
λi j

s.t.
∑

i, j
λi jhi j = 0, 0 ≤ λi j ≤ C,∀i, j, Y � 0.

(3.14)

From (3.13) and (3.14), M is explicitly determined by the training procedure,

but b is not. Nevertheless, b can be found by using the KKT condition in (3.9) and

(3.12), and we can take any training point, for which 0 < λi j < C, to compute b by

b =
〈
M,Xi j

〉
− 1/hi j, for all 0 < λi j < C. (3.15)

After b is computed, we can compute ξi j by

ξi j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, for all λi j < C[
1 − hi j

(〈
M,Xi j

〉
− b

)]
+
, for all λi j = C,

(3.16)

where [z]+ = max (z, 0) denotes the hinge loss.

3.2.3 Alternating Optimization Algorithm

To solve the dual problem efficiently, we propose an optimization approach by

updating λ and Y alternatively. Given Y, we introduce a new variable η with

ηi j = 1 − hi j

〈
Xi j,Y

〉
= 1 − hi j

(
xi − x j

)T
Y

(
xi − x j

)
. With the kernel function in

(3.3), the subproblem on λ can be formulated as the following QP problem:

max
λ

− 1
2

∑
i, j,k,l
λi jλklhi jhklKi jkl +

∑
i, j
ηi jλi j

s.t.
∑

i, j
λi jhi j = 0, 0 ≤ λi j ≤ C, ∀i, j.

(3.17)



55

Algorithm 1 Algorithm of PCML

Input: S = {
(
xi, x j

)
: the class labels of xi and x j are the same}, D = {

(
xi, x j

)
:

the class labels of xi and x j are different}, and hi j.

Output: M.

Initialize Y(0), t ← 0.

repeat

1. Update η(t+1) with η(t+1)
i j = 1 − hi j

〈
Xi j,Y(t)

〉
.

2. Update λ(t+1) by solving the subproblem (7) using an SVM solver.

3. Update Y(t+1)
0 = −∑

i, j λ
(t+1)
i j hi jXi j.

4. Update Y(t+1) = U(t+1)Λ
(t+1)
+ U(t+1)T , where Y(t+1)

0 = U(t+1)Λ(t+1)U(t+1)T and

Λ
(t+1)
+ = max

(
Λ(t+1), 0

)
.

5. t ← t + 1.

until convergence

M =
∑

i, j λ
(t−1)
i j hi jXi j + Y(t−1).

return M

This subproblem on λ is a kernel-based classification problem, and can be effi-

ciently solved by using the existing SVM solvers [17]. Given λ, the subproblem on

Y can be formulated as the projection onto the convex cone of PSD matrices:

min
Y

‖Y − Y0‖2
F , s.t. Y � 0, (3.18)

where Y0 = −∑
i, j λi jhi jXi j. Through the eigen-decomposition of Y0, i.e., Y0 =

UΛUT and Λ is the diagonal matrix of eigenvalues, the solution to (3.18) can be

expressed as Y = UΛ+UT , where Λ+ = max (Λ, 0). Finally, the PCML algorithm is

summarized in Algorithm 1.
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3.2.4 Optimality Condition

Our algorithms can be treated as an implementation of generalized block coordinate

descent (GBCD) [144] with two blocks. In our algorithms, the optimal solution to

each subproblem is obtained. As stated in [144], when the objective function is

strongly convex, GBCD can converge to the global optimal solution. Therefore,

the proposed algorithm can reach the global optimum of the problems in (3.5) and

(3.14).

Moreover, the optimality condition of our algorithm can be checked by the d-

uality gap in each iteration, which is defined as the difference between the primal

and dual objective values:

DualGap(n)
PCML =

1
2

∥∥∥M(n)
∥∥∥2

F
+C

∑
i, j
ξ(n)

i j −
∑

i, j
λ(n)

i j +
1
2

∥∥∥∥∥∑i, j
λ(n)

i j hi jXi j + Y(n)
∥∥∥∥∥2

F
,

(3.19)

where M(n), ξ(n), λ(n), and Y(n) are feasible primal and dual variables, and DualGap(n)
PCML

is the duality gap in the nth iteration. According to (3.13), we can derive that

M(n) =
∑

i, j
λ(n)

i j hi jXi j + Y(n) = Y(n) − Y(n)
0 . (3.20)

As shown in Section 3.2.3, Y(n)
0 = U(n)Λ(n)U(n)T , Y(n) = U(n)Λ

(n)
+ U(n)T , and hence

M(n) = U(n)Λ
(n)
− U(n)T , where Λ(n)

− = Λ
(n)
+ − Λ(n). Thus,

∥∥∥M(n)
∥∥∥2

F
can be computed by

∥∥∥M(n)
∥∥∥2

F
= tr

(
M(n)T M(n)

)
= tr

(
U(n)Λ

(n)
− U(n)T U(n)Λ

(n)
− U(n)T )

= tr
(
U(n)Λ

(n)2
− U(n)T )

= tr
(
Λ

(n)2
−

)
.

(3.21)

Substituting (3.20) and (3.21) into (3.19), the duality gap of PCML can be obtained

as follows

DualGap(n)
PCML = C

∑
i, j
ξ(n)

i j −
∑

i, j
λ(n)

i j + tr
(
Λ

(n)
−

2
)
. (3.22)
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Figure 3.2 Duality gap vs. number of iterations on the PenDigits database for PCML.

Based on the KKT conditions of the PCML dual problem in (3.14), ξ(n)
i j and b

can be obtained by Eqns. (3.16) and (3.15), respectively. The duality gap is always

nonnegative and approaches to zero when the primal problem is convex. Thus, it

can be used as the termination condition of the algorithm. Fig. 3.2 plots the curve

of duality gap versus the number of iterations on the PenDigits database by PCML.

The duality gap approaches to zero in less than 20 iterations and our algorithm

will reach the global optimum (Chapter 5, [13]). In Algorithm 1, we adopt the

following termination condition:

DualGap(t)
PCML < ε · DualGap(1)

PCML, (3.23)

where ε is a small constant.

3.2.5 Remarks

Construction of pairwise constraints: Based on the training set, N2 pairwise con-
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straints can be introduced in total. However, in practice we only need to choose a

subset of pairwise constraints to reduce the computational cost. For each sample,

we find its k nearest neighbors with the same label to construct similar pairs and

its k nearest neighbors with different labels to construct dissimilar pairs. Thus, we

only need 2kN pairwise constraints, and we can reduce the scale of pairwise con-

straints from O
(
N2

)
to O (kN). Since k is usually small, the computational cost

of metric learning is much reduced. Similar strategy for constructing pairwise or

triplet constraints can be found in [55, 140].

Computational Complexity: We use the LibSVM library for SVM training.

The computational complexity of SMO-type algorithms [103] is O(k2N2d). For

PSD projection, the complexity of conventional SVD algorithms is O(d3).

3.3 Nonnegative-coefficient Constrained Metric Learn-

ing (NCML)

In PCML, the computational complexity of the PSD projection is O(d3), which

limits the training efficiency for data with high dimension. Therefore, we propose a

NCML model, in which we re-parameterize the matrix M as the linear combination

of a series of rank-1 matrices, and let the coefficients to be nonnegative to guarantee

the PSD property of the matrix M. NCML does not need any PSD projection in

training and has low computational complexity w.r.t. d.

Given a set of rank-1 PSD matrices Mt = mtmT
t (t = 1, · · · ,T ), a linear combi-

nation of Mt is defined as M =
∑

t αtMt, where αt is the scalar coefficient. One can

easily prove the following theorem.
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Theorem 3.3.1 If the scalar coefficient αt ≥ 0, ∀t, the matrix M =
∑

t αtMt is PSD,

where Mt = mtmT
t is a rank-1 PSD matrix.

Proof Denote by u ∈ R
d a random vector. Based on the expression of M, we have:

uT Mu = uT
(∑

t
αtmtmT

t

)
u =

∑
t
αtuT mtmT

t u =
∑

t
αt

(
uT mt

)2
.

Since
(
uT mt

)2 ≥ 0 and αt ≥ 0, ∀t, we have uT Mu ≥ 0. Therefore, M is a PSD

matrix.

3.3.1 NCML Problem

Motivated by Theorem 3.3.1, we impose the PSD constraint by re-parameterizing

the distance metric M, and develop a nonnegative-coefficient constrained metric

learning (NCML) method to learn the PSD matrix M. Given the training data S and

D, a rank-1 PSD matrix Xi j can be constructed for each pair
(
xi, x j

)
. By assuming

that the learned matrix should be the linear combination of Xi j with the nonnegative

coefficient constraint, the NCML model is formulated as:

min
M,b,α,ξ

1
2
‖M‖2

F +C
∑

i, j
ξi j

s.t. hi j

(〈
M,Xi j

〉
− b

)
≥ 1 − ξi j, αi j ≥ 0, ξi j ≥ 0,∀i, j

M =
∑

i, j
αi jXi j.

(3.24)

By substituting M with
∑

i, j αi jXi j, we reformulate NCML as:

min
α,b,ξ

1
2

∑
i, j

∑
k,l
αi jαklKi jkl +C

∑
i, j
ξi j

s.t. hi j

(∑
k,l
αklKi jkl − b

)
≥ 1 − ξi j

αi j ≥ 0, ξi j ≥ 0, ∀i, j.

(3.25)
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3.3.2 NCML Dual Problem

According to the NCML problem in Eq. (3.25), its Lagrangian can be defined as:

L (β,σ, ν,α, b, ξ) =
1
2

∑
i, j,k,l

αi jαklKi jkl +C
∑

i, j

ξi j −
∑

i, j

βi j

⎡⎢⎢⎢⎢⎢⎢⎣hi j

⎛⎜⎜⎜⎜⎜⎜⎝∑
k,l

αklKi jkl − b

⎞⎟⎟⎟⎟⎟⎟⎠ − 1 + ξi j

⎤⎥⎥⎥⎥⎥⎥⎦
−

∑
i, j

νi jξi j −
∑

i, j

σi jαi j,

(3.26)

where βi j ≥ 0, σi j ≥ 0 and νi j ≥ 0, ∀i, j are the Lagrange multipliers. Converting

the original problem to its dual problem needs the following KKT conditions:

∂L (β,σ, ν,α, b, ξ)
∂αi j

= 0 ⇒
∑

k,l
αklKi jkl −

∑
k,l
βklhklKi jkl − σi j = 0, (3.27)

∂L (β,σ, ν,α, b, ξ)
∂b

= 0 ⇒
∑

i, j
βi jhi j = 0, (3.28)

∂L (β,σ, ν,α, b, ξ)
∂ξi j

= 0 ⇒ C − βi j − νi j = 0 ⇒ 0 ≤ βi j ≤ C, (3.29)

hi j

(∑
k,l
αklKi jkl − b

)
− 1 + ξi j ≥ 0, ξi j ≥ 0, αi j ≥ 0, ∀i, j, (3.30)

βi j ≥ 0, σi j ≥ 0, νi j ≥ 0, ∀i, j, (3.31)

βi j

[
hi j

(∑
k,l
αklKi jkl − b

)
− 1 + ξi j

]
= 0, νi jξi j = 0, σi jαi j = 0, ∀i, j. (3.32)

Here we introduce a coefficient vector η, which satisfies σi j =
∑

k,l ηkl

〈
Xi j,Xkl

〉
.

Note that
〈
Xi j,Xkl

〉
is a positive definite kernel. So we can guarantee that every η

corresponds to a unique σ, and vice versa. Equation (3.27) implies the following

relationship between α, β and η:

αi j = βi jhi j + ηi j, ∀i, j. (3.33)
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Substituting (3.27)∼(3.29) back into the Lagrangian, we get the Lagrange dual

problem of NCML as follows:

max
η,β

− 1
2

∑
i, j,k,l

(
βi jhi j + ηi j

)
(βklhkl + ηkl) Ki jkl +

∑
i, j

βi j

s.t.
∑

k,l
ηklKi jkl ≥ 0, 0 ≤ βi j ≤ C, ∀i, j∑

i, j
βi jhi j = 0.

(3.34)

From Eq. (3.33), we can first solve the above dual problem, and then obtain the

matrix M by

M =
∑

i, j
(βi jhi j + ηi j)Xi j, (3.35)

Analogous to PCML, we can use the KKT condition in (3.29) and (3.32) to

compute b and ξi j in NCML. Equations (3.29) and (3.32) show that ξi j = 0 if

βi j < C, and hi j

(∑
kl αkl

〈
Xi j,Xkl

〉
− b

)
− 1 + ξi j = 0 if βi j > 0. Thus we can

simply take any training data point, for which 0 < βi j < C, to compute b by

b =
∑

k,l
αklKi jkl − 1/hi j. (3.36)

After obtain b, we can compute βi j by

ξi j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0,∀ βi j < C[
1 − hi j

(∑
k,l
αklKi jkl − b

)]
+
,∀ βi j = C

(3.37)

3.3.3 Optimization Algorithm

There are two groups of variables, η and β, in problem (3.34). We adopt an alter-

nating minimization approach to solve them. First, given η, the variables βi j can be
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obtained by:

max
β

− 1
2

∑
i, j,k,l

βi jβklhi jhklKi jkl +
∑

i, j

δi jβi j

s.t. 0 ≤ βi j ≤ C, ∀i, j,
∑

i, j

βi jhi j = 0,
(3.38)

where δ is the variable with δi j =
(
1 − hi j

∑
kl ηkl

〈
Xi j,Xkl

〉)
. Clearly, the subproblem

on β is similar to the dual of SVM, and it can be solved by LibSVM [17].

