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ABSTRACT 

Structural deterioration with time is inevitable once civil structures are built, for they 

are subjected to harsh environment and extreme events, such as strong winds and 

severe earthquakes. The functionality and safety of civil structures during their service 

time become a vital issue. Therefore, structural health monitoring (SHM) techniques 

have been developed to monitor structural deterioration and detect structural damage, 

if any, for the functionality and safety of structures. Vibration-based structural damage 

detection methods, as a significant part of SHM, have been developed accordingly in 

past decades. However, when they are applied to civil structures, vibration-based 

damage detection methods encounter a few major difficulties, such as the less 

sensitivity of damage index, uncertainties in modelling and measurement, the number 

and type of sensors and their spatial location, and damage detection algorithm and 

procedure.  

Many damage indexes used in vibration-based damage detection methods, such 

as natural frequencies, are not sensitive to local damage of a civil structure. Different 

types of sensors are often used in an SHM system for a civil structure to measure both 

global and local structural responses, but multi-sensing information has not been used 

effectively for local damage detection. This thesis thus proposes a response 

covariance-based multi-sensing damage index in the time-domain and the associated 

sensitivity-based damage detection method. The feasibility and accuracy of the 

proposed damage index and damage detection method are investigated through 

numerical studies on an overhanging beam model. The results show that the proposed 

damage index is sensitive to structural parameter change but insensitive to 

measurement noise and that the proposed damage detection method can effectively use 

multi-sensing information for local damage detection.  

A civil structure often consists of hundreds of structural members and joints, but 

the number of sensors installed in the structure is always limited. It is quite possible 
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that the local damage may not be covered by the deployed sensors and its location may 

even not be accessible. Therefore, sensors shall be optimally placed in a structure so 

that the sensing information from the sensors can be used for effective damage 

detection. This thesis first proposes a response covariance-based optimal sensor 

placement method with a single objective function and a single type of sensors. The 

single objective function is actually formed by using a weighting factor to combine the 

two objective functions of response covariance sensitivity and response independence. 

Numerical studies are conducted to investigate the feasibility and effectiveness of the 

proposed method via a five bays three-dimensional frame structure. It is found that the 

acceleration responses often contain higher kinetic energy in higher-order vibrational 

modes for global structure information, displacement responses contain more kinetic 

energy in lower-order vibrational modes for global structure information, and strain 

responses are only sensitive to local damage only near the sensor locations. Therefore, 

a structural damage detection-oriented multi-type sensor placement method with 

multi-objective optimization is further developed in this thesis. The multi-objective 

optimization problem is formed by directly using the two covariance-related objective 

functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to 

find the solution for the optimal multi-type sensor placement to achieve the best 

structural damage detection. The proposed method is finally applied to a nine-bay 

three-dimensional frame structure numerically and experimentally. Both numerical 

and experimental studies show that the optimal multi-type sensor placement 

determined by the proposed method can avoid redundant sensors and provide 

satisfactory results for structural damage detection. 

When the proposed covariance-based multi-type sensor placement method and 

the associated damage detection methods are applied to a large and complex civil 

structure, the obstacles exhibit. The global stiffness matrix, modal parameters, and 

dynamic responses are less sensitive to local damage of a large structure compared 

with a small structure. The one-stage damage detection is inaccurate and sometimes 

impossible due to too many unknown damage parameters and seriously ill-conditioned 
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inversed problem for a large structure. Therefore, a covariance-based multi-stage 

damage detection strategy incorporating with a multi-scale finite element (FE) model 

is proposed for the damage detection of a large structure. In a multi-scale FE model, 

local detailed FE models using shell/solid elements and a global FE model using beam 

elements are integrated. The multi-stage damage detection is characterized by a few 

stages of different damage detection levels. For instance, the first stage is to detect the 

existence of damage and/or the location of damage, the second stage is to detect the 

damage-affected members in the identified damage location, and the final stage is to 

identify the damage source and quantify the damage severity. The proposed 

covariance-based multi-stage damage detection method is numerically and 

experimentally examined for its feasibility and effectiveness by using a testbed model 

of a high-voltage power transmission tower. Both numerical and experimental results 

manifest that the multi-stage detection method can effectively identify the damage in 

a joint due to bolt loosening and can even provide information deep down to the 

damage of bolts when a local detailed FE model is incorporated. 

The damage index and damage detection methods, including the response 

covariance-based multi-sensing damage index, the response covariance-based multi-

objective single-type and/or multi-type optimal sensor placements for damage 

detection, and the multi-stage damage detection strategy, presented in this thesis could 

conquer some obstacles, if not all, in the damage identification of large civil structures. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Motivation 

Owing to the rapid development of economy and the high demand of modern 

infrastructure from our community, numerous large-scale and complex civil structures, 

such as long-span bridges, tall buildings and high-voltage power transmission towers 

have been built around the world. Most of these structures are slender structures 

characterized with low natural frequencies and structural damping ratios. They often 

suffer from large structural deformation (Chan et al. 2006) and excessive structural 

vibration, when they are subjected to harsh environments such as strong winds and 

severe earthquakes. Therefore, many challenges are presented to professionals and 

researchers on how to ensure that these structures function properly during their long 

service lives and how to prevent them from destructive failure. 

The structural health monitoring (SHM) technology has been recently developed 

as a cutting-edge technology to provide a better solution for the above problems 

concerned (Aktan et al. 1998; Aktan et al. 2000; Farrar and Worden 2007; Worden et 

al. 2007; Xu and Xia 2012). Currently, SHM systems are mainly implemented in large-

scale landmark civil structures including large-span bridges and skyscrapers, such as 

Tsing Ma Bridge (Xu and Xia 2012) and Canton Tower (Ni et al. 2009) , and a great 

deal of research work has been dedicated to those structures. In contrast, applications 

of SHM for high power transmission towers have obtained less attention. However, 

numerous high power transmission towers have been built for high-voltage power 

transmission (HVPT) and an increasing amount of funding is being invested in this 

area because of dramatically increasing demand of energy in recent years. On the other 

hand, being exposed to natural hazards, these HVPT towers may experience structural 
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failures more frequently than long-span bridges or tall buildings. Therefore, more 

research efforts should be paid for the SHM of HVPT towers.  

As indicated and demonstrated in the literature (Xu and Xia 2012), robust damage 

detection on these slender structures, as the core task of SHM, is actually still in their 

infancy at the present stage, although SHM systems have found certain practical 

applications in monitoring loading and environmental effects, verifying the design 

criteria and guiding the timely inspection and maintenance on large civil structures. In 

the past decades, many vibration-based damage detection methods have been 

developed (Doebling et al. 1998; Sohn et al. 2002; Fan and Qiao 2011) for detecting, 

localizing and quantifying defects in structures by using the measured vibration 

responses. However, there are still five major difficult problems identified and 

insufficiently solved for damage detection of large civil structures.  

 

1. Many damage indexes used in vibration-based damage detection methods, such 

as natural frequencies and mode shapes, are not sensitive to local damage of a civil 

structure. Different types of sensors are often used in an SHM system for a civil 

structure to measure various types of global and local structural responses, but multi-

sensing information has not been used effectively for local damage detection.  

 

2. Considering budget constraints and measurement inaccessibility, the number of 

sensors installed for capturing the structural responses of a large civil structure is 

always limited compared with the substantial structural components. Therefore, 

sensors may not directly monitor the locations of structural defects, and optimal sensor 

placement is important to ensure that the damage-induced structural information is 

effectively captured. Most of the optimal sensor placement (OSP) methods only use a 

single optimal objective function or consider different optimal objectives separately. 

The combination of multiple objective functions for OSP may lead to more accurate 

assessment for the structures. As indicated by some researchers (Meo and Zumpano 

2005) single objective OSP algorithm can optimize the design objective, but may go 
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against another significant objective. However, the OSP problem with multiple 

objectives is more challenging than the OSP with only a single objective. Therefore, 

how to develop multiple OSP objectives for damage detection and how to implement 

multi-objective OSP are desirable for investigation.  

 

3. Different merits and limitations of multi-type sensors often lead to the requirement 

of multi-objective functions in the optimization. In multi-type sensor and multi-

objective OSP problems, conflicted objectives are very common because of the limited 

number of sensors and the complex nature of problem. Therefore, the investigation of 

structural damage detection-oriented multi-type sensor placement with multi-objective 

optimization is demanded. The simultaneous optimization of the conflicting objectives 

may lead to a set of compromised solutions known as the non-dominated or Pareto-

optimal solutions, and these non-dominated solutions represent the trade-offs amongst 

different objectives. Thus, the development of a way how to select a most optimal 

sensor placement from the Pareto solutions is also worthy of attention. 

 

4. A large-scale civil structure is usually a complex structure comprising tens of 

thousands of structural components of different sizes that are connected to one another 

in different ways. Local damage often does not significantly affect the global responses 

of these structures, thus traditional one-stage damage detection methods are inaccurate 

and sometimes are impossible for practical application. Therefore, the multi-stage 

strategy incorporating with a multi-scale finite element (FE) model may facilitate the 

damage detection of large civil structures.  

 

5. Most studies of OSP and damage detection of large structures are theoretical or 

numerical studies, but experimental studies are important in the sense that new OSP 

methods and damage detection algorithms should be validated through the 

experiments before they are applied to real structures. However, the experimental 

exploration of multi-objective multi-type sensor optimal placement for damage 
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detection has not been found yet. Moreover, the experimental studies of multi-stage 

damage detection with multi-scale damage detection model for large structure are also 

rarely sought. 

1.2 Research Objectives 

This thesis develops a response covariance-based multi-sensing damage detection 

method, a damage detection oriented multi-type sensor optimal placement with multi-

objection optimization, and the multi-stage damage detection strategy for large civil 

structures. The findings will improve the existing damage detection technologies for 

enhancing the ability to ensure the functionality and safety of slender structures. The 

major research objectives are specifically described as follows:  

 

1. To develop a sensitive damage index to fuse data from multiple types of sensors, 

a new response covariance-based damage detection index and a multi-sensing damage 

detection method will be proposed. Heterogeneous data are normalized and integrated 

in a united multi-sensing damage detection index, and thus the corresponding 

sensitivity-based damage identification formulations can include both global and local 

responses.  

 

2. To comprehensively consider different requirement for optimal sensor placement 

in damage detection, a response covariance-based sensor placement method for 

structural damage detection will be proposed with two optimization objectives in terms 

of the response covariance sensitivity and the response independence. The two 

objectives are analytically derived and then combined as one integrated objective 

function by using the weighted-sum method for application. 

 

3. To extend the proposed two OSP objectives in the multi-objective optimization 

framework, the non-dominated sorting genetic algorithm (NSGA)-II will be adopted 

to directly find the solution for the optimal multi-type sensor placement to achieve the 
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best structural damage detection.  

 

4. To experimentally verify the feasibility and efficiency of the proposed multi-

sensing damage detection method and multi-objective multi-type sensor optimal 

placement method, damage detection will be performed on a nine-bay three-

dimensional frame structure in the laboratory under multiple damage scenarios. 

 

5. To extend the proposed response covariance-based multi-sensing damage 

detection method a large and complex structure, a multi-stage damage detection 

strategy incorporating with a multi-scale FE model will be proposed for the damage 

detection of a large structure. A finite element model of an HVPT tower is built and 

numerical damage detection study is performed to demonstrate the feasibility of the 

proposed method for a large civil structure.  

 

6. To examine the accuracy of the numerical results, a laboratory-based testbed for 

the structural damage detection of a scaled HVPT tower will be established. The 

proposed multi-stage damage detection method will be implemented to the HVPT 

tower with multi-type sensor optimal placement. The experimental study on the 

laboratory-based testbed for this HVPT tower model will be conducted to demonstrate 

the numerical results obtained under objective 5. 

1.3 Assumptions and Limitations 

The development and application of a response covariance-based multi-sensing 

damage detection method, damage detection oriented multi-type sensor optimal 

placement with multi-objection optimization, and multi-stage damage detection 

strategy for large structures proposed in this thesis are subject to the following 

assumptions and limitations: 
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1. Assume that a structure is in static equilibrium initially and that the external 

excitations acting on the structure are mutual-independent Gaussian white noise 

excitations with zero means for damage detection. 

 

2. Assume that the excitations are narrow banded and can be measured for damage 

detection. In experimental damage detection studies, the excitations are generated by 

exciters. 

 

3. In experimental damage detection studies, the structural damage can be modeled 

as a degradation of the stiffness for the damaged region, such as grinding away a layer 

of material from the surface of the damaged beam in the middle segment for the three-

dimensional frame structure and totally loosening one set of bolts in one connected beam 

for the damaged joint in the HVPT tower testbed for laboratory test. The main reason is 

that the severity of the above-mentioned damage can be more easily controlled and 

quantified accurately. 

 

4. The structure is supposed to behave linearly and operate under the same working 

conditions before and after the occurrence of damage. 

 

5. Considering extensive computation required in the damage detection of the full 

HVPT tower, only the damage-prone joints in 1/4 tower are selected for the 

demonstration of the proposed multi-stage damage detection.  

1.4 Outline and Scope 

This thesis covers various topics to achieve the aforementioned objectives, which 

includes 9 chapters and is organized as follows: 

 

Chapter 1 introduces the problem, motivation, objectives, assumptions, and scope of 

this work. 
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Chapter 2 presents literature review on relevant topics, including the vibration-based 

damage detection methods and data fusion of multi-type structural responses; the 

optimal sensor placement methods and multi-objective optimization approaches; 

multi-scale modeling techniques, and multi-stages damage detection strategy. 

 

Chapter 3 first proposes a covariance-based multi-sensing (CBMS) damage detection 

method in the time domain in terms of a CBMS vector as a new damage index and 

then a sensitivity study is conducted for damage detection. Numerical studies are 

finally performed to investigate the feasibility and accuracy of the proposed 

framework using an overhanging beam with two damage scenarios. 

 

Chapter 4 presents a response covariance-based sensor placement method for 

structural damage detection with two objective functions for optimization. The 

relationship between the covariance of acceleration responses and the covariance of 

unit impulse responses of a structure subjected to multiple white noise excitations is 

first derived. The response covariance-based damage detection method is then 

presented. Two objective functions based on the response covariance sensitivity and 

the response independence are, respectively, formulated and finally integrated into a 

single objective function for optimal sensor placement. Numerical studies are 

conducted to investigate the feasibility and effectiveness of the proposed OSP in a 

three-dimensional frame structure by using the proposed response covariance-based 

damage detection method. 

 

Chapter 5 develops a structural damage detection-oriented multi-type sensor 

placement method with multi-objective optimization. The multi-objective 

optimization problem is formed by using the two objective functions in Chapter 4, and 

the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution 

for the optimal multi-type sensor placement to achieve the best damage detection. The 

proposed method is finally applied to a nine-bay three-dimensional frame structure. 
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The selection of a most optimal sensor placement from the Pareto solutions via the 

utility function and the knee point method is demonstrated in the case study. 

 

Chapter 6 experimentally examines the proposed response covariance-based damage 

detection method and the structural damage detection-oriented multi-objective multi-

type sensor optimal placement method in a nine-bay three-dimensional frame structure. 

The multi-type sensors are optimally installed on the frame structure, and different 

damage scenarios are generated on the frame structure to validate the effectiveness of 

the proposed methods. 

 

Chapter 7 proposes a multi-stage damage detection strategy incorporating with a 

multi-scale FE model for the damage detection of large structures. For the problem 

concerned in this thesis, the three-stage damage detection strategy is used. The first 

stage is to detect the existence of damaged joints and the locations of damaged joints 

based on the traditional beam model of the tower. The second stage is to detect the 

possibly damaged members with loosened bolts in the identified damaged joint based 

on the traditional beam model of the tower. The final stage is to identify the loosened 

bolts and quantify the damage severity based on the multi-scale FE model of the tower. 

Finally, the proposed multi-stage damage detection with optimal sensor placement 

(OSP) is numerically validated for their feasibility and effectiveness by using a 5.05m 

height testbed model of a scaled high-voltage power transmission (HVPT) tower. 

 

Chapter 8 is an extension for the numerical study in Chapter 7 and an experimental 

investigation will be conducted in this chapter to validate the numerical study. Before 

this method can be applied to real transmission towers, this chapter aims to 

experimentally examine the effectiveness of the proposed multi-stage damage 

detection strategy incorporating with a multi-scale FE model for identifying the 

damage due to bolts loosen in a transmission tower testbed in laboratory.  
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Chapter 9 summarizes the contributions, findings, and conclusions of this thesis. The 

limitations of this study are discussed and some recommendations for future study are 

provided. 
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CHAPTER 2 

LITERATURE REVIEW 

As mentioned in Chapter 1, this thesis focuses on vibration-based damage detection of 

civil structures with the new developments of a sensitive damage detection index, 

multi-objective optimal sensor placement, optimal multi-type sensor placement, and 

multi-stage damage detection. The relevant topics and the most up-to-date research in 

the areas concerned will be reviewed in this chapter so that the problems and the needs 

for the new developments can be clearly identified. The overview of the relevant topics 

and the new developments targeted in this study is illustrated in Fig.2.1.  

2.1 Structural Health Monitoring  

Economic and life-safety issues are the primary driving force behind the development 

of structural health monitoring (SHM) technology. Comparing with the traditional 

visual inspection and maintenance approaches requiring one’s expertise experience, 

the SHM technology is one kind of approaches which can continuously and 

automatically provide structural state information to the management team, so that the 

early stage structural problems may be identified quickly and the timely decisions can 

possibly be made by the authority in emergent situations.  

SHM as a cutting-edge technology has been extensively investigated in different 

disciplines. Doebling et al.(1998) and Sohn et al.(2002) made a comprehensive review 

on advances of SHM. Specifically, an SHM system often includes five major 

subsystems: (a) sensor system; (b) data acquisition and transmission system; (c) data 

processing and control system; (d) data management system; (e) structural evaluation 

system, as shown in Fig.2.2. The major objectives of the SHM (Xu and Xia 2012) are 

to monitor the environmental condition of the structure, assess its performance in 

service, update the structural state and the relative FE model, verify or revise the rules 
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used in its design stage, detect its damage or deterioration and fatigue after long time 

service, and guide its inspection and maintenance. 

Structural damage detection, as a significant part of SHM, has thus been 

developed accordingly in past decades. Structural damage detection is an inverse 

problem for structural condition assessment. Two popular and important structural 

damage detection techniques in the field of SHM are wave-propagation-based 

techniques (Raghavan and Cesnik 2007) and vibration-based techniques (Fan and Qiao 

2011). All the structural damage identification can be divided into a few stages of 

different damage detection levels as shown in Fig. 2.3: (1) detecting the existence of 

the damage on the infrastructure; (2) locating the damage; (3) identifying the types of 

damage and quantifying the severity of the damage; and (4) damage prognosis and 

useful life estimation. Increasing difficulty level often requires the knowledge of 

previous stages for the description of structural damage state. 

Some experience of structural damage detection has been also summarized 

(Worden et al. 2007) as follows: (1) the assessment of damage requires a comparison 

between two system states in terms of healthy and damaged states; (2) identifying the 

existence and location and/or severity of damage can be done in an unsupervised 

learning mode, but identifying the type of damage present can generally be done in a 

supervised learning mode; and (3) sensors cannot measure damage directly, thus 

feature extraction through signal processing and statistical classification is necessary 

to convert sensor data into damage information. 

2.2 Vibration-Based Damage Detection Methods 

Research in vibration-based damage identification methods has been rapidly 

expanding over the last few decades (Doebling et al. 1996; Farrar and Doebling 1997; 

Doebling et al. 1998; Farrar et al. 2001; Fan and Qiao 2010; Farrar and Worden 2012). 

These vibration-based damage detection methods can be categorized as model-based 

and model-free methods. Model-based methods assume that the structural response 

can be accurately computed by using a finite element model and the damaged state of 
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the real structure can be achieved by model updating technologies. Model-free 

methods are data-driven approaches which entirely rely on the measurement data to 

extract the damage sensitive features and establish classification schemes to identify 

the occurrence of structural damage. These two kinds of damage detection methods 

will be reviewed in the following two sections. 

2.2.1 The Model-Based Damage Detection Methods 

Significant efforts have been dedicated to vibration-based methods for model updating 

and damage detection in the past few decades. The basic idea behind these efforts is 

that a change in the physical properties is associated with changes in the modal 

properties which may be detected. Natural frequencies and mode shapes were taken as 

the measured modal properties to identify local damages in the early work of Cawley 

and Adams (1979) and others.  

Nevertheless, Farrar et al. (1994) showed that the change of natural frequencies 

was not sufficiently sensitive to detect local damage. Mode shape-based damage 

detection methods also have similar difficulties for general application (Chance et al. 

1994). Hence, there is some research on model updating and damage detection by 

directly using structural dynamic responses without the need of modal extractions. 

Cattarius and Inman (1997) used the phase shift in the time history of structural 

dynamic response to identify the presence of local anomalies in a structure. Choi and 

Stubbs (2004) formed the damage index directly from the time response to locate and 

quantify local anomalies in a structure. Similarly, those early works of the time domain 

damage detection methods mainly aimed to illustrate the proposed procedure and 

theoretically guide the subsequent experimental validation. The effect of not having 

noise or with slight noise was considered in the simulations study but still was not 

explicitly considered for the laboratory experiments. 

Regarding to the measurement noise and/or modeling uncertainties in the 

practical application, statistic-based structural damage detection index may be more 

preferable to extract the slight change in the time-domain information. Some 
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researchers notice that successful damage detection for practical application 

remarkably depended on the high signal-to-noise ratio (SNR) of information. 

Therefore, some statistic techniques may help filter the interruption and precisely 

extract the principal component from the measurement. Moreover, some researchers 

suggested to develop some statistic-based model or stochastic model to better represent 

the real structural condition, such as Zhu et al (2007) and Wong et al (2007). This 

thesis focuses on the techniques of developing statistic damage index for vibration-

based structural damage detection, and many researchers have dedicated to this 

approach. Bendat and Piersol (1993) summarized the time-domain methods based on 

the covariance computation and showed advanced features of using covariance 

function in reducing random noise impact. Sun and Chang (2006) proposed a 

covariance-driven wavelet packet signature as a new index for health monitoring of 

structures under random ambient excitation. Both numerical and experimental results 

illustrated that their proposed technique could provide an accurate assessment on the 

damage locations, but the accuracy of the assessment of damage severity was low. 

Zhang et al. (2008) developed a new statistical moment-based structural damage 

detection method; its efficiency and effectiveness in sensitivity to structural damage 

but insensitivity to measurement noise have been numerically and experimentally 

demonstrated. When the target structure with a large number of unknown identification 

parameters, this statistical moment-based index may face a challenge of insufficient 

components after the statistical computation for damage identification. Further 

development in this context is the work of Li and Law (2010) and Law et al. (2012): a 

new covariance of covariance (CoC) matrix was formed from auto/cross-correlation 

functions of structural acceleration responses, in which the correlation of acceleration 

responses is the function of time lag. The components of the CoC matrix were found 

to be more sensitive to local stiffness reduction than using modal frequencies and mode 

shapes. The previous works often used acceleration responses for structural damage 

detection because acceleration responses contain better global information of a 

structure such as natural frequencies and mode shapes. However, this may not be 
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consistent with the fact that damage is a local phenomenon and that using only a single 

type of sensor such as an accelerometer has its limitations for damage detection. 

2.2.2 The Model-Free Damage Detection Methods 

The model-free damage detection methods have been characterized by the use of 

purely data-based algorithms that do not depend on the physical descriptions of the 

structures, which is desirable in dealing with damage detection of large and complex 

structures in the practical application. The model-free damage detection mainly 

consists of three steps. First, the damage features should be extracted by using an 

extensive collection of vibration data, which are conducted based on signal processing 

technologies, such as the empirical mode decomposition (EMD), principal component 

analysis (PCA), and wavelet transformation (WT). Second, the base-line on the health 

state of the structure and the damage classification library should be built upon 

extensive measurement data from long-term monitoring. Finally, damage detection is 

conducted by using pattern recognition technologies, such as machine learning, deep 

learning and others, in which the condition of the damaged structure can be interpreted 

by using the collected data. 

Many research works have been contributed to the vibration-based model-free 

damage detection methods (Farrar and Worden 2012). Fugate et al. (2001) applied 

statistical process control methods in terms of “control charts” to vibration-based 

damage detection, which can be conducted in an unsupervised learning mode to use 

the vibration test data. To detect structural damage in the presence of operational and 

environmental variations, Figueiredo and his colleges (Figueiredo et al. 2010; 

Figueiredo et al. 2011; Figueiredo et al. 2012) investigated and compared different 

machine learning algorithms based on the auto-associative neural network, factor 

analysis, Mahalanobis distance, and singular value decomposition. To enhance the 

performance of the statistical methods, Yao et al. (2012) developed an autoregressive 

statistical pattern recognition algorithms for damage detection of civil structures by 

using model spectra, residual auto-correlation, and resampling-based threshold 
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construction methods. By using Fast Fourier Transform (FFT) and continuous wavelet 

transform (CWT) to extract the damage sensitive features, a signal-based pattern-

recognition approach was used for structural damage diagnosis (Long et al. 2012). The 

previous model-free damage detection methods depend on the pattern recognition 

algorithms. Another kind of popular approach is the Bayesian-based damage detection 

method. Sohn and Law (1997) developed a Bayesian probabilistic approach for 

structural damage detection. A Markov-chain Monte Carlo based Bayesian approach 

(Figueiredo et al. 2014) was proposed for damage detection of bridges under unknown 

sources of variability. More recently, a model-free ANN-based approach combing the 

Bayes’ theorem was proposed for the damage detection of a railway bridge (Neves et 

al. 2017). Latest, Wang et al. (2018) proposed a Bayesian probabilistic approach for 

acoustic emission-based rail condition assessment by using experimental data, which 

was effective for damage localization and quantification. However, the model-free 

damage detection methods often encounter a few obstacles in practical application. 

When comparing with the model-based damage detection methods, the model-free 

damage detection methods have difficulty in establishing an explicit relationship 

between the damage parameters and the dynamic responses. Moreover, the model-free 

methods require a dense sensor network for damage localization, and the severity 

quantification is usually very difficult or directly impossible. Further, most of the civil 

structures are unique and only limited amount of data on the damaged structures in the 

real-world scenarios is available, thus establishing a damage classification library for 

pattern recognition of civil structures is very challenging or unsuitable. 

2.3 Damage Detection Using Multi-Type Sensors 

Structural acceleration responses seem to be preferred measured responses because 

accelerometers are relatively reliable sensors with high signal-to-noise ratio, and 

acceleration responses usually contain better global information of a structure. 

However, using only accelerometers has its limitations for local damage detection. 

Therefore, the concept of using multi-sensing (multi-type sensors) measurements for 
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damage detection and structural condition assessment has been sought. Studer and 

Peters (2004) presented a strategy using multi-metric data of strain, integrated strains 

and gradients measured from optical fiber sensors for damage identification. Law et 

al. (2005) used a wavelet-based approach to combine acceleration and strain response 

for damage identification and achieved better damage detection results than using the 

two measurements separately. Chan et al. (2006) proposed an integrated GPS-

accelerometer data processing technique for improving the accuracy of measurement 

data. Zhang et al. (2011) suggested an integrated optimal sensor placement of 

displacement transducer and strain gauges for better response reconstruction. Sim et 

al. (2011) presented a flexibility-based method combining acceleration and strain 

responses for structural damage detection. More recently, Lee et al. (2013) developed 

a modified GDM (global-deviation method) which can be effectively utilized in 

detecting damage based on the mixed measurements of accelerometers and strain 

gauges. For some extent, these one-step approaches by using multi-type sensing data 

can show great potential to improve the quality of damage identification, but criteria 

of how to select the kind of sensors and their arrangement are not explicitly and 

systematically considered for practical engineering application yet. Huang et al. (2012) 

proposed a probabilistic damage detection approach using vibration-based 

nondestructive testing through multiple steps to move the accelerometers closing the 

damage candidates and got satisfactory fining results at the end, but the multiple steps 

with sensor location adjustment may be still not easy for practical engineering 

application. Sung et al. (2014) found that the damage metric estimated from 

acceleration measurement is insensitive to damage near the hinged support of a real 

bridge, and therefore they proposed a multi-scale sensing and diagnosis system for 

bridge health monitoring based on a two-step improvement approach using 

accelerometers and gyroscopes. It seems that the two-stage and multi-sensing 

approach is not only a concise and easy implement method, but also it is a more 

desirable and flexible scheme for data combination and fusion. This is regarded as a 

method that may achieve more accurate and reliable results for structural damage 
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detection. However, there is still not much literature found for a detail discussion of a 

standard and unified framework for two-stage and multi-sensing structural damage 

detection and condition assessment (Lin and Xu 2017). 

2.4 Optimal Sensor Placement Methods 

A civil structure often consists of hundreds of structural members and joints, but the 

number of sensors installed in the structure is always limited. It is quite possible that 

the local damage may not be covered by the deployed sensors and its location may 

even not be accessible. Therefore, sensors shall be optimally placed in a structure so 

that the sensing information from the sensors can be used for effective damage 

detection. Previous studies have revealed that arbitrary sensor placement could lead to 

false damage identification (Santi et al. 2005; Huston 2010). Significant efforts have 

been spent on optimal sensor placement (OSP) in the last few decades, and many OSP 

methods have been proposed for various purposes including damage detection (Meo 

and Zumpano 2005; Barthorpe and Worden 2009; Yi and Li 2012). However, most of 

the OSP methods are applied for single-type sensors only. Although the design can be 

carried out independently for each type of sensors, the final sensor configuration by 

combining the individual designs could not avoid redundant measurement and exhibit 

holistically optimal performance (Zhang et al. 2011; Zhu et al. 2013; Yuen and Kuok 

2015; Lu et al. 2016).  

The proper selection, installation and use of multi-type sensors become important 

for the SHM of structures (Ni et al. 2009; Sim et al. 2011; Sung et al. 2014; Xu et al. 

2016; Zhang and Xu 2016). Various types of sensors (e.g., accelerometer, displacement 

transducer and strain gauge) are installed in a structure to measure multi-type structural 

responses. Acceleration responses can be easily measured with a high signal-to-noise 

ratio and contain higher kinetic energy in higher-order vibrational modes. By contrast, 

displacement responses contain more kinetic energy in lower-order vibrational modes. 

Strain or stress responses are sensitive to local changes closer to the sensors but not 

sensitive to local changes far away from the sensors. Because of the different merits 
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and limitations of these sensors, the joint use of multi-type sensors complicates the 

optimal sensor placement for structural damage detection. 

Some efforts have been devoted to optimizing the performance of multi-type 

sensors in a unified framework. Zhang et al. (2011) suggested an extended EfI OSP 

method for two types of sensors, in which the displacement transducers are integrated 

with the strain gauges for better response estimation. Zhu et al. (2013) and Xu et al. 

(2016) carried out further studies on multi-type sensor optimal placement for response 

reconstruction in terms of the Kalman filter. This method was later extended to the 

situations with the reconstruction of unknown external excitation (Zhang and Xu 2015) 

and applied for damage detection of an overhanging beam structure (Zhang and Xu 

2016). Yuen and Kuok (2015) proposed a Bayesian sequential sensor placement 

algorithm for multi-type sensors optimization based on robust information entropy 

such that the overall performance of various types of sensors can be assessed. Recently, 

a data correlation analysis-based OSP method combined with a bone energy algorithm 

(Lu et al. 2016) was studied with different types of sensors deployed for less redundant 

measured information in a large spherical lattice dome-like structure. However, all the 

above works were based on the optimization of a single objective function with a 

unique optimal sensor configuration. 

