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Abstract 

 

The ventilation ductwork system is an essential and significant part of the building to 

maintain good indoor environmental quality. However, it is common to encounter 

noise problem in a ventilation ductwork system. The accompanied duct noise from 

the ventilation system could propagate into the occupied zones through the 

waveguide and could deteriorate human being’s working or living environment 

quality. The aims of this thesis are to achieve a low-frequency broadband noise 

control in the ventilation ductwork system based on Helmholtz resonator arrays. 

 

Helmholtz resonator (HR hereafter) is one of the most basic acoustic models and 

has been widely used in engineering applications due to its simple, tunable and 

durable characteristics. In order to improve the noise attenuation performance of a 

HR, an extended neck or spiral neck taken the place of the traditional straight neck 

of a HR has been investigated. Based on the transmission loss index, the noise 

attenuation capacity index is first proposed in this thesis to evaluate the noise 

attenuation performance of a HR. 

 

Since a single HR is qualified as a narrow band silencer, an array of HRs is one 

possible way to obtain a broader noise attenuation band. A theoretical study of the 
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acoustic performance of different HR configurations has been presented in this 

thesis. The proposed noise attenuation capacity is used to evaluate the acoustic 

performance of different HR array configurations. The predicted theoretical results 

fit well with the Finite Element Method simulation results.  

 

The dispersion characteristics of sound wave propagation in a periodic ducted HR 

system has also been investigated. The Bloch wave theory and transfer matrix 

method are adopted to investigate the wave propagation in a periodic ducted HR 

system. Owing to the coupling of Bragg reflection and HR’s resonance, it is found 

that a periodic ducted HR system can provide a much broader noise attenuation 

band. However, the broader the noise attenuation band, the lower the peak 

attenuation amplitude. It is therefore that a noise control zone compromising the 

attenuation bandwidth or peak amplitude is proposed for noise control optimization. 

 

The transmission loss achieved by a periodic ducted HR system is depended on the 

structure and the number of HRs mounted on the duct. However, the number of 

HRs is restricted by the available space in longitudinal direction of the duct. 

Moreover, such system will occupy a large space and may have some spare space in 

the transverse direction of the duct. By adding HRs on the available space in the 

transverse direction, a modified ducted HR system is therefore proposed to improve 

the noise attenuation performance of the ducted HR system and fully utilizing the 
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available space. The results indicate that both the noise attenuation band and peak 

amplitude are increased by adding HRs on arbitrary side of the cross-section of the 

duct. 

 

Aiming at broader noise attenuation bands for hybrid noise control at low 

frequencies, a periodic dual HR array is proposed and investigated. The dual HR 

which consists of two HRs connected in series (neck-cavity-neck-cavity) leads to 

two resonance frequencies. By analogy with a two degrees of freedom mechanical 

system, the resonance frequencies and transmission loss of a dual HR has been 

derived. The dual HR is also effective at its resonance pears with relative narrow 

bands. Owing to the coupling of Bragg reflection and dual HR’s resonances, a 

periodic dual HR array can provide much broader noise attenuation bands at the 

designed resonance frequencies of the dual HR. 

 

It is hoped that the present work can advance the investigation of noise control 

method for the ventilation ductwork systems or other research areas in respect of HR. 
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Chapter 1  

Introduction 

 

1.1 Duct-borne noise control methods 

A ventilation ductwork system is an essential system in buildings that provides 

conditioned or fresh air to indoor environments so as to ensure good indoor air 

quality. However, it is common to encounter a duct-borne noise problem in a 

ventilation ductwork system.
1,2

 The components of the ductwork system, for instance, 

dampers, bends transition pieces, corners or even attenuators punctuate the original 

uniform ductwork, which are responsible for the generation of the undesired noise as 

the ductwork system begins to work.
3-7

 These unavoidable discontinuities in a 

ventilation ductwork system result in the generation of localized turbulence. Some 

of the turbulence energy is converted into noise. Current design guides, the CIBSE 

Guide
8,9

 and the ASHRAE Handbook
10

, also provide a prediction method for the 

flow-generated noise produced in-duct element in a ventilation system. The 

accompanied duct noise from the ventilation system could propagate into the 

occupied zones through the waveguide and could deteriorate human being’s working 

or living environment quality.
11-14

 Given that people speed more and more time 

indoor and noise level is one of the key factors in the indoor environmental quality 
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assessment, alleviating such duct-borne noise is thus of great importance to obtain 

satisfaction with acoustics and overall environmental satisfaction.  

 

Abatement of ductwork noise has always been a challenge, especially the 

low-frequency and broadband noise in a ventilation ductwork system due to its 

significant role in modern buildings to maintain good indoor environment. Therefore, 

it is not surprising that noise attenuation technologies for the ventilation ductwork 

system have received extensive attentions. Various noise control methods have been 

developed to reduce the noise propagation throughout the ductwork system. 

Generally, there are two types of noise control methods: active noise control and 

passive noise control. The principal of active noise control was first proposed by 

Lueg
15

 in 1936, which a secondary source generating anti-noise was adopted to 

cancel noise from the primary source. In recent years, active noise control has 

become a rapidly developing area of duct-borne noise control.
16-21

 An active noise 

control system can provide environmental-adaptive noise attenuation, especially at 

low frequencies. Nevertheless, there are still some problems related to its reliability 

and high cost. Further studies are needed to popularize the application of active noise 

control.  

 

Most traditional passive noise control methods such as dissipative silencer and 

reactive silencer still suffer from some serious drawbacks despite these silencers are 
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widely used in ventilation ductwork system. The dissipative silencer in which the 

sound absorption materials in the silencers dissipate the sound energy into heat 

performances well at mid to high frequencies. However, the acoustical properties and 

the damping mechanism of the sound absorption materials determine that it is not 

effective for low-frequency noise control.
22-27

 Meanwhile accumulation of dusts and 

bacterial breeding in porous sound absorption materials are noticeable concerns, 

especially in some public buildings like hospitals. Reactive silencers, the Helmholtz 

resonator and expansion chamber are typical examples, show stable noise attenuation 

performance and can be tuned conveniently. Nevertheless, the volume of the 

expansion chamber needs to be sufficiently large in order to deal with low-frequency 

noise.
28-30

 The presence of HR offers a solution of low-frequency noise control, yet it 

qualifies as a narrow band noise attenuator that it is only effective at its resonance 

with a relative narrow frequency range.
31-34

 

 

Over the years, a number of investigators have tried to devise a method to control 

the duct-borne noise in the low-frequency and with wide working frequency range. 

However, most of them achieved low-frequency and broad-band sound attenuation 

by combing several different Helmholtz resonators, which means using serial or 

parallel arrangement of Helmholtz resonators with different resonant frequencies to 

obtain a wide band of noise control in ducts.
35-40

 Because Helmholtz resonators are 

only useful against noise centralized in a very narrow frequency band, to achieve a 
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wide noise reduction band, many resonators should be used. Such kind of noise 

reduction structure will occupy a large space and is impractical to be used in an 

actual ventilation ductwork system. An array of identical HRs mounted periodically 

is one possible way to realize the low-frequency and broadband noise attenuation 

band in the duct. Bradly
41,42

 analyzed the propagation of time harmonic acoustic 

wave in periodic waveguides theoretically and experimentally. Sugimoto and 

Horioka
43,44

 investigated the peculiar dispersion characteristics of sound waves 

propagation in a tunnel with an array of identical HRs mounted periodically, marked 

as stopbands and passbands. The Bloch wave cannot transmit at some frequencies is 

called stopbands, otherwise it is called the passbands. Owing to the coupling of Bragg 

reflection and HR’s resonance, it is found that a periodic ducted HR system can 

provide a much broader noise attenuation band.
45-50 

 

1.2 Helmholtz resonator 

Helmholtz resonator (or HR hereafter) is one of the most basic acoustic models and 

has been widely used in engineering applications due to its simple, tunable and 

durable characteristics. The Helmholtz resonator, which consist of a cavity 

communicating with an external duct through an orifice, is a well-known device to 

reduce noise centralized in a narrow band at its resonance frequency. Owing to the 

resonance frequency of a HR is only determined by its geometries, it is therefore 
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straightforward to obtain a HR with a desired resonance frequency. Therefore, the 

HR has been utilized in numerous duct-structure systems, such as ventilation and air 

conditioning system in buildings, automotive duct systems and aero-engines, for the 

attenuation of noise produced by unavoidable in-ducted elements.
51,52

 The HR could 

also be an effective method to suppress the propagation of sound waves and pressure 

generated by a high-speed train entering and moving in a tunnel. The tunnel 

aerodynamics and acoustics become a significant issue with the developing 

high-speed trains projects with a lot of tunnel structures. The HR has been 

investigated theoretically and experimentally to countercheck noise generated by 

tunnel portals and eliminate the shock wave in the tunnel.
53-55

 

 

Since the widespread applications of the HR, it has received a great deal of attentions 

worldwide. Many studies have tried to obtain an accurate prediction of the resonance 

frequency. Mainly through the labours of Helmholtz, Rayleight, Ingard, Sondhauss 

and Wertheim, the classical lumped approach for a HR is supposed to be analogous to 

the mechanical mass-spring system with end-correction factors for the sake of the 

accuracy.
32

 The mass of air in the neck is driven by an external force and the air inside 

the cavity acts as a spring. The end-correction factor for the neck length is introduced 

to regard the sound energy radiation from the neck as an additional mass. However, 

the large discrepancies between the measured and predicted resonance frequencies 

lead to the developing method for a more accuracy prediction. Therefore, a 
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considerable number of researchers have developed the wave propagation in both the 

duct and the HR in theoretical analysis from an initial one-dimensional wave 

propagation approach to a multidimensional approach in order to account for 

nonplanar effects.
56-59

 The multidimensional approach has been proven by 

experiment to be a better theoretical analysis method. 

 

The HR is qualified as narrow band silencer and it is only effective at its resonance 

peak. Various modification forms of HRs have been examined in order to improve the 

acoustic performance of a HR. Chanaud
60

 investigated the effects of different orifice 

shapes and cavity geometries on the resonance frequency of a HR. Tang and 

Sirignano
61 

showed that resonance frequency of a HR was reduced by increasing the 

neck length. In order to lengthen the neck, an extended neck and a spiral neck were 

proposed by Selamet and Lee
62

 and Shi and Mak
63

 respectively. Tang
64

 examined the 

HR with tapered necks of increasing cross-sectional area towards cavity both 

experimentally and theoretically. Griffin et al.
65

 demonstrated the mechanically 

coupled HRs through a thin membrane to obtain three resonance frequencies instead 

of two. Xu et al.
66

 derived expressions of two resonance frequencies and the 

transmission loss of a dual HR formed by a pair of neck and cavity connected in 

series. Selamet et al.
67

 presented another approach by lining the HR with fibrous 

material to improve the attenuation performance without changing the geometries of 

the HR. 
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1.3 Objective and Scope of Research 

This thesis aims at investigating low-frequency broadband noise control in 

ventilation ductwork systems based on Helmholtz resonator arrays. The Helmholtz 

resonator is widely used as an effective silencer for low-frequency duct-borne noise 

control due to its characteristics of being tunable, durable, and affordable. A good 

design for a Helmholtz resonator is important for noise attenuation in ventilation 

ductwork systems. Therefore, the first objective of this thesis is to improve the 

noise attenuation performance of the HR at low frequencies with a limited space. 

An extended neck or a spiral neck takes the place of the traditional straight neck of 

the HR. The acoustic performances of the HR with these two types of necks are 

analyzed theoretically and numerically.  

 

The second objective of this thesis is to evaluate the acoustic performance of a HR 

based on the proposed noise attenuation capacity index. The transmission loss index 

is mainly used to evaluate the acoustic transmission performance. However, almost 

all researches concentrate on the shapes of the transmission loss curve while ignoring 

the area under the transmission loss curve. The noise attenuation capacity index 

defined as the integral of transmission loss in the frequency domain is therefore 

proposed to be one of the key parameters to evaluate HR’s noise attenuation 
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performance. 

 

The third objective of this thesis is to investigate the dispersion characteristics of 

sound wave propagation in a periodic ducted HR and evaluate the coupling effects 

of Bragg reflection and HR’s resonance. Periodic ducted HR systems struggle to 

obtain the necessary broad attenuation bandwidth and high-peak attenuation 

amplitude at the same time. However, the broader the noise attenuation band, the 

lower the peak attenuation amplitude. It is therefore that this thesis looks into the 

limitations of the attenuation bandwidth and peak amplitude for a periodic ducted HR 

system. 

 

The last objective of this thesis is to improve the noise attenuation performance of a 

ducted HR system. The noise attenuation performance of the ducted HR system is 

fairly depended on the number of HRs. By adding HRs on the available space in the 

transverse direction, a modified ducted HR system is proposed to increase both the 

peak amplitude and noise attenuation bandwidth at the same time and fully utilize 

the available space. In practical ventilation ductwork system, hybrid noise often 

occurs due to interaction effects of different localized turbulence and discontinuities. 

In order to deal with hybrid noise, a periodic dual HR system is introduced to obtain 

several broadband noise attenuation bands in low-frequency range. 
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1.4 Outline 

The thesis is arranged in the following six chapters. The current Chapter covers the 

background of the present study including the literature review of related works and 

the objectives of this study. 

 

Chapter 2 is devoted to improve the noise attenuation the noise attenuation 

performance of the Helmholtz resonator (HR) at low frequencies with a limited 

space. An extended neck or a spiral neck takes the place of the traditional straight 

neck of the HR. The acoustic performance of the HR with these two types of necks 

is analyzed theoretically and numerically. The transmission loss index is mainly 

used to evaluate the acoustic transmission performance. Based on the transmission 

loss index, the noise attenuation capacity index is proposed to be one of the key 

parameters to evaluate the noise attenuation performance of a HR. The theoretical 

formula of a HR’s noise attenuation capacity is derived theoretically. 