Given β, the subproblem on η can be formulated as follows:

min
η

1
2

∑
i, j

∑
k,l
ηi jηklKi jkl +

∑
i, j
ηi jγi j

s.t.
∑

k,l
ηi jKi jkl ≥ 0, ∀i, j,

(3.39)

where γi j =
∑

kl βklhkl

〈
Xi j,Xkl

〉
. To simplify the subproblem on η, we derive its

Lagrange dual problem. The Lagrangian of the problem (3.39) is:

L
(
μ, η

)
=

1
2

∑
i, j

∑
k,l
ηi jηklKi jkl +

∑
i, j
ηi jγi j −

∑
i, j
μi j

∑
k,l
ηklKi jkl, (3.40)

where μ is the Lagrange multiplier which satisfies μi j ≥ 0,∀i, j. Converting the

original problem to its dual problem needs the following KKT condition:

∂L
(
μ, η

)
∂ηi j

= 0 ⇒
∑

k,l
ηklKi jkl + γi j −

∑
k,l
μklKi jkl = 0. (3.41)

Equation (3.41) implies the following relationship between μ, η and β:

ηi j = μi j − hi jβi j, ∀i, j. (3.42)

Substituting (3.41) and (3.42) back into the Lagrangian, we get the following La-

grange dual problem of the subproblem on η:

max
μ

− 1
2

∑
i, j

∑
k,l

μi jμklKi jkl +
∑

i, j

γi jμi j − 1
2

∑
i, j

∑
k,l

βi jβklhi jhklKi jkl

s.t. μi j ≥ 0,∀i, j.

(3.43)
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Since β is fixed in this subproblem,
∑

i, j
∑

k,l βi jβklhi jhklKi jkl remains constant in

(3.43). Thus we can omit this term and have the following simplified Lagrange

dual problem:

max
μ

− 1
2

∑
i, j

∑
k,l

μi jμklKi jkl +
∑

i, j

γi jμi j

s.t. μi j ≥ 0,∀i, j.

(3.44)

Clearly, problem (3.44) is more simple and can be efficiently solved by the SVM

solvers.

After obtaining μ and β, the solution of α in problem (3.25) can be obtained by

αi j = μi j, ∀i, j. (3.45)

We then have M =
∑

i j αi jXi j. The NCML algorithm is summarized in Algorithm

2.

3.3.4 Optimality Condition

Our NCML training algorithm can reach global optimum. From (3.25) and (3.34),

the duality gap in the nth iteration is

DualGap(n)
NCML =

1
2

∑
i, j,k,l

α(n)
i j α

(n)
kl Ki jkl +

1
2

∑
i, j,k,l

(β(n)
i j hi j + η

(n)
i j )(β(n)

kl hkl + η
(n)
kl )Ki jkl

−
∑

i, j

β(n)
i j +C

∑
i, j

ξ(n)
i j ,

(3.46)

where α(n)
i j and ξ(n)

i j are the feasible solutions to the primal problem, β(n)
i j and η(n)

i j are

the feasible solutions to the dual problem, and DualGap(n)
NCML is the duality gap in the

nth iteration. As η(n)
i j and μ(n)

i j are the optimal solutions to the primal subproblem on η

in (3.39) and its dual problem in (3.44), respectively, the duality gap of subproblem



64

Algorithm 2 Algorithm of NCML

Input: Training set
{(

xi, x j

)
, hi j

}
.

Output: The matrix M.

Initialize η(0) with small random values, t ← 0.

repeat

1. Update δ(t+1) with δ(t+1)
i j =

(
1 − hi j

∑
kl η

(t)
kl Ki jkl

)
.

2. Update β(t+1) by solving the subproblem (3.38) using an SVM solver.

3. Update γ(t+1) with γ(t+1)
i j =

∑
kl β

(t+1)
kl hklKi jkl.

4. Update μ(t+1) by solving the subproblem (3.44) using an SVM solver.

5. Update η(t+1) with η(t+1)
i j ← μ(t+1)

i j − hi jβ
(t+1)
i j .

6. t ← t + 1.

until convergence

M =
∑

i j μ
(t)
i j Xi j.

return M

on η is zero, i.e.,

1
2

∑
i, j,k,l

η(n)
i j η

(n)
kl Ki jkl +

∑
i, j

η(n)
i j γ

(n)
i j +

1
2

∑
i, j,k,l

μ(n)
i j μ

(n)
kl Ki jkl −

∑
i, j

γ(n)
i j μ

(n)
i j

+
1
2

∑
i, j,k,l

β(n)
i j β

(n)
kl hi jhklKi jkl = 0.

(3.47)

As shown in (3.45), α(n)
i j and μ(n)

i j should be equal. We substitute (3.47) into (3.46)

as follows:

DualGap(n)
NCML = C

∑
i, j
ξ(n)

i j −
∑

i, j
β(n)

i j +
∑

i, j
μ(n)

i j γ
(n)
i j . (3.48)

Based on the KKT conditions of the NCML dual problem in (3.34), ξ(n)
i j can be
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obtained by

ξ(n)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0 for all β(n)

i j < C⎡⎢⎢⎢⎢⎢⎢⎣1 − hi j

⎛⎜⎜⎜⎜⎜⎜⎝∑
k,l

α(n)
kl Ki jkl − b(n)

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
+

=
[
δ(n+1)

i j − hi j

(
γ(n)

i j − b(n)
)]
+

for all β(n)
i j = C.

(3.49)

where [z] = max (z, 0) and b(n) can be obtained by

b(n) =
∑
k,l

α(n)
kl Ki jkl − 1/hi j = γ

(n)
i j − δ(n+1)

i j /hi j for all 0 < β(n)
i j < C. (3.50)

Please refer to Section 3.3.2 for the derivation of ξ(n)
i j and b(n).

Fig. 3.3 plots the curve of duality gap versus the number of iterations on

PenDigits database by NCML. The duality gap is nearly zero within 10∼15 itera-

tions, and NCML reaches the global optimum. In the implementation of Algorithm

2, we adopt the following termination condition:

DualGap(t)
NCML < ε · DualGap(1)

NCML, (3.51)

where ε is a small constant.
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Figure 3.3 Duality gap vs. number of iterations on the PenDigits database for NCML.
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3.3.5 Remarks

Computational complexity: We use the same strategy as that in PCML to con-

struct the pairwise constraints. In each iteration, NCML calls for the SVM solver

twice while PCML calls for it only once. When the SMO-type algorithm [103] is

adopted for SVM training, the computational complexity of NCML is O
(
k2N2d

)
.

One extra advantage of NCML lies in its lower computational cost with respect

to d, which involves the computation of K
(
(xi, x j), (xk, xl)

)
and the construction of

matrix M. Since K
(
(xi, x j), (xk, xl)

)
=

(
(xi − x j)T (xk − xl)

)2
, the cost of kernel com-

putation is O (d). The cost of constructing the matrix M is less than O
(
kNd2

)
, and

this operation is required only once after obtaining β and μ.

Difference with Doublet-SVM in Chapter 2: Our PCML and NCML are

related but distinctly different with doublet-SVM in Chapter 2. Like doublet-SVM,

our PCML and NCML also cast metric learning as kernel classification problems.

However, in doublet-SVM, M is first learned by ignoring the PSD constraint to

exploit SVM solver and then projected onto the PSD cone. Thus, doublet-SVM

is only a heuristic method and cannot obtain the global solution. In contrast, our

PCML iterates between SVM training and PSD projection to learn M, and our

NCML iterates between two SVMs to learn M. They provide a principled scheme

to exploit SVM solver for metric learning. As analyzed in Sections 3.2.4 and 3.3.4,

our algorithms can ensure the global optimality of M. Moreover, by initializing Y

with 0, doublet-SVM actually is a special case of PCML with one iteration.
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3.4 Experimental Results

We evaluate our PCML and NCML methods for k-NN classification (k = 1) on

handwritten digit classification, face verification, and person re-identification. PCM-

L and NCML are implemented using the LibSVM1 toolbox, and our codes are on-

line available2.

3.4.1 Evaluation on Handwritten Digit Classification Tasks

We use 4 handwritten digit databases to evaluate our methods. Table 3.1 provides

a summary of these databases. On the MNIST, PenDigits, and USPS databases, the

training set and test set are defined. On the Semeion databases, we use 10-fold CV

to evaluate the metric learning models, and the classification error rate and training

time are obtained by averaging over 10 runs of 10-fold cross-validation. As the

dimensions of images in the MNIST, Semeion and USPS databases are relatively

high, we use principal component analysis (PCA) to reduce the feature dimension

to 100, and train the metrics in the PCA subspace.

Our PCML and NCML involve only one hyper-parameter, i.e., the regulariza-

tion parameter C. We simply adopt the cross-validation strategy to select C by

investigating the influence of C on the classification error rate. Fig. 3.4 shows

the curves of classification error rate versus C for PCML and NCML on the USPS

database. We can observe that when C < 1, the classification error rates of NCML

are low and stable. When C is higher than 1, the classification error rates of NCML

jump dramatically. When C = 0.1 or 1, the classification error rates of PCML are

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
2https://github.com/csfwang/ISVM
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low. When C is in other values, the classification error rates of PCML are much

higher. Thus, we set C = 1 in our experiments.
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Figure 3.4 Classification error rates (%) versus C of PCML and NCML.

We compare PCML and NCML with the baseline Euclidean distance metric and

8 state-of-the-art metric learning models, including NCA [45], ITML [33], MCML

[44], LDML [48], LMNN [140], PLML [134], DML-eig [149] and Doublet-SVM

[131]. The source codes of NCA3, ITML4, MCML5, LDML6, LMNN7, PLML8,

and DML-eig9 are online available. We compare the classification error rates of the

competing methods in Table 3.2. On PenDigits and Semeion, PCML achieves the

lowest error rates. On PenDigits, NCML achieves the lowest error rates. According

3http://www.cs.berkeley.edu/˜fowlkes/software/nca/
4http://www.cs.utexas.edu/˜pjain/itml/
5http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_

Reduction.html
6http://lear.inrialpes.fr/people/guillaumin/code.php
7http://www.cse.wustl.edu/˜kilian/code/code.html
8http://cui.unige.ch/˜wangjun/
9http://empslocal.ex.ac.uk/people/staff/yy267/software.html
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to [34], the average rank can provide a fair comparison of classification methods.

Therefore, we provide the average ranks of competing methods in the last rows of

Table 3.2. We do not report the error rate and training time of MCML on MNIST be-

cause MCML requires too large memory space (more than 30 GB) on this database

and cannot run in our PC. From Table 3.2, PCML and NCML achieve the best aver-

age ranks on the handwritten digit databases, demonstrating their effectiveness for

handwritten digit classification tasks.

Table 3.1 The handwritten digit databases used in the experiments.

Database # of training samples # of test samples dimension PCA dimension # of classes

MNIST 60,000 10,000 784 100 10

PenDigits 7,494 3,498 16 N/A 10

Semeion 1,434 159 256 100 10

USPS 7,291 2,007 256 100 10

Finally, we compare the running time of PCML and NCML under different fea-

ture dimensions d. Fig. 3.6 shows the training time on Semeion with different PCA

dimensions. When the dimension is lower than 110, the training time of NCML is

longer than PCML, and it’s better to use PCML in training. When the dimension

is higher than 110, the training time of PCML increases and becomes longer than

NCML, and it’s better to use PCML in training. The results are consistent with the

complexity analysis given in Sections 3.2.5 and 3.3.5.

Discussion

In this subsection, we give a brief discussion on the training efficiency and accuracy

of PCML and NCML.
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Table 3.2 Comparison of classification error rate (%) on the handwritten digit databases.

Database Euclidean NCA ITML MCML LDML LMNN

MNIST 2.87 3.75 2.89 N/A 6.05 2.28

PenDigits 2.26 2.23 2.29 2.26 6.20 2.23

Semeion 8.54 8.60 5.71 11.23 11.98 6.09

USPS 5.08 5.68 6.33 5.08 8.77 5.38

Average Rank 4.75 7.00 6.50 7.00 10.75 3.75

Database DML-eig PLML Doublet-SVM PCML NCML

MNIST 5.06 2.54 3.19 3.85 2.80

PenDigits 3.75 2.46 2.06 2.06 2.06

Semeion 5.72 7.66 5.21 4.83 5.53

USPS 5.43 6.73 5.43 5.33 5.43

Average Rank 7.25 7.00 4.50 3.25 3.00
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Figure 3.5 Training time (s) of NCA, ITML, MCML, LDML, LMNN, DML-eig, PLM-

L, Doublet-SVM, PCML and NCML. From 1 to 4, the Database ID represents MNIST,

PenDigits, Semeion and USPS.
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Figure 3.6 Training time (s) vs. PCA dimension on the Semeion database.

1. Training efficiency: Albeit lower in terms of computational complexity, NCM-

L requires to run the SVM solver twice per iteration while PCML only once.

Besides, the number of iterations may also be different for NCML and PCM-

L. As shown in Fig. 3.6, when the feature dimension is lower, PCML is more

efficient in training. As in most of our experiments, the dimensions of training

samples are relatively low, making NCML less efficient than PCML.

2. Accuracy: From Theorem 1, the feasible domain of NCML is a subset of

that of PCML. Thus, with sufficient training data, PCML has the opportunity

to find distance metric in a larger searching domain. But in many practical

problems, the training data generally are insufficient. Thus, the restriction of

feasible domain by NCML may serve as some kind of regularization on the

solution, and sometimes may even benefit classification performance.
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3.4.2 Face Verification

We evaluate the proposed methods for face verification using the Labeled Faces

in the Wild (LFW) [58] database. The face images in LFW were collected from

the Internet and demonstrate large variations of pose, illumination, expression, etc.

The database consists of 13,233 face images from 5,749 persons. Under the image

restricted setting, the performance of a face verification method is evaluated by 10-

fold CV. For each of the 10 runs, the database provides 300 positive pairs and 300

negative pairs for testing, and 5,400 image pairs for training. The verification rate

and Receiver Operator Characteristic (ROC) curve of each method are obtained by

averaging over the 10 runs.

In our experiments, we use the VGG-Face [102] feature to evaluate the face

verification methods. Since the dimension of VGG-Face feature is high (i.e., 4096),

PCA is used to reduce the feature dimension to 50. We transform each feature

vector x by x̃ = L−1
S x, where LSLT

S =
∑

(xi,x j)∈S (xi − x j)(xi − x j)T [15]. Under the

restricted setting, we only know whether two images are matched or not for the

given pairs. In the training stage, we use the training pairs to train a Mahalanobis

distance metric. In the test stage, we compare the distance of the test pair with the

distance threshold to decide whether the two images are matched or not.

We report the ROC curves and verification accuracies of PCML, NCML, Doublet-

SVM [131], ITML [33], DML-eig [149], KISSME [69], XQDA [81], DDML [56],

TSML [157]10 and LM3L [57] in Fig. 3.7 and Table 3.3. It can be seen that our

proposed PCML and NCML methods can achieve satisfactory verification accura-

cies which are higher or comparable to the competing methods. The training time

10As the ROC curve of TSML [157] hasn’t been released, we haven’t reported it in this chapter.
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of PCML and NCML are much shorter than ITML [33] and DML-eig [149], but

are longer than Doublet-SVM [131], KISSME [69] and XQDA [81]. We note that

Doublet-SVM [131] is a two-stage method and KISSME is a one-pass optimization

method. And they cannot guarantee to obtain the global optimum of the model.

