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I 

ABSTRACT 

Spatial variability in soil properties has been widely recognized as an important issue. 

The influence of spatially variable soils on geotechnical structures such as a slope has 

attracted increasing notice in the past years. However, it is not a trivial task to 

accurately estimate the slope reliability with sufficient efficiency when the spatial 

variability of soil properties is incorporated into the slope stability model, because 

there are a great number of discretized random variables within the framework of 

random field theory. In addition, site investigation data, despite not much, are actually 

the exact values of the soil properties at some particular positions which are 

independent of the simulation methods. The traditional unconditional random field 

discards such known data, which is actually a serious drawback and a waste of site 

investigation effort. Neglecting the known data would also increase the simulation 

variance of the underlying random fields, which subsequently affects the responses of 

the whole slope system, such as the FS and the probability of failure (Pf). Furthermore, 

there is another kind of uncertainty—stratigraphic boundary uncertainty 

(SBU)—which widely exists in layered soils but is missing in most of the previous 

studies. However, how the SBU influences the slope stability is still an open question. 

This will subsequently affect the assessment of the estimated results based on the 

deterministic boundary assumptions. In view of these problems, this thesis mainly 

focuses on proposing an efficient approach for slope reliability analysis with 

consideration of the soil spatial variability and incorporating borehole/measurement 

data (i.e., conditional information) into slope reliability analysis. 

Firstly, a simplified framework for efficient system reliability analysis of slopes 

in spatially variable soils is proposed based on multiple response surface method 

(MRSM) and Monte Carlo simulation (MCS). Within this framework, the equivalent 

spatially constant parameters, calculated from an explicit random variable model, are 

used to characterize the soil spatial variability such that the MRSM can be efficiently 
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performed. In addition, a variance reduction strategy is proposed to enable the 

framework applicable to slope reliability problems involving more than one type of 

shear strengths. The results show that the proposed simplified framework can well 

deal with slope reliability analysis in spatially variable soils, providing sound results 

that are comparable with those by MCS as reported in the literature. It is robust 

against changes of various cross-correlations, COVs and ACDs, which provides a 

practical tool for system reliability analysis of slopes in spatially variable soils. 

Secondly, some attempts are made to estimate the failure probability of a slope 

characterized by soil spatial variability conditioned on a certain number of cored 

samples (or known data) from site investigation. Kriging method is used in 

combination with the Cholesky decomposition technique (CDT) to model the 

conditional random fields (CRFs) such that the simulated CRFs can be constrained by 

the measured data at particular locations. Then, the probability of slope failure is 

calculated by Subset simulation (SS). An example application is performed on a 

nominally “homogeneous” cohesion-frictional (c-φ) slope to illustrate the proposed 

approach. A series of parametric studies are conducted to investigate the influence of 

the layout of the cored samples on the Pf, FS, and the spatial variability of the critical 

slip surface (CSS). It is found that whether the CRFs can be precisely modelled relies 

highly on the relationship between the sample distance and the underlying 

auto-correlation distance (ACD). A smaller ratio of the sample distance to the ACD 

would provide a better simulation result. Moreover, compared with unconditional 

random field simulations, the simulation variance can be substantially reduced by 

CRF simulations. This finally produces a narrower variation range of the FS and the 

corresponding CSS location as well as a much lower Pf. The results also highlight the 

major significance of the CRF simulation at relatively large ACDs. 

Thirdly, the influence of the system SBU on the system Pf and risk of a layered 

slope with spatially varied soil properties are studied. Within this contribution, the 

inherent soil spatial variability is modelled by non-stationary random fields that are 
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obtained by using an extended CDT, while the random nature of the stratigraphic 

boundary location is simulated by a discrete random variable model. A series of 

comparative studies on the probabilistic analysis results obtained from considering 

and neglecting the system SBU have been conducted with respect to different 

statistics of soil properties. It is found that the system SBU has a significant influence 

on the slope failure mechanism. In addition, the slope failure risk would be 

overestimated for various statistics if the system SBU is not considered, except for 

small values of COVφ (i.e., COV of φ), where the results are underestimated. 

Finally, efforts are made to incorporate the inherent SBU into the reliability 

analysis of slopes in spatially variable soils using one-dimensional conditional 

Markov chain model, so as to investigate the influence of different borehole layout 

schemes on slope reliability analysis with and without considering the spatial soil 

variability. Detailed procedure for implementing the proposed approach on commonly 

used commercial software (e.g., ABAQUS and MATLAB) is described. It is found 

that both the location and number of boreholes have significant influence on the 

stratigraphic boundary simulation. Whether the soil spatial variability is neglected or 

not, the FS statistics and �� do not increase or decrease with the borehole number, 

because there is an influence zone in the slope body and the boreholes located in this 

zone play a dominant role in the stability of the slope. However, the FS statistics and 

�� can converge to the correct results if more and more boreholes are drilled. In 

addition, it is found that the conventional reliability analysis with an implicit 

assumption of DSB condition may overestimate the slope reliability. The difference 

between the DSB and RSB decreases with the increase of the vertical SOF. Compared 

with the effect of the system SBU, the inherent SBU is far more important to be 

considered in slope reliability analysis. 
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1 

CHAPTER 1 INTRODUCTION 

1.1 Research motivation 

Hong Kong is well-known for slope failures with an average of approximately 300 

such failures per year. In general, conventional slope stability analysis based on fixed 

constant parameters is used for the design of these slopes. Although the use of a 

deterministic approach for calculating the minimum factor of safety (FS) is useful for 

design purpose for most of the time, it is sometimes encountered that slopes with 

safety factors greater than unity are not necessarily safe. For example, it has been 

noted by the Hong Kong SAR Government that approximately 5% of the stabilized 

slopes in Hong Kong have eventually failed, and that many slopes with safety factors 

greater than 1.0 still ultimately fail.  

Possible reason may lie in the fact that soil, by its very nature, generally presents 

a certain degree of uncertainties. In terms of sources of these uncertainties, they are 

mainly four-fold (e.g., Phoon and Kulhawy 1999b, c; Cho 2012; Dasaka and 

Zhang 2012; Mašín 2015; Dithinde et al. 2016a): inherent physical uncertainty (e.g., 

spatial variability of soil properties), system uncertainty arising from inevitable 

measurement errors induced by observers and measurement apparatuses (e.g., 

experiment uncertainty), epistemic uncertainty resulted from lack of sufficient site 

investigation data (e.g., sampling uncertainty), and model uncertainty (e.g., 

assumptions and simplifications in a slope stability model). Ideally, all these 

uncertainties should be appropriately considered in geotechnical stability analysis 

because they more or less simultaneously influence the performance of geotechnical 

structures such as slopes (e.g., El-Ramly et al. 2002; Cho 2007; Griffiths et al. 2009; 

Mašín 2015; Dithinde et al. 2016a). Obviously, conventional deterministic slope 

stability analysis using only the FS cannot well characterize all the uncertainties 

underlying the geotechnical problem. Hence, slope stability analysis within the 

framework of probability theory has been gaining more and more interests in the 
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geotechnical engineering community in recent years, so as to quantify those 

uncertainties in a more reasonable acceptable manner. 

Soil spatial variation is one of the most dominant uncertainties that affect the 

performance of geotechnical structures. Neglecting the spatial variability of soil 

properties would produce either an overestimated or underestimated slope failure 

probability (e.g., Griffiths et al. 2009; Jha and Ching 2013; Li et al. 2017). It is 

thus of great practical significance to consider such spatial variability of soils in the 

stability analysis of geotechnical structures such as slopes. In this regard, substantial 

efforts have been made by both scientists and engineers from geotechnical 

engineering field during the past two decades with fruitful achievements (e.g., 

Griffiths and Fenton 2004; Griffiths et al. 2009; Huang et al. 2010; Griffiths et al. 

2011; Wang et al. 2011; Low 2014; Griffiths and Yu 2015; Pantelidis et al. 2015; 

Zhu et al. 2015; Li et al. 2016c; Liu et al. 2017c), such as the first/second-order 

reliability method (FORM/SORM) (e.g., Cho 2013; Low 2014), the random finite 

element method (RFEM) (e.g., Griffiths and Fenton 2001; Griffiths and Fenton 

2004) and several analytical methods (e.g., Cai et al. 2017).  

Although these methods have advanced the understanding and application of the 

probabilistic approaches in slope design (e.g., Low and Tang 2007; Ching et al. 

2009; Javankhoshdel and Bathurst 2014), they are far from perfect and are not well 

accepted by engineering practitioners. For example, FORM/SORM cannot deal with 

highly nonlinear problems and slopes with significant system effect, which however 

are frequently encountered in engineering practice. Also, the analytical methods are 

suitable for simple slopes where the stability can be accurately represented by an 

explicit performance function. RFEM is probably the most common and robust 

approach to assess the effect of spatially auto-correlated soils on the slope stability. It 

is conceptually simple and easily understood by both geotechnical researchers and 

engineers. Due to this reason, RFEM has gained popularity in probabilistic slope 

stability analysis (e.g., Griffiths and Fenton 2004; Griffiths et al. 2009; Huang et 
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al. 2010; Huang and Griffiths 2015; Zhu et al. 2015) since it was originally 

proposed by Griffiths and Fenton (2001) to investigate the effects of the spatial 

variation of the soil’s undrained shear strength on the statistics of the bearing capacity. 

These works have demonstrated the RFEM to be a robust methodology for slope 

reliability evaluation involving spatially auto-correlated variables. However, it suffers 

from a major weakness of low efficiency because this method consumes extensive 

computing resources to obtain a reasonable accuracy of the probability of failure (��). 

This limitation of RFEM would be more serious when �� is lower than 0.001 (e.g., 

Ji and Low 2012; Li et al. 2016c). As such, developing efficient slope reliability 

analysis approaches with the consideration of soil spatial variability continues to be an 

active topic in the geotechnical profession. 

In addition, site investigation data, despite not much, generally exist in 

engineering practice. These data are actually the exact values of the soil properties at 

some particular positions, which are independent of the simulation methods. The 

traditional unconditional random field discards such known data, which is actually a 

waste of site investigation effort. Additionally, neglecting the known data would 

increase the simulation variance of the underlying random fields, which subsequently 

affects the responses of the whole slope system, such as the FS and Pf. Hence, it is of 

practical significance to take the known data into account in a slope reliability 

analysis, which can be considered as an effective tool for reducing the uncertainties in 

slope stability analysis. Hence, the conditional probabilistic analysis of a slope is 

needed for considering the effect of the known data. 

Furthermore, there is another kind of uncertainty—stratigraphic boundary 

uncertainty (SBU)—which widely exists in layered soils, which has been commonly 

neglected in many previous studies. In terms of its source, SBU can be classified into 

two categories: system SBU induced by measurement error and inherent SBU caused 

by limited site investigation data. However, how this kind of uncertainty influences 

the slope stability is still an open question to date. This will subsequently affect the 
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assessment of the results estimated based on deterministic boundary assumptions. In 

this thesis, this problem will be systematically solved with consideration of the 

influence of different soil statistics based on conditional simulations. 

1.2 Research Objectives 

With the abovementioned problems in mind, this study focuses mainly on the 

reliability analysis of slopes that are characterized by inherent spatial soil variability 

and SBU. The objectives of this study are as follows: 

1. To propose an efficient approach for system reliability analysis of slopes in 

spatially variable soils, and to explore the robustness of accuracy and efficiency of the 

approach against the variations of various statistics, such as the anisotropic spatial 

variability through a series of parametric studies.  

2. To propose an effective method for simulating conditional random fields that 

account for the known data from cored samples, and to efficiently evaluate the 

reliability of a slope based on the proposed method. To study the effects of different 

layouts of cored samples on the conditional random field simulation and the effects of 

the statistics of soil properties on the conditional simulation results. 

3. To propose a useful model for characterizing the system SBU and to 

investigate the effect of the system SBU on the stability reliability and failure risk of a 

multi-layered soil slope. Meanwhile, it is also required to explore how SBU affects 

the assessment of the traditional reliability analysis results obtained based on the 

deterministic stratigraphic boundary (DSB) assumption when different degrees of 

spatial variability are considered. 

4. To propose a useful model for characterizing the inherent SBU and to 

investigate the effect of the inherent SBU on the slope stability. To investigate the 

influence of different borehole layout schemes on slope reliability analysis with and 

without considering the spatial soil variability, and to find out the difference between 
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the results obtained based on DSB and those obtained based on the real stratigraphic 

boundary (RSB). In addition, to investigate how the soil spatial variability influences 

the difference between DSB and RSB.  

1.3 Outline and Scope  

To achieve the research objectives above, this thesis is divided into 7 chapters. Each 

chapter is briefly described as follows: 

Chapter 1 introduces the research motivation, objectives and scope of this study. 

Chapter 2 reviews extensively the literature relevant to this topic, which includes 

the available reliability approaches, commonly used probabilistic models for slope 

reliability analysis and frequently used random field discretization methods for 

characterizing the spatial variability of soil properties. 

Chapter 3 proposes a simplified framework based on multiple response surface 

method (MRSM) and Monte Carlo simulation (MCS) for efficient system reliability 

analysis of slopes in spatially variable soils. Examples are studied to illustrate the 

accuracy and efficiency of the proposed framework, based on which the robustness of 

the proposed framework against various statistics such as the anisotropic spatial 

variability is fully demonstrated through a series of parametric studies. The strength 

and weakness of the proposed framework against MRSM is fully discussed. 

Chapter 4 presents a Subset simulation (SS) based conditional random field 

reliability analysis approach for a cohesion-frictional soil slope to consider the effect 

of borehole data from site investigation. The effects of different layouts of cored 

samples on the conditional random field simulation and the effects of the statistics of 

soil properties on the conditional simulation results are studied. 

Chapter 5 explores the influence of the system SBU on the system failure 

probability and risk of a layered slope characterized by spatially varied soil properties. 
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In this chapter, the stochastic nature of the stratigraphic boundary location is 

simulated by a discrete random variable; MCS is suggested for evaluating the system 

failure probability and risk. A series of comparative studies on the probabilistic 

analysis results obtained from considering and neglecting the system SBU have been 

conducted with respect to different statistics of soil properties.  

Chapter 6 incorporates the inherent SBU into the reliability analysis of slopes in 

spatially variable soils using one-dimensional conditional Markov chain model. Based 

on the model, the influence of different borehole layout schemes on slope reliability 

analysis with and without considering the spatial soil variability is investigated. The 

difference between the results obtained based on DSB and those obtained based on the 

RSB is quantified. In addition, the question how the soil spatial variability influences 

the difference between DSB and RSB is answered. 

Chapter 7 summaries the major work of this thesis and concludes the important 

findings from the work. The limitations of the current study are discussed and some 

suggestions for further studies are also proposed. 

 

  



 

7 

CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the most frequently used slope reliability approaches are first reviewed. 

In general, the available probabilistic analysis methods can be classified into four 

categories: analytical methods, approximate methods, sampling-based methods such 

as MCS, and the random finite element method (RFEM). The advantages and 

disadvantages of each class of method are summarized.  

Based on the above reliability methods, the common probabilistic analysis 

models are then summarized, including random variable model (RVM), random field 

model (RFM) and conditional random field model (CRFM). The applicability of each 

model is introduced. 

Finally, an extensive review of the studies on the reliability analysis of slopes in 

spatially variable soils in recent years is briefly summarized.  

2.2 Review of the existed reliability approaches 

2.2.1 Analytical methods 

Several analytical methods for slope reliability analysis are available in the literature. 

For example, the first order second moment method (FOSM), in which the FS is 

approximately expressed by a Taylor series expansion and is truncated after the linear 

term (hence first order). Later, a modified expansion is used, along with the first two 

moments of the random variables, to determine the values of the first two moments of 

the dependent variables (hence second moment). The method is very easy to 

implement and can be used without knowing the specific probabilistic distribution 

functions of the underlying random variables. One only needs to know the first two 

moments of the underlying random variables, i.e., means and standard deviations. 
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However, it is difficult to apply this method to the situation where the FS cannot be 

explicitly expressed by random variables and the situation where the FS is highly 

nonlinear (e.g., Fenton and Griffiths 2008). 

Another well-known analytical approach is the first order reliability method 

(FORM). It is defined based on a different reliability index, Hasofer and Lind 

reliability index (Hasofer and Lind 1974). The physical meaning of the Hasofer and 

Lind reliability index is that it indicates the minimum distance between the origin and 

the limit state surface in the standard normal space. Nevertheless, it suffers from the 

error induced by the linearization postulation of the complex non-linear performance 

function. More unfortunately, additional techniques must be adopted in order to assess 

exactly the induced error since FORM itself cannot validate it (e.g., Echard et al. 

2013). Additionally, the pseudo partial differentiation adopted by finite difference 

scheme may severely affect the accuracy and efficiency in the presence of 

high-dimensional parameters space (e.g., Cadini et al. 2014).  

Apart from FOSM and FORM, other methods such as point estimate method 

(PEM) (Rosenblueth 1975) and jointly distributed random variables method (JDRVM) 

(e.g., Johari and Khodaparast 2015; Johari and Lari 2016) are also used to assess 

the slope reliability in the literature. However, they are not frequently used in practice. 

The abovementioned analytical approaches are very efficient in computation and 

can provide a relative accurate result to some extent, but it is not easy and possible to 

consider highly nonlinear problems. In addition, it is difficult to address the reliability 

analysis problems where the soil parameters are spatially auto-correlated. 

2.2.2 Approximate methods 

As for the probability of slope failure, it often involves evaluating a multiple 

integration with a multivariate joint probability density function of random variables 

of interest under a very complex integral domain (also termed as failure domain). 



 

9 

Obviously, it is very tough and even impossible to solve the n-fold integral equation 

for slope failure probability, especially when the number of random variables 

considered is extremely large. Therefore, approximate methods are resorted to. The 

surrogate model (or metamodel) is an efficient and recent popular alternative.  

The last few decades have experienced an extensive application of several 

metamodels and their variants in different fields, among others, including response 

surface method (RSM) (e.g., Li et al. 2015a; Li and Chu 2015; Jiang and Huang 

2016; Li et al. 2016d; Li and Chu 2016; Zhang and Huang 2016), stochastic 

response surface method (SRSM) based on polynomial chaos expansion (e.g., 

Isukapalli et al. 1998; Li et al. 2011a; Ying 2012), Kriging method (e.g., Zhang et 

al. 2011a; Luo et al. 2012b; Zhang et al. 2013; Yi et al. 2015), artificial neural 

network (ANN) (e.g., Cho 2009), Gaussian process regression (e.g., Kang et al. 2015) 

and support vector machine based RSM (e.g., Kang and Li 2016; Kang et al. 2016). 

A recent review on RSM is given elsewhere (e.g., Li et al. 2016d).  

Generally, the fundamental concepts behind them rests on the approximation of 

the implicit performance function by an explicit model that are expressed in terms of 

the random variables within the framework of design of experiment (DOE). Thus, the 

computational efficiency is substantially improved, especially when computationally 

extensive finite element model is involved. The successful application of a metamodel 

generally depends highly on the number of DOEs, which are usually realized through 

sampling techniques such as MCS and Latin hypercube sampling (LHS). Intuitively, 

the larger the number of DOEs, the more accurate the metamodel fitting would be. 

However, more number of DOEs means more calls for the original implicit 

performance function, thus resulting in high computational cost and even overfitting 

problems. Hence, it is somewhat troublesome to achieve the balance between 

accuracy and efficiency (i.e., to find the optimal number of DOEs). Another factor 

affecting the accuracy of the metamodel is the location of the DOEs, which should be 

evenly distributed in the sample space and concentrate on the adjacent points of the 
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limit state surface. Finally, the surrogate model is often impossible to control the 

approximation error, as discussed by Cadini et al. (2014). 

2.2.3 Sampling-based methods 

The third group of the method is the sampling-based techniques. The probability of 

failure is usually expressed by a multi-fold integration, which is very difficult to solve. 

Fortunately, MCS can provide an unbiased estimation for this integration according to 

the law of large numbers. MCS estimates the failure probability of slope by 

calculating the ratio of the number of failure samples where the original performance 

function evaluation is less than a threshold to the total samples, which can be easily 

understood and implemented by engineers. Therefore, MCS is conceptually simple, 

robust and accurate as well as easily implementable (e.g., Ang and Tang 2007).  

However, as is known to all, the variance of the failure probability is inversely 

proportional to the total number of samples. By definition, the total number of 

samples would be extremely high in order to obtain an acceptable variance when the 

failure probability is at a very small level. This would significantly increase the 

computational effort and render MCS inefficient. Furthermore, if the performance 

function is determined by a finite element method, the time and resources required for 

MCS would be prohibitively expensive.  

To enhance the efficiency of MCS, lots of variance reduction methods have been 

proposed in the literature, such as importance sampling (IS) and Subset simulation 

(SS) (e.g., Au and Beck 2003; Au et al. 2007; Rennen 2008; Ching et al. 2009; 

Wang et al. 2010; Angelikopoulos et al. 2015; Li et al. 2015c; Sundar 2015; Zhao 

et al. 2015; Li et al. 2016b; Li et al. 2016c). The IS is performed by shifting the 

center of the PDF to the importance region where the most probably failure point or 

design point locates in, so that the failure samples can be generated with a relatively 

large probability (e.g., Ching et al. 2009). SS is originally proposed by Au and Beck 

(2001) for estimating the small failure probabilities in high dimensional problems. In 
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this approach, a small failure probability is evaluated as the product of several larger 

conditional failure probabilities of some intermediate failure events. Thus, the 

simulation of a small failure probability event is converted to the simulations of a 

sequence of more frequently happened intermediate failure events. In addition, many 

other sampling techniques are produced based on the principles of increasing the 

occurance likelihood of failure samples, such as line sampling, Hasofer and Lind 

reliability based sampling (e.g., Gong et al. 2015) and other variants of SS or IS. 

2.2.4 Random finite element method (RFEM) 

RFEM is a combination of finite element method and random field theory, which can 

be applied to slope reliability analysis considering spatial variation of soil properties 

(e.g., Griffiths and Fenton 1993; Griffiths and Lane 1999; Griffiths and Fenton 

2001; Griffiths and Fenton 2004; Griffiths et al. 2009; Huang et al. 2010). Unlike 

the deterministic slope stability analysis using limit equilibrium method, RFEM does 

not need any prior assumptions about the slip surfaces and internal slice forces, and 

gains more insight into the failure mechanism of a slope. However, RFEM is still not 

favored by engineers for routine design work because it requires significant 

modification of the existing deterministic numerical codes while the commercial 

software packages generally do not offer this option, and sometimes it also suffers 

from being time-consuming in certain special cases (e.g., Cheng et al. 2007). In 

addition, the strength reduction method is used to calculate the FS of a slope, of which 

the convergence criteria are still controversial (e.g., Krahn 2006). 

To further enhance the application of RFEM in slope reliability analysis by 

engineers, non-intrusive stochastic finite element methods are gaining interest among 

researchers recently (e.g., Jiang et al. 2014a; Li et al. 2016c). In this kind of method, 

the deterministic and probabilistic analysis of slope stability are intentionally 

separated, which makes it a practical tool for engineers for slope reliability analysis 

without modifications of finite element codes. 
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2.3 Review of common probabilistic models for slope reliability analysis 

In slope reliability analysis, two probabilistic models are frequently used by 

researchers: RVM and RFM. The RVM means soil properties are characterized by 

random variables that are subjected to particular distribution types. This indicates that 

in the same soil layer, the soil properties are the same in each random simulation. 

Several distribution types are often adopted to describe the stochastic properties of 

soil properties, such as normal, lognormal, beta, exponential, uniform, gamma and 

others. The non-normal variables can be easily transformed to normal variables by 

Nataf transformation (e.g., Li et al. 2011a). Among these distributions, the lognormal 

distribution is the most commonly used, mainly due to the non-negative property of 

the shear strength parameters. Many RVMs can be founded in the literature (e.g., 

Wong 1985; Oka and Wu 1990; Christian et al. 1994; Chowdhury and Xu 1995; 

Low et al. 1998; Jimenez-Rodriguez et al. 2006; Low 2007; Zhao 2008; Ching et 

al. 2009; Li et al. 2011a; Li et al. 2011b; Zhang et al. 2011a; Zhang et al. 2011b; 

Luo et al. 2012a; Luo et al. 2012b; Tang et al. 2012; Cho 2013; Zhang et al. 2013; 

Peng et al. 2014; Johari and Khodaparast 2015; Li et al. 2015b; Yi et al. 2015; 

Johari and Lari 2016; Kang and Li 2016; Kang et al. 2016). 

On the other hand, the RFM is employed to characterize the spatial variability of 

soil properties. In RFM, the soil properties at a particular location are quite different 

from those far from it, but tend to be similar to the soil properties near the location 

(e.g., Vanmarcke 1977a; Vanmarcke 1977b). Similarly, lots of works can be tracked 

in the literature (e.g., Hsu and Nelson 2006; Cho 2007; Hicks et al. 2008; Griffiths 

et al. 2009; Cho 2010; Suchomel and Mašín 2010; Wang et al. 2010; Cho 2012; Ji 

et al. 2012; Jha and Ching 2013; Ji 2013; Kim and Sitar 2013; Cho 2014; Jiang et 

al. 2014a; Li et al. 2014; Low 2014; Jiang et al. 2015; Li et al. 2015a; Li and Chu 

2015; Low et al. 2015; Metya and Bhattacharya 2015; Pantelidis et al. 2015; 

Jiang and Huang 2016). The failure probability calculated from RFM has been 

demonstrated to be quite different from that by RVM. 
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Another model is CRF, which is rarely utilized in slope reliability analysis in the 

literature, at least to the best of our knowledge. However, this model has been used to 

characterize the geological profiles or the soil properties (e.g., Lloret-Cabot et al. 

2012; Li et al. 2015d; Namikawa 2016). In this model, the available data from site 

investigation are fully used, which seems to be more reasonable. 

2.4 Review of random field discretization methods for characterizing the soil 

spatial variability 

2.4.1 Spatial variability of soil properties 

Generally, soil parameters at a particular location are more similar to the soil 

parameters at adjacent locations than those parameters at a remote location (e.g., Li et 

al. 2015a). This kind of property is referred to as the soil spatial variability that is 

governed by the auto-correlation structure underlying the soil properties. The 

auto-correlation coefficient between any two parameters at two different points is 

generally characterized by an auto-correlation function (ACF), which is very difficult 

to evaluate because of the limited site investigation data (e.g., Liu et al. 2017c). 

Instead, theoretical ACFs are often used as alternatives (e.g., Li and Lumb 1987; Li 

et al. 2015a; Jiang and Huang 2016; Liu et al. 2017c; Liu et al. 2017d). As far as 

the author knows, the single exponential and the squared exponential ACFs are likely 

to be the most frequently used ones in geotechnical stability analysis where the soil 

properties are considered spatially varied (e.g., Griffiths and Fenton 2004; Cho 

2010; Wang et al. 2011; Jiang et al. 2015; Liu et al. 2017d). Furthermore, there are 

several other functions being occasionally used when appropriate, including the 

cosine exponential ACF, the binary noise ACF and the second-order Markov ACF 

(e.g., Cheng et al. 2000; Cafaro and Cherubini 2002; Li et al. 2015a). Obviously, 

differences must exist among these ACFs. For example, three of the above-mentioned 

five commonly used ACFs are not differentiable at the origin, except for the squared 

exponential ACF and the second-order Markov ACF (e.g., Li et al. 2015a; Liu et al. 

2017b). Moreover, the autocorrelation matrix obtained from the squared exponential 
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ACF is generally not positive definite, and thus cannot be easily decomposed by the 

CDT that will be utilized in the following (e.g., Liu et al. 2017c). A more thorough 

and comprehensive comparison of these ACFs can also be found in the literature (e.g., 

Li et al. 2015a; Liu et al. 2017b; Liu et al. 2017c). However, the differences 

between the aforementioned ACFs have little influence on slope reliability analysis, as 

demonstrated by Li et al. (2015a). Since the single exponential ACF is conceptually 

simple and easily implemented, it is utilized herein and described as (e.g., Liu et al. 

2017c) 

����, ��� = exp	[−2(
��

��
+

��

��
)]                      (2.1)  

where �� = ��� − ��� and �� = ��� − ��� are the absolute distances between two 

points in the horizontal and vertical directions, respectively; δ�  and δ�  are the 

horizontal and vertical scale of fluctuations (SOFs) of soil parameters, respectively. 

2.4.2 Random field discretization methods 

Random field theory has been extensively applied to characterize spatially variable 

soils in slope reliability analysis (e.g., Griffiths and Fenton 2004; Cho 2007; Jha 

and Ching 2013; Kim and Sitar 2013; Jiang et al. 2015). Within the framework of 

random process, the soil parameters at particular locations are often considered as 

random variables. The resultant random field is considered stationary or weakly 

stationary when the combination of the following three requirements is met 

Vanmarcke 1977b; Phoon and Kulhawy 1999b; Li et al. 2015a; Jiang and Huang 

2016: (1) the statistics (i.e., means and standard deviations) of these random variables 

are constant over the domain of the random field; (2) the covariance between any two 

random variables at two points depends only on their absolute distances but not on 

their locations; (3) the probability density function (PDF) for the same number of 

random variables has nothing to do with their absolute locations; otherwise, the field 

is non-stationary (e.g., Li et al. 2015d). In slope reliability analysis, a weakly 
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stationary random field is usually applied to model the spatial variability of a soil 

parameter in a homogeneous soil layer, whereas a non-stationary random field is 

suitable for multi-layered soils (e.g., Li et al. 2015a). Many methods such as the local 

average subdivision (LAS) (e.g., Fenton and Vanmarcke 1990), trend removal 

scheme (e.g., Li et al. 2014), Karhunen-Loève (K-L) expansion (e.g., Phoon et al. 

2002), CDT (e.g., Suchomel and Mašín 2010; Li et al. 2015a; Jiang and Huang 

2016; Liu et al. 2017d) and those given in Fuglstad et al. (2014) can be adopted. 

Since K-L expansion and CDT are the most commonly used by the author and in the 

literature (e.g., Suchomel and Mašín 2010; Li et al. 2015a; Jiang and Huang 2016; 

Liu et al. 2017d), they are detailed in the following sections based on the simulation 

of a set of non-Gaussian random fields of cohesion and friction angle.  

2.4.3 K-L expansion for non-Gaussian random fields simulation 

2.4.3.1 Introduction to K-L expansion 

A random field �(�, �) is a series of random variables associated with a continuous 

argument � ∈ Ω, where Ω is an open set of Rn defining the system geometry, and 

� ∈ Θ is the coordinate in the outcome space. According to the K-L expansion, the 

random field �(�, �) can be discretized based on the spectral decomposition of its 

ACF �(��, ��) that is generally bounded, symmetric and positive definite. The 

spectral decomposition is a process of solving for the eigenvalues and eigenfunctions 

of the homogeneous Fredholm integral equation as 

∫ �(��, ��)
�

��(��)��� = ���� (��)                  (2.2) 

where ��  and ��  denote the coordinates of two points; ��(�)  and ��  are the 

eigenfunctions and eigenvalues of the 1-D ACF �(��, ��), respectively. Generally, it 

is difficult to solve this equation analytically, depending on the type of the ACF. For 

example, in the case of the squared exponential ACF, numerical methods should be 

adopted because there are no analytical solutions for this ACF. Hence, the 
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wavelet-Galerkin method is often employed to numerically solve the eigenvalue 

problem of Eq. (2.2). Details for this numerical technique are given elsewhere (e.g., 

Phoon et al. 2002). 

Based on the set of deterministic eigenvalues and eigenfunctions obtained above, 

the random field �(�, �) is expanded as 

�(�, �) = � + ∑ ������(�)��(�)�
���                  (2.3) 

where ��(�) is a set of uncorrelated random variables with zero mean and unit 

variance; � and � are the mean and standard deviation of the random field �(�, �), 

respectively. The series expansion in Eq. (2.3) is called the K-L expansion, which 

provides a second-moment representation of a random field in terms of the 

uncorrelated random variables and deterministic orthogonal functions (e.g., Phoon et 

al. 2002; Jiang et al. 2014a). It is known to converge in the mean square sense for 

any distribution of �(�, �) (e.g., Vořechovský 2008; Jiang et al. 2014a). However, 

it is nearly impossible and computationally demanding to incorporate infinite terms in 

the series expansion in Eq. (2.3). Hence, the common way is to truncate the series at 

some high order term M to obtain the approximate estimation of the random field 

�(�, �) as 

��(�, �) = � + ∑ ������(�)��(�)�
���                   (2.4) 

where M is the number of K-L expansion terms to be retained, which is very critical to 

the accuracy and efficiency of the truncated series. As suggested by Huang et al. 

(2001) and Laloy et al. (2013), the ratio of the expected energy � can be used to 

measure the accuracy of the truncated series, which is defined as 

� =
∫ �(��(�,�)��)�����

�

∫ �(�(�,�)��)�����
�

= ∑ ��
�
��� /∑ ��

�
���                 (2.5) 
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where �(∙)  is the expectation function and the eigenvalues ��  are sorted in a 

descending order. Generally, the larger the value of �, the higher the accuracy of the 

truncated series. Meanwhile, � should be adjacent to 1 and as closely as possible to 

maintain a certain accuracy. However, a large value of � also indicates a great cost of 

computation. To make a compromise between the accuracy and efficiency, Huang et 

al. (2001) and Laloy et al. (2013) suggested taking � ≥ 95%  as a criterion for 

determining the value of M.  

