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ABSTRACT

Speaker verification aims to verify whether a test utterance is spoken by a target

speaker. Since 2011, the i-vector approach together with probabilistic linear dis-

criminant analysis (PLDA) have dominated this field. Under this framework, each

utterance is represented by a low-dimensional i-vector that captures speaker- and

channel-dependent characteristics, and the PLDA model aims to separate the speaker

variability from channel variability in the i-vector space. On the other hand, in re-

cent years, deep learning has achieved a great success in many areas, including speech

recognition, computer vision, speech synthesis and music recognition. This thesis ex-

plores the applications of deep learning in speaker verification, especially under the

i-vector/PLDA framework.

To address the limitations of hand-crafted acoustic features, this thesis proposes a

deep architecture formed by stacking a deep belief network (DBN) on top of a denois-

ing autoencoder (DAE) for noise robust speaker identification. After backpropagation

fine-tuning, the network – referred to as denoising autoencoder–deep neural network

(DAE–DNN) – outputs the posterior probabilities of speakers and the top hidden

layer outputs speaker-dependent bottleneck (BN) features. The autoencoder aims to

reconstruct the clean spectra of a noisy test utterance using the spectra of the noisy

test utterance and its SNR as input. With this denoising capability, the output from

the bottleneck layer can be considered as a low-dimensional representation of the de-

noised utterances. These frame-based bottleneck features are then used to train an

i-vector extractor and a PLDA model for speaker identification. Experimental results

based on a noise-contaminated YOHO corpus show that the bottleneck features out-



perform the conventional MFCC under low SNR conditions and that the fusion of the

two features leads to further performance gain, suggesting that the two features are

complementary to each other.

A limitation of the above network is that the BN feature vectors tend to be very

similar across the whole utterance, causing numerical difficulty when training the

UBM and the i-vector extractor. This problem, however, can be overcome by train-

ing the DAE–DNN to produce senone posteriors instead of speaker posteriors. The

resulting DAE–DNN produces not only denoised BN features, but also senone poste-

riors from which a senone i-vector extractor can be trained and senone i-vectors can

be extracted. Because the frame-based BN features are now aligned to senone clus-

ters instead of acoustic clusters, the resulting i-vectors characterize how individual

speakers pronounce different phones, which allows more precise comparisons between

speakers. Through extensive evaluations on NIST 2012 SRE, this thesis demonstrates

that senone i-vectors outperform conventional GMM i-vectors. More interestingly, the

BN features are not only phonetically discriminative, results suggest that they also

contain sufficient speaker information to produce BN-based senone i-vectors that out-

perform the conventional senone i-vectors. This thesis also shows that DAE training

is more beneficial to BN feature extraction than senone posterior estimation.

Although the denoised BN-based senone i-vectors improve the noise robustness

significantly compared to the MFCC–GMM ones, adverse acoustic conditions and

duration variability in utterances could still have detrimental effect on PLDA scores.

This thesis also proposes and investigates several DNN-based PLDA score compensa-

tion, transformation and calibration algorithms for enhancing the noise robustness of

i-vector/PLDA systems. Unlike conventional calibration methods where the required

score shift is a linear function of SNR or log-duration, the DNN approach learns the

complex relationship between the score shifts and the combination of i-vector pairs



and uncalibrated scores. Furthermore, with the flexibility of DNNs, it is possible to

explicitly train a DNN to recover the clean scores without having to estimate the

score shifts. To alleviate the overfitting problem, multi-task learning is applied to

incorporate auxiliary information such as SNRs and speaker ID of training utterances

into the DNN. Experiments on NIST 2012 SRE show that score calibration derived

from multi-task DNNs can improve the performance of the conventional score-shift

approach significantly, especially under noisy conditions.
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S PLDA score

E Loss function in backpropagation

w
(n)
ij The weight connecting the i-th node in layer n− 1, and the j-th

node in layer n

y
(n)
i The weighted sum for the i-th node in layer n

ti The target output of the i-th node in the output layer

η Learning rate in backpropagation

vi The i-th visible node in RBM

hi The i-th hidden node in RBM

xv
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Chapter 1

INTRODUCTION

1.1 Automatic Speaker Recognition

Similar to fingerprint recognition and face recognition, automatic speaker recognition

is a very important pathway to biometric authentication. Speaker recognition is based

on the fact that speech production organs are speaker-dependent, so that we are able

to recognize the identity of a speaker purely from his/her speech. It is worth inves-

tigating because it can be used in various applications, such as authentication (e.g.

telephone bank services), surveillance (e.g. conference recording) and forensics (e.g.

phone fraud). Depending on the purpose, there are two types of speaker recognition:

speaker identification and speaker verification.

Speaker identification is to determine whether an unknown speaker matches one

of the known speakers, which means that it is a one-to-many mapping (see Fig. 1.1).

Specifically, given an utterance from an unknown speaker, the posterior probabilities

of known speakers in a database are computed, and the known identity is the one

whose posterior probability is the highest.

Speaker verification is to determine whether an unknown speaker matches a spe-

cific speaker, which means that it is a one-to-one mapping (see Fig. 1.2). Specifically,

the likelihood that the unknown speech is spoken by the claimed speaker is compared

with the likelihood that it is spoken by somebody else. Then, the system accepts the

speaker if the former likelihood is significantly larger than the latter.

Speaker verification can be further divided into text-dependent and text-independent.
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Figure 1.1: Speaker identification [1].

Figure 1.2: Speaker verification [1].

The former requires the speakers to speak exactly the same words and sentences in

both enrollment and verification phases, where the latter does not have such restric-

tion. Systems need to consider the phonetic variabilities for the text-independent

case, which bring a great challenge especially for short utterances.

Automatic speaker recognition under controlled environments is easy. But under

uncontrolled environments, errors are still very high because of different types of vari-

ability in speech signals. For example, the environmental noise, channel variabilities,

Lombard effect [2], emotions and accents all bring difficulties to speaker verification.

1.2 Thesis Organization

This thesis is organized as follows:

In Chapter 2, we introduce the history of speaker recognition, including the GMM

methods, GMM supervectors, and factor analysis. We also give a literature review
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on robust speaker recognition.

In Chapter 3, we review the basics of deep learning techniques, focussing on the

feedforward fully-connected neural networks. The model structure, backpropagation

(BP) fine-tuning and Restricted Boltzmann Machine (RBM) will be discussed.

In Chapter 4, we propose to extract speaker-discriminative bottleneck features

from denoising DNNs for robust speaker identification.

In Chapter 5, we propose a noise-robust phonetically discriminative features,

namely senone i-vectors, that can be obtained from a denoising autoencoder DNN

(DAE–DNN) and a factor analysis model based on the bottleneck features extracted

from the DAE–DNN.

In Chapter 6, we propose using multi-task DNNs to calibrate PLDA scores in

order to compensate for the score shifts under noisy environments.

In Chapter 7, we draw the conclusions and briefly outline the future research

direction in this area.
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Chapter 2

SPEAKER RECOGNITION SYSTEMS

This chapter presents the theoretical backgrounds of speaker recognition systems,

including feature extraction, speaker modeling and speaker classification. It also

provides a literature review on robust speaker recognition.

2.1 Mel-frequency Cepstral Coefficients

Given an utterance, voice activity detection (VAD) is applied to detect the regions

of the speech signals that contain speech. Then, to recognize the identities of speak-

ers, all speaker recognition systems require to perform two consecutive tasks: feature

extraction and pattern classification. For the former, Mel-frequency cepstral coeffi-

cients (MFCCs) [3] are by far the most common handcrafted features. MFCCs are

considered as handcrafted features because their extraction process incorporates the

frequency sensitivity of human ears through a mel-scale filter-bank shown in Fig. 2.1.

Another reason is that the extraction process uses discrete cosine transform (DCT)

to de-correlate the features so that the resulting MFCC vectors can be modeled by a

Gaussian mixture model (GMM) with diagonal covariance matrices, which simplifies

computation significantly.

2.2 GMM-based Speaker Models

Because an utterance can be represented as a series of acoustic features such as

MFCCs, Reynolds et al. [4] proposed to use a Gaussian mixture model (GMM) to

model these features in 1995. A GMM is a linear combination of Gaussian probabil-
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Pre-emphasis Frame Blocking

MFCC
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Logarithm DCT
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Waveform Signal

Figure 2.1: Procedure of MFCC computation.

ity density functions (PDFs). Denote Oi = {oi,1, . . . ,oi,Ti
} as a set of F -dimensional

acoustic vectors of the i-th utterance from speaker j,1 and C as the number of mix-

tures in a GMM whose parameters are given by Λ(j) =
{
λ(j),µ(j),Σ(j)

}
. Then, the

likelihood of the t-th frame oi,t is

p(oi,t) =
C∑
c=1

λ(j)
c N (oi,t|µ(j)

c ,Σ(j)
c ),

where λ
(j)
c and N (oi,t|µ(j)

c ,Σ(j)
c ) are respectively the weight and the Gaussian density

of the c-th mixture with mean vector µ
(j)
c ∈ <F and covariance matrix Σ(j)

c ∈ <F×F .

To train the GMM for speaker j, we used the dataset {O1, . . . ,Oi, . . . ,OI} from

speaker j to estimate the parameters
{
λ(j),µ(j),Σ(j)

}
using the expectation-maximization

(EM) algorithm [5]. Specifically, the update formulas for the GMM parameters are

1To avoid cluttering of symbols in equations, we drop the index j in the acoustic vectors o.
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given by

λ(j)
c =

∑
i

∑
t γ

(j)
c (oi,t)∑

i

∑
t 1

,

µ(j)
c =

∑
i

∑
t γ

(j)
c (oi,t)oi,t∑

i

∑
t γ

(j)
c (oi,t)

,

Σ(j)
c =

∑
i

∑
t γ

(j)
c (oi,t)(oi,t − µ(j)

c )(oi,t − µ(j)
c )ᵀ∑

i

∑
t γ

(j)
c (oi,t)

,

where γ
(j)
c (oi,t) is the posterior probability that oi,t is generated by the c-th mixture

of the GMM Λ(j) =
{
λ(j),µ(j),Σ(j)

}
:

γ(j)
c (oi,t) =

λ
(j)
c N (oi,t|µ(j)

c ,Σ(j)
c )∑C

k=1 λ
(j)
k N (oi,t|µ(j)

k ,Σ
(j)
k )

.

However, training a speaker-specific GMM needs a large amount of data from

the corresponding target speaker. In 2000, Reynolds et al. [6] proposed to train

a universal background model (UBM) Λ(b) =
{
λ(b),µ(b),Σ(b)

}
by using the speech

of many speakers, followed by performing maximum a posteriori (MAP) adaptation

using speaker-dependent data. Specifically, the mean vectors of the UBM are adapted

as follows [7]:

µ(j)
c =

∑
t γc(ot)ot∑

t γc(ot) + r
+

rµ
(b)
c∑

t γc(ot) + r
,

where r is called the relevance factor. The method avoids over-fitting the speaker-

dependent GMM, especially when the amount of speech from the target speaker is

very limited.

Given the acoustic vectors O(t) from a test speaker and a claimed identity j, the

verification score is a log-likelihood ratio :

SLR(O(t)|Λ(j),Λ(b)) = log p(O(t)|Λ(j))− log p(O(t)|Λ(b)), (2.1)
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where log p(O(t)|Λ(j)) is the log-likelihood of O(t) given the speaker model Λ(j), which

is given by

log p(O(t)|Λ(j)) =
∑

o∈O(t)

log
C∑
c=1

λ(b)
c N (o|µ(j)

c ,Σ(b)
c ). (2.2)

Note that only the mean vectors in the speaker model are speaker-dependent, i.e.,

Λ(j) = {λ(b)
c ,µ

(j)
c ,Σ(b)

c }Cc=1. This is because only the means are adapted in practice.

2.3 GMM-Supervectors

The lack of discriminative training in GMM–UBM limits its performance. How-

ever, most of the discriminative classifiers require the input patterns to have a fixed-

dimension. Therefore, how to represent variable-length utterances by fixed-length

feature vectors is always an issue in speaker verification.

In 2006, Campbell et al. [8] proposed to use a fixed-dimensional vector, namely

supervector, to represent a single utterance. A supervector is formed by stacking

the mean vectors of a MAP-adapted GMM. After scaling by the mixture coefficients

and covariance matrices of the UBM, a GMM-supervector is produced. Then, the

speaker-dependent supervector is presented to a speaker-dependent support vector

machine (SVM) for classification and scoring.

2.4 Factor Analysis, I-Vectors and PLDA

2.4.1 I-Vectors

Although the supervector system in Section 2.3 can represent variable-length utter-

ances in a fixed-dimensional space, the dimension is too large, which limits the choice

of classifiers. For example, if the acoustic features have 60 dimensions and the GMM

have 1024 mixtures, the dimension of the supervector is 60× 1024 = 61, 440.

In 2011, Dehak et al. [9] conjectures that the GMM-supervectors vary in a sub-

space of the supervector space. To find such subspace, they consider the utterance-
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dependent GMM-supervectors to be generated by a factor analysis model whose fac-

tor loading matrix defines the subspace. Instead of actually finding the utterance-

dependent GMM-supervectors and then estimate the loading matrix, they aligned

the speech frames of many utterances to a universal background model (a speaker-

independent GMM) to determine the sufficient statistics of the utterances, which in

turn determine the maximum-likelihood estimate of the loading matrix. As these

utterances are spoken by many speakers under different channels and acoustic envi-

ronments, the loading matrix define not only speaker variability but also non-speaker

variabilities such as channel variability. They refer to the subspace defined by the

loading matrix as the total variability (TV) space and the factors as the total factors.

For each utterance, the posterior mean of the factors is called the i-vector. Similar to

the GMM-supervectors, the i-vectors are of fixed dimension regardless of the utter-

ances’ duration. However, unlike GMM-supervectors, the dimension of i-vectors are

significantly smaller, e.g., 500 versus 61,400.

The GMM-supervector representing the i-th utterance is assumed to be generated

by a factor analysis model [10]:

µi = µ(b) + Twi, (2.3)

where µ(b) is the supervector formed by stacking the mean vectors of a universal

background model (UBM), T is a CF×D low-rank total variability matrix (T-matrix)

modeling the speaker and channel subspaces, and wi is a D-dimensional latent factor

whose prior follows a standard Gaussian distribution N (0, I). While µi and wi are

utterance-dependent, µ(b) and T are shared across all speakers and utterances.

Eq. 2.3 is a generative model in that given the wi of a speaker, his/her supervector

µi can be generated. Of course, the model is not perfect and there will be discrepancy

(error) between the truth value of µi and the generated one. In factor analysis, we

typically assume that the discrepancy follows a Gaussian distribution with zero mean



9

and covariance Σ. As the dimension of µi is very high, Σ is assumed to be diagonal.

