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Abstract

Over the last decade, the world has witnessed a widespread adoption of distributed

energy resources (DERs) in the distribution networks (DNs) due to the rapid advances

in renewable DER technologies. This trend may bring about lot of economic and

environmental benefits. However, it also introduces adverse impacts on the DN

operations because of the uncertainty and intermittency of renewable DERs. These

impacts include but are not limited to the severe voltage variations and significant

load ramps. In order to mitigate these e�ects, the potential of DERs has been

explored to provide ancillary services, e.g. voltage regulation and frequency control.

On the other hand, since DERs are geographically dispersed over the entire DN, it

is considerably challenging in coordinating them. Therefore, this thesis focuses on

addressing these concerns by developing advanced management approaches.

To overcome the complexity in coordinating various devices and promote a com-

petitive energy trading environment, a novel transactive energy trading framework is

proposed with detailed designs for the end-use customers. Particularly, the author

innovatively integrates a novel Nash bargaining based bilateral energy trading mech-

anism with an e�cient distributed optimal power flow (OPF) technique to maximize

the benefit of customers and to enhance the system reliability and security. With

some rigorous analysis, the proposed model is converted into a two-stage problem,

where the first stage determines the optimal energy trading and dispatch decisions,

and the second stage settles the optimal payments. To implement this framework in

a decentralized manner, an advanced distributed algorithm is developed. Numerical

results demonstrate the economic and technical advantages of this framework.

To address the severe voltage variations caused by the intermittent photovoltaic

(PV) output, a distributed online voltage control algorithm is developed based on
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dual ascent method. Conventional distributed algorithms implement voltage control

only when the algorithms converge, while the proposed algorithm is able to carry

out voltage control immediately. In particular, a closed-form solution is derived for

the PV controllers to locally update the active and reactive power set-points based

on local voltage measurements and information exchange with their neighboring

PV systems. The objective is to minimize the total loss, while maintaining the

bus voltages within the acceptable ranges. The e�ectiveness and robustness of the

proposed algorithm are verified in case studies.

To mitigate the significant load ramps caused by the diurnal pattern of PV power,

the author proposes a novel look-ahead dispatch model for the DNs with multiple

distributed ESSs. The dispatch problem is formulated as a finite horizon optimization

problem and is carried out utilizing model predictive control method (MPC) that

takes both current and future information into account. Thus, the short-sightedness

can be avoided. The numerical results show that the proposed model can bring

about a significant reduction of maximum ramp and power losses.

To alleviate the PV ramp event (PRE) induced voltage violations, a robust

dispatch model is proposed that enables systematic coordination between on-load

tap changer (OLTC) and PV inverters. Particularly, this model is formulated as a

two-stage robust optimization problem, where the first stage determines the OLTC

step and maximum admissible PV output (MAPO), and the second stage evaluates

the feasibility of the first stage result under all possible realizations of PRE. MAPO

is proposed to quantify the operational PV hosting capacity. Column-and-constraint

generation algorithm is employed to solve the problem. Case study on IEEE 33-bus

distribution system validates the e�ectiveness of the proposed model in eliminating

PRE induced voltage violations.



Publications Arising from the Thesis

Journal Papers

1. Jiayong Li, Zhao Xu, Jian Zhao and Can Wan, “A Coordinated Dispatch

Model for Distribution Network Considering PV Ramp”, IEEE Transactions

on Power Systems, 2018, Published.

2. Jiayong Li, Chaorui Zhang, Zhao Xu, Jianhui Wang, Jian Zhao and Ying-

Jun (Angela) Zhang, “Distributed Transactive Energy Trading Framework in

Distribution Networks”, IEEE Transactions on Power Systems, 2018, in Press.

3. Jiayong Li, Zhao Xu, Jian Zhao and Chaorui Zhang, “Distributed Online

Voltage Control in Active Distribution Networks Considering PV Curtailment”,

submitted to IEEE Transactions on Industrial Informatics.

4. Jiayong Li, Zhao Xu, Jian Zhao, Songjian Chai, Yi Yu and Xu Xu, “Model

Predictive Control Based Ramp Minimization in Active Distribution Network

Using Energy Storage Systems”, submitted to Electric Power Components and

Systems.

5. Chaorui Zhang, Jiayong Li, Ying-Jun (Angela) Zhang and Zhao Xu, “Optimal

Location Planning of Renewable Distributed Generation Units in Distribution

Networks: An Analytical Approach”, IEEE Transactions on Power Systems,

2018, Published.

6. Jian Zhao, Zhao Xu, Jianhui Wang, Cheng Wang and Jiayong Li, “Robust

Distributed Generation Investment Accommodating Electric Vehicle Charging



x

in a Distribution Network”, IEEE Transactions on Power Systems, 2018, in

Press.

7. Xu Xu, Jian Zhao, Zhao XU, Songjian Chai, Jiayong Li and Yi Yu, “Stochastic

Optimal TCSC Placement in Power System Considering High Wind Power

Penetration”, IET Generation, Transmission & Distribution, 2018, Published.

Conference Papers

1. Jiayong Li, Can Wan and Zhao Xu, “Robust o�ering strategy for a wind

power producer under uncertainties”, 2016 IEEE International Conference on

Smart Grid Communications.

2. Jiayong Li, Jian Zhao and Zhao Xu, “Optimal real-time scheduling of energy

storage systems to accommodate PV generation in distribution networks”, 2018

IEEE PES Innovative Smart Grid Technologies Asia.



Acknowledgements

I am very grateful to all those people who helped, supported and accompanied me

during my four-year Ph.D. study in HK PolyU.

First and foremost, I want to express my deepest appreciation to my chief

supervisor, Professor Zhao Xu, for his continuous guidance, encouragement and

support throughout my Ph.D. study. He is always very kind and patient in o�ering

me insightful suggestions and detailed comments to improve my research works.

It is my great honor to have him as my research advisor and closely learn from

him. Moreover, I have been deeply inspired by his optimistic attitude to life and

enthusiasm on research. I will always remember his endless kindness, strong support

and continuous patience.

I would like to express my deep gratitude to Professor Jianhui Wang, for hosting

and advising me so kindly during my 5-month visit at Argonne National Laboratory.

It was my privilege to discuss with and learn from him.

Furthermore, I would also like to express special thanks to my beloved parents,

Fulun Li and Xijun Li, for their unconditional love, support and encouragement

throughout my life. I also owe many thanks to my dear fiancée, Mungkai Yik, for

giving me so many enjoyable moments and providing me continuous support and

encouragement whenever I encountered di�culties in these four years.

I would also like to express many thanks to the research members of our group

for their precious friendship and help. Especially, I would like to thank Dr. Can

Wan and Dr. Jian Zhao for providing me valuable help on my research path.

Last but not least, I would like to acknowledge the support from Ph.D. studentship

awarded by The Hong Kong Polytechnic University.





Table of contents

List of figures xvii

List of tables xxi

Nomenclature xxiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Objectives and Primary Contributions . . . . . . . . . . . . . . . . . 8

1.4 Outlines of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Distributed Transactive Energy Trading Framework in Distribution

Networks 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . 14

2.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 TET Agent Model . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Bilateral Energy Trading and Payo� Function . . . . . . . . . 16

2.2.4 Nash Bargaining based Transactive Energy Trading . . . . . . 18

2.3 Distributed Algorithm for TET Problem . . . . . . . . . . . . . . . . 20

2.3.1 Decoupling of Temporally Coupled Constraint . . . . . . . . . 20

2.3.2 Distributed Algorithm for Single-period OPF Problem . . . . 22

2.3.3 Distributed Algorithm for Problem S2 . . . . . . . . . . . . . 26



xiv Table of contents

2.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 IEEE 37-bus Distribution System . . . . . . . . . . . . . . . . 28

2.4.2 IEEE 123-bus Distribution System . . . . . . . . . . . . . . . 34

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Distributed Online Voltage Control in Active Distribution Net-

works 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 System Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Branch Flow Model . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 PV Inverter Dispatch Strategy . . . . . . . . . . . . . . . . . . 42

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Centralized Optimization Model . . . . . . . . . . . . . . . . . 44

3.4 Distributed Online Voltage Control . . . . . . . . . . . . . . . . . . . 46

3.4.1 Distributed Online Algorithm . . . . . . . . . . . . . . . . . . 46

3.4.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 IEEE 37-Bus Distribution System . . . . . . . . . . . . . . . . 54

3.5.2 IEEE 123-bus Distribution System . . . . . . . . . . . . . . . 60

3.5.3 Robust Performance . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 MPC based Ramp Minimization in Active Distribution Network

Using ESSs 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . 70

4.2.1 Branch Flow Model in Distribution Networks . . . . . . . . . 70



Table of contents xv

4.2.2 Ramp-events and Ramp Index . . . . . . . . . . . . . . . . . . 72

4.2.3 Energy Storage System Model . . . . . . . . . . . . . . . . . . 73

4.2.4 Look-ahead Dispatch Model for Ramp Minimization . . . . . . 74

4.3 Model Predictive Control based Dispatch Model for Ramp Minimization 76

4.3.1 Model Predictive Control (MPC) . . . . . . . . . . . . . . . . 76

4.3.2 Stochastic PV and Load Model . . . . . . . . . . . . . . . . . 77

4.3.3 MPC-based Stochastic Dispatch Model . . . . . . . . . . . . . 78

4.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Performance Comparisons . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Impact of the ESS capacity . . . . . . . . . . . . . . . . . . . 87

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 A Robust Dispatch Model for Distribution Networks Considering

PV Ramp 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Robust Intra-hour Dispatch Model . . . . . . . . . . . . . . . . . . . 92

5.2.1 PV Inverter Dispatch . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Modelling PV Ramp Events . . . . . . . . . . . . . . . . . . . 93

5.2.3 Two-stage Coordinated Intra-hour Dispatch Model . . . . . . 93

5.3 Solution Method and Algorithm . . . . . . . . . . . . . . . . . . . . . 95

5.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusions and Future Works 101

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix A 105

A.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 109

References 111





List of figures

2.1 Transactive energy trading framework in a distribution system . . . . 15

2.2 IEEE 37-bus distribution system with PV installations . . . . . . . . 29

2.3 Total net load with and without TET . . . . . . . . . . . . . . . . . . 29

2.4 Voltage magnitudes of node 30 with and without TET . . . . . . . . 30

2.5 Load schedule of agent 1 with and without TET . . . . . . . . . . . . 31

2.6 Load schedule of agent 4 with and without TET . . . . . . . . . . . . 31

2.7 Hourly net load and procurement of agent 1 . . . . . . . . . . . . . . 32

2.8 Hourly net load and procurement of agent 4 . . . . . . . . . . . . . . 32

2.9 Convergence result of the 1st stage problem for IEEE 37-bus distribu-

tion system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Convergence result of the 2nd stage problem for IEEE 37-bus distri-

bution system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 Convergence result of the 1st stage problem for IEEE 123-bus distri-

bution system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.12 Convergence result of the 2nd stage problem for IEEE 123-bus distri-

bution system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 General distributed voltage control framework . . . . . . . . . . . . . 39

3.2 Our proposed distributed online voltage control framework . . . . . . 40

3.3 Online implementation of the proposed distributed algorithm, where

the green arrows represent the information exchange . . . . . . . . . . 50

3.4 Block diagram of the control scheme for PV system i at each iteration 51

3.5 Convergence of the total loss for case 1 . . . . . . . . . . . . . . . . . 55



xviii List of figures

3.6 Convergence of the total loss for case 2 . . . . . . . . . . . . . . . . . 55

3.7 Convergence of the bus voltage magnitudes for case 1 . . . . . . . . . 56

3.8 Convergence of the bus voltage magnitudes for case 2 . . . . . . . . . 56

3.9 Voltage profiles under di�erent methods for case 1 . . . . . . . . . . . 57

3.10 Voltage profiles under di�erent methods for case 2 . . . . . . . . . . . 57

3.11 Daily load shape factors and PV shape factors . . . . . . . . . . . . . 58

3.12 Daily maximum and minimum bus voltage magnitudes with and

without DIS control for IEEE 37-bus system . . . . . . . . . . . . . . 59

3.13 Daily total loss profile of CEN2 and the di�erence of total loss between

DIS and CEN2 for IEEE 37-bus system . . . . . . . . . . . . . . . . . 59

3.14 IEEE 123-bus distribution system with PV system location (indicated

by red numbers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.15 Daily maximum and minimum bus voltage magnitudes with and

without DIS control for IEEE 123-bus system . . . . . . . . . . . . . 61

3.16 Daily total loss profile of CEN2 and the di�erence of total loss between

DIS and CEN2 for IEEE 123-bus system . . . . . . . . . . . . . . . . 61

4.1 A typical distribution network topology . . . . . . . . . . . . . . . . . 70

4.2 A typical daily net load curve with illustration of ramp-events . . . . 72

4.3 Illustration of model predictive control with a horizon of 4 time slots 76

4.4 A scenario tree with 5 scenarios over 4 time slots . . . . . . . . . . . 78

4.5 IEEE 37-bus distribution network with PV installations and ESSs . . 81

4.6 Realized total active load and PV generation of the distribution network 81

4.7 Daily net load of the distribution system under three cases, without

ESS, single t with ESS and MPC with ESS . . . . . . . . . . . . . . 82

4.8 Ramp index under three cases, without ESS, single t with ESS and

MPC with ESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Voltage mismatch error under three cases, without ESS, single t with

ESS and MPC with ESS . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 The variation of stored energy level in ESSs for the single-period model 84

4.11 The variation of stored energy level in ESSs for the MPC based model 85



List of figures xix

4.12 Total charging (-) and discharging (+) power of ESSs of single-period

model and MPC based model . . . . . . . . . . . . . . . . . . . . . . 86

4.13 Ramp index under three cases, MPC with ESS, single period with

ESS and MPC with ESS/2 . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Bus voltage magnitudes under DM . . . . . . . . . . . . . . . . . . . 98

5.2 Bus voltage magnitudes under CID . . . . . . . . . . . . . . . . . . . 98

5.3 Maximum PV output and predicted upper bound . . . . . . . . . . . 99





List of tables

2.1 Total operating cost of the system with and without TET . . . . . . 29

2.2 Cost comparison with and without TET for agent 1 and 4 ($) . . . . 30

2.3 Computation time for IEEE 37-bus distribution system . . . . . . . . 34

3.1 Performance Comparisons of Di�erent Methods for Case 1 . . . . . . 56

3.2 Performance Comparisons of Di�erent Methods for Case 2 . . . . . . 57

3.3 Comparisons of Robust Performance for 37-bus System . . . . . . . . 62

3.4 Comparisons of Robust Performance for 123-bus System . . . . . . . 62

4.1 Parameters for single-period dispatch model and MPC based dispatch

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Comparison of network loss, ESS degradation cost and ramp index . . 86

4.3 Comparison of network loss, ESS degradation cost and ramp index . . 87

A.1 Multipliers associated with consensus constraints . . . . . . . . . . . 105





Abbreviations

ADMM Alternating Direction Method of Multipliers

ADN Active Distribution Network

AMI Advanced Metering Infrastructure

CCG Column-and-Constraint Generation

DER Distributed Energy Resource

DESS Distributed Energy Storage System

DG Distributed Generator

DN Distribution Network

DR Demand Response

DSO Distribution System Operator

ESS Energy Storage System

FRP Flexible Ramping Product

HVAC Heating Ventilation Air Conditioning System

ICT Information and Communication Technology

ISO Independent System Operator

MAPO Maximum Admissible PV Output



xxiv Nomenclature

MPC Model Predictive Control

OLTC On-Load Tap Changer

OPF Optimal Power Flow

PV Photovoltaic

PEV Plug-in Electric Vehicle

PRE PV Ramp Event

RES Renewable Energy Source

SDP Semi-definite Programming

SOC Second-order Cone

SOCP Second-order Cone Programming

TE Transactive Energy

TET Transactive Energy Trading



Chapter 1

Introduction

1.1 Background

Over the last decade, the world has witnessed an increasing adoption of Distributed

Energy Resources (DERs) boosted mainly by the rapid advances in renewable DER

technologies, e.g. distributed solar photovoltaic (PV) panels and wind turbines.

According to a recent report [1], the global total installed capacity of DERs has

reached 132.4 GW by the end of 2017 and is estimated to increase by approximately

400 GW in the following decade. Although DERs have various definitions, a commonly

used one is summarized as: DERs are electricity-generating resources located within

the electric distribution network (DN) [2]. The typical scale of DERs ranges from 1

kW to 10 MW, which is much smaller than the conventional power plants. Thus, it

makes DERs ready to be adopted by the end-use customers. Thanks to the declining

installation cost and favorable government policies, the end-use customers have

become the main force in adopting DERs during recent years. For example, over

230,000 houses in California have installed rooftop PV systems by 2014 because

of the generous Million Solar Roofs Initiative Scheme supported by the California

Public Utilities Commission [3, 4]. The distributed PV capacity in China has also

experienced a fast growth in the past few years, reaching 3.73 GW by the end of

2016, and the growth rate has already exceeded the growth rate of the utility-scale
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PV [5]. Other countries like Australia, Canada and Germany have also carried out

attractive subsidy schemes to encourage the customers to install renewable DERs [6].

The widespread adoption of DERs may bring about lots of economic, environmen-

tal and technical benefits. Firstly, it will reduce greenhouse gas emission and energy

dependence on fossil fuels as most DERs are renewable energy based. Secondly,

DERs are capable of relieving transmission line overload and reducing transmission

losses since they are located close to the end-users. In addition, adopting DERs is

more economical and faster than upgrading transmission network and central power

plants to address the problem of ever-growing load demand. Thirdly, DERs have the

potential to provide ancillary service to the system, e.g. voltage control, frequency

regulation, contingency reserves and black start services, and thus playing an import

role in enhancing the system reliability, security and resilience [7]. Fourthly, DERs is

able to reduce the customers’ electricity usage cost by enabling local power supply.

The advantages of DER are not limited to the mentioned above. On the other

hand, the proliferation of DERs is dramatically changing the paradigm of the power

systems. Traditionally, the end-use customers are pure electricity consumers and

the energy is delivered from the large-scale central power plants to the customers

via the transmission networks and distribution networks. But now an increasing

proportion of load demand can be supplied by the local DER generations. Besides,

since the output of renewable DERs is inherently intermittent and uncertain, the

high penetration of DERs also introduces significant challenges to the power system

operation. For example, the fluctuation of renewable DERs’ output will cause unex-

pected operation constraint violations, such as voltage violations and distribution

line overload [8].

Thanks to the widespread adoption of the smart electric appliances, such as

plug-in electric vehicles (PEVs), heating ventilation air conditioning system (HVAC),

and intelligent kitchen appliances, there is an increasing level of flexibility on the

demand side. By 2016, over 750 thousand electric vehicles have been registered

worldwide [9]. In order to better utilize the demand side flexibility to mitigate the

adverse impact of DER generations, demand response (DR) has been proposed.
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According to the Federal Energy Regulatory Commission, DR is defined as the

changes in load consumption by the end-users from their normal electric usage

pattern in response to changes in electricity prices, or to incentive payment designed

to induce lower electricity use at times of high wholesale market prices or when

system reliability is jeopardized [10]. The recent emergence of advanced metering

infrastructures (AMIs) and information and communication technologies (ICTs)

facilitates the implementation of DR. DR may reduce the customers’ cost and

improve the system reliability under proper schemes. However, the inappropriate

implementation of DR will threaten the normal operation of the distribution system.

For instance, a large number of customers may shift their load demand to the period

of low electricity price, which may create new peaks and leads to the overload in the

DN [11]. Therefore, it is crucially important to properly coordinate DERs and DR.

The distribution network is an electric network that carries the power from

the transmission network to the individual customers. It typically starts with the

substation that connects with the transmission system or subtransmission system

via the step-down transformers. With rare exception, the distribution networks are

radial, which means there is only one path for the power to be transmitted from

the substation to the end-users [12]. Hence, the power flow is unidirectional in

the traditional distribution network that has no local generation facilities. Such a

distribution network is called passive network since no active measures can be taken

except load shedding when a contingency takes place. However, with the adoption

of DERs, the application of advanced ICTs and installation of smart meters, the

distribution networks are evolving to active networks that enable e�ective real-time

monitoring, communication and control [13]. In active distribution networks, the

objectives of the system operation not only include supplying customers with power

of high quality, but also include enhancing the system reliability, security, flexibility

and e�ciency through the coordination of all kinds of devices [14]. The transition

of distribution networks may benefit the customers and society by lowering the

electricity price and improving the energy utilization e�ciency. Nevertheless, it

also introduces considerable complexity to the distribution network operation. For
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example, the power flow pattern in the active distribution networks become much

more complex compared to the unidirectional pattern [15]. In this respect, advanced

control strategies are required to handle all potential complexities.