XQDA [81] is a subspace method, and its closed-form solution can be obtained by

eigenvalue decomposition. In contrast, our proposed PCML and NCML methods

solve a convex SDP problem and are able to reach the global optimum.
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Figure 3.7 The ROC curves of different methods on the LFW database.
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Table 3.3 Verification accuracies (%) and training time (s) of competing methods on the

LFW-funneled database.

Methods Verification Accuracy (%) Training Time (s)

PCML (VGG-Face) 96.43 9.81

NCML (VGG-Face) 96.63 10.16

Doublet-SVM[131] (VGG-Face) 96.40 0.43

ITML[33] (VGG-Face) 96.40 194.92

DML-eig[149] (VGG-Face) 94.90 256.24

KISSME[69] (VGG-Face) 96.33 0.01

XQDA[81] (VGG-Face) 95.67 0.02

DDML[56] 90.68 -

TSML[157] 89.80 -

LM3L[57] 89.57 -

3.4.3 Person re-identification

In this subsection, we evaluate the performance of our methods for person re-

identification, i.e., recognizing a person by the pedestrian image at different lo-

cations and at different times [46]. We use the CUHK03 [76] and CUHK01 [75]

databases to assess the performance of our methods.

CUHK03

CUHK03 database contains 14,096 pedestrian images which are taken from 1,467

persons by two cameras [76]. We randomly select 1,367 persons and use their im-

ages as the training set, and use the images from the rest 100 persons as the test

set. For each person in the test set, we randomly select the images taken by one

camera as the probe images, and use one of the images taken by another camera as
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the gallery image. 20 partitions of training set and test sets are constructed, and the

reported accuracies are averaged over all the partitions. We report the rank-1 accu-

racies and training time of PCML, NCML and the competing methods, i.e. ITML

[33], DML-eig [149], LMNN [140], RANK [89], LDML [48], symmetry-driven

accumulation of local features (SDALF) [39], eSDC [155], KISSME [69], XQDA

[81], filter pairing neural network (FPNN) [76], Doublet-SVM [131] and Zhang

et al. [151], on CUHK03 database with manually labeled and detected bounding

boxes on single-shot setting in Table 3.4 and Table 3.5. For the methods with the

rank-1 accuracy higher than 30%, we also report their CMC curves in Fig. 3.8.

For FPNN [76], RANK [89], SDALF [39] and eSDC [155], we use the results in

their original papers. As to the other methods, the results are obtained by using an

effective feature representation named Local Maximal Occurrence (LOMO) [81].

One can see that the rank-1 accuracies of PCML and NCML are much higher than

most of the competing methods, comparable to XQDA [81], but lower than Zhang

et al. [151]. Note that Zhang et al. [151] learn nonlinear discriminative null space

via kernelization, while what the other methods learned are Mahalanobis distance

metric or linear subspace. And this might explain the superiority of Zhang et al.

[151] over the other methods. Analogous to the results on LFW, the training time

of PCML and NCML are much shorter than ITML [33], XQDA [81], Zhang et al.

[151], LDML [48] and LMNN [140], comparable to DML-eig [149], and longer

than Doublet-SVM [131] and KISSME [69].
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Table 3.4 Rank-1 accuracies (%) on the CUHK03 database

Methods CUHK03-Labeled CUHK03-Detected

PCML (LOMO) 51.85 45.80

NCML (LOMO) 53.15 47.50

Doublet-SVM (LOMO) [131] 51.25 45.05

ITML (LOMO) [33] 46.40 43.25

DML-eig (LOMO) [149] 17.70 13.90

KISSME (LOMO) [69] 45.95 38.25

XQDA (LOMO) [81] 52.20 46.25

Zhang et al. (LOMO) [151] 58.90 53.70

LDML (LOMO) [48] 51.20 45.40

LMNN (LOMO) [140] 51.08 44.64

FPNN [76] 20.65 19.89

Euclidean (LOMO) 11.05 10.95

RANK [89] 10.42 8.52

SDALF [39] 5.60 4.87

eSDC [155] 8.76 7.68
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Table 3.5 Training time (s) on the CUHK03 database with LOMO feature [81]

Methods Training Time (s)

PCML 576.45

NCML 655.77

Doublet-SVM [131] 227.54

ITML [33] 1228.50

DML-eig [149] 523.33

KISSME [69] 0.85

XQDA [81] 902.35

Zhang et al. [151] 1954.60

LDML [48] 794.38

LMNN [140] 8383.60

3.5 Summary

We proposed two distance metric learning models, namely PCML and NCML. The

proposed models can guarantee the positive semidefinite property of the learned

matrix M, and can be solved efficiently by the existing SVM solvers. Experimental

results on the handwritten digit recognition task showed that, compared with the

state-of-the-art metric learning methods, including NCA [45], ITML [33], MCML

[44], LDML [48], LMNN [140], PLML [134], DML-eig [149] and Doublet-SVM

[131], the proposed PCML and NCML methods can not only achieve favorable

classification accuracy, but also are efficient in training.

The experimental results on LFW, CUHK01 and CUHK03 databases indicate

that the proposed methods also perform well in face verification and person re-

identification. For face verification, PCML and NCML achieve higher or com-
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parable accuracies to the competing methods on the LFW database. For person

re-identification, our PCML and NCML can obtain better or comparable accuracy

to most Mahalanobis distance metric learning or linear subspace methods, but are

inferior to the kernelized subspace method by Zhang et al. [151].
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Figure 3.8 The CMC curves of different methods on the CUHK03 database with (a)

manually labeled bounding box and (b) automatically detected bounding box.



Chapter 4

Deep Similarity Learning via

Combination of Single Image and

Pairwise Image Representations for

Person Re-identification

4.1 Introduction

Person re-identification aims at verifying whether the two images across camera

views are from the same person [46]. It has been a hot topic in computer vision, and

played an indispensable role in various surveillance applications [129, 130, 136].

However, person re-identification remains very challenging, and more studies are

desired to alleviate the effect caused by the large variances in illumination, poses,

viewpoints and background of pedestrian images.

80
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Deep representation is crucial to the success of similarity learning methods,

which play an important role in person re-identification. By exploiting the advan-

tage of deep neural networks, the deep similarity learning can jointly learn the net-

work parameters and the similarity measure. The deep similarity learning methods

can be grouped into two categories. The first category is based on single image rep-

resentation (SIR) of a given image [25, 35, 48, 54, 69, 74, 80, 88, 93]. Many sim-

ilarity and metric learning methods have been proposed for the matching of hand-

crafted feature descriptors [25, 48, 54, 69, 74, 80–82, 93, 143, 154]. Recently, deep

metric learning models have been proposed for the joint learning deep representa-

tion and distance metric [35, 147, 152]. For all these methods, a distance/similarity

measure together with a threshold is deployed on the SIRs to predict whether two

pedestrian images are matched or not. Given a gallery set of N images, their SIRs

can be extracted in advance. In the matching stage, we only need to extract the

SIR of the probe image and compute its distances to the SIRs of the gallery images.

Thus, the SIR methods is usually very efficient in matching.

The second category of methods is based on the pairwise image representa-

tion (PIR), which is the representation of an image pair and is usually obtained

by deep convolutional neural networks (CNNs) [1, 76, 86]. Using PIR, person re-

identification can be accomplished by conducting an ordinary binary classification

task [1, 28, 76, 86]. Different from the SIR-based methods, all the PIRs should be

computed in the matching stage for the PIR-based method, i.e., we need to extract

the PIR between the probe image and each gallery image (i.e., N times). Despite

their computational inefficiency, PIR-based methods are effective in capturing the

relationships between the two images. Under the PIR framework, several approach-
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es have been suggested to address horizonal displacement by local patch matching

[1, 76].
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Figure 4.1 The sketch of the network for learning the single and pairwise image repre-

sentations.

To sum up, both SIR and PIR have their respective advantages, which motivates

us to develop a joint learning method to combine these two representations for

better tradeoff between effectiveness and efficiency. To this end, we first analyze

the connection between SIR and PIR. Denote by xi and x j two pedestrian images.

We adopt
∥∥∥∥f (xi) − f

(
x j

)∥∥∥∥2

2
to measure the dissimilarity between the SIRs f (xi) and

f
(
x j

)
. And wT g

(
xi, x j

)
is utilized as the classification score on PIR g(xi, x j). Here

‖�‖2 denotes the L2 norm, and w is the normal vector to the classification hyperplane.

In this work, we analyze the connection between SIR and PIR. Let w̃ = [I]vec and

g̃
(
xi, x j

)
= [

(
f(xi) − f(x j)

) (
f(xi) − f(x j)

)T
]
vec

, where I is the identity matrix, and

[�]vec denotes the vector form of a matrix. It is showed that the Euclidean distance

based on SIR, i.e.
∥∥∥∥f (xi) − f

(
x j

)∥∥∥∥2

2
, can also be treated as a special case of classifi-

cation on PIR, i.e. w̃T g̃
(
xi, x j

)
. As illustrated in Sec. 4.2.1, Mahalanobis distance
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and other distance or similarity measures [23, 80, 83] of SIR are also special cases

of PIR.

The connection between SIR and PIR indicates that it is possible to incorporate

SIR into the PIR model for better tradeoff between accuracy and efficiency. Thus,

we suggest a generalized PIR model to combine SIR and PIR. As illustrated in

Fig. 4.1, the final matching score by our model is the combination of the Euclidean

distance on SIRs and the classification on PIR. We further develop a joint learning

framework with deep CNN to exploit the advantages of these two representations.

From Fig. 4.1, our proposed network consists of three sub-networks, i.e. one shared

sub-network followed by two sub-networks for extracting SIR and PIR features,

respectively. As the computational cost of extracting PIR feature is relatively high,

we limit the depth of the PIR sub-network to include only one convolutional layer,

one pooling layer and one fully-connected layer. In the test stage, we can store the

CNN feature maps from the shared sub-network and SIR sub-network of the gallery

images in advance. Thus, the shared feature maps and SIR of each probe image are

required to be computed one time, and only the PIR sub-network is used to compute

the PIR between the probe image and each gallery image. By using this network,

we can fuse the SIR and PIR to improve the matching accuracy while maintaining

the computational efficiency.

Furthermore, we extend our model by utilizing two different deep CNNs with

the same architecture for joint SIR and PIR learning based on either pairwise com-

parison objective or triplet comparison objective, respectively. For the pairwise

comparison based network, SIR and PIR are learned to make that the matching

scores of the similar image pairs are higher than a given threshold and those of dis-
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similar image pairs are lower than the threshold. For the triplet comparison based

network, SIR and PIR are learned to make that the matching score of the similar

image pairs are higher than that of the dissimilar ones. Finally, the matching scores

of these two networks can be further combined to boost the person re-identification

performance.

Experiments have been conducted on several public datasets for person re-

identification, i.e. CUHK03 [76], CUHK01 [75] and VIPeR [47]. The results show

that, joint SIR and PIR learning is effective in improving the person re-identification

performance, and the matching accuracy can be further improved by combining the

learned models based on pairwise and triplet comparison objectives. Compared

with the state-of-the-art approaches, the proposed methods perform favorably in

person re-identification.

The rest of this chapter is organized as follows. Section 4.2 describes the pro-

posed model. Section 4.3 presents the deep CNN architecture and the training al-

gorithms. Section 4.4 reports the experimental results, and Section 4.5 summarizes

this chapter.

4.2 Joint SIR and PIR Learning

In this section, we first discuss the connection between SIR and PIR. Motivated by

their connection, we present a generalized model by incorporating SIR into PIR.

Then, two formulations (i.e. pairwise comparison formulation and triplet compari-

son formulation) are suggested for joint learning of SIR and PIR.
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4.2.1 Connection between SIR and PIR

With the SIR features, there are five commonly used distance/similarity measures

for person re-identification, i.e. Euclidean distance, Mahalanobis distance, joint

Bayesian [23], locally adaptive decision function (LADF) [80] and generalized sim-

ilarity measure (GSM) [83]. As explained in Sec. 4.1, Euclidean distance on SIRs

can be regarded as a special case of PIR-based classification score, i.e. w̃T g̃
(
xi, x j

)
.

In the following, we will show that the other measures are also special cases of

PIR-based classification score.

The Mahalanobis distance based on the SIR zi = f (xi) can be formulated as

s
(
xi, x j

)
=

(
zi − z j

)T
M

(
zi − z j

)
, where M is positive semi-definite. This formula-

tion is equivalent to w̃T g̃
(
xi, x j

)
when w̃ = [M]vec and g̃

(
xi, x j

)
=

[(
zi − z j

) (
zi − z j

)T
]

vec
.

The joint Bayesian formulation [23] is defined as follows

s
(
xi, x j

)
= zT

i Azi + zT
j Az j − 2zT

i Gz j, (4.1)

which is the generalization of Mahalanobis distance. By setting w̃ =
(
[A]T

vec [G]T
vec

)T

and g̃
(
xi, x j

)
=

([
zizT

i + z jzT
j

]T

vec

[
−2z jzT

i

]T

vec

)T

in w̃T g̃
(
xi, x j

)
, joint Bayesian can

be regarded as a classifier w̃ on the PIR g̃(xi, x j).

The LADF [80] is defined as follows

s
(
xi, x j

)
=

1
2

zT
i Azi +

1
2

zT
j Az j + zT

i Bz j + cT
(
zi + z j

)
+ b, (4.2)

which is the generalization of Mahalanobis distance and joint Bayesian. It can also

be viewed as a special case of w̃T g̃
(
xi, x j

)
when w̃ = ([A]T

vec [B]T
vec cT b)

T

and

g̃(xi, x j) =
(

1
2

[
zizT

i + z jzT
j

]T

vec

[
z jzT

i

]T

vec

(
zi + z j

)T
1
)T

.
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The GSM [83] is defined as follows

s
(
xi, x j

)
= zT

i Azi + zT
j Bz j + 2zT

i Cz j + 2dT zi + 2eT z j + f , (4.3)

which can be explained as a generalization of Mahalanobis distance, joint Bayesian

[23] and LADF [80] [83]. By setting w̃ = ([A]T
vec [B]T

vec [C]T
vec dT eT f )

T

and g̃
(
xi, x j

)
= ([zizT

i ]T
vec [z jzT

j ]T
vec [2zizT

j ]T
vec 2zT

i 2zT
j 1)

T

, GSM also can be

viewed as a special case of PIR-based matching score w̃T g̃
(
xi, x j

)
.