Different merits and limitations of multi-type sensors often lead to the 

requirement of multi-objective functions in the optimization. In multi-type sensor and 

multi-objective OSP problems, conflicted objectives are very common because of the 

limited number of sensors and the complex nature of the problem (Coello 1999; Deb 

2001). The simultaneous optimization of the conflicting objectives may lead to a set 

of compromised solutions known as the non-dominated or Pareto-optimal solutions, 

and these non-dominated solutions represent the trade-offs amongst different 

objectives. An efficient Pareto sequential sensor placement (PA-SSP) algorithm with 

multi-objective functions (Papadimitriou 2005) was developed for model updating. 

This algorithm was proved to be more efficient than the strength Pareto evolutionary 

algorithm (SPEA). The non-dominated sorted genetic algorithm-II (NSGA-II) was 
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used for the optimal contaminant sensor network design in (Preis and Ostfeld 2008) 

and the optimal sensor configuration design of water distribution networks in (Yoo et 

al. 2015). Also, Kim et al. (2008) used the NSGA-II to tackle a surveillance sensor 

placement problem. Moreover, Mathakari et al. (2007) proposed the reliability-based 

optimal design of electrical transmission towers using multi-objective genetic 

algorithms. For active control systems of buildings, Cha and his colleagues (Cha et al. 

2012; Cha et al. 2013; Cha et al. 2013) investigated the optimal placement of both 

actuators and sensors by developing a novel multi-objective genetic algorithm (NS2-

IRR GA) through the integration of the NSGA-II and the implicit redundant 

presentation (IRR) GA. To enhance the capability of structural damage detection, 

optimal accelerometer placement with multiple objectives in terms of information 

entropies computed by multiple mode-shapes was reported in (Ye and Ni 2012). 

Additionally, the damage detection was investigated in (Cha and Buyukozturk 2015) 

by adopting an advanced multi-objective optimization algorithm with two objectives 

in terms of the differences of two sets of modal strain energy (MSE) before and after 

damage occurring although the single type sensor of accelerometers is not optimally 

placed. However, the exploration of multi-type sensor optimal placement with multiple 

objectives for structural damage detection is still rarely found. 

2.5 Challenges in Damage Detection of Large Structures  

As mention before, the vibration-based damage detection methods (Doebling et al. 

1998; Sohn et al. 2002; Fan and Qiao 2011; Xu and Xia 2012) are widely used in the 

field of SHM. Although many vibration-based damage detection methods succeed in 

identifying damage in small structures. However, successful damage detection of a 

large civil structure is still rarely found. Specifically, damage detection of large 

structure encounters a few major difficulties: (1) a larger number of damage 

parameters (unknowns) for the identification which is in contrast to the small number 

of sensors installed in the structure in practice; (2) the change of global stiffness matrix, 

modal parameters, and the dynamic responses are less sensitive to the local damage; 
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(3) many damage indexes used are not sensitive to local damage of a civil structure; 

(4) structural damage detection of large structure is inherently a severely ill-

conditioned inverse problem, in which the numerical difficulty to achieve computation 

convergence increases dramatically. Some research efforts to deal with these problems 

will be reviewed in the following three paragraphs. 

To reduce the number of unknowns in a large structure, two-stage damage 

detection strategy and/or substructure-based approaches are popular for damage 

detection. When the number of sensors is limited, one-step damage detection method 

sometimes may not be workable in the practical application. Some researchers (Xiang 

and Liang 2012; Sung et al. 2014; Lin and Xu 2017) proposed to use two-stage damage 

detection, in which some suspicious areas including both the real damage locations 

and some false alarms were first located and then damage refinement was conducted 

in the narrowed areas by excluding the unsuspicious locations. This is a simple two-

stage strategy that can reduce the identification parameters step by step for better 

damage detection accuracy, but success in the first stage is usually too difficult for a 

large structure because of too many identification parameters at the very beginning. 

For large structures, damage detection is very difficult and the accuracy of the 

parameter estimation is rarely reliable. The substructure-based identification is a 

desirable strategy to divide the structure into substructures such that the number of 

unknown parameters is manageable for each substructure. Accordingly, substructure-

based damage identification can be performed more efficiently. Therefore, application 

of the substructure-based damage detection methods in both frequency domain and 

time domain has attracted considerable interest. Koh et al. (1991) proposed a 

substructure-based method by using the extended Kalman filter to estimate the 

structural stiffness and damping coefficients from measured dynamic responses. Yun 

and his colleagues (Yun and Lee 1997; Yun and Bahng 2000) proposed a substructural 

identification method for local damage estimation which incorporated with an auto-

regressive and moving average with stochastic input model or the backpropagation 

neural network. Later, Koh et al. (2003) developed a GA-based substructural and 
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progressive parameter identification method, in which only measurements within the 

substructure of concern and at interface ends were used when identifying the 

substructure parameters. Various substructural identification approaches need to know 

interface responses, which are treated as input to the concern substructures. In practice, 

however, it is not always possible to obtain interface measurements, such as rotational 

response for beam/frame structures. Furthermore, Koh et al. (2003) proposed a 

substructural identification method which can release the interface measurement. 

More recently, Law et al. (2010) proposed a method to identify the coupling forces 

between substructures from the acceleration response of a structure under support 

excitation, and the local structural damage was then detected from the identified 

coupling forces based on dynamic sensitivity analysis. Also, Law and Ding (2011) 

compared two substructural identification methods in terms of an accurate finite 

element model of the whole structure that is assumed known and only the finite 

element model of the concerned substructure is needed. The numerical study shows 

that the second approach is better because the target substructure for updating consists 

of a significantly reduced number of components and the identification problem is 

more efficient. Later, the substructural damage identification approaches without the 

information of responses and forces at the interface degrees-of-freedom are developed 

(Li et al. 2012; Li and Law 2012; Li and Law 2012), in which the response and force 

reconstruction are based on the transmissibility matrix. On the other hand, the 

substructure technique is popularly used to reduce the number of unknowns for 

damage detection, in which the targeted structure is divided into a few numbers of 

substructures and each substructure has an equivalent damage parameter. For instance, 

some researchers (Yin et al. 2009; Lam and Yin 2011) proposed a substructure-based 

damage detection of transmission tower utilizing ambient vibration data, which 

identified damaged substructure by estimating the equivalent stiffness reduction and 

was validated by numerical and experimental studies. Noted that this damage detection 

method was to estimate the equivalent stiffness reduction of substructures, but cannot 

identify the reduction in stiffness of individual members. However, damage could 
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possibly occur inside the substructure and different members of the substructure may 

bear different damage extents. Differently, Zhang and his colleague (Zhang and Xu 

2017; Xu et al. 2018) developed a two-level damage identification with response 

reconstruction to identify damage in both substructure level and individual element 

level. The method was investigated through numerical and experimental studies by 

using a simply-supported overhanging steel beam model and a testbed model of the 

Tsing Ma Suspension (TMS) bridge, which can identify the suspicious substructures 

in stage one and identify the location and severity of damaged beam elements inside a 

suspicious substructure in stage two. 

To comprehensively capture damage characteristic of the large structure, multi-

type sensors are employed in many SHM system such that data fusion of different type 

of information attracts much attention. Therefore, multi-sensing structural damage 

detection (Studer and Peters 2004; Chan et al. 2006; Sim et al. 2011; Sung et al. 2014; 

Lin and Xu 2017) has been sought based on fusing global and local measured 

information since the last decade. Considering the budget constraint and measurement 

inaccessibility, the number of sensors is always limited for capturing the structural 

responses of large civil structures when compared with the substantial structural 

components. In other words, sensors may not directly monitor the locations of 

structural defects. Zhang and his colleagues proposed to optimally reconstruct those 

unmeasured responses for damage detection (Zhang and Xu 2015; Xu et al. 2016; Hu 

et al. 2018), especially for a large structure. Moreover, optimal sensor placement is 

particularly important to ensure that the damage-induced structural information is 

effectively captured. To effectively use both the global and local measurement 

information, multi-type sensor optimal placement has gained much attention for 

applications in parameters identification (Yuen and Kuok 2015) and structural health 

monitoring (Lu et al. 2016). Different merits and limitations of multi-type sensors 

often lead to the requirement of multi-objective functions in the optimization. 

Therefore, some researchers devoted to the simultaneous optimization of the 

conflicting objectives for the single-type and/or multi-type sensor optimal placement 
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problem in structural damage detection (Ye and Ni 2012; Guo et al. 2016; Lin and Xu 

2017; Lin et al. 2018).  

The aforementioned methods, namely two-stage strategy and/or substructure 

technique, data fusion, response reconstruction, or multi-objective multi-type sensor 

optimal placement, have potential to alleviate the problems in damage detection of 

large structures. However, most of these methods were validated by using small 

structures other than large and complex structures, and the combination of these ideas 

was not sufficiently investigated yet. Besides, some attention should be paid to the 

behavior in local details because the damage is typically a local phenomenon 

(Doebling et al. 1998; Farrar et al. 2001). Some research indicated (Li et al. 2007; Li 

et al. 2012; Castro-Triguero et al. 2017; Wang et al. 2017) that accurate modeling of 

local structural components is critical for local failure or vulnerability analysis of large 

structures. However, a detailed model of a local damaged structure is still rarely 

applied for more accurate identification no matter in small or large structures. 
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Fig. 2.1 The overview of the literature review and the new developments in the thesis 
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Fig. 2.2 Basic components of SHM system 

 

 

 

 
Fig. 2.3 Four-step process of the description of structural damage state 
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CHAPTER 3 

RESPONSE COVARIANCE-BASED MULTI-

SENSING DAMAGE DETECTION METHOD 

3.1 Introduction 

Many damage indexes used in vibration-based damage detection methods, such as 

natural frequencies, are not sensitive to local damage of a civil structure. Different 

types of sensors are often used in a structural health monitoring (SHM) system for a 

civil structure to measure both global and local structural responses, but multi-sensing 

information has not been used effectively for local damage detection. This chapter 

aims at developing a new response covariance-based multi-sensing damage detection 

method. This method features the structural damage detection method that can fuse the 

normalized data collected from different types of sensors and reduce the adverse 

impact of measurement noise in structural responses. The cross-covariance functions 

are employed to assimilate heterogeneous data from different types of sensors and 

combine various structural responses together to form a multi-sensing data set. A 

normalized cross-covariance matrix is then formed and the covariance-based multi-

sensing (CBMS) vector is defined as a new damage index. The sensitivity-based 

method is then used to derive the formulations for the CBMS damage detection method. 

A numerical study is finally performed to investigate the feasibility and accuracy of 

the proposed method using an overhanging beam with multiple damage scenario. It 

shall be pointed out that the response covariance-based multi-sensing damage 

detection method proposed in this chapter is a general framework only and the key 

issues for implementing this method for a civil structure as well as the validation of 

the proposed method will be discussed in the subsequent chapters. 
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3.2 Methodology 

3.2.1 Equation of Motion 

The equation of motion of a linear-elastic structural system with N   degrees-of-

freedom (DOFs) can be written as 
 f( ) ( ) ( ) ( )t t t t  Mz Cz Kz L f   (3.1) 

where M  , C   and K   are, respectively, the N N   mass, damping and stiffness 

matrices of the structure; ( )tz , ( )tz , and ( )tz  are, respectively, the displacement, 

velocity and acceleration response vectors of the structure at time t  ; ( )tf   is the 

excitation force vector; and fL  is the mapping matrix relating the excitation forces 

to the corresponding DOFs of the structure.  

Eq. (3.1) can be decoupled using the coordinate transformation ( )tz Φq . After 

pre-multiplying both sides with TΦ , the equation of motion in the modal coordinate 

can be expressed as 
 2 T

f( ) 2 ( ) ( ) ( )t t t t  q ξωq ω q Φ L f   (3.2) 

where ( )tq , ( )tq  and ( )tq  are, respectively, the modal displacement, velocity and 

acceleration of the structure; Φ  denotes the mode shape matrix and the superscript 

T   denotes the transpose of a matrix; ξ   and ω   are, respectively, the diagonal 

matrices of damping ratios and the natural frequencies of structure. 

According to the strain-displacement relationship, the strain response can be 

expressed in modal coordinates as 

 d d( ) ( ) ( ) ( ) ( )t t t t  ε BGL z BGL Φ q Ψq   (3.3) 

where ( )tε   is the strain response of the structure; the matrix dΨ BGL Φ   is the 

matrix of strain mode shapes; dL   is the selection matrix matching the nodal 

displacements for strain computation; the matrix G  is the coordinate transformation 
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matrix from the global coordinate to the local coordinate; and the vector B  defines 

the local strain-displacement relationship (Ottosen et al. 1992). 

The equation of motion can then be rewritten in the state space with the state 

vector  
T,x q q  as 

 ( ) ( )+ ( )c ct t tx A x B f   (3.4) 

with                T2 ; ;
2c c

  
    

    f

00 Ι
A B

Φ Lω ξω
             (3.5) 

where cA  and cB  are the continuous state matrix and input matrix, respectively. 

Three types of sensors are considered here: strain gauge, displacement transducer 

and accelerometer. The structural responses collected from the sensors are included in 

the observation vector as T( ) [ ( ), ( ), ( )]t t t ty ε z z . On the other hand, the structural 

responses ( )ty   calculated from the finite element model of the structure can be 

explicitly written as 
 ( ) = ( )+ ( )c ct t ty C x D f   (3.6) 

with 

 
2 T

; ;
2

c c

   
   

 
   
       f

Ψ 0 0
C Φ 0 D 0

Φω Φξω ΦΦ L
  (3.7) 

where cC  and cD  are the output matrix and transmission matrix, respectively. 

3.2.2 Response Covariance-Based Damage Index 

Strain, displacement, and acceleration responses have different units and orders of 

magnitudes. They need to be normalized before they can be used in the subsequent 

analysis.  

 0

( )
ˆ ( ) p

p
p

y t
y t


                                 (3.8) 

where py   is the structural response recorded by the sensor p  ; ˆ py   is the 
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normalized structural response; and 0
p   is the standard deviation of py   and the 

superscript 0 denotes the response recorded from the intact structure. 

To fully utilize multi-sensing information and significantly reduce the adverse 

impact of measurement noise, the cross-covariance function (Bendat and Piersol 1993) 

of the two normalized stationary time responses, ( )py t   and ( )qy t  , of a linear 

structure under stationary excitations is considered here. 

pq
1

1ˆ ˆ ˆ ˆ ˆ( ) [{ ( ) } { ( ) }] lim { ( ) } { ( ) }
n

p p q q p j p q j qn j
C E y t y t y t y t

n
      




          

(3.9) 

where [ ]E   is the expectation operation; n   is the total data number used for 

covariance computation; p   and q   are the mean values of the normalized 

structural responses recorded by the sensors p  and q , respectively; and   is the 

time lag.   

When measurement noise is taken into consideration and expressed in an explicit 

form, Eq. (3.9) becomes: 

pq ˆ ˆ( ) [{ ( ) ( )} { ( ) ( )}]p p p q q qC E y t v t y t v t             (3.10) 

where ( )pv t   and ( )qv t    are the measurement noise in the structural responses 

recorded by the sensors p  and q , respectively. The measurement noise is assumed 

to be a white noise Gaussian process with ( ) ( ) 0p qE v E v  . The measurement noise 

is also assumed to be uncorrelated with each other as well as with measured responses. 

Consequently, Eq. (3.10) can be further expressed as: 

pq ˆ ˆ ˆ( )= [{ ( ) } { ( ) }]+ [{ ( ) }] [ ( )]
ˆ[ ( )] [{ ( ) }] [ ( )] [ ( )]

ˆ ˆ[{ ( ) } { ( ) }]

p p q q p p q

p q q p q

p p q q

C E y t y t E y t E v t
E v t E y t E v t E v t
E y t y t

     

  

  

      

      

    

 (3.11) 

It is noted that when the data number n , pq pq( ) ( )C C  , which indicates 

that sufficiently long measured data can ensure that the use of covariance computation 

can reduce the impact of measurement noise significantly. 

When 0p q    , the normalized cross-covariance function becomes the 
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normalized cross-correlation function, and it is simplified as 

pq 0 0

( ) ( )ˆ ˆ ˆ( ) [ ( ) ( )] p q
p q

p q

y t y t
C E y t y t E


 

 

   
        

    

  (3.12) 

The components of the covariance-based multi-sensing (CBMS) damage detection 

index vector pqV   (Lin and Xu 2017) are computed by using Eq. (3.12), and the 

CBMS index vector pqV  is written as 

1 1 1 2 1 1 1 2

1 1 1 2

pq p q 0 p q 0 p q 0 p q 0 p q 1 p q 1

T
p q 1 p q 1 p q nt 1 p q nt 1 p q nt 1 p q nt 1

ˆ ˆ ˆ ˆ ˆ ˆ[ ( ), ( ), , ( ), , ( ), , ( ), ( ), ,

ˆ ˆ ˆ ˆ ˆ ˆ( ), , ( ), , ( ), ( ), , ( ), , ( )]
i j s s

i j s s i j s s

C C C C C C

C C C C C C

     

        

V
  (3.13) 

where 1p [p ,p ]i s  and 1q [q ,q ]j s , and the subscript s  denotes the total number 

of selected sensors; the nt  is the time lags number selected for the subsequent study; 

and the superscript T   denotes the transpose operation of a vector. Because the 

normalized cross-covariance function pq
ˆ ( )C    in Eq. (3.12) is a decay function 

(Bendat and Piersol 2010), its value gradually reduces as the time lag   increases and 

at the same time the covariance of the measurement white noise is a constant with the 

prescribed number of measurement data. By taking this feature into account, only the 

first nt  time lags in pq
ˆ ( )C   are selected in Eq. (3.12) to avoid using the values of 

pq
ˆ ( )C    smaller than the covariance of the measurement white noise for damage 

detection. 

It is worth pointing out that the proposed CBMS damage index has some 

advantages for damage detection. The first advantage is that the CBMS index can 

flexibly combine different types of responses into the same damage detection index. 

The second advantage is that the proposed CBMS index is sensitive to local damage 

because both the global and local responses are used together for damage detection. 

For example, the strain responses are local responses, which are very sensitive to local 

damages. Moreover, the proposed CBMS index is insensitive to the measurement 

noise, when sufficient number of data is used for the computation of response 

covariance. In other words, the signal-to-noise-ratio (SNR) of the CBMS index 
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depends on the measurement time duration of the dynamic responses. 

3.2.3 Damage Model and Damage Detection Equation 

The proposed damage detection method is based on the fact that any change in the 

physical property of a structure will alter its dynamic responses as well as response 

covariance (Lu and Law 2007). Denote the matrix { }α  shown in Eq. (3.14) as the 

coefficient matrix of the structural parameters and its values are directly related to the 

fractional changes in the parameters of the structure. For a finite element model of the 

structure with ne  sets of unknowns and each set of unknowns with np  parameters 

for the identification, the total number of unknown fractional changes of the structure 

is ne np  . Hence, at least ne np   equations are needed to find all the unknown 

fractional changes.  
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 (3.14) 

where ,k i  is the coefficient of the thk  parameter for the thi  element with the unit 

value representing the intact state and other values the damage state. The changes in 

the structural parameters will cause the changes in structural dynamic responses and 

accordingly response covariance. Therefore, the CBMS damage index vector is a 

function of the coefficient matrix α , which can be expressed as: 

pq 1 2 np( ) ( , , , )kfV α α α α α   (3.15) 

The parameter changes and their damage models for a civil structure often refer 

to the changes in structural stiffness, mass and damping (Cattarius and Inman 1997). 

The changes in structural stiffness and mass after damage occurrence are considered 
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in this study as they are most common damage scenarios. The Rayleigh damping 

model is used in this study, and accordingly the change in structural damping depends 

on the change in the structural stiffness and mass. A linear damage model is adopted 

in this study for the changes in both structural stiffness and mass, and the structural 

connectivity is assumed to be maintained after damage. The system stiffness matrix

dK  and mass matrix dM  for a damaged structure can then be expressed as: 
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where iK  and iM  are respectively the thi  elemental stiffness and mass matrix of 

the structure in its intact state in a global structural coordinate system; 1 i ， and 2,i

are respectively the coefficients of the thi   elemental stiffness and mass matrix; 

1, 1, 2, 2,1and 1i i i i          are the fractional changes (damage) in the thi

elemental stiffness and mass matrix, respectively. To simplify the damage detection 

problem, the cross-sections of the beam elements in the example structure are assumed 

to be rectangular and the damage of the element is represented by reducing the width 

of the beam element symmetrically (see Appendix A). In such a case, only the stiffness 

and mass changes are considered in the damage detection and the fractional change of 

both the element stiffness and mass matrices is the same, i.e., 1, 2,  i i  . As a result, 

the computed fractional change represents the fractional change of both stiffness and 

mass in the subsequent discussions of this chapter without further statement. Besides, 

it is worth pointing out that both the reductions of stiffness and mass are only selected 

for the numerical study in Chapter 3 for a demonstration. The selection of unknown 

damage detection parameters should consider the real damage scene as well as the 

physical meaning for a specific damage case, such as a structural component is broken 

in which damage is only accompanied with stiffness loss but without mass loss. 
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A sensitivity-based damage detection method in the time-domain is adopted for 

structural damage detection using the CBMS index vector. The CBMS vector 

computed from the measured responses, pq
mV , can be expressed in a first-order Taylor 

expansion as 

 pq
pq pq

c
m c 
  



V
V V α

α
  (3.17) 

Eq. (3.17) can be further rewritten as a linear damage identification equation 

integrated with the iterative Gaussian-Newton algorithm as 

 1
pq ; ( 0,1,2 )k k k k    V S α   (3.18) 
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where pq
cV   is the CBMS vector computed through the responses from the finite 

element model; the vector pqV   is the difference between pq
mV   and pq

cV  ; α  

denotes the vector of the fractional stiffness changes in the damage elements; 

i α  ( 1 0i    ) is the fractional change of the stiffness in the thi  damaged 

element of a structure; and S  is the sensitivity matrix of the CBMS index vector to 

the fractional stiffness change vector, which is computed using the finite difference 

method ; and the superscript k  is the iteration number.  

3.2.4 Regularization-Based Damage Detection 

Regularization methods are usually used to find the solution of inverse problems 

expressed by Eq. (3.18). One of the effective regularization methods for damage 

detection is the adaptive Tikhonov regularization (Li and Law 2010). The adaptive 

Tikhonov regularization employs a squared norm (L2-norm) optimization objective 

function, but this objective function cannot produce a sparsity solution when the 

measurement noise is taken into consideration, for it tends to keep all the signals 
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including measurement noise in the optimization solution. If a structure with a large 

number of components, the damage detection methods using the L2-norm optimization 

objective function often require extensive computation time to find the solution or 

simply could not find the solution. This is because in reality, there are only a few local 

damages in a structure, the number of measurement sensors is limited, and the 

measurement noise is inevitable. On the other hand, the regularization methods 

including an L1-norm penalizing term in the optimization can enforce sparsity for the 

solution (Donoho 2006). Zou and Hastie (2005) proposed an elastic net method 

including an L1-norm penalizing term to produce a sparse solution. The elastic net 

method can give a sparsity result of shrinkage of the unknown identification variables 

into a smaller subset in terms of potential damage locations, whereas the adaptive 

Tikhonov regularization method can conduct an iterative improvement for identified 

damage severities within the subset of potential damage locations.  

In order to combine the advantage of the two regularization methods, the two 

types of objective functions mentioned above will be used successively in this study 

and can be expressed by Eq. (3. 21) in terms of a tuning parameter  . 
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where P ( ) α  is a penalty term;   is the regularization parameter that governs the 

contribution of the two errors between 
2

pq 2
 S α V  and P ( ) α ; 1

α  is the 

sparsity-inducing term (Zou and Hastie 2005; Donoho 2006); the superscript k  

denotes the current iteration number and the term ,*k
  is an adaptive adjustment 

factor (Li and Law 2010); and  0,1
  is a tuning parameter that adjusts the 

weighting to employ a sparse solution. The objective function with (0,1]  is called 
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the hybrid objective function in this study and the objective function with 0   is 

called the L2-norm optimization objective function. How to use the two objective 

functions in the two-stage covariance-based multi-sensing damage detection method 

will be discussed in the next section.  

For a large civil structure, the number of sensors is always limited compared with 

the number of degrees-of-freedom of the structure. In such cases, the use of the 

combined elastic net method and Tikhonov regularization method becomes necessary 

by taking their respective advantages. The elastic net method including an L1-norm 

penalizing term in the optimization can enforce sparsity for the solution, which is 

especially suitable to identify the sparse locations of damage when the number of 

sensors is relatively small. On the other hand, the Tikhonov regularization method has 

an explicit solution for detecting both damage locations and severities through iteration. 

Consequently, the elastic net method is used for detecting potential damage locations 

while the Tikhonov regularization method is used to refine the detection of both 

damage locations and severities in this study. 
The covariance-based multi-sensing damage detection proposed in this study is 

divided into two stages. The first stage aims to find potential damage locations by 

using the hybrid objective function for regularization. The tuning parameter is selected 

between 0.0 1.0   in this stage and the penalty term P ( ) α  thus varies linearly 

between the L1-norm and L2-norm of α . The regularized solution in this stage uses 

the elastic net method with a non-zero    and its regularization parameter    is 

determined by the K-fold cross-validation method (Kohavi 1995). 1   denotes that 

the optimization for the solution is enforced with the largest sparsity. By using the 

hybrid objective function, the first stage can narrow down the damage search area 

without iterations, but there are some false alarms in damage locations. With additional 

sensors installed in the most possible damage locations, the second stage of the 

covariance-based multi-sensing damage detection method aims to find the true damage 

locations with accurate damage severities by using the L2-norm objective function. In 
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this stage, the tuning parameter    is set to zero and the previous damage 

identification results are used as the initial condition of the second stage. The Adaptive 

Tikhonov regularization method is employed and the regularization parameter   is 

determined by the L-curve method (Hansen and O'Leary 1993). The flowchart for 

implementing the two-stage covariance-based multi-sensing damage detection method 

is shown in Fig. 3.1. 

3.3 Numerical Study 

An overhanging steel beam shown in Fig.2 is employed in the numerical study to 

examine the feasibility and accuracy of the proposed new method for damage detection. 

The FE model of the beam consists of 41 nodes and 40 equal-length beam elements. 

The first fourteen natural frequencies of the beam are list in Table 3.1. The structural 

damping is assumed to be Rayleigh damping with the first two damping ratios 

1 0.01   and 2 0.01  . In this study, the first two damping ratios are assumed to 

remain unchanged before and after damage. Other higher order damping ratios are 

computed by 
2

T
i i

i
i





Φ CΦ

, where iΦ  and i  are the thi  mode shape and natural 

frequency, respectively. It is noted that other damping model is not exclusive. The 

beam is subjected to external white noise excitation with a standard deviation 100N

at the node 24. For the beam and loading given in the numerical example, the 

maximum peak values of stress and strain responses occur in the middle span of the 

beam or nearby. Therefore, elements 20 and 22 are selected as damage elements in 

damage scenario one. The elements close to the supports also suffer relatively large 

stress and strain responses. Thus, elements 12 and 22 are selected as damage elements 

in damage scenario two, in which one damage element close to the support and the 

other in the middle span are selected. Two damage elements are assumed to have both 

stiffness and mass reductions. Damage scenario one is shown in Fig. 3.2 (a): the 

element 20 with a 10% stiffness and mass reduction, and the element 22 with a 5% 
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stiffness and mass reduction; Damage scenario two is shown in Fig. 3.2 (b): the 

element 12 with a 10% stiffness and mass reduction, and the element 22 with a 5% 

stiffness and mass reduction. Measurement noise is simulated as a normally distributed 

random component which will be added to the calculated structural responses at the 

sensor locations. As a result, the measured structural response is obtained by the 

following equation. 

P oiseE std( )measured calculated calculated   y y N y  (3.23) 

where measuredy  and calculatedy  are the vectors of polluted measurement response and 

calculated response of the damaged beam, respectively; PE  is the noise level; oiseN  

is a standard normal distribution vector with zero mean and unit standard deviation; 

and std( )  is the standard deviation operator. The sampling rate used in this study is

=1000Hzsf .  

The tuning parameter for the elastic net method is 0.9    in this study. The 

convergence criteria for iteration used in the adaptive Tikhonov regularization are as 

follows: 
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where the tolerance limit in Eq. (3.18) is set as 41.0 10  for toler1 and toler2. The 

maximum iteration number is set to 30 for the cases with measurement noise. 

The current method is proposed as a general method, aiming to fuse the responses 

from accelerometer, displacement transducer and strain gauge for multi-sensing 

damage detection. To apply this method, the prerequisite is to find the optimal 

placements of three types of sensors. However, there are no sophisticated optimal 

multi-type sensor placement methods available for the two-stage multi-sensing 

damage detection method proposed in this study. Therefore, in the numerical example, 
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the widely-used Effective Independence (EfI) method is adopted for the optimal 

placement of a single type sensor, accelerometer, in consideration that the acceleration 

response is regarded as a global dynamic response and it is popular for structural 

damage detection. The stage one of the proposed two-stage multi-sensing damage 

detection method is then conducted to find the potential damage locations first. Once 

the potential damage locations are identified, the strain gauges are then installed in the 

potential damage locations because strain responses are sensitive to local damage. The 

stage two of the proposed two-stage multi-sensing damaged detection method is finally 

performed to find both damage locations and severities. Consequently, the 

displacement responses are not included in the numerical study in this chapter. 

3.3.1 Effective-Independence-Based Optimal Sensor Placement  

Because of cost consideration, only a small number of sensors can be placed on a 

structure for system identification or damage detection. Especially for the structure 

with a large number of components, the sensors must be placed in an optimal fashion 

so that the modal characteristics of the structure or the damage locations as well as 

severities can be identified as accurately as possible. The effective independence (EfI) 

technique is an efficient method presented to place sensors for modal identification of 

a large space structure (Kammer 1991; Yao et al. 1992). Based on the FE model, a set 

of target modes is selected for identification. The Efl method casts the linear 

independence problem in the form of a target mode response estimation problem. The 

sensor locations that produce the best target mode response estimate also produce 

linearly independent target mode shape partitions.  

With the aim of maximizing the data information so that structural dynamic 

behavior can be fully characterized, the EfI method is employed for optimal sensor 

placement in this study. The first four modes make major contributions to the dynamic 

responses. Therefore, at least four sensors are needed. In this numerical study, four 

sensors are selected and their types and locations are discussed as follows. Since the 

acceleration responses are global responses, the four accelerometers are used for 
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damage localization in the first stage of the proposed two-stage covariance-based 

damage detection method. The white noise excitation acts at node 24 in the vertical 

direction such that only vertical acceleration responses are considered. The locations 

at the nodes 11 and 31 are eliminated, which are the locations of two supports and 

where the acceleration is equal to zero. On the other hand, the locations at nodes 1 and 

41 are eliminated because they are the free ends of the overhanging beam. Thus, the 

initial candidate set of sensor locations includes 37 candidates which are all the nodes 

except the nodes 1, 11, 31 and 41. The approach then ranks the candidate locations 

based on their contributions to the linear independence of the corresponding FE model 

target mode partitions. Locations that do not contribute are removed from the 

candidate set. In an iterative manner, the initial candidate set of sensor locations is 

reduced to the target number of sensors of 4. The optimal sensor locations of the 4 

accelerometers are shown in Fig. 3.3. 

3.3.2 Signal to Noise Ratio (SNR) Analysis 

A study on the SNR is conducted in this section to examine the denoising capability 

of the CBMS vector of the dynamic responses of the beam to the white noise excitation. 