Since the ratio between the resistance and reactance of the distribution line is

considerably larger than that of the transmission line [12], the active and reactive

power flow will cause comparable voltage drops on the distribution lines. It is likely

that the voltage magnitudes on the customers’ side deviate too much from the

normal values, which inevitably causes detrimental e�ect on the electric devices.

Hence, one major task in the distribution system is to ensure the nodal voltages

within the pre-specified limits by utilizing voltage regulation devices, e.g. on-load

tap changer (OLTC), voltage regulator, capacity bank, etc [16]. However, with

increasing penetration of DERs, the system is more likely to encounter unexpected

voltage violations because of uncertain and intermittent output of renewable DERs.

The voltage will fluctuate in such a fast rate that the aforementioned conventional

regulation devices may not react timely in response to the voltage violations. In

addition, these devices cannot be adjusted too frequently; otherwise, their life spans

will be shortened significantly. Fortunately, it has been widely recognized that DERs

have the potential to address the voltage problem because they are mostly electronic

interface based and thus their active and reactive power output can be adjusted

quickly and flexibly to some extent [17].

Generally, a large proportion of DERs are owned by the di�erent customers and

are geographically dispersed over the entire distribution network [18]. On one hand,

the customers’ behaviors will inevitably exert a great influence on the distribution

network operation. On the other hand, they may be indi�erent to the system

operation since they are usually self-interested with the primary goal of reducing

their payments or improving their profits. In this regard, new business model is

required to encourage customers to actively provide support to the system operation.

Traditionally, the electricity market, either wholesale market or retail market, inhibits

the direct participation of the end-use customers because of the high entry threshold.

Hence, customers are passive participants as they have no choice but to accept the
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prices o�ered by the utility company for the energy consumption and production.

These markets have been used in many countries for years. However, they cannot

adapt to the evolution of distribution networks as they fail to fully unlock the

technical and economic values of DERs and controllable loads. Moreover, due to

the economies of scale in electric industry, it is likely that customers are unable

to recover their capital costs of DER installation within the traditional electricity

markets. Therefore, it is necessary to create a competitive distribution market that

enables active participation of customers. In such a market, the customers with

controllable loads are willing to provide support to the system operation in exchange

of economic reward and the customers with DER installations, defined as prosumers,

are allowed to sell the excess energy at a competitive price. Besides, the distribution

system operator can procure the required service locally from the customers instead

of the upstream transmission network.

1.2 Research Motivations

As mentioned in the previous section, one biggest challenge introduced by the prolif-

eration of DERs and controllable loads is the considerable complexity in coordinating

and controlling a large number of dispersed devices. It is crucially important to over-

come this complexity, otherwise it would lead to the reduction of system reliability,

security and e�ciency. Transactive energy (TE) is a newly emerged concept that

sheds new light on addressing this complexity. According to Gridwise Architecture

Council (GWAC), TE is defined as a set of mechanisms that combine economic and

control techniques to achieve an optimal, reliable and secure operation outcome of an

electric system considering the system operating constraints [19]. Specifically, it uses

economic techniques to stimulate the self-interested customers to align their activities

with the requirement of the entire system. So far, several related studies have been

carried out, including the cost-benefit analysis [20], case studies in small systems

[21] and preliminary transactive market designs [22]. However, most related research

works only focus on the conceptual discussion without detailed designs. Therefore,
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the transactive energy system (TES) is still at its infancy stage and more e�orts

should be paid to build up a practical design. In addition, TE based framework is

inherently a decentralized scheme, but most existing applications are carried out in

a centralized manner. In this regard, decentralized or distributed approaches should

be applied to implement TE based framework in practice.

On the other hand, there is a great need to create a competitive distribution

market that enables active participation of the end-use customers to fully unlock

the economic and technical values of DERs and controllable loads. In this market,

customers have multiple choices other than buying/selling energy from/to the utility

company. For instance, they are allowed to conduct bilateral energy trading with

other customers. Nonetheless, it is likely that this market is not compatible with

the distribution system operation since customers are self-interested and their selfish

behaviors may give rise to the violation of system operation constraints, such as

voltage violation. Previous works like [23–25] do not address this problem properly

as they often overlook the impact on the system operation. Hence, it is necessary

to deal with the market issues and the operation issues in a holistic manner. Since

TE has the potential to resolve the conflict of interest, it is reasonable to apply

the TE concept to the decentralized energy trading. However, to the best of the

author’s knowledge, few works have studied the decentralized energy trading under

the TE framework. Therefore, further investigation is needed to create a competitive

distribution market that integrates the TE concept.

Despite the economic and environmental benefits of the renewable DERs like

rooftop PV systems, the proliferation of them also poses significant challenges to the

distribution system operation due to their uncertain and intermittent nature. Specif-

ically, the voltage variation will become more remarkable and frequent, which cannot

be properly addressed by the approaches using the traditional voltage regulation

devices, e.g. OLTC, voltage regulator and capacity bank. In the regard, the potential

of PV inverters has been explored to provide voltage control by adjusting the active

and reactive power output to some extent. Many studies [26–29] have been conducted

focusing on the voltage control within the distribution networks (DNs) using the PV
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inverters. These studies can be categorized into three classes, namely the centralized

control, decentralized control and distributed control. Under the centralized control,

various PV systems are remotely controlled by a central controller who determines

the dispatch result based on the collected operation information and issues the

command to the individual PV systems. Such a scheme works e�ectively in dealing

with the long-term operation, e.g. hourly dispatch. But it encounters significant

challenges when addressing the real-time operation problem since it cannot respond

to the fast variation of system condition timely. More importantly, the centralized

scheme is not robust as it subjects to a single point failure. The decentralized

scheme does not require mutual communication between any pair of entities. Each

entity determines its power set-points merely based on the local measurements. A

typical decentralized control scheme is the voltage-reactive power droop control. The

decentralized control is robust against the component failure, but it often results

in sub-optimality and sometimes instability due to lack of coordination [30]. The

distributed scheme combines the merits of the centralized scheme and decentralized

scheme and thus more appropriate for the real-time voltage regulation. Several

distributed algorithms have been developed recently [31–33]. However, the voltage

control algorithms in most works cannot be implemented online since the command

can be applied only when the algorithms converge. Therefore, it is necessary to

develop an online distributed voltage control algorithm in order to enhance the PV

hosting capacity of a distribution system.

The widespread adoption PV systems will also cause significant load ramps during

the sunrise and the sunset because of the diurnal pattern of solar PV energy [34].

Specifically, the PV generation is only available during daytime. When adding this

e�ect to the net load, it would lead to a sharp decrease and steep increase of net

load during the sunrise and the sunset, respectively. Typically, the magnitudes

of these ramps are large but the durations are short. Thus, fast-start generators

must be called on to follow the net load but it would inevitably cause considerable

economic loss due to the high operation cost of these generators. Actually, the present

ramping capability o�ered by the fast start resources is insu�cient to resolve the
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ramping problem of the near future [35]. It is foreseen that the ramping e�ect will

be increasingly severe in the next few years because of the rapid grow of renewable

DERs. Moreover, the ramping e�ect in DNs will be translated into the transmission

network and exacerbate the scarcity of ramping capability. But few works have

yet studied the ramping problem in DNs. Therefore, it is necessary to develop

e�ective approaches to mitigate the ramping e�ect in distribution networks using

local resources like the distributed energy storage systems (ESSs). DESS is capable

of storing the excess solar PV energy during the peak PV generation periods and

releasing it during the peak-load periods. The recent advance in DESS, especially in

the lithium-ion battery, paves a way for the implementation of the proposed approach

[36].

Last but not least, the cloud movement will result in sudden change of PV power

output, which is defined as PV ramp event (PRE). This ramp event will give rise

to severe voltage violation without proper coordination between the conventional

voltage regulation devices and smart PV inverters. Furthermore, the PV ramp events

are hard to predict as they are chaotic. Therefore, e�ective measures should be taken

to prevent the PV ramp event induced voltage violation.

1.3 Objectives and Primary Contributions

As discussed previously, the research on transactive energy based market design is till

at its early stage. Moreover, the conventional approaches are unsuitable to address

the emerging challenges introduced by the proliferation of DERs. In particular, the

severe voltage violations and the shortage of ramping capability is threatening the

reliability and security of the distribution system operation.

To fill these research gaps, the author developed advanced approaches for the

active management of modernized distribution networks in the following four aspects.

The main contributions are summarized as below.

1) A novel distributed transactive energy trading framework is developed with

detailed designs to accommodate the high penetration of PV generations in
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distribution networks. In particular, the bilateral energy trading among cus-

tomers is seamlessly integrated with the optimal power flow (OPF) technique

to ensure the trading outcome do not violate the system operation constraints.

Besides, the Nash bargaining theory is employed to design a fair and com-

petitive energy trading mechanism. Furthermore, an advanced distributed

algorithm is developed based on the alternating direction method of multipliers

(ADMM) to implement the proposed transactive energy trading framework.

The optimality and the convergence of the proposed algorithm is guaranteed.

Di�erent from most ADMM based distributed algorithms that requires to

solve the optimization subproblems iteratively, the author derives closed-form

formulas for the update of variables to greatly enhance the computational

e�ciency.

2) The author develops a distributed online voltage control algorithm based on

the dual ascent method considering PV curtailment. In the proposed algorithm,

the active and reactive power (P-Q) set-points of di�erent PV systems can

be updated in a distributed manner based on local voltage measurements and

communications between neighboring PV systems. Di�erent from most existing

works (e.g.[ref list]), the proposed distributed voltage control algorithm can

be implemented online. That is, the results at each iteration can be applied

directly to the PV systems for the voltage control. Therefore, the response rate

is faster than that using conventional algorithms, where the voltage control

cannot be implemented before the algorithms converge. Besides, the author

derives a closed-form solution for the PV controllers to locally update P-Q

set-points rather than iteratively solving subproblems. The convergence is

established analytically and the optimality is guaranteed.

3) The author proposes a novel look-ahead dispatch model for the ramp minimiza-

tion in an active distribution network. The fast-responding distributed energy

storage systems (DESSs) are utilized to o�set the ramp-up and ramp-down

e�ects caused by diurnal generation pattern of PV systems. Model predictive

control (MPC) method is used to carry out the proposed dispatch model, which
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incorporates both current information and newly updated forecast informa-

tion. Consequently, DESSs can be appropriately scheduled to avoid latent

over-charging or over-discharging during some periods. The second-order cone

(SOC) relaxed branch flow model is used to model the power flow in the distri-

bution networks. Numerical results demonstrate that the proposed MPC based

ramp minimization model can bring about significant reduction of ramping

e�ect and line losses, i.e. more than 80% reduction of maximum ramp and

roughly 50% reduction of line losses.

4) A coordinated dispatch model is proposed to eliminate the voltage violations

induced by the PV ramp event (PRE). Specifically, the author models the PREs

as an uncertainty set and formulates the intra-hour dispatch model as a two-

stage robust optimization problem considering the coordination of OLTC and

smart PV systems. In the first stage, maximum admissible PV outputs (MAPO)

and the OLTC step position are co-optimized to reinforce the coordination,

where MAPO is proposed to quantify the PV hosting capacity for the following

one hour. In the second stage, the feasibility of the first stage decision variables

is evaluated for any realization of PREs. The column-and-constraint generation

(CCG) algorithm is utilized to solve the problem.

1.4 Outlines of the Thesis

The thesis is organized as follows. In Chapter 2, a novel distributed transactive

energy framework is presented with detailed designs for the customers in distribution

networks. In Chapter 3, a distributed online voltage control algorithm is developed

for distribution networks with multiple PV systems based on dual ascent method. In

Chapter 4, a model predictive control based look-ahead dispatch model is proposed

for ramp minimization in distribution networks using DESSs. In Chapter 5, a two-

stage robust optimization based intra-hour dispatch model is presented to alleviate

the PRE induced voltage violations using OLTC and PV systems. In Chapter 6, the

authors concludes this thesis and casts some ideas on the future works.



Chapter 2

Distributed Transactive Energy

Trading Framework in

Distribution Networks

2.1 Introduction

Transactive energy (TE) is a newly emerged concept aiming to address the economic

and technical issues in power systems in a holistic manner. According to the

Gridwise Architecture Council (GWAC), transactive energy system is defined as a set

of mechanisms that use economic based instruments to achieve the dynamic balance

between the generation and consumption while considering operation constraints of

a power system [37]. It is a multi-agent system that enables active participation of

customers to contribute to the enhancement of the system reliability, security and

e�ciency. There are several works related with transactive energy system. In [38], a

transactive control strategy with a double-auction market is proposed for commercial

buildings to coordinate the internal electric appliances. In [39], a transactive energy

framework is presented for the decision making of virtual power plants. However,

these works overlook the impact of TE on the power system operation. In [22], a

day-ahead transactive market model is proposed for the distribution system operator

(DSO) to manage the distribution level operation and to participate in the wholesale
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market. Nonetheless, it does not consider the P2P energy trading between customers.

Ref.[20] conducts a cost-benefit analysis for the transactive energy sharing within

a microgrid. Ref.[40] carries out a case study of the transactive energy trading in

a distribution system. However, these works only focus on conceptual discussion

and preliminary study without details. Up to now, the research on applying TE to

distribution system operation is still at its very early stage.

Economic and system operating issues are two major concerns of a TE based

framework. Current policies of most countries encourage self-consumption of solar

PV energy so as to mitigate its adverse influence. But it is not preferable to PV

prosumers who may have excess PV generation after meeting their own load especially

during the peak irradiance period. In order to improve the economic benefit to

PV prosumers and other consumers, some energy sharing and trading mechanisms

have been developed in recent research works. Ref. [41] presents an energy sharing

mechanism with an internal pricing model for prosumers within a microgrid. Ref.

[42] investigates the interconnected microgrids and proposes a holistic model for

energy scheduling and trading. Ref. [43] develops a distributed model for energy

trading among multiple microgrids. In [44], a study on energy exchange is carried

out using DC based interconnected nanogrids. There are also some works [45, 46]

focusing on game-theoretic approach based energy trading in smart grid, which are

summarized in [46]. Nevertheless, few existing works have dealt with the economic

issues of energy trading and the technical issues of distribution system operation in

a holistic way.

Traditionally, distribution systems are managed by distribution system operators

in a centralized manner. However, with the proliferation of DERs and household

automation products, it becomes challenging to centrally control customer-owned

assets due to privacy concerns and complex communication and control requirements.

In this regard, distributed operation and control has been extensively studied in

recent research works [33, 47–50]. In [47], a distributed dispatch method is proposed

based on primal-dual subgradient algorithm. In [48], an ADMM based distributed

algorithm is developed for the optimal power flow (OPF) problem in distribution
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systems. In [33], a distributed method is used to optimize the active and reactive

power set-points of DER inverters. In [49, 50], distributed approaches are applied to

voltage regulation.

In this chapter, the author develops a transactive energy trading (TET) framework

for customers considering the operating constraints of the distribution network. In

particular, it seamlessly integrates the bilateral energy trading mechanism with the

optimal power flow (OPF) technique. In order to preserve the autonomy and privacy

of customers, the author develops a distributed algorithm with closed-form solutions

to solve the transactive energy trading problem. The optimality of the energy trading

is guaranteed using the proposed distributed algorithm.

The nomenclature of symbols used in this chapter is given as follows,

Indices and Set

E Distribution Line set
N Distribution node set
t/T Index and set of time slots
k Iteration index

Parameters

di,t/di,t Lower/Upper bound of agent i’s load demand at time t

Di,t Preferred load demand of agent i at time t

Ei Total required energy of agent i over the entire optimization horizon
p

g
i,t Aggregated PV generation of agent i at time t

q
d
i,t Reactive power demand of agent i at time t

Q
i,t

/Qi,t Lower/Upper bound of reactive power output of agent i’s PV system
at time t

ri/xi Resistance/Reactance of the ith line
vi/vi Lower/Upper bound of the squared voltage magnitude at node i

–i Sensitivity of the agent i’s discomfort cost to the demand deviation
“ Iteration step size
⁄

b
t/⁄

s
t Electricity price for buying/selling energy from/to the utility company

at time t
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Variables

eij,t Energy amount agent i purchases from agent j at time t

li,t Squared line current magnitude of line i at time t

p
d
i,t Aggregated load demand of agent i at time t

q
g
i,t Reactive power output of agent i’s PV system at time t

pi,t/qi,t Active/Reactive power injection at the ith node at time t

Pi,t/Qi,t Active/Reactive power flow on the ith line at time t

vi,t Squared voltage magnitude of node i at time t

„ij Payment from agent i to agent j

2.2 System Model and Problem Formulation

In this section, the author designs a novel TET framework by integrating a Nash

bargaining based bilateral energy trading mechanism with the OPF technique. Then,

the author transforms the original problem into an equivalent two-stage problem.

2.2.1 System Model

Consider a distribution network G := (N , E), where N := {0, 1, . . . , N} represents

the node set and E represents the line set. Each node except the substation node

(indexed as 0) has a unique parent node Ai and a set of child nodes, denoted by Ci.

It is assumed that each directed line points from a node i to its unique parent node

Ai. Thus, the line from i to Ai can be uniquely labeled as i and the line set can be

expressed as E := {1, . . . , N}. Given a radial distribution network, the branch flow

model [51] can be used to represent the power flow equations as

vi,t ≠ vAi,t = 2(riPi,t + xiQi,t) ≠ li,t(r2
i + x

2
i ) i œ E (2.1a)

ÿ

jœCi

(Pj,t ≠ lj,trj) + pi,t = Pi,t i œ N (2.1b)

ÿ

jœCi

(Qj,t ≠ lj,txj) + qi,t = Qi,t i œ N (2.1c)

li,t =
P

2
i,t + Q

2
i,t

vi,t
i œ N (2.1d)
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TET agent i TET agent j TET agent k

Utility grid
Feeder

Communication

Bilateral Energy Trading Platform

Fig. 2.1 Transactive energy trading framework in a distribution system

Note (2.1d) is nonconvex. Hence, the second order cone relaxtion from [51] will be

applied to convexify it. Specifically, the equality constraint (2.1d) is first relaxed

into an inequality constraint as (2.2) which is then reformulated into a second order

cone (SOC) constraint as (2.3).

P
2
i,t + Q

2
i,t Æ vi,tli,t i œ N (2.2)

Î(2Pi,t, 2Qi,t, li,t ≠ vi,t)Î Æ li,t + vi,t (2.3)

Note that the SOC relaxation is generally exact for the radial distribution networks

according to [51]. The numerical results also validate the exactness of the relaxation

in this application.

2.2.2 TET Agent Model

For a better energy trading coordination, TET agent is introduced to represent the

aggregation of customers on the same node as illustrated in Fig. 2.1, where the

solid black line represents the distribution feeder line and the dashed black line

represents communication line. It is entrusted to fulfil the energy management and

trading on behalf of the local customers. Besides, the TET agent is also responsible

for maintaining the reliable and secure operation of the entire distribution system

together with other TET agents.
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It is assumed that each agent has some flexible demand. For simplicity, only the

aggregated demand of each agent i is modelled, denoted as p
d
i,t, without considering

the detailed composition of the demand. The aggregated demand is simply termed

as the demand in the rest of this chapter. Thus, each demand subjects to

di,t Æ p
d
i,t Æ di,t t œ T (2.4)

ÿ

tœT
p

d
i,t Ø Ei (2.5)

Each agent can schedule its demand across time as long as it satisfies (2.4) and

(2.5). Nevertheless, the deviation from the preferred value will incur discomfort cost

that is defined as

C
dis
i,t (pd

i,t) = –i

1
p

d
i,t ≠ Di,t

22
t œ T (2.6)

It is assumed that each PV system operates at the maximum power point so as

to harvest as much solar energy as possible. Thus, the aggregated PV generation of

agent i, denoted as p
g
i,t, is a predicted parameter. Note if agent i does not have PV

installations, then p
g
i,t is simply set as 0. In addition, the PV reactive power of agent

i, denoted as q
g
i,t, is adjustable and subjects to

Q
i,t

Æ q
g
i,t Æ Qi,t (2.7)

where Q
i,t

= ≠Qi,t and Qi,t = min
1Ò

S
2
i ≠ (pg

i,t)2, p
g
i,t◊tan◊

2
; Si is the rated apparent

power of the PV system and ◊ denotes the power factor angle associated with the

minimum allowed power factor.

2.2.3 Bilateral Energy Trading and Payo� Function

Bilateral energy trading

Let eij,t denote the energy amount that agent i purchases from agent j in time slot t.