In most practical implementation of i-vector extraction, Σ is approximated by the

covariance matrices in the UBM, i.e.,

Σ ≈ diag{Σ(b)} = diag{Σ(b)
1 , . . . ,Σ

(b)
C },

where Σ(b)
c is the c-th covariance matrix of the UBM, which is typically diagonal.

Given N training utterances, the T-matrix can be estimated by the following EM

algorithm [10,11]:

• E-step:

〈wi|Oi〉 = L−1
i

C∑
c=1

T ᵀ
c(Σ

(b)
c )−1f̃ ic, (2.4a)

〈wiwi
ᵀ|Oi〉 = L−1

i + 〈wi|Oi〉〈wi|Oi〉ᵀ, (2.4b)

Li = I +
C∑
c=1

NicT
ᵀ
c(Σ

(b)
c )−1T c, (2.4c)

where i = 1, . . . , N .

• M-step:

T c =
[∑

i
f̃ ic〈wi|Oi〉ᵀ

] [∑
i
Nic〈wiwi

ᵀ|Oi〉
]−1

. (2.5)

In Eq. 2.4 and Eq. 2.5, 〈·|·〉 denotes conditional expectation; i indexes the set of

training utterances; N is the number of training utterances; T c is the c-th partition

of T ; Σ(b)
c is the c-th covariance matrix of the UBM; Nic and f̃ ic are the 0th- and

1st-order Baum-Welch statistics respectively:

Nic =
∑

t
γc(oi,t),

f̃ ic =
∑

t
γc(oi,t)(oi,t − µ(b)

c ).
(2.6)
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Given the t-th frame of the i-th utterance, oi,t is the MFCC vector of the t-th frame

and γc(oi,t) in Eq. 2.6 is the posterior of the c-th mixture component in the UBM:

γc(oi,t) =
λ

(b)
c N (oi,t|µ(b)

c ,Σ(b)
c )∑C

j=1 λ
(b)
j N (oi,t|µ(b)

j ,Σ
(b)
j )

, (2.7)

where
{
λ

(b)
j ,µ

(b)
j ,Σ

(b)
j

}C

j=1
are UBM parameters.

Once the T-matrix has been estimated, the i-vector xi = 〈wi|Oi〉 representing the

i-th utterance can be computed according to Eq. 2.4a.

Note that the acoustic vectors oi,t’s are not limited to MFCCs. Instead, they can

be bottleneck (BN) vectors extracted from a DNN. However, caution should be taken

when BN vectors are used. If the DNN is trained to produce speaker posteriors,

the BN vectors from the same utterance will be very similar because they come

from the same speaker. In other words, for the entire utterance, the frame-based

activations at the bottleneck layer are very similar so that the DNN can give a large

posterior probabilities in the output node corresponding to the speaker and small

probabilities in the rest. The similarity in the BN vectors causes them to align to the

same (potentially small) group of Gaussians in the BN-based UBM. This property

leads to sparsity in the zeroth- and first-order statistics in Eq. 2.6, which in turns

causes numerical difficulty when computing the matrix inverses in Eq. 2.4 and Eq. 2.5.

Another issue is that the BN vectors tend to form isolated islands in the BN space

(otherwise they cannot differentiate speakers). The small within-speaker variances

essentially reduce the effective number of vectors for training the BN-based UBM,

which again causes numerical problems. Both of these drawbacks motivate us to use

senone posteriors instead of speaker posteriors, as detailed in Chapter 5.
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2.4.2 Within-Class Covariance Normalization

To normalize the within-speaker covariance of i-vectors, within-class covariance nor-

malization (WCCN) [89] is applied. First, the within-speaker scatter matrix of i-

vectors, Sw, is estimated:

Sw =
J∑

j=1

Nj∑
i=1

(x
(j)
i − µ(j))(x

(j)
i − µ(j))ᵀ,

where J is the number of speakers, Nj is the number of i-vectors from speaker j, x
(j)
i

is the i-th i-vector from speaker j, and µ(j) is the mean of the i-vectors from speaker

j. Then, through the Cholesky decomposition

BBᵀ =

(
1

J
Sw

)−1

,

we compute the WCCN transform matrix B.

2.4.3 Probabilistic Linear Discriminative Analysis

As no labels are used in the EM algorithm in Section 2.4.1, the unsupervised training

of T-matrix causes the i-vectors to capture both the speaker- and channel-dependent

characteristics of the utterances. Inspired by the work of Prince [12], in 2010, Kenny

[13] proposed a Bayesian factor analysis model known as heavy-tailed probabilistic

linear discriminant analysis (HT-PLDA) that can separate the speaker and channel

variabilities in the i-vector space. The basic idea is that the prior of i-vectors follows

a Student’s t-distribution. Subsequent to Kenny’s pioneer work, Garcia-Romero and

Espy-Wilson [14] found that after applying length normalization to the i-vectors, the

heavy-tailed distribution can be replaced by a simple Gaussian distribution. This

finding leads to the so called Gaussian PLDA (G-PLDA). By leveraging the speaker

labels of the training i-vectors, a speaker loading matrix and a channel loading matrix
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can be jointly trained.

The G-PLDA algorithm can be applied to i-vectors to represent the speaker-

dependent characteristics in a lower dimensional subspace. Consider a data set com-

prising J speakers andNj i-vectors from the j-th speaker, X =
{
x

(j)
i ; i = 1, . . . , Nj; j = 1, . . . , J

}
.

Similar to Eq. 2.3, the M -dimensional speaker representation z(j) is the latent factor

of the FA model [10]:

x
(j)
i = m+ V z(j) + ε

(j)
i ,

where x
(j)
i ∈ <D, m ∈ <D and V ∈ <D×M are the i-th i-vector from speaker j, the

global mean of all i-vectors and the speaker factor loading matrix, respectively. The

residual noise ε
(j)
i ∈ <D is assumed to follow a normal distribution with zero mean

and covariance matrix Σ(p). The parameters
{
m,V ,Σ(p)

}
can be estimated by the

EM algorithm similarly to Section 2.4.1, but with speaker labels and C = 1.

The PLDA score of i-vector pair (xtgt, xtst) can be expressed in terms of the

log-likelihood ratio LLR(xtgt,xtst):

SPLDA(xtgt,xtst)

= LLR(xtgt,xtst)

= log

(
p(i-vector pair|same speaker)

p(i-vector pair|different speaker)

)

= logN

xtgt

xtst

 ;

m
m

 ,
Σtot Σac

Σac Σtot

− logN

xtgt

xtst

 ;

m
m

 ,
Σtot 0

0 Σtot


=

1

2

[
xᵀ
tgtQxtgt + xᵀ

tstQxtst + 2xᵀ
tgtPxtst

]
+ const,

(2.8)

where Σtot = V V ᵀ+Σ(p) and Σac = V V ᵀ, andQ = Σ−1
tot−(Σtot−ΣacΣ

−1
totΣac)

−1 and

P = Σ−1
totΣac(Σtot − ΣacΣ

−1
totΣac)

−1 are matrices derived from the total covariances

and across-speaker covariances of i-vectors [14].



13

2.5 Performance Evaluation Metrics

There are two types of error rates to measure the performance of a speaker verification

system:

1. False Rejection Rate (FRR) (PMiss|Target), also known as the miss probability,

represents the chance of falsely rejecting the true speakers:

PMiss|Target =
NMiss

NTarget

,

where NMiss is the number of false rejections given a decision threshold, and

NTarget is the total number of trials with the test-speakers being the target-

speakers. FRR increases with the decision threshold increases.

2. False Acceptance Rate (FAR) (PFalseAlarm|Nontarget), also known as the false

alarm probability, represents the chance of falsely accepting the imposters as

true speakers:

PMiss|Target =
NMiss

NTarget

,

where NFalseAlarm|Nontarget is the number of false acceptances given a decision

threshold, and NTarget is the total number of trials with the test-speakers being

non-target speakers. FAR increases with the decision threshold decreases.

To have a balance between FRR and FAR, equal error rate (EER) and decision

cost function (DCF) are used to measure the the performance of a speaker verification

system. EER is the error rate when the decision threshold makes FAR and FRR equal.

DCF is a linear combination of FRR and FAR, and minimum DCF (minDCF) is the

minimum value of DCF when the decision threshold can be varied. The actual DCF

(actDCF) is the DCF value at a fixed threshold.
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2.6 Robust Speaker Recognition

2.6.1 Robust Acoustic Feature Extraction

The I-vector/PLDA system can improve the accuracy of automatic speaker recogni-

tion. However, under noisy environments, the performance degrades rapidly due to

the variability in speech signals, such as the environmental noise and Lombard effect.

Fig. 2.2 is the t-SNE [15] plot of MFCCs from a 1-minute utterance under different

SNR conditions. We can observe that at low SNR (e.g. 0dB), the MFCCs form very

dense clusters. This means that the traditional hand-crafted acoustic features suffer

from severe distortion under noisy conditions. Therefore, the use of speech enhance-

ment techniques to improve speaker recognition performance has drawn the attention

of the speaker recognition community. For example, Hasen and Hansen [16] proposed

to enhance and normalize acoustic features by feature-domain factor analysis. De-

noising autoencoders (DAE) [17] have been applied to restore speech either in the

spectral domain [18] or in the i-vector space [19–21]. Note that unlike conventional

speech enhancement, the goal of speech enhancement for speaker recognition is to

robustify the acoustic feature vectors instead of reconstructing the clean waveforms.

Another approach to improving the robustness of i-vector systems is to directly

reduce the distortion at the spectral level. For example, Xing and Hansen [22] reduced

the frequency-shift distortion due to modulation/demodulation carrier mismatch for

speaker recognition. Human tend to change their vocal effort under noisy environ-

ments (a phenomenon known as the Lombard effect), causing acoustic mismatch be-

tween normal speech and shouted speech. Saedi et al. [23] addressed this problem by

compressing/expanding the power spectra in autocorrelation-based linear prediction

features. Both [22] and [23] demonstrate that reducing spectral distortion can make

the i-vectors more resilient to background noise.

It is believed that better and possibly more robust features can be extracted from

DNNs. For example, bottleneck features were extracted from DNNs in [24, 25]. The
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Figure 2.2: The t-SNE plot of MFCCs from a utterance under different SNR condi-
tions.
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bottleneck features can replace the standard mel-frequency cepstral coefficients [26].

A similar idea has also been applied to i-vector based DNN adaptation for robust

speaker recognition [27]. Richardson et al. [28] demonstrated that GMM i-vectors

based on the phonetically discriminative BN features outperforms the ones based on

MFCC significantly on the 2013 Domain Adaptation Challenge (DAC13). Sarker et

al. [29] showed that the phonetically discriminative BN features are complementary

to the short-term cepstral features, and therefore improve the performance signifi-

cantly on NIST 2008 and 2010 SRE by both score domain and feature domain fusion.

These works show that the phonetically discriminative BN features still retain speaker-

specific information, possibly taking the benefits of the contextual input window of

DNNs.

2.6.2 Robust I-Vector Extraction

Another promising approach is to integrate DNNs into the i-vector framework. Campell

[30] used DBNs pre-trained by contrastive divergence [31] to generate the posteriors

of the mixtures of a universal background model (UBM). The posteriors are then used

for computing the sufficient statistics of vector-based speaker recognition systems. Lei

et al. [32, 33] replaced the posteriors of UBM’s mixture components in the i-vector

extractor by the posteriors of senones. In this approach, acoustic frames are aligned

to senones by a DNN so that speakers can be compared based on the same set of

sub-phonetic units [34].

To raise the efficiency of this framework, efforts have been made to improve the

combination of i-vector and PLDA. For example, Cumani and Laface [35] proposed

nonlinearly transforming the i-vectors to make them more suitable for PLDA model-

ing.
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2.6.3 Robust PLDA Modeling

Fig. 2.3 is the t-SNE plot of i-vectors under different SNR conditions. We can observe

that at low SNR (e.g. 0dB), two highly dense clusters are form. This means that

the conventional i-vectors suffer from severe distortion under noisy conditions. This

i-vector clustering phenomenon suggests that conventional PLDA modeling, which

assumes that i-vectors follow a single Gaussian distribution, will have difficulty in

modeling the multi-modal distribution of the i-vectors.

In light of the limitation of the conventional PLDA models, attempts have been

made to improve noise robustness in PLDA models. For example, Hasan et al. [36]

and Garcia-Romero et al. [37] trained a PLDA model by pooling speech from multiple

conditions, and Li and Mak [38, 39] modeled the noise-level variability in utterances

by introducing an SNR factor and an SNR subspace into the PLDA model. In [40,41],

Mak et al. advocated that utterances of different SNR levels will not only cause the i-

vectors to fall on different regions of the i-vector spaces but also change the orientation

of the speaker subspace. A mixture PLDA model with mixture alignments determined

by the SNR level of utterances was then derived to model the SNR-dependent i-

vectors.

Besides, a number of score calibration methods [42–44] have been proposed to

compensate for the detrimental effect on the PLDA scores. While many of these

methods can compensate for the duration mismatch only, there are techniques also

take the SNR mismatch into account [45–48]. All of these methods compensate for

the detrimental effect by modeling it as a shift in the PLDA scores. The goal is to

estimate the appropriate shift from some meta data (e.g., duration and SNR [45,46])

or from the i-vectors [47] to counteract the effect.

In [42, 45, 46], the score shift was deterministic and was assumed to be linearly

related to the SNR of utterances and/or to the logarithm of utterance duration.

In [48], the shift was stochastic and was assumed to follow a Gaussian distribution
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Figure 2.3: The t-SNE plot of i-vectors under different SNR conditions.
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with mean and variance dependent on the speech quality. Given an observed noisy

score, a Bayesian network was used to infer the posterior distribution of the target

and non-target hypotheses, from which a calibrated likelihood-ratio is computed. On

the other hand, the score shift in [47,49] was assumed to be simple functions (bilinear

transformation and cosine distance) of the two quality vectors derived from the i-

vectors involved in the scoring. While promising results have been achieved, the

relationship between score shift and SNR and log-duration may not be linear, and

the bilinear transformation and cosine distance scores may not accurately reflect the

true relationship between the score shift and i-vector quality.

2.6.4 Robust Back-ends

Another promising approach is to replace the PLDA back-end by DNNs. For instance,

Ghahabi and Hernando [50] trained one DNN for each target speaker to discriminate

his/her i-vectors from those of the other speakers. Each DNN receives i-vectors as

input and produces the posterior probabilities of the target and non-target classes as

output. Given a test i-vector, the log-posterior ratio can then be obtained from the

network outputs. In [51], the whole i-vector extraction cum PLDA scoring pipeline is

replaced by RNNs. Specifically, long short-term memory RNNs were collaboratively

trained for speech and speaker recognition tasks, and the contextual information

obtained from the speech recognition RNN was found to be assistive to the speaker

recognition RNN.