The normalized acceleration response from the node 17 and the normalized strain 

response from the mid-point of the element 20 are respectively computed for 50s 

(1000Hz×50s=50000 data points) and 200s (1000Hz×200s=200000 data points) with 

and without measurement noise included. These normalized responses are then used 

to calculate their auto-covariance and cross-covariance. The effect of noise on the 

covariance is evaluated in terms of the difference between the covariance with 

measurement noise and the covariance without measurement noise. The measurement 

noise level is set as 10% of the standard deviation of the response. The time lag number 

is set as 600 for the covariance computation. The SNR analysis results are shown in 

Figs. 3.4 and 3.5 for the response duration of 50s and 200s, respectively. Fig. 3.4 (a) 
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displays the auto-covariance of acceleration response at the node 17 with and without 

measurement noise as well as the difference in the two auto-covariances for the 

response duration of 50s. It can be seen that there is a very small difference in the two 

auto-covariances of acceleration responses. The maximum auto-covariance of 

acceleration response without measurement noise effect, pqmax C , is 0.9812 and the 

maximum difference between the two auto-covariances, pqmax noiseC , is 0.0033, as 

listed in Table 2. The maximum difference between the two auto-covariance reflects 

the maximum effect of measurement noise. The ratio of the maximum difference 

between the two auto-covariances to the maximum auto-covariance, pq

pq

max

max

noiseC

C
, 

is 0.0034 only. However, the ratio of the maximum difference between the two 

acceleration responses due to measurement noise to the maximum acceleration 

response without measurement noise is about 0.1. The comparison of 0.0034 with 0.1 

demonstrates that the CBMS vector can filter the measurement noise effect 

significantly. The comparison is also carried out on the auto-covariance of the 

normalized strain response in the element 20 as well as the cross-covariance between 

the normalized acceleration response at the node 17 and the normalized strain response 

in the element 20. Similar observations can be made from Figs. 3.4 (b) and 3.4 (c) as 

well as Table 3.2: the auto-covariance of strain response and the cross-covariance 

between acceleration and strain responses can also filter the measurement noise effect 

significantly. 

It is noted from Eq. (3.9) that longer measurement data used in covariance 

computation can reduce more measurement noise effect. To examine this point, the 

duration of the normalized responses is increased from 50s to 200s. Similar 

comparison is carried out on the auto-covariance of the normalized acceleration and 

strain response as well as the cross-covariance between the normalized acceleration 
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and strain response. The computation results are shown in Figs. 3.5(a), 3.5(b) and 

3.5(c). The maximum auto-covariance, the maximum covariance difference, and the 

ratio of the maximum covariance difference to the maximum covariance all are listed 

in Table 3.2. By comparing Fig. 3.5 with Fig. 3.4, it is noted that the covariance 

difference becomes smaller if the responses of 200s duration are used. Table 3.2 shows 

that although the maximum values of auto-covariance and cross-covariance of the 

responses of 200s duration are similar to those of 50s duration, the maximum 

covariance difference and the ratio of the maximum covariance difference to the 

maximum covariance using the responses of 200s duration become smaller compared 

with those of 50s duration. This confirms that longer measurement data used in 

covariance computation can reduce more measurement noise effect. According to the 

SNR analysis results, the response measurement duration of 200s is thought to have 

sufficient data number (1000Hz×200s=200000 data points) for noise suppression in 

the covariance computation and this value will be used for the subsequent studies. 

Figs. 3.4 and 3.5 also show that the auto-covariance of acceleration has the fastest 

attenuation of amplitude, while the auto-covariance of strain has the slowest 

attenuation of amplitude. On the other hand, the amplitude of the covariance difference 

caused by noise varies within a certain level without attenuation trend. Therefore, the 

time lag number shall be selected appropriately for the subsequent damage detection. 

If the time lag number is selected too large, the noise level may be close to the auto-

covariance of acceleration response, the quality of covariance-based multi-sensing 

damage detection will be affected. vector expressed by Eq. (3.13) is also small, which 

will affect the quality of damage detection results. Through a careful inspection of the 

auto-covariance of acceleration responses as well as the acceleration covariance 

differences, the number of time lag used in the subsequent covariance computation for 

damage detection is set as 200 other than 600. 
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3.3.3 Damage Localization 

Many existing damage detection methods can find accurate results under the condition 

that the measurement noise is not considered or only very small measurement noise is 

included in the measured responses. The measurement noise is inevitable in practice 

and the noise level is assumed in this numerical study as 10% in all the measurement 

dynamic responses to demonstrate the advantage of the proposed damaged detection 

method. The structural damage identification results can be sought by solving Eq. (18) 

in the sensitivity-based damage detection methods. It is noted that the adaptive 

Tikhonov regularization is one of the currently used methods to find the solution from 

the ill-condition damage identification function with noise interruption. The elastic net 

method with the hybrid objective function is also one of the methods to find the 

solution efficiently without requiring any iteration. These two methods are adopted for 

initial damage localization as the first stage of damage detection in this study. 

The damage localization is investigated using the initial optimal sensor 

configuration with 4 accelerometers, as shown in Fig. 3.3. For the damage scenario 

one, the damage localization using the adaptive Tikhonov regularization method and 

the elastic net method are compared and the results are shown in Fig. 3.6 (a). Using 

the adaptive Tikhonov regularization for damage location identification, the true 

damage in elements 20 and 22 are respectively identified but with only 5.29% and 

2.36% fractional change for both stiffness and mass: the identified damage severities 

are far away from their true values of 10% and 5% respectively. There are also some 

false alarms in elements 12, 19, 21, 23 and 29. The maximum false alarm occurs in 

element 21 with 4.82% fractional change for both stiffness and mass. By contrast, the 

use of the elastic net method for damage localization yields more satisfactory results. 

It is noted from Fig. 3.6 (a) that the true damage in elements 20 and 22 are respectively 

identified with 12.29% and 4.14% fractional change for both stiffness and mass, which 

are quite close to the true damage severities of 10% and 5% respectively. It is noted 

that there are more false alarms in elements 7, 8, 9, 13, 14, 15, 19, 21, 29 and 32. 

However, the maximum false alarm occurs in element 13 with 2.58% fractional change 
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only for stiffness and mass. Moreover, the computation time for damage localization 

using the elastic net method and the adaptive Tikhonov regularization is about 134s 

and 3665s, respectively. The elastic net method only takes 3.66% (134s/3665s*100%) 

computation time of its counterpart. The adaptive Tikhonov regularization method can 

identify damage locations with less number of false alarms, but the true damage 

severity are not prominent in the subset of potential damage candidates. It is also noted 

that the elastic net method can give more accurate and desirable damage severity 

results but with more number of false alarms. Moreover, it is found that the elastics net 

method needs much less computation time to find the solution than the adaptive 

Tikhonov regularization method in this study. This is because for a structure with 

limited number of sensor and a few damage locations, the elastic net method can 

effectively converge to the sparse solution to find the potential sparse damage locations 

without iteration; while the adaptive Tikhonov regularization method tends to achieve 

a more evenly distributed solution, so it needs extensive iteration to converge to the 

sparse damage locations. By considering all the factors, the first stage of damage 

detection in this study only uses the elastic net method for damage localization. The 

further refinement for damage detection will be conducted in the second stage to reach 

more accurate and reliable damage detection results by using the adaptive Tikhonov 

regularization method with the L2-norm objective function in an iterative manner. 

Similar comparison of damage localization is conducted in the damage scenario 

two using the adaptive Tikhonov regularization method and the elastic net method and 

the results are shown in Fig. 3.6 (b). Using the adaptive Tikhonov regularization for 

damage location identification, the true damages in elements 12 and 22 are 

respectively identified but with only 6.64% and 3.09% fractional change for both 

stiffness and mass, meanwhile there are some false alarms in elements 11, 13, 21, 23 

and 29. By contrast, using the elastic net method for damage localization, the true 

damages in elements 12 and 22 are respectively identified with 10.18% and 4.78% 

fractional change for both stiffness and mass, meanwhile there are some false alarms 

in elements 5, 13, 19, 20 and 33. It is noted that the elastic net method for damage 
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localization can give more satisfactory results, which are similar to those observations 

from the damage scenario one.  

3.3.4 Damage Severity Identification 

When the number of sensors is limited, one step damage detection method sometimes 

may not be workable in the practical application, as demonstrated in the last section. 

Xiang et al.(2012) and Sung et al.(2014) among others found that a two-stage approach 

may be helpful. Under the conditions of limited sensors, they prefer to focus on the 

damage localization in the first stage to narrow down the potential damage areas. The 

two-stage damage detection approach is also adopted in this study. By using the 

Effective Independence (EfI) method, four accelerometers are selected for the first 

stage damage detection, as shown in the Fig. 3.3. The first stage damage detection 

results for two damage scenarios are shown in Fig. 3.6. It can be seen from Fig. 3.6 

that the damage detection results are not satisfactory. However, potential damage 

locations can be identified according to damage severities. Therefore, the second-stage 

damage detection is required by adding strain gauges to the potential damage locations 

because strain responses are sensitive to local damage.  

Following what has been found in the last section for the damage scenario one, 

all the locations with non-zero value of fractional change in elements 7, 8, 9, 13, 14, 

15, 16, 18, 19, 20, 21, 22, 29, 32 and 33, identified by using the elastic net method, are 

selected as the potential damage candidates. The adaptive Tikhonov regularization 

with L2-norm objective function in the iterative manner is used for initial damage 

identification refinement and the results are shown in Fig. 3.7 (a). It is noted from Fig. 

3.7 (a) that the identified fractional changes in the damage elements as well as in the 

elements with false alarms are improved to some extent. However, the number of the 

potential damage candidate is not reduced obviously. It seems that the limited number 

and information from the current sensors are insufficient. Extra sensors shall be 

supplemented in the second stage to improve the damage identification results from 

the previous potential subset of damage candidate. The selection of additional sensor 
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numbers and their locations depends on the potential damage locations identified in 

the stage one. Since the potential damage locations identified in the stage one with 

obviously large damage severities is two, only two accelerometers or two strain gauges 

are added in the two potential damage locations in the second-stage damage detection.  

Based on the initial refinement results of the potential damage candidate locations, 

two new sets of sensor configuration with two additional sensors for damage 

refinement in stage two are shown in Fig. 3.8 (a) and Fig. 3.8 (b), respectively. In Fig. 

3.8(a), two additional accelerometers are installed at the nodes close to the two most 

possible damaged elements, and in Fig. 3.8(b) two strain gauges are installed on the 

two most possible damaged elements. Clearly, the sensor configuration shown in 

Fig.3.8(a) is based on single-type sensor but that shown in Fig. 3.8(b) is based on dual-

type sensors. The adaptive Tikhonov regularization with L2-norm objective function 

in the iterative manner is now applied to the beam with the single- and dual-type sensor 

configurations, respectively, and the results are shown in Fig. 3.9 (a).  

The identification results from the single-type six accelerometers show a little 

change compared with the initial refinement results using four accelerometers only. 

There is only minor improvement for damage severity identification but the number 

of false alarms does not reduce. Comparatively, the identification results from the dual-

type sensor configuration (two strain gauges and four accelerometers) show that both 

the damage locations and severities are perfectly identified and nearly all the false 

damage alarms occurring in stage one are eliminated. It is noted that strain gauges 

directly installed on the most potential damage elements can enhance the accuracy of 

damage identification significantly. Nevertheless, the strain gauge often has a 

limitation for its local effective range for damage detection and the strain gauges are 

expected to install as close as possible to the damaged elements. Therefore, the damage 

localization conducted in the first stage is very important to narrow down the number 

of potential damage candidates. The initial damage detection refinement using the 

adaptive Tikhonov regularization with L2-norm objective function is also important so 

that only the small number of strain gauges is needed to add to the beam for the final 
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damage detection. 

The damage refinement study for damage scenario two is also investigated. The 

first stage damage location identification is conducted using the same initial optimal 

sensor configuration as shown in Fig. 3.3, and the potential damage candidates are 

selected in the stage one by the elastic method. In the stage two, the damage 

identification is initially improved by the adaptive Tikhonov method as shown in Fig. 

3.7 (b). After adding two accelerometers or two strain gauges as shown in Fig. 3.8 (c) 

and (d), the refinement results for damage identification are compared as shown in Fig. 

3.9 (b). It is found that both cases with additional sensors show some improvement, 

and the dual type sensor configuration with two additional strain gauges can identify 

the damage perfectly. The studies of damage scenarios one and two show similar 

observations that the second-stage damage detection does improve damage detection 

quality and give actual damage locations as well as severities. This confirms the 

effectiveness of using the proposed two-stage CBMS damage detection method. 

3.3.5 Discussions 

Then, what is the reason why the two strain gauges added to the two most potential 

damage elements can produce nearly perfect identification results for both damage 

locations and severities even with 10% measurement noise included in the stage two? 

By taking the damage scenario one as example, Fig. 3.10 presents the profiles of the 

norm of sensitivity of the CBMS vector to the elemental stiffness and mass change for 

the first sensor configuration shown in Fig. 3.3 and the second and third sensor 

configurations shown in Fig. 3.8 (a) and Fig. 3.8(b) respectively. The elemental 

sensitivity is obtained from each column of the sensitivity matrix in Eq. (3.20) for the 

corresponding element. Compared with the first sensor configuration, the elemental 

damage sensitivities are increased for the second sensor configuration, which is the 

major reason for the improvement of the damage identification results. For the third 

sensor configuration with dual-type sensors, the elemental damage sensitivities are 

increased globally and there are also two sharp peaks in the sensitivity profile 
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occurring at the two elements placed with strain gauges. This is why the two strain 

gauges added to the two most potential damage elements can produce nearly perfect 

identification results for both damage locations and severities even with 10% 

measurement noise included in the stage two. Strain gauges are so sensitive to the 

damage occurring at the elements on which they are installed and those elements 

nearby. Nevertheless, these sharp peaks cover very limited region and further research 

is needed to find the effective region of strain gauges in general. 

3.4 Summary 

A response covariance-based multi-sensing (CBMS) damage detection method has 

been presented in this chapter. Instead of using the heterogeneous measurement data 

separately, the new method can assimilate and normalize the heterogeneous data 

simultaneously, define the CBMS vector as a new damage index in terms of the 

normalized cross-covariance matrix, and work together with the sensitivity approach 

for damage detection. In the proposed method, the elastic net method with a hybrid 

objective function is used for damage localization in the first stage, and the adaptive 

Tikhonov regularization with L2-norm objective function in the iterative manner is 

employed together with additional strain gauges for damage identification refinement. 

The feasibility and accuracy of the new method have been confirmed through the 

numerical study using an overhanging beam with multiple damaged elements. It can 

come to the conclusions that the CBMS vector is relatively insensitive to the 

measurement noise but sensitive to damage, and that the dual-type sensor 

configuration is better for damage detection with higher accuracy. Both the damage 

locations and severities are perfectly identified and nearly all the false damage alarms 

occurring in stage one are eliminated even with 10% measurement noise considered.  

Although a general framework of the response covariance-based damage 

detection method has been presented in this chapter, there is no optimal multi-type 

sensor placement method available for multi-sensing damage detection. The currently-

used Effective Independence (EfI) method has to be adopted in the numerical study 
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for the optimal placement of accelerometer in stage one in this chapter. After finding 

the suspicious elements, the strain gausses were directly installed on these possible 

damaged locations for the refinement of damage identification in stage two. Clearly, 

the optimal multi-type sensor placement method to ensure the sensitivity of the 

structural responses measured by the sensors and at the same time to reduce the 

redundant sensors should be considered for the implementation of the response 

covariance-based multi-sensing damage detection method proposed in this chapter.  
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Table 3.1 Natural frequencies of the overhanging beam 

Mode No. Frequency (Hz) Mode No. Frequency (Hz) 

1 5.06 9 198.66 

2 8.37 10 213.12 

3 17.40 11 259.49 

4 43.06 12 347.00 

5 64.57 13 405.63 

6 72.77 14 426.20 

7 101.21 15 426.36 

8 158.32 16 491.00 

 

 

Table 3.2 The maximum absolute values of covariance and covariance difference 

Type of 

covariance 
pqmax C  pqmax noiseC  pq

pq

max

max

noiseC

C
 

50s 200s 50s 200s 50s 200s 

cov(z,z)  0.9812 0.9878 0.0033 0.0013 0.0034 0.0013 

cov( ,ε)z  0.8525 0.8327 0.0043 0.0017 0.0050 0.0020 

cov(ε,ε)  2.5249 2.4416 0.0041 0.0014 0.0016 0.00057 
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Fig. 3.1 Flowchart of the proposed two-stage damage identification 
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(a)  

 
(b)  

 

Fig. 3.2 Finite element model of an overhanging steel beam and damage locations:  

(a) Damage scenario 1;(b) Damage scenario 2. 

 

 

 
Fig. 3.3 The initial optimal sensor configuration 
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(a)  

(b)  

(c)  

Fig. 3.4 SNR analysis of the CBMS vectors computed from acceleration and strain 

(50s): (a) Auto-covariance of normalized acceleration response at node 17; (b) Auto-

covariance of normalized strain response at element 20; (c) Cross-covariance of 

acceleration at node 17 and strain responses at element 20. 
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(a)  

(b)  

(c)  

Fig. 3.5 SNR analysis of the CBMS vectors computed from acceleration and 

strain(200s): (a)Auto-covariance of normalized acceleration response at node 17; 

(b)Auto-covariance of normalized strain response at element 20; (c)Cross-covariance 

of acceleration at node 17 and strain responses at element 20. 
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(a)  

(b)  

Fig. 3.6 The damage localization using two objective functions with 10% measurement 

noise: (a) For the damage scenario 1; (b) For the damage scenario 2. 
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(a)  

(b)  

Fig. 3.7 Damage refinement within the narrowed subset of damage candidate: 

(a) For the damage scenario 1; (b) For the damage scenario 2. 
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(a)  

 

(b)  

 

(c)  

 

(d)  

Fig. 3.8 Stage two senor configurations for damage refinement with different 

additional sensors: (a) Damage scenario 1: sensor configuration added 2 

accelerometers; (b) Damage scenario 1:sensor configuration added 2 strain gauges; (c) 

Damage scenario 2: sensor configuration added 2 accelerometers; (d) Damage scenario 

2:Sensor configuration added 2 strain gauges. 
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(a)  

(b)  

Fig. 3.9 Comparison of single- and dual-type sensor damage refinement with added 

sensors: (a)Comparison for damage scenario 1; (b)Comparison for damage scenario 2. 
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Fig. 3.10 Elemental damage sensitivity analysis for three sets of sensor configuration 
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CHAPTER 4 

RESPONSE COVARIANCE-BASED SENSOR 

PLACEMENT FOR STRUCTURAL DAMAGE 

DETECTION 

4.1 Introduction 

In Chapter 3, the response covariance-based multi-sensing damage detection method 

was proposed and implemented in two stages of damage localization and damage 

severity refinement. The accelerometers installed in the first stage were optimally 

placed by using the EfI method. The strain gausses were then installed on the identified 

damage locations in the second stage. It is noted that the sensor placement will affect 

the quality of damage detection and that the EfI OSP method does not directly target 

at damage detection, particularly response covariance-based damage detection.  

This chapter will therefore propose a response covariance-based optimal sensor 

placement method to facilitate the proposed damage detection method to achieve better 

damage identification. The accelerometers are probably the most popular sensors for 

damage detection, and this chapter will thus start from the exploration of the OSP 

objective functions and the associated OSP method for accelerometer optimal 

placement in Section 4.2. First, the relationship between the covariance of acceleration 

responses and the covariance of unit impulse responses of a structure subjected to 

multiple white noise excitations will be derived. Second, the optimal sensor placement 

objectives in terms of the response covariance sensitivity and the response 

independence will be developed. The two OSP objectives aim to enhance the damage 

sensitivity of the structural responses measured by the sensors and to reduce redundant 

sensors. Finally, an integrated single objective function is formed by using a weighting 

factor to combine the two objective functions. In Section 4.3, a numerical study will 
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be performed to investigate the feasibility and effectiveness of the proposed sensor 

placement method for damage detection through a five-bay three-dimensional frame 

structure. A summary of the works presented in this chapter is given in Section 4.4. 

 4.2 Methodology 

4.2.1 Unit Impulse Response and Response Covariance 

The dynamic responses of the structure to unit impulse excitations ( )tδ   at the 

locations of the external excitations can be computed as follows: 
 ( ) ( ) ( ) ( )t t t t   fMh Ch Kh L δ   (4.1) 

where ( )tδ  is the Dirac delta function vector; ( )th , ( )th , and ( )th  denote the unit 

impulse response (UIR) vector of acceleration, velocity, and displacement, 

respectively. 

The acceleration response ( )pz t  of the structure at location p  under multiple 

external excitations can be expressed by the Duhamel’s integral as 

 ,0
1

( ) ( ) ( )
i

m

p p f i
i

z t h f t d  




    (4.2) 

where the subscript i   is the excitation index;    is the time variable for the 

Duhamel’s integral; and 
ip, fh   is the acceleration UIR at the location p   to the 

excitation if .  

By substituting ( )pz t  and ( )qz t  computed by the Duhamel’s integral into Eq. 

(4.2), the pq ( )C   can be expressed as (Bendat and Piersol 2010)  

 
pq

, ,0 0

( ) ( ) ( )

( ) ( ) ( ) ( )
i j

p q

m m

p f q f i j
i j

C E z t z t

h h E f t f t d d

 

      
 

   

       
  (4.3) 

where the subscript i  and j  denote the thi  and j th  excitation, respectively; , ip fh  

and , jq fh  are the UIRs of acceleration at the locations p  and q  corresponding to 
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if   and jf  , respectively;    and    are the time variables for the Duhamel’s 

integral.  

The excitations are assumed as the mutual-independent Gaussian white noise 

excitations with zero means in this study. As a result, the expectation term in Eq. (4.3) 

can be written as 

 

 

2
2

, and
( ) ( ) ( ) ( )

0, or
jj

i j ij

c i j
E f t f t c i j

i j

  
       

  

   
          

  

  (4.4) 

where 2
ijc  is the covariance of excitations between if  and jf ; ( )  is the Dirac 

delta function; and 
jjj fc   is the standard deviation of the excitation jf . As a result, 

Eq. (4.3) can be simplified as 

 2 2 T
pq , , , ,0

1 1
( ) ( ) ( ) [ ( ) ( )]

j j j j

m m

jj p f q f jj p f q f
j j

C c h h d c       


 

     h h   (4.5) 

where 2
jjc  is the variance of the excitation jf , indicating the contribution of the  

thj  excitation to the covariance of the two acceleration responses; and the superscript  

T  denotes the transpose of a vector. 

In this chapter, it is assumed that the standard deviation of the excitation jjc  can 

be estimated for the white noise excitations. Eq. (4.5) thus shows the relationship 

between the covariance of the two acceleration responses and the covariance of two 

corresponding acceleration UIRs for a structure subjected to multiple white noise 

excitations with mutual independence. This relationship indicates that the damage 

induced variation of response covariance pq ( )C    is only related to the UIRs, 

, ( )
jp f h  and , ( )

jq f  h , with the input excitations expressed as a constant 2
jjc . In 

other words, pq ( )C   is related to the location of excitation but not to the amplitude of 

excitation. Therefore, the performance of the response covariance-based damage index 

and sensor placement indices is dependent on the acceleration UIRs only. 

By substituting the normalized acceleration responses into Eq. (4.3), the 

normalized covariance function of two acceleration responses is obtained as 
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0 0

2
T

, ,0 0
1

( ) z ( )ˆ ˆˆ( ) [ ( ) z ( )] E

[ ( ) ( )]
j j

p q
pq p q

p q

m
ii

p f q f
j p q

z t t
C E z t t

c


 

 
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 

   
        

    

  h h

  (4.6) 

where 0
p  and 0

q  are the standard deviations of the acceleration responses pz  and 

zq  of the structure without any damage, respectively. 

Accordingly, the sensitivity matrix S  in Eq. (3.20) can be rewritten by using the 

UIR of acceleration as 

 
T2

, ,
0 0

1

[ ( ) ( )]
j j

c m
p f q fpq jj

j p q

c   

 

 
  

 


h hV
S

α α
  (4.7) 

Thus, the fractional stiffness change parameter α  can be obtained by solving 

the damage detection equation 1
pq

k k k  V S α  in Eq. (3.18), and the least-squares 

solution (Shi et al. 2000) is  

 
-1T T

pq  α S S S V                        (4.8) 

where the superscript “-1” denotes the matrix inverse operation. 

When considering the random error from measurement and/or modeling errors, 

the least-squares solution α  of Eq. (3.18) can be rewritten as 

 
-1 T

pq +T


    α S S S V ε                 (4.9) 

where ε  is the random error vector, which is assumed to obey zero-mean normal 

distribution with a variance of 2
 . 

4.2.2 Optimal Sensor Placement with Two Objectives 

Optimal sensor placement method can help obtain structural responses which may lead 

to higher accuracy in the estimated parameters (Shi et al. 2000). The estimation error 

for α  in this study can be computed by using Eqs. (4.8) and (4.9) as follows: 

       
-1 -1T T T T T

err E E 
            

α α α α S S S εε S S S   (4.10) 
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where err  is the covariance matrix of the estimation error, and the matrix T  εε  is 

the covariance matrix of the random error vector. Assume that the random errors on all 

the estimated parameters are independent and identically distributed with an equal 

variance of 2
  and that they are not related to the measured responses. The parameter 

uncertainties mainly come from either measurement noise or modeling error. Most 

researchers assumed that they are independent-identically distributed Gaussian white 

noise processes (Au et al. 2013; Zhang et al. 2015). Some measurement data also 

support this assumption for measurement noise. The term T  εε   can then be 

expressed as 2
   I , where I  is the identity matrix. As a result, Eq. (4.10) can be 

simplified as 

     
-1 -1 -1T T 2 T 2 T

err        S S S I S S S S S         (4.11) 

It can be found from Eq. (4.11) that the estimation error of parameters, err , is 

inversely proportional to the Fisher information matrix TS S . To reduce the estimation 

error of parameters, Udwadia (1994) proposed to maximize the trace of the Fisher’s 

information matrix. The first objective function of the optimal sensor placement for 

damage detection is thus taken based on the response covariance sensitivity as 

 SA T T
ne

pq pq

1

1 1( )
[ ] c c

i i i

f

 

 
     
             



θ
trace S S V V

  (4.12) 

where the vector θ   denotes the optimal sensor configuration with respect to the 

optimal locations of sensors with prescribed number; and the sensitivity matrix S  is 

computed by Eq. (4.7). According to the definition of the first objective function, the 

optimal sensor placement with the smallest SAf   shall be most sensitive to the 

fractional stiffness changes of the damaged elements. 

The first objective function described above aims to find the maximum increment 

of the response covariance with respect to the fractional stiffness change. The sensor 
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placement based on this objective function may have the selected sensors clustered 

around some parts of the structure with similar sensitivity to local damage, and 

accordingly information from some of them may overlap. On the other hand, 

correlation analysis can help to reduce such overlapped information by collecting more 

independent structural responses (Khawsuk and Pao 2002). Response independence 

can potentially improve the quality of damage detection results. In this regard, the 

second objective aims to obtain independent acceleration responses through 

correlation analysis. For two different normalized acceleration responses, such as ˆ
pz  

and ˆ
qz , the correlation coefficient at 0   is given by 

2
T

pq , ,0 0
1

ˆ ˆ= ( ) ( ) [ ]; [ 1,1]
j j

m
jj

p q p f q f pq
j p q

c
r E z t z t r

 

       h h   (4.13) 

The correlation coefficient pqr  is a scalar value according to its definition in 

statistics. The independence of two acceleration time series ˆ ( )pz t  and ˆ ( )qz t  should 

be measured from different installation locations but not from different time delays  . 

Thus, the correlation coefficient at 0   is used, which explicitly shows the 

relationship between the correlation coefficient pqr   of the two normalized 

acceleration responses and the covariance of the acceleration UIR vectors. Using the 

Euclidean distance pqd   to evaluate the independence between two normalized 

acceleration ˆ
pz  and ˆ

qz  yields 

1 1 1 1
2 2 2

pq
0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ( )] [ ( )] [ ( )] 2 [ ( ) ( )]
n n n n

p i q i p i q i p i q i
i i i i

d z t z t z t z t z t z t
   

   

          (4.14) 

Eq. (22) can be further simplified as 
1 1 1

2 2 2
ˆ ˆpq pq

0 0 0

ˆ ˆ ˆ ˆ[ ( )] [ ( )] 2 [ ( ) ( )] 2
p q

n n n

p i q i p i q i z z
i i i

d z t z t z t z t n n nr 
  

  

          (4.15) 

where ˆ ˆ 1
p qz z     are the standard deviation of the normalized acceleration 

responses ˆ
pz   and ˆ

qz  , respectively. The relationship between the correlation 
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coefficient pqr  and the Euclidean distance pqd  of the two normalized accelerations 

is 

  
2 2

ˆ ˆ pq pq
pq 1

2 2 2
p qz z d d

r
n n

 
      (4.16) 

Note that a larger dpq   results in a smaller correlation coefficient pqr  , which 

indicates a higher degree of independence between the two normalized acceleration 

responses. Thus, pqr  can be an index to represent the independence of acceleration 

responses. The correlation matrix for different acceleration responses is formed as 

 

1 1 1 2 1 1

2 1 2 2 2 2

1 2

1 2

p q p q p q p q

p q p q p q p q

p q p p q p q

p q p q p q p q

k s

k s

l l l k l s

s s s k s s

q

r r r r

r r r r

r r r r

r r r r

 
 
 
 
 
 
 
 
 
 

R   (4.17) 

where the symmetric matrix R  is the correlation coefficient matrix computed from 

the interested acceleration responses with prescribed number of sensors; 1p [p , p ]l s  

and 1q [q , q ]k s  ; and the correlation coefficient p ql k
r   is computed from the 

responses recorded by the sensors pl  and qk . The second objective function CAf  

formed by the matrix R  for optimal sensor placement is then given by 

 T 2
CA p q

1 1
( )

l k

s s

l k
f r

 

    θ trace R R   (4.18) 

To evaluate the independence of responses within a selected sensor configuration, 

all the correlation coefficients between any two acceleration responses are computed 

by Eq. (4.17). Then, the minimization of the second objective function of Eq. (4.18) 

leads to the largest independence of responses from different measurement locations. 

For a civil engineering structure, if only a few sensors are selected, these sensors may 

be distributed evenly to fully capture the dynamic responses with more spatial 

information of the structure through minimization of the objective function CAf . The 
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smaller correlation coefficients then mean larger independence between the measured 

responses. 

The possibility of successful damage identification may be maximized with high 

response covariance sensitivity to the local damages. The limited number of measured 

acceleration responses can also be evenly distributed to fully capture the structural 

dynamic properties and reduce the possible overlapped information. However, a 

typical optimal solution with one design objective (such as response covariance 

sensitivity) may not match the requirement of other significant design objectives (such 

as response independence) simultaneously. Therefore, a sensitivity and correlation 

analysis based (SCA) sensor optimal placement, integrating the two objectives, is 

proposed in this study. 

