

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

DISTRIBUTED TRUST EVALUATION
PROTOCOL AND SECURE DATA QUERY

SCHEMES FOR INTERCLOUD

DOU YI

PhD

The Hong Kong Polytechnic University

2018

The Hong Kong Polytechnic University

Department of Computing

Distributed Trust Evaluation Protocol and
Secure Data Query Schemes for Intercloud

Dou Yi

A thesis
submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

June 2018

ii

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published or

written, nor material that has been accepted for the award of any other degree

or diploma, except where due acknowledgement has been made in the text.

(Signed)

Dou Yi (Name of student)

iii

Abstract

The aim of Intercloud is to facilitate the sharing of data and cloud resources

so that more co-operative cloud services can be provided. In this thesis, we

investigate two important security issues for supporting Intercloud, namely

distributed trust evaluation and secure data query. In the first part of the thesis,

we present a distributed trust evaluation protocol with privacy protection for

Intercloud. First, feedback privacy is protected by homomorphic encryption

with verifiable secret sharing. Second, to cater for the dynamic nature of

Intercloud, trust evaluation can be conducted in a distributed manner and

is functional even when some of the parties are offline. Third, to facilitate

customized trust evaluation, an innovative mechanism is used to store feedback,

such that it can be processed flexibly while protecting feedback privacy. The

protocol has been proved based on a formal security model. Simulations

have been performed to demonstrate the effectiveness of the protocol. In the

second part of the thesis, we design and evaluate a privacy-preserving range

query scheme for cloud storage, which can protect the privacy of record and

range queries. During range comparison, our scheme neither leaks the order

relationship between the upper/lower bound of a range query and the encrypted

index, nor produces false positives in the query results. The experimental

result indicates that our scheme can achieve higher security while maintaining

good efficiency. In the third part of the thesis, we investigate another secure

data query issue, which is about access pattern leakage attack on searchable

encryption under an Intercloud environment. Basically, both records and

queries are distributed among servers of different cloud service providers, so

v

that each cloud server can only have partial information about queries and their

results. To minimize the query response time while protecting information

disclosure, we formulate the record and query assignment as an optimization

problem, and solve the problem (i.e., finding the best possible solution) by the

minimum cut algorithm. Numerical results show that certain access pattern

information can be saved by our assignment strategy while maintaining good

query response time.

vi

Acknowledgements

First and foremost, I would like to express my heartfelt appreciation and

acknowledgement to my supervisor, Dr. Henry C. B. Chan, for offering me this

great opportunity of a research study in The Hong Kong Polytechnic University.

His critical assessment and appreciation of my work make me on the right

track to finish my PhD study. His patience and tremendous inspirations give

me confidence in overcoming difficulties of research problems. Next, I would

like to convey my sincere gratitude to Dr. Man Ho Allen Au, for his valuable

advice on security analysis and proof techniques.

I would like to give my thanks to my previous and current office mates and

group mates. Every discussion with them can directly or indirectly help me

to finish my PhD study no matter the research problem or coursework. I am

also grateful to my friends in Hong Kong for their emotional support, sharing,

encouragement, and company.

I would like to dedicate this thesis to all people who have guided, instructed,

or helped me with this research study. This study cannot be accomplished

without all of your kind support. The most importantly, I would like to express

my special thank to my parents for their encouragements and love. The thesis

is dedicated to them all.

vii

Table of Contents

Abstract v

Acknowledgements vii

List of Figures xiv

List of Tables xv

List of Acronyms xvii

List of Major Symbols xix

1 Introduction 1

1.1 Research Objectives . 4

1.2 Original Contributions . 5

1.3 Thesis Structure . 6

2 Literature Review 9

2.1 Overview of Intercloud . 9

2.1.1 Motivations of Intercloud 11

2.1.2 Architecture of Intercloud 13

2.2 Related Work on Trust Evaluation 20

2.2.1 Trust Evaluation for Cloud Computing 20

2.2.2 Intercloud Trust Model 22

2.2.3 Trust Management with Privacy Protection 24

2.3 Secure Range Query over Encrypted Data 26

2.3.1 Order Preserving Encryption 27

2.3.2 Order Revealing Encryption 28

ix

2.3.3 Comparable Encryption 29

2.3.4 Bloom Filter-based Range Query Scheme 30

2.3.5 Range Searchable Symmetric Encryption 31

2.4 Access Pattern Leakage in Searchable Symmetric Encryption . 33

2.4.1 Access Pattern Leakage Attacks 34

2.4.2 Countermeasures Against Attacks 35

2.4.3 Security Strategies . 37

3 A Distributed Trust Evaluation Protocol with Privacy Protec-

tion for Intercloud 39

3.1 Introduction . 39

3.2 Models and Overview . 41

3.2.1 System Model . 41

3.2.2 Main Protocol Phases 43

3.2.3 Adversary Model and Assumptions 46

3.3 Computation of Feedback Results 48

3.3.1 Processing of Feedbacks in Plaintext 48

3.3.2 Homomophic Encryption of Feedback 51

3.4 Trust Evaluation Protocol . 53

3.4.1 Rater Registration Phase 53

3.4.2 Feedback Submission Phase 55

3.4.3 Feedback Reconstruction Phase 58

3.5 Security Evaluation . 61

3.5.1 Security Model . 62

3.5.2 Security Proof . 64

3.6 Simulation Settings . 68

3.7 Simulation Results . 70

3.7.1 Protection Against Collusion Attack 71

3.7.2 Feedback Recovery Rate of Our Protocol 73

3.7.3 Feedback Recovery Efficiency of Our Protocol 74

3.7.4 Trust Result Accuracy Comparison 76

3.8 Conclusion . 77

x

4 Order-Hiding Range Query over Encrypted Data without Search

Pattern Leakage 79

4.1 Introduction . 79

4.2 General Construction and Security Definitions 81

4.2.1 System Model . 82

4.2.2 Notation and Definition 83

4.2.3 Security Goals . 85

4.2.4 Security Model . 86

4.3 Building Block . 90

4.4 Our Privacy Preserving Range Query Scheme 93

4.4.1 Scheme Overview . 94

4.4.2 Scheme Details . 94

4.4.3 Index Generation Optimization 100

4.5 Implementation and Evaluation 101

4.5.1 Experimental Settings 102

4.5.2 Experimental Result 104

4.6 Security Analysis . 109

4.6.1 Ciphertext Indistinguishability Proof 110

4.6.2 Trapdoor Indistinguishability Proof 114

4.7 Conclusion . 119

5 Access Pattern Hidden Query over Encrypted Data through

Multi-clouds 121

5.1 Introduction . 121

5.2 Secure Assignment Strategy Formulation 124

5.2.1 Record and Query Assignment 126

5.2.2 Information Disclosure 128

5.2.3 Query Response Time 130

5.3 Assignment Optimization . 131

5.3.1 Algorithm Overview 132

5.3.2 Assignment Minimization via Minimum Cut 132

5.4 Performance Evaluation . 134

xi

5.4.1 Experimental Settings 134

5.4.2 Experimental Results 136

5.5 Conclusion . 139

6 Conclusion and Future Work 141

References 145

xii

List of Figures

2.1 Provider-centric Intercloud. 14

2.2 Cloud federation architectures 16

2.3 User-centric Intercloud . 18

2.4 Multi-cloud architectures . 19

3.1 System architecture and protocol overview. 44

3.2 Process of rater verification. 54

3.3 Process of feedback submission. 58

3.4 Process of secret key share collection. 61

3.5 Example of trust graph. 69

3.6 Effect of increasing m/n ratio on the successful collusion attack

probability (SCAP) in trust graphs. 72

3.7 Effect of increasing m/n ratio on the successful collusion attack

probability (SCAP) in random graphs. 72

3.8 Effect of increasing m/n ratio on successful feedback recovery rate

(SFRR) in trust graphs. 74

3.9 Effect of increasing m/n ratio on successful feedback recovery rate

(SFRR) in random graphs. 74

3.10 Effect of increasing m/n ratio on the average number of iterations

required to obtain the secret key shares during the query phase

in trust graphs. 75

3.11 Effect of increasing m/n ratio on the average number of iterations

required to obtain the secret key shares during the query phase

in random graphs. 75

3.12 Trust result accuracy comparison of our protocol and ASS-based

scheme. 76

xiii

4.1 Architecture of range query on encrypted data in cloud computing 82

4.2 Example of index generation. 95

4.3 Example of trapdoor generation. 98

4.4 Example of comparison between index and trapdoor 99

4.5 Evaluation with different parameter settings 105

4.6 Evaluation of the index building time 106

4.7 Evaluation of the index size . 106

4.8 Evaluation of the search time 108

5.1 Assigning records and queries among multiple clouds. 123

5.2 Search for optimal assignment of elements to a pair of cloud

servers via minimum cut. 133

5.3 Benefits of our assignment strategy on information disclosure and

query response time. 136

5.4 Influence of the number of queries on the benefits of our assignment137

5.5 Evaluation of convergence speed and influence of optimization goals138

xiv

List of Tables

2.1 Comparison of trust-related protocols 25

2.2 Comparison of privacy-preserving range query schemes 32

3.1 Notations used in the trust evaluation protocol 53

3.2 Feedback submission and reconstruction 59

3.3 Characteristics of trust graphs 69

4.1 Experimental settings for evaluations 103

5.1 Parameter settings for performance evaluations 135

xv

List of Acronyms

AES Advanced Encryption Standard

APIs Application Program Interfaces

ASS Additive Secret Sharing

AWS Amazon Web Services

CA Certification Authority

CE Comparable Encryption

CSP Cloud Service Provider

DNS Domain Name System

FBS Distributed Feedback Storage

FHE Fully Homomorphic Encryption

GMP Multiple Precision Arithmetic Library

GRASP Greedy Randomized Adaptive Local Search Procedure

HbbTV Hybrid broadcast broadband TV

IaaS Infrastructure as a Service

IEEE-SA IEEE Standards Association

IND-CKA2 Indistinguishability against Adaptive Chosen Keyword Attacks

NoSQL Not Only SQL

OPE Order Preserving Encryption

ORAM Oblivious Random Access Memory

ORE Order Revealing Encryption

PBtree Privacy Bloom Filter Tree

PKI Public Key Infrastructure

PPE Prefix-Preserving Encryption

xvii

PRF Pseudo Random Function

QoS Quality of Service

RSSE Range Searchable Symmetric Encryption

SaaS Software as a Service

SAML Security Assertion Markup Language

SCAP Successful Collusion Attack Probability

SFRR Successful Feedback Recovery Rate

SLA Service Level Agreement

SPKI Simple Public Key Infrastructure

SSA Secret Sharing Address

SSE Searchable Symmetric Encryption

TDAG Tree-like Directed Acyclic Graph

xviii

List of Major Symbols

A Adversary controls dishonest participants in the security analysis

AR Assignment of records to a set of cloud servers

AQ Assignment of queries to a set of cloud servers

C A challenger responds to the adversary in the security analysis

Csum Encrypted feedback sum of raters in the same set

D A collection of attribute values to be queried

d An attribute value

f Feedback given by rater to a cloud service provider

G A directed graph to describe the connections of Intercloud

H Honest participants in the security analysis

H Hash function

I Encrypted searchable indexes of attribute values

Id Index of attribute value d

k Secret key of a rater for feedback encryption

M Dishonest participants controlled by adversary

m Minimum number of raters for secret key sum reconstruction

n Number of raters in the same set

params System parameter

privK Private key of a rater

pubK Public key of a rater

Ps Prefix string set of any numerical value s

Q A range query requested from users

xix

Q A sequence of queries sent by users

r Rater who gives feedback to a cloud service provider

R Set of raters of a cloud service provider

R A set of database records with several attributes

Rsum Feedback sum of raters in the same set

sk Secret key used to generate the index and trapdoor

S A set of cloud servers

S0
s

0-encoding set of any numerical value s

S1
s

1-encoding set of any numerical value s

fS1
s

New 1-encoding set of any numerical value s

]Sign Blind signature

T Trusted third party in the security analysis

T r Trust evaluation result

TQ Secure trapdoor of a query

u User of a cloud service provider

U Set of users of a cloud service provider

wL Lower bound of a range query

wH Upper bound of a range query

z Total rating choice level of satisfaction with the cloud service

� Security parameter

` Length binary strings for an attribute value

$, � Random nonces

✓ Mean query arrival rate of a cloud server

µ Mean query process rate of a cloud server

xx

1
Introduction

With the rapid advancement of cloud computing, there is an increasing number

of cloud services. Each provides different service qualities, pricing and access

strategies. In the conventional cloud computing environment, once a cloud

user decides to select a cloud service, it is difficult and costly to switch to a

new cloud service provider. To address this vendor lock-in problem and to

support more cooperative cloud services, Intercloud has been proposed [1, 2, 3,

4]. Basically, Intercloud can be implemented from two perspectives. The first

one is provider-centric, where cloud service providers directly interact with

each other for resource/data sharing and cooperative operation. For instance,

cloud service providers can process user requests by leveraging services from

other clouds [5, 6]. The infrastructure of different cloud service providers can

be shared to improve overall resource utilization [7, 8]. The second one is

user-centric, where cloud users deploy their applications among multiple clouds

for various purposes. For instance, applications can be migrated from one cloud

service provider to another cloud service provider [9, 10] and workloads can

be distributed among clouds for disaster recovery or multi-region application

delivery [11, 12]. In this thesis, we investigate two important security issues

for supporting Intercloud, namely distributed trust evaluation and secure data

query.

From the provider-centric perspective, a cloud service provider typically trusts

another cloud service provider based on certain trust attributes, such as

service reliability, quality of service and service efficiency. In the Intercloud

environment, one cloud may want to select a number of reliable clouds to help

run a time-consuming program. For mobile Intercloud, a mobile user may want

to select a cost-effective cloud service in a foreign city. The trustworthiness of

1

cloud services is an important consideration for making cloud selection decision

(i.e., knowing the expected performance of a cloud service). Trust evaluation is

often conducted based on existing ratings or feedbacks (i.e., reputation-based

trust evaluation) before choosing/using a service. Note that for Intercloud,

the environment is highly dynamic and distributed, and relationships can be

one-way or two-way (i.e., clouds provide services to each other). There is

more and more mutual co-operation in the Intercloud, a cloud user or his/her

business could be another type of cloud service provider in future business

transactions. This possible mutual relationship makes the privacy requirement

even more important in the Intercloud scenario. If feedback information cannot

be made private, cloud users may only give positive feedback, as they want

to maintain a good relationship or are fearful of retaliation [13, 14]. Hence,

it is important to develop an effective and flexible trust evaluation protocol

with privacy protection for Intercloud. Currently, there has been little work

done to study trust evaluation for the Intercloud environment satisfying these

requirements. Chapter 3 of this thesis seeks to contribute to this important

topic for the development of Intercloud.

From the cloud user-centric perspective, data can be stored, accessed and

processed flexibly through the cloud for various applications, such as financial

services, public health services, and traffic services. To use a cloud data storage

service, data owners need to upload data to the cloud provider. Hence, data

privacy and security are two key concerns. Instead of storing plaintext data,

encrypted data can be stored in order to protect data privacy, but it is neither

convenient nor efficient to process encrypted data (e.g., data searching). When

someone wants to search for the encrypted data using certain query conditions,

he/she needs to download the encrypted data from the cloud, decrypt them

and process the query locally. This method is obviously not desirable in terms

of efficiency and energy usage. It is also not practical when the terminal’s

processing power or network bandwidth is limited, such as when processing

data through a mobile phone. Searchable symmetric encryption (SSE) is a

2 Chapter 1 Introduction

promising technique to tackle the aforementioned problem [15]. Most current

SSE schemes focus on handling keyword search over encrypted data [16, 17,

18, 19, 20, 21]. However, they do not address the problem of range query

over encrypted data which are required for some applications. Existing range

query over encrypted data schemes either provide faster search time at the

expense of disclosing sensitive information or achieve higher security at the

expense of extra cost. In Chapter 4 of this thesis, we design and evaluate

a privacy-preserving range query scheme to address the above-mentioned

limitations.

Searchable symmetric encryption (SSE) allows database searching to be con-

ducted over encrypted data, which is particularly useful in the cloud environ-

ment. Basically, each index is computed based on a keyword to be queried. To

allow the cloud server to do searching itself, trapdoors are securely generated

for queries based on query keywords and query operators. During the query

phase, the cloud server matches the trapdoor with the indexes to target the

satisfied documents and returns the encrypted documents as the query results

to the data user. As a result, the cloud server obtains a collection of indexes, a

sequence of trapdoors and encrypted query results of each trapdoor. The cloud

server can learn the search pattern (i.e., if the query has been issued before)

and access pattern (i.e., which encrypted documents satisfied which trapdoors).

Based on these observations, the cloud server still can estimate the plaintext

value of documents or query even without decryption keys. Oblivious Random

Access Memory (ORAM) [22, 23] addresses the access pattern leakage problem.

However, the computational complexity of most ORAM schemes is high and

they can only support limited types of queries. Vertical fragmentation [24]

seeks to make attackers unable to discover the sensitive association between

record attributes. However, this technique cannot prevent the access pattern

leakage attacks on a single attribute, and can lead to a long response time for

multi-keyword search. In Chapter 5 of this thesis, we study the problem of

access pattern leakage attack on searchable encryption under a multi-cloud

3

environment. Basically, both database records and queries are distributed

among different cloud servers, so that each cloud server can only have partial

information about queries and their results.

1.1 Research Objectives

In this thesis, we investigate two important security issues for supporting

Intercloud, namely distributed trust evaluation and secure data query. In

general, the main research objectives are as follows:

• To design a distributed trust evaluation protocol with privacy protection

for Intercloud. In the first problem, we consider a reputation-based trust

evaluation system for Intercloud. The key design goal of the protocol is to

protect user anonymity and confidentiality of feedbacks in a distributed

and secure manner. Furthermore, the protocol should support customized

processing of evaluation results and still function well even when some

raters are malicious or offline.

• To design and evaluate an order-hiding range query over encrypted data

without search pattern leakage for cloud storage. In the second problem,

we mainly focus on the following scenario. A data owner would like to

store some sensitive records from one cloud to another cloud. Before

storing the records to the second cloud, each record is encrypted. If

required (e.g., due to data loss on the first cloud), data can be recovered

efficiently and securely. The main challenges are to solve the security

leakage problem in existing secure range query schemes (i.e., statistical

relationships among indexes, comparison operator, and search pattern

of queries) and achieve a better balance between security and efficiency

than the existing schemes.

4 Chapter 1 Introduction

• To investigate and design an access pattern hidden query over encrypted

data scheme. In the third problem, we consider the following scenario.

In order to achieve faster response time and avoid the vendor lock-in

risk, developers migrate applications to multiple clouds at the same

time. Leveraging this Intercloud deployment, our aim is to reduce the

access pattern disclosure of the existing searchable symmetric encryption

schemes. As a result, cloud servers cannot obtain sufficient statistical

information from the observed query results while maintaining query

efficiency.

1.2 Original Contributions

Corresponding to the research objectives, the main original contributions made

in this thesis are summarized as follows:

• We designed a distributed trust evaluation protocol with privacy protec-

tion for Intercloud. To encourage honest evaluation and prevent possible

retaliatory attacks, our protocol contributes to the Intercloud trust eval-

uation with feedback privacy and anonymity protection by employing

homomorphic encryption with verifiable secret sharing. As a result,

the corresponding cloud service provider cannot access the individual

feedback. The trust evaluation results are computed as a weighted mean

of feedbacks. In addition, our protocol can still function if certain users

are offline (i.e., not available) as well.

• We designed a privacy-preserving range query scheme that can hide

query search patterns and is also secure against inference attacks. The

index generation algorithm in our scheme is non-deterministic which can

prevent the inferring order of records based on the corresponding indexes.

The range comparison method developed in our scheme does not reveal

1.2 Original Contributions 5

the binary bit that differs between a record and a query which avoids

the order leakage of records during the comparison. Our scheme also

generates the trapdoor in a non-deterministic manner which can hide

the query search pattern. A security proof has been conducted properly

to show that our scheme is more secure than existing schemes. The

experimental results indicate that our scheme has a shorter index size

and search time than the existing schemes when the processing unit is

large.

• We designed a security scheme that distributes database and queries

among multiple cloud servers. Since none of the cloud servers have

the entire database nor the full picture of queries, the database and

user queries are protected from statistical analysis and access pattern

leakage attacks. To minimize the query response time while preventing

information disclosure, we formulated the record and query assignment

as an optimization problem, and solved the problem (i.e., finding the best

possible solution) by the minimum s� t cut algorithm. Experimental

results indicate that our strategy can reduce the access pattern leakage

without sacrificing query efficiency.

1.3 Thesis Structure

Chapter 2

This chapter aims to conduct a comprehensive background and literature

review of related topics for the research. The related topics include: overview

of Intercloud, trust evaluation related work, privacy-preserving range query

related work, and access pattern leakage of searchable encryption and related

countermeasures.

6 Chapter 1 Introduction

Chapter 3

This chapter presents the first part of this research: a distributed trust eval-

uation protocol with privacy protection for Intercloud. First, this chapter

presents the models and overview. Second, this chapter explains the feedback

computation. Third, it discusses the trust evaluation protocol. The forth part

of this chapter presents the security proof and discusses the security analysis.

In the last two parts of this chapter, it presents the simulation settings and

discusses the simulation results.

Chapter 4

In Chapter 4, we design and evaluate a search pattern hidden range query over

encrypted data scheme for cloud storage. The first part of this chapter provides

the scheme’s general construction and security goal. Second, it describes the

building block utilised in the scheme. Third, this chapter presents the details

of our proposed privacy-preserving range query scheme. Experimental setup

and results are illustrated in the forth part of this chapter. The last part of

this chapter analyses the security of the scheme and proves that it can achieve

the defined security goals.

Chapter 5

This chapter discusses the third part of this research: the access pattern leakage

of query over encrypted data scheme. The first part of this chapter formulates

our proposed record and query assignment strategies to prevent the access

pattern leakage during the query over encrypted data. The second part of this

chapter describes how to search for an optimal assignment strategy by solving

1.3 Thesis Structure 7

the assignment optimization problem. The experimental results and conclusion

are shown in the third and forth part of this chapter, respectively.

Chapter 6

This final chapter presents the overall conclusion of this thesis and outlines

future work.

8 Chapter 1 Introduction

2
Literature Review

In this chapter, we conduct a literature review of the following topics: overview

of Intercloud, related work on trust evaluation, related work on secure range

query over encrypted data, and and access pattern leakage attack to searchable

encryption and related countermeasures.

2.1 Overview of Intercloud

In this section we give an overview of Intercloud including the motivations and

basic architecture. As cloud computing technology continues to mature, an

increasing number of people and companies have used cloud services. More

applications require data distributed on more than one cloud [28]. However,

cloud outages occurred frequently these years, seriously affecting cloud users

[29]. The high price of transferring data out of clouds prevent users from

changing the cloud service providers. Furthermore, the differences between

cloud service application program interfaces (APIs) also impede the cooperation

between different clouds and their users. To address these problems, the need

for cloud interoperation has been raised. In recent years, Intercloud has been

proposed to facilitate cloud interoperation [30, 31, 4]. The purpose of Intercloud

is to make the clouds functioning like the Internet and telephone networks,

where resources and services of different cloud service providers can be shared.

In the Intercloud, a cloud can collaborate with other clouds to serve user

requests. Hence, cloud resources can be utilized in a collaborative manner. It

has the potential to create new business opportunities through the extension

of single cloud services. We consider that Intercloud can provide benefits for

all cloud service providers. While the existing commercial cloud services are

9

typically based on a business-to-consumer model, Intercloud can be viewed as a

business-to-business model. With Intercloud, cloud service providers can fulfill

the users’ demand more cost-effectively by leveraging other clouds’ services

(i.e., instead of developing the services locally [5, 32]). For instance, even in a

region without its own service, a cloud provider can still serve its customers

through another cloud service provider. Clouds providing different services

can collaborate to enhance customer service and loyalty. For a private cloud

environment, Intercloud can enhance cloud resources utilization through the

interconnection of local infrastructures. For example, [8, 33] studied cloud

federation for scientific applications, such as EnergyPlus [34], Octave [35] and

DII-HEP [36]. Specifically, by distributing workloads through cloud federation,

datacenter capacity and processing speed can be enhanced in a flexible manner,

resulting in better performance and lower cost [33].

Recent Intercloud research has mainly focused on resource management (e.g.,

an adaptive cloud resource allocation scheme [37], a simulation framework

for Intercloud job scheduling [7]), data and virtual machine migration (e.g., a

software defined network-based Intercloud virtual machine migration scheme

[9], a decision-making model for Intercloud migration from the user perspective

[10]), service integration (e.g., an algorithm for selecting and composing services

among multiple clouds [6], a mechanism to interconnect virtual machines at

different clouds [8]) and Intercloud security (e.g., a single sign-on authentication

scheme for clouds to inter-operate with one another [38], an authentication

mechanism for components running at different clouds [39]). The limitations

of only relying on single public or private cloud are discussed as follows.

10 Chapter 2 Literature Review

2.1.1 Motivations of Intercloud

The following summarizes the motivations of Intercloud.

• Avoiding Vendor Lock-in

Currently, each cloud service provider only offers its specific and various

cloud services and APIs to the cloud users based on their own definitions

and naming systems. Cloud users need to tailor their applications to fit

different cloud interfaces, which results in considerable technical efforts

in the future migration. Furthermore, cloud providers usually set higher

prices for data transfer out of the cloud data centres, which ensures

their customers depend on their services. Thus, applications or data are

restricted within a particular cloud provider. Once the cloud user uploads

sufficient amount of workloads to the cloud, it is hard to relocate their

digital properties out of the current cloud cost-effectively. Therefore,

uniform interfaces among different clouds facilitate cloud users to migrate

their workloads whenever they are negatively impacted by the current

cloud. Thus, cloud users can avoid vendor lock-in. At the same time,

every cloud provider wants to grab business from competitors, so that

they would like to build tools for customers to migrate from other clouds.

• High Availability and Disaster Recovery

While clouds have various internal and external guarantee mechanisms

to ensure the high availability of their services, unexpected failures still

occur frequently these years. A cloud outage seriously affects cloud users,

especially for users fully hosting their servers on one cloud. Apart from

cloud outages, there are also other problems when using virtual machines.

For instance, virtual machines may become unresponsive or unreachable

due to the virtual machine monitor failure [40] or unexpected restart of

2.1 Overview of Intercloud 11

the virtual machine caused by cloud environment updating [41]. These

problems cause the downtime of applications hosted by virtual machines,

which is not acceptable for application developers with high availability

requirements.

• Diverse Geographic Distribution

Although leading commercial public clouds offer services at the world’s

major regions, there are many regions not covered by the datacenters

of these clouds. When a cloud user needs on-demand infrastructures to

develop an application for geographically dispersed users and unclear

usage pattern, relying on a sole cloud provider is infeasible. In order

to achieve faster response time, developers often migrate applications

to multiple clouds at the same time, so as to deploy server as close

to the users as possible. In addition, cloud users from some countries

or regions have legislative regulations about where to host their data

and applications. Hence, cloud interconnection allows the developers to

migrate applications to any local cloud provider to comply with the local

legislation requirements.

• Scalability and Wider Resource Availability

Since the resource usage pattern of applications vary from time to time, it

is hard to accurately predict the potential cloud resources usage volume.

When there are immediately surge demands or temporarily resources

requirements, the current solution is to over-provision the private cloud

datacenter capacity. Finally, the total capacity is several times larger than

the average resources demands which incurs extra expense. A feasible

solution to this peak-load issue is to rely on idle resources on the other

cloud service providers. The small size private cloud migrates workloads

to public clouds or its federated peer private clouds for resources sharing.

12 Chapter 2 Literature Review

Hence, instead of maintaining additional servers in the local datacenter,

the interconnection between multiple clouds allows small size private

cloud to expand its IT environment in a flexible way and save a substantial

amount of money.

To summarize, the main value of cloud interconnection or Intercloud is to

allow cloud users to expand their cloud hosted businesses in both of cloud

providers and geographic locations. Thus, they could make have a more

efficient deployment strategy. At the same time, cloud providers also have

great incentives to join the Intercloud. Cloud provider can scale up or down

their data center by offloading workloads to other clouds so that it can provide

better services and support more demands of its users.

2.1.2 Architecture of Intercloud

The concept of Intercloud (“cloud of clouds”) is an analogy with the Internet

(“network of networks”). Intercloud is viewed as the final goal of cloud interop-

eration, where multiple cloud infrastructures are ubiquitously interconnected

based on a unified standard [31]. From the cloud provider’s perspective, each

cloud can act as another cloud user having the permission to migrate their

workload, access to the computational and storage resources or services from

its peer clouds. From the cloud user’s perspective, Intercloud allows the inter-

operability between user’s paid resources and services on multiple clouds [42].

At present, there is no unified definition of Intercloud.

The existing definitions of Intercloud are too generic and none of them clearly

define who initiates the Intercloud connections. And Intercloud essentially is

the interconnection of multiple cloud resources. On one hand, a cloud provider

connects its own resources to other clouds’ infrastructures. On the other hand,

a cloud user connects its paid resources on different clouds. Hence, there are

2.1 Overview of Intercloud 13

two perspectives to realize the vision of Intercloud, one is driven by cloud

providers, the other is driven by cloud users.

Provider-centric Intercloud

In the provider-centric Intercloud model, the cloud providers voluntarily coop-

erate with each others by adopting the same standard interfaces. We define this

collaboration as provider-centric Intercloud. It is usually a static collaboration

where a prior agreement needs to be achieved before the establishment of

the federation. Fig.2.1 describes the vertical and horizontal federation for

provider-centric scenarios.

Fig. 2.1: Provider-centric Intercloud.

• Vertical federation

Vertical federation is similar with business-to-business scenarios, in which

some clouds meet the demand of its own customers by leveraging services

from other clouds [42]. Vertical federation can be formed between both

of public and private clouds, as long as they have common interests.

14 Chapter 2 Literature Review

Cooperation projects with privacy requirements can be carried out by

vertical federation between private clouds, such as scientific research ap-

plications. Taking the advantages of complementary services of different

clouds, the vertical federation can enlarge the capability of each cloud

in the federation to meet better Quality of Service (QoS) target. For

instance, Philips is a Software as a Service (SaaS) provider supplying

rapid cloud-based healthcare data recovery services. It collaborates with

Amazon Web Services (AWS) which is an Infrastructure as a Service

(IaaS) provider. By utilizing AWS Import/Export Snowball, Philips

improves its own user experience [43].

• Horizontal federation

Horizontal federation happens at the same layer of cloud providers, such

as IaaS layer. The main purpose of the horizontal federation is for

resources sharing so that clouds with surplus resources can be used by

resources constrained clouds during its peak load times. A cloud provider

has administrator privileges to scale or transit part of the workloads in

the datacenter to other members of the federation. At the present stage,

horizontal federation is less likely to happen between commercial public

clouds. Since leading commercial cloud providers selling similar services

are competitors, none of them have intentions to utilize competitors’

resources to solve its own problem. In contrast, multiple private clouds

belonging to the same organization are more likely to join the federation

for resource sharing. They do not have competition and horizontal

federation achieves higher overall resource utilization.