Observing that adverse acoustic conditions and duration variability in utterances

could have detrimental effect on PLDA scores, researchers explored the potential of

other back-ends to replace the PLDA models, e.g., support vector machines (SVMs)

[52] or even end-to-end learning [53].
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Chapter 3

BASICS OF DEEP LEARNING

In recent years, deep learning has achieved a great success in many areas, including

speech recognition [54], computer vision [55], speech synthesis [56,57] and music recog-

nition [58]. Because of the great success of deep neural networks (DNNs) [59], convo-

lutional neural networks (CNNs) [60] and recurrent neural networks (RNNs) [61–63] in

automatic speech recognition (ASR), the application of deep learning [64] to speaker

verification has been under the spotlight recently. In many of these studies, DNNs are

used as classifiers. This is achieved by adding a softmax layer on top of the hidden

layers of a deep feedforward network. Deep learning is powerful in that the resulting

deep networks have strong ability to disentangle the variation in the input patterns,

and therefore greatly improve the performance in many classification problems. The

posterior probabilities generated by the softmax layer can replace the ones generated

by other generative models, e.g. Gaussian mixture models (GMM) in speaker recog-

nition [30], hidden Markov models (HMM) in large vocabulary continuous speech

recognition (LVCSR) [54], and the posterior of Gaussian mixtures in i-vector based

speaker verification [32].

In this section, we will introduce the basics of the feedforward fully-connected

neural networks, including the model structure, backpropagation (BP) fine-tuning,

and RBM pre-training.
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Figure 3.1: The structure of a neural network with one hidden layer.

3.1 Deep Neural Networks

3.1.1 Structure of DNNs

A feedforward neural network comprises a collection of connection nodes (called neu-

rons) arranged in a layer-wise structure. The outputs of the nodes in the upper layers

depend on the outputs of the nodes in its lower layers. The lowest layer is the input

of the network and is called the input layer, and the top layer produces the network

outputs and is called the output layer. Any layers in between the input and output

layers are called the hidden layers. Fig. 3.1 shows a feedforward neural network con-

sisting of an input layer with I neurons
{
o

(0)
1 , . . . , o

(0)
I

}
, a hidden layer with J neurons{

o
(1)
1 , . . . , o

(1)
J

}
and an output layer with K neurons

{
o

(2)
1 , . . . , o

(2)
K

}
. Generally, the

weight w
(n)
ij denotes the connection strength between the i-th node in layer n−1, and

the j-th node in layer n. The output of a node at layer n is non-linearly related to

all of the output at layer n− 1. Specifically, for the j-th node in the hidden layer in
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Fig. 3.1, we have

o
(1)
j = f(y

(1)
j ),

where f(y) is the activation function, which usually is the sigmoid function:

f(y) =
1

1 + e−y
. (3.1)

In Eq. 3.1, y
(1)
j is the linear weighted sum of

{
o

(0)
1 , . . . , o

(0)
I

}
:

y
(1)
j =

I∑
i=1

w
(1)
ij o

(0)
i + b

(1)
j , (3.2)

where b
(1)
j is the bias term for node j.

The weighted sums in the output layer,
{
y

(2)
1 , . . . , y

(2)
K

}
, have a definition similar

to Eq. 3.2. However, for classification tasks, the last layer uses the softmax function

as the activation function. More specifically, the output of node k at the output layer

is

o
(2)
k = f(y

(2)
k ) =

exp(y
(2)
k )∑K

k′=1 exp(y
(2)
k′ )

, k = 1, . . . , K.

For regression tasks, the outputs are linear, i.e.,

f(y
(2)
k ) = y

(2)
k , k = 1, . . . , K.

Once the neural network has been well-trained, we can extract the outputs from the

last layer by presenting vectors to its input.
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3.1.2 Training by Backpropagation

The training of a neural network is to estimate its weights W ,1 and it can be achieved

by using the backpropagation (BP) algorithm [65]. To define the distance between

the actual output of the model and the target output of the training data, we need

to choose a loss function which is to be minimized during the training process [66].

For regression tasks, the loss function is usually the mean squared error (MSE):

E =
1

2

∑
k

(o
(2)
k − tk)2,

where tk is the target output of the k-th node in the output layer.

As BP is a gradient descent algorithm, we update the weights by calculating the

gradient of the loss function. For example, to update the weights in the last layer,

the partial derivative of the loss function with respect to the weights are computed:

∂E

∂w
(2)
jk

=
∂E

∂o
(2)
k

∂o
(2)
k

∂w
(2)
jk

=
∂E

∂o
(2)
k

∂o
(2)
k

∂y
(2)
k

∂y
(2)
k

∂w
(2)
jk

.

When MSE is defined as the loss function, and the output nodes are linear, i.e.

o
(2)
k = f(y

(2)
k ) = y

(2)
k , we have

∂E

∂o
(2)
k

= o
(2)
k − tk and

∂o
(2)
k

∂y
(2)
k

= 1.

Because y
(2)
k =

∑J
j=1wjko

(1)
j + b

(2)
k , we have

∂y
(2)
k

∂w
(2)
jk

= o
(1)
j .

1Using Fig. 3.1 as an example, W =
{
w

(1)
ij , w

(2)
jk ; i = 1, . . . , I, j = 1, . . . , J and k = 1, . . . ,K

}
.
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Therefore, the weight update formula is:

w
(2)
jk ← w

(2)
jk − η

∂E

∂w
(2)
jk

=⇒w(2)
jk ← w

(2)
jk − η(o

(2)
k − tk)o

(1)
j ,

where η is the learning rate, which is a hyperparameter.

To update the weights in lower layers, the partial derivatives can be calculated by

the chain rule:

∂E

∂w
(1)
ij

=
∂E

∂y
(1)
j

∂y
(1)
j

∂w
(1)
ij

=
∑
k

∂E

∂o
(2)
k

∂o
(2)
k

∂y
(2)
k

∂y
(2)
k

∂o
(1)
j

∂o
(1)
j

∂y
(1)
j

∂y
(1)
j

∂w
(1)
ij

.

The first layer has the sigmoid function as activation, whose partial derivative is:

∂f(y)

∂y
= f(y) (1− f(y)) .

For classification tasks, the loss function is usually the cross-entropy:

E = −
∑
k

tk log o
(2)
k .

Its derivative is:
∂E

∂o
(2)
k

= − tk

o
(2)
k

.

The derivative of the softmax function is similar to the one for the sigmoid function:

∂o
(2)
k

∂y
(2)
k

= o
(2)
k (1− o(2)

k ),

∂o
(2)
k

∂y
(2)
r

= −o(2)
k o(2)

r for r 6= k.
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Because of the one-hot encoding in classification tasks, we have
∑K

r=1 tr = 1. There-

fore, we have:

∂E

∂y
(2)
k

=
∂E

∂o
(2)
k

∂o
(2)
k

∂y
(2)
k

+
∑
r 6=k

∂E

∂o
(2)
r

∂o
(2)
r

∂y
(2)
k

= − tk

o
(2)
k

o
(2)
k (1− o(2)

k ) +
∑
r 6=k

tr

o
(2)
r

o(2)
r o

(2)
k

= −tk(1− o(2)
k ) +

∑
r 6=k

tro
(2)
k

= tk − o(2)
k .

And thus the gradient is:

∂E

∂w
(2)
jk

=
∂E

∂y
(2)
k

∂y
(2)
k

∂w
(2)
jk

= (tk − o(2)
k )o

(1)
j .

In backpropagation training, we presented a mini-batch of input patterns and

update the network parameters to bring the actual outputs closer to the target values.

It uses the chain rule to iteratively compute the error gradient of each layer, collects

the gradients from top to bottom layers, and updates the weights layer by layer.

3.2 Restricted Boltzmann Machines

Backpropagation (BP) is commonly used for training DNNs. However, BP is a gra-

dient descent algorithm, which could be easily trapped in local minima, especially

when the neural network has a deep structure (having many hidden layers). This

is because the gradients in the bottom layers are too small. In this case, we can

consider the DNN as comprising a number of stacked restricted Boltzmann machines

(RBMs), which is trained layer-by-layer via the contrastive divergence algorithm [31].

It is commonly believed that this pre-training step can bring the DNN close to the
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global optimal solution, which helps the backpropagation algorithm to find to a better

solution.
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Figure 3.2: The structure of restricted Boltzmann machine.

An RBM is an energy-based model in which nodes within the same layer do not

have interaction. Fig. 3.2 shows the architecture of an RBM, which has V visible nodes

v = [v1, . . . , vV ]ᵀ and H hidden nodes h = [h1, . . . , hH ]ᵀ. The weight wij connects vi

and hj, and bvi and bhj are the bias of vi and hj, respectively. For Bernoulli-Bernoulli

RBMs, the visible and hidden nodes can only be in one of two possible stages: 0 or

1. The conditional propability of the states in the hidden nodes is given by

p(hj = 1|v) = s(zhj
),
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where zhj
is the weighted sum in hj:

zhj
=

V∑
i=1

wijvi + bhj ,

and s(zhj
) is the activation function:

s(zhj
) =

1

1 + e−zhj
.

Similarly, the conditional probabilities of visible states are:

p(vi = 1|h) = s(zvi)

=
1

1 + e−zvi

=
1

1 + e−
∑H

j=1 wijhj+bvi
, i = 1, . . . , V.

The energy function of an RBM is defined as:

E (v,h) = −
V∑
i=1

H∑
j=1

vihjwij −
V∑
i=1

vib
v
i −

H∑
j=1

jjb
h
j .

By using contrastive divergence [31], we maximize the probability that the network

produces the visible vectors, v’s:

∏
v∈V

p(v) =
∏
v∈V

1

Z

∑
h

e−E(v,h),

where V is the training set.

For real-value inputs, such as MFCCs after feature warping [67], the visible nodes

follow Gaussian distributions. For Gaussian-Bernoulli RBMs, the activation function
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in the visible layer is linear:

s(z) = z =
V∑
i=1

wijvi + bhj

and the energy function is defined as:

E(v,h) =
V∑
i=1

(vi − bvi )2

2σ2
i

−
H∑
j=1

bhjhj −
V∑
i=1

H∑
j=1

vi
σi
hjwij, (3.3)

where σi is the standard deviation of the Gaussian noise for visible unit i.

When RBMs and contrastive divergence are used to pre-train a DNN, the input

data are used to train the first RBM, and the corresponding weights become the initial

value in the first layer of the pre-trained DNN. Then, the hidden-layer activations of

the first RBM, as the result of the visible input V , are considered as the visible input

of the second RBM. The process is repeated until a desirable number of layers is

obtained. By stacking these RBMs, we initialize a DNN for BP fine-tuning.
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Chapter 4

SPEAKER BOTTLENECK FEATURES

4.1 Introduction

In order to obtain noise robust acoustic features as discussed in Section 2.6.1, this

chapter explores the use of DNNs for extracting speaker-dependent features for speaker

recognition. To this end, we stack a denoising deep autoencoder [17,68], two layers of

RBMs and a softmax layer to form a DNN classifier that produces posterior probabili-

ties of speaker identities as output. However, instead of using the classifier directly for

speaker identification, we used the RBM just below the softmax output layer of the

DNN as the bottleneck layer for feature extraction. More precisely, bottleneck features

are extracted from the RBM’s outputs before sigmoid nonlinearity. The bottleneck

features, which provide a low-dimensional representation of the input patterns [69],

are used for training an i-vector/PLDA speaker identification system. The advantage

of using the DNN as feature extractor rather than using it directly as speaker identi-

fier is that the number of test speakers will not be limited by the number of nodes in

the softmax layer.

Unlike Vincent’s denoising autoencoder [17], we used noisy speech as the input and

clean speech as the target output to train the denoising autoencoder. It is formed by

stacking multiple layers of RBMs pre-trained by the contrastive divergence algorithm

[31], followed by backpropagation. Then, two layers of RBMs were trained using the

outputs of the denoising autoencoder as input. Finally, a softmax layer with number of

nodes equal to the number of training speakers was put on top of the last (bottleneck)

layer of the RBMs and backpropagation fine-tuning was further applied to minimize
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the cross-entropy error. Therefore, the first several layers in the DNN classifier help

to make the whole neural network more noise robust, while the top layers extract the

speaker-dependent information from the denoisd spectra. We demonstrated that at

an SNR of 0dB, the bottleneck features are slightly more robust than the standard

MFCCs [26].

4.2 SNR-Adaptive Denoising Deep Autoencoder

. . .

. . .. . .

. . .

. . .. . .

. . .

7 frames

1 frame
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Figure 4.1: Structure of the SNR-adaptive denoising deep autoencoder.
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4.2.1 Input Features

To train the denoising autoencoder, it is necessary to preprocess the input speech.

On one hand, cepstral features have shown promise in previous research; on the

other hand, it is intuitive to apply raw features as input to realize the potential

of autoencoders in modelling speech signals. In particular, the log-spectra, the log

mel-scale triangular filterbank outputs and even MFCC are candidate inputs to the

autoencoder.

For the log-spectra, we performed 512-point fast Fourier transform on 8 kHz speech

data, followed by taking logarithm. Due to the symmetry property of Fourier trans-

form for real numbers, only the first 256 spectral components were used in subsequent

steps.

For the log mel-scale triangular filterbank outputs, 20 triangular filterbanks from

300Hz to 3700Hz were used, and therefore the 256-dimensional spectra were reduced

to 20 dimensions. After applying discrete cosine transform (DCT), we obtained the

MFCCs.

For each of the input types, we packed it with another input node that represents

the SNR to form the input patterns of the SNR-adaptive denosing autoencoder. The

SNR node in the input may help the denoising autoencoder to realize the noise level

of the input speech. An SNR node is also added to the output of the autoencoder to

make input and output dimensions the same. These two nodes are also used in the

testing phase. The structure of the hidden layers is identical for all input types. It

has been shown [70] that it is beneficial to apply Z-norm to the input vectors. In our

experiments, the SNR and the input features are normalized independently, i.e. the

mean and standard deviation of the SNR and the bottleneck features were estimated

separately. For example, for a random variable x, Z-norm normalizes it to x′ with

zero mean and unit variance:

x′ =
x− µ
σ

,
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where µ and σ are the mean and standard deviation of x, respectively.

In addition to the preprocess techniques above, we can also use a contextual

window covering several frames as the input to the DNN. For example, a sliding

window covering 7 frames of mel filterbank outputs consists of 20 × 7 = 140 nodes.

Together with the SNR node, there are 141 nodes in the input layer. Fig. 4.1 shows

the architecture of the denoising autoencoder.