Extension to 2-D random field simulations is straightforward based on the 

aforementioned procedure for 1-D random field simulations. The method is to replace 

all eigenfunctions and eigenvalues of the 1-D ACF in Eq. (2.4) with the corresponding 

eigenfunctions and eigenvalues of the 2-D ACF. Hence, the discretization of a 2-D 

random field �(�, �, �) can be defined as 

��(�, �, �) = �� + ∑ �������(�, �)��(�)��

���                (2.6) 

where �� and �� are the mean and standard deviation of the 2-D random field, 

respectively; �� (�, �) and �� are the eigenfunctions and eigenvalues of the 2-D ACF 

�[(��, ��), (��, ��)], respectively; ��(�) is a set of uncorrelated random variables 

with zero mean and unit variance; and � � is the number of K-L expansion terms, 

which is determined based on Eq. (2.5) where, however, the eigenvalues ��  are 

replaced by �� . It should be noted that the eigenmodes of a separable 

multidimensional ACF, such as the 2-D single exponential ACF in Eq. (2.1), can be 

easily calculated by multiplying with the eigenmodes of 1-D ACF (Jiang et al. 

2014a). More details are given by Huang et al. (2001). 

2.4.3.2 Simulation of cross-correlated non-Gaussian random fields 

In geotechnical engineering practice, a geotechnical structure is very often influenced 

by more than one soil parameters, and different parameters are commonly 

cross-correlated with each other (e.g., Low 2007; Cho 2010; Li et al. 2011a; Jiang et 
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al. 2014a). For example, the cohesion c and the friction angle φ are two key 

parameters that influence a slope stability, and they are generally negatively correlated 

(e.g., Cho 2010). Obviously, all these parameters should be simulated as 

cross-correlated random fields when the spatial variability of soil properties are 

considered. According to Cho (2010), all random fields simulated over the same 

region Ω (e.g., a soil layer) share an identical ACF, and the cross-correlation structure 

between each pair of simulated fields can be simply defined by a cross-correlation 

coefficient. The underlying rationale of this statement lies in the fact that the spatial 

correlation structure is generally caused by changes in the constitutive nature of the 

soil over space (e.g., Fenton and Griffiths 2003; Cho 2010). Therefore, for a pair of 

cross-correlated random fields over a region Ω, only one evaluation of the 

eigenmodes of a given ACF is required. The resultant set of eigenfunctions and 

eigenvalues is then used in combination with two cross-correlated sets of random 

variables to expand the cross-correlated random fields. In the following, the 

simulations of cross-correlated random fields associated with c and φ are taken as 

examples to illustrate the procedure for cross-correlated random field simulations (e.g., 

Cho 2010; Jiang et al. 2014a). 

As mentioned above, suppose the eigenmodes and the number of the K-L 

expansion terms under a given ACF (e.g., the squared exponential ACF in this study) 

are known, the cross-correlated random fields between c and φ can be simulated only 

if the cross-correlated sets of random variables are obtained. Denote the 

cross-correlation coefficient between c and φ as ��� , the cross-correlation matrix 

between them is written as 

� = �
1 ���

��� 1
�                             (2.7) 

A vector of independent standard normal samples is then generated using LHS or a 

standard normal generator, which is finally partitioned into ��  vectors with a 

dimension of � � to form a sample matrix (�)��×� �
, where �� is the number of 
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random fields to be simulated. For the number of two random fields simulated here, 

�� = 2  and � = {�� ��} , where �� = {��� ��� ⋯ � ���}�  and �� =

{��� ��� ⋯ � ���}�. Next, a lower triangular matrix � is obtained by the CDT 

of �. Based on � and �, the cross-correlated standard normal sample matrix � is 

obtained as 

� = ��� = {�� ��}                      (2.8) 

where �� = {��� ��� ⋯ � ���}� and �� = {��� ��� ⋯ � ���}�.  

Now, knowing the eigenmodes and the cross-correlated standard normal sample 

matrix � , the cross-correlated Gaussian random fields underlying c and φ are 

discretized as 

���
� (�, �) = �� + ∑ �������(�, �)���

��

��� , (for	� = �, �)			         (2.9) 

The isoprobability transformation (e.g., Li et al. 2011a) is then utilized to obtain the 

cross-correlated non-Gaussian random fields component-to-component as 

���
�� (�, �) = ��

�����[���
� (�, �)]�, (for	� = �, �)              (2.10) 

where ��
��(∙) is the inverse cumulative distribution function (CDF) of each 

non-Gaussian random field ��
�� (�, �), and ��(∙) is the CDF of each Gaussian 

random field ��
� (�, �). For example, if the c and φ are assumed to be cross-correlated 

lognormal random fields, then the approximations of the lognormal fields can be 

easily obtained by exponentiating their approximate Gaussian random fields as 

���
��� (�, �) = exp�����

+ ∑ ��������� (�, �)���
��

��� � , (for	� = �, �)    (2.11) 

where ����
 and ����

 are the mean and standard deviation of the Gaussian random 
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field ln �, respectively. The relationship between (��, ��) and (����
, ����

) is given as 

�
����

= ln �� − 0.5��� �
�

����
= �ln[1 + (��/��)�]

                    (2.12) 

If the above procedure is repeated Ns times, Ns simulations of the random fields 

will be obtained, based on which the statistical analysis can be performed.  

2.4.4 CDT for non-Gaussian random fields simulation 

Consider in a soil layer, if the considered random fields are to be discretized at the 

centroids of the random field elements, an autocorrelation matrix can be formed as 

� =

⎣
⎢
⎢
⎢
⎢
⎡ 1 ρ�����

, ����
� ⋯ � �� ����

, �����
�

ρ�����
, ����

� 1 ⋯ � �� ����
, �����

�

⋮ ⋮ ⋱ ⋮

ρ ������
, �����

� ρ ������
, �����

� ⋯ 1 ⎦
⎥
⎥
⎥
⎥
⎤

        (2.13) 

where	ρ �����
, ����

� denotes the autocorrelation coefficient between spatial quantities 

at any two points, in which the lags ����
= ��� − ��� and ����

= ��� − ��� denote the 

absolute distances between the centroid coordinates of the ith element and the jth 

element in the horizontal and vertical directions, respectively; �� is the number of 

the discretized random field elements. Based on Eq. (2.13) and isoprobability 

transformation, one realization of the cross-correlated non-normal random fields 

����  of c and φ can be obtained as (e.g., Li et al. 2015a) 

��
��� (�, �) = ��

�������
��(�, �)�� , (� = �, �)                (2.14) 

where ��
��(∙) is the inverse function of the marginal cumulative distribution of the ith 

random field; �(∙) is the standard normal cumulative distribution function; ��� is a 

typical realization of the cross-correlated normal random fields, which is obtained by 
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��� = ���(��)�                        (2.15) 

where � is a randomly sampled standard normal matrix with a dimension of �� × 2 ; 

�� and �� are the lower triangular matrices decomposed from the autocorrelation 

matrix � and the cross-correlated matrix � in Eq. (2.7), respectively, using the CDT 

as 

��(��)� = �                          (2.16) 

��(��)� = �                          (2.17) 

Similarly, if the above procedure is repeated Ns times, Ns simulations of the random 

fields will be obtained, based on which the statistical analysis can be performed.  

To conclude, it should be pointed out that extension of the above procedure for the 

simulation of non-stationary random fields is straightforward. Details are given 

elsewhere (e.g., Lu and Zhang 2007; Jiang and Huang 2016) and are not described 

here. Finally, it should be noted that the nonlinear isoprobabilistic transformation 

would induce a certain amount of error which, however, is very small and can be 

neglected, as demonstrated by Li et al. (2011a), Cho and Park (2010), Al-Bittar and 

Soubra (2013) and Jiang et al. (2014b).  
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CHAPTER 3 SIMPLIFIED FRAMEWORK FOR SYSTEM 

RELIABILITY ANALYSIS OF SLOPES IN SPATIALLY 

VARIABLE SOILS 

3.1 Introduction 

In general, a robust estimation of the reliability result such as the probability of failure 

(Pf) arises from a large number of repeatedly call of the performance function of slope 

stability in the framework of Monte Carlo simulation (MCS). This suggests that the 

major sources of the computational cost of the slope reliability analysis are the 

evaluation of performance function and the number of MCS samples. Hence, to 

enhance the computation efficiency of slope reliability analysis, most of the previous 

studies in the literature focused mainly on the following two aspects: (1) simplifying 

the performance function of slope stability, such as using explicit performance 

functions as replacements of the original implicit ones (e.g., Jiang et al. 2015; Li et 

al. 2015a; Pan and Dias 2017; Pan et al. 2017); (2) reducing the MCS sample size 

as much as possible, such as importance sampling (IS) and Subset simulation (SS) 

(e.g., Wang et al. 2011; Huang et al. 2016; Li et al. 2016c). Response surface 

methods (RSMs) fall into the first category. These methods generally start with the 

construction of the explicit response surface for the original implicit performance 

function, followed by the MCS performed directly on the response surface to obtain 

the Pf (e.g., Li et al. 2015a). Since it is more efficient to evaluate the factor of safety 

(FS) from the explicit performance function (i.e., response surface) than from the 

original stability model that is often implicit and highly nonlinear (e.g., a finite 

element model), the total time for the reliability analysis is substantially reduced. The 

only time-consuming portion of the whole analysis lies in the construction of the 

response surface. A computationally efficient process of establishing the response 

surface would have no doubt to improve the efficiency of the reliability analysis, and 

vice versa. Likewise, RSMs can be inefficient when the random fields associated with 
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the soil properties are discretized into thousands of random variables, because in this 

situation the number of training samples shall be very high in order to fully calibrate 

the response surface. Therefore, the RSM should be used with caution for slope 

reliability problems involving spatially correlated variables. 

On the other hand, sample reduction methods, represented by SS, have now 

gained an increasing popularity in slope reliability community as well as other 

geotechnical divisions, because they can evaluate the Pf with a smaller sampling size 

while providing sound accuracy. For example, Wang et al. (2011) combined the SS 

with a limit equilibrium method (LEM) in a spreadsheet to calculate the Pf of slopes 

in spatially variable soils, and found that the computation efficiency was increased by 

nearly 50% compared with the direct MCS. Li et al. (2016c) then incorporated the SS 

into the FEM for slope reliability analysis and risk assessment, which substantially 

enhanced the computation efficiency of the random finite element method (RFEM) 

proposed by Griffiths and Fenton (2004). However, as pointed out by Huang et al. 

(2016), if the strength reduction method is used for calculating the FS in FEM, the 

SS-based RFEM is not necessarily more efficient than RFEM because more 

computation time is required to search for the FS, although the sampling times is 

significantly reduced. To this end, Huang et al. (2016) proposed using the value of 

yield function as a measure of the safety margin to avoid the search of FS, thus 

improving the computation efficiency. Unfortunately, the method by Huang et al. 

(2016) is only suitable for problems with failure probability level as low as 0.0001, 

and may be less efficient than the traditional RFEM when Pf is around 0.005. 

Moreover, it is noted that SS is sensitive to the sample size in each simulation level, 

and generally a relatively large value of the sample size in each level is warranted to 

obtain a robust estimation of the Pf. Likewise, SS shall be inefficient, especially when 

coupled with FEM, leaving efficient reliability analysis in spatially variable soils still 

to be a difficult problem. 

Apart from the aforementioned efforts for efficient reliability analysis, many 
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other beneficial attempts have also been made in the literature, such as the first-order 

reliability method (FORM) combined with LEM and random field theory (e.g., Low 

et al. 2015) and some simplified reliability models (e.g., Luo et al. 2012c; Jha and 

Ching 2013; Li et al. 2017). A common characteristic of these methods is that they 

make full use of the advantages of the high efficiency of the reliability approaches, 

assuming soil properties fully correlated (e.g., FORM) to account for the soil spatial 

variability in slope reliability analysis. Within this framework, the aforementioned 

RSMs and SS are expected to be more efficient because the number of random 

variables is generally small (e.g., less than ten for general slopes). For example, Li et 

al. (2017) used equivalent soil parameters to characterize the spatially varied soil 

parameters so that the efficient FORM approach for perfectly correlated random soils 

can be extended for reliability analysis of slopes in spatially variable soils. The 

efficiency and accuracy of the equivalent approach have been fully illustrated by 

applications to a “homogeneous” cohesive slope and a two-layered cohesive slope. 

However, the following issues are remained to be answered: (1) the system effect of 

slope failure is ignored, whereas there are generally multiple failure modes in a slope 

and different groups of two failure modes are often characterized by different 

correlations (e.g., Oka and Wu 1990; Chowdhury and Xu 1994, 1995); (2) only one 

kind of strength parameter (i.e., the su) is considered, which does not stand for slopes 

with multiple strength parameters (e.g., cohesion and friction angle); (3) the influence 

of different statistics of soil properties, such as coefficients of variation (COVs) of 

different strengths, cross-correlation coefficient between two kinds of strengths and 

ACDs (ACDs) in both horizontal and vertical directions, are not fully investigated, 

although the effect of the isotropic spatial variation of soil properties has been studied; 

(4) the time consumption for calculating the equivalent parameters might be too large 

to affect the computation efficiency. 

With the above-mentioned problems in mind, this chapter proposes a simplified 

framework based on multiple response surface method (MRSM) and MCS for 

efficient system reliability analysis of slopes in spatially variable soils. Within this 
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framework, the equivalent parameters, which are efficiently calculated from an 

explicit response surface, are utilized to characterize the soil spatial variability. Then, 

the means, standard deviations, and the associated probability distribution functions 

(PDFs) of the equivalent parameters are determined. Multiple response surfaces are 

subsequently built based on the equivalent parameters, based on which MCS is 

performed to evaluate the system Pf. The framework is finally illustrated through an 

undrained cohesive slope and a cohesive-frictional (c-φ) slope, based on which the 

influence of different statistics is fully checked.  

3.2 Proposed simplified reliability analysis framework 

3.2.1 General 

The major idea of this framework is to make a random field model (RFM) of slope 

stability considering soil spatial variability equivalent to a random variable model 

(RVM) based on the requirement that the two models offer comparable system Pf 

values. As such, the commonly used RVM based reliability approaches (e.g., FORM 

and RSM) can be effectively used to consider spatially variable soils, and thus 

improving the computation efficiency of the slope reliability analysis that involves 

spatially variable soils. The spatial variability of soil properties is considered in the 

RVM by the equivalent random parameters that are spatially constant of the original 

spatially variable soil properties. Herein, it is deemed in this study that the two kinds 

of parameters (i.e., the random variable versus the random field) are equivalent in the 

sense that they produce the same FS value when they are substituted into the RVM 

and RFM, respectively. For example, Figure 3.1(a) shows the FS for a random 

realization of the random field of the undrained strength su at the case of COV=0.3, 

lh=20 m and lv=2 m, which is nearly the same as that shown in Figure 3.1(b) where the 

value of the random variable su is equal to 24.7 kPa. Under this circumstance, we call 

the random variable value of 24.7 kPa is the equivalent value of the random field su at 

the case of COV=0.3, lh=20 m and lv=2 m for this realization. However, it might be 

argued that Figures 3.1(a) and (b) are not fully equivalent because the shape and 
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location of the critical slip surfaces in the two figures are not completely the same. 

Nevertheless, the FS value based equivalence still appears to hold, because the focus 

of this study is not on the risk assessment that may be affected by the location and 

shape of the slip surface but on the failure probability analysis that depends only on 

the distribution of FS value. In the following sections, the techniques comprised of the 

framework will be introduced in detail. 

3.2.2 Random field modeling of spatially variable soil properties 

As mentioned above, one of the prerequisites for establishing the RFM is to 

characterize the spatial variability of soil properties, which is often simulated based on 

random field theory in the literature (e.g., Vanmarcke 1977b; Griffiths and Fenton 

2004; Vanmarcke 2010). For this purpose, several techniques can be employed, such 

as the local average subdivision method (e.g., Fenton and Vanmarcke 1990), the 

Karhunen–Loève expansion method (e.g., Phoon et al. 2002), and the Choleskey 

decomposition method (e.g., Li et al. 2015a; Liu et al. 2017c). The Choleskey 

decomposition method is adopted in this study due to its simple concept and ease in 

implementation in the program, but also on the fact that the aforementioned 

techniques show little difference on the reliability results (e.g., Li et al. 2015a; Jiang 

et al. 2017). Detailed procedures have been given in Chapter 2. 

3.2.3 Evaluation and statistical analysis of equivalent parameters 

3.2.3.1 Evaluation of equivalent parameters 

Accurate and efficient evaluation of equivalent parameters is a key component of the 

proposed framework, which requires back calculation of the strength parameters from 

a slope stability model (i.e., RVM) for a given FS value. This is generally achieved by 

trial and error in previous studies (e.g., Li et al. 2017). However, this method has at 

least the following two limits: (1) it requires repeated iterations to obtain accurate 

results, which may be very time-consuming, especially for those FEM-based models; 
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(2) it is only applicable to simple slopes, of which the stability is only governed by 

one strength parameter (e.g., the homogenous undrained cohesive slope), because 

different groups of strength parameters may have the same FS in those more 

complicated slopes (e.g., the c-φ slope). Therefore, to accommodate for more general 

cases, this study proposes back calculating the equivalent parameters on the basis of 

the explicit response surface function of the RVM (referred to as the explicit RVM, 

and abbreviated with ERVM hereafter).  

The ERVM is established based on the regression analysis of a specific number 

(e.g., Nt) of data (X, FS), where X is a matrix with a dimension of �� × �  and n is 

the number of the strength parameters, FS is a column vector of �� FS values that 

are evaluated from the RVM for these given �� combinations of strength parameters 

(i.e., X). Once the ERVM is established successfully, the back calculation of 

equivalent strength parameters for a given equivalent FS value that is obtained in 

advance from the RFM for a typical realization of random fields is as easy as solving 

algebraic equations. Obviously, for those simple slopes involving only one strength 

parameter, giving an FS will, admittedly, output one parameter. However, for those 

slopes containing more than one strength parameter, the solution for the equation of 

the ERVM is not unique, since only one known value (i.e., the equivalent FS) is given. 

For this problem, the following strategy is employed in this study: 

1. Determine one of the strength parameters to be back calculated for a given 

equivalent FS. 

2. Perform variance reduction technique (e.g., Vanmarcke 2010) on the 

remaining n-1 strength parameters that are simulated by random fields to consider 

them as random variables in a specific domain. Note that the variance reduction factor 

for 2-D single exponential ACF is used in this study (e.g., Luo et al. 2012c). 

3. Randomly generate n-1 random variable samples based on the statistics of 

the n-1 random variables that are deduced in step 2, and substitute them into the 
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ERVM together with the given FS to calculate the equivalent value of the strength 

parameter that is pre-specified in step 1.  

The strategy indicates that only one kind of equivalent parameter is required to 

be back calculated for a given equivalent FS. Likewise, the proposed approach can 

deal with complicated slope examples that have more than one type of strength 

parameter, of which the effectiveness will be shown later in Section 3.5. 

3.2.3.2 Statistical analysis of equivalent parameters 

Due to the random nature of the spatially variable soil properties, the equivalent 

parameters are also randomly varied. To accurately estimate the statistics of the 

equivalent parameters, a certain amount (e.g., Ns) of equivalent samples should be 

obtained first. This requires generating Ns random fields to obtain the corresponding 

Ns equivalent FS values from the RFM, which is then followed by the Ns evaluations 

of the equivalent samples using the suggested method in Section 3.2.3.1. Suppose Ns 

equivalent samples have been obtained, the problem is evolved to find the mean, 

standard deviation, and PDF of the equivalent parameter. In the current study, the 

mean and standard deviation are easily estimated using the basic statistical theory, 

while the marginal PDF is determined based on the information criteria that are 

commonly used for the PDF estimation of geotechnical parameters (e.g., Phoon and 

Ching 2014), such as the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC), although many goodness-of-fit test methods are available 

for this purpose. According to the information criteria, the best-fit PDF for a number 

of given samples is identified as the one that results in the smallest AIC and BIC 

values. The AIC and BIC are defined, respectively, as (e.g., Phoon and Ching 2014) 

AIC = −2 ∑ ln �(��; �, �) + 2�
��
���                     (3.1) 

BIC = −2 ∑ ln �(��; �, �) + � ln ��
��
���                  (3.2) 
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where �(��; �, �) is the candidate PDF for the equivalent samples; �� is the sample 

value; � is the number of distribution parameters in the candidate PDF; �	and	� are 

distribution parameters related to the mean and standard deviation of the candidate 

PDF. Since the non-negative property of the geotechnical parameters, four candidate 

PDFs—TruncNormal (i.e., Normal truncated below zero), Lognormal, TruncGumbel 

(i.e., Gumbel truncated below zero), and Weibull distributions—are selected and 

checked by the AIC and BIC criteria in this study. Details on the best-fit PDF 

identification process based on AIC and BIC criteria and the expressions of the four 

PDFs as well as their associated parameter relationships can be found in the book by 

Phoon and Ching (2014), to which the reader is referred. 

Additionally, it should be noted that there might be cross-correlations between 

the equivalent parameter and the reduced random variables in the presence of multiple 

strength parameters, which can be evaluated by the Pearson’s correlation coefficient 

(e.g., Mari and Kozt 2001) as  

� =
∑ (����������)(����������)

��
���

�∑ (����������)���
���

�∑ (����������)���
���

                   (3.3) 

where ���  denotes the ith equivalent sample value; ���  denotes the ith reduced 

variable sample value; �����  and �����  denote the sample means of the equivalent 

parameter and the reduced variable considered, respectively. 

With the above-mentioned equivalent statistics, the slope failure probability can 

be easily estimated based on those random variable reliability approaches, which will 

be introduced in the following section. 

3.2.4 MRSM for evaluating the system Pf 

Having obtained the equivalent parameters that are spatially constant, the original 

reliability analysis based on the RFM can now be represented by the reliability 

analysis based on the RVM. Thus, the conventional reliability analysis methods 
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considering random variables can be easily used. In addition, it has been widely 

recognized that there are generally multiple potential failure modes in a slope, and 

different failure modes are often characterized by different correlations (e.g., Oka and 

Wu 1990). This indicates the slope reliability should be analyzed from a systematic 

view of point. To this end, MCS is often resorted to. However, direct MCS on the 

RVM is still time-consuming, because thousands of evaluations of the RVM are at 

least needed to obtain a robust estimation of the Pf. To enhance the efficiency, the 

MRSM, which has been demonstrated to be effective and efficient for a wide range of 

slope reliability problems (e.g., Li et al. 2015a; Li et al. 2016d), is adopted here. It 

should be pointed that compared with the MRSM for spatially variable soils MRSM 

for spatially constant soils is much more efficient, because the unknown coefficients 

are substantially deduced, suggesting much less evaluations of the RVM required. The 

MRSM proceeds with the following two steps (e.g., Li et al. 2015a):  

1. Select a suitable response surface form for each potential slip surface. The 

quadratic polynomial chaos expansion without cross terms is used here and written as 

���(�) = ��� + ∑ �����
�
��� + ∑ �����

��
���                 (3.4) 

where ���(�) is the FS for the ith potential slip surface; � = (��, ��, ⋯ , � �)� is the 

random variable vector, particular the equivalent parameters herein; ���, ��� 	and	��� 

are unknown coefficients with a totally number of 2n+1.  

2. Calibrate the unknown coefficients. Firstly, generate the following 2n+1 

samples using the central composite design (CCD) method (e.g., Bucher and 

Bourgund 1990): (���
, ���

, ⋯ , � ��
) , (���

± ����
, ���

, ⋯ , � ��
) , (���

, ���
±

����
, ⋯ , � ��

), ⋯ , and (���
, ���

, ⋯ , � ��
± ����

), where ���
	and	���

 are the mean 

and standard deviation of the ith random variable, respectively; m is a coefficient for 

generating sample points, and is generally taken as 2 (e.g., Zhang et al. 2011b). Then, 

evaluate the FS for each CCD sample from the RVM. Finally, the unknown 
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coefficients are obtained by solving a system of 2n+1 linear algebraic equations.  

3. Establish the remaining response surfaces. Repeat steps 1 and 2 for Np times 

to establish Np response surfaces, which, as a whole, are finally taken as the surrogate 

of the RVM. 

4. MCS to evaluate Pf. Generate Nsim samples and substitute them to the 

surrogate established in step 3 to estimate the system Pf as 

�� =
�

����
∑ � ��min���,�,⋯� �

���(��)� < 1�
����
���               (3.5) 

where �{∙}  is an indicator function which is equal to unity if 

�min���,�,⋯� �
���(��)� < 1 and zero, otherwise. 

3.3 Implementation procedure of the proposed framework 

To further facilitate the understanding and application of the framework, Figure 3.2 

schematically shows the flowchart of the proposed system reliability analysis 

framework. In general, the whole flowchart consists mainly of five steps, which are 

detailed as follows: 

1. Collect the required data of both geotechnical and geometrical parameters for 

slope stability analysis, including but not limited to shear strengths, unit weights, 

slope angle and slope height. Then, single out the stochastic parameters and 

characterize their statistics, which include the means, COVs, PDFs, ACFs, ACDs and 

cross-correlation coefficients. 

2. Use the mean values obtained in step 1 to establish two slope stability models: 

RVM and RFM. Traditional slope stability analysis methods such as LEM can be 

adopted for this purpose. Additionally, it should be pointed out that the soil properties 

are spatially constant in RVM but spatially variable in RFM. Hence, the slope domain 

in RFM is required to be discretized into finite elements in advance in order to 
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characterize the spatial variability of soil properties, as schematically shown in Figure 

3.1(a).  

3. Evaluate the RVM for a specific number (e.g., Nt) of groups of strength 

parameters (e.g., X in Figure 3.2) to obtain the corresponding FS values, and 

regression analysis is performed to establish an explicit response surface function (i.e., 

ERVM) between FS and X, i.e., FS=f(X), which will contribute greatly to the efficient 

back calculation of the equivalent parameters in the following steps. Additionally, 

within the ERVM, it is easy to deal with soils involving more than two types of 

strength parameters with effectiveness, which, however, cannot be achieved in the 

work by Li et al. (2017). 

4. Generate Ns random fields associated with the spatially variable soil 

properties and incorporate them into the RFM to obtain Ns FS values, which are 

referred to as the equivalent FS values (i.e., FSeq) to differentiate them from the Nt FS 

values obtained from the RVM in step 3. The equivalent FS values are then 

substituted to the established response surface in step 3 for back calculating the 

equivalent soil parameter values, i.e., � = ���(����). Based on the equivalent 

parameter values, statistical analysis is then performed to obtain the means, COVs, 

PDFs and cross-correlations of equivalent parameters. Note that, for soils involving 

more than one type of strength parameter, the technique introduced in Section 3.2.3.1 

should be employed before the regression analysis in order to determine the strength 

parameter to be back calculated and to obtain the reduced strength parameters. 

5. Use the equivalent statistics obtained in step 4 in a random variable reliability 

approach such as the MRSM (e.g., Zhang et al. 2011b) to evaluate the system Pf. 

3.4 Example I: Application to an undrained cohesive slope 

3.4.1 Model preparation 

To illustrate the proposed framework, it is first applied to an undrained cohesive slope, 
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of which the stability is governed only by the undrained shear strength ��. Figure 3.3 

schematically plots the geometry of the slope, which has a slope height of 5 m and a 

slope angle of 26.6°. The slope consists only of a homogeneous clay layer with a 

thickness of 10 m and a total unit weight of 20 kN/m3. The �� of the clay is assumed 

to be subjected to lognormal stationary random field with the mean ���
 of 23 kPa, 

the COV �����
 of 0.3, the horizontal ACD �� of 20 m, and the vertical ACD �� of 

2 m. For convenience purpose, these values are directly taken from Jiang et al. (2015) 

and Cho (2010) so that the results in these references can be referred to. Based on 

these values, the RVM is firstly built based on Bishop’s simplified method, which 

provides an FS of 1.355 when the �� is taken as a spatial constant with a value of 

���
. The FS value is very close to those (i.e., both 1.356) reported by Jiang et al. 

(2015) and Cho (2010), and its associated slip surface (known as critical deterministic 

slip surface, CSS), which is identified among 4,851 predefined potential slip surfaces, 

is nearly the same with that found by Jiang et al. (2015), as shown in Figure 3.3. The 

comparable results with the literature thus indicate the effectiveness of the established 

RVM, which ensures the accuracy of the following analysis. 

To consider the spatial variability of su in slope stability analysis, the random 

field of su is firstly modeled by 910 spatially correlated random variables, which are 

respectively located at the centroids of 910 random field elements that are discretized 

with a side length of 0.5 m, as schematically shown in Figure 3.4. Note that the size of 

the discretized random field element here is consistent with that used by Jiang et al. 

(2015). The random variable values associated with all elements are generated from 

the realization of the random field of su using Eq. (2.14). As an illustration, Figure 3.4 

shows a typical realization of the random field of su, where darker color indicates 

larger su values and lighter color represents smaller su values. Based on the discretized 

random field, traditional stability analysis methods (e.g., Bishop’s simplified method) 

can be employed to evaluate the FS for this realization. The slope stability model that 

takes the soil spatial variability into account here and hereafter signifies the so-called 
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RFM in this study. Note that, if the random variable values are all assigned a value of 

the ���
, the RFM is expected to obtain the same FS (i.e., 1.355) and CSS as those 

produced by the RVM, as shown in Figure 3.4. Conventional reliability approaches 

are directly performed based on the RFM, which is very time-consuming. However, 

the RFM here in this study is mainly used for the generation of equivalent parameters, 

as will be introduced later.  

3.4.2 Determination of equivalent undrained shear strength ����
 

In this section, the equivalent undrained shear strength ����
 is determined. According 

to the procedure described in Section 3.3, the first step for identifying the ����
is to 

establish the ERVM of the slope stability. To this end, a certain number (e.g., Nt=21 

for this example) of samples that were evenly selected from the range of (���
−

3���
, ���

+ 3���
) were substituted to the RVM to obtain the corresponding FS values, 

which comprises a set of training data. Based on the data set, a linear regression 

analysis was then performed to obtain the linear ERVM between the FS and ��, 

because previous studies generally indicate that the FS is linearly correlated with the 

�� for homogeneous undrained cohesive slopes (e.g., Griffiths et al. 2009; Huang et 

al. 2017). The explicit expression of the ERVM was finally obtained as 

��(��) = 0.0589��                        (3.6) 

To valid the accuracy of the ERVM, Figure 3.5 compares the FS values predicted by 

Eq. (3.6) for 100 randomly generated values of �� with those obtained from the 

RVM using Bishop’s simplified method. As can be seen from the figure, the FS values 

from the two models are in good agreement with each other. This suggests that the 

ERVM can be effectively used to back calculate the equivalent undrained strength 

value when an equivalent FS is given. 
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The second step is to determine the statistics of the ����
. As shown in Figure 3.2, 

Ns random field realizations of �� are generated to obtain Ns equivalent FS values, 

which are subsequently substituted to Eq. (3.6) to get the Ns equivalent values of ��. 

Statistical analysis is then performed on the Ns equivalent values based on the method 

introduced in Section 3.2.3.2 to determine the mean �����
, standard deviation �����

, 

and PDF of the ����
. Therefore, the value of the Ns is very critical to the accuracy of 

the estimations of the statistics of the ����
. A large value would definitely increase the 

accuracy, but it also decreases the computational efficiency. To obtain the optimal 

value of Ns, a sensitivity study was conducted with Ns varying from 100 to 10,000. 

Figure 3.6(a) shows the variations of the �����
 and �����

 with respect to Ns. It is 

found that both �����
 and �����

 keep nearly invariant with Ns when Ns is larger than 

about 3,000. To make a compromise between the efficiency and accuracy, Ns=3,000 is 

selected, with which the standard errors of the estimated �����
 and �����

� are 

estimated as ������
��⁄ = 0.018���

 and �����
�2 (�� − 1)⁄ = 0.026�����

, 

which are less than 3% of their true quantities (e.g., Griffiths and Fenton 2001; Li et 

al. 2017). Additionally, AIC and BIC criteria show that the 3,000 equivalent samples 

are best fitted by the lognormal distribution, which can also be deduced from Figure 

3.7(a) where Lognormal matches well with the histogram of the 3,000 samples. Next, 

reliability analysis using these statistics can be easily performed using the suggested 

method in Section 3.2.4. 