The weighted sum method (Marler and Arora 2004) is adopted to develop this 

integrated objective function for OSP in the form of a linear (weighted) combination 

of different objective functions as follows: 

SA CA
SCA SCA SCA SCA

SA CA

( ) ( )Minimize ( ) (1 ) ; [0,1]
max ( ) max ( )

f fI w w w
f f

   
      

   
θ

θ θθ
θ θ

(4.19) 

where SCAI   is the SCA index developed for optimal sensor placement, which can 

optimize both response covariance sensitivity and independence simultaneously; and 

SCAw   is the weighting factor. Because the two proposed objective functions have 

different units and amplitudes, they shall be normalized to become non-dimensional 

functions. In this regard, they are normalized by the factors SAmax ( )f θ   and 

CAmax ( )f θ , respectively, as shown in Eq. (4.19). The normalization factors are the 

maximum objective function values calculated in each iteration of the backward 

sequential sensor placement (BSSP) algorithm (Papadimitriou 2004). The 

normalization factors ensure that each objective function in bracket will not be greater 

than unity such that they can be combined without bias to represent their contributions 

in the sensor placement. 

After giving the weighting factor SCAw , the proposed optimal sensor placement 
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index SCAI  can select the optimal sensor configuration by balancing the contribution 

between the two proposed objectives. The candidate locations are ranked based on 

their combined contribution from the SAf  and CAf . Finally, the locations with less 

contribution are removed from the candidate set iteratively. 

4.2.3 Implementation of Optimal Sensor Placement 

Most of the optimal sensor placement approaches involve computation and rank on 

many different combinations of candidate sensor locations. An exhaustive search over 

all possible sensor configurations is required to obtain the exact optimal sensor 

configuration for these optimal sensor placement approaches. This could be time-

consuming, particularly when a large number of candidate combinations of sensor 

locations are considered. Alternatively, Papadimitriou (2004) proposed the BSSP 

algorithm to obtain a good sensor configuration by eliminating the least contribution 

sensor one by one, and the simulation results indicated that the approximate 

suboptimal configuration from the BSSP algorithm was close to the optimal sensor 

locations from exhaustive search. Since the BSSP can provide satisfactory accuracy 

with much less computation effort, it is implemented for the subsequent OSP. 

The detailed procedure for an optimal sensor placement through the sensitivity 

analysis and correlation analysis is shown in Fig. 4.1. 

Step 1: Calculate the acceleration UIR vectors , ( )
jp f h   and , ( )

jq f  h   at the 

candidate locations installed with accelerometers and the corresponding 

variances 2
jjc  of the related excitations. 

Step 2: Calculate the sensitivity matrix S  of the covariance-based damage detection 

index from Eq. (4.7) corresponding to all the interested subsets of sensor 

combinations. The objective function SAf  for response covariance sensitivity 

is calculated from Eq. (4.12), and SAmax f  is calculated in each iteration. 

Step 3: The correlation coefficient pqr  in Eq. (4.13) between different acceleration 
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responses are computed using the weighted acceleration UIR vectors. The 

correlation matrix R  in Eq. (4.17) is formed for all the interested subsets of 

sensor combinations and the second objective function CAf   for response 

independence is obtained by Eq. (4.18), and max fCA  is calculated in each 

iteration. 

Step 4: The proposed SCA optimal sensor placement index SCAI  is calculated from 

Eq. (4.19) with a prescribed weighting factor SCAw   which provides a 

weighting for the contribution between the objectives fSA  and fCA  in this 

study. By using the BSSP algorithm, one sensor is removed at a time in the 

candidate sensor configuration. The subset of sensor configuration producing 

the smallest value of the index SCAI  will be retained in the next iteration. 

Step 5: By repeating Steps 2 to 4, the number of sensors in the initial candidate set is 

successively reduced to the required number of sensors by removing the sensor 

one by one using the BSSP algorithm. The final optimal sensor configuration 

is then obtained if the iteration criterion is satisfied. 

4.3 Numerical Study 

4.3.1 Description of the Frame Structure and Candidate Sensor 

Locations 

A three-dimensional frame structure, as shown in Fig. 4.2, is employed in the 

numerical study to examine the feasibility and effectiveness of the proposed optimal 

sensor placement method for damage detection. The finite element model of the frame 

structure consists of 37 equal-length beam elements and 17 nodes. The structural 

properties are listed in Table 4.1. The structural damping is assumed to be Rayleigh 

damping with the first two damping ratios 1 2 0.01   . In this study, the first eight 
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modes are considered for computing the dynamic responses of the frame structure. The 

natural frequencies and types of modes for the first eight modes of the frame structure 

are listed in Table 4.2. 

The frame structure is subjected to six independent white noise excitations with 

standard deviations of N20  and N60  in the lateral and vertical direction 

respectively at Nodes 15, 16 and 17. The structural responses are sampled at 500 Hz 

over the time duration of 60s. Measurement noise is simulated by adding normally 

distributed random number to the noise-free response, which is used for the damage 

detection study to investigate the effectiveness of optimal sensor locations. The root-

mean-square (RMS) of the measurement noise is equal to 5% of the RMS value of the 

noise-free response in this study. 
Theoretically, the minimum eight accelerometers are needed to identify eight 

target modes, and therefore the number of the accelerometers is set as eight in this 

numerical study. At the frame structure, 28 initial candidate locations of 

accelerometers are selected from 14 nodes (Nodes 4 -17, excluding the nodes at the 

supports) in the lateral (y-direction) and vertical (z-direction) degree-of-freedoms. So, 

there are total 28 accelerometers in the initial sensor set, which are named from 1 to 

28 (sensor location number) according to the DOFs number of the node installed with 

the sensors in the finite element model. The initial candidate set of sensor locations is 

reduced by removing accelerometers one by one and the iteration is stopped when 

eight accelerometers are left. 

After the initial number of candidate sensor locations 28pN   is selected, the 

computational effort between the exhaustive search algorithm and the BSSP algorithm 

can be compared quantificationally. When using the exhaustive search algorithm, the 

number of all distinct sensor configurations involving 8oN   sensors is 

! 28! 3,108,105
!( )! 8!(28 8)!

p
s

o p o

N
N

N N N
  

 
. If the BSSP algorithm is adopted, only 

( 1) ( 1) 370s p p oN N N N         iterative steps are needed to achieve the 
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suboptimal solutions. Therefore, the BSSP is used in this study as a suitable sensor 

placement algorithm to take less computational effort for practical application. 

4.3.2 Optimal Sensor Placement and Damage Detection 

The application of the proposed OSP method for damage detection is introduced in 

this section. The integrated OSP objective function SCAI   developed for damage 

detection is given by Eq. (4.19). The best weighting factor is determined through a 

parameter analysis and the performance of the OSP is assessed by damage detection 

accuracy to obtain the best sensor configuration for damage detection. This 

implementation includes three major steps as follows: 

Step 1 is the binary search of a weighting factor for OSP. A weighting factor 

SCA [0,1]w   for SCAI  is used to balance the contributions between the two objectives 

regarding the response covariance sensitivity and response independence. The binary 

search algorithm, also known as half-interval search, is used to find the best weighting 

factor in this study. This numerical searching algorithm repeatedly bisects an interval 

and then selects a subinterval in which an asymptotic solution lies for further 

processing.  

Specifically, the weighting factors are initially selected between 0 and 1, and the 

binary search begins by comparing the middle point with two extreme values on the 

boundaries. Accordingly, the searching area of SCAw  is divided into two subintervals 

by SCA 1.0w   , SCA 0.0w    and SCA 0.5w   . The case with SCA 1.0w   or 

SCA 0.0w   is an extreme case corresponding to the situation where only the response 

covariance sensitivity or only the response independence is included as the OSP 

objective function. The case with SCA 0.5w   indicates that both objectives are 

equally important. 

After prescribing a weighting factor, the BSSP algorithm governed by the SCAI  

objective function is performed and the selected sensor locations for the above cases 
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are graphically described in Fig. 4.3. Only 8 accelerometers are selected from 28 

candidates for an optimal sensor configuration. Three optimal sensor configurations 

OSP1 ( SCA 1.0w  ), OSP2 ( SCA 0.0w  ) and OSP0 ( SCA 0.5w  ) are obtained 

corresponding to the three cases described above for the subsequent damage detection, 

and they are shown in Fig. 4. 

For the OSP1 shown in Fig. 4.4(a), it is noted that most of the selected 

accelerometers are located at the free end of the cantilevered frame structure and some 

of the neighboring sensors may provide repeating information. This sensor placement 

may not help to identify damaged elements, which are far away from the selected 

sensors. For the OSP2 shown in Fig. 4.4(b), the sensors are distributed in each bay of 

the structure, which provide relatively independent responses. However, this 

placement may sacrifice sensors which are sensitive to the damage parameters. For the 

OSP0 shown in Fig. 4.4(c), it has many accelerometers (at Nodes 13-17) which are the 

same as those found in OSP1. The accelerometers are also evenly distributed on the 

structure.  

Step 2 is the assessment of the OSP performance. The selected OSPs from Step 

1 are evaluated via their effectiveness and accuracy in the damage detection of the 

structure. Two scenarios with multiple damage locations are considered. In the first 

scenario, damages are assumed to occur in two longitudinal members and one diagonal 

member near the support; the three damages are in Elements 6, 8 and 9 with 10%, 5% 

and 10% stiffness reduction, respectively. In the second scenario, damages are 

assumed to occur in three longitudinal members at mid-span of the structure; the three 

damages are in Elements 14, 17 and 18 with 10%, 5% and 10% stiffness reduction, 

respectively. 

The effects of the three optimal sensor configurations OSP0, OSP1, and OSP2 

for damage detection are compared. For the damage scenario one, the damage 

detection results are depicted in Fig. 4.5(a). When using sensor configuration OSP1 

for damage detection, the damaged elements 6 and 9 are respectively identified with 

9.9% and 8.4% stiffness reduction, but the identification of damaged element 8 fails. 



 

72 

This may be due to the small damage severity in Element 8 and most of the selected 

sensors are close to the free end which is far away for this element. When using sensor 

configurations OSP2, both the damage locations and severities can be satisfactorily 

identified. The damaged Elements 6, 8 and 9 are identified with 9.4%, 3.4% and 9.6% 

stiffness reduction, while two relatively large false alarms are observed in Elements 

14 and 23 with 1.7% and 1.3% stiffness reduction. When using sensor configurations 

OSP0, the 10% damages on Elements 6 and 9 are identified very accurately, and the 

5% damage on Element 8 is identified satisfactorily with 3% stiffness reduction.  

For the damage scenario two, the damage detection results are depicted in Fig. 

4.5(b). Both the damage locations and severities can be identified satisfactorily when 

using the three selected sensor configurations, and observations are similar to those of 

the first scenario with OPS0 yielding relatively better results than the other two 

configurations. The small damage ( 17 =5% ) in Element 17 is successfully identified 

in this scenario using the OSP1. 

The above results show that: (a) the placement OSP0 offers the best measurement 

information to yield the best damage detection result amongst the three sensor 

placements; (b) the placement OSP2 is little poorer than OSP0 for damage detection 

with some relatively large false alarms; (c) the placement OSP1 can only identify two 

damages when the selected sensors are far away from the damaged element although 

this sensor configuration is selected with the aim to optimize the response sensitivity 

to the damage parameters. All the above observations indicate that a suitable optimal 

sensor configuration may be sensitive to damage as well as evenly distributed to fully 

capture the structural dynamics.  

Step 3 is the selection of a new weighting factor within a reduced searching half-

interval and the performance assessment of the new OSP. According to the assessment 

results from Step 2, the damage detection performance achieved by using the OPS2 

( SCA 0.0w   ) and the OPS0 ( SCA 0.5w   ) is better than that by using the OPS1 

( SCA 1.0w  ), and the damage detection performance corresponding to SCA 0.5w   is 
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the best among the three cases. Therefore, a new weighting factor SCA 0.3w   

between 0.0 and 0.5 is selected. The new optimal sensor configuration, namely the 

OSP3, is plotted in Fig. 4 (d). The results of damage detection using the OSP3 are 

shown in Fig. 4.6.  

It can be seen that the damage detection performance using the OSP3 has a minor 

improvement, compared with OSP0. This result indicates that the weighting factor 

SCA 0.3w   is the best weighting factor for the best sensor placement. 

4.3.3 Comparison with an Information Entropy-Based OSP Method 

Many research efforts have been devoted to the study of OSP with different objectives, 

such as structural mode shape identification, model updating, response reconstruction, 

and damage detection. For damage detection, the proposed method is now compared 

with an information entropy (IE)-based method (Papadimitriou et al. 2000). The 

objective function of the IE-based OSP method is to 0Minimize exp
a

H H
N

 
 
 

 , 

where H  is the entropy information for a selected sensor configuration; 0H  is the 

entropy information for the reference sensor configuration including all the initial 

candidate sensors; and aN  is the number of the estimated parameters. The IE-based 

OSP method aims to obtain the measured data which are less sensitive to the 

uncertainty but sensitive to the estimated parameters.  

The optimal sensor configuration (OSP4) is obtained by using the above IE-based 

objective function and the BSSP algorithm and shown in Fig. 4.4 (e). The measured 

acceleration responses from the OSP4 are used for damage detection. The damage 

detection results for the two damage scenarios are depicted in Fig. 4.6 and compared 

with those by using the OSP0 and the OSP3. For damage scenario one, the result 

obtained by using the OSP4 indicates the poorer damage quantification for the 

damaged elements 8 and 9 than those using OSP0 and OSP3. Meanwhile, there are 

four relatively large false alarms occurring in the undamaged elements 4, 10, 12 and 
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14. For damage scenario two, the result of damage detection using the OSP4 is much 

poorer than those using OSP0 and OSP3. The damaged elements 14 and 18 are 

identified with 4.6% and 8.0% stiffness reduction which are obviously smaller than 

the preset 10% damage. Meanwhile, the damaged element 17 identified with 6.8% 

stiffness reduction which is larger than the preset 5% damage. Moreover, three large 

false alarms are observed in the undamaged elements 6, 13 and 22. This comparison 

revealed that the proposed response covariance-based OSP method could lead to more 

accurate damage detection than the IE-based OSP method. 

4.4 Summary 

A response covariance-based sensor placement method based on the sensitivity and 

correlation analyses (SCA) has been developed in this chapter for better structural 

damage detection. First, the relationship between the covariance of acceleration 

responses and the covariance of unit impulse responses of a structure subjected to 

multiple white noise excitations has been derived. This relationship indicates that 

optimal sensor location is related to the location of excitation but not to the amplitude 

of excitation. Second, the optimal sensor placement (OSP) objectives in terms of the 

response covariance sensitivity and the response independence have been derived, 

respectively. The first objective indicates that the estimation error of parameters is 

inversely proportional to the Fisher information matrix with respect to the response 

covariance sensitivity, while the second objective indicates that a larger Euclidean 

distance between two normalized acceleration responses leads to a higher degree of 

independence between the two responses. 

The two objective functions proposed in this study for optimal sensor placement 

(OSP) are conflicting. This has been confirmed by comparing the OSP1 with the OSP2 

(see Fig. 4.4) and by comparing the damage identifiability of the OPS1 with that of the 

OPS2 (see Fig. 4.5) for the frame structure concerned. The OSP1 (the first objective 

function) aims to enhance the damage sensitivities of the measured responses and does 

not consider response independence. As a result, some sensors with similar sensitivity 
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cluster at the free end of the frame structure and these sensors actually measure 

overlapping information. Also because of the clustered sensors, the damaged element 

8 is far away from these sensors and the damage identification of this element thus 

failed. On the other hand, the OSP2 (the second objective function) aims to reduce 

redundant measured responses for a given number of sensors without considering the 

damage sensitivity of the measured response. It is thus noted from Fig. 4.5 that the 

damage detection using the OSP2 with larger false alarms occurring in the undamaged 

elements than the OSP1. Therefore, the integrated SCA objective function, which 

combines the two OSP objectives, has been developed in this study to obtain the OSP 

with better performance for damage detection. 

Furthermore, the backward sequential sensor placement (BSSP) algorithm is used 

to solve the typical single objective OSP problem governed by the proposed SCA 

objective function, which can save more computation effort than advanced intelligent 

algorithms for sensor placement. The numerical study showed that the best weighting 

factor for the best damage detection of the frame structure is 0.3. The numerical study 

also demonstrated that the approach combining the response covariance-based damage 

detection method and the SCA optimal sensor placement method is feasible and 

effective for damage detection. 

It is noted that for the response covariance-based OSP mentioned above, an 

integrated single objective function was formed by using a weighting factor to combine 

the two conflicting objective functions in this chapter. The best weighting factor was 

determined by using the binary search and the performance of each OSP must be 

assessed by the damage detection accuracy, so that the whole process of OSP and 

damage detection were repeatedly conducted until the best weighting factor was found. 

To avoid the difficulty in choosing weighting factors, multi-objective optimization 

algorithms for OSP are desirable, which will be investigated in the next chapter. 
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Table 4.1 The list of structural properties 

Properties Value 

Young modulus 2(N/ m )E  2.10 ×1011 

Sectional area  (m )A 2  3.1416×10-4 

Density        8(Kg/ m )  1.2126×104 

Moment of inertia 4(m )yI   7.854×10-9 

Moment of inertia (m )zI 4  7.854×10-9 

Moment of inertia (m )pI 4  1.5708×10-8 

 

 

 

Table 4.2 The natural frequencies and mode types 

No. of mode Frequency (Hz) Type of mode 

1 7.76 torsional 

2 23.97 torsional 

3 40.42 bending 

4 41.88 torsional 

5 59.47 torsional 

6 61.28 torsional 

7 76.98 torsional 

8 162.24 bending 
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Fig. 4.1 Flowchart of response covariance based optimal sensor placement method 

 

 

 

 

Fig. 4.2 The finite element model of a three-dimensional frame structure 
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(a)  

(b)  

(c)  

Fig. 4.3 The BSSP sensor placement using different weighting factors for the ISCA  

index: (a) Using the weighting factor SCA 1.0w  ; (b) Using the weighting factor 

SCA 0.0w  ; (c) Using the weighting factor SCA 0.5w  . 
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(a)  

 

(b)  

 

(c)  

 

(d)  
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(e)  

Fig. 4.4 The optimal sensor configurations with eight accelerometers :            

(a) OSP1 using the proposed SCA index with the weighting factor SCA 1.0w  ; (b) 

OSP2 using the proposed SCA index with the weighting factor SCA 0.0w  ; (c) OSP0 

using the proposed SCA index with the weighting factor SCA 0.5w  ; (d) OSP3 using 

the proposed SCA index with the weighting factor SCA 0.3w  ; (e) OSP4 obtained by 

using the IE based OSP method. 
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(a)  

(b)  

Fig. 4.5 Damage detection via OSP using the SCA indexes with different weighting 

factors: (a) Damage detection scenario 1; (b) Damage detection scenario 2. 
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Fig. 4.6 Comparison of damage detection by using OSP0, OSP3 and OSP4:  

(a) Damage detection scenario 1; (b) Damage detection scenario 2. 
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CHAPTER 5 

STRUCTURAL DAMAGE DETECTION 

ORIENTED MULTI-TYPE SENSOR 

PLACEMENT WITH MULTI-OBJECTIVE 

OPTIMIZATION 

5.1 Introduction 

In Chapter 4, the two covariance-based OSP objectives in terms of response covariance 

sensitivity and response independence were proposed, and the multi-objective optimal 

sensor placement problem was transformed to the single-objective optimization by 

using the weighted sum method of combining the two objectives. The best weighting 

factor, however, shall be determined by trial and error in terms of the quality of damage 

detection. Moreover, only the accelerometer optimal placement was studied in Chapter 

4. 

In this chapter, the same objectives will be applied for multi-type sensor 

(accelerometer, displacement transducer, and strain gauge) optimal placement. To 

avoid the difficulty in choosing weighting factors, the multi-objective optimization 

algorithm for OSP will be developed so that the response covariance-based OSP 

method can be extended to multi-type sensor placement with multi-objective 

optimization in this chapter. The multi-objective optimization problem is formed by 

directly using the two covariance-related objective functions, and the non-dominated 

sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal 

multi-type sensor placement to achieve the best structural damage detection. Section 

5.2 will formulate the multi-objective multi-type sensor optimal placement problem 

and introduce the implementation of the proposed method. Section 5.3 is the numerical 
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study by using a nine-bay three-dimensional frame structure to examine the feasibility 

and effectiveness of the proposed method, in which a utility-function-based method is 

first proposed to select the “best” OSP from the Pareto front considering the user’s 

preferences. Section 5.4 will further propose the second method in terms of a knee 

point based method to find the “best” OSP from the Pareto front without any 

knowledge about the user’s preferences. The proposed method will be compared with 

a Fisher information matrix based OSP method for traditional response sensitivity-

based damage detection to demonstrate the merit of the proposed OSP. A summary of 

the works presented in this chapter is given in Section 5.5. 

5.2 Methodology 

5.2.1 Multi-Objective Multi-Type Sensor Placement Problem 

The two OSP objectives in terms of response covariance sensitivity and response 

independence have been derived by the authors and applied for single-type sensor 

placement in Chapter 4 (Lin and Xu 2017), in which the multi-objective OSP problem 

was simplified to a single-objective OSP problem by using a weighted sum of the two 

objective functions. The weighting factors were solved by using binary search 

algorithm and accordingly the multiple runs of optimization were required with 

enormous computation cost. The same objectives are used in this chapter, but a new 

multi-objective function is formulated and a multi-objective optimization evolutionary 

algorithm is used to obtain the Pareto solutions of OSP.  

To find optimal multi-type sensor placement fulfilling the two objective functions

SA ( )f θ  in Eq. (4.12) and CA ( )f θ  in Eq. (4.18) at the same time, the multi-objective 

multi-type sensor placement problem can be formulated as 

SA CA
SA CA

SA CA

1

( ) ( )ˆ ˆMinimize ( ) ( ), ( ) , ;
max ( ) max ( )

;
subject to

L U
oi oi oi

oi o
i

f ff f
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 
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 
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where ( )F θ   is the multi-objective function based on the response covariance 

sensitivity and correlation analysis (SCA). SA
ˆ ( )f θ   and CA

ˆ ( )f θ   are the non-

dimensional objective functions normalized by their maximum values SAmax ( )f θ  

and CAmax ( )f θ , respectively; oiN  is the number of sensors of the thi  type; L
oiN , 

U
oiN , and oN  are respectively the lower and upper bounds of sensor number for the 

thi  type, and the total number of candidate locations. The multi-type sensor optimal 

placement can be obtained by solving Eq. (5.1). The implementation procedure is 

described in the following section. 

5.2.2 Implementation Procedure of Multi-Objective Multi-Type 

Sensor Placement 

The NSGA-II (Deb et al. 2002) is tailored to suit the specific multi-objective multi-

type sensor placement problem in this study. The possible sensor locations are defined 

as the design variables of the optimization. Specifically, the decimal two-dimensional 

array coding system (Liu et al. 2008) is adopted for the representation of the design 

variables. Each possible sensor location is represented by an integer (the “gene”), and 

the optimal sensor configuration θ   is represented as an integer string (the 

“chromosome”). Moreover, a forced mutation is embedded to replace the repeated 

genes in the sensor placement problem. This is because each sensor is represented by 

a unique integer related to its location, and one location (e.g., a node of a structure) 

can accommodate different types of sensors (e.g., a displacement transducer and/or an 

accelerometer).  

Since s  sensors are selected from oN  candidate locations in this study, each 

chromosome consists of s   genes. A gene pool of pN   (population size) 

chromosomes is explored in every generation. The tailored NSGA-II is conducted to 

solve the multi-objective multi-type sensor placement problem governed by the 
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proposed SCA objective function and to find the Pareto-optimal solutions (the optimal 

sensor configurations) for structural damage detection. The flowchart of optimal 

sensor placement using the tailored NSGA-II for this study is shown in Fig.5.1. 

Detailed implementation procedure is described as follows: 

Step 1: Initially, the sensor locations are assigned with uniformly distributed random 

integers between unity and oN  . Therefore, the NSGA-II starts with a 

collection of chromosomes 0( )P θ   that are strings of random integers 

uniformly distributed between unity and oN . 

Step 2: The same sensor may be placed more than once at the same location 

synchronously (e.g., the same integer may be repeatedly used for a 

chromosome θ ) in newly generated chromosomes or chromosomes that will 

undergo crossover and mutation operations subsequently. A forced mutation is 

then applied to replace the repeated genes in each chromosome with unrepeated 

and uniformly distributed random integers from the set of difference obtained 

between the set θ  and the whole set of candidate sensor locations.  

Step 3: Calculate the normalized objective functions SA
ˆ ( )f θ  and CA

ˆ ( )f θ  for each 

chromosome θ . 

Step 4: Perform an elitist non-dominated sorting for all the chromosomes in the current 

generation and identify non-dominated fronts.  

Step 5: Perform the GA operation including selection, crossover, and mutation to 

generate a new population ( )Q θ . Thereafter, the forced mutation introduced 

in Step 2 is conducted to replace the repeated genes in each chromosome, and 

values of the proposed normalized objective functions are computed as 

described in Step 3. The old population and new population are combined as 

( ) ( )P θ Q θ  , and the elitist non-dominated sorting described in Step 4 is 

conducted to produce the next population. 

Step 6: Step 5 is repeated until the maximum generation number is reached. Finally, 
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pN  Pareto solutions on different optimal sensor configurations are obtained 

for the multi-objective multi-type sensor optimal placement problem. 

5.3 Numerical Study 

5.3.1 Finite Element Model and Candidate Sensor Locations  

A three-dimensional frame structure shown in Fig. 5.2 is used for the numerical case 

study to examine the feasibility and effectiveness of the proposed method. It consists 

of 69 equal-length beam elements and 29 nodes. The structural and material properties 

of the frame structure are listed in Table 5.1. The structural damping is assumed to be 

Rayleigh damping with the first two damping ratios, and they are assumed to be the 

same for the structure before and after damage. Other higher-order damping ratios are 

obtained from T / 2i i i i Φ CΦ , where iΦ , C , i  are the thi  mode shape, the 

Rayleigh damping matrix, and the thi  natural frequency, respectively.  

The dynamic characteristics analysis of the frame structure is performed. The 

first twelve modes are selected in the modal superposition for the subsequent analysis 

and they are listed in Table 5.2. The two Gaussian white noise excitations with a 

standard deviation of 20 N and 40 N are applied to Node 27 of the frame structure in 

the lateral (y) direction and vertical (z) direction, respectively, as shown in Fig. 5.2. 

The excitation frequency is selected with a bandwidth of 0-100 Hz to cover the first 

twelve natural frequencies. The structural responses are sampled at 500 Hz over the 

time duration of 50s. Measurement noise is simulated by adding normally distributed 

random number to the noise-free response, which is used in damage detection study to 

investigate the effectiveness of optimal sensor configurations. The root-mean-square 

(RMS) of the measurement noise is equal to 5% of the RMS value of the noise-free 

response in this study.  

The total number of candidate sensor locations is determined basing on the 

following considerations. The three-dimensional frame structure has 26 candidate 

javascript:void(0);
javascript:void(0);
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node locations (excluding the supporting nodes) and the structure is symmetrical about 

the x-z plane. The even-number nodes are selected for the candidate sensor locations 

to measure dynamic displacement and acceleration responses in the lateral (y) 

direction, while the odd-number nodes are selected for the candidate sensor locations 

to measure dynamic displacement and acceleration responses in the vertical (z) 

direction. A strain gauge is placed on the surface and at mid-span of each beam element, 

and all 69 beam elements are selected as candidate sensor locations to measure 

longitudinal strains parallel to the axis of the beam element. As a result, the total 

number of candidate sensor locations is 26+26+69=121. For the sake of sensor 

placement encoding, the accelerometers and displacement transducers are labeled by 

1-26 and 27-52, respectively, and distributed over the 4th-29th nodes of the finite 

element model. The strain gauges are labeled by 53-121 and distributed over 1st - 69th 

beam elements. 

5.3.2 The Optimal Sensor Placement 

To find the optimal sensor placement, Eq. (5.1) is solved by using the tailored NSGA-

II with the parameters listed in Table 5.3. The determination of the parameters of 

NSGA-II can refer to the MATLAB help document (MathWorks 2017). The total 

number of sensors =25oN  is selected based on the principle of using the minimum 

number of sensors but guaranteeing enough accuracy of structural damage detection. 

Thereafter, two cases of OSP with and without constraint are discussed successively. 

In the “unconstrained” case, there is no restriction on the number of each type of 

sensors, and the lower and upper bounds of each type of sensors are 0L
oiN   and 

U
oiN s . In the “constrained” case, the numbers of each type of sensors are specified 

and the lower and upper bounds of each type of sensors are equal ( L U
oi oiN N ).  

For the “unconstrained” case, the 25 sensors are selected from 121 candidate 

locations ( 25s  , 121oN  ) without the constraint on the number of each type sensor. 
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After solving the multi-objective multi-type sensor placement problem expressed by 

Eq. (19), the Pareto front of this case is obtained and plotted in Fig. 5.3(a). This Pareto 

front includes 200 Pareto solutions and each Pareto solution corresponds to an OSP. 

The Pareto front is not the final solution of the OSP for damage detection, because the 

simultaneous optimization of two conflictive objectives leads to a set of compromised 

solutions known as the non-dominated or Pareto-optimal solutions. It is also noted 

from the Pareto front that the proposed response covariance sensitivity objective and 

the response independence objective are conflicting. To balance the trade-off between 

the two conflictive objectives, the best OSP as the final solution from the Pareto front 

is subsequently selected by the two proposed strategies in terms of the utility-function 

or knee-point based method. Once the best OSP is selected, the performance of the 

best OSP can be evaluated by damage detection of the frame structure under different 

damage scenarios. It is worth pointing out that the determination of the final OSP does 

not need the prior knowledge of the specific damage severities and locations, which is 

actually the main advantage of this proposed method.  

To determine a “best” OSP, there is a need to accept some trade-off between two 

conflitive objectives for a specific application (Marler and Arora 2004). The following 

scalar utility function is firstly defined for this purpose. 

SCA Pa SCA SA Pa SCA CA Pa SCA
ˆ ˆ( ) ( ) (1 ) ( ); [0,1]I w f w f w     θ θ θ   (5.2) 

where SCAI  is the utility function; Paθ  is the Pareto solution with respect to an OSP; 

and SCAw   is a weighting factor which is usually chosen in proportion to the 

importance of the objectives. 

The proposed method can offer multiple optimal solutions in the Pareto front, 

with different weighting factors on the objective functions. Any of these solutions is 

unique with a selected pair of weighting factors. To investigate the effect of different 

weighting factors on the OSP, three different weighting factors SCA 0.5w   , 

SCA 1.0w  , and SCA 0.0w   are selected for comparison in this study. The weighting 
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factor SCA 0.5w   means that equal importance is assigned to the two objectives. The 

weighting factor SCA 1.0w    or SCA 0.0w    represents two extreme conditions 

considering either the objective SA
ˆ ( )f θ  or the objective CA

ˆ ( )f θ  only. Afterward, 

the minimization of SCAI  with a specified weighting factor in Eq. (20) leads to the 

desirable Pareto solution corresponding to a unique OSP. Thus, three specific OSPs 

corresponding to the three prescribed weighting factors are selected from the Pareto 

front respectively. The resulting OSPs are shown in Fig. 5.4 and listed in Table 5.4. In 

these figures and table, OSP1, OSP2 and OSP0 represent the “unconstrained” cases 

with the weighting factors being 1.0, 0.0 and 0.5, respectively. The notation 4(y) 

denotes sensor placed at Node 4 in the y-direction. 