 

Chapter 3 presents a theoretical and numerical study of the acoustic performance of 

different HR array configurations. A dual HR consisting of two HRs connected in 
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series (neck-cavity-neck-cavity) could be considered as a serial HR array. Two HRs 

mounted on the same cross-section of the duct constitute a parallel HR array. A lined 

HR array is composed of two HRs installed on the longitudinal direction of the duct. 

The noise attenuation capacity of these HR array configurations are compared, which 

use a distinct parameter to evaluate the noise attenuation performance and ability of 

different array configurations.  

 

Chapter 4 includes a theoretical study of the dispersion characteristics of sound wave 

propagation in a periodic ducted HR system. An array of HR mounted on the duct 

periodically could provide a much broader noise attenuation band. The bandwidths 

and positions of noise attenuation bands have been investigated. The transfer matrix 

method and Bloch wave theory are developed to conduct the investigation. The 

limitations of the noise attenuation for a ducted HR system are illustrated in this 

chapter. The broader the noise attenuation band the lower the peak attenuation 

amplitude. A noise control zone compromising the attenuation bandwidth or peak 

amplitude is proposed for noise control optimization. 

 

Chapter 5 focuses on improving the noise attenuation performance of a ducted HR 

system and fully utilizing available spaces. By adding HRs on the available space in 

the transverse direction, a modified ducted HR system is therefore proposed and 

investigated. In order to deal with hybrid noise in ventilation ductwork system, a 
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periodic dual HR array is introduced. The dual HR which consists of two HRs 

connected in series leads to two resonance frequencies. The mechanism of Bragg 

reflection and dual HR’s resonances motivate us to achieve several broadband noise 

attenuation bands in low-frequency range. 

The final chapter, Chapter 6 summarizes all the investigations and findings in this 

thesis and forecasts further investigations based on the present work.  
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Chapter 2  

Acoustic characteristics of a Helmholtz 

resonator 

 

2.1 Helmholtz resonator with different types of necks 

The HR is known to be an effective silencer at low frequencies, sometimes its 

application may be limited by space. It is important to shift the resonance frequency 

when there is a space constraint. In order to improve the noise attenuation 

performance at low frequencies when there is limited space. A spiral neck or an 

extended neck may by a feasible way to shift the resonance frequency in such 

situations. The extended neck will lower the resonance frequency without an extra 

cavity volume requirement, and the spiral neck can make the neck as long as possible 

under a space constraint to reduce the resonance frequency. The acoustic 

performance of HRs with these two types of necks is analyzed both theoretically and 

numerically. A modified one-dimensional analytical approach with a length 

correction factor is used in this paper to accurately predict the acoustic performance 

of an HR with an extended neck. The length correction factor is introduced due to the 

apparent multidimensional sound field inside the cavity of an HR with an extended 

neck. The length correction factor is obtained using a two-dimensional analytical 
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approach. The wave propagation of an HR with a spiral neck is also analyzed. The 

curvature of the spiral neck changes the impedance, and the spiral neck can then be 

considered equivalent to a straight neck with a corrected neck length and 

cross-section area. The spiral neck is then translated to a traditional straight neck, and 

the acoustic performance is predicted using a one-dimensional analytical approach. 

 

2.1.1 Analytical approach of the HR with an extended neck 

The sound fields inside an HR with an extended neck are clearly 

multidimensional.
52,68

 A modified one-dimensional analytical model, which 

includes a length correction to account for the non-planar effects at the neck-cavity 

interface, is proposed here to improve the accuracy of the acoustic performance 

prediction. The length correction is derived using a two-dimensional analytical 

approach. Figure. 2.1 shows the geometries of the circular concentric HR with an 

extended neck. The two-dimensional sound wave propagations in both the extended 

neck and the cavity are governed by the Helmholtz equation in cylindrical 

coordinates as: 

2 2( , ) ( , ) 0P r x k P r x                     (2.1)                                 

The sound pressure and particle velocity can be solved by Eq. (2.1) as
52

:  

, ,

, , ,

0

( , ) ( ) ( )i n i i n ijk x jk x

i i i n i n i n

n

P r x A e B e r






                (2.2) 
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where 1,2,3i   represents different coordinate axis x domains, ,i nA and ,i nB

represent the modal amplitudes corresponding to components traveling in positive 

and negative directions in different domains, respectively, 0 represents the air 

density, ,i nk  represents the wave number, 0k represents the wave number of the zero 

mode, and , ( )i n r  represents the eigenfunction. The eigenfunction , ( )i n r  is given 

as:  
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           (2.5) 

where mJ  is the Bessel function of the first kind and order m , mY  is the Bessel 

function of the second kind and order m , and ,i n  is the root matching the rigid 

wall condition of , ( ) 0i n r  . 

 

The walls of the neck and the cavity are set to be rigid. At 2 0x   or 3 rx l , the rigid 

wall condition gives 2 0v  , 3 0v  .  At 1 e nx l l  or 3 0x  , the pressure continuity 

condition at neck-cavity interface gives 1 3P P . Similarly, at 2 ex l or 3 0x  , it 

gives 2 3P P . The volume velocity continuity condition at 1 e nx l l  or 3 0x   

gives 1 2 3( )n c n cu S u S S u S   . Set the relation of initial oscillation sound pressure 
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0P  and particle velocity pu  at 1 0x   as 0 0 0 1pP c u  ( 0c  represents the sound 

speed). Then all unknown ,i nA  and ,i nB  can be obtained by combining all the 

boundary conditions above. 

 

The frequency range considered here is well below the cut-off frequency of the 

resonator neck and the cavity. This means that the non-planar wave excited at the 

abrupt cross-section change (the neck-cavity interface) will decay exponentially. 

Therefore, it is assumed that only planar waves exist in the HR. The 

multidimensional effects associated with evanescent high modes at a sudden area 

change are considered as the “length correction factor.” As a consequence, Eq. (2.2) 

and Eq. (2.3) can be simplified as: 

0 0

,0 ,0( , ) i ijk x jk x

i i i iP r x A e B e


                   (2.6) 

0 0

,0 ,0

0 0

1
( , ) ( )i ijk x jk x

i i i iu r x A e B e
c


               (2.7) 

Then, at the neck-cavity interface ( 1 e nx l l  or 3 0x  ), the discontinuity effects will 

be equivalent to the equation
69

: 

1 3 1nP P ZS u                         (2.8) 

where nS  is neck area, Z  is the characteristic impedance of the plane mode given 

as 0 0 / nZ j c S , and   represents the length correction factor. Combining Eq. 

(2.6) and Eq. (2.7) with Eq. (2.8) gives: 

1,0 1,0 3,0 3,01 3

0 0 1 1,0 1,0

( ) ( )

( )

A B A BP P

j c V jk A B




  
 


                (2.9) 
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Based on the two-dimensional analytical results, an approximate formula for the 

length correction factor could be given as: 

1.7226 / 1.3012 /2 20.6165 0.7046 / 0.2051 0.3749 /e c e cl r l r

n n c n n cr r r e r e r r  
        (2.10) 

The approximate formula agrees well with the simulation and experimental results 

for / 0.5n cr r  .
62,70 

Combining only one-dimensional propagation in the axial x  

direction in the neck and cavity with regard to the effects of the non-planar wave as 

length correction factor  , the transmission loss of a side branch HR with an 

extended neck mounted on the duct with cross-sectional area dS  can be expressed 

as: 

 

 
2

10

tan ( ) tan ( )
10log 1 ( )

2 1 tan ( ) tan ( )

n e c n cn

d c n c n e

k l l S S k lS
TL

S S S k l k l l

 

 

    
  

    
           (2.11) 

 

 

Figure 2.1 Helmholtz resonator with extended neck. 
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2.1.2 Analytical approach of the HR with a spiral neck 

The traditional short neck is replaced by a spiral neck to make the neck as long as 

possible when there is a space constraint. Meanwhile, the curvature of the spiral neck 

changes the impedance
71

, and it can then be considered equivalent to the traditional 

straight neck. For these reasons, this kind of HR can improve noise reduction 

performance at low frequencies within a limited space. 

 

Figure. 2.2(a) illustrates a HR with a spiral neck. The spiral neck can be divided into 

three parts: two straight tubes of lengths IL  and IIL  respectively, and the spiral 

tube, which takes N turns of total length 0*2 *IIIL N R , as shown in Figure. 

2.2(b). The cross-section area of these three parts is the constant nS . The particle 

velocity along the toroidal axis in the spiral tube is determined by the radial 

dependence of the sound pressure and the curvature dependence of the sound 

pressure. However, the radial dependence of the sound pressure is quite small due to 

the low frequency range considered in this paper. This means that the sound pressure 

remains the same over the cross-section area.
72

 Therefore, the particle velocity is 

simplified as: 

0

0 0

1 1
( , )

P
v R

j R


 

 



                  (2.12) 

where P is the sound pressure,   is the angular frequency, 0  
is the air density,   
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is the curvature angle, and 0R is the distance from the point of the curvature center. 

The curvature changes the impedance of the spiral tube, and it can then be considered 

equivalent to a straight tube. For the spiral tube with cross-section area nS  and 

length IIIL  shown in Figure. 2.2(b), the equivalent straight tube with cross-section 

area nS 
 
and IIIL   is expressed as: 

/n nS S F  , III IIIL L F                   (2.13) 

where 2 2

0 0 0 00.5( / ) (1 1 ( / ) )F r R r R    is the equivalent coefficient as a result of 

the curvature in the tube and 0 0/r R  indicates the abruptness of the bend and its 

effects on the equivalent coefficient. 

 

 

Figure 2.2 (a) a Helmholtz resonator with a spiral neck; (b) the spiral neck with three turns; (c) a 

section of the curved tube. 

 

The equivalent coefficient F is practically less than unity, which means that the 

equivalent straight tube has a larger area ( n nS S  ) and a shorter length ( III IIIL L  ). 

The spiral neck could therefore be considered a combination of three connected 

straight tubes in a theoretical analysis. The equivalent theoretical model of a HR with 

( )a ( )b ( )c

0R

0r
(I)

(II)

(III)

dS

nS

IL

IIL

cS
cL
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a spiral neck is shown in Figure. 2.3. 

 

Figure 2.3 The equivalent Helmholtz resonator. 

 

The frequency range considered here is well below the cut-off frequency, so only 

planar waves propagate in the neck and cavity. The relation of point 1 to point 5 could 

be obtained through the transfer matrix method
73,74

 as:  
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Eq. (2.14) could be simplified as:  

51 11 12

21 220 1 0 5n c

PP T T

T TS u S u 

    
     
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                (2.15) 
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where 1P  , 1u  and 5P  , 5u  are the sound pressures and particle velocities at point 1 

and point 5, respectively. Assuming the walls of the cavity are rigid, the particle 

velocity at point 5 equals zero ( 5 0V  ). The impedance of HR with a spiral neck 

could be derived from Eq. (2.15) as: 

1 11
0

1 21

r

n

P T
Z

u S T
                      (2.16) 

Once the resonator impedance has been obtained, the transmission loss of a 

side-branch HR with a spiral neck can be described as:  

0 0
10

1 1
20log ( 2 )

2 d r

c
TL

S Z


                  (2.17) 

 

2.1.3 Comparison of HRs with different types of necks 

For a HR with fixed cavity, the effects of the two neck types on transmission loss are 

each analyzed. The theoretical predictions are compared to the Finite Element 

Method (FEM) simulation results using commercial software (COMSOL 

Multiphysics)
75,76

. The HR with an extended neck is shown in Figure. 2.1. The 

geometries of the HR used here are: cavity length 21cl  cm, cavity radius 6.6cr 

cm, neck radius 1nr  cm, and base neck length 8nl  cm. The cross-section area of 

the main duct is 36dS  cm
2
. The effects of extension length el  on the transmission 

loss of the HR are investigated at first. 
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The transmission loss of a HR with different extension lengths that is analyzed by the 

modified one-dimensional approach is shown in Figure. 2.4. It can be seen that with 

the increase in neck extension length, the resonance frequency decreases with a 

narrower attenuation band. Figure. 2.5 compares the predicted results to the FEM 

simulation results. It is shown that the modified one-dimensional analytical approach 

predictions fit well with the FEM simulation results. Note that a 15.08cm change in 

extension length results in a 22 Hz shift in the resonance frequency, while the 

resonance frequency of a HR without an extended neck is only 59Hz, as shown in 

Figure. 2.4. The alteration in resonance frequency is apparent and significant at low 

frequency range. Furthermore, no change in cavity volume is required for the 

reduction in resonance frequency.  

 

 

Figure 2.4 Transmission loss of the HR with different extension neck lengths. 
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Figure 2.5 Comparison of the analytical approach predictions and the FEM simulation for 

different extension neck lengths (solid lines represent the theoretical prediction, and dotted 

crosses represent the FEM simulation results). 

 

Selamet and Lee
62

 experimented on the Helmholtz resonator with different extension 

lengths. The geometries of their experimental HR are: 20.32vl  cm, 7.62vr  cm, 

2nr  cm, 8.5nl  cm, and 18.49dS  cm
2
, which are different from the geometries 

used in this paper. Figure. 2.6 illustrates a good agreement between the predictions of 

the modified one-dimensional analytical approach and the results of Selamet and 

Lee’s experiment. Their experimental results are directly extracted from their 

publication to verify the accuracy of the modified one-dimensional method. Similarly, 

a 15cm extension length into the cavity results in a 33 Hz shift in resonance frequency 

without a change in the cavity volume, which is distinct when compared to the 

resonance frequency of 98 Hz for a HR without the extended neck.  
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Figure 2.6 Comparison of the modified one-dimensional analytical approach predictions and the 

experiment for a Helmholtz resonator with different extension lengths (the dotted symbols 

represent the experiment’s results). 