Then, the consensus on the amount of bilateral energy trading can be expressed as

eij,t = ≠eji,t i œ N , j œ N \i, t œ T (2.8)
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It is assumed that the payment between each pair of agents is settled at the end

of the entire optimization horizon. Let „ij denote the payment from agent i to agent

j. Then, the consensus on payment is expressed as

„ij = ≠„ji i œ N , j œ N \i (2.9)

Hence, the total payment of agent i to other agents can be written as

�i(„„„i) =
ÿ

jœN \i

„ij (2.10)

where „„„i is the vector of {„ij|j œ N \i}.

Payo� function

The payo� function of each agent i is defined as the cost reduction arising from TET.

Hence, the cost functions without and with TET should be introduced first. The

cost without TET is composed of the utility bill and the discomfort cost, that is

ÂCi(pd
i ) =

ÿ

tœT

1
ÂBi,t(pd

i,t) + C
dis
i,t (pd

i,t)
2

(2.11)

where pd
i is the vector of {p

d
i,t|t œ T } and ÂBi,t(pd

i,t) is the utility bill without TET

defined as
ÂBi,t(pd

i,t) = ⁄
b
t

Ë
p

d
i,t ≠ p

g
i,t

È+
≠ ⁄

s
t

Ë
p

g
i,t ≠ p

d
i,t

È+
(2.12)

where [·]+ denotes the projection operator onto the non-negative orthant, i.e. [x]+ =

max(x, 0); ⁄
b
t denotes the electricity price in the retail market which is typically set

at a fixed level by the utility company; and ⁄
s
t denotes the feed-in tari�. Generally,

⁄
b
t is considerably higher than ⁄

s
t [41].

The cost with TET consists of the utility bill, the discomfort cost and the payment

to other agents, that is

Ci(pd
i , ei,„„„i) =

ÿ

tœT

1
Bi,t(pd

i,t, eij,t) + C
dis
i,t (pd

i,t)
2

+ �i(„„„i) (2.13)
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where ei is the vector of {eij,t|’j œ N \i, ’t œ T } and Bi,t(pd
i,t, eij,t) is the utility bill

with TET, which is written as

Bi,t(pd
i,t, eij,t) = ⁄

b
t�+

i,t ≠ ⁄
s
t�≠

i,t (2.14)

where �+
i,t =

Ë
p

d
i,t ≠p

g
i,t ≠

q
jœN \i eij,t

È+
and �≠

i,t =
Ë
p

g
i,t ≠p

d
i,t +q

jœN \i eij,t

È+
, represent

the energy extraction/injection from/to the utility company, respectively,

Therefore, the payo� function for each agent i is defined as

Ui(pd
i , ei,„„„i) = ÂCi(Âpd

i ) ≠ Ci(pd
i , ei,„„„i)

= ÂCi(Âpd
i ) ≠ Wi(pd

i , ei) ≠ �i(„„„i) (2.15)

where Wi(pd
i , ei) := q

tœT

1
Bi,t(pd

i,t, eij,t) + C
dis
i,t (pd

i,t)
2
, and Âpd

i is the optimal solution

to the following problem.

min
pd

i

ÂCi(pd
i ) (2.16a)

s.t. di,t Æ p
d
i,t Æ di,t t œ T (2.16b)

ÿ

tœT
p

d
i,t Ø Ei (2.16c)

Due to (2.10), it can be derived that the sum of individual payo� equals to the

overall social cost reduction, i.e.

ÿ

iœN
Ui(pd

i , ei,„„„i) =
ÿ

iœN

ÂCi(Âpd
i ) ≠

ÿ

iœN
Wi(pd

i , ei) (2.17)

2.2.4 Nash Bargaining based Transactive Energy Trading

The transactive energy trading problem is modelled as a Nash bargaining problem as

it is often used to determine a fair allocation of a total surplus among multiple players.

Moreover, the Nash bargaining solution satisfies the following four axioms: invariant

to a�ne transformation, Pareto optimality, independent of irrelevant alternatives,

and symmetric [52]. Thus, the TET problem is formulated as (2.18) by taking system
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operating constraints into account.

max
NŸ

i=1
Ui(pd

i , ei,„„„i) (2.18a)

over p
d
i,t, q

g
i,t, eij,t, „ij, pi,t, qi,t, Pi,t, Qi,t, li,t, vi,t

s.t. (2.4), (2.5) and (2.7) (2.18b)

(2.8) and (2.9) (2.18c)

(2.1a)-(2.1c) and (2.2) (2.18d)

pi,t = p
g
i,t ≠ p

d
i,t i œ N \0, t œ T (2.18e)

qi,t = q
g
i,t ≠ q

d
i,t i œ N \0, t œ T (2.18f)

vi Æ vi,t Æ vi i œ N , t œ T (2.18g)

where (2.18b) summarizes local scheduling constraints for each agent; (2.18c) is

associated with bilateral energy trading; (2.18d)-(2.18f) are power flow equations and

(2.18g) is voltage constraints. It can be observed from (2.17) that the optimal solution

to (2.18) also minimizes the total operating cost with TET, i.e. q
iœN Wi(pd

i , ei);

otherwise, some agents can be better o� due to the improvement of the total cost

reduction while keeping the other agents’ payo�s unchanged. Therefore, the following

theorem can be obtained.

Theorem 1 The proposed TET problem (2.18) is equivalent to the following two-

stage problem, where the first stage problem S1 solves the optimal energy trading

along with system dispatch and the second stage problem S2 solves the corresponding

optimal bilateral payment.

S1: multi-period OPF problem

min
ÿ

iœN
Wi(pd

i , ei)

over p
d
i,t, q

g
i,t, eij,t, pi,t, qi,t, Pi,t, Qi,t, li,t, vi,t

s.t. (2.1a)-(2.1c), (2.2)-(2.5), (2.7), (2.8), (2.18e)-(2.18g)
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S2: payment bargaining problem

max
„ij

NŸ

i=1

1
ÂCi(Âpd

i ) ≠ Wi(pdú
i , eú

i ) ≠ �i(„„„i)
2

s.t. (2.9)

where (pdú
i , eú

i ) is the optimal solution to S1.

Due to the convexity, both S1 and S2 can be solved in a centralized fashion by

cutting-edge solvers. However, the centralized optimization requires the complete

information of the entire system, which violates the privacy of individual TET

agent. In this regard, a distributed algorithm for TET problem is needed, which is

introduced in the next section.

2.3 Distributed Algorithm for TET Problem

In this section, an ADMM based distributed algorithm is developed for solving the

two-stage TET problem. Firstly, the multi-period OPF problem S1 is decoupled

into multiple single-period OPF subproblems using Lagrangian relaxation. Then, a

distributed algorithm is developed for the single-period subproblem by employing

a recent proposed distributed OPF technique [48]. Subsequently, the distributed

algorithm is also used to solve the second stage problem S2. Furthermore, closed

form solutions are derived to the optimization subproblems of S1 and S2, which

greatly speeds up each iteration.

2.3.1 Decoupling of Temporally Coupled Constraint

In S1, the constraint (2.5) couples the decision variables of all time slots, which

inhibits S1 to be solved separately at each time slot. Hence, S1 is reformulated

by relaxing (2.5). Let fii, yt := {p
d
i,t, q

g
i,t, eij,t, pi,t, qi,t, Pi,t, Qi,t, li,t, vi,t|i œ N } and Yt

denote the Lagrangian multiplier for (2.5), the vector composed of the variables of

S1 at time slot t and the feasible region of yt, respectively. Then, the Lagrangian of
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S1 is given as

L =
ÿ

iœN
Wi(pd

i , ei) +
ÿ

iœN
fii(Ei ≠

ÿ

tœT
p

d
i,t)

=
ÿ

tœT
Lt(yt,fififi) +

ÿ

iœN
Eifii (2.21)

where Lt(yt,fififi) := q
iœN

1
Bi,t(pd

i,t, eij,t)+C
dis
i,t (pd

i,t)≠fiip
d
i,t

2
, and fififi is a vector consisting

of all fii.

The strong duality holds for problem S1 according to Slater’s condition [71].

Hence, there is zero duality gap between problem S1 and its dual problem S1Õ as

shown below, which means the transformation of the problem is accurate.

S1Õ: max
fififiØ000

ÿ

tœT

3
min
ytœYt

Lt(yt,fififi)
4

+
ÿ

iœN
Eifii

Note that the inner level problem is decoupled into multiple single-period optimization

subproblems that can be solved in parallel. Next, the subscript t is dropped for

conciseness and the single-period subproblem is formulated as

min
ÿ

iœN

1
Bi,t(pd

i , eij) + C
dis
i,t (pd

i ) ≠ fiip
d
i

2
(2.22a)

over {p
d
i , q

g
i , eij, pi, qi, Pi, Qi, li, vi|i œ N }

s.t. (2.1a)-(2.1c), (2.2), (2.4), (2.7), (2.8), (2.18e)-(2.18g) (2.22b)

Suppose for a given fififi
k, the optimal solution of (2.22) can be obtained for each

time slot t, denoted as p
d,k
i,t . Then dual ascent method [53] can be used to solve S1Õ

with the Lagrangian multiplier fii being iteratively updated as

fi
k+1
i =

5
fi

k
i + “

1
Ei ≠

ÿ

tœT
p

d,k
i,t

26+
(2.23)

However, the major challenge lies in the calculation of yt since the centralized method

is impractical for (2.22) due to privacy concern. Therefore, a distributed algorithm

will be developed in the following subsection.
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2.3.2 Distributed Algorithm for Single-period OPF Prob-

lem

Due to the strong coupling between each agent’s decision variables xi :=
Ó
pi, qi, Pi, Qi, li,

vi, {eij|j œ N \i}
Ô

with those of others, ADMM cannot be directly applied to (2.22).

Thus, problem (2.22) should be reformulated into a problem with a decomposable

structure. Toward this end, a set of auxiliary variables zj(i) is introduced that is

constituted by the duplicate of relevant elements of xj. zj(i) can be visualized as agent

i’s observation of agent j’s partial information contained in xj. In this application,

zj(i) is explicitly defined as

zj(i) :=

Y
________]

________[

1
p

z
i(i), q

z
i(i), P

z
i(i), Q

z
i(i), l

z
i(i), v

z
i(i), {e

z
ik(i)|k œ N \i}

2
j = i

1
P

z
j(i), Q

z
j(i), l

z
j(i), e

z
ji(i)

2
j œ Ci

1
v

z
j(i), e

z
ji(i)

2
j = Ai

1
e

z
ji(i)

2
otherwise

(2.24)

where the superscript z is used to indicate the auxiliary variables. Then, (2.22) is

reformulated as the problem below.

minx,z

ÿ

iœN
fi(xi) (2.25a)

s.t. v
z
i(i) ≠ v

z
Ai(i) = 2(riP

z
i(i) + xiQ

z
i(i)) ≠ l

z
i(i)(r2

i + x
2
i ) i œ N \0 (2.25b)

ÿ

jœCi

(P z
j(i) ≠ l

z
j(i)rj) + p

z
i(i) = P

z
i(i) i œ N (2.25c)

ÿ

jœCi

(Qz
j(i) ≠ l

z
j(i)xj) + q

z
i(i) = Q

z
i(i) i œ N (2.25d)

e
z
ij(i) = ≠e

z
ji(i) j œ N \i, i œ N (2.25e)

(P x
i )2 + (Qx

i )2 Æ l
x
i v

x
i i œ N (2.25f)

vi Æ v
x
i Æ vi i œ N (2.25g)

p
i

Æ p
x
i Æ pi i œ N (2.25h)

q
i

Æ q
x
i Æ qi i œ N (2.25i)

xj ≠ zj(i) = 0 j œ N , i œ N (2.25j)
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where the variables with superscript x correspond to the original decision variables;

x := {xi|i œ N } and z := {zj(i)|j œ N , i œ N }; fi(xi) = ⁄
b[≠p

x
i ≠ q

jœN \i e
x
ij]+ ≠

⁄
s[px

i + q
jœN \i e

x
ij ]+ + –i(px

i ≠ p
g
i + Di)2 + fiip

x
i ; (2.25h) and (2.25i) are reduced from

(2.4), (2.7), (2.18e) and (2.18f); p
i
, pi, q

i
and qi are parameters derived from (2.4),

(2.7), (2.18e) and (2.18f). The consensus constraint (2.25j) is enforced to ensure the

equivalence between (2.22) and (2.25). It is written explicitly as below with a slight

abuse of notations.

0 = xj ≠ zj(i) :=

Y
____________]

____________[

1
p

x
i ≠ p

z
i(i), q

x
i ≠ q

z
i(i), P

x
i ≠ P

z
i(i), Q

x
i ≠ Q

z
i(i),

l
x
i ≠ l

z
i(i), v

x
i ≠ v

z
i(i), {e

x
ik ≠ e

z
ik(i)|k œ N \i}

2
j = i

1
P

x
j ≠ P

z
j(i), Q

x
j ≠ Q

z
j(i), l

x
j ≠ l

z
j(i), e

x
ji ≠ e

z
ji(i)

2
j œ Ci

1
v

x
j ≠ v

z
j(i), e

x
ji ≠ e

z
ji(i)

2
j = Ai

1
e

x
ji ≠ e

z
ji(i)

2
otherwise

For mathematical conciseness, (2.25) can be written compactly as the problem

below.

minx,z

ÿ

iœN
fi(xi) (2.26a)

s.t.
ÿ

jœN
Aijzj(i) = 0 i œ N (2.26b)

xi œ Xi i œ N (2.26c)

xj ≠ zj(i) = 0 j œ N , i œ N (2.26d)

where Aij is a constant matrix and Xi is a convex set. (2.26b) summarizes (2.25b)-

(2.25e), and (2.26c) summarizes (2.25f)-(2.25i).

Then, the author applies the consensus version of ADMM [53] to (2.26) by relaxing

(2.26d). Denote the Lagrangian multipliers for (2.26d) as µµµj(i). For a given penalty

parameter fl > 0, the augmented Lagrangian is defined as

Lfl(x, z,µµµ) =
ÿ

iœN
Lx

fl,i

1
xi, {zi(j),µµµi(j)|j œ N }

2

=
ÿ

iœN
Lz

fl,i

1
{xj, zj(i),µµµj(i)|j œ N }

2
(2.27)
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where

Lx
fl,i

1
xi, {zi(j),µµµi(j)|j œ N }

2
:=fi(xi) +

ÿ

jœN

1
Èµµµi(j), xi ≠ zi(j)Í + fl

2Îxi ≠ zi(j)Î2
2

Lz
fl,i

1
{xj, zj(i),µµµj(i)|j œ N }

2
:=fi(xi) +

ÿ

jœN

1
Èµµµj(i), xj ≠ zj(i)Í + fl

2Îxj ≠ zj(i)Î2
2

where È·, ·Í denotes the operation of inner product.

The basic idea of ADMM for solving (2.26) is to cyclically minimize its augmented

Lagrangian Lfl(x, z,µµµ) over one of the three categories of variables, x, z and µµµ, while

fixing the other two. Owing to decomposability of the Lagrangian Lfl(x, y,µµµ) as well

as the constraints (2.26b) and (2.26c), the update of each category of variables can

be executed in a distributed manner by solving the local subproblems of each agent.

At each iteration k, the ADMM based distributed algorithm consists of the following

three steps.

(A1) Upon receiving the latest updated zk
i(j) and µµµ

k
i(j) from others, each agent i

updates xi as (2.28) and sends relevant elements of xi to others.

xk+1
i := arg min

xiœXi

Lx
fl,i

1
xi, {zk

i(j),µµµ
k
i(j)|j œ N }

2
(2.28)

(A2) Upon receiving the relevant elements of the latest updated xk+1
j from others,

each agent i updates zj(i) as (2.29) and sends zj(i) to agent j.

zk+1
(i) := arg min

z(i)œZi

Lz
fl,i

1
{xk+1

j , zj(i),µµµ
k
j(i)|j œ N }

2
(2.29)

where z(i) := {zj(i)|j œ N } and Zi := {z(i)|
q

jœN Aijzj(i) = 0}.

(A3) Each agent i updates µµµj(i) as (2.30) and sends it to agent j.

µµµ
k+1
j(i) := µµµ

k
j(i) + fl(xk+1

j ≠ zk+1
j(i) ) j œ N (2.30)
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The convergence of the above iterations to the optimal solution of (2.26) is

guaranteed according to [48]. The termination condition is given as

r
k Æ Á, s

k Æ Á (2.31)

where r
k := Îxk ≠ zkÎ denotes the primal residue, s

k := flÎzk ≠ zk≠1Î denotes the

dual residue, and Á is the tolerance.

Proposition 1 At each iteration k

(a) The subproblem (2.28) for updating xi can be solved by each agent i with closed

form solution.

(b) The subproblem (2.29) for updating z(i) := {zj(i)|j œ N } can be solved by each

agent i with closed form solution.

Proof 1 The proof of (a) is deferred to Appendix A.

The proof of (b) is given as follows. (2.29) can be reformulated as

minz(i)
Gi(z(i)) (2.32a)

s.t.
ÿ

jœN
Aijzj(i) = 0 (2.32b)

where Gi(z(i)) = q
jœN

1
≠ Èµµµj(i), zj(i)Í + fl

2Îxj ≠ zj(i)Î2
2
. Since (2.32) is a convex

quadratic optimization problem with linear equality constraints, it can be generalized

as

minz(i)

1
2zT

(i)Qz(i) + cT z(i) (2.33a)

s.t. Bz(i) = 0 (2.33b)

where Q and B are constant matrices, and c is a constant vector. (2.33) has a

unique solution that can be expressed as

z(i) =
1
Q≠1BT (BQ≠1BT )≠1BQ≠1 ≠ Q≠1

2
c (2.34)
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Q.E.D.

2.3.3 Distributed Algorithm for Problem S2

In order to apply the aforementioned consensus version of ADMM, S2 is also

reformulated with the same technique. Here, the original decision variables xÕ
i and

auxiliary variables zÕ
j(i) for each agent i are defined as

xÕ
i := {„

x
ij|j œ N \i} (2.35)

zÕ
j(i) :=

Y
_]

_[

{„
z
ik(i)|k œ N \i} j = i

„
z
ji(i) otherwise

(2.36)

Then, S2 is reformulated as the problem below by taking log of the objective function.

min
xÕ,zÕ

ÿ

iœN
≠ln

3
◊i ≠

ÿ

jœN \i

„
x
ij

4
(2.37a)

s.t. „
z
ij(i) = ≠„

z
ji(i) j œ N \i, i œ N (2.37b)

„
z
ij(i) ≠ „

x
ij = 0 j œ N \i, i œ N (2.37c)

„
z
ji(i) ≠ „

x
ji = 0 j œ N \i, i œ N (2.37d)

where xÕ := {xÕ
i|i œ N } and zÕ := {zÕ

j(i)|j œ N , i œ N }; ◊i = ÂCi(Âpd
i ) ≠ Wi(pdú

i , eú
i ) is

a parameter; (2.37c) and (2.37d) are the consensus constraints.

Note that problem (2.37) can also be written into the compact form as (2.26) by

replacing xi and zj(i) with xÕ
i and zÕ

j(i), respectively. fi(xÕ
i) is changed to fi(xÕ

i) :=

≠ln
1
◊i ≠ q

jœN \i „
x
ij

2
and (2.26c) is removed. Therefore, the following proposition

can be derived.

Proposition 2

(a) Problem (2.37) can be solved in a distributed manner through the iterative

process given by (A1)-(A3).

(b) The problem for updating xÕ
i := {„

x
ij|j œ N \i} shown in (A1) can be solved by

each agent i in closed form.
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Algorithm 1: Distributed Algorithm for TET Problem
1 Stage 1: Solve S1Õ.
2 Initialize all zj(i),t, µµµj(i),t and fii. Set the inner and outer loop tolerance levels,

Á1 and Á2. Initialize the iteration indices, k = 0 and m = 0;
3 repeat
4 for t = 1 to T do
5 while Îxk

t ≠ zk
t Î > Á1 or flÎzk

t ≠ zk≠1
t Î > Á1 do

6 Each agent i updates xi,t according to (2.28);
7 Each agent i updates zj(i),t according to (2.29);
8 Each agent i updates µµµj(i),t according to (2.30);
9 Update inner loop iteration index k = k + 1;

10 end
11 end
12 Each agent i updates fii according to (2.23);
13 Update outer loop iteration index m = m + 1;
14 until Îfififi

m ≠ fififi
m≠1|| Æ Á2;

15 Stage 2: Solve S2.
16 Initialize all zÕ

j(i) and µµµ
Õ
j(i). Set the tolerance level Á. Initialize the iteration

index k = 0;
17 while ÎxÕ,k ≠ zÕ,kÎ > Á or flÎzÕ,k ≠ zÕ,k≠1Î > Á do
18 Each agent i update xÕ

i similarly as (2.28);
19 Each agent i update zÕ

j(i) similarly as (2.29);
20 Each agent i update µµµj(i) as µµµ

Õ,k
j(i) = µµµ

Õ,k≠1
j(i) + fl(xÕ,k

j ≠zÕ,k
j(i));

21 Update iteration index k = k + 1;
22 end

(c) The problem for updating of zÕ
j(i) shown in (A2) can be solved by each agent i

in closed form.