In summary, most SIR-based methods can also be explained from the PIR per-

spective, but SIR does have its own advantage in terms of efficiency. For the

SIR-based method, the SIR features of the gallery set can be precomputed in ad-

vance. For each probe image, we only need to extract its SIR and compute its

distance/similarity measure with the precomputed SIRs from the gallery images,

making SIR computationally efficient for person re-identification. On the other

hand, PIR g
(
xi, x j

)
as a general representation of image pair also has its distinc-

t advantage in modeling the complex relationships between the gallery and probe

images.

4.2.2 Matching Score based on SIR and PIR

Motivated by the connection between SIR and PIR, we incorporate the SIR, result-

ing in the following general PIR-based matching score,

S
(
xi, x j

)
= ŵT ĝ

(
xi, x j

)
. (4.4)

Our generalized PIR includes two components, i.e. ĝ
(
xi, x j

)
=

[
gT

(
xi, x j

)
−g̃T

(
xi, x j

)]T

.

The weight ŵ is formulated as ŵ =
[
wT w̃T

]T

. Here we following the Euclidean
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distance on SIRs to set g̃
(
xi, x j

)
= [(f(xi) − f(x j))(f(xi) − f(x j))T ]vec and w̃ = [I]vec.

Therefore, the matching score in Eqn. (4.4) can be derived as

S
(
xi, x j

)
= wT g

(
xi, x j

)
−

∥∥∥∥f (xi) − f
(
x j

)∥∥∥∥2

2
, (4.5)

which can be viewed as the matching score by combining both SIR and PIR. Thus,

optimizing S
(
xi, x j

)
from training data can offer an effective means for both joint

learning and adaptive combination of SIR and PIR for person re-identification.

4.2.3 Pairwise Comparison Formulation

Based on the matching score in Eqn. (4.5), the pairwise comparison model formu-

lation is proposed. Denote by
{((

xi, x j

)
, hi j

)}
the training set of sample pairs, where

xi and x j are the ith and jth training samples, respectively. hi j is the label assigned

to the pair
(
xi, x j

)
. If xi and x j are from the same class, then hi j = 1, otherwise

hi j = −1. Let f (xi) and f
(
x j

)
be the SIRs of xi and x j, g

(
xi, x j

)
be the PIR of(

xi, x j

)
, and b be a distance threshold. In the pairwise comparison formulation, the

matching score of the positive pair is expected to be higher than the threshold b,

while the matching score of the negative pairs is expected to be lower than b. The

matching score for any pair
(
xi, x j

)
is enforced to satisfy the following constraints:

S
(
xi, x j

)
≥ b + 1 − ξP

i j if hi j = 1

S
(
xi, x j

)
≤ b − 1 + ξP

i j if hi j = −1,
(4.6)

where ξP
i j is a nonnegative slack variable which should be as small as possible. Then

the loss function of pairwise comparison model is defined as

LP =
∑

i, j

[
1 + hi j

(
b − S

(
xi, x j

))]
+
, (4.7)

where [z]+ = max (z, 0).
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4.2.4 Triplet Comparison Formulation

The triplet comparison formulation is trained on a series of triplets
(
xi, x j, xk

)
, where

xi and x j are from the same class, while xi and xk are from different classes. To

make the matching score of xi and x j higher than the one of xi and xk, for any triplet(
xi, x j, xk

)
, the matching score in Eqn. (4.5) should satisfy the following constraint:

S
(
xi, x j

)
− S (xi, xk) ≥ 1 − ξT

i jk, (4.8)

where ξT
i jk is a nonnegative slack variable which should be as small as possible.

Then the loss function of our triplet comparison formulation is defined as

LT =
∑
i, j,k

[
1 − S

(
xi, x j

)
+ S (xi, xk)

]
+
. (4.9)

4.2.5 Prediction

After model training, S (xi, x j) can be used to produce the matching score between xi

and x j. We combine the matching scores learned by pairwise and triplet comparison

formulations, which are denoted by S P

(
xi, x j

)
and S T

(
xi, x j

)
, respectively. The

combined matching score is S P&T

(
xi, x j

)
= S P

(
xi, x j

)
+ μS T

(
xi, x j

)
, where μ is a

tradeoff parameter and we set it as μ = 0.5 in the experiments. Finally we use the

1-Nearest Neighbor strategy to predict the identity of the probe image.

4.3 Deep Convolutional Neural Networks

In this section, we describe the deep CNN architecture and training algorithms for

joint learning of SIR and PIR. We first introduce the network architecture of our
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pairwise comparison model and triplet comparison model, and then propose their

training algorithms, including model initialization and learning.

4.3.1 Network Architecture

Instead of designing the hand-crafted image features, we develop a framework to

jointly learn the SIRs and PIRs with a deep CNN. For the pairwise comparison

formulation, we learn the SIRs (f (xi) and f
(
x j

)
) and PIR (g

(
xi, x j

)
) for the image

pair
(
xi, x j

)
. For the triplet comparison formulation, we learn the SIRs (f (xi), f

(
x j

)
and f (xk)) and the PIRs (g

(
xi, x j

)
and g (xi, xk)) for the image triplet

(
xi, x j, xk

)
.

The deep architectures of the pairwise and triplet comparison models are illustrated

in Fig. 4.2 and Fig. 4.3, respectively. Each of these two networks consists of a

SIR learning sub-network (green part), a PIR learning sub-network (red part), and a

sub-network shared by SIR and PIR learning (blue part). For each of the probe and

gallery images, its CNN feature maps (yellow part) from the shared sub-network

and the SIR feature are computed once. Only the PIR learning sub-network is used

to extract the PIR features for each image pair of probe image and gallery image.

Shared sub-network

The sub-network in the blue part of Figs. 4.2 and 4.3 is shared by SIR learning

and PIR learning. It consists of two convolutional layers with rectified linear unit

(ReLU) activation. Each of them is followed by a pooling layer. The kernel sizes

of the first and second convolutional layers are 5 × 5 and 3 × 3, respectively. The

stride of the convolutional layers is 1 pixel. The kernel sizes of the first and second

pooling layers are set to 3 × 3 and 2 × 2, respectively.
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Figure 4.2 The proposed deep architecture of the pairwise comparison model (best

viewed in color)

SIR sub-network

We use the sub-network in the green part of Figs. 4.2 and 4.3 to learn the SIR f (xi)

for the input image xi. This sub-network contains one convolutional layers with

ReLU activation, a pooling layer and two fully-connected layers. The kernel sizes

of the convolutional layer and the pooling layer are 3 × 3 and 2 × 2. The output

dimensions of these two fully-connected layers are 1000 and 500, respectively. For

the pairwise and triplet comparison model, there are two and three sub-networks,

which share the same parameter, to learn the SIR, respectively.

PIR sub-network

We use the sub-network in the red part of Figs. 4.2 and 4.3 to learn the PIR g
(
xi, x j

)
for the input image pair

(
xi, x j

)
. This sub-network contains one convolutional layer

with ReLU activation followed by one pooling layer and one fully-connected layer.
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Figure 4.3 The proposed deep architecture of the triplet comparison model (best viewed

in color)

The kernel sizes of the convolutional layer and the pooling layer are 3×3 and 2×2.

The output dimension of the fully-connected layer is 1000. Denote by φp (xi) the

pth channel of the CNN feature map of xi from the shared sub-network. When

we extract the PIR of
(
xi, x j

)
, the PIR sub-network is feeded by the CNN feature

maps of xi and x j from the shared sub-network. The first convolutional layer of PIR

sub-network is used to compute the pairwise image feature map as follows

ϕr

(
xi, x j

)
= max

(
0, br +

∑
q

kq,r ∗ φq (xi) + lq,r ∗ φq

(
x j

))
, (4.10)

where ϕr

(
xi, x j

)
is the rth channel of pairwise image feature map, kq,r and lq,r are

different convolutional kernels of the qth channel of the shared sub-network feature
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map and the rth channel of pairwise image feature map. The similar operation has

also been used in [86].

4.3.2 Initialization

Before the training process, we need to preprocess the training data and generate

the doublets or triplets. The details are described as follows.

Data preprocessing. First, we resize all the input images to 180 × 80 pixels.

To make the model robust to the image translation variance, we randomly crop the

input images before the training process. We randomly select the cropped image

center from [80, 100] × [30, 50] and crop the original image to 160 × 60 pixels.

We also augment the training set by generating the horizontal mirror image of each

sample.

Doublet/triplet generation based on mini-batch strategy. Since the training

set may be too large to be loaded into the memory, we divide the training set into

multiple mini-batches. Following the strategy in [35], for each iteration, we ran-

domly select 80 classes from the training set, and construct 60 doublets or triplets

for each class. Using this strategy, we can generate 4,800 doublets or triplets in

each round of training, and we randomly select 500 doublets or triplets for training.

4.3.3 Network Training

In this subsection, we present the algorithms for learning network parameters of

pairwise/triplet comparison models. The network parameters are denoted by ω =

[ωSIR, ωPIR, ωS], where ωSIR, ωPIR and ωS are the parameters of SIR, PIR and shared



93

sub-networks, respectively. To use BP to learn the network parameters ω, we com-

pute the gradients of the loss functions LP and LT with respect to ω. In the fol-

lowing, we introduce the learning methods for the SIR sub-network, the PIR sub-

network and the shared sub-network, respectively.

SIR sub-network

For the pairwise comparison model, the gradient of the loss function LP with re-

spect to network parameter ωSIR is

PS(ωSIR) =
∂LP

∂ωSIR
=

∑
i, j

rP(xi, x j, ωSIR). (4.11)

In Eqn. (4.11), if hi jS (xi, x j) ≥ hi jb + 1, then rP(xi, x j, ωSIR) = 0, otherwise

rP(xi, x j, ωSIR) = 2hi jR(xi, x j, ωSIR)(f(xi) − f(x j)), (4.12)

where R(xi, x j, ωSIR) = ∂f
T (xi)
∂ωSIR

− ∂fT (x j)
∂ωSIR

, which can be computed by BP, and f(xi)−f(x j)

can be obtained by forward propagation.

For the triplet comparison model, the gradient of the loss function LT with

respect to network parameter ωSIR is

TS(ωSIR) =
∂LT

∂ωSIR
=

∑
i, j,k

rT(xi, x j, xk, ωSIR). (4.13)

In Eqn. (4.13), if S (xi, x j) − S (xi, xk) ≥ 1, then rT(xi, x j, xk) = 0, otherwise

rT(xi, x j, xk, ωSIR) = 2R(xk, x j, ωSIR)f(xi) + 2R(x j, xi, ωSIR)f(x j) + 2R(xi, xk, ωSIR)f(xk).

(4.14)

We can use BP to compute R(xk, x j, ωSIR), R(x j, xi, ωSIR) and R(xi, xk, ωSIR), and

use forward propagation to get f(xi), f(x j) and f(xk). So the gradient in Eqn. (4.13)

can be obtained.
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PIR sub-network

For the pairwise comparison model, the gradient of the loss function LP with re-

spect to network parameter ωPIR is

PC(ωPIR) =
∂LP

∂ωPIR
=

∑
i, j

qP(xi, x j, ωPIR). (4.15)

In Eqn. (4.15), if hi jS (xi, x j) ≥ hi jb + 1, then qP(xi, x j, ωPIR) = 0, otherwise

qP(xi, x j, ωPIR) = −hi j
∂gT (xi, x j)
∂ωPIR

w. (4.16)

As the term ∂gT (xi,x j)
∂ωPIR

can be computed using BP, the gradient in Eqn. (4.15) can be

obtained.

For the triplet comparison model, the gradient of the loss function LT with

respect to network parameter ωPIR is

TC(ωPIR) =
∂LT

∂ωPIR
=

∑
i, j,k

qT(xi, x j, xk, ωPIR). (4.17)

In Eqn. (4.17), if S (xi, x j) − S (xi, xk) ≥ 1, then qT(xi, x j, xk, ωPIR) = 0, otherwise

qT(xi, x j, xk, ωPIR) =
(
∂gT (xi, xk)
∂ωPIR

− ∂g
T (xi, x j)
∂ωPIR

)
w. (4.18)

In Eqn. (4.18), the term ∂gT (xi,xk)
∂ωPIR

− ∂gT (xi,x j)
∂ωPIR

can be computed using BP. Thus the

gradient in Eqn. (4.15) can be obtained.

Shared sub-network

As the parameters of shared sub-network are utilized to learn both the SIR and PIR,

the gradients of LP and LT with respect to ωS are

∂LP

∂ωS
=

∑
i, j

(
rP(xi, x j, ωS) + qP(xi, x j, ωS)

)
, (4.19)
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∂LT

∂ωS
=

∑
i, j,k

(
rT(xi, x j, xk, ωS) + qT(xi, x j, xk, ωS)

)
. (4.20)

The calculation of rP(xi, x j, ωS), qP(xi, x j, ωS), rT(xi, x j, xk, ωS) and qT(xi, x j, xk, ωS)

are shown in Eqns. (4.12), (4.16), (4.14) and (4.18), respectively. Substituting them

into Eqns. (4.19) and (4.20), the gradients of LP and LT to ωS can be calculat-

ed. Finally, the training algorithm of pairwise and triplet comparison models are

summarized in Algorithms 1 and 2, respectively.

4.4 Experiments

In this section, we evaluate the proposed method using three person re-identification

datasets, i.e. CUHK03 [76]1, CUHK01 [75]1 and VIPeR [47]2. The proposed

method is implemented based on the Caffe framework [62]. We set the momen-

tum as γ = 0.5 and set the weight decay as μ = 0.0005. We train the network for

200,000 iterations. It takes about 63 hours in training with a NVIDIA Tesla K40

GPU. The learning rates of pairwise and triplet comparison models are 1 × 10−3

and 3 × 10−4 before the 100,000th iteration, respectively. After that their learning

rates reduce to 1 × 10−4 and 3 × 10−5. All of the reported results are based on the

single-shot setting.