4.2.2 RBM Pre-training and Backpropagation Fine-tuning

RBM w1

Hidden Layer 1 

RBM w2
Hidden Layer 1 

Hidden Layer 2 

Noisy Input 

Noisy Input 

Hidden Layer 1 

Hidden Layer 2 

Hidden Layer 3 

Clean Target Output 

w1 +ε1

w2 +ε2

w2
T +ε3

w1
T +ε4

Figure 4.2: Construction of a denoising autoencoder by training two RBMs layer-by-
layer and then stacking them symmetrically, followed by backpropagation fine-tuning.

The denoising autoencoder can be initialized layer-wise by using RBMs trained

by the contrastive divergence algorithm [31]. After RBM pre-training, we can stack

the RBMs, copy the parameters from the lower half of the deep belief network (DBN)

to the upper half, and then fine-tune them by using backpropagation, as Fig. 4.2

illustrates.

In backpropagation training, we presented a mini-batch of input patterns and

updated the network parameters to bring the actual outputs closer to the target
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values. To equip our autoencoder with denoising ability, we used noisy speech as

input and their corresponding clean counterparts as target outputs, while the error

function is the squared loss, L(z, z̃) = ‖z−z̃‖2
2. However, we kept the SNR component

in the output the same as the input in the experiments since we only focused on the

speech denoising capability of this autoencoder.

Backpropagation [65] uses the chain rule to iteratively compute the error gradient

of each layer, collects the gradients from top to bottom layers, and updates the weights

layer by layer. In our experiments, the first three hidden layers are all Bernoulli layers,

and therefore they have a sigmoid activation function. However, the output layer of

the autoencoder, which aims to reconstruct the input, uses a linear activation function.

The autoencoder is a key component of the DNN classifier, as Fig. 4.3 shows.

4.3 SNR-Adaptive Denoising Deep Classifier

Because of the denoising autoencoder, the DNN learns how to extract clean informa-

tion from the noisy input patterns. However, our goal is to enable the DNN to extract

speaker-dependent features. To this end, we construct a speaker classifier by putting

two more layers of RBMs on top of the autoencoder as shown in Fig. 4.3. Finally, a

softmax layer with the number of nodes equals to the number of training speakers is

added to the network. The first RBM (comprising Hidden Layer 4 and Hidden Layer

5 in Fig. 4.3) is Gaussian-Bernoulli due to the characteristic of the autoencoder’s

reconstruction layer. The top-most RBM (comprising Hidden Layer 5 and BN Layer

in Fig. 4.3) is Bernoulli-Bernoulli. Because what we require is a classifier, the last

layer (Speaker ID in Fig. 4.3) is a softmax layer, and therefore no RBM pre-training

for this layer was applied. Its size is equal to the number of classes, which in our case

is the number of training speakers.

Backpropagation is applied to fine-tune the DNN by minimising the cross entropy

error. Specifically, we assume that we have N training speakers whose spectral feature
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vectors and speaker labels are given by

O = {o(j)
i ∈ <D; i = 1, . . . ,Mj; j = 1, . . . , N}

T = {t(j)i ∈ <N ; i = 1, . . . ,Mj; j = 1, . . . , N},
(4.1)

where t
(j)
i ’s are one-of-N vectors indicating to which speaker the spectral vector o

(j)
i

belongs and Mj is the number of vectors from speaker j.

Specifically, for each input vector, the desired output of the nodes in the softmax

layer are all zeros, except for the one that indicates the speaker to which the input

vector belongs. Then, we minimize the cross-entropy error:

E(O, T ) = −
N∑
i=1

Mi∑
j=1

N∑
k=1

t
(j)
i,k log(f(o

(j)
i )k)

= −
N∑
i=1

Mi∑
j=1

N∑
k=1

t
(j)
i,k log(y

(j)
i,k )

(4.2)

where k indexes to the output nodes of the DNN, f(·) represents the mapping function

of the DNN, and

y
(j)
i,k = f(o

(j)
i )k =

eak∑N
k′=1 e

ak′
(4.3)

represents the output of the k-th output node subject to the input vector o
(j)
i . In

Eq. 4.3, ak is the linear activation of the k-th output neuron.

Note that there are two layers in the DNN that do not use the sigmoid function as

the activation function. The first one is the reconstruction layer in the autoencoder,

which uses the linear function instead; the second one is for classification, which uses

the softmax function.

Fig. 4.4 shows the spectrogram and histograms of log-spectra of the clean, 0dB

noisy, and denoised speech, respectively. The figure shows that the noise seriously

distorted the spectral patterns of the clean speech. However, the denoising deep
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Figure 4.3: Constructing the DNN classifier and bottleneck (BN) feature extractor by
stacking two RBM layers (Hidden Layer 5 and BN Layer) and a softmax layer (Speaker
ID) on top of the autoencoder (from Noisy Speech to Hidden Layer 4), followed by
backprogagation fine-tuning. Note that after fine-tuning, only the features extracted
from the BN layer will be used for iVector-PLDA speaker identification.



36

Clean log−spec.

20 40 60 80 100

50

100

150

200

250

Noisy log−spec.

20 40 60 80 100

50

100

150

200

250

Denoised log−spec. from autoencoder

20 40 60 80 100

50

100

150

200

250

Denoised log−spec. after classifier fine−tuning

20 40 60 80 100

50

100

150

200

250

−6 −4 −2 0 2 4
0

500

1000

1500
Histogram of clean log−spec.

−4 −2 0 2 4
0

500

1000

1500

2000
Histogram of noisy log−spec.

−4 −2 0 2 4
0

500

1000

1500

2000
Hist. of denoised log−spec. from autoencoder

−4 −2 0 2 4
0

500

1000

1500
Hist. of denoised log−spec. after classifier fine−tuning

Figure 4.4: The spectrograms and histograms of log-spectra of clean, 0dB noisy, and
denoised speech. The spectrograms are to show the denoising ability of DAE for
reference only.
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autoencoder performs very well in restoring the patterns, as demonstrated in the

third panel of the figure. The histogram on the right of Fig. 4.4 shows that after

denoising, the distribution of log-spectra is non-Gaussian (3rd row). However, after

applying BP to fine tune the whole DNN (4th row), the output of the autoencoder

follows a Gaussian-like distribution.

We trained the denoising deep classifier in an end-to-end manner. We could have

trained it independently such that the upper half of the classifier is trained using

the original clean speech followed by putting it on top of the DAE. However, such a

setting is likely to cause the performance degradation, because it requires the DAE

to be perfect. Unfortunately, in practice, the outputs of the DAE are different from

(although they may be quite close to) the clean MFCCs. Therefore an end-to-end

manner is more reasonable.

4.4 i-vector/PLDA Speaker Identification

The i-vector [9] and probabilistic LDA (PLDA) [13] are commonly used for speaker

verification. The idea is to represent the speaker and channel characteristics of an

utterance by a low-dimensional vector called the i-vector, which is essentially the

posterior mean of the latent factors of a factor analysis model. Given an i-vector,

the channel variability is removed by marginalizing out the channel factors in a

PLDA model (which is a supervised factor analysis model) during verification. This

i-vector/PLDA framework was originally designed for speaker verification, which is a

binary classification problem.

In this work, we applied this framework to speaker identification, which is a multi-

class problem. First, we used the utterances of all training speakers to train an i-vector

extractor. Then, the i-vectors of each registered speaker in the speaker identification

system were computed, one for each enrollment utterance. Also, the i-vectors of all

training speakers (who can be different from the registered speakers) were extracted.
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These training i-vectors together with their speaker labels were used for training a

PLDA model [12,38].

During identification, given a test utterance, an i-vector is computed. Then, the

test i-vector is scored against the i-vectors of each of the registered speakers using

the PLDA scoring function [14, 38] (Eq. 2.8) and the scores were averaged. For a

system comprising R registered speakers, these steps give R averaged scores for each

test utterance, and the speaker identity corresponds to the maximum averaged score.

More precisely, denote xj
i as the i-vector of the i-th session of the j-th registered

speaker in the system. Then, given a test utterance with i-vector xt, the speaker ID

of the test utterance is

ID(xt) = arg
R

max
i=1

1

Nj

Ni∑
i=1

SPLDA(x
(j)
i ,xt), (4.4)

where Nj is the number of enrollment i-vectors of speaker j, and SPLDA(x
(j)
i ,xt) is

computed by using the score function in Eq. 2.8.

4.5 Experiments and Results

4.5.1 Experimental Setup

We performed speaker identification experiments based on 138 speakers in the YOHO

corpus [71].1 We used the enrollment sessions, which consist of 96 utterances per

speaker, as training data. We used the verification sessions of the corpus as testing

data, which have 40 utterances per speaker.2 Totally, there are 13,248 utterances for

training and 5,516 utterances for testing. Each utterance is about 3 to 4 seconds long,

sampled at 8kHz, and comprises three two-digit numbers in English, e.g. 26-81-57.

1To minimize computation time in this pilot study, we did not use the NIST evaluation corpora.
These corpora will be used in Chapters 5 and 6.

2Except for Speaker 277 whose only have 36 valid utterances in the verify sessions.
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We used the FaNT tool to add babble noise to the original YOHO utterances at 15dB,

6dB, and 0dB. Thus, there are totally 13, 248×4 = 52, 992 utterances for training the

DNN classifier. We used an energy-based voice activity detector [72, 73] to extract

the speech regions of each utterance.

To train the autoencoder part of the classifier, each clean utterance is paired with

itself and its noisy counterparts, which amounts to 13,248 clean–clean training pairs

and 13, 248 × 3 = 39, 744 clean–noisy training pairs. The autoencoder comprises

three hidden layers, whose weights were trained by using both noisy and clean speech

data as input and only clean speech data as the target output. Each of the hidden

layers contains 256 nodes. Our aim is to enable it to perform speech denoising in

the spectral domain. To achieve this, we split the training data into mini-batches

comprising 100 consecutive spectra and applied 30 epochs of RBM pre-training, and

then used mini-batches comprising 1,000 consecutive spectra and applied 100 epochs

of backpropagation fine-tuning using gradient descent with a learning rate of 0.1 and

momentum of 0.6.

By using the denoised spectra from the autoencoder, we trained another two RBMs

with 256 and 60 hidden nodes, respectively. Because the number of training speakers

is 138, the DNN has 138 output nodes, i.e., N = 138 in Eq. 4.1. However, because

the cross-entropy error has a larger fluctuation when fine-tuning the whole DNN, we

reduced the learning rate to 0.0003.

Finally, we obtained a denoising deep classifier with structure D-256-256-256-D-

256-60-138 nodes in the respective layers starting from input to output, where D

represents the dimension of the spectral vectors time the number of frames in the

contextual window. For example, in one of the setting in the experiments, D =

20× 7 = 140, where 20 filterbank outputs were used as the spectral vectors, and the

contextual window covers 7 frames.

In the experiments, the 60-dimensional bottleneck features extracted from the

second-top layer in the classifier before sigmoid non-linearity were compared with the
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60-dimensional MFCC baseline features. For the former, the frame-based BN features

were whitened using PCA whitening. For the latter, we computed 19 MFCCs and the

log-energy for each frame. Then we packed the MFCCs and log-energy together with

their first- and second-order derivatives to form a 60-dimensional acoustic vector for

each frame.

For the back-end, we used the state-of-the-art i-vector [9] and probabilistic LDA

(PLDA) [12]. To train an i-vector extractor, we used all of the 52,992 training utter-

ances from the clean and the three SNR conditions to train a universal background

model (UBM) with 256 Gaussians and a total variability matrix with 400 factors. For

each utterance, an i-vector was extracted from the i-vector extractor [9] so that the

speaker characteristics of the entire utterance is represented by this 400-dimensional

vector. Given 52,992 training utterances, we have 52,992 i-vectors. Then they were

used for training an SNR-independent PLDA model with 138 latent factors by group-

ing the i-vectors of the same speaker together. Because there are 138 training speak-

ers, we have 138 groups of speaker-dependent i-vectors and each group comprises

96× 4 = 384 i-vectors.

4.5.2 Results of Denoising BN Features

We used three types of input for the DNN: one frame of 256-dimensional log-spectra

(Log-spec), a contextual window covering seven frames of 20-dimensional log mel-

scale triangular filterbank output (Log-mel), and five frames of 60-dimensional MFCC

(MFC) to generate the BN features. These three types of inputs result in Log-spec

BN, Log-mel BN and MFC BN features, respectively.

Table 4.1 shows the accuracy of speaker identification, which is a bit disappointing

in that only the Log-mel BN features with the Log-mel input are comparable with the

standard MFCC under high SNR conditions and outperform it under low SNR condi-

tions. Besides, it is surprising that the MFC BN features using 5 frames of MFCC as

input always perform worse than the Log-mel ones and the standard MFCC. This may



41

Table 4.1: Comparison between MFCC and BN features.

Feature
SNR of Test Utterances

Clean 15dB 6dB 0dB

MFCC 98.31% 95.61% 90.08% 65.65%

Log-spec BN 95.56% 93.04% 83.39% 62.98%

Log-mel BN 98.21% 96.77% 91.48% 75.29%

MFC BN 97.44% 94.24% 86.84% 63.61%

be due to the smearing effect of the denoising autoencoder. Further investigations

are warranted to investigate the reasons behind the poor performance.

The Log-spec BN feature performs slightly poorer than the MFC BN feature

under both clean and noisy conditions. We suspect that the poor performance is

due to the lack of contextual frames (in Log-spec, the size of contextual window is

1) in the input. However, we found that increasing the contextual window size to 5

leads to even poorer performance. This could be caused by the high-dimensionality

of the log-spectral vectors, which forbids us to use multiple frames in the contextual

window.

4.5.3 PLDA Score Combination

Because the BN features, especially the Log-mel one, perform well under low SNR

conditions, we can fuse the MFCC and the BN features to improve the performance

of speaker identification at the PLDA score level:

Sfused = α× Smfcc + (1− α)Sbn, (4.5)

where α is the fusion weight and S denotes the PLDA scores. When α = 1, no fusion

is performed and only MFCC features were used. On the other hand, when α = 0 only



42

Table 4.2: Fusion of the PLDA scores based on MFCC and BN features.