3.4.3 System reliability analysis results 

Table 3.1 lists the system failure probability results of this slope calculated by this 

study and taken out from Cho (2010) and Jiang et al. (2015). The system Pf 

evaluated using the proposed framework [denoted as “EQP (equivalent 

parameter)+MRSM+MCS” in the Table 3.1 and hereafter] is 7.40×10-2, which 

matches well with the value of 7.73×10-2 that is estimated by direct MCS on the RFM 
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with 10,000 random field samples. However, it might be argued that the high accuracy 

of the framework can be a compromise between the use of equivalent parameters and 

MRSM, because both of the two techniques are approximate. To eliminate such 

concern, direct MCS on the RVM (denoted as “EQP+ MCS” in the Table 3.1 and 

hereafter) with 10,000 random variable samples generated using the equivalent 

parameter (i.e., ����
) was also performed to evaluate the Pf, which shows to be 

identical with the result (i.e., 7.40×10-2) from the proposed framework. Indeed this 

can be expected from previous studies (e.g., Li et al. 2016d) that has demonstrated 

the accuracy of the MRSM for reliability analysis of slopes involving random 

variables. Overall, the good agreement between the three methods (i.e., MCS, 

“EQP+MCS” and “EQP+MRSM+MCS”) validates the accuracy of the proposed 

framework. Additionally, it is found that the reliability results in this study are 

comparable with those (i.e., 7.60×10-2, 8.30×10-2 and 7.90×10-2) reported by Cho 

(2010) and Jiang et al. (2015), respectively. This finding further validates the 

reliability of the results by this study. It should be pointed out that the larger values 

provided by these references than those in this study are mainly because the squared 

exponential was used by Cho (2010) and Jiang et al. (2015), which, by its function 

nature, may result in larger estimations of the Pf, as proved by Li et al. (2015a). 

Nevertheless, the difference is minimal. 

As for the efficiency of the proposed framework, it is obviously much more 

efficient than direct MCS and “EQP+MCS”, because only 3,000 evaluations of the 

RFM and 21 evaluations of the RVM are required. However, as stated by Jiang et al. 

(2015), Latin hypercube sampling (LHS) with only 1,000 samples can yield a 

satisfactory estimation of the Pf (i.e., 8.30×10-2), which shows to be more efficient and 

seems that it is not necessary to use the proposed framework. This lies in the fact that 

the failure probability level is in the order of magnitude of 10-2, which is relatively 

large and can be accurately estimated based on a small number of samples. However, 

this is not always the truth for slopes with a relatively small Pf, e.g., less than 0.001, 
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as will be illustrated for the case of �����
= 0.15.  

Table 3.2 shows the reliability results for �����
= 0.15 by various approaches. 

Following the aforementioned procedure employed for �����
= 0.3, Ns=4,000 is 

selected based on the sensitivity study shown in Figure 3.6(b), and the ����
 is best 

fitted by the lognormal distribution, as seen from Figure 3.7(b). It should be noted that 

when �����
 is decreased to 0.15, there is no need to establish again the ERVM. 

Based on the ����
, the Pf for the case of �����

= 0.15 is estimated as 1.40×10-4 

using the proposed framework, which is comparable with those (i.e, 2.50×10-4 and 

1.25×10-4) obtained by direct LHS and “EQP+LHS”, respectively. However, the 

computational effort (i.e., 4,000 RFM+24 RVM) required by the proposed method is 

much less than those (i.e., 40,000 RFM and 4,000 RFM+40,024 RVM) by direct LHS 

and “EQP+LHS”, respectively. This thus highlights the advantage of efficiency of the 

proposed method when facing with such a small level of failure probability. 

Additionally, Table 3.2 also gives the reliability results reported by Jiang et al. (2015), 

which are comparable with those in this study. Again, similar to the case of 

�����
= 0.3, the results by Jiang et al. (2015) are slightly overestimated, because the 

squared exponential ACF is used. Nevertheless, such finding further validates the 

reliability of the results by this study. 

3.4.4 Influence of spatial variability of ��  on the accuracy of the proposed 

framework 

This section investigates the influence of horizontal and vertical ACDs on the system 

Pf of this slope example using the proposed framework, which aims at examining the 

applicability of the framework for reliability analysis with different degrees of spatial 

variability. A series of parametric studies were performed to consider the different 

spatial autocorrelations with the �� varying between 10 m and 40 m, and the �� 
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varying between 0.5 m and 3.0 m. The variation ranges are following those used by 

Jiang et al. (2015), which are the typical statistics for a wide range of spatially 

variable soils (e.g., Phoon and Kulhawy 1999b). For each combination of the �� 

and ��, the system Pf was evaluated by the proposed framework, direct MCS, and 

“EQP+MCS”. In addition, results from Jiang et al. (2015) were also referred as a 

reference to this study for a consistent comparison purpose. 

Figure 3.8(a) shows the variations of the system Pf associated with the four 

methods with respect to �� with �� fixed at 2.0 m. As expected, the reliability results 

obtained by the four methods increase slightly with the increase of ��. The results 

associated with the four methods are generally consistent with each other. For 

example, for a given �� = 2.0	m , the values of Pf for the four methods are 

respectively 5.48×10-2, 5.65×10-2, 5.65×10-2 and 5.43×10-2 when �� = 10	m, which 

are increased to 8.79×10-2, 8.92×10-2, 8.92×10-2 and 8.40×10-2 when �� = 40	m, 

respectively. This thus validates the accuracy of the proposed framework for a wide 

range of �� . Figure 3.8(b) compares the reliability results obtained by the 

aforementioned four methods for various values of ��  with ��  fixed at 20 m. 

Compared with Figure 3.8(a), the results shown in Figure 3.8(b) increase more 

significantly with the increase of the ��. For example, for a given �� = 20	m, the Pf 

estimated by the proposed framework increases from 7.80×10-3 to 9.88×10-2 as �� 

changes from 0.5 m to 2.0 m. This mainly lies on the fact that it is more likely to form 

a continuous weak zone when the vertical spatial variability is underestimated (e.g., 

Jiang et al. 2015). Such finding is also consistent with many available studies in the 

literature (e.g., Cho 2007; Jiang et al. 2015; Li et al. 2015a). In addition, the 

difference among the four methods is minimal even at small �� values where, for 

example, the estimated failure probability results at �� = 0.5	m  are 8.40×10-3, 

7.80×10-3, 7.80×10-3 and 4.67×10-3, respectively. Therefore, the results in Figure 3.8 

indicate that the proposed framework is accurate enough for reliability analysis of the 

undrained cohesive slope considering different spatial variability of ��. 
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3.5 Example II: Application to a c-φ slope  

This section extends the proposed framework for a more complex slope with two 

types of shear strength parameters (i.e., c and φ), which remains unanswered and 

appears to be difficult by the method proposed by Li et al. (2017).  

3.5.1 Model preparation 

Figure 3.3 shows the geometry of the second slope example, which has a slope height 

of 10 m and a slope angle of 45°. This is a hypothetical c-φ slope, which has been 

previously investigated by many researchers (e.g., Cho 2010; Li et al. 2015a). 

Following the literature, the shear strength parameters c and φ are modeled by 

cross-correlated lognormal random fields, while the unit weight of the soil is 

considered as a constant. The statistics of theses parameters are summarized in Table 

3.3, which are directly taken from Li et al. (2015a) and Cho (2010) so that the results 

in these references can be easily utilized to demonstrate the proposed framework. 

Based on the mean values in Table 3.3, the RVM was firstly built based on Bishop’s 

simplified method, which estimated the FS as 1.205. The FS value is very close to the 

values of 1.208 and 1.204 reported by Li et al. (2015a) and Cho (2010), respectively, 

and its associated CSS, which was identified among 9,261 potential slip surfaces, is 

nearly the same with that found by Li et al. (2015a), as shown in Figure 3.9.  

The slope domain was then discretized into 1,210 random field elements to 

consider the spatial variability of the c and φ. The random field mesh is schematically 

shown in Figure 3.10, which consists mainly of 4-noded quadrilateral elements with a 

side length of 0.5 m. Random field simulation procedure described in Section 3.2.2 

was subsequently invoked to generate the cross-correlated random fields of the c and 

φ, as schematically show in Figures 3.10(a) and (b). Based upon the random fields, 

RFM was established for this slope with the consideration of spatial soil variability. 

Again, similar to Example I, the RFM is mainly used for the generation of equivalent 

c and φ. 
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3.5.2 Determination of equivalent shear strengths 

To determine the equivalent parameters, 361 data points (c, φ) are first generated from 

all possible combinations of � = {1, 2, ⋯ , 19 } and � = {12, 14, ⋯ , 48 }, which are 

then submitted to the RVM to obtain the corresponding FS values to form a training 

data set in the form of (c, φ, FS). Based on the data set, a quadratic regression analysis 

is performed to obtain the quadratic ERVM between the FS and c and φ, which is 

described as 

��(�, �) = 8.28 × 10 �� + 4.61 × 10 ��� + 1.23 × 10 ��� − 7.9404 × 10 ���� +

2.4971 × 10 ���� + 5.0388 × 10 ����               (3.7) 

To valid the accuracy of the ERVM, Figure 3.11 compares the FS values predicted by 

Eq. (3.7) with those obtained from the RVM using Bishop’s simplified method for 100 

randomly generated sample points. As can be seen from the figure, the FS values from 

the two models are in good agreement with each other. This suggests that the ERVM 

can be effectively used to back calculate the equivalent strength values when an 

equivalent FS is given. 

It is noted that there are two types of shear strengths in this slope example, so for 

a given FS value it is not a trivial task to back calculate both the two equivalent 

parameters simultaneously, which is also a challenge for the method proposed by Li 

et al. (2017). Hence, the suggested technique in Section 3.2.3.1 is proposed mainly 

for this purpose. With the aid of this technique, two types of equivalent manners are 

derived: equivalent cohesion ��� by reducing the friction angle (RFA) and equivalent 

friction angle ��� by reducing the cohesion (RC). Both of the two manners are 

examined in the following to check the effectiveness of the proposed framework. For 

the case listed in Table 3.3, internal sensitivity studies show that Ns=3,000 can yield 

relatively robust statistics for both the ��� and ���, with the standard errors of the 

estimated means and COVs of both the two equivalent parameters less than 3% of 

their true quantities (e.g., Griffiths and Fenton 2001; Li et al. 2017). Additionally, 
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AIC and BIC criteria show that the ���  and ���  can be best described by the 

truncated normal distribution and Weibull distribution, respectively. In the following, 

reliability analysis of this slope can be easily performed based on these statistics. 

3.5.3 System reliability analysis results 

Table 3.4 summarizes the reliability analysis results of the second slope example 

obtained from this study and reported by Cho (2010) and Li et al. (2015a). As seen 

from the table, the system Pf (i.e., 1.36×10-2) evaluated using the proposed framework 

with equivalent friction angle (i.e., “EQP+RC+MRSM+MCS” in the table) is 

comparable with the value of 1.60×10-2 that is directly estimated by MCS, and 

matches well with those (i.e., 1.71×10-2 and 1.87×10-2) reported by Cho (2010) and Li 

et al. (2015a), respectively. It should be noted that the value of 1.36×10-2 by the 

proposed “EQP+RC+MRSM+MCS” is very consistent with the value of 1.35×10-2 

that is obtained by “EQP+RC+MCS”. This can be expected from the evidence that 

MRSM is accurate enough for reliability analysis of slopes involving cross-correlated 

random variables, as demonstrated by Li et al. (2016d). These results suggest that the 

proposed framework can provide sufficiently accurate estimations of the reliability 

results for slopes characterized by cross-correlated random fields. In addition, the Pf 

for this slope example was also evaluated using the proposed framework with 

equivalent cohesion (i.e., “EQP+RFA+MRSM+MCS” in the table), and the value was 

estimated as 1.18×10-2, which is very consistent with that (i.e., 1.18×10-2) obtained by 

“EQP+RFA+MCS”, as expected. The result by “EQP+RFA+MRSM+MCS” appears 

to be underestimated compared with that (i.e., 1.60×10-2) obtained by direct MCS, but 

the difference between them is minimal. 

To gain more insights into the proposed variance reduction technique, the 

reliability of this slope example was also evaluated by the proposed framework that 

does not consider reduction on the parameter variance, that is, the reduction factor is 

taken as unity. To differentiate this framework from the original one, the parameter to 

be reduced is referred to as fixed variables at this situation. Likewise, there are four 
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methods to be evolved: (1) “EQP+FC+MRSM+MCS”—MRSM based MCS with 

equivalent friction angle but fixed cohesion (FC); (2) “EQP+FFA+MRSM+MCS” 

—MRSM based MCS with equivalent cohesion but fixed friction angle (FFA); (3) 

Similarly, “EQP+FC+MCS”—MCS with equivalent friction angle but fixed cohesion; 

(4) “EQP+FFA+MCS” —MCS with equivalent cohesion but fixed friction angle. 

Table 3.4 also lists the Pf results associated with the abovementioned four approaches. 

It is found that, as expected, the MCS- and MRSM-based methods are in good 

agreements, which again validates the effectiveness of the use of MRSM in this study. 

It is also observed that the results by FC-based methods are much closer to the 

“accurate” result (i.e., 1.60×10-2) than those by FFA-based methods. Compared with 

the original framework, the framework without reduction appears to overestimate the 

system failure probability, particularly the “EQP+FFA+MRSM+MCS” method. This 

may be mainly attributed to the fact that taking random field parameters as random 

variables yet neglecting the effect of variance reduction might substantially 

underestimate the spatial variability. In particular, the spatial variability of the friction 

angle plays a much more significant role in the slope stability than the spatial 

variability of the cohesion (e.g., Li et al. 2015a). Therefore, in the following analysis, 

only the “EQP+RC+MRSM+MCS” and “EQP+FC+MRSM+MCS” are considered to 

examine the effectiveness and accuracy of the proposed framework. 

3.5.4 Influence of variation of cross-correlated random fields of c and φ on the 

accuracy of the proposed framework 

This section further investigates the sensitivity of the accuracy of the proposed 

framework to the variation of the cross-correlated random fields of c and φ. For this 

purpose, a series of parametric studies of Pf with respect to such statistics as 

cross-correlation coefficient, COVs and ACDs are conducted with the ��� , ����, 

����, �� and �� varying between [-0.7, 0.5], [0.1, 0.7], [0.05, 0.2], [5, 30] and [0.5, 

3], respectively. It should be noted that, for simplicity and consistent comparison with 

literature (e.g., Li et al. 2015a), in each parametric sensitivity study, only one 
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parameter is changed whereas the others are kept the same as the values in the 

nominal case where ��� = 0, ���� = 0.3, ���� = 0.2, �� = 20	m and �� = 2	m.  

Figure 3.12 compares the values of Pf obtained by this study and reported in the 

literature for various cross-correlation coefficients. In general, the results obtained by 

MCS, “EQP+RC+MRSM+MCS” and “EQP+FC+MRSM+MCS” in this study present 

a very similar variation trend—increasing with the increase of ��� , which is the same 

as those reported by Li et al. (2015a) and Cho (2010). The results obtained from the 

proposed “EQP+RC+MRSM+MCS” are also in good agreement with those evaluated 

by MCS and reported in the literature, suggesting the accuracy of the proposed 

framework. In contrast, the results evaluated by the proposed framework that has no 

consideration of variance reduction (i.e., “EQP+FC+MRSM+MCS”) are slightly 

overestimated compared with the other four methods, although the difference between 

them decreases with the increase of ��� , is not significant and still in the same order 

of magnitude even at the smallest ��� . The overestimation of the 

“EQP+FC+MRSM+MCS” is expected from the fact that taking random field 

parameters as random variables yet neglecting the effect of variance reduction might 

substantially underestimate the spatial variability, thus leading to higher estimations of 

the Pf. These results indicate that the proposed framework can well account for the 

influence of the ���  on the Pf. 

Figures 3.13(a) and (b) show the variations of reliability results associated with 

different methods with respect to ���� and ����, respectively. In both the two 

subfigures, the results evaluated by the proposed framework agree well with those 

obtained from MCS and reported in the literature. In particular, it is observed that the 

proposed framework is still accurate enough at small probability levels (e.g., in the 

order of magnitude of 10-4). For example, when ���� = 0.05, the Pf is estimated as 

1×10-3 using the proposed framework (i.e., “EQP+RC+MRSM+MCS”), which is 
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comparable with the “exact” value of 9.3×10-4 obtained by MCS in this study. 

However, as expected, the value of 3.3×10-3 obtained by “EQP+FC+MRSM+MCS” 

for ���� = 0.05 is admittedly overestimated. Additionally, it is noticed that the Pf is 

much more sensitive to ���� than to ����, which is captured by all the methods in 

the figure. These observations thus demonstrate the accuracy and robustness of the 

proposed framework versus the variations of c and φ. 

Figures 3.14(a) and (b) show the variations of reliability results associated with 

different methods with respect to various horizontal and vertical ACDs, respectively. 

Similar to Figs. 12 and 13, the results evaluated by the proposed framework agree 

well with those obtained from MCS and reported in the literature for the considered 

ranges of �� and ��. This indicates that the proposed framework can provide accurate 

estimations of the Pf for slopes characterized by different spatially variable soil 

properties. Furthermore, it is also captured by the proposed framework that the 

vertical ACD influences the Pf more significantly than the horizontal ACD, which is 

in good accordance with those in the literature (e.g., Li et al. 2015a). This thus 

verifies the robustness of the proposed framework versus the spatial soil variability. 

3.6 Discussion 

Through the applications of the proposed framework to the aforementioned slope 

examples, it is found that, in general, a few thousand (e.g., 3,000 to 4,000) times of 

evaluations of the RFM are sufficient to obtain reasonable reliability results for the 

considered ranges of different statistics such as COVs and ACDs in this study. 

Therefore, it can be admittedly concluded that the proposed framework is more 

efficient than direct MCS, especially for reliability problems with low probability 

levels (e.g., �� ≤ 10��). However, it might be argued that the equivalent process in 

this study is redundant and the proposed framework might be less efficient than the 

traditional MRSM, because the traditional MRSM has already been demonstrated to 

be a very efficient approach in the literature (e.g., Li et al. 2015a; Li et al. 2016d). To 
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this end, this section further discusses the efficiency of the proposed method against 

the traditional MRSM.  

Figure 3.15 compares the computational costs (measured by evaluation times of 

the RFM) required by the proposed framework and the MRSM for the aforementioned 

two slope examples. For simplicity purpose, only the variation of computational cost 

with respect to the vertical ACD is considered in the figure, because failure 

probability is more sensitive to the vertical ACD and can vary within a larger 

probability interval. According to Figure 3.15(a), for the considered vertical ACDs in 

Example I, the proposed framework requires to evaluate around 4,000 times of the 

RFM to estimate the ��, which is larger than 1,821 required by MRSM (Li et al. 

2015a). It seems that the MRSM is more efficient than the proposed framework. 

However, this would not always be the truth, as illustrated in Figure 3.15(b) where the 

proposed framework is shown to be more efficient. The reason lies in the fact that 

there are more random field elements (i.e., 1,210) as well as shear strengths in 

Example II, which consequently results in more unknown coefficients (i.e., 4,841) to 

be calibrated in the MRSM. 

To gain more insight into the proposed framework, Figure 3.16 qualitatively 

investigates the influence of the number of random field elements on the 

computational efficiency of the proposed framework and MRSM. As expected, the 

computational cost of MRSM increases sharply with the increase of the number of the 

random field elements, while the computational cost of the proposed method keeps 

nearly unchanged. In particular, for the illustrative Example I, the proposed 

framework, in turn, may outperform the MRSM in terms of the computational 

efficiency when the number of random field elements reaches a critical value. Overall, 

both the proposed framework and the MRSM are relatively efficient compared with 

direct MCS, and each of the two methods may have its own suitability. Nevertheless, 

the proposed framework provides a good alternative to efficient slope reliability 

analysis. 
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3.7 Summary and conclusions 

This chapter presents a simplified framework for system reliability analysis of slopes 

in spatially variable soils. The basis and implementation procedure of the framework 

are thoroughly described. In particular, the ERVM is proposed to back calculate the 

equivalent spatially constant soil parameters such that the computational efficiency 

can be improved. Additionally, a variance reduction strategy is introduced to enable 

the proposed framework applicable to slope reliability problems involving more than 

one type of shear strength. Two slope examples are studied to illustrate the accuracy 

and efficiency of the proposed framework, based on which the robustness of the 

proposed framework against various statistics such as the anisotropic spatial 

variability is fully demonstrated through a series of parametric studies. Moreover, the 

strength and weakness of the proposed framework against MRSM is discussed. From 

this study, the following conclusions are made: 

1. The proposed simplified framework can well deal with slope reliability 

analysis in spatially variable soils, providing sound results that are comparable with 

those by MCS and reported in the literature. It is robust against changes of various 

cross-correlations, COVs and ACDs, which provides a practical tool for system 

reliability analysis of slopes in spatially variable soils. 

2. The high accuracy and robustness of the proposed framework demonstrates 

the effectiveness of the ERVM. This indicates the back-calculated equivalent spatially 

constant soil parameters can well represent the spatial variability of the original 

spatially variable soils. However, it is found that the distributions of the equivalent 

parameters may be different from the original ones. By using the ERVM, the 

computational efficiency of the proposed framework is substantially improved. 

3. The variance reduction technique designed for slope reliability problems 

involving more than one type of shear strength is shown to be effective through the 

application of the proposed framework to a c-φ slope. Particularly, by using this 
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technique, the reliability results are further refined. 

4. The proposed framework is much more efficient than direct MCS, especially 

for reliability problems with low probability levels (e.g., �� ≤ 10�� ). However, 

compared with MRSM, its relative efficiency is case dependent. For the slope where 

the number of random field elements is relatively large and more than one type of 

shear strength is dealt with, the proposed framework is much more efficient; 

otherwise, it is less efficient. Nevertheless, the proposed framework provides a good 

alternative for efficient slope reliability analysis.  
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Table 3.1 Reliability analysis results for �����
= 0.3 in Example I 

Method Pf Source 

MCS (10,000) 7.73×10-2 This study 

EQP+MCS (10,000) 7.40×10-2 This study 

EQP+MRSM+MCS (10,000) 7.40×10-2 This study 

MCS (100,000) 7.60×10-2 Cho (2010) 

LHS (1,000) 8.30×10-2 Jiang et al. (2015) 

SRSM+RSSs+MCS (500,000) 7.90×10-2 Jiang et al. (2015) 

 

Table 3.2 Reliability analysis results for �����
= 0.15 in Example I 

Method Pf Source 

LHS (40,000) 2.50×10-4 This study 

EQP+LHS (40,000) 1.25×10-4 This study 

EQP+MRSM+MCS (500,000) 1.40×10-4 This study 

LHS (40,000) 3.80×10-4 Jiang et al. (2015) 

SRSM+RSSs+MCS (500,000) 2.80×10-4 Jiang et al. (2015) 

 

Table 3.3 Statistics of soil parameters for Example II 

Parameter Mean COV Distribution ACD ���  

c 10 kPa 0.3 Lognormal �� = 20	m, �� = 2	m 
−0.5 

φ 30° 0.2 Lognormal �� = 20	m, �� = 2	m 

γ  20 kN/m³ ‒ ‒ ‒ ‒ 
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Table 3.4 Reliability analysis results for Example II 

Method Pf Source 

MCS (10,000) 1.60×10-2 This study 

MCS (50,000) 1.71×10-2 Cho (2010) 

MRSM 1.87×10-2 Li et al. (2015a) 

EQP+RC+MCS (10,000) 1.35×10-2 This study 

EQP+RC+MRSM+MCS (10,000) 1.36×10-2 This study 

EQP+RFA+MCS (10,000) 1.18×10-2 This study 

EQP+RFA+MRSM+MCS (10,000) 1.18×10-2 This study 

EQP+FC+MCS (10,000) 2.52×10-2 This study 

EQP+FC+MRSM+MCS (10,000) 2.61×10-2 This study 

EQP+FFA+MCS (10,000) 5.10×10-2 This study 

EQP+FFA+MRSM+MCS (10,000) 5.16×10-2 This study 
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(a) RFM (COV=0.3, lh=20 m and lv=2 m) 

 

(b) RVM (su=24.7 kPa) 

Figure 3.1 Schematics of the equivalence between the RVM and RFM 
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Figure 3.2 Flowchart of the proposed simplified reliability analysis framework 

 



 

53 

 

Figure 3.3 Geometry of the undrained cohesive slope with 4,851 potential slip 

surfaces 

 

Figure 3.4 Random field elements mesh of the undrained cohesive slope with a typical 

realization of the random field of su (�����
= 0.3, lh=20 m, lv=2 m) 

 

Figure 3.5 Validation of the ERVM for Example I (R2=1) 
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(a) �����
= 0.3 

 

(b) �����
= 0.15 

Figure 3.6 Variations of the mean and standard deviation of the ����
 with Ns 
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(a) COV=0.3 

 

(b) COV=0.15 

Figure 3.7 Histograms and fitted PDFs of the ����
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(a) Horizontal ACD 

 

(b) Vertical ACD 

Figure 3.8 Variation of the Pf with respect to spatial variability 
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Figure 3.9 Geometry of the c-φ slope with 9,261 potential slip surfaces 

 

(a) Cohesion 

 

(b) Friction angle 

Figure 3.10 Random field elements mesh of the c-φ slope with typical realizations of 

the random fields underlying the c and φ 
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Figure 3.11 Validation of the ERVM for Example II (R2=0.9996) 

 

Figure 3.12 Variation of the Pf with respect to ���  
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(a) Cohesion 

 

(b) Friction angle 

Figure 3.13 Variation of the Pf with respect to ���� and ���� 



 

60 

 

(a) Horizontal ACD 

 

(b) Vertical ACD 

Figure 3.14 Variation of the Pf with respect to ACDs 
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(a) Example I 

 

(b) Example II 

Figure 3.15 Comparison of the computational efficiency between the proposed 

framework and MRSM 
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Figure 3.16 Influence of the number of random field elements on the computational 

efficiency of the proposed framework and MRSM 
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CHAPTER 4 CONDITIONAL RELIABILITY ANALYSIS OF A 

COHESION-FRICTIONAL SLOPE CONSIDERING SPATIAL 

SOIL VARIABILITY 

4.1 Introduction 

Slope stability is a serious geotechnical problem that is characterized by various 

uncertainties (e.g., El-Ramly et al. 2002). These uncertainties generally originate 

from the inherent soil spatial variation (e.g., Vanmarcke 1977a; Vanmarcke 1977b), 

the limited site investigation data, the assumptions and simplifications in the adopted 

stability model etc. (e.g., Ang and Tang 2007). Among these sources, the inherent 

spatial variability has been identified as the most dominating one in geotechnical 

engineering (e.g., Christian et al. 1994; Phoon and Kulhawy 1999a; Lloret-Cabot 

et al. 2014). Therefore, random field theory (e.g., Vanmarcke 2010) is often utilized 

to effectively characterize the soil spatial variability in a slope stability model. Based 

on this framework, slope reliability analysis is then performed using a probabilistic 

analysis approach. 

Various reliability approaches that are able to consider the spatial variability of 

soil properties have been proposed in recent decades. Some of these approaches are 

briefly described as follows: El-Ramly et al. (2002) employed 1-D weak stationary 

random fields to consider the spatial variability of soil properties along a slip surface 

by the limit equilibrium method (LEM). Griffiths and Fenton (2004) investigated the 

effects of spatial variation of the undrained cohesion on the slope system reliability 

using a random finite element method (RFEM). Cho (2007) proposed a numerical 

procedure-based MCS for probabilistic slope stability analysis in spatially variable 

soils. Wang et al. (2011) implemented an enhanced MCS termed Subset simulation 

(SS) in a spreadsheet to perform slope reliability analysis with the ability to consider 

spatial variation of soil properties. Ji et al. (2012) proposed two 2-D random field 
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discretization methods known as interpolated autocorrelations and auto-correlated 

slices for slope reliability analysis in the presence of spatially varying soil parameters. 

Jiang et al. (2015) adopted a multiple stochastic response surface method (SRSM) 

and MCS to efficiently evaluate the failure probability of a slope in spatially variable 

soils. Other methods are summarized in Table 4.1 in chronological order.  

Based on Table 4.1, it is found that great achievements have been obtained in the 

area of slope reliability analysis for spatially variable soils. On the other hand, it is 

observed that most of the studies focus mainly on the unconditional random field 

simulation, which is realized using only the statistics (e.g., means, standard deviations 

and ACDs) of the limited site investigation data and discards the actual deterministic 

data. In general, site investigation data are available in an engineering project, 

although the volume of the data might not be too much. These data are the exact 

values of the soil properties at some particular positions, which are supposed to be 

independent of the simulation methods. The traditional unconditional random field 

discards such known data, which is actually site investigation labor lost. Additionally, 

neglecting the known data increases the simulation variance of the underlying random 

fields, which subsequently affects the responses, such as the factor of safety (FS) and 

the probability of failure, of the whole slope system. Hence, it is of practical 

significance to take the known data into account in slope reliability analysis, which 

can be considered as an effective tool for reducing the uncertainties in slope analysis. 

In the literature, there are very few previous works on slope reliability analysis 

based on conditional random fields (e.g.,Wu et al. 2009; Kim and Sitar 2013), and 

these previous works suffer from many deficiencies, which should be addressed. For 

example, Kim and Sitar (2013) only investigated the effect of a specific number of 

cored samples on the probability of slope failure. However, the effect of the number 

of samples was not evaluated or quantified. Additionally, only one slip surface was 

considered in their work, which would obviously underestimate the failure probability 

of the slope because various works have demonstrated that the system effect of the 
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slope reliability (e.g., Oka and Wu 1990; Huang et al. 2010; Zhang et al. 2011b) 

can be more controlling in many cases. As another example, Wu et al. (2009) studied 

the effect of conditional samples on the reliability of a homogeneous cohesive slope 

using RFEM. The isotropic 2-D random field was considered in their paper; however, 

the spatial variations in the soil properties in the horizontal and vertical directions are 

quite different in reality (e.g., Phoon and Kulhawy 1999a; Li et al. 2015a). 

Furthermore, the failure probability of the slope analysed in their paper is also very 

large. However, events with small failure probabilities in slope reliability analysis are 

of greater interest to researchers and engineers. Similar problems to those in the works 

by Kim and Sitar (2013) are also identified. 

The present work is thus inspired by the limitations of the previous works. The 

objectives of this chapter are to (1) propose an effective method for simulating 

conditional random fields that account for the known data from cored samples, (2) 

efficiently evaluate the reliability of a slope based on the proposed method, (3) study 

the effects of different layouts of cored samples on the conditional random field 

simulation, and (4) investigate the effects of the statistics of soil properties on the 

conditional simulation results. To achieve these objectives, the remainder of this 

chapter is organized as follows. Sections 4.2 and 4.3 introduce the simulation of the 

unconditional and conditional random fields, respectively. Section 4.4 describes the 

probabilistic analysis approach adopted in this study. The implementation procedure 

for the proposed conditional probabilistic analysis of slope stability is then detailed in 

Section 4.5. The stability of a hypothetical cohesive-frictional slope is evaluated as an 

example to illustrate the proposed method in Section 4.6. The summary and 

conclusions of this study are given in Section 4.7.  

4.2 Simulation of unconditional random field 

The method suggested in Section 2.4.4 in Chapter 2 is used. 
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4.3 Simulation of conditional random field 

A conditional random field is required when the soil properties at some locations are 

known. It is employed to ensure that the simulated random fields exactly match the 

soil properties at these particular locations. This indicates that, in each realization of a 

conditional random field, the soil properties at these particular locations are constants, 

and the soil properties at the other locations are random variables. To achieve this, the 

ordinary Kriging method is employed because it provides the best estimates of soil 

properties at the unknown points while considering the spatial correlations and 

weights of the known data. This method is used in combination with the RFM (i.e., 

unconditional random fields) to conduct the conditional random field simulation (e.g., 

Fenton 2007). The simulation of a realization of the CRF is detailed below. 

As stated in Section 4.2, the underlying random field is characterized by a total 

of ��  random variables at the corresponding centroids of the ��  random field 

elements. Hence, there are actually a total of ��  values at ��  points to be 

determined. Suppose that the soil properties at points 1 1 2 2( , ), ( , ), , ( , )p px y x y x y have 

been measured from practice. A 2-D conditional random field ( , )C x yX is generated to 

match the known data at the measured locations and to simulate the soil properties at 

the remaining unknown points 1 1 2 2( , ),( , ), ,( , )
e ep p p p n nx y x y x y     with the following steps: 

Step 1: Generate a Kriging random field ( , )K x yX , in which the soil properties at the 

known points exactly match the measured data. The soil properties at the unknown 

points are calculated from the system equations of the Best Linear Unbiased 

Estimation, also known as the Kriging (e.g., Henderson 1975; Fenton 2007). In 

general, the ordinary Kriging method is sufficient to obtain reliable and accurate 

results and is utilized herein as 
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where K is the Kriging covariance matrix; I is a column vector of all ones with a 

length of p; β is the vector of weights of the known data with
1

1
p

i
i




 ; k is the 

vector of covariance between the estimated point and the known points; and  is a 

Lagrange multiplier. Note that ijK is the covariance between any two points, which is 

characterized by the same autocorrelation function that is used to simulate an 

unconditional random field and is expressed as 

2 ( , )ij ijK x y                            (4.5) 

where 2( , )x y is the variance of the simulated random field and ij is calculated by Eq. 

(2.13). The weight vector β is easily obtained by solving Eq. (4.1). The Kriging 

random field ( , )K x yX is then estimated as 

1

( , ) ( , )
p

K
i i i

i

x y X x y


 X                       (4.6) 

where we can deduce that the simulated random fields match well with the known 

data at the given p points. Note that Eq. (4.6) is suitable for both stationary and 
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non-stationary random fields. 