4.4.1 CUHK03 Dataset

The CUHK03 dataset contains 14,096 pedestrian images, which were taken from

1,467 persons by two surveillance cameras [76]. Each person has 4.8 images on

1http://www.ee.cuhk.edu.hk/˜rzhao/
2http://vision.soe.ucsc.edu/projects
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Algorithm 3 Algorithm of Pairwise Comparison Model

Input: Doublet training set
{((

xi, x j

)
, hi j

)}
, iteration number T .

Output: Network parameter ω.

1: Initialize ω, t ← 0.

2: repeat

3: PS(ωSIR) ← 0, PC(ωPIR) ← 0, ∂LP
∂ωS

← 0.

4: for each (xi, x j) do

5: Calculate f(xi) and f(x j) by forward propagation.

6: Calculate R(xi, x j, ωSIR), ∂g
T (xi,x j)
∂ωPIR

, R(xi, x j, ωS) and ∂g
T (xi,x j)
∂ωS

by BP.

7: Calculate rP(xi, x j, ωSIR), qP(xi, x j, ωPIR), rP(xi, x j, ωS) and qP(xi, x j, ωS)

by Eqns. (4.12) and (4.16).

8: PS(ωSIR) ← PS(ωSIR) + rP(xi, x j, ωSIR)

9: PC(ωPIR) ← PC(ωPIR) + qP(xi, x j, ωPIR)

10: ∂LP
∂ωS

← ∂LP
∂ωS
+ rP(xi, x j, ωS) + qP(xi, x j, ωS)

11: end for

12: ωSIR ← ωSIR − θPS(ωSIR)

13: ωPIR ← ωPIR − θPC(ωPIR)

14: ωS ← ωS − θ∂LP
∂ωS

15: t ← t + 1

16: until t > T

17: return ω = [ωSIR, ωPIR, ωS].

average. All of the images are collected from five video clips. The dataset provides

both the manually labeled bounding box and the automatically detected bounding

box with a pedestrian detector [40]. Following the testing protocol in [76], the
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Algorithm 4 Algorithm of Triplet Comparison Model

Input: Triplet training set
{(

xi, x j, xk

)}
, iteration number T .

Output: Network parameter ω.

1: Initialize ω, t ← 0.

2: repeat

3: TS(ωSIR) ← 0, TC(ωPIR) ← 0 and ∂L
T

∂ωS
← 0.

4: for each (xi, x j, xk) do

5: Calculate f(xi), f(x j), and f(xk) by forward propagation.

6: Calculate R(xk, x j, ωSIR), R(x j, xi, ωSIR), R(xi, xk, ωSIR), R(xk, x j, ωS),

R(x j, xi, ωS), R(xi, xk, ωS), ∂g
T (xi,xk)−∂gT (xi,x j)

∂ωPIR
and ∂g

T (xi,xk)−∂gT (xi,x j)
∂ωS

by BP.

7: Calculate rT(xi, x j, xk, ωSIR), qT(xi, x j, xk, ωPIR), rT(xi, x j, xk, ωS) and

qT(xi, x j, xk, ωS) by Eqns. (4.14) and (4.18).

8: TS(ωSIR) ← TS(ωSIR) + rT(xi, x j, xk, ωSIR).

9: TC(ωPIR) ← TC(ωPIR) + qP(xi, x j, xk, ωPIR).

10: ∂LT

∂ωS
← ∂LT

∂ωS
+ rT(xi, x j, xk, ωS) + qP(xi, x j, xk, ωS)

11: end for

12: ωSIR ← ωSIR − θTS(ωSIR)

13: ωPIR ← ωPIR − θTC(ωPIR)

14: ωS ← ωS − θ∂LT

∂ωS

15: t ← t + 1

16: until t > T

17: return ω = [ωSIR, ωPIR, ωS].

identities in this dataset are randomly divided into non-overlapping training and

test set. The training set consists of 1,367 persons and the test set consists of 100
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persons. By this strategy, 20 partitions of training and test set are constructed.

The reported cumulative matching characteristic (CMC) curve and accuracy are

averaged by these 20 groups. For each person in the test set, we randomly select

one camera view to construct the probe set, and use one image from another camera

view to form the gallery set.

Comparison of different model settings: To evaluate the effect of joint SIR

and PIR learning [130], we design two models for comparison, the matching scores

of which only consist of the SIR-based and PIR-based matching scores, respective-

ly. We report the accuracies of SIR-based, PIR-based and fused similarities of the

proposed pairwise and triplet comparison models in Table 4.2. From the results, we

can see that the SIR and PIR-based matching have comparable results. However,

their combination achieves a higher accuracy than either of them. The accuracy

of triplet comparison model is higher than pairwise comparison model, and their

combination also outperforms both of them. We also report the training time of the

proposed model in Table 4.3. Compared with SIR learning, the proposed joint SIR

and PIR learning model can achieve substantial improvement of matching accuracy

with moderate increase of training time.

Table 4.1 The rank-1 accuracies (%) of the proposed pairwise and triplet comparison

models on CUHK03 dataset with detected bounding box

Model SIR PIR Fused

Pairwise 38.25 36.10 44.94

Triplet 45.16 45.32 53.57

Combination 46.29 47.44 55.08

Comparison of alternative network architectures: We compare our proposed
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Table 4.2 The rank-1 accuracies (%) of the proposed pairwise and triplet comparison

models on CUHK03 dataset with labeled bounding box

Model SIR PIR Fused

Pairwise 43.38 43.29 50.20

Triplet 50.38 49.00 58.00

Combination 51.85 51.78 59.73

Table 4.3 The training times of the proposed pairwise and triplet comparison models

Model SIR SIR&PIR

Pairwise 18h20m 24h10m

Triplet 24h36m 38h17m

network architecture with two alternative networks, which are denoted by A and B.

The architectures of these two networks are shown in Table 4.4. To simplify the

notation, we denote the convolution layer, pooling layer and fully connected layer

by “CONV<receptive field size>– <number of channels>”, “POOL<receptive field

size>” and “FC–<number of dimensions>”, respectively. Compared with our net-

work, A has a shallower shared sub-network and deeper SIR and PIR sub-networks,

while B has a deeper shared sub-network and shallower SIR and PIR sub-networks.

We use the CUHK03 dataset with manually labeled bounding box to evaluate these

networks. Fig. 4.4 shows the rank-1 accuracies, training and testing time of them.

We can see that our proposed network achieves better accuracy than the other two

networks. The training time and testing time of our proposed network are shorter

than those of network A, and slightly longer than those of network B.

Comparison of joint learning and separate learning procedures: To prove
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Table 4.4 The architectures of our proposed network together with two similar networks.

Abbreviation A Ours B

Shared sub-network CONV5-32

POOL3

CONV5-32

POOL3

CONV3-64

POOL2

CONV5-32

POOL3

CONV3-64

POOL2

CONV3-32

POOL2

SIR sub-network CONV3-64

POOL2

CONV3-32

POOL2

FC-1000

FC-500

CONV3-32

POOL2

FC-1000

FC-500

FC-1000

FC-500

PIR sub-network CONV3-64

POOL2

CONV3-32

POOL2

FC-1000

CONV3-32

POOL2

FC-1000

FC-1000
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Figure 4.4 The rank-1 accuracies, training and testing time of three similar networks. (a)

is the rank-1 accuracies of pairwise comparison, triplet comparison and combined models.

(b) is the training time of pairwise and triplet comparison models. (c) is the testing time of

these networks.
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the effectiveness of the joint learning procedure, we compare our joint learning

network with the separate learning network, which learns the SIR and PIR with

two independent networks. The network sketches of joint learning and separate

learning networks are shown in Fig. 4.5 (a) and (b). We compared their CMC

curves and rank-1 accuracies under the CUHK03 dataset with manually labeled

bounding box. The results are shown in Fig. 4.5 (c). From the results, we can

see that our proposed joint learning network can achieve higher accuracy than the

separate learning network.

Comparison with other state-of-the-art methods: We also compare the per-

formances of the proposed method and some other state-of-the-art methods, includ-

ing improved deep learning architecture (IDLA) [1], Cross-view Quadratic Dis-

criminant Analysis (XQDA) [81], MLAPG [82], general similarity measure (GSM)

[83] and Discriminative Null Space (DNS) [151]. Fig. 4.6 and Fig. 4.7 illustrate the

CMC curves and the rank-1 accuracies of these methods on CUHK03 dataset with

detected and labeled bounding boxes, respectively. As the CMC curve of GSM on

the CUHK03 dataset with detected bounding box are not released, we do not re-

port it in Fig. 4.6. We can see that the rank-1 accuracies of the proposed method

can reach 55.08% (for detected bounding box) and 59.73% (for labeled bounding

box), which are 1.38% and 0.83% higher than the method with the second best

performance, respectively.

4.4.2 CUHK01 Dataset

The CUHK01 dataset consists of 3,884 pedestrian images taken by two surveillance

cameras from 971 persons. Each person has 4 images. This dataset has been ran-
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(b) Separate Learning Network
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Figure 4.5 The comparison of the structures and CMC curves of joint learning network

and separate learning network. (a) and (b) are the sketch architectures of joint learning and

separate learning networks. (c) is the CMC curves of these two networks.
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Figure 4.6 The rank-1 accuracies and CMC curves of different methods on the CUHK03

dataset with detected bounding box (best viewed in color)
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Figure 4.7 The rank-1 accuracies and CMC curves of different methods on the CUHK03

dataset with labeled bounding box (best viewed in color)
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domly divided into 10 partitions of training and test sets, and the reported CMC

curves and rank-1 accuracies are averaged on these 10 groups.

Following the protocol in [1], we use 871 persons for training and 100 persons

for testing. On the basis of the single-shot setting, we report the CMC curves and

rank-1 accuracies of the proposed model and the other state-of-the-art person re-

identification methods, including FPNN [76], KISSME [69], IDLA [1] and GSM

[83] in Fig. 4.8. The rank-1 accuracy of the proposed method is higher than the

other competing methods.
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68.00% Ours

Figure 4.8 The rank-1 accuracies and CMC curves of different methods on the CUHK01

dataset (best viewed in color)
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4.4.3 VIPeR Dataset

The VIPeR dataset consists of 1,264 images from 632 persons [47]. These images

are taken by two camera views. We randomly select 316 persons for training, and

use the rest 316 persons for testing. For each person in the test set, we randomly

select one camera view as the probe set, and use the other camera view as the gallery

set. Following the testing protocol in [1], we pretrain the CNN using CUHK03

and CUHK01 datasets, and fine-tune the network on the training set of VIPeR.

We report the CMC curves and rank-1 accuracies of LADF [80], mid-level filters

(mFilter) [156], visWord [153], saliency matching (SalMatch) [154], IDLA [1],

XQDA [81], MLAPG [82], DNS [151] and the proposed model. The proposed

method performs better than most of the other competing methods. Although the

rank-1 accuracies of our method is lower than that of XQDA [81], MLAPG [82]

and DNS [151], the CMC curves of our method are comparable to them. Our

performance is lower than mFilter [156]+LADF [80] which is the combination of

two methods, and higher than either one of mFilter [156] and LADF [80].

4.5 Summary

In this work, we propose a joint SIR and PIR learning approach for deep similarity

learning. SIR is efficient in learning and matching, and PIR is effective in modeling

the relationship between two images. Based on their connection, we suggest a

generalized PIR model to utilize the advantages of both SIR and PIR. Based on

the proposed matching score, we present a pairwise comparison model and a triplet

comparison model for joint SIR and PIR learning. For each of these two models,
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we formulate a deep CNN to jointly learn the SIR and PIR. Experimental results

demonstrate the effectiveness of joint SIR and PIR learning and show the promising

results of our proposed models in person re-identification.



Chapter 5

Learning of Single Relative Order

Relationship by Deep Siamese

Networks

5.1 Introduction

Many computer vision tasks aim to learn the pairwise relationship of images. Given

an image pair (x, y), they learn a function to predict whether it belongs to a particular

pairwise relationship. For example, the similarity learning methods, which have

played an important role in many computer vision tasks [15, 48, 81, 82], aim to

learn the similarity relationship between two images, in which the images from the

same class are more similar, and the images from different classes are less similar

[8]. So the similarity can be regarded as a special case of pairwise relationship by

defining the prediction function as s(x, y), which denotes the similarity of x and y.

108
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Figure 5.1 Extension of deep siamese network for relative order relationship learning.

In previous work, siamese network has been applied to similarity learning by matching

the deep features from two samples with the similarity function s(x, y). By utilizing the

deep siamese network architecture, we replace the symmetric s(x, y) with the antisymmetric

relative order prediction function r(x, y) for relative order relationship learning.

In recent years, deep siamese network has been successfully applied in similar-

ity learning [83, 112, 150]. As illustrated in Fig. 5.1, there are two sub-networks in

the deep siamese network which have the same architecture and share the same net-

work parameters. With two images x and y feeded into the deep siamese network,

the two sub-networks extract the deep features of x and y, respectively. Then the

deep features are matched by the similarity function s(x, y) in the top layer.

It is clear that similarity is the symmetric relationship since s(x, y) = s(y, x).

However, in some applications, the relationship of two images is not symmetric.

For example, the relative attribute ranking task aims to predict the relative order

of attributes, e.g. natural, perspective, etc, of two images. In this task, the predic-

tion function is defined as r(x, y), which denotes the relative attribute value of x

compared with y. Different from the similarity, this relationship is antisymmetric,



110

since r(x, y) = −r(y, x). Here we call this relationship r(x, y) as the relative order

relationship.

In this work, we extend the deep siamese network from learning the similarity

relationship to relative order relationship. As illustrated in Fig. 5.1, our proposed

model also use the two sub-networks to extract the deep features of images x and y.

Different from the traditional deep siamese network for similarity learning, the deep

features are combined using the relative order prediction function r(x, y). Because

of the marked performance in the bilinear pooling [84] and second order pooling

[16], we formulate the proposed model as a bilinear model, in which we design

the second-order representation of images and suggest the relative order prediction

function. The loss function of our extended deep siamese network is composed

of three terms, i.e. relative order loss, mean square error (MSE) loss and softmax

loss. The relative order loss makes the predicted relative order to be consistent with

the ground-truth. The MSE loss minimizes the error between the predicted value

and the ground-truth label. To make the feature more discriminative and stable,

we formulate the image feature as the normalized probabilities of each prediction

value, which can be learned by the softmax loss.