Proof 2 The proof of (a) and (c) is evident just by going through the steps described

by (A1)-(A3). The proof of (b) is given in Appendix A. Q.E.D.

2.3.4 Implementation

Algorithm 1 summarizes the overall distributed algorithm for solving the transactive

energy trading problem, where the outer and inner loops in Stage 1 represent dual

ascent method and ADMM based iterations, respectively. Thanks to the distributed

algorithm, each agent only need to disclose partial information to other agents as

illustrated by zj(i) and zÕ
j(i). The information exchange among TET agents can be
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facilitated by the advanced information and communication technologies (ICT), e.g.

LTE technology, which is designed for high-speed wireless communication.

2.4 Numerical results

In this section, the proposed TET framework is tested on the modified IEEE 37-bus

and 123-bus distribution systems for the energy trading of a day. Detailed information

of the systems can be found in [54]. Three-phase balanced scenario is considered in

the case studies for simplicity. In addition, the distribution nodes are classified into

residential nodes and commercial nodes based on their load patterns. It is assumed

that each residential node is installed with a PV system with the rated capacity

being 200 kVA. The data of the load is simulated using the same technique as our

recent work [55] and the PV generation data is calculated using the actual solar

irradiance data provided by [56]. Without loss of generality, the purchasing price ⁄
b
t

is set as $0.8/kWh during the o�-peak periods (12:00 a.m.-6:00 a.m.) and $1/kWh

during other periods, and the selling price ⁄
s
t is set as $0.4/kWh. All the costs and

prices are presented in HK dollars. In order to accelerate the convergence speed of

S1Õ, the tolerance level Á1 for the inner loop is set to be gradually diminished until

10≠4. Other parameters are summarized as follows: –i = 500, fl = 1, vi = 0.952,

vi = 1.052 and Á2 = Á = 10≠4. Numerical tests are implemented using MATLAB on

a computer with an Intel Core i5 of 2.4GHz and 12GB memory.

2.4.1 IEEE 37-bus Distribution System

The nominal voltage value of the 37-bus distribution system is 4.8kV and the network

topology is shown in Fig. 2.2. Per unit value is used in the case studies.

From the Perspective of the Entire System

Table 2.1 lists the total operating cost of the system with and without TET. It can

be seen that TET can bring about roughly 25% relative cost saving resulting from

the emergence of bilateral energy trading among TET agents and the reduction of
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Fig. 2.2 IEEE 37-bus distribution system with PV installations

Table 2.1 Total operating cost of the system with and without TET

Cost without TET $ Cost with TET $ Cost reduction $
18812 14138 4674
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Fig. 2.3 Total net load with and without TET

energy trading between TET agents and the utility company. Fig. 2.3 depicts the

hourly net load of the entire system with and without TET. It can be observed

that TET fulfil the valley-filling and peak-shaving of the total net load to some

extent. The reason is that the introduction of bilateral energy trading encourages
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Fig. 2.4 Voltage magnitudes of node 30 with and without TET

load shifting from the periods of peak load to the periods of peak PV generation.

Fig. 2.4 shows the voltage profile of node 30 with and without TET. The author

only demonstrates the voltage profile of node 30 because it is a terminal node and is

more likely to experience voltage violations. Without TET, overvoltage violation

is observed at noon when peak PV generation occurs and undervoltage violation

is observed at early night when peak load occurs. However, all voltage violations

are removed when TET is introduced. The reason is that without TET each agent

merely schedules its local power consumptions without systematic coordination with

other agents. By contrast, TET takes the system operating constraints into account

and thus enables coordinated management of the entire system.

From the Perspective of TET Agents

Table 2.2 Cost comparison with and without TET for agent 1 and 4 ($)

Items Agent 1 Agent 4
Cost without TET 3163.7 222.9
Utility bill plus discomfort cost 1781.6 373.0
Payment to other agents 1209.0 ≠323.2
Cost with TET 2990.6 49.7
Payo� 173.1 173.1
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Fig. 2.5 Load schedule of agent 1 with and without TET
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Fig. 2.6 Load schedule of agent 4 with and without TET

To avoid tedious illustration, the author takes agent 1 as a representative for a

commercial node and agent 4 as a representative for a residential node. Fig. 2.5 and

2.6 show the load schedule of agent 1 and 4 with and without TET, respectively.

It can seen that both agents shift part of their power consumption from the peak

load periods (18:00-20:00) to the periods of peak PV generation (10:00-16:00). As a

result, more PV power is consumed locally instead of feeding back to the grid during

daytime, and less power is consumed during early night. Fig. 2.7 and 2.8 demonstrate

the energy procurement of agent 1 and 4 when TET is involved, respectively. The
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Fig. 2.7 Hourly net load and procurement of agent 1
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Fig. 2.8 Hourly net load and procurement of agent 4

negative values in Fig. 2.8 mean agent 4 sells energy to the utility company and

other agents. It can be observed that TET agents are more willing to trade energy

with other agents instead of the utility company because they can procure energy

from other agents with a lower price than from the utility company and sell energy

to other agents with a higher price than to the utility company. Table 2.2 shows the

cost comparison with and without TET for agent 1 and 4. Both agents are awarded

with an equal payo� for participating in TET. Therefore, TET is economically and

technically feasible for both the entire system and individual agents.
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Fig. 2.9 Convergence result of the 1st stage problem for IEEE 37-bus distribution
system
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Fig. 2.10 Convergence result of the 2nd stage problem for IEEE 37-bus distribution
system

Fig. 2.9 and 2.10 show the convergence result of S1Õ and S2 using Algorithm

1, respectively. It is observed that the first stage problem takes more iterations

to converge due to its great complexity. However, the total computation time for

both stages is relatively short, as shown in Table 2.3 where the comparison of

computational e�ciency using Algorithm 1 and an o�-the-shelf solver (SDPT3) [57]
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Table 2.3 Computation time for IEEE 37-bus distribution system

Stage Iteration Total Time
(s)

Time/iteration
(s) (Algorithm 1)

Time/iteration
(s) (SDPT3)

1st 1411 4.32 3.1 ◊ 10≠3 12.19
2nd 27 0.01 3.8 ◊ 10≠4 2.82

are also demonstrated. Significant time reduction (more than 3000 times faster) is

achieved by using Algorithm 1 because of the employment of closed form solutions.
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Fig. 2.11 Convergence result of the 1st stage problem for IEEE 123-bus distribution
system

2.4.2 IEEE 123-bus Distribution System

In order to verify the implementability of the proposed TET framework and dis-

tributed algorithm on large systems, they are tested on the modified IEEE 123-bus

distribution system. The computational result is demonstrated as below. Fig.

2.11 and 2.12 depict the convergence result of S1Õ and S2, respectively. The total

computation time is 20.9s and 0.05s for S1Õ and S2, respectively.
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Fig. 2.12 Convergence result of the 2nd stage problem for IEEE 123-bus distribution
system

2.5 Summary

In this chapter, a novel TE based energy trading framework is proposed that integrates

Nash bargaining based bilateral energy trading and optimal power flow technique.

By leveraging the Pareto e�ciency of the Nash bargaining solution, the original

transactive energy trading problem is transformed into an equivalent two-stage

problem. To preserve the privacy and autonomy of individual agents, an advanced

ADMM based distributed algorithm is developed for solving the problem. Moreover,

the closed form formulas are derived for the update of the variables in order to

substantially improve the computational e�ciency. Case studies on IEEE 37-bus and

123-bus distribution feeders demonstrate the e�ectiveness of the proposed framework

and the e�ciency of the proposed algorithm.





Chapter 3

Distributed Online Voltage

Control in Active Distribution

Networks

3.1 Introduction

In 2016, the total installed solar photovoltaic (PV) capacity has increased by 97%,

driven by the increasing environment concerns, falling manufacturing costs and

attractive government incentives [58]. However, the proliferation of PV generations

poses significant challenges to the operations of power systems, especially for the

low-voltage distribution networks (DNs). In particular, the fast varying solar energy

could result in unexpected voltage violations, at a time scale that is not consistent

with conventional voltage control using on-load tap changers, step voltage regulators

and shunt capacitors [59]. In this regard, PV systems can play an important role to

provide voltage support in DNs [17]. Therefore, it is necessary to develop an online

control scheme for dispersed PV systems to address the rapid voltage fluctuations.

Di�erent voltgage control strategies using distributed generators (DGs) have been

proposed, which can be classified into three categories, i.e. centralized strategy (e.g.,

[17, 60]), decentralized strategy (e.g. [61, 62]), and distributed strategy (e.g. [32, 63,

31]). Under centralized voltage control, multiple DGs are dispatched centralizedly



38 Distributed Online Voltage Control in Active Distribution Networks

by DN operator. Centralized control is e�ective for relatively long term operations

(e.g. hourly), but it is hard to deal with real-time operation due to its complex

communication and control schemes [64]. Furthermore, it is not robust since it fails

to work when a single point failure takes place [63].

Under decentralized voltage control, DGs are locally managed by their own

controllers instead of a central one. Generally, decentralized control includes local

control and distributed control. Here it particularly refers to the former. Decen-

tralized control, e.g., droop control, only relies on local measurements without any

communication. Thus, it has much lower computational complexity compared with

centralized voltage control. However, it often results in suboptimality due to the

lack of coordination [64].

Under distributed control, DGs cooperate with each other to achieve a global goal

predetermined by system operator or DG owners, and only communication between

neighboring DGs is required [64]. A research summary on distributed voltage control

for DNs can be found in [64]. Therein, dual-decomposition techniques, e.g., dual-

ascent method and alternating direction method of multipliers (ADMM), are mostly

used to develop distributed algorithms. For example, dual ascent method is employed

in [49] to decompose a semi-definite programming (SDP) relaxed optimal power flow

(OPF) problem into subproblems such that it can be solved in a distributed manner.

In [31], an OPF problem that optimizes the active and reactive power set-points

of PV inverters is decomposed based on ADMM and SDP relaxation. ADMM is

also combined with second-order cone programming (SOCP) relaxation, to develop

distributed algorithms for voltage control problem in [32, 63]. In [65], an ADMM

consensus based distributed algorithm for reactive power optimization problem is

compared with a dual-ascent based distributed algorithm, but it ignores voltage

constraints. The general framework of such kind of distributed voltage control for

DGs is illustrated in Fig. 3.1. It shows that multiple SDP/SOCP subproblems have

to be solved iteratively before applying the final converged solution to DGs in voltage

control. Consequently, the response speed of DGs cannot catch up with the fast

variations of system condition, which thwarts an online application.
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Apart from duality-based methods, approaches like gradient/subgradient method

[66] and heuristic algorithms [67] have been applied to derive distributed control

schemes as well. For example, a gradient based distributed algorithm is proposed in

[66] to minimize the voltage deviations in a microgrid with a consensus on reactive

power utilization. In [59], a local reactive power control framework is developed

to minimize the weighted voltage mismatch based on gradient-projection method.

However, these strategies will inevitably encounter some problems when the reactive

power capacities of inverters are insu�cient, especially during peak irradiance period.

In such case, PV active power has to be curtailed to ensure the nodal voltages within

the acceptable ranges.

In this chapter, an e�cient distributed online voltage control algorithm is proposed

using dual ascent method. PV curtailment is taken into account to overcome the

aforementioned inadequacy of reactive power capacity. The objective is to maintain

the voltages within the acceptable ranges and meanwhile to minimize the total loss

consisting of network loss and PV curtailment. In the proposed algorithm, the

active and reactive power (P-Q) set-points of multiple PV systems can be updated

in a distributed manner based on local voltage measurements and communications

between neighboring PV systems. Moreover, the proposed distributed voltage control

algorithm can be implemented online. That is, each update obtained by the proposed

algorithm can be applied directly into voltage control, as shown in Fig. 3.2. Therefore,

the response speed is faster than conventional distributed algorithms, where the

voltage control cannot be implemented before algorithms converge.

Solve SDP/
SOCP 

subproblems

Communicate 
with neighbors

Iteration 1 Iteration 2
Iteration n 

 (converged)
Commands

DG i

...

...
Solve SDP/

SOCP 
subproblems

Communicate 
with neighbors

Solve SDP/
SOCP 

subproblems

Fig. 3.1 General distributed voltage control framework

The nomenclature of symbols used in this chapter is given as follows,
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variables
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variables

Commands
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Fig. 3.2 Our proposed distributed online voltage control framework

Indices and Set

E Line set
N Bus set
k Iteration index

Parameters

p
l
i Active power demand at bus i

p
m
i Maximum available active power for PV system i

q
l
i Reactive power demand at bus i

q
i
/qi Lower/Upper bound of reactive power output of PV system i

rij Resistance of the line connecting bus i and bus j

xij Reactance of the line connecting bus i and bus j

Si Rated apparent power of PV system i

V0 Nominal voltage magnitude
V i/V i Lower/Upper bound of voltage magnitude at node i

–i/–i Step size for updating µi/µi

—i/—i Step size for updating ‹i/‹i

“i/“i Step size for updating Êi/Êi

Variables

pj Active power injection at bus j

p
s
i Active power output of PV system i

qj Reactive power injection at bus j

q
s
i Reactive power output of PV system i
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Pij Active flow on the line from bus i to bus j

Qij Reactive flow on the line from bus i to bus j

Vi Voltage magnitude at bus i

µi/µi Dual variables associated with voltage constraints
‹i/‹i Dual variables associated with PV active power output
Êi/Êi Dual variables associated with PV reactive power output

3.2 System Model and Preliminaries

3.2.1 System Model

Consider a radial DN with N+1 buses and N lines represented by a directed graph

G = (N , E), where N := {0, 1, . . . , N} represents the bus set and E := (i, j) µ

N ◊ N represents the line set. Let A0 of size N ◊ (N + 1) denote the incidence

matrix of G, whose entries are defined as

A
0
ij =

Y
_____]

_____[

1 line i leaves bus j

≠1 line i enters bus j

0 otherwise

Since G is a connected tree, the rank of A0 equals to N [68]. Let a0 denote the first

column of A0 that corresponds to the substation bus 0 and A be the rest of A0, i.e.

A0 = [a0 A]. Note that A is a full-rank square matrix and thus invertible.

3.2.2 Branch Flow Model

For radial DNs, branch flow model is well established to represent the power flow

equations [51] as (3.1a)-(3.1c)

Pij ≠
ÿ

k:jæk

Pjk = ≠pj + rij

P
2
ij + Q

2
ij

V
2

i

’j œ N /0 (3.1a)

Qij ≠
ÿ

k:jæk

Qjk = ≠qj + xij

P
2
ij + Q

2
ij

V
2

i

’j œ N /0 (3.1b)

V
2

i ≠ V
2

j = 2 (rijPij + xijQij) ≠
1
r

2
ij + x

2
ij

2 P
2
ij + Q

2
ij

V
2

i

’(i, j) œ E (3.1c)
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Unfortunately, (3.1a)-(3.1c) are non-convex. Thus, linearized branch flow model

( LinDistFlow) will be adopted by neglecting the high order terms and assuming

a relatively flat voltage profile, i.e. Vi ¥ 1, ’i. It has been widely applied in DN

optimization problems (e.g.,[69, 60, 65]) and is given by

Pij ≠
ÿ

k:jæk

Pjk = ≠pj ’j œ N /0 (3.2a)

Qij ≠
ÿ

k:jæk

Qjk = ≠qj ’j œ N /0 (3.2b)

Vi ≠ Vj = rijPij + xijQij ’(i, j) œ E (3.2c)

3.2.3 PV Inverter Dispatch Strategy

Advance control strategies, e.g., optimal inverter dispatch [17], enable PV inverters

to adjust both active and reactive power in order to provide voltage support. Let p
m
i

denote the maximum available active power for PV system i. The operating region

of P-Q set-points can be represented by

0 Æ p
s
i Æ p

m
i (3.3a)

|qs
i | Æ

Ò
S

2
i ≠ (ps

i )
2 (3.3b)

In order to decouple the correlation between active and reactive power, (3.3b) is

linearized by imposing restricted limits on q
s
i as (3.4).

q
i

Æ q
s
i Æ qi (3.4)

where qi =
Ò

S
2
i ≠ (pm

i )2 and q
i

= ≠qi.
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3.3 Problem Formulation

3.3.1 Objective Function

The primary objective of voltage control is to maintain the DN bus voltage magnitudes

within the acceptable ranges, while inappropriate control would lead to excessive

network loss and PV curtailment. PV curtailment is taken into account for two

reasons. First, the adjustment of active power itself can facilitate voltage control

directly. Second, it will enlarge the reactive power capacity. However, excessive

curtailment results in a waste of energy resources. Thus, PV curtailment cost should

be taken into account. In this chapter, the objective is to minimize the weighted total

loss consisting of network loss and PV curtailment cost and meanwhile to ensure the

nodal voltage magnitudes within the acceptable ranges.

The network loss is given by

Loss =
ÿ

’(i,j)œE
rij

P
2
ij + Q

2
ij

V
2

i

¥
ÿ

’(i,j)œE
rij

P
2
ij + Q

2
ij

V
2

0
(3.5)

where V0 is the voltage magnitude at the substation bus and is assumed to be 1 p.u.

without loss of generality; V
2

i is approximated by V
2

0 since Vi ¥ 1, ’i.

PV curtailment is evaluated by an exclusive quadratic function in order to reduce

communication complexity, which is given as

h (pc) = K · (pc)T Rpc (3.6)

where pc is the vector collecting all p
c
i and p

c
i is curtailment amount of PV system i;

R is a positive definite matrix with positive entries. K is an adjustable parameter.

A larger K results in less PV curtailment amount but lower e�ciency in eliminating

overvoltage violations, vice versa. h (pc) could e�ectively quantify PV curtailment

amount since it is strictly convex and monotonically increasing with respect to pc.

Thus, the total loss is given as

F = Loss + h (pc) (3.7)
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3.3.2 Constraints

The constraints include power flow equations, voltage constraints and PV operation

constraints. The power flow equations are represented by LinDistFlow model as

(3.8)-(3.10).

(3.2a) ≠ (3.2c) (3.8)

pi = p
m
i ≠ p

c
i ≠ p

l
i ’i œ N /0 (3.9)

qi = q
s
i ≠ q

l
i ’i œ N /0 (3.10)

Note that the PV system located at bus i is denoted as PV system i so that the

indices of PV systems are identical with the indices of buses.

The bus voltage magnitudes should be maintained within the acceptable ranges

as

V i Æ Vi Æ V i ’i œ N /0 (3.11)

PV active power curtailment and reactive power set-point are constrained by

0 Æ p
c
i Æ p

m
i ’i œ N /0 (3.12)

q
i

Æ p
s
i Æ qi ’i œ N /0 (3.13)

3.3.3 Centralized Optimization Model

The centralized optimization model is given as

CEN1 min
pc

i ,qs
i

F = Loss + h (pc) (3.14a)

s.t. Pij ≠
ÿ

k:jæk

Pjk = ≠pj ’j œ N /0 (3.14b)

Qij ≠
ÿ

k:jæk

Qjk = ≠qj ’j œ N /0 (3.14c)

Vi ≠ Vj = rijPij + xijQij ’(i, j) œ E (3.14d)

pi = p
m
i ≠ p

c
i ≠ p

l
i ’i œ N /0 (3.14e)

qi = q
s
i ≠ q

l
i ’i œ N /0 (3.14f)
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V i Æ Vi Æ V i ’i œ N /0 (3.14g)

0 Æ p
c
i Æ p

m
i ’i œ N /0 (3.14h)

q
i

Æ p
s
i Æ qi ’i œ N /0 (3.14i)

CEN1 is a convex quadratic optimization problem with linear constraints. A dis-

tributed online algorithm will be developed in the next section to solve it. Towards

this end, it will be written in a compact matrix format for clarity. The corresponding

compact form for LinDistFlow model is given as

≠AT P = ≠p (3.15a)

≠AT Q = ≠q (3.15b)

a0 + AV = DrP + DxQ (3.15c)

p = pm ≠ pc ≠ pl (3.15d)

q = qs ≠ ql (3.15e)

where Dr and Dx are N ◊N diagonal matrices whose diagonal entries are constituted

by rij and xij, respectively. Solving P and Q and plugging them into (3.15c),

LinDistFlow model boils down to

V = Rp + Xq ≠ Vc (3.16)

where Vc := A≠1a0 , R := A≠1DrA≠T and R := A≠1DxA≠T . (3.16) reveals linear

relationship between nodal power injections and nodal voltage magnitudes. According

to Proposition 1 in [69], R and X are positive definite (PD) and their entries are

positive.