Feature
Fusion Weight
α (Eq. 9)

SNR of Test Utterances

Clean 15dB 6dB 0dB

MFCC 1.00 98.31% 95.61% 90.08% 65.65%

Log-spec BN
0.00 95.56% 93.04% 83.39% 62.98%

0.57 99.15% 98.11% 94.13% 79.89%

Log-mel BN
0.00 98.21% 96.77% 91.48% 75.29%

0.51 99.56% 98.55% 95.87% 84.34%

MFC BN
0.00 97.44% 94.24% 86.84% 63.61%

0.56 98.89% 96.72% 93.31% 76.53%

BN features were considered. We varied the value of α with a step size of 0.01. As

Table 4.2 illustrates, the Log-mel BN features with score fusion increase the accuracy

significantly.
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Chapter 5

SENONE I-VECTORS

5.1 Introduction

To address the robustness issue of i-vectors discussed in Section 2.6.2, this chapter

explores and extends our early work [74] on using DNNs for extracting phonetically

discriminative and noise robust bottleneck features from noisy speech and for com-

puting senone posteriors for BN-based i-vector extraction. We have recently proposed

a denoising autoencoder–deep neural network by stacking restricted Boltzmann ma-

chines (RBMs) on top of a denoising autoencoder [75], which is also introduced in

Chapter 4. The whole network was trained to produce the posteriors of speaker IDs

given noisy speech as input. Bottleneck features were then extracted from the RBM

layer just below the output (softmax) layer. Results in [75] suggest that the DAE is

very effective in suppressing the effect of noise in the input speech, making the BN

features noise robust.

Similar to the DNNs in d-vectors [76] and speaker embedding [77], where a low

dimensional representation of the whole utterance is extracted from a DNN directly,

the DNN in [75] produces speaker posteriors. Because the DNNs of these methods

are trained to produce speaker posteriors, their frame-based activations at the bot-

tleneck layer tend to be very similar across the whole utterance. Fig. 5.1 shows the

t-SNE plots of the “hypothetical” BN features derived from speaker posteriors and

the BN features derived from senone posteriors. The senone-posterior derived BN

features were obtained from an utterance in NIST 2010 SRE, whereas the speaker-

posterior derived BN features are generated hypothetically. For the latter, because
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the DNN was trained to produce speaker posteriors, the frame-based activations at

the bottleneck layer tend to be very similar across the whole utterance. Therefore,

the BN features from each speaker tend to form a tiny cluster as shown in Fig. 5.1.

The highly packed clusters cause numerical problems when training the UBM and

the T-matrix. The d-vectors and speaker embedding avoid this problem by averaging

the activations across the frames of the entire utterance, which essentially bypasses

the UBM training and TV matrix estimation. However, the averaging process throws

away lots of speaker information in the frame-based BN vectors, which explains why

the performance of d-vectors and speaker embedding is poorer than i-vectors for long

utterances [76,77].

In this chapter, we propose training the denoising DNN in [75] to produce senone

posteriors instead of speaker posteriors. The advantage of this strategy is that as

long as a training utterance is phonetically balanced, its BN vectors will be scattered

over different regions of the BN feature space as shown in Fig 5.1, which solves the

numerical problem. With the denoising capability of DAE, the network can produce

noise robust BN features and robust senone posteriors for i-vector extraction. We

refer to the resulting network as DAE–DNN.1

Experimental results on NIST 2012 SRE demonstrate that the proposed BN-based

i-vectors are less susceptible to babble noise, even at 0dB. We found that no matter

under the GMM i-vector framework or the senone i-vector framework, the phonetically

discriminative BN features outperform the MFCCs in speaker verification tasks. This

suggests that the phonetically discriminative BN features still retain speaker-specific

information. Furthermore, we demonstrate that the denoising capability works for our

denoised BN-based senone i-vectors rather than the denoised MFCC-based senone i-

1DAE–DNN represents the structure and training procedures of a DNN, where the DNN is
constructed by stacking RBMs on the top of a DAE, followed by backpropagation fine-tuning.
Therefore both the DNNs in Chapter 4 and Chapter 5 are named as DAE–DNN, although the
DAE–DNN in Chapter 4 is trained for classifying speakers, where the DAE–DNN in Chapter 5 is
trained for classifying senones.
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Figure 5.1: The t-SNE plots of “hypothetical” BN features derived from speaker
posteriors (red dots) and BN features derived from senone posteriors (blue dots). For
the former, each cluster represents the BN features from one speaker.
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vectors. Specifically, by comparing the combinations of phonetically discriminative

BN features and senone posteriors with and without DAE training, we validate that

the DAE training is more useful for extracting phonetically discriminative BN features

than estimating senone posteriors, especially under common condition 5 of NIST 2012

SRE.

5.2 Generalized I-vector Extractor

In most systems, {µ(b)
c } and {Σ(b)

c } in Eqs. 2.4–2.7 are obtained from the UBM.

However, they can also be computed from the sufficient statistics as follows:

µc =

∑
i

∑
t γc(oi,t)oi,t∑

iNic

and

Σc =

∑
i

∑
t γc(oi,t)(oi,t − µc)(oi,t − µc)

ᵀ∑
iNic

, c = 1, . . . , C,

where oi,t denotes the t-th frame of the F -dimensional acoustic vectors oi’s of the i-th

utterance, C is the number of mixtures in the UBM, Nic is the zeroth-order statistics

(Eq. 2.6), and γc(oi,t) is the posterior of the c-th mixture (Eq. 2.7). Therefore,

without the UBM, we can still estimate the T-matrix and i-vectors as long as the

Baum-Welch statistics are available. In fact, only the observed vectors oi,t and the

mixture posteriors γc(oi,t) are necessary for i-vector extraction.2 This means that

we may replace the MFCCs by other types of acoustic features and estimate the

mixture posteriors γc(oi,t) from other models, such as a DNN, rather than the UBM.

Specifically, the acoustic feature vectors and mixture posteriors can respectively be

written in more general forms:

oi,t = f(si,t) and γc(si,t) = P (c|si,t), (5.1)

2In some literatures, γc(oi,t)’s are referred to as frame posteriors. But they are in fact the
posterior probabilities of mixture components.
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where si,t represents the speech signal in a contextual window comprising multiple

frames centered at frame t and f(si,t) is a function that maps acoustic vectors in si,t

to oi,t.

5.3 DNN with Denoising Autoencoder

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Noisy Speech

FaNT Tool

Clean Speech

Contextual Frames of Clean MFCC

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Contextual Frames of Noisy MFCC

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Senones of the middle frame

DAE—DNN

SNR

Denoising
Autoencoder 

(DAE)

DNN-HMM ASR System

Contextual Frames of Noisy MFCC

Figure 5.2: Procedure of training the Denoising Autoencoder–Deep Neural Network
(DAE–DNN).

In [33], P (c|si,t)’s in Eq. 5.1 are given by a DNN that was trained to produce

the posteriors of senones given multiple frames of MFCCs as input. In this work,

we trained a DNN formed by stacking a deep belief network (DBN) on top of a

denoising autoencoder [75] to improve the noise robustness of P (c|si,t). The network

architecture of the stacked DNN is shown in the right part of Fig. 5.2. Because of the

denoising capability of the DAE and the classification capability of the DNN, we refer

to the stacked DNN as denoising autoencoder–deep neural network (DAE–DNN).
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Fig. 5.2 illustrates the procedure to train the DAE–DNN. To equip the autoen-

coder with denoising capability, we used both clean and noisy speech as input and

their corresponding clean counterpart as the target output. The denoising autoen-

coder comprises multiple layers of restricted Boltzmann machines, which are trained

layer-by-layer using the contrastive divergence algorithm [31] [78]. Only the bottom

half of the RBMs need to be trained, and the upper half are the mirrored copies of

the lower half due to the symmetry of the autoencoder. Since we used MFCCs as

inputs to the DNN, the first RBM is a Gaussian-Bernoulli RBM and the last layer

of the autoencoder is linear. The denoising autoencoder is then fine-tuned by the

backpropagation algorithm to minimize the squared errors between the outputs and

the clean MFCCs. In practice, we obtained the clean–noisy sample pairs by adding

babble noise to clean speech using the FaNT tool [79], which will be explained in

Section 5.5.1.

Once the denoising autoencoder has been trained, we built the DAE–DNN using

the senone labels as the targets. By adding three layers of RBMs on top of the DAE,

the network can extract the phonetic information even if the input is noisy. The

details of extracting senone labels will be explained in Section 5.5.3.

To enrich the contextual information in Oi, the vectors oi,t’s are extracted from

the bottleneck layer just below the softmax layer of the DNN (the blue nodes in

Fig. 5.2). More precisely, f(si,t) in Eq. 5.1 represents the combined effect of the

denoising operation in the DAE and the feature extraction operation in the DNN using

contextual MFCCs (si,t) as input. The first RBM on top of the DAE is Gaussian-

Bernoulli and the last RBM is Bernoulli-Gaussian where the Gaussian hidden layer

is of small size. This creates a bottleneck layer (BN) from which the low dimensional

BN features can be extracted. The BN features replace the MFCCs during i-vector

extraction.

Except for the BN layer and the last layer of the DAE, all hidden layers comprise

sigmoid units. The output comprises softmax nodes. More specifically, assume that
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there are K distinct senones, the DNN outputs are given by

yk(x) =
ehk(x)∑K

k′=1 e
hk′ (x)

, k = 1, . . . , K,

where x is the input to the DNN, hk is the activation of the k-th output node, and

yk(x) is the softmax output of node k. The network is trained by minimizing the

cross-entropy:

E(X ,Z, C) = −
∑K

r=1

∑Mr

j=1

∑K

k=1
zr,j,k log(yk(xr,j))

where zr,j’s are one-of-K vectors indicating to which senone the input vector xr,j

belongs and Mr is the number of vectors from senone r. To be more precise, xr,j

comprises contextual frames of MFCCs, which has the same meaning as si,t in Eq. 5.1.

To train the DNN, we need to collect all contextual frames of MFCCs belonging

to the same senone (indexed by r). To avoid confusion, we use another symbol x and

another set of subscripts (r and j) to highlight the grouping procedure.

5.4 Senone I-vectors

The procedures in Sections 5.2 and 5.3 produce a new variant of i-vectors: senone

i-vectors. If the DAE–DNN can be integrated into the i-vector extractor, the resulting

senone i-vectors should be noise robust. They should also outperform the conventional

i-vectors due to the phonetic information from the BN layers.

Fig. 5.3 illustrates the procedure of senone i-vector extraction. As we have dis-

cussed in Section 5.2, only the 0th-, 1st- and 2nd-order Baum-Welch statistics are

needed for T-matrix training, and the 0th- and 1st-order statistics are necessary for

i-vector extraction. The key idea in this work is to replace the MFCCs by the BN

features and replace the mixture posteriors from the UBM by the senone posteriors

from the DAE–DNN.
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Figure 5.3: Procedure of senone i-vector extraction.
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Since the BN features are highly correlated, we used principal component analysis

(PCA) whitening to perform decorrelation. The decorrelation process allows us to

use diagonal covariance matrices for the BN-based UBM.

Following the notation in Section 5.2, the procedure for training the T-matrix is

as follows:

Step 1: Extract BN feature vectors: o
(d)
i,t = BN(si,t)

Step 2: Compute senone posteriors: γ
(d)
c (si,t) = PDAE–DNN(c|si,t), which is the output

of the c-th node in the softmax output layer.

Step 3: Compute Baum-Welch statistics:

N
(d)
ic =

∑
t
PDAE–DNN(c|si,t)

f̃
(d)

ic =
∑

t

[
PDAE–DNN(c|si,t)(BN(si,t)− µ(d)

c )
]
,

S
(d)
ic =

∑
t

[
PDAE–DNN(c|si,t)(BN(si,t)− µ(d)

c )×

(BN(si,t)− µ(d)
c )ᵀ

]
,

(5.2)

where

µ(d)
c =

∑
i

∑
t PDAE–DNN(c|si,t)BN(si,t)∑

iN
(d)
ic

.

Step 4: Compute the covariance matrices

Σ(d)
c =

∑
i S

(d)
ic∑

iN
(d)
ic

. (5.3)

Step 5: Replace f̃ ic, Nic and Σ(b)
c of Eq. 2.4 by f̃

(d)

ic , N
(d)
ic and Σ(d)

c in Eq. 5.2 and
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Eq. 5.3:

〈wi|O(d)
i 〉 = L−1

i

C∑
c=1

T ᵀ
c(Σ

(d)
c )−1f̃

(d)

ic , (5.4a)

〈wiwi
ᵀ|O(d)

i 〉 = L−1
i + 〈wi|O(d)

i 〉〈wi|O(d)
i 〉ᵀ, (5.4b)

Li = I +
C∑
c=1

N
(d)
ic T

ᵀ
c(Σ

(d)
c )−1T c, (5.4c)

where i = 1, . . . , N . This constitutes the E-step of the EM algorithm.

Step 6: Replace f̃ ic, Nic and 〈wi|Oi〉 of Eq. 2.5 by f̃
(d)

ic , N
(d)
ic and 〈wi|O(d)

i 〉 respectively

in Eq. 5.2 and Eq. 5.4 to compute the T-matrix:

T c =
[∑

i
f̃

(d)

ic 〈wi|O(d)
i 〉ᵀ

]
×
[∑

i
N

(d)
ic 〈wiwi

ᵀ|O(d)
i 〉
]−1

. (5.5)

This constitutes the M-step of the EM algorithm. Go back to Step 5 with the

updated T-matrix until convergency.

Once the T-matrix has been estimated, the i-vector 〈wi|O(d)
i 〉 representing the

i-th utterance can be computed according to Eq. 5.4a:

〈wi|O(d)
i 〉 = L−1

i

C∑
c=1

T ᵀ
c(Σ

(d)
c )−1f̃

(d)

ic .

Therefore we can combine the BN features and DNN posteriors to compute the

senone i-vectors, and this combination integrates the phonetic information in the

DNN into the i-vectors.
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Figure 5.4: The SNR distributions of the original and noise contaminated test ut-
terances in NIST 2012 SRE (CC4, male). For the noise contaminated utterances,
babble noise was added to the original utterances at an SNR of 0dB, 6dB, and 15dB,
respectively.

5.5 Experiments

5.5.1 Speech Data and Feature Extraction

Speaker verification experiments were performed on the NIST 2012 SRE under Com-

mon Condition 4 (CC4). This common condition involves 723 target speakers with

7,116 target utterances from NIST 2006–2010 SREs and 3,900 test utterances from

NIST 2012 SRE, including 125,400 trials in core test. Each utterance is about 10 to

300 seconds long, sampled at 8kHz, recorded by telephone, and spoken in English.

The baseline is a conventional i-vector/PLDA system, where the acoustic features are

MFCCs and the mixture posteriors were obtained from GMM-based UBMs with 1024

and 2048 mixtures. The test utterances in CC4 has a wide range of SNR, from 0dB

to 50dB as shown in Fig. 5.4; therefore, CC4 is appropriate for verifying the noise

robustness and denoising capability of the proposed algorithm.
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To verify the denoising capability under natural noisy environments, we also per-

formed experiments on the NIST 2012 SRE under Common Condition 5 (CC5), in-

cluding 62,845 trials in the core test and 1,558,788 trials in the extended test. This

common condition involves the same 723 target speakers and 7,116 target utterances

as in CC4; however, its 2,156 test utterances were collected in noisy environments.