 

The HR with a spiral neck is shown in Figure. 2.2. The geometries of the HR are: 

cavity length 21cl  cm, cavity radius 6.6cr  cm, fixed neck radius 1nr  cm, 

straight tube length 4I IIL L  cm, 0 1.2R  cm, and length of spiral tube 

0*2 *7.54IIIL N R N  cm (length of each turn is 7.54 cm). The cross-section 

area of the main duct is 36dS  cm
2
. The N is an integer here, and it indicates the 

turns of the spiral tube. When N equals zero, this means that the spiral tube is 

non-existent and the neck only contains two straight tubes, which actually make it a 

traditional straight neck. Besides, the spiral tube could be treated as equivalent to a 
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straight tube in a theoretical model, as shown in Figure. 2.3, when 0N  . 

 

 

Figure 2.7 Transmission loss of a Helmholtz resonator with a spiral neck. 

 

The predicted transmission loss of a HR with different turn number ( 0,1,2,3,4N  ) 

is exhibited in Figure. 2.7. Added spiral turns will decrease the resonance frequency 

and narrow the attenuation band, as well. Figure. 2.8 compares the prediction results 

with the FEM simulation results, and the prediction results are in good agreement 

with the FEM simulation results. The resonance frequency of the HR without a spiral 

neck ( 0N  ) is 59Hz. However, the resonance frequency decreases to 45Hz, 38Hz, 

34Hz, and 30 Hz for 1,2,3,4N  , respectively. This also means that a spiral tube 

with 30.16cm ( 4N  ) change results in a 29Hz decrease in the resonance frequency 
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without changing the cavity volume. The effects of a spiral tube on the resonance 

frequency are obvious, especially at a low frequency range. No change of cavity 

volume is required for the reduction in the resonance frequency. Moreover, more 

turns will result in a much lower resonance frequency. When the total neck length is 

comparable to the wavelength of oscillation, for instance 4N   in this paper, the 

peak amplitude will increase due to the long neck length.  
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Figure 2.8 Comparison of predictions with FEM simulation for different spiral tube lengths (solid 

lines represent the theoretical prediction, and dotted crosses represent the FEM simulation 

results). 

 

As described above, the cavity geometries of HRs with different neck types are the 

same, as are as the neck radiuses. The relation of the base neck length in Figure. 2.1 to 

the length of the two straight tubes in Figure. 2.2 can be expressed as: n I IIl L L  . 

This means that the resonance frequency of the HR without the extended neck or the 
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spiral neck is 59Hz. Figure. 2.9 compares the amount of transmission loss between 

the HRs with different neck types. The results show that a 7.54cm and a 15.08cm 

extension length change or spiral tube length change result in a 14Hz and a 21Hz 

decrease in the resonance frequency, respectively. The effect of the extension neck 

length on resonance frequency is nearly the same as the effect of the spiral tube length 

on resonance frequency.  
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Figure 2.9 Comparison of the HR with an extended neck and the HR with a spiral neck (dashed 

lines represent the HR with an extended neck, and solid lines represent the HR with a spiral neck). 

 

The extension length could be changed flexibly to satisfy the required resonance 

frequency, but it is limited to the cavity length. For the spiral tube, there is no limit to 

the number of possible turns. The HR with a spiral neck can shift the resonance 

frequency to a much lower extent by having more turns added. For instance, the spiral 

tube with 4N   means that the length of the tube comes to 30.16cm, which is much 

longer than the extension length limitation. However, the length of each turn is 

invariable at 02 R . For a certain designed resonance frequency of HR, the utilization 

of the extended neck or the spiral neck can reduce the cavity volume. The acoustic 

characteristics of HRs with these two different neck types have a potential application 

in noise control, especially at low frequencies within a constrained space. 
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2.2 Noise attenuation capacity of a Helmholtz resonator 

The transmission loss index is indeed a major index and has been widely used to 

assess the acoustic transmission performance in the frequency domain. However, 

almost all researches concentrate on the shapes of the transmission loss curve while 

ignoring the area under the transmission loss curve. The noise attenuation capacity 

index defined as the integral of transmission loss in the frequency domain is 

therefore proposed to be one of the key parameters to evaluate HR’s noise 

attenuation performance. The theoretical formula of a HR’s noise attenuation 

capacity is first derived in this thesis. 

 

2.2.1 The classical lumped approach of a Helmholtz resonator 

The classical equivalent spring-mass system is adopted here to reveal the noise 

attenuation capacity of the HR. For the sake of completeness, a brief review of the 

classical lumped approach of a HR is appropriate here. A mechanical analogy of a 

single HR is illustrated in Figure. 2.10. The mass of air in the neck 0m n nM S l   is 

driven by an external time-harmonic sound pressure force 0

j t

e nF S p e  and the cavity 

is regarded as a massless spring with stiffness 
2 2

0 0 /m n cK c S V  (where 0p  is the 

oscillation sound pressure, 0  is air density, 0c is the speed of sound in the air , nl  

and nS  are the neck’s effective length and area respectively,   is the angular 

frequency, and cV  is the cavity volume). The damping coefficient mR  of a HR  is 
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mainly caused by viscous dissipation through the neck, which is determined by 

acoustic screen across the area of the neck. By applying the Newton’s second law of 

motion to the one degree of freedom HR, the oscillatory differential equation can be 

expressed as
52

: 

2

02

j t

m m m n

d x dx
M R K x S p e

dt dt

                (2.18) 

where x  is the displacement of the mass, /v dx dt  represents the velocity of the 

mass.  

 

Owing to the different concerns between an acoustic system and a mechanical system, 

Eq. (2.18) should be rewritten in the form of volume velocity nU vS  as:  

0

j t

a a a

dU
M R U C Udt p e

dt

          (2.19) 

where 
2/a m nM M S  ,

2/a m nR R S  and 
2 /a n mC S K represent the sound mass, 

sound resistance and sound capacitance respectively in analogy of a circuit. The 

impedance of the HR can be derived from the solution of Eq. (2.19) as: 

1
( )r a a

a

p
Z R j M

U C



                    (2.20) 

It is therefore that the resonance frequency of the HR can be derived from Eq. (2.20) 

and be expressed as 0 01/ 2 / 2a a n n cf M C c S l V   . Once the impedance is 

obtained, the transmission loss of a side-branch HR mounted on a duct with 

cross-sectional area dS  can be expressed as: 

0 0
10

1 1
20log ( 2 )

2 d r

c
TL

S Z


                  (2.21) 
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Figure 2.10 Mechanical analogy of a Helmholtz resonator. 

 

2.2.2 Theoretical derivation 

The transmission loss index is mainly used to evaluate the acoustic transmission 

performance in the frequency domain. However, it cannot provide a quantitative 

characteristic of the noise attenuation band. It is therefore that this paper proposes the 

noise attenuation capacity index as one of the key parameters to evaluate the HR’s 

noise attenuation performance quantitatively and distinctly. The noise attenuation 

capacity TLC  which is defined as the integral of transmission loss in the frequency 

domain, could be expressed as: 

0 0
10

1 1 1 1
20log ( 2 )

2 2 2
TL

d r

c
C TLdf TLd d

S Z


 

 
            (2.22) 

The effect of viscous dissipation through the neck is ignored for simplicity. It is 

therefore that  aR  in Eq. (2.20) equals zero. Then, substituting Eq. (2.20) into Eq. 

(2.22) gives:  
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 2 2 2 2 2 2
10 1010log ( ) 10log ( )TLd B C A d B C d              

(2.23) 

where 0 0 / 2 dA c S , 0 /n nB l S   and 
2

0 0 / cC c V  are constants related to 

geometries of the HR and the duct. The antiderivative of the first term on the 

right-hand side of Eq. (2.23) can be solved as: 

   2 2 2 2 2 2 2
10 10

2 2 2
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 
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   (2.24) 

and 
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    (2.25) 

where a and b  should satisfy the requirements of 
2 2( 2 ) /a b A BC B    and 

2 2/ab C B  simultaneously. 

The antiderivative of the second term on the right-hand side of Eq. (2.23) can be 

derived as: 

 2 2 2 2 2
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 (2.26) 
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Combining Eq. (2.24), Eq. (2.25) and Eq. (2.26), Eq. (2.24) can be rearranged as: 

2 2 2

2 2 2

10 ( )( ) ( )
ln 2 arctan( ) 2 arctan( ) ln

ln10 ( ) ( )

a b c
TLd a a b b c

c c

  
   

 

   
    

  


(2.27) 

According to Eq. (2.27), the integral of transmission loss in the circular frequency 

domain can be calculated as:  

0

0

10 10 5
( )

ln10 ln10 ln10
n

nd

c SA
TLd a b

B S l

  




   
          (2.28) 

It should be noted that the quantities of a  and b  do not need to be solved to obtain 

the a b . The quantity of a b can be obtained according to the relation of 

2 2( ) ( ) 2 ( / )a b a b ab A B      (where a  and b  should satisfy the 

requirements of 
2 2( 2 ) /a b A BC B    and 

2 2/ab C B  simultaneously).  

It is therefore that the noise attenuation capacity TLC  is derived as: 

0

0 0

1 5

2 2ln10
n

TL

nd

c S
C TLdf TLd

S l




 

  
            (2.29) 

It can be seen from Eq. (2.29) that the noise attenuation capacity TLC  in the 

frequency domain is only related to the geometries of the neck and the cross-sectional 

area of the duct. The cavity volume has no effects on the HR’s noise attenuation 

capacity. Similar to the resonance frequency, Eq. (2.29) provides a distinct parameter 

to evaluate the HR’s noise attenuation band quantitatively. Moreover, Eq. (2.29) 

indicates that the noise attenuation bandwidth and peak attenuation amplitude are 

complimentary to each other. There is no trick to noise control. It points out distinctly 

the impossibility for some struggles to obtain a broader noise attenuation band with 
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higher peak amplitude for a determined side-branch HR system. The TLC  can 

therefore be considered as one of the main acoustic characteristics of a HR and be 

taken into consideration in noise control optimization and HR design. 

 

2.2.3 Numerical simulation results 

The three-dimensional FEM simulation using commercial software (COMSOL 

Multiphysics)
75,76

 is used to validate the correctness of the proposed theoretical 

formula of noise attenuation capacity. As low frequencies are the main concerns here, 

the frequency range considered here is well below the duct’s cutoff frequency. Hence, 

only planar wave is assumed to propagate through the duct in all the FEM simulations. 

An oscillation sound pressure at a magnitude of 0 1P   Pa is applied at the beginning 

of the duct. An anechoic termination is applied at the end of the duct to avoid 

reflected waves. 

 

Three different HRs with fixed neck geometries 4nl  cm, nS  cm
2
 and three 

different cavity volumes 1 392.04V  cm
3
, 2 479.16V  cm

3
 and 3 653.4V  cm

3
 

are used here, annotated as HR1, HR2 and HR3 respectively. The cross-sectional area 

of the main duct is set as 36dS  cm
2
 . The acoustic FEM models of these three 

side-branch HRs are built separately, as illustrated in Figure. 2.11. To ensure the 

accuracy, a fine mesh spacing of no more than 2.2 cm is maintained for these models. 
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The mesh divides these three models more than 8000 triangular elements. The 

maximum element is observed in the duct with a side length of around 2.2 cm; the 

minimum element can be observed in both the neck-duct interface and the 

neck-cavity interface with a side length of around 0.16 cm.  

 

Figure 2.11 The acoustic FEM models of side-branch HRs with respect to different HRs: (a) HR1 

model, (b) HR2 model, (c) HR3 model. 

 

The comparison of theoretical predicted transmission loss and the FEM simulation 

results with respect to different HRs are illustrated in Figure. 2.12, and the predicted 

results are in good agreement with the FEM simulation results. The solid lines 

represent the theoretical predictions, and dashed crosses represent the FEM 
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simulation results. It can also be observed that the resonance frequency of the HR 

decreased with the increasing cavity volume, as a well-known principle. However, 

the normalized predicted transmission losses of these three models are almost the 

same by normalizing to their corresponding resonance frequency, as demonstrated in 

Figure. 2.13. It indicates that the cavity volume has no effects on TLC .  

 

 

Figure 2.12 Comparison of theoretical predictions and the FEM simulation results with respect to 

different HRs. 
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Figure 2.13 Normalized transmission loss of different HRs. 

 

The acoustic FEM models of the identical HR mounted on ducts in respect of 

different cross-sectional areas are demonstrated in Figure. 2.14, annotated as Sd1 

model, Sd2 model and Sd3 model corresponding to different  duct’s cross-sectional 

areas 1 25dS  cm
2
, 2 36dS  cm

2
 and 3 64dS  cm

2
  respectively. Similar to 

aforementioned acoustic FEM models, a fine mesh system is conducted and it is not 

described in details here for simplicity. Figure. 2.15 compares the transmission loss 

of these models between the theoretical predictions and FEM simulation results. 

The solid lines represent the theoretical predictions, and dashed crosses represent 

the FEM simulation results. The theoretical predicted results agree well with the 

FEM simulation results. It can be observed that the resonance frequencies of these 
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three models remain unchanged due to the same HR used here. However, a much 

broader band with higher peak can be obtained through the decrease of the duct’s 

cross-sectional area.  

 

 

Figure 2.14 The acoustic FEM models of the identical HR mounted on different ducts with 

respect to different cross-sectional areas: (a) Sd1 model, (b) Sd2 model, (c) Sd3 model. 
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Figure 2.15 The transmission loss of the identical HR mounted on ducts with different 

cross-sectional areas. 

 

Six different HRs with fixed cavity volume 479.16V  cm
3 

and different neck 

geometries are installed on the duct of cross-sectional area 36dS  cm
3
 separately.  

The acoustic FEM models are exhibited in Figure. 2.16. The models annotated as ln1 

model, ln2 model and ln3 model are corresponding to different necks with fixed 

cross-sectional area nS   cm
2
 and different neck lengths 1 2nl   cm, 2 4nl   cm 

and 3 8nl   cm respectively.  The models annotated as Sn1 model, Sn2 model and 

Sn3 model are corresponding to necks with fixed length 4nl   cm and different 

cross-sectional areas 1 0.36nS  cm
2
, 2nS   cm

2
 and 3 2.25nS   cm

2
 

respectively. It should be noted that an identical model is named after two different 

names as ln2 model and Sn2 model in order for the convenience of investigations 
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here.  