Furthermore, the proposed OSP method is very flexible to include some 

engineering judgment on constraining the number of each type of sensors to obtain a 

preferable solution. As a comparison, the number of each type of sensors in the 

“constrained” case is determined by referring to those in the OSP0 with a minor 

adjustment. Specifically, there are 12 accelerometers, 3 displacement transducers, and 

10 strain gauges. Accordingly, the 25 genes in the chromosome are partitioned into 

three segments. They include 12 genes for the accelerometers, 3 genes for the 

displacement transducers, and 10 genes for the strain gauges in sequence. Decimal 

array coding of the genes is then allocated to the three segments. Similarly, the Pareto 

front for the constrained case is obtained and plotted in Fig. 5.3(b). Three specific 

OSPs corresponding to the three prescribed weighting factors are selected from the 

Pareto front respectively. The resulting sensor locations are shown in Figs. 5.5 and 

listed in Table 5.4. In these figures and table, COSP1, COSP2 and COSP0 with “C” 

represent the constrained cases with the weighting factors being 1.0, 0.0 and 0.5, 

respectively. The discussion on these unconstrained or constrained OSPs is presented 

in the following paragraphs. 
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5.3.2.1 The Unconstrained Case 

When only the objective function for response covariance sensitivity is considered, the 

OSP1 ( SCA 1.0w  ) selected from the Pareto front in Fig. 5.3(a) is embodied in Fig. 

5.4(a). It is noted that most of the selected sensors are strain gauges because strain 

response usually has higher sensitivity to local damage than acceleration response or 

displacement response. However, most of the strain gauges are clustered around some 

parts of the structure with similar sensitivity to local damage. The neighboring sensors 

tend to provide redundant information and may not be beneficial to identify damaged 

elements which are far away from the clustered sensors.  

When only the objective function for response independence is considered, the 

OSP2 ( SCA 0.0w  ) selected from the Pareto front in Fig. 5.3 (a) is embodied in Fig. 

5.4(b). All three types of sensors are distributed evenly on the structure. Although this 

may help to enhance the response independence, there is no guarantee on the higher 

sensitivity of the measured responses to structural damage.  

When the equal weighting is given to the two objectives, the OSP0 ( SCA 0.5w  ) 

selected from the Pareto front in Fig. 5.3(a) is embodied in Fig. 5.4(c). It is noted that 

this configuration also has three types of sensors evenly distributed on the structure, 

but the response covariance sensitivity and the response independence both are 

considered in the selection. 

5.3.2.2 The Constrained Case 

For the constrained case, three OSPs selected from the Pareto front in Fig. 5.3(b) are 

embodied in Fig. 5.5 corresponding to the weighting factor SCA 1.0w  , 0.5 and 0.0. It 

is noted that the selected OSPS in terms of the COSP0, COSP1 and COSP2 have many 

common sensors. For instance, they have three common displacement transducers at 

Nodes 15, 21 and 27, three common accelerometers at Nodes 9, 15 and 17, and one 

common strain gauge on Element 6. 
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The restriction on the number of each type of sensors helps to reduce the search 

space in the optimization. The number of all possible OSPs for the unconstrained case 

is 25121! 5.262 10
(121 25)!25!

 


, while the number of all possible OSPs for the 

constrained case is 2126! 26! 69! 8.538 10
(26 12)!12! (26 3)!3! (69 10)!10!

   
  

. In this 

study, the near-optimal solutions are obtained by using the NSGA-II method with the 

same maximum generation number specified in the computation. However, the 

constrained case has a smaller search space in the multi-objective optimization that 

may lead the near-optimal solutions closer to the global optimization solution. 

5.3.3 Damage Detection Results  

To examine the feasibility and effectiveness of the proposed method for structural 

damage detection, three multiple damage scenarios are considered and the details are 

listed in Table 5. In the first scenario, damages are assumed to occur in two longitudinal 

members. Element 17 near the support is of 15% stiffness reduction while element 33 

at mid-span of the structure is of 10% stiffness reduction. In the second scenario, 

damages occur in two longitudinal members close to the support of the structure. 

Elements 17 and 18 have 15% and 10% stiffness reduction, respectively. In the third 

scenario, the damage occurs in a total of six elements: element 10 (longitudinal 

member), element 11 (diagonal member), element 13 (lateral member), element 22 

(longitudinal member), element 41 (longitudinal member) and element 42 

(longitudinal member) with 15% stiffness reduction respectively. These unknown 

damages are detected by solving the damage detection equation 1
pq

k k k  V S α  in 

Eq. (3.18). The identified results using sensor configurations OSP0, OSP1 and OSP2 

are shown in Fig. 5.6, while those using configurations COSP0, COSP1 and COSP2 

are shown in Fig. 5.7. The identifiability of these three sensor configurations is 

discussed in the following paragraphs. 
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5.3.3.1 The Unconstrained Case 

The damage detection results from the damage scenarios 1 and 2 using the OSP0, 

OSP1 and OSP2 are compared and plotted in Figs. 5.6(a) and (b), respectively. In the 

first damage scenario, the OSP0 leads to effective damage localization for elements 17 

and 33, as shown in Fig. 5.6 (a). It also gives accurate identification of the damage 

severity for element 17 but a smaller damage severity than the actual stiffness 

reduction for element 33 (i.e., 8.54% < 10%) is identified. When using OSP1, the 

damage identification results are similar to those obtained by using OSP0 but the 

difference lies in its poorer estimation of stiffness in element 33 (6.14%) and the four 

big false alarms in elements 16, 20, 29 and 64 with incorrect stiffness reduction of 

2.45%, 2.13%, 1.82%, and 1.89% respectively. Further examination on Fig. 5.4(a) 

reveals that OSP1 has only three accelerometers. This may give insufficient global 

information for damage detection leading to these false alarms. When using the OSP2, 

it also leads to a set of poorer identified results compared with the OSP0. The stiffness 

reductions in elements 17 and 33 are identified as 12.03% and 7.03% respectively. 

False alarms occur in several elements with the largest error of 4.84% in element 25. 

Further examination on Fig. 5.4(b) reveals that element 25 is closed to the damaged 

elements 17 and 33. This large false alarm may be caused by the influence of its two 

adjacent damage elements. Essentially, the poor damage identification and the large 

false alarm from the OSP2 results from only optimizing the response independence 

but ignoring the requirement of damage sensitivity. In the second damage scenario, 

observations are similar to those of the first scenario with OPS0 yielding better damage 

detection results than the other two configurations, as shown in Fig .5.6(b). 

The damage detection results from the scenario 3 using the OSP0, OSP1 and 

OSP2 are compared and plotted in Fig. 5.6(c). When using the OSP0, satisfactory 

damage detection results are obtained for elements 10, 11, 13, 22, 41 and 42 with 

14.06%, 10.94%, 13.60%, 15.01%, 14.40% and 13.83% stiffness reduction, and the 

maximum false alarm occurs in element 15 with 5.35% stiffness reduction. This error 

may be due to the presence of the neighboring damaged elements 11 and 13. When 
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using the OSP1, only the damaged elements 10, 22, and 41 are acceptably identified 

with 13.90%, 14.21% and 9.98% stiffness reduction, but the identification of the 

damaged elements 11, 13 and 44 fails. Moreover, three large false alarms in elements 

5, 26 and 49 with 4.64%, 5.33% and 4.65 % stiffness reduction are observed. Similar 

to the damage detection for scenario 1, the poor damage detection for scenario 3 also 

results from the lack of global structural information measured by OSP1 with only 

three accelerometers. When using OSP2, the damage detection results are similar to 

those using OSP0; 12.88%, 11.64%, 12.13%, 15%, 13.26% and 12.63% stiffness 

reduction are respectively detected for the damaged elements 10, 11, 13, 22, 41 and 

42. However, more false alarms are identified in elements 8 (3.36%), 20 (3.34%), 21 

(3.60%), 24 (4.84%), 28 (3.82%) and 32 (3.27%). These false alarms indicate that the 

measurements from the OSP2 are not sensitive enough to damage. The comparison of 

the damage detection results from OSP0 with those from OSP1 and OSP2 show that 

the OSP0, which considers the two objectives, can achieve a better sensor placement 

for better damage detection in the damage scenario 3. 

5.3.3.2 The Constrained Case  

The damage detection results from the damage scenarios 1 and 2 using the COSP0, 

COSP1 and COSP2 are compared and plotted in Figs. 5.7(a) and (b), respectively. In 

the first damage scenario, the COSP0 leads to accurate detection of the damage 

locations as well as severities in elements 17 and 33, as shown in Fig. 5.7(a). The 

damage detection results are similar to that using the OSP0. This is because both the 

COSP0 and OSP0 have 19 common sensors amongst the total 25 sensors. The common 

sensors are 11 accelerometers (at Nodes 5, 6, 9, 11, 12, 13, 15, 18, 19, 28 and 29), 3 

displacement transducers (at Nodes 15,21 and 27) and 5 strain gauges (on elements 6, 

7, 11, 14, 16 and 69). When using the COSP1, the identification results are a bit 

different to those obtained by using OSP1. The difference lies in the slightly worse 

estimate of stiffness reduction in element 17 and a slightly better estimate of stiffness 

reduction in element 33. When using the COSP2, it leads to a better identification 
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result compared to OSP2 with the stiffness reduction in elements 17 and 33 identified 

as 14.09% and 8.25% respectively. Moreover, the number of false alarm is reduced 

when using the COSP1 and COSP2 compared to those using the OSP1 and OSP2. This 

may be due to the inclusion of more accelerometers in the constrained case. In the 

second damage scenario, the damage detection result is plotted in Fig. 5.7(b). 

Comparing with OSP0, OSP1 and OSP2, a similar pattern is observed for the COSP0, 

COSP1 and COSP2 for the damage detection, in which all the three optimal sensor 

configurations can identify the damage locations and damage severity well. 

The damage detection results from the damage scenario 3 using the COSP0, 

COSP1 and COSP2 are also compared and plotted in Fig. 5.7(c). It is observed that all 

the damage locations are identified accurately and the corresponding damage severities 

are identified satisfactorily if the COSP0 is used. The COPS0 leads to the best damage 

identification, while only one big false alarm occurs in element 15 with 5.18% stiffness 

reduction. The COPS1 leads to a slightly poor damage identification results comparing 

with those using the COSP0, and three false alarms occur in elements 7, 15, and 20 

with 3.20%, 5.53% and 3.40% stiffness reduction respectively. The COPS2 leads to 

the worst identification results, and several large false alarms occur in elements 20, 21, 

24, 28, 32, 36 and 40 with 4.48%, 3.20%, 5.38%, 3.93%, 3.78%, 4.21% and 4.02% 

stiffness reduction respectively. As a comparison, the performance of the COSP0 and 

COPS2 are similar with those of the OSP0 and OSP2 respectively, but the performance 

of the COSP1 shows a better performance than that of OSP1. The COSP1 can 

outperform OSP1 because a sufficient number of accelerometers are included. This 

indicates that expert experience is helpful for specifying the numbers of each type of 

sensors in the constrained optimal placement to achieve a better OSP. 

The final damage detection results show that the OSP0 among three sets of OSPs 

(OP0, OSP1 and OSP2) provides the best quality of damage detection, which 

demonstrates that the best OSP can be obtained by the utility function with a weighting 

factor of 0.5. Similar conclusion can be drawn from the constrained case with the other 

three sets of COSPs (COSP0, COSP1 and COSP2), in which the COSP0 is the best. 
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For a close inspection on the number of accelerometers, the COSP0, COSP1 or COSP2 

has 12 accelerometers, which is more than that in the OSP0 (11) and OSP1 (3), but 

less than OSP2 (14). It may be concluded from the above observations that a sufficient 

number of accelerometers is necessary to capture more global structural information 

for damage detection of the three-dimensional frame structure. It is also noted that the 

above constrained optimal sensor configurations with a requirement on the number of 

each type of sensors would not have obvious disadvantages for structural damage 

detection. 

5.4 Discussions  

5.4.1 A Knee-Point based Method to Select a “Best” OSP without 

Prior Knowledge 

The multi-objective optimization algorithm-based multi-type sensor placement 

method often achieves a set of Pareto solutions, and relies on a decision maker to 

finally select the most desirable solution. However, if the number of Pareto-optimal 

solutions is large, it may be difficult to pick the “best” solution out of the large set of 

alternatives. For a specific application, the utility function method may be one of the 

feasible ways to quantify a decision maker’s preference to select a desirable OSP from 

the Pareto solutions. It is noted that the weighting factor associated with each objective 

within a utility function is ideal to include information or knowledge of experts. 

Typically, these weighting factors are not explicitly known or difficult to be assessed 

by decision makers. 

On the other hand, without any knowledge about the user’s preferences, the most 

interesting solutions are the “knees” of the Pareto-optimal front. The importance of the 

“knees” has been stressed by many researchers (Branke et al. 2004; Deb 2008; 

Rachmawati and Srinivasan 2009; Jin et al. 2014; Zhang et al. 2015). These knees are 

mainly characterized by the fact that a small improvement in one objective will cause 
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a large deterioration in the other objective, which makes the movement of the solution 

in either direction not attractive. 

To facilitate the application of the proposed OSP method, the selection of the 

“best” OSP by identifying the knee of the Pareto front is further investigated here. As 

a demonstration, the Pareto front in Fig. 5.3 (b) with respect to the constrained OSP 

case is considered. In the case of only two objectives, the trade-offs in either direction 

can be approximately estimated through the curvature of the fitting curve of the Pareto 

front. The fitting curve is plotted in Fig. 5.8 (a). The curvature of each Pareto solution 

can then be computed through the function of the fitting curve, which is plotted in Fig. 

5.8(b). Mathematically, a knee point is a solution located in the Pareto front with the 

maximum curvature. Thereafter, a sensor configuration named COSP3 with respect to 

the knee point is determined, showed in Fig. 5.9 (a), and listed in Table 5.4. Compared 

COSP3 with COSP0, it is found that the COSP3 only has two different sensors. They 

are an accelerometer at Node 24 in the y-direction and a strain gauge on element 50. 

The damage detection results using the COSP3 for three damage scenarios are 

respectively compared with those using COSP0, as shown in Fig. 5.10. The 

comparative results indicate that both the COSP0 and COSP3 can satisfactorily 

produce similar damage detection results. Therefore, either the COSP0 determined by 

the utility function with equal weighting factor or the COSP3 determined through the 

knee-point-based method is a “best” OSP achieving for better damage detection. 

Besides, the knee-point-based method for selecting the “best” OSP is more practicable 

since it does not need any prior information from users.  

 

5.4.2 Comparison with a Fisher information matrix-based OSP 

Method 

Many research efforts have been devoted to the study of OSP for structural damage 

detection (Shi et al. 2000; Xia and Hao 2000; Zhou et al. 2013; Li et al. 2015), and the 

Fisher information matrix corresponding to a specific damage index is widely used in 
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determining OSP. In most previous studies, only acceleration responses were 

measured for the response sensitivity-based damage detection methods. Therefore, the 

proposed method will be compared with the Fisher information matrix based OSP 

method for the response sensitive-based damage detection. The Fisher information 

matrix is defined as T
d dF S S , where 

n

1

(t )i
d

i







zS
α

 is the sensitivity matrix of 

acceleration responses z  with respect to the damage parameter α , t i  denotes a time 

instant and n  is the total number of sampling points in the acceleration time history. 

To account for the contribution from different DOFs to the Fisher information matrix, 

an effective independence matrix (Kammer 1991) is defined as 
1T T

d d d d



   EI S S S S . The terms on the diagonal elements of the matrix EI

represent the contributions of the corresponding DOFs. For a fair comparison, the same 

number (25) of accelerometers is used, and the obtained OSP (named as COSP4) is 

shown in Fig. 5.9 (b) and Table 4. It is noted that many accelerometers with high 

sensitivity tend to be clustered around the free end of the frame structure. 

The measured acceleration responses from the COSP4 are then used for damage 

detection. The damage detection results for the three damage scenarios are depicted in 

Fig. 5.11 and compared with those by using the COSP3 which is obtained by the 

proposed method with the knee-point. For damage scenario 1, the results from the 

COSP4 show poorer damage quantification of the damaged element 17 (12.18%) 

compared with that of damaged element 17 (14.85%) using the COSP3, although the 

identified severities of damaged element 33 are similar by using either the COSP4 or 

the COSP3. Moreover, one big false alarm occurs in element 25 with 3.16% stiffness 

reduction when using the COSP4. For damage scenario 2, the result of damage 

detection using the COSP4 shows poor damage quantification of damaged element 17 

(11.43%) compared with that of damaged element 17 (14.62%) using the COSP3, 

although the identified severities of damaged element 18 are similar by using either 

the COSP4 or the COSP3. It is also observed that one big false alarm occurs in element 

13 with 2.35% stiffness reduction when using the COSP4. For damage scenario 3, the 
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result of damage detection using the COSP4 is significantly worse than that using the 

COSP3. The damaged elements 10, 11, 13, 22, 41 and 44 are identified with 13.18%, 

6.16%, 8.20%, 6.74%, 13.69% and 14.23% stiffness reduction by using the COSP4, 

where the identified damage severities for the damaged elements 11, 13 and 22 are 

obviously smaller than the preset 15% stiffness reduction. Moreover, some large false 

alarms are observed in the undamaged elements 3 (5.64%), 7 (3.91%), 14 (3.85%) and 

15 (4.23%). When using the COSP4, the poor identification results from the clustering 

sensors, and therefore the sensors cannot sufficiently capture the spatial information 

of the frame structure. This comparison reveals that the proposed OSP method with 

multi-type sensors could lead to more accurate damage detection than a typical Fisher 

information matrix based OSP method with single- type of sensor. 

5.5 Summary 

A new response covariance-based multi-objective multi-type sensor placement 

method has been proposed in this chapter for damage detection of a structure. It is 

based on the simultaneous optimization of the response covariance sensitivity and the 

response independence. An efficient NSGA-II method has been adopted and tailored 

to solve the multi-objective multi-type sensor optimal placement problem. The 

feasibility and effectiveness of the proposed method are examined numerically with a 

three-dimensional frame structure. The numerical results show that the optimization 

of the proposed SCA-based multi-objective function with the NSGA-II approach can 

give optimized locations for different types of sensors based on the Pareto-optimal 

solutions. Satisfactory damage detection results are obtained by using optimal sensor 

configurations for both the unconstrained and constrained cases. The configurations 

with the specified number for each type of sensors yield relatively more accurate 

results in the damage detection. Besides, the selection of a most desirable OSP from 

the Pareto solutions via the utility function method and the knee-point-based method 

is investigated. The numerical results indicate that OSP0, COSP0 and COSP3 

considering the two objectives can achieve accurate damage detection results. The 
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proposed SCA-based multi-type sensor placement method is feasible and efficient for 

structural damage detection. 

The response covariance-based OSP method proposed in Chapter 4 has been 

successfully extended for multi-type sensor placement with multi-objective 

optimization in this chapter. The feasibility and accuracy of the theoretical framework 

of response covariance-based OSP method and the associated damage detection 

method have been also assessed through numerical studies. Nevertheless, the 

experimental studies on the topic are important because the new OSP method and 

damage detection method should be validated before they are applied to real structures. 
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Table 5.1 List of structural and material properties 

Properties Value 

Young modulus 2(N/ m )E  2.10 ×1011 

Sectional area 2(m )A  6.597×10-5 

Density 3( / m )Kg  7850 

Poisson ratio   0.30 

Moment of inertia 4(m )yI  3.645×10-9 

Moment of inertia 4(m )zI  3.645×10-9 

Moment of inertia 4(m )pI  7.290×10-9 

 

 

Table 5.2 Natural frequencies of the frame structure 

Mode number Frequency (Hz) 

1 5.29 

2 11.42 

3 15.45 

4 19.46 

5 28.11 

6 40.39 

7 53.11 

8 63.14 

9 66.41 

10 79.67 

11 87.92 

12 91.72 
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Table 5.3 Parameters used in the NSGA-II method 

Parameters Values / operators 

Population size of each generation 200 

Maximum Number of 

generation 
1000 

Selection Tournament algorithm 

Probability of crossover 0.2 

Probability of mutation 0.2 
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Table 5.4 Optimal sensor configurations of the unconstrained and constrain cases 

 
Configuration 

Sensor installation location 
Accelerometers 

 
Displacement 
transducers 

Strain gauges 
(Element No.) 

OSP1 6(y),10(y),29(z) 15(z),21(z), 
27(z) 

1,6,8,11,14,16,19, 
21,27,30,32,39, 
43,48,51,60,64, 
67,68 

OSP2 4(y),6(y),7(z),9(z),11(z),12(y), 
13(z),15(z),17(z),18(y),20(y), 
26(y),27(z), 29(z) 

10(y),15(z), 
21(z),24(y), 
28(y) 

1,6,7,23,37,69 

OSP0 5(z),6(y),9(z),11(z),12(y),13(z)
,15(z),18(y),19(z),28(y),29(z) 

15(z),21(z), 
27(z) 

6,7,11,14,15,16, 
22,23,27,36,69 

COSP1 4(y),9(z),10(y),15(z),17(z), 
19(z),20(y),21(z),23(z),25(z), 
27(z),29(z) 

15(z),21(z), 
27(z) 

6,7,8,11,14,15,16, 
20,22,56 

COSP2 5(z),6(y),7(z),9(z),11(z),12(y), 
13(z),15(z),17(z),20(y),26(y), 
28(y) 

15(z),21(z), 
27(z) 

1,6,13,29,34,44, 
45,53,67,69 

COSP0 5(z),6(y),9(z),11(z),12(y),13(z)
,15(z),17(z),18(y),19(z),28(y), 
29(z) 

15(z),21(z), 
27(z) 

1,6,7,11,14,16,19, 
25, 55,69 

COSP3 5(z),9(z),11(z),12(y),13(z), 
15(z),17(z),18(y),19(z),24(y), 
28(y), 29(z) 

15(z),21(z), 
27(z) 

1,6,7,11,14,16,19, 
25,50,55 

COSP4 7(z),10(z),13(y),13(z),14(y), 
16(y),16(z),17(y),18(y),18(z), 
19(y),19(z),20(y),21(z),22(y), 
22(z),23(y),24(z),25(y),25(z), 
26(y),27(z),28(y),28(z),29(y) 

null null 
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Table 5.5 Parameters for numerical damage detection studies 

Damage 

detection scenario 
Scenario 1 Scenario 2 Scenario 3 

Damage locations Elements 17 and 33 Elements 17 and 18 

Elements 

10,11,13,22,41 

and 42 

Damage severities 15% and 10% 15% and 10% 15% 

Measurement noise 5% 5% 5% 

Optimal sensor 

placement 

configurations 

OSP0, OSP1, OSP2, COSP0, COSP1, COSP2, COSP3 and 

COSP4 
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Fig. 5.1 Flowchart of multi-objective multi-type sensor placement using the tailored 

NSGA-II method 

 

 

 

 
Fig. 5.2 The finite element model of a 9 bays three-dimensional frame structure 
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(a)  

 

(b)  

Fig. 5.3 Pareto front of optimal sensor configurations when using the tailored NSGA-

II method: (a) optimal sensor placement without constraint; (b) optimal sensor 

placement with constraint. 
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Fig. 5.4 Unconstrained sensor configurations from Pareto front with different 

weighting factors: (a) OSP1 with weighting factor SCA 1.0w   ; (b) OSP2 with 

weighting factor SCA 0.0w  ; (c) OSP0 with weighting factor SCA 0.5w  . 
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Fig. 5.5 Constrained sensor configurations from Pareto front with different weighting 

factors: (a) COSP1 with weighting factor SCA 1.0w   ; (b) COSP2 with weighting 

factor SCA 0.0w  ; (c) COSP0 with weighting factor SCA 0.5w  . 
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(c)  

Fig. 5.6 Damage detection using unconstrained sensor configurations with 

different weighting factors: (a) damage scenario 1; (b) damage scenario 2; (c) 

damage scenario 3. 
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(a)  

 
(b)  
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(c)  

Fig. 5.7 Damage detection using constrained sensor configurations with different 

weighting factors: (a)damage scenario 1; (b)damage scenario 2; (c)damage scenario 3. 
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(a)  

(b)  

Fig. 5.8 The “best” OSP with respect to the knee point of the Pareto front: (a) the fitting 

curve of the Pareto front and the knee point; (b) the curvature of the Pareto solutions. 
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Fig. 5.9 The “best” optimal sensor configurations selected from different methods:  

(a) the configuration COSP3; (b) the configuration COSP4. 
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(c)  

Fig. 5.10 Comparison of damage detection using optimal sensor configurations 

COSP0 and COSP3: (a) damage scenario 1; (b) damage scenario 2; (c) damage 

scenario 3. 
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(c)  

Fig. 5.11 Comparison of damage detection using optimal sensor configurations COSP3 

and COSP4: (a) damage scenario 1; (b) damage scenario 2; (c) damage scenario 3. 
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CHAPTER 6 

EXPERIMENTAL INVESTIGATION ON MULTI-

OBJECTIVE MULTI-TYPE SENSOR OPTIMAL 

PLACEMENT FOR STRUCTURAL DAMAGE 

DETECTION 

6.1 Introduction 

This chapter is an extension of the theoretical study in Chapter 5 on the damage 

detection-oriented multi-type sensor placement with multi-objective optimization and 

the numerical study on a nine-bay three-dimensional frame structure. In the numerical 

study of the frame structure, the performance of damage detection was compared 

between optimal multi-type sensors configuration (denote as COSP3) and optimal 

accelerometer only configuration (denote as COSP4) with the same number of sensors 

under three different damage scenarios. The numerical results showed that the 

proposed OSP method with multi-type sensors could lead to more accurate damage 

detection than the Fisher information matrix-based OSP method with single-type of 

accelerometers. Nevertheless, most studies of OSP, including one in Chapter 5, are 

theoretical or numerical studies. Experimental studies on the topic are also important 

because the new OSP methods should be validated before they are applied to real 

structures. Therefore, this chapter aims to perform an experimental investigation using 

a nine-bay three-dimensional frame structure to validate the proposed response 

covariance-based multi-objective multi-type sensor optimal placement method for 

damage detection. Following this section, Section 6.2 describes the experimental set-

up in detail. Section 6.3 presents the experimental results and discusses the feasibility 
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and effectiveness of the proposed OSP method for structural damage detection. A 

summary of the works presented in this chapter is given in Section 6.4. 

6.2 Experimental Set-Up 

6.2.1 Laboratory Model of a Nine-Bay Steel-Frame Structure 

A nine-bay three-dimensional frame structure was constructed in the Structural 

Dynamics Laboratory of The Hong Kong Polytechnic University using the Meroform 

M12 construction system. This physical model and the whole experimental setup are 

shown in Fig. 6.1(a). The structure orientates horizontally and is fixed to a rigid 

concrete support through its three end nodes (see Fig. 6.1 (b)). The concrete support is 

heavy and rigid compared with the frame structure, and it is held down to the strong 

floor of the laboratory with four steel bolts. The frame structure consists of 69 alloy 

steel tubes (500 mm length, 22 mm outer diameter, and 0.5 mm thickness) jointed by 

29 standard Meroform ball nodes (see Fig. 6.1 (c)). Each tube is fitted with a screwed 

end connector which clamps the tube by means of an internal compression fitting. 

When these tubes are tightened into the nodes, all the connection bolts are tightened 

with the same torsional moment (30 Nm) to avoid asymmetry of the structure. The 

weight of the Meroform ball node and the screwed end connector are 234 g and 74 g, 

respectively.  

Two input forces are applied at the free end of the frame structure in the lateral 

(y) direction and vertical (z) direction, respectively. These forces are generated by 

using two exciters as shown in Fig. 6.1(d). The exciter LDS V406 M4-CE applies the 

force in the y-direction, and the exciter JZK-5 applies the force in the z-direction. Each 

of the exciters is connected to the structure through a soft spring so that the exciter 

impacts force to the spring first and then to the structure. To measure the direct input 

forces to the structure (interface force between the spring and structure), two force 

transducers (B & K 8201) are attached between the structure and the spring, as shown 

in Fig. 6.1(e). The force transducer is a uniaxial transducer which can only measure 
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the force in the axial direction. Therefore, the effect of additional stiffness from a 

spring only in the axial direction for the frame structure can be excluded in the 

measured interface force along the axis of the spring. Moreover, the additional stiffness 

from a spring in the lateral direction is often much smaller than that in the axial 

direction, which is neglected in this study. 

6.2.2 Optimal Sensor Placement 

To perform the proposed OSP, the finite element (FE) model of the frame structure 

described in Chapter 5 is established (see Fig. 5.2). Moreover, the proposed OSP needs 

to know the input forces and their acting locations on the structure (see, Fig. 6.1 (a)). 

In the current OSP study, the input forces are white noise excitations with the same 

acting locations as those in the experiment. Although the white noise excitations are 

not exactly consistent with the forces in the experiment, the locations of the inputs 

forces often determine the number of stimulated modes of a structure and affect the 

characteristic of the structural responses more significantly than the magnitude of the 

input forces. Under the white noise excitation assumption, the proposed method is used 

to determine OSP for experimental study of damage detection. 

The total number of sensors installed on the frame structure is 25 which is 

sufficient for damage detection in this study. This conclusion comes from the 

companion numerical study presented in Chapter 5 and in the reference (Lin et al. 

2018). In the numerical study, the total number of the sensors was decided based on 

the principle of using the minimum number of sensors but guaranteeing enough 

accuracy of structural damage detection. The 25 sensors are selected from 121 

candidate locations when 12 accelerometers, 3 displacement transducers, and 10 strain 

gauges are allocated according to an optimal sensor configuration. By using the same 

FE model of the 3D frame structure, the proposed multi-objective multi-type sensor 

placement with constraint or without constraint on the number of each type of sensors 

was investigated numerically in Chapter 5. The numerical results showed that the 

appropriate constraint on the number of each type of sensors helps to reduce the search 
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space in the optimization and therefore achieves the better performance for damage 

detection. The COSP0 (see Fig. 5.5 (c)) in Chapter 5 used in this chapter is the 

constrained case and the constraints are found based on the numbers of sensors in the 

unconstrained OSP0 case, which was obtained by using the utility function with an 

equal weighting factor. 

6.2.3 Instrumentation and Implementation 

The major instruments for the laboratory test are depicted in Fig. 6.2, and their 

arrangements are introduced here. Fig. 6.2 (a) and (b) show two damaged beam 

elements for the subsequent damage detection studies and a torque wrench used for 

the installation of the beams for the frame structure. According to the selected COSP0, 

three types of sensors (see, Fig. 6.2 (c) – 6.2 (e)) are installed to measure acceleration, 

displacement, and strain for the subsequent damage detection. They include twelve 

accelerometers (eight B & K 4370 accelerometers, three B & K 4382 accelerometers, 

and one KD 1010 accelerometer installed in structure with the sequence of No.1 to 

No.12), three LK-503 laser displacement transducers, and ten BFH120-3AA (23) 

strain gauges. To launch a vibration test, the signal generator (B & K 3160-B-022, see 

Fig. 6.2(f)) firstly offers a narrow-bandwidth (0 - 40 Hz) white noise excitation signal 

(signal level 300 mVrms). This signal is passed through a three-way connector (see 

Fig. 6.2(g)) and synchronously sent to two power amplifiers (LDS PA 500L and 

YE5871, see Fig. 6.2(h)). The power amplifiers work, respectively, with the two 

exciters to generate random forces together. To quantify a gain factor for each power 

amplifier, a gain factor label with 36 divisions in a circle (see Fig. 6.2(i)) is designed 

for the control of the magnitude of the force. Accordingly, the acceleration, 

displacement, strain responses of the excited frame structure, and input forces are 

measured, and then they are amplified by charge amplifiers (KD5008C, see Fig. 6.2(j)). 

Finally, all the measured responses and two input forces are collected by the data 

logger (Kyowa EXD-100A, see Fig. 6.2(k)). The responses and the input forces are 

sampled at 500 Hz over the time duration of 60 s with zero initial condition. 



 

123 

Additionally, the responses are passed through a band-pass filter of 2 - 40 Hz before 

the subsequent utilization, since the applied excitation bandwidth only covers the first 

six modes of the structure. 