Step 2: Simulate an unconditional random field ( , )UC x yX . Based on the statistics of 

the soil properties, such as means, standard deviations and ACDs, an unconditional 

random field is generated using the method that is described in the proceeding section. 

Step 3: Extract the values at the known data locations from the generated 

unconditional random field ( , )UC x yX and take them as the simulated true data. Then, 

the Kriging method described in Step 1 is reused to generate another Kriging random 

field, which is referred to as the simulated Kriging random field ( , )SK x yX . 

Step 4: Superimpose the three constructed random fields to obtain the objective 

conditional random field ( , )C x yX as 

( , ) ( , ) [ ( , ) ( , )]C K UC SKx y x y x y x y  X X X X                (4.7) 

Note that the conditional random field exactly matches the data at the known locations 

where ( , ) ( , )UC SKx y x yX X . At the unknown locations, the soil properties are 

represented by the Kriging random field with a stochastic deviation of 

| ( , ) ( , ) |UC SKx y x yX X , which increases with the separation distance between the 

unknown and known points. 

4.4 Probabilistic analysis of a slope based on SS 

The probability of failure of a slope can be generally computed by MCS. However, 

MCS is very time-consuming for events with relatively small values of Pf. This 

shortcoming becomes more serious when the spatial variability of soil properties is 

concerned. As in such situations, more random variables are required, which 

subsequently significantly increases the time required to generate the random samples 

and evaluate the performance function. Hence, SS, which can be seen as an 
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enhancement of MCS, is utilized to efficiently estimate the slope failure probability. 

SS was originally proposed by Au and Beck (2001) for estimating the small 

failure probabilities in high-dimensional problems. In this approach, the small failure 

probability is expressed as a product of several larger conditional failure probabilities 

of some intermediate failure events. Thus, the simulation of a small failure probability 

event is converted into the simulations of a sequence of more frequently occurring 

intermediate failure events. For example, the failure probability of a slope is 

expressed as 

1 1
2

( 1) ( ) ( ) ( | )
m

f m i i
i

P P F S P F P F P F F 


                      (4.8) 

where ( )P  denotes the probability of an event;  , 1,2, ,i iF FS fs i m    denote a set of 

intermediate failure events that are defined by a decreasing sequence of threshold FS 

values 1 2 mfs fs fs   , respectively; 1 1( ) ( )P F P FS fs  and

1 1( | ) ( | )i i i iP F F P FS fs FS fs    ; and m denotes the number of levels of SS, which is 

identified as 1mfs  . As suggested by Au and Beck (2001), the threshold values

1 2, , , mfs fs fs are automatically determined so that the probabilities of the intermediate 

events correspond to a specified value 0p . The process of SS is schematically shown in 

Figure 4.1 and detailed below (e.g., Au and Beck 2001; Jiang and Huang 2016; Li 

et al. 2016c). 

As shown in Figure 4.1, SS begins by directly performing MCS with a small number 

(e.g., 0N ) of samples. Each sample consists of the realization of a conditional random 

field that is generated according to the procedure in the proceeding section. The FS 

values of the 0N samples are calculated by a deterministic slope stability method, such 

as FEM or LEM, and are then ranked in ascending order. The th

0 0( 1)N p   FS value is 
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chosen as 1fs so that the probability of the event 1F , i.e., 1 1( ) ( )P F P FS fs  , is equal to

0p . Then, a modified Metropolis algorithm (e.g., Au and Beck 2001) is employed to 

perform a Markov Chain Monte Carlo simulation (MCMCS), during which 0 0(1 )p N

extra conditional samples are produced based on the 0 0N p sample seeds with

1 1{ }F FS fs  . The FS values of the 0 0(1 )p N MCMCS samples are also evaluated by 

the foregoing deterministic slope stability method. Therefore, a total of 0N samples 

with 1 1{ }F FS fs  are obtained, of which the 0N FS values are ranked again in 

ascending order. The th

0 0( 1)N p   FS value is chosen as 2fs , which defines the event

2 2{ }F FS fs  . Note that the probability of event 2F , which is conditioned on event 1F , 

is also equal to 0p , i.e., 2 1 2 1 0( | ) ( | )P F F P FS fs FS fs p    . Similarly, the above 

procedure is repeated m-2 times until the final event { }m mF FS fs  reaches the 

boundary of the failure space or the event is included in the failure space. Therefore, 

for a slope reliability analysis, the termination criterion of the SS is that the mfs is less 

than or equal to the unity. Lastly, a total number of m levels of simulations, which 

consist of one level of crude MCS and m-1 levels of MCMCS, are conducted. This 

results in a total of N samples in an SS as 

0 0 0( 1)(1 )N N m p N                              (4.9) 

Based on the N samples and the procedure above, the Pf in Eq. (4.5) is further 

calculated as 

1
0

0

fm
f

N
P p

N
                             (4.10) 

where fN denotes the number of failure samples with { 1}F FS  in the final level of 
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the SS. According to Eq. (4.8), the estimation error
fPCOV of Pf depends on the 

correlation among the estimators of P(F1) and 1( | ), 2,3, , .i iP F F i m    Following Au 

and Beck (2001), assuming that these estimators are uncorrelated,
fPCOV can be 

expressed as 

1 1

2 2
( ) ( | )

2
f i i

m

P P F P F F
i

CO V C O V C O V




                       (4.11) 

where 1

1 0 1

1 ( )

( ) ( )

P F

P F N P F
COV


 and 1

1 0 1

1 ( | )

( | ) ( | )
(1 )i i

i i i i

P F F

P F F iN P F F
COV 

 


  are the coefficients of variation 

(COVs) of P(F1) and 1( | )i iP F F , respectively; i is the correlation factor which can be 

estimated based on the conditional samples generated by MCMCS in the ith Subset 

simulation level. Previous studies have shown that Eq. (4.11) can well approximate 

the
fPCOV in SS, although the estimators of P(F1) and 1( | ), 2,3, , ,i iP F F i m   are 

generally correlated (e.g., Au and Beck 2001; Li et al. 2016c). More details can be 

found in the works by Au and Beck (2001) and Au and Wang (2014) on the
fPCOV in 

SS. 

4.5 Implementation procedure of conditional probabilistic analysis 

Having introduced the methodologies for generating conditional random fields and 

performing probabilistic analysis of a slope, this section mainly focuses on the 

practical implementation of the conditional probabilistic analysis for a slope in 

spatially variable soils. Figure 4.2 schematically presents the major steps for using the 

proposed approach. In general, the whole procedure consists of three parts: SS for 

uncertainty propagation, the deterministic slope stability analysis for calculating the 

FS value of a slope, and the conditional random field simulation for considering the 

effects of the measured data. In this way, the probabilistic analysis of a slope can be 

considered as an extension of the conventional slope stability analysis. This allows the 

probabilistic analysis and the conventional stability analysis of a slope to be 
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performed separately. Thus, the process facilitates the application of the conditional 

reliability analysis of slope stability in geotechnical practice. 

To achieve this objective, SS and the conditional random field simulation are 

programmed as user functions in MATLAB in this study. The user functions can be 

conveniently used by geotechnical practitioners with little knowledge about reliability 

analysis. As such, engineers are required to concentrate merely on the construction of 

the conventional stability model using either their in-house codes or the available 

software. Then, once the user functions are called by a geotechnical engineer, the 

deterministic slope stability model would be invoked repeatedly to complete the 

whole conditional reliability analysis.  

For illustration, a detailed description of the conditional probabilistic analysis of 

a slope is given as follows: 

Step 1: Determine the probabilistic distributions and statistics (e.g., means, standard 

deviations, cross-correlations and ACDs) of soil properties, and characterize the 

geometry of the slope under study. 

Step 2: Establish a deterministic slope stability model, such as an FEM or an LEM, 

with the mean values of the soil properties. Then, based on this model, discretize the 

domain of the random field and extract the centroid coordinates of each random field 

element. 

Step 3: Collect the information of the measured data, including the specific values of 

soil properties and the corresponding data locations. Then, transform the collected 

data into standard Gaussian random samples. 

Step 4: Generate 0N  mutually independent standard normal samples using direct 

MCS in the first level of SS. Note that each sample is an en m  matrix. Then, the 0N

samples are taken as inputs in Step 5 (i.e., the conditional random field simulation) to 
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generate the cross-correlated conditional random fields. 

Step 5: Use Eq. (2.15) to generate cross-correlated standard Gaussian random fields

UCX ; the preprocessed data are used to construct the Kriging random fields KX , and 

the simulated Kriging random fields SKX are generated according to Step 3 in the 

section of “Simulation of conditional random fields”. Eq. (4.7) is then utilized to 

generate cross-correlated standard Gaussian conditional random fields which are then 

transformed into cross-correlated non-Gaussian conditional random fields in the 

sample space using Eq. (2.14). 

Step 6: Substitute the generated conditional random fields into the deterministic slope 

stability model to obtain the corresponding FS values. Then, rank the 0N values in 

ascending order, and take the samples corresponding to the first 0 0N p FS values as the 

“seeds” for MCMCS in the next simulation level. 

Step 7: Check if the th

0 0( 1)N p   FS value is greater than the unity. If yes, go to the next 

level of SS to generate another set of N0(1-p0) conditional samples using MCMCS 

based on the selected “seeds” in Step 6, and then back to Step 5 and continue; 

otherwise, go to Step 8. 

Step 8: Calculate the Pf of the slope under study using Eq. (4.10). 

4.6 Illustrative example 

4.6.1 Basic model 

For illustration, this section applies the proposed SS-based conditional probabilistic 

analysis approach to evaluate the probabilistic response of a hypothetical 

cohesion-frictional slope. The slope has also been successively studied by Cho (2010) 

and Li et al. (2015a) in the literature. As seen from Figure 4.3, the slope has a height 

of 10 m and a slope angle of 45°, and the slope consists of a single soil layer with a 
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unit weight of 20 kN/m³. Following Cho (2010) and Li et al. (2015a), the cohesion c 

and friction angle φ of this soil layer are modeled as cross-correlated lognormal 

random fields with a cross-correlation coefficient of ρc,φ=-0.5. The mean values of c 

and φ are 10 kPa and 30°, respectively, and their COVs are 0.3 and 0.2, respectively. 

Based on the mean values of c and φ, the deterministic slope stability model is 

preliminarily established using Bishop’s simplified method (BSM), which provides a 

similar FS value (1.205) to the values (i.e., 1.204 and 1.208) calculated by Cho (2010) 

and Li et al. (2015a) with the same method, respectively. The corresponding CSS 

based on deterministic stability analysis is also shown in Figure 4.3. 

To take the spatial variability of the soil properties into consideration, the random 

field domain in question is first discretized into 1,210 elements (i.e., ne=1,210) with 

1,281 nodes, as done in Li et al. (2015a) and schematically shown in Figure 4.3. The 

discretized random field elements mainly consist of 4-noded quadrilateral elements, 

which are degenerated into 3-noded triangular elements near the slope surface. Note 

that the influence of the size of the random field discretization is not considered in this 

study. More details on the selection of the random field element size are given 

elsewhere (e.g., Ching and Phoon 2013). Then, the single exponential 

autocorrelation function, i.e., Eq. (4.1), is selected to characterize the spatial 

correlation structure among a random field, in which the horizontal and vertical ACDs 

are chosen as lh=20 m and lv=2 m, respectively (e.g., Cho 2010; Li et al. 2015a). 

Note that, for simplicity, the values of lh and lv are assumed to be applicable to both 

random fields of c and φ. As a reference, these parameters are taken as the baseline 

case as well as the other statistics of soil properties mentioned in the last paragraph. 

For clarity, they are summarized in Table 4.2. 

4.6.2 Reliability results based on unconditional random fields 

Based on the basic model, simulations of unconditional random fields, which are 

realized by the CDT, are performed using the baseline parameters. Then, the Pf of the 

slope is evaluated as 2.04×10-2 using SS with N0=500 and p0=0.1. For the same slope, 
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Li et al. (2015a) and Cho (2010) estimated the failure probabilities as 1.87×10-2 and 

1.71×10-2 by the multiple response surface method (MRSM) and MCS, respectively, 

which are very close to the result (i.e., 2.04×10-2) in this study. Additionally, the 

probabilities of failure were also evaluated for two other different sets of ACDs. Table 

4.3 lists the corresponding results and the statistics of the FS, including the results 

obtained by MRSM and MCS for comparison. As seen from this table, the reliability 

results obtained by different methods are similar to each other for these two cases, and 

the resulting statistics of the FS also seem to be consistent. Hence, this demonstrates 

the capacity of the proposed reliability approach for considering different spatial 

variations in soil properties. 

Figure 4.4 compares the probability of slope failure obtained from this study 

with the results from Li et al. (2015a) and Cho (2010) when the cross-correlation 

coefficient varies from -0.7 to 0.5. In general, the cross-correlation coefficient 

significantly affects the probability of slope failure. The estimation of the failure 

probability in this study increases from 4.30×10-3 to 0.13 as the cross-correlation 

coefficient varies between -0.7 to 0.5. It is also noted that the reliability results from 

the three methods are consistent, which indicates that the method in this study can 

accurately estimate the failure probability at both high and relatively low levels. 

Overall, the results in Table 4.3 and Figure 4.4 have validated the feasibility and the 

correctness of the proposed reliability method, which enhances the confidence of 

extending the method to the conditional reliability analysis in the next section. 

Additionally, the method only requires 1,500 evaluations of the deterministic stability 

analysis to obtain a reasonable estimation of the failure probability of ρc,φ=-0.7 

compared with more than 10,000 runs by MCS. This indicates the high efficiency of 

the SS for reliability analysis. 
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4.6.3 Reliability results based on conditional random fields 

4.6.3.1 Construction of conditional random fields using virtual samples 

As mentioned before, a conditional random field simulation requires known data of 

soil properties at some particular locations. However, there are no real cored samples 

available because the slope in question is hypothetical. Therefore, virtual samples are 

used as replacements to simulate the real cases. To reflect the general situation of site 

investigations, five virtual samples located under the slope crest, the slope surface and 

the slope toe are designed in this study. Figure 4.5 shows the layout of the five virtual 

samples, which are marked consecutively as A, B, C, D and E. The horizontal and 

vertical intervals between the samples are 5 m and 3 m, respectively. Such a design is 

reasonable because this is a homogeneous soil layer with large ACDs and the 

horizontal and vertical sample intervals also meet the site investigation requirements 

of the Chinese Design code. 

Shear strength values are assigned to each of the samples, and without loss of 

generality, these values are randomly determined based on the statistical properties of 

the underlying soil properties. For instance, for the baseline case (i.e., Table 4.2), the 

shear strength values of the virtual samples are identified from one random realization 

of the corresponding random fields that are generated using the given statistics of this 

case. This realization of the random fields, for a specific case (e.g., the baseline case), 

is referred to as the reference “real” distributions of sample values for this case. This 

indicates that different statistics of soil properties would yield different reference “real” 

random fields, thus resulting in different sets of known data. Based on this principle, 

various parametric sensitivity studies are conducted in the next section to investigate 

the effects of ρc,φ, COVc , COVφ, lh and lv on the probabilistic responses of the slope 

under the framework of conditional random fields. The ranges of variation of these 

parameters follow Li et al. (2015a) and Cho (2010). The resulting known data of the 

five virtual samples are summarized in Table 4.4 for various cases. Note that, in this 

table, only one parameter is changed in each case, and the other parameters remain the 
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same as in the baseline case. With these available data, CRFs can be readily modelled 

using the method suggested in this study. 

4.6.3.2 Effects of conditional random fields on the FS 

This section investigates the effect of conditional random fields on the FS of the slope 

for various cases listed in Table 4.4. For each case, Nsim conditional random fields are 

simulated and evaluated by BSM to obtain the corresponding FS values. Then, the 

statistics of the Nsim FS values can be estimated. To effectively estimate these statistics, 

a suitable value of Nsim is essential and is determined by a sensitivity analysis, which 

demonstrates that the statistics of the FS present minor differences when Nsim is 

chosen as 500 and 10,000. Hence, Nsim is selected as 500 for this purpose. Moreover, 

it has been noted that the construction of conditional random fields depends on the 

layout and amount of known data. Hence, in this study, the number (Nd) of known 

data points in each case is intentionally set to 2, 3 and 5 to investigate its effect on the 

FS. Specifically, the soil properties of samples A and E are used as known data when 

Nd=2; the soil properties of samples A, C and E are used as known data when Nd=3, 

and all five virtual samples are termed as known data when Nd=5. For comparison, the 

results obtained by the unconditional random field simulation are also provided herein 

and are denoted by Nd=0. 

Figure 4.6 shows the standard deviation of the FS as a function of the 

cross-correlation coefficient under unconditional and conditional random fields. For 

all cases, the standard deviation increases with the ρc,φ. It is also observed that the 

variability of the FS decreases when conditional random fields based on 3 and 5 

known data points are considered. This observation indicates that the simulation 

variance of the conditional random fields can be efficiently reduced by the known 

data. In addition, the results from Nd=3 and Nd=5 suggest that more known data 

results in the spatial variation of soil properties being better represented. However, the 

FS results with Nd=2 present a larger variation than do the results from the 

unconditional random field simulation (i.e., Nd=0). This is because in this case the 
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sample distance is significantly larger than the ACD in the vertical direction (12 m vs. 

2 m), which means only one effective known data point is used to interpolate other 

points in the range of the ACD in the Kriging method. In other words, it indicates that 

the additional known data provide little or even no extra information for the middle 8 

m range, which brings lots of uncertainty and increases the Kriging predictive 

variance, thus increasing the simulation variance of conditional random fields.  

To further illustrate the abovementioned point, two additional cases with 

different ACDs are considered, as shown in Table 4.5. Both unconditional and 

conditional random field simulations are conducted for all the cases. Note that the 

conditional random field remains established based on Nd=2. Comparing cases 2 and 

3 with case 1, it is found that the conditional random field effectively reduces the 

variance of the FS when the supposed vertical ACD is equal to or greater than the 

sample interval in the vertical direction. Hence, this indicates that the sample interval 

is critical to the establishment of the conditional random field when the ACDs are 

determined. This is also expected to contribute to the layout of the sample points in 

practice. To accurately reflect the spatial variation of soil properties, it is suggested 

from this study that the sample interval should be equal to or less than the ACD 

during the period of the site investigation. In addition, more effective and accurate 

conditional random fields can also be simulated using advanced approaches, such as 

Bayesian method (e.g., Li et al. 2015d; Namikawa 2016). 

Figure 4.7 shows the variation of the standard deviation of the FS with respect to 

the COVs of the cohesion. As expected, the results obtained using both the 

unconditional random field simulation and the conditional random field simulation 

increase slightly with COVc. Similar to Figure 4.6, the variance of the FS is reduced 

significantly when the conditional random fields based on three and five samples are 

considered. However, it overestimates the variation of the FS when Nd=2 because the 

two samples, which have a large vertical sample distance, are not sufficient to reflect 

the spatial variation of soil properties, as illustrated above and in Table 4.5.  
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Figure 4.8 shows the standard deviations of the FS obtained using unconditional 

and conditional random fields for various COVs of the friction angle. As seen from 

this figure, similar observations and conclusions to Figure 4.7 can be found. 

Comparing Figure 4.8 with Figure 4.7, it is also observed that the standard deviation 

of the FS is more sensitive to the friction angle than to the cohesion. 

To investigate the effect of ACDs on the FS, Figure 4.9 shows the standard 

deviations of the FS obtained from unconditional and conditional random fields for 

various horizontal ACDs. Generally, the standard deviation of the FS in the 

unconditional random field simulation increases slightly with lh, whereas the results 

from the conditional random field simulation present an inverse trend. This indicates 

that the conditional random field simulation is more efficient and necessary for a high 

value of lh. It is also observed that the variances of the FS based on Nd=5 are smaller 

than those of the results obtained using the unconditional random field simulation for 

various values of lh. For the case of Nd=3, the advantage of the conditional random 

field simulation is not evident for small values of lh due to the poor estimation of the 

Kriging random field in this case. For example, when lh=5 and Nd=3, the ratio of the 

sample distance in the horizontal direction (i.e., 10 m) and lh is 2, as illustrated above 

and in Table 4.5, which means that only one known data point is used to interpolate 

the unknown points within the variance distance in the Kriging. Similarly, the 

conditional simulation based on Nd=2 also yields unsatisfactory results. It is also 

found that a smaller ratio produces a more efficient CRF simulation. This is because 

the effective number of samples increases with increasing lh. 

Figure 4.10 shows the standard deviation of the FS as a function of the various 

vertical ACDs. Similar to Figure 4.9, the results obtained by the conditional random 

field simulation based on Nd=3 and Nd=5 decrease with lv, whereas the results 

obtained by the unconditional random field simulation increase with lv. This would 

lead to a large difference between the unconditional and conditional random field 

simulations for large lv, which demonstrates the superiority of the CRF simulation. As 
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expected, the conditional random field simulation based on Nd=2 erroneously 

estimates the spatial variation of soil properties; in addition, note that the sample 

distance in the vertical direction is approximately 4-24 times lv. Interestingly, at lv=0.5, 

it seems that the unconditional random field simulation is more effective than the 

conditional random field simulation. This is due to the large ratios between the 

vertical sample distance and lv with the values of 24, 12 and 6 for Nd=2, Nd=3 and 

Nd=5, respectively, which means that only a few known data points are involved in the 

Kriging estimation, as illustrated above and in Table 4.5. However, for large values of 

lv, as can be expected, the conditional random field simulations based on Nd=3 and 

Nd=5 perform better than the unconditional random field simulation, which suggests 

the necessity of conditional random field simulations in such a case. In addition, it is 

observed that when the ratio between the sample distance in the vertical direction and 

lv greater than 3, the results tend to be unreasonable, as seen from the cross-points in 

Figure 4.10. Finally, comparing Figure 4.10 with Figure 4.9, it is found that the results 

are more sensitive to lv than to lh.  

4.6.3.3 Effects of conditional random fields on the spatial variation of the critical slip 

surface 

In this section, both unconditional and conditional random fields are simulated 1,000 

times for the case of ρc,φ=-0.5 to investigate the effects of the conditional samples 

(Nd=5) on the spatial variation of the critical slip surface. Within the framework of the 

LEM, a CSS can be located for each random field simulation. Therefore, there are 

theoretically 1,000 CSSs for each type of the field modelling. However, many of those 

CSSs would be the same surface, resulting in the number of CSSs being much less 

than 1,000. Figs. 11(a) and (b) schematically show the locations of the critical slip 

surfaces obtained from 1,000 unconditional and conditional random field simulations, 

respectively. Based on the unconditional random field simulation, 126 critical slip 

surfaces are identified; most surfaces nearly pass through the slope toe, as shown in 

Figure 4.11(a). By contrast, only 84 critical slip surfaces are determined when 
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conditional samples are considered in the random field simulation. Similar to Figure 

4.11(a), most of the 84 slip surfaces also nearly pass through the slope toe. However, 

it is observed that the potential slip band under the conditional simulation is narrower 

than the slip band obtained by the unconditional simulation. This indicates the 

superiority of the conditional simulation in reducing the uncertainty of the spatial 

variation of the critical slip surface. Additionally, similar results are observed for other 

cases in the internal studies which are not presented herein. 

4.6.3.4 Effects of conditional random fields on the probability of failure 

The probability of failure of a slope is the likelihood of a failure event that has an FS 

value not greater than the unity, which depends highly on the distribution of the FS. 

Hence, this section performs a series of parametric studies to investigate the effects of 

conditional random fields on the probability of failure of the slope. For computational 

efficiency and because the conditional random fields cannot be accurately simulated 

when Nd is small, only the results based on Nd=5 are calculated and presented herein. 

The failure probabilities that are obtained by the unconditional random field 

simulation are also provided for comparisons. 

Figure 4.12 compares the results obtained by the unconditional and conditional 

random field simulations for various cross-correlation coefficients. It is observed that 

both results increase with the cross-correlation coefficients. This observation is 

expected because the variance of the FS is proportional to the cross-correlation 

coefficient, as shown in Figure 4.6. Moreover, the results based on conditional 

random field simulations decrease by several orders of magnitude when compared 

with the results from unconditional random field simulations. For example, the 

probabilities of failure obtained by the unconditional and conditional random field 

simulations are 3.40×10-3 and 2.84×10-10, respectively; a difference of approximately 

7 orders of magnitude is identified. This indicates that the traditional unconditional 

random field simulation overestimates the probability of slope failure, whereas the 

conditional random field simulation can effectively reduce the uncertainties and 
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provide more reasonable results. It is also worth noting that the difference between the 

results obtained by the unconditional and conditional simulations decreases with the 

cross-correlation coefficient but remains of a relative large order of magnitude (e.g., 2 

at ρc,φ=0.5).  

Figures 4.13(a) and (b) show the effects of the conditional samples on the 

probability of failure for various COVs of cohesion and frictional angle, respectively. 

Similar to Figure 4.12, the results obtained by the conditional random field simulation 

are significantly lower than the results of the unconditional random field simulation, 

with a difference changing from 2 to 7 orders of magnitude. Additionally, the 

differences in both of the figures decrease with the COVs; however, they remain very 

large, especially for the largest value of COVφ, where a difference of approximately 4 

orders of magnitude is observed. 

Figure 4.14(a) and (b) show the results from two types of random field 

simulation for various ACDs in the horizontal and vertical direction, respectively. In 

general, the results obtained by the unconditional random field simulation increase 

with both horizontal and vertical ACDs and are more sensitive to the vertical ACD. 

This finding is also consistent with the results of Li et al. (2015a). By contrast, as is 

expected from Figs. 9 and 10, the results from the CRF simulation decrease with both 

horizontal and vertical ACDs. This is because a larger value of the ACD means more 

known data being used in the construction of the conditional random field, thus 

reducing the simulation variance. As such, the resulting inverse variation trends lead 

to an increase in the difference between the unconditional and conditional random 

field simulations. This suggests the high necessity of the consideration of sample 

information for large ACDs. 

4.7 Summary and Conclusions 

In this chapter, the achievements of slope reliability analysis considering spatial 

variation of soil properties in the last 15 years are briefly summarized. The 
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fundamental basis of both unconditional and conditional random field simulations are 

fully introduced. The underlying principles and implementation procedure of SS for 

evaluating the probability of slope failure are also described in detail. This chapter has 

proposed to combine SS with the Kriging method for assessing the reliability of a 

slope in spatially variable soils where some known data at particular locations are 

available. This proposal is novel to the best of our knowledge, and has been 

demonstrated to be effective and efficient. An example application is performed on a 

nominally “homogeneous” cohesion-frictional (c-φ) slope to illustrate the proposed 

approach. Based on this example application, a series of parametric studies are 

conducted to investigate the influence of the layout of the cored samples on the Pf, FS, 

and the spatial variability of the CSS. Such a type of systematic parametric study for 

conditional field simulation is rarely seen in the literature. Based on the present study, 

several conclusions can be made and are presented as follows: 

1. The results of unconditional random field simulations indicate that the 

proposed method can accurately determine the probability of failure of a slope in 

spatially variable soils. Compared with direct MCS, this method is very efficient and 

is especially suitable for a slope with a relatively low failure probability. The 

unconditional random fields underlying the soil properties can be effectively 

simulated by the CDT which can be realized fairly easily. 

2. The conditional random field can effectively reduce the simulation variance 

of the underlying random fields if the Kriging method can accurately reflect the 

spatial variation of the soil properties based on a specific amount of known data; 

otherwise, the established conditional random fields are of no practical significance. 

The realization of a CRF heavily relied on the ratio of the sample distance to the ACD. 

It is found in this study that the random fields can be accurately simulated when the 

ratios in the horizontal and vertical direction are less than or equal to 1 and 3, 

respectively. A smaller ratio of the sample distance to the ACD would provide a better 

simulation result. 
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3. The variation of the FS obtained by the conditional random field simulation 

increase with the cross-correlation coefficients, the COVs of the soil properties, and 

decrease with the ACDs. Of great importance is the fact that the variation of the FS 

obtained by the conditional random field simulation is smaller than that obtained by 

the unconditional random field simulation. Furthermore, the spatial variation of the 

critical slip surface region is also narrower when conditional random fields are 

considered. 

4. The failure probabilities can be reduced significantly by the CRF simulation. 

In general, the probabilities of failure follow similar trends as the results obtained by 

the unconditional random field simulation with respect to the cross-correlation 

coefficients and the COVs of the soil properties. However, the probabilities of failure 

present inverse trends with respect to the ACDs, which indicate that the conditional 

random field simulation is of significant benefit at relatively large ACDs. 

5. The effect of conditional random fields is investigated only for a hypothetical 

homogeneous cohesion-frictional slope in this study because the computational 

demand increases sharply when heterogeneous slopes are considered. Although SS 

can enhance the simulation efficiency to some extent, it still requires several 

thousands of evaluations of the deterministic stability model. In addition, the current 

conditional information focuses only on a specific number of samples and does not 

consider practical borehole layouts. Hence, further research is required to study the 

influence of borehole locations on the practical slope reliability, therein employing 

more advanced probabilistic approaches.  
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Table 4.1 Summary of slope reliability analysis considering spatially varied soils 

No. Sources Reliability methods 
Random field 

simulation  methods 

Simulation 

types 

1 El-Ramly et al. (2002) MCS Local average U 

2 Low (2003) FORM Midpoint method U 

3 Griffiths and Fenton (2004) RFEM Local average  U 

4 Fenton and Griffiths (2005) RFEM Local average  U 

5 Hsu and Nelson (2006) MCS Local average U 

6 Cho (2007) MCS Midpoint method U 

7 Hicks et al. (2008) MCS Local average U 

8 Griffiths et al. (2009) RFEM Local average U 

9 Wu et al. (2009) RFEM Local average C 

10 Cho (2010) MCS 
Karhunen-Loève 

(K-L) expansion 
U 

11 Huang et al. (2010) RFEM Local average U 

12 Wang et al. (2011) SS Midpoint method U 

13 Ji et al. (2012) FORM 
Interpolated 

autocorrelations 
U 

14 Kim and Sitar (2013) FOSM Local average C 

15 Jha and Ching (2013) RFEA Local average U 

16 Low (2014) FORM/SORM 
Interpolated 

autocorrelations 
U 

17 Jiang et al. (2014a) NISFEM K-L expansion U 

18 Jiang et al. (2015) SRSM-based MCS K-L expansion U 

19 Li et al. (2015a) 
MRSM-based 

MCS 
Midpoint method U 

20 Li et al. (2016c) RFEM-based SS Midpoint method U 

Note: “U” and “C” in the Table 4.denote the unconditional and conditional simulation, 

respectively.  
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Table 4.2 Statistics of soil properties 

Soil 

parameters 
Mean COV Distribution ACD Cross-correlation 

c (kPa) 10 0.3 Lognormal lh=20 m, lv=2 m ρc,φ=-0.5 

φ (°) 30 0.2 Lognormal lh=20 m, lv=2 m 

γ (kN/m³) 20 - - - - 

Note: The symbol “-” means not applicable. 