 

  

  

 

Figure 2.16 The acoustic FEM models of side-branch HRs in respect of different neck geometries: 

(a) ln1 model, (b) ln2 model, (c) ln3 model, (d) Sn1 model, (e) Sn2 model, (f) Sn3 model. 

 

Figure. 2.17(a) compares the transmission loss between theoretical predictions and 
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FEM simulation results with respect to different neck lengths. The comparison of 

theoretical predicted results and the FEM simulation results in respect of different 

cross-sectional areas of necks are demonstrated in Figure. 2.17(b). The predicted 

results fit well with FEM simulation results in both Figure. 2.17(a) and Figure. 

2.17(b). It can be observed in Figure. 2.17(a) that the increased neck length will 

decrease HR’s resonance frequency as well as the bandwidth. Whereas, a broader 

bandwidth compromised with a higher resonance frequency can be obtained by 

increasing the cross-sectional area of the neck, as illustrated in Figure. 2.17(b). The 

changes in the resonance frequency of a HR is also a well-known principle. It is 

therefore that the concerns here focus on the noise attenuation bandwidth. The 

normalized predicted transmission losses of these models are demonstrated in Figure. 

2.18(a) and Figure. 2.18(b) corresponding to variations in neck length and neck’s 

cross-sectional area respectively. A more obvious change of noise attenuation 

bandwidth due to the geometries of neck can be observed in Figure. 2.18. 
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Figure 2.17 Comparison of theoretical predictions and the FEM simulation results with respect to 

different HRs (solid lines represent the theoretical predictions, and dashed crosses represent the 

FEM simulation results). 
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Figure 2.18 Normalized transmission loss of different HRs. 

 

The aforementioned models imply the correctness of proposed Eq. (2.29). 

Furthermore, the noise attenuation capacity TLC of those models above is exhibited 
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in Table 2.1. It can be observed from Table 2.1 that the relative errors between the 

FEM simulation results and calculated values of Eq. (2.29) are less than 6%, 6.1% 

and 2.5% in the frequency ranges of 0~250 Hz, 0~350 Hz and 0~1000 Hz 

respectively. The transmission loss of ln1 model and Sn3 model do not approach zero 

at 250 Hz as demonstrated in Figure. 2.17. It is therefore that the chosen frequency 

range is 0~350 Hz rather than 0~250 Hz for the last six models. The results indicate 

that correctness of the TLC  calculated by Eq. (2.29) .The TLC  is only related to the 

geometries of the neck and the duct’s cross-sectional area. The cavity volume of the 

HR has no effects on the TLC . Similar to the significance of HR’s resonance 

frequency, the proposed Eq. (2.29) for TLC  should therefore be considered as one of 

the main acoustic characteristics of a HR. It provides a distinct parameter to evaluate 

the HR’s noise attenuation band quantitatively and illuminates the limitations in HR’s 

noise control applications. Furthermore, it can be extended to other research areas 

related to HR, for instance notch filters
77

 and metamaterials
79-81

. 
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Table 2.1 Relative error between the FEM simulation result and value of Eq.(2.29) 

 

 

Models 

 

HR1 

model 

HR2 

model 

HR3 

model 

Sd1 

model 

Sd2 

model 

Sd3 

model 

TLC  

FEM (0~250 Hz) 568.47 568.25 569.24 817.96 568.47 325.64 

Eq.(2.29) 603.58 869.15 603.58 339.51 

Relative error 5.8% 5.9 % 5.7% 5.9% 5.8% 4% 

FEM (0~1000 Hz) 589.76 590.2 589.69 848.17 590.2 331.52 

Eq.(2.29) 

 

603.58 

 

869.15 603.58 339.51 

Relative error 2.3% 2.2% 2.3% 2.4% 2.2% 2.4% 

  Models 

  

ln1 

model 

ln2 

model 

ln3 

model 

Sn1 

model 

Sn2 

model 

Sn3 

model 

TLC  

FEM (0~350 Hz) 902.17 575.1 334.83 244.51 575.1 1130.4 

Eq.(2.29) 958.63 603.58 346.74 242.43 603.58 1202.2 

Relative error 5.9% 4.7% 3.4% 0.9% 4.7% 6% 

FEM (0~1000 Hz) 935.89 590.2 340.32 248.36 590.2 1185.3 

Eq.(2.29) 958.63 603.58 346.74 242.43 603.58 1202.2 

Relative error 2.4% 2.2% 1.9% 2.4% 2.2% 1.4% 
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2.3 Summary 

In order to improve the noise attenuation performance of the HR at low frequencies 

with a constrained space. This chapter presents theoretical and numerical studies of 

a HR with an extended neck and a HR with a spiral neck. With the increasing of the 

extension length or the spiral neck length, resonance frequency decreases 

significantly. An identical change in the extension neck length or the spiral neck 

length will produce the same decrease in resonance frequency. It is clear that a 22Hz 

decrease in resonance frequency is obtained without changing the cavity volume, a 

significant difference from the resonance frequency of 59Hz that exists for HRs 

without these two types of necks. For a certain designed resonance frequency of HR, 

the utilization of the extended neck or the spiral neck can reduce the cavity volume. 

The acoustic characteristics of HRs with these two different neck types have a 

potential application in noise control at low frequencies within a constrained space. 

 

The noise attenuation capacity of the HR is proposed and the theoretical formula of 

it has been derived theoretically. The noise attenuation capacity is defined as the 

integral of transmission loss in the frequency domain. The effects of the neck length, 

cross-sectional area of the neck, cavity volume and cross-sectional area of the duct on 

TLC  are analyzed theoretically and numerically. The TLC is only related to the 

geometries of the neck and the cross-sectional area of the duct. The cavity volume has 

no effects on the TLC . Similar to the significance of the HR’s resonance frequency, 
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the proposed theoretical formula of TLC  should therefore be considered as one of the 

main acoustic characteristics of the HR. It provides a distinct parameter to evaluate 

the HR’s noise attenuation band quantitatively and illuminates the limitations in HR’s 

noise control applications. It is an important supplement to the theoretical studies and 

engineering applications of HRs. 
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Chapter 3  

 

Different Helmholtz resonator array 

configurations 

 

A dual HR consisting of two HRs connected in series (neck-cavity-neck-cavity) 

could be considered as a serial HR array. Two HRs mounted on the same 

cross-section of the duct constitute a parallel HR array. A lined HR array is composed 

of two HRs installed on the longitudinal direction of the duct. Since HR is reactive 

silencer without energy consumption, the noise attenuation capacity of different HR 

array configurations is evaluated based on the concept of the noise attenuation 

capacity. On the basis of low frequency range of interest here, the dimensions of HRs 

considered here are significant small compared to the wavelengths. It is therefore that 

the evanescent high-order modes can be considered by introducing an end correction 

factor to improve the accuracy of the classical lumped approach. The effect of 

viscous dissipation through the necks will be ignored for simplicity. 

 

3.1 The serial HR array 

A dual HR formed by two HRs connected in series (neck-cavity-neck-cavity), which 
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could be considered as a serial HR array, leads to two resonance frequencies. A dual 

HR could be analogous to a two degrees of freedom mechanical system
82

, as 

illustrated in Figure. 3.1. According to Hooke’s law, it should be noted that the first 

string has different stiffness ( 11K  and 12K  ) to the front and rear masses connected 

on it. By applying the Newton’s second law of motion to the first mass 1M  and the 

second 2M  respectively yield: 

2

1 1
1 1 11 1 1 02

2

2 2
2 2 22 2 12 22

j td x dx
M R K x S p e

dt dt

d x dx
M R K x K x

dt dt


  


   


              (3.1) 

where 1 0 1 1nM S l  and 2 0 2 2nM S l   are the corresponding mass of air in the 

necks including the end-correction factor, 1R  and 2R  are damping coefficients of 

necks, 11K  and 12K  represent the stiffness of the first spring to the first mass and 

second mass respectively, 
2 2

22 0 0 2 2/K c S V  is the stiffness of the second spring, 

j te  is the time-harmonic disturbance. Appling the Hooke’s law to the mechanical 

analogy of a dual HR, the stiffness 11K  and 12K  could be obtained as:  

2

0 0 1
11 1 1 2 2

1 1

2

0 0 2
12 1 1 2 2

1 2

( )
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                   (3.2) 

With the introduction of Eq. (3.2), Eq. (3.1) could be rewritten as:  
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1 1 1 1 2 2 1 02

1

2 2 22

0 0 2 0 0 22 2
2 2 2 1 1 2 22
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      (3.3) 
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Substituting 1 1

j tx X e  and 2 2

j tx X e   into Eq. (3.3) and rearranging in the matrix 

form as:  

2 2 2
2 0 0 1 0 0 1 2

1 1

1 1 1 1 0

2
22 2 20 0 1 2 1 2

2 2 0 0 2

1 1 2

0( )

j t j t
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(3.4) 

where 1X  and 2X  are the magnitude of the first and the second neck’s displacement 

respectively.  Eq. (3.4) could be simplified as: 
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where 
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. 

According to Eq. (3.5), the relation of 1X  and 0 1p S  could be described as

1 0 1 22 11 22 12 21/ ( )X p S a a a a a  . It is therefore that the acoustic impedance of the dual 

HR could be obtained as: 

0 11 22 12 21
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r
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Z
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
               (3.6) 

By ignoring the effect of viscous dissipation through the necks for simplicity 

( 1 2 0R R  ), Eq.(3.6) could be rewritten as:  
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Once the acoustic impedance of the dual HR has been obtained according to Eq. (3.7), 

the transmission loss of the dual HR could be calculated through Eq. (2.17) in 

Chapter 2. 

 

 

Figure 3.1 Mechanical analogy of a dual Helmholtz resonator. 

 

3.2 The parallel Helmholtz resonator array 

Two Helmholtz resonators mounted on the same cross-section of the duct is 

illustrated in Figure. 3.2. The classical lumped approach is adopted here and the 

acoustic impedance of these two HRs can be calculated by Eq. (2.20), expressed as 

1rZ  and 2rZ respectively. By ignoring the reflected waves from downstream of the 

duct, the continuity conditions of sound pressure and volume velocity at the 
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duct-neck interface give:  

1 2 1 2f fp p p p   , 
1 2

1 2

1 2

f f

d d

r r

p p
S u S u

Z Z
              (3.8) 

where p with subscript represents sound pressure, 1u  and 2u  are the particle 

velocity at point 1 and point 2 respectively. 

The relation between point 1 and point 2 could be obtained by combining the 

continuity conditions as:  
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              (3.9) 

Then the transmission loss of the parallel HR array can be determined by the 

four-pole parameters method as: 

0 0 1 2
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1 2

1
20log ( 2 )

2

r r

d r r

c Z Z
TL

S Z Z

 
                  (3.10) 

 

 

Figure 3.2 A parallel Helmholtz resonator array 



54 

3.3 The lined Helmholtz resonator array 

 

 

Figure 3.3 Schematic diagram of a lined Helmholtz resonator array. 

 

A single HR has a high transmission loss peak with narrow band at its resonance 

frequency. Combining several HRs in line is a possible way to obtain a broader noise 

attenuation band. Figure. 3.3 demonstrates an array of two lined HRs mounted on the 

duct. Similar to Eq. (3.9), by combining the continuity conditions of the sound 

pressure and volume velocity at neck-neck interfaces, the relation between point 1 

and point 2 and that between point 3 to point 4 could be obtained respectively as:  
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Only the planar wave is assumed to propagate through the duct due to the interest of 

low-frequency range here. It means that there is only a phase delay of the wave 

propagation in the straight duct from point 2 to point 3. Thus, the relation of point 2 

and point 3 could be described as:  

3 32

0 0 2 0 0 3 0 0 3

cos( ) sin( )

sin( ) cos( )
duct

p pp kL j kL

c u j kL kL c u c u  

      
       
      

T      (3.13) 

where L represents the distance between two HRs, ductT  is the transfer matrix of the 

straight duct, k is the number of wave. Then, the relation of point 1 and point 4 could 

be described in the matrix form as:  

1 4 411 12

21 220 0 1 0 0 4 0 0 4

1 2r rduct

p p pt t

t tc u c u c u  

      
       

      
T T T         (3.14) 

Once the transfer matrix  1 2r rductT T T  has been obtained, the transmission loss of the 

lined HR array can be calculated from the expression as:  

10 11 12 21 22

1
20log ( )

2
TL t t t t                    (3.15) 

 

3.4 Comparison of different configurations 

The transmission loss index is used to evaluate acoustic transmission performance in 

the frequency domain. However, it cannot be used to analyze the attenuation 

characteristics quantitatively. The concept of noise attenuation performance, which is 

based on the transmission loss index and discussed above, could give us a distinct 

parameter to evaluate the noise attenuation performance and ability of different array 
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configurations. Based on the aforementioned definition of the noise attenuation 

capacity, the noise attenuation capacity TLC  of a HR array is defined as the 

integration of transmission loss TL  in the frequency domain and is expressed as: 

1

0

( )
f

TL i i i

i

C TLdf TL f f



                   (3.16) 

 

The dual HR could be considered as two HRs connected in series 

(neck-cavity-neck-cavity), as illustrated in Figure. 3.1. There are two kinds of HRs 

with same neck dimensions and different cavity volumes are adopted here, annotated 

as HR1 and HR2 respectively. The geometries of HRs used in here are: same neck 

area 2.25nS  cm
2
 and neck length 2.5nl  cm, cavity volume 1 653.4RV  cm

3 

and 1 261.36RV  cm
3 

corresponding to HR1 and HR2 respectively. The 

cross-sectional area of the main duct is 25dS  cm
2
. The resonance frequency of a 

HR is only determined by its geometries. It is therefore that the resonance frequencies 

of HR1 and HR2 are 152 Hz and 244 Hz respectively according to the discussion 

above.  Figure. 3.4 illustrates the configuration of two dual HR cases: HR1-HR2 

model and HR2-HR1 model respectively.   
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Figure 3.4 Configuration of two dual HR cases: (a) HR1-HR2 model, (b) HR2-HR1 model. 