6.2.4 Finite Element Model Updating 

The FE model of the frame structure established before is used to represent the intact 

state of the structure for the subsequent damage detection studies. However, some 

modeling errors may occur due to the uncertainties of the modeling parameters and 

some ideal assumptions (Friswell et al. 2001; Mottershead et al. 2011). In this study, 

the modeling errors may come from two sources: (1) The uncertainties of the material 

and geometric parameters of the steel tube; (2) The lump mass assumption at nodes 

for the weight of the Meroform balls, bolts, sensors and electric wires. The initial 

material properties and the total lump mass at each node are listed in the second column 

of Table 6.1. It is noticed that the additional weight of the sensors and electric wires 

and their locations are determined after the installation of sensors. Therefore, the 

model updating is conducted after OSP. These modeling errors usually lead to some 

discrepancy for the structure responses between analytical predictions and test results. 

The discrepancy due to the inaccurate FE model may, furthermore, result in the failure 

of damage detection or some false alarms. To refine the FE model, a two-step updating 

is successively conducted before damage detection. The objective functions for the 

two-step updating are the relative errors of the natural frequencies and the structural 

responses, and they are expressed as follows: 
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where 1J  and 2J  are the objective functions in the first and second step of updating, 

respectively; the a
i  and m

i  are the thi  analytical and measured natural frequency; 
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a
iy  and m

iy  are the responses from the thi  sensor; and the operator 2  denotes 

the 2-norm of a vector. 

In the first step of updating, 32 parameters are selected to be tuned, including the 

elastic modulus E , material density  , the outer diameter of the alloy steel tube D , 

and 29 lumped mass at all the nodes. With the use of Eq. (6.1), these selected 

parameters of the FE model are adjusted to reduce residuals of natural frequencies 

between the measurement set and the corresponding model predictions. In the second 

step of updating, the first six modal damping ratios 1  ~ 6  are tuned to refine the 

amplitudes of the calculated structural responses, by using Eq. (6.2). The parameters 

after being updated are listed in the third column of Table 6.1. As a result, the analytical 

frequencies and the structural responses computed by the FE model can achieve a good 

coincidence with those from experimental measurement. The measured and analytical 

natural frequencies (before and after updating) are compared in Table 6.2, which 

demonstrates a good agreement between them. The comparison between all measured 

and computed responses in the time domain and frequency domain is also conducted. 

In Figs. 6.3 – 6.4, three responses (acceleration, displacement, and strain) from three 

types of sensors are selected to graphically exhibit the consistency between the 

measured and computed responses. A similar observation can be found for other 

responses except for the strain response of Element 69. Further investigation found 

that the amplitude of this strain response is small (the maximum amplitude is about 2

 ) with poor signal-to-noise ratio, which is easily contaminated by the 

environmental interruption. So, the measured strain response of Element 69 is 

excluded in the damage detection studies. The updated FE model now could be more 

accurate to represent the intact structure for the subsequent damage detection. 
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6.2.5 Damage Scenarios 

The structural damage detection will be performed using the optimal sensor placement. 

Before the introduction of the damage scenarios, the manufacture of damaged beam 

elements and the calculation of equivalent damage severity are described. In this study, 

the mock-up damage is a weakened segment in the middle of a beam, which is 

produced by grinding away a layer of material from the surface of the beam, as shown 

in Fig. 6.5. The damage level, quantified by a certain percentage of equivalent stiffness 

reduction, is embodied by the geometric dimension change of a beam. An algorithm 

is provided in Appendix B for relating the geometric dimension change of a beam to a 

certain percentage of equivalent stiffness reduction. For a prescribed percentage of 

tensile stiffness reduction and bending stiffness reduction, the outer diameter and 

length of a weakened part can be designed by using Eq. (B3) in Appendix B in two 

steps: (1) a suitable reduction in outer diameter is selected and fixed as a constant (such 

as, 0.5mm); (2) the grinding length works as a variable which is selected to yield an 

equivalent stiffness reduction close to the prescribed value. Specifically, an 

approximate 10% stiffness reduction is equivalent to a reduction of 0.5 mm in outer 

diameter of a beam and a grinding length of 150 mm along the beam; an approximate 

15% stiffness reduction is equivalent to a reduction of 0.5 mm in outer diameter of a 

beam and a grinding length of 250 mm along the beam. The 10% and 15% stiffness 

reductions and the calculated geometric changes are summarized in Table 6.4. To 

verify the feasibility and effectiveness of the proposed method, three damage scenarios 

are designed and introduced to the frame structure, namely, (1) one beam damaged, (2) 

two paralleled beams with different levels of damage, and (3) two longitudinally 

aligned beams with different levels of damage. The two damaged beams are shown in 

Fig. 6.2 (a). The one with larger damage is used in Scenario (1), and both are used in 

Scenarios (2) - (3). 

The three damage scenarios characterized by the above damage levels and the 

specific locations in the experiment are listed in Table 6.5. In the first scenario, the 

defect with 15% stiffness reduction happens to a longitudinal beam near the support 
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(Element 17). In the second scenario, defects happen to two paralleled beams close to 

the support of the structure (Elements 17 and 18). Elements 17 and 18 have 15% and 

10% stiffness reduction, respectively. In the third scenario, defects happen to two 

longitudinally aligned beams (Elements 17 and 33). The Element 17 is 15% stiffness 

reduction while the damaged Element 33 at mid-span of the structure is 10% stiffness 

reduction. For the above three damage scenarios, the local damages are introduced into 

the test structure by replacing the related intact members with the damaged ones. After 

the replacement, all the connection bolts should be tightened with the same torsional 

moment (30 Nm) by using the torque wrench (see Fig. 6.2(b)) such that the connection 

of the structure keeps the same condition before and after damaged. Considering the 

safety of the structure, the power amplifiers take different gain factors for different 

damage scenarios. In each scenario, two suitable gain factors (Gain factor 1 and 2) are 

specifically tuned for the related power amplifiers, and their values can refer to Table 

6.5. The damage detection results for the above three damage scenarios will be 

presented in the next section. 

6.3 Experimental Results and Discussions 

6.3.1 Results Using the Optimal Sensor Placement  

The damage detection studies on the frame structure under the prescribed three damage 

scenarios are conducted by using the sensor configuration COSP0. The input forces 

are measured for damage detection. As an example, the two input forces measured 

from the 7th to 17th seconds for the damage scenario one are plotted in Figs. 6.6 and 

6.7, which are measured in the lateral (y) and vertical (z) directions respectively. Since 

the input forces are the interface forces between the structure and the springs, some 

peaks are observed in their spectrums as shown in Fig. 6.6(b) and Fig. 6.7(b). In other 

word, these forces are not the ideal white noise excitations. For other damage scenarios, 

the signal generator offers the same random excitation signal (signal level 300 mVrms) 

but the amplitudes of the two forces are tuned by two gain factors of the power 
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amplifiers. Therefore, the measured forces for other damage scenarios are similar, and 

they are not shown one by one here. 

After the damage occurs, three types of recorded responses from the 7th to 17th 

seconds are used for damage detection. The unknown damages are detected by solving 

Eq. (4), and the identified results are presented in Fig. 6.8. The damage detection 

results of the first scenario are illustrated in Fig. 6.8(a). The use of sensor placement 

COSP0 leads to the accurate detection of the damage location and severity in Element 

17. The identified damage severity of Element 17 is 14.6 % which is close to the preset 

15% equivalent damage. Meanwhile, two relatively large false alarms are also 

identified in Elements 9 and 26 with incorrect stiffness reduction of 4.5% and 3.6%, 

respectively. Further examination on Fig. 6.5 reveals that the false alarm in Elements 

9 is because it is adjacent to the damaged element. The false alarm in Element 26 may 

result from the model error and the measurement noise. The damage detection results 

of the second scenario are illustrated in Fig. 6.8(b). Both the damage locations for 

Elements 17 and 18 are accurately detected. The stiffness reduction in Elements 17 

and 18 are satisfactorily identified as 16.6% (i.e. 16.6% > 15%) and 8.2% (i.e. 8.2% < 

10%) with minor discrepancies from the preset values. These discrepancies could be 

caused by the manufacturing error of damages or the computation error of the damage 

detection algorithm. Additionally, some relatively large false alarms are observed in 

Elements 9, 10, 26, and 38 with the maximum one occurring in Element 9 (4.6% 

incorrect stiffness reduction). The identification errors may also be induced by the 

model error as well as the measurement noise. Finally, the damage detection results of 

the third scenario are illustrated in Fig. 6.8(c), which are still acceptable. The damaged 

Elements 17 and 33 are identified with 16.1% and 7.6% stiffness reduction, while the 

largest false alarm is 6.2% stiffness reduction occurring in Element 9. Under different 

damage scenarios with different damage locations and severities, the damage detection 

results have demonstrated that the proposed method not only can identify the damage 

locations accurately, but also can estimate the damage severities satisfactorily. 

Although several false alarms are found, their identified damage severities are 
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obviously smaller than those of real damages. Therefore, it could be concluded that 

the proposed method is feasible and effective for damage detection when using the 

optimal sensor configuration COSP0. 

6.3.2 Results Using the Non-optimal Sensor Placement  

As a comparison, two non-optimal sensor configurations are used for damage detection 

to verify the effectiveness of the optimal sensor placement. The two non-optimal 

sensor configurations are Non-OSP1 (see, Fig. 6.9(a)) and Non-OSP2 (see Fig. 6.9(b)). 

Non-OSP1 is obtained on the basis of COSP0 by relocating two displacement 

transducers. They are moved from Nodes 15 and 21 to Nodes 9 and 18 respectively 

without changing measurement direction. Non-OSP2 is obtained on the basis of Non-

OSP1 by changing four more accelerometers for their measurement location and/or 

direction: the accelerometers at Nodes 13 and 17 are, respectively, moved to Nodes 16 

and 14, and their measurement direction are also changed from vertical to lateral 

direction; the measurement direction of the accelerometer at Node 15 is changed from 

vertical to lateral direction; one accelerometer is moved from Node 29 to Node 23.  

The damage detectability of the COSP0, Non-OSP1 and Non-OSP2 is compared 

in the third damage scenario, and the corresponding damage detection results are 

shown in Fig. 6.10. When using the Non-OSP1, the stiffness reductions in Elements 

17 and 33 are identified as 15.5% and 5.5% respectively. Compared with the detection 

result using COSP0, the difference lies in the worse estimate of stiffness reduction in 

Element 33 and three new large false alarms occurred in Elements 18, 19 and 22. The 

adoption of placement Non-OSP2 leads to the worst identification results among the 

three sensor placements. Although the stiffness reduction in Elements 17 is still 

identified as 11.8%, but the identification of stiffness reduction in Elements 33 fails. 

Meanwhile many large false alarms are observed, and the largest one is found in 

Element 22 with 32.9% incorrect stiffness reduction. The poor damage identification 

and the large false alarms result from the non-optimal sensor placement which is less 

sensitive to the local damages. The comparison revealed that arbitrary sensor 
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placement cannot provide reliable damage detection results and even may lead to the 

failure of damage identification. 

6.4 Summary 

The proposed multi-objective multi-type sensor optimal placement method for damage 

detection has been experimentally investigated in this chapter. This OSP 

simultaneously optimizes the response covariance sensitivity and response 

independence to ensure the identifiability of local damage in a structure. Three 

different damage scenarios have been designed to examine the proposed OSP method 

on a three-dimensional frame structure. The experimental results showed that accurate 

damage localization and satisfactory damage quantification could be yielded by using 

the selected optimal multi-type sensor placement (COSP0). It can be concluded that 

the proposed OSP is feasible and effective for damage detection. Furthermore, the 

optimal and non-optimal sensor placements (COSP0, Non-OSP1 and Non-OSP2) for 

damage detection are also compared. The comparison revealed that the various types 

of sensors with optimal placement are essential to provide most informative data on a 

structure and guarantee the success of damage detection. 

The proposed covariance-based multi-type sensor placement method and the 

associated damage detection methods have been successfully applied to a three-

dimensional frame structure experimentally in this chapter. However, when they are 

applied to large civil structures, a few major difficulties will be encountered. The 

global stiffness matrix, modal parameters, and dynamic responses are less sensitive to 

local damage of a large structure compared with a small structure. The one-stage 

damage detection in Chapters 3 and 4 is inaccurate and sometimes impossible due to 

too many unknown damage parameters and seriously ill-conditioned inversed problem 

for a large structure. Therefore, a covariance-based multi-stage damage detection 

strategy incorporating with a multi-scale finite element (FE) model for the damage 

detection of a large structure will be further investigated in Chapter 7. 
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Table 6.1 Initial and updated parameters of the frame structure 

Updating 

Parameters 
Initial value Updated value 

Young 

modulus 

(Pa)E   

112.10 10  
112.11 10  

Density 

3( / m )Kg   
7850 7860 

Outer 

diameter 

(mm)D   

22 22 

Added lump 

mass at the 

nodes from 

1~ 29 (g) 

282.1, 282.1, 378.3, 474.5,545.1, 

593.2, 474.5, 474.5, 593.2,474.5, 

545.1, 593.2, 545.1, 474.5,593.2, 

474.5, 545.1, 558.6, 510.5,474.5; 

522.6, 474.5, 474.5, 522.6,474.5, 

474.5, 614.2, 414.3, 420.6 

282.1, 282.1, 378.3, 474.5,545.1, 

593.2, 654.5, 654.5, 593.2, 704.5, 

775.1, 593.2, 755.1, 684.5, 593.2, 

704.5, 775.1, 558.6, 690.5, 654.5; 

542.6, 474.5, 474.5, 522.6, 324.5, 

324.5, 364.2, 264.3, 270.6 

Damping 

ratios 

1 ~ 6  (%) 

0.35, 0.23, 0.38, 0.13, 0.34, 0.14 0.35, 0.92, 0.38, 0.26, 0.17, 0.56 
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Table 6.2 Measured and analytical natural frequencies 

Mode 

number 

Measured 

(Hz) 

Before updating  After updating 

  Analytical 

(Hz) 

Error 

(%) 

 Analytical 

(Hz) 

Error (%) 

1 5.20 5.29 1.73  5.27 1.35 

2 11.84 11.42 -3.55  11.81 -0.25 

3 15.16 15.45 1.91  15.13 -0.20 

4 20.0 19.46 -2.70  19.96 -0.20 

5 27.22 28.11 3.27  27.13 -0.33 

6 39.24 40.39 2.93  39.27 0.08 
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Fig. 6.1 The physical model of the nine-bay frame structure and experimental setup: 

(a) The nine-bay frame installed with two exciters; (b) The rigid concrete support; (c) 

The alloy steel tube and Meroform ball; (d) Two exciters LDS V406 M4-CE & JZK-

5; (e) The springs and B & K force transducers. 
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Fig. 6.2 The damaged beams and experimental instruments: (a) The damaged beam 

elements; (b) Torque wrench; (c) Accelerometer; (d) Laser displacement transducer; 

(e) Strain gauge; (f) B & K signal generator; (g) Three-way connector; (h) Power 

amplifiers LDS PA 500L and YE5871; (i) Gain factor labels for the power amplifiers; 

(j) Charge amplifier; (k) Kyowa data logger. 
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(a)  

(b)  

(c)  

Fig. 6.3 The comparison of measured and computed responses of the structure after 

model updating: (a) The acceleration response at Node 28 in y-direction; (b) The 

displacement response at Node 21 in z-direction; (c)The strain response on Element 1. 
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(a)  

(b)  

(c)  

Fig. 6.4 The comparison of power spectrums of measured and computed responses 

after model updating: (a) The acceleration response at Node 28 in y-direction; 

(b)The displacement response at Node 21 in z-direction; (c)The strain response on 

Element 1. 
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Fig. 6.5 The damaged beam element of the frame structure for damage detection 

 

 
(a)  

(b)  

Fig. 6.6 The lateral excitation force in the y-direction for the damage scenario one: 

(a) In time domain; (b) In frequency domain. 
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(a)  

(b)  

Fig. 6.7 The vertical excitation force in the z-direction for the damage scenario one: 

(a) In time domain; (b) In frequency domain. 
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(a)  

(b)  

(c)  

Fig. 6.8 The results of damage detection for three different damage scenarios: 

(a) Damage scenario one with one damage in Element 17; (b) Damage scenario 

two with two damages in Element 17 and Element 18; (c) Damage scenario three 

with two damages in Element 17 and Element 33. 

 

 

 

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 

 

V
al

ue
 o

f f
ra

ct
io

na
l c

ha
ng

e

Element No.

 Preset value
 Detected value

         Damage location

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 

 

V
al

ue
 o

f f
ra

ct
io

na
l c

ha
ng

e

Element No.

 Preset value
 Detected value

         Damage locations

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 

 

V
al

ue
 o

f f
ra

ct
io

na
l c

ha
ng

e

Element No.

 Preset value
 Detected value

         Damage locations



 

139 

 

Fig. 6.9 Two non-optimal sensor placements :(a) Sensor configuration Non-OSP1; (b) 

Sensor configuration Non-OSP2. 

 

 
Fig. 6.10 Comparison of damage detection by using the optimal and non-optimal 

sensor placements 
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CHAPTER 7 

 MULTI-STAGE DAMAGE DETECTION OF A 

TRANSMISSION TOWER: NUMERICAL 

INVESTIGATION 

7.1 Introduction 

When the covariance-based multi-type sensor placement method and the associated 

damage detection methods proposed in the previous chapters are applied to a large 

transmission tower for damage detection of loosened bolts, a number of obstacles 

exhibit. The global stiffness matrix, modal parameters, and dynamic responses are less 

sensitive to local damage (loosened bolts) of a large transmission tower compared with 

small structures investigated in previous chapters. The one-stage damage detection is 

inaccurate and sometimes impossible due to too many unknown damage parameters 

and seriously ill-conditioned inversed problem for a large transmission tower. The two-

stage damage detection strategy used in Chapter 3 is also not suitable for a large 

transmission tower because two types of sensors were separately installed in two stages 

in Chapter 3, which is impractical for a large transmission tower. Therefore, a new 

multi-stage damage detection incorporating with a multi-scale finite element (FE) 

model is proposed for the damage detection of loosened bolts of a large transmission 

tower in this chapter. Section 7.2 will describe the problem encountered for damage 

detection of loosened bolts at a joint of a large transmission tower. Section 7.3 will 

introduce the methodology of the multi-stage damage detection method, in which a 

multi-scale FE model of the transmission tower is introduced. Section 7.4 is the 

numerical study to demonstrate the feasibility and accuracy of the multi-stage 

detection method. A summary of the works done in this chapter is given in Section 7.5. 
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7.2 Problem Description  

Lattice structures with bolted joints have been popularly used in different structural 

forms. The high-voltage power transmission (HVPT) tower is one form of these lattice 

structures in large size with a number of structural members connected through a series 

of bolted joints (see Fig.7.1). The HVPT towers are usually metallic structures. 

According to the code of lattice towers and masts from British Standard Institution 

(BSI) (Institution 2001), the three major composition members of the HVPT tower are 

leg members, primary bracing members, and secondary members. Leg members form 

the main load-bearing chords of the structure; primary bracing members other than 

legs carry the shear force due to imposed loads on the structure; secondary members 

are used to reducing the effective length of the main legs and sometimes that of the 

bracing, which are normally considered unstressed and are only loaded due to 

deformation of the structure. Thus, leg and primary bracing members are main load-

bearing components and form critical load-bearing regions at joints with a series of 

bolts.  

Previous studies (Albermani et al. 2009; Klinger et al. 2011; Hathout et al. 2013; 

Jiang et al. 2017; Valeti and Pakzad) revealed that the typical damages of the HVPT 

towers include (see Fig. 7.2): (a) corrosion of members or bolts at a joint near a support; 

(b) breaking of components at a critical joint; (c) fracture of a member at the joint; (d) 

loosened bolts at a joint; (e) bolted joint slippage; (f) cracking at a nut in the joint; and 

(g) global bucking and collapse. Clearly, apart from global bucking and collapse, all 

others are local damage occurring near or at a joint. Moreover, the global bucking and 

collapse sometime are also due to the structural deterioration caused by local damage 

at joints when the degraded tower suffers from extreme conditions such as strong 

winds and severe earthquakes. Therefore, the bolted joints in the transmission tower 

are vulnerable components and the bolted joints in the critical load-bearing regions 

should be prioritized for monitoring and damage detection. Moreover, for a 

transmission tower constructed with bolted joints, the gusset plates are often designed 
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strongly enough to avoid damage. Therefore, the damage of a bolted joint is most likely 

from bolts. This chapter thus mainly concerns loosened bolts at a joint of a large 

transmission tower. 

However, the local defects of joints are difficult to be identified because of the 

inaccessibility of visual inspection for some damage components in a large 

transmission tower. The transmission towers are often located in remote areas such 

that frequently visual inspection by experts is also impossible. Fortunately, damage 

detection technology has been developed as a cutting-edge technology to provide 

possible solutions (Xu and Xia 2012). Detecting local damage of a transmission tower 

at the earliest possible stage can provide useful information for decision makers to 

perform a cost-effective maintenance and repair such that serious damage can be 

avoided (Yin et al. 2009; Lam and Yin 2011; Hathout et al. 2013; Kong et al. 2017; 

Valeti and Pakzad).  

The damage (loosened bolts) occurring at a joint is very local damage for a large 

transmission tower, which only induces small change in the structural system of the 

transmission tower. Identifying the local damage of loosened bolts at joints of the 

transmission tower is thus a very challenging issue. This chapter takes the straight-line 

type 5A-ZB2 HVPT tower model (see Fig. 7.1) as an example to illustrate the problem 

concerned and find the way forward. First, the number of the bolted joints in the 

transmission tower is large, leading to many unknown parameters for damage 

detection and a seriously ill-conditioned inversed problem. Secondly, a bolted joint has 

a complex geometric composition, constructed of angle members, gusset plates, and 

bolts. The accurate modelling of the bolted joints using shell/solid elements is 

necessary but the traditional FE model established by beam elements could not 

accommodate. On the other hand, if the entire tower is modelled using shell/solid 

elements, it will be very difficult to apply the proposed response covariance-based 

damage detection method due to computational prohibition. Therefore, this chapter 

will propose a response covariance-based multi-stage damage detection strategy 

incorporating with a multi-scale finite element (FE) model for the damage detection 
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of loosened bolts at a joint of a transmission tower. In a multi-scale FE model of a 

transmission tower, the local detailed FE models using solid elements and a global FE 

model using beam elements are integrated. The damage detection strategy proposed in 

this chapter involves three stages. The first stage damage detection is to locate the 

damaged joints using the traditional beam model of the tower. This damage location 

detection is based on the fact that any change in the physical property of bolts in a joint 

will affect the stiffness of the connected members and then affect the related local 

region of the joint. In this stage, the suspicious rigid joints will be selected and the 

locations of the damaged joints will be identified by using the response covariance-

based multi-sensing damage detection method introduced in the previous chapters. 

Because a joint often consists of a number of angle members and these angle members 

may be connected in series or parallel, the second stage is therefore to find out which 

members at the damaged joint are suspicious to loosened bolts. This stage detection is 

conducted also using the traditional beam model of the tower. In the third stage, the 

multi-scale FE model of the tower is used, in which the detailed local models of the 

damaged joints are embedded and the actual connections of all members in the joint 

are modelled. By taking the damage detection results from the second stage as initial 

damage results, the location and severity of the loosened bolts in the joint are finally 

determined in the third stage. The methodology of the proposed multi-stage damage 

detection will be further elaborated in the next section. 

7.3 Multi-Stage Damage Detection Method 

The multi-stage damage detection is characterized by a few stages of different damage 

detection levels (Sohn et al. 2002). For the problem concerned in this chapter, the 

three-stage damage detection strategy is used. The first stage is to detect the existence 

of damaged joints and the locations of damaged joints based on the traditional beam 

model of the tower. The second stage is to detect the possibly damaged members with 

loosened bolts in the identified damaged joint based on the traditional beam model of 

the tower. The final stage is to identify the loosened bolts and quantify the damage 
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severity based on the multi-scale FE model of the tower. Fig.7.3 shows the damage 

model for each stage and Fig.7.4 exhibits the flow chart of the multi-stage damage 

detection. It can be seen that a high-level stage requires the knowledge of low-level 

stage(s) to start further detection.  

7.3.1 Localization of Damaged Joints 

In the first stage, the traditional beam model of the tower is used, in which a joint is 

characterized by one node with several beam elements rigidly connected. This joint 

can be seen as a substructure or a super-element in the beam model of the tower. The 

loosened bolts of some members connected to the joint will certainly affect the total 

stiffness of the joint contributed by all the members connected to the joint. This effect 

is actually accounted by introducing an equivalent damage parameter for a suspicious 

joint in the first stage damage detection based on the traditional beam model. That is, 

an equivalent damage parameter is assigned to the stiffness matrix of each suspicious 

super-element (joint). The stiffness matrices of all the suspicious super-elements with 

the equivalent damage parameters are then assembled to the total stiffness matrix of 

the tower. The response covariance-based multi-sensing damage detection method is 

then applied to the total stiffness matrix to find the locations of the damaged super-

elements. The first-stage damage model, with the suspicious super-element as a basic 

unit, can be expressed as 

 
Nr

d sub u sup u,sup sup

1

ˆ( ) + ( ); ( 1 0)r r
r




       K α K K α   (7.1) 

in which the matrix dK  ( uK ) denotes the global stiffness matrix of the damaged 

(undamaged) tower structure; the matrix u,supˆ
rK  represents the stiffness matrix of the 

undamaged thr   super-element, and a hat ( ^  ) over the matrix denotes the super-

element stiffness matrix assembled in the global coordinate; the vector supα  is the 

equivalent damage parameter vector; sup
r   is the equivalent damage parameter 
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assigned to the thr   super-element and it implies that every beam element in this 

super-element has the same stiffness reduction sup
r ; and Nr  is the total number 

of the suspicious super-elements. 

To alleviate the ill-conditioned inversed problem of damage detection, the 

adaptive Tikhonov regularization method (Li and Law 2010) is adopted. The damage 

detection problem based on the first-stage damage model and the response covariance-

based multi-sensing (CBMS) damage detection method can be formulated as 

sup 1

sup sup 1 2 2 sup 1 sup sup ,* 2
pq 2 2

( ) 1
arg min || ( ) || || ( ) ( ) ( ) || ;

k

k
k k k k j k

j




 

 

 
           

 


α
α S α V α α α  

(7.2) 

with sup
pq pq pq[( ) ];k m c k   V V V α   (7.3) 

where pq
mV  and pq

cV  are the CBMS index vectors computed by using the measured 

responses and the responses from the finite element model; the vector pqV  is the  

variance of pq
mV  and pq

cV ; S  is the sensitivity matrix of the CBMS index vector to 

the equivalent damage parameter vector supα ;   is the regularization parameter; 

the superscript k  denotes the current iteration number; and the term sup ,*( )kα  is an 

adaptive adjustment factor (Li and Law 2010).  

The CBMS index vectors pq
mV  and pq

cV  are computed using Eq. (3.13) with the 

measured and computed responses from the optimal sensor placement (OSP). For the 

first-stage damage model, the sensitivity matrix in Eq. (3.20) becomes 

pq pq pq pq
sup sup sup sup
1 2 Nr

, , , , ,
c c c c

r   

    
  

     

V V V V
S  . After computing pq

mV  , pq
cV  , and S  , the 

damage detection objective function Eq. (7.2) can be solved. Thereafter, the damage 

parameters sup sup 1= ( )k α α  are obtained and the locations of the damaged joints 

are qualitatively identified in the first stage damage detection.  
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7.3.2 Localization of Damage Suspicious Beams 

After the locations of the damaged joints are identified, only the damaged joints will 

be focused on to localize damage suspicious members (beams) at these joints in the 

second-stage damage detection based on the beam model of the tower. In the second-

stage damage detection, a damaged joint is not regarded as a super-element because 

damage suspicious members at the joint should be located. All the other undamaged 

joints are excluded from further investigation in the second-stage damage detection. 

In this way, the number of unknown parameters in the damage detection is reduced 

significantly. Furthermore, in the real tower structure, some members at the joint may 

be connected to its adjacent member other than directly connected to the joint, but in 

and due to the simple beam model, these members have to be directly connected to the 

joint. Therefore, the purpose of the second-stage damage detection is to locate damage 

suspicious members at the damaged joints. By using a new damage parameter vector 

eleα  that is assigned to the stiffness matrix of each member at the joint, the second-

stage damage model is formulated as 

 
Ne

d ele u ele u,ele ele

1
( ) + ( ); ( 1 0)h h

h




       K α K K α   (7.4) 

In the above equation, the global stiffness matrix dK  of the damage affected tower 

structure is expressed as the superposition of the global stiffness matrix uK  of the 

intact tower structure and the summation of individual stiffness matrix ele u,ele
h h K  

of the beam element at the damage joints. The parameters ele
h  and u,ele

hK  are the 

stiffness reduction factor (damage parameter) and the stiffness matrix of the thh  intact 

beam element (see Fig. 7.3(b)). Ne  is the total number of beam elements in all the 

damaged joints. From the second term at the right-hand side of Eq. (7.4), it can be seen 

that only the beam elements of the damaged joints are scrutinized, thereby improving 

the damage identification accuracy within affordable computations. 

Similar to the objective function in Eq. (7.2), the objective function for damage 
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detection based on the second-stage damage model is expressed as 

ele 1

ele ele 1 2 2 ele 1 ele ele ,* 2
pq 2 2

( ) 1
arg min || ( ) || || ( ) ( ) ( ) || ;

k

k
k k k k j k

j




 

 

 
           

 


α
α S α V α α α

(7.5) 

where the variance of the CBMS index vector, pqV  , has an expression 

ele
pq pq pq[( ) ]k m c k   V V V α  ; and the sensitivity matrix in Eq. (3.20) is computed as 

pq pq pq pq
ele ele ele ele
1 2 Ne

, , , , ,
c c c c

h   

    
  

     

V V V V
S  . After computing pqV   and S  , the damage 

detection objective function Eq. (7.5) can be solved. Thereafter, the damage 

parameters ele ele 1= ( )k α α  are obtained and the damage suspicious beams at the 

damaged joints are located.  

7.3.3 Localization and Quantification of Loosened Bolts 

Based on the identification results in Stage 2, the third stage damage detection aims to 

locate and quantify the locations and extents of loosened bolts, which connect the 

damage suspicious beams to the gusset plates, at the damaged joints. Since the bolts 

are not explicitly included in the beam FE models of the tower structure in the previous 

two stages, a detailed joint model with bolts explicitly modeled is demanded for the 

damage detection in this stage. The detailed joint model is established by using solid 

elements (see Fig. 7.3(c)), replacing the rigid joint model used in the previous two 

stages (see Fig. 7.3(a-b)). How to construct a multi-scale FE model by combining the 

detailed joint model with the global beam model will be explained in the numerical 

study in detail. With the multi-scale FE model and taking the identification results from 

the second stage as initial values, the third-stage damage model for damage 

identification of loosened bolts is formulated as 
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Nc
d,hybrid bol u,hybrid bol u,bol

1

bol 0 ele

bol

( ) + ( );

( ) ;
subject to :

1 0

n n
n

n h



 



   

  

   

K α K K

α

  (7.6) 

where d,hybridK  ( u,hybridK ) is the hybrid global stiffness matrix of damaged (undamaged) 

tower structure represented by the multi-scale FE model; u,bol
nK  is the stiffness matrix 

contributed by the thn  set of bolts in intact state; a new damage parameter bol
n  is 

defined as a stiffness reduction factor assigned to the thn  set of bolts (see Fig. 7.3(c)) 

and the symbol  denotes that its initial value is provided by ele
h  obtained in the 

second stage; and Nc  is the total number of the sets of bolts in the damaged joint, 

where one set of bolts includes all the bolts connecting one angle member to the gusset 

plate.  