 

Table 4.3 Reliability results obtained by different methods 

Methods lh (m) lv (m) Mean 
Standard 

deviation 
Pf 

This study 20 2 1.197  0.103  2.04×10-2 

MRSM by Li et al. (2015a) 1.195  0.102  1.87×10-2 

MCS by Cho (2010) 1.199  0.106  1.71×10-2 

This study 20 4 1.199  0.126  4.10×10-2 

MRSM by Li et al. (2015a) 1.195  0.119  3.97×10-2 

MCS by Cho (2010) 1.202  0.126  3.70×10-2 

This study 40 2 1.200  0.107  2.20×10-2 

MRSM by Li et al. (2015a) 1.196  0.104  2.06×10-2 

MCS by Cho (2010) 1.200  0.109  1.91×10-2 
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Table 4.4 The known data of the five virtual samples for various cases 

Parameter 
c (kPa) φ (°) 

FS 

A B C D E A B C D E 

ρc,φ -0.7 9.07 9.80 9.38 7.82 9.16 32.11 32.68 29.98 41.20 28.61 1.211 

-0.5 9.07 9.80 9.38 7.82 9.16 32.30 33.60 29.96 42.20 28.15 1.216 

0 9.07 9.80 9.38 7.82 9.16 32.09 34.60 29.80 41.23 27.48 1.223 

0.5 9.07 9.80 9.38 7.82 9.16 31.14 34.11 29.54 36.80 27.32 1.223 

COVc 0.1 9.77 10.03 9.88 9.29 9.80 32.30 33.60 29.96 42.20 28.15 1.231 

0.3 9.07 9.80 9.38 7.82 9.16 32.30 33.60 29.96 42.20 28.15 1.216 

0.5 8.20 9.27 8.65 6.46 8.33 32.30 33.60 29.96 42.20 28.15 1.195 

0.7 7.29 8.60 7.84 5.30 7.45 32.30 33.60 29.96 42.20 28.15 1.172 

COVφ 0.05 9.07 9.80 9.38 7.82 9.16 30.68 30.98 30.10 32.82 29.63 1.198 

0.1 9.07 9.80 9.38 7.82 9.16 31.29 31.92 30.13 35.80 29.19 1.209 

0.15 9.07 9.80 9.38 7.82 9.16 31.83 32.79 30.08 38.93 28.70 1.216 

0.2 9.07 9.80 9.38 7.82 9.16 32.30 33.60 29.96 42.20 28.15 1.216 

lh (m) 5 9.29 10.34 8.39 6.33 8.37 32.42 37.21 30.83 45.50 30.11 1.334 

10 9.20 9.96 8.68 7.22 9.02 32.21 35.14 30.30 43.58 29.12 1.266 

20 9.07 9.80 9.38 7.82 9.16 32.30 33.60 29.96 42.20 28.15 1.216 

30 9.01 9.73 9.76 7.88 9.09 32.37 33.09 30.14 41.60 27.65 1.202 

lv (m) 0.5 9.78 9.04 8.82 8.54 9.16 30.62 39.24 33.06 43.24 28.15 1.241 

1 9.59 9.50 9.56 7.70 9.16 31.69 35.92 30.41 44.76 28.15 1.218 

2 9.07 9.80 9.38 7.82 9.16 32.30 33.60 29.96 42.20 28.15 1.216 

3 8.92 9.64 9.23 8.22 9.16 31.87 32.82 30.16 39.93 28.15 1.220 
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Table 4.5 Standard deviation of the FS for different cases using conditional random 

fields when Nd=2 

No. of case lh (m) lv (m) Nd=0 Nd=2 

1 20 2 0.1033 0.1549 

2 20 12 0.1527 0.1128 

3 20 20 0.1584 0.1015 
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Figure 4.1 The schematic of the Subset simulation (modified from Au et al. (2010) 

and Li et al. (2016c)) 
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Figure 4.2 Flowchart of reliability analysis based on CRF 
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Figure 4.3 The cross-section and random field discretization of the slope 

 

Figure 4.4 Comparison of the Pf results evaluated by different approaches 
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Figure 4.5 Layout of the virtual samples 

 

Figure 4.6 Standard deviation of the FS calculated using unconditional and 

conditional random fields for various cross-correlation coefficients 
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Figure 4.7 Standard deviation of the FS calculated using unconditional and 

conditional random fields for the coefficients of variation of cohesion 

 

Figure 4.8 Standard deviation of the FS calculated using unconditional and 

conditional random fields for various coefficients of variation of friction angle 
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Figure 4.9 Standard deviation of the FS calculated using unconditional and 

conditional random fields for various horizontal ACDs 

 

Figure 4.10 Standard deviation of the FS calculated using unconditional and 

conditional random fields for various vertical ACDs 
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(a) Unconditional random field simulation 

 

(b) Conditional random field simulation 

Figure 4.11 Spatial variation of the critical slip surfaces obtained from unconditional 

and conditional random field simulations for the case of ρc,φ=-0.5 
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Figure 4.12 Comparison of probabilities of failure calculated by unconditional and 

conditional random field simulations for various cross-correlation coefficients 
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(a) Cohesion 

 

(b) Friction angle 

Figure 4.13 Comparison of probabilities of failure calculated using the unconditional 

and conditional random field simulation for various coefficients of variation of shear 

strength parameters 
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(a) Horizontal ACD 

 

(b) Vertical ACD 

Figure 4.14 Comparison of probabilities of failure calculated using the unconditional 

and conditional random field simulation for various ACDs 
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CHAPTER 5 EFFECT OF SYSTEM STRATIGRAPHIC 

BOUNDARY UNCERTAINTY ON SYSTEM RELIABILITY 

AND RISK OF A LAYERED SLOPE IN SPATIALLY 

VARIABLE SOILS 

5.1 Introduction 

During the past few decades, the inherent spatial variability of soil properties has been 

widely considered in slope reliability analysis and risk assessment. For instance, 

Griffiths and Fenton (2004) studied the reliability of a cohesive slope using the 

RFEM and found that neglecting the spatial variability of soil properties would 

underestimate the Pf. Such an observation would be more outstanding as the COV of 

the soil strength increases. Similar observations were also reported by other 

researchers (e.g., Jiang et al. 2014a). Recently, Li et al. (2015a) compared the 

influence of using different theoretical ACFs to simulate the spatial variability of soils 

on the slope reliability by using a multiple response surface method (RSM), and 

reported that no significant differences exist among different ACFs. Additionally, 

many other remarkable achievements (e.g., El-Ramly et al. 2002; Cho 2007, 2010; 

Hicks and Spencer 2010; Wang et al. 2011; Ji and Low 2012; Huang et al. 2013; 

Jha and Ching 2013; Hicks et al. 2014; Jiang et al. 2015; Low et al. 2015; 

Dithinde et al. 2016b; Li et al. 2016c; Xiao et al. 2016; Liu et al. 2017d) have also 

been made using different probabilistic approaches. These contributions have 

benefited significantly to the geotechnical stability community for comprehending the 

failure mechanism of slopes in spatially variable soils. Nevertheless, they are far from 

perfect and are subjected to a common criticism of ignoring the stratigraphic 

boundary uncertainty (SBU) between different soil layers.  

In general, the SBU widely appears in layered soils where the soil properties 

(e.g., c and φ) are characterized by significant variability and heterogeneity on various 
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scales (e.g., Nataf 1962; Luo et al. 2011; Cho 2012). This variability and 

heterogeneity originates not only from the complex geological, chemical and 

environmental processes but also from the limited amount of site investigation data 

that we can obtain in engineering practice (e.g., Vanmarcke 1977b). Identification of 

the SBU is of great importance to geotechnical stability design. Many efforts have 

been made to characterize this uncertainty in the literature (e.g., Wang et al. 2013, 

2014; Li et al. 2015d; Li et al. 2016e; Wang et al. 2016). The most commonly used 

methods in these studies are the Bayesian methods, which estimate the soil profile 

based on the posterior probability distribution of the available site investigation data 

such as cone penetration test (CPT) data. In addition, it is found that few of the 

available investigations have considered the SBU in probabilistic slope stability 

analysis, because they mainly concentrate on the nominally homogeneous slopes 

rather than the heterogeneous or layered slopes. However, in geotechnical engineering 

practice, it is more common to encompass layered soils than nominally homogeneous 

soil layers. Unfortunately, hardly can the works related to the influence of the system 

SBU on the slope stability be seen in the literature. 

If the above-mentioned uncertainties are accounted for in a slope stability model, 

the CSS is also uncertain, which consequently leads to numerous possible failure 

modes of a slope. Slope failure occurs when a slope slides along any individual slip 

surface, and the failure probability and failure consequence associated with different 

potential slip surfaces might be different. Therefore, the slope reliability and failure 

risk evaluated based on a single slip surface such as the CSS would be 

non-conservative (e.g., Fenton and Vanmarcke 1990). On the other hand, evaluation 

of the slope stability based on the summation of the reliability and risk results 

associated with all the potential slip surfaces would also be inaccurate since the FSs of 

different potential slip surfaces are generally highly correlated (e.g., Zhang and 

Huang 2016). Therefore, the overall probability of failure and consequences of a 

slope should be calculated considering all the possible failure modes in a systematic 

manner, especially in layered soils where the systematic effects are more significant 
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(e.g., Ditlevsen 1979; Chowdhury and Xu 1995; Zhang et al. 2011b; Liu and 

Cheng 2016). Many of investigations on slope reliability considering multiple slip 

surfaces have been reported in the literature (e.g., Zhang et al. 2011b; Jiang et al. 

2015; Li et al. 2015a; Li et al. 2016c; Liu and Cheng 2016; Xiao et al. 2016), but 

few of these studies involved a quantitative risk assessment, with the exception of 

Huang et al. (2013), Li and Chu (2016) and Zhang and Huang (2016). To the best 

of our knowledge, perhaps Huang et al. (2013) are the first to investigate the 

systematic effect on slope failure risk assessment using limit analysis and MCS. 

However, only undrained cohesive slopes are considered in their work, and the 

influence of cross-correlations and COVs of different shear strengths on failure risk 

have not yet been fully explored. Recently, inspired by Huang et al. (2013), Li and 

Chu (2016) developed a quantitative approach for risk assessment of slope failure 

based on several representative slip surfaces within the framework of an LEM, which 

provides an efficient and quantitative tool for identifying the key group of 

representative slip surfaces in the planning of slope risk mitigation. Zhang and 

Huang (2016) proposed an efficient RSM-based MCS for risk assessment considering 

multiple failure surfaces, but they did not consider the heterogeneity of soils. 

Obviously, none of these studies address the consideration of the SBU. In summary, 

the question of how to quantify the systematic effects of the SBU on slope reliability 

and risk remains unanswered. 

In view of the above problems, this chapter concentrates on the analysis of the 

reliability and failure risk of multi-layered soil slopes, with a particular emphasis on 

the influence of the SBU. The chapter begins with the representation of the 

uncertainties in multilayered soils, followed by the evaluation of system reliability 

analysis and risk assessment using MCS. Next, a detailed implementation procedure 

for accomplishing the whole study is introduced. Later on, an example application is 

performed on a hypothetical layered slope to illuminate the influence of the SBU on 

the slope stability. Lastly, the major conclusions from this chapter are provided. 
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5.2 Characterization of uncertainties in layered soils 

5.2.1 Simulation of inherent spatial variability of soil properties 

Consider, for instance, a slope with N soil layers, and each layer is discretized into a 

certain number of random field elements. For the kth layer, suppose the centroid 

coordinates of each element are denoted as ( , )i ix y , where 1,2, , k
ei n  , and 

k
en  

is the number of the discretized random field elements in the kth layer. Based on Eq. 

(2.13) and these coordinates, the autocorrelation matrix kC  for the kth layer is 

expressed as 

12 12 1 1

21 21 2 2

1 1 2 2
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( , ) 1 ( , )

( , ) ( , ) 1

k kn ne e

k kn ne e

k k k kn n n ne e e e

x y x y

x y x yk

x y x y

     

     

     

 
 
 

  
 
 
  

C





   



              (5.1) 

where the dimension of kC  is 
k k
e en n ; 1, 2, ,k N  ; ( , )

ij ijx y    denotes the 

autocorrelation coefficient between spatial quantities at any two points, in which the 

lags | |
ijx i jx x    and | |

ijy i jy y    denote the absolute distances between the 

centroid coordinates of the ith element and the jth element in the horizontal and vertical 

directions, respectively.  

Regarding the simulation of non-stationary random fields, the simulation domain 

is required to be divided into several non-overlapping subdomains, and soil properties 

at any two points in different subdomains are assumed to be uncorrelated (e.g., Lu 

and Zhang 2007; Jiang and Huang 2016; Liu et al. 2017c; Liu et al. 2017d). 

Herein, each layer can be considered as a subdomain in a slope with multiple layers. 

Thereafter, a typical realization of the standard Gaussian random field underlying the 

soil properties in the kth layer is then derived as 
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,
1 2( , ) ( ) ,  ( 1,2, )k G k k k Tx y k N X L ξ L                    (5.2)  

where the superscript G means the standard Gaussian random field; 
kξ  is an 

k k
en m  sample matrix, which is obtained in the following way: (1) obtain a vector 

ξ  with n independent standard normal samples, in which 
1

N
k k
e

k

n n m


 ; (2) partition 

the vector ξ  into N sub-vectors; and (3) re-arrange each sub-vector as mk vectors 

with a dimension of 
k
en , where mk is the number of simulated random fields 

associated with soil parameters in the kth layer. 1
kL  and 2

kL  are lower triangular 

matrices decomposed from the autocorrelation matrix kC  and the cross-correlated 

matrix kR , respectively, using the CDT, and they are defined as 

1 1( )k k T kL L C                              (5.3) 

2 2( )k k T kL L R                              (5.4) 

Thereafter, one realization of the non-Gaussian random field can be achieved by the 

isoprobabilistic transformation as  

 , 1 ,( , ) ( , ) ,  ( 1, 2, , ;  =1,2, , )k NG k G k
i i ix y F x y k N i m    X X           (5.5) 

where the superscript NG means the non-Gaussian random field; 
1( )iF   is the inverse 

function of the marginal cumulative distribution of the ith random field in the kth layer; 

( )   is the standard Gaussian cumulative distribution function. Repeating the above 

procedure Nsim times will give Nsim simulations of the non-stationary random field, 

based on which the probabilistic slope stability analysis can be performed.  
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5.2.2 Simulation of stratigraphic boundary uncertainty 

In general, the soil profile can be identified based on spot field investigation. However, 

the volume of the investigation data is commonly not big, which gives rise to a mass 

of uncertainties. The geological property at an underdetermined location is either 

interpolated with several available data obtained from the adjacent area of this 

unknown location (e.g., Li et al. 2016e; Liu et al. 2017d) or is estimated based on the 

posterior probability distribution of the soil (e.g., Wang et al. 2013, 2014; Li et al. 

2015d). Therefore, the accuracy or the confidence level of the site investigation data 

is very critical to the reduction of the uncertainties associated with the aforementioned 

methods. Meanwhile, the classical method to identify the soil profile in a slope is to 

simplify it as a single line or panel based upon some borehole data, which is the 

so-called deterministic stratigraphic boundary (DSB) herein. Therefore, it can be 

concluded that previous studies have an implicit assumption that the measured data 

are deterministic and accurate without error or the measurement uncertainty is 

neglected. However, in geotechnical engineering practice, the measurement 

uncertainty unavoidably exists due to the judgment and operation errors of practicing 

engineers. Generally, these errors should be limited to a certain degree. For example, 

according to the Chinese geotechnical site investigation code, the maximum error of a 

soil stratum should be within 5 cm (e.g., PRC and AQSIQ 2009). Hence, it is more 

reasonably acceptable to employ a stochastic stratigraphic boundary (SSB) than a 

DSB to consider the inherent error of the site investigation data. Probabilistic methods 

provide a good tool to characterize such a stochastic property. Inspired by Li et al. 

(2015a), the stochastic nature of the stratigraphic boundary is simulated by a discrete 

random variable model herein, as will be illustrated later. It should be noted that the 

SBU here merely denotes the inherent error of site investigation data (i.e., the system 

SBU) and excludes the inherent variation of the soil stratum. 

5.3 MCS for slope system reliability analysis and risk assessment 

As described in Section 5.1, a slope constituted by multiple soil layers usually 
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presents profound system effects on its stability assessment. To investigate such 

system effects on the slope stability, MCS is suggested here. In the following, a 

layered slope with n potential slip surfaces is taken as an example to illuminate the 

principles of the MCS for system reliability analysis and risk assessment of the slope 

stability (e.g., Liu and Cheng 2016; Zhang and Huang 2016). 

5.3.1 MCS for slope reliability analysis 

Unlike the conventional deterministic slope stability analysis that considers the soil 

shear strength parameters as constants, probabilistic slope stability analysis takes the 

random nature of these parameters into consideration. Suppose the shear strength 

parameters constitute a vector of random variables 1 2( , , , )px x xX = , which are 

described some specific distributions (e.g., lognormal distributions). Therefore, it is 

more reasonable to use fP  to consider the effects of the uncertainties associated with 

those random variables, which is generally defined as 

( ) 0
( ( ) 0) ( )d

g
f P g fP


      X

X
X X X                  (5.6) 

where ( )fX X  is the joint probability density function (PDF) of X ; ( )g X  is the 

performance function of the slope considered, which is formulated so that the slope is 

unstable if ( ) 0g X  and stable otherwise, as defined below 

1,2, ,
( ) min ( ) 1i

i n
g FS


 


X X                         (5.7) 

where ( )iF S X  is the FS of the ith potential slip surface obtained by a deterministic 

slope stability analysis method (e.g., the limit equilibrium method). Direct integration 

of the p-fold integral in Eq. (5.7) is not a trivial matter. However, MCS provides an 

unbiased estimation of fP  in a systematic way, so it is adopted in this study and is 

described as follows 
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1
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where [ ]I   is an indicator function, which is equal to unity when 
1,2, ,

1min ( )i
i n

FS





X  

and zero otherwise, and Nsim is the number of MCS samples. The estimation accuracy 

of fP  depends highly on the number of samples and is assessed by the coefficient of 

variation of fP  as per 

1
f

f

P

sim f

P
COV

N P


                            (5.9) 

5.3.2 MCS for risk assessment 

Traditionally, the risk of a slope failure is calculated as the product of the failure 

consequence and the failure probability based on the CSS (e.g., Ang and Tang 1984). 

However, there would be a great many multiple potential slip surfaces if the 

aforementioned uncertainties associated with the soil properties and the stratigraphic 

boundary are considered, and it is likely that the slope can slide along any single one 

of these slip surfaces. Hence, the failure consequence is no longer a deterministic 

value but a variable, since different slip surfaces may have different values of the 

volume of sliding mass and thus lead to significantly different consequences. This 

indicates that the traditional approach is no more applicable. Nevertheless, it is 

relatively easy to account for this uncertainty in the risk assessment by using MCS.  

Suppose the failure consequence of sliding along the ith potential slip surface is 

denoted as Ci. For a given X, the slope failure consequence is then identified as Cm(X), 

where m is the index of the slip surface with the minimum FS among all potential slip 

surfaces, i.e., 
1,2 , ,

a rg m in ( )i
i n

m F S





X  (n is the number of potential slip surfaces). In 

general, the slope failure consequence is highly dependent on the volume or mass of 

the sliding mass. Therefore, in the literature (e.g., Huang et al. 2013; Li and Chu 
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2016; Zhang and Huang 2016), the volume or area of the sliding mass is widely 

used to measure the slope failure consequence. Next, a 2-D slope with multiple 

potential slip surfaces is taken as an example to illustrate the evaluation of the slope 

failure consequence based on the area of the sliding mass. Suppose Ai denotes the 

cross-sectional area of the sliding mass associated with the ith slip surface. That is, Ai 

is equal to the area of the soil mass over the ith slip surface, which can be easily 

obtained with the help of the LEM. Then, for the entire slope system under a given X, 

if the minimum FS is larger than unity, the slope will be stable, and the failure 

consequence is equal to zero, i.e., Cm(X)=0. Otherwise it is unstable, and the failure 

consequence is equal to the sliding mass that corresponds to the slip surface with the 

minimum FS, denoted as Am. The measurement of Cm(X) can also be written as 

1,2, ,

 g( ) 0
( ) = ,  where arg min ( )

0  g( )>0
m

m i
i n

A
C m FS








X
X X

X 

           (5.10) 

However, it might be argued that it is of more practical significance to use more 

complete and realistic indices such as life losses, economic losses and environmental 

impacts to assess the slope failure consequence (e.g., Dai et al. 2002; Vega and 

Hidalgo 2016; Liu et al. 2017c). To this end, the index of economic losses is adopted 

in this study, while for simplicity other indices like life losses and environmental 

impacts are not considered herein because it is generally difficult to quantify the 

values of these indices (e.g., Liu et al. 2017c). According to the author’s practical 

engineering experience in HK and other countries, the consequence of a slope failure 

is generally proportional to the volume of the sliding mass. For soil slopes without 

reinforcements such as soil nails, the unit price up of the economic losses resulted by 

the slope failure is estimated as about 100 HK dollars per cubic meter. Thus, the Cm(X) 

in Eq. (5.10) can further be modified in terms of economic losses as 

1,2, ,

 g( ) 0
( ) = ,  where arg min ( )

0  g( )>0
p m

m i
i n

u A
C m FS








X
X X

X 

          (5.11) 
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According to the distribution of X and the definition of risk, the risk of the slope 

failure considering multiple slip surfaces can be written as  

( ) ( )dmR C f    XX X X                      (5.12) 

Similar to the solution to Eq. (5.6), according to MCS, the risk is estimated as the 

average value of Cm(X) with the consideration of uncertainty in X. If Nsim samples are 

adopted in an MCS, there will be Nsim samples of Cm(X), which is denoted as 

( )  ( 1, 2 , , )i
m s imC i NX  . The estimation of risk is calculated as 

1

1ˆ ( ) 
simN

i
m

isim

R C
N 

  X                        (5.13) 

The estimation of risk R̂  could change with the simulated set of samples due to the 

random nature of X. Using the methods for estimating the error of the mean (e.g., Ang 

and Tang 1984; Zhang and Huang 2016), the standard deviation associated with 

R̂  is  

2

1
ˆ[ ( ) ]

ˆ( )  
( 1)

s imN i
mi

sim sim

C R
S td R

N N







 X                     (5.14) 

Based on Eqs. (5.13) and (5.14), one can easily obtain the COV of the statistical error 

of R̂  by dividing the ˆ( )S td R  by R̂ . Decision makers can thus judge if the R̂  

reaches the desirable accuracy based on the value of COV. If not, more MCS samples 

are required to reduce the variation. 

5.4 Implementation tools and procedure 

The proposed approaches are accomplished based on an MATLAB toolbox that was 

developed by the author and has been successfully applied to several previous 

investigations (e.g., Liu and Cheng 2016; Liu et al. 2017a; Liu et al. 2017d). The 
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implementation procedure is schematically shown in Figure 5.1 and is summarized as 

follows: 

1. Collect input data for both deterministic and probabilistic slope stability 

analyses, which includes but not limited to the slope geometry parameters, the number 

of the potential slip surfaces n, statistics (e.g., means, COVs, SOFs and PDFs) of the 

soil property parameters and the probability mass function (PMF) of the stratigraphic 

boundary.  

2. Discretize the study domain into finite elements and extract the centroid 

coordinates of each element, based on which one can calculate the autocorrelation 

matrix kC  for each soil layer using Eq. (5.1). 

3. Perform MCS and start from i=1 

(a) Draw a vector of independent standard normal random samples, which is 

then partitioned into N (i.e., the number of soil layers) sub-vectors. Next, 

re-arrange each subvector as a sample matrix 
kξ  with a dimension of 

k k
en m . 

(b) Obtain the desirable random fields ,k NG
iX  using Eqs. (5.2-5.5). 

(c) Evaluate the FS value for each potential slip surface using ,k NG
iX  as the 

input and obtain n FS values. Based on these FS values, single out the 

critical slip surface (or the mth slip surface) corresponding to the 

minimum FS based on the n FS values obtained in the last step. 

Meanwhile, save the minimum FS as an output of the ith sample, i.e., 

1,2, ,
min ( )i

i
i n

FS


X


.  

(d) Obtain the failure consequence of the ith sample ( )i
mC X  associated 
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with the mth slip surface using Eq. (5.11). 

(e) Increase i by one and go back to step 3(a) until i is equal to Nsim. 

4. Based on the Nsim set of outputs from step 3, estimate the slope failure 

probability fP  and failure risk R̂  using Eqs. (5.8) and (5.13), respectively. 

5. Calculate the statistical errors associated with fP  and R̂ . If the COVs of 

these are too large to be acceptable, then increase the value of Nsim and repeat the 

steps 3 to 5; otherwise, stop the program. 

5.5 Illustrative example 

In this part, a hypothetical layered slope adapted from Li et al. (2015a), which is 

characterized by the system SBU and the inherent spatial soil variability, is studied to 

elaborate the influence of the SSB on the slope reliability and failure risk. As shown 

in Figure 5.2, the slope is comprised of two soil layers, and has a slope height of 10 m 

and a slope angle of 45°. The buried depth of the stratigraphic boundary between the 

two soil layers is 10 m. In general, this boundary is ubiquitously recognized as the 

real boundary between the two layers. Hence, it is diffusely used as a DSB in the 

conventional slope stability analysis. However, in engineering practice, this boundary 

might not be the real one because of the little experience in site investigation as well 

as of the inadequate supervision of workmanship, which induces uncertainty in the 

real boundary location. Likewise, the boundary location identified from site 

investigation is generally uncertain, and is much more reasonably to be considered as 

an SSB. To describe the variation of the location of the SSB here, a discrete random 

variable model is assumed, which is written as 

0 .3,  =0.5(m )

( ) 0 .4,  =0.0(m )

0.3,  =-0.5(m )

y

p y y

y




 



                             (5.16) 
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where ( )p y  is the PMF of the SSB; y=0.0 indicates the x-coordinate axis is 

superposed on the DSB; y=0.5 and y=-0.5 denote the possible upper and lower 

stratigraphic boundary (PUSB and PLSB) limits, respectively, as shown in Figure 5.2. 

This assumption is reasonably acceptable because the measurement error in practice 

would not be too large. In addition, Table 5.1 tabulates the soil properties for each soil 

layer. These parameters are considered the reference case for this study. Specifically, 

the unit weights of both layers are assumed to be the same constant of 20 kN/m³, 

while the cohesion c and friction angle φ in each layer are simulated as 

cross-correlated lognormal random fields. Statistics for the cohesion and the friction 

angle are also displayed in the table. For simplicity, SOFs and cross-correlation 

coefficients in the two layers are assumed to be the same. 

5.5.1 Reliability analysis and risk assessment results of the baseline case 

This part evaluates the stability of the slope for the reference case as shown in Table 

5.1. As can be expected from the above analysis, the location of the stratigraphic 

boundary would influence the characterization of the soil spatial variation, i.e., the 

simulation results of the random fields, which can subsequently influence the slope 

stability results. To this end, Figure 5.3 compares the slope stability results (i.e., FS 

and sliding mass A) obtained from three different boundary conditions (i.e., DSB, 

PUSB and PLSB) based on a typical realization of random fields underlying the 

cohesion and the friction angle for the reference case. In general, under all the three 

conditions, the figure shows that the cohesion and friction angle fluctuate more 

heavily in the vertical direction than in the horizontal direction, since the vertical SOF 

is much smaller than the horizontal SOF (4 m vs. 40 m). In addition, the FS and the 

corresponding CSS are also shown in the figure. Although the FSs obtained from DSB, 

PUSB and PLSB conditions are very close (1.094, 1.046 and 1.065, respectively), the 

locations of the critical slip surfaces present relatively large differences, indicating 

that slopes with a nominally similar FS might result in quite different consequences. 

For example, when the traditional DSB is adopted, the slope might slide through the 
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lower layer, which leads to a relatively large consequence. However, the slope fails 

with the critical slip surface passing through the slope toe when the PLSB is involved, 

which gives rise to a smaller consequence. Overall, we can conclude that the SBU 

would affect the system Pf and R results. 

Probabilistic stability analysis of this slope is then performed using MCS. The 

sample size of MCS (i.e., Nsim) is very critical to the accuracy of the estimations of Pf 

and R, which herein is determined by a sensitivity study with Nsim varying from 100 to 

10,000, as shown in Figure 5.4. It is observed from the figure that the mean value of 

FS, Pf and R keep nearly invariant as well as their errors when Nsim is greater than 

about 5,000. In particular, both the COVs of Pf and R are below 2.5% when Nsim is 

larger than 5,000, suggesting that a satisfactory accuracy has been obtained. Thus, 

based on the trade-off between the computational efficiency and accuracy, Nsim=5,000 

is adopted in this study. Figure 5.5 shows the distributions of the sliding mass under 

DSB, PUSB and PLSB conditions based on the 5,000 MCS samples. As can be 

expected from Figure 5.3, the distributions of the sliding mass based on the three 

boundary conditions are quite different from each other. For instance, the sliding mass 

obtained from DSB tends to be normally distributed, whereas the result from PUSB is 

more like a lognormal distribution. 

To gain more insights into the influence of the boundary condition on the sliding 

mass, Figure 5.6 further compares the average sliding mass obtained from different 

boundary conditions for various FS values. In general, the results increase very 

slightly with the increase of FS, except for the results from PLSB which are more 

sensitive to FS. The maximum and minimum results at various safety levels are 

obtained when using DSB and PUSB, respectively. The only exception is at the FS 

equal to unity, where the result from PLSB is minimum but very close to the result 

from PUSB. Nevertheless, all these indicate that the slope will have different failure 

mechanisms when different boundary conditions are involved. Additionally, the 

results from SSB, which take the stratigraphic uncertainty into account, are also 
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shown in the figure for an intentional comparison with those obtained from DSB. 

Similarly, the results from SSB also show little variation with respect to the change of 

FS and are smaller than those obtained from DSB, suggesting that the traditional 

deterministic boundary analysis might overestimate the slope failure consequences, 

thus affecting the decision makers to propose economical prevention measures in 

engineering practice. 

Figure 5.7(a) compares the cumulative distribution functions (CDFs) of FS 

obtained from DSB and SSB conditions. As shown in the figure, if FS is greater than 

approximately one, the Pf obtained from DSB may be overestimated, otherwise it can 

be underestimated, compared with the results obtained from SSB. However, the 

difference in Pf between SSB and DSB is minimal, as can be expected from Figure 

5.3. Figure 5.7(b) shows the variations of the risks obtained based on DSB and SSB 

conditions with respect to various FSs, i.e., cumulative risk functions (CRFs). Similar 

to Figure 5.7(a), there is also a critical point (at approximately FS=0.95) where the 

risks obtained from SSB and DSB are nearly the same. However, what is different 

from the results in Figure 5.7(a) is that the risk difference between SSB and DSB is 

relatively larger than the difference of Pf shown in Figure 5.7(a). Again, this can be 

expected from the above analysis. Finally, it is interesting to find that the shape of 

CRF is very similar to the shape of CDF under both DSB and SSB because the 

average slope failure consequence is insensitive to FS (see Figure 5.6), and the risk R 

is estimated as the expected value of the product of Pf and Cm. This finding is also 

consistent with those in the literature such as Xiao et al. (2016) and Li et al. (2016c). 

5.5.2 Influence of ρc,φ on slope failure results 

From this subsection, various parametric studies will be performed to investigate the 

influence of statistics of soil properties on the slope failure probability Pf and risk R. 

The effect of the ρc,φ is first investigated here. The value of ρc,φ ranges from -0.7 to 

0.5, which is suitable for many soil types based on the data reported by Cho (2010) 

and Li et al. (2015a) and is thus used in this study. Figure 5.8(a) compares the results 
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of Pf for various values of ρc,φ obtained from DSB and SSB conditions. Generally, the 

results from both conditions increase with the increase of ρc,φ. Meanwhile, when ρc,φ is 

greater than approximately -0.35, the traditional probabilistic analysis that neglects 

the stratigraphic uncertainty may overestimate the Pf, whereas it is underestimated 

when ρc,φ is less than approximately -0.35. Nevertheless, the difference in Pf between 

DSB and SSB is not large. Figure 5.8(b) shows the variations of risk assessment 

results obtained from DSB and SSB with respect to ρc,φ. Similar to Figure 5.8(a), both 

results from the two conditions present an increasing trend with respect to ρc,φ. 

However, there is no critical point, and the results by DSB tend to be overestimated 

for all values of ρc,φ. In addition, different from the results in Figure 5.8(a), the 

difference between DSB and SSB in risk is relatively larger than the difference in Pf, 

especially for highly positively correlated soils, indicating that decision makers 

should pay more attention to the consequences of conservative estimations from a 

traditional probabilistic analysis that neglects the stratigraphic uncertainty. 

5.5.3 Influence of COVs on slope failure results 

As recognized by many previous studies, statistical errors of soil properties may have 

significant influence on the slope reliability results (e.g., Li et al. 2015a; Liu et al. 

2017d). Hence, Figure 5.9 shows probabilities and risks of slope failure for various 

COVs of cohesion and friction angle (i.e., COVc and COVφ). In the figure, COVc and 

COVφ vary from 0.1 to 0.7 and 0.05 to 0.2, respectively. These ranges were selected 

following Li et al. (2015a) and Cho (2010).  

Figure 5.9(a) shows the variations of failure probabilities associated with DSB 

and SSB with respect to COVc. The results associated with DSB and SSB are in the 

same variation trends—both of them decrease slightly to a minimum and then 

increase sharply with the COVc. The results from DSB begin to be larger than those 

by SSB when COVc is greater than approximately 0.3, whereas they are very close to 

the results of SSB when COVc is relatively small. Additionally, the difference 

between SSB and DSB increases with COVc, but it is generally minimal in the 
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considered range of COVc. Figure 5.9(b) shows the risks associated with DSB and 

SSB for various values of COVc. Obviously, the results estimated from DSB are 

overestimated for all values of COVc considered herein. Similar to Figure 5.9(a), there 

is also a minimum at COVc=0.3 for both DSB and SSB because the failure probability 

identified in Figure 5.9(a) reaches the minimum, while the estimated consequence is 

insensitive to COVc. Overall, the influence of the stratigraphic boundary uncertainty 

on R is larger than the influence of the stratigraphic boundary uncertainty on Pf.  

Figures 5.9(c) and (d) show the variations of failure probabilities and risks 

associated with DSB and SSB, respectively, with respect to COVφ. Different from the 

effects of COVc, the failure probabilities obtained from DSB and SSB increase with 

the increase of COVφ, and the results with DSB are smaller than those with SSB in the 

considered range. The results with DSB would be larger than the results with SSB 

when COVφ becomes larger than the upper limit (i.e., 0.2) considered herein. In 

addition, from Figure 5.9(d), there is a critical point (at about COVφ=0.13), from 

which the size relationship between risks obtained from DSB and SSB is turned over, 

although both of the results increase with COVφ, indicating that the results of DSB are 

more sensitive to COVφ than the results of SSB. To conclude, comparing influences of 

COVc and those of COVφ, the slope failure probability and risk are more sensitive to 

COVφ than to COVc. 