 

The predicted transmission loss of these two cases are compared with two individual 

HRs, as shown in Figure. 3.5. It can be observed that the dual HR cases have two 

resonance frequencies. The first resonance frequency of HR1-HR2 model and 

HR2-HR1 model are 121 Hz and 103 Hz respectively, which are both lower than 152 

Hz (HR1’s resonance frequency). The second resonance frequency of HR1-HR2 

model and HR2-HR1 model are 301 Hz and 361 Hz, which are both higher than 244 

Hz (HR2’s resonance frequency). The HR2-HR1 model could provide a lower first 

resonance frequency than the HR1-HR2 model, however, the decreased first 

resonance frequency compromises an increasing second resonance frequency. The 

comparison of the analytical predicted results and the FEM simulation results are 

illustrated in Figure. 3.6, and the prediction results are in good agreement with the 

FEM simulation results. The solid lines represent the theoretical predictions, and 

dashed lines represent the FEM simulation results. 
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Figure 3.5 Configuration of two dual HR cases: (a) HR1-HR2 model, (b) HR2-HR1 model. 
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Figure 3.6 Comparison of the analytical predictions and the FEM simulation in respect of 

different dual HR models. 

 

The parallel HR array consisting of two HRs mounted on the same cross-section of 

the duct is shown in Figure. 3.2. The two kinds of HRs used here are the same as HR1 

and HR2 above, as is as the cross-section area of main duct. On the basis of 

low-frequency range considered in this paper, only planar wave is assumed to 

propagate in the duct. It is therefore that these two HRs can be mounted on arbitrary 

side of the cross-section of the duct. Figure. 3.7 compares the transmission loss 

between the parallel HR array and each HR. The parallel HR array has two resonance 

frequencies with nearly the same peak amplitudes corresponding to each HR’s 

resonance frequency and peak amplitude. There is also a frequency at the intersection 
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of two individual HRs’ TL curve, suggesting as an anti-resonance behavior. A good 

agreement between the theoretical predicted TL results and the FEM simulation 

results can also be seen in Figure. 3.8. The solid line represents the theoretical 

predictions, and dashed line represents the FEM simulation results. The parallel HR 

array could be approximated as the superposition of two individual HRs’ TL curve. 

 

 

Figure 3.7 Transmission loss of the parallel HR array and individual HRs. 
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Figure 3.8 Comparison of the analytical predictions and the FEM simulation in respect of the 

parallel HR array. 

 

The schematic diagram of a lined Helmholtz resonator array, which is composed of 

two HRs, is exhibited in Figure. 3.3. The used HRs (HR1 and HR2) and the main duct 

are the same as mentioned above. The optimal distance is corresponding to the 

quarter-wavelength of HRs’ mean frequency defined as fm=2fHR1* fHR2/(fHR1+ fHR2)
83

. 

As a consequence, the distance L between two HRs used in this paper is 0.46L m . 

The comparison of theoretical predicted transmission loss between the lined HR 

array and each HR is shown in Figure. 3.9. Two peak amplitudes corresponding to 

each HR’s resonance frequency could be observed from the lined HR array. Moreover, 

the lined HR array provides a much broader noise attenuation band between the 
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resonance frequencies of these two HRs. Figure. 3.10 shows that the theoretical 

predicted results fit well with the FEM simulation results.  

 

Figure 3.9 Transmission loss of the lined HR array and individual HRs 

 

Figure 3.10 Comparison of the analytical predictions and the FEM simulation in respect of the 
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lined HR array (solid line represents the theoretical predictions, and dashed line represents the 

FEM simulation results). 

 

The noise attenuation capacity TLC of those cases as described above is exhibited in 

Table 3.1. The maximum relative errors of TLC  between the theoretical analysis and 

FEM simulation are less than 5% in frequency range of 0~600 Hz (parallel case) and 

less than 1% in frequency range of 0~1000 Hz respectively. It should be noted that the 

TLC  of HR1 equals to the TLC  of HR2. It means that the change of the cavity 

volume has no effect on the TLC . The theoretical formula of a HR has derived in 

Chapter 2, which shows that the TLC is only related to the geometries of the neck and 

the cross-sectional area of the duct. It should also be noted that although the dual HR 

contains two HRs, the TLC of the dual HR equals to the TLC of each single 

component HR mounted on the ducted. The added HR in series leads to two 

resonance frequencies, however, these two noise attenuation bands compromises 

with a narrower noise attenuation band. The added HR in series could be considered 

as the added volume of the cavity. Therefore, the TLC of the dual HR equals to the 

TLC of each single component HR. Besides, being bulky is another disadvantage for a 

dual HR when compared with its component HRs. 
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Table 3.1   TL
C  with different frequency range 

 

TL
C  with different frequency range 

 

0~600 Hz 

 

0~1000 Hz 

Cases Theory FEM 

 

Theory FEM 

HR1 1.62210
3
 1.62510

3
 

 

1.64710
3
 1.64410

3
 

HR2 1.62710
3
 1.63310

3
 

 

1.65910
3
 1.6610

3
 

HR1-HR2 1.63110
3
 1.62610

3
 

 

1.66910
3
 1.67110

3
 

HR2-HR1 1.64110
3
 1.64410

3
 

 

1.66410
3
 1.67410

3
 

Parallel array 3.01210
3
 3.12910

3
 

 

3.21610
3
 3.28610

3
 

Lined array 3.16410
3
 3.23910

3
 

 

3.24910
3
 3.27910

3
 

 

Although the transmission loss performance of the lined HR array is different from 

the parallel array, as depicted in Figure. 3.11. The parallel array could be 

approximated as the combination of the transmission loss performance of HR1 and 

HR2, as illustrated as Figure. 3.8. The lined HR array could provide a much broader 

noise attenuation band between two resonance frequencies. However, the  TLC  of  

the parallel HR array equals to the TLC of the lined HR array, which is twice the TLC  

of the dual HR cases. The lined HR array and the parallel HR array demand the same 

space as the dual HR, but in different ways. 
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Figure 3.11 Transmission loss of the lined HR array and the parallel HR array. 

 

3.5 Summary 

The acoustic performance of three kinds of HR arrays are investigated theoretically 

and numerically. The dual HR consist of two HRs connected in series is considered as 

a serial HR array. Two HRs mounted on the same cross-section of the duct constitute 

a parallel HR array. The lined HR array is composed of two HRs installed on the 

longitudinal direction of the duct. Different installation methods have significant 

effects on the curve of the transmission loss in the frequency domain. The dual HR 

could provide two resonance frequencies, which the first and second resonance 

frequency are lower and higher than the resonance frequency of any component HRs 
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respectively. By altering the connected sequence of two HRs in the dual HR, the 

reduced first resonance frequency compromises an increasing second resonance 

frequency could be observed. The parallel HR array has two resonance frequencies 

with nearly the same peak amplitudes corresponding to each HR’s resonance 

frequency and peak amplitude. It could be approximated as the superposition of two 

individual HRs’ TL curve. The lined HR array provides a much broader noise 

attenuation band between the resonance frequencies of these two HRs. The two 

resonance frequencies corresponding to each HR’s resonance frequency could also be 

observed. 

 

In consideration of noise attenuation capacity, it should be noted that the TLC of the 

dual HR equals to the TLC of each single component HR mounted on the ducted. It is 

because that the added HR in series could be considered as the added volume of the 

cavity. The change of the cavity volume has no effect on the TLC . It indicates that 

the dual HR could only provide two narrow noise attenuation bands. The  TLC  of  

the parallel HR array equals the TLC of the lined HR array, which is twice the TLC  of 

the dual HR or each component HR. In addition, a dual HR is bulky when compared 

with its component HRs. The lined HR array and the parallel HR array demand the 

same space as the dual HR, but in different ways. The quantitative parameter TLC

should therefore be considered as one of the main acoustic characteristics to evaluate 

the acoustic performance and be taken into consideration in noise control 
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optimization and HR design.  
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Chapter 4  

Dispersion relation of sound wave in a 

periodic ductwork system 

 

4.1 Periodic Helmholtz resonator array 

4.1.1 A duct with an array of Helmholtz resonator 

 

 

Figure 4.1 Schematic diagram of a periodic ducted HR system with finite resonators. 

 

Since a single resonator has a narrow noise attenuation band, an array of resonators is 

one way to obtain a broader noise attenuation band. An array of Helmholtz resonators 

mounted on the duct periodically is illustrated in Figure. 4.1. A duct segment with a 

resonator constitutes a typical periodic cell. The duct segment’s length is regarded as 

a periodic distance based on the assumption that the diameter of the resonator’s neck 
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is negligible in a periodic cell. The sound pressure and particle velocity in the duct 

segment of the nth  cell, as shown in Figure. 4.1, can be described as  np x  and 

 nu x  with a suffix of n . The sound pressure is a combination of two wave 

propagations in opposite directions of axial x . Assuming a time-harmonic 

disturbance in the form of 
j te 

, the sound pressure can be expressed as
84,85

: 

     n njk x x t jk x x t

n n np x I e R e
     

      (4.1) 

where k  is the number of waves, ( 1)nx n d   represents the local coordinates, d  

is the periodic distance, nI  and nR  represent respective complex wave amplitudes. 

Combining the continuity of sound pressure and volume velocity at x nd  yields: 
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 

T   (4.2) 

where dZ  is the acoustic impedance of the duct, T  is the transfer matrix. Once the 

initial sound pressure is given, the sound pressure and particle velocity in an arbitrary 

cell can be determined successively by Eq. (4.2). According to Bloch wave theory, 

the transfer matrix can be set as T (  is set to be exp( )jqd , and q  is the 

Bloch wave number and is allowed to be a complex value).  

 

The analysis of the periodic structure translates to an eigenvalue and its 

corresponding eigenvector problem. From the definition of  , q  must satisfy the 

following dispersion relation: 
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where c dV S d   ( cV  represents the HR’s volume, dS  the cross-sectional area of 

the duct). The Bloch wave number q  is a complex value comprising a real part, rq , 

and imaginary part, iq ; the solutions of exp( )jqd    describe the propagation 

properties of Bloch waves. Assuming that 0rq   and 0iq  , the two solutions 

r iq q jq   and ( )r iq q jq    represent the propagation properties of positive- x  

and negative- x  Bloch waves respectively, corresponding to the eigenvalues 1  and

2 . The eigenvectors corresponding to eigenvalues 1  and 2  can be expressed as 

1 1[ , ]I Rv v T
 and 2 2[ , ]I Rv v T

 respectively. 

 

4.1.2 Dispersion relation 

The solution of q  is a function of the wave frequency, periodic distance, and 

geometric dimensions of a duct resonator system. The dispersion relation of sound 

waves in a duct can be described by solutions of q . When q  contains an imaginary 

part, this implies that a sound wave decays as it travels; the frequency ranges of such 

a sound wave are called stopbands. Passbands are sound waves that have only a phase 

delay during travel when q  only contains a real part. Stopbands are brought about 

physically by two mechanisms. One is when sound wave frequency coincides with 

the resonator’s resonance frequency, which is also the mechanism of a 

single-resonator case. The other is Bragg reflection. Based on these two mechanisms, 
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a theoretical prediction of stopband position and its bandwidth is studied. 

 

When the asymptotic wave frequency 0   is considered, setting 0/ 1     

(   is assumed to be well below unity). When Eq. (4.3) is set to be unity, the 

approximate stopbands at     and     are expressed in the form of Taylor 

series: 
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S n
  


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where 0 0 0/k c  is the wave number of resonance frequency and 0c  is the sound 

velocity. The stopband of resonance can be expressed as  0 0(1 ) , (1 )     . 

For the sake of simplicity, when only zero-order correction is considered, the 

bandwidth is given as 0 0 0 0cot( 2) tan( 2) 4bw c dV k k d k d S   . 

The stopband is also due to Bragg reflection; it occurs near 0 /m m c d   ( m is an 

integer). Then kd m  ( m  is an integer) can be obtained, indicating the 

approximate positions of stopbands. When the asymptotic wave frequency m   

is considered, setting / 1m    . Then, Eq. (4.3) is rewritten as: 

2
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

 

  
        

  

(4.6) 

 

Thus stopbands of Bragg reflection appear at  (1 / 2) , (1 / 2)m m m m   , where 
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2

0( / ) 1bw m m m m         represents the bandwidth. As the integer number 

m  increases, the width of the stopband becomes narrower as 
21/ m  and the 

maximum value of the imaginary part becomes smaller as 1/ m . 

 

In practice, the special case where the designed resonance frequency 0  coincides 

with the Bragg reflection frequency m  is applied to achieve a broader noise 

stopband at resonance frequency. The stopband is thus a combination of resonance 

and Bragg reflection. Then Eq. (4.6) is converted to 

2 2cos( ) ( 1) [1 ( ) ( 2) 2]mqd m      . Thus the stopband of the special case can 

be obtained at 0 0[(1 2) , (1 2) ]     , with bandwidth 02 2bm    . The 

bandwidth decreases with increasing d ( 0 2d m ), where 0 0 02 /c    is the 

wavelength of resonance frequency. For the sake of a broader stopband at resonance 

frequency, 0 2d   is often chosen as a periodic distance. 

 

4.2 Transmission loss of periodic ducted HR systems 

4.2.1 Transmission loss of periodic ducted HR systems 

According to the definition of the eigenvalue, Eq. (4.2) can be expressed in 

eigenvector form as:  
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where 0A  and 0B  are complex constants determined by boundary conditions. The 

end boundary conditions with reflection coefficient   give: 
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 
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Similarly, the initial condition gives:  
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 (4.9) 

Thus the average transmission loss can be expressed as:  
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    (4.10) 

When the duct ends with an anechoic termination, the reflection   equals zero, and 

1  describes positive-direction propagation, it means that 1 1  , 2 1  . 0 0B   is 

required in this situation. The average transmission loss of a duct with an anechoic 

termination loaded with infinity resonators can be expressed as: 10 120logTL   . 