Similar to the objective functions in Eq. (7.2) and Eq. (7.5), the objective function 

for damage detection based on the third-stage damage model is expressed as 

bol 1

bol bol 1 2 2 bol 1 bol bol ,* 2
pq 2 2

( ) 1

bol 0 ele

0 bol 0 ele
pq pq

arg min || ( ) || || ( ) ( ) ( ) || ;

( )
subject to :

( ) [( ) ]

k

k
k k k k j k

j

c c




 

 

 
           

 

  


  


α

α S α V α α α

α α
V V α α

 

(7.7) 

where the variance of the CBMS index vector, pqV  , has an expression of 

bol
pq pq pq[( ) ]k m c k   V V V α  . The sensitivity matrix in Eq. (3.20) is computed as 

pq pq pq pq
bol bol bol bol
1 2 Nc

, , , , ,
c c c c

n   

    
  

     

V V V V
S . It is worth mentioning that the initial values 

of bolα  and pqV  come from the second stage damage detection. The identified 

damage severities in the second stage, eleα , provide the initial values bol 0( )α  for 

the corresponding sets of bolts connecting the damage suspicious elements to the 

gusset plates. To make the problem manageable and to consider the companion 

experimental investigation, the damage severity (stiffness reduction) of the damage 
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suspicious element obtained from the second stage is assigned as an initial damage 

value to all the bolts used to connect this suspicious element to the gusset plate. An 

extreme case of this assumption is that if all the bolts used to connect the suspicious 

element to the gusset plate are loosened, the damage severity of this set of bolts is zero. 

The initial value of the CBMS index 0
pq( )cV   is computed by 

0 bol 0 ele
pq pq( ) [( ) ]c c  V V α α . By using such initial values, the optimization search of 

the sets of loosened bolts is given a good starting point and the convergence is 

accelerated because of a narrow searching range. After computing pqV  and S , the 

damage detection objective function Eq. (7.7) can be solved. Thereafter, the damage 

parameters bol bol 1= ( )k α α  are obtained. The sets of loosened bolts are located 

at the damaged joints and the severities of the sets of loosened bolts are quantified. 

7.4. Numerical Study 

7.4.1 Finite Element Model of the Transmission Tower  

The numerical investigation aims to examine the feasibility and accuracy of the 

proposed response covariance-based multi-stage damage method. The testbed model 

of a 5A-ZB2 HVPT tower (see Fig. 7.5(a)) in the Structural Dynamics Laboratory of 

The Hong Kong Polytechnic University is selected for the numerical study. The 

structural and material properties of the tower structure are listed in Table 7.1. 

According to the testbed model, a finite element model of the tower (see Fig. 7.5(b)) 

is built using the commercial software ANSYS  with 1722 Beam188 elements for the 

angle members and 245 Mass21 elements for additional lump masses considering bolts 

and gusset plates in some joints which cannot be ignored. The four nodes of the tower 

at the ground level are fixed, and all joints in the beam model are modeled as rigid 

joints without considering joint eccentricities for the first and second stage damage 

detection. The first ten natural frequencies of the beam FE model of the tower are 

16.45, 16.57, 23.36, 33.17, 44.89, 44.93, 45.73, 52.55, 53.44, 56.42 Hz. The first ten 

modes of vibration are selected for response computation using the mode superposition 

javascript:void(0);
javascript:void(0);
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technique. The Rayleigh damping is assumed in this study for the computation.  

For a transmission tower, the longitudinal loading is one of its major loadings, 

which may be induced by the longitudinal imbalances of wire tensions produced by 

wind and/or ice loading on adjacent spans or from temperature extremes on unequal 

spans. Therefore, the longitudinal eccentrical loading condition is simulated in the 

numerical study. Specifically, two Gaussian white noise excitations with a standard 

deviation of 3 N are applied to two nodes of the testbed model in the longitudinal (y) 

direction respectively, as shown in Fig. 7.5. The excitation frequency is selected with 

a bandwidth of 0-50 Hz to cover the first ten natural frequencies. The structural 

responses are sampled at 300 Hz over the time duration of 20s. Measurement noise is 

simulated by adding normally distributed random number to the noise-free response 

for the numerical study. The root-mean-square (RMS) of the measurement noise is 

equal to 5% of the RMS value of the noise-free response in this study. 

The effectiveness of the proposed damage detection method will be numerically 

examined. After considering the tower is a mono-symmetric structure, only one of the 

four tower legs from the top to the bottom of the tower is selected for the performance 

demonstration of the proposed method so that the computational time and cost can be 

reduced significantly. Furthermore, some joints are damage-prone because they carry 

large forces and stresses but some joints are not. According to initial stress analysis, 

twelve joints are finally selected as damage-prone joints within the selected tower leg, 

and they are depicted in Fig. 7.6. The beam elements in each joint are renamed as E1, 

E2, … in sequence for the easy identification in the subsequent multi-stage damage 

detection. For example, 89(E2) of Joint 1 in Fig. 7.6 (a) means that the original element 

No. 89 in the entire structure is renamed as E2 when we scrutinize the specific joint. 

7.4.2 Multi-Type Sensor Optimal Placement  

To achieve better damage detection, accelerometers and strain gauges are optimally 

placed before the first stage of damage detection based on the beam FE model. The 

optimal sensors are deployed in the selected tower leg region, which includes 24 
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candidate accelerometer sensor locations at the 12 nodes with respect to the selected 

joints and 37 candidate strain sensor locations at the mid-spans of the beam elements 

of the tower leg. For the sake of sensor placement encoding, the accelerometers are 

labeled by 1 to 24, distributed over the 1st to 12th nodes in the x- (lateral-) direction 

and the y- (longitudinal-) direction. The strain gauges are labeled by 25 to 61 and 

distributed over the 1st to 37th beam elements in the tower leg. The total number of 

optimal sensors =22oN   is finally determined based on the principle of using the 

minimum number of sensors but guaranteeing enough accuracy of structural damage 

detection. The multi-type sensor optimal placement is conducted by using the OSP 

method introduced in Chapter 5, and the parameters used in the NSGA-II are listed in 

Table 7.2.  

After solving the multi-objective multi-type sensor placement problem expressed 

by Eq. (5.1) in Chapter 5, the Pareto front is obtained and plotted in Fig. 7.7(a). This 

Pareto front includes 200 Pareto solutions and each Pareto solution corresponds to an 

OSP. The simultaneous optimization of two conflictive objectives leads to a set of 

compromised solutions known as the non-dominated or Pareto-optimal solutions. Thus, 

a knee-point based method proposed in the reference (Lin et al. 2018) is adopted to 

determine the final OSP for application. First, the trade-offs in either direction can be 

approximately estimated through the curvature of the fitting curve (see Fig.7.7 (a)) of 

the Pareto front. Then, the curvature of each Pareto solution is computed through the 

function of the fitting curve, which is plotted in Fig. 7.7(b). Mathematically, the most 

desirable knee point is a solution located in the convex region of the Pareto front with 

the maximum curvature of positive (Bechikh et al. 2010). Finally, the best OSP is 

determined by using the knee point-based method, in which the knee point carries the 

maximum curvature of the curve of the Pareto front. Moreover, the OSP obtained is 

displayed in Fig. 7.8, which includes 15 accelerometers named A1 to A15 and 7 strain 

gauges named S1 to S7. 
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7.4.3 Damage Sensitivity Analysis 

The traditional damage detection strategy tends to conduct damage detection of all 

beam elements in the tower in one step. That is just to consider the second stage 

damage detection for all the beam elements other than only the damaged joints 

identified from the first-stage damage detection in this study. To demonstrate the 

necessity of the first-stage damage detection proposed in this study, the sensitivity 

analysis is conducted to show the feasibility of damage detection of the traditional 

strategy and the multi-stage strategy. For the traditional strategy, all the beam elements 

(totally 84 elements in this study) are considered, and the sensitivity matrix of the 

CBMS damage index to all the beam elements, pqele
ele





V
S

α
, is calculated. For the first 

stage damage detection of the multi-stage strategy, all the beam elements are grouped 

as several super-elements, and the sensitivity matrix of the CBMS damage index to all 

the super-elements pqsup
sup





V
S

α
 (totally 12 super-elements in this study) is calculated.  

By using the same OSP, the two sensitivity matrices (Eq. (3.20)) are computed 

and the column norms of them in terms of pq

2

c

i





V
 are plotted in Fig. 7.9 (a) and (b) 

respectively. Each column norm represents the damage sensitivity of each beam (Fig. 

7.9 (a)) or each super-element (Fig. 7.9 (b)). The two sensitivity matrices are compared 

in terms of mean values of column norm, condition numbers and number of unknowns. 

The relevant comparison results are summarized in Table 7.3. As seen from Table 7.3, 

the mean value of column norm of eleS   is 105.72 while that of supS   is 493.422, 

which implies the proposed method (the first stage) is much more sensitive than its 

counterpart. Looking back to Fig. 7.9(a), there are many beam elements with very 

small norm values. These less sensitive elements usually lead to false alarms or even 

divergent identification results. Also, the condition numbers of eleS   and supS   are 

194.80 10   and 25.50 10   respectively, as listed in Table 7.3. The drastically large 
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condition number of eleS  indicates that the former method suffers from severe ill-

condition problem when it concerns a large structure. The damage detection of the 

critical joints consisting of 84 beam elements by using the traditional strategy fails 

because of lower sensitivity and severer ill-condition. After grouping the 84 beam 

elements as 12 super-elements, the number of unknowns is reduced significantly. The 

damage detection succeeds because of the enhanced sensitivity and alleviated ill-

condition. Therefore, the first stage of the multi-stage strategy is indispensable for 

damage detection of a large structure. 

7.4.4 Multi-Stage Damage Detection  

Two common causes of bolt damage in the HVPT tower are vibration-induced bolt 

loosening and environment-induced corrosion of bolts in joints. To examine the 

performance of the proposed multi-stage damage detection method, a damage scenario 

with loosened bolts in a critical position “Joint 9” (see Fig. 7.10) is designed for the 

case study. The critical position “Joint 9” and the enlarged illustration of its 

composition are shown in Fig. 7.10. The three stages for damage detection of loosened 

bolts at Joint 9 are illustrated in Fig. 7.11, and the procedure for implementing the 

multi-stage method can refer to Fig. 7.4. The detailed implementation procedure and 

results of damage detection are described in the following. 

7.4.4.1 Localization of Damaged Joints in Stage One 

In the first stage, the damage detection is started from the searching of damaged joints 

due to loosened bolts (see Fig. 7.11(a)) by using the first-stage damage model. In this 

stage, a rigid joint is composed by one node and several beam elements connected to 

the node, which is represented by a super-element in the beam FE model. The super-

elements works as a basic unit to locate the damaged joint. As mentioned in Section 

7.4.1, only one of the four tower legs from its top to its bottom in 1/4 tower is selected 

for performance demonstration of the proposed method, in which twelve joints are 

further selected as damage-prone candidates within the selected leg and their detailed 
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compositions are depicted in Fig. 7.6. Accordingly, the beam FE model includes 12 

super-elements (joints), and accordingly the first-stage damage model in Eq. (7.1) has 

12 damage parameters to be determined. The damage parameters supα  identified in 

the first stage are plotted in Fig. 7.12 (a). The highest bar, representing an equivalent 

stiffness reduction of 37.62%, is found at Joint 9. The equivalent stiffness reductions 

of other joints are incomparable with that of Joint 9. Therefore, Joint 9 is satisfactorily 

identified as the damaged joint, and other joints are identified as no damage. 

7.4.4.2 Localization of Damage Suspicious Beams in Stage Two 

Although the damaged joint is located at Joint 9, this joint is composed of several 

members and which members actually subject to loosened bolts are still unknown. 

Thus, the second-stage damage detection will focus on all the members at Joint 9 using 

the beam FE model (see Fig. 7.11(b)). As this joint consists of 9 beam elements, the 

second-stage damage model in Eq. (7.4) has 9 damage parameters to be determined. 

The damage parameters eleα  identified from the second stage are depicted in Fig. 

7.12 (b). Two bars are found dominant in this figure, with stiffness reductions of 62.52 

% and 89.78% for the beam elements E6 and E7 respectively. Therefore, the beam 

elements E6 and E7 are the two damage suspicious elements identified from the 

second-stage. The reason why these two elements are damage suspicious elements 

only shall refer to the detailed configuration of Joint 9. As shown in Fig.7.11 (c), the 

beam E6 at Joint 9 is actually connected to the beam E7 other than directly connected 

to the joint as modeled in the bean FE model. There is possibility that only the set of 

bolts for the beam E7 loosens while the set of bolts for the beam E6 is still in good 

condition. Such a dilemma cannot be solved by the second-stage damage detection 

using the beam FE model of the tower. 

7.4.4.3 Localization and Quantification of Loosened Bolts in Stage Three 

To solve the dilemma faced by the second stage, the model of Joint 9 which connects 

nine beam elements to a common joint is replaced by a detailed local model. The 
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detailed local model constitutes angle members, bolts, and gusset plates (see Fig. 

7.11(c)). It is built by using solid185 elements in ANSYS  and composed of 13615 

solid elements in total. The connection among angle members, bolts, and gusset plates 

is shown in Fig. 7.13(a). The bolts contribute to transfer forces by coupling those 

common nodes of the contact surfaces between bolts and angle members and the 

contact surfaces between nuts and gusset plates. The detailed local models using solid 

elements and the global FE model using beam elements are then integrated to form the 

multi-scale FE model. The interface between the detailed model of Joint 9 and the 

beam elements of the global model are coupled via the multipoint constraint (MPC) 

(see Fig. 7.13(b)). 

As the detailed local model of Joint 9 contains 12 sets of bolts, the third-stage 

damage model in Eq. (7.6) has 12 damage parameters to be determined. For the easy 

manipulation of the subsequent damage detection, each set of bolts is assigned a unique 

name and their names are B1, B2, …, B12 (see Fig. 7.11 (c)). When damaged, the 

material and/or geometric characteristics of the bolts change. In this study, the stiffness 

reduction parameter bolα  is simulated by the change of the elastic modulus of all 

the solid elements included in each set of bolts. Solving damage parameters bolα  is 

much more complicated than those in the previous two stages. It needs to take into 

consideration the damage identification results from the second stage, in which the 

beams E6 and E7 are found to be damage suspicious elements. After examining the 

detailed local model of Joint 9 in Fig. 7.11 (c), it can be seen that the beam E6 is 

subordinately connected to the beam E7 through a gusset plate and using the bolt sets 

B1 and B2, and that the beam E7 is connected to another gusset plate by the bolt set 

B3. Thus, B3 is only damage source for the beam E7 but could influence the beam E6 

subordinated to the beam E7. If the bolt set B3 is loosened and the beam E7 is separated 

from the Joint 9, the beam E6 will also be separated from Joint 9 no matter whether 

the bolt sets B1 and/or B2 are damaged or not. Thus, the bolt sets B1 and B2 are 

assumed unloosened to avoid the multiple-solution problem in the damage detection. 

The damage severities (stiffness reductions) of all the other beams identified in the 
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second-stage are thus assigned to all the bolt sets attached to Joint 9 as their initial 

values. For example, the beam E1 in Fig.11(b) is connected by two sets of bolts B6 

and B7. Thus, the identified severity of E1 with 1.61% stiffness reduction is assigned 

to B6 and B7 as the initial value. Specifically, the stiffness reductions for the beam 

elements, namely 0.8978 (E7), 0.0752 (E8), 0.0230 (E9), 0.0161(E1), 0.0161(E1), 

0.0523 (E5), 0.0523(E5), 0.0175 (E2), 0.0083 (E3), and 0.0425 (E4), are used as the 

initial values of the damage parameters bol 0( )α  for B3, B4, B5, B6, B7, B8, B9, B10, 

B11, and B12 respectively. The initial value of the CBMS damage index 

0 bol 0 ele
pq pq( ) [( ) ]c c  V V α α  in this stage is computed after the initial values of all 

the bolt sets have been assigned. The damage parameters bolα  are finally identified 

and depicted in Fig. 7.12 (c). The highest bar, standing for a stiffness reduction of 

98.81%, is found at the 3rd bolt set B3. The stiffness reductions at other bolt sets are 

incomparable with that at B3. Therefore, the loosened bolt set B3 is successfully 

identified, which is close to the preset damage by removing the bolt set B3 with 100% 

damage. 

7.5 Summary 

This chapter has presented a response covariance-based multi-stage damage detection 

strategy incorporating with the multi-stage damage models and the multi-scale FE 

model for the damage detection of loosened bolts in a large transmission tower. The 

multi-stage damage detection is effective to progressively reduce the unknown 

parameters and alleviate the ill-condition problem so as to make the problem solvable. 

The numerical study has shown that the proposed multi-stage damage detection 

method for the transmission tower testbed can achieve highly accurate identification 

of loosened bolts in a transmission tower. The uses of a detailed local model for a joint 

and thus a multi-scale FE model are necessary. 

The theoretical framework of the response covariance-based multi-stage damage 

detection strategy has been presented and assessed through a numerical study. 
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Although the measurement noise of the structural response is considered in the 

simulation and numerical studies, there are still some uncertainties in the numerical 

study compared with the real tower structure conditions. Therefore, before this method 

can be applied to real transmission towers, an experimental investigation will be 

conducted in the next chapter to validate the numerical study. 
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Table 7.1 List of structural and material properties 

Properties Value 

Young modulus 2(N/ m )E  1.96 ×1011 

Density 3( / m )Kg  7930 

Poisson ratio    0.26 

 

 

Table 7.2 Parameters used in the NSGA-II method 

Parameters Values / operators 

Population size of each generation 200 

Maximum Number of generation 1000 

Selection Tournament algorithm 

Probability of crossover 0.8 

Probability of mutation 0.2 

 

 

Table 7.3 Comparison of two sensitivity matrices 

Analysis parameters Sensitivity matrix 

eleS  supS  

Mean value of sensitivity 105.72 493.422 

Condition number 194.80 10  25.50 10  

Number of unknowns 84 12 
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Fig. 7.1 The straight-line type 5A-ZB2 HVPT tower and its bolted joints 

 

 
Fig. 7.2 Typical damage for a steel power transmission tower: (a) corrosion of beam 

or bolts at a joint near a support; (b) breaking of components at a critical joint; (c) 

fracture of a beam at the joint; (d) loosened bolts at a joint; (e) bolted joint slippage; 

(f) cracking at a nut in the joint; (g) global bucking and collapse. 
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Fig. 7.3 The multi-stage damage model: (a) the first-stage damage model; (b) the 

second-stage damage model; (c) the third-stage damage model. 

 

 

Fig. 7.4 Flowchart of multi-stage damage detection  
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Fig. 7.5 The high-voltage power transmission tower model: (a) the physical model; 

(b) the finite element model. 

 

 

Fig. 7.6 The locations of the selected joints and their detailed compositions in the 

transmission tower 
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(a)  

(b)  

Fig. 7.7 The best OSP determined by the knee-point based method: (a) the fitting curve 

of the Pareto-front and the knee point of the Pareto-front; (b) the curvature of the fitting 

curve with respect to the Pareto solutions.  
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Fig. 7.8 The optimal sensor placement referring to the knee-point in the Pareto front 
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(a)  

(b)  

Fig. 7.9 Comparison of damage sensitivity in the beam-element-level and the super-

elements-level: (a) damage sensitivity analysis to the 84 beam elements; (b) damage 

sensitivity analysis to the super-elements of 12 joints. 
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Fig. 7.10 The damage scenario of the transmission tower for damage detection study 

 

 
Fig. 7.11 Damage detection procedure: (a) Stage 1 based on the first-stage damage 

model; (b) Stage 2 based on the second-stage damage model; (c) Stage 3 based on the 

third-stage damage model. 

XY

Z

1

ANALYSIS OF TRANSMISSION TOWER                                                  

NOV  1 2017

11:02:43

ELEMENTS

Damage scenario: Bolts loosening 

at a critical joint

Joint9

Enlarged

B2

B3

B4

B5
B6

B7

B8

B10
B9

B11

B12

B1

2

3

5

8

11

10

12

4

6

7

9

1

1

ANALYSIS OF TRANSMISSION TOWER                                                  

MAR 20 2018

18:17:45

ELEMENTS

CEEnlarged Enlarged

Stage 1 Stage 2 Stage 3

1

Joint 9 Joint 9

E7

E6

(a) (b)
(c)

(E6)

(E7)

E8

E9

E1

E2

E3

E4

E5



 

166 

(a)  

(b)  

(c)  

Fig. 7.12 Damage detection results: (a) Stage 1 based on the first-stage damage model; 

(b) Stage 2 based on the second-stage damage model; (c) Stage 3 based on the third-

stage damage model. 
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Fig. 7.13 Connections in the detailed joint model: (a) connection among bolt, angle 

member, and gusset plate by coupling the common nodes in interfaces; (b) connection 

between the solid185 and beam188 elements by MPC. 
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CHAPTER 8 

 MULTI-STAGE DAMAGE DETECTION OF A 

TRANSMISSION TOWER: EXPERIMENTAL 

VALIDATION 

8.1 Introduction 

In Chapter 7, the theoretical framework of a multi-stage damage detection strategy in 

cooperation with a multi-scale FE model has been proposed for damage detection of 

loosened bolts in a transmission tower. The numerical study has also been conducted, 

and the results showed that the proposed method could achieve satisfactory damage 

detection. However, before this method can be applied to real transmission towers, the 

experimental validation is necessary to ascertain the effects of uncertainties involved 

in the numerical study on the damage detection results. The uncertainties in the 

numerical study include uncertainties in input, modelling and measurement, which 

will be naturally involved in the experimental tests.  

This chapter therefore presents an experimental investigation to validate the 

proposed method in Chapter 7. A physical scaled model of a large transmission tower 

was manufactured and installed in the laboratory. The beam FE model and the multi-

scale model of the physical tower model have been introduced in Chapter 7. Section 

8.2 will describe the experimental set-up and instrumentation in detail. The optimal 

sensor configuration, including 15 accelerometers and 7 strain gauges determined by 

the damage detection-oriented multi-type sensor placement method with multi-

objective optimization in Chapter 7, will be installed on the physical tower model. An 

excitation system to generate proper external random loading to the tower will be 

introduced. Because of the installation of the excitation system to the physical tower 

model, the two FE models established in Chapter 7 have to be modified. Section 8.3 



 

169 

will introduce the two modified FE models as well as the model updating of the FE 

models to make the models more close to the intact state of the tower for the 

subsequent damage detection. The damage scenario of loosened bolts at Joint 9 

discussed in Chapter 7 will be created in the physical tower model. Section 8.4 will 

then present the experimental damage detection results compared with the numerical 

damage detection results presented in Chapter 7. A summary of the works presented in 

this chapter is finally given in Section 8.5. 

8.2 Experimental Set-up and Instrumentation  

8.2.1 Physical Tower Model 

In consideration of the space of the laboratory available, a 1:10 scaled physical model 

of the 5A-ZB2 HVPT tower (see Fig. 7.5(a)) was designed, manufactured, and 

installed in the Structural Dynamics Laboratory of The Hong Kong Polytechnic 

University. The 5A-ZB2 HVPT tower is designed by the State Grid Corporation of 

China (SGCC) and used in a 500 KV power grid. The prototype of the tower is 50.50m 

high and 22.02m wide. The physical tower model was designed according to the 

geometric similarity law (Ramu et al. 2011). The angle members and gusset plates 

were all fabricated according to the geometric ratio of 1:10. The physical tower model 

was constructed with 930 angle members, 402 gusset plates, 3649 bolts, and 779 joints. 

The further details on the physical model can be found in the references (Wang et al. 

2016; Wang et al. 2017). It is noted that many of the bolted joints in the tower have a 

complex geometric composition and are composed by several angle members of 

different sizes with a series of bolts connected to gusset plates of different shapes. Fig, 

8.1 shows the physical tower model, the experimental set-up and instrumentation. It 

can be seen that the four legs of the tower were firmly fixed on the strong floor of the 

laboratory through a series of bolts (see Fig. 8.1 (k)). 
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8.2.2 Excitation System 

The 5A-ZB2 HVPT tower is commonly used in the transmission line system in China 

(Wong and Miller 2009). The longitudinal loading is one of its major loadings, which 

could be induced by the longitudinal imbalance of wire tensions produced by wind 

and/or ice loading on adjacent spans or from temperature difference on unequal spans 

(Ostendorp 1998). The real forces transmitted from the wires to the tower are 

complicated in the operation condition (Lam and Yin 2011). In the laboratory, only a 

simplified longitudinal loading was applied to the transmission tower at the wire 

position with some eccentricity in the horizontal direction so that the single force can 

generate both the longitudinal and torsional vibration of the tower. An exciter JZK-5 

was therefore fixed on a steel frame and the steel frame was hanged by three steel 

wires, as shown in Fig.8.1 (a). The reason why the exciter and the steel frame were 

hanged is to provide least additional stiffness to the tower. The installation detail of the 

exciter is shown in Fig.8.1 (b), and the exciter was connected to the tower model 

through a soft spring (see Fig. 8.1 (d)) at the wire position with some eccentricity in 

the horizontal direction. To directly measure the excitation force acting on the tower, 

a force transducers B & K 8201 (see Fig. 8.1 (e)) was installed between the tower and 

the spring, as shown in Fig. 8.1 (c). The force transducer is a uniaxial transducer, which 

can measure the force in the axial direction only. The installation of a soft spring aims 

to reduce additional stiffness by the exciter connection to the tower. The schematic 

diagram of the installation of the exciter is illustrated in Fig. 8.2. The steel frame 

designed to install the exciter is shown in Fig.8.2 (b) and Fig. 8.2 (c). Because of the 

additional stiffness from the spring and the suspended steel frame in the longitudinal 

direction to the tower, the two FE models established in Chapter 7 shall be modified 

slightly. Such an additional stiffness is simulated by using a spring element Matrix 27 

in ANSYS and added to the two FE models established in Chapter 7, as shown in Fig. 

8.3.  
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8.2.3 Optimal Sensor Placement 

The optimal sensor placement (OSP) has been performed in Section 7 .4.3 in Chapter 

7 by using the damage detection-oriented multi-objective multi-type sensor placement 

method. The best OSP was determined by using the knee point-based method, which 

includes 15 accelerometers and 7 strain gauges. The 15 accelerometers (KD1010) with 

the sequence from A1 to A15 and the 7 strain gauges (BFH120-3AA (23)) with the 

sequence from S1 to S7 were accordingly installed in the physical tower model (Fig. 

8.1 (f) and 8.1 (g)). 

8.2.4 Measurement System and Test Cases 

The measuring system for the damage detection of the transmission tower is illustrated 

in Fig.8.4. To start a dynamic test, the signal generator (B & K 3160-B-022), as shown 

in Fig. 8.1 (h), first generates a narrow-bandwidth white noise excitation signal. This 

signal is then sent to a power amplifier (YE5871), as shown in Fig.8.1 (i). The power 

amplifier works with the exciter to generate a random force to the tower through the 

spring. The random force recorded by the force sensor is amplified by the charge 

amplifier KD5008C, as shown in Fig.8.1 (j). At the same time, the acceleration 

responses of the excited tower are recorded by the accelerometers and amplified by 

the charge amplifier (KD5008C). The strain responses of the tower are recorded by the 

strain gauges and transmitted to the data acquisition system (KYOWA DB-120T-8), 

as shown in Fig. 8.1 (l). Finally, all the measured responses and the excitation force 

are transmitted to the computer through the data acquisition system (Kyowa EXD-

100A) shown in Fig. 8.1 (m).  

In the experimental investigation, the measurement system was calibrated and the 

two narrow-banded random excitations were generated. The first excitation with a 

bandwidth of 5 - 55 Hz was used to excite the transmission tower for the modal 

identification before and after damage. The second excitation with a bandwidth of 10 

- 35 Hz was used to excite the transmission tower for damage detection of loosened 



 

172 

bolts at Joint 9. All the input forces and corresponding responses before and after the 

damage were recorded with a sampling frequency of 512 Hz and a time duration of 

60s. 

8.3 Finite Elemental Models and Model Updating 

The proposed multi-stage damage detection method involves the two FE models: the 

traditional beam FE model (see Fig 8.3 (a)) and the multi-scale FE model (see Fig 8.3 

(b)) of the transmission tower. The FE models of the tower structure shall represent 

the actual tower structure as close as possible. Since the physical tower used in the 

experimental investigation involves an exciter connected to the tower through a soft 

spring and a suspended steel frame (see Fig. 8.1 (c) and Fig. 8.2), the FE models used 

in Chapter 7 shall have some minor modification. In this regard, a spring element 

Matrix 27 and a mass element MASS21 in ANSYS are added to the tower at the 

location of the exciter to represent the additional stiffness from the soft spring and the 

suspended steel frame and the additional mass from the force sensor and the shaft of 

the exciter, as shown in Fig.8.3. The initial stiffness of the spring element is set as

3 /N mm  and subject to modal updating. The additional mass is estimated as 134.5g 

and subject to modal updating. Furthermore, the weight of accelerometer (1.2 g per 

sensor) installed in the tower is also added to the node according to its locations, as 

shown in Fig. 8.5(a).  

The modal analysis of the modified beam FE model is then carried out. The first 

six natural frequencies of the tower are listed in Table 8.2. The first three modes of 

vibration of the tower structure are global vibration-dominated mode shapes, as shown 

in Fig. 8.6. The higher order mode shapes are mainly the local vibration-dominated 

mode shapes for the primary bracing members of the tower. The modified bean FE 

model used for the subsequent damage detection needs to be updated in consideration 

of uncertainties in the modeling. The modified beam FE model (see Fig 8.3 (a)) is first 

updated by updating seven groups of parameters. The seven groups of parameters are 

listed in Table 8.1 and their locations are shown in Fig. 8.5(b). A two-step modal 
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updating is successively conducted. The first step is to update the six groups of 

parameters in terms of the measured natural frequencies in the frequency domain. The 

six groups of parameters involve the five groups of additional masses and one group 

of additional stiffness. The second step is to update the modal damping ratios (the 

seventh group of the parameters) in terms of the measured structural responses in the 

time domain.  

 To obtain the measured natural frequencies of the physical tower, the first 

excitation with a bandwidth from 5 to 55Hz was used to excite the tower structure. The 

first six natural frequencies were identified and listed in the second column of Table 

8.2. The first three modal damping ratios were identified and taken as initial values for 

the further updating in the time domain because the identification of modal damping 

ratio always involves uncertainties. The first objective function for the first step 

updating is the minimization of the relative errors of the first six natural frequencies 
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natural frequency. The results of the updated parameters are listed in the rows 2 to 7 

of Table 8.1. The computed natural frequencies of the beam FE model before and after 

updating are listed in Table 8.2 together with the measured frequencies. As indicated 

by the relative error in the sixth column of Table 8.2, the first six analytical frequencies 

computed from the updated beam FE model match the measured frequencies well with 

the maximum relative error less than 1%.   

For the second step updating of the modal damping ratios in the time domain, the 

first three global modes (see Fig. 8.6) and accordingly the first three modal damping 

ratios are considered. The bandwidth of the excitation is further narrowed to 10 - 35 

Hz for the second step model updating (see Fig. 8.7 (a)) and the subsequent damage 

detection (see Fig. 8.7 (b)). Within this excitation bandwidth, the first three modal 

damping ratios are selected as the updating parameters because the identified damping 

ratios often have relatively large uncertainties which will affect the structural response 

prediction significantly. The initial damping ratios for the first three modes of the 



 

174 

physical tower were identified through the frequency response function (FRF). 