Horizontal and vertical federation classify cloud federation based on whether

cloud providers are from the same cloud service layer. When it comes to how

different clouds network with each other, there are two networking topologies:

Peer-to-Peer and Hierarchical federation as shown in Fig.2.2.

2.1 Overview of Intercloud 15

(a) Peer-to-Peer Federation (b) Hierarchical Federation.

Fig. 2.2: Cloud federation architectures

• Peer-to-Peer Networking

All the cloud providers directly interconnect and negotiate with each

other as a mesh of clouds without middle layers [31] as depicted in

Fig.2.2a.

• Hierarchical Networking

Bernstein et al. proposed the first blueprint of Intercloud [30]. Sub-

sequently, an IEEE Standards Association (IEEE-SA) P2302 Working

Group was formed to develop the standards for Intercloud [44]. In parallel

to the P2302 Working Group, an IEEE Intercloud Testbed Project was

established to develop, prove, and improve vendor-neutral, open source,

Intercloud technology globally [45]. The Intercloud standard focuses on

the communication protocols and networking mechanisms for Intercloud,

such as cloud providers’ resources discovery, selection and allocation

problem in the Intercloud. To establish the Intercloud networking struc-

ture, there are three main entities defined in the standard: Intercloud

Roots, Intercloud Exchanges, and Intercloud Gateways. Different clouds

can be connected with each other via an Intercloud gateway and there

are Intercloud exchanges and a root in the Intercloud architecture. In-

tercloud exchange acts as a middle layer between Intercloud gateway

16 Chapter 2 Literature Review

and Intercloud root. Fig.2.2b shows the architecture of the hierarchical

federation.

• Intercloud Root is comprised a set of root servers. The servers are similar

to the Domain Name System (DNS) root. Intercloud Root is responsible

for providing cloud resources directory services by hosting and managing

a cloud resource catalog. Also, Intercloud Root provides authentication

services by acting as a certificate authority to issue and verify certificates

of different entities. In addition, an Intercloud Root instant is the parent

of a set of Intercloud Exchanges. Intercloud Root connects and works

with Intercloud Exchanges to facilitate Intercloud operations.

• Intercloud Exchanges are the second level servers which operate under

Intercloud Root. One of the main functions of Intercloud Exchanges is

to facilitate the process of resources provisioning and matching. The

ontology information is copied from Intercloud Root instance and store

in the Intercloud Exchanges. Intercloud Exchanges are responsible for

mediating the communication between clouds and Intercloud Root.

• Intercloud Gateways are responsible for mediating the negotiation di-

alogs between cloud entities. There is an Intercloud Gateway for every

cloud entities such as Intercloud Root, Intercloud Exchange and Cloud

Provider. The role of Intercloud Gateways is to provide an interface

for heterogeneous cloud environment to communicate effectively and

securely. A standardized protocol is used for the negotiation process

among clouds.

2.1 Overview of Intercloud 17

User-centric Intercloud

Even if cloud providers do not support cloud interconnection, cloud users are

still able to gain the benefits from multiple clouds, which is called user-centric

Intercloud. In the user-centric Intercloud model, the communication between

cloud providers are not directly established and does not require cloud providers

to adopt a common interface. Cloud users initiate interconnections between

clouds by developing clients or via broker services. Multi-cloud is a typical

user-centric Intercloud scenario, where cloud users integrate their resources

among multiple independent clouds or expand their cloud-based business in

terms of vendor and location coverage to achieve better performance. The

main difference of multi-cloud with the previous model is that a cloud provider

needs to use the administrator level of permission to facilitate the multi-cloud

operation. As shown in Fig.2.3, the main initiator in the multi-cloud model is a

cloud user. It can be implemented by the following two different approaches:

Fig. 2.3: User-centric Intercloud

• Broker is a third party providing the services of aggregating and managing

resources on multiple clouds on behalf of the cloud users. A cloud user

only describes a Service Level Agreement (SLA) to the broker. Then

the broker automatically completes all the deployments and executions

18 Chapter 2 Literature Review

in the background and outputs aggregated services to its users. The

advantage of the broker is that cloud user can integrate its paid resources

on multiple clouds through a single entry point at the broker as illustrated

in Fig.2.4a. In this case, the broker functions as a separate adapter layer

between multiple clouds and end users. A cloud user needs to grant

permission for the broker to use resources on all clouds in advance.

• APIs. Cloud users are responsible for the management of its paid services

on multiple clouds. They negotiate with each cloud provider separately

and integrate all the resources directly in the development of their

applications. The applications either use different cloud services APIs

or some abstracted unified cloud services libraries. The cloud user can

host its applications on the client side independently at any clouds. And

they can deploy applications on the virtual machines of private or public

clouds as shown in Fig.2.4b. In this case, it allows the interoperations

between clouds. However, it still belongs to the multi-cloud scenario,

since the entire scheduling process only handles the users’ paid resources

via the user level APIs opened by cloud providers. None of the cloud

providers participating in the multi-cloud process uses their administrator

privileges.

(a) Broker. (b) APIs.

Fig. 2.4: Multi-cloud architectures

To summarize, cloud heterogeneity is a major reason for the above issues. To

overcome this barrier, either standard interfaces among different clouds are

required or an intermediate layer undertakes the integration work. When there

2.1 Overview of Intercloud 19

is a widely adopted standard interface among cloud providers, users do not

need to change their cloud applications for a certain cloud service provider.

At the same time, a cloud user is capable of taking advantage of strengths

of all kinds of cloud services. A more flexible workload migration can also

be achieved via standard interfaces among different clouds. In other words,

interoperability of cloud resources and services across different cloud service

providers are significant for maximizing their return on cloud investment.

2.2 Related Work on Trust Evaluation

From the provider-centric perspective, the first problem targeted in this thesis

is Intercloud trust. Currently, the majority of the cloud users only employ

the services on several giant public cloud providers. With the expansion and

diversity of cloud-based business, a growing number of clouds look for cloud

cooperation. Lacking of agreements among cloud providers leads to the in-

feasibility of interconnected cloud collaboration, particularly for federation

among multiple private clouds. Security agreement is one of the most im-

portant prerequisites in the negotiation of unified agreements among cloud

providers. The trust evaluation is the first step for establishing the security

agreement. In this section, we firstly introduce main trust evaluation models

for cloud computing. Then, we specifically discuss the drawbacks of proposed

Intercloud trust evaluation protocols. Later, we also discuss the limitations of

existing reputation-based evaluation schemes when applying to the Intercloud

environment.

2.2.1 Trust Evaluation for Cloud Computing

Trust is defined as a subjective probability that one party believes that another

party would perform expected actions. In cloud computing, cloud users’

20 Chapter 2 Literature Review

data are scattered and their applications are executed remotely in different

datacenters of cloud providers, which is highly non-transparent. When cloud

users develop commercialized products on their paid cloud resources, they have

to fully trust their cloud service providers. Therefore, the trust evaluation

results directly influence the decision making when choosing cloud providers.

According to whether the trust assessment happens after or before using the

cloud services, we classify trust management into two types. The first type

is post trust evaluation carried out by cloud users after using a cloud service.

The evaluation result is based on the cloud user’s own experience, for instance,

the fulfillment of SLA. Based on SLA compliance, Pawar et al. and Ko et al.

proposed a trust model [46] and a TrustCloud framework [47], respectively.

Another direction to build the trust model is to measure the performance of

cloud service. In [48], Li et al. proposed a trust model based on the number of

illegal connections, denial of services, the average task failure ratio and response

time of the cloud service. Hwang et al. proposed a security-aware cloud system

to assess the credibility of cloud service providers by the predefined policies

[49] and fuzzy logic techniques. The second type is prior trust evaluation,

which happens before a cloud user chooses a cloud provider. The trust result

is mainly based on the previous experience of other parties. Credential-based

trust evaluation is one of the approaches. Some trusted third parties assess and

issue credentials for members in a federation to prove the trustworthiness of

their services. Simple Public Key Infrastructure (SPKI) [50], Security Assertion

Markup Language (SAML) [51] and X.509v3 [52] are standards used in the

description of credential, which are still inadequate. Then, derived by the

peers’ knowledge, a recommendation-based trust model has been proposed.

Recommendations from friends are more credible and give the finer-grained

trust evaluation results, which are usually shown in the form of feedbacks.

This model has also been widely adopted in cloud computing environment.

Krautheim et al. developed a recommendation-based trust model based on

transitive trust relationship in [53]. The reputation-based trust model is another

2.2 Related Work on Trust Evaluation 21

approach in which the evaluators take into account the feedbacks given by

others. Some cloud evaluation websites are designed for consumers to identify

the reliable cloud providers. For example, SoftwareInsider allows cloud users to

write reviews based on their usage experience and outputs a final rating about

different cloud services [54]. Habib et al. [55] developed a multi-faceted trust

management system, which reassesses the uncertainty of received feedbacks

from various aspects. Noor et al. [56] designed a reputation-based trust

management system (CloudArmor) for cloud services. The system investigates

the credibility of feedbacks which is able to handle collusion and sybil attacks.

By analyzing the feedbacks from several aspects, different aggregated weights

are computed to minimize the influence of dishonest feedbacks and so that

the trust result can be adjusted. CloudArmor only calculates the frequency

of credential value for the same consumer. Since the feedbacks are given by

ordinary cloud service users, CloudArmor ignores the source of a feedback.

However, for Intercloud, feedbacks can be provided by cloud providers as well.

The reputation of the source of feedback is an important factor for assessing

the credibility of feedbacks. Our work is classified as the second type of trust

model, which is the reputation-based trust model. Unlike the previous works,

we consider that the protection of feedback privacy is important for reaching

an objective trust result.

2.2.2 Intercloud Trust Model

Under the Intercloud architecture proposed by Bernstein, several further works

were published [57], [58], [59], [60]. Lloret and Garcia et al. described a

tiered Intercloud architecture in [61]. Based on the Intercloud architecture,

security issues have also been studied [62]. Powell et al. designed single sign-on

authentication solution for clouds to interoperate with each other [38]. Apart

from identity authentication, in the Intercloud environment, researchers also

22 Chapter 2 Literature Review

have studied the problem on access control policy conflict in [63] and [64]. The

following summarizes the proposed trust models for Intercloud.

• PKI-based trust model

Bernstein and Vij discussed Public Key Infrastructure (PKI) based trust

model for Intercloud in [65]. Instead of classifying the clouds as trusted

or non-trusted providers, this model evaluates clouds by ”Trust Index”.

Basically, a certain group of cloud providers belong to the same trust

domain. Each Intercloud exchange is in charge of one trust domain and

exchanges the dynamic “Trust Index” with other domains. And Intercloud

root is implemented as a static certification authority (CA). Nevertheless,

trust is a subjective measure. Cloud providers are highly autonomous

even in the Intercloud environment, personalized trust measurement

criteria cannot be ignored. Assessing the trust of clouds also needs to

take multiple factors into consideration and is highly related to specific

contexts. PKI-based trust model, however, only releases the evaluation

results of third parties.

• Reputation-based Trust Model

Abawajy proposed a reputation-based trust management model [66].

Three kinds of ratings (personal experience, reputation, and honest

rating) are stored and maintained by Reputation Manager. Each cloud is

able to calculate the reputation by exchanging their first hand Intercloud

service experience with each other through the Reputation Manager.

The issue of Abawajy’s scheme is that personal experience managed

by Reputation Manager is public. In the Intercloud scenario, the trust

evaluation is carried out between cloud providers, which is a mutual

evaluation. When all the ratings are public, cloud providers would avoid

giving poor ratings. Besides they did not provide the way of choosing

2.2 Related Work on Trust Evaluation 23

Reputation Manager and correcting second-hand ratings to a reputation

value.

• Attribute-based Trust Model

Ngo et al. [67] discussed that the trust relationship between clouds should

be built based on a particular context. By means of recommendations,

direct and indirect trust chains can be dynamically set up among cloud

providers. Since different clouds have their own description languages

about resources, semantic transformation is applied in comparing rec-

ommendation contexts. The main drawback of this approach is that

some contexts are hard to be semantic transformed and compared with

each other. Limited work has been considered to verify the credibility of

second-hand recommendations [68]. Clouds can launch self-promotion

attacks by collusion with each other.

Most existing solutions depends on third parties to establish trust relationship

and exchange trust information in plaintext. Nevertheless, it is hard to find

independent trusted third parties who are accepted by all cloud providers

for the trust evaluation process. Anonymous evaluation is an alternative

approach to handle retaliation attack. But it is unable to judge whether the

trust value is given by real service users or fabricated by clouds themselves.

Furthermore, malicious clouds can also give negative recommendations without

being detected.

2.2.3 Trust Management with Privacy Protection

For trust management, various reputation-based trust evaluation protocols

with privacy protection have been proposed for different purposes. For instance,

Clark et al. proposed a reputation system with privacy protection for mobile

24 Chapter 2 Literature Review

Table 2.1: Comparison of trust-related protocols

Protocol Core Scenario Customized Feedback User
architecture result privacy anonymity

Bernstein and Vij [65] Centralized Intercloud No No No
Abawajy [66] Centralized Intercloud No No No
Ngo et al. [67] Distributed Intercloud No No No

Clark et al. [69] Distributed Ad-hoc No Yes Nonetwork
Schaub et al. [70] Distributed E-commerce No No Yes

Tormo et al. [71] Centralized HbbTV Weighted No Nomean
Hasan et al. [72] Distributed Multi-agent No Yes No

Our protocol Distributed Intercloud Weighted Yes Yesmean

ad-hoc networks [69] with the focus on handling dynamic configuration (i.e.,

parties may join and leave dynamically). Since each party in Clark et al.’s

scheme shares its feedback with all other participants, the complexity of

message exchange in Clark et al.’s scheme is O(n2), n is the number of parties

in the feedback exchange. Schaub et al. [70] proposed an anonymous reputation

system for e-commerce websites, with the aim of guaranteeing user anonymity

in the trust evaluation process. However, feedback privacy cannot be protected.

Tormo et al. proposed a reputation management system for hybrid broadcast

broadband TV (HbbTV) [71], which aims to compute personalized trust

results based on the similarity of two users when making choices. However,

the scheme needs to disclose both feedback and user identities to trusted third

parties. Hasan et al. designed a privacy-preserving reputation protocol that

can tackle attacks by malicious participants in a multi-agent environment [72].

However, this scheme leaks the existing trust relationships between users of

the same cloud service provider. And it cannot compute customized evaluation

results and ensure user anonymity. Although some of these protocols may

be adapted for Intercloud with some modifications, it is still desirable to

develop an Intercloud-specific trust evaluation protocol with the advent of

cloud computing, as well as for effectiveness and efficiency considerations.

Table 2.1 compares different trust-related protocols in terms of different at-

tributes. As discussed in Chapter 3, our protocol has distinctive advantages.

2.2 Related Work on Trust Evaluation 25

Apart from using a distributed architecture, our protocol can still accurately

compute the trust result, even when some of the users are unavailable. This

is an important requirement for a distributed system or dynamic network.

As shown by the aforementioned simulation results, our protocol can handle

this kind of attack effectively. Our protocol can compute customized trust

evaluation results while protecting feedback privacy. However, unlike [72, 69],

our protocol employs a verifiable secret sharing scheme to facilitate flexible

processing and feedback updating. Our protocol also supports user anonymity

during the trust evaluation process. Compared to [72] and [69], our protocol is

also more efficient in terms of message transfer complexity during the enquiry

phase. Note that during the enquiry/query phase, an enquirer in Hasan et al.’s

scheme [72] needs to forward vn encrypted secret shares and vn+ n verifiable

values between raters, where v ⌧ n is the number of shares prepared by each

rater. Furthermore, raters need to reply to the enquirer with n sum of shares for

aggregation. Thus, in total, Hasan et al.’s scheme needs to transmit 2vn+ 2n

(i.e., O(n)) messages. Our protocol requires downloading m encrypted secret

shares and m commitments for verification (m < n is the threshold value for

secret key reconstruction). Furthermore, raters need to reply to the enquirer

with m sum of shares for secret key reconstruction. In total, our protocol needs

to exchange 3m (i.e., O(m)) messages. Hence, our protocol is more efficient.

The details of our protocol will be discussed in Chapter 3.

2.3 Secure Range Query over Encrypted
Data

From the cloud user-centric perspective, the second problem studied in this

thesis is about secure data query. Although sensitive data can be encrypted

before they are stored in a cloud, the encrypted data can hardly be processed

efficiently. Hence, a lightweight solution is required to satisfy both high security

26 Chapter 2 Literature Review

and high efficiency requirements. Searchable symmetric encryption (SSE) is

a promising technique to tackle the aforementioned problem [15]. Currently,

the majority of SSE schemes focus on handling keyword search over encrypted

data [16, 17, 18, 19]. Some dynamic SSE schemes are designed for similarity

search [20] and multi-keyword query [21] while achieving forward-privacy

protection. Their main purpose is to reduce information leakage when an

encrypted database is updated. However, they do not address the problem of

comparison query and range query over encrypted data which are required for

some applications. Compared with keyword queries, there are more technical

challenges in designing an effective and secure scheme for range queries on

encrypted data. We classify the existing schemes into two categories. The first

type of schemes [73, 74, 75, 76, 77, 78] performs a range query [a, b] by checking

whether the data item is larger than the lower bound (a  du) and smaller than

the upper bound (du  b) of a query. The comparison result directly discloses

whether the unsatisfied data item is larger/smaller than the upper/lower bound

of a query. The second type of schemes [79, 80] conducts a range query by

treating the query range as a single keyword. This type of scheme only outputs

whether the data values are within the query range or not (i.e., du 2 [a, b]).

The server is unable to learn the ordering of unsatisfied records. Therefore, it

is more secure than the first type. However, it introduces plenty of unmatched

query results, and requires a large amount of index storage space. To maintain

similar search time complexity (i.e., as O(log N) or even faster), these schemes

usually organize indexes of the entire dataset using special data structures.

2.3.1 Order Preserving Encryption

Order preserving encryption (OPE), one of the methods for supporting numer-

ical comparison between ciphertexts has been studied in [73, 74, 75, 76]. OPE

ciphertexts are deterministic and preserve the numerical order between their

plaintexts, that is a  b, if and only if OPE(a)  OPE(b). Since the server

2.3 Secure Range Query over Encrypted Data 27

can directly obtain the ordering of data items from their OPE ciphertexts, any

comparison-based index structures (e.g., B+ Tree) used for indexing plaintext

data can be directly applied to the OPE ciphertexts. Although OPE can

achieve the same search efficiency as in the plaintext cases, it is unable to

prevent “inference attacks” [81]. This attack mainly exploits the ordering

information and the frequency of data items disclosed from OPE ciphertexts.

2.3.2 Order Revealing Encryption

To prevent “inference attacks”, Lewi and Wu designed the latest Order revealing

encryption (ORE) scheme [78]. Their scheme splits the data ciphertext into

two parts. The right ciphertext is assigned as the index for records, and the

left ciphertext is the trapdoor of range query, upper or lower bound. The

comparison is performed between the right ciphertext of data EncR(du) and

left ciphertext of query boundary EncL(a)/EncL(b). The scheme begins with

proposing a small-domain ORE scheme with best-possible semantic security,

for the right ciphertexts. In other words, the right ciphertexts generated from

the small-domain ORE can hide both the frequency and the ordering of records

which are robust against inference attacks. However, the length of each right

ciphertext grows linearly in the size of the entire plaintext space. To improve

comparison efficiency and also reduce the index size of small-domain ORE,

the scheme is designed to build indexes by grouping the message space of

data into blocks. However, this approach leaks the first block that is different

between two ciphertexts during the comparison. This leakage also indicates

the different relative distances between different data and the same query, and

in turn, these distances implies the ordering between data items. When the

block size is relatively small, the server can precisely estimate the relative

ordering information. When the block size is large, however, the ciphertext

size of ORE grows exponentially. To achieve sublinear search time O(log N)

(N is the dataset size), the scheme saves the indexes in sorted order before

28 Chapter 2 Literature Review

searching. This step indicates that the server learns the ordering of indexes

during the query; even the ordering of indexes at rest is indistinguishable

one from the other. The left ciphertext is deterministically created in the

ORE scheme for each query condition. The search pattern of queries in

the ORE scheme is leaked from trapdoors to the server. The ORE scheme

also inherits the weakness of the comparison query. Through the searching

result, the entire encrypted dataset can be divided into three ordered parts

(R1 < R2 2 [a, b] < R3). ORE scheme has been used in other scenarios. Yuan

et al. leveraged the ORE to generate indexes for range queries in distributed

key-value stores [82]. Their scheme compares two ORE ciphertexts to get a

boolean result which prevents the disclosure of order relationships from the

comparison results. Shen et al. adopted ORE to support the approximate

constrained shortest distance queries over encrypted graphs [83]. To filter

out paths in an encrypted graph with the constrained total cost, the scheme

encrypts the cost of each edge using ORE encryption, and employs an efficient

tree-based ORE ciphertext comparison protocol. However, this scheme also

inherits the weaknesses of the ORE scheme, such as disclosing the search

patterns and order relationship among the costs.

2.3.3 Comparable Encryption

Comparable encryption (CE) was proposed by Furukawa [84, 85]. The ba-

sic idea of comparable encryption is to separately encrypt the record value

and query boundaries with different approaches [85]. For example, Enc(du),

Enc(d
0
u
) are the ciphertexts of two record values, and Token(a) is the trapdoor

of the lower bound of a range query [a, b]. Based on ciphertexts of Enc(du) and

Enc(d
0
u
), the server cannot recognize the numerical order between du and d

0
u
.

Whereas based on Enc(du) and Token(a), the server can learn the numerical

order between du and a. In other words, comparable encryption ciphertexts

are semantically secure against inference attacks, and they are unable to be

2.3 Secure Range Query over Encrypted Data 29

directly compared with each other. To support a comparison, comparable

encryption generates tokens for the query boundaries. This feature ensures

that any two data items can be compared only when either of their tokens

is obtained. In the token generation, comparable encryption adopts prefix-

preserving encryption (PPE). When any two data items have the same first n

digits of prefix strings, their PPE tokens must also have the same sequence of

n high elements as their prefixes. Hence, the comparison seeks to check the

equivalence between ciphertext and token starting from the high elements until

finding the first one that is different. Comparable encryption has a similar

weakness as ORE, which leaks the length of the longest common prefix string

of record value and query boundary during the comparison [86]. Moreover, it

tells the attacker about the comparison operator, since it separately compares

data items with the upper and lower bounds of a range query. This leakage

indicates the relative numerical difference between data items of the same

query. Since tokens of queries are deterministic and prefix preserving, the

repetition and numerical order between upper/lower bounds of issued queries

are also leaked in comparable encryption.

2.3.4 Bloom Filter-based Range Query Scheme

Li et al. proposed a privacy-preserving range query scheme that can achieve

index indistinguishability [79]. The main idea of the scheme is to test whether

in a range query du 2 [a, b], the prefix set of du and prefix union set of [a, b]

have the same elements [87]. This scheme can avoid a full dataset scan, and

order leakage between left and right nodes during the binary search as well.

It organizes the prefix sets of data items in random order using a special

complete binary tree called Privacy Bloom Filter Tree (PBtree). Specifically,

the root node stores the prefix union of all of the data items. It then recursively

splits the data items of each node into its left and right child nodes. This

split only ensures that each child node has an equal number of data items.

30 Chapter 2 Literature Review

Since data items are randomly split, the number of left child data items is

not necessarily smaller than that of the right child data items. To achieve

PBtree structure, this scheme sacrifices the storage cost of O(N logN logM),

where M is the domain size of data items. To improve the speed of checking

the overlap between two prefix sets, the scheme employs the data structure of

Bloom filter [88], but this creates false positives in the query results. Although

the PBtree structure seeks to achieve a sublinear search time, the actual search

time is ⌦(logN logQ + R), where Q and R are the sizes of query range and

result, respectively. This search time has no upper bound because of the

random placement of the data items in the PBtree and possible false positive

results [80]. This scheme is only proved to be secure under certain conditions

(i.e., non-adaptive adversaries following Goh’s definition [89]). Goh’s security

definition does not guarantee trapdoor privacy. The trapdoor generation is

always deterministic, and thus the search pattern is disclosed [87].

2.3.5 Range Searchable Symmetric Encryption

Searchable Symmetric Encryption is widely used for keyword search over

encrypted data. Inspired by this idea, Demertzis et al. proposed the concept of

Range Searchable Symmetric Encryption (RSSE) [80]. This concept turns the

problem of range query into a multi-keyword search problem, such that any

secure SSE schemes can be employed to realize the RSSE concept. IND-CKA2

(indistinguishability against adaptive chosen keyword attacks) is the strongest

security model available for SSE schemes, introduced by Curtmola et al. [90].

The scheme proposed by Demertzis et al. also satisfies the IND-CKA2, but

has additional leakages. This means that an attacker can learn nothing more

than the formulated leakages. In this scheme, a range query condition is

replaced by several sub-ranges, with each sub-range represented by a keyword.

Data items belonging to the same sub-range are considered as documents

containing the same keyword. To prevent multiple sub-ranges from being

2.3 Secure Range Query over Encrypted Data 31

Table 2.2: Comparison of privacy-preserving range query schemes

Scheme
Index � /  Search Space Search False
Order > / < Pattern Usage Time Positive

OPE [74] leak leak leak O(N) O(logN) no

ORE [78]
no/

leak leak O(N 2b (logM)/b)
O(N)/

no
leak O(logN)

CE [84] leak leak leak O(N logM) O(N) no
PBtree [79] no no leak O(N logN logM) ⌦(logN logQ+R) O(R)

RSSE [80] no no
partial O(N logM)⇥

O(N) O(N)
leak Size(record)

Our Scheme
no/

no no O(N logM)
O(N)/

no
leak O(logN)

associated with the same data item, the scheme needs to duplicate records

into all sub-ranges having its value. However, this duplication requirement

generates a much larger dataset (i.e., compared to the original dataset). With

the aim of reducing storage cost and the number of sub-ranges, the scheme

designs a new structure called TDAG (i.e., Tree-like Directed Acyclic Graph).

TDAG tree is constructed by inserting a middle node between any two peer

nodes on the binary tree of sub-ranges. During the search phase, each query

is mapped to a single TDAG node based on the lowest common ancestor

node that covers the query range. However, the TDAG structure creates an

unacceptable number of false positive results when the data skew rate is high.

These false positives reduce the search time to O(N). Queries with similar

range values are targeted to the same node on the TDAG structure, such that

the search pattern is partially leaked.

Table 2.2 shows the comparison of different privacy-preserving range query

schemes, including our scheme which will be discussed in Chapter 4. Parameter

N is the dataset size, R is the result size, Q is the query range size, M is the

domain size of data items, and b is the block size in bits of the ORE scheme.

To summarize, the first three range query over encrypted data schemes [78, 74]

provide higher search efficiency, but a lower security guarantee than those of

the last two range query over encrypted data schemes [79, 80]. Compared to

existing schemes, our scheme supports both types of range query (i.e., a  du

32 Chapter 2 Literature Review

and du 2 [a, b]) and can hide the comparison operator during the query, even

using the first type of comparison approach. The search pattern of queries

(i.e., non-deterministic trapdoor) is also concealed. Compared with the listed

schemes, our scheme does not have a high space cost, and produces no false

positives in the query results. Our scheme can support binary search (i.e.,

search time is O(logN)) when ciphertexts are sorted before searching, which

inevitably leaks the ordering of the index during the query.

2.4 Access Pattern Leakage in Searchable
Symmetric Encryption

As mentioned in the last section, searchable symmetric encryption (SSE)

allows database searching to be conducted over encrypted data. Currently,

the majority of SSE schemes are secure index-based. This means that each

encrypted record is associated with some secure indexes. Each index is created

based on a record to be queried using one of its attribute values. To allow

a cloud server to search for the encrypted records, a trapdoor is created for

each query. During the search phase, the server finds the matched records by

comparing trapdoors of queries with indexes of records. The main reason behind

access pattern leakage attacks is that most searchable symmetric encryption

schemes can only safeguard the confidentiality of documents and query values

at rest. The strongest security model available for SSE schemes is formulated

by Curtmola et al. in [91]. The schemes satisfying this model ensure that

the indexes and trapdoors themselves do not leak the documents and query

values even when the attackers adaptively issue the queries. However, the

model allows the attackers to learn the statistical information by observing

the searching results (i.e., access pattern of queries). Moreover, most of these

schemes are designed to perform on a single server only. Hence, the server is

able to gain all the trapdoors and their query results. When the dataset to be

2.4 Access Pattern Leakage in Searchable Symmetric Encryption 33

searched is large enough, the server can statistically analyze the actual value

of queries or documents. In this section, we give a literature review of the

related work on both access pattern leakage attacks and countermeasures.

2.4.1 Access Pattern Leakage Attacks

• IKK Attack

Islam, Kuzu, and Kantarcioglu (IKK) presented the first access pattern

attack on SE schemes that can recover the trapdoor keywords [92].

IKK attack mainly uses the unique co-occurrence frequency of any two

keywords. An IKK attacker has two square matrices Mp and Mc with both

the size of the number of keywords. Mp is obtained from the plaintext of

the indexed dataset before searching. Mc is built by observing a sequence

of trapdoors and their query results. Each element in the matrix Mp

and Mc represents a co-occurrence frequency of any two keywords or any

two trapdoors appearing in the same document. For instance, (i, j)th

element in Mc is Mc(i, j) =
|Ri\Rj |

N
, where Ri and Rj are the result sets

of the ith and jth trapdoors, and N is the total number of documents.

The process of recovering trapdoor keywords is to match the elements

between Mp and Mc (Mc is a permutated submatrix of Mp). However,

the successful rate of IKK attack declines with the increasing number of

keywords under attack. This is because larger matrix Mp leads to less

pairs of keywords with unique co-occurrence frequency [93].

• Count Attack

Cash et al. [93] presented another access pattern attack called count

attack, which targets on a large number of keywords. In addition to the

co-occurrence frequency of keywords, the server can also learn the result

34 Chapter 2 Literature Review

count of each keyword (i.e., number of documents that match with each

trapdoor). Count attack is based on the Zipfian distribution of keywords

in the natural language text. That is the most frequent keywords often

have unique and higher frequencies than the other keywords. Hence,

trapdoor keywords can be identified by the unique result count. Basically,

an attacker is assumed to know the frequency of each plaintext keyword

w (i.e., count(w)) before searching. Then during SE searching, the server

counts the number of documents in each trapdoor query result (i.e.,

count(Rq)). When a keyword in the plaintext dataset has the same

unique frequency as a trapdoor in the searchable encryption scheme,

that is count(w) = count(Rq), the attacker can immediately reveal the

trapdoor Tq with the keyword w. For the queries that do not have unique

result counts, the attacker resorts back to compare their co-occurrence

with queries which have unique result counts. Thus, the count attack

can be reduced, when there are less number of keywords that have

unique result counts. In the IKK attack, matching of the ciphertext

and plaintext keywords is initially by random mapping. In the Cash

et al.’s attack, it only compares the co-occurrence counts of trapdoors

with the same result count. This narrows the candidate keywords before

the co-occurrence comparison. Hence, the count attack has a higher

efficiency and successful recovery rate than the IKK attack, especially

when the number of keywords under attack is large.