The network loss can be reformulated as

Loss =
ÿ

’(i,j)œE

51Ô
rijPij

22
+

1Ô
rijQij

226

= ÎD1/2
r PÎ2

2 + ÎD1/2
r QÎ2

2 = pT Rp + qT Rq
(3.17)
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The last equality follows from the substitution of P and Q. Note that the PV

curtailment evaluation in (3.6) shares a similar structure with the network loss in

(3.17). It will be demonstrated in the next section that such a modelling of PV

curtailment will facilitate the reduction of communication complexity.

By plugging (3.15d) and (3.15e) into (3.16) and (3.17), and dividing the objective

function by 2, the compact format of CEN1 is obtained as follows.

min
pc,qs

1
2

C 1
pm ≠ pc ≠ pl

2T
R

1
pm ≠ pc ≠ pl

2

+
1
qs ≠ ql

2T
R

1
qs ≠ ql

2 D

+ K

2 (pc)T Rpc (3.18a)

s.t. V = R
1
pm ≠ pc ≠ pl

2
+ X

1
qs ≠ ql

2
≠ Vc (3.18b)

V Æ V Æ V (3.18c)

0 Æ pc Æ pm (3.18d)

q Æ qs Æ q (3.18e)

3.4 Distributed Online Voltage Control

3.4.1 Distributed Online Algorithm

In this subsection, a distributed online algorithm is developed using dual ascent

method. In particular, a closed-form solution is derived for PV systems to locally

update P-Q set-points and Lagrangian multipliers.

Dual Ascent Method

In dual ascent method [53], the dual problem is solved using gradient projection

algorithm and the primal optimal solution is recovered from the dual optimal solution.

Define the dual problem as D(y) = minx L(x, y), where L(x, y) is the Lagrangian

function. The iterations of Lagrangian multipliers y and primal variables x are given

as (3.19) and (3.20), respectively.

yk+1 =
Ë
yk + –

kÒD
1
yk

2ÈY
(3.19)
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xk+1 = arg minx L(x, yk+1) (3.20)

where ÒD
1
yk

2
is the gradient of the dual problem at yk, –

k is the step size at k-th

iteration, Y is the feasible set of y, and [·]Y denotes the projection operator onto the

set Y .

Update Rules for Lagrangian Multipliers

The Lagrangian function of CEN1 is given as,

L =K + 1
2 (pc)T Rpc ≠ (pm ≠ pl)T Rpc + 1

2 (qs)T Rqs + (ql)T Rqs

+ µT (V + Rpc ≠ Xqs ≠ Vr) + µT
1
≠V ≠ Rpc + Xqs + Vr

2

+ ‹T (0 ≠ pc) + ‹T (pc ≠ pm) + ÊT (q ≠ qs) + ÊT (qs ≠ q)

(3.21)

where µ, µ, ‹, ‹, Ê and Ê are Lagrangian multipliers associated with (3.18c),

(3.18d) and (3.18e), respectively; and Vr := R(pm ≠ pl) ≠ Xql ≠ Vc.

The Lagrangian multipliers are locally updated based on gradient projection

method for each PV system [70], given as

µ
k+1
i

=
Ë
µ

k
i

+ –i(V i ≠ V
k

i )
È+

(3.22a)

µ
k+1
i =

Ë
µ

k
i + –i(V k

i ≠ V i)
È+

(3.22b)

‹
k+1
i =

Ë
‹

k
i + —

i
(0 ≠ p

c,k
i )

È+
(3.22c)

‹
k+1
i =

Ë
‹

k
i + —i(p

c,k
i ≠ p

m
i )

È+
(3.22d)

Ê
k+1
i =

Ë
Ê

k
i + “

i
(q

i
≠ q

s,k
i )

È+
(3.22e)

Ê
k+1
i =

Ë
Ê

k
i + “i(q

s,k
i ≠ qi)

È+
(3.22f)

where [·]+ denotes the projection operator onto the non-negative range.
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Update Rules for Primal Variables

Since L is a quadratic function of pc and qs, a closed-form solution at k-th iteration

can be obtained as

pc,k =
pm ≠ pl + µk ≠ µk ≠ R≠1(‹k ≠ ‹k)

K + 1 (3.23a)

qs,k =ql + R≠1X(µk ≠ µk) + R≠1(Êk ≠ Êk) (3.23b)

The optimization problem (3.20) boils down to trivial algebraic operations. How-

ever, the update of P-Q set-points for each PV system is coupled with all other PV

systems through the Lagrangian multipliers. As a result, the global communication

is necessary. Fortunately, using the following two propositions, the communication

complexity can be reduced substantially such that each PV system only need to

exchange multipliers with its neighbors.

Proposition 3 Denote H := R≠1 := AT D≠1
r A. H is a weighted Laplacian matrix

induced by the network incidence matrix A. For any pair of buses (i, j) that are not

directly connected, the corresponding entry is zero, i.e. (i, j) /œ E … Hij = 0.

Proof 3 Let

Ë
AT

È

i
denote the i-th row of AT

and [D≠1
r A]j denote the j-th column

of D≠1
r A. The entry on l-th row and j-th column of D≠1

r A is [D≠1
r A]lj = Alj/Dr,ll.

Thus, we have

Hij =
Ë
AT

È

i

Ë
D≠1

r A
Èj

=
Nÿ

l=1
Ali

Alj

Dr,ll

According to the definition of A, if bus i and bus j are not directly connected, AliAlj =

0, ’ l and thus Hij = 0. Q.E.D.

Proposition 4 Since the xij/rij ratios of the power lines for a distribution network

are relatively homogeneous for the practical cases [54], R≠1X can be approximated

by c multiple of the N dimensional identity matrix I, where c is an approximation of

xij/rij ratios, i.e. R≠1X = cI.

Proof 4 R≠1X = AT D≠1
r AA≠1DxA≠T = AT D≠1

r DxA≠T
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Since Dr and Dx are diagonal matrices constituted by rij and xij, D≠1
r Dx is

a diagonal matrix with l-th diagonal entry being xij/rij = c. Therefore, R≠1X =

AT
cIA≠T = cI Q.E.D.

Applying (3.23) to a particular PV system i, the update of power set-points can
be obtained as

p
c,k
i =

p
m
i ≠ p

l
i + µ

k
i ≠ µ

k
i

+ Hii(‹k
i ≠ ‹

k
i ) + q

jœNi

Hij(‹k
j ≠ ‹

k
j )

K + 1 (3.24a)

q
s,k
i = q

l
i + c(µk

i
≠ µ

k
i ) + Hii(Êk

i ≠ Ê
k
i ) +

ÿ

jœNi

Hij(Êk
j ≠ Ê

k
j ) (3.24b)

where Ni denotes the set of neighbors of PV system i. Now the update for each PV

system is only coupled with its neighbors.

Since constraints (3.18d) and (3.18e) are relaxed, the primal variables obtained

from (3.24a) and (3.24b) may be infeasible. In case of infeasibility, they will be

projected onto the feasible ranges as

p
c,k,a
i =

Ë
p

c,k
i

Èpm
i

0
(3.25a)

q
s,k,a
i =

Ë
q

s,k
i

Èqk
i

qk
i

(3.25b)

where [·]ba denotes the projection operator onto the range [a, b]; q
k
i and q

k
i

are iteratively

renewed as q
k
i =

Ò
S

2
i ≠ (pm

i ≠ p
c,k,a
i )2 and q

k
i

= ≠q
k
i . Compared with the fixed limits

in (3.18e), q
k
i and q

k
i

enlarge the reactive power capacity and thereby improving the

system performance as will be shown in Section V.

Implementation of the Distributed Algorithm

Fig. 3.3 shows the online implementation of the proposed distributed algorithm.

Each bus is equipped with a PV system that could monitor the local bus voltage

magnitude and communicate with its neighboring PV systems.

The overall procedure of the algorithm is given as follows.

Step 1: Initialize multipliers and primal variables.

Step 2: Monitor the local bus voltage magnitude Vi.
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Update multipliers 

Monitor voltage magnitude at 
bus i

 Update P-Q set-points 

Neighboring PV systems

PV i

Apply P-Q set-points to PV 
inverter

Fig. 3.3 Online implementation of the proposed distributed algorithm, where the
green arrows represent the information exchange

Step 3: Update multipliers according to (3.22a)-(3.22f) and exchange multipliers

with neighboring PV systems.

Step 4: Update active power curtailment and reactive power set-point according

to (3.24a) and (3.24b). Project them onto the feasible ranges as (3.25a) and (3.25b),

and apply them to PV inverters.

Step 5: Return to step 2 until the stopping criterion is met.

In this chapter, the voltage stopping criterion is adopted since the optimal solution

is directly related to the bus voltages. If the voltage di�erence of two successive

iterations is smaller than the tolerance ‘, i.e. |V k
i ≠ V

k≠1
i | < ‘, then the update will

stop.

The update at each iteration is applied. Fig. 3.4 shows the block diagram of the

control scheme for individual PV system at each iteration, which consists of three

feedback control loops, i.e. voltage control loop, PV curtailment control loop and PV

reactive power control loop. The feedback control is realized through the constant

interactions between primal variables and Lagrangian multipliers. For instance,

µi > 0 indicates overvoltage violation at bus i, and it will drive the increase of p
c
i and
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Σ 
+
+

Σ 

PV curtailment feedback 
according to (3.22c) and (3.22d)

++

Σ 
+

+
Σ 

PV reactive power feedback 
according to (3.22e) and (3.22f)

+

+

Power flowVoltage feedback according 
to (3.22a) and (3.22b)

+

+

Fig. 3.4 Block diagram of the control scheme for PV system i at each iteration

the decrease of q
s
i , which in turn contributes to the mitigation of overvoltage violation

and the decline of µi. The inputs q
jœNi

Hij(‹j ≠‹j) and q
jœNi

Hij(Êj ≠Êj) represent

the influences exerted by the neighbors. Specifically, the multipliers received from

the neighbors reveal the inadequacy of active power curtailment and reactive power

capacity of the neighbors. By multiplying them with Hij, PV system i will react

accordingly to mitigate the inadequacy.

3.4.2 Convergence Analysis

CEN1 is a strongly convex quadratic problem with linear inequality constraints and

can be generalized as

minx
1
2xT Qx + cT x (3.26a)

s.t. Bx Æ b (3.26b)
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where x is the vector of decision variables collecting pc and qs. Q and B are

coe�cient matrices, c and b are coe�cient vectors. The strong convexity of (3.26)

implies Q is PD and invertible. The associated dual problem is given by

max
yØ0

g(y) = ≠1
2yT BQ≠1BT y ≠ (BQ≠1c + b)T y ≠ 1

2cT Q≠1c (3.27)

where y is the vector of dual variables collecting µ, µ, ‹, ‹, Ê and Ê. Then the

update rules of dual and primal variables are given as

yk+1 =
Ë
yk + D(Bxk ≠ b)

È+
(3.28)

xk+1 = ≠ Q≠1c ≠ Q≠1BT yk+1 (3.29)

where D is a diagonal matrix whose diagonal entries are constituted by the step

sizes.

Theorem 2 Considering the update rules of (3.28) and (3.29), the trajectories of

xk
and yk

asymptotically converge to the optimal solutions xú
and yú

, respectively,

if the largest eigenvalue of PD matrix D 1
2 BQBT D 1

2 is smaller than 2

Proof 5 Since problem (3.26) is a strictly convex-quadratic problem with linear

constraints, the Slater’s condition [71] holds and thus there is no duality gap between

(3.26) and (3.27). Therefore, given dual optimal solution yú
, the primal optimal

solution can be retrieved by minimizing L(x, yú). Plugging (3.29) into (3.28), we

obtain

yk+1 =
Ë
yk + D(≠BQ≠1BT yk ≠ BQ≠1c ≠ b)

È+

=
Ë
yk + DÒg(yk)

È+

Thus, the iteration of y is based on diagonally scaled gradient projection method.

To show yk
converges to the optimal solution yú

, it is equivalent to show (3.28) is a

contraction mapping regarding to the norm of the scaled error. Define ȳk = D≠ 1
2 yk



3.5 Numerical results 53

and ȳú = D≠ 1
2 yú

. We have

...ȳk+1 ≠ ȳú
...

=
....D≠ 1

2
Ë
yk + DÒg(yk)

È+
≠ D≠ 1

2
Ë
yú + DÒg(yú)

È+
....

Æ
...ȳk ≠ ȳú + D 1

2
1
Òg(yk) ≠ Òg(yú)

2...

=
...ȳk ≠ ȳú ≠ D 1

2 BQ≠1BT D 1
2

1
ȳk ≠ ȳú

2...

=
...
1
I ≠ D 1

2 BQ≠1BT D 1
2
2 1

ȳk ≠ ȳú
2...

Æ
...I ≠ D 1

2 BQ≠1BT D 1
2
...

...ȳk ≠ ȳú
...

The first equality holds since yú
is a stationary point. The first inequality holds since

the projection is non-expansive according to Proposition 1.1.4 in [70]. The second

equality holds by plugging in the gradient of dual function g.

Denote W := D 1
2 BQBT D 1

2 . By definition, the Euclidean norm of I ≠ W equals

to the largest singular value fl of I ≠ W. Thus, fl = max
k

|1 ≠ ⁄
k|, where ⁄

k
is k-th

eigenvalue of W. Since W is positive definite, fl < 1 if ⁄
max

< 2, where ⁄
max

is largest

eigenvalue of W. Therefore, (3.28) is a contraction mapping and yk
converges to dual

optimal solution yú
. Then xk

converges to the primal optimal solution xú
with xú =

≠Q≠1c ≠ Q≠1BT yú
. Q.E.D.

3.5 Numerical results

In this section, case studies on the modified IEEE 37-bus and 123-bus distribution

systems are carried out to demonstrate the e�ectiveness of the proposed distributed

online algorithm (DIS). Both static and dynamic cases for system loading and PV

generation are tested. The performance of DIS is compared with two centralized

strategies (CEN1 and CEN2) and a decentralized Q-V droop control scheme (Droop),

where CEN2 is to minimize the total loss based on SOCP relaxed branch flow model

and is regarded as a benchmark. In addition, the robustness of DIS against commu-

nication failure is validated. Note that the actual bus voltage magnitudes obtained

from local voltage measurements are used for updating Lagrangian multipliers and
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hence the approximation error can be avoided. The acceptable range for bus voltage

magnitudes is set as [0.95, 1.05] p.u.. All tests are implemented using MATLAB on

a personal computer with an Intel Core i5 of 2.4GHz and 12GB memory.

3.5.1 IEEE 37-Bus Distribution System

The system data can be found in [54]. The xij/rij ratios are relatively homogeneous,

ranging from 0.37 to 0.67. Suppose each bus except the substation bus is equipped

with a PV system with 150 kW peak capacity and 1.05◊150 kVA rated apparent

power. To speed up the convergence, the step sizes are diagonally scaled. Specifically,

—
i
, —i, “

i
and “i are chosen as 0.5/Hii, where Hii is i-th diagonal entry of matrix H.

–i and –i are chosen adaptively in order to quickly eliminate voltage violations. If

voltage violation occurs, a big step size will be applied, e.g., 150. Otherwise, a normal

step size will be applied, e.g., 30. The stopping criterion is given by |V k
i ≠ V

k≠1
i | < ‘,

where the tolerance ‘ is set as 1.0 ◊ 10≠4.

Static Cases

Two representative cases corresponding to high negative net load and positive net

load will be considered, as the former leads to overvoltage issues and the latter leads

to undervoltage issues.

Case 1: high negative net load during the period of peak PV generation. Without

loss of generality, the load at that moment is assumed to be 50% of the peak load.

Case 2: high positive net load during the period of peak load. Since the peak

load often occurs at night, PV generation is not available at that moment.

Fig. 3.5 and 3.6 show the convergence of the total loss for cases 1 and 2, where the

stopping criterion |V k
i ≠ V

k≠1
i | < ‘ is not invoked. It is observed that the total loss of

case 1 is much higher than that of case 2. Besides, the convergence of case 2 is much

faster than that of case 1. This is because during the peak PV period the reactive

power capacities of PV systems are inadequate to alleviate overvoltage violations

alone. Therefore, PV active power curtailment is required, which results in a higher

total loss and slower convergence rate. Fig. 3.7 and 3.8 depict the convergence of
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Fig. 3.5 Convergence of the total loss for case 1
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Fig. 3.6 Convergence of the total loss for case 2

the bus voltage magnitudes for cases 1 and 2 when the voltage stopping criterion is

invoked. Each curve denotes the variation of voltage magnitude on one bus. Prior to

the iterations, severe overvoltage and undervoltage violations are observed for cases

1 and 2, respectively. However, all violations are eliminated with only one iteration

for both cases and since then voltages on all buses are maintained within the limits,

which validates the high e�ciency of the proposed voltage control algorithm.

Tables 3.1 and 3.2 summarize the performance comparisons of four di�erent

approaches for cases 1 and 2, respectively, where P
cur and P

loss denote the PV
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Fig. 3.8 Convergence of the bus voltage magnitudes for case 2

Table 3.1 Performance Comparisons of Di�erent Methods for Case 1

Methods P
cur/kW P

loss/kW Total loss/kW Ratio
DIS 20.8 296.8 317.6 1.006

CEN1 154.8 273.5 428.3 1.348
CEN2 25.1 290.5 315.6 1
Droop ≠ ≠ ≠ ≠

curtailment and the network loss, respectively. Since droop strategy and CEN2 result

in voltage violations in cases 1 and 2, respectively, the corresponding results are



3.5 Numerical results 57

Table 3.2 Performance Comparisons of Di�erent Methods for Case 2

Methods P
cur/kW P

loss/kW Total loss/kW Ratio
DIS 0 89.4 89.4 1.001

CEN1 ≠ ≠ ≠ ≠
CEN2 0 89.3 89.3 1
Droop 0 246.1 246.1 2.753

Note: oscillation is observed in Droop
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Fig. 3.9 Voltage profiles under di�erent methods for case 1
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Fig. 3.10 Voltage profiles under di�erent methods for case 2



58 Distributed Online Voltage Control in Active Distribution Networks

not indicated in the tables. For each method, the total loss is compared with the

benchmark result, i.e. the total loss under CEN2, and the ratios to the benchmark

result are exhibited in the tables. The corresponding voltage profiles are plotted in

Fig. 3.9 and Fig. 3.10, where the voltage profiles under DIS are almost overlapped

with the voltage profiles under CEN2. This phenomenon results from the equally

matched performance of DIS and CEN2, which can be observed from Tables 3.1 and

3.2 as well. It is interesting to notice that DIS achieves a better performance in

loss minimization and voltage control than CEN1, even though DIS is derived from

CEN1. One reason is that in CEN1 the reactive power capacity is fixed at a restricted

value, while it is iteratively renewed in DIS. Thus, DIS yields a lower total loss

than CEN1. Another reason is that in CEN1 the voltages are approximated using

LinDistFlow model. Therein, approximation error could result in voltage violations

as observed in Fig. 3.10. By contrast, in DIS the actual voltage values obtained

from local voltage measurements are used to update the multipliers and thereby

avoiding approximation error. Furthermore, since PV curtailment is necessary in

case 1, droop strategy fails to eliminate overvoltage violations as shown in Fig. 3.9.

In case 2, it leads to instability and a much higher total loss. Therefore, DIS achieves

a near-optimality of CEN2. In addition, it outperforms CEN1 and Droop in terms

of voltage control and loss minimization.
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Fig. 3.11 Daily load shape factors and PV shape factors
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Fig. 3.12 Daily maximum and minimum bus voltage magnitudes with and without
DIS control for IEEE 37-bus system
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Fig. 3.13 Daily total loss profile of CEN2 and the di�erence of total loss between
DIS and CEN2 for IEEE 37-bus system

Dynamic cases

The dynamic cases for system loading and solar energy are included to verify the

e�ectiveness of our proposed algorithm for online application. The instantaneous

maximum available PV active power and load are calculated by multiplying PV and

load shape factors with the peak PV capacity and the peak load, respectively. Fig.

3.11 plots the daily load and PV shape factors with one-minute resolution, where



60 Distributed Online Voltage Control in Active Distribution Networks

the load data and solar irradiance date are obtained from [72] and [56], respectively.

Since DIS only involves simple algebraic operations and the limited communication

among the neighboring PV systems, the time required to complete one iteration

cycle is very short, which is assumed to be 5 seconds [73]. Thus, the maximum

iteration number is set as 12 for each time interval. Fig. 3.12 depicts the daily

maximum and minimum bus voltage magnitudes with and without DIS control.