 

4.2.2 Noise attenuation capacity of periodic ducted HR systems 

The transmission loss index is mainly used to evaluate the acoustic transmission 

performance. Base on the transmission loss index, the noise attenuation capacity 

index as one of the key parameters to evaluate the noise attenuation performance of a 

HR has been proposed and derived. The concept of noise attenuation capacity can 

also be adopted to evaluate the acoustic performance of periodic ducted HR systems 
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as well. Since HR is reactive silence without energy consumption, therefore, the 

sound power is introduced to evaluate the noise attenuation performance. According 

to the definition of the transmission loss as: 

 10lg /i t i tTL Lw Lw w w       (4.11) 

where 
2

i i iw S p c  and 
2

t t tw S p c  are the incident sound power and 

transmission sound power respectively. Since HRs are reactive silencers without 

energy consumption, their energy storage capacity in a frequency domain is 

expressed as:  

10 10

1

( ) ( /10 ) ( /10 )
frTLTL fr

total i t i i i iW w w w w w w          (4.12) 

When the dimensions of a duct resonator system and the incident sound power are 

determined, the noise attenuation capacity of a HR and the HRs’ energy storage 

capacity remains unchanged. The periodic distance only affects stopbands’ position, 

bandwidth, and amplitude; however, it has no effect on HRs’ energy storage capacity. 

Owing to multiple relationships between the integration of TL  curve or totalW  in a 

frequency domain, the integration of TL  curves can be used to evaluate HRs’ energy 

storage capacity and noise control optimization design. 

 

4.3 Results and discussion 

A duct resonator system with the geometries 36dS   cm
2
, 2.5nl   cm, 4nS   

cm
2
, and 101.25V   cm

3
 was used in this study. The three-dimensional finite 
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method was used to validate theoretical prediction. An oscillating sound pressure at a 

magnitude of 0 1P   was applied at the beginning of the duct. An anechoic 

termination was set at the end to avoid reflected waves.  

 

Figure. 4.2 shows 0 m   cases ( 1,3,10n  ) with two types of stopband separately. 

The TL  of two different special cases ( 0 1 d     and 0 2m d    ) was 

compared with a single-branch HR in Figure. 4.3, in which the stopband near the 

resonance frequency is a combination of Bragg reflection and resonance effect. The 

relationship between integer number m  and periodic distance d  in special cases is 

given as 0 / 2d m . Figure. 4.4 shows that the width of the stopband becomes 

narrower as 1/ m  with increasing m  in special cases ( 0 0 00.5 ,1.5 ,3d    ). 

Thus, for the sake of having a broader stopband at resonance frequency, 0 2d 

( 1m  ) is often chosen as periodic distance. Figure. 4.5 verifies 10 120logTL    

in cases of infinite resonators, and also compares three different cases 

( 0 0 00.5 ,0.68 ,d    ) with a single-branch HR. The theoretical TL  of different 

cases are compared with the numerical simulation using three-dimensional FEM 

(dotted crosses). The predicted result fits well with the FEM results. In addition, the 

results illustrate that the broader the noise attenuation band, the lower the peak 

attenuation amplitude. 
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Figure 4.2 The average transmission loss TL of the duct resonator system with different numbers 

of HRs. 

     

Figure 4.3 Comparison of the average transmission loss TL of different special cases and the 

single HR. 
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Figure 4.4 The average transmission loss TL of the duct resonator system with periodic distance. 

 

Figure 4.5 Comparison of the average transmission loss TL  in cases of infinite resonators and 

the single-branch HR. 

Based on the conservation of energy, the total energy totalW  of all TL  curves (the 
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average noise attenuation capacity) from 0 Hz to 1,000 Hz are almost the same, as is 

the area covered by TL  curves. Table 4.1 and Table 4.2 show different cases with 

different periodic distances and numbers of resonators by both theoretical prediction 

and simulation. The maximum relative error of TL area and totalW  between 

theoretical analysis and FEM are 3.6% (case: 64 HRs with distance   ) and 3.1% 

(case: single HR) respectively. 

 

 

Table 4.1 TL  area and 
total

W  of ten HR duct resonators with different periodic distances 

  Periodic d  0.5    1.5  2  2.5  3  3.5  

FEM 

TL area (10
3
) 2.7092 2.7329 2.7364 2.747 2.7389 2.754 2.752 

total
W  (10

-4
) 2.4631 2.4887 2.503 2.5123 2.4986 2.5206 2.5065 

Theory 

TL  area (10
3
) 2.6249 2.6565 2.6672 2.6729 2.6767 2.6795 2.6807 

total
W  (10

-4
) 2.4567 2.4618 2.4695 2.4853 2.5069 2.5098 2.5104 

 

 

 

 

 

 

Table 4.2 TL  area and 
total

W  of a periodic ducted HR system with different numbers of HR 
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Resonator 

 number 

0.5d   d   

Theory FEM Theory FEM 

TL  area total
W  TL area total

W  TL area total
W  TL area total

W  

(10
3
) (10

-4
) (10

3
) (10

-4
) (10

3
) (10

-4
) (10

3
) (10

-4
) 

1 2.6766 2.4333 2.7532 2.5108 2.6766 2.4333 2.7532 2.5108 

2 2.6562 2.5203 2.7378 2.5097 2.6654 2.5055 2.7445 2.5078 

3 2.6422 2.5198 2.7272 2.5041 2.6596 2.4889 2.7396 2.5041 

4 2.6337 2.5 2.7205 2.4987 2.6576 2.4745 2.7347 2.4958 

5 2.6288 2.4845 2.7161 2.4954 2.6576 2.4743 2.7361 2.5022 

6 2.6263 2.4742 2.7133 2.5002 2.6575 2.4695 2.7353 2.5001 

7 2.6254 2.4678 2.7117 2.4932 2.6569 2.4652 2.7373 2.5256 

8 2.6253 2.4362 2.71 2.4812 2.6565 2.4618 2.7378 2.5385 

9 2.6252 2.4602 2.711 2.4798 2.6565 2.4617 2.7351 2.4995 

10 2.6249 2.4567 2.7092 2.4631 2.6565 2.4618 2.7329 2.4887 

12 2.6237 2.4496 2.7086 2.4569 2.6563 2.4592 2.7249 2.4754 

16 2.6222 2.4406 2.7086 2.4569 2.6563 2.4595 2.7376 2.5002 

24 2.6211 2.4313 2.703 2.4471 2.656 2.4564 2.7315 2.4841 

32 2.6209 2.4272 2.7043 2.4521 2.6555 2.4552 2.7424 2.5012 

48 2.6198 2.4237 2.7042 2.4536 2.6555 2.457 2.7469 2.5056 

64 2.6201 2.4195 2.7077 2.4468 2.6554 2.4571 2.7536 2.5263 

 

Table 4.3 Relative error between the minimum value and maximum value 
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Theory FEM 

Min Max Min Max 

Case 48 HRs, 0.5  10 HRs, 3.5  24 HRs, 0.5  10 HRs,3  

TL  area (10
3
) T1=2.6198 T2=2.6907 T3=2.703 T4=2.754 

Case 64 HRs, 0.5  2 HRs, 0.5  64 HRs, 0.5  8 HRs,   

total
W  (10

-4
) T5=2.4195 T6=2.5203 T7=2.4468 T8=2.5385 

Relative error (%) 

T1/ T2: 2.6%;    T3/ T4: 1.9%;   T1/ T4: 4.9%; 

T5/ T6: 4%;     T7/ T8: 3.6%;    T5/T8: 4.7% 

 

The relative errors between the minimum value and the maximum value are exhibited 

in Table 4.3. These three tables indicate that for the same system, no matter how 

many HRs are used or what the periodic distance is, the TL area and totalW  are 

always the same. This means that HR’s noise attenuation capacity remains the same 

for the same geometries of duct and resonator. As discussed above, the noise 

attenuation capacity of a HR is determined by its geometries of neck and the 

cross-sectional area of the duct. Therefore, for a certain periodic ducted HR system, 

the average noise attenuation capacity of a HR remains unchanged.   

 

There is no trick to noise control. The broader the noise attenuation band, the lower 

the peak attenuation amplitude. Although different TL  curves with different 

bandwidths and peak amplitudes could be obtained with different periodic distances, 
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TL  area and totalW  are always the same and TL  curves always fall into the 

boundaries of a noise control zone. The noise control zone as shown in Figure. 4.6 is 

first proposed for noise control optimization design. It provides a clear indication of 

the limitation of noise control. No matter what optimizing distance is adopted in 

noise control, the values of the attenuation bandwidth and peak amplitude must be 

within the proposed noise control zone. The noise control zone can be used to analyze 

the feasibility of desired broad attenuation bandwidth and peak amplitude in noise 

control optimization. Figure. 4.6 shows the noise control zone for periodic ducted 

HRs, which is bounded by the highest TL  amplitude for single resonator, and has 

the largest frequency bandwidth with lowest TL  amplitude for 0 2d  . 

 

 

Figure 4.6 Noise control zone for ducted HRs 
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4.4 Summary 

This Chapter presents a theoretical study of the dispersion characteristics of sound 

wave propagation in a periodic ducted HRs system. The predicted result fits well with 

the FEM results. Owing to the coupling of Bragg reflection and HR’s resonances, a 

periodic system can provide much broader noise attenuation band at the designed 

resonance frequencies of the HR. The bandwidths and positions of noise attenuation 

bands have been investigated. This investigation indicates that for the same system, 

no matter how many HRs are connected or what the periodic distance is, the TL  

area and totalW  are always the same. In other words, changing the resonator number 

or the value of the periodic distance has no effect on HR’s noise attenuation capacity.  

 

The broader the noise attenuation band the lower the peak attenuation amplitude. A 

noise control zone compromising the attenuation bandwidth or peak amplitude is first 

proposed to illustrate the limitation of noise control for ducted HR system and can be 

used to analyze the feasibility of desired broad attenuation bandwidth and peak 

amplitude in noise control optimization. TL  curves always fall into the boundaries 

of the noise control zone as long as the geometries of the duct resonator are the same. 

The noise attenuation capacity of a HR has been verified from the aspect of sound 

power. Optimal transmission loss can be obtained by taking full advantage of 

periodicity and noise control zone in the design, achieving the required noise 

attenuation band and peak attenuation amplitude. 
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Chapter 5  

Noise attenuation performance 

improvement of a ductwork system  

 

5.1 Adding Helmholtz resonator on the periodic system 

The transmission loss achieved by a periodic ducted HR system is depended on the 

structure and the number of HRs. However, the number of HRs is restricted by the 

available space in longitudinal direction of the duct. Moreover, such system will 

occupy a large space and may have some spare space in the transverse direction of the 

duct. By adding HRs on the available space in the transverse direction, a modified 

ducted HR system is therefore proposed and investigated. Both the noise attenuation 

band and peak amplitude are increased by adding HRs on arbitrary side of the 

cross-section of the duct. The proposed modified ducted HR system can improve the 

noise attenuation performance and fully utilize the available space, and it is practical 

to be used in an actual ventilation ductwork system. 

 

5.1.1 Side-branch Helmholtz resonators 

For the sake of completeness, a brief description of the transmission loss of a 
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side-branch Helmholtz resonator is necessary here. A single side-branch HR is 

shown in Figure. 5.1. On the basis of low-frequency range considered in this paper, 

only planar wave is assumed to propagate in the duct. By ignoring the time-harmonic 

disturbance and the reflected waves from downstream of the duct, the sound pressure 

and particle velocity can be expressed as:  

 1 1 1

jkx jkxp x I e R e  ,  2 2

jkxp x I e               (5.1) 

  1 1
1

jkx jkx

d d d d

I R
u x e e

S Z S Z

  ,    2
2

jkx

d d

I
u x e

S Z

        (5.2) 

where k  is the wave number, dS  is the cross-sectional area of the duct, dZ  is the 

acoustic impedance of the duct, and iI (i=1,2) and 1R  represent respective complex 

wave amplitudes. Combining the continuity of sound pressure and volume velocity at 

the duct-neck interface at 0x   yields:  

1 2

0 0

0 0 1 0 0 2

1 0

1
1

d r

p p
c

c u c u
S Z


 

 
    

    
    

 

                  (5.3) 

Then the transmission loss of a single side-branch HR can be determined by the 

four-pole parameters method according to Eq. (2.17). 

 

Figure 5.1 A single side-branch Helmholtz resonator. 
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It is well known that a single HR has a high transmission loss peak with narrow band. 

Several identical HRs installed on the same cross-section of the duct is a possible way 

to broaden the noise attenuation band. The side-branch HRs with N (N=4 here for 

example) identical HRs mounted on the same cross-section of the duct is illustrated in 

Figure. 5.2.  

 

 

Figure 5.2 A side-branch Helmholtz resonators (a) side view (b) front view. 

 

Similarly, by ignoring the time-harmonic disturbance and the reflected waves from 

downstream of the duct, the sound pressure and particle velocity of point 1 and point 

2, as shown in Figure. 5.2 (a), can be expressed by Eq. (5.1) and Eq. (5.2) respectively. 

As depicted in Figure. 5.2 (a), the continuity condition of sound pressure at the 

duct-neck interface gives: 1 2 fip p p   (i=1,2,3,4 represents each individual HR). 

The continuity condition of  volume velocity at the same interface gives: 

1 2

N

d d fi r

i

S u S u p Z  . The relation of point 1 to point 2 could be obtained by 
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combining the continuity condition above. Then, according to the four-pole 

parameter method, the transmission loss of the side-branch HRs can be expressed as:  

0 0
10

1 1
20log ( 2 )

2 d r

c
TL N

S Z


                   (5.4) 

According to Eq. (5.4), it can be seen that the resonance frequency of side-branch 

HRs system still depends on the single HR. Several identical HRs mounted on the 

same cross-section of the duct could be considered as an equivalent “one HR” with 

acoustic impedance of /rZ N . It indicates that the equivalent “one HR” remains the 

same resonance frequency as the single HR. The added HRs improve both the peak 

amplitudes and the attenuation band. It inspires us to improve the acoustic 

performance of the periodic ducted HRs system by adding HRs on the transverse 

direction of the duct. 