2.4.2 Countermeasures Against Attacks

• Query Result Padding

To prevent the IKK attack, Islam et al. proposed a padding counter-

measure in the same paper [92]. The basis idea is to make the query

responses of different keywords as similar as possible. As a result, there

2.4 Access Pattern Leakage in Searchable Symmetric Encryption 35

are less pairs of queries having the unique co-occurrence frequency. To

achieve this goal, they generated files with keywords that they do not

contain originally. Thus, the padding includes false positives in the query

results. Specifically, the appearance of each keyword will be padded up

to at least ↵ similar keywords. After padding, an IKK attacker can only

correctly guess the trapdoor keyword with the probability of at most

1/↵.

However, a small amount of padding in the dataset is not sufficient to

resist attacks. Cash et al. have shown that the padding method is hard

to reduce the count attack [93]. This is because the huge difference

between the appearance of each keyword. It is infeasible to fill the query

result of all keywords to be the same, which leaves the padded dataset

similar to the original one. By adjusting co-occurrence comparison from

exact to approximate, the recovery rate of count attack is still the same,

even when the Enron dataset [94] is increased by 15% after padding.

• Oblivious RAM

Data encryption can only protect content confidentiality. Oblivious

Random Access Memory (ORAM) was designed to prevent the physical

memory access pattern leakage [95]. It is a middle layer in between

the running programs and physical memory. Once the memory is being

visited, ORAM keeps on reshuffling the data allocation in the memory

[96]. Hence, ORAM can ensure independence between physical and

logical access pattern. That is the attacker cannot know whether the

program is reading/writing and if the program has accessed the same data

before [97]. ORAM can conceal all the data access patterns. However,

the computational cost of ORAM is very high, due to the multiple rounds

of interactions between client and server [22]. The shuffle operation of

ORAM algorithm is another performance bottleneck, which leads to a

36 Chapter 2 Literature Review

long response time and high computational cost [98, 99]. In addition,

ORAM is hard to support complex query types (e.g., equality, prefix and

range SQL query in the relational database) [23]. Therefore, existing

ORAM-based schemes are not practical for large datasets.

• Vertical Fragmentation

Vertical fragmentation of database [100, 101, 24, 102] is designed to hide

the sensitive association among the database attributes. For instance,

separating the database table columns of employees’ name and salary in

two servers can avoid the leakage of private information about specific

persons. Some of the vertical fragmentation schemes do not encrypt

sensitive records, while assuming that servers will not collude with each

other. This type of schemes cannot protect the privacy of single attribute

[103]. Vertical fragmentation can be used to counter the IKK attack. For

any two attributes having the unique co-occurrence appearance among

records, vertical fragmentation distributes them to different servers. Then,

the co-occurrence count about queries observed on a single server can

be reduced to zero. However, the frequency of a single attribute is fully

revealed, count attack still occurs on the single server, even when the

records are encrypted. Hence, vertical fragmentation alone cannot resist

the access pattern leakage attack [104].

2.4.3 Security Strategies

The success of IKK attack and count attack both rely on the accurate matches

between ciphertext observation and plaintext dataset knowledge. If either the

ciphertext observation or the plaintext dataset knowledge is inaccurate, the

trapdoor recovery rate will be quite low. As shown in [93], when the attacker

can only get 90% of the plaintext dataset, the recovery rate of IKK and count

2.4 Access Pattern Leakage in Searchable Symmetric Encryption 37

attack declines to less than 0.6 and 0.2, respectively. On the other hand, when

the attacker can only observe partial query results about the encrypted dataset,

the recovery rate will also be reduced, even if the attacker has the complete

knowledge about the same plaintext dataset. As discussed in Chapter 5, our

scheme is designed based on this idea, which is secure against the attackers

even having the complete plaintext knowledge about the same dataset.

Apart from reducing the accuracy of matching in the IKK and count attack,

hiding the uniqueness of observed access pattern is another solution. In the

keyword padding approach [92], the unique co-occurrence is reduced by padding

nonexistent query results. However, the frequency between different keywords

is extremely large (e.g., the most frequent keyword occurs nearly 70 times as

often as the 100 most frequent keywords). It is unable to fill all keywords to

have the same query result, otherwise it will bring a significant number of false

positives. As discussed in Chapter 5, we consider using multi-clouds to tackle

the security problems. Our scheme removes the records in the trapdoor query

results to other cloud servers, in order to make the co-occurrence probability

and keyword frequency observed by a single server incorrect. At the same

time, our scheme distributes queries with similar results on the same server,

in order to make the query result of trapdoors on the same cloud server as

similar as possible.

38 Chapter 2 Literature Review

3
A Distributed Trust Evaluation

Protocol with Privacy Protection for

Intercloud

3.1 Introduction

Trust in a service is generally concerned with a belief in whether the service

can be delivered satisfactorily, in accordance with certain trust attributes.

In the Intercloud context, a cloud service provider (or user) typically trusts

another cloud service provider based on certain trust attributes, such as service

reliability, quality of service and service efficiency. Before choosing/using a

service, trust evaluation is often conducted based on the feedback of existing

users (i.e., reputation-based trust evaluation). Indeed, feedback provided by

past cloud users is a good reference for trust evaluation [68, 56]. Based on this

feedback or rating, a cloud user can evaluate how likely (e.g., a probability)

that a cloud service will be performed as expected. However, the credibility of

feedback is often difficult to guarantee [56] as cloud users often avoid leaving

honest comments, especially negative ones [72]. The main reason for this

behavior is the unequal status between cloud service providers and cloud users

(e.g., a cloud service provider can easily remove negative comments about its

services). This problem becomes more serious in the Intercloud environment.

As there is more and more mutual co-operation, a cloud user or his/her business

could be another type of cloud service provider in future business transactions.

This possible mutual relationship makes the privacy requirement even more

important in the Intercloud scenario. If feedback information cannot be made

39

private, cloud users may only give positive feedback, as they want to maintain

a good relationship or are fearful of retaliation [13, 14]. Hence, it is important

to develop an effective and flexible trust evaluation protocol with privacy

protection for Intercloud.

Inspired by related work on trust and reputation evaluation, this chapter

presents a distributed trust evaluation protocol with privacy protection to ad-

dress the following important requirements. Our contributions are summarized

as follows.

• Cloud user protection. To encourage honest feedback/ratings and to

prevent possible retaliatory attacks, both user identity and user feedback

privacy should be protected. Ideally, feedback should not be linked with

the user and business privacy of the user (i.e., which user has performed

business with which cloud service provider should not be disclosed). Our

protocol uses an innovative mechanism to store feedback, and employs

homomorphic encryptions [25] and [26] with verifiable secret sharing [27]

to protect feedback privacy. Finally, neither the cloud service provider

nor the enquirer can obtain individual feedback.

• Cloud service provider protection. Malicious users can generate

a large volume of misleading feedback or faked ratings to damage the

reputation of a cloud service provider. To address this important issue,

our proposed protocol allows a cloud service provider to certify a rater’s

eligibility. Furthermore, as explained later, our protocol allows the

filtering of extreme ratings without leaking privacy information.

• Trust result availability. Existing distributed protocols typically

require all concerned parties to remain online to facilitate feedback col-

lection. This requirement is not practical in the Intercloud environment.

40 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

The proposed protocol can still function well, even if concerned parties

are not available to contribute to trust evaluation.

• Flexible processing of protected feedback. To facilitate customized

trust evaluation and reduce the influence of misleading ratings, it is

desirable to provide a flexible way to subjectively process protected

feedback results. For example, suppose there are two sets of ratings:

1, 5, 5, 5 and 4, 4, 4, 4. Although they both give an average rating

of 4, one or the other set may be preferred by different enquirers. Our

protocol provides an innovative mechanism to store and process ratings

in a flexible manner (e.g., assigning a lower weight to de-emphasize or

filter extreme ratings) while protecting feedback privacy.

The remaining sections of this chapter are organized as follows. Section

3.2 presents the models and overview. Section 3.3 explains the feedback

computation. Section 3.4 discusses the trust evaluation protocol. Section 3.5

presents the security proof and discusses the security analysis. Section 3.6

presents the simulation settings and Section 3.7 discusses the simulation results.

Section 6 concludes this chapter.

3.2 Models and Overview

In this section, we first discuss the system model, main protocol phases and

adversary model with assumptions.

3.2.1 System Model

Fig. 3.1 shows the system model or architecture with five main components:

cloud service provider (CSP); user/rater; enquirer; distributed feedback storage

3.2 Models and Overview 41

(FBS) and secret sharing network. Under the Intercloud system model, the

CSPs provide cloud services collaboratively to users, and serve each other as

well. In general, there are two types of cloud service users: consumer users

and business users. Consumer users use a cloud service. They have only a

one-way trust/service relationship with a CSP (i.e., the service is one-way CSPs

serving consumer users). Business users may provide services to each other

(i.e., two-way trust/service relationship). After using a cloud service or under

certain arrangements, the users can rate the service or a trust attribute (e.g.,

availability, response time, price, technical support). That means the users

are also raters during the feedback/rating process. Note that to facilitate

the explanation, we focus on evaluating one service or trust attribute. It can

easily be extended to evaluate multiple services or trust attributes. For a

business user, a human representative of the respective organization can provide

the rating/feedback. Furthermore, with advances in intelligent computing

technologies, a software agent or software robot can perform the feedback/rating

task as well. These software agents/robots can communicate through Intercloud

gateways (e.g., using an Intercloud communication protocol with predefined

XML-based messages). In this case, the Intercloud system becomes a highly

autonomous system. The enquirers can be any parties who want to use the

trust evaluation protocol to evaluate the trustworthiness of a CSP based on

the feedback/ratings.

In the traditional web-based trust evaluation system, it usually depends on a

single third party to maintain the feedback information and conduct the trust

evaluation process. However, the this kind of system has some weaknesses due

to its centralized nature. Firstly, a cloud service provider can easily compromise

the system by only publishing positive comments on its service. Therefore,

the fairness of trust evaluation is hard to guarantee. Secondly, relying on a

single third party is vulnerable to single point of failure, which affects the

availability of the trust evaluation service. In the Intercloud environment, the

trust evaluation relationship includes the evaluation between different cloud

42 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

service providers. It becomes even harder or impossible to find a single third

party to handle the trust evaluation workload. Therefore, in our protocol, we

adopt the distributed architecture in which the distributed feedback storage

can be implemented either by the cloud service providers themselves or by

several trusted third parties. We assume there is a distributed FBS for

storing feedbacks. For the Intercloud system, the FBS can be implemented

by the Intercloud exchanges, or by the cloud service providers themselves

using a blockchain-based system. Basically, a feedback is submitted as a

record in the blockchain. With the blockchain consensus mechanisms, feedback

integrity can be preserved. Alternatively, other distributed storage systems,

with integrity guarantees, can also be used to store feedbacks. We also

assume there is a secret sharing network for protecting encrypted feedback.

Detailed operations will be explained later. The secret sharing network can

be formed by the users/raters to protect their feedback privacy. Alternatively,

it can be provided by a third party as a service. In the aforementioned

autonomous Intercloud system, secrets can be shared by software agents

through the Intercloud gateways. Again, communications can be facilitated

by the Intercloud communication protocol. Note that the secret sharing

mechanism is conducted in a distributed manner, without direct interaction

between raters. Through a possibly anonymous secret sharing address (SSA)

(e.g., a server or Intercloud gateway), each rater only needs to reply to the

enquirer by decrypting a certain secret published/provided by the FBS.

3.2.2 Main Protocol Phases

In this subsection, we give an overview of the three main phases of the protocol.

The detailed protocol will be presented in Section 3.4. As shown in Fig. 3.1, the

first phase is rater registration. After using a cloud service provided by a

CSP, a (business/consumer/agent) user registers with the FBS as a rater so that

feedback/ratings on the service can be submitted (i.e., for a trust attribute).

3.2 Models and Overview 43

Enquirers

Feedback
Storage (FBS)

Cloud Service
Providers (CSP)

Users Raters

Secret
Sharing

1. Rater
Registration

2. Feedback
Submission

3. Feedback
Reconstruction

Use Service

Choose Service

: Human or Cloud FBS: Distributed storage (e.g., formed by Intercloud Exchanges)

... ...

... ...

Fig. 3.1: System architecture and protocol overview.

For the registration, it is important to ensure that a rater is a real user. To

fulfill this requirement, a user/rater (e.g., the corresponding public key) is

certified by the CSP by means of a blind signature [105]. For extra verification,

an additional blind signature certification can be provided by a bank or a

payment system (i.e., to verify that the user has a payment transaction with

the CSP). Note that there can be no linkage between the user identity and

rater identity. During registration, the user/rater also needs to provide a secret

sharing address (SSA). After rater registration, a secure channel can be set

up between the user/rater and the FBS for submitting feedback. Anonymous

evaluation is an alternative solution to prevent the retaliation attack. However,

it has the weakness of untraceability. In other words, the enquirer cannot

44 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

determine whether the feedback or comment provided by an anonymized

user is based on a real cloud service experience. Furthermore, using fully

anonymous evaluation also facilitates the generation of fake feedbacks. Due

to the untraceability of fully anonymous evaluation, slander or self-promotion

attack cannot be easily detected. In our protocol, the cloud service provider

adopts the blind signature method to prove that a user has the right to submit

a feedback. As a result, neither the cloud provider nor the user/enquirer can

link the unblinded signature (i.e., rater identity) with a blinded signature (i.e.,

user identity). At the same time, the feedback storage can still use the public

key of the cloud provider to verify the rater identity without affecting user

privacy.

The second phase is feedback submission. In this phase, raters choose

different secret keys to encrypt their feedback, using a symmetric homomorphic

encryption scheme. Due to the additively homomorphic property of the

encryption scheme, different raters’ encrypted feedback can be added together

directly to produce overall feedback, which can only be decrypted with the

sum of the raters’ secret keys. To support the decryption of the overall

feedback while preventing the disclosure of individual feedback, the raters

form a secret sharing network based on a verifiable secret sharing scheme.

The encrypted feedback and aforementioned SSAs are maintained by the

FBS (i.e., a secure distributed storage to protect data integrity). Detailed

approaches will be presented in the Section 3.4.2. The last phase is the

feedback reconstruction for trust evaluation. To conduct a trust evaluation

based on encrypted feedback, an enquirer progressively sends request to each

rater based on SSAs provided/published by the FBS. Note that there can be

no linkage between a SSA and the corresponding rater. A rater replies to the

request based on the information maintained on the FBS. When there are

sufficient replies (i.e., secret shares) from the raters, the enquirer can regenerate

the required secret key for decrypting the feedback or rating result.

3.2 Models and Overview 45

We rely on the distributed feedback storage FBS (i.e., a group of cloud providers

or trusted third parties) to verify rater identities (i.e., to check whether a rater

has really used the cloud service before). Therefore, when a malicious cloud

service provider colludes with some fake users to submit negative feedbacks to

other clouds. These fake users can be detected during the rater verification.

This is because a fake user cannot generated the required digital signature.

Another possible attack is that a malicious cloud service provider colludes

with a number of eligible users to submit misleading feedbacks. While this

cannot be detected by FBS during the rater registration phase, our protocol

allows an enquirer to flexibly process the ratings by using different evaluation

weights. Hence, the enquirer can filter extreme ratings which can reduce the

influence of misleading feedbacks. Note that the evaluation can be performed

while protecting feedback privacy. The detailed protocol will be presented in

Section 3.4.3.

3.2.3 Adversary Model and Assumptions

In the protocol, we assume that the FBS is reliable for verifying rater identities

and ensuring feedback integrity (e.g., by using a blockchain-based system

formed by the Intercloud exchanges). That means, once a feedback is submitted,

it cannot be altered or removed from the FBS. However, the FBS itself may

not guarantee privacy protection (i.e., its main purpose is to protect data

integrity). We also assume that all communication channels are secure (i.e.,

communication security is outside our scope). Our security goal is to prevent

misbehaving parties from jeopardizing the system operation. As previously

mentioned, with the aim of protecting cloud users and CSPs and safeguarding

system availability, the scope of this chapter is to tackle the following major

security attacks using a distributed system.

46 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

• Attack 1: Malicious users. These malicious users try to affect trust

evaluations by submitting misleading feedbacks to the FBS. They may

have never used the cloud services before, but pretend to be real users.

• Attack 2: Selfish raters. Attacks from selfish raters can be further

divided into two types.

a) Selfish raters prepare incorrect secret sharing information.

b) Selfish raters refuse an enquirer’s request for secret key reconstruc-

tion, such that the enquirer cannot conduct the trust evaluation.

• Attack 3: Malicious FBS. Attacks from a malicious FBS can be further

divided into two types.

a) It discloses the privacy information of a rater so that the user

identity can be found.

b) It leaks rater information to a CSP so that negative raters can be

identified.

• Attack 4: Malicious CSPs. Attacks from malicious CSPs can be further

divided into two types.

a) It may impersonate a valid enquirer to ask for honest raters to

obtain individual feedbacks.

b) It may manipulate the FBS and collude with a number of malicious

raters to reconstruct the secret keys of honest raters so as to decrypt

individual feedback.

3.2 Models and Overview 47

3.3 Computation of Feedback Results

Before presenting the trust evaluation protocol in detail, this section first intro-

duces how to compute feedback results for trust evaluation, while protecting

feedback privacy.

3.3.1 Processing of Feedbacks in Plaintext

In this subsection, we first discuss the processing of feedback or ratings in

plaintext. Let R = {r1, ..., rn} be the set of users/raters that have used a cloud

service. These raters can provide ratings for trust evaluation. As mentioned

above, to facilitate the explanation, we focus on one service or trust attribute.

There is a set of rating choices B = {b1, ..., bz} for the raters to choose from.

Each rating choice represents a different level of satisfaction with the cloud

service or a trust attribute (e.g., in a five-star rating system, one-star (?)

indicates not satisfactory and five-stars (? ? ? ? ?) indicates very satisfactory.

We define fl as the feedback of a rater rl (1  l  n) for a service or trust

attribute. Each rater chooses one of the rating levels in the feedback, that is

fl 2 {b1, ..., bz}. To facilitate the later computation in our scheme, we present

each rating choice as a big integer with z(blog nc+ 1) binary bits. Each set

of (blog nc + 1) binary bits allows the counting on each rating choice. For

example, consider that there are four raters (n = 4) giving feedback to a

five-star rating system. For each rating choice, three binary bits are used for

counting purposes (i.e., how many raters chose the choice). That means that

each rater’s feedback fl is one of the following ratings:

48 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

b5 ? ? ? ? ? 0 0 1, 0 0 0, 0 0 0, 0 0 0, 0 0 0

b4 ? ? ?? 0 0 0, 0 0 1, 0 0 0, 0 0 0, 0 0 0

b3 ? ? ? 0 0 0, 0 0 0, 0 0 1, 0 0 0, 0 0 0

b2 ?? 0 0 0, 0 0 0, 0 0 0, 0 0 1, 0 0 0

b1 ? 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 1

By storing the ratings using the above mechanism, the number of raters for

each choice can be found by adding the feedback. For example, raters r1, r3, r4

rate for ?? and r2 rates for ? ? ? ? ?. By adding their feedback together, we

can obtain the following result in binary.

u1, f1 = b2 0 0 0, 0 0 0, 0 0 0, 0 0 1, 0 0 0

u2, f2 = b5 0 0 1, 0 0 0, 0 0 0, 0 0 0, 0 0 0

u3, f3 = b2 0 0 0, 0 0 0, 0 0 0, 0 0 1, 0 0 0

u4, f4 = b2 0 0 0, 0 0 0, 0 0 0, 0 0 1, 0 0 0

Rsum =
P

l=4
l=1 fl 0 0 1, 0 0 0, 0 0 0, 0 1 1, 0 0 0

0 0 12 = 110, 0 0 02 = 010 0 1 12 = 310

By converting the binary sum to the corresponding decimal number, we can

obtain the number of raters for each rating choice, that is |bj|. In the above

example, the binary bits 001 indicate that one rater rated ????? (i.e., |b5| = 1).

Also, the binary bits 011 indicate that three raters rated ?? (i.e., |b2| = 3). An

enquirer can determine the number of raters for each choice by computing the

following sum:

Rsum =
l=nX

l=1

fl.

|b1|, ..., |bz| = Convert(Rsum).

(3.1)

Rsum is the feedback sum of raters in the set R. After converting the binary

bits in Rsum to the corresponding decimal number, the number of raters for

each rating choice can be found, that is |b1|, ..., |bz|. In subsequent sections,

3.3 Computation of Feedback Results 49

we describe how to obtain Rsum without disclosing individual rating of raters.

The trust evaluation result can then be computed as follows:

T r =

P
j=z

j=1 wj ⇥ |bj|⇥ j

n
. (3.2)

T r represents the trust evaluation result for an enquirer based on the feedback

ratings. It is a weighted mean of different rating choices. wj is the evaluation

weight assigned by each enquirer to the jth rating choice. |bj| is the number of

raters choosing the j-th rating choice. Note that besides Equation (3.2), other

similar formulas can also be used. Depending on the enquirer’s preference,

different evaluation weights can be used for evaluation purposes. Note that if

the evaluation weight for all ratings is equal to 1, the result will give the average

rating. By using the aforementioned approach, an enquirer can process the

ratings more flexibly. For example, suppose that an enquirer wants to choose

either cloud 1 or cloud 2. The ratings for cloud 1 and cloud 2 are {3, 3, 3, 3} and

{1, 1, 5, 5}, respectively. That means, the average ratings are both 3. However,

if the enquirer prefers to choose a cloud service with more five-star ratings, a

higher weight can be assigned (e.g., 1 for five-star ratings, 0.8 for other ratings).

Thus, the trust evaluation result for cloud 1 is (0.8⇥ 4⇥ 3)/4 = 2.4. And the

trust evaluation result for cloud 2 will become (0.8⇥ 2⇥ 1+1⇥ 2⇥ 5)/4 = 2.9.

So cloud 2 will be chosen. On the contrary, if an enquirer wants to assign a

lower weight to filter or de-emphasize extreme ratings (e.g., 0.8 for one-star

and five-star ratings, 1 for other ratings). Then the trust evaluation result of

cloud 1 is (1⇥ 4⇥ 3)/4 = 3. And the trust evaluation result of cloud 2 will

become (0.8⇥ 2⇥ 1+0.8⇥ 2⇥ 5)/4 = 2.4. Hence, cloud 1 will be chosen. Note

that as explained later, this flexible processing of ratings can be performed

while protecting feedback privacy.

50 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

3.3.2 Homomophic Encryption of Feedback

In the last subsection, we have introduced how to process feedback in plaintext.

To encourage frank feedback and prevent a retaliatory attack, it is important

to protect feedback privacy. In this subsection, we present how to process

encrypted feedback for trust evaluation. The majority of the homomorphic

encryption schemes are based on asymmetric key encryption. That is, plain

text/values are encrypted using the same public key, such that they can be

directly added or multiplied together. However, in our scenario, it is difficult

for raters to share the same pair of public and private keys. On the contrary,

we should allow each rater to use a different secret key to protect feedback

privacy. In our protocol, we adopt the symmetric homomorphic encryption

scheme proposed in [25]. The encryption of a private feedback f is defined

as:

c = Ek(f) = [(f + k)⇥MK] mod ↵ (3.3)

where parameter ↵ is a prime, MK is a master key, k is a random secret key.

The decryption of Ek(f) is defined as:

f = Dk(c) = [c⇥ MK�1
� k] mod ↵ (3.4)

where parameter MK�1 is the multiplicative inverse of MK modulo e. As-

suming that c1 and c2 are the ciphertexts of feedback f1 and f2 under secret

keys k1 and k2, respectively. The homomorphic property of the encryption

supports direct computation on the ciphertexts as follows:

c1 + c2 = Ek1(f1) + Ek2(f2)

= [(f1 + f2) + (k1 + k2)]⇥MK mod ↵

= Ek1+ k2(f1 + f2).

(3.5)

3.3 Computation of Feedback Results 51

The result can be decrypted using the key MK�1 and the corresponding sum

of secret keys k1 + k2 as follows:

f1 + f2 = Dk1+k2(c1 + c2). (3.6)

The property of additive homomorphic encryption shown in Equation (3.6)

allows the enquirer to compute the encrypted feedback as if it were computed

based on its plaintexts:

Csum =
l=nX

l=1

Ekl
(fl) = EP

l=n

l=1 kl
(
l=nX

l=1

fl). (3.7)

That is Csum = E SK(Rsum) where kl is the secret key of rl used to encrypt the

feedback fl. Csum is the encrypted sum of all raters’ feedback. SK =
P

l=n

l=1 kl

is the sum of secret keys privately held by each rater. To decrypt Csum and

recover the sum of feedback in plaintext Rsum, the enquirer needs to obtain

SK.

As indicated in the Equation (3.7), to obtain SK, the enquirer needs to ask

all concerned raters to provide their secret keys. However, this requirement

is unrealistic. Moreover, if the secret key of each feedback is disclosed to the

enquirer, feedback privacy cannot be protected. Hence, we adopt secret sharing

in [106, 107], which allows a rater to share its secret key through n pieces

and with only at least m out of n pieces, the secret key can be recovered. We

consider that the raters can share their secret keys with one another. When a

certain number of raters is available to share the secret keys, the sum of the

secret key SK can be determined.

52 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

Table 3.1: Notations used in the trust evaluation protocol

Notation Description
CSP Cloud service provider
FBS Feedback storage
ul The lth user of CSP
rl The lth rater who gives feedback to CSP
fl The feedback given by rater rl to CSP
pubKl, privKl The public/private keys of rater rl

kl The secret key of rater rl for feedback encryption

kli
The secret key share prepared by
rater rl for rater ri

n The number of raters in a rater set R of CSP

m
The minimum number of raters for
secret key sum reconstruction

galm�1 , ..., gkl
The m commitments for verifying
the secret key share of rater rl

Ekl
(fl) The encrypted feedback of rater rl

EpubKi
(kli)

The encrypted secret key share
prepared by rater rl for rater ri

3.4 Trust Evaluation Protocol

In this section, we discuss the trust evaluation protocol in detail, based on

the aforementioned system model and building blocks. There are three phases

in the trust evaluation protocol: rater registration, feedback submission and

feedback reconstruction. The notations used in this section to describe the

protocol are summarized in Table 3.1.

3.4.1 Rater Registration Phase

1) {]Sign(pubKl)} CSP. A user requests for certification by a CSP.

To register with the FBS as a rater, a user ul 2 U = {u1, ..., un} needs

3.4 Trust Evaluation Protocol 53

UserCSP FBS
p̂ubKl

]Sign(pubKl) Sign(pubKl)

EpubKl
(rm)

DprivKl
(EpubKl

(rm))

Fig. 3.2: Process of rater verification.

to provide the FBS with proof of identity. The user ul first generates a

pair of public/private keys {pubKl, privKl} for the certification process.

Then, the user ul asks the CSP to sign the public key {pubKl} by means

of a blind signature to prove the right to submit feedback. Basically,

the user ul first sends a “blinded” public key p̂ubKl to the CSP by

combining it with a certain number of random factors. The CSP then

returns the blinded signature]Sign(pubKl) to the user. After unblinding
]Sign(pubKl), the user obtains the signature Sign(pubKl), which is proof

of the rater registration. As previously mentioned, additional certification

can be provided by means of a double blind signature (e.g., an additional

blind signature by a payment system).

2) {pubKl, Sign(pubKl)} ul. The user verifies the identity with

the FBS. The user sends the signature Sign(pubKl) with the public

key pubKl to the FBS for verification. The FBS verifies Sign(pubKl)

with the public key of the CSP. Upon verification, the FBS continues to

verify that user ul has the private key of pubKl by asking ul to decrypt a

random message rm encrypted with pubKl (i.e., a challenge and response

mechanism). If ul can correctly decrypt the random message rm, it

finally proves that ul has the right to submit feedback so that the rater

registration can be conducted. The verification process is shown in

Fig. 3.2.

54 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

3) {hpubK1, ..., pubKni, hSSA1, ..., SSAni} FBS. The user registers with

the FBS as a rater. Once a user is verified by the FBS, a new rater

identity is created for the user. Due to the use of a blind signature (i.e.,

no linkage between]Sign(pubKl) and unblinded signature Sign(pubKl)),

the user’s identity cannot be determined from the rater’s identity. The

rater also needs to provide a SSA for the secret sharing operation, which

has no linkage with the CSP. After user registration, the FBS groups

n registered raters together to form R = {r1, ..., rn} and publishes their

public keys and SSAs. Note that there can be no linkage between an

SSA and the corresponding rater, and the SSAs can be published in a

group.

3.4.2 Feedback Submission Phase

In this phase, each rater generates a different secret key for the encryption

of its feedback, and shares this secret key with all raters in the same random

group/set R using the (m,n) Shamir’s secret sharing method [106]. The secret

key share process does not rely on the existing trust relationship between users,

since their identities have been anonymized. When certain raters leak the

privacy of honest raters, their own secret keys would leak at the same time.

Thus, the privacy of raters’ feedback is preserved. When a rater wants to

update its feedback, it only uses the same secret key to encrypt its new feedback,

without updating its secret key shares. Due to the homomorphic property

of Shamir’s secret sharing, given ith share of each secret key F1(i), ..., Fn(i),

one can compute the ith share of the sum of n secret keys F1(x) + ...+ Fn(x).

With the distributed collaboration of m out of n raters, the sum of secrets can

be reconstructed, where m is the threshold value.

1) {kl, hkl1, ..., klni, hgalm�1 , ..., gkli} rl. Each rater prepares secret

key shares to protect the privacy of the feedback. To implement

3.4 Trust Evaluation Protocol 55

the above method, each rater in R privately constructs a different poly-

nomial with the same degree of m� 1, but different random coefficients,

and a constant term, which represents the secret key of the rater. Each

rater rl 2 R constructs a polynomial

Fl(x) = alm�1x
m�1 + alm�2x

m�2 + ...+ al1x+ kl(mod �).

Rater rl produces n points on Fl(x) and one for each rater. That is,

kli = Fl(i) is the secret key share prepared by rater rl for rater ri,

1  i  n. To allow each rater to verify that its secret key share is

correctly prepared, we adopt a verifiable secret sharing scheme [27]. Each

rater rl also generates m commitments to the coefficients of Fl(x), that is

{galm�1 , galm�2 , ..., gal1 , gkl}. The public parameter g is the generator of a

cyclic group. In this group, the discrete logarithm is difficult to compute.

Rater rl submits the m commitments {galm�1 , ..., gkl} to the FBS.

2) {EpubK1(kl1), ..., EpubKn
(kln)} rl. A rater prepares the encrypted

share of the secret key with the rest of the raters. To prevent

the FBS from directly observing the secret key shares, the rater encrypts

each secret key share with the public key of the corresponding rater using

Paillier encryption [26]. That is, EpubKi
(kli) is the encrypted secret key

share prepared by rater rl for rater ri. Rater rl submits n encrypted shares

of its secret key {EpubK1(kl1), ..., EpubKn
(kln)} to the FBS, as illustrated

in Table 3.2.