Furthermore, we demonstrate that our proposed model can also be applied into

the regression task, e.g. age estimation, in which the pairwise relationship is defined

as the relative age order of x and y. This relationship is also the relative order rela-

tionship, and its prediction function r(x, y) is defined as the age difference between

x and y. We find that although this task is not aimed at predicting the pairwise

relationship, the relative order information also benefits in model training. We also

show that the relative order loss is complementary to the MSE loss and softmax
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loss, and it can help to improve the prediction accuracy of the age estimation task.

To sum up, the main contribution of this work is three-fold. First, we propose

the second-order representation based relative order prediction function, which can

achieve better performance than the traditional linear prediction function. Second,

we propose a model by extending the deep siamese network to learn the relative

order of images. Third, we applied our proposed model to relative attribute ranking

and age estimation, and show the effectiveness of our proposed model in terms of

the prediction accuracy.

The rest of this chapter is organized as follows. Section 5.2 demonstrates the

proposed model. Section 5.3 describes the network architecture and training ap-

proach. Section 5.4 reports the experimental results, and Section 5.5 concludes this

chapter.

5.2 Learning the Relative Order Relationship

In this section, we first introduce the relative order prediction function, then propose

the model for relative order relationship learning. The model is composed of three

loss terms, i.e. relative order loss term, MSE loss term and softmax loss term.

5.2.1 Relative Order Prediction Function

Motivated by the good performance of bilinear pooling [84] and second-order pool-

ing [16], we formulate the proposed model as a bilinear model B =
(

f , f̃ , h
)

, where

f (x) is the learned feature of image x by CNN and f̃ (x) =
(

f T (x), 1
)T

. h is the pre-

diction function. The bilinear feature combination of f and f̃ is their outer product
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which is formulated as

g(x) =
(

f (x) f̃ T (x)
)

vec

=

((
f (x) f T (x)

)T

vec
f T (x)

)T (5.1)

where (·)vec denotes the vector form of a matrix. Based on Eq. (5.1), we formulate

the prediction value of x as

h(x) = uT g(x) = f T (x)M f (x) + wT f (x) (5.2)

where u =
(
(M)T

vec,wT
)T

is the weight.

To predict the relative order of two samples, we propose a prediction function

as the indicator of relative order. Given two images xi and x j, their relative order

prediction function is formulated as

r(xi, x j) = h(xi) − h(x j) (5.3)

Compared with the bilinear model in [84], our proposed model has the following

differences. First, our proposed model does not need the pooling function, since the

model is based on the global representation. Second, f and f̃ are from different

CNNs in [84] in most cases, while in our model, f and f̃ are from the same CNN.

Third, the model in [84] uses a classification function C for the image classification

task, while our proposed model replaces it with the prediction function h.

5.2.2 Relative Order Loss Term

Denote by {(xi, yi)|i = 1, 2, · · · ,N} the training set, where xi is the ith sample, yi

is the ground-truth label of xi, and N is the number of training samples. Based

on the training set, the ordered pair set P =
{
(xi, x j)|yi < y j

}
and unordered pair
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set Q =
{
(xi, x j)|yi = y j

}
can be constructed. In the relative attribute ranking and

age estimation tasks, the labels yi are integers. So each image pair (xi, x j) in set P
satisfies yi ≤ y j − 1. For the image pairs in P, we hope that the predicted order

of (xi, x j) satisfies h(xi) ≤ h(x j) − 1. For the image pairs in Q, we hope that the

prediction values of xi and x j are as close as possible. Motivated by [101, 146], we

build the following constraints

r(xi, x j) ≤ −1 + ξi j, ξi j ≥ 0 ∀(xi, x j) ∈ P
r2(xi, x j) ≤ ζi j, ζi j ≥ 0 ∀(xi, x j) ∈ Q

(5.4)

where ξi j and ζi j are slack variables. We rewrite the constraints into the following

loss term

L1 =
1
|P|

∑
(xi,x j)∈P

[
r(xi, x j) + 1

]
+
+

1
|Q|

∑
(xi,x j)∈Q

r2(xi, x j) (5.5)

where [a]+ = max(a, 0).

5.2.3 Mean Square Error Loss Term

To make the predicted value h(xi) close to the ground-truth yi, we introduce the

MSE loss term to our model, which is formulated as

L2 =
1
N

∑
i

(h(xi) − yi)2 (5.6)

5.2.4 Softmax Loss Term

As the MSE loss term may be unstable to the outliers [107], we introduce the soft-

max loss to learn the feature. We partition the possible prediction values into T non-

overlapping ranges, and denote pk(x) as the normalized probability of the predicted
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value in the kth range. We formulate the feature as f (x) = (p0(x), · · · , pT (x))T , and

it can be learned using the softmax loss as follows,

L3 = −
∑
i,k

sik log (pk(xi)) (5.7)

where sik = 1 if yi belongs to the kth range, otherwise sik = 0.

Overall, the loss function of our proposed model is the integration of (5.5), (5.6)

and (5.7), which is formulated as

L = L1 + λL2 + βL3 (5.8)

where λ and β are coefficients. In the experiments, we set λ = 0.1 and β = 1.

5.2.5 Discussion

The proposed model can be applied into the ranking and regression tasks. In our

proposed model, relative order loss term, MSE loss term and softmax loss term

are complementary to each other. The relative order loss term is supervised by the

relative order information of image pairs. The MSE and softmax loss terms use

the ground-truth label of target value as the supervisory signal. The relative order

of image pairs is a weakly-supervised signal, while the ground-truth target value is

the strong supervision. We show that in the ranking and regression tasks, these two

signals are complementary to each other, and both of them have the positive effect

on the performances of these tasks.

For the ranking task, the traditional methods mainly use the relative order of

image pairs as the supervision [101, 121, 146], and their loss functions are similar

to the relative order loss term in our proposed method. In some applications, e.g.
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relative attribute ranking, the attribute value labels of training images are available

in some datasets [70, 72, 99]. So our proposed method can make the relative at-

tribute ranking model to be stronger supervised by introducing the MSE loss and

softmax loss.

For the regression task, most of the existing methods are supervised by the

ground-truth label of each images by adopting the MSE loss or softmax loss [98,

107]. However, this kind of supervision is only labeled for each single image, and

the relationship of different images are not considered. By introducing the relative

order loss term, our proposed method can not only learn from the ground-truth label

of training images, but also learn from the relative order of training image pairs.

Weakly-supervised learning: In the relative attribute ranking task, sometimes

the attribute labels of each training images are not available, and we can only get

the relative order annotations of training image pairs. In this case, we can remove

the MSE loss and softmax loss from our proposed model by setting the parameters

λ = 0 and β = 0. Thus this model becomes a weakly-supervised model which can

be applied to the weakly annotated data.

5.3 Deep Convolutional Neural Network

In this section, we describe the deep CNN framework of our proposed model. First,

we introduce the network architecture of the model. Then we give the approach to

train this network.
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Figure 5.2 The proposed relative order relationship learning framework. It takes the im-

age pair (xi, x j) as input. The VGG-16 or AlexNet is used to extract their deep features as(
f (xi), f (x j)

)
, which are feeded into the softmax loss layer. We use an extra fully-connected

layer with
(

f (xi), f (x j)
)

as its input to generate
(
L f (xi),L f (x j)

)
and

(
wT f (xi),wT f (x j)

)
.

Afterwards, we can use Eq. (5.10) to obtain h(xi) and h(x j), which are input into the rela-

tive order loss and MSE loss layers in training.

5.3.1 Network Architecture

Similar to the traditional deep siamese model, our extended deep siamese model

also has two sub-networks which share the same architecture and the same param-

eters. For each of the two sub-networks, we use the AlexNet [71] and VGG-16

[120] as the network architecture in relative attribute ranking and age estimation,

respectively. The framework of our proposed model is illustrated in Fig. 5.2. As

the architectures and parameters of these two sub-networks are the same, we only

illustrate one sub-network in Fig. 5.2 for simplicity.

To learn the probabilities of each ranges of the predicted value, we modify the

neuron number of softmax loss layer to be T . We have defined the prediction func-

tion in Eq. (5.2). To make it straightforward to be implemented, we assume that M

is a positive semidefinite (PSD) matrix. So we can write M as M = LT L, where L
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is a matrix with the same size of M. In this case, Eq. (5.2) can be rewritten as

h(x) = f T (x)LT L f (x) + wT f (x) = ‖L f (x)‖2
2 + wT f (x) (5.9)

In Fig. 5.2, we add an additional fully-connected layer with input as f (x). Its output

has T + 1 dimensions, with the first T dimensions as L f (x), and the last dimension

as wT f (x). By this layer Eq. (5.9) can be easily implemented as

h(x) = ‖ fL(x)‖2
2 + fw(x) (5.10)

where fL(x) = L f (x) and fw(x) = wT f (x).

5.3.2 Network Training

In this subsection, we give the training approach of the proposed model. To use

back propagation (BP) to train this network, we compute the gradient of the loss

functions (5.5), (5.6) and (5.7) to each network parameters.

Prediction Function: As the prediction function can be realized by Eq. (5.10),

the gradients of h(x) to fL(x) and fw(x) are straightforward, which are given by

∂h(x)
∂ fL(x)

= 2 fL(x),
∂h(x)
∂ fw(x)

= 1 (5.11)

Relative Order Loss: As the gradient of h(x) can be computed by Eq. (5.11),

we only need to compute the gradient of L1 to h(xi). From Eq. (5.5), its sample-

based gradient is computed as follows
∂L1

∂h(xi)
=

1
|P|

∑
{x j |(xi,x j)∈P}

1
{
r(xi, x j) + 1 > 0

}

− 1
|P|

∑
{x j |(x j,xi)∈P}

1
{
r(x j, xi) + 1 > 0

}

+
4
|Q|

∑
{x j |(xi,x j)∈Q}

r(xi, x j)

(5.12)
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where 1 {·} is 1 if the inner condition is true, and 0 otherwise. From the sample-

based gradient in Eq. (5.12), we can see that when the batch size is fixed, the

number of image pairs have little effect on the computational cost. Therefore, given

a mini-batch of n images, we can construct all the possible n(n − 1)/2 image pairs

(xi, x j) which satisfies yi ≤ y j in each iteration. Then these pairs are put into P or Q
depending on whether yi < y j or yi = y j.

MSE Loss and Softmax Loss: From (5.6) and (5.7), the gradients of L2 and L3

are
∂L2

∂h(xi)
= 2 (h(xi) − yi)

∂L3

∂pk(xi)
= − sik

pk(xi)

(5.13)

By (5.11), (5.12) and (5.13), we can realize the end-to-end training of our net-

work, in which the deep feature and relative order prediction function can be jointly

learned in the training process.

5.4 Experiments

In this section, we evaluate the proposed method based on the relative attribute

ranking and age prediction tasks. We use the Caffe [62] framework to implement

the proposed method. The experiments are conducted using an NVIDIA TITAN X

GPU.

5.4.1 Relative attribute ranking

For the relative attribute ranking task, we use the Outdoor Scene Recognition (OS-

R) [99], Public Figure Face (PubFig) [72] and Shoes [70] datasets for evaluation.
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In the OSR dataset, there are 2,688 images from 8 categories. Each of them is re-

lated to 6 attributes, i.e. natural, open, perspective, size-large, diagonal-plane and

depth-close. Following the protocol in [146], we use 240 images for training, and

2,448 images for testing. The PubFig dataset consists of 772 face images from 8

persons. They are assigned with 11 attributes, i.e. male, white, young, smiling,

chubby, visible-forehead, bushy-eyebrows, narrow-eyes, pointy-nose, big-lips and

round-face. We use 241 images as the training set, and use 531 images as the test

set. The Shoes dataset includes 14,658 shoe images from 10 categories, which is

related to 10 attributes, i.e. pointy-at-the-front, open, bright-in-color, covered-with-

ornaments, shiny, high-at-the-heel, long-on-the-leg, formal, sporty, and feminine.

For the Shoes dataset, we use 240 images for training, and use the remaining im-

ages for testing.

As the training sets of OSR, PubFig and Shoes datasets are relatively small, we

utilize the AlexNet [71] network architecture in our model. The images are resized

to size 227 × 227 before input into the network. The network is pre-trained on

ImageNet [71], then fine-tuned on the evaluation dataset. The momentum is set as

0.9. The weight decay is set as 0.00005. The network is trained for 4,000 iterations.

The number of predicted value ranges T is set to be 6, 8 and 10 in the OSR, PubFig

and Shoes datasets, respectively. We use the mini-batch strategy in training, and set

the batch size as 64.

The ranking accuracies of OSR, PubFig and Shoes datasets on each attributes

are reported in Table 5.1, Table 5.2 and Table 5.3, respectively. From the results, we

can see that our proposed method can achieve higher ranking accuracies than the

other state-of-the-art relative attribute ranking methods in OSR, PubFig and Shoes
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datasets.

Table 5.1 Ranking accuracies (%) of different methods on the OSR dataset. The highest

and second highest accuracies are highlighted in red and blue colors, respectively.

Attributes RA [101] MTL [27] DRA [146] Singh and

Lee [121]

Ours Ours (Weakly-

supervised)

Natural 94.82 96.47 99.47 98.89 99.70 99.57

Open 91.01 92.88 97.81 97.20 98.26 97.90

Perspective 86.56 88.39 97.19 96.31 97.49 97.17

Size-large 86.37 88.50 96.88 95.98 96.87 97.04

Diagonal-plane 88.00 90.87 98.46 97.64 98.24 98.47

Depth-close 88.35 89.05 97.24 96.10 97.85 97.23

Average 89.19 91.03 97.84 97.02 98.07 97.90

We also evaluate our proposed model with only the relative order annotations

of image pairs. We train our proposed model without the MSE loss and softmax

loss. The ranking accuracies are reported as “Ours (Weakly-supervised)” in Table

5.1, Table 5.2 and Table 5.3. We can see that the accuracies of our proposed method

with only the relative order annotations is slightly lower than the model with MSE

loss and softmax loss. But its accuracies are still higher than the other competing

methods. This result shows that the MSE loss and softmax loss make the model able

to learn from the labeled attributes of each image. It also suggests that the second-

order image representation of our proposed model is superior than the traditional

first-order representation in relative attribute ranking.
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Table 5.2 Ranking accuracies (%) of different methods on the PubFig dataset. The high-

est and second highest accuracies are highlighted in red and blue colors, respectively.