5.5.4 Influence of SOFs on slope failure results 

To investigate the effects of spatial variabilities of soil properties on slope stability, 

Figure 5.10 shows the slope failure probabilities and risks associated with DSB and 

SSB for various SOFs. Following Li et al. (2015a), the considered variation ranges of 

horizontal and vertical SOFs (i.e., h  and v ) are [10 m, 60 m] and [1 m, 6 m], 

respectively. 

Figures 5.10(a) and (b) compare the slope failure probabilities and risks 

associated with DSB and SSB for various horizontal SOFs, respectively. According to 
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Figure 5.10(a), the failure probabilities obtained from both DSB and SSB decrease 

with the increase of h , and the results associated with DSB are underestimated and 

overestimated when h  is greater than and less than 20 m, respectively. However, 

regarding the risks shown in Figure 5.10(b), both results are expected to present 

variation trends similar to those in Figure 5.10(a). What is different from Figure 

5.10(a) is that the risks estimated based on DSB are much smaller than the risks based 

on SSB for all considered values of h , and they can be underestimated by 

approximately 7%. 

Figures 5.10(c) and (d) compare the slope failure probabilities and risks 

associated with DSB and SSB, respectively, for various vertical SOFs. Different from 

the effects of h  shown in Figure 5.10(a), the failure probabilities obtained from 

both DSB and SSB increase with the increase of v , and the results associated with 

DSB are underestimated for all considered values of v . In addition, the difference in 

Pf between DSB and SSB tends to be enlarged when v  is larger than 4 m. On the 

contrary, according to Figure 5.10(d), the risks estimated based on DSB are 

underestimated within the investigated range of v . Totally, we can conclude that 

neglecting the stratigraphic boundary uncertainty would lead to conservative estimates 

of risk in spatially variable soils. 

5.6 Discussions 

The above results might be affected by the determination of the discrete random 

variable y underlying the stratigraphic boundary location. For example, both the 

number of values and the range of variation of the discrete random variable y would 

give rise to quite different probabilistic analysis results. Hence, this section further 

discusses the effects that the number of values and the variation range of the 

stochastic stratigraphic boundary have on the system failure probability and risk. For 
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this purpose, another two models are considered here. In the first model, compared 

with the original one shown in Eq. (5.17), the variation range of the location of the 

stratigraphic boundary increases to [-1 m, 1 m], whereas the number of values for the 

random variable y here remains invariant, as well as the probability at each value. 

This model can be written as 

0 .3,  =1.0(m )

( ) 0 .4,  =0.0(m )

0.3,  =-1.0(m )

y

p y y

y




 



                          (5.17) 

For the second one, the variation range of the location of the stratigraphic boundary is 

the same as the first one, but more possible numbers of values are utilized in this 

model (e.g., Li et al. 2015a). Similarly, the second model can also be written in the 

formula form as 

0.061,  =1.0(m)

0.245,  =0.5(m)

( ) 0.388,  =0.0(m)

0.245,  =-0.5(m)

0.061,  =-1.0(m)

y

y

p y y

y

y





 




                        (5.18) 

Based on the above two models, a series of reliability and risk analyses were 

performed, for which the corresponding results are then compared with each other and 

with those obtained based on the model shown in Eq. (5.17). For a clear presentation 

of the study, analyses based on the first and second models here are numbered as 

Case-2 and Case-3, respectively, whereas the analysis based on the aforementioned 

model in Eq. (5.17) is numbered as Case-1.  

Figure 5.11(a) compares the Pf values associated with the three cases for 

different values of v . The slope reliability results based on the DSB condition are 

also shown in the figure for reference. The figure shows that the failure probabilities 

obtained based on all situations increase significantly with the increase in v . The 
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results associated with DSB are smaller than the results associated with SSB 

conditions (i.e., Case-1, Case-2 and Case-3), indicating the failure probabilities 

estimated based on DSB might be underestimated. In addition, compared with the 

results associated with Case-1, the failure probabilities associated with Case-2 are 

much larger, mainly for the following two reasons: (1) The variation range of the 

location of the stratigraphic boundary in Case-2 is two times the range in Case-1, 

which consequently increases the uncertainties. (2) The mean FS is more likely to 

decrease when the location of the stratigraphic boundary moves up and down, as 

Figure 5.12 shows. Moreover, curves associated with Case-2 and Case-3 indicate that 

the failure probabilities will decrease when a greater number of values are assigned to 

the discrete random variable y, i.e., in Case-3. This can be expected from Eqs. (5.17) 

and (5.18), where the stratigraphic boundary in Case-3 has more chance than the 

stratigraphic boundary in Case-2 to be located near the DSB, which subsequently 

increases the occurrence of larger FS values in Case-3, thereby decreasing the failure 

probabilities. In fact, the model in Eq. (5.18) is more reasonable and consistent with 

practice than the model in Eq. (5.17) since it is usually quite difficult for an 

experienced engineer to locate the stratigraphic boundary with an error so large as ±1 

m.  

Figure 5.11(b) compares the slope failure risks associated with the four cases for 

various vertical SOFs. Generally, the figure shows that the risks associated with all 

cases increase slightly as v  increases. However, different from the results in Figure 

5.11(a), the risks associated with DSB are larger than the risks obtained based on the 

other cases, suggesting that the risks estimated based on DSB are overestimated. In 

addition, compared with Case-1, Case-2 may induce much smaller risks because the 

slope is prone to slide along a shallow slip surface when the location of the 

stratigraphic boundary moves up and down, although the FS values are smaller in this 

case. However, the slope is more likely to have a deep failure mechanism when the 

location of the stratigraphic boundary has more chance to be located near the DSB in 

Case-3, thereby inducing larger failure risks than Case-2. 
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Overall, different failure probabilities and risks can be obtained based on 

different stochastic models. Nevertheless, we can conclude that the failure 

probabilities and risks estimated based on DSB are underestimated and overestimated, 

respectively, thereby highlighting the necessity to incorporate the stratigraphic 

uncertainty into the probabilistic analysis of slope stability. Finally, the difference in 

the results in Case-1 and Case-3 is very small, which further validates the 

reasonability of the assumed model in Eq. (5.15).  

5.7 Summary and conclusions 

This chapter has explored the influence of the system SBU on the system failure 

probability and risk of a layered slope with spatially variable soil properties. Various 

comparisons between probabilistic analysis results (e.g., slope failure probability and 

risk) obtained from considering and neglecting the stratigraphic boundary uncertainty 

have been made for different cross-correlation coefficients, COVs and SOFs. 

Moreover, the influence of the discrete random variable model underlying the 

stratigraphic boundary location has been discussed. Several conclusions can be drawn 

from this study and are summarized as follows: 

1. The location of the stratigraphic boundary has a significant influence on the 

slope failure mechanism. Although it may not influence the FS value of the slope too 

much, different stratigraphic boundary locations would give rise to significantly 

different failure modes or consequences and thus affect risk assessment. 

2. For different safety levels, the average sliding mass estimated based on 

traditional DSB analysis is much larger than the average sliding mass estimated by 

SSB analysis, suggesting that the traditional DSB analysis might overestimate slope 

failure consequences, thereby affecting the decision makers to propose reasonable and 

economical prevention measures in engineering practice. 

3. A difference generally exists between slope failure probabilities obtained 
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from DSB and SSB. The failure probabilities are not always underestimated or 

overestimated for different cross-correlation coefficients, COVs and SOFs, except for 

the considered range of the vertical SOFs, where the results estimated based on DSB 

are always underestimated. However, the difference between slope failure 

probabilities obtained from DSB and SSB conditions are generally small for different 

statistics, except at small values of COVφ. 

4. The stratigraphic boundary uncertainty significantly influences the risk 

assessment. Generally, the difference in slope failure risks estimated based on DSB 

and SSB is relatively larger than the difference in slope failure probabilities. In 

addition, the risks estimated based on DSB are overestimated for different statistics, 

except at small values of COVφ, where the results are underestimated. 

5. Although the adopted discrete random variable model can effectively 

characterize the uncertainty in the stratigraphic boundary, this model neglects the 

inherent geological uncertainty in soil strata. Hence, future studies should be directed 

to accounting for the inherent geological uncertainty.   
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Table 5.1 Statistics of soil properties for the baseline case 

Soil 

properties 
Mean COV Distribution SOFs 

Cross-correlation 

coefficient ρcφ 

c1 (kPa) 12 0.3 Lognormal δh=40 m, δv =4 m ρ1,cφ=-0.5 

φ1 (°) 24 0.2 Lognormal δh=40 m, δv =4 m 

γ1 (kN/m³) 20 - - - - 

c2 (kPa) 8 0.3 Lognormal δh=40 m, δv =4 m ρ2,cφ=-0.5 

φ2 (°) 14 0.2 Lognormal δh=40 m, δv =4 m 

γ2 (kN/m³) 20 - - - - 

Note: The symbol “-” means not applicable. 
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Figure 5.1 Flowchart for addressing the effect of the system SBU on Pf and R 
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Figure 5.2 Geometry of the analyzed slope 
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Figure 5.3 Typical realizations of random fields of cohesion and friction angle and the 

corresponding slope stability results for the baseline case 
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(a) Effect on FS 

 

(b) Effect on Pf 
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(c) Effect on R 

Figure 5.4 Effect of the Nsim on FS, Pf and R for the baseline case 
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(a) DSB 

 

(b) PUSB 
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(c) PLSB 

Figure 5.5 Histograms of sliding mass for the baseline case 

 

Figure 5.6 Average sliding mass at different safety levels 
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(a) CDF 

 

(b) CRF 

Figure 5.7 CDFs and CRFs obtained from deterministic and stochastic stratigraphic 

boundary conditions 
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(a) Slope failure probability 

 

(b) Slope failure risk 

Figure 5.8 Variations of Pf and R with ρc,φ 
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Figure 5.9 Variations of Pf and R with COVs 
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Figure 5.10 Variations of Pf and R with SOFs 
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(a) Slope failure probability 

 

(b) Slope failure risk 

Figure 5.11 Results of Pf and R for various situations 
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Figure 5.12 Variation of FS with location of the stratigraphic boundary using mean 

values 
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CHAPTER 6 EFFECT OF INHERENT STRATIGRAPHIC 

BOUNDARY UNCERTAINTY ON RELIABILITY ANALYSIS 

OF SLOPES IN SPATIALLY VARIABLE SOILS 

6.1 Introduction 

As mentioned in Chapter 1, there are mainly four types of uncertainties in 

geotechnical engineering practice: inherent physical uncertainty, system uncertainty, 

epistemic uncertainty and model uncertainty. However, in the literature, only the 

epistemic uncertainty and inherent spatial variability are frequently investigated, 

either simultaneously or individually (e.g., El-Ramly et al. 2002; Griffiths and 

Fenton 2004; Sivakumar Bubu and Mukesh 2004; Cho 2007; Dasaka and Zhang 

2012; Li et al. 2016a; Deng et al. 2017). The reasons are mainly due to the facts that 

techniques to incorporate simultaneously all those uncertainties are usually complex 

and demanding and the influence of the epistemic uncertainty and inherent spatial 

variability is usually the most dominant compared with the others. Hence, without 

loss of generality and for convenience purpose, this study mainly aims at investigating 

the influence that both the epistemic uncertainty and the soil spatial variability have 

on slope stability analysis, with a particular emphasis on the effect of the stratigraphic 

boundary uncertainty (SBU) arising from limited site investigation data on the 

stability of a layered slope.  

The motivation of this study is mainly two-fold and described as follows. First, 

to date, although considerable efforts (e.g., Griffiths and Fenton 2004; Cho 2010; 

Suchomel and Mašín 2010; Wang et al. 2011; Jha and Ching 2013; Kim and Sitar 

2013; Jiang et al. 2014a; Low 2014; Jiang et al. 2015; Li et al. 2015a; Li and Chu 

2015; Pantelidis et al. 2015; Huang et al. 2017; Ji et al. 2017) have been made by 

geotechnical reliability community to study the influence of soil spatial variability on 

slope reliability analysis, few of them have involved the treatment of non-stationary 
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properties underlying the soil parameters because only nominally homogeneous 

slopes are studied as illustrative examples (e.g., Griffiths et al. 2009; Wang et al. 

2011; Jiang et al. 2015). Instead, what they mainly want to emphasize is either 

exploring how soil spatial variability influences the slope stability or developing 

efficient algorithms to enhance the computation efficiency. For example, Griffiths 

and Fenton (2004) proposed a pioneering probabilistic analysis method for reliability 

analysis of slopes in spatially variable soils, namely RFEM (Random Finite Element 

Method), but only a cohesive slope example was studied because the author mainly 

wants to check the influence of soil spatial variability and local averaging on slope 

stability using RFEM. In addition, there are also many other researchers (e.g., Cho 

2010; Wang et al. 2011; Jiang et al. 2014a; Jiang et al. 2015; Huang et al. 2017) 

devoting themselves to developing new or improving available efficient probabilistic 

analysis methods, but similarly, only simple slopes are investigated. However, in 

geotechnical engineering practice, there are always situations where natural or 

manmade slopes are composed of layered soils, of which the soil properties should be 

amenable to non-stationary random field treatment. Hence, probabilistic analysis of 

layered slopes in spatially variable soils has not been fully investigated. Herein, it 

should be noted that the author is not criticizing the limits of the aforementioned 

works for dealing with layered slopes, but appealing to our peers to pay more 

attention to these cases as they are much closer to real situations. Indeed, careful 

readers might also find that there are tracked recorders that the aforementioned works 

are applicable to far more complicated cases (e.g., Li et al. 2015a; Li and Chu 2015; 

Jiang and Huang 2016; Deng et al. 2017). 

On the other hand, as mentioned above, some attention has been paid to the 

reliability analysis of layered slopes, but almost without exception, they all implicitly 

assume that the stratigraphic boundary between arbitrary two soil layers is a 

deterministic line or surface (e.g., Li et al. 2015a; Li and Chu 2015). This may be 

contradictory to real situations where the stratigraphic boundary is often characterized 

by a certain fluctuations. Likewise, the deterministic line or surface assumption would 
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definitely underestimate the SBU, which will subsequently affect the slope stability 

concerned. The only exception might be the very recent work by Liu et al. (2017c), 

where the influence of SBU on probability of failure (��) and risk assessment is 

investigated. However, the stratigraphic boundary in the work by Liu et al. (2017c) is 

still assumed to be a line, and the uncertainty associated with the stratigraphic 

boundary is simply considered by allowing the boundary to fluctuate in a limited 

range. This type of uncertainty actually belongs to the system uncertainty that is led 

by observers’ errors. In other words, such uncertainty can be readily reduced by 

experienced geotechnical engineers. Additionally, as mentioned before and reported 

by Liu et al. (2017c), the system uncertainty underlying the stratigraphic boundary 

has minimal effect on slope failure probability. Hence, if experienced geotechnical 

engineers can be involved in the initial period of site investigation, such system 

uncertainty along with the stratigraphic boundary can be easily reduced to an 

acceptable level. Nevertheless, despite the insignificance of the system uncertainty, 

the inherent fluctuating uncertainty or epistemic uncertainty of the stratigraphic 

boundary arising from limited site investigation data may significantly affect the slope 

stability, which however, remains an outstanding problem. 

To address those two limitations in the literature and achieve the aim mentioned 

above, the key points are to appropriately simulate the aforementioned two types of 

uncertainties—inherent spatial variability of soil properties and inherent spatial 

fluctuations of the stratigraphic boundary. In terms of the soil spatial variability, it is 

relatively easy as many effective techniques available in the literature can be 

employed, such as the Cholesky decomposition method (e.g., Li et al. 2015a). 

However, as for the simulation of inherent spatial fluctuations of the stratigraphic 

boundary, a modified one-dimensional conditional Markov chain model (e.g., Elfeki 

and Dekking 2001; Elfeki and Dekking 2005; Qi et al. 2016) is used because it is 

conceptually simple, geologically interpretable and computationally efficient, 

although some geostatistical methods (e.g., Deutsch and Journel 1992) can also 

work for this purpose. With these purposes in mind, the remainder of this chapter is 
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outlined as follows. Sections 6.2 and 6.3 introduce respectively the simulation 

methodologies for characterizing the SBU and inherent spatial variability of soil 

properties, followed by the numerical implementation procedure of the proposed 

method in Section 6.4. Thereafter, in Section 6.5, a two-layered soil slope is taken as 

an illustrative example to investigate the influence of the two types of uncertainties on 

slope stability using the suggested method. Finally, Sections 6.6 and 6.7 present some 

discussions and conclusions from this study, respectively. 

6.2 One-dimensional conditional Markov chain model for characterizing SBU 

Conditional Markov chain model is a random process formed by conditioning the 

ordinary Markov chain model on some future states such that on the chain the next 

state depends not only on the present state but also on the future states (e.g., Elfeki 

and Dekking 2001). Because it allows the consideration of future states, this model 

can be easily used in combination with borehole data to reduce modelling uncertainty. 

Additionally, the model has at least the following three advantages: (1) It reserves 

general properties of ordinary Markov chain model that is conceptually simple and 

easily implemented; (2) It can be explicitly expressed, which makes it 

computationally efficient; (3) It can deal with any number of states, and is specially 

suitable for simulation of geological formations (e.g., Elfeki and Dekking 2005; Qi 

et al. 2016). As such, the model is used in this study to simulate the SBU based on 

limited borehole data, and it is briefly introduced as follows. 

6.2.1 One-dimensional Markov chain theory 

A Markov chain is a random process satisfying the following requirement: the next 

state on the process depends only on the current state and is independent of those 

states in the past (First-order Markov property is implicitly considered here). Hence, 

suppose a Markov process consists of n random variables {��, ��, ⋯ , � �} taking state 

values from the set {��, ��, ⋯ , � �} (m is the number of states), there will be 
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���� = ������� = ��, ���� = ��, ⋯ , � � = ��� = �(�� = ��|���� = ��) = ���   (6.1) 

where ���� = ������� = ��, ���� = ��, ⋯ , � � = ��� is the probability that �� = ��  

when ���� = ��, ���� = ��, ⋯ , � � = �� ; �(�� = ��|���� = ��)  is the probability 

that �� = ��  when ���� = ��; ��� is the one-step probability of transition from state 

��  to �� , which is taken from the one-step transition probability matrix (TPM) 

� = (���)�×�  that saves the one-step probability of transition between any two 

states. It should be noted that here we implicitly assume that the Markov chain is 

homogeneous, which indicates the one-step transition probability is independent of 

the step, i.e., �(�� = ��|���� = ��) = �(���� = ��|�� = ��). This assumption has 

been widely used in the literature (e.g., Elfeki and Dekking 2001; Elfeki and 

Dekking 2005; Qi et al. 2016).  

To facilitate better understanding of the application of the Markov chain model 

for SBU modelling in this study, it is worthwhile to point out that the state values are 

characterized by vertical locations and the steps are denoted by a sequence of 

horizontal distances. For example, ��=the vertical location of stratigraphic boundary 

between 0 m and 0.5 m, ��=the vertical location of stratigraphic boundary between 

0.5 m and 1.0 m. Note that, for convenience purpose, the stratigraphic boundary in 

each step is assumed to be a horizontal line. This is reasonable because generally the 

fluctuation of the stratigraphic boundary will not be significant within a short distance 

(e.g., in the scale of decimeter). 

6.2.2 Conditioning one-dimensional Markov chain on future states 

To effectively incorporate borehole data into Markov chain model, Elfeki and 

Dekking (2001) proposed to conditioning the Markov chain on future states (i.e., 

borehole data) such that on the chain the next state depends not only on the present 

state but also on the future states. As an illustration, Figure 6.1 schematically show the 

conditional simulation process, where each cell represents a Markov step, cells on the 
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two extreme ends filled with blue indicate steps with known states obtained from 

borehole data, and cells in between are steps whose states are to be simulated. If a 

forward Markov process is adopted, the state of the left cell is considered as initial 

state, while the state of the right cell is taken as the future state. Conditional Markov 

process can thus be simulated based on these states. Suppose cells filled with yellow 

have been simulated and the ith cell is going to be simulated, so given the states of the 

(i-1)th and the last step, we can know the probability that the ith step takes the state of 

��  (e.g., Elfeki and Dekking 2001) as 

���� = ������� = ��, �� = ��� =
������

(���)

�
��
(�����)                   (6.2) 

where ���
(���)

 is the (n-i)th-step probability of transition from state ��  to �� ; 

���
(�����)

 is the (n-i+1)th-step probability of transition from state ��  to �� . Both 

���
(���)

 and ���
(�����)

 can be easily calculated from the one-step TPM �, and the 

reader is referred to Elfeki and Dekking (2001) and Qi et al. (2016) for details. It 

should be noted that Eq. (6.2) only conditions on two boreholes, while there would be 

more than two boreholes in real situations. For this problem, this study simulates the 

stratigraphic boundary segment by segment until all boreholes are used. Herein, the 

segment indicates the horizontal interval constituted by two adjacent boreholes. 

6.2.3 Estimation of transition probability matrix 

It is known from above that estimation of the one-step TPM � is a prerequisite for 

using the conditional Markov chain model. Theoretically, the TPM can be estimated 

directly from borehole data, such as the tally matrix used by Elfeki and Dekking 

(2001). However, for the simulation problem herein, it is rather difficult to count the 

number of transitions between different states because the stratigraphic boundary data 

obtained from all boreholes is rather discrete. To this problem, a practical method 

adapted from Elfeki and Dekking (2001) and Qi et al. (2016) is suggested in this 
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section and is described as follows. 

First, the basic idea that the TPM is assumed to be diagonally dominant with 

identical off-diagonal elements is accepted from Elfeki and Dekking (2005). This 

suggests that a state transiting to itself is dominant, which is consistent with general 

rules of formation of sequence stratigraphy. In addition, the identical off-diagonal 

elements right reflect that there is no sufficient information to support the transition 

from one state to another. Within this assumption, the off-diagonal elements are 

calculated as ��� = (1 − ���) (� − 1)⁄  (� ≠ �	), where ��� is determined from some 

candidate probability values that are relatively large, such as {0.60, 0.62, ⋯ , 0.98} 

used in the following analysis. 

Borehole data is then used to identify the optimal value of ���  from the 

candidate values. According to Qi et al. (2016), the optimal value is the one that 

maximizes the occurrence of the observed scenario given the conditional information. 

This means, for the example shown in Figure 6.2, the optimal ��� should ensure that 

the likelihood of the ith, jth and kth cells simultaneously and respectively taking the 

states ��, ��  and �� is the largest given the 1st and nth states. However, they did not 

consider the dependence between states at different cells, i.e., they evaluate the 

probability that each cell takes a corresponding state independently. Seriously, if a 

state at one cell (or borehole) is known, it should also be considered as conditional 

information for estimating the state at another cell. Hence, the likelihood of the 

occurrence �� of the observed scenario given the conditional information in Figure 

6.2 should be expressed as 

�� = P��� = S�, �� = S�, �� = S���� = S�, �� = S��	 

					= P��� = S���� = S�, �� = S�� ∗ P��� = S���� = S�, �� = S�� 

											∗ P��� = S���� = S�, �� = S�� 
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	=
���

(���)
∙���

(���)

���
(���) ∗

���
(���)

∙���
(���)

���
(���) ∗

���
(���)

∙���
(���)

�
��
(���)                                (6.3) 

For each candidate value of ���, a value of �� will be calculated based on Eq. (6.3), 

and the candidate corresponds to the maximum �� will be used to consitute the final 

TPM for the given borehole layout. The effectiveness of the estimated TPM can be 

checked by the “Engineering approach” suggested by Elfeki and Dekking (2005), 

which will be illustrated in the example section later. Additionally, it should be noted 

that for a given borehole layout, all the boreholes are used to estimate the TPM, while 

the simulation of the conditional Markov chain is following the process described in 

Section 6.2.2. 

6.3 Random field modeling of spatially variable soil properties 

The method (procedure) suggested in Section 5.2.1 is used. Repeating this procedure 

Nsim times will give Nsim simulations of the non-stationary random field, based on 

which slope reliability analysis using Monte Carlo simulation (MCS) can be 

performed.  

6.4 Numerical implementation 

To facilitate the understanding of the proposed approach and its applications in 

geotechnical engineering practice, this section introduces in detail the implementation 

tools and procedure of the approach. 

6.4.1 Implementation tools and strategies 

The basic tools used in this study are MATLAB and ABAQUS. MATLAB software is 

used to control the whole probability analysis using an in-house code, while 

ABAQUS is mainly employed for evaluating the slope stability, i.e., obtaining the 

factor of safety (FS). In addition, MATLAB is also used to equip ABAQUS with the 

ability to consider the soil spatial variability in slope stability analysis. This can be 
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achieved by directly revising the ABAQUS input file suffixed by “.inp” based on the 

random fields underlying the soil properties using a programming language such as 

MATLAB. The reason is because by using ABAQUS, the FS is deduced from the 

ABAQUS results file suffixed by “.odb” that can be obtained through the evaluation 

of the “.inp” file by the ABAQUS/Standard. For illustration purpose, Figure 6.3 

schematically shows the strategies employed in this study for enabling the ABAQUS 

to consider the spatial variability of soil properties. In general, three steps are involved 

and are detailed as follows: 

1. Preparation. In this step, one needs to prepare a data file consisting of a set 

of random fields data that can be generated by any kind of code, such as the 

MATLAB code by the author. Meanwhile, an ABAQUS input file (e.g., the “Slope.inp” 

file here) including information of slope geometry and FEM mesh should also be 

prepared, which can be obtained by directly coding in a Python editor or through the 

ABAQUS/CAE model, whichever is more convenient for yourself. 

2. Analysis. This is the major step that consists of incorporating the random 

fields data into the “Old” “Slope.inp” file to obtain the “New” “Slope.inp” file and 

invoking the ABAQUS solver to evaluate the “New” “Slope.inp” file to finish the 

slope stability analysis. Because the built-in language in ABAQUS is Python, so an 

MATLAB-Python interface function is preferably used by the author to realize the 

former purpose. As for the latter one, an MATLAB-ABAQUS interface function is 

coded to submit the “New” “Slope.inp” file to the ABAQUS solver for evaluating the 

slope stability.  

3. Results. After finishing step (2), an ABAQUS result file “Slope.odb” will be 

automatically generated. This file saves all information of FEM calculation results 

such as stress and displacement at each node, which however, should be read by 

ABAQUS Python script because of the built-in characteristic of the data structure in 

the file. Hence, another MATLAB-Python interface function is required. 
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With the above strategies in mind, a full MCS can be easily performed to 

evaluate the ��  while considering both the inherent strategraphic boundary 

uncertainty and spatial soil variability. It should be noted that since the strategraphic 

boundary uncertainty only affects the distributions of different soil types, the major 

input of the whole analysis is still the random fields data for each MCS realization, 

and thus how to incorporate this type of uncertainty into ABAQUS is unnecessary. 

Detailed procedure for a full MCS will be introduced in the following section. 

6.4.2 Implementation procedure 

As mentioned above, this section introduces the detailed implementation procedure of 

the proposed method step by step. In general, the whole procedure mainly consists of 

9 steps, which can be quickly learned from Figure 6.4. By referring to this figure, each 

step is detailed as follows: 

1. Collect data that is necessary for slope stability modelling, including but not 

limited to slope geometrical parameters (e.g., slope height and slope angle), 

stratigraphic boundary information and soil physical-mechanical parameters (e.g., 

cohesion c and friction angle �). In addition, determine the corresponding statistics 

such as means, coefficients of variation (COVs), distributions, SOFs and ACFs for 

those spatially varied soil parameters that are amenable to random field treatment. 

2. Build an initial FEM model using the available slope geometrical parameters 

and the mean values of the spatially varied soil parameters with the help of 

ABQUS/CAE. Likewise, the basic model information, which includes but is not 

limited to slope geometry, FEM mesh and constitutive relation of soil, is saved in an 

ABAQUS input file suffixed by “.inp”, e.g., “Slope.inp” herein. It should be noted 

that in this file, the soil parameters are constant over the slope domain and the SBU 

has not yet been considered. Hence, to differentiate this file with the “.inp” file that 

considers both the SBU and inherent spatial variability of soil properties, the 

“Slope.inp” herein is marked by “Old” in case of confusing. 
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3. Interpret the stratigraphic boundary information obtained from some specific 

boreholes into Markov states. Then, use the method suggested in Section 6.2.3 to 

estimate the Markov chain TPM. The Markov states at unknown locations finally can 

be simulated based on the known states and the TPM using the method suggested in 

Section 6.2.2. All Markov states, including the known ones and those simulated ones, 

contribute together to form the stratigraphic boundary. Herein, it is worthwhile to 

point out that, for the purpose of convenience, the Markov step used in this study is 

kept consistent with the size of the finite element in FEM model. 

4. Incorporate the simulated stratigraphic boundary (also known as Markov 

chain) into the slope stability model such that the entire slope domain is divided into 

several non-overlapped subdomains to differentiate different soil layers.  

5. Discretize each subdomain into some finite random field elements and 

simulate the spatial variability of soil properties in each domain using the CDT 

introduced in Section 6.3. Likewise, a typical realization of random fields of soil 

properties while considering the SBU is obtained. Note that the random field element 

size is the same as that of finite element, which is again for the convenient purpose. 

6. Incorporate the random field data obtained above into the initial FEM model 

to form a new model that is capable of considering both the SBU and inherent spatial 

variability of soil properties. This can be achieved by directly replacing the mean soil 

properties in the ABAQUS input file (i.e., the “Old” “Slope.inp”) with the 

corresponding random field values through calling the aforementioned 

MATLAB-Python interface function. To differentiate the new model with the original 

one, the new model is saved as “Slope.inp” but marked by the tag “New” (see Figure 

6.3). 

7. Submit the “New” “Slope.inp” file to the ABAQUS solver for the evaluation 

of slope stability with the help of an inhouse MATLAB code—MATLAB-ABAQUS 

interface function, which finally results in an ABAQUS results file, named “Slope.odb” 
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for example. 

8. Extract the FS value from the “Slope.odb” file using another 

MATLAB-Python interface function. 

9. Perform MCS simulation. Repeat steps (3)-(8) for ���� times will generate 

���� FS values, based on which statistical analysis of FS can be performed and the 

�� of slope stability considering both SBU and inherent spatial variability of soil 

properties can also be calculated by dividing the number (e.g., ��) of FS values less 

than 1 by ����, i.e., �� = �� ����⁄ . 

6.5 Illustrative example 

In this section, the proposed approach is applied to analyze the stability of a layered 

soil slope, based on which the effectiveness of the approach is verified and the 

influence of the inherent SBU on slope stability is investigated. In particular, various 

borehole layout schemes are designed to explore the influence of the number and 

locations of the boreholes on slope stability. Details are described as follows. 

6.5.1 Example description and deterministic slope stability analysis 

The slope to be investigated is adapted from the work by Liu et al. (2017c), and its 

geometry is schematically shown in Figure 6.5. As can be seen from the figure, the 

slope has a height of 10 m and an angle of 45° and the soil mass of the slope extends 

to 15 m below the slope top. In addition, the slope is composed by two types of 

soils—clay and sand, and the sand layer is laid beneath the clay layer. The 

stratigraphic boundary between the two soil layers is generally unknown without 

enough site investigation data. Hence, if only few data is available in hand, for 

example three boreholes (numbered as ZK1 to ZK3) as shown in Figure 6.5, the 

boundary is very likely to be considered as a horizontal line or a deterministic line 

(e.g., the blue dash line in Figure 6.5) located 10 m below the slope top by engineers, 

which is the common practice in slope design. However, the real situation could be 
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that the boundary is a curved line (e.g., the red solid line in Figure 6.5) with a certain 

degree of fluctuations due to complex geological and environmental process of 

deposition. Likewise, the deterministic line assumption has no doubt underestimated 

the uncertainty associated with the stratigraphic boundary, thus affecting the stability 

assessment of the slope.  

Figure 6.6 shows slope stability results under the two boundary conditions based 

on the mean values of soil parameters in Table 6.1 where cohesion c and frictional 

angle φ are considered spatially variable with a zero cross-correlation coefficient ρcφ 

and unit weight γ, elastic modulus E and Poisson’s ratio υ are assumed to be constants. 

Obviously, the slope stability results are quite different in terms of both FS values and 

critical slip surfaces when different stratigraphic boundary conditions are used. Firstly, 

the slope will be considered less stable if the boundary is assumed to be a line 

compared with the real situation (i.e., 1.163 vs. 1.248), which would finally lead to a 

conservative design in geotechnical engineering practice. Secondly, the slope failure 

consequence would be underestimated when the boundary is simplified as a line, 

because under this assumption the slope tends to slide along a shallow surface, while 

the slope is more likely to have a deep failure mode. As such, it is of great practical 

significance to consider the SBU in stability analysis of this kind of slope. 