3) {
Q

l=n

l=1 EpubK1(kl1), ...,
Q

l=n

l=1 EpubKn
(kln)} FBS. The FBS computes

the product of all encrypted key shares for each rater. To facili-

tate the feedback reconstruction process, the FBS computes the product

of Paillier-based encrypted key shares for each rater and publishes the

product results, as shown in the gray parts of Table 3.2. Based on the

additive homomorphic property of Paillier encryption, the encrypted key

shares for the same rater can be multiplied together, which is equal to the

56 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

encrypted sum of key shares, that is
Q

l=n

l=1 EpubKi
(kli) = EpubKi

(
P

l=n

l=1 kli).

4) {g
P

l=n

l=1 alm�1 , ..., g
P

l=n

l=1 kl} FBS. The FBS computes the product

of all polynomial commitments for verification. To allow any m

of the n raters to verify the aggregated secret key shares, (i.e.,
P

l=n

l=1 kli

is correctly prepared), the FBS computes the product of all raters’

polynomial commitments and publishes the product result i.e.,

l=nX

l=1

Fl(x) =
l=nX

l=1

alm�1x
m�1 + ...+

l=nX

l=1

al1x+
l=nX

l=1

kl(mod �).

5) Ekl
(fl) rl. A rater submits the encrypted feedback to the FBS.

To submit feedback, rater rl encrypts the feedback to obtain Ekl
(fl) based

on Equation (3.3). The rater then uploads the encrypted feedback to the

FBS, as shown in the gray part of Table 3.2. The feedback submission

process is shown in Fig. 3.3.

6) {Ekl
(f

0
l
), hEpubK1(k

0
l1), ..., EpubKn

(k
0
ln
)i, hgdlm�1 , ..., gdl1 , gi} rl. A rater

updates the feedback and secret key shares. A rater can update

the feedback by resubmitting new feedback f
0
l

encrypted using the same

secret key kl to the FBS, that is, to use Ekl
(f

0
l
) to replace the old one. To

prevent malicious users from colluding to recover the secret keys of honest

raters over time, each rater rl can periodically update the secret key

shares by generating a new polynomial F 0
l
(x) with random coefficients,

but a constant term of zero. As a result, an attacker must collude with

enough raters within a certain time frame to successfully recover the

secret key.

F
0

l
(x) = dlm�1x

m�1 + ...+ dl1x+ 0(mod �).

3.4 Trust Evaluation Protocol 57

FBSRater rl
galm�1 , ..., gkl

EpubK1(kl1), ..., EpubKn
(kln)

Ekl
(fl)

Fig. 3.3: Process of feedback submission.

For each remaining rater, a new point on this new polynomial F 0
l
(x) is

computed, that is, k0
li
= F

0
l
(i). Each rater then adds the old secret key

share with the new point to obtain the new secret key share, that is,

k1
li
= kli + k

0
li
= Fl(i) + F

0
l
(i). Thus, each rater rl can update secret key

shares by submitting n new encrypted secret key shares to the FBS, that

is {EpubK1(k
0
l1), ..., EpubKn

(k
0
ln
)}. At the same time, rater rl updates its

polynomial commitments by sending {gdlm�1 , ..., gdl1 , g} to the FBS. Note

that the FBS will verify the rater’s identity in each submission. After

a certain period of time, all submitted encrypted feedback and secret

key shares need to be dismissed and can no longer be used. To avoid

breaking anonymity and privacy, raters need to generate new secret keys

for new feedback, and upload them to FBS.

3.4.3 Feedback Reconstruction Phase

1) {Ek1(f1), ..., Ekn
(fn)} FBS. An enquirer gets the encrypted feed-

back from the FBS. To evaluate the trustworthiness of a cloud service,

an enquirer sends a request to the FBS for the feedback provided by

raters. Upon receiving a reply from the FBS, the enquirer computes

the encrypted sum of the raters’ feedback by adding it together, that is

Csum =
P

l=n

l=1 Ekl
(fl) = EP

l=n

l=1 kl
(
P

l=n

l=1 fl).

2) Request for decryption Enquirer. The enquirer requests the

raters to decrypt the assigned secret key shares. To decrypt the

58 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

Table 3.2: Feedback submission and reconstruction

R
at

er
s

E
nc

ry
pt

ed
Fe

ed
ba

ck
s

Se
cr

et
ke

ys
(k

li
=

F
l
(i
))

r 1
...

r n

Section3.4.2

r 1
E

k
1
(f

1
)

F
1
(x
)
=

a 1
m
�
1
x
m
�
1
+
..
.+

k 1
E
p
u
b
K

1
(k

1
1
)

...
E
p
u
b
K

n
(k

1
n
)

+
+

⇥
⇥

. . .
. . .

. . .
. . .

. . .
. . .

r l
E

k
l
(f

l
)

F
l
(x
)
=

a l
m
�
1
x
m
�
1
+
..
.+

k l
E
p
u
b
K

1
(k

l1
)

...
E
p
u
b
K

n
(k

ln
)

+
+

⇥
⇥

. . .
. . .

. . .
. . .

. . .
. . .

r n
E

k
n
(f

n
)

F
n
(x
)
=

a n
m
�
1
x
m
�
1
+
..
.+

k n
=

Q
l=

n

l=
1
E
p
u
b
K

1
(k

l1
)

...
=

Q
l=

n

l=
1
E
p
u
b
K

n
(k

ln
)

Section3.4.3

+
+

+
+

+
+

=
E

P
l
=
n

l
=
1
k
l
(P

l=
n

l=
1
f l
)

=
P

l=
n

l=
1
a l

m
�
1
x
m
�
1
+
..
.+

P
l=

n

l=
1
k l

=
E
p
u
b
K

1

P
l=

n

l=
1
k l

1
...

=
E
p
u
b
K

n

P
l=

n

l=
1
k l

n

D
ec
+

Ve
rif

y
+
gP

l
=
n

l
=
1
a
l
m

�
1
,.
..
,g

P
l
=
n

l
=
1
k
l

D
p
r
i
v
K

1
()
+

D
p
r
i
v
K

n
()
+

R
s
u
m

=
PP P

l=
n

l=
1
f
l

(
P

l=
n

l=
1
k l
(

m
ou

t
of

n
P

l=
n

l=
1
k l

1
=

P
l=

n

l=
1
F
l
(1
)

...
P

l=
n

l=
1
k l

n
=

P
l=

n

l=
1
F
l
(n
)

3.4 Trust Evaluation Protocol 59

encrypted sum of feedback, the enquirer needs to reconstruct the sum of

the raters’ secret keys
P

l=n

l=1 kl. The enquirer progressively sends requests

to the raters based on SSAs provided/published by the FBS. In each

iteration, the minimum number of raters are chosen and contacted. For

example, in the first iteration, m raters are contacted. If only x of them

reply, m�x raters will be contacted in the second iteration. Alternatively,

the enquirer can broadcast requests to all raters but some replies may

be wasted as only m of them are required.

3) DprivKi
(
Q

l=n

l=1 EpubKi
(kli)) ri. Each rater independently decrypts

the product of respective secret shares, and forwards it to the

enquirer. Rater ri who is willing to contribute to secret key recon-

struction gets the product result of the encrypted secret key shares
Q

l=n

l=1 EpubKi
(kli) from the FBS. Due to the additive homomorphic prop-

erty,
Q

l=n

l=1 EpubKi
(kli) = EpubKi

(
P

l=n

l=1 kli). ri decrypts it using the private

key privKi to obtain
P

l=n

l=1 kli and sends it to the enquirer. The process

of secret key share collection is illustrated in Fig. 3.4. Note that an

honest rater will not decrypt any information other than the encrypted

sum of secret key shares assigned to it.

4) Secret share verification Enquirer. The enquirer verifies the se-

cret key shares with the polynomial commitments. The enquirer

obtains the product of all polynomial commitments from the FBS. The

enquirer then computes the following value for each rater ri

(g
P

l=n

l=1 alm�1)i
m�1

(g
P

l=n

l=1 alm�2)i
m�2

...(g
P

l=n

l=1 kl)i
0

= g
P

l=n

l=1 alm�1i
m�1+

P
l=n

l=1 alm�2i
m�2+...+

P
l=n

l=1 kl

= g
P

l=n

l=1 Fl(i).

Accordingly, using the public parameter g and received
P

l=n

l=1 kli, the

enquirer computes g
P

l=n

l=1 kli(mod �). By comparing g
P

l=n

l=1 Fl(i)(mod �) and

60 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

EnquirerFBS Rater ri
Ek1(f1), ..., Ekn

(fn)

g
P

l=n

l=1 alm�1 , ..., g
P

l=n

l=1 kl

Q
l=n

l=1 EpubKi
(kli)

P
l=n

l=1 kli

Fig. 3.4: Process of secret key share collection.

g
P

l=n

l=1 kli(mod �), the enquirer can verify whether
P

l=n

l=1 kli can correctly

reconstruct the sum of all raters’ secret keys.

5)
P

l=n

l=1 kl Enquirer. The enquirer reconstructs the raters’ en-

crypted secret keys. When there are at least m successful secret share

verifications (i.e., from m raters), the sum of n raters’ secret keys can be

reconstructed using the Lagrange interpolation method, that is,
P

l=n

l=1 kl.

6)
P

l=n

l=1 fl Enquirer. The enquirer decrypts the encrypted sum

of feedback. Finally, using the secret keys, the enquirer can decrypt

Csum to obtain Rsum =
P

l=n

l=1 fl. By converting the respective binary

digits of Rsum to the corresponding decimal numbers, the number of

raters for each rating choice can be determined. The enquirer finally

obtains the trust evaluation result using different evaluation weights:

T r = (
P

j=z

j=1 wj ⇥ |bj|⇥ j)/n.

3.5 Security Evaluation

We analyze the security of our proposed Intercloud trust evaluation protocol

based on the widely used simulation paradigm [108] in a manner similar

to that seen in [109]. In this paradigm, a system is secure if its output

distribution approximates an ideal system for all possible input distributions.

More specifically, we first define an ideal system where all computations are

3.5 Security Evaluation 61

conducted by a trusted party, T . Furthermore, all participants communicate

through T via a secure communication channel. As such, this hypothetical

ideal system is secure, assuming T is honest. A real-world system is secure if

the output distribution of the system is the same as that of an ideal system

for all possible input sequences. A complete security analysis in this paradigm

then consists of two parts, namely, a security model and security proof. The

former gives the definition of an ideal system, and the latter asserts that the

input-output distribution of a real-world system is the same as that of the

ideal system.

3.5.1 Security Model

An Intercloud trust evaluation protocol consists of rater registration, feedback

submission and feedback reconstruction phases with relevant parties being

the FBS, CSP, users/raters and enquirers. We give the specifications of the

ideal-world system as follows.

• Rater registration Each user u 2 U = {u1, ..., un} sends a request to

register as a rater for a CSP to T , who forwards the request to the CSP

concerned. The response from the CSP is sent back through T . Upon

receiving approval, u sends another request to T for the registration as a

rater with FBS. T first checks whether the request is legitimate, based on

the CSP response. If the request is valid, T notifies FBS that one eligible

user is requesting to give feedback for this particular CSP. Note that

T will not reveal the identity of u to FBS. If FBS accepts this request,

T creates a new rater identity r for u and informs u and FBS. FBS

randomly groups raters together to obtain a set of raters R = {r1, ..., rn}.

The set, R, is made known to all raters within the set through T .

62 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

• Feedback Submission Each rater r 2 R = {r1, ..., rn} sends a request

to T for rater set R that includes r. T first checks whether the requester

is rater r. Once it passes the check, T returns R to it. Rater acknowledges

set R to T . T informs the FBS that rater r’s R. After a period of time,

each rater r submits its feedback f to T . Then, after T confirms the

requester is rater r, it will store the feedback and inform FBS that rater

r has submitted feedback, but without informing FBS about the content

of the rater’s rating choice.

• Feedback Reconstruction An enquirer asks T for the CSP feedback

given by its past users. T forwards the enquirer’s request to all raters in

the R to ask whether they support the reconstruction of the feedback

results. When there is a sufficient number of approval responses from

raters, T calculates the sum of the feedback given by raters in the group

R and returns this sum to the enquirer. Then T informs FBS that an

enquirer has obtained the sum of the feedback in the group R.

Upon completion of the three phases, all participants output the protocol

outcome in each of the above three phases. Obviously, the system in the ideal

world is secure, assuming T follows the specifications completely and that

communication between T and the participants is secure. In particular, CSP

and FBS will not be able to obtain individual feedback. CSP also cannot learn

the raters’ identity. To show that our proposed Intercloud trust evaluation

protocol achieves its security goals, it suffices to prove that for all possible

execution sequences and all possible inputs, the output distribution of our

proposed system is the same as the above ideal system.

Following the above intuition, we define the security of an Intercloud trust

evaluation protocol as follows. Let ~x denote the set of inputs for all participants.

Let M denote the set of dishonest participants controlled by adversary A. To

be more specific, we use AI and AR to denote an adversary in the ideal and

3.5 Security Evaluation 63

the real worlds respectively. Honest participants are denoted as H. While

H follows the protocol faithfully, A may act arbitrarily. Let REALAR
(, ~x)

(resp. IDEALAI ,S(, ~x)) denote the probability distribution of joint outputs of

honest clouds and adversary AR (resp. adversary AI) on inputs ~x and security

parameter  in the real world (resp. in the ideal world).

Definition 1 An Intercloud trust evaluation protocol is secure, if for all prob-

abilistic polynomial time adversaries AR, there exists a corresponding AI in

the ideal world such that:

{REALAR
(, ~x)}2N ⇡ {IDEALAI

(, ~x)}2N (3.8)

where ⇡ represents indistinguishability of two distributions.

3.5.2 Security Proof

The goal of the security proof is to show that for all AR, there exists a

corresponding AI . To accomplish the goal, we construct a simulator, S, who

plays the role of all honest parties in the view of AR, and plays the role of

AI in the ideal world. That is, S represents the honest parties to interact

with AR in the real world, in order to learn about the attacks of AR. At the

same time, S represents the dishonest users/raters, CSP, FBS and enquirer

to interact with T in the ideal world. Then, we are going to show that the

input-output distribution of the two worlds is indistinguishable. Based on the

adversary model analyzed in Section 3.2.3, in the real world, adversary AR

might corrupt all participants (i.e., users/raters, CSP, FBS and enquirer) in

all three phases of our protocol.

Below we discuss the various attacks presented in our adversary model (Section

3.2.3) and that if successful, would cause the outputs of the ideal and real

64 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

world to be distinguishable. Then, we present arguments that these cases can

only occur with negligible probability.

• Rater registration

1) (Attack 1) Malicious user in the real world who does not obtain

the signature assigned by CSP can register as a rater and submit

misleading feedback. In the ideal world, T will check CSP’s ap-

proval for a rater registration request, and thus this attack cannot

happen. In our protocol, we assume that FBS is reliable for rater

verification and needs to verify the signature with a CSP public key.

Consequently, a malicious user only becomes a rater if it can forge

a signature of the CSP. We would like to remark that it cannot

become a rater by stealing signatures from valid users. The reason

is that in our protocol, FBS will validate whether the signature

holder is the real user by a challenge-response protocol in which

the rater is required to decrypt the ciphertext of a random message.

Since a malicious user does not have the private key of the real

signature holder, it cannot decrypt the message and cannot pass

the check on FBS. As a result, this scenario will not occur.

2) (Attack 3a) Malicious FBS maintains raters’ information, which

violates business privacy. FBS can help CSP identify raters that

gave negative feedback. In the ideal world, all users’ user identity

information is kept secret by T and thus, this attack cannot occur.

In our protocol, we adopt a blind signature to prevent this from

happening in the real world. Specifically, possession of an unblinded

signature only demonstrates that the signature holder is a legitimate

user of the CSP, but it cannot be linked to the specific blind signature

generation.

3.5 Security Evaluation 65

• Feedback Submission

1) (Attack 2a) Selfish raters may prepare incorrect secret sharing in-

formation and submit it to the FBS. In the ideal world, T stores a

single feedback value and seeks approval from raters before releasing

it. In other words, this attack cannot happen. In our protocol,

we adopt verifiable secret sharing to prevent this from happening.

Specifically, anyone can verify whether the secret key shares of each

rater has been correctly prepared. As such, this attack also cannot

happen in the real world.

2) (Attack 3b) Malicious FBS may help CSP to identify raters that

gave negative feedbacks. Malicious CSPs and FBS colludes to obtain

actual value of individual feedback. In the ideal world, all feedback is

maintained by T . FBS only knows whether a rater has provided its

rating or not, and thus this attack cannot happen. In our protocol,

we adopt homomorphic encryption, so that all feedback and secret

key shares are encrypted by the secret key and public key of honest

raters. Therefore, only the honest raters themselves can decrypt it.

The FBS cannot directly deduce the plaintext of these encrypted

values and in the FBS’s view, these values are indistinguishable

from random values. Thus, this attack also cannot happen in the

real world.

• Feedback Reconstruction

1) (Attack 2b) Selfish raters refuse the enquirer’s request for secret

key reconstruction, such that the enquirer cannot reconstruct the

feedback sum. This attack can occur in both the real world and

the ideal world, and depends on the number of honest raters versus

selfish raters. In the next section, we present an analysis to show

66 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

feedback reconstructions that fail with very low probability under

reasonably chosen parameters.

2) (Attack 4a) Malicious CSP pretends to be an enquirer to ask for

honest raters to decrypt the individual secret key share of a specific

rater so as to obtain its individual feedback. In the ideal world, T

checks the identity of the enquirer to prevent this from happening.

In our protocol, this will also not happen, since an honest rater will

refuse this kind of request from an enquirer.

3) (Attack 4b) Malicious CSP colludes with FBS and n raters. As long

as n is smaller than the threshold, no information is leaked since

secret reconstruction is impossible. In the case that n is greater

than or equal to the threshold, the real world adversary AR can

reconstruct the secret key of honest raters and obtain individual

feedback f without being noticed. In the ideal world, honest raters

will be notified by T of the fact that someone attempted to recon-

struct feedback. In this case, the two world will be distinguishable.

We define event fail as the scenario where AR obtains individual

feedback without being noticed.

In conclusion, the only case in which the outputs of the real and ideal worlds

are distinguishable is when event fail occurs in the feedback reconstruction

phase. In the next section, we will analyze the probability of a successful

attack of this kind, in which the adversary obtains individual feedback from

our protocol.

3.5 Security Evaluation 67

3.6 Simulation Settings

In this section, we conduct simulations to evaluate our protocol, focusing on

the security aspects. In particular, the aim is to evaluate how the protocol can

resist collusion attack from malicious raters and maintain the availability of

trust results with the selfish raters.

Choice of Parameters. We first use a weighted directed graph G(N, p, q) to

describe the possible connections between users and CSPs in the Intercloud

scenario. A set of vertices N in the graph G represents the set of users/raters

and CSPs in the Intercloud. Note that each vertex can be a user as well

as a CSP. When a user interacts with a CSP, a directed edge will be added

from the cloud vertex to the user vertex on the graph. We define parameter

p 2 [0%, 100%] as the density of graph G, which is the ratio between the

actual number of edges and the maximum number of edges in the graph G

(i.e., N(N � 1)). A larger p indicates there are more interactions between users

and CSPs. And the weight of each edge in the graph is the feedback given by

a rater to a CSP. We define the parameter q 2 [0, 100] as the average feedback

given by a rater to a CSP, which is also the average weight of an edge in the

graph. A larger q shows that the rater tends to give more positive feedback

to the CSP. Fig. 3.5 shows a simple example of graph G. There are three

vertices, each acting as CSP and user at the same time (i.e., N = 3). There

are four edges. Thus, the graph density is p = 4
6 = 67%. Each edge weight

is feedback given by a rater to a CSP. In this graph, the average feedback is

the average weight of all edges q = (100+80+60+40)
4 = 70. We assume that all

raters adopt our protocol to protect the privacy of their feedback. By labeling

a portion of raters as malicious or selfish, we evaluate the privacy protection,

trust result availability and efficiency of our protocol. Three graphs, denoted

by Advogato, Robots, Random, are used in our simulation. Their characteristics

are summarized in Table 3.3.

68 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

80

Fig. 3.5: Example of trust graph.

Table 3.3: Characteristics of trust graphs

Advogato Robots
Random

Random-a Random-b
Vertices N 5,417 1,732 5,417 1,732
Density p 0.17% 0.12% 0.17% [10%, 100%]
Avg. feedback q 80.12 70.46 [10, 100] 70.46

Trust graphs. There is more mutual co-operation in the Intercloud environ-

ment. However, current trust feedback datasets about cloud service only collect

feedback given from users to CSPs, which is not a mutual evaluation or two-way

trust/service relationship. Currently, no dataset about the two-way Intercloud

relationship is available. Thus, we choose to evaluate our protocol based on two

trust graphs Advogato and Robots which are commonly adopted in the analysis

of any trust-related protocols [72]. These two datasets include a large number

of mutual evaluations records, which is close to the two-way trust/service rela-

tionship between CSPs and users in the Intercloud environment. For instance,

in the Advogato community, each member is a free software developer, and eval-

uates other developers with different rating levels. Robots community follows

the same trust metric. The rating choices are master, journeyer, apprentice,

and observer, in which master is the highest level and observer is the lowest

or default level for a new account. We downloaded the latest dataset (Jul 07,

2014) of these communities from trustlet.org and used them to build graphs Ad-

vogato and Robots respectively, representing the possible relationships between

users and CSPs in the Intercloud environment.

3.6 Simulation Settings 69

Random graph. As shown in Table 3.3, the graph density and average weight

of the two trust graphs Advogato and Robots are similar. To supplement our

simulation on the influences of graph density and average feedback, we also

use another two graphs (denoted by Random-a and Random-b) with various

parameters in our simulations. These two graphs are generated by randomly

connecting between vertices (i.e., CSPs and users) and randomly assigning

different weights (i.e., feedback) on edges. It is reasonable that several large

CSPs would serve as ”hubs” of the Intercloud. They have many more users

than the rest of the CSPs. Thus, we model the Intercloud as a scale-free

network in the random graph. We generate a random variable with Pareto

distribution, which represents the outdegree of the vertex (i.e., the number of

users interacting with the same CSP). For each outgoing edge, we randomly

pick a vertex as its destination. We consider that the majority of raters would

choose the middle rating levels (e.g., apprentice and journeyer). And a small

number of raters choose very low or very high rating levels (e.g., observer

and master) as their feedback to the CSPs. Thus, the weights of edges in the

random graph (i.e., feedback given by raters to CSPs) are assigned with a

random variable following a normal distribution.

Random-a is a supplement to Advogato to evaluate protocol performance

under various average feedback. Random-b supplements Robots to analyze the

influence of density conditions. For Advogato and Robots, we build the graphs

from the dataset after a pre-processing step that converts the rating level into

the weight of the edges, by the following rule: master level = 100, journeyer

level = 80, apprentice level = 60 and observer level = 40. Then each cloud

has a different size of n users, m of which is the threshold number for feedback

reconstruction. In subsequent simulations, we vary m/n ratio 2 [0.1, 1], with

an increment of 0.1.

3.7 Simulation Results

70 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

3.7.1 Protection Against Collusion Attack

In this subsection, we evaluate the relationship between m/n and

successful collusion attack probability, under different percentages of

malicious raters. We calculate successful collusion attack probability as the

percentage of honest raters whose feedback is leaked during the attack. A

collusion attack is launched by malicious raters. They intentionally leak the

secret key share information of honest raters. When a malicious CSP colludes

with at least the threshold number of raters, it can illegally reconstruct the

secret key to decrypt the individual feedback of honest raters. In the security

analysis in Section 3.5.2, we have defined this as an event failure, and if this

happens, the real world and the ideal world are distinguishable. Thus, the first

simulation seeks to analyze the probability of this event failure in a practical

setting. We use successful collusion attack probability to represent this event

failure probability.

Raters in the network with a low reputation score are considered to be malicious.

They have a higher possibility of colluding with each other to recover the

feedback of honest raters. For the trust graphs, we set the malicious raters

with reputations ranked in the lowest {20%, 30%, 40%, 50%} of the entire

network. To test the worst case scenario, we set 50% of raters as malicious in

the random graphs. In Random-a, we fix p = 0.17% (same density of Advogato)

and change q from 10 to 100, with an increment of 10. We use q = 70.46 for

Random-b (same average feedback of Robots) and vary its p from 10% to 100%,

with an increment of 10%.

The results for the trust and random graphs are shown in Fig. 3.6 and Fig. 3.7,

respectively. It can be seen that even if the network contains 50% malicious

raters, the successful collusion attack probability (i.e., the probability of event

failure) will be less than 0.1 as long as m/n > 20% and q < 90 (i.e., the average

feedback values in the entire network). In the design of our protocol, each

3.7 Simulation Results 71

(a) Advogato, q = 80.12. (b) Robots, p = 0.12%.

Fig. 3.6: Effect of increasing m/n ratio on the successful collusion attack probability
(SCAP) in trust graphs.

(a) Random-a, q 2 [10, 100]. (b) Random-b, p 2 [10%, 100%].

Fig. 3.7: Effect of increasing m/n ratio on the successful collusion attack probability
(SCAP) in random graphs.

rater relies on other raters in the same set to share its secret key. When some

of the raters collude to recover other raters’ secret keys, their own secret keys

are also disclosed. We consider that the majority of raters seek to protect their

privacy. In addition, to recover raters’ private feedback, CSPs need to inject

a high enough number of malicious raters. Since these are real companies,

many should have good corporate governance. The real-world collusion attack

probability should be lower than the above results. Hence, the proposed

protocol should be effective in handling collusion attacks.

72 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

3.7.2 Feedback Recovery Rate of Our Protocol

In this subsection, we discuss the relationship between m/n and the

successful feedback recovery rate, under different percentages of selfish

raters. The decryption of the secret key sum relies on the support of raters.

This simulation seeks to study whether the protocol can still accurately compute

the trust result when there are selfish raters who are not willing to participate

in the secret key sum reconstruction. Let |T r| (wj = 1) denote the number

of CSPs’ trust results reconstructed from all raters in the network. Let |T r
0
|

(wj = 1) denote the number of CSPs’ trust results recovered only from the

raters who are not selfish. We define a successful feedback recovery rate as |T r
0 |

|T r| .

In the following simulations, selfish raters are randomly assigned. For the trust

graphs, we run with selfish raters 2 {20%, 30%, 40%, 50%}. For the random

graphs, we consider that 50% of raters in the network are selfish. Likewise,

we evaluate the protocol recovery rate under various average feedback and

network density by setting q 2 [10, 100] and p 2 [10%, 100%].

The feedback recovery rates of the protocol for the trust and random graphs

are illustrated in Fig. 3.8 and Fig. 3.9, respectively. It can be seen that the

higher the network density p, the higher average feedback q and the greater

m/n all lead to a lower feedback recovery rate. Under the same percentage of

selfish raters in the network, the network density p has more influence than

parameter q in the successful feedback recovery rate, as shown in Fig. 3.9.

In addition, when there are 50% of selfish raters in a network, the successful

feedback recovery rate will be more than 0.77 as long as m/n <= 0.5.

3.7 Simulation Results 73

(a) Advogato, q = 80.12. (b) Robots, p = 0.12%.

Fig. 3.8: Effect of increasing m/n ratio on successful feedback recovery rate (SFRR)
in trust graphs.

(a) Random-a, q 2 [10, 100]. (b) Random-b, p 2 [10%, 100%].

Fig. 3.9: Effect of increasing m/n ratio on successful feedback recovery rate (SFRR)
in random graphs.

3.7.3 Feedback Recovery E�ciency of Our

Protocol

In this subsection, we analyze the relationship between m/n and the

efficiency of feedback recovery, under different percentages of selfish raters.

We evaluate the efficiency of feedback recovery as the number of iterations

required to obtain the secret key shares during the enquiry phase. An enquirer

can progressively ask raters for the decrypted secret key shares. Ideally, only

one iteration is required if m raters reply to the request. If some raters are

selfish, more iterations are needed until m replies are collected to reconstruct

the feedback sum. Therefore, the number of iterations required indicate the

74 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

(a) Advogato, q = 80.12. (b) Robots, p = 0.12%.

Fig. 3.10: Effect of increasing m/n ratio on the average number of iterations required
to obtain the secret key shares during the query phase in trust graphs.

(a) Random-a, q 2 [10, 100]. (b) Random-b, p 2 [10%, 100%].

Fig. 3.11: Effect of increasing m/n ratio on the average number of iterations required
to obtain the secret key shares during the query phase in random graphs.

efficiency. In the simulations, the number of iterations required to recover

the feedback sum of each CSP is determined so that the overall average can

be computed. Similar to Section 3.7.2, we randomly choose selfish raters

2 {20%, 30%, 40%, 50%} of the entire network when running the simulation in

the trust graph. For the random graphs, we assume 50% selfish raters.

We present the recovery efficiency of our protocol in Fig. 3.10 and Fig. 3.11.

Advogato and Random-a show the similar trend in Fig. 3.10 (a) and Fig. 3.11 (a).

Whereas, the peak number of iterations required in Random-b is much higher

than that in the other three graphs as shown in Fig. 3.11 (b). Comparing the

result of Random-a and Random-b, it can be seen that the network density

p has more influence on the feedback recovery efficiency. When the network

3.7 Simulation Results 75

Fig. 3.12: Trust result accuracy comparison of our protocol and ASS-based scheme.

density p � 10%, the enquirer needs more iterations to obtain the feedback

sum (i.e., less efficient). The decline shown in the figures indicates that the

trust result of some CSPs cannot be obtained when the number of selfish raters

and m/n is large as discussed in Section 3.7.2. By considering the Intercloud

configuration and security requirements, a suitable threshold value of m can

be chosen.

3.7.4 Trust Result Accuracy Comparison

In this subsection, we compare the trust result accuracy of our protocol

with the scheme that uses additive secret sharing (ASS). Clark et al.

[69] and Hasan et al. [72] both used ASS in their schemes to protect feedback

privacy. Given a secret f , an ASS of f consists of n shares {f1, ..., fn}, where

f1, ..., fn�1 are randomly chosen and fn = f�
P

i=n�1
i=1 fi. To accurately recover

the secret, it simply adds all of the secret shares together.

ASS requires all raters to stay online to enable the computation of trust results.

When any rater leaves the network or refuses to reply, all corresponding

feedback shares will be lost in the trust result, causing inaccurate trust results.

76 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

To perform the analysis, let T r denote the trust result of each CSP computed

from all of its raters. Let T r
0 denote the trust result of each CSP computed

from the raters who are not selfish. We consider the trust result accuracy as

the average value T r
0

T r
of all CSPs whose trust results can be recovered. In the

subsequent simulations, we randomly choose selfish raters 2 [5%, 50%], with

an increment of 5% in the Advogato trust graph. We set m/n = v/n = 0.4 in

our protocol and in ASS approach, such that the majority of feedback can be

recovered (v is the number of feedback shares prepared by each rater in Hasan

et al.’s scheme).

Fig. 3.12 shows the comparison of trust result accuracy on the Advogato trust

graph. We observe that the accuracy of the ASS approach decreases with an

increased percentage of selfish raters. However, the accuracy of our protocol

can be maintained at a high level. This is because in our protocol, an enquirer

only needs to request m < n raters to reconstruct an accurate trust result.

Therefore, our protocol is less affected by the percentage of selfish raters, unless

the percentage is unreasonably high.