To investigate the capability of various i-vector frameworks under noisy environ-

ments, we used the FaNT tool [79] to add babble noise to the target-speaker utterances

and test utterances at the SNR of 15dB, 6dB, and 0dB, respectively. Therefore, we

have four groups of training utterances and four groups of test utterances, with the

first group being the original utterances and the last three groups having SNRs close

to 15dB, 6dB, and 0dB, respectively. Hereafter, we refer to these 4 groups as SNR

groups. The SNR distributions of the 4 groups of test utterances in CC4 are shown

in Fig. 5.4. Note that although the target SNRs that we applied to FaNT are 0dB,

6dB, and 15dB, Fig. 5.4 shows that the peaks of the SNR distributions do not align

to these targets. The misalignment is due to the discrepancy in the voice activity

detection (VAD) decisions for adding noise and for measuring SNRs. Specifically,

FaNT has its own VAD for estimating the amount of noise to be added to the clean

signals, whereas the measured SNRs in Fig. 5.4 were based on the voltmeter function

in FaNT and the decisions of our own noise-robust VAD [72].

Because the babble noise poses a great challenge to voice activity detection (VAD),

we used the VAD decisions obtained from the original test utterances for all of the test

conditions. Although this procedure may give over-optimistic performance, it avoids

the complications arising from wrong VAD decisions. It also allows us to purely

compare the capability of different acoustic features and frame-posterior estimation

methods, as the comparisons will become meaningless when too many non-speech

frames are included in the i-vector extraction processes.

Nineteen MFCCs and log-energy were computed for each 25-ms frame. Together

with their 1st and 2nd derivatives, a 60-dimensional acoustic vector was obtained
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every 10ms.

5.5.2 I-vector Extraction

All i-vector extractors have 500 total factors. The PLDA further reduces the speaker

subspace to 150 dimensions. The GMM–UBMs and the total-variability matrixes were

trained by using the utterances from the original 7,116 target telephone utterances

mentioned earlier and the microphone utterances (interview speech) of the same set of

target speakers in NIST 2006–2010 SREs. The PLDA model was trained by using the

i-vectors derived from all of the original and noise contaminated telephone utterances

and from the interview speech segments of NIST 2006–2010 SREs.

5.5.3 Senone Label Extraction3

We used a DNN–HMM acoustic model trained on SwitchBoard-1 release 2 to obtain

the senone label for each frame. This release contains approximately 290 hours of

US English telephone conversations spoken by 500 speakers. The 4,870 conversa-

tion sides were spliced into 259,890 utterances for acoustic modeling. The original

DNN has 6 hidden layers with 2,048 nodes per layer, and a softmax output layer

with 8,704 nodes, corresponding to 8,704 clustered states (senones). We further clus-

tered the 8,704 senones into 2,000 senones, resulting in a DNN with 2,000 outputs

nodes. The features are 13-dimensional cepstral mean-variance normalized (CMVN)

MFCCs, and they were extracted from speech data every 10ms over a window of 25ms.

For each frame, its neighbouring 4 frames were included and transformed by linear

discriminative analysis (LDA) to 40 dimensions, followed by maximum-likelihood lin-

ear transformation. Speaker adaptation based on feature-space maximum likelihood

linear regression (fMLLR) was also applied.

3This part was done by Yingke Zhu and Brian K. W. Mak of the Hong Kong University of Science
and Technology.
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For each frame, the fMLLR-transformed vectors of the 5 preceding and 5 succeed-

ing frames were fed to the DNN, which outputs the posterior probabilities of different

senones, and the one with the highest posterior is the senone label for the frame.

5.5.4 Training of the DAE–DNN

The input of the DAE–DNN comprises eleven 20-dimensional MFCC vectors extracted

from 11 contextual frames, which amount to 20×11 = 220 input nodes. Element-wise

z-norm was applied to the 220 inputs so that Gaussian-Bernoulli RBM pre-training

can be applied. As shown in Fig. 5.2, the DAE has a structure 220-256-256-256-220,

where the first and the last values are the numbers of inputs and outputs, respectively.

Only the first two layers of the DAE needed to be pre-trained by contrastive diver-

gence, and the last two layers were stacked by flipping the first two RBMs. The DAE’s

output layer uses the linear activation function. After RBM pre-training, the DAE

was fine-tuned by backpropagation (BP) using the the mean squared error criterion.

After BP fine-tuning, three RBMs were put on top of the DAE, where the bottom

one is a Gaussian-Bernoulli RBM and the top one is a Bernoulli-Gaussian RBM. BP

fine-tuning was then applied to the combined DAE and RBMs using the 2000 senone

labels (in one-hot format) as the target outputs and cross-entropy as the minimization

criterion. As shown in Fig. 5.2, the final DAE–DNN has a structure 220-256-256-256-

220-256-256-60-2000, where the last softmax layer has 2000 nodes and the bottleneck

layer has 60 nodes. Therefore the BN features have a dimension of 60. The bottleneck

layer uses the linear activation function, and all the other hidden layers use sigmoid

nonlinearity.

The training set for training the DAE–DNN comprises 7,116 clean (original) utter-

ances from NIST 2006–2010 SREs and their 15dB, 6dB, and 0dB noise contaminated

versions, which amount to a total of 7, 116×4 = 28, 464 training utterances. These ut-

terances were spoken by 723 target speakers in CC4 of NIST 2012 SRE. The DAE on

the left of Fig. 5.2 was trained to produce the clean MFCCs of the utterances, given
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the clean or noisy MFCCs as input. The DAE–DNN on the right of Fig. 5.2 was

trained to produce the senone labels of the clean utterances based on the ASR–DNN

mentioned in Section 5.5.3.

As the procedure in Section 5.4 and Fig. 5.3 show, we can obtain the senone

i-vectors by combining BN features and senone posteriors. With the same PLDA

back-end as the baseline, we can compare the performance of senone i-vectors with

the conventional i-vectors.

5.5.5 Enrollment and Test Utterances

Because CC4 in 2012 SRE involves noise-contaminated test utterances, this test con-

dition covers a wide range of SNR distribution, and we refer to this test condition as

“original”. In addition to this “original” test condition, we created three test condi-

tions based on the noise contaminated test utterances by the FaNT tool as mentioned

in Section 5.5.1. Specifically, for the 15dB test condition, test utterances with babble

noise added at an SNR of 15dB were used for scoring, and similarly for the 6dB and

0dB test conditions. For all of the original, 15dB, 6dB and 0dB CC4 test conditions of

NIST 2012 SRE, we used the original target-speaker utterances and their noise con-

taminated counterparts from the 6dB and 15dB SNR groups as enrollment utterances

in order to keep consistency. Therefore the enrollment utterances were the same for

different test conditions.

Unlike the test segments in CC4, the test segments in CC5 were intentionally

collected in a noisy environment. Therefore, the noisy speech in CC5 is more realistic.

The test segments in CC5 have a wide range of SNRs, from 10dB to over 40dB.

Because most of the test segments in CC5 have SNR over 20dB, we only used the

i-vectors of the original enrollment segments (which also have high SNR) to represent

the target speakers during the scoring stage.
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5.5.6 Producing Likelihood-Ratio Scores

The PLDA model for scoring was trained by the the original enrollment utterances

and their noise contaminated counterparts from the 0dB, 6dB and 15dB SNR groups.

For real-world deployment, it is desirable to have application-independent decision

thresholds [80] such that not only the equal error rate (EER) and minimum detection

cost (minDCF) are minimized, but also the actual DCF (actDCF) at specific thresh-

olds are also small. To this end, all of the original PLDA scores were subject to score

calibration to produce true likelihood-ratio scores using the Bosaris toolkit [81]:

S ′ = w0 + w1S, (5.6)

where S is the original PLDA scores. This calibration step only shifts and scales the

original PLDA scores, which reduce the actDCF (primary cost) without affecting the

EER and minDCF.

5.6 Results and Discussions

5.6.1 Acoustic Features and Posterior Computation

Table 5.1 shows the EER, minDCF and actDCF of various i-vector/PLDA systems

that use different acoustic features and different ways of computing the senone pos-

teriors or mixture posteriors. To study the benefit of DAE training in more details,

in addition to the DAE–DNN, we also trained a DNN without DAE pre-training but

with RBM pre-training, i.e., all hidden layers in Fig. 5.3 were initialized by RBMs.

We refer to this network as DNN. It has a structure of 220-256-256-256-256-256-256-

60-2000.

Surprisingly, a comparison between the first and the second rows of Table 5.1

suggests that MFCC–UBM with 2048 mixtures performs worse than the one with

1024 mixtures. Since the same amount of training data was used in these two mod-
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els, increasing the number of mixtures, i.e., increasing the learning capacity of the

model, does not necessarily improve performance. Furthermore, for UBM with 2048

mixtures, the misalignment of speech frames to mixture component would be more

severe under noisy conditions, causing further performance degradation. Results from

the first three rows of Table 5.1 suggest that the i-vectors derived from senone pos-

teriors obtained from the DNN outperform the i-vectors whose mixture posteriors

γc(oi,t)’s are obtained from the UBM. This confirms the findings in [28, 32, 33] that

the phonetic information in the senone i-vectors is beneficial for speaker comparison.

The comparison between the 3rd and the 4th rows suggest that the DAE training

hurts the prediction of senones except for the 6dB case.

In Table 5.1, the denoised MFCC and the senone posteriors of each frame were

extracted from the left- and right-networks of Fig. 5.2, respectively. After DAE

training of the left-network, it was used for initializing the lower part of the right-

network. After backpropagation fine-tuning, the right-network is able to produce the

senone posteriors given a contextual window of noisy MFCCs as input. For Row 4

of Table 5.1, the right-network was asked to compute the senone posteriors given the

noisy MFCCs, which are exactly the network input. As a result, there is a perfect

match between the acoustic features (noisy MFCCs) and the senone posteriors. On

the other hand, for Row 5 of Table 5.1, the right-network was asked to compute the

senone posteriors given the denoised MFCCs, which do not agree with the network

input. This causes mismatch between the senone posteriors produced by the network

and the acoustic features (denoised MFCCs), which explains why the performance

in Row 5 is much poorer than that in Row 4 of Table 5.1. Note that because of

the backpropagation fine-tuning, the output of the lower part of the right-network in

Fig. 5.2 cannot be considered as denoised MFCCs. As a result, denoised MFCCs can

only be extracted from the left-network.

On the other hand, the last row suggests that the denoised senone i-vectors, in

which both the BN features and posteriors are obtained from the DAE–DNN, achieve
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the best performance under all of the 4 SNR conditions. The good performance of

these BN-based senone i-vectors is attributed to the fact that both the BN features

and the senone posteriors are obtained from the same network (the DAE–DNN).

Therefore, they work very well with each other. We conjecture that there is a com-

promise between the robustification of BN features by the DAE and the amount of

speaker information loss. For the BN-based senone i-vectors, the benefit of the former

prevails.

Although we have performed score calibration by using the logistic regression func-

tion in the Bosaris toolkit [81], all the systems still have high actDCF. This is mainly

caused by the wide range of SNR in the training data for estimating the calibration

weights. The training data comprise the original utterances and noise contaminated

utterances at 0dB, 6dB and 15dB. More advanced calibration techniques [42, 82] are

needed to improve the actDCF performance.

5.6.2 Senone Posteriors vs. Mixture Posteriors for BN Features

Table 5.2: Performance of BN-based i-vector/PLDA systems on NIST 2012 SRE
(CC4, male speaker, core task) with test utterances contaminated with different levels
of babble noise. DAE–DNN is DNN with DAE training (Fig. 5.2). The UBM here is
a speaker-independent GMM trained by using BN features.

Original 15dB 6dB 0dB
Posteriors from EER minDCF EER minDCF EER minDCF EER minDCF

UBM(1024-mix) 3.19 0.357 4.11 0.350 3.73 0.358 4.70 0.484
UBM(2048-mix) 1.97 0.203 2.63 0.245 2.58 0.239 3.70 0.389

DAE–DNN 1.56 0.218 2.17 0.212 2.01 0.229 3.07 0.432

Table 5.2 compares the performance of two BN-based i-vector/PLDA systems. In

the first two rows, the mixture posteriors γc(oi,t)’s were obtained from the UBM;

whereas in the last row, the senone posteriors γc(si,t)’s were obtained from the DAE–

DNN. The BN features were extracted from the DAE–DNN shown in Fig. 5.3. The
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performance improves significantly when the number of UBM mixtures increases from

1024 to 2048. Because the DNN has 2000 outputs (each representing a senone), it is

reasonable that the BN features have around 2000 clusters in the feature space. Due to

their noise robustness, the BN features still have the similar distributions even under

noisy environments. Therefore, the UBM with 2048 mixtures is more appropriate for

modeling the BN features. On the other hand, each Gaussian in the 1024-mixture

UBM requires to model roughly two senone clusters, which limits the performance of

the BN i-vectors derived from this UBM. Under all of the 4 SNR conditions, using

the posteriors from the DAE–DNN improves performance significantly. Although the

performance of the system with senone posteriors drops when the test utterances

become noisier, it is still superiors to the one with GMM mixture posteriors. It

shows that the DAE–DNN can estimate the senone posteriors accurately under noisy

conditions to some extent.

5.6.3 Importance of DAE Training

Table 5.3: Performance of various i-vector/PLDA systems on NIST 2012 SRE (CC4,
male speaker, core task) with test utterances contaminated with different levels of
babble noise. DAE–DNN is DNN with DAE training (Fig. 5.2). DNN has a similar
structure as DAE–DNN, but without DAE training.

Original 15dB 6dB 0dB
BN Features from Posteriors from EER minDCF EER minDCF EER minDCF EER minDCF

DAE–DNN DAE–DNN 1.56 0.218 2.17 0.212 2.01 0.229 3.07 0.432
DAE–DNN DNN 1.46 0.212 2.08 0.205 2.01 0.236 2.90 0.438

DNN DAE–DNN 1.30 0.220 2.12 0.200 2.05 0.227 3.08 0.425
DNN DNN 1.54 0.212 2.24 0.199 2.04 0.246 3.20 0.435

With DAE–DNN and DNN, we have four combinations of BN features and senone

posteriors as shown in Table 5.3. Comparing Row 2 and Row 4 of Table 5.3 suggests

that DAE training improves the performance of BN features if the posteriors are from

the DNN without DAE training. Similarly, comparing Row 3 and Row 4 suggests that
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DAE training becomes important for estimating the senone posteriors when the BN

features are obtained from the DNN without DAE training. However, comparing

Row 1 and Row 3 suggests that DAE training is not necessary for extracting the BN

features if the posteriors are obtained from the DAE–DNN. On the other hand, Row

1 and Row 2 suggest that DAE training is not necessary for estimating the senone

posteriors when the BN features are obtained from the DAE–DNN. In conclusion, the

DAE training can benefit the senone i-vector systems if one of the two components

(BN feature extraction and posterior computation) receives DAE training. Overall

speaking, the senone i-vectors whose phonetically discriminative BN features are ob-

tained from the DAE–DNN and senone posteriors are obtained from the DNN without

DAE training (Row 2) achieve the best performance.