Attributes RA [101] MTL [27] DRA [146] Ours Ours (Weakly-supervised)

Male 82.57 84.52 90.82 91.84 91.44

White 79.14 80.11 87.12 87.98 88.53

Young 82.52 83.91 91.49 92.80 92.00

Smiling 81.37 82.19 92.68 93.68 93.12

Chubby 77.80 79.16 89.30 90.14 89.72

Visible-forehead 88.75 89.86 94.39 94.56 95.21

Bushy-eyebrows 80.63 82.06 90.19 91.21 91.72

Narrow-eyes 81.68 81.48 90.60 91.67 91.46

Pointy-nose 79.01 79.86 91.03 91.50 89.83

Big-lips 80.38 81.20 90.35 91.05 91.20

Round-face 82.37 83.43 91.99 93.10 92.14

Average 81.47 82.52 90.91 91.78 91.49
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Table 5.3 Ranking accuracies (%) of different methods on the Shoes dataset. The highest

and second highest accuracies are highlighted in red and blue colors, respectively.

Attributes RA [101] MTL [27] DRA [146] Ours Ours (Weakly-supervised)

Pointy-at-the-front 79.32 84.66 88.34 89.12 88.79

Open 76.41 77.37 87.02 87.75 86.48

Bright-in-color 53.09 64.06 74.97 74.95 74.77

Covered-with-ornaments 57.96 71.20 79.86 80.81 79.97

Shiny 66.61 80.53 86.92 87.36 87.05

High-at-the-heel 78.38 80.92 87.50 88.17 87.64

Long-on-the-leg 68.35 73.61 84.30 84.82 85.00

Formal 73.93 74.16 81.76 82.20 81.81

Sporty 69.84 80.46 87.72 88.22 87.67

Feminine 77.84 84.06 87.98 88.66 88.05

Average 70.17 77.10 84.64 85.21 84.72
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5.4.2 Age estimation

We use the Craniofacial Longitudinal Morphological Face Dataset (MORPH) [106]

and Cross-Age Celebrity Dataset (CACD) [22] to evaluate the proposed model. We

use the mean absolute error (MAE) as the performance measure, which is defined

as the average of the absolute error between the predicted age and the ground-truth

age.

As the evaluation datasets are relatively large, we adopt the VGG-16 [120]

network architecture in our model because of its excellent performance in Ima-

geNet challenge. Before the training process, the input images are resized to size

256 × 256, and then randomly cropped to size 224 × 224. The momentum is set as

0.9, and the weight decay is set as 0.0005. We assume that the possible age ranges

from 0 to 100 years, so we set the number of age ranges as T = 101, with each range

covers one year. The network is trained for 100,000 iterations. The batch size is set

to be 20. The network parameters are initialized with the model pre-trained on Ima-

geNet [120]. Then this network with only the softmax loss is further trained on the

IMDB-WIKI dataset [107], which is a large-scale face dataset with age annotation.

Finally we fine-tune the whole network on the dataset which we evaluate.

MORPH Dataset

The MORPH dataset [106] consists of 55,134 images from 13,618 individuals. The

ages of these images range from 16 to 77. In our experiments, we use 80% of these

images for training, and use the remaining images for testing.

First, we compare the second-order representation with the traditional first-order

representation, in which the prediction function is formulated as h′(x) = vT f (x),
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where v is the coefficient vector. We train two models based on the second-order

and first-order representations, respectively. Their MAEs are reported in Table 5.4.

The MAEs under different iteration numbers are shown in Fig. 5.3(a). From the

results, we can see that the model based on second-order representation can achieve

better performance than the model based on first-order representation.

Table 5.4 Performance comparison between the models based on the second-order and

first-order representations on the MORPH dataset

Representation type MAE (years)

First-order representation 2.56

Second-order representation 2.43

Second, we evaluate the effect of the relative order loss term. We compare the

models with and without the relative loss term, respectively. The MAEs of these

two models are reported in Table 5.5. The MAEs trained with different iteration

numbers are shown in Fig. 5.3(b). We can see that the model can achieve better

performance with the relative order loss term. This result demonstrates the effec-

tiveness of the relative order loss in age estimation.

Table 5.5 Performance comparison between the models with and without the relative

order loss term on the MORPH dataset

Model type MAE (years)

Our model (without the relative order loss term) 2.53

Our model (with the relative order loss term) 2.43

We also compare the MAEs of our proposed method with the other state-of-

the-art age estimation methods, i.e. BIFs+LSVR [52], BIFs+CCA [53], BIFs+OR-
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Figure 5.3 The MAEs versus iteration number on the MORPH dataset

SVM [18], BIFs+OHRank [19], MR-CNN [98] and OR-CNN [98]. The results are

reported in Table 5.6. We can see the MAE of our proposed method is significantly

lower than the other methods. To make fair comparison with the other methods, we

also report the performance with the same evaluation protocol as [19, 26, 50, 107,

108, 137], which use a subset of the MORPH dataset with 5,475 images. In this

subset, 4,380 images are used for training and 1,095 images are used for testing.

As this subset is relatively small, we train the network for 5,000 iterations. In this

setting, we compare our proposed method with SVR [50], CA-SVR [26], OHRank

[19], DLA [137], the work by Rothe et al. [108] and DEX [107] in Table 5.6. It can

be seen that our proposed method also outperforms the other comparison methods

in this evaluation protocol.
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Table 5.6 Performance comparison of different models on the MORPH dataset (* means

that this method uses the MORPH subset of 5,475 images)

Method MAE (years)

BIFs+LSVR [52] 4.31 [98]

BIFs+CCA [53] 4.73 [98]

BIFs+OR-SVM [18] 4.21 [98]

BIFs+OHRank [19] 3.82 [98]

MR-CNN [98] 3.42

OR-CNN [98] 3.27

Ours 2.43

SVR* [50] 5.77

CA-SVR* [26] 5.88

OHRank* [19] 5.69

DLA* [137] 4.77

Rothe et al. * [108] 3.45

DEX* [107] 2.68

Ours* 2.50
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CACD Dataset

The CACD dataset includes 163,446 images from 2000 celebrities. Following the

evaluation protocol in [22], we use the images of 1800 persons for training, use

the images from 80 images for validation, and use the remaining images of 120

persons for testing. The validation set is manually annotated, while the training set

is not. We compare the MAEs of our proposed method and the DEX [107] method.

We report the MAEs when training on the training images and validation images

in Table 5.7, respectively. We can see that our proposed method achieves better

performance than DEX, whether our proposed model is trained on the training set

or validation set. We can also see that when training on the validation set, the

performance gain of our proposed method is more evident. This suggests that our

proposed method can also achieves satisfactory performance when training on a

small dataset.

Table 5.7 Comparison of MAEs of DEX [107] and our proposed model on the CACD

dataset

Model Training on the training set Training on the validation set

DEX [107] 4.785 6.521

Ours 4.767 5.731

5.5 Summary

In this chapter, we proposed a model to extend the deep siamese network to learn the

relative order relationship of images. We formulated the relative order prediction
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function based on the second-order image representation. To make the predicted

relative order to be consistent with the ground-truth, we introduced the relative or-

der loss to the model. We also used the MSE loss to minimize the error between

predicted value and the ground-truth label. To make the learned feature discrimi-

native and stable, we introduced the softmax loss to learn the image feature. The

experimental results on relative attribute ranking and age estimation tasks demon-

strate that our proposed model perform better than the comparison methods.



Chapter 6

Joint Learning of Multiple Relative

Order Relationships by Deep

Siamese Networks for Camera Pose

Estimation

6.1 Introduction

In some computer vision tasks, we need to learn and predict the relative order re-

lationships of multiple components. For example, in the camera pose estimation

task, we need to predict the pose p =
[
s,q

]
of a camera from an input image, where

s and q denote the position and orientation of the camera, respectively. Given two

cameras x and y, each component of their relative pose r(x, y) satisfies the relative

order relationship since r(x, y) = −r(x, y).

129
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As the CNN based deep learning approaches have been successfully applied

into many computer vision tasks, e.g. image classification [71], face verification

[112], person re-identification [156], etc, some methods also learn and predict the

camera pose [66, 67] based on CNN. In these works, the camera pose estimation

is considered as a regression task. They usually formulate a deep CNN with the

mean square error loss to make the predicted pose close to the ground-truth pose.

However, these approaches regard each training image as an independent sample,

and learn from each image separately. They haven’t considered the relative order

relationships between the camera poses from different images.

In this chapter, we consider the camera pose estimation task as an Multi-Task

Learning (MTL) problem, in which the learning of each pose component is regarded

as a learning task. We aim to learn these tasks jointly rather than to learn these tasks

separately to discover the potential connection of pose components. Therefore, we

propose a camera pose estimation method based on deep siamese networks. Given

two images x and y, this network predicts the relative pose r(x, y) of the image

pair (x, y). Similar to Chapter 5, we also use the second-order representation of

images to learn the relative order relationship, and adopt the relative order loss and

mean square error (MSE) loss to make the predicted poses and their relative order

to be consistent with the ground-truth. Different from Chapter 5, we learn multiple

relative order relationships of camera pose jointly using the deep siamese network.

Our deep siamese network architecture is illustrated in Fig. 6.1. It consists of two

branches which share the same parameters. Each branch consists of two kinds of

sub-networks. One of them is mainly composed of the convolutional and pooling

layers, and it aims to learn the spatial feature of the input image. So we call it as
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Figure 6.1 The proposed framework for relative camera pose estimation.

spatial sub-network. As the spatial feature is related to all pose components, the

spatial sub-network parameters are shared across all the learning tasks, and it can

capture the generality between different pose components. Another sub-network

mainly consists of the fully connected layers, and it learns the regressors to regress

the pose from the image spatial feature. Thus it is called as regression sub-network.

As the regressors of the pose components are different, the regression sub-network

of different pose components are separated. So it can capture the specificity of each

pose component.

Our proposed model is different from the single relative order relationship learn-
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ing model in Chapter 5. First, our proposed model can learn the relative camera

pose, which belongs to the multiple relative order relationship. Second, we design

the proposed network as the combination of spatial sub-network and regression

sub-networks to reach the trade-off between the generality and specificity of each

relative order relationship.

To sum up, the contribution of this work is three fold. First, it applies the

second-order representation for camera pose estimation, and we demonstrated that

the second-order representation is not only benefit to single relative order relation-

ship learning, but also can be successfully applied into the multiple relative order

relationship learning tasks such as camera pose estimation. Second, we propose

the relative order loss term to extend the deep siamese network to multiple rela-

tive order relationship learning. Third, we design a novel network architecture with

the spatial sub-network and regression sub-network to learn multiple camera pose

components.

The rest of this chapter is organized as follows. Section 6.2 formulates the

proposed model. Section 6.3 describes the network architecture of our proposed

model. Section 6.4 reports the experimental results. Section 6.5 summarizes this

chapter.

6.2 Learning Multiple Relative Order Relationship

In this section, we first propose the multiple relative order prediction function-

s. Then we formulate the model for multiple relative order relationships learn-

ing based on the prediction functions. Similar to the single relative order relation-
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ship learning model in Chapter 5, the proposed multiple relative order relationships

learning model is also composed of the relative order loss term and MSE loss term.

6.2.1 Multiple Relative Order Prediction Function

As there are multiple components which belongs to the relative order relationship,

we propose the relative order prediction function for each component. Analogous

to the single relative order relationship learning model, we construct the bilinear

model for each component. Denote by Bc =
(

fc, f̃c, hc

)
the bilinear model of the

cth component, where f̃c is the learned feature of the image x by deep CNN, and

f̃c(x) =
(

f T
c (x), 1

)T
. hc is the prediction function of the cth component. Thus the

bilinear feature combination of fc and f̃c is gc(x) =
((

fc(x) f T
c (x)

)T

vec
f T
c (x)

)T
. So

we formulate the prediction values of x as h(x) = [h1(x), ..., hN(x)], where N is the

number of components. For the cth component, its prediction value is

hc(x) = uT
c gc(x) = f T

c (x)Mc fc(x) + wT
c fc(x) (6.1)

where [·]vec is the vector form of a matrix, and uc =
(
(Mc)T

vec,wT
c

)T
is the weight

vector.

Based on the prediction function, the multiple relative order prediction function

of images xi and x j is formulated as

r(xi, x j) = h(xi) − h(x j) (6.2)

6.2.2 Multiple Relative Order Loss Term

Denote by {(xi, yi)|i = 1, 2, · · · ,N} the training set, where xi is the ith training im-

age and yi is the image label. Different from the single relative order relationship
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learning problem, here yi consists of multiple image labels. Denote by yi [c] the

label of the cth component of xi. We construct the ordered image pair as Pc ={
(xi, x j)|yi [c] < y j [c]

}
, and the unordered image pair asQc =

{
(xi, x j)|yi [c] = y j [c]

}
.

Following [101, 146], the following constraints are built based on the sets of image

pairs.

rc(xi, x j) ≤ ξc
i j, ξ

c
i j ≥ 0 ∀(xi, x j) ∈ Pc

r2
c (xi, x j) ≤ ζc

i j, ζ
c
i j ≥ 0 ∀(xi, x j) ∈ Qc

(6.3)

where ξc
i j and ζc

i j are slack variables of image pair (xi, x j), component c. We refor-

mulate the constraints as the following loss function

L1 =
∑

c

1
|Pc|

∑
(xi,x j)∈Pc

[
rc(xi, x j)

]
+
+

∑
c

1
|Qc|

∑
(xi,x j)∈Qc

r2
c (xi, x j) (6.4)

6.2.3 MSE Loss Term

The MSE loss term makes the predicted pose p(xi) =
[
s(xi),q(xi)

]
close to the

ground-truth pgt(xi) =
[
sgt(xi),qgt(xi)

]
. As we use the quaternion to represent the

camera orientation, it should be normalized to unit length. Following [66, 67], we

formulate the MSE loss term as follows,

L2 =
1
N

∑
i

∥∥∥s(xi) − sgt(xi)
∥∥∥2

2
+ β

∥∥∥∥∥∥ q(xi)
‖q(xi)‖2

− qgt(xi)

∥∥∥∥∥∥
2

2

(6.5)

where β is the trade-off parameter.
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6.3 Deep Convolutional Neural Network

6.3.1 Network Architecture

As different prediction components have the potential connections and variances,

we hope the deep CNN can learn both of them. One possible solution is to train

a single relative order relationship model for each component. However, this ap-

proach may lost the potential connections of different components. If we use an

united deep network to learn the relative order relationships, it would be insuffi-

cient to model the variance of different components. Therefore, to find the trade-off

between the potential connections and variances of different prediction components

is crucial for the network architecture.