3.8 Conclusion

Intercloud seeks to facilitate resource sharing among clouds. To support Inter-

cloud, a trust evaluation framework among clouds and users is required. For

trust evaluation, conventional protocols are typically based on a centralized

architecture focusing on a one-way relationship. For Intercloud, the environ-

ment is highly dynamic and distributed, and relationships can be one-way or

two-way (i.e., clouds provide services to each other). This chapter presents a

distributed trust evaluation protocol with privacy protection for Intercloud.

The new contributions and innovative features are summarized below. First,

feedback is protected by homomorphic encryption with verifiable secret sharing.

Second, to cater to the dynamic nature of Intercloud, trust evaluation can

3.8 Conclusion 77

be conducted in a distributed manner and is functional even when some of

the parties are offline. Third, to facilitate customized trust evaluation, an

innovative mechanism is used to store feedback, such that it can be processed

flexibly while protecting feedback privacy. The protocol has been proved based

on a formal security model. Simulations have been performed to demonstrate

the effectiveness of the protocol. The results show that even when half of the

clouds are malicious or offline, by choosing suitable operational parameters the

protocol can still support effective trust evaluation with privacy protection.

78 Chapter 3 A Distributed Trust Evaluation Protocol with Privacy Protection for

Intercloud

4
Order-Hiding Range Query over

Encrypted Data without Search

Pattern Leakage

4.1 Introduction

For cloud data storage, data privacy and security are two key concerns. Al-

though sensitive data can be encrypted before they are stored in the cloud, the

encrypted data can hardly be processed efficiently. Hence, a lightweight solu-

tion is required to satisfy both high security and high efficiency requirements.

In this chapter, we study the problem of range query over encrypted data

which are required for some applications. For instance, social networks and

computer networks can be modelled as large graphs. To protect the privacy

of network connections in a graph, information on the vertices and edges is

encrypted before uploading to the cloud server. To find the shortest path

between two vertices (e.g., using Dijkstra’s algorithm), it needs to compare

the new path distance to the current vertex with the previous one. Hence, the

cloud server needs to perform comparisons on the encrypted path information

[110, 83]. In other scenarios, such as medical record reviewing or financial

auditing, records are sensitive and queries are usually based on range values

(e.g., certain time periods or a particular range of IP addresses) [111]. They

also require to perform secure range queries over encrypted data. Compared

with keyword queries, there are more technical challenges in designing an

effective and secure scheme for range queries on encrypted data.

79

In general, there are two types of solutions to support secure range queries

on encrypted data. The first type (e.g., [73, 74, 75, 76, 77, 78]) aims at

providing faster search time while disclosing certain information (e.g., the

ordering between unmatched records and trapdoors). The second type (e.g.,

[79, 80, 112]) is designed to achieve higher security at the expense of extra

cost (e.g., longer search time, large index storage space, false positives in the

query results). For instance, Fully Homomorphic Encryption (FHE), which

allows arithmetic operations on ciphertexts can be applied to support privacy-

preserving range queries [112]. Although FHE can achieve high security, its

computational cost is high. In this chapter, we design and evaluate a privacy-

preserving range query scheme to address the above-mentioned limitations.

Our main contributions are summarized as follows:

• We propose an index generation algorithm that is secure against “inference

attacks”. Since the index generated in our scheme is not deterministic, the

cloud server cannot obtain any distribution or relationship information

(e.g., frequency and order) of records based on their indexes.

• We provide a range comparison method that does not disclose the different

binary bit(s) between a record and a query. For unmatched records, the

cloud server cannot learn their orderings from their comparison results

with query range [a, b] (i.e., if they are smaller than the lower bound

“ a” or larger than the upper bound “� b”, respectively).

• We develop a trapdoor generation algorithm that can hide query search

patterns. Due to the non-deterministic nature of our trapdoor genera-

tion algorithm, the cloud server cannot determine 1) whether any two

trapdoors are created from the same query, 2) whether the upper/lower

bound of one query is larger/smaller than that of another query, and 3)

for each query, the cloud server cannot distinguish its upper bound from

its lower bound, based on the trapdoor value and query results.

80 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

• We prove that our scheme is secure under the best security model

available, without the restriction of identical search patterns. This is

better than existing schemes. Furthermore, our scheme does not produce

false positives in the query results.

• We implement and compare our scheme with OPE [74] and ORE [78]

schemes. Our scheme is on average over 16 times faster than the OPE

scheme in index generation. For each range comparison, our scheme is on

average 3.89 times faster than the ORE scheme when the processing unit

is 2 bytes. This indicates that our scheme can achieve higher security

than the ORE scheme, while maintaining good efficiency.

The rest of this chapter is organized as follows. Section 4.2 provides the

scheme’s general construction and security goal. Section 4.3 describes the

building block utilised in the scheme. Section 4.4 presents the details of our

proposed privacy-preserving range query scheme. Experimental setup and

results are illustrated in Section 4.5. Section 4.6 analyses the security of the

scheme and proves that it can achieve the defined security goals. Section 4.7

presents the conclusion.

4.2 General Construction and Security
Definitions

We present the system model, algorithm construction, and security definitions

of our scheme in this section.

4.2 General Construction and Security Definitions 81

Data Owner

Data User

1. Build_Index

Cloud Server

5. Search_Index

IndexIndex

Fig. 4.1: Architecture of range query on encrypted data in cloud computing

4.2.1 System Model

The system model discussed in our scheme is shown in Fig. 4.1. There are

three parties: a data owner, a data user, and a cloud server. The data owner

would like to store a collection of sensitive records to the cloud. However, it

does not fully trust the cloud provider. Thus, before uploading records to the

cloud, it first encrypts each record. To provide the cloud with the ability to

perform relational operations on encrypted records without decryption, the

data owner associates each encrypted record with a secure searchable index

generated using the attribute value of records to be queried. A valid data user

submits a trapdoor - which is obtained from the data owner generated from

plaintext query - to the server on the cloud. After obtaining the trapdoor, the

server searches the matching records remotely via indexes, and returns the ID

of satisfied records as the query results to the data user.

In our model, the data owner and authorized data user are regarded as fully

trusted. They communicate through a secure channel. In practice, clouds

are managed by well-established IT companies. In cases of attack, it is more

likely for cloud providers to conduct passive attacks instead of active attacks

82 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

on specific users. Therefore, in our scheme, we assume the cloud server as

a semi-honest (honest-but-curious) adversary, which is trusted to correctly

execute required communication protocols and algorithms. At the same time,

the cloud server actively deduces the sensitive information of records and the

content of received queries. The semi-honest adversary model has commonly

been adopted in the existing privacy-preserving range query and keyword

searchable symmetric encryption schemes [74, 79, 80, 87, 89, 90]. We make

the same assumption as before.

4.2.2 Notation and Definition

Notations and functions in the rest of this chapter are defined as follows.

• R = (r1, ..., rN) is a collection of records, where ru is the ID of the uth

record.

• D = (d1, ..., dN) is a collection of attribute values from R. Each attribute

value du(1  u  N) contained in a record ru, where du 2 Z2` and ` is

the bit length of attribute values.

• I = (Id1 , ..., IdN) is a collection of encrypted searchable indexes based on

D, where Idu is the index of du.

• |Idu | is the index size, which is the number of row vectors and polynomial

random nonce pairs used in generating Idu .

• Q = [wL, wH] is a range query, where wL, wH 2 Z2` , wL is the lower

bound, and wH is the upper bound of query Q, respectively.

• TQ is the secure trapdoor of the query Q.

4.2 General Construction and Security Definitions 83

• |TQ| is the trapdoor size, which is the number of column vectors in TQ.

• D(Q) is the set of query Q’s result on the collection D, where the attribute

values of records in D(Q) belongs to the interval [wL, wH].

Before going into the details, we first define the following main algorithms of

our scheme.

Definition 2 (Privacy Preserving Range Query Scheme): A searchable sym-

metric encryption range query scheme consists of the following four algorithms.

• (sk, params) Gen_Key(�) : is executed by the data owner. Taking as

input security parameter �, the algorithm generates secret key sk and

system parameter params.

• I Bld_Index(sk,D) : is run by the data owner to support cloud server

with the capability of searching on R. It takes as input secret key sk

and the attribute value collection D and outputs encrypted searchable

indexes I.

• TQ Gen_Trapdoor(sk, Q) : is run by the data owner to create a

trapdoor for a given query Q. It takes both secret key sk and range

query Q: [wL, wH] as the input. It outputs trapdoor TQ for query Q.

• D(Q) Rag_Search(I, TQ) : is run by the cloud server to determine

the query result. It takes as input encrypted searchable indexes I and

trapdoor TQ. It outputs record set D(Q) as the query result.

84 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

Correctness. We consider a privacy-preserving range query scheme over a

collection of records is correct, if for all records in D(Q),

Pr[ru 2 Rag_Search(I, TQ)|du 2 [wL, wH]] = 1� negl(�).

4.2.3 Security Goals

Since the records are encrypted by the data owner before outsourcing to the

cloud server, our scheme aims to preserve the privacy of the searchable index

and trapdoor during and after queries from the following aspects:

1) The attribute value used to generate the index is part of the record

contents . As a result, the cloud server should not learn attribute value

du from its index Idu or from trapdoor TQ of any issued query.

2) The cloud server should not deduce whether the indexes of two different

records are built from the same attribute value (hide the frequency), and

whether the attribute value of one record is larger or smaller than that

of another record (hide the order).

3) The privacy of a trapdoor is inherently linked to the privacy of the index.

Hence, the cloud server should not distinguish the value of wL and wH

from its trapdoor TQ and from the received record indexes.

4) The cloud server is unable to determine whether two trapdoors are

created from the same query range or not (hide the search pattern), and

whether the upper or lower bound of one query is larger or smaller than

that of another query.

4.2 General Construction and Security Definitions 85

5) For each unmatched record ru /2 D(Q), the cloud server should not know

if du > wH or du < wL and in which bits of du and in which bits of

wH/wL that differs du from query Q.

Since we are unable to enumerate all possible attacks, we introduce the following

security definitions.

4.2.4 Security Model

Let SSERAG = (Gen_Key,Bld_Index,Gen_Trapdoor, Rag_Search) be our privacy-

preserving range query scheme. We analyse the security of SSERAG under the

game-based IND-CKA2 security model [90] with appropriate modifications.

Since trapdoors are deterministically generated in Curtmola et al.’s scheme,

adversaries in the game of IND-CKA2 model can only ask for the trapdoors

of queries in pairs. And the IND-CKA2 model includes the search pattern of

queries as one of its leakages. However, in our scheme SSERAG, the trapdoors

are not deterministically created. The adversary in the game of our security

model can make a request for the trapdoor of the single query.

To make the security definition of IND-CKA2 fit our stronger security guaran-

tee, we relax the assumption of the same search pattern in IND-CKA2, and

redefine two games in Section 4.2.4 and Section 4.2.4 to prove the security of

indexes/ciphertext and the security of trapdoors separately. In each of the two

games, challenger C executes the actual algorithms in SSERAG. An adversary

A adaptively sends queries to challenger C based on all previously obtained

indexes, trapdoors, and search results. Before we present our security model,

we first formulate the information leakages that arise from our scheme.

86 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

Definition 3 (Information Leakage) Function L(D, |TQ|, Q) describes the

leakage from a range query Q over a collection of attribute values D, that is

L(D, Q) = h|Id1 |, ..., |IdN |, |TQ|,D(Q)i.

comprised of the index size of attribute values in D, trapdoor size |TQ|, and

the access pattern D(Q) (i.e., the record set of range query Q’s result).

Ciphertext Indistinguishability Security

We use the following game to formally define the requirement that the adversary

learns nothing about the attribute values beyond their index sizes and access

patterns.

Game 1

• Setup: Challenger C creates a large collection of attribute values D, a

sequence of range queries Q and gives them to the adversary A. C runs

Gen_Key(�) to generate secret key sk and system parameter params. C

keeps secret key sk and sends params to A.

• Phase 1: Adversary adaptively issues q1 pairs of requests based on past

received indexes and trapdoors, where the request 1  i  q1 is shown

as follows:

– Index generation request for an attribute value collection Di 2 D:

The challenger runs Bld_Index(sk,Di) on a collection of attribute

values Di, and forwards the index Ii to the adversary.

4.2 General Construction and Security Definitions 87

– Trapdoor generation request for a range query Qi 2 Q: The chal-

lenger runs Gen_Trapdoor(sk, Qi) on a range query Qi, and forwards

the index TQi
to the adversary.

• Challenge: The adversary submits two plaintext collections of attribute

values D0 and D1 2 D. The challenger randomly flips a bit b 2 {0, 1}

and responds to the adversary with the index Ib Bld_Index(sk,Db) as

its challenge ciphertext.

• Phase 2: For request q1+1  i  q, adversary repeats the same process

as in Phase 1 and finally obtains hI1, ...,Iq,Ibi and hTQ1, ..., TQqi.

• Guess: With the restriction that D0 and D1 cause the same leakage

under all chosen queries

L(D0, Q1) = L(D1, Q1),

......

L(D0, Qq) = L(D1, Qq),

adversary guesses a bit b
0
2 {0, 1}. If b = b

0 , we consider that the

adversary wins the index security game.

Definition 4 (Ciphertext Indistinguishability Security): We say that

SSERAG
is ciphertext/index secure in terms of adaptive indistinguishability if

for all polynomial-sized adversary A, the advantage in winning Game 1 is less

than a negligible function of �.

Pr[b
0
= b]�

1

2
 negl(�).

88 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

Trapdoor Indistinguishability Security

We use the following game to formally define the requirement that the adversary

learns nothing about the range query values beyond their trapdoor sizes and

access patterns.

Game 2

• Setup: Challenger C creates a large collection of attribute values D, a

sequence of range queries Q and gives them to the adversary A. C runs

Gen_Key(�) to generate secret key sk and system parameter params. C

keeps secret key sk and sends params to A.

• Phase 1: Adversary adaptively issues q1 pairs of requests based on past

received indexes and trapdoors, where the request 1  i  q1 is shown

as follows:

– Index generation request for an attribute value collection Di 2 D:

The challenger runs Bld_Index(sk,Di) on a collection of attribute

values Di, and forwards the index Ii to the adversary.

– Trapdoor generation request for a range query Qi 2 Q: The chal-

lenger runs Gen_Trapdoor(sk, Qi) on a range query Qi, and forwards

the index TQi
to the adversary.

• Challenge: The adversary submits two range queries Q0 and Q1 2 Q.

The challenger randomly flips another bit c 2 {0, 1} and replies to the

adversary with the trapdoor TQc
 Gen_Trapdoor(sk, Qc) as its challenge

trapdoor.

4.2 General Construction and Security Definitions 89

• Phase 2: For request q1+1  i  q, adversary repeats the same process

as in Phase 1 and finally obtains hI1, ...,Iqi and hTQ1, ..., TQq , TQci.

• Guess: With the restriction that Q0 and Q1 cause the same leakage

under all chosen attribute value collections

L(D1,Q0) = L(D1,Q1),

......

L(Dq,Q0) = L(Dq,Q1),

adversary guesses a bit c
0
2 {0, 1}. If c = c

0 , we consider that the

adversary wins the trapdoor security game.

Definition 5 (Trapdoor Indistinguishability Security): We say that SSERAG

is trapdoor secure in terms of adaptive indistinguishability if for all polynomial-

sized adversary A, the advantage in winning Game 2 is less than a negligible

function of �.

Pr[c
0
= c]�

1

2
 negl(�).

Definition 6 (Indistinguishability Security): We say that scheme SSERAG

is both ciphertext and trapdoor secure in terms of adaptive indistinguishability

if for all polynomial-sized adversary A, the advantage in winning both Game 1

and Game 2 is less than a negligible function of �.

4.3 Building Block

The building block of our scheme is the 0/1 encoding first proposed by Lin

and Tzeng to address the Millionaires’ Problem [113]. The basic idea of 0/1

encoding is to turn data comparison to the problem of finding the intersection

of two sets. For a comparison a > b, it needs to find a common element

90 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

between the 1-encoding set of a and 0-encoding set of b. Let s = s1s2...s`

denote the binary string of s and s1s2...sh represent the binary string of the

first h digits of s (i.e., the h-length prefix string of s). The prefix string set Ps

of s is defined as follows

Ps = {s1s2...sh|1  h  `}. (4.1)

For each prefix string s1s2...sh ending up with sh = 0, we write the binary

string s1s2...sh�11 as one of the elements in the 0-encoding set S0
s
. For each

prefix string s1s2...sh ending up with sh = 1, we directly write its prefix string

s1s2...sh as one of the elements in the 1-encoding set S1
s
. Two binary string

sets S0
s

and S1
s

are defined as the 0-encoding and 1-encoding sets of s, such

that

S0
s
= {s1s2...sh�11|sh = 0, 1  h  `}, (4.2)

S1
s
= {s1s2...sh|sh = 1, 1  h  `}, (4.3)

where ` is the number of binary digits in the binary string of s. For any two

numbers a and b with bit-length of `, their 0-encoding set and 1-encoding sets

have the following properties [113].

8
>><

>>:

a > b () S1
a
\ S0

b
6= ;,

a  b () S1
a
\ S0

b
= ;.

(4.4)

When S1
a
\ S0

b
6= ;, their common element is denoted as

a1a2...ah�11|ah=1 = b1b2...bh�11|bh=0

which is equivalent to

a1a2...ah�10|ah=1 = b1b2...bh�10|bh=0.

4.3 Building Block 91

Then, the right side element b1b2...bh�10|bh=0 belongs to Pb the prefix string

set of number b. Based on the left side element a1a2...ah�10|ah=1, we define

the following new 1-encoding set fS1
s

fS1
s
= {s1s2...sh�10|sh = 1, 1  h  `}. (4.5)

Since all elements of fS1
s

end up with ah = 0, we can convert the determination

of S1
a
\ S0

b
to the comparison between fS1

a
and Pb, that is S1

a
\ S0

b
= fS1

a
\ Pb.

Conversely, we can compare Pa with the 0-encoding set of b. Since each element

of S1
a

belongs to Pa and all elements of S0
b

end up with bh = 1, we can get

S1
a
\ S0

b
= Pa \ S0

b
.

Therefore, fS1
s
, S0

s
and Ps satisfy the same properties as the 0/1 encoding when

comparing two numbers a and b.

8
>><

>>:

a > b () fS1
a
\ Pb 6= ; or Pa \ S0

b
6= ;,

a  b () fS1
a
\ Pb = ; or Pa \ S0

b
= ;.

(4.6)

Here is an example of how to compare two numerical values. Let a = 9 =

(1001)2 and b = 14 = (1110)2 denote two binary strings with 4 bits. Based on

definitions in Equation (4.1), (4.2) and (4.5), we obtain

P9 = {1, 10, 100, 1001}, S0
9 = {11, 101},fS1

9 = {0, 1000},

P14 = {1, 11, 111, 1110}, S0
14 = {1111}, fS1

14 = {0, 10, 110}.

Since fS1
14 \ P9 = {10} 6= ; and P14 \ S0

9 = {11} 6= ;, we learn that 14 > 9.
fS1
9 \ P14 = ; and P9 \ S0

14 = ;, we learn that 9  14.

92 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

Based on Equation (4.6), we obtain the following properties when comparing

a value d with a closed interval [wL, wH].

8
>>>>>><

>>>>>>:

d /2 [wL, wH]

() d < wL and d > wH

() Pd \
gS1
wL
6= ; and Pd \ S0

wH
6= ;.

(4.7)

This means that we can use the same prefix string set of d to compare with

the different encoding sets of upper bound wH and lower bound wL of a range

query.

As shown in the property of the 0/1 encoding scheme, if a  b then S1
a
\S0

b
= ;.

Based on this property, we can easily obtain that when a = b(a  b, b  a),

then S1
a
\ S0

b
= ; and S1

b
\ S0

a
= ; at the same time. Accordingly, using

our newly designed scheme, we can show that when a is equal to b, then

Pa \ S0
b
= ; and Pa \

fS1
b
. Therefore, when users perform the keyword search

over encrypted data, our proposed scheme can still support the keyword

comparison by comparing the prefix string set of one value Pa with both the

encoding set of another value (i.e., S0
b

and fS1
b
). Hence, the following designs

in our scheme still can still prevent the search pattern leakage in the keyword

search.

4.4 Our Privacy Preserving Range Query
Scheme

We present our privacy-preserving range query scheme in this section. We

assume that the database records have already been encrypted before being

stored in the cloud server.

4.4 Our Privacy Preserving Range Query Scheme 93

4.4.1 Scheme Overview

As introduced in the previous sections, the cloud server will match the index

of records with the query trapdoor to target the satisfied database records. To

provide a security guarantee, our scheme needs to achieve indistinguishability

of both the index and trapdoor. The building block of our scheme is 0/1

encoding introduced in Equation (4.4) and (4.6), which converts the data

comparison into the calculation of the intersection between their corresponding

0/1 encoding set fS1
a
/S0

a
and prefix string set Pb.

Inspired by the idea of private set intersection (PSI) [114], our scheme represents

the encoding elements in Pb as the roots of polynomial function. During the

comparison phase, the encoding elements in fS1
a

and S0
a

are plugged into the

polynomial function. This design can prevent the server from knowing which

binary bit the two values differ. To hide the search pattern of different queries,

we use an invertible matrix with random numbers, such that the cloud server

is unable to distinguish between different queries. As the encoding elements

are placed in shuffled order during the generation of the trapdoor, the cloud

server cannot locate the intersection results from the upper or lower bound of

the queries. The details of our scheme are indicated below.

4.4.2 Scheme Details

• Gen_Key(�) : First, the Gen_Key algorithm is performed by the data owner

to determine a modulus p and a secure keyed hash function H : {0, 1}� ⇥

{0, 1}` ! {0, 1}s(�), in which s(�) is a quantity polynomial of the security

parameter �. Then, Gen_Key generates a secret key K and a random invertible

matrix M(`+3)⇥(`+3), in which ` is the bit length of the attribute value to be

indexed. The system parameter params is the pair (p,H) sent to the cloud

server and the secret key sk is the pair (K,M) kept by the data owner.

94 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

!" #$$$$%))()()(()(432110 xxxxxxxxxF
P

01
2

2
3

3
4

410)(cxcxcxcxcxF
P ####%

)||1010()||101()||10()||1(4321 KHxKHxKHxKHx %%%%

],,,,,[
~

0123410 &cccccI %)}(,
~

{ 761010 !HMII '(%

}1010,101,10,1{)1010(10 102 %%% Pd

Fig. 4.2: Example of index generation.

• Bld_Index(sk,D) : The Bld_Index algorithm is performed by the data owner

to generate indexes for records. For each attribute value du in the collection of

D, Bld_Index algorithm executes the following steps. Fig. 4.2 illustrates an

example of index generation.

1) First, the Bld_Index algorithm computes the ` length binary strings for

du and calculates the prefix string set Pdu
= {e1, e2, ..., e`} of du. Then,

for each element ei 2 Pdu
(1  i  `), it computes the corresponding hash

value xi = H(ei||K) (mod p) by the secret key K generated in Gen_Key.

2) To hide in which bit of du that differs du from a range query, the algorithm

constructs the following polynomial function F P

du
(x) for all hash values

{x1, ..., x`}. A pair of polynomial random nonces $u and �u is embedded

4.4 Our Privacy Preserving Range Query Scheme 95

in F P

du
(x) in order to distinguish the indexes of different records with the

same attribute value,

F P

du
(x) = $u(x� x1)(x� x2)...(x� x`) + �u (mod p)

= c`x
` + c`�1x

`�1...c1 + c0,
(4.8)

where {x1, ..., x`} are the hash values of elements in Pdu
.

3) First, the algorithm constructs a row vector Ĩdu with ` + 2 elements,

where c`, ..., c0 are the coefficients of F P

du
(x), and �u is a random nonce:

Ĩdu = [c`, c`�1..., c1, c0, �u]. (4.9)

Then, the algorithm constructs two matrixes [M](`+2)⇥(`+3) and [M�1](`+3)⇥(`+2)

based on the matrix M in sk. [M](`+2)⇥(`+3) is constructed by removing

the (`+ 2)th row of M and [M�1](`+3)⇥(`+2) is obtained by deleting the

(`+ 3)th column of M�1.

4) Ĩdu is right multiplied by matrix [M](`+2)⇥(`+3) to obtain

I
0

du
= Ĩdu · [M](`+2)⇥(`+3)

= [c`, ..., c1, c0, 0, �u] · [M](`+3)⇥(`+3).
(4.10)

The Bld_Index algorithm outputs the encrypted searchable index of du

as a 2-tuple of

Idu = {I
0

du
, H(�u)} (4.11)

where H(�u) is the hash value of �u. Finally, the data owner submits

encrypted searchable index I = (Id1 , ..., IdN) to the cloud sever.

96 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

• Gen_Trapdoor(sk, Q) : The Gen_Trapdoor algorithm is performed by the

data owner to generate the trapdoor for a query Q : [wL, wH] requested by the

data user. Fig. 4.3 illustrates an example of trapdoor generation.

1) The algorithm first computes two ` length binary strings for wL and wH .

Then, it calculates new 1-encoding set gS1
wL

for lower bound wL based on

Equation (4.5) and the 0-encoding set S0
wH

for upper bound wH based

on Equation (4.2).

2) We assume that the total number of elements in S0
wH

and gS1
wL

is g. Then,

for each element ej(1  j  g) in S0
wH

and gS1
wL

, the algorithm computes

its hash value by the secret key K to obtain yj = H(ej||K) (mod p).

Note that y1, ..., yg are placed in shuffled order, yj does not correspond

to the jth encoding element in gS1
wL

or S0
wH

.

3) Since a hash function has the property of one-wayness and collision resis-

tance, the set H(Pdu
||K) = {x1, ..., x`} and set H(gS1

wL
||K)[H(S0

wH
||K) =

{y1, ..., yg} still satisfy the same properties in Equation (4.6), shown as

follows:

8
>>>>>>>>>><

>>>>>>>>>>:

a > b () H(fS1
a
||K) \H(Pb||K) 6= ;

or H(Pa||K) \H(S0
b
||K) 6= ;,

a  b () H(fS1
a
||K) \H(Pb||K) = ;

or H(Pa||K) \H(S0
b
||K) = ;.

(4.12)

The union of intersection

[H(gS1
wL

||K) \H(Pdu
||K)] [[H(Pdu

||K) \H(S0
wH

||K)]

is the intersection {x1, ..., x`} \ {y1, ..., yg}.

4.4 Our Privacy Preserving Range Query Scheme 97

},,{ 321 TTTT
Q
!

0-Encoding1-Encoding
]14,9[],[: !

HL
wwQ

)||1000()||0(21 KHyKHy !!)||1111(3 KHy !

"
"
"
"
"
"
"
"

#

$

%
%
%
%
%
%
%
%

&

'

!

1

1

2

1

3

1

4

1

1

1

~

(

y

y

y

y

T

167
1

1

~
TMT)! *

+

"
"
"
"
"
"
"
"

#

$

%
%
%
%
%
%
%
%

&

'

!

2

2

2

2

3

2

4

2

2

1

~

(

y

y

y

y

T

267
1

2

~
TMT)! *

+

"
"
"
"
"
"
"
"

#

$

%
%
%
%
%
%
%
%

&

'

!

3

3

2

3

3

3

4

3

3

1

~

(

y

y

y

y

T

367
1

3

~
TMT)! *

+

}1111{)1110(14 14
0

2 !!! S}1000,0{
~

)1001(9 9
1

2 !!! S

Fig. 4.3: Example of trapdoor generation.

4) To distinguish the trapdoors of different queries with the same lower and

upper bound values, the algorithm generates a random nonce �j for each

yj and constructs a column vector T̃j with `+ 2 elements, as follows

T̃j = [y`
j
, y`�1

j
, ..., yj, 1, �j]

> (mod p). (4.13)

Then, T̃j is left multiplied by matrix [M�1](`+3)⇥(`+2) to obtain the jth

trapdoor element, as follows

Tj = [M�1](`+3)⇥(`+2) · T̃j

= [M�1](`+3)⇥(`+3) · [y
`

j
, ..., yj, 1, �j, 0]

>.
(4.14)

Finally, the data owner returns g vectors as the trapdoor of query Q to

the data user

TQ = {T1, ..., Tg}. (4.15)

98 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

},,{Trapdoor 321 TTTT
Q
!

]14,9[],[: !
HL
wwQ10!d

"# $%%%%!

$$$$!

))()()((41312111

011

2

12

3

13

4

14

xyxyxyxy

cycycycyc

"# $%%%%!

$$$$!

))()()((42322212

021

2

22

3

23

4

24

xyxyxyxy

cycycycyc

&
&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)
)

*

+

,,,! %

0

1

],0,,,,,[

3

3

2

3

3

3

4

3

1
01234

-

. y

y

y

y

MMccccc

"# $%%%%!

$$$$!

))()()((43332313

031

2

32

3

33

4

34

xyxyxyxy

cycycycyc

109
~

)()(),()(109
1

21 /0!011 2"""" PSHHHH !

1410)()(14
0

103 /0!01 2"" SPHH !

)}(,
~

{Index 761010 "HMII 3,!

167
1

7610110
'

1

~~
TMMITI ,,,!,! 3

%

3"

&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)

*

+

,,,! %

0

1

],0,,,,,[

1

1

2

1

3

1

4

1

1
01234

-

. y

y

y

y

MMccccc

367
1

7610310
'

3

~~
TMMITI ,,,!,! 3

%

3"

267
1

7610210
'

2

~~
TMMITI ,,,!,! 3

%

3"

Fig. 4.4: Example of comparison between index and trapdoor

• Rag_Search(I, TQ) : The Rag_Search algorithm is conducted by the cloud

server to determine records that satisfy the query Q. Fig. 4.4 illustrates an

example of search algorithm between index Idu
and trapdoor TQ. For each

record ru 2 R, the cloud server executes the following steps to determine

whether it satisfies the query or not.

1) Based on the received index Idu = {I
0
du
, H(�u)} and trapdoor TQ, the

cloud server calculates

�uj = I
0

du
· Tj

= Ĩdu · [M](`+2)⇥(`+3) · [M
�1](`+3)⇥(`+2) · T̃j

= [c`, ..., c0, 0, �u] ·M ·M�1
· [y`

j
, ..., yj, 1, �j, 0]

>

= c`y
`

j
+ c`�1y

`�1
j

+ ...+ c0 + 0 · �j + �u · 0

= $u(yj � x1)(yj � x2)...(yj � x`) + �u (mod p).

4.4 Our Privacy Preserving Range Query Scheme 99

The idea of this step is to plug each trapdoor element yj into function

F P

du
(x). Once there is a trapdoor element Tj to obtain H(�uj) = H(�u),

the server learns {x1, ..., x`} \ {yj} 6= ;, which means either

du < wL � H(gS1
wL

||K) \H(Pdu
||K) 6= ;

or wH < du � H(Pdu
||K) \H(S0

wH
||K) 6= ;

The algorithm outputs du /2 [wL, wH] that leads to the unsatisfied record

du. Then, the algorithm directly move to determine the next record.