6.5.2 Borehole data 

To model the SBU, a certain amount of borehole data is a prerequisite. Therefore, nine 

boreholes are designed in this section, and the layout of the boreholes is schematically 

shown in Figure 6.7. In general, it can be seen from the figure that the boreholes are 

marked by three different colors. This is mainly to reflect the real geotechnical site 

investigation process that usually starts with a preliminary exploration, then a detailed 

exploration followed by an added exploration. With this idea in mind, the boreholes 

here are designed in the following three phases. In Phase I, three boreholes (i.e., 

boreholes numbered as ZK1-3 and marked by blue) are preliminarily drilled at the 

slope left boundary, slope crest and slope toe, respectively, which is often the case 
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when no sufficient prior information is available. One can see that the horizontal 

interval between two adjacent boreholes in this phase is relatively large, because we 

want to cover all potential influence areas as much as possible. Then, in Phase II, 

another two boreholes, numbered as ZK4 and ZK5 and marked by yellow, are placed 

in the intervals among the three boreholes in Phase I. The purpose is to explore more 

details about the stratigraphic information in the investigation area, because the 

borehole interval in Phase I is generally large, which may miss some important 

changes in stratigraphic boundary. For example, the three boreholes in Phase I reveal 

almost the same stratigraphic information, which, obviously, does not catch the 

variation trend of the real boundary and would be misleading. Finally, in Phase III, to 

gain more insights into the fluctuation of the real stratigraphic boundary (RSB), four 

more boreholes marked by green (i.e., ZK6-9) are located at the intervals that are 

formed by the boreholes drilled in Phase I and II.  

All boreholes from the three phases constitute the available data for SBU 

modelling herein. The revealed stratigraphic information from all boreholes can also 

be noticed from Figure 6.7 by referring to the simplified stratigraphic boundary (i.e., 

the red broken line) that is simplified from the real boundary in Figure 6.5. In addition, 

it should be noted that in practical engineering there might not be so many boreholes 

with such a high density, hence such design of boreholes herein is mainly for research 

purpose, which is expected to work out a useful guidance for an effective borehole 

design. To this end, several borehole layout schemes are further designed based on the 

nine boreholes to investigate the influence of borehole location and borehole number 

on SBU modelling and thus on the slope stability. The schemes are summarized in 

Table 6.2, where the countermark indicates the corresponding borehole is included in 

a scheme. In other words, each scheme is actually a combination of several boreholes 

in Figure 6.7. However, it is noted that the boreholes ZK1 and ZK3 are included in all 

schemes. This is because of the prerequisite for using the conditional Markov chain 

analysis, as described in Section 6.2. For each layout scheme, the SBU can be 

simulated using the suggested method in Section 6.2.2, as will be introduced in the 
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following.  

6.5.3 One-dimensional Markov chain conditioned on borehole data for SBU 

modelling 

6.5.3.1 Estimation of TPM 

To simulate the SBU based on the abovementioned borehole data, the one-step TPM 

should be firstly estimated following the suggested method in Section 6.2.3. Note that 

the Markov step length herein is set as 0.5 m, which is consistent with the random 

field element size as well as the finite element size, as shown in Figure 6.7. The 

reason for choosing this value is mainly two-fold: (1) The soil strata will generally not 

show very significant variations within a very short distance; (2) Although the step 

length has a significant effect on the estimation of the TPM, the simulated Markov 

chain (or stratigraphic boundary) will not change too much with the step length, 

because the effects of the TPM and the step length on the simulated Markov chain 

could be balanced out (e.g., Qi et al. 2016).  

Figure 6.8 shows the variations of the likelihood of occurrence of the observed 

information �� with respect to various candidate values of ��� for the seven borehole 

layout schemes. According to the analysis in Section 6.2.3, the TPM for each layout 

scheme can be determined by locating the ��� value that maximizes the �� in the 

figure. Likewise, it can be seen that different schemes have different TPMs. This can 

be expected from the borehole positions and quantity in each scheme. For example, 

three boreholes are used in Scheme 1 and all of them indicate the stratigraphic 

boundary is located 10 m below the slope top, suggesting that the stratigraphic 

boundary state has a very high probability to transit to itself. Hence, the ���  is 

determined as 0.98 for Scheme 1. On the contrary, there are more transitions from a 

state to another different state in Schemes 2-4, so the ��� value for these cases tends 

to be smaller. Furthermore, for Schemes 5-7, the �� increases first with the ��� to a 

peak and then decreases. This phenomenon is expected because in these schemes a 
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stratigraphic boundary state can transit not only to itself but also to other states. Under 

this circumstance, larger ��� values will lead to a longer extension of the state as the 

self-transition probability of the state is large, while the smaller ��� values will give 

rise to frequent transitions between different states. Hence, the optimal ��� is finally 

located in between the minimal and maximal candidate values. In the following part, 

the effectiveness of the proposed method for estimating the TPM is validated. 

6.5.3.2 Verification of the proposed method for TPM estimation 

This section verifies the effectiveness of the proposed method for TPM estimation, 

which is achieved by comparing the estimated TPM with the real TPM. Since there is 

no available data to know the real TPM for the studied case in Figure 6.7, four TPMs, 

with the diagonal elements (i.e., ���) equalling to 0.6, 0.8, 0.9 and 0.98, respectively, 

are predefined as replacements of four kinds of real situations. As such, the TPMs 

estimated in Figure 6.8 for the seven borehole layout schemes might be changed 

because the real states at all boreholes could be different from the original ones in 

Figure 6.7, and thus cannot be used directly to compare with the predefined TPMs. 

Hence, different “real boundaries” for the four situations should be obtained first. In 

this study, the real boundary for each situation is determined as an arbitrary realization 

of the one-dimensional conditional Markov chain model that is performed based on 

the corresponding predefined TPM and the utmost two boreholes (i.e., ZK1 and ZK3) 

in Figure 6.7. Then, the states at the intermediate boreholes are updated by extracting 

the states from the real boundary at the same locations, based on which new TPMs 

can be estimated using the proposed method in Section 6.2.3. Finally, the 

effectiveness of the proposed method can be judged by comparing the estimated TPM 

and the predefined TPM, and the estimated TPM is considered effective if it is similar 

to the real one (e.g., Qi et al. 2016).  

Figure 6.9 schematically compares the predefined and estimated ��� values for 

various schemes when real situations are considered. Generally, the accuracy of the 

suggested approach herein increases with the increase of the ���. In other words, the 
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estimated TPM can be very close with the real TPM when the real TPM is strongly 

diagonally dominant (e.g., ��� > 0.8), which also matches well with the observation 

by Qi et al. (2016). For example, the estimated ��� values for all schemes are equal 

to the predefined one when ��� is 0.98. This is because the potential stratigraphic 

boundary is more likely to be a line when ��� is 0.98, which results in the same 

known states at all boreholes, thus further leading to the same TPM for all schemes. 

However, it might be argued that the method is also accurate enough when ��� is 

weakly diagonally dominant (e.g., ��� = 0.6). The reason might be the fact that the 

optimal ��� can be the minimal candidate value (e.g., 0.6 herein) when the predefined 

��� is very small because there are more state transitions between different states, 

according to the analysis in Section 6.2.3. Therefore, the estimated ��� could indeed 

be much lower than 0.6, thus showing large difference between the estimated and 

predefined TPM. Furthermore, it is also noticed that the proposed method is still less 

accurate when ��� > 0.8 for some schemes, Scheme 1 at ��� = 0.9 for example. 

This is mainly because the number of boreholes used is too less to characterize the 

stratigraphic state transitions. In other words, this kind of error is mainly attributed by 

lack of site investigation data. Overall, the proposed method can be effectively used 

herein because the TPM of soil transitions in reality is often strongly diagonally 

dominant (e.g., Qi et al. 2016). 

6.5.3.3 Influence of borehole layout scheme on realization of stratigraphic boundary 

Having demonstrated the effectiveness of the estimated TPMs for the aforementioned 

borehole layout schemes, the stratigraphic boundary in the above slope example can 

subsequently be simulated. Since different layout schemes might provide different 

simulation results, it is necessary here to investigate the influence of different 

borehole layout schemes on the stratigraphic boundary modelling before investigating 

their influence on the slope stability. Therefore, a total of 50,000 simulations of the 

1-D conditional Markov chain model are conducted for each scheme. The purpose is 

to obtain the most probable stratigraphic boundary that can be simulated by the 
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proposed method for each scheme. It should be noted that here we are not focusing on 

an arbitrary realization of the stratigraphic boundary that many previous studies (e.g., 

Li et al. 2016a; Liu et al. 2017c) focused on. This is because the real boundary can 

be a typical realization of the stratigraphic boundary modelling, which makes it much 

more convenient to compare the real boundary with the most probable one. It is also 

worthwhile to point out that the number of 50,000 is more than enough to obtain a 

convergent result for each scheme through lots of internal studies. In fact, a very small 

number is also sufficient for convergence for some cases, as pointed out in the 

literature (e.g., Elfeki and Dekking 2005; Li et al. 2016a). However, the number of 

50,000 is still employed here because it does not influence the computation efficiency 

very much. 

Figure 6.10 shows the simulated most probable stratigraphic boundaries based on 

different borehole layout schemes, and for a convenient comparison the real boundary 

is also plotted in the figure. In general, due to the fact that the number and locations of 

boreholes used in each scheme is different, the difference between different layout 

schemes is significant. For example, comparing Figures 6.10(a), (d), and (g), where 3, 

5 and 9 evenly distributed boreholes are used, respectively, it is found that the most 

probable stratigraphic boundary simulated in Figure 6.10(a) is far less accurate, which, 

however, becomes more consistent with the real boundary when the number of 

boreholes is increased to 9 in Figure 6.10(g). This is because in Figure 6.10(a) the 

three boreholes reveal the same boundary state and provide no information about the 

fluctuation of the real boundary. Thus, the simulated boundary is a horizontal line, 

substantially underestimating the boundary uncertainty. By contrast, since more 

boreholes are added in Figures 6.10(d) and (g) to provide more information on the 

lower and upper bounds of the real boundary, the simulation results are more and 

more sound. On the other hand, comparing Figures 6.10(b) and (c), where the same 

number (i.e., 4) of boreholes are used, it is also noticed that the simulated results are 

quite different. This can be forecasted from Figure 6.7 and Table 6.2, where only one 

borehole location is different in Schemes 2 and 3 and the difference is exactly 



 

153 

consistent with that appeared in Figures 6.10(b) and (c). Furthermore, similar results 

can be found between Figures 6.10(e) and (f), and similar reasons can be attributed to. 

Hence, both the location and number of boreholes have significant influence on the 

stratigraphic boundary simulation, and thus on the slope stability, as will be 

investigated later. 

6.5.4 Influence of SBU on slope stability without considering soil spatial 

variability 

As showed above, different borehole layout schemes will result in different degrees of 

SBU, which may propagate to the slope stability analysis. In view of this, a series of 

FEM analyses of slope stability are conducted in this section within the framework of 

MCS for various borehole layout schemes so as to check the influence of SBU on 

slope stability. Since the sample size of MCS influences not only the accuracy of the 

estimations of the FS statistics but also the computational efficiency, it should be 

carefully determined on the basis of the compromise between the computational 

efficiency and accuracy. In this study, this is achieved by a parameter study of the FS 

statistics for Scheme 2 with the number of MCS samples, and the results are shown in 

Figure 6.11. It is observed from the figure that both the mean and standard deviation 

of FS (i.e., ���  and ���, respectively) start converging to a reasonably stable level 

when the number of MCS samples reaches about 4,000. This indicates that the size of 

4,000 MCS samples is sufficient to obtain reasonably stable estimations of the FS 

statistics, and hence it is used to estimate the ��� and ��� in the following analysis. 

Figure 6.12(a) shows the values of ��� for various borehole layout schemes. As 

references, the FS values calculated for DSB and RSB are also plotted in this figure. 

In general, with the increase of the borehole number, the ��� does not present a 

monotonic variation. For example, the ���  estimated for Scheme 2 with four 

boreholes (ZK1-4) is lower than that for Scheme 1 with three boreholes (ZK1-3) and 

those for the other schemes with more than four boreholes [e.g., Scheme 4 with five 

boreholes (ZK1-5) and Scheme 7 with nine boreholes (ZK1-9)]. This mainly arises 
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from the different distributions of soil types caused by different stratigraphic 

boundary simulations associated with different schemes, which can be seen from 

Figure 6.10. According to Figure 6.10, the stratigraphic boundary simulated based on 

Scheme 2 generally results in the largest ratio of sand volume to clay volume in the 

whole slope body compared with the other schemes. As such, the ��� estimated for 

Scheme 2 would be the smallest because the shear strength of sand is much lower 

than that of clay, as can be judged from Table 6.1. However, except for Scheme 2, the 

estimated ���  increases gradually as increasing the number of boreholes. For 

example, the ��� obtained by using three boreholes (i.e., Scheme 1) is nearly the 

same with that for the DSB case, both are about 1.163. This is not surprising and is 

expected as the three boreholes (ZK1-3) used in Scheme 1 reveal the same boundary 

information (see Figure 6.7), which results in nearly the same boundary simulation 

with the deterministic one that we often assumed. By contrast, when the number of 

boreholes is increased to nine (Scheme 7), the ��� (i.e., 1.212) is much closer to the 

real FS value (i.e., 1.248) for the RSB case. This is not only because the number is 

relatively large but also due to the fact that all the nine boreholes have successfully 

identified the key variation trends of the RSB. Therefore, if more boreholes (i.e., 

larger than nine) are drilled, the estimated ��� will converge to the “correct” result. 

It is also observed from Figure 6.12(a) that the location of the boreholes has a 

significant influence on the slope stability results. This can be seen from the schemes 

that use the same amount but different distributions of the boreholes—Schemes 2 and 

3 with four boreholes and Schemes 5 and 6 with seven boreholes. For example, the 

��� estimated for Scheme 2 (ZK1-4) is the lowest (i.e., 1.138), while the ��� for 

Scheme 3 (ZK1-3 and ZK5) is 1.190. Obviously, the value of 1.190 is much closer to 

the correct FS for the RSB case, while the value of 1.138 could even be more 

conservative than that (i.e., 1.163) for the DSB case. Such a significant difference is 

no doubt induced by the different locations of boreholes ZK4 and 5 as the other three 

boreholes in Schemes 2 and 3 are the same. This indicates that the location of ZK5 is 

more important than that of ZK4 for evaluating the slope stability. In fact, this can be 
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understood from Figure 6.6, where the critical slip surface is going deeper and deeper 

when the stratigraphic boundary evolves from the DSB case to the RSB case, 

suggesting that the valley or its around location of the RSB plays a more important 

role in the stability of the slope. Since the borehole ZK5 reveals exactly the potential 

location of the valley of the RSB but ZK4 cannot, the uncertainty existed in this area 

is reduced by Scheme 3 and the clay volume for Scheme 3 is much larger than that for 

Scheme 2. Likewise, the ���  for Scheme 3 is increased and is more accurate than 

that for Scheme 2 because the clay has higher shear strengths than the sand has. In the 

literature (e.g., Sivakumar Babu et al. 2006; Li et al. 2016a; Deng et al. 2017), the 

area that influences the slope stability, like the valley of the RSB here, is referred to as 

the influence zone. To be consistent with the previous works, this term is also used in 

the following study. Similarly, compared with Schemes 5, the ��� for Scheme 6 is 

much closer to the correct FS because the extra two boreholes (ZK8-9) in addition to 

those (ZK1-5) also used by Scheme 5 are all located in the influence zone, while the 

extra two boreholes in Scheme 5 are not and only one (i.e., ZK7) is located in the 

influence zone, as will be illustrated later. Hence, it is suggested here to design more 

boreholes in the influence zone in priority so as to effectively reduce the SBU and 

then to accurately evaluate the FS of slope stability. 

To gain more insights into the effective design of boreholes in geotechnical 

engineering practice, it is necessary here to find out where the influence zone is 

exactly located. For this purpose, some further analyses based on Figure 6.12(a) are 

conducted. Firstly, the schemes in Table 6.2 are compared with each other, and in 

particular the following groups are considered: (Scheme 1, Scheme 2), (Scheme 3, 

Scheme 4), (Scheme 5, Scheme 7) and (Scheme 6, Scheme 7). Note that in each group 

the latter scheme has one or two more boreholes than the former one. The redundant 

boreholes in the latter schemes are expected to be located either in or outside of the 

influence zone such that this zone can be effectively found out. From the comparison 

of (Scheme 1, Scheme 2) and that of (Scheme 3, Scheme 4), it is roughly found that 

ZK4 is outside the influence zone while ZK5 is inside the zone, because ZK5 has a 
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larger influence on the slope stability while ZK4 does not, as mentioned above. Due 

to limited space, the reason is not repeated here. Therefore, the preliminary left 

boundary of the influence zone can be marked by the location of ZK4, while the right 

boundary is expected to be on the right of ZK5. Then, compared with Scheme 5 and 

Scheme 7, the ��� for Scheme 7 is closer to the correct result because, in addition to 

those boreholes used in Scheme 5, two more boreholes (ZK8-9) are used in Scheme 7 

and they are probably located in the influence zone. This shows that the influence 

zone can probably extends to the location of ZK9, as there is at least no significant 

evidence to exclude the influence of ZK9. Finally, compared with Scheme 6, Scheme 

7 has a higher result of FS due to ZK6 and ZK7 joined in Scheme 7. Assuming that 

the influence zone is continuous and considering that ZK6 is on the left of ZK4 that 

has been demonstrated to have little influence on the slope stability, it can be 

concluded that ZK7 is still located in the influence zone. This suggests that the 

possible left boundary of the influence zone could be further updated to be located in 

between ZK4 and ZK7. Overall, from the above analyses, the influence zone in this 

study is identified as [6 m, 17 m]. It is worthwhile to point out that this interval is 

generally consistent with the major deformation area of the slope, as can be seen from 

Figure 6.6. Therefore, it is suggested herein that the influence zone can be roughly 

estimated as the area with relatively large strain based on conventional slope stability 

analysis, if there are no sufficient boreholes in hand. In addition, the emphasize is that 

it has better to judge in advance the location of the influence zone by using methods 

such as the suggested one before drilling boreholes so as to save project cost as much 

as possible.  

Figure 6.12(b) shows the values of ��� for various borehole layout schemes. 

Similar to Figure 6.12(a), the ��� is not monotonically influenced by the number of 

boreholes. This is mainly attributed to the following two reasons: (1) The locations of 

the added boreholes are outside the influence zone; (2) The added boreholes provide 

new stratigraphic boundary information, which introduces extra uncertainty to the 

Markov chain simulation. For example, compared with Scheme 1 with only three 
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boreholes, the ��� for Scheme 2 with four boreholes is much larger, because there is 

no extra information on the influence zone while the added borehole ZK4 provides a 

significantly different boundary state with the other three boreholes. However, the 

��� is seen to decrease with the increasement of the boreholes. This is expected as 

from Scheme 2 to Scheme 7 the number of boreholes in the influence zone increases. 

Note that the lowest result for Scheme 1 does not mean this Scheme provides the 

closest stratigraphic boundary simulation to the real one, but simply because the three 

boreholes used in this scheme reveals the same borehole information, thus reducing 

the uncertainty of the Markov chain analysis. Therefore, this further highlights the 

importance of the effective design of boreholes based on the influence zone, as 

mentioned above. 

Figure 6.12(c) plots the CDFs for various borehole layout schemes. Note that the 

CDF for each scheme in this figure is estimated based on more MCS samples (i.e., 

10,000) than the ��� and ��� so as to obtain a more accurate and smooth curve. As 

can be seen from the figure, the borehole layout scheme has a significant influence on 

the CDF of FS. The �� of the slope stability presents a similar variation trend with 

respect to the increase of the number of boreholes. For example, the �� for Scheme 2 

is the largest, as can be expected from Figures 6.12(a) and (b). Meanwhile, with the 

uncertainty in the influence zone being decreased by more boreholes, the �� for 

Scheme 2 to 7 decreases accordingly. To sum up, the commonly assumption on DSB 

would overestimate the ��  of the slope stability herein when the soil spatial 

variability is ignored. 

6.5.5 Influence of SBU on slope stability with considering soil spatial variability 

Since soil spatial variability is widely recognized in geotechnical engineering practice, 

this part further investigates how the slope stability changes with different borehole 

layout schemes when the soil spatial variability is considered. Similar to Section 6.5.4, 

MCS is adopted to estimate the FS statistics and �� of the slope for various borehole 

layout schemes. In particular, the FS statistics are estimated based on 4,000 MCS 
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samples, which is deemed appropriate from a similar parameter study to Figure 6.11; 

whereas the ��  is evaluated based on more samples (i.e., 5000), which is also 

reasonably acceptable for the problem herein. The results are plotted in Figure 6.13. 

Note that, as a reference, the corresponding results for DSB and RSB conditions are 

also provided in the figure. In addition, except the seven borehole layout schemes in 

Table 6.2, one more scheme consisting of 17 boreholes (i.e., ZK1-17) is considered 

here in order to capture the convergence rate of the results as increasing the number of 

boreholes, because more uncertainties are involved when spatial soil variability is 

considered. Here, it is worthwhile to point out that the boreholes ZK10-17 are 

successively located in the middle of the eight borehole intervals formed in Scheme 7, 

for example ZK10 is located in the middle of ZK1 and ZK6. In the following, for 

convenience purpose, the added scheme is numbered as Scheme 8.  

Figure 6.13(a) shows the values of ��� for various borehole layout schemes 

when the soil spatial variability is considered. In general, the variation trend of ��� 

with respect to the number of boreholes is very similar to that in Figure 6.12(a) where 

the soil spatial variability is ignored, i.e., ��� does not monotonically change with 

the number of boreholes. Again, the reason mainly lies in the fact that different 

schemes provide different borehole information, which may lead to significantly 

different boundary simulation results. In addition, similar to Figure 6.12(a) and as 

expected, the ��� for Scheme 1 matches very well with that obtained based on the 

DSB condition. The reason is similar to that for Figure 6.12(a) and thus not repeated 

here. It is also observed that the ��� will converge gradually to the correct answer 

obtained based on the RSB case when the number of boreholes increases. For 

example, the relative error of the estimated result decreases from 4.74% to 0.77% 

when the number of boreholes increases from 3 to 17. This can be expected, as more 

boreholes being used in the conditional Markov chain analysis will finally lead to 

more similar boundary simulations to the RSB. However, unlike Figure 6.12(a), more 

boreholes in the influence zone would not always increase the accuracy of the 

estimation of ���, although the convergence trend of ���  to the correct answer can 
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be captured with increasing the borehole numbers. For example, the ��� decreases 

from 1.164 to 1.157 when the scheme is transferred from Scheme 6 to Scheme 7. The 

possible reasons may be two-fold: (1) The soil spatial variability can increase the 

negative effect of boreholes outside the influence zone on the FS here; (2) The 

negative effect brought by the boreholes outside the influence zone cannot be 

balanced out by the positive effect by the boreholes added in the influence zone, when 

the ratio of the number of boreholes added in the influence zone to that of the original 

boreholes in the influence zone is relatively small. Actually, similar observations can 

also be tracked in the work reported by Deng et al. (2017). Furthermore, for schemes 

with the same number of boreholes but different borehole distributions (e.g., Scheme 

2 and Scheme 3, Scheme 5 and Scheme 6), the results are significantly different 

because the borehole location also plays an important influence on the slope stability 

results.  

Figures 6.13(b) and (c) show the ���  and ��  for various borehole layout 

schemes when the soil spatial variability is considered. As seen from the figures, 

similar findings to ��� are observed, that is the increasement in borehole number 

dose not ensure a monotonically decrease of ��� and ��. Possible reason may be that 

the added boreholes introduce new boundary states, suggesting an increasement in the 

SBU. This can be readily understood from Table 6.2 and Figure 6.7. However, it can 

be observed and expected that the ��� and �� can generally converge to the correct 

answers as increasing the number of boreholes. This is because more boreholes being 

used in the conditional Markov chain analysis will finally lead to more similar 

boundary simulations to the RSB. In addition, when all the conditional boreholes 

provide the same information (i.e., Scheme 1), the corresponding results are nearly the 

same with those provided based on DSB. Again, this is expected, as the simulated 

boundary will be very similar with the DSB, as shown in Figure 6.10(a). To conclude, 

both the borehole number and location influence the stability of the slope, and 

particularly the boreholes in the influence zone are very important for accurately 

assessing the stability of the slope. Meanwhile, the common assumption on DSB 
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would overestimate the ��  of the slope stability herein when the soil spatial 

variability is considered. However, the spatial variation of soil properties is 

considered with a fixed degree of uncertainty (i.e., the SOFs are predefined), so it is 

natural to question how the relative error of the ��  estimated based on DSB 

compared with the �� obtained based on RSB changes with different degrees of soil 

spatial variability, as will be studied later. 

6.5.6 Influence of soil spatial variability on the assessment of �� estimated based 

on DSB 

Figure 6.14 compares the results of the �� estimated based on DSB and RSB as 

increasing the vertical SOF ��. The comparative results represented by relative error 

are also plotted in the figure. Note that only the influence of the vertical SOF is 

considered here because previous studies have shown that the horizontal SOF has 

little influence on the slope reliability results (e.g, Li et al. 2015a). As seen from the 

figure, the results estimated for both the two conditions increase with the increase of 

��. This is expected and is similar to those reported in the literature (e.g., Li et al. 

2015a). In addition, it is observed that the ��  estimated based on DSB is 

significantly overestimated, because the underlying SBU is underestimated. However, 

such difference shows a decreasing trend with the ��. For example, the difference 

decreases from approximately 90% to about 46% when �� increases from 1 m to 6 m. 

The reason is that the soil spatial variability is substantially reduced when �� 

increases from 1 m to 6 m. Nevertheless, the difference is unacceptably large, which 

may result in significantly different design outputs in engineering practice. 

Furthermore, compared with the effect of the system SBU in Chapter 5, the inherent 

SBU is far more important to be considered in slope reliability analysis. 

6.6 Conclusions 

This chapter investigates the influence of the inherent SBU on slope reliability 

analysis using the one-dimensional conditional Markov chain model and MCS. A 
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modified TPM estimation method is proposed. Detailed procedure for implementing 

the proposed approach on commonly used commercial software (e.g., ABAQUS and 

MATLAB) is described. Finally, the approach is illustrated and validated by a 

hypothetical slope example characterized by different degrees of SBU and soil spatial 

variability. The following conclusions can be made from this chapter as: 

1. Slope stability evaluated based on different stratigraphic boundary conditions 

can be significantly different in terms of the FS value and location of the critical slip 

surface. 

2. Different borehole layout schemes may provide significantly different 

stratigraphic boundary states information, thus bringing different degrees of 

uncertainty. The one-dimensional conditional Markov chain model can well simulate 

the stratigraphic boundary based on some given boreholes. The modified TPM 

estimation method is demonstrated to be effective when the TPM of soil transitions in 

reality is strongly diagonally dominant. 

3. Both the location and number of boreholes have significant influence on the 

stratigraphic boundary simulation. Whether the soil spatial variability is neglected or 

not, the FS statistics and �� do not increase or decrease with the borehole number, 

because there is an influence zone in the slope body and the boreholes located in this 

zone play a dominant role in the stability of the slope. However, the FS statistics and 

�� can converge to the correct results if more and more boreholes are drilled. 

4. When the soil spatial variability is neglected, it seems that the FS statistics 

and �� can be more and more accurate as increasing the number of boreholes in the 

influence zone. In contrast, the increase of the number of boreholes in the influence 

zone may not ensure a more accurate result when the soil spatial variability is 

considered.  

5. Conventional reliability analysis with an implicit assumption of DSB 
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condition may overestimate the slope reliability. The difference between the DSB and 

RSB decreases with the increase of the vertical scale of fluctuation.  

6. Compared with the effect of the system SBU in Chapter 5, the inherent SBU 

is far more important to be considered in slope reliability analysis.  
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Table 6.1 Statistics of soil parameters 

Soil layer Statistics c (kPa) φ (°) γ (kN/m3) E (Mpa) υ 

Clay Mean 18 30 20 30 0.3 

COV 0.3 0.2 ‒ ‒ ‒ 

ρcφ 0 ‒ ‒ ‒ 

SOF �� = 40	m, �� = 4	m ‒ ‒ ‒ 

Sand Mean 2 20 20 50 0.3 

COV 0.3 0.2 ‒ ‒ ‒ 

ρcφ 0 ‒ ‒ ‒ 

SOF �� = 40	m, �� = 4	m ‒ ‒ ‒ 

 

Table 6.2 Borehole layout schemes 

Scheme 

No. 

Borehole 

number 
ZK1 ZK6 ZK4 ZK7 ZK2 ZK8 ZK5 ZK9 ZK3 

1 3 √    √    √ 

2 4 √  √  √    √ 

3 4 √    √  √  √ 

4 5 √  √  √  √  √ 

5 7 √ √ √ √ √  √  √ 

6 7 √  √  √ √ √ √ √ 

7 9 √ √ √ √ √ √ √ √ √ 
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Figure 6.1 Schematic illustration of one-dimensional conditional Markov chain. (For 

interpretation of color description in this figure, please refer to the web version of this 

thesis.) 

 

Figure 6.2 Borehole information used for TPM estimation 

 

Figure 6.3 Strategies for incorporating spatial soil variability into ABAQUS 



 

165 

 

Figure 6.4 Flow chart of the proposed approach 
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Figure 6.5 Geometry of the studied slope 
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(a) Deterministic stratigraphic boundary (DSB), FS=1.163 

 

(b) RSB, FS=1.248 

Figure 6.6 Slope stability results based on FEM 

 

Figure 6.7 Borehole locations and random field element size 
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Figure 6.8 Variation of �� with respect to different ��� values 

 

Figure 6.9 Comparison of the predefined and estimated ��� values for various 

schemes 
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Figure 6.10 Simulated most probable stratigraphic boundaries based on different 

borehole layout schemes 

 

Figure 6.11 Convergence of FS statistics for Scheme 2 with the number of MCS 

samples 
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(a) ��� 

 

(b) ��� 
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(c) CDF 

Figure 6.12 FS statistics for various borehole layout schemes without considering soil 

spatial variability 

 

(a) ��� 
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(b) ��� 

 

(c) �� 

Figure 6.13 FS statistics and �� for various borehole layout schemes with 

considering soil spatial variability 
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Figure 6.14 Variation of �� with respect to the soil spatial variability 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORKS 

7.1 Conclusions 

This thesis aims at proposing an efficient approach for slope reliability analysis by 

considering the soil spatial variability and incorporating borehole/measurement data 

(i.e., conditional information) into slope reliability analysis. In particular, this work 

has mainly contributed to: (1) proposing an efficient approach for system reliability 

analysis of slopes in spatially variable soils; (2) performing conditional random field 

reliability analysis to investigate the effect of borehole data from site investigation 

and the effect of different layouts of cored samples on slope reliability; (3) 

investigating the effects of the system SBU on the system reliability and risk of a 

layered slope in spatially variable soils; (4) incorporating the inherent SBU into the 

reliability analysis of slopes in spatially variable soils using one-dimensional 

conditional Markov chain model, so as to investigate the influence of different 

borehole layout schemes on slope reliability analysis with and without considering the 

spatial soil variability. Based upon these studies, the major contributions and 

conclusions of this thesis are summarized as follows: 

1. A simplified framework based on multiple response surface method (MRSM) 

and Monte Carlo simulation (MCS) for efficient system reliability analysis of slopes 

in spatially variable soils is proposed. The proposed simplified framework can well 

deal with slope reliability analysis in spatially variable soils, providing sound results 

that are comparable with those by MCS and reported in the literature. It is robust 

against changes of various cross-correlations, COVs and ACDs. Meanwhile, the 

proposed framework is much more efficient than direct MCS, especially for reliability 

problems with low probability levels (e.g., �� ≤ 10��). However, compared with 

MRSM, its relative efficiency is case dependent. For the slope where the number of 
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random field elements is relatively large and more than one type of shear strength is 

dealt with, the proposed framework is much more efficient; otherwise, it is less 

efficient. Nevertheless, the proposed framework offers a useful strategy for 

performing system reliability analysis of slopes where the spatially varied soil 

properties are considered. 

2. The conditional random field can effectively reduce the simulation variance 

of the underlying random fields if the Kriging method can accurately reflect the 

spatial variation of the soil properties based on a specific amount of known data; 

otherwise, the established conditional random fields are of no practical significance. 

The realization of a CRF is heavily relied on the ratio of the sample distance to the 

ACD. It is found in this study that the random fields can be accurately simulated when 

the ratios in the horizontal and vertical direction are less than or equal to 1 and 3, 

respectively. A smaller ratio of the sample distance to the ACD would provide a better 

simulation result. 

3. The variation of the FS obtained by the conditional random field simulation 

increase with the cross-correlation coefficients, the COVs of the soil properties, and 

decrease with the ACDs. Of great importance is the fact that the variation of the FS 

obtained by the conditional random field simulation is smaller than that obtained by 

the unconditional random field simulation. Furthermore, the spatial variation of the 

critical slip surface is also narrower when conditional random fields are considered. 

4. The failure probabilities can be reduced significantly by the CRF simulation. 

In general, the probabilities of failure follow similar trends as the results obtained by 

the unconditional random field simulation with respect to the cross-correlation 

coefficients and the COVs of the soil properties. However, the probabilities of failure 

present inverse trends with respect to the ACDs, suggesting that the conditional 

random field simulation is of significant benefit at relatively large ACDs. 

5. The location of the stratigraphic boundary plays an important role in 
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identifying the slope failure mechanism. Although it may not influence the FS value 

of the slope too much, different stratigraphic boundary locations would give rise to 

significantly different failure modes or consequences and thus affect risk assessment. 