Table 5.4: Performance of various i-vector/PLDA systems on NIST 2012 SRE (CC5,
male speaker, core task). DAE–DNN is DNN with DAE training (Fig. 5.2). DNN
has a similar structure as DAE–DNN, but without DAE training.

CC5 Core CC5 Extended
BN Features from Posteriors from EER minDCF EER minDCF

DAE–DNN DAE–DNN 2.18 0.251 2.15 0.248
DAE–DNN DNN 2.07 0.261 2.16 0.248

DNN DAE–DNN 2.24 0.278 2.19 0.253
DNN DNN 2.35 0.263 2.68 0.255

The performance of BN-based senone i-vectors under CC5 of NIST 2012 SRE

(male speaker) is shown in Table 5.4. The performance in Row 1 and Row 2 is

significantly better than the one in Row 3 and Row 4, which suggests that DAE

training benefits the BN features. However, comparisons between Row 1 and Row

2 and between Row 3 and Row 4 of Table 5.4 suggest that DAE training is more

effective for cleaning up BN features than for robustifying senone posteriors. This

conclusion is consistent with the one under CC4, where the senone i-vectors with

BN features from DAE–DNN and senone posteriors from DNN (Row 2 in Table 5.3)
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achieve the best performance in Table 5.3.

Table 5.5: Cross-entropy of DAE–DNN and DNN on the training set mentioned in
Section 5.5.4 and the noise contaminated test utterances from CC4 of NIST 2012
SRE. DAE–DNN is DNN with DAE training (Fig. 5.2). DNN has a similar structure
as DAE–DNN, but without DAE training.

Training Set 15dB CC4 6dB CC4
DAE–DNN 6.32 6.91 6.97

DNN 6.34 6.82 6.89

To verify the conclusion that DAE training is less beneficial for senone posteriors

estimation, we calculated the cross-entropy of DAE–DNN and DNN on the training

set mentioned in Section 5.5.4 and on the noise contaminated test utterances from

CC4 of NIST 2012 SRE. The results are shown in Table 5.5. The results show that

the cross-entropy on the training set is almost the same regardless of whether DAE

training is applied. However, with DAE training, the cross-entropies on the noise

contaminated test utterances become higher. This suggests that while DAE training

can benefit BN feature extraction, it reduces the generalization capability of the

network, causing less accurate senone posteriors on the test utterances. This agrees

with our conclusions in Table 5.1, Table 5.3 and Table 5.4.

The DET curves of the systems corresponding to Row 2 and Row 4 in Table 5.4

are shown in Fig. 5.5. The senone posteriors of both systems were obtained from a

DNN without DAE training. The results clearly show that DAE training is beneficial

to BN feature extraction, as the DET curve of “BN from DAE–DNN” is below that

of “BN from DNN” for a wide range of decision thresholds.
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Figure 5.5: The DET performance (CC5 of NIST 2012 SRE) of two senone i-vector
systems based on BN features. In the legend, “BN from DAE–DNN” and “BN from
DNN” mean that the bottleneck features were obtained from a DNN with and without
DAE training, respectively. They correspond to Row 2 and Row 4 in Table IV,
respectively. In both cases, the senone posteriors were obtained from the DNN without
DAE training.
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Chapter 6

DNN-BASED SCORE CALIBRATION

6.1 Introduction

During verification, given an i-vector pair derived from the utterance of a target

(claimed) speaker and the utterance of a claimant, a likelihood ratio score (namely

PLDA score)

S =
p(i-vector pair|same speaker)

p(i-vector pair|different speaker)

is computed to determine whether the i-vectors in the i-vector pair are from the same

speaker or not. When computing the PLDA score, the difference between the speaker

and channel subspaces in the PLDA model is leveraged to marginalize the channel

effect on the i-vector pair. This marginalization process leads to a likelihood ratio

score that is mainly dependent on speaker characteristics of the i-vector pair.

To compensate for the detrimental effect on the PLDA scores discussed in Sec-

tion 2.6.3, in this chapter, we attempt to directly model the complex relationship

between score shift and distorted i-vectors. Inspired by the recent findings that deep

neural networks (DNNs) have a high capacity in modeling complex relationship, we

trained a DNN using i-vector pairs (derived from both clean and noisy speech) as

inputs and the ideal score shifts as target outputs. This method, however, requires

parallel training data comprising clean and noisy i-vectors so that ideal score shifts

can be computed during the training stage. To obviate this requirement, we trained

a second DNN that can produce close-to-ideal (clean) PLDA scores by using i-vector

pairs augmented with the PLDA score as input. To further leverage the meta data

(SNR and speaker labels) that can be easily obtained from training utterances, we
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used multi-task learning to train a third network whose input is identical to the sec-

ond DNN but its outputs aim to achieve two tasks: regression and classification. For

the former, the network was trained to produce ideal score shift, clean score, and the

SNRs of target and test utterances, whereas for the latter, the network aims to classify

whether the i-vector pairs come from the same speaker or from different speakers.

This chapter is organized as follows. We will introduce the previous score cali-

bration methods in Section 6.2; based on these methods, we propose the DNN-based

calibration methods in Section 6.3, where the DNNs are trained to output the cali-

brated score directly without estimating the score shift. Experiments on NIST 2012

SRE in Section 6.4 show that the auxiliary tasks in multi-task learning help the DNNs

to find a better solution, which makes the multi-task DNNs outperform the single-task

DNNs under all SNR conditions significantly.

6.2 Quality-based Score Calibration

To improve the robustness of speaker verification, Mandasari et al. [45,46] and Hasan

et al. [42] proposed several quality measure functions (QMFs) to compensate for the

score shift caused by background noise and short utterance duration. A QMF is a

function of some quality measures such as SNR and duration that can be directly

obtained from utterances. Denote S as the uncalibrated verification score of a target-

speaker utterance and a test utterance. Also denote λtgt and λtst as the quality

measures of the target-speaker and test utterances, respectively. Then, the calibrated

score S ′ can be computed as follows:

S ′ = w0 + w1S +Q(λtgt, λtst), (6.1)
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where Q(λtgt, λtst) is a QMF. In [45, 46], the QMFs were based on the duration and

SNR of test speech:

QSNR(SNRtst) = w2SNRtst

QDur(dtst) = w2 log (dtst)

QSNR+Dur(SNRtst, dtst) = w2SNRtst + w3 log (dtst),

(6.2)

where SNRtst and dtst are the SNR and duration of the test utterance, and w2 and

w3 are their corresponding weight. If the effect of noise in the target utterance is also

considered, QSNR becomes:

QSNR2(SNRtgt, SNRtst) = w2SNRtgt + w3SNRtst, (6.3)

where SNRtgt is the SNR of the target-speaker utterance. In Eqs. 6.1–6.3, the weights

wi, i = 0, . . . , 3, can be estimated by logistic regression [83].

By assuming that i-vectors are acoustic-condition dependent, Ferrer et al. [49] and

Nautsch et al. [47] derived a quality vector q based on the posterior probabilities of

various acoustic conditions given an i-vector. Thus, each i-vector (either from target

speaker or test speaker) is associated with a quality vector, and the score shift of a

verification trial is a function of the quality vectors derived from the i-vectors in that

trial. In [47], the function is called the function of quality estimate (FQE). Specifically,

i-vectors derived from utterances of 55 combinations of different durations and SNRs

were used to train 55 Gaussian models Λj = {µj,Σ}55
j=1. Each of these Gaussian

models has its own mean µj estimated from the i-vectors of the respective condition,

but they share the same global covariance matrix Σ. The j-th element of q for an

i-vector x is defined as the posterior of the j-th condition:

qj =
N (x|µj,Σ)∑
j′ N (x|µj′ ,Σ)

, j = 1, . . . , 55. (6.4)
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Given the i-vectors xtgt and xtst from a target-speaker and a test speaker, respectively,

the corresponding quality vectors qtgt and qtst are obtained from Eq. 6.4 and the score

shift can be obtained from a symmetric bilinear matrix W or cosine-distance score

as follows:

QUAC(qtgt, qtst) = w2q
ᵀ
tgtWqtst

Qqvec(qtgt, qtst) = w2cos(qtgt, qtst),
(6.5)

where

cos(a, b) =
aᵀb

‖a‖‖b‖
.

In Eq. 6.5, the elements in a quality vector are the posteriors with respect to the

corresponding SNR/duration groups, and the simple functions (bilinear transforma-

tion and cosine distance) of the two quality vectors could only reflect their similarity

in terms of SNR and duration. It is still very close to the QMFs in Eq. 6.2 and Eq. 6.3,

where the score shift is assumed to be linear with respect to SNR of utterances and/or

to the logarithm of utterance duration. As we will discuss in Section 6.4 and Fig. 6.8,

the relationship between score shift and SNR and log-duration is complex, and only

the SNR and log-duration information is not enough to estimate the ideal score shift.

The i-vectors are essential for estimating the ideal score shift.

6.3 DNN-based Score Calibration

This chapter proposes an innovative score calibration algorithm to mitigate the lim-

itations of the score calibration algorithms described in Section 6.2. The main idea

is to use deep neural networks (DNNs) to estimate the appropriate score shift or to

output clean PLDA scores given noisy i-vectors and noisy PLDA scores as input.

When the DNN is used for estimating the score shift, it essentially performs score

compensation and its role is the same as that of the function Q in Eq. 6.1. However,

when the DNN is used for outputting clean PLDA scores, it essentially performs score
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Figure 6.1: DNN-based score calibration.

transformation. For whatever roles, a further calibration process is essential because

the DNN cannot guarantee that the resulting scores are true log-likelihood ratios. To

avoid cluttering with terminologies, we collectively refer to the score compensation,

transformation, and calibration processes as DNN-based score calibration. Fig. 6.1

shows the full process.1

6.3.1 DNN Score Compensation: Estimating Score Shifts by DNNs

The proposed algorithm uses a DNN to estimate the appropriate score shift given the

target and test i-vector pairs (xtgt and xtst) and the uncalibrated PLDA score S as

shown in Fig. 6.3. Specifically, given an uncalibrated PLDA score S of a verification

trial, the compensated score is given by:

S ′1 = S + DNN1(xtgt,xtst, S), (6.6)

where DNN1 denotes the output of a DNN that receives i-vector pairs and uncalibrated

scores as input. With these inputs, the DNN outputs the shift of PLDA scores due

1In some studies [84,85], the term calibration strictly referred to the process of adjusting the scores
without affecting the equal error rate (EER). Here, we follow the terminology in [45–47] and relax
the definition of calibration to include the processes that lead to better EER performance.
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to the deviation of the acoustic conditions from the clean one:

DNN1(xtgt,xtst, S) ≈ δscore = Scln − S, (6.7)

where Scln is the PLDA score if both xtgt and xtst were derived from clean utterances.

Substituting Eq. 6.7 to Eq. 6.6, we have:

S ′1 ≈ S + (Scln − S) = Scln,

which means that the clean score can be recovered.

To train DNN1, we need i-vectors derived from both clean and noise contaminated

utterances where the amount of noise contamination should be varied to give a rich

set of δscore’s. This can be done by using the FaNT tool [79] with the target SNR set

to various levels. The procedure of computing Scln, S and δscore at the training stage

is illustrated in Fig. 6.2. Note that Fig. 6.2 depicts the situation where both of the

target-speaker and test utterances are noisy. However, in real environments, there

are situations where either the target-speaker utterance or the test utterance is clean,

or both are clean. To accommodate these situations, some of the “noisy i-vectors”

in Fig. 6.2 should be derived from clean speech. Therefore, if both of the i-vectors

in the lower branch of Fig. 6.2 are derived from clean utterances, we have S = Scln

and δscore = 0. This is exactly what we want the DNN to produce when the input

i-vectors are clean.

As we have mentioned in Section 2.4.3, the PLDA score of i-vector pair (xtgt, xtst)

can be expressed in terms of the log-likelihood ratio LLR(xtgt,xtst):

S = LLR(xtgt,xtst)

= xᵀ
tgtQxtgt + xᵀ

tstQxtst + 2xᵀ
tgtPxtst + const,

(6.8)

whereQ and P are the matrices derived from the total covariances and across-speaker
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the training stage. The SNRs of the target speech and the test speech can be different,
and even one or both of them could be clean.
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covariances of i-vectors [14]. Using Eq. 6.8, the general form of score shift is:

δscore = LLR(xtgt cln,xtst cln)− LLR(xtgt,xtst)

= xᵀ
tgt clnQxtgt cln − xᵀ

tgtQxtgt

+ xᵀ
tst clnQxtst cln − xᵀ

tstQxtst

+ 2xᵀ
tgt clnPxtst cln − 2xᵀ

tgtPxtst.

(6.9)

Note the difference between Eq. 6.9 and the bilinear transformation in Eq. 6.5. The

score shift in Eq. 6.9 involves not only a bilinear transformation between the target-

speaker and test i-vectors in its last term, but also the bilinear transformation of

clean and noisy test i-vectors. If we were to know the clean test i-vector (xtst cln) for

every noisy test i-vector (xtst), then Eq. 6.9 can be easily computed without a DNN.

However, as we do not know xtst cln, we resort to relying on the DNN to learn the

complex relationship between the input i-vector pairs and the score shifts.

6.3.2 DNN Score Transformation: Recovering Clean PLDA Scores by DNNs

The score calibration method in Section 6.3.1 and previous scoring methods such as

QMF and FQE use the concept of score shift to compensate or calibrate the scores.

However, if the clean score can be restored, the estimation of score shifts seems to be

redundant. To make the restored scores close to the ideal clean scores, we can use a

DNN to model the complex relationship between the i-vector pairs, noisy scores (S),

and the clean scores (Scln):

S ′2 = DNN2(xtgt,xtst, S) ≈ Scln. (6.10)

In this model, the DNN (see Fig. 6.4) receives an i-vector pair and its corresponding

noisy score as input, and it is trained to output the clean score.
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75

.	.	.	.	.	.	

.	.	.	.	.	.	

.	.	.	.	.	.	

xtgt xtst S

.	.	.	.	.	.	

Clean	Score	

.	.	.	.	.	.	

.	.	.	.	.	.	