2) When all of H(�u1) 6= H(�u), ..., H(�ug) 6= H(�u), it indicates that

wL  du � H(gS1
wL

||K) \H(Pdu
||K) = ;

du  wH � H(Pdu
||K) \H(S0

wH
||K) = ;.

The algorithm outputs du 2 [wL, wH] and inserts ru into D(Q) as the

query result.

After scanning all of the records in R, the cloud server returns query result

D(Q) to the data user.

4.4.3 Index Generation Optimization

The main time cost of Bld_Index and Rag_Search algorithm is in the calculation

of polynomial function F P

du
(x). To improve their execution speeds, we reduce

the comparing units into smaller groups by following the grouping method.

Instead of constructing a single polynomial function F P

du
(x) based on the hash

value of the entire elements {x1, ..., x`}, we first shuffle the prefix elements,

then evenly partition them into several groups. Then, we construct several

polynomial functions based on the xi in each group, such that each polynomial

function degree is smaller. During the search phase, trapdoor elements are

checked with each group of xi to find the first unsatisfied group. That is, each

100 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

trapdoor element yj is plugged into each group of polynomial function. The

purpose of this grouping is to reduce the degree of F P

du
(x) and the number of

elements in I
0
du

and Tj. It accelerates the speed of Bld_Index (index building)

and Rag_Search (trapdoor comparison).

The following shows an example of the grouping method. The prefix strings

of an 8-bit attribute value d are partitioned into 2 groups in random order

{x1, x8, x2, x4 | x5, x7, x3, x6}. It constructs a polynomial function for each

group with the same random nonce �. Finally, the index of d is the cascading

of coefficients {[I
0
d
]1 || [I

0
d
]2, H(�)} in each polynomial function. Since the

elements are grouped in shuffled order, the comparison in grouping method

provides the same security guarantee as for the original scheme. That is, the

server is unable to learn which binary bit differs between the attribute value

and the query.

$1(x� x1)(x� x8)(x� x2)(x� x4) + �

[I
0

d
]1 = [c4,1, ...,c0,1, �1] ·M6⇥7,

$2(x� x5)(x� x7)(x� x3)(x� x6) + �

[I
0

d
]2 = [c4,2, ...,c0,2, �2] ·M6⇥7.

4.5 Implementation and Evaluation

Apart from the security improvements, in this section we implement our scheme

and evaluate its practicality under different parameter settings. Specifically,

we evaluate the performance of our scheme against the OPE scheme [74] and

ORE [78] scheme to illustrate the benefits and costs of our scheme’s security

enhancements. As shown in Table 2.2, comparable encryption (CE) is a variant

of the OPE and ORE schemes. However, it leaks the numerical difference of

indexes during the search by default, which is less secure than the small-domain

4.5 Implementation and Evaluation 101

ORE. Therefore, in this section we do not compare the search efficiency of our

scheme with comparable encryption. The RSSE [80] scheme and PBtree [79]

scheme rely on special tree structures built on the entire dataset to enhance

query efficiency. Their searching speeds are highly related to the query choice

and distribution of attribute domain. Both the RSSE and PBtree schemes

produce false positives to the range query results. However, our scheme only

addresses how to build secure indexes for attribute values and trapdoor for the

range query condition. There is no false positive in the query results of our

scheme. Hence, we do not compare the performance of our scheme with that of

the RSSE and PBtree schemes. Certainly, all of the tree structures proposed

in the RSSE and PBtree schemes for the entire dataset can be directly applied

to our scheme, which can achieve the same efficiency with better security.

4.5.1 Experimental Settings

Implementation

Our scheme was implemented in C. For the cryptographic details, we chose the

security parameter � as 128 bits. For the sake of fairness, we used the PRF

function implemented in the ORE scheme [78, 115] as the hash function H in

our scheme, which is an AES-128 construction. Unlike the PRF function, we

took the output of our AES-based hash function to be the domain of {0, 1}128.

We then converted the outputs of H as mpz_t integers and used GMP-5.0.1

library [116] for all of the arithmetic operations. We chose the maximum

value of 128 bits as the modulus p = 2128 � 1 and random invertible matrix

M was generated with integer entries. All of the following experiments were

conducted on a computer running macOS Sierra 10.12.5 with 4GB memory

and a 1.3-GHz Intel Core i5 CPU. For the evaluation of the ORE scheme [78],

we directly used the C implementation of FastORE [115]. For the evaluation

102 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

Table 4.1: Experimental settings for evaluations

Fig.
Attribute Value

Group Size (bits)
(bits)

4.5a,4.5b
16, 24, 32, 48 ,64

2, 8, 16
4.6a,4.7a,4.8a 12, 16

4.6b,4.7b 64
4, 8, 12, 14, 16

4.8b 16

of the OPE scheme [74], we used the C++ implementation from CryptDB

[117, 118].

Range query is widely used in different scenarios, in which the query attribute

is one of the important factors affecting performance. Specifically, date and

time are often used range query attributes (i.e., search for the records during

the time period from ‘01/07/2017 00:00:00’ to ‘01/08/2017 00:00:00’). Since

date and time are usually displayed in long format, the schemes use integers

with longer bit length to represent this type of attribute value. For instance,

Li et al. convert the check-in time attribute field in the Gowalla dataset (a

geo-social network dataset [119]) to 32-bit integers [79]. Another type of range

query attribute has a relatively small domain (i.e., product price, employee

salary, and student scores), which can be represented as integers with shorter

bit length. For example, the annual salary field in the USPS dataset (a dataset

of employee records of US Postal Service [120]) can be represented as 24-bit

integers.

To evaluate the performance of the scheme under different scenarios, we

randomly choose the attribute value and the upper or lower bound of a query

as the integers with different bit lengths. Our scheme used the grouping

method introduced in Section 4.4.3. The group size is the number of elements

involved in building each group of indexes. To discuss the performance of

schemes under group size, we also varied the group size within the maximum

4.5 Implementation and Evaluation 103

bit length of attribute. Each measurement was found by taking the mean

value over 50-107 iterations. Table 4.1 lists the parameter settings of each

experimental result figure.

4.5.2 Experimental Result

Evaluation with di�erent parameter settings

The index size and building time of our scheme for different-sized attribute

values and groups are illustrated in Fig. 4.5a and Fig. 4.5b, respectively. The

bars in both figures have the same trends. That is, the index building time

and size increase with the increased bit length of attribute value. For the same

bit length of attribute value, the index building time increases with increased

group size, as shown in Fig. 4.5a. Whereas for the same bit length of the

attribute value, the index size decreases with increased group size, shown in

Fig. 4.5b. The opposite results are due to the larger group size, resulting in

a longer time spent on constructing the index, but with a smaller number

of groups. Each group brings one more set of polynomial coefficients to the

entire index. The index size becomes smaller when there is a smaller number

of groups. Hence, in our scheme there exists a trade-off between index building

time and index size when choosing group size.

Evaluation of the index building time

The index building time comparison between OPE [74], ORE [78] schemes and

our scheme for different-sized attribute values and groups is shown in Fig. 4.6a

and Fig. 4.6b, respectively. The random oracle in ORE and our scheme use

the same AES-based construction. The group size for the ORE scheme is the

number of bits in each block. Each group or block is also the comparing unit

104 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

16 24 32 48 64

Bit Length of Attribute Value

0

50

100

150

200

250

300

In
d

e
x

B
u

ild
in

g
 T

im
e

 (
µ

s)

2-bit group

8-bit group

16-bit group

(a) Index building time of our scheme.

16 24 32 48 64

Bit Length of Attribute Value

0

200

400

600

800

1000

1200

1400

1600

In
d

e
x

S
iz

e
 (

b
yt

e
)

2-bit group

8-bit group

16-bit group

(b) Index size of our scheme.

Fig. 4.5: Evaluation with different parameter settings

for ORE and our scheme. As shown in Fig. 4.6a, among the three schemes,

our scheme has the minimum index building time, while the ORE scheme with

the 16-bit group has the maximum index building time. The time cost of the

OPE scheme is slower than the ORE scheme with 12-bit, but still much faster

than the ORE scheme with 16-bit groups. Specifically, the index building time

of our scheme is on average over 16 times faster compared to the OPE scheme,

and on average over 6 times faster compared to the ORE scheme with 12-bit

groups. We continue to discuss the influence of group size on both the ORE

scheme and our scheme. The index building time of our scheme and the ORE

scheme under different group sizes is shown in Fig. 4.6b. Note that the index

building time of the ORE scheme grows more rapidly than our scheme when

the group size is larger than 8 bits.

Evaluation of the index size

The index size comparison between OPE [74], ORE [78] schemes and our

scheme for different-sized attribute values and groups is shown in Fig. 4.7a

and Fig. 4.7b, respectively. In Fig. 4.7a, the index of the OPE scheme is the

smallest due to its ciphertext still being a numerical value. The ORE scheme

with the 16-bit group also has the largest index size. The index size of our

scheme with the 16-bit group is on average 2.92 times smaller, compared to

4.5 Implementation and Evaluation 105

16 24 32 48 64

Bit Length of Attribute Value

101

10
2

10
3

104

105

In
d

e
x
 B

u
ild

in
g

 T
im

e
 (
�s

)

Our scheme(16-bit group)

Lewi & Wu. ORE (12-bit group)

Lewi & Wu. ORE (16-bit group)

Boldyreva et al. OPE

(a) Index building time of our scheme,
OPE and ORE schemes with different-
sized attribute values.

4 8 12 14 16

Group Size in Bits

10
1

10
2

103

104

105

In
d

e
x
 B

u
ild

in
g

 T
im

e
 (
�s

)

Our scheme (64-bit attribute value)

Lewi & Wu. ORE (64-bit attribute value)

(b) Influence of group size on the index
building time of our scheme and ORE
scheme.

Fig. 4.6: Evaluation of the index building time

16 24 32 48 64

Bit Length of Attribute Value

100

102

10
4

In
d

e
x

S
iz

e
 (

b
yt

e
)

Our scheme(16-bit group)

Lewi & Wu. ORE (12-bit group)

Lewi & Wu. ORE (16-bit group)

Boldyreva et al. OPE

(a) Index size of our scheme, OPE and
ORE schemes with different-sized at-
tribute values.

4 8 12 14 16

Group Size in Bits

102

103

104

10
5

In
d

e
x

S
iz

e
 (

b
yt

e
)

Our scheme (64-bit attribute value)

Lewi & Wu. ORE (64-bit attribute value)

(b) Influence of group size on the index
size of our scheme and ORE scheme.

Fig. 4.7: Evaluation of the index size

the ORE scheme with the 12-bit group. Fig. 4.7b illustrates the index size of

ORE and our scheme under a different group size. The index size of the ORE

scheme also grows quickly when the group size is larger than 8 bits. However,

the index size of our scheme decreases with the increased group size.

As a similar trend reflected from Fig. 4.6b and Fig. 4.7b, the index generation

of the ORE scheme is only efficient by setting a relatively small block size. The

main reason is that the ORE scheme relies on a small-domain ORE construction

in each group/block to achieve its best-possible security. That is, the indexes

in each ORE group leak nothing but the ordering of their plaintexts. The cost

106 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

of constructing the small-domain ORE indexes grows linearly in the size of

group message space. For a b-bit group, the index size of each ORE group

is linear with 2b � 1 [78]. Whereas in our scheme, the index of each group is

linear with the bit length of the group b. Therefore, the index generation time

and index size of our scheme are much faster and smaller than those of the

ORE scheme when the group size is large.

Evaluation of the search time

Our scheme leaks strictly less information than the OPE [74] and ORE [78]

schemes. In this experiment, we evaluate how much search efficiency has been

sacrificed due to the security improvements in our scheme. Fig. 4.8a compares

the search times of the OPE and ORE schemes and ours with different-sized

attribute values. The search time is the time used to compare an index with

a trapdoor value of a range query’s upper or lower bound. The three lower

lines (i.e., including marker symbols +, ⇤, and �) in Fig. 4.8a indicate that our

scheme is slower than OPE and ORE (12-bit group) schemes. This is because

our scheme is designed to hide more sensitive information than the other two

schemes. Hence, it requires a longer time to complete a range comparison.

The search time of the OPE scheme is the fastest, since it directly compares

two numerical values. Nevertheless, it leaks much more information than the

ORE scheme, and indeed, much more information than our scheme does, as

shown in Table 2.2. Hence, OPE encrypted indexes are vulnerable to inference

attack, which directly leaks the frequency and order relationship of attribute

values.

To hide the bit of an attribute value that differs its index from the trapdoor,

our scheme builds the index from a single function F P

du
(x) using the entire

prefix strings of the attribute value du. In the grouping method proposed

in Section 4.4.3, we shuffle the prefix strings of each attribute value before

4.5 Implementation and Evaluation 107

16 24 32 48 64

Bit Length of Attribute Value

10
-2

10
-1

100

101

102

S
e

a
rc

h
 T

im
e

 (
�s

)

Our scheme(16-bit group)

Lewi & Wu. ORE (12-bit group)

Lewi & Wu. ORE (16-bit group)

Boldyreva et al. OPE

(a) Search time of our scheme, OPE and
ORE schemes with different-sized at-
tribute values.

4 8 12 14 16

Group Size in Bits

10
-1

100

10
1

102

S
e

a
rc

h
 T

im
e

 (
�s

)

Our scheme (16-bit attribute value)

Lewi & Wu. ORE (16-bit attribute value)

(b) Influence of group size on the search
time of our scheme and ORE scheme.

Fig. 4.8: Evaluation of the search time

partitioning them into different groups. Thus, the group of index elements

that stops algorithm Rag_Search does not correspond to the same group of

bits in the plaintext of du. As a result, our scheme does not leak the relative

differences between attribute values to the same query in the range comparison

process. Meanwhile, the server in our scheme has to compare the trapdoor

with all or part of the attribute value’s prefix strings, which takes a longer

time. In the ORE scheme, its index elements keep the same binary order of

the plaintext of the attribute value. Once the index differentiates trapdoor

on a group/block of high bits, the ORE scheme will stop the comparison.

Consequently, the ORE scheme is faster than our scheme when the group size

is small (e.g., no more than 12 bits). However, the ORE scheme tells the server

about the first bit or group of bits that differs between an index and a trapdoor.

This leakage shows the relative distances between different attribute values

to the same query. Even for the best secure setting of the ORE scheme (i.e.,

small-domain ORE), our scheme still provides stronger security. The ORE

comparison result inevitably discloses whether an unmatched attribute value

is larger than the upper bound or smaller than the lower bound of a range

query, while the trapdoor generated in our scheme is not deterministic, which

can prevent the search pattern leakage of the ORE scheme.

108 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

From the two upper lines (i.e., including marker symbols C and +) in Fig. 4.8a,

interestingly, we can observe an opposite trend. The search time of our scheme

is 3.89 times faster than the ORE scheme when the group size is 16 bits. To

further explain the reason for this result, we discuss the influence of group size

on both the ORE and our scheme in Fig. 4.8b. Since the OPE scheme does

not process the range comparison in groups of bits, we cannot test the search

time of the OPE scheme in Fig. 4.8b. It shows that our scheme is both more

secure and faster, compared to the ORE scheme, when the group size is larger

than 12 bits. This is because the ORE scheme has adopted the small-domain

ORE construction in each group, such that it needs to compare the trapdoor

with 2b index elements in each b-bit group. When the group size increases,

the ORE scheme provides higher security, but at the expense of ORE’s search

efficiency, which declines greatly. In our scheme, on the contrary, each b-bit

group has exactly b index elements. The increasing group size has less impact

on the search speed of our scheme. Additionally, our scheme provides the same

security guarantees under different group sizes, as discussed before. Therefore,

we can conclude that under the ORE scheme, it is difficult to achieve both

security and search efficiency simultaneously. To achieve higher security, the

ORE scheme must sacrifice more efficiency than our scheme.

4.6 Security Analysis

Inspired by the approach in [79], we analyse the security of our scheme in this

section to prove that it achieves the defined security goals.

4.6 Security Analysis 109

4.6.1 Ciphertext Indistinguishability Proof

Theorem 1 The privacy-preserving range query scheme SSERAG
is cipher-

text indistinguishability secure with the leakage function L from Definition 3,

assuming that the keyed hash function H is a secure pseudo-random function.

Proof : We use contradiction to prove the Theorem 1. Supposing that our

scheme SSERAG is not ciphertext indistinguishability secure, then there exists

a polynomial-sized adversary A1 that can win Game 1 in Section 4.2.4 with

an advantage greater than negl(�). We construct a polynomial-sized adversary

B1, which uses A1 as a subroutine to break the pseudo-randomness of function

H.

Specifically, adversary B1 plays with a challenger C in a pseudo-randomness

game. At the same time, B1 interacts with A1 by attempting to “fake” the

challenger in Game 1. Before answering the queries of A1, the challenger gives

B1 a function f and algorithm Bld_Index and Gen_Trapdoor. However, the

keyed hash functions H in Bld_Index and Gen_Trapdoor are replaced with the

function f , which is either pseudo-random or truly random and takes as input

{0, 1}� and outputs {0, 1}s(�).

Next, we describe how the adversary B1 provides the view for A1 and answers

A1’s queries in the following phases.

• Setup: Based on the function f , adversary B1 generates a large collection

of attribute values D and a sequence of range queries Q, constructs a

system parameter params and sends them to the adversary A1.

• Phase 1: Adversary A1 adaptively sends B1 an attribute value collection

Di and a range query Qi as it did in Phase 1 of Game 1. B1 replies A1

110 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

with indexes Ii and trapdoor TQi
by running algorithm Bld_Index and

Gen_Trapdoor given by the challenger, where 1  i  q1.

• Challenge: Adversary A1 submits two collections of attribute values

D0 and D1. B1 randomly chooses a bit b 2 {0, 1} and replies to A1 with

index Ib Bld_Index(sk,Db) as before.

• Phase 2: For request q1 + 1  i  q, adversary A1 repeats the same

process as in Phase 1 and finally obtains hI1, ..., Iq, Ibi and hTQ1 , ..., TQq
i.

All range queries are chosen under the restriction of L(D0, Qi) = L(D1, Qi),

where 1  i  q.

• Guess: After q requests, A1 outputs a bit b0 . If b0 = b, then B1 outputs

1 to the challenger in the pseudo-randomness game. This means that B1

guesses that function f is pseudo-random. If b0 6= b, then B1 outputs 0

to the challenger. This means that B1 guesses that function f is truly

random.

Next, we prove the following two claims to indicate that B1 can distinguish

whether function f is pseudo-random or truly random with non-negligible

probability over 1/2.

Claim1. If f is a pseudo-random function, then

Pr[Bf

1 = 1|f : {0, 1}� ⇥ {0, 1}` ! {0, 1}s(�)] >
1

2
+ negl(�).

Claim2. If f is a truly random function, then

Pr[Bf

1 = 0|f : {0, 1}` ! {0, 1}s(�)] =
1

2
.

4.6 Security Analysis 111

Claim 1 Proof : If f is a pseudo-random function, then A1’s observation is

identical to what is viewed during Game 1 defined in Section 4.2.4. Since we

have assumed that A1 can win Game 1 with an advantage greater than negl(�),

then adversary B1 can also output 1 with an advantage greater than negl(�).

Thus, we prove Claim 1.

Claim 2 Proof

Claim 2 means that adversary A1 cannot distinguish D0 from D1 when the

function f is truly random. Next, we prove Claim 2 from the following

aspects.

• Indexes of any attribute values hI1, ..., Iqi and Ib reveal no differ-

ence between D0 and D1 to A1.

In the index generation, algorithm Bld_Index uses the function f to map the

prefix string of an attribute value into a string. If f is a truly random function,

the output of f is a random string. Then, upon these random strings, algorithm

Bld_Index assigns different records with different random nonces. Specifically,

random nonces $u and �u are embedded in constructing the function F P

du
(x).

And random nonce �u is used in the matrix multiplication. The last element

of index Idu is the f(�u). Hence, each index is identical to a series of random

strings. Adversary A1 is unable to detect that the secret key sk, queried

attribute value du have not been used. Given two different indexes Idu1 and

Idu2 , it is infeasible for A1 to determine whether they are created from the

same attribute value (du1 = du2) or two different attribute values (du1 6= du2).

Additionally, the index sizes of attribute values in D0 and D1 are required to

be the same. A1 also cannot distinguish D0 from D1 based on the index sizes

shown in the Ib.

112 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

• Trapdoors of any range queries hTQ1 , ..., TQq
i reveal no difference

between D0 and D1 to A1.

In algorithm Gen_Trapdoor, each element of trapdoor TQi
(Qi = [wiL, wiH])

is initially constructed using the new 1-encoding of wiL or 0-encoding of wiH .

This encoding approach is different from that used in index generation. Then,

algorithm Gen_Trapdoor uses function f to map each encoding into a string.

As indicated before, when f is a truly random function, its output is a random

string. Later, each trapdoor element TQi
is assigned with a different random

nonce �j used in the matrix multiplication. Hence, elements of any trapdoor

to adversary A1 are identical to a series of random strings. Therefore, it is

infeasible for A1 to correlate any trapdoor values TQi
with the attribute values

in D0 and D1.

• Matched records in Db(Qi) Rag_Search(Ib, TQi
) reveal no differ-

ence between D0 and D1 to A1.

D0 and D1 are required to have the same access pattern under all issued queries,

that is, D0(Qi) = D1(Qi). And every prefix string of a satisfied attribute

value has no common elements with any encodings of a range query, that is

H(�u1) 6= H(�u), ..., H(�ug) 6= H(�u). Hence, A1 cannot trivially distinguish

D0 from D1 based on their matched records under any range queries.

• The case of how each unmatched record in Db fails to be returned

by a range query reveals no difference between D0 and D1 to A1.

Based on the property shown in Equation (4.7), there is no difference when

comparing the index with the trapdoor elements of upper bound or lower

bound of the same range query. That is, A1 cannot distinguish D0 from D1

based on the difference of du > wiH or du < wiL. In addition, function F P

du
(x)

is constructed from all hashed prefix strings of du. The A1 cannot detect in

4.6 Security Analysis 113

which bit of du that differs du from Qi. In the grouping method proposed

in Section 4.4.3, we shuffle the prefix elements of each attribute value before

partitioning them into different groups. Thus, the group of index elements

that stops algorithm Rag_Search does not correspond to the same group of

bits of du and leaks no difference between D0 and D1.

If f is a truly random function, B1 can correctly guess f with a probability of

1/2. Thus, we prove Claim 2.

The function f given by the challenger is either pseudo-random or truly random

with the same probability of 1/2. Combining Claim 1 with Claim 2, we obtain

1

2
Pr[Bf

1 = 1|f : {0, 1}� ⇥ {0, 1}` ! {0, 1}s(�)]

+
1

2
Pr[Bf

1 = 0|f : {0, 1}` ! {0, 1}s(�)] >
1

2
+

negl(�)

2
.

This result indicates that B1 can distinguish a pseudo-random function from

a truly random function with an advantage greater than negl(�). However,

this result contradicts the property of a pseudo-random function, which is

impossible. Thus, we prove that an adversary A1 that can win in Game 1

with non-negligible probability over 1/2 does not exist. Therefore, our scheme

SSERAG is ciphertext indistinguishability secure.

4.6.2 Trapdoor Indistinguishability Proof

Theorem 2 The privacy-preserving range query scheme SSERAG
is trapdoor

indistinguishability secure with the leakage function L from Definition 3, as-

suming that the keyed hash function H is a secure pseudo-random function.

Proof : We use contradiction to prove the Theorem 2. Supposing that our

scheme SSERAG is not trapdoor indistinguishability secure, then there exists a

114 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

polynomial-sized adversary A2 that wins in Game 2, defined in Section 4.2.4

with non-negligible probability over 1/2. We construct a polynomial-sized

adversary B2, which uses A2 as a subroutine to break the pseudo-randomness

of function H.

Specifically, adversary B2 plays with a challenger C in a pseudo-randomness

game. At the same time, B2 interacts with A2 by attempting to “fake” the

challenger in Game 2. Before answering the queries of A2, the challenger gives

B2 a function z and algorithm Bld_Index and Gen_Trapdoor. However, the

keyed hash functions H in Bld_Index and Gen_Trapdoor are replaced with the

function z, which is either pseudo-random or truly random, and takes as input

{0, 1}� and outputs {0, 1}s(�).

Next, we describe how the adversary B2 provides the view for A2 and answers

A2’s queries in the following phases.

• Setup: Based on the function z, adversary B2 generates a large collection

of attribute values D and a sequence of range queries Q, constructs a

system parameter params and sends them to the adversary A2.

• Phase 1: Adversary A2 adaptively sends B2 an attribute value collection

Di and a range query Qi as it did in Phase 1 of Game 2. B2 replies A2

with indexes Ii and trapdoor TQi
by running algorithm Bld_Index and

Gen_Trapdoor given by the challenger, where 1  i  q1.

• Challenge: Adversary A2 picks two range queries Q0 and Q1. B2

randomly samples a bit c 2 {0, 1} and replies A2 with a trapdoor

TQc
 Gen_Trapdoor(sk, Qc) as before.

• Phase 2: For request q1+1  i  q, adversary A2 repeats the same pro-

cess as in Phase 1 and finally obtains hI1, ..., Iqi and hTQ1 , ..., TQq
, TQc
i.

4.6 Security Analysis 115

All collections of attribute values are chosen under the restriction of

L(Di, Q0) = L(Di, Q1), where 1  i  q.

• Guess: After q requests, A2 outputs a bit c0 . If c0 = c, then B2 outputs

1 to the challenger in the pseudo-randomness game. This means that B2

guesses that z is a pseudo-random function. If c0 6= c, then B2 outputs 0

to the challenger. This means that B2 guesses that z is a truly random

function.

Next, we prove the following two claims to indicate that B2 can distinguish

whether function z is pseudo-random or truly random with an advantage

greater than negl(�).

Claim3. If z is a pseudo-random function, then

Pr[Bz

2 = 1|z : {0, 1}� ⇥ {0, 1}` ! {0, 1}s(�)] >
1

2
+ negl(�).

Claim4. If z is a truly random function, then

Pr[Bz

2 = 0|z : {0, 1}` ! {0, 1}s(�)] =
1

2
.

Claim 3 Proof : If z is a pseudo-random function, then A2’s observation is

identical to what is viewed during Game 2 defined in Section 4.2.4. Since we

have assumed that A2 can win Game 2 with non-negligible probability over

1/2, then adversary B2 can also output 1 with non-negligible probability over

1/2. Thus, we prove Claim 3.

116 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

Claim 4 Proof

Claim 4 means that adversary A2 cannot distinguish Q0 from Q1 when the

function z is truly random. Next, we prove Claim 4 from the following

aspects.

• Trapdoors of any range queries hTQ1 , ..., TQq
i and TQc

reveal no dif-

ference between Q0 and Q1 to A2.

As indicated in the second point of Section 4.6.1, algorithm Gen_Trapdoor uses

function z and different random nonce �j in generating each trapdoor element

TQi
. When the function z is truly random, the elements of any trapdoor are

identical to a series of random strings. Adversary A2 is unable to detect that

the secret key sk, the upper bound wiH and lower bound wiL have not been

used. Given two different trapdoors TQi1 and TQi2 , it is infeasible for A2 to

determine whether they are created from the same query range or not, and

whether the upper or lower bound of Qi1 is larger or smaller than that of Qi2.

Additionally, the trapdoor sizes of Q0 and Q1 are required to be the same. A2

cannot distinguish Q0 from Q1 based on the trapdoor size of TQc
.

• Indexes of any attribute values hI1, ..., Iqi reveal no difference be-

tween Q0 and Q1 to A2

As mentioned in the first two points of Section 4.6.1, both algorithm Bld_Index

and Gen_Trapdoor add different random nonces when generating each index

and trapdoor element. Adversary A2 is unable to correlate any index value

Idu with the trapdoor of Q0 or Q1.

• Matched records in Di(Qc) Rag_Search(Ii, TQc
) reveal no differ-

ence between Q0 and Q1 to A2.

4.6 Security Analysis 117

Q0 and Q1 are required to have the same access pattern with all issued

collections of attribute values, that is, Di(Q0) = Di(Q1). And every trapdoor

element has no common elements with any prefix string of a satisfied attribute

value, that is H(�u1) 6= H(�u), ..., H(�ug) 6= H(�u). Hence, A2 cannot trivially

distinguish Q0 from Q1 based on their matched records in any attribute value

collections.

• The case of how each unmatched record fails to be returned by

the range query Qc reveals no difference between Q0 and Q1 to A2.

To hide which trapdoor element that differs between the trapdoor and index,

algorithm Gen_Trapdoor places the trapdoor elements of each issued range

query in shuffled order. That is, trapdoor element Tj causing the H(�uj) =

H(�u) does not correspond to the same bit of lower/upper bound of a range

query. Hence, the trapdoor element that differs in each unmatched attribute

value from query Qc does not leak any difference between Q0 and Q1 to A2.

If z is a truly random function, B2 can correctly guess z with a probability of

1/2. Thus, we prove Claim 4.

The function z given by the challenger is either pseudo-random or truly random,

with the same probability of 1/2. Combining Claim 3 with Claim 4, we obtain

1

2
Pr[Bz

2 = 1|f : {0, 1}� ⇥ {0, 1}` ! {0, 1}s(�)]

+
1

2
Pr[Bz

2 = 0|f : {0, 1}` ! {0, 1}s(�)] >
1

2
+

negl(�)

2
.

This result indicates that B2 can distinguish a pseudo-random function from

a truly random function with non-negligible probability over 1/2. However,

this result contradicts the property of a pseudo-random function, which is

impossible. Thus, we prove that there does not exist an adversary A2 that

can win in Game 2 with an advantage greater than negl(�). Thus, our scheme

SSERAG is trapdoor indistinguishability secure.

118 Chapter 4 Order-Hiding Range Query over Encrypted Data without Search Pattern

Leakage

To sum up, based on the Definition in 6, we can conclude that our privacy-

preserving range query scheme SSERAG is both ciphertext and trapdoor indis-

tinguishability secure with the leakage function L from Definition 3, assuming

that the keyed hash function H is a secure pseudo-random function.

4.7 Conclusion

For cloud data storage, data privacy and security are two key concerns. Al-

though sensitive data can be encrypted before they are stored in the cloud, the

encrypted data can hardly be processed efficiently. Hence, a lightweight solu-

tion is required to satisfy both high security and high efficiency requirements.

In this chapter, we study the problem of range query over encrypted data. The

main idea is to transform the range comparison to a privacy-preserving set

intersection operation. To protect record privacy, our scheme builds searchable

encrypted indexes for records that are secure against inference attack. To

ensure the privacy of range queries, non-deterministic encryption, which has

not been achieved in range query before, is proposed to hide the search pattern

of queries. During range comparison, our scheme neither leaks the order rela-

tionship between the upper/lower bound of a range query and the encrypted

index, nor produces false positives in the query results. We have implemented

our scheme and evaluated its performance in comparison with other schemes.

The comparison results indicate that our scheme has a shorter index size and

search time than the order-revealing encryption scheme when the processing

unit is large. Meanwhile, our scheme only leaks the access pattern, and is

proved to be more secure than existing schemes.