For different safety levels, the average sliding mass estimated based on traditional 

DSB analysis is much larger than the average sliding mass estimated by SSB analysis, 

suggesting that the traditional DSB analysis might overestimate slope failure 

consequences, thereby affecting the decision makers to propose reasonable and 

economical prevention measures in engineering practice. 

6. A difference generally exists between slope failure probabilities obtained 

from the DSB and SSB. The failure probabilities are not always underestimated or 

overestimated for different cross-correlation coefficients, COVs and SOFs, except for 

the considered range of the vertical SOFs, where the results estimated based on DSB 

are always underestimated. However, the difference between slope failure 

probabilities obtained from DSB and SSB conditions are generally small for different 

statistics, except at small values of COVφ. In contrast, the difference in slope failure 

risks estimated based on DSB and SSB is relatively larger than the difference in slope 

failure probabilities. The risks estimated based on DSB are overestimated for different 

statistics, except at small values of COVφ, where the results are underestimated. 

7. Both the location and number of boreholes have significant influence on the 

stratigraphic boundary simulation. Whether the soil spatial variability is neglected or 

not, the FS statistics and �� do not increase or decrease with the borehole number, 

because there is an influence zone in the slope body and the boreholes located in this 

zone play a dominant role in the stability of the slope. However, the FS statistics and 

�� can converge to the correct results if more and more boreholes are drilled. When 

the soil spatial variability is neglected, it seems that the FS statistics and �� can be 

more and more accurate as increasing the number of boreholes in the influence zone. 

In contrast, the increase of the number of boreholes in the influence zone may not 

ensure a more accurate result when the soil spatial variability is considered. 
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Conventional reliability analysis with an implicit assumption of DSB condition may 

overestimate the slope reliability. The difference between the DSB and RSB decreases 

with the increase of the vertical SOF.  

8. Compared with the effect of the system SBU, the inherent SBU is far more 

important to be considered in slope reliability analysis. 

7.2 Recommendations for future works 

Although some progress has been made in developing efficient reliability analysis 

approaches for slope stability analysis in spatially variable soils and studying the 

effect of borehole/measurement data on slope reliability in the present work, there are 

still some limitations and rooms for further improvement. They are listed as follows: 

1. Although the proposed simplified approach in Chapter 1 can deal with more 

than one type of shear strength parameter and has been demonstrated effective and 

efficient, it is only suitable for simple slopes, for example the nominally 

homogeneous slopes. In addition, the influence of variance reduction factor has not 

been investigated. Thereafter, future work should be directed to efficient reliability 

analysis of complicated slopes with more soil layers and more types of strengths, and 

to study the influence of the variance reduction factor. 

2. The effect of conditional random fields is investigated only for a hypothetical 

homogeneous cohesion-frictional slope in Chapter 2 because the computational 

demand increases sharply when heterogeneous slopes are considered. Although SS 

can enhance the simulation efficiency to some extent, it still requires several 

thousands of evaluations of the deterministic stability model. In addition, the current 

conditional information focuses only on a specific number of samples and does not 

consider practical borehole layouts. Hence, further research is required to study the 

influence of borehole locations on the practical slope reliability, therein employing 

more advanced probabilistic approaches. 
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3. The system SBU is modeled by a discrete random variable model, which is 

relatively simple. In addition, for simplicity and convenience purposes, the admissible 

error of the stratigraphic boundary location is slightly large, which may not be the 

case in real engineering projects. Hence, the effect of different models on the 

simulation of the system SBU should be considered in the future study while keeping 

the error of the stratigraphic boundary location to a reasonably acceptable range. This 

underlines the need for much finer discretization of the random field elements and 

more efficient reliability analysis approach to be adopted. 

4. Although the effect of the system SBU on slope reliability has been 

successfully investigated in Chapter 6, the slope example used to illustrate the effect 

of the system SBU on slope reliability is hypothetical and the slope size is relatively 

small. In engineering practice, the borehole density would not be as dense as used 

herein. Collecting real borehole data for real slopes in geotechnical practice to identify 

characterize the system SBU is reserved for further study. In addition, the question of 

which kind of uncertainty is more important remains to be answered. 

5. The reliability analysis conditioned on some known soil properties and that 

conditioned on real stratigraphic boundary from site investigation data are separately 

considered in this study, which is a kind of simplification. In reality, the soil properties 

and the stratigraphic information can be obtained simultaneously from site 

investigation. Therefore, it is suggested that future study consider different kinds of 

conditional information simultaneously so as to reflect the reality as closely as 

possible. 

6. In the present study, only two-dimensional slope stability problems have been 

studied, whereas the influence of three-dimensional soil spatial variability on the 

slope reliability and slope failure mechanism has been neglected. In fact, due to the 

assumption of the plain strain on two-dimensional slope stability model, the failure 

probability estimated at this situation would be underestimated, which would finally 

lead to conservative assessment of the real performance of the slope. Hence, it is of 
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more practical significance to explore the influence of three-dimensional soil spatial 

variability on the slope stability. 

7. The slopes studied herein are simple, thus the proposed approaches cannot be 

directly applied to the slopes reinforced with soil nails or piles. However, it is more 

important to employ reliability-based approaches to evaluate the performance of those 

reinforced slopes. Hence, study on reliability analysis of reinforced slopes while 

considering conditional measurement data is also a meaningful research topic. 

 

 

 

  



 

181 

REFERENCES 

Al-Bittar T, Soubra AH (2013) Bearing capacity of strip footings on spatially random 

soils using sparse polynomial chaos expansion. Int J Numer Anal Meth 

Geomech 37: 2039-2060 

Ang AH-S, Tang WH (2007) Probability concepts in engineering: emphasis on 

applications to civil and environmental. Wiley, New York 

Ang AHS, Tang WH (1984) Probability concepts in engineering planning and design: 

design, risk and reliability, vol. 2. Wiley, New York 

Angelikopoulos P, Papadimitriou C, Koumoutsakos P (2015) X-TMCMC: Adaptive 

kriging for Bayesian inverse modeling. Comput Method Appl M 289: 409-428 

Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions 

by subset simulation. Probabilistic Eng Mech 16(4): 263-277 

Au SK, Beck JL (2003) Subset Simulation and its Application to Seismic Risk Based 

on Dynamic Analysis. J Eng Mech 129(8): 901-917 

Au SK, Cao ZJ, Wang Y (2010) Implementing advanced Monte Carlo simulation 

under spreadsheet environment. Struct Saf 32(5): 281-292 

Au SK, Ching J, Beck JL (2007) Application of subset simulation methods to 

reliability benchmark problems. Struct Saf 29(3): 183-193 

Au SK, Wang Y (2014) Engineering risk assessment with subset simulation John 

Wiley & Sons, Singapore 

Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for 

structral reliability problems. Struct Saf 7(1): 57-66 



 

182 

Cadini F, Santos F, Zio E (2014) An improved adaptive kriging-based importance 

technique for sampling multiple failure regions of low probability. Reliab Eng 

Syst Saf 131: 109-117 

Cafaro F, Cherubini C (2002) Large sample spacing in evaluation of vertical strength 

variability of clayey soil. J Geotech Geoenviron Eng 128(7): 558-568 

Cai JS, Yan EC, Yeh TCJ, Zha YY, Liang Y, Huang SY, Wang WK, Wen JC (2017) 

Effect of spatial variability of shear strength on reliability of infinite slopes 

using analytical approach. Comput Geotech 81: 77-86 

Cheng Q, Luo SX, Gao XQ (2000) Analysis and discuss of calculation of scale of 

fluctuation using correlation function method. Chin J Rock Soil Mech 21(3): 

281-283 

Cheng YM, Lansivaara T, Wei WB (2007) Two-dimensional slope stability analysis 

by limit equilibrium and strength reduction methods. Comput Geotech 34(3): 

137-150 

Ching J, Phoon KK (2013) Effect of element sizes in random field finite element 

simulations of soil shear strength. Comput Struct 126: 120-134 

Ching JY, Phoon KK, Hu YG (2009) Efficient evaluation of reliability for slopes with 

circular slip surfaces using importances sampling. J Geotech Geoenviron Eng 

135(6): 758-777 

Cho SE (2007) Effects of spatial variability of soil properties on slope stability. Eng 

Geol 92(3-4): 97-109 

Cho SE (2009) Probabilistic stability analyses of slopes using the ANN-based 

response surface. Comput Geotech 36(5): 787-797 

Cho SE (2010) Probabilistic assessment of slope stability that considers the spatial 



 

183 

variability of soil properties. J Geotech Geoenviron Eng 136(7): 975-984 

Cho SE (2012) Probabilistic analysis of seepage that considers the spatial variability 

of permeability for an embankment on soil foundation. Eng Geol 133-134: 

30-39 

Cho SE (2013) First-order reliability analysis of slope considering multiple failure 

modes. Eng Geol 154: 98-105 

Cho SE (2014) Probabilistic stability analysis of rainfall-induced landslides 

considering spatial variability of permeability. Eng Geol 171: 11-20 

Cho SE, Park HC (2010) Effect of spatial variability of cross-correlated soil properties 

on bearing capacity of strip footing. Int J Numer Anal Meth Geomech 34: 1-26 

Chowdhury RN, Xu DW (1994) Slope system reliability with general slip surfaces. 

Soils Found 34(3): 99-105 

Chowdhury RN, Xu DW (1995) Geotechnical system reliability of slopes. Reliab Eng 

Syst Saf 47(3): 141-151 

Christian JT, Ladd CC, Baecher GB (1994) Reliability applied to slope stability 

analysis. J Geotech Eng 120(12): 2180-2207 

Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an 

overview. Eng Geol 64: 65-87 

Dasaka SM, Zhang LM (2012) Spatial variability of in situ weathered soil. 

Géotechnique 62(5): 375-384 

Deng ZP, Li DQ, Qi XH, Cao ZJ, Phoon KK (2017) Reliability evaluation of slope 

considering geological uncertainty and inherent variability of soil parameters. 

Comput Geotech 92: 121-131 



 

184 

Deutsch CV, Journel AG (1992) GSLIB: Geostatistics Software Library and user's 

guide. Oxford Univ., New York 

Dithinde M, Phoon K-K, Ching J, Zhang L, Retief JV (2016a) Chapter 5 Statistical 

characterization of model uncertainty. Reliability of Geotechnical Structures in 

ISO2394, CRC Press/Balkema, pp 127-158 

Dithinde M, Phoon KK, Ching J, Zhang LM, Retief JV (2016b) Reliability of 

Geotechnical Structures in ISO2394. In: Phoon KK and Retief JV (eds) 

Reliability of Geotechnical Structures in ISO2394, CRC Press, Balkema,  

Ditlevsen O (1979) Narrow reliability bounds for structural systems. Mech Based Des 

Struc 7(4): 453-472 

Echard B, Gayton N, Lemaire M, Relun N (2013) A combined Importance Sampling 

and Kriging reliability method for small failure probabilities with 

time-demanding numerical models. Reliab Eng Syst Saf 111: 232-240 

El-Ramly H, Morgenstern NR, Cruden DM (2002) Probabilistic slope stability 

analysis for practice. Can Geotech J 39(3): 665-683 

Elfeki A, Dekking M (2001) A Markov Chain Model for Subsurface Characterization: 

Theory and Applications. Math Geol 33(5): 569-589 

Elfeki AMM, Dekking FM (2005) Modelling Subsurface Heterogeneity by Coupled 

Markov Chains: Directional Dependency, Walther’s Law and Entropy. Geotech 

Geol Eng 23(6): 721-756 

Fenton GA (2007) Probabilistic Methods in Geotechnical Engineering. In: Griffiths 

DV and Fenton GA (eds) Data analysis/geostatistics, Springer, New York, pp 

51-73 

Fenton GA, Griffiths DV (2003) Bearing-capacity prediction of spatially random c-φ 



 

185 

soils. Can Geotech J 40(1): 54-65 

Fenton GA, Griffiths DV (2005) A slope stability reliability model. Ontario, London,  

Fenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, 

New York 

Fenton GA, Vanmarcke EH (1990) Simulation of random fields via local average 

subdivision. J Eng Mech 116(8): 1733-1749 

Fuglstad GA, Simpson D, Lindgren F, Rue H (2014) Does non-stationary spatial data 

always require non-stationary random fields? Spat Stat 14: 505-531 

Gong WP, Juang CH, Martin JR, Ching JY (2015) New Sampling Method and 

Procedures for Estimating Failure Probability. J Eng Mech, 10.1061/:  

Griffiths DV, Fenton GA (1993) Seepage beneath water retaining structures founded 

on spatially random soil. Géotechnique 43(4): 577-587 

Griffiths DV, Fenton GA (2001) Bearing capacity of spatially random soil-the 

undrained clay Prandtl problem revisited. Géotechnique 51(4): 351-359 

Griffiths DV, Fenton GA (2004) Probabilistic slope stability analysis by finite 

elements. J Geotech Geoenviron Eng 130(5): 507-518 

Griffiths DV, Huang J, Fenton GA (2009) Influence of spatial variability on slope 

reliability using 2-D random fields. J Geotech Geoenviron Eng 135(10): 

1367-1378 

Griffiths DV, Huang J, Fenton GA (2011) Probabilistic infinite slope analysis. Comput 

Geotech 38(4): 577-584 

Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. 



 

186 

Géotechnique 49(3): 387-403 

Griffiths DV, Yu X (2015) Another look at the stability of slopes with linearly 

increasing undrained strength. Géotechnique 65(10): 824-830 

Hasofer A, Lind N (1974) Exact and invariant second moment code format. J Eng 

Mech 100: 194-208 

Henderson CR (1975) Best linear unbiased estimation and prediction under a 

selection model. Biometrics 31(2): 423-447 

Hicks MA, Chen J, Spencer WA (2008) Influence of spatial variability on 3D slope 

failures. In Sixth International Conference on Computer Simulation Risk 

Analysis and Hazard Mitigation,  

Hicks MA, Nuttall JD, Chen J (2014) Influence of heterogeneity on 3D slope 

reliability and failure consequence. Comput Geotech 61: 198-208 

Hicks MA, Spencer WA (2010) Influence of heterogeneity on the reliability and 

failure of a long 3D slope. Comput Geotech 37(7-8): 948-955 

Hsu SC, Nelson PP (2006) Material spatial variability and slope stability for weak 

rock masses. Journal of Geotechnical and Geoenvironmental Engineering 132(2): 

183-193 

Huang J, Fenton G, Griffiths DV, Li D, Zhou C (2016) On the efficient estimation of 

small failure probability in slopes. Landslides 14(2): 491-498 

Huang J, Fenton G, Griffiths DV, Li D, Zhou C (2017) On the efficient estimation of 

small failure probability in slopes. Landslides 14(2): 491-498 

Huang J, Griffiths DV (2015) Determining an appropriate finite element size for 

modelling the strength of undrained random soils. Comput Geotech 69: 506-513 



 

187 

Huang J, Griffiths DV, Fenton GA (2010) System reliability of slopes by RFEM. Soils 

Found 50(3): 343-353 

Huang J, Lyamin AV, Griffiths DV, Krabbenhoft K, Sloan SW (2013) Quantitative risk 

assessment of landslide by limit analysis and random fields. Comput Geotech 53: 

60-67 

Huang SP, Quek ST, Phoon KK (2001) Convergence study of the truncated 

Karhunen–Loeve expansion for simulation of stochastic processes. Int J Numer 

Meth Eng 52(9): 1029-1043 

Isukapalli SS, Roy A, Georgopoulos PG (1998) Stochastic response surface methods 

for uncertainty propagation: application to environmental and biological systems. 

Risk Anal 18(3): 351-363 

Javankhoshdel S, Bathurst RJ (2014) Simplified probabilistic slope stability design 

charts for cohesive and cohesive-frictional (c-ϕ) soils. Can Geotech J 51(9): 

1033-1045 

Jha SK, Ching JY (2013) Simplified reliability method for spatially variable 

undrained engineered slopes. Soils Found 53(5): 708-719 

Ji J (2013) Reliability analysis of earth slopes accounting for spatial variation. PhD 

Thesis, Nanyang Technological University 

Ji J, Liao HJ, Low BK (2012) Modeling 2-D spatial variation in slope reliability 

analysis using interpolated autocorrelations. Comput Geotech 40: 135-146 

Ji J, Low BK (2012) Stratified response surfaces for system probabilistic evaluation 

of slopes. J Geotech Geoenviron Eng 138(11): 1398-1406 

Ji J, Zhang C, Gao Y, Kodikara J (2017) Effect of 2D spatial variability on slope 

reliability: a simplified FORM analysis. Geosci Front, 



 

188 

10.1016/j.gsf.2017.08.004:  

Jiang SH, Huang J, Yao C, Yang J (2017) Quantitative risk assessment of slope failure 

in 2-D spatially variable soils by limit equilibrium method. Appl Math Model 47: 

710-725 

Jiang SH, Huang JS (2016) Efficient slope reliability analysis at low-probability 

levels in spatially variable soils. Comput Geotech 75: 18-27 

Jiang SH, Li DQ, Cao ZJ, Zhou CB, Phoon KK (2015) Efficient system reliability 

analysis of slope stability in spatially variable soils using Monte Carlo 

simulation. J Geotech Geoenviron Eng 141(2): 04014096 

Jiang SH, Li DQ, Zhang LM, Zhou CB (2014a) Slope reliability analysis considering 

spatially variable shear strength parameters using a non-intrusive stochastic 

finite element method. Eng Geol 168: 120-128 

Jiang SH, Li DQ, Zhou CB, Phoon KK (2014b) Slope reliability analysis considering 

effect of autocorrelation functions Chin J Geotech Eng 36(3): 508-518 

Jimenez-Rodriguez R, Sitar N, Chacón J (2006) System reliability approach to rock 

slope stability. Int J Rock Mech Min Sci 43(6): 847-859 

Johari A, Khodaparast AR (2015) Analytical stochastic analysis of seismic stability of 

infinite slope. Soil Dyn Earthquake Eng 79: 17-21 

Johari A, Lari AM (2016) System reliability analysis of rock wedge stability 

considering correlated failure modes using sequential compounding method. Int 

J Rock Mech Min Sci 82: 61-70 

Kang F, Han S, Salgado R, Li J (2015) System probabilistic stability analysis of soil 

slopes using Gaussian process regression with Latin hypercube sampling. 

Comput Geotech 63: 13-25 



 

189 

Kang F, Li J (2016) Artificial Bee Colony Algorithm Optimized Support Vector 

Regression for System Reliability Analysis of Slopes. J Comput Civ Eng 30(3): 

04015040 

Kang F, Xu Q, Li J (2016) Slope reliability analysis using surrogate models via new 

support vector machines with swarm intelligence. Appl Math Model 40(11-12): 

6105-6120 

Kim JM, Sitar N (2013) Reliability approach to slope stability analysis with spatially 

correlated soil properties. Soils Found 53(1): 1-10 

Krahn J (2006) The limitations of the strength reduction approach. GEO-SLOPE | 

Direct Contact, GEO-SLOPE International Ltd., Calgary, Alberta, Canada  

Laloy E, Rogiers B, Vrugt JA, Mallants D, Jacques D (2013) Efficient posterior 

exploration of a high-dimensional groundwater model from two-stage Markov 

chain Monte Carlo simulation and polynomial chaos expansion. Water Resour 

Res 49(5): 2664-2682 

Li D, Chen Y, Lu W, Zhou C (2011a) Stochastic response surface method for 

reliability analysis of rock slopes involving correlated non-normal variables. 

Comput Geotech 38(1): 58-68 

Li DQ, Jiang SH, Cao ZJ, Zhou W, Zhou CB, Zhang LM (2015a) A multiple 

response-surface method for slope reliability analysis considering spatial 

variability of soil properties. Eng Geol 187: 60-72 

Li DQ, Jiang SH, Chen YF, Zhou CB (2011b) System reliability analysis of rock slope 

stability involving correlated failure modes. KSCE J Civ Eng 15(8): 1349-1359 

Li DQ, Qi XH, Cao ZJ, Tang XS, Phoon KK, Zhou CB (2016a) Evaluating slope 

stability uncertainty using coupled Markov chain. Comput Geotech 73: 72-82 



 

190 

Li DQ, Qi XH, Phoon KK, Zhang LM, Zhou CB (2014) Effect of spatially variable 

shear strength parameters with linearly increasing mean trend on reliability of 

infinite slopes. Struct Saf 49: 45-55 

Li DQ, Shao KB, Cao ZJ, Tang XS, Phoon KK (2016b) A generalized surrogate 

response aided-subset simulation approach for efficient geotechnical 

reliability-based design. Comput Geotech 74: 88-101 

Li DQ, Tang XS, Phoon KK (2015b) Bootstrap method for characterizing the effect of 

uncertainty in shear strength parameters on slope reliability. Reliab Eng Syst Saf 

140: 99-106 

Li DQ, Xiao T, Cao ZJ, Zhou CB, Zhang LM (2016c) Enhancement of random finite 

element method in reliability analysis and risk assessment of soil slopes using 

Subset Simulation. Landslides 13: 293-303 

Li DQ, Zheng D, Cao ZJ, Tang XS, Phoon KK (2016d) Response surface methods for 

slope reliability analysis: Review and comparison. Eng Geol 203: 3-14 

Li HS, Ma YZ, Cao ZJ (2015c) A generalized Subset Simulation approach for 

estimating small failure probabilities of multiple stochastic responses. Comput 

Struct 153: 239-251 

Li J, Cassidy MJ, Huang J, Zhang L, Kelly R (2016e) Probabilistic identification of 

soil stratification. Géotechnique 66(1): 16-26 

Li KS, Lumb P (1987) Probabilistic design of slopes. Can Geotech J 24(4): 520-535 

Li L, Chu X (2016) Risk assessment of slope failure by representative slip surfaces 

and response surface function. KSCE J Civ Eng 20(5): 1783-1792 

Li L, Chu XS (2015) Multiple response surfaces for slope reliability analysis. Int J 

Numer Anal Meth Geomech 39(2): 175-192 



 

191 

Li XY, Zhang LM, Gao L, Zhu H (2017) Simplified slope reliability analysis 

considering spatial soil variability. Eng Geol 216: 90-97 

Li XY, Zhang LM, Li JH (2015d) Using conditioned random field to characterize the 

variability of geologic profiles. J Geotech Geoenviron Eng, 

10.1061/(asce)gt.1943-5606.0001428: 04015096 

Liu L, Cheng Y, Wang X (2017a) Genetic algorithm optimized Taylor Kriging 

surrogate model for system reliability analysis of soil slopes. Landslides 14: 

535-546 

Liu LL, Cheng YM (2016) Efficient system reliability analysis of soil slopes using 

multivariate adaptive regression splines-based Monte Carlo simulation. Comput 

Geotech 79: 41-54 

Liu LL, Cheng YM, Jiang SH, Zhang SH, Wang XM, Wu ZH (2017b) Effects of 

spatial autocorrelation structure of permeability on seepage through an 

embankment on a soil foundation. Comput Geotech 87: 62-75 

Liu LL, Cheng YM, Wang XM, Zhang SH, Wu ZH (2017c) System reliability 

analysis and risk assessment of a layered slope in spatially variable soils 

considering stratigraphic boundary uncertainty. Comput Geotech 89: 213-225 

Liu LL, Cheng YM, Zhang SH (2017d) Conditional random field reliability analysis 

of a cohesion-frictional slope. Comput Geotech 82: 173-186 

Lloret-Cabot M, Fenton GA, Hicks MA (2014) On the estimation of scale of 

fluctuation in geostatistics. Georisk 8(2): 129-140 

Lloret-Cabot M, Hicks MA, van den Eijnden AP (2012) Investigation of the reduction 

in uncertainty due to soil variability when conditioning a random field using 

Kriging. Geotech Lett 2(3): 123-127 



 

192 

Low BK (2003) Practical probabilistic slope stability analysis. 12th Panamerican 

conference on soil mechanics and geotechnical engineering and 39th US rock 

mechanics symposium, MIT, Cambridge, Massachusetts,  

Low BK (2007) Reliability analysis of rock slopes involving correlated nonnormals. 

Int J Rock Mech Min Sci 44(6): 922-935 

Low BK (2014) FORM, SORM, and spatial modeling in geotechnical engineering. 

Struct Saf 49: 56-64 

Low BK, Gilbert RB, Wright SG (1998) Slope reliability analysis using generalized 

method of slices. J Geotech Geoenviron Eng 124(4): 350-362 

Low BK, Lacasse S, Nadim F (2015) Slope reliability analysis accounting for spatial 

variation. Georisk 1(4): 177-189 

Low BK, Tang WH (2007) Efficient spreadsheet algorithm for first-order reliability 

method. J Eng Mech 133(12): 1378-1387 

Lu ZM, Zhang DX (2007) Stochastic simulations for flow in nonstationary randomly 

heterogeneous porous media using a KL-based moment-equation approach. 

Multiscale Model Sim 6(1): 228-245 

Luo XF, Cheng T, Li X, Zhou J (2012a) Slope safety factor search strategy for 

multiple sample points for reliability analysis. Eng Geol 129-130: 27-37 

Luo XF, Li X, Zhou J, Cheng T (2012b) A Kriging-based hybrid optimization 

algorithm for slope reliability analysis. Struct Saf 34(1): 401-406 

Luo Z, Atamturktur S, Cai Y, Juang CH (2012c) Simplified Approach for 

Reliability-Based Design against Basal-Heave Failure in Braced Excavations 

Considering Spatial Effect. J Geotech Geoenviron Eng 138(4): 441-450 



 

193 

Luo Z, Atamturktur S, Juang CH, Huang HW, Lin PS (2011) Probability of 

serviceability failure in a braced excavation in a spatially random field: Fuzzy 

finite element approach. Comput Geotech 38: 1031–1040 

Mari DD, Kozt S (2001) Correlation and dependence. Imperial College Press, UK 

Mašín D (2015) The influence of experimental and sampling uncertainties on the 

probability of unsatisfactory performance in geotechnical applications. 

Géotechnique 65(11): 897-910 

Metya S, Bhattacharya G (2015) Reliability Analysis of Earth Slopes Considering 

Spatial Variability. Geotechnical and Geological Engineering 34(1): 103-123 

Namikawa T (2016) Conditional Probabilistic Analysis of Cement-Treated Soil 

Column Strength. Int J Geomech 16(1): 04015021 

Nataf A (1962) Détermination des distributions de probabilités dont les marges sont 

données. Comptes Rendus de l' Académie des Sciences 225: 42-43 

Oka Y, Wu TH (1990) System reliability of slope stability. Journal of Getechnical 

Engineering 116(8): 1185-1189 

Pan Q, Dias D (2017) Probabilistic evaluation of tunnel face stability in spatially 

random soils using sparse polynomial chaos expansion with global sensitivity 

analysis. Acta Geotechnica 12(6): 1415-1429 

Pan Q, Jiang Y-J, Dias D (2017) Probabilistic stability analysis of a three-dimensional 

rock slope characterized by the Hoek-Brown failure Criterion. J Comput Civ 

Eng 31(5): 04017046 

Pantelidis L, Gravanis E, Griffiths DV (2015) Influence of spatial variability on rock 

slope reliability using 1-D random fields. 10.1007/978-3-319-09057-3_216: 

1235-1238 



 

194 

Peng M, Li XY, Li DQ, Jiang SH, Zhang LM (2014) Slope safety evaluation by 

integrating multi-source monitoring information. Struct Saf 49: 65-74 

Phoon KK, Ching J (2014) Risk and reliability in geotechnical engineering. CRC 

Press, Boca Raton 

Phoon KK, Huang SP, Quek ST (2002) Implementation of Karhunen–Loeve 

expansion for simulation using a wavelet-Galerkin scheme. Probabilistic Eng 

Mech 17(3): 293-303 

Phoon KK, Kulhawy FH (1999a) Characterization of geotechnical variability. Can 

Geotech J 36(4): 612-624 

Phoon KK, Kulhawy FH (1999b) Characterization of geotechnical variability. Can 

Geotech J 36: 612-624 

Phoon KK, Kulhawy FH (1999c) Evaluation of geotechnical property variability. Can 

Geotech J 36: 625-639 

PRC MC, AQSIQ (2009) State Standard of the People's Republic of China. Code for 

investigation of geotechnical engineering (GB50021-2001), China Architecture 

& Building Press, Beijing 

Qi XH, Li DQ, Phoon KK, Cao ZJ, Tang XS (2016) Simulation of geologic 

uncertainty using coupled Markov chain. Eng Geol 207: 129-140 

Rennen G (2008) Subset selection from large datasets for Kriging modeling. Struct 

Multidisc Optim 38(6): 545-569 

Rosenblueth E (1975) Point estimates for probability moments. National Academy of 

Science:  

Sivakumar Babu GL, Srivastava A, Murthy DS (2006) Reliability analysis of the 



 

195 

bearing capacity of a shallow foundation resting on cohesive soil. Can Geotech J 

43(2): 217-223 

Sivakumar Bubu GL, Mukesh MD (2004) Effect of soil variability on reliability of 

soil slopes. Géotechnique 54(5): 335-337 

Suchomel R, Mašín D (2010) Comparison of different probabilistic methods for 

predicting stability of a slope in spatially variable c–φ soil. Comput Geotech 

37(1-2): 132-140 

Sundar V (2015) A short report on MATLAB implementation of subset simulation. 

10.13140/RG.2.1.3041.7444:  

Tang XS, Li DQ, Chen YF, Zhou CB, Zhang LM (2012) Improved knowledge-based 

clustered partitioning approach and its application to slope reliability analysis. 

Comput Geotech 45: 34-43 

Vanmarcke E (1977a) Reliability of earth slopes. J Geotech Eng Div 103(11): 

1247-1265 

Vanmarcke EH (1977b) Probabilistic Modeling of Soil Profiles. J Geotech Eng Div 

103(11): 1227-1246 

Vanmarcke EH (2010) Random Fields: Analysis and Synthesis (revised and 

expanded). World Scientific Publishing Co. Pte. Ltd., Singapore 

Vega JA, Hidalgo CA (2016) Quantitative risk assessment of landslides triggered by 

earthquakes and rainfall based on direct costs of urban buildings. 

Geomorphology 273: 217-235 

Vořechovský M (2008) Simulation of simply cross correlated random fields by series 

expansion methods. Struct Saf 30(4): 337-363 



 

196 

Wang X, Li Z, Wang H, Rong Q, Liang RY (2016) Probabilistic analysis of 

shield-driven tunnel in multiple strata considering stratigraphic uncertainty. 

Struct Saf 62: 88-100 

Wang Y, Cao ZJ, Au SK (2010) Efficient Monte Carlo Simulation of parameter 

sensitivity in probabilistic slope stability analysis. Comput Geotech 37(7-8): 

1015-1022 

Wang Y, Cao ZJ, Au SK (2011) Practical reliability analysis of slope stability by 

advanced Monte Carlo simulations in a spreadsheet. Can Geotech J 48: 162-172 

Wang Y, Huang K, Cao Z (2013) Probabilistic identification of underground soil 

stratification using cone penetration tests. Can Geotech J 50(7): 766-776 

Wang Y, Huang K, Cao Z (2014) Bayesian identification of soil strata in london clay. 

Géotechnique 64(3): 239-246 

Wong FS (1985) Slope reliability and response surface method. J Geotech Eng 111(1): 

32-53 

Wu ZJ, Wang SL, Ge XR (2009) Slope reliability analysis by random FEM under 

constraint random field.   Chinese J Rock Soil Mech 30(10): 3086-3092 

Xiao T, Li DQ, Cao ZJ, Au SK, Phoon KK (2016) Three-dimensional slope reliability 

and risk assessment using auxiliary random finite element method. Comput 

Geotech 79: 146-158 

Yi P, Wei K, Kong X, Zhu Z (2015) Cumulative PSO-Kriging model for slope 

reliability analysis. Probabilistic Eng Mech 39: 39-45 

Ying L (2012) Application of Stochastic Response Surface Method in the Structural 

Reliability. Procedia Eng 28: 661-664 



 

197 

Zhang J, Huang HW (2016) Risk assessment of slope failure considering multiple slip 

surfaces. Comput Geotech 74: 188-195 

Zhang J, Huang HW, Phoon KK (2013) Application of the Kriging-based response 

surface method to the system reliability of soil slopes. J Geotech Geoenviron 

Eng 139(4): 651-655 

Zhang J, Zhang LM, Tang WH (2011a) Kriging numerical models for geotechnical 

reliability analysis. Soils Found 51(6): 1169-1177 

Zhang J, Zhang LM, Tang WH (2011b) New methods for system reliability analysis 

of soil slopes. Can Geotech J 48(7): 1138-1148 

Zhao HB (2008) Slope reliability analysis using a support vector machine. Comput 

Geotech 35(3): 459-467 

Zhao HL, Yue ZF, Liu YS, Gao ZZ, Zhang YS (2015) An efficient reliability method 

combining adaptive importance sampling and Kriging metamodel. Appl Math 

Model 39(7): 1853-1866 

Zhu H, Griffiths DV, Fenton GA, Zhang LM (2015) Undrained failure mechanisms of 

slopes in random soil. Eng Geol 191: 31-35 

 