Therefore, the objective function for the second step updating is the minimization of 

the difference of the amplitudes of the structural responses 
17
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updating the damping ratios, where a
iy  and m

iy  are the analytical and measured 

responses from the thi  sensor. Since the third measured natural frequency is 22.344 

Hz, the measured responses are passed through a low-pass filter of 0 - 25 Hz for a 

better comparison. Accordingly, the first three modes of vibration of the beam FE 

model with the first step updating are used to compute the accelerations and strain 

responses through the modal superposition method as introduced in Chapter 3. The 

first three damping ratios of the tower before and after updating are listed in the eighth 

row of Table 8.1. To show the accuracy of the second step updating, the responses of 

two accelerometers, A5 in the x-direction and A6 in the y-direction installed at Joint 

9, and a strain gauge S2 installed in an element close to Joint 9 are selected for 

comparison with the computed responses. The locations of the above three sensors are 

shown in Fig. 8.8. The measured responses and computed response from the updated 

model in their first five seconds are compared with each other and shown in Fig. 8.9. 

It can be seen that both the computed acceleration and strain responses can match well 

with their counterparts. Similar observations can be found for other responses.  

For the multi-scale FE model used in Chapter 7, a local detailed FE model using 

solid elements and a global FE model using beam elements are integrated. The updated 

parameters listed in Table 8.1 from the beam FE model can be directly applied to the 

modified multi-scale FE model. Moreover, the multi-scale FE model of the 

transmission tower without installing an exciter has been updated by Wang et al. (2016) 

by using a Kriging meta-method. A total of 13 updating parameters were selected 

through a parameter sensitivity analysis, in which 11 updated parameters refer to the 

global beam model and 2 updated parameters refer to the local detailed model. The 

updated two parameters are directly used in this study. The modal analysis is then 
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carried out on the modified multi-scale FE model with the updated global parameters 

and local parameters. The first six natural frequencies computed are listed in the 

seventh column of Table 8.2. As indicated in Table 8.2, the modal frequencies of the 

multi-scale FE model have minor increment after embedding the local detail joint 

model. The first six computed natural frequencies of the multi-scale model can also 

match with the measured natural frequencies with the maximum relative error of 1.948% 

in the fifth modes. Since only the first three modes will be considered in the subsequent 

damage detection, the modified multi-scale FE model is accurate enough as far as the 

first three natural frequencies concerned. Thus, the modified multi-scale FE model 

does not need further model updating in this study. 

As discussed in Chapter 7, the updated beam FE model of the transmission tower 

will be used for the first and second stage damage detection, while the modified multi-

scale FE model will be used for the third-stage damage detection. 

8.4 Experimental Results and Comparison  

The damage (loosened bolts) occurring at a joint is common local damage for a large 

transmission tower, and the identification of such local damage of loosened bolts at 

joints of the transmission tower is a very challenging issue. In this experimental 

investigation, the damage scenario used in Chapter 7, with a set of loosened bolts of 

the member E7at a critical Joint 9, is considered so that the experimental results can 

be compared with the computed results directly. To this point, the set of bolts denoted 

as B3 in Chapter 7 is totally removed to simulate the bolt loosening damage (see Fig. 

8.10 (b)). The damage detection of loosened bolts of the transmission tower under the 

preset damage scenario is then conducted by using the structural responses recorded 

by the sensors at their optimal sensor placements. In the experimental investigation, 

the first excitation with a bandwidth from 5 to 55 Hz is used for natural frequency 

identification before and after damage, and the second excitation with a bandwidth 

from 10 to 35Hz is used for the proposed response covariance-based multi-stage 

damage detection.  
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The proposed damage detection method is based on the fact that any change in 

the physical property of a structure will alter its natural frequencies and dynamic 

responses. The variance of the first six frequencies before and after the bolt loosening 

at Joint 9 are first identified and listed in Table 8.3. Noted that the first three 

frequencies have a relatively large change due to the damage. However, as indicated 

in Table 8.2 and Table 8.3, the relative change of the natural frequencies of the 4th and 

5th modes are 0.322% and 0.950% only. These small changes are larger than the 

variances of the frequencies 0.095% and 0.576% induced by damage in the 4th and 5th 

modes. Thus, to reduce the effect of modeling uncertainties, only the information from 

the first three modes (16.283, 16.935, and 22.339 Hz) are considered in the 

experimental damage detection. The input force was measured and the time history of 

the force from the 6.5th to 16.5th seconds, as plotted in Fig. 8.7 (b), is used for the 

following multi-stage damage detection. The acceleration and strain responses from 

the 6.5th to 16.5th seconds are according recorded and used for the subsequent damage 

detection. By taking the sensors A5, A6 and S2 as example, the measured responses 

of the tower with loosened bolts and the computed responses from the updated beam 

model without damage are compared in Fig. 8.11. It is clearly observed that there are 

the discrepancies in the measured and computed responses, which indicates that the 

bolt loosening really affects the dynamic responses. Therefore, damage detection of 

this local damage is possible by using the proposed method. The three-stage damage 

detection method proposed in Chapter 7 is now applied to the physical tower model 

and the identified results for each damage detection stage will be described in the 

following and compared with those from the numerical studies. 

8.4.1 The First Stage Damage Detection 

In the first stage, twelve suspicious rigid joints as used in Chapter 7 (see Fig. 7.6) are 

selected and the locations of the damaged joints will be identified by using the response 

covariance-based multi-sensing damage detection method introduced in the previous 

chapters. In this stage, the traditional beam model of the tower is used, in which a joint 
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is composed by one node with several beam elements connected. This joint can be seen 

as a substructure or a super-element (see Fig. 8.12 (a)) in the beam model of the tower. 

The loosened bolts of the members connected to the joint will certainly affect the total 

stiffness of the joint contributed by all the members connected to the joint. This effect 

is actually accounted by introducing an equivalent damage parameter for a suspicious 

joint in the first stage damage detection based on the traditional beam model. That is, 

an equivalent damage parameter is assigned to the stiffness matrix of each suspicious 

super-element (joint). Therefore, damage detection is now started from searching 

damaged joints. As the beam FE model includes 12 super-elements (joints), there are 

12 equivalent damage parameters to be identified. The equivalent damage parameters 

supα  identified in the first stage are plotted in Fig. 8.13 (a). The damaged Joint 9 is 

satisfactorily identified with 32.97% stiffness reduction, because the equivalent 

stiffness reductions at other joints are incomparable with that at Joint 9. As compared 

with Fig. 8.13 (a), the identified damage severity 32.97% in the experiment is slightly 

smaller than that of 37.76% stiffness reduction from the numerical study. When 

comparing the false alarms in the experiment and numerical studies, there are three 

large false alarms are observed at Joint 7, Joint 8 and Joint 11 due to the effect of the 

neighboring damaged joint 9 as well as the uncertainties from the measurement and 

the FE model. 

8.4.2 The Second Stage Damage Detection 

The damaged region is located at Joint 9 after the first stage damage detection, while 

the other joints are excluded from further investigation in this stage. Because a joint 

often consists of a number of angle members and these angle members may be 

connected in series or parallel, the second stage is therefore to find out which members 

at the damaged joint are suspicious to loosened bolts. This stage detection is conducted 

also using the traditional beam model (see Fig. 8.12 (b)) of the tower. In Stage 2, the 

super-element of Joint 9 is restored to nine ungrouped beam elements. As this joint 

consists of 9 beam elements, there are nine damage parameters to be identified. For 
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the easy recognition in the subsequent detection, each beam is assigned a unique name 

as E1, E2, …, E9 (see Fig. 7.11 (b)). The damage parameters eleα  identified in the 

second stage are depicted in Fig. 8.13 (b). Both the damage location and the severity 

are successfully identified in the beam E7 with 91.85% stiffness reduction, which is 

similar to the numerical identification result with 89.78% stiffness reduction. The 

damage location in the beam E6 is also identified but only 24.85% stiffness reduction 

is identified, which is smaller than the numerical identification result with 62.52% 

stiffness reduction. As shown in Fig. 7.11(c) and Fig. 8.10, the beam E6 is a 

subordinate component connected to the beam E7, and the stiffness reduction of the 

tower structure due to the damage of the beam E6 is actually much smaller than that 

due to the beam E7, based on the analysis of the natural frequency of the FE model. 

Accordingly, the measured responses are less sensitive to the beam E6. Furthermore, 

the uncertainties in the measurement and the FE model are inevitable, which is a 

possible reason for the poorer identification result of the beam E6 found in the 

experimental investigation. 

8.4.3 The Third Stage Damage Detection 

The bolted joint (Joint 9) has a complex geometric composition, constructed of angle 

members, gusset plates, and bolts. The accurate modelling of the bolt joints using solid 

elements (see Fig. 8.12 (c)) is necessary but the traditional FE model established by 

beam elements (Fig. 8.12 (b)) could not accommodate. In Stage 3, the local detailed 

FE model of Joint 9 using solid elements and the global FE model using beam elements 

are integrated. As the detailed model of Joint 9 includes 12 sets of bolts, there should 

be 12 damage parameters for identification, in which each set of bolts is assigned a 

unique name as B1, B2, …, B12 (see Fig. 7.11 (c)). As demonstrated by numerical 

study in Chapter 7, solving damage parameters bolα  is much more complicated than 

that in the first and second stages. It needs to take into consideration the damage 

identification results of Stage 2, in which the beams E7 and E6 are identified as two 
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suspicious elements. According to the composition of Joint 9 in the detailed model, as 

shown in Fig. 7.11 (c) and Fig. 8.10, the set of bolts B3 is the only damage source for 

the beam E7 but it is able to influence the beam E6 which is directly concerted to the 

beam E7. If the bolt set B3 is damaged, the beam E7 and the beam E6 will be separated 

from Joint 9 no matter whether the bolt sets B1 and/or B2 are loosened or not. Similar 

with the numerical study in Chapter 7, B1 and B2 are assumed unloosened to avoid 

the multiple-solution problem in damage detection and accordingly the reductions of 

stiffness of B1 and B2 are set as zeros. The damage severities (stiffness reductions) of 

all the other beams identified in the second-stage are thus assigned to all the bolt sets 

attached to Joint 9 as their initial values. Specifically, the stiffness reductions for the 

beam elements, namely 0.9185 (E7), 0.1470 (E8), 0.1256 (E9), 0.1063(E1), 

0.1063(E1), 0.1329 (E5), 0.1329(E5), 0.0470 (E2), 0.1705 (E3), and 0.0845 (E4), are 

used as the initial values of damage parameters bol 0( )α  for B3, B4, B5, B6, B7, B8, 

B9, B10, B11, and B12 respectively. The initial values of the CBMS damage index 

0 bol 0 ele
pq pq( ) [( ) ]c c  V V α α  in this stage are then computed after the initial values 

of the stiffness reductions of all the bolt sets are assigned. The damage parameters 

bolα  are finally identified and depicted in Fig. 8.13 (c). The damage severity of B3 

is accurately identified, which is increased from the initial 91.85% stiffness reduction 

to the 96.51% stiffness reduction. When compared with the numerical identification, 

the identified damage severity of B3 from the experimental study is slightly smaller 

than that from the numerical study, and the false alarms are relatively larger from the 

experimental study due to some uncertainties in the measurement and the FE model. 

After three-stage damage detection, the loosened bolt set B3 is successfully identified, 

which is close to the preset damage of totally removing the bolt set B3 with 100% 

stiffness reduction. 

After successful damage detection in the above three stages, the multi-scale FE 

model is updated to the damaged state to represent the damaged physical tower. The 

computed responses of the tower after damage are then compared with the directly 
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measured responses. By taking the sensors A5, A6 and S2 as example again, the 

measured responses of the tower with loosened bolts and the computed responses from 

the damaged multi-scale FE model are compared in Fig. 8.14. It is clearly observed 

that the measured and computed responses are matched with each other much better 

than the comparative responses shown in Fig. 8.11 for the tower before damage. This 

result indicates that the damage detection really converges to the correct damage state 

with the preset loosened bolts in the physical tower. As indicated in Fig. 8.14, there 

are slight discrepancies between the computed and measured responses, which may 

result from for the falsely identified stiffness reduction in the undamaged bolt sets (See 

Fig. 8.13). Other possible reasons for the discrepancies may come from the ideal 

coupling of the bolt connection without considering their nonlinearity and from some 

modeling errors of the MPC connection for the global and local models used in the 

multi-scale FE model. 

8.5 Summary  

This chapter has experimentally validated the response covariance-based multi-stage 

damage detection strategy incorporating with the multi-stage damage models and the 

multi-scale FE model for the damage detection of loosened bolts in a large 

transmission tower testbed. The uncertainties in input, modelling and measurement are 

considered in the experimental tests. The model updating is first conducted, and the 

damage detection is then performed in three stages step by step. The experimental 

results of damage detection showed that accurate damage localization and satisfactory 

damage quantification could be yielded by using the proposed damage detection 

method and the optimal sensor configuration determined by the multi-objective multi-

type sensor optimal placement method proposed in Chapter 5. Furthermore, the 

numerical and experimental damage detection results are compared with each other. 

The comparison revealed that similar identification result is achieved for successful 

damage detection. It can be concluded that the proposed damage detection method and 

the associated OSP method are feasible and effective for damage detection of a large 
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transmission tower. Some conclusions and recommendations regarding the whole 

thesis will be given in the next chapter. 
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Table 8.1 Initial and updated parameters of the tower structure 

Group of updating 

parameters 

Number of 

Parameters 

Initial value Updated value 

Lump mass-1(g) 2 16.736 7.763 

Lump mass-2 (g) 4 49.478 76.478 

Lump mass-3 (g) 8 8.895 13.950 

Lump mass-4 (g) 16 0.858 6.858 

Lump mass-5 (g) 2 62.250 52.252 

Lateral stiffness (N/mm) 1 3 3.780 

Damping ratio (%) 3 0.58, 0.18, 0.21 0.47, 0.10, 0.11 

 

 

Table 8.2 Comparison of measured and analytical modal frequencies 

Mode 

No. 

Measured 

(Hz) 

Beam model 

(Before updating) 

Beam model 

(After updating)  

Multi-scale model 

Analytical 

(Hz) 

Error 

(%) 

Analytical 

(Hz) 

Error 

(%) 

Analytical 

(Hz) 

Error 

(%) 

1 16.281 16.220 -0.375 16.283 0.012 16.283 0.012 

2 16.938 16.804 -0.791 16.935 -0.018 16.940 0.012 

3 22.344 23.251 4.059 22.339 -0.022 22.390 0.206 

4 32.656 33.169 1.571 32.761 0.322 33.016 1.102 

5 43.375 44.876 3.461 43.787 0.950 44.220 1.948 

6 43.875 44.921 2.384 44.003 0.292 44.430 1.265 
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Table 8.3 Comparison of the change of modal frequencies before and after damage 

Mode No. Modal frequencies Variance of 

frequency (%) Before damage After damage 

1 16.281 16.125 0.958 

2 16.938 16.406 3.141 

3 22.344 22.000 1.540 

4 32.656 32.625 0.095 

5 43.375 43.125 0.576 

6 43.875 43.734 0.321 
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Fig. 8.1 The experimental set-up and instrumentation for transmission tower model: 

(a) the whole view of the set-up of the physical model; (b) the exciter JZK-5; (c) the 

connection between the tower and the exciter; (d) the soft spring; (e) the force 

transducers B & K 8201; (f) the accelerometer KD 1010; (g) the strain gauge BFH120-

3AA (23); (h) the signal generator B & K 3160-B-022; (i) the power amplifier YE5871; 

(j) the charge amplifiers KD5008C; (k) a bolted joint support; (l) the bridge box 

KYOWA DB-120T-8; and (m) the data logger Kyowa EXD-100A. 
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Fig. 8.2 The schematic diagram of the hanging exciter and the steel frame: (a) the side 

view of the exciter system and the transmission tower; (b) the top view of the 

suspended steel frame for installing the exciter and the transmission tower; and (c) the 

detailed drawing of the suspended steel frame.  

 

 

Fig. 8.3 The modified finite element models of the transmission tower considering the 

additionally lateral stiffness: (a) the modified beam FE model of the tower; and (b) the 

modified multi-scale FE model of the tower. 
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Fig. 8.4 Measurement system for the damage detection of the transmission tower 

 

 

Fig. 8.5 The locations of sensors and the selected updating parameters: (a) the optimal 

sensor placement; and (b) the updating parameters for the modified beam FE model of 

the transmission tower. 
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Fig. 8.6 The first three mode shapes of the transmission tower: (a) the first mode shape 

(view in x-direction); (b) the second mode shape (view in the y-direction); and (c) the 

third mode shape (view in z-direction). 
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(a)  

(b)  

Fig. 8.7 The time histories and power spectrums of the measured longitudinal forces 

(10 - 35 Hz) in the y-direction: (a) the measured force before damage for the second 

step model updating; and (b) the measured force after damage for damage detection.  
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Fig. 8.8 The locations of two accelerometers (A5 and A6) installed at Joint 9 and the 

strain gauge (S2) installed on an angle member close to Joint 9. 
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(a)  

(b)  

(c)  

Fig. 8.9 Comparison of measured and computed responses of the tower after model 

updating: (a) the acceleration response (A5) at Joint 9 in x-direction; (b) the 

acceleration response (A6) at Joint 9 in y-direction; and (c) the strain response (S2) in 

an element closed to the Joint 9. 
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Fig. 8.10 The partial view for Joint 9 in the transmission tower before and after damage: 

(a) before the damage of loosened bolts; and (b) after the damage of loosened bolts. 
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(a)  

 
(b)  

(c)  

Fig. 8.11 Comparison of the measured responses with damage with the computed 

responses without damage from the intact beam FE model: (a) the acceleration 

response (A5) at Joint9 in x-direction; (b) the acceleration response (A6) at Joint 9 in 

y-direction; and (c) the strain response (S2) in an element closed to the Joint 9. 
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Fig. 8.12 Comparison of the FE model and the physical model of Joint 9 in three stages: 

(a) the super-element based model vs the physical model in stage one; (b) the rigid 

joint model consisted of several beam elements vs the physical model in stage two; 

and (c) the detailed joint model vs the physical model in stage three. 
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(a)  

(b)  

(c)  

Fig. 8.13 Comparison of damage detection results between numerical and 

experimental studies: (a) using the first-stage damage model; (b) using the second-

stage damage model; and (c) using the third-stage damage model.  
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(a)  

(b)  

(c)  

Fig. 8.14 Comparison of the measured responses of the tower with loosened bolts with 

the computed responses after damage identification based on the multi-scale FE model: 

(a) the acceleration response (A5) at Joint 9 in x-direction; (b) the acceleration 

response (A6) at Joint 9 in y-direction; and (c) the strain response (S2) in an element 

closed to the Joint 9.  
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions 

This thesis focuses on vibration-based damage detection of civil structures with the 

new developments of a sensitive damage detection index, multi-objective optimal 

sensor placement, optimal multi-type sensor placement, and multi-stage damage 

detection. The originality of this study is attributed to: (1) the development of a 

response covariance-based multi-sensing damage detection index; (2) the 

advancement of two response covariance-based objective functions for optimal sensor 

placement (OSP); (3) the development of a structural damage detection-oriented multi-

type sensor placement method with multi-objective optimization; (4) the extension of 

the response covariance-based damage detection method to the multi-stage damage 

detection method for large structures; and (5) the conduction of the experiments on a 

nine-bay three-dimensional frame structure and a transmission tower to validate the 

proposed methods. The major contributions and conclusions of this thesis could be 

summarized as follows: 

 

1. A response covariance-based multi-sensing (CBMS) damage index in the time-

domain and the associated sensitivity-based damage detection method has been 

proposed in this thesis. Heterogeneous data from multi-type sensors can be normalized 

and integrated into a united damage index such that the proposed damage detection 

method can effectively use multi-sensing information including both global and local 

responses (acceleration, displacement, and strain) for local damage detection. The 

feasibility of the new damage index has been confirmed through the numerical study 

by using an overhanging beam with multiple damaged elements. It can come to the 

conclusions that the CBMS vector is insensitive to the measurement noise but sensitive 
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to damage and that the dual-type sensor configuration (accelerometer and strain gauge) 

is better for damage detection with higher accuracy. Both the damage locations and 

severities are perfectly identified even with 10% measurement noise considered. 

 

2. This thesis proposed a response covariance-based optimal sensor placement method 

for single type sensor optimal placement. First, the relationship between the covariance 

of acceleration responses and the covariance of unit impulse responses of a structure 

subjected to multiple white noise excitations has been derived. This relationship 

indicates that the optimal sensor location is related to the location of excitation but not 

to the amplitude of excitation. Second, the optimal sensor placement objectives in 

terms of the response covariance sensitivity and the response independence have been 

derived, respectively. The two OSP objectives aim to enhance the damage sensitivity 

to the sensor locations and reduce redundant sensors so that the limited number of 

sensors can be used for better damage detection. However, the two objective functions 

proposed in this thesis for OSP are conflicting, observed in the numerical studies by 

using a five-bays three-dimensional frame structure. Finally, an integrated single 

objective function is formed by using a weighting factor to combine the two objective 

functions. The numerical studies show that the best weighting factor in the OSP for the 

best damage detection of the frame structure is 0.3. The numerical studies also 

demonstrate that the approach combining the response covariance-based damage 

detection method and the optimal sensor placement is feasible and effective for 

damage detection. Comparing with an information-entropy-based OSP method, the 

proposed response covariance-based OSP method could lead to more accurate damage 

detection. 

 

3. A structural damage detection-oriented multi-type sensor placement method with 

multi-objective optimization is further developed. The multi-objective optimization 

approach considers to directly use the two covariance-related objective functions, and 

the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution 
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for the optimal multi-type sensor placement to achieve the best structural damage 

detection. This method is advanced for simultaneously placing multi-type sensors in 

an optimal manner, which effectively balances the conflict of multi-objectives due to 

the limited number of sensors and the complex nature of the problem. Besides, the 

selection of a most desirable OSP from the Pareto solutions via the utility function 

method or the knee-point-based method is proposed for practical application. The 

proposed method is numerically validated by using a nine-bay three-dimensional 

frame structure model. Satisfactory damage detection results are obtained by using 

optimal sensor configurations for both the unconstrained and constrained cases on the 

number of each type of sensor. It is noted that the configurations with the specified 

number for each type of sensors yield relatively more accurate results in the damage 

detection. The proposed method is further compared with a Fisher-information matrix 

based OSP method. The comparison reveals that the proposed OSP method with multi-

type sensors could lead to more accurate damage detection than a typical Fisher 

information matrix based OSP method with single- type of sensor. 

 

4. To experimentally validate the proposed CBMS damage detection index and the 

damage detection-oriented multi-objective multi-type sensor optimal sensor placement 

method. A nine-bay three-dimensional frame structure was built in the laboratory and 

different damage scenarios were then generated on the frame structure. These damage 

scenarios covered single and multiple damage cases occurring at different locations 

with different damage severities. A series of experiments, including the optimal and 

non-optimal sensor placements, were finally carried out, and the measurement data 

(acceleration, displacement, and strain) were used together with the FE model to 

identify damage quantitatively. The identification results show that the optimal multi-

type sensor placement determined by the proposed method could provide accurate 

damage localization and satisfactory damage quantitation and that the optimal sensor 

placement yielded better damage identification than the non-optimal sensor placement. 
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5. When the proposed covariance-based multi-type sensor placement method and the 

associated damage detection methods are applied to a large and complex civil structure, 

the obstacles exhibit. The global stiffness matrix, modal parameters, and dynamic 

responses are less sensitive to local damage of a large structure compared with a small 

structure. The one-stage damage detection is inaccurate and sometimes impossible due 

to too many unknown damage parameters and seriously ill-conditioned inversed 

problem for a large structure. Therefore, a covariance-based multi-stage damage 

detection strategy incorporating with a multi-scale finite element (FE) model is 

proposed for the damage detection of a large structure. The numerical study has shown 

that the proposed multi-stage damage detection for the HVPT tower testbed can 

achieve identification results with high accuracy. Noted that the proposed method is 

advantageous to divide difficulties of large structure damage detection into multiple 

stages. To accurately evaluate the effect of possible damage in critical components in 

terms of bolts, the usage of a detailed joint model is a meaningful exploration to 

provide sufficient information for maintenance of high-voltage power transmission 

towers. 

 

6. To examine the performance of the proposed multi-stage damage detection method, 

a 5.5 m height power transmission tower testbed is established in the laboratory and a 

damage scenario with a set of bolts loosening in a critical joint is designed for damage 

detection study. The experimental results showed that accurate damage localization 

and satisfactory damage quantification could be yielded by using multi-stage damage 

detection method with the optimal sensor configuration. It can be concluded that the 

proposed multi-stage approach is feasible and effective for damage detection of a large 

structure. 
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9.2 Recommendations for Future Studies 

Although progress has been made in this thesis in the development of a response 

covariance-based damage identification that is more applicable to civil structures, 

several important issues require further investigations. 

 

1.  The proposed damage detection method requires the input forces to be measured. 

In practice, some equipment (e.g. a shaker) can be used to generate appropriate input 

forces on real structures and these forces are adjustable and measurable. However, the 

artificial force generated by shaker sometimes may consume a large amount of power 

and energy. Natural environmental excitations may be preferable. To replace the 

requirement of input excitation measurement, the estimation or reconstruction of the 

unknown input excitations (such as, environmental excitations) is an important issue 

that deserves much more research efforts. 

 

2. Theoretically, different types of excitation (random, harmonic, impulsive or others) 

can be used for the proposed response covariance-based damage detection method and 

the optimal sensor placement method. This thesis only investigated the most common 

excitation in terms of the narrow-banded excitation for the proposed methods. Since 

civil structures may service in more complicate loading conditions, it is worth to 

further study the effectiveness of the proposed methods under different excitations. 

 

3. For the covariance-based multi-objective multi-type sensor placement method, the 

minimum number of the sensors are determined by numerical studies based on the 

principle of using the minimum number of sensors but guaranteeing enough accuracy 

of structural damage detection. This may require some professional knowledge to 

estimate the total number of sensors. Therefore, it is worth to further developing an 

effective objective function to select the total number of the sensor during the OSP 

procedure. Other objective functions, for instance taking the cost of each type sensor 
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into consideration, could also be useful in practical applications. 

 

4. The proposed damage detection method relies on the availability of an FE model. 

The FE model is often available for a civil engineering structure even in the design 

stage. For the existing civil engineering structure, the model updating of the FE model 

used in the design stage may be conducted. It is worth pointing out that the proposed 

damage detection method often requires the FE model with relatively high accuracy, 

so model updating is a very important procedure to ensure the success of damage 

detection. Therefore, the uncertainty from the FE model that involved in the proposed 

method is also worth analyzing and quantifying. 

 

5. In experimental damage detection studies, the structural damage can be modeled 

as a degradation of the stiffness the damaged region, such as grinding away a layer of 

material from the surface of the damaged beam for the three-dimensional frame 

structure and totally loosening one set of bolts in one connected beam for the damaged 

joint in the HVPT tower testbed in laboratory test. The main reason is that the severity 

of above-mentioned damage can be more easily controlled and quantified accurately. 

However, more elaborate damage models for some specific structural damages, such 

as bolt loosening or crack or corrosion, are demanded to capture more detailed damage 

characteristics. 

 

6. Considering extensive computation required in the damage detection of the full 

HVPT tower, only the damage-prone joints in 1/4 tower are selected for the 

demonstration of the proposed multi-stage damage detection. The proposed response 

covariance-based damage detection method, applied to the whole structure, still needs 

further studies. 
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7. The structure is supposed to behave linearly under small elastic deformation 

before and after damage. For structural damage with large deformation, some 

structural nonlinearity may occur, which is not considered in this thesis. 

 

8. Damage prognosis in terms of useful life estimation has not been touched in this 

thesis, which can provide some advising information for civil structure maintenance. 

Integrating the multi-scale FE model and response covariance-based damage detection 

results, structure operational lifetime prediction is a meaningful research topic. 
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APPENDIX A 

DAMAGE MODEL OF THE 2D BEAM ELEMENT 

For a beam element of rectangular section with 6 DOFs, the consistent element 

stiffness matrix eK  and element mass matrix eM  in a local coordinate are generally 

given as follows (Logan 2002): 
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where   is the mass density; A  is the area of beam cross-section; l  is the element 

length; h   is the element thickness; b   is the element width; E   is the elastic 

modulus; and I  is the second moment of inertia of cross-section. 

It is assumed that the thi  element has sustained damage as sketched in Fig.A1. 

The cross-sectional areas of the thi  element in the intact and damaged states are iA  

and d
iA  respectively, and they can be calculated as: 

 
( 2 )

i
d
i

A b h

A b d h

 


  
  (A3) 

where d  is one side width reduction symmetrically arranged with respect to the beam 

axis.  

The damaged global stiffness dK   and mass matrices dM   can then be 

calculated using Eq. (A4) in terms of the stiffness iK  and mass iM  matrices in its 

intact state together with their fractional changes 1,i  and 2,i , respectively. In 

this study, because the width b  is reduced symmetrically in the damaged element, the 

fractional change of the thi  element’s stiffness and mass matrix is of the same value 

and it can be calculated as: 
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The proposed damage model is just a subset of all available damage models although 

it is not the most advanced model of damage (Cattarius and Inman 1997). However, 

this model does provide a reasonable and convenient way to simplify the problem 

concerned. That is, the computed fractional change is for both the stiffness and mass 

matrices of the thi  element. 

 

 

Fig. A.1 Beam with reduction in cross-sectional area 
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APPENDIX B 

EQUIVALENT STIFFNESS REDUCTION 

For a circle tube beam element, the elastic modulus, length, outer diameter, inner 

diameter, sectional area and moment of inertia of the undamaged beam are E , l , 0D , 

0d , 0A  and 0I , respectively. The damage is simulated by grinding away a layer of 

material from the surface of the damaged beam in the middle segment. The mock-up 

damaged beam element (see Fig. 6.5) is divided into three segments with the lengths 

1l   , 2l   and 3l   from the left side to the right side. The 1A  , 2A   and 3A   are the 

corresponding sectional areas of the three segments of the beam. The 1I , 2I  and 3I  

are the corresponding moment of inertias of the three segments of the beam. For the 

damaged beam element, the length, outer diameter, sectional area and moment inertia 

of the weakened part are 2l , 2D , 2A  and 2I , meanwhile the geometric parameters 

of the undamaged parts are 2
1 3 2

l ll l 
  , 1 3 0A A A  , and 1 3 0I I I  . 

To estimate the equivalent reduction of tensile stiffness and bending stiffness of 

a damaged beam element, the damaged beam element is assumed with a uniform 

equivalent sectional area dA  and equivalent moment inertia dI . This assumption is 

based on the fact that the same tensile force F  and bending moment M  acting on 

a beam can yield, respectively, the equal increment of a tensile length l   and a 

bending angle   as follows: 
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  (B1) 

where il , iA  and iI  are, respectively, the length, sectional area and moment inertia 

of thi  segment of the damaged beam. Then, the dA  and dI  can be computed from 
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Eq. (B1) as 
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Therefore, the fractional change of tensile stiffness t  and the bending stiffness 

b  can be approximately computed as 
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with 
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It is noted from Eqs. (B3) and (B4) that the equivalent stiffness reduction in terms of 

fractional change of tensile stiffness t   and the bending stiffness b   can be 

obtained when we provide the geometric dimension changes for the grinding length 

2l  and the outer diameter 2D  of the weakened segment of the damaged beam. 
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