4.7 Conclusion 119

5
Access Pattern Hidden Query over

Encrypted Data through

Multi-clouds

5.1 Introduction

Searchable symmetric encryption (SSE) allows database searching to be con-

ducted over encrypted data. Basically, using the secure indexes generated by

the data owner, a cloud server matches the encrypted query keywords (called

trapdoor) with the secure indexes to find the required data. As a result, the

cloud server can learn the search pattern (i.e., if the query has been issued

before) and access pattern (i.e., which encrypted documents satisfied which

trapdoors). Based on these observations, the cloud server still can analyze and

estimate the plaintext value of documents or query even without decryption

keys. For instance, when the query results of any two trapdoors have large

overlapping, it means that their corresponding query keywords must be closely

related. The cloud server can reveal the trapdoor keywords, by calculating

the co-occurrence frequency of trapdoors in the ciphertext dataset and finding

the same frequency in the plaintext dataset [92]. In addition, some keywords

have unique appearance frequencies in the datasets [94]. Attackers can identify

the trapdoor keywords by mapping the same but unique result count between

the ciphertext and plaintext dataset. All these two attacks take advantage of

access pattern leakage to recover keywords of trapdoors.

121

The main reason behind access pattern leakage attacks is that the most search-

able encryption schemes can only safeguard the confidentiality of document

and query value at rest. The strongest security model available for Searchable

Symmetric Encryption (SSE) schemes is formulated by Curtmola et al. in

[91]. The schemes satisfying this model ensure the indexes and trapdoors

themselves do not leak the document and query value even when the attackers

adaptively issuing the queries. However, this model allows the attacker to learn

the statistics information from the observation of searching results (i.e., access

pattern of queries). Moreover, most of these schemes are designed to perform

on the single server. Hence, the server is able to gain all the trapdoors and

their query results. When the dataset to be searched is large enough to cover

the entire domain knowledge, the server can statistically analyze the actual

value of queries or documents. Oblivious Random Access Memory (ORAM)

[22, 23] has been proposed to address the access pattern leakage problem by

hiding the physical memory access patterns of executed programs from the

server. However, the computational complexity of most ORAM schemes is high

and they can only support limited types of queries. Similar to our approach,

vertical fragmentation [102, 24] seeks to use multiple servers to make attackers

unable to discover the sensitive association between document attributes, (e.g.,

separating documents of employee name and salary on two servers). But

this technique cannot prevent the access pattern leakage attacks on a single

attribute, and can lead to a long response time for multi-keyword search.

As shown in the Fig. 5.1, to tackle access pattern leakage attack, we adopt the

servers on multiple clouds. Our contributions are summarized as follows:

• We distribute both database documents (rows) and queries among differ-

ent cloud servers. Since none of the servers can access the entire database

of documents and queries, they cannot identify the accurate statistical

relationship of the query results.

122 Chapter 5 Access Pattern Hidden Query over Encrypted Data through Multi-clouds

…Cloud 1

[R1]k1

Cloud 2 Cloud k
R

q1,q2,…,qM

[R2]k2 [R3]k3

Fig. 5.1: Assigning records and queries among multiple clouds.

• We formulate the document and query assignment as an optimization

problem to minimize both query response time and access pattern dis-

closure. We then determine an optimal assignment strategy using a

minimum cut algorithm.

• Our distribution strategy supports any secure SSE schemes. Before

storing documents to cloud servers, all documents are protected using

the same SSE scheme, but each server is given different secret keys to

encrypt and build the secure index for the documents assigned to it.

Accordingly, different trapdoors are created based on the server that is

executing the query.

• We adopt the servers on multiple clouds, but in the same region. This

deployment requires less bandwidth and reduces the chance for a collusion

attack among servers (i.e., compared with deployment for servers in

different datacenters of the same cloud).

• We evaluate the assignment strategy output from our approach with

a real world dataset. The numerical results indicate that on average

13% access pattern information can be saved by our assignment strategy,

without sacrificing query response time. In addition, our algorithm is

scalable under different realistic settings.

5.1 Introduction 123

The remainder of this chapter is organized as follows. Section 5.2 presents

and formulates our proposed record and query assignment model. Section 5.3

describes how to search for an optimal assignment strategy by solving the

assignment optimization problem. The experimental results and conclusion

are shown in Section 5.4 and 5.5, respectively.

5.2 Secure Assignment Strategy
Formulation

In this section, we explain our security strategies to reduce the access pattern

leakage by distributing both records and queries among multiple clouds. Both

the IKK and count attacks rely heavily on extracting the information from

a complete plaintext dataset [121]. Hence an attacker cannot launch these

attacks if only a fraction of the plaintext dataset is known [93]. In other words,

if a server only knows partial information about the encrypted dataset, the

above attacks can be minimized, even with the complete knowledge of the

plaintext dataset.

• Record Fragmentation Both matrix element Mc(i, j) and count(Rq)

are computed from the trapdoor query result set Rq. When the server is

unable to access the correct query results of the trapdoors, the attacker

finds it difficult to deduce their keywords by matching their frequencies.

Padding is one of the approaches to hide actual query results, by adding

dummy records and identifiers before building the secure indexes [92].

However, padding unsatisfied records causes false positives in the query

results, and brings extra communication overhead [93, 121]. In this

chapter, we consider using multi-clouds to tackle the security problems.

We will remove the records in the trapdoor query results to other cloud

servers, in order to make the co-occurrence probability and keyword

124 Chapter 5 Access Pattern Hidden Query over Encrypted Data through Multi-clouds

frequency observed by a single server incorrect. In other words, each

server can only return part of the correct query results. The same query

needs to be executed parallelly on multiple servers.

• Query Distribution Since IKK attack is based on the entire matrix Mc,

the order of different query pairs co-occurrence probability can be used

for keyword recovery attack. Apart from disturbing each query result

set, hiding the differences between different Mc(i, j) is also necessary.

We adopt the same strategy proposed in [92]. Instead of using a padding

approach, we will distribute queries with similar results on the same

server, in order to make the query result of trapdoors on the same cloud

server as similar as possible.

Our scheme can perform the keyword search in two phases. In the first phase,

the cloud server only searches for the query result which provides the identities

of records that contain the query keywords. To prevent the server from knowing

the query result, the returned record identities are encrypted. After decrypting

the record identities, the client retrieves the records in the second phase. In

both phases, the client sends the request in batches without repeated keywords

or records. For instance, a client sends a query request which includes |X|

different keywords. Basically, in the query result of the previous scheme, each

record is linked to one keyword. By adopting the batch query method, each

record is linked to multiple keywords. This method makes the access pattern

of a keyword indistinguishable from the other |X|� 1 keywords. As a result,

a cloud server cannot associate a returned record with a particular query.

Therefore, even if an attacker is able to collect the access pattern from multiple

cloud servers at the same time, it is still difficult to accurately identify the

keyword of the trapdoor based on statistical analysis.

As shown in Fig. 5.1, the fundamental question is: “How should the records and

queries be distributed among the multiple cloud servers in order to minimize

5.2 Secure Assignment Strategy Formulation 125

the response time while satisfying certain security requirements?” In this

section, we will introduce the strategy of record and query assignment, to

satisfy the above introduced security requirements. Let R = {r1, ..., rN} denote

a set of database records with several attributes. Let Q = {q1, ..., qM} denote

a sequence of queries written in the development process. Each of the queries

has different combinations of keywords to be searched on R. In addition, let

S = {S1, ..., S|S|} denote a group of cloud servers, which will be assigned both

records and query tasks. Before distribution, the data owner builds a matrix B

to describe the query results of all of the queries, in which the rows represent

the record set and columns represent the query set. Each element br,q 2 B is

set to 1, if record r 2 R satisfies query q 2 Q. The qth column vector of B

denotes the query result of q, that is Bq. Matrix B is safely kept by the data

owner.

br,q =

8
>><

>>:

0, ifr /2 Result(q)

1, ifr 2 Result(q)

(5.1)

5.2.1 Record and Query Assignment

To prevent the aforementioned attacks, our scheme would assign both records

and queries among cloud servers. We assume that the partial records and

queries on a single cloud server cannot reveal the statistical property of the

original access pattern.

Definition 7 Record and Query Assignment: We define A = (AR,AQ)

as an assignment of records R and queries Q to a set of cloud servers S. The

process of assignment is to horizontally and vertically partition the elements

of matrix B into |S| blocks. Finally, each cloud server obtains a sub-matrix

of B with a subset of records and queries. To avoid repetition of the returned

results, each element br,q 2 B will be assigned to one of the cloud servers.

126 Chapter 5 Access Pattern Hidden Query over Encrypted Data through Multi-clouds

B =

q1 q2 . . . qM
0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

0 1 . . . 0 r1

1 0 . . . 1 r2

1 1 . . . 0 r3

...
...

...

0 1 . . . 1 rN

!

q1 q2 . . . qM

0 1 . . . 0

1 0 . . . 1

1 1 . . . 0

...
...

0 1 . . . 1

(5.2)

Matrix AR describes the placement of records on cloud servers. Each element

xr,s 2 AR is set to 1, if record r 2 R is assigned to cloud server s 2 S. Since

each record is assigned to at least one cloud server, AR has no zero row, that

is
P

s=|S|
s=1 xr,s � 1.

AR =

S1 . . . A
s

R
. . . Sk

0

BBBBB@

1

CCCCCA

x1,1 . . . x1,s . . . x1,|S| r1

...
...

x|R|,1 . . . x|R|,s . . . x|R|,|S| rN

(5.3)

Matrix AQ indicates the placement of queries on cloud servers. Each element

yq,s 2 AQ is set to 1, if query q 2 Q is distributed to cloud server s 2 S. Each

row vector of AQ represents an assignment of a query among the cloud servers,

5.2 Secure Assignment Strategy Formulation 127

that is A
q

Q
= [yq,1, ..., yq,|S|]. Since each query must be distributed to at least

one cloud server, AQ has no zero row, that is
P

s=|S|
s=1 yq,s � 1.

AQ =

S1 . . . A
s

Q
. . . Sk

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

y1,1 . . . y1,s . . . y1,|S| q1

...
...

yq,1 . . . yq,s . . . yq,|S| A
q

Q

...
...

y|Q|,1 . . . y|Q|,s . . . y|Q|,|S| qM

(5.4)

We define the assignment on each cloud server s as A
s, which is a tuple of

two column vectors, that is As = (As

R
,As

Q
). Specifically, As

R
= [x1,s, ..., x|R|,s]|

and A
s

Q
= [y1,s, ..., y|Q|,s]| correspond to the sth column in matrix AR and AQ,

respectively. It also means that each cloud server only obtains a subset of

records and queries.

After applying the horizontal and vertical partition on matrix B, we need to

ensure records duplicated into multiple cloud servers cannot be associated.

So, each cloud server reassigns different record IDs and uses different keys to

encrypt records and their attribute names. Accordingly, different trapdoors are

generated for the same query sent to different clouds. Finally, the independent

searchable encryption scheme is applied within each cloud server.

5.2.2 Information Disclosure

In this subsection, we will clearly identify the information disclosure from

the assignment A to the cloud server set S. We assume that different cloud

servers will not collude after applying different searchable encryption schemes.

We firstly analyze the information disclosure on each single cloud server. By

128 Chapter 5 Access Pattern Hidden Query over Encrypted Data through Multi-clouds

observing the response results of all of the queries, each cloud server s can

rebuild another matrix B
s to describe the query results on its own. That is, for

each 8xr,s 2 A
s

R
= 1 and 8yq,s 2 A

s

Q
= 1, the corresponding row and column

vector in B is chosen to form B
s (B which is a sub-matrix of B. The qth

column vector of Bs denote the query result of q on the cloud s, that is B
s

q
.

A
s

Q
y1,s y2,s . . . yM,s = 1 A

s

R

0

BBBBBBBBB@

1

CCCCCCCCCA

0 1 . . . 0 x1,s

1 0 . . . 1 x2,s

B
s =

...
...

...

0 1 . . . 1 xN,s = 1

(5.5)

Definition 8 Information Disclosure: We define the information disclo-

sure from the assignment A
s

on each cloud server as a set of queries D(As)

that does not satisfy the following constrains:

• Referring to the leakage definition proposed in [92], the result differences

between any two queries on each cloud server s should be less than a

threshold value 0  ↵  1. We use the Hamming distance between

any two column vectors in B
s

for evaluation. For any two queries 1 

8q1, q2  cols(Bs), if the

Hamming(Bs

q1
,Bs

q2
)

rows(Bs)
> ↵ (5.6)

then q1 and q2 are regarded as insecure queries included to set D(As),

that is D(As) [{q1, q2};

• None of the queries on the cloud server s should include the entire query

result, that is, for 1  8q  cols(Bs), if B
s

q
= Bq, then D(As) [{q}.

5.2 Secure Assignment Strategy Formulation 129

We define the overall information disclosure of an assignment A as the ratio

of insecure queries to the total queries.

D(A) =

���
S

s=k

s=1 D(As)
���

|Q|
(5.7)

5.2.3 Query Response Time

We use the query response time observed by the data user to evaluate the

performance of records and queries distribution across multiple cloud servers.

We consider that all of the queries q1, ..., qM have already been identified by the

developers. And each query has a corresponding execute frequency, denoted

as a vector F = [f1, ..., fM],
P

q=M

q=1 fq = 1. The response time of each cloud

server consists of two parts: local processing time and result transmission time.

Since queries are sent to a cloud server in sequential order, the local processing

of each cloud server can be modelled as a M/M/1 queue. The time cost of

query result transmission is a constant calculated based on the result size and

network bandwidth, that is Tran(q, s) = Size(Bs

q
)/Net(s).

Obviously, the query arrival rate to each cloud server is related to the queries

assigned to it. For any query q with executing frequency fq, the cloud server will

receive the requests with the rate of fq, as long as it stores the records queried

by q. We consider the query arrival rate to follow the Poisson distribution.

Since the additive property of Poisson distribution, the arrival rate of any

cloud server s is the summation of all of the execute frequencies of queries

on them. Let ✓s denote the mean query arrival rate of server s, such that

✓s = F ·A
s

Q = [f1, ..., fM] · [y1,s, ..., yM,s]|. We assume that the query processing

time of each cloud’s database follows the independent exponential distribution.

Then we use µs to denote the mean query process rate of server s.

130 Chapter 5 Access Pattern Hidden Query over Encrypted Data through Multi-clouds

Since each query is forwarded to more than one cloud server and processed

parallelly, based on the row vector A
q

Q
, the final mean response time of each

query q equals to the maximum mean response time of all of the execute cloud

servers, as follows.

T (q,A) = max
yq,s2Aq

Q
,yq,s=1

⇢
✓s

µs � ✓s
+ Tran(q, s)

�
(5.8)

Thus, for an assignment A and a sequence of queries Q = {q1, ..., qM}, the

mean response time is shown as follows.

T (Q,A) =
X

q2Q

T (q,A) · fq (5.9)

Definition 9 Optimal Assignment: Given a matrix B built to represent

the query result of a sequence of queries Q on a set of database record R. We

use the following optimization problem to find an optimal assignment A of all of

the elements in B to the cloud servers in S that minimizes the tradeoff between

the total query response time T (Q,A) and information disclosure D(A), where

� is a nonnegative weight and ⌘ is the disclosure constraint.

minimum
A2(B⇥S)

T (Q,A) + �D(A)

subject to D(A)  ⌘

(5.10)

5.3 Assignment Optimization

In this section, we describe how to find a record and query assignment with

minimal query response time and information disclosure. The optimization

problem formulated in equation (5.10) is NP-hard to solve. We present the

following heuristic algorithm to find an approximate optimal assignment.

5.3 Assignment Optimization 131

5.3.1 Algorithm Overview

The challenge of solving the optimizing problem (5.10) lies in the mutual

affection between record and query placements. When any record in the result

set of a query q is assigned to a cloud server s, then query q also needs to

be sent to the same cloud in order to return the entire query result. The

response time of query q is reduced, but the workload and information leakage

on server s is increased. Hence, instead of determining the placement of record

and query separately, we take each element br,q 2 B as a decision unit. Thus,

the optimization problem (5.10) equals finding an assignment of elements in

B = {b1,1, ..., b1,M ; ...; bN,1, ..., bN,M} to one of the cloud servers S1, ..., Sk, such

that the objective function G(·) is minimized.

Input: matrix B; set of cloud servers S; empty assignment A; objective
function G(·)

Output: assignment A: G(A) is minimal
Initialization: A an arbitrary assignment ;
do

Stop 0;
for all pairs of cloud servers {s, t} 2 S do

A
0 = EXCHANGE(s, t,A);

if G(A
0
) < G(A) then

A = A
0 ;

Stop 1;
end

end
while Stop == 1;
return A;

Algorithm 1: Optimal assignment search algorithm.

5.3.2 Assignment Minimization via Minimum Cut

The structure of our algorithm is shown in Algorithm 1. Referring to the idea in

[122], the algorithm repeatedly executes a for-loop until the first for-loop that

cannot make any improvement to the current assignment, the algorithm outputs

it. In the for-loop, the algorithm performs the same iteration (EXCHANGE)

132 Chapter 5 Access Pattern Hidden Query over Encrypted Data through Multi-clouds

s ts t

s

t

h

(a) (b) (c)

Fig. 5.2: Search for optimal assignment of elements to a pair of cloud servers via
minimum cut.

for each pair of cloud servers. The output of each EXCHANGE is an optimal

assignment of input elements to one pair of cloud servers. The variable “Stop”

will be set to 1, if the output of any EXCHANGE is an assignment A
0 with

lower objective function value.

Fig. 5.2 depicts how to solve EXCHANGE via the minimum s � t cut. We

first construct a graph by considering two cloud servers as terminal nodes (s, t)

and all the elements in B as the middle nodes connecting s or t. The solid line

in Fig. 5.2(a)) indicates an assignment of element to a cloud server. In the

initial phase of the Algorithm 1, each element in B is arbitrarily linked to one

of the cloud servers in S. In each iteration, the inputs of EXCHANGE are a

pair of cloud servers and an assignment A to be improved. The purpose of

algorithm EXCHANGE is to improve the assignment A by connecting each

element to one of the terminals. The principle of adjustment is to seek a new

assignment that with lower objective function value under the constraint of

information disclosure. In the initial phase, the algorithm adds edges from

both servers to all the elements that are linked to one of the two servers, as

shown by the dashed lines in Fig. 5.2(a)).

Since each element can only link to one of the terminal nodes, this adjustment

can be achieved via the minimum s� t cut on Fig. 5.2(a)). The output of a

minimum s� t cut is a set of edges (hit by the dash-dotted lines in Fig. 5.2(b))

with the minimal cost value to separate terminal node s and t, which is also a

5.3 Assignment Optimization 133

better assignment A0 from elements to cloud servers. Some elements previously

assigned to server s in A are now assigned to server t in A
0 , and vice versa. The

assignment of the rest of the cloud servers h 6= s, t 2 S is the same A
h = A

0
h.

The algorithm repeatedly chooses another pair of cloud servers (s, h), links

the elements of s and h with one another, and finds the minimum cut set, as

shown in Fig. 5.2(c).

5.4 Performance Evaluation

In this section, we conduct experiments to analyze the performance of the

assignment strategy output from Algorithm 1. In particular, we demonstrate

that our assignment strategy resists access pattern attack, offers high query

efficiency and is scalable under different realistic settings.

5.4.1 Experimental Settings

Dataset R and queries Q

We adopt the Enron email dataset for evaluation, which is a set of email

documents of 150 Enron corporation employees, sent from 2000 to 2002 [94].

This dataset has 30,109 email documents with 77,000 unique keywords after

removing the stopwords [23]. We consider each document as a record, and

generate queries by uniformly choosing them from the most frequent keywords.

The documents that contain a certain keyword mean the document is the

result of the query with that keyword. Since the query frequency does not

influence information disclosure, we assume that the frequencies of all of the

queries are equal and their sum is 1. So the query arrival rate ✓s of each cloud

server is related to the total number of queries assigned to it.

134 Chapter 5 Access Pattern Hidden Query over Encrypted Data through Multi-clouds

Table 5.1: Parameter settings for performance evaluations

Fig. No. of Q No. of S �

5.3a,5.3b 500 [2,10] 1
5.4a,5.4b [200,1000] 10 1

5.5a 500 10 1
5.5b 500 [2,10] 0, 1

Cloud Servers S

Since the service rate of cloud database service is dynamic and difficult to

control, we evaluate the performance of our assignment approach via the

numerical experiments. We assume that the service rate µs of all of the cloud

servers is equal to 1 in the following experiments. The time cost of transmitting

back each single record is assumed to be 1 ms. Therefore, the bandwidth

cost equals to the number of query results on each cloud server. In all of the

experiments, we set ↵ = 0.5 and ⌘ = 0.9. We use the gco-v3.0 library [123]

to implement the minimum cut algorithm and obtain our assignment policies

based on the different parameter settings. Table 5.1 indicates the specific

parameter settings of each figure.

Benefits of our assignment strategy

We compare the record and query assignment strategy designed by our approach

with the record placement policies in the distributed databases. The usual

sharding policies in the NoSQL database (e.g., MongoDB) are Range-based

and Hash-based [124]. In the Range-based sharding, records are divided into

different chunks based on the range of shard key values. In the Hash-based

sharding, records are evenly distributed among cloud servers based on the hash

of shard key values.

5.4 Performance Evaluation 135

2 3 4 5 6 7 8 9 10

Number of Cloud Servers

0

20

40

60

80

100

In
fo

rm
a

tio
n

 D
is

cl
o

su
re

(%
)

Ours

Range-based

Hash-based

(a) Information disclosure.

2 3 5 7 10

Number of Cloud Servers

0

20

40

60

80

100

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Ours

Range-based

Hash-based

(b) Response time.

Fig. 5.3: Benefits of our assignment strategy on information disclosure and query
response time.

5.4.2 Experimental Results

Fig. 5.3a shows the information disclosure of three data assignment policies

with the growing number of cloud servers. The leakage always declines with a

greater number of servers, since fewer access patterns are observed by each

cloud server. Hash-based policy leaks more information than Range-based

policy, because the records with “closer” key values are stored on the same

server. So queries executed on the same server have similar results. Our

assignment strategy discloses the lowest percentage of information over the

other two. Under different numbers of cloud servers, our approach saves an

average of 14.7% information disclosures compared to the Range-based policy.

Compared to the Hash-based policy, our approach can save more. The benefits

of our assignment over other policies increases with a greater number of cloud

servers. This is because our approach achieves better assignment solutions

with more cloud servers.

Fig. 5.3b depicts the response time of three placement strategies. The Hash-

based policy has less query response time than the Range-based policy does,

because records in Hash-based policy can be parallelly executed on different

cloud servers. However, in these two partitioning policies, the query workload

on each cloud server has not been considered. In our assignment strategy,

136 Chapter 5 Access Pattern Hidden Query over Encrypted Data through Multi-clouds

200 300 400 500 600 700 800 900 1000

Number of Queries

0

20

40

60

80

100

In
fo

rm
a

tio
n

 D
is

cl
o

su
re

(%
)

Ours

Range-based

Hash-based

(a) Information disclosure.

200 300 500 700 1000

Number of Queries

0

20

40

60

80

100

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Ours

Range-based

Hash-based

(b) Response time.

Fig. 5.4: Influence of the number of queries on the benefits of our assignment

using the access pattern as input leads to a faster query response time, which

saves an average of 6% of the query response time compared to the Hash-based

policy.

Influence of the number of queries

Fig. 5.4a shows the information disclosure of three data assignment policies

with a different number of queries. The leakage increases with a greater

number of queries, since more queries are gathered in the same cloud server,

and more access patterns are disclosed. Our assignment strategy leaks the

lowest percentage of information. Under different numbers of queries, our

approach saves an average of 13% information disclosures compared with

the Range-based policy. This is because our approach optimizes information

disclosures. Fig. 5.4b illustrates the impact of the number of queries on query

response time. The response time increase as a greater number of queries.

On average, 1.7% response time can be saved by our approach, compared

with the Hash-based policy. This result indicates that our approach can avoid

information disclosures without sacrificing query efficiency.

Convergence speed of Algorithm 1 Fig. 5.5a demonstrates the comparison

of convergence speed between Algorithm 1 (minimum cut) and the greedy

randomized adaptive local search procedure (GRASP) proposed in [125]. In

5.4 Performance Evaluation 137

0 1 2 3 4 5 6 7 8 9

Number of Iterations

0

20

40

60

80

100

N
o

rm
a

liz
e

d
 O

b
je

ct
iv

e
 F

u
n

ct
io

n
 V

a
lu

e

Ours

GRASP

(a) Convergence speed.

2 3 5 7 10

Number of Cloud Servers

0

20

40

60

80

100

In
fo

rm
a

tio
n

 D
is

cl
o

su
re

(%
)

γ = 1

γ = 0

(b) Influence of optimization goals.

Fig. 5.5: Evaluation of convergence speed and influence of optimization goals

each iteration of Algorithm 1, function EXCHANGE is invoked to find an

optimal assignment of elements to a pair of cloud servers. In each iteration

of GRASP algorithm, function CONSTRUCTION is invoked to greedily find

a new assignment with lower objective function value. Fig. 5.5a shows that

the objective function value of our algorithm drops quickly in the first several

iterations, which indicates that our approach converges faster than GRASP.

Performance with different optimization goals In the equation (5.10), �

is an important parameter. When � = 0, the optimization goal is only the total

query response time under the information disclosure constraint. When the

� = 1, the optimization goal is both the query response time and information

disclosure. Fig. 5.5b compares the information disclosures under different

optimization goals by varying the number of cloud servers. For both versions

of the optimization problem, the information leakage decreases as the number

of cloud servers increases. This result shows that tradeoff optimization goal

(� = 1) achieves lower information disclosure by using multiple cloud servers.

138 Chapter 5 Access Pattern Hidden Query over Encrypted Data through Multi-clouds

5.5 Conclusion

Searchable encryption seeks to support untrusted third parties to conduct

direct searching over encrypted data. However, recent research has found that

searchable encryption is vulnerable to attacks, which exploit the statistical

relationship or pattern identified from encrypted query results. In this chapter,

we study the problem of access pattern leakage attack on searchable encryption

under a multi-cloud environment. Basically, both database records and queries

are distributed among different cloud servers, so that each cloud server can only

have partial information about queries and their results. To minimize the query

response time while protecting information disclosure, we formulate the record

and query assignment as an optimization problem, and solve the problem

(i.e., finding the best possible solution) by the minimum s� t cut algorithm.

Numerical results show that on average 13% access pattern information can be

saved by our assignment strategy while maintaining good query response time.

Additionally, there are many queuing models which are able to represent the

feature of the query process in the multi-cloud environment. In this thesis, to

facilitate the analysis, we only consider the basic M/M/1 queuing model for

the performance analysis. In the future work, other advanced queuing models

can also be studied. For example, M/G/m/m+ r queuing system has been

used to model the performance of cloud data centers with single task arrivals

and a task buffer of finite capacity [127]. Furthermore, a network of queues

can also be considered in future performance analysis [126, 127].

5.5 Conclusion 139

6
Conclusion and Future Work

In this thesis, we have studied two important security issues for supporting

Intercloud, namely distributed trust evaluation and secure data query. To this

end, we have the following conclusions:

1. A distributed trust evaluation protocol with privacy protection

for Intercloud

In Chapter 3, we have presented a distributed trust evaluation protocol with

privacy protection for Intercloud. Compared to other protocols, this distributed

protocol provides some distinctive features, particularly for the Intercloud

environment. First, it supports user anonymity by means of blind signature,

facilitating users to provide honest feedback without fear of a retaliatory attack.

Second, by means of an innovative mechanism for storing feedback, feedback

privacy can be protected by using homomorphic encryption with verifiable

secret sharing. Third, it allows customized processing of evaluation results while

protecting feedback privacy. A security model has been employed to evaluate

the protocol for its effectiveness. Unlike many other distributed protocols,

which only support static configuration, the protocol can still be effective

when some of the parties are offline (i.e., supporting a dynamic configuration).

Simulation results indicate the protocol can still function well when half of the

parties are malicious or offline. Future work is being planned to further analyze

and enhance the protocol (e.g., using distributed ledger technology). For

example, various blockchains can be formed (e.g., among Intercloud Exchanges,

CSPs and users). It is of interest to study how the blockchains can interact to

support trust evaluation and other advanced functions for Intercloud.

141

2. Order-Hiding Range Query over Encrypted Data without Search

Pattern Leakage

In Chapter 4, we have designed an order-hiding range query scheme. Our

scheme solves the security leakage problem in existing secure range query

schemes. To hide the statistical relationships among indexes, our scheme adopts

the 0/1 encoding technique and constructs the indexes as the coefficients of the

randomized polynomial function. To avoid leaking the comparison operator

and search pattern, our scheme introduces a random invertible matrix in

the generation of query trapdoors. We formally analyse sensitive information

leakage in our scheme, and have proved it is secure under an IND-CKA2 security

definition without restriction of the same search pattern. We implemented

and assessed the performance of our scheme. The comparison results show

that although the ORE scheme has a shorter index size and search time with

small processing units, it is slower and has a longer index size than our scheme

when the processing unit is large. On average, the index building time of our

scheme is more than 16 times faster than the OPE scheme. Meanwhile, our

scheme only leaks the access pattern, and is proved to be more secure than

existing schemes. Future work is being planned to further enhance the query

efficiency of our scheme and evaluate the performance on large volume dataset

in the databases range query.

3. Access pattern hidden query over encrypted data scheme through

multi-clouds

In Chapter 5, we have investigated the problem of access pattern leakage attack

to searchable encryption in a cloud database. We distribute both documents

and queries among different cloud servers, so that each cloud server can only

observe partial information about access patterns. To achieve a minimum query

response time and information disclosures, we formulate this record and query

assignment as an optimization problem and search for the optimal assignment

142 Chapter 6 Conclusion and Future Work

by the minimum s� t cut. The numerical results show that on average 13%

access pattern information can be saved by our assignment strategy, without

sacrificing query efficiency. Our future work is to further enhance the security

of our scheme to resist other access pattern leakage attacks and evaluate the

performance of our scheme by combing it with multiple servers searchable

symmetric encryption schemes. We are also going to include more factors as the

optimization goal or constraint condition (e.g. electricity cost for maintaining

the data query on cloud server) when searching for the optimal assignment

strategy.

143

References

[1] Kiranbir Kaur, Sandeep Sharma, and Karanjeet Singh Kahlon. “Interoper-
ability and Portability Approaches in Inter-Connected Clouds: A Review”.
In: ACM Comput. Surv. 50.4 (2017), 49:1–49:40 (cit. on p. 1).

[2] Ana Juan Ferrer. “Inter-cloud Research: Vision for 2020”. In: 2nd International
Conference on Cloud Forward: From Distributed to Complete Computing,
Madrid, Spain, 18-20 October, 2016. 2016, pp. 140–143 (cit. on p. 1).

[3] Justice Opara-Martins, Reza Sahandi, and Feng Tian. “Critical analysis of
vendor lock-in and its impact on cloud computing migration: a business
perspective”. In: J. Cloud Computing 5 (2016), p. 4 (cit. on p. 1).

[4] Adel Nadjaran Toosi, Rodrigo N Calheiros, and Rajkumar Buyya. “Intercon-
nected cloud computing environments: Challenges, taxonomy, and survey”.
In: ACM Comput. Surv. 47.1 (2014), p. 7 (cit. on pp. 1, 9).