Severe overvoltage and undervoltage violations are observed without DIS control

during the peak PV period and the peak load period, respectively. As expected, all

violations are eliminated by DIS control, which verifies the e�ectiveness of DIS for

online voltage control. Fig. 3.13 shows the di�erence of total loss between DIS and

CEN2 as well as the total loss under CEN2. The di�erence is relatively small and is

negligible for most periods. Therefore, DIS achieves a near-optimality of CEN2 even

for the dynamic cases.

3.5.2 IEEE 123-bus Distribution System
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Fig. 3.14 IEEE 123-bus distribution system with PV system location (indicated by
red numbers)

To verify the voltage control capability of DIS for large systems, the dynamic cases

on the modified IEEE 123-bus distribution system are carried out. Fig. 3.14 depicts
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Fig. 3.15 Daily maximum and minimum bus voltage magnitudes with and without
DIS control for IEEE 123-bus system
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Fig. 3.16 Daily total loss profile of CEN2 and the di�erence of total loss between
DIS and CEN2 for IEEE 123-bus system

the network topology of IEEE 123-bus distribution system, where the locations of

PV installations are indicated. The peak capacity of PV system is adjusted as 120

kW and the same load and PV shape factors are applied. Fig. 3.15 shows the daily

minimum and maximum bus voltage magnitudes with and without DIS control. As

observed, DIS is e�ective in alleviating overvoltage and undervoltage violations. The

comparison on total loss is exhibited in Fig. 3.16 which plots the di�erence of total
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Table 3.3 Comparisons of Robust Performance for 37-bus System

Probability fl
Case1 Case2

Loss/kW Iteration Loss/kW Iteration
0 378.4 6 89.4 7

0.1 381.9 9.8 89.4 8.6
0.2 383.8 10.1 89.4 9.5
0.3 386.0 10.5 89.4 10.2

Table 3.4 Comparisons of Robust Performance for 123-bus System

Probability fl
Case1 Case2

Loss/kW Iteration Loss/kW Iteration
0 568.1 13 131.3 6

0.1 568.3 14 131.3 13.6
0.2 568.5 15 131.3 15.6
0.3 568.7 15.8 131.3 16.2

loss and the total loss under CEN2. For all periods, the di�erence is negligible,

which means the total losses under DIS and CEN2 are almost the same. Thus, DIS

could track the near-optimality of CEN2 under the dynamic variations of system

conditions.

3.5.3 Robust Performance

Assume that the communication interruptions, e.g. packet drop, occur randomly

between PV systems with a probability of fl. In case of failure in receiving the

information from the neighbors for some PV systems, these PV systems would use

the information obtained from last iteration. Tables 3.3 and 3.4 list the average total

loss and iteration number for 500 simulations under di�erent probabilities for 37-bus

and 123-bus system when voltage stopping criterion is invoked. fl = 0 represents

intact communication and is the benchmark. Compare with the benchmark, the

communication interruptions have little influence on the total loss and slightly

increase the iteration number. Therefore, the proposed DIS algorithm is robust

against communication failures.
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3.6 Summary

In this chapter, a distributed online voltage control algorithm is proposed for multiple

PV systems in DNs using dual ascent method. In the proposed algorithm, the voltage

control can be implemented immediately. In addition, a close-form solution is derived

for PV systems to locally update their active and reactive power set-points based

on local voltage measurements and information exchange between neighboring PV

systems. The convergence is established analytically and the optimality is guaranteed.

The numerical results show the voltage violations can be eliminated with only one

iteration and the total loss converges to the near-optimality of a benchmark centralized

optimization problem. The robustness against communication interruptions is also

validated.





Chapter 4

MPC based Ramp Minimization

in Active Distribution Network

Using ESSs

4.1 Introduction

The distribution networks (DNs) are undergoing a transition from traditional passive

networks to active networks due to the growing integration of distributed energy

resources (DERs), the infusion of smart metering and automation infrastructures as

well as the emergence of advanced information and communication technologies (ICT)

[74]. The active distribution network (ADN) is featured with the capability to actively

control and manage the multiple distributed generations (DGs) and other network

facilities based on real-time measurements [75]. To this end, a non-profit distribution

system operator (DSO) is required to fulfil the reliable and secure operation of the

DN like an ISO in transmission network [76]. While the transition of DNs may benefit

the society, economy and environment, it also causes troubles to the system operation

and control especially when the penetration of renewable DGs, e.g. distributed wind

turbines and rooftop PV installations, is high. One of biggest challenges arises from

the scarcity of flexible ramping products to tackle the significant variation of net load

and thus resulting in the reduction of operational reliability [77]. Since the ramping
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e�ect in the DNs will be translated into the transmission network and aggravate

the shortage of ramping capability, it is necessary for DSOs to address the ramping

problem locally with local flexible resources, e.g. energy storage systems.

Net load, defined as the di�erence between the actual load and the renewable

generation, has been widely used to investigate the impact of renewable energy

sources (RESs) integration. Over the years, the California Independent System

Operator (CAISO) has observed a sharp decline during the sunrise and a steep rise

during the sunset of the daily net load curve, which is known the “duck curve” [34].

As a result, the duck curve of net load imposes a hard ramp-down and ramp-up

requirement on power systems. In order to address this issue, several approaches

have been proposed. For instance, ref. [78] proposes a ramp limitation oriented

control strategy for large scale PV power plants considering the PV curtailment.

Though it is e�ective in controlling the PV ramp, it also leads to the reduction

of economic and environmental benefit of RES. Another method is to design new

products called flexible ramping products (FRPs) and procure them from the market,

which has been extensively studied before recent implementation by CAISO and

Midcontinent ISO (MISO) [79]. Ref. [77] evaluates the influence of FRPs on the

optimal economic dispatch and shows that FRPs can reduce dispatch cost. Ref. [35]

presents a comprehensive review on the modelling and utilization of FRPs. Ref. [80]

focuses on the FRP requirement design and demonstrates that FRPs can e�ectively

handle the great variation of net load. To sum up, much e�ort has been made to

alleviate the ramping e�ect in transmission networks. Nevertheless, few works have

studied the ramping problem in DNs even though it can aggravate the shortage of

ramping capacity in transmission networks.

Energy storage system (ESS) is believed to be an e�ective option to accommodate

the high penetration of RES. It has gained overwhelming popularity around the world

because of its considerable benefits, e.g. deferring the upgrade of generation and

network, reducing operating cost and RES curtailment, enhancing system operational

flexibility, achieving low-carbon objective, etc. In 2015, the installed capacity of ESSs

in U.S. is increased by 243% and is expected to reach 1.5 GW by 2020 [81]. ESS can
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be classified into utility-scale ESS installed in transmission system and distributed

ESS located in DNs and microgrids (MGs). Both types of ESS can provide various

services to the power system. In [82], the large-scale ESSs are employed to relieve

transmission congestion. In [83], a mobile ESS is used to shift the renewable energy

power to peak load periods. In [84], the authors investigate the battery ESSs on

providing voltage and frequency regulation in a microgrid. In [85], ESSs play an

important role in providing flexible ramping products to transmission network. In

[86], ESSs are utilized to enhance the system security by taking corrective action

after a contingency. In this chapter, the author endeavours to minimize ramping

e�ect in DNs using distributed ESSs.

To deal with the uncertainties of load demand and renewable energy output,

several methods have been proposed, e.g. deterministic optimization [87], stochastic

programming [88], robust optimization [89] and model predictive control (MPC)

[90]. However, MPC is recognized to be more suitable for short-term operation

problem due to its underlying rolling process and e�ectiveness in dealing with both

current and future information. Thus, MPC will be used to carry out the proposed

ramp-minimization oriented dispatch model in this chapter. The key idea of MPC is

to solve a finite horizon optimization problem in a receding horizon manner and each

time only apply the optimal solution of the current time slot to the system. Up to

now, MPC has been widely applied in power systems, such as appliance scheduling of

a residential building [90], energy management of isolated microgrids [91], real-time

power system protection [92].

In ADNs, the power flow no longer unidirectionally moves from the substation

to the end-use customers. In order to e�ectively model bidirectional power flow in

ADNs, Baran and Wu proposed a branch flow model in [93], [94]. However, the

original branch flow model is nonconvex, which poses challenge in finding a global

optimal solution. In this regard, a convexified branch flow model was derived by

Farivar and Low in [51] based on the second-order cone (SOC) relaxation and has

been widely used since then. For example, ref. [14] applied the SOC relaxed branch

flow model to the renewable DG planning problem in ADNs. To guarantee the global
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optimality, the SOC relaxed branch flow model is also used in the proposed ramp

minimization problem.

This chapter proposes a novel MPC based dispatch model for ramp minimization

in ADNs using distributed ESSs. The fast responding ESSs are employed to o�set

the ramp-up and ramp-down e�ect caused by the diurnal generation pattern of PV

systems. MPC is used to carry out the proposed dispatch model, which incorporates

both current information and newly updated forecast information. Consequently,

ESSs can be appropriately scheduled to avoid latent over-charging or over-discharging

during some periods. Numerical results demonstrate that the proposed model and

approach can bring about significant reduction of ramping e�ect and line losses,

i.e. more than 80% reduction of maximum ramp and roughly 50% reduction of line

losses.

The nomenclature of symbols used in this chapter is given as follows,

Indices and Set

i/E Index and set of distribution lines
i/N Index and set of distribution buses
k/N g Index and set of PV systems
m/N s Index and set of ESSs
t/T Index and set of time slots
Ê Index of uncertainty scenarios

Parameters

b
g
ik Binary indicator, b

g
ik = 1 if k-th PV system is located at bus i, b

g
ik = 0

otherwise
b

s
im Binary indicator, b

s
im = 1 if m-th ESS is located at bus i, b

s
im = 0

otherwise
I

max
i Line current capacity of the line i

p
c,max
m Maximum charging power of ESS m

p
d,max
m Maximum discharging power of ESS m

p
g
k,t Active power output of PV system k in time slot t

p
g,Ê
k,· Active power output of PV system k in time slot · for scenario Ê
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p
l
i,t Active power demand at bus i in time slot t

p
l,Ê
i,· Active power demand at bus i in time slot · for scenario Ê

q
l
i,t Reactive power demand at bus i in time slot t

q
l,Ê
i,· Reactive power demand at bus i in time slot · for scenario Ê

ri Resistance of the line i

S
min
m Minimum allowed energy level of ESS m

S
max
m Maximum allowed energy level of ESS m

V
min

i Lower bound of voltage magnitude at bus i

V
max

i Upper bound of voltage magnitude at bus i

xi Reactance of the line i

÷
c
m Charging e�ciency of ESS m

÷
d
m Discharging e�ciency of ESS m

fiÊ Probability of scenario Ê

◊1, ◊2, ◊3 Weighting factors
�t Length of one time slot

Variables

li,t Squared line current magnitude of line i in time slot t

l
Ê
i,· Squared line current magnitude of line i in time slot · for scenario Ê

p0,t Active power injection into the transmission grid in time slot t

p
Ê
0,· Active power injection into the transmission grid in time slot · for

scenario Ê

pi,t Active power injection at bus i in time slot t

p
c
m,t Charging power of ESS m in time slot t

p
c,Ê
m,· Charging power of ESS m in time slot · for scenario Ê

p
d
m,t Discharging power of ESS m in time slot t

p
d,Ê
m,· Discharging power of ESS m in time slot · for scenario Ê

Pj,t Active flow on the line j in time slot t

P
Ê
j,· Active flow on the line j in time slot · for scenario Ê

q0,t Reactive power injection into the transmission grid in time slot t
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q
Ê
0,· Reactive power injection into the transmission grid in time slot · for

scenario Ê

qi,t Reactive power injection at bus i in time slot t

Qj,t Reactive flow on the line j in time slot t

Q
Ê
j,· Reactive flow on the line j in time slot · for scenario Ê

Sm,t Energy level of ESS m at the end of time slot t

S
Ê
m,· Energy level of ESS m at the end of time slot · for scenario Ê

vi,t Squared voltage magnitude at bus i in time slot t

v
Ê
i,· Squared voltage magnitude at bus i in time slot · for scenario Ê

4.2 System Model and Problem Formulation

4.2.1 Branch Flow Model in Distribution Networks

Main Grid

2
C2PV system

1

P2+jQ2

V2

0

54 3 67

8 9 10

11
1213

Fig. 4.1 A typical distribution network topology
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Consider a distribution network, which is typically radial as shown in Fig. 4.1.

Let G := (N , E) denote the topology of the DN, where N := {0, 1, ..., N} represents

the set of buses and E represents the set of directed lines. Note that each bus i

except the substation bus (indexed by 0) has a unique ancestor bus, denoted by Ai,

and a set of child buses, denoted by Ci. For instance, bus 2 has a unique ancestor

which is bus 1 and several child buses including bus 3, 4 and 5, i.e. A2 = 1 and

C2 = {3, 4, 5}. Moreover, the direction of each line is assume to be from a bus i to

its ancestor bus Ai as illustrated in Fig. 4.1. Thus, the line from bus i to its ancestor

bus Ai can be uniquely labeled as i so that the line index is consistent with the bus

index. Then, the line set can be expressed as E := {1, ..., N}. In a radial distribution

network, branch flow model (BFM) has been widely used to model the power flow

equations [51], as shown below.

ÿ

jœC0

(Pj,t ≠ rjlj,t) + p0,t = 0 (4.1a)

ÿ

jœCi

(Pj,t ≠ rjlj,t) + pi,t = Pi,t ’i œ N \0 (4.1b)

ÿ

jœC0

(Qj,t ≠ xjlj,t) + q0,t = 0 (4.1c)

ÿ

jœCi

(Qj,t ≠ xjlj,t) + qi,t = Qi,t ’i œ N \0 (4.1d)

vi,t ≠ vAi,t = 2(riPi,t + xiQi,t) ≠ (r2
i + x

2
i )li,t ’i œ E (4.1e)

li,t =
P

2
i,t + Q

2
i,t

vi,t
’i œ E (4.1f)

where (4.1a) and (4.1b) represent the active power balance equations at substation

bus and other buses, respectively; (4.1c) and (4.1d) represent the reactive power

balance equations at substation bus and other buses, respectively. (4.1e) describes

the voltage drop at each line and (4.1f) denotes the relationship between li,t and vi,t.

Note that (4.1f) is nonconvex, which makes it di�cult to find the global optimal

solution to the BFM based OPF problem. In order to convexify (4.1f), it is relaxed

into an inequality as (4.2) and then reformulated into a second-order cone (SOC)
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constraint as (4.3).

li,t Ø
P

2
i,t + Q

2
i,t

vi,t
’i œ E (4.2)

Î(2Pi,t, 2Qi,t, li,t ≠ vi,t)Î2 Æ li,t + vi,t ’i œ E (4.3)

It has been proved in [51] that the relaxation is exact as long as the network is

radial and the objective function of the OPF problem is strictly increasing in li. In

the proposed model, the equality in (4.2) also holds since the network loss is a strict

increasing function of li.

In an OPF problem, the voltage magnitude of each bus and current magnitude

of each line should be ensured not to exceed the bounds.

(V min
i )2 Æ vi,t Æ (V max

i )2 ’i œ N (4.4)

li,t Æ (Imax
i )2 ’i œ E (4.5)

4.2.2 Ramp-events and Ramp Index

 
Fig. 2. A typical daily net load curve with illustration of ramp-events Fig. 4.2 A typical daily net load curve with illustration of ramp-events

The growing integration of PV generation introduces significant variability to the

system net load. Specifically, the daily net load curve has been observed a sharp
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decline during the sunrise and a steep rise during the sunset as shown in Fig. 4.2.

As a result, more flexible resources, e.g. fast start generators, are required to provide

ramping support. In transmission level, the market mechanism has been established

to procure the flexible ramping products in several electricity markets, e.g. California

market and midcontinent market in U.S. However, few works have investigated the

ramp problem in distribution networks even though it will aggravate the inadequacy

of overall ramping capacity. Therefore, a novel dispatch model is proposed for the

ramp minimization in DNs so as to enhance the reliability and e�ciency of the entire

power system. To this end, the author first defines the ramp index in DNs for each

time slot t to quantify the ramping e�ect, as shown below.

IRt = |p0,t ≠ p0,t≠1| (4.6)

where p0,t represents net load of the entire distribution network in time slot t.

4.2.3 Energy Storage System Model

Over the past few years, great advances have been made in the battery storage

technologies, especially in the lithium-ion battery. As a result, the installation of

battery energy storages is experiencing a remarkable growth over the world. In

this chapter, the battery ESSs are utilized to mitigate the ramping e�ect through

charging during the ramp-down periods and discharging during the ramp-up periods.

Since the detailed battery ESS technologies are beyond the scope of this chapter, only

the general mathematical model of ESSs is presented. The charging and discharging

power at each time slot t should be maintained within the allowable ranges, as shown

below.

0 Æ p
c
m,t Æ p

c,max
m ’m œ N s

, ’t œ T (4.7)

0 Æ p
d
m,t Æ p

d,max
m ’m œ N s

, ’t œ T (4.8)
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The dynamics of ESSs between two consecutive time slots can be described as

Sm,t = Sm,t≠1 + (÷c
m · p

c
m,t ≠ 1/÷

d
m · p

d
m,t) · �t (4.9)

The amount of stored energy should not exceed the maximum allowed energy

level S
max
m or fall below the minimum allowed level S

min
m .

S
min
m Æ Sm,t Æ S

max
m ’m œ N s

, ’t œ T (4.10)

Frequent employment of ESS will shorten its life span. Therefore, the degradation

cost should be taken into account to avoid overuse of ESS. In the proposed model,

the degradation cost is modeled as a linear function of charging and discharging

power like [95].

C
d
m,t = c

d
m · (÷c

mp
c
m,t + p

d
m,t/÷

d
m) · �t (4.11)

where C
d
m,t is degradation cost of ESS m in time slot t and c

d
m is the unit degradation

cost.

4.2.4 Look-ahead Dispatch Model for Ramp Minimization

In this subsection, a look-ahead dispatch model is presented for distribution system

operators to minimize the ramping e�ect and meanwhile to ensure the system is under

a normal operating condition by leveraging the full potential of ESSs in providing

voltage support and ramping support. Besides the ramp index, network loss and

ESS degradation cost are also taken into account. Thus, the objective function is

the weighted sum of the three items. The problem formulation is written as below.

min ◊1 · IRt + ◊2 ·
ÿ

iœE
rili,t + ◊3

ÿ

mœN s

C
d
m,t (4.12a)

variables: p0,t, q0,t, p
d
m,t, p

c
m,t, Pj,t, Qj,t, lj,t, vi,t, Sm,t

s.t. p0,t = ≠
ÿ

jœC0

(Pj,t ≠ rjlj,t) (4.12b)
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ÿ

kœN g

b
g
ikp

g
k,t +

ÿ

mœN s

(bs
imp

d
m,t ≠ b

s
imp

c
m,t) ≠ p

l
i,t = Pi,t ≠

ÿ

jœCi

(Pj,t ≠ rjlj,t) ’j œ N \0

(4.12c)

q0,t = ≠
ÿ

jœC0

(Qj,t ≠ xjlj,t) (4.12d)

≠ q
l
i,t = Qi,t ≠

ÿ

jœCi

(Qj,t ≠ xjlj,t) ’i œ N \0 (4.12e)

vi,t ≠ vAi,t = 2(riPi,t + xiQi,t) ≠ (r2
i + x

2
i )li,t ’i œ E (4.12f)

Î(2Pi,t, 2Qi,t, li,t ≠ vi,t)Î2 Æ li,t + vi,t ’i œ E (4.12g)

v0,t = 1 (4.12h)

(V min
i )2 Æ vi,t Æ (V max

i )2 ’i œ N \0 (4.12i)

lj,t Æ (Imax
j )2 ’j œ E (4.12j)

0 Æ p
c
m,t Æ p

c,max
m ’m œ N s (4.12k)

0 Æ p
d
m,t Æ p

d,max
m ’m œ N s (4.12l)

Sm,t = Sm,t≠1 + (÷c
m · p

c
m,t ≠ 1/÷

d
m · p

d
m,t) · �t ’m œ N s (4.12m)

S
min
m Æ Sm,t Æ S

max
m ’m œ N s (4.12n)

where ◊1, ◊2 and ◊3 are weighting factors, the second term in the objective represents

the network loss; (4.12b) and (4.12c) are active power balance equations at substation

bus and other buses, respectively. (4.12d) and (4.12e) are reactive power balance

equations at substation bus and other buses, respectively. (4.12f) describes the

voltage drop on line i. (4.12g) is a second-order cone constraint relaxed from (4.1f).

(4.12h) denotes the voltage magnitude at the substation bus and (4.12i) are voltage

constraints at other buses. (4.12j) represents the distribution line capacity constraint.