 

5.1.2 Transmission loss of the modified ducted HR system 

The transmission loss of a periodic ducted HR system is analyzed in Chapter 4. 

Generally, there are two formation mechanisms for the noise attenuation band: the 

HR’s resonance mechanism and the Bragg reflection. Once the periodic distance is 

chosen to be 0 2d  , the designed HR’s resonance frequency coincides with the 

first Bragg reflection. In this situation, a broader noise attenuation band at resonance 

frequency could be achieved.  
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A duct with periodic distributed identical HR has a unique attenuation characteristic 

due to the coupling of Bragg reflection and HR’s resonance. However, for every 

single HR in the periodic ducted HR system, the noise attenuation capacity remains 

unchanged in spite of HR’s number or the periodic distance. The broader the noise 

attenuation band, the lower the peak amplitude. It indicates that the transmission loss 

achievable by periodic ducted HR system is fairly depended on the HR’s number, 

which is restricted to the available space in longitudinal direction of the duct. Besides, 

for a periodic system, there may also have some spare space in transverse direction of 

the duct. It is therefore that a modified ducted HR system is proposed to improve the 

noise attenuation performance and to fully utilize the available space.  

 

As illustrated in Figure. 5.3, HRs are added on the cross-section of the periodic 

ducted HR system to form the modified ducted HR system. The number of HRs 

mounted on the same cross-section depends on the available space. Each cell of the 

modified ducted HR system could comprise different number of HRs. As discussed 

above, several identical HRs mounted on the same cross-section of the duct could be 

considered as an equivalent “one HR” with acoustic impedance of /rZ N . It 

indicates that the resonance frequency of the equivalent “one HR” remains the same 

as the single HR.  
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Figure 5.3 Schematic diagram of a modified ducted HR system. 

 

It is therefore that the system can no longer be represented by the single transfer 

matrix T  derived from Eq. (4.2). Instead, the transfer matrix between each two 

nearby cell should be specified as nT . Similar to the periodic ducted HR system, the 

sound characteristics in nth segment could be expressed by Eq. (5.1) and Eq. (5.2). 

By intruding the continuity conditions, the transfer matrix between nth and n+1th 

segment could be expressed as:  

1

1

(1 )exp( ) exp( )
2 2
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2 2
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



 
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     
       
        
 

T (5.5) 

The complex wave amplitudes can be rewritten into a state vector as 

1 1 1[ ]
n

T

n nI R
  a  , where superscript T means transposition. Then, Eq. (5.5) could 

be simplified as:  

1n n n
 Ta a                        (5.6) 

The transfer matrix nT  could also be expressed in form of  reflection  and 
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transmission coefficients, nt and nr as
86

:  
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where  the superscript 
*
 means conjugation. It follows immediately from Eq. (5.7) 

that:  

* * *

1 1
( )

T T T

n n n n n n 
a T Ta a a                  (5.8) 

Eq. (5.8) is a matrix equation and it can be re-expressed in vector form as:  

1n n n
e A e                        (5.9) 

where 1n
e and n

e  can be represented as: * * * *
T

n n n n n n n nI I I R R I R R   and 

* * * *

1 1 1 1 1 1 1 1

T

n n n n n n n nI I I R R I R R       
    respectively.  

According to the Eq. (5.9) and Eq. (5.10), the matrix 
n

A  takes the form of n
T  as
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where exp( 2 )n jkd   ( d should be replaced by Lstart and Lend when sound 

propagates in the start and end segment of the whole system).  

It can be seen from Eq. (5.11) that the value of (4,4)nA  is 
2

1 nt . It indicates that 

the transmission loss between these two segments could be described as: 

1010log ( (4,4))nTL  A . When the duct ends with an anechoic termination, the whole 

HR system can be described as:  

1 1 1 0
0

( )
n n n n n n

n

i
i

  


    a aT T aT a T               (5.12) 
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With the introduction of Eq. (5.8) and Eq. (5.9), Eq. (5.12) could be expressed as:  

1 0 0
0

n

n

n
i





 
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 

e A e e                    (5.13) 

where  is the matrix of the whole ducted resonator system.  

Similar to Eq. (5.14), (4,4) equals to the modulus squared transmission coefficient 

of the whole system. It is therefore that the average transmission loss of per HR in the 

whole system could be expressed as: 

 10

10
log (4,4)

total

TL
N

                 (5.14) 

where totalN  is the sum of HRs mounted on the duct.  

 

5.1.3 Results and discussion 

The single side-branch HR and the side-branch HRs are illustrated in Figure. 5.1 and 

Figure. 5.2 respectively. The geometries of the HR used in this paper are: cavity 

volume 19.4cV  cm
3
, neck area 0.25nS  cm

2
 and neck length 2.5nl  cm. The 

cross-section area of the main duct is 25dS  cm
2
. The comparison of the 

transmission loss with respect to the number of identical HRs installed on the same 

cross-section of the duct is shown in Figure. 5.4. The transmission loss of a 

side-branch HR has a peak amplitude with narrow attenuation band, as is well known 

and depicted in Figure. 5.4 (N=1). By adding identical HRs on the same cross-section 

of the duct, it can be seen that both the magnitude of transmission loss and the noise 
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attenuation bandwidth are increased obviously. Furthermore, the added HRs has no 

effect on resonance frequency. The equivalent “one HR” has the same resonance 

frequency as the single HR. It means that the added HR changes the acoustic 

impedance of the “equivalent HR” without the changing of resonance frequency.  

 

 

Figure 5.4 Comparison of the transmission loss with respect to the number of identical HRs 

mounted on a same cross-section. 

 

The comparison of the analytical predictions and the FEM simulation with respect to 

different numbers of HR mounted on the same cross-section is exhibited in Figure. 

5.5. It is shown that the predicted results fit well with the FEM simulation results. The 

solid lines represent the theoretical predictions, and dotted crosses represent the FEM 
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simulation results.  

 

 

Figure 5.5 Comparison of the analytical predictions and the FEM simulation with respect to 

different numbers of HR mounted on the same cross-section. 

 

For a periodic ducted HR system, a broader noise attenuation band could be achieved 

due to the coupling of the Bragg reflection and HR’s resonance. However, such kinds 

of noise attenuation system will occupy a large space and it is impractical to be used 

in an actual ventilation ductwork system. The modified ducted HR system, as 

illustrated in Figure. 5.3, is proposed to improve the noise attenuation performance 

and to fully utilize the available space. The geometries of the HR and the main duct 
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are the same as the periodic ducted HR system as given above, as are as the beginning 

and end conditions. The duct segment length of the modified HR system is set to be 

0 2d   as well. On the basis of low-frequency range considered in this paper, only 

planar wave is assumed to propagated in the duct. It is therefore that the added HRs 

can be mounted on arbitrary side of the cross-section of the duct. Figure. 5.6 shows 

the configuration of three modified ducted HR system cases: 2143 model ,2131 

model and 1121 model respectively. 

 

 

 

Figure 5.6 Configuration of three modified ducted HR system cases: (a) 2143 model, (b) 2131 

model, (c) 1121 model (the integer means the number of HR mounted on the same cross-section 

in consecutive duct segment respectively). 
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Figure 5.7 Comparison of transmission loss with respect to different ducted HR systems: (a) the 

average transmission loss of per HR in different systems, (b) the total transmission loss of 

different systems. 
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Figure. 5.7(a) compares the TL  of 2143 model to two periodic ducted HR system 

cases (n=4, 10). The total HR number totalN  of 2143 model equals to the periodic 

ducted HR system case n=10, while the duct’s length of 2143 model is much less than 

the periodic one. The duct’s length of 2143 model is the same as the periodic case 

n=4. However, it can be seen that a broader noise attenuation band could be achieved 

by this modified ducted HR system. Furthermore, the 2143 model has broader noise 

attenuation band and higher peak amplitude than the periodic ducted HR system 

(case: n=4), as shown in Figure. 5.7(b). The transmission loss of the four different 

HR systems with same duct segment number is also compared in Figure. 5.7(b). The 

comparison shows that both the peak amplitude and noise attenuation band are 

increased by adding HR on the duct, especially the noise attenuation band. The added 

HR mounted on the cross-section of the duct mainly broadens the noise attenuation 

band of the total transmission loss. Moreover, the TL  bandwidth has an apparent 

increase due to the added HRs, as shown in Figure. 5.7(a).  A good agreement 

between the theoretical predicted TL  and the FEM simulation results can also be 

seen in Figure. 5. 8. The proposed modified ducted system can improve the noise 

attenuation performance and fully utilize the available space by adding HRs on 

arbitrary side of the cross-section of the duct.  
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Figure 5.8 The average transmission loss of different modified HR systems (solid lines represents 

the theoretical predictions, and dotted crosses represent the FEM simulation results). 
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5.2 Hybrid noise control 

In practical ventilation ductwork system, hybrid noise often occurs due to interaction 

effects of different localized turbulence and discontinuities. In order to deal with 

hybrid noise in ventilation ductwork system, a periodic dual HR array is introduced. 

The dual HR which consists of two HRs connected in series leads to two resonance 

frequencies. The mechanism of Bragg reflection and dual HR’s resonances motivate 

us to achieve several broadband noise attenuation bands in low-frequency range. 

 

5.2.1 Dual Helmholtz resonator  

A dual HR could be analogous to a two degrees of freedom mechanical system, as 

illustrated in Figure. 3.1. The acoustic impedance of a dual HR is also given in 

Chapter 3. It is therefore that the dual HR’s angular resonance frequencies are the 

roots of the following equation:  
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Then, the resonance frequencies of the dual HR can be derived from Eq. (5.15) and be 

expressed as:  
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 (5.16) 
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It can be observed from Eq. (5.16) that the resonance frequencies of the dual HR are 

only determined by its geometries. Therefore, it is straightforward to design a dual 

HR with desired resonance frequencies. Once the acoustic impedance is obtained, the 

transmission loss of the side-branch dual HR mounted on the duct with 

cross-sectional area  dS  could be obtained according to Eq. (2.17).  

 

5.2.2 Coupling of Bragg reflection and dual HR’s resonance 

 

 

Figure 5.9 Schematic diagram of a periodic dual HR system. 

 

The periodic dual HR system, consisting of a uniform duct with dual HRs attached 

periodically, is demonstrated in Figure. 5.9. A duct segment with a side-branch dual 

HR is considered as a typical periodic unit. The diameter of the dual HR’s neck is 

inappreciable compared with the length of the duct segment in a periodic unit. 

Therefore, the length of the duct segment is regarded as the periodic distance. By 
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introducing the continuity conditions of the sound pressure and volume velocity at 

the duct-neck interface that at x nd , the transfer matrix could be obtained as Eq. 

(4.2). Similar to the periodic structure aforementioned in Chapter 4, 

10 120logTL    could be derived to obtain the average transmission loss of a duct 

with an anechoic termination loaded with dual HRs periodically. 

 

The transmission loss of the periodic dual HR system is only related to the solution of 

 , as discussed above. Owing to the relation of q and  , the transmission loss of the 

acoustic system refers to the solution of q . The solution of q , as a function of the 

wave frequencies, periodic distance and geometries of a duct resonator system, is 

allowed to be a complex. The real part and imaginary part of q are critical to 

distinguish the stopbands from passbands. The real part of q  is referred to as 

passbands that have only a phase delay during wave propagation, and the imaginary 

part as attenuation constant named stopbands (decay of a wave happens from one unit 

to the following). It can be known that wave attenuation occurs for frequencies that 

provides an imaginary part to q .  There are two mechanisms of the stopbands: dual 

HR’s resonances and Bragg reflection.  The stopbands caused by dual HR’s 

resonances are situated near dual HR’s resonance frequencies 01f and 02f , which is 

also the mechanism of a single dual HR case. The other kind of stopbands is brought 

about physically by Bragg reflection and will exist near 0 / 2mf mc d  ( m is an 

integer). The width of the stopband decrease as 
21/ m  and the maximum value of the 
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imaginary part becomes smaller as 1/ m . 

 

For a general HR with single resonance frequency, the periodic distance is chosen to 

be half-wavelength of HR’s resonance frequency for the sake of the coupling of first 

Bragg reflection and HR’s resonance. The dual HR has two resonance frequencies 

01f and 02f  (assuming 01 02f f ). In order to obtain broader noise attenuation bands 

at these two resonance frequencies, both the resonance frequencies are designed to 

coincide with Bragg reflection. Note that the Bragg reflection is exiting at 

0 / 2mf mc d  ( m is an integer). It is therefore that the resonance frequencies of the 

dual HR should also satisfy the relation of 02 01f mf  for broader noise attenuation 

bands at the designed resonance frequencies. The resonance frequencies of a dual HR 

could be tuned straightforward due to they are only determined by its geometries. 

Once a dual HR’s resonance frequencies are designed to be 02 012f f , the periodic 

distance could be set as 01 022d     ( 01 and 02  are wavelength of 01f  and 02f  

respectively) to make the first and second Bragg reflection coincide with two 

resonance frequencies of the dual HR respectively for the sake of broader noise 

attenuation bands. 

 

5.2.3 Results and discussion 

The resonance frequencies of a dual HR are only determined by its geometries. The 
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geometries of the dual HR used in this paper are: neck areas 1 0.25S  cm
2
 and 

2 0.25S  cm
2
, neck lengths 1 2.5nl  cm and 2 2.1nl  cm, cavity volumes 

1 115.2V  cm
3
 and 2 62.4V  cm

3
. The cross-sectional area of the main duct is 

25dS  cm
2
.  Thus the resonance frequencies of the dual HR are 301 Hz and 602 Hz, 

which are calculated directly by Eq. (5.16). 