[5] Tram Truong-Huu and Chen-Khong Tham. “A novel model for competition
and cooperation among cloud providers”. In: IEEE Transactions on Cloud
Computing 2.3 (2014), pp. 251–265 (cit. on pp. 1, 10).

[6] Li Liu, Shuxian Gu, Dongmei Fu, Miao Zhang, and Rajkumar Buyya. “A New
Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition”.
In: TIIS 12.1 (2018), pp. 1–20 (cit. on pp. 1, 10).

[7] Stelios Sotiriadis, Nik Bessis, Ashiq Anjum, and Rajkumar Buyya. “An
Inter-Cloud Meta-Scheduling (ICMS) Simulation Framework: Architecture
and Evaluation”. In: IEEE Trans. Services Computing 11.1 (2018), pp. 5–19
(cit. on pp. 1, 10).

[8] Lirim Osmani, Salman Toor, Miika Komu, et al. “Secure cloud connectivity
for scientific applications”. In: IEEE Transactions on Services Computing
PP.99 (2015), pp. 1–13 (cit. on pp. 1, 10).

[9] Stelios Sotiriadis, Nik Bessis, Euripides GM Petrakis, et al. “Virtual machine
cluster mobility in inter-cloud platforms”. In: Future Generation Comp. Syst.
74 (2017), pp. 179–189 (cit. on pp. 1, 10).

145

[10] Esha Barlaskar, Peter Kilpatrick, Ivor T. A. Spence, and Dimitrios S. Nikolopou-
los. “MyMinder: A User-centric Decision Making Framework for Intercloud
Migration”. In: CLOSER 2017 - Proceedings of the 7th International Confer-
ence on Cloud Computing and Services Science, Porto, Portugal, April 24-26,
2017. 2017, pp. 560–567 (cit. on pp. 1, 10).

[11] Stelios Sotiriadis and Nik Bessis. “An inter-cloud bridge system for het-
erogeneous cloud platforms”. In: Future Generation Comp. Syst. 54 (2016),
pp. 180–194 (cit. on p. 1).

[12] Cisco Intercloud Fabric. Last Accessed: April, 2018, https://www.cisco.
com / c / en / us / products / cloud - systems - management / intercloud -
fabric/index.html. 2018 (cit. on p. 1).

[13] Steven Tadelis. “The Economics of Reputation and Feedback Systems in E-
Commerce Marketplaces”. In: IEEE Internet Computing 20.1 (2016), pp. 12–
19 (cit. on pp. 2, 40).

[14] Oluwabunmi Adewoyin, Roberto Araya, and Julita Vassileva. “Peer Review in
Mentorship: Perception of the Helpfulness of Review and Reciprocal Ratings”.
In: Intelligent Tutoring Systems - 13th International Conference, ITS 2016,
Zagreb, Croatia, June 7-10, 2016. Proceedings. 2016, pp. 286–293 (cit. on
pp. 2, 40).

[15] Christoph Bösch, Pieter H. Hartel, Willem Jonker, and Andreas Peter. “A
Survey of Provably Secure Searchable Encryption”. In: ACM Comput. Surv.
47.2 (2014), 18:1–18:51 (cit. on pp. 3, 27).

[16] Bing Wang, Shucheng Yu, Wenjing Lou, and Y. Thomas Hou. “Privacy-
preserving multi-keyword fuzzy search over encrypted data in the cloud”.
In: 2014 IEEE Conference on Computer Communications, INFOCOM 2014,
Toronto, Canada, April 27 - May 2, 2014. IEEE, 2014, pp. 2112–2120 (cit. on
pp. 3, 27).

[17] Bing Wang, Wei Song, Wenjing Lou, and Y. Thomas Hou. “Inverted index
based multi-keyword public-key searchable encryption with strong privacy
guarantee”. In: 2015 IEEE Conference on Computer Communications, IN-
FOCOM 2015, Kowloon, Hong Kong, April 26 - May 1, 2015. IEEE, 2015,
pp. 2092–2100 (cit. on pp. 3, 27).

[18] Wenhai Sun, Shucheng Yu, Wenjing Lou, Y. Thomas Hou, and Hui Li.
“Protecting your right: Attribute-based keyword search with fine-grained
owner-enforced search authorization in the cloud”. In: 2014 IEEE Conference
on Computer Communications, INFOCOM 2014, Toronto, Canada, April 27
- May 2, 2014. IEEE, 2014, pp. 226–234 (cit. on pp. 3, 27).

146 References

[19] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. “Privacy-
Preserving Multi-Keyword Ranked Search over Encrypted Cloud Data”. In:
IEEE Trans. Parallel Distrib. Syst. 25.1 (2014), pp. 222–233 (cit. on pp. 3,
27).

[20] Q. Wang, M. He, M. Du, et al. “Searchable Encryption over Feature-Rich
Data”. In: IEEE Trans. Dependable and Secure Computing 15.3 (2018),
pp. 496–510 (cit. on pp. 3, 27).

[21] M. Du, Q. Wang, M. He, and J. Weng. “Privacy-Preserving Indexing and
Query Processing for Secure Dynamic Cloud Storage”. In: IEEE Trans.
Information Forensics and Security 13.9 (2018), pp. 2320–2332 (cit. on pp. 3,
27).

[22] Emil Stefanov and Elaine Shi. “Multi-cloud oblivious storage”. In: Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM. 2013, pp. 247–258 (cit. on pp. 3, 36, 122).

[23] Alexander Degitz, Jens Köhler, and Hannes Hartenstein. “Access Pattern
Confidentiality-Preserving Relational Databases: Deployment Concept and
Efficiency Evaluation.” In: EDBT/ICDT Workshops. 2016 (cit. on pp. 3, 37,
122, 134).

[24] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, et al. “Frag-
mentation in presence of data dependencies”. In: IEEE Transactions on
Dependable and Secure Computing 11.6 (2014), pp. 510–523 (cit. on pp. 3,
37, 122).

[25] Claude Castelluccia, Aldar C.-F. Chan, Einar Mykletun, and Gene Tsudik.
“Efficient and provably secure aggregation of encrypted data in wireless sensor
networks”. In: TOSN 5.3 (2009), 20:1–20:36 (cit. on pp. 40, 51).

[26] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes”. In: Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Proceeding. 1999, pp. 223–238
(cit. on pp. 40, 56).

[27] Paul Feldman. “A Practical Scheme for Non-interactive Verifiable Secret
Sharing”. In: 28th Annual Symposium on Foundations of Computer Science,
Los Angeles, California, USA, 27-29 October 1987. 1987, pp. 427–437 (cit. on
pp. 40, 56).

[28] Chamikara Jayalath, Julian Stephen, and Patrick Eugster. “From the cloud
to the atmosphere: running mapreduce across data centers”. In: IEEE Trans-
actions on Computers 63.1 (2014), pp. 74–87 (cit. on p. 9).

References 147

[29] Amazon‘s cloud bests those of Microsoft and Google by this reliability test. Last
Accessed: Sep, 2016, http://www.networkworld.com/article/3020235/
cloud-computing/and-the-cloud-provider-with-the-best-uptime-in-
2015-is.html. 2016 (cit. on p. 9).

[30] David Bernstein, Erik Ludvigson, Krishna Sankar, Steve Diamond, and
Monique Morrow. “Blueprint for the intercloud-protocols and formats for
cloud computing interoperability”. In: Proc. 4th Int. Conf. Internet and Web
Appl. and Services. 2009, pp. 328–336 (cit. on pp. 9, 16).

[31] Nikolay Grozev and Rajkumar Buyya. “Inter-Cloud architectures and applica-
tion brokering: taxonomy and survey”. In: Software: Practice and Experience
44.3 (2014), pp. 369–390 (cit. on pp. 9, 13, 16).

[32] Adel Nadjaran Toosi, Ruppa K Thulasiram, and Rajkumar Buyya. “Financial
option market model for federated cloud environments”. In: Proc. 5th Int.
Conf. Utility and Cloud Comput. 2012, pp. 3–12 (cit. on p. 10).

[33] Ioan Petri, Javier Diaz-Montes, Mengsong Zou, et al. “Market models for
federated clouds”. In: IEEE Transactions on Cloud Computing 3.3 (2015),
pp. 398–410 (cit. on p. 10).

[34] EnergyPlus. Last Accessed: Sep, 2016, http://apps1.eere.energy.gov/
build-ings/energyplus. 2016 (cit. on p. 10).

[35] Octave. Last Accessed: Sep, 2016, http://www.gnu.org/software/octave.
2016 (cit. on p. 10).

[36] Compact Muon Solenoid experiment at CERN’s LHC. Last Accessed: Sep,
2016, http://cms.web.cern.ch. 2016 (cit. on p. 10).

[37] Ben-Jye Chang, Yu-Wei Lee, and Ying-Hsin Liang. “Reward-based Markov
chain analysis adaptive global resource management for inter-cloud com-
puting”. In: Future Generation Comp. Syst. 79 (2018), pp. 588–603 (cit. on
p. 10).

[38] Courtney Powell, Takehiro Aizawa, and Masaharu Munetomo. “Design of
an SSO authentication infrastructure for heterogeneous inter-cloud environ-
ments”. In: Pro. 3rd Int. Conf. Cloud Netw. 2014, pp. 102–107 (cit. on pp. 10,
22).

[39] Kevin Walsh and John Manferdelli. “Intra-Cloud and Inter-Cloud Authenti-
cation”. In: 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), Honolulu, HI, USA, June 25-30, 2017. 2017, pp. 318–325 (cit. on
p. 10).

[40] VMware Knowledge Base. Troubleshooting a virtual machine that has stopped
responding (1007819). Last Accessed: April, 2016, https://kb.vmware.com/
selfservice/microsites/search.do?language=en_US&cmd=displayKC&
externalId=1007819. 2016 (cit. on p. 11).

148 References

[41] Narahari Dogiparthi. Why did my Azure VM restart? Last Accessed: April,
2016, https://blogs.msdn.microsoft.com/mast/2013/09/23/why-did-
my-azure-vm-restart/. 2016 (cit. on p. 12).

[42] Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya. “Intercon-
nected Cloud Computing Environments: Challenges, Taxonomy, and Survey”.
In: 47.1 (2014), 7:1–7:47 (cit. on pp. 13, 14).

[43] Royal Philips. Philips to introduce rapid cloud-based recovery service for health-
care data in collaboration with Amazon Web Services. Last Accessed: April,
2016, http://www.philips.com/a-w/about/news/archive/standard/
news / press / 2016 / 20160222 - Philips - to - introduce - rapid - cloud -
based- recovery- service- for- healthcare- data- in- collaboration-
with-Amazon-Web-Services.html. 2016 (cit. on p. 15).

[44] David Bernstein and Deepak Vij. IEEE PROJECT 2302 - Standard for
Intercloud Interoperability and Federation (SIIF). Piscataway, NJ, 2012. url:
https://standards.ieee.org/develop/project/2302.html (cit. on
p. 16).

[45] IEEE Intercloud Testbed Project. An Open, Global, Cloud Interoperability
Project. Last Accessed: April, 2016, http://www.intercloudtestbed.org/.
2016 (cit. on p. 16).

[46] Pramod S Pawar, Muttukrishnan Rajarajan, S Krishnan Nair, and Andrea
Zisman. “Trust model for optimized cloud services”. In: Trust Management
VI. Springer, 2012, pp. 97–112 (cit. on p. 21).

[47] Ryan KL Ko, Peter Jagadpramana, Miranda Mowbray, et al. “TrustCloud:
A framework for accountability and trust in cloud computing”. In: Services
(SERVICES), 2011 IEEE World Congress on. IEEE. 2011, pp. 584–588 (cit.
on p. 21).

[48] Xiaoyong Li and Junping Du. “Adaptive and attribute-based trust model
for service level agreement guarantee in cloud computing”. In: Information
Security, IET 7.1 (2013), pp. 39–50 (cit. on p. 21).

[49] Kai Hwang and Deyi Li. “Trusted cloud computing with secure resources and
data coloring”. In: Internet Computing, IEEE 14.5 (2010), pp. 14–22 (cit. on
p. 21).

[50] Carl Ellison, Bill Frantz, Butler Lampson, et al. SPKI certificate theory.
Tech. rep. 1999 (cit. on p. 21).

[51] Eve Maler et al. “Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML)”. In: OASIS, September (2003) (cit. on p. 21).

[52] Russell Housley, W Polk, Warwick Ford, and David Solo. Internet X. 509
public key infrastructure certificate and certificate revocation list (CRL) profile.
2002 (cit. on p. 21).

References 149

[53] F John Krautheim, Dhananjay S Phatak, and Alan T Sherman. “Introducing
the trusted virtual environment module: a new mechanism for rooting trust
in cloud computing”. In: Trust and Trustworthy Computing. Springer, 2010,
pp. 211–227 (cit. on p. 21).

[54] SoftwareInsider. SoftwareInsider: Business Software Reviews & Research. Last
Accessed: April, 2016, http://cloud-computing.softwareinsider.com.
2016 (cit. on p. 22).

[55] Sheikh Mahbub Habib, Sebastian Ries, and Max Mühlhäuser. “Towards a
trust management system for cloud computing”. In: Trust, Security and
Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th
International Conference on. IEEE. 2011, pp. 933–939 (cit. on p. 22).

[56] Talal H Noor, Quan Z Sheng, Lina Yao, Schahram Dustdar, and Anne HH
Ngu. “CloudArmor: Supporting reputation-based trust management for cloud
services”. In: IEEE Trans. Parallel Distrib. Syst. 27.2 (2016), pp. 367–380
(cit. on pp. 22, 39).

[57] David Bernstein and Yuri Demchenko. “The IEEE Intercloud Testbed–
Creating the Global Cloud of Clouds”. In: Cloud Computing Technology
and Science (CloudCom), 2013 IEEE 5th International Conference on. Vol. 2.
IEEE. 2013, pp. 45–50 (cit. on p. 22).

[58] David Bernstein and Deepak Vij. “Intercloud federation using via semantic
resource federation API and dynamic SDN provisioning”. In: Network of the
Future (NOF), 2014 International Conference and Workshop on the. IEEE.
2014, pp. 1–8 (cit. on p. 22).

[59] B Di Martino, G Cretella, A Esposito, et al. “Towards an Ontology-Based
Intercloud Resource Catalogue-The IEEE P2302 Intercloud Approach for a
Semantic Resource Exchange.” In: IC2E. 2015, pp. 458–464 (cit. on p. 22).

[60] Demchenko Yuri, Dumitru Cosmin, Filiposka Sonja, et al. “Open Cloud
eXchange (OCX): A Pivot for Intercloud Services Federation in Multi-provider
Cloud Market Environment”. In: 2015 IEEE International Conference on
Cloud Engineering, IC2E, pp. 472–479 (cit. on p. 22).

[61] Jaime Lloret, Miguel Garcia, Jesus Tomas, and Joel JPC Rodrigues. “Archi-
tecture and protocol for intercloud communication”. In: Information Sciences
258 (2014), pp. 434–451 (cit. on p. 22).

[62] David Bernstein and Deepak Vij. “Intercloud security considerations”. In: Pro.
2nd Int. Conf. Cloud Comput. Technol. and Sci. 2010, pp. 537–544 (cit. on
p. 22).

[63] Mukesh Singhal, Santosh Chandrasekhar, Tingjian Ge, et al. “Collaboration
in Multicloud Computing Environments: Framework and Security Issues.” In:
Computer 46.2 (2013), pp. 76–84 (cit. on p. 23).

150 References

[64] Yuri Demchenko, Canh Ngo, Cees De Laat, and Chi-Kwan Lee. “Federated
Access Control in Heterogeneous Intercloud Environment: Basic Models and
Architecture Patterns”. In: Proc. 2nd Int. Conf. Cloud Eng. 2014, pp. 439–445
(cit. on p. 23).

[65] David Bernstein and Deepak Vij. “Intercloud exchanges and roots topology
and trust blueprint”. In: Proc. 11th Int. Conf. Internet Comput. 2011, pp. 135–
141 (cit. on pp. 23, 25).

[66] Jemal Abawajy. “Determining service trustworthiness in intercloud computing
environments”. In: Proc. 10th Int. Symp. Pervasive Syst., Algorithms, and
Networks. 2009, pp. 784–788 (cit. on pp. 23, 25).

[67] Canh Ngo, Yuri Demchenko, and Cees de Laat. “Toward a Dynamic Trust
Establishment approach for multi-provider Intercloud environment.” In: Proc.
4th Int. Conf. Cloud Comput. Technol. and Sci. 2012, pp. 532–538 (cit. on
pp. 24, 25).

[68] Talal H. Noor, Quan Z. Sheng, Sherali Zeadally, and Jian Yu. “Trust Man-
agement of Services in Cloud Environments: Obstacles and Solutions”. In:
ACM Comput. Surv. 46.1 (July 2013), 12:1–12:30 (cit. on pp. 24, 39).

[69] Michael R. Clark, Kyle E. Stewart, and Kenneth M. Hopkinson. “Dynamic,
Privacy-Preserving Decentralized Reputation Systems”. In: IEEE Trans. Mob.
Comput. 16.9 (2017), pp. 2506–2517 (cit. on pp. 25, 26, 76).

[70] Alexander Schaub, Rémi Bazin, Omar Hasan, and Lionel Brunie. “A trustless
privacy-preserving reputation system”. In: IACR Cryptology ePrint Archive
2016 (2016), p. 16 (cit. on p. 25).

[71] Ginés Dólera Tormo, Félix Gómez Mármol, and Gregorio Martínez Pérez.
“Towards privacy-preserving reputation management for hybrid broadcast
broadband applications”. In: Computers & Security 49 (2015), pp. 220–238
(cit. on p. 25).

[72] Osman Hasan, Lionel Brunie, Elisa Bertino, and Ning Shang. “A decentralized
privacy preserving reputation protocol for the malicious adversarial model”.
In: IEEE Transactions on Information Forensics and Security 8.6 (2013),
pp. 949–962 (cit. on pp. 25, 26, 39, 69, 76).

[73] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
“Order-Preserving Encryption for Numeric Data”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, Paris, France,
June 13-18, 2004. New York, NY, USA: ACM, 2004, pp. 563–574 (cit. on
pp. 27, 80).

References 151

[74] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill.
“Order-Preserving Symmetric Encryption”. In: Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cologne, Germany, April 26-
30, 2009. Proceedings. Berlin, Heidelberg: Springer, 2009, pp. 224–241 (cit. on
pp. 27, 32, 80, 81, 83, 101, 103–105, 107).

[75] Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. “An Ideal-Security
Protocol for Order-Preserving Encoding”. In: 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE,
2013, pp. 463–477 (cit. on pp. 27, 80).

[76] Florian Kerschbaum and Axel Schröpfer. “Optimal Average-Complexity Ideal-
Security Order-Preserving Encryption”. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014. New York, NY, USA: ACM, 2014, pp. 275–286
(cit. on pp. 27, 80).

[77] Dan Boneh, Kevin Lewi, Mariana Raykova, et al. “Semantically Secure
Order-Revealing Encryption: Multi-input Functional Encryption Without
Obfuscation”. In: Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Berlin,
Heidelberg: Springer, 2015, pp. 563–594 (cit. on pp. 27, 80).

[78] Kevin Lewi and David J. Wu. “Order-Revealing Encryption: New Construc-
tions, Applications, and Lower Bounds”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016. New York, NY, USA: ACM, 2016, pp. 1167–
1178 (cit. on pp. 27, 28, 32, 80, 81, 101, 102, 104, 105, 107).

[79] Rui Li, Alex X. Liu, Ann L. Wang, and Bezawada Bruhadeshwar. “Fast and
Scalable Range Query Processing With Strong Privacy Protection for Cloud
Computing”. In: IEEE/ACM Trans. Netw. 24.4 (2016), pp. 2305–2318 (cit. on
pp. 27, 30, 32, 80, 83, 102, 103, 109).

[80] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios
Deligiannakis, and Minos N. Garofalakis. “Practical Private Range Search
Revisited”. In: Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June
26 - July 01, 2016. New York, NY, USA: ACM, 2016, pp. 185–198 (cit. on
pp. 27, 31, 32, 80, 83, 102).

[81] Muhammad Naveed, Seny Kamara, and Charles V. Wright. “Inference At-
tacks on Property-Preserving Encrypted Databases”. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-6, 2015. New York, NY, USA: ACM, 2015,
pp. 644–655 (cit. on p. 28).

152 References

[82] Xingliang Yuan, Yu Guo, Xinyu Wang, et al. “EncKV: An Encrypted Key-
value Store with Rich Queries”. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, AsiaCCS 2017, Abu
Dhabi, United Arab Emirates, April 2-6, 2017. New York, NY, USA: ACM,
2017, pp. 423–435 (cit. on p. 29).

[83] Meng Shen, Baoli Ma, Liehuang Zhu, et al. “Cloud-Based Approximate
Constrained Shortest Distance Queries Over Encrypted Graphs With Privacy
Protection”. In: IEEE Trans. Information Forensics and Security 13.4 (2018),
pp. 940–953 (cit. on pp. 29, 79).

[84] Jun Furukawa. “Request-Based Comparable Encryption”. In: Computer Secu-
rity - ESORICS 2013 - 18th European Symposium on Research in Computer
Security, Egham, UK, September 9-13, 2013. Proceedings. Berlin, Heidelberg:
Springer, 2013, pp. 129–146 (cit. on pp. 29, 32).

[85] Jun Furukawa. “Short Comparable Encryption”. In: Cryptology and Network
Security - 13th International Conference, CANS 2014, Heraklion, Crete,
Greece, October 22-24, 2014. Proceedings. Cham: Springer, 2014, pp. 337–352
(cit. on p. 29).

[86] Caleb Horst, Ryo Kikuchi, and Keita Xagawa. “Cryptanalysis of Comparable
Encryption in SIGMOD’16”. In: Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017. New York, NY, USA: ACM, 2017, pp. 1069–1084
(cit. on p. 30).

[87] Jun Li and Edward Omiecinski. “Efficiency and Security Trade-Off in Sup-
porting Range Queries on Encrypted Databases”. In: Data and Applications
Security XIX, 19th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, Storrs, CT, USA, August 7-10, 2005, Proceedings.
Berlin, Heidelberg: Springer, 2005, pp. 69–83 (cit. on pp. 30, 31, 83).

[88] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable
Errors”. In: Commun. ACM 13.7 (1970), pp. 422–426 (cit. on p. 31).

[89] Eu-Jin Goh. “Secure Indexes”. In: IACR Cryptology ePrint Archive 2003
(2003), p. 216 (cit. on pp. 31, 83).

[90] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. “Search-
able symmetric encryption: improved definitions and efficient constructions”.
In: Proceedings of the 13th ACM Conference on Computer and Communica-
tions Security, CCS 2006, Alexandria, VA, USA, October 30 - November 3,
2006. New York, NY, USA: ACM, 2006, pp. 79–88 (cit. on pp. 31, 83, 86).

[91] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. “Searchable
symmetric encryption: improved definitions and efficient constructions”. In:
Journal of Computer Security 19.5 (2011), pp. 895–934 (cit. on pp. 33, 122).

References 153

[92] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. “Access
Pattern disclosure on Searchable Encryption: Ramification, Attack and Miti-
gation.” In: NDSS. Vol. 20. 2012, p. 12 (cit. on pp. 34, 35, 38, 121, 124, 125,
129).

[93] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. “Leakage-
abuse attacks against searchable encryption”. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. ACM.
2015, pp. 668–679 (cit. on pp. 34, 36, 37, 124).

[94] Enron Email Dataset. Last accessed 20 December 2017, http://www.cs.cmu.
edu/~./enron/ (cit. on pp. 36, 121, 134).

[95] Oded Goldreich and Rafail Ostrovsky. “Software protection and simulation on
oblivious RAMs”. In: Journal of the ACM (JACM) 43.3 (1996), pp. 431–473
(cit. on p. 36).

[96] Muhammad Naveed. “The Fallacy of Composition of Oblivious RAM and
Searchable Encryption.” In: IACR Cryptology ePrint Archive 2015 (2015),
p. 668 (cit. on p. 36).

[97] Peter Williams and Radu Sion. “Single round access privacy on outsourced
storage”. In: Proceedings of the 2012 ACM conference on Computer and
communications security. ACM. 2012, pp. 293–304 (cit. on p. 36).

[98] Emil Stefanov, Marten Van Dijk, Elaine Shi, et al. “Path ORAM: an extremely
simple oblivious RAM protocol”. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM. 2013, pp. 299–310
(cit. on p. 37).

[99] Jun Tang, Yong Cui, Qi Li, et al. “Ensuring security and privacy preservation
for cloud data services”. In: ACM Computing Surveys (CSUR) 49.1 (2016),
p. 13 (cit. on p. 37).

[100] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, et al.
“Fragmentation and encryption to enforce privacy in data storage”. In: Euro-
pean Symposium on Research in Computer Security. Springer. 2007, pp. 171–
186 (cit. on p. 37).

[101] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, et al.
“Combining fragmentation and encryption to protect privacy in data storage”.
In: ACM Transactions on Information and System Security (TISSEC) 13.3
(2010), p. 22 (cit. on p. 37).

[102] Pierangela Samarati. “Data Security and Privacy in the Cloud.” In: ISPEC.
2014, pp. 28–41 (cit. on pp. 37, 122).

[103] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, et al. “Keep
a Few: Outsourcing Data While Maintaining Confidentiality.” In: ESORICS.
Vol. 9. Springer. 2009, pp. 440–455 (cit. on p. 37).

154 References

[104] Mohamed Ahmed Abdelraheem, Tobias Andersson, and Christian Gehrmann.
“Searchable Encrypted Relational Databases: Risks and Countermeasures”.
In: Data Privacy Management, Cryptocurrencies and Blockchain Technology.
Springer, 2017, pp. 70–85 (cit. on p. 37).

[105] Tatsuaki Okamoto. “Efficient Blind and Partially Blind Signatures Without
Random Oracles”. In: Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings.
2006, pp. 80–99 (cit. on p. 44).

[106] Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11
(1979), pp. 612–613 (cit. on pp. 52, 55).

[107] Josh Cohen Benaloh. “Secret sharing homomorphisms: Keeping shares of a
secret secret”. In: Conference on the Theory and Application of Cryptographic
Techniques. Springer. 1986, pp. 251–260 (cit. on p. 52).

[108] Yehuda Lindell. “How To Simulate It - A Tutorial on the Simulation Proof
Technique”. In: IACR Cryptology ePrint Archive 2016 (2016), p. 46 (cit. on
p. 61).

[109] M. Ho Au, P. P. Tsang, and A. Kapadia. “PEREA: Practical TTP-free
Revocation of Repeatedly Misbehaving Anonymous Users”. In: ACM Trans.
Inf. Syst. Security 14.4 (2008), 29:1–29:34 (cit. on p. 61).

[110] Qian Wang, Kui Ren, Minxin Du, Qi Li, and Aziz Mohaisen. “SecGDB: Graph
Encryption for Exact Shortest Distance Queries with Efficient Updates”. In:
Financial Cryptography and Data Security - 21st International Conference,
FC 2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers. Cham:
Springer, 2017, pp. 79–97 (cit. on p. 79).

[111] Dan Boneh and Brent Waters. “Conjunctive, Subset, and Range Queries on
Encrypted Data”. In: Theory of Cryptography, 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007,
Proceedings. Berlin, Heidelberg: Springer, 2007, pp. 535–554 (cit. on p. 79).

[112] K. Gai and M. Qiu. “Blend Arithmetic Operations on Tensor-based Fully
Homomorphic Encryption Over Real Numbers”. In: IEEE Trans. Industrial
Informatics PP.99 (2017), pp. 1–1 (cit. on p. 80).

[113] Hsiao-Ying Lin and Wen-Guey Tzeng. “An Efficient Solution to the Million-
aires’ Problem Based on Homomorphic Encryption”. In: Applied Cryptography
and Network Security, Third International Conference, ACNS 2005, New
York, NY, USA, June 7-10, 2005, Proceedings. Berlin, Heidelberg: Springer,
2005, pp. 456–466 (cit. on pp. 90, 91).

References 155

[114] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. “Efficient Private
Matching and Set Intersection”. In: Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryp-
tographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings.
Berlin, Heidelberg: Springer, 2004, pp. 1–19 (cit. on p. 94).

[115] Kevin Lewi. Fastore-An Implementation of Order-Revealing Encryption. Last
Accessed: May, 2018, https://github.com/kevinlewi/fastore. 2016 (cit.
on p. 102).

[116] Torbjörn Granlund and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library. Last Accessed: May, 2018, http :
//gmplib.org. 2012 (cit. on p. 102).

[117] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari
Balakrishnan. “CryptDB: protecting confidentiality with encrypted query
processing”. In: Proceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011.
New York, NY, USA: ACM, 2011, pp. 85–100 (cit. on p. 103).

[118] CryptDB Group. CryptDB-A database system that can process SQL queries
over encrypted data. Last accessed 20 December 2017,https://github.com/
CryptDB/cryptdb. 2014 (cit. on p. 103).

[119] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection (Gowalla). Last accessed 20 December 2017, https://
snap.stanford.edu/data/loc-gowalla.html. 2014 (cit. on p. 103).

[120] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines (usps). Last accessed 20 December 2017,https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps. 2011 (cit.
on p. 103).

[121] Mohamed Ahmed Abdelraheem, Tobias Andersson, and Christian Gehrmann.
“Inference and Record-Injection Attacks on Searchable Encrypted Relational
Databases”. In: Cryptology ePrint Archive, Report 2017/024 (2017) (cit. on
p. 124).

[122] Lei Jiao, Jun Lit, Wei Du, and Xiaoming Fu. “Multi-objective data placement
for multi-cloud socially aware services”. In: INFOCOM, 2014 Proceedings
IEEE. IEEE. 2014, pp. 28–36 (cit. on p. 132).

[123] gco-v3.0 library. Last accessed 20 December 2017, http://vision.csd.uwo.
ca/code/gco-v3.0.zip (cit. on p. 135).

[124] MongoDB Sharding. Last accessed 20 December 2017, https : / / docs .
mongodb.com/manual/sharding/ (cit. on p. 135).

156 References

[125] Theodoros Rekatsinas, Amol Deshpande, and Ashwin Machanavajjhala.
“SPARSI: partitioning sensitive data amongst multiple adversaries”. In: Pro-
ceedings of the VLDB Endowment 6.13 (2013), pp. 1594–1605 (cit. on p. 137).

[126] Jordi Vilaplana, Francesc Solsona, Ivan Teixidó, et al. “A queuing theory
model for cloud computing”. In: The Journal of Supercomputing 69.1 (2014),
pp. 492–507 (cit. on p. 139).

[127] Hamzeh Khazaei, Jelena Misic, and Vojislav B Misic. “Performance analysis
of cloud computing centers using m/g/m/m+ r queuing systems”. In: IEEE
Transactions on parallel and distributed systems 23.5 (2012), pp. 936–943
(cit. on p. 139).

[128] Siva Theja Maguluri, R Srikant, and Lei Ying. “Stochastic models of load
balancing and scheduling in cloud computing clusters”. In: INFOCOM, 2012
Proceedings IEEE. IEEE. 2012, pp. 702–710.

References 157