(4.12k)-(4.12n) are constraints related to ESSs.
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4.3 Model Predictive Control based Dispatch Model

for Ramp Minimization

4.3.1 Model Predictive Control (MPC)

t t+1 t+2 t+3 t+4 t+5 t+6 ...tt tt++111 tt++222 tt++3333 tt++4444 tt++555 tt++6666 ...

t t+1 t+2 t+3

t+1 t+2 t+3 t+4

t+2 t+3 t+4 t+5

t+3 t+4 t+5 t+6

t+4 t+5 t+6 t+7

Fig. 4.3 Illustration of model predictive control with a horizon of 4 time slots

The MPC method is employed to carry out the proposed ramp-minimization

oriented dispatch model. The key idea of MPC is to solve a finite horizon optimization

problem in a receding horizon manner based on the latest updated information. Each

time only the optimization result of the current time slot will be applied. Fig. 4.3

illustrates the process of a model predictive control with a horizon of 4 time slots. In

order to implement the MPC method, the single-period look-ahead dispatch problem

(4.12) needs to be extended into a multi-period dispatch problem that covers the

operation of current time slot and the following N ≠ 1 time slots. Moreover, it is

assumed that at any time slot t, the actual load and PV information is known to the

DSO as assumed in problem (4.12). The detailed process to implement the MPC

based dispatch model is illustrated as below.

i) At time slot t, the DSO collects the load and PV information of the current

time slot and updates their forecast information for the following N ≠ 1 time

slots.
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ii) Based on the information obtained in step i), the DSO solves the multi-period

dispatch problem for ramp minimization and only applies the optimal solution

of the current time slot t to the ESSs.

iii) When the time moves forward to t + 1, the DSO executes exactly the same

procedure described in step i) and ii).

The major di�erence between the MPC based model and the single-period model

is that the former considers not only the current information but also some future

information. Consequently, the short-sightedness can be avoided. For instance, it

is likely that solving problem (4.12) leads to a situation where the energy stored in

ESSs is inadequate to mitigate the ramp-up e�ect of the next few time slots due to

the depletion of stored energy at current time slot. However, such situation can be

successfully ruled out using the MPC based dispatch model. Note that increasing

the horizon length may produce a more robust result against the uncertainties, but it

also leads to the decline of forecast accuracy and increase of optimization complexity.

Thus, there is trade-o� in selecting the length of the horizon. In this application, the

author considers a horizon of 4 time slots with the duration of each time slot being

1h.

4.3.2 Stochastic PV and Load Model

It is assumed that except the current time slot t, the future information of PV gen-

eration and load demand are random variables and unknown to the DSO. Therefore,

the DSO needs to predict the PV output and load value for the next N ≠ 1 time

slots. In this chapter, to obtain the forecasting scenarios of PV and load over the

next three time slots, the Gaussian copula approach [96] is employed. Firstly, the

marginal predictive distributions of PV and load are derived, respectively, based on

the historical information up to the forecast time. Subsequently, a set of multivariate

Gaussian random numbers is generated, in which the interdependence is modeled

by exponential covariance structure [96, 97]. Eventually, these Gaussian random

numbers are transformed into a set of temporal realizations (e.g. 1000) through all
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t t+1 t+2 t+3

ω=1 

ω=2 

ω=3 

ω=4 

ω=5

Fig. 4.4 A scenario tree with 5 scenarios over 4 time slots

predictive distributions of PV and load. Given a small number of trajectories are

more favored by the decision-makers, a Kantorovich distance (KD) based backward

reduction technique [98] is used to curtail the generated scenarios. Fig. 4.4 depict a

scenario tree with 5 scenarios over four time slots, where each trajectory represents

a scenario. Since the methodology of scenario generation and reduction is beyond

the scope of this chapter, the author will not go into detail of it.

4.3.3 MPC-based Stochastic Dispatch Model

The cost function for a given scenario Ê and time slot · is defined as below, which is

the same as objective function of problem (4.12).

F
Ê
· = ◊1 ·

---pÊ
0,· ≠ p

Ê
0,·≠1

--- +◊2 ·
ÿ

iœE
ril

Ê
i,· + ◊3

ÿ

mœN s

C
d,Ê
m,· (4.13)

· = t, t + 1, t + 2, t + 3 Ê = 1, 2, 3, 4, 5
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For mathematical conciseness, the decision variables of the current time slot t are

also labelled with a superscript Ê. Actually, they are independent of the scenario

index Ê as the only scenario of that time slot is the realized information of load and

PV generation. In other words, there is one dispatch result for the current time slot

and only it will be applied. Likewise, p
Ê
0,t≠1 and S

Ê
m,t≠1 are also independent of Ê as

they are parameters representing the information of the last time slot.

The objective of the MPC based dispatch model is to minimize the weighted sum

of F
Ê
· with the weights being the scenario probabilities fiÊ. The constraints for each

time slot and each scenario is exactly the same as the constraints in problem (4.12).

min
5ÿ

Ê=1

t+3ÿ

·=t

fiÊF
Ê
· (4.14a)

variables: p
Ê
0,· , q

Ê
0,· , p

d,Ê
m,· , p

c,Ê
m,· , P

Ê
j,· , Q

Ê
j,· , l

Ê
j,· , v

Ê
i,· , S

Ê
m,·

· = t, t + 1, t + 2, t + 3 Ê = 1, 2, 3, 4, 5

s.t. p
Ê
0,· = ≠

ÿ

jœC0

(P Ê
j,· ≠ rjl

Ê
j,· ) (4.14b)

ÿ

kœN g

b
g
ikp

g,Ê
k,· +

ÿ

mœN s

(bs
imp

d,Ê
m,· ≠ b

s
imp

c,Ê
m,· ) ≠ p

l,Ê
i,· = P

Ê
i,· ≠

ÿ

jœCi

(P Ê
j,· ≠ rjl

Ê
j,· ) ’j œ N \0

(4.14c)

q
Ê
0,· = ≠

ÿ

jœC0

(QÊ
j,· ≠ xjl

Ê
j,· ) (4.14d)

≠ q
l,Ê
i,· = Q

Ê
i,· ≠

ÿ

jœCi

(QÊ
j,· ≠ xjl

Ê
j,· ) ’i œ N \0 (4.14e)

v
Ê
i,· ≠ v

Ê
Ai,· = 2(riP

Ê
i,· + xiQ

Ê
i,· ) ≠ (r2

i + x
2
i )lÊ

i,· ’i œ E (4.14f)
...
1
2P

Ê
i,· , 2Q

Ê
i,· , l

Ê
i,· ≠ v

Ê
i,·

2...
2

Æ l
Ê
i,· + v

Ê
i,· ’i œ E (4.14g)

v
Ê
0,· = 1 (4.14h)

(V min
i )2 Æ v

Ê
i,· Æ (V max

i )2 ’i œ N \0 (4.14i)

l
Ê
j,· Æ (Imax

j )2 ’j œ E (4.14j)

0 Æ p
c,Ê
m,· Æ p

c,max
m ’m œ N s (4.14k)

0 Æ p
d,Ê
m,· Æ p

d,max
m ’m œ N s (4.14l)

S
Ê
m,· = S

Ê
m,·≠1 + (÷c

m · p
c,Ê
m,· ≠ 1/÷

d
m · p

d,Ê
m,· ) · �t ’m œ N s (4.14m)
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S
min
m Æ S

Ê
m,· Æ S

max
m ’m œ N s (4.14n)

where p
g,Ê
k,t , p

l,Ê
i,t and q

l,Ê
i,t are PV output, active load and reactive load of present

time slot t, respectively; p
g,Ê
k,· , p

l,Ê
i,· and q

l,Ê
i,· are forecasted PV output, active load and

reactive load for time slot ·(· = t + 1, t + 2, t + 3) and scenario Ê(Ê = 1, 2, 3, 4, 5).

Note the objective function is non-smooth. But it can be equivalently converted into

a smooth function by replacing the absolute value with a new variable and including

two additional inequality constraints.

4.4 Case Studies

In this section, both the single-period dispatch model (denoted as single t) and

MPC-based dispatch model (denoted as MPC) are tested on the modified IEEE

37-bus distribution network for the ramp minimization of a day. Detailed information

of the network can be found in [54]. The nominal voltage value of the distribution

system is 4.8kV and per-unit value is used in the case studies. Fig. 4.5 shows

the network topology of IEEE 37-bus distribution feeder with 20 distributed PV

installations and 10 distributed ESSs. Fig. 4.6 depicts the realized total active load

and PV generation of a day. The parameters related to the PV system and ESS are

listed in Table 4.1 along with other parameters.

4.4.1 Performance Comparisons

Fig. 4.7 and 4.8 show the total net load and ramp index of a day under three cases,

respectively. Without ESS, the net load experiences a significant ramp-down event

from 9:00 to 13:00 and a substantial ramp-up event from 13:00 to 19:00 due to the

rapid variation of PV output. But the ramping e�ect is significantly mitigated when

ESSs are integrated as shown in Fig. 4.7 and 4.8. Moreover, ESSs also facilitate

the valley-filling and peak-shaving of net load to a great extent. Fig. 4.7 and 4.8

also demonstrate that the MPC based model has a much better performance than

the single-period model in terms of ramp mitigation and load-shift. The maximum
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Fig. 4.5 IEEE 37-bus distribution network with PV installations and ESSs
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Fig. 4.6 Realized total active load and PV generation of the distribution network
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Table 4.1 Parameters for single-period dispatch model and MPC based dispatch
model

PV system capacity p
g,max
k 200 kVA

Maximum charging power p
c,max
m 200 kW

Maximum discharging power p
d,max
m 200 kW

Minimum allowed energy level S
min
m 100 kWh

Maximum allowed energy level S
max
m 1000 kWh

Charging e�ciency ÷
c
m 90%

Discharging e�ciency ÷
d
m 90%

Unite degradation cost c
d
m $10/MWh

Lower voltage limit V
min

i 0.95 p.u.
Upper voltage limit V

max
i 1.05 p.u.

Weight ◊1 0.8
Weight ◊2 0.1
Weight ◊3 0.1
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Fig. 4.7 Daily net load of the distribution system under three cases, without ESS,
single t with ESS and MPC with ESS

ramp is only reduced by roughly 25% and is shifted to another period using the

single-period model. In contrast, the MPC based model mitigates the maximum

ramp by more than 80% and maintain the ramp indices at relatively low values over

the whole day. The reason is that MPC based model takes future forecast information

into account and thus avoiding over-charging or over-discharging of ESSs. Fig. 4.9

shows the voltage mismatch error of the three cases. The voltage mismatch error is

defined as the 2-norm of the voltage di�erence between the actual bus voltages and
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Fig. 4.8 Ramp index under three cases, without ESS, single t with ESS and MPC
with ESS
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Fig. 4.9 Voltage mismatch error under three cases, without ESS, single t with ESS
and MPC with ESS

the reference values. Thus, the smaller voltage mismatch error indicates a better

voltage profile. Since ESS has the voltage regulation capability in DNs, integration

of ESSs will reduce the voltage mismatch error as shown in Fig. 4.9. In addition,

MPC based model leads to a better voltage regulation due to its appropriate ESS

scheduling.

To further illustrate the superiority of MPC based model over the single-period

model, the author depicts the daily variation of the stored energy level in ESSs for
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                                                    (a) ESS 1                                                          (b) ESS 2 

 
                                                    (c) ESS 3                                                          (d) ESS 4 

 
                                                    (e) ESS 5                                                          (f) ESS 6 

 
                                                    (g) ESS 7                                                          (h) ESS 8 

 
                                                    (i) ESS 9                                                          (j) ESS 10 

Fig. 10. The variation of stored energy level in ESSs for the single-period model 
Fig. 4.10 The variation of stored energy level in ESSs for the single-period model

the single-period model and MPC based model in Fig. 4.10 and 4.11, respectively.

Moreover, the author also compares the charging/discharging plans of ESSs under two
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                                                    (a) ESS 1                                                          (b) ESS 2 

 
                                                    (c) ESS 3                                                          (d) ESS 4 

 
                                                    (e) ESS 5                                                          (f) ESS 6 

 
                                                    (g) ESS 7                                                          (h) ESS 8 

 
                                                    (i) ESS 9                                                          (j) ESS 10 

Fig. 11. The variation of stored energy level in ESSs for the MPC based model 
Fig. 4.11 The variation of stored energy level in ESSs for the MPC based model

models in Fig. 4.12. It can be observed from Fig. 4.10 that under the single-period

model most ESSs are fully charged from 13:00 to 15:00 and fully discharged from
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20:00-24:00, which implies the inadequacy of energy capacities of ESSs to sustain

such a charging/discharging plan. However, the energy levels of ESSs under the MPC

based model vary less significantly and ESSs are never fully charged or discharged

simultaneously as shown in Fig. 4.11. Hence, the ESS capacities have less influence

on the MPC-based model than the single-period model. The inadequacy of ESS

capacity in the single-period model arises from the inappropriate charging/discharging

arrangement. It can observed from Fig. 4.12 that the ESSs under the single-period

model always react faster to the PV and load variation than the ESSs under the

MPC based model. Moreover, the charging/discharging power of the former is too

large and thus cannot last for a long period. Consequently, the ramp mitigation

ability of ESSs is greatly weakened. Therefore, the MPC based dispatch model

outperforms single-period dispatch model as the former encourages the ESSs to be

used more appropriately.

Table 4.2 Comparison of network loss, ESS degradation cost and ramp index

Single t MPC
Loss
(kWh)

Degradation
cost ($)

Ramp index
(MW)

Loss
(kWh)

Degradation
cost ($)

Ramp index
(MW)

Total 318 189 5.365 145 177 3.531
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Table 4.2 lists the total network loss, ESS degradation cost and ramp index of the

single-period model and the MPC-based model. A substantial reduction of network

loss and ramp index can be observed using the MPC-based model. Furthermore,

the degradation cost of the MPC-based model is also smaller than that of the single

period model.

4.4.2 Impact of the ESS capacity
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Fig. 4.13 Ramp index under three cases, MPC with ESS, single period with ESS and
MPC with ESS/2

Table 4.3 Comparison of network loss, ESS degradation cost and ramp index

MPC with ESS MPC with ESS/2
Loss
(kWh)

Degradation
cost ($)

Ramp index
(MW)

Loss
(kWh)

Degradation
cost ($)

Ramp index
(MW)

Total 145 177 3.531 352 100 5.670

In this subsection, the author investigates the impact of the ESS capacity on

the system performance. Specifically, the author reduces both the maximum charg-

ing/discharging power and the energy capacity by half and resolve the MPC-based

dispatch problem. Denote this case as MPC with ESS/2. Fig. 4.13 depicts the

ramp index under three cases, i.e. MPC with ESS, single-period with ESS and MPC

with ESS/2. Table 4.3 shows the impact of the ESS capacity on the network loss,
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degradation cost and total ramp index. It can be seen from Fig. 4.13 when the ESS

capacity is halved, the maximum ramp index is almost doubled. The total ramp

index also increases substantially when the ESS capacity is halved, as shown by

the table. Hence, the ESS capacity has a significant impact on the ramp minimiza-

tion, which is consistent with our intuition. Also note that the ramping mitigation

e�ect using MPC method with half ESS capacity is still slightly better than that

using single-period method with full ESS capacity. Therefore, MPC method can

compensate the capacity inadequacy of ESS.

4.5 Summary

The distribution networks are under a transition from passive ones to active ones

with the increasing integration of distributed generations. However, the significant

variation of renewable energy generations, especially the rooftop PV systems, will

aggravate the ramping e�ect in transmission networks. Aiming at addressing this

issue, a novel MPC based dispatch model is proposed to minimize the ramping

e�ect in ADNs using distributed ESSs. In particular, the dispatch model with ESS

scheduling is formulated as a multi-period optimization problem which is carried

out using the MPC method. Since the MPC method considers both current and

future information, it will produce an appropriate ESS scheduling result and keep the

ramp at low level over the whole day. Moreover, second-order cone relaxed branch

flow model is used to model the power flow in DNs so as to guarantee the global

optimality. Numerical results on IEEE 37-bus distribution network demonstrate that

the proposed model brings about significant reduction of maximum ramp and line

losses.



Chapter 5

A Robust Dispatch Model for

Distribution Networks

Considering PV Ramp

5.1 Introduction

With the increasing penetration of PV generations in distribution networks, the

impact of high variability of PV generations on the distribution system operation will

become more remarkable. For instance, the sudden change of solar irradiance known

as PV Ramp Event (PRE) may cause severe power imbalance and voltage variations.

According to [99], a large ramp-down event was observed in the ERCOT operation

area on February 26, 2008, which forced the system to activate the emergent measures.

On the other hand, the minute-to-minute ramp event is hard to be predicted since it

mainly arises from the cloud movement and climate change. Therefore, it is necessary

to take e�ective measures to address this issue so as to improve the PV hosting

capacity.

Several e�orts have been made to deal with the PV ramp event. Ref. [100]

proposed a preventative dispatch model to address the imbalence issue in a stand-

alone microgrid considering the possible PV ramp-event. Ref. [101] presented a

probabilistic approach to evaluate the operational adequacy of a stand-alone microgrid
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taking into account the PV ramp event and uncertainty of energy storage systems.

In [102, 103], the energy storage is used to mitigate the ramp rate of the PV output,

while in [104] the electric double-layer capacitor is employed to control the ramp

rate. Nevertheless, the impact of the fast ramp event on the voltage profile of the

distribution networks is not well studied.

In this chapter, a novel dispatch model is proposed for the distribution networks

to address the PRE-induced voltage violations. The on-load tap changer (OLTC) is

coordinated with PV inverters to ensure the voltage magnitudes within the allowable

ranges. OLTC cannot be adjusted too frequently; otherwise, its life span will be

shortened significantly. Thus, without loss of generality, the author assumes it can

only be adjusted one time per hour and will be fixed in the following one hour.

But PV inverters can be adjusted flexibly and continuously within that hour to

complement the voltage regulation of OLTC. Normally, to prevent over-voltage

violations caused by over-generation of PV systems, the step of OLTC is selected at a

position with lower secondary voltage magnitude. But in such case, the under-voltage

violation can be so severe that PV inverters cannot eliminate it when a PV ramp

event takes place. Hence, the OLTC step is deliberately reselected to ensure the

PV ramp-induced under-voltage violations can be e�ectively removed by the PV

inverters alone. Meanwhile, the concept of maximum admissible PV output (MAPO)

is proposed to quantify the PV hosting capacity for that hour. The MAPO is

predetermined and is fed into the PV inverter controller to guide the operation of PV

system. At any time of the covered periods, the active power of PV system should

not exceed this value even when the MPPT value is higher than this. Moreover, the

author assumes the substation bus is a slack bus, which means it can draw/inject

any amount of power from/to the transmission network to balance the generation

and load in distribution network.

The proposed model is formulated as a two-stage robust optimization problem,

where the first stage determines the OLTC position and maximum admissible PV

output (MAPO), and the second stage evaluates the feasibility of the first stage
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result under all possible realizations of PV ramp events. The column-and-constraint

generation (CCG) algorithm is utilized to solve the proposed model.