We design the network architecture of our proposed model based on the GoogLeNet

[123]. As we describes in Section 6.1, our proposed network consists of the spatial

sub-network and the regression sub-networks. In our proposed network architec-

ture, the spatial sub-network is mainly composed of the inception, convolution,

pooling, and local response normalization layers, which learns the spatial feature

of the input image. As the spatial sub-network is shared across different outputs, it

is able to model the potential connections of different prediction components. The

regression sub-network consists of a fully connected layer and a second-order rep-

resentation module to regress the pose component of the input image. As the regres-

sion sub-networks are not shared, it can learn the variances of different pose com-

ponents. We incorporate the regression sub-networks in three regression branches

of GoogLeNet [123] with the feature maps from different layers as inputs. Anal-

ogous to the GoogLeNet for classification [123], two of these three branches are
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used for propagating the gradient into the lower layers to deal with the vanishing

gradient problem. In the testing stage, we discard the two branches in the lower lay-

ers, and only use the output of the last branch as the prediction result. Our network

architecture is illustrated in Fig. 6.2.

In our proposed network architecture, we use the second-order representation

module to compute the predicted pose component based on the second-order rep-

resentation by Eq. (6.1). Similar to the single relative order relationship learning

method in Chapter 5, we assume that Mc is a positive semidefinite (PSD) matrix,

and rewrite it as Mc = LT
c Lc. Thus, we rewrite the prediction function of Eq. (6.1)

as follows

hc(x) = f T
c (x)LT

c Lc fc(x) + wT
c fc(x)

= ‖Lc fc(x)‖2
2 + wT

c fc(x)

= ‖ fLc(x)‖2
2 + fwc(x)

(6.6)

where fLc(x) = Lc fc(x) and fwc(x) = wT
c fc(x). In the second-order representation

module shown in Fig. 6.3, we use two fully connected layers to compute fLc(x) and

fwc(x), respectively. Thus the prediction value in Eq. (6.6) can be implemented.

6.4 Experiments

In this section, we evaluate the proposed method based on the camera pose estima-

tion task. We use the Cambridge Landmarks [67] with 5 datasets in the experiments.

The basic information of these datasets are presented in Table 6.1 [67]. The pro-

posed method is implemented using the Caffe [62] framework. We use the PoseNet

[67] model trained by these datasets as the pre-trained model, and fine-tune them



137

MaxPool

LocalRespNorm

Convolution

Convolution

Convolution

LocalRespNorm

MaxPool

Inception

Inception

Inception

Inception

Inception

Inception

Inception

Inception

Inception

AveragePool

Convolution

FC

FC

SO

MSE 
loss

Relativ
eOrder 

Loss

AveragePool

Convolution

FC

AveragePool

FC

SO

FC

SO

FC

SO

FC

SO

FC

SO

FC

SO

Concat

FC

SO

MSE 
loss

Relativ
eOrder 

Loss

FC

SO

FC

SO

FC

SO

FC

SO

FC

SO

FC

SO

Concat

FC

SO

MSE 
loss

Relativ
eOrder 

Loss

FC

SO

FC

SO

FC

SO

FC

SO

FC

SO

FC

SO

Concat

Image pair

Spatial sub-network

Spatial 
sub-network

Spatial sub-network

Regression 
sub-networks

Regression 
sub-networks

Regression 
sub-networks

Figure 6.2 The proposed multiple relative order relationship learning framework (FC:

Fully connected layer; SO: Second-order representation module).



138

Fully ConnectionFully Connection

Squared L2 Norm

+

Second-order Module

fc(x)

Lcfc(x)

wc
Tfc(x)

� � 2

2c cfL x

� � � � � �2

2

T
c c c c ch f f� �x L x w x

Figure 6.3 The structure of the second-order representation module

Table 6.1 The basic information of the datasets used in the experiments.

Dataset Training Frames Testing Frames Spatial Extent

King’s College 1220 343 140m × 40m

Old Hospital 895 182 50m × 40m

Shop Facade 231 103 35m × 25m

St Mary’s Church 1487 530 80m × 60m
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using our proposed method for 1600 iterations. The learning rate is set to be 10−5,

and the weight decay is set as 0.5. The experiments are conducted using an NVIDIA

TITAN X GPU.

6.4.1 Comparison of Alternative Network Architectures

First, we compare the performances of our proposed network with and without the

relative order loss term in Table 6.2. We can see that when we introduce the relative

order loss term in our proposed network, its performances are better in most of

the datasets. Therefore, the relative order loss term is effective in camera pose

estimation. It demonstrates that the multiple relative order relationship learning is

of benefit to camera pose estimation.

Table 6.2 The median prediction errors of our proposed network with and without the

relative order loss term

Dataset Ours

(With the relative order loss term)

Ours

(Without the relative order loss term)

King’s College 1.86m, 2.65◦ 1.88m, 2.67◦

St Mary’s Church 2.31m, 4.15◦ 2.30m, 4.20◦

Old Hospital 2.33m, 2.69◦ 2.34m, 2.71◦

Shop Facade 1.52m, 4.02◦ 1.65m, 4.07◦

Second, we evaluate the effect of the second-order representation in our pro-

posed model. We compare the performances of our proposed model with the second-

order and the traditional first-order representations, respectively. Table 6.3 reports

the median prediction errors of our proposed network with different types of rep-

resentations. We can see that our proposed network with the second-order repre-
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sentation performs better than that with the first-order representation in 3 out of 4

datasets. Therefore, the second-order representation is also beneficial to the multi-

ple relative order relationship learning task.

Table 6.3 The median prediction errors of our proposed network with the second-order

and the first-order representations

Dataset Ours

(With the second-order representation)

Ours

(With the first-order representation)

King’s College 1.86m, 2.65◦ 1.87m, 2.66◦

St Mary’s Church 2.31m, 4.15◦ 2.36m, 4.16◦

Old Hospital 2.33m, 2.69◦ 2.32m, 2.65◦

Shop Facade 1.52m, 4.02◦ 1.65m, 4.07◦

In our proposed network, we use 7 independent regression sub-networks in each

classification branch, each of the regression sub-networks learns one component of

camera pose. To evaluate the effectiveness of this network architecture, we compare

it with the network with one unite regression sub-network in each prediction branch.

The performances of these two network architectures are reported in Table 6.4. We

can see that the network with independent regression sub-networks can achieve

lower prediction errors than the network with the united regression sub-network

in most of the datasets. Therefore, the designation of independent regression sub-

networks is effective in camera pose estimation.

The main reason for the advantage of the independent regression sub-networks

is that it can capture the differences of the pose components since it learns differ-

ent regressors for the pose components. We conduct a toy experiment on the St

Mary’s Church dataset to validate this reason. We denote the parameters of the sev-
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Table 6.4 The median prediction errors of our proposed network with the independent

and united regression sub-networks

Dataset Ours (With the independent

regression sub-networks)

Ours (With the united

regression sub-networks)

King’s College 1.86m, 2.65◦ 1.88m, 2.67◦

St Mary’s Church 2.31m, 4.15◦ 2.37m, 4.18◦

Old Hospital 2.33m, 2.69◦ 2.39m, 2.61◦

Shop Facade 1.52m, 4.02◦ 1.55m, 4.13◦

en regression sub-networks by Wx, Wy, Wz, Ww, Wp, Wq and Wr, and compare the

neural impact scores of several different pairs of regression sub-network parameters

in Fig. 6.4. It shows that there are significant differences between the parameters of

different regression sub-networks. Therefore, we can see that the regressors learned

by the regression sub-networks are clearly different.

6.4.2 Comparison between the State-of-the-Art Methods

We compare the performance of our proposed model with several state-of-the-art

camera pose estimation approaches, i.e. PoseNet [67] and Nearest Neighbor Clas-

sifier [67]. Table 6.5 shows the median position and orientation errors of PoseNet

[67], Nearest Neighbor [67] and our proposed models. From Table 6.5, we can

see that our proposed method has lower prediction error than the PoseNet [67] and

Nearest Neighbor Classifier [67] in most datasets. In the Old Hospital and Shop

Facade datasets, the prediction translation errors of our proposed method are slight-

ly higher than PoseNet. One possible reason is that the training sets of these two

datasets are relatively small. Since our proposed network has more parameters than
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Figure 6.4 The neuron impact scores between different regression sub-networks, (a)

(Wy,Wx), (b) (Wz,Wy), (c) (Ww,Wz), (d) (Wp,Ww), (e) (Wq,Wp), (f) (Wr,Wq). For

each pair of regression sub-networks (A, B), the neurons are sorted with respect to the neu-

ron impact scores of sub-network B.

Table 6.5 The median prediction errors of our proposed network and the other camera

pose estimation methods

Dataset Nearest Neighbor [67] PoseNet [67] Ours

King’s College 3.34m, 2.96◦ 1.92m, 2.70◦ 1.86m, 2.65◦

St Mary’s Church 4.48m, 5.65◦ 2.65m, 4.24◦ 2.31m, 4.15◦

Old Hospital 5.38m, 4.51◦ 2.31m, 2.69◦ 2.33m, 2.69◦

Shop Facade 2.10m, 5.20◦ 1.46m, 4.04◦ 1.52m, 4.02◦
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PoseNet, training with small dataset using our proposed network will be easier to

lead to overfitting.

6.5 Summary

In this chapter, we proposed a deep siamese network for camera pose estimation,

which is considered as a multiple relative order relationship learning problem. This

network adopts the relative order loss to learn the relative order relationship of

camera pose, and uses the MSE loss to make the predicted camera pose close to the

ground-truth. The propose network utilizes the shared spatial sub-network and the

separated regression sub-network to learn the generality and specificity of different

camera pose components, respectively. The experimental results demonstrated the

effectiveness of our proposed model in camera pose estimation.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we studied the learning methods of image similarity and relative order

relationships as they are two most common image pairwise relationships. For the

similarity learning problem, we investigated the Mahalanobis distance metric learn-

ing and deep similarity learning, respectively. For the relative order relationship

learning problem, we studied both of single and multiple relative order relationship

learning.

For the distance metric learning problem, we first proposed a general kernel

classification framework which can unify many representative and state-of-the-art

metric learning approaches. The proposed framework also provides a good platform

for developing new metric learning algorithms. Two metric learning methods, i.e.,

doublet-SVM and triplet-SVM, were developed and they can be efficiently imple-

mented by the standard SVM solvers. Our experimental results on the handwritten

144
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digit classification and person re-identification tasks showed that doublet-SVM and

triplet-SVM are much faster than state-of-the-art methods in terms of training time,

while they achieve very competitive results in terms of classification error rate.

As doublet-SVM and triplet-SVM are heuristic methods and cannot obtain the

global solution, we then proposed two distance metric learning models, namely

PCML and NCML. The proposed models can guarantee the positive semidefinite

property of the learned matrix M, and can be solved efficiently by the existing SVM

solvers. Experimental results on handwritten digit classification tasks showed that,

compared with the state-of-the-art metric learning methods, the proposed PCML

and NCML methods can not only achieve favorable classification accuracy, but also

are efficient in training. The experimental results on LFW, CUHK01 and CUHK03

databases indicate that the proposed methods also perform well in face verification

and person re-identification.

For the deep similarity learning problem, we proposed a joint SIR and PIR

learning approach for person re-identification. SIR is efficient in learning and

matching, and PIR is effective in modeling the relationship between two images.

Based on their connection, we suggest a generalized PIR model to utilize the ad-

vantages of both SIR and PIR. Based on the proposed matching score, we present

a pairwise comparison model and a triplet comparison model for joint SIR and PIR

learning. For each of these two models, we formulate a deep CNN to jointly learn

the SIR and PIR. Experimental results demonstrate the effectiveness of joint SIR

and PIR learning and show the promising results of our proposed models in person

re-identification. In the future, we will investigate the explicit modeling on patch

correspondence for SIR and PIR learning and model-level fusion of pairwise and
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triplet comparisons.

For the single relative order relationship learning problem, we proposed a mod-

el to extend the deep siamese network to learn the relative order relationship of

images. We formulated the relative order prediction function based on the second-

order image representation. To make the predicted relative order to be consistent

with the ground-truth, we introduced the relative order loss to the model. We also

used the MSE loss to minimize the error between predicted value and the ground-

truth label. To make the learned feature discriminative and stable, we introduced

the softmax loss to learn the image feature. The experimental results on relative

attribute ranking and age estimation tasks demonstrate that our proposed model

perform better than the comparison methods.

For the multiple relative order relationship learning problem, we proposed a

deep siamese network for camera pose estimation. This network adopts the rela-

tive order loss to learn the relative order relationship of camera pose, and uses the

MSE loss to make the predicted camera pose close to the ground-truth. These loss

functions are based on the second-order deep representation of the images. The

propose network is composed of the shared spatial sub-network and the separat-

ed regression sub-network, which learn the generality and specificity of different

camera pose components, respectively. The experimental results demonstrated the

effectiveness of our proposed model in camera pose estimation.
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7.2 Future Work

This thesis shows many potential research directions of learning image pairwise

relationships. In the future work, we plan to further improve the proposed methods

and develop more works for image pairwise relationship learning.

In this thesis, we have shown that the PIR is effective in capturing the com-

plex relationships of image pairs, and combined the SIR and PIR in deep similarity

learning. In the future, we consider to also apply the combination of SIR and PIR

to the relative order relationship learning to show whether this methodology is also

effective in other kinds of pairwise relationships.

We have worked on similarity and relative order relationships learning in this

thesis as they are two most common image pairwise relationships. In the future,

we will investigate more kinds of image pairwise relationships and develop their

learning and prediction models.

Furthermore, how to effectively extract the potential connection of image pair

is also an important issue. Therefore, we will investigate the explicit modeling on

patch correspondence for SIR and PIR learning and model-level fusion of image

pairwise relationship learning.
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