 

 

Figure 5.10 Configuration of the periodic dual HR system consisting of six dual HRs. 

 

The geometries of the dual HR and the main duct used here are the same as given 

above. The periodic dual HR system with an anechoic termination to avoid reflected 

waves from downstream is exhibited in Figure. 5.9. An oscillation sound pressure at a 

magnitude of 0 1P   is applied at the beginning of the duct as the initial boundary 

conditions. Figure. 5.10 shows the configuration of the periodic dual HR system 

consisting of six identical dual HRs mounted on the duct periodically. The average 

transmission loss ( TL ) of a periodic dual HR array system is expressed as 

10 120logTL   , which is only related to the solution of q . For the certain dual 
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HR and main duct used in this paper, it indicates that the shape of TL  is depended on 

the periodic distance. When the periodic distance is chosen to be 010.58 2d  , it 

can be observed from Figure. 5.11 that the dual HR’s resonances and Bragg reflection 

have separated effects on the noise attenuation bands. The stopbands caused by 

resonance are situated near dual HR’s resonance frequencies, and are the mechanism 

of a single dual HR case.  

 

 

Figure 5.11 Noise attenuation bands of the periodic dual HR system due to Bragg reflection and 

dual HR’s resonances separately. 

 

In order to obtain broader noise attenuation bands at designed resonance frequencies 

of the dual HR, the Bragg reflection is intended to coincide with resonance 
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frequencies. The resonance frequencies of the dual HR are 301 Hz and 602 Hz, which 

is designed to satisfy the relation of 01 022  . Once the periodic distance is chosen 

to be 01 2d m  ( m is an integer), broader noise attenuation bands could be 

achieved at both resonance frequencies due to the coupling effect of Bragg reflection 

and dual HR’s resonances, as illustrated in Figure. 5.12. It can be seen from Figure. 

5.12 that the width of noise attenuation bands at resonance frequencies decrease with 

the increasing of m . It is because of the stopbands brought by Bragg reflection 

decrease as 
21/ m  in width.  For the sake of broader noise attenuation bands at 

designed resonance frequencies of the dual HR, the periodic distance is chosen to be 

01 022d    . Therefore, the first and second Bragg reflection can coincide with 

two resonance frequencies of the dual HR respectively. Figure. 5.13 compares noise 

attenuation bands of different periodic distance cases ( 010.5d   and 010.58d  ) 

with or without considering coupling effects.  The coupling of Bragg reflection and 

dual HR’s resonances results in much broader noise attenuation bands at resonance 

frequencies of the dual HR. The FEM simulation used here is similar to the 

aforementioned description. The comparisons of the theoretical predicted results and 

the FEM simulation results with respect to different periodic distances are illustrated 

in Figure. 5.14, and the theoretical predictions fit well with the FEM simulation 

results.  
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Figure 5.12 Noise attenuation bands of the periodic dual HR system due to the coupling of Bragg 

reflection and dual HR’s resonances. 

 

Figure 5.13 Noise attenuation bands of the periodic dual array system with and without coupling 

effects. 
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Figure 5.14 The average transmission loss of the periodic dual HR system in respect of different 

periodic distances (solid lines represent the theoretical predictions, and dashed lines represent the 

FEM simulation results). 
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5.3 Summary 

The periodic ducted HR system could provide broader noise attenuation band due to 

the coupling of the Bragg reflection and the HR’s resonance. For the sake of a broader 

noise attenuation band at the resonance frequency, 0 2d   is often chosen as a 

periodic distance. However, the noise attenuation performance of the system fairly 

depends on the number of HRs, which is restricted by the available space in 

longitudinal direction of the duct. However, there may have some spare space in the 

transverse direction of the duct. By adding HRs on the available space in the 

transverse direction, a modified ducted HR system is proposed. Several identical HRs 

mounted on a same cross-section of a duct has broader noise attenuation band and 

higher peak amplitude without effects on the HR’s resonance frequency. It means the 

modified ducted HR can also take full advantage of periodicity to obtain a broader 

noise attenuation band. Besides, added HRs can improve the noise attenuation 

performance of the whole system. The more HRs added, the better noise attenuation 

performance of the system. The proposed modified ducted HR system fully utilizes 

the available space to improve noise attenuation performance. It is practical to use the 

modified system in an actual ventilation ductwork system, and it has a potential 

application in noise control with longitudinal space limitation. 

 

In practical ventilation ductwork system, hybrid noise often occurs due to interaction 

effects of different localized turbulence and discontinuities. In order to deal with 
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hybrid noise in ventilation ductwork system, a periodic dual HR array is introduced. 

The theoretical and numerical studies of a periodic dual HR system is presented. The 

dual HR which consists of two HRs connected in series (neck-cavity-neck-cavity) 

leads to two resonance frequencies. The geometries of the dual HR are significant 

small compared with the wavelengths. Hence, the lumped parameter theory is 

employed to approximate the dual HR as an equivalent two degrees of freedom 

mechanical system. The resonance frequencies and transmission loss of a dual HR 

have been derived. Aiming at broader noise attenuation bands for hybrid noise 

control at low frequencies, a duct with an array of dual HRs distributed periodically is 

investigated. In the interest of low frequencies, the frequency range considered in this 

paper is well below the duct’s cutoff frequency. It is therefore that only planar wave is 

allowed to propagate in the duct. Owing to the coupling of Bragg reflection and dual 

HR’s resonances, a periodic dual array can provide much broader noise attenuation 

bands at the designed resonance frequencies of the dual HR. In order to make the first 

and second Bragg reflection coincide with two resonance frequencies of the dual HR 

respectively, the periodic distance is set to be 01 022d    . Therefore, two 

broader noise attenuation bands at the dual HR’s resonances can be achieved. 
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Chapter 6  

Conclusion and Suggestions for Future 

Work 

 

6.1 Conclusion 

Noise control in ventilation ductwork system is of importance in improving the 

indoor environmental quality. The unavoidable components of the ductwork system, 

for instance, dampers, bends, transition pieces, corners or even attenuators punctate 

the original uniform ductwork. These discontinuities in a ventilation ductwork 

system results in the generations of localized turbulence. The turbulences are 

responsible for generation of the undesired noise as the ductwork system begins to 

work. This thesis therefore aims at investigating low-frequency broadband noise 

control in ventilation ductwork systems based on Helmholtz resonator arrays. The 

theoretical analysis of the ventilation ductwork systems has been validated by Finite 

Element Method using the commercial software (COMSOL Multiphysics).  

 

First of all, a Helmholtz resonator with different types of neck has been investigated. 

An extended neck or a spiral neck takes the place of the traditional straight neck of 

the HR. The acoustic performance of the HR with these two types of necks is 
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analyzed theoretically and numerically. The length correction factor is introduced 

through a modified one-dimensional approach to account for the non-planar effects 

that result from the neck being extended into the cavity. The spiral neck is 

transformed to an equivalent straight neck, and the acoustic performance is then 

derived by a one-dimensional approach. The theoretical prediction results fit well 

with the Finite Element Method simulation results. Without changing the cavity 

volume of the HR, the resonance frequency shows a significant drop when the 

extended neck length or the spiral neck length is increased. An identical change in the 

extension neck length or the spiral neck length will produce the same decrease in 

resonance frequency. For a certain designed resonance frequency of HR, the 

utilization of the extended neck or the spiral neck can reduce the cavity volume. Then, 

the noise attenuation capacity of a HR is proposed and the theoretical formula of it 

has been derived theoretically. The noise attenuation capacity is defined as the 

integral of transmission loss in the frequency domain. The transmission loss index is 

mainly used to evaluate the acoustic transmission performance in the frequency 

domain. However, it cannot provide a quantitative characteristic of the noise 

attenuation band. The proposed noise attenuation capacity index can be considered as 

one of the key parameters to evaluate the HR’s noise attenuation performance 

quantitatively and distinctly. The effects of the neck length, cross-sectional area of 

the neck, cavity volume and cross-sectional area of the duct on the noise attenuation 

capacity are analyzed theoretically and numerically. The results show that the noise 
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attenuation capacity is only related to the geometries of the neck and the 

cross-sectional area of the duct. The cavity volume has no effects on it. Similar to the 

significance of the HR’s resonance frequency, the proposed theoretical formula of the 

noise attenuation capacity provides a distinct parameter to evaluate the HR’s noise 

attenuation band quantitatively and illuminates the limitations in HR’s noise control 

applications. It is an important supplement to the theoretical studies and engineering 

applications of HRs. 

 

Secondly, the acoustic performance of three kinds of HR arrays are investigated 

theoretically and numerically. The dual HR consisting of two HRs connected in series 

is considered as a serial HR array. Two HRs mounted on the same cross-section of the 

duct constitute a parallel HR array. The lined HR array is composed of two HRs 

installed on the longitudinal direction of the duct. Different installation methods have 

significant effects on transmission loss performance. The dual HR could provide two 

resonance frequencies, which the first and second resonance frequency are lower and 

higher than the resonance frequency of any component HRs respectively. By altering 

the connected sequence of two HRs in the dual HR, the reduced first resonance 

frequency compromises an increasing second resonance frequency could be observed. 

The parallel HR array has two resonance frequencies with nearly the same peak 

amplitudes corresponding to each HR’s resonance frequency and peak amplitude. It 

could be approximated as the superposition of two individual HRs’ transmission loss 
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curve. The lined HR array provides a much broader noise attenuation band between 

the resonance frequencies of these two HRs. The two resonance frequencies 

corresponding to each HR’s resonance frequency could also be observed. In 

consideration of noise attenuation capacity, it should be noted the noise attenuation 

capacity of the dual HR equals to the noise attenuation capacity of each single HR 

mounted on the ducted. The added HR in series could be considered as the added 

volume of the cavity, which indicates it has no effects on the noise attenuation 

capacity. The noise attenuation capacity of the parallel HR array and the lined HR 

array is the same, which is twice of the dual HR or each component HR. The 

quantitative parameter has potential applications to be used in the noise control 

optimization and HR design to evaluate the acoustic performance. 

 

Thirdly, a theoretical study of the dispersion characteristics of sound wave 

propagation in a periodic ducted HRs system has been presented. Owing to the 

coupling of Bragg reflection and HR’s resonances, a periodic system can provide 

much broader noise attenuation band at the designed resonance frequencies of the HR. 

However, the broader the noise attenuation band the lower the peak attenuation 

amplitude. The noise attenuation capacity of a HR has been verified from the aspect 

of sound power.  Although different average transmission loss curves with different 

bandwidths and peak amplitudes could be obtained with different periodic distances, 

the area under the average transmission loss curve and the sound power storage totalW  
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are always the same and average transmission loss curves always fall into the 

boundaries of a noise control zone. A noise control zone compromising the 

attenuation bandwidth or peak amplitude is first proposed to illustrate the limitation 

of noise control for ducted HR system and can be used to analyze the feasibility of 

desired broad attenuation bandwidth and peak amplitude in noise control 

optimization. 

 

Last but not least, a modified ducted HR system based on the periodic ducted HR 

system is proposed and investigated. The transmission loss achieved by a periodic 

ducted HR system is depended on the structure and the number of HRs. However, the 

number of HRs is restricted by the available space in longitudinal direction of the 

duct. Moreover, such system will occupy a large space and may have some spare 

space in the transverse direction of the duct. By adding HRs on the available space in 

the transverse direction, a modified ducted HR system is therefore proposed. Several 

identical HRs mounted on a same cross-section of a duct has broader noise 

attenuation band and higher peak amplitude without effects on the HR’s resonance 

frequency. It means the modified ducted HR can also take full advantage of 

periodicity to obtain a broader noise attenuation band. Besides, added HRs can 

improve the noise attenuation performance of the whole system. The more HRs 

added, the better noise attenuation performance of the system. It is flexible to install 

added HRs on the unoccupied space of the transverse direction of the duct. The 
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proposed modified ducted HR system fully utilizes the available space to improve 

noise attenuation performance. Aiming at broader noise attenuation bands for hybrid 

noise control at low frequencies, a duct with an array of dual HRs distributed 

periodically is investigated. Owing to the coupling of Bragg reflection and dual HR’s 

resonances, a periodic dual array can provide much broader noise attenuation bands 

at the designed resonance frequencies of the dual HR. 

 

6.2 Suggestions for Future Work 

On the basis of the present studies, several suggestions for future work are 

recommended as follows: 

 

1. The transmission loss performance of a Helmholtz resonator with a spiral neck 

or an extended neck is analyzed without the effect of the flows. However, the 

flow effects have significant impact on the transmission loss performance. A 

theoretical model considering the flow effects should be developed in the future 

work. 

 

2. The theoretical formula of the Helmholtz resonator’s noise attenuation capacity 

can be investigated and compared with that under different flow conditions, i.e. 

laminar flow, turbulent flow and different Mach numbers. Moreover, the 
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concept of the noise attenuation capacity can be extended to other silencer. It 

can also be adopted to other research areas related to HR, like notch filter and 

metamaterials, with further investigations.  

 

3. Flow is inevitable in ventilation ductwork system and the Helmholtz resonator 

array mounted on the duct can produce additional noise. The effects of 

localized turbulence due to Helmholtz resonator arrays should be taken into 

account. The complicated acoustic and turbulent interaction of different 

Helmholtz resonator arrays, i.e. the periodic ducted HR array, the periodic dual 

HR array and the modified HR array, is the main content of future work. 

 

4. The tunnel aerodynamics and acoustics becomes a significant issue with the 

rapid developing high-speed trains project combined a lot of tunnel structures, 

and the ideal capsule pipelines project. The micro-pressure waves generated by a 

high-speed train entering and moving in a tunnel become significant problem 

related to passengers’ health and comfort. The Helmholtz resonator array might 

be an effective method to suppress the propagation of micro-pressure waves in 

tunnels. Future investigations included theoretical analysis, numerical and 

experimental works in this area would be meaningful.  
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