The nomenclature of symbols used in this chapter is given as follows,

Indices and Sets

E Set of distribution lines
i/N Index and set of distribution buses
k/N s Index and set of PV systems
t/T Index and set of time slots

Parameters

b
s
ik Binary indicator, b

s
ik = 1 if k-th PV system is located at bus i, b

s
ik = 0

otherwise
nr Number of OLTC steps
p

l
i,t Active power demand at bus i in time slot t

P
max
k Power capacity of PV panel k

P
L
k,t Lower bound of predicted output interval for PV panel k in time slot t

P
U
k,t Upper bound of predicted output interval for PV panel k in time slot t

q
l
i,t Reactive power demand at bus i in time slot t

Q
max
k Upper bound of reactive power output of PV inverter k

rij Resistance of the line connecting bus i and bus j

Sk Rated apparent power of PV inverter k

V
0

m Voltage magnitude on the secondary side of OLTC when the k-th step
is selected

V
min

i Lower bound of voltage magnitude at bus i

V
max

i Upper bound of voltage magnitude at bus i

Vr Nominal value of voltage magnitude
xij Reactance of the line connecting bus i and bus j

◊ Angle corresponding to the minimum allowed power factor
�k Temporal uncertainty budget for PV inverter k

�t Spatial uncertainty budget in time slot t
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Variables

p0,t Active power extraction from the transmission grid in time slot t

p
a
k,t Realized maximum available power of PV system k in time slot t

p
s
k,t Active power set-point of PV system k in time slot t

P
apo
k,t Maximum admissible output of PV system k in time slot t

Pij,t Active flow on the line (i, j) from bus i to bus j in time slot t

q0,t Reactive power injection into the transmission grid in time slot t

q
s
k,t Reactive power set-point of PV system k in time slot t

Qij,t Reactive flow on the line (i, j) from bus i to bus j in time slot t

V0 Voltage magnitude on the secondary side of OLTC
Vi,t Voltage magnitude at bus i in time slot t

s
l
i,t/s

u
i,t Positive slack variables for relaxing voltage constraints

zk,t Binary indicator, zk,t = 1 if there is a ramp down event on PV system
k in time slot t, zk,t = 0 otherwise

‰m Binary indicator, ‰m = 1 if the m-th step of OLTC is selected, ‰m = 0
otherwise

5.2 Robust Intra-hour Dispatch Model

5.2.1 PV Inverter Dispatch

The PV inverters can be used for voltage regulation by adjusting the active and reac-

tive power set-points [105]. The maximum admissible PV outputs is predetermined

to quantify the operational PV hosting capacity of a distribution network. It is fed

into the PV inverter controller prior to the dispatch time to guide the operation of

PV system. If the maximum available PV power in real time exceeds MAPO, the

excess power will be curtailed to prevent the PRE-induced voltage violations. Thus,

the set of PV inverter operating points is given by

�k =
;

(ps
k,t, q

s
k,t) : p

s
k,t = min

1
P

apo
k,t , p

a
k,t

2
(5.1a)

---qs
k,t

--- Æ Q
max
k (5.1b)

≠ tan ◊ · p
s
k,t Æ q

s
k,t Æ tan ◊ · p

s
k,t

<
(5.1c)
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where Q
max
k =

Ò
S

2
k ≠ (P max

k )2. (5.1a) is to determine the active power set-point

p
s
k,t by selecting the smaller one between P

apo
k,t and p

a
k,t, where P

apo
k,t is maximum

admissible PV output and p
a
k,t is the maximum available active power obtained

from maximum power point tracking technique. (5.1b) is to maintain the reactive

power output within its capacity Q
max
k . (5.1c) imposes the minimum power factor

requirement on the PV inverter.

5.2.2 Modelling PV Ramp Events

In this subsection, the uncertainty set is constructed to model PV ramp events,

which is the key step in applying robust optimization. Generally, the uncertainty set

is modelled as a interval set with uncertainty budget [106]. The core idea of robust

optimization is to find an optimal solution that is immune against worst case of

uncertainty realization. Given the upper and lower bounds of the intervals as well as

the uncertainty budgets, the worst realizations of PV ramp events can be modelled

as

U =
;

p
a
k,t|zk,t œ {0, 1} ’k œ N s

, ’t œ T (5.2a)

p
a
k,t = (1 ≠ zk,t)P U

k,t + zk,tP
L
k,t ’k œ N s

, ’t œ T (5.2b)
ÿ

kœN s

zk,t Æ �t ’t œ T (5.2c)

ÿ

tœT
zk,t Æ �k ’k œ N s

<
(5.2d)

where P
U
k,t and P

L
k,t are the upper bound and lower bound of the interval. zk,t is a

binary indicator for PV ramp down event. (5.2b) shows that the worst case occurs

when either the upper bound or the lower bound is attained. (5.2c) and (5.2d)

represent uncertainty budget limit constraint.

5.2.3 Two-stage Coordinated Intra-hour Dispatch Model

A two-stage coordinated intra-hour dispatch model (CID) is formulated to maxi-

mize PV hosting capacity. The horizon and resolution are 1 hour and 5 minutes,
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respectively. The formulation of CID is given as follows,

max
P apo

k,t ,‰m

ÿ

tœT

ÿ

kœN s

P
apo
k,t (5.3a)

s.t. P
apo
k,t Æ P

U
k,t ’k œ N s

, ’t œ T (5.3b)

‰m œ {0, 1},

nrÿ

m=1
‰m = 1 (5.3c)

V0 =
nrÿ

m=1
V

0
m · ‰m (5.3d)

’{p
a
k,t} œ U, ÷

1
p

s
k,t, q

s
k,t

2
œ �k ’k œ N s

, ’t œ T such that (5.3e)

p0,t =
ÿ

j:0æj

P0j,t ’t œ T (5.3f)

ÿ

kœN s

b
s
ikp

s
k,t ≠ p

l
i,t =

ÿ

j:iæj

Pij,t ≠ Pfi,t ’i œ N /0 ’t œ T (5.3g)

q0,t =
ÿ

j:0æj

Q0j,t ’t œ T (5.3h)

ÿ

kœN s

b
s
ikq

s
k,t ≠ q

l
i,t =

ÿ

j:iæj

Qij,t ≠ Qfi,t ’i œ N /0 ’t œ T (5.3i)

Vj,t = Vi,t ≠ rijPij,t + xijQij,t

Vr
’(i, j) œ E (5.3j)

V0,t = V0 ’t œ T (5.3k)

V
min Æ Vi,t Æ V

max ’i œ N \0, ’t œ T (5.3l)

where the objective (5.3a) is to maximize the total MAPO that represents the PV

hosting capacity of the entire distribution system. (5.3b) keeps MAPO below the

predicted upper bound of PV output. (5.3c) and (5.3d) are constraints related to

the voltage regulation of OLTC, where ‰m is a binary variable with 1 indicating the

selection of m-th step of OLTC and V
0

m is the voltage magnitude corresponding to ‰m.

Note that (5.3b)-(5.3d) are first stage constraints and P
apo
k,t , ‰m are first stage decision

variables determined before the realization of PV uncertainty. (5.3e)-(5.3l) are second

stage constraints and p
s
k,t, q

s
k,t are second stage decision variables determined after

the realization of PV uncertainty. (5.3e)-(5.3l) means that for any realization of PV

uncertainty there exits at least one PV dispatch strategy that satisfies all operation

constraints, which implies the robustness. Specifically, (5.3e) is the constraint related
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to the PV inverter dispatch. (5.3f) and (5.3g) show the active power balance at the

substation bus and other buses, respectively. (5.3h) and (5.3i) describe the reactive

power balance at the substation bus and other buses, respectively. (5.3j) denotes the

voltage relationship between two neighbouring buses. (5.3k) and (5.3l) represent the

voltage constraints for the substation bus and other buses, respectively.

Problem (5.3) is generally computationally intractable due to the intractable

second stage constraints (5.3e)-(5.3l). In order to e�ectively solve the above problem,

the second stage problem is reformulated as the following optimization problem.

max
pa

k,tœU
min

ps
k,t,qs

k,t,sl
i,t,su

i,t

ÿ

tœT

ÿ

iœN \0

1
s

l
i,t + s

u
i,t

2
(5.4a)

s.t. (5.3e) ≠ (5.3k) (5.4b)

Vi,t Ø V
min ≠ s

l
i,t ’i œ N \0 ’t œ T (5.4c)

Vi,t Æ V
max + su

i,t ’i œ N \0 ’t œ T (5.4d)

s
l
i,t Ø 0, s

u
i,t Ø 0 ’i œ N \0 ’t œ T (5.4e)

where s
l
i,t and s

u
i,t are non-negative slack variables. The voltage constraints (5.3l)

are relaxed to (5.4c) and (5.4d). Thus, the objective function (5.4a) quantifies the

voltage violations. Note that problem (5.4) is a bi-layer problem, where the inner

layer is to minimize the voltage violations by adjusting the power set-points of PV

inverters and the outer lay is to maximize the voltage violations by selecting the

worst case of PV ramp events. The robustness requires the optimal value of (5.4) to

always be 0.

5.3 Solution Method and Algorithm

The column-and-constraint generation(CCG) method is used to solve the above

two-stage robust optimization problem [107]. By clarity, it will first be reformulated

into a compact form as

max
x=[xT

1 xT
2 ]T

cT x1 (5.5a)
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s.t. Ax1 Æ b (5.5b)

Bx2 = d (5.5c)

x2 œ {0, 1} (5.5d)
3

max
uœU

min
y,sÆ0

1T s
4

= 0 (5.5e)

�1(x) = {y, u : Dy + Eu + Fx Æ g} (5.5f)

�2 = {y, s : Cy Æ f + s} (5.5g)

where x1 and x2 collect the continuous and binary variables of the first stage,

respectively. (5.5b) and (5.5c) represent the first stage constraints, where the former

summarizes (5.3b), and the latter summarizes (5.3c) and (5.3d). y and s collect the

second stage variables and slack variables, respectively. (5.5e)-(5.5g) corresponds to

the second stage problem (5.4). Particularly, (5.5f) summarizes (5.4b), and (5.5g)

summarizes (5.4c) and (5.4d).

The core idea of CCG is to decompose the original two-stage problem into a

master problem and a sub-problem. By solving the sub-problem, CCG constraints

are iteratively generated and added to the master problem. The master problem is

given by

max
x=[xT

1 xT
2 ]T , yl

cT x1 (5.6a)

s.t. Ax1 Æ b (5.6b)

Bx2 = d (5.6c)

x2 œ {0, 1} (5.6d)

Dyl + Eul + Fx Æ g l = 1, 2..., K (5.6e)

Cyl Æ f l = 1, 2..., k (5.6f)

where K is the iteration index. (5.6e) and (5.6f) are CCG constraints. x and yl are

decision variables of (5.6). ul is the worst case of PV uncertainty obtained by solving

the sub-problem at l-th iteration.
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The suproblem is formulated by replacing the inner lay of (5.4) with its dual, as

shown below.

max
uœU, ⁄, Ê

≠ fT ⁄ + uT ET Ê + xT FT Ê ≠ gT Ê (5.7a)

s.t. CT ⁄ + DT Ê = 0 (5.7b)

0 Æ ⁄ Æ 1 (5.7c)

Ê Ø 0 (5.7d)

where ⁄ and Ê are dual variables associated with (5.5f) and (5.5g), respectively.

Since constraints (5.5f) and (5.5g) are linear, the strong duality holds [71]. Hence,

(5.7) is equivalent to the second stage problem (5.5e)-(5.5g). Note there is bilinear

term in (5.7a). Big M method can be applied to linearize the bilinear term or outer

approximation method can be used to solve (5.7). Interested readers can refer to

[108–110].

Algorithm 2 summarizes the overall algorithm for solving the proposed two-stage

robust optimization problem.

Algorithm 2: CCG Algorithm for the Two-stage Robust Optimization Problem
1 Initialize the iteration index K = 1;
2 repeat
3 Solve the master problem (5.6) and obtain the optimal solution xK ;
4 Fix x at xK and solve the sub-problem (5.7). Obtain the optimal solution

uK and the optimal value p
ú;

5 K=K+1;
6 Create additional variable yK+1 and add new CCG cuts (5.6e) and (5.6f) to

the master problem (5.6);
7 until p

ú = 0;
8 Return the optimal first stage decision xK≠1

5.4 Case Study

The proposed coordinated dispatch (CID) model is tested on IEEE 33-bus distribution

network [111], where 8 PV systems are installed at bus 14, 15, 16, 17, 21, 24, 31 and
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32, respectively. The capacity of each PV system is 800 kW. The solar PV power is

calculated using the actual solar irradiance data provided by [56]. The lower bound

of PV output is set as 20% of predicted value. The algorithm is implemented on

MATLAB with CPLEX 12.6 solver [112].
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Deterministic model (DM) is used as a benchmark, whose objective is to minimize

PV curtailment without considering PV ramp events. Fig. 5.1 and 5.2 depict the

bus voltage magnitudes over the period from 12:00 to 13:00 under the DM and CID,
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respectively. In DM case, severe undervoltage violations are observed when a PRE

takes place at 12:30. By contrast, the bus voltage magnitudes under CID are always

maintained within the allowable range which is [0.95, 1.05]. The reason is that CID

considers all possible scenarios of PV ramp events and takes preventative measures

by properly selecting the OLTC step and predetermining the maximum admissible

PV output. Therefore, CID outperforms DM in terms of dealing with PRE-induced

voltage violations. In addition, MAPO as well as the predicted upper bound are

demonstrated in Fig.5.3. It can be observed that MAPO remains the same with

the upper bound for the most PV inverters. Thus, the PV curtailment is relatively

small (roughly 6.3% of total PV generation), which validates the e�ectiveness of the

proposed model in coping with the PREs and maximizing the solar energy utilization.

5.5 Summary

In this chapter, the author presents a novel coordinated intra-hour dispatch model

for distribution networks considering minute-to-minute PV ramp events. The model

is formulated as a two-stage robust optimization problem, where the first stage is to

determine the OLTC step as well as the operational PV hosting capacity and the

second stage is to ensure the voltage security by properly scheduling PV inverters.
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Numerical results on IEEE 33-bus validate the e�ectiveness of the proposed model

in addressing the PRE-induced voltage problem.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

The widespread adoption of DERs introduces considerable challenges to the distri-

bution system operation because of their uncertain and intermittent nature and

the complexity in coordinating them. The focus of this thesis is on overcoming

these challenges by developing advanced management approaches. Both centralized

and decentralized strategies are proposed to cope with the economic and technical

issues within the distribution system operation domain with the ultimate goal of

improving DER accommodation capability. In particular, the author investigates

the distribution system operation problem in the following four aspects.

1) To overcome the complexity in coordinating various devices and promote the

competitive energy trading, a novel transactive energy trading framework is pro-

posed for the end-use customers by leveraging the recent emerging transactive

energy concept. Specifically, an innovative bilateral energy trading mechanism

is developed by utilizing Nash bargaining theory and is seamlessly integrated

with an e�cient distributed optimal power flow technique. By doing so, the

market issues and distribution system operation issues can be dealt with in a

holistic manner. With some rigorous analysis, the author converts the proposed

transactive energy trading problem into an equivalent two-stage problem, where

the first stage determines the optimal energy trading and dispatch, and the
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second stage settles the optimal payment. Furthermore, an e�cient distributed

algorithm is developed that enables the proposed framework to be implemented

in a decentralized manner to preserve the autonomy and privacy of customers.

The optimality and convergence of the proposed algorithm is guaranteed. Nu-

merical results on IEEE 37-bus and 123-bus distribution systems demonstrate

the economic and technical e�ectiveness of the proposed framework and the

e�ciency of the proposed algorithm.

2) To address the severe voltage variations caused by the intermittent PV output,

a distributed online voltage control algorithm is proposed for the distribution

networks. Conventional distributed algorithms implement voltage control only

when the algorithms converge. However, the proposed algorithm is able to

carry out voltage control immediately. Specifically, the author formulates

the voltage control problem as an optimization problem where the objective

is to minimize the total loss while maintaining the bus voltages within the

acceptable rang. Then a distributed algorithm is developed by applying dual

ascend method to this optimization problem. With this distributed algorithm,

each PV system is able to locally update and apply its active and reactive

power set-points based on the local voltage measurement and information

exchange with neighboring PV systems. The convergence to the optimality is

established analytically. Moreover, the close-form solution for each update is

derived so as to significantly improve the control e�ciency. Numerical tests

on IEEE 37-bus and 123-bus system validate the e�ectiveness of the proposed

distributed online algorithm.

3) To mitigate significant load ramps arisen from the diurnal pattern of solar PV

power, a novel look-ahead dispatch model is proposed for the active distribution

networks using distributed ESSs. The dispatch problem is modelled as a finite

horizon optimization problem and is carried out utilizing the model predictive

control method that takes both current and future information into account.

Consequently, ESSs can be appropriately scheduled to avoid latent over-charging

or over-discharging during some periods. Numerical results on IEEE 37-bus
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distribution system show that the proposed model brings about more than

80% reduction of maximum ramp and roughly 50% reduction of distribution

line losses.

4) To alleviate the minute-to-minute PV ramp induced voltage violations, a novel

intra-hour dispatch model is proposed that enables coordination between OLTC

and PV inverters. Specifically, this model is formulated as a two-stage robust

optimization problem, where the first stage determines the OLTC step and

maximum admissible PV output (MAPO), and the second stage evaluates the

feasibility of the first stage result under all possible realizations of PV ramp

events (PREs). MAPO is proposed to quantify the operational PV hosting

capacity and is fed into PV inverter controllers prior to the dispatch time

to guide the operation of PV systems. Besides, the proposed model is not a

standard two-stage robust optimization problem. Thus, it is reformulated before

applying CCG algorithm to solve it. Case study on IEEE 33-bus distribution

network verifies the e�ectiveness of the proposed model in addressing PRE

induced voltage problem.

6.2 Future Works

This thesis has proposed several advanced methods for the management of the active

distribution networks with high penetration of DERs. Some assumptions have been

made to simplify the complicated realistic problems, such as the distribution networks

are three-phase balanced and customers are rational. To make the proposed methods

more implementable, the author will investigate the following problems in the future.

1) In fact, distribution networks are inherently three-phase unbalanced due to the

untransposed lines, unbalanced load and multi-phase feeders [12]. It presents

considerable complexity to the modelling of distribution networks, not to

mention the analysis of practical operation problems, such as voltage regulation

and energy management. Therefore, the author will first endeavor to develop
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more accurate models, e.g. multi-phase optimal power flow model, to assist

the investigation of the operation problems.

2) Beside the voltage variations, the voltage unbalance across di�erent phases is a

severe problem in practice. The unbalance should be maintained below certain

level; otherwise, it will cause detrimental e�ects to various devices, such as

transformers and electric motors. Moreover, since a large portion of DERs

are single-phase generators, the widespread of them may further aggravate the

voltage unbalance. Therefore, the author will investigate the voltage variation

and voltage unbalance problems and develop e�ective control strategies by

employing the potential of DERs to address the voltage problems.

3) In chapter 2, the author only develops a transactive energy framework for

energy trading. With the evolution of power systems, more ancillary services,

e.g. reactive power support, ramping product and frequency regulation, are

required to ensure the system reliability, security and resilience. One ideal way

to procure these services is to encourage end-users to provide them. Therefore,

the author will design a transactive energy model considering both energy and

ancillary services. In addition, the author will study the customers’ behaviors

in a more comprehensive way.

4) In chapter 2 and 3, the author develops distributed algorithms to implement

the transactive energy design and voltage control in a distributed manner.

However, the uncertainties of load demand and renewable energies are not

taken into account since up to now it is still mathematically challenging in

incorporating uncertainties into distributed operation and control schemes. In

the future, the author will study the possibility to integrate robust optimization

or stochastic programming with distributed algorithms.



Appendix A

A.1 Proof of Proposition 1

To obtain the explicit form of xi-update problem, first we need to specify the related

Lagrangian multipliers, as shown in Table A.1. Through expanding the quadratic

and collecting terms, the xi-update problem (2.28) can be further decomposed into

three subproblems. The tedious process is not elaborated here for clarity. Interested

readers may refer to the subsection III-B of [48].

The first subproblem solves the optimal (P x
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Table A.1 Multipliers associated with consensus constraints
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According to [48], (A.1) has a closed form solution.

The second subproblem solves the optimal q
x
i , i.e.

min
qx
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The values of ⁄, ei and ei depend on the sign of p
x
i . If p

x
i Æ 0, then ⁄ = ⁄

b,

ei = 0, ei = ≠p
x
i ; otherwise ⁄ = ⁄

s, ei = ≠p
x
i , ei = 0.

As long as the problem (A.3) can be solved in closed form, we would complete

the proof. Indeed, we derive the closed form solution to (A.3). Since (A.3) is a

convex quadratic optimization problem with linear inequalities, it has a unique global
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minimizer. Without loss of generality, suppose p
x
i Æ 0 and update pi as min(pi, 0).

Then (A.3) is transformed to
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In the following, we will derive its closed form solution by enumerating the

activeness of the inequality constraints.

Case 1: (A.4c) is inactive.

Then p
xú
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and e
xú
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Then (A.4) can be decomposed into two subproblems. One subproblem only
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it can be generalized as the problem (2.33). Thus, it can be solved in closed form.
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jœN \i e

x
ij = ≠p

x
i .

Then (A.4) can be reformulated as the problem below by eliminating p
x
i .
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we solve (A.7) in closed form by enumerating the activeness of the constraint (A.7b).

• Subcase 3.1: (A.7b) is inactive .
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• Subcase 3.2: (A.7b) is active and q
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Then, the problem (A.7) can be converted to the following problem.
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With a slight abuse of notation, (A.9) can be generalized as

minz
1
2zT Qz + cT z (A.10a)

s.t. Az = b (A.10b)

where z is the vector of decision variables constituted by e
x
ij; Q := 2flIN≠1;

c is a vector constituted by ≠2fl‚eij; A = 1T and b = ≠pi; IN≠1 is a N ≠ 1
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dimensional identity matrix. (A.10) has a closed form solution given by
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Then the optimal {e
x
ij|j œ N \i} can be obtained similarly as the subcase 3.2.

A.2 Proof of Proposition 2

Let µ
Õ
ij(i) and µ

Õ
ji(i) denote the multiplier for (2.37c) and (2.37d), respectively. Then
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Its optimal solution can be obtained by solving the equations below.
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