DNN2 (xtgt, xtst,S) ≈ Scln = Ideal Clean Score
Scln

Target-speaker	I-vector	 Noisy	Score	Test	I-vector	
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6.3.3 Multi-task DNNs for Score Compensation/Transformation

The DNNs in Fig. 6.3 and Fig. 6.4 have hundreds of input nodes but only one output

node. Their goal is to learn a regression task to produce the desired score shifts

or clean scores. During training, the squared errors in the output node will need

to be propagated to hundreds of nodes in both the hidden and input layers. Our

experience is that having a single source of errors makes the backpropagation (BP)

of error gradients very inefficient. One possible solution to assisting the network to

learn the regression task is to introduce some auxiliary tasks for the network to learn.

In the literature, this is known as multi-task learning [86,87]. Therefore, a multi-task

DNN with auxiliary information in the output layer may help to improve the learning

efficiency.

Fig. 6.5 shows a DNN that uses multi-task learning to learn not only the main

task (producing score shift δscore and clean score Scln) but also the auxiliary tasks

(producing the SNRs of target-speaker and test utterances and same-speaker and

different-speaker posteriors). To incorporate the auxiliary information, we may add

auxiliary nodes to either the input layer, the output layers, or both. However, we opt

for adding the auxiliary nodes to the output layers rather than to the input layer for

four reasons:

1. Adding more input nodes will require the error signals from the error source to

be propagated to more input nodes, which is contradictory to our goal of easing

the BP training.

2. Given the large number of input nodes corresponding to the i-vector pairs, the

squared errors in the output node will mainly depend on the i-vectors rather

than the small number of auxiliary inputs. As a result, BP training will tend

to find a network that is insensitive to the variability in the auxiliary inputs.

3. Adding auxiliary nodes to the input layer means that it is necessary to estimate
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this information during the calibration stage. While some information such as

SNRs of utterances can be easily estimated, others such as whether the input

i-vector pair belongs to the same person or not (see Fig. 6.5) is not that trivial.

In fact, the latter is the goal of the application in the first place.

4. Having more output nodes means that more error signals can be propagated

to the hidden layers. The error signals from the auxiliary tasks can guide the

network to learn the main task [88]. They also serve as a regularizer to avoid

overfitting the main task [86].

Both the clean score Scln and ideal score shift δscore can be the target outputs

of the multi-task DNN. Once the multi-task DNN has been trained, the calibrations

defined in Eq. 6.6 and Eq. 6.10 can be obtained from the output of this DNN. Be-

sides, according to Eq. 6.3, the SNRs of the target-speaker’s utterance and the test

utterance, SNRtgt and SNRtst, are useful for estimating the score shift. Therefore,

we have 4 output nodes in the regression task as shown in Fig. 6.5. In addition to

the regression task, a classification task can be added. Because our goal is to verify

speakers, two classification output nodes indicating whether the input i-vector pair is

from the same speaker or not is added to the network. In this chapter, the regres-

sion part of the DNN uses linear output nodes and minimum mean squared error as

the optimization criterion, whereas the classification part uses softmax outputs and

cross-entropy as the optimziation criterion.

The outputs of a multi-task DNN with 4 regression nodes and 2 classification

nodes are the concatenation of two vectors:

DNN3(xtgt,xtst, S) ≈[
[δscore, Scln, SNRtgt, SNRtst]︸ ︷︷ ︸

Regression

, [p+, p−]︸ ︷︷ ︸
Classification

]ᵀ
,

(6.11)

where p+ and p− are the posterior probabilities of same-speaker and different-speaker
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hypotheses, respectively. Similar to the notation in Eq. 6.7, Eq. 6.11 means that the

DNN uses the i-vector pair (xtgt,xtst) and the original score S as input. With the

multi-task learning strategy, the network outputs the score shift δscore, the clean score

Scln, the SNRs of target-speaker speech and test speech SNRtst, and the posterior

probabilities (p+ and p−).

During score compensation and transformation, only the score shift and clean

score produced by the multi-task DNN will be used:

DNN3,shift(xtgt,xtst, S) ≈ δscore, (6.12)

and

DNN3,cln(xtgt,xtst, S) ≈ Scln. (6.13)

Therefore, we have

S ′3 = S + DNN3,shift(xtgt,xtst, S)

≈ Scln,
(6.14)

and

S ′4 = DNN3,cln(xtgt,xtst, S)

≈ Scln.
(6.15)

6.3.4 Producing Likelihood-Ratio Scores

Our goal is to use DNNs to estimate the ideal clean scores or ideal score shifts in order

to improve the performance in terms of equal error rate (EER) and minimum detection

cost (minDCF). Therefore, the DNNs are not trained to produce true likelihood ratios
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so that the decision thresholds for which these performance metrics are minimized are

application dependent.

For real-world deployments, it is desirable to have application-independent deci-

sion thresholds [80] such that not only the EER and minDCF are minimized, but also

the actual DCF (actDCF) or Cprimary at specific thresholds are also small. To this

end, all of the compensated/transformed scores are subject to further calibration to

produce true likelihood-ratio scores using the logistic regression (LR) in the Bosaris

toolkit [81]:

S ′′ = w0 + w1S
′
i, (6.16)

where S ′i, i = 1, 2, 3, and 4, are the compensated/transformed scores in Eqs. 6.6,

6.10, 6.14 and 6.15, respectively. This calibration step only shifts and scales the DNN

calibrated scores, which reduce the actDCF without affecting the EER and minDCF.

6.4 Experiments

6.4.1 Experimental Setup

Score calibration experiments were conducted on the NIST 2012 SRE under Com-

mon Condition 4 (CC4, male). This evaluation condition involves 723 male target

speakers, with a total of 7,116 telephone utterances for enrollment and 3,900 tele-

phone utterances for performance evaluation. Totally, there are 2,775 target-speaker

trials and 122,624 impostor trials. The duration of these utterances ranges from 10

to 300 seconds (before voice activity detection (VAD)). All utterances were spoken in

English. These utterances cover a wide range of SNR, from 0dB to 30dB as shown in

Fig. 5.4.

To investigate the capability of various calibration methods under noisy environ-

ments, we used the FaNT tool [79] to add babble noise to the target-speaker utterances

and test utterances at an SNR of 15dB, 6dB, and 0dB, respectively. Therefore, we

have four groups of training utterances and four groups of test utterances, with the
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first group being the original utterances and the last three groups having SNRs close

to 15dB, 6dB, and 0dB, respectively. Hereafter, we refer to these 4 groups as SNR

groups. The SNR distributions of the 4 groups of test utterances in CC4 are shown

in Fig. 5.4. Note that although the target SNRs that we applied to FaNT are 0dB,

6dB, and 15dB, Fig. 5.4 shows that the peaks of the SNR distributions do not align

to these targets. The misalignments are due to the discrepancy in the VAD decisions

for adding noise and for measuring SNRs. Specifically, FaNT has its own VAD for

estimating the amount of noise to be added to the clean signals, whereas the measured

SNRs in Fig. 5.4 were based on the voltmeter function in FaNT and the decisions of

our noise-robust VAD [72].

The whole training set comprises 7116 × 4 = 28, 464 target-speaker utterances

from 723 target speakers in CC4 of NIST 2012, leading to 284642 ≈ 810 million i-

vector pairs. Using the procedure shown in Fig. 6.2, these i-vector pairs give rise to

810 million PLDA scores and score shifts. A random subset of these scores and score

shifts were selected for training the DNNs in Fig. 6.3 to Fig. 6.5 (see Section 6.4.2)

and for estimating the calibration weights in Eqs. 6.1, 6.3 and 6.16. To ensure that

all DNNs were trained by the same set of i-vector pairs and PLDA scores, only one

PLDA model was trained. Specifically, it was trained by using the utterances from

the 4 SNR groups mentioned earlier and the i-vectors derived from the microphone

utterances (interview speech) of the same set of target speakers in NIST 2006–2010

SREs.

The evaluation protocol of the NIST 2012 SRE defines the target trials and impos-

tor trials (in the .ndx files). For each trial, a target speaker is defined but not his/her

enrollment utterances. It is up to the evaluator to select the appropriate enrollment

utterances for each trial. Because CC4 in 2012 SRE involves noise contaminated test

utterances, we used the original target-speaker utterances and their noise contami-

nated counterparts from the 6dB and 15dB SNR groups as enrollment utterances. In

the sequel, we refer to this test condition as “original”. In addition to this “original”
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test condition, we created three test conditions based on the noise contaminated test

utterances. Specifically, for the 15dB test condition, test utterances at the SNR of

15dB were used for scoring, and similarly for the 6dB and 0dB test conditions. The

enrollment utterances were different for different test conditions. Specifically, for the

15dB test condition, the enrollment utterances were obtained from the 15dB and 6dB

SNR groups; for the 6dB and 0dB test conditions, the enrollment utterances were

respectively obtained from the 6dB and 0dB SNR groups.

The weights of the QMF in Eq. 6.3 and the calibration weights in Eq. 6.1 and

Eq. 6.16 were trained by using 1.5 million same-speaker utterance pairs and 400

million different-speaker utterance pairs derived from the target speakers in the four

SNR groups. For Eq. 6.1 and Eq. 6.3, using the logistic regression program in the

FoCal toolkit, we obtained the weights w0 = −21.5197, w1 = 0.1966, w2 = 0.1284

and w3 = 0.1284, leading to:

S ′ = 0.1966S + 0.1284SNRtst + 0.1284SNRtgt − 21.5197.

Speech regions in the speech files were extracted by using a two-channel voice

activity detector [72]. 19 MFCCs together with energy plus their 1st and 2nd deriva-

tives were extracted from the speech regions, followed by cepstral mean normalization

and feature warping with a window size of 3 seconds. A 60-dim acoustic vector was

extracted every 10ms, using a Hamming window of 25ms.

6.4.2 DNN Training

To highlight the advantages of multi-task learning, a multi-task DNN (Fig. 6.5) that

implements Eq. 6.12 and Eq. 6.13 was compared with two single-task DNNs (Fig. 6.3

and Fig. 6.4) that implement Eq. 6.6 and Eq. 6.10. For the single-task DNNs, we

trained restricted Boltzmann machines (RBM) layer-by-layer using the contrastive

divergence algorithm [31, 78]; then we fine-tuned the networks using the backpropa-
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gation algorithm with sigmoid nonlinearity in the hidden layers. Mini-batch gradient

descent with a batch size of 1000 was used. The learning rates for the classification

task and regression task are 0.005 and 0.05, respectively. Because there are over

810 million i-vectors pairs that can be used for training, to speed up the training

process, 3.2 million pairs were randomly chosen for every 10 iterations of backprop-

agation training. Totally, we applied 200 iterations of backpropagation to fine-tune

the networks.

The RBM at the bottom layer has Gaussian visible nodes and Bernoulli hidden

nodes. The remaining RBMs use Bernoulli distributions in both visible and hidden

layers. Both the inputs and desired outputs (except for the classification outputs

in Fig. 6.5) of the DNNs were processed by z-normalization. The last layer of the

classification part in Fig. 6.5 were initialized with small random weights. All DNNs

have 4 hidden layers, with each layer comprising 256 hidden nodes.

The multi-task DNN (DNN3) was trained in a slightly different manner. Because

having a balanced training set is beneficial for the network to learn the classification

task, for every iteration we extracted 700,000 same-speaker i-vector pairs and 700,000

different-speaker i-vector pairs for training. We applied 300 iterations of backpropa-

gation to fine-tune DNN3.

6.4.3 Denoised Senone I-vectors

We used a senone i-vector/PLDA system [74] to produce the uncalibrated (noisy)

scores, which form our baseline results. The system is equipped with a denoising deep

classifier that extracts frame-based bottleneck features from the MFCCs of utterances.

The deep classifier is formed by stacking two layers of RBMs on top of a denoising

autoencoder (DAE) [75]. This structure allows us to extract bottleneck features

and estimate the posterior of senones for i-vector extraction [32], which effectively

incorporates phonetic information into the senone i-vectors.

We followed the standard procedure to pre-process the i-vectors for Gaussian
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PLDA modeling. Specifically, the 500-dimensional senone i-vectors were whitened by

within-class covariance normalization (WCCN) [89], which normalizes the covariance

of i-vectors, and length normalization [14], followed by linear discriminant analysis

to reduce the dimension to 200 and variance normalization by WCCN [90]. These

200-dimensional i-vectors were input to the PLDA model and the DNNs.

6.5 Results and Disscusions

6.5.1 Distributions of PLDA Scores and Score Shifts
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Figure 6.6: The distributions of PLDA scores produced by scoring clean target-speaker
i-vectors against noisy test i-vectors. Each distribution corresponds to one group of
test i-vectors whose utterances have SNRs belonging to one of the four groups: Clean
(Cln), 15dB, 6dB, and 0dB.

To investigate the property of PLDA scores under various background noise levels,

we scored clean target-speaker i-vectors against noisy test i-vectors and plotted the

distributions of the resulting scores. Fig. 6.6 shows the distributions of these uncal-

ibrated scores under four background noise levels of test utterances: Clean, 15dB,
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6dB, and 0dB. Evidently, the scores tend to be larger and their variances tend to be

smaller when the background noise level increases.
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Figure 6.7: The distributions of ideal score shifts (S − Scln) for 3 SNR conditions
of the test utterances. As indicated in the legend, the target-speaker utterances are
always clean. The clean scores Scln were obtained by scoring clean target-speaker
i-vectors against clean test i-vectors.

Because our goal is to use DNNs to compute the ideal score shifts, it is of interest

to inspect the relationship between the ideal score shifts and test utterances’ SNR.

To this end, we plot the distributions of ideal score shifts (S−Scln) under three SNR

conditions for the test utterances in Fig. 6.7 and against all SNRs in the test utterances

in Fig. 6.8. Interestingly, the score shifts exhibit a large variability when the SNR

of test utterances is very low (0dB). This high variability is definitely not because

of the high variability in SNR, as evident in Fig. 5.4 where the SNR distribution of

test utterances is very narrow near 0dB. Quite the opposite, the high SNR variability

in the 15dB group shown in Fig. 5.4 leads to the least variability in score shifts

(green dashed curve) in Fig. 6.7. Therefore, at low SNR, the score shifts will become

more difficult to estimate, which demonstrates a major drawback of the methods
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Figure 6.8: The distributions of score shifts with respect to the SNR of test utterances
when the target-speaker utterances is clean. The SNRs follow the distribution shown
in Fig. 5.4, and the score shifts follow the distribution shown in Fig. 6.7. The figure
shows that the relationship between SNRs and score shifts is non-linear, and that at
low SNR, the variability of score shifts is very large.

that entirely rely on SNR of utterances (e.g., QMF in Eq. 6.3). In theory, the FQE

in Eq. 6.5 is better in the sense that it does not use SNR information directly but

instead uses it implicitly through the i-vectors and the Gaussian models. However,

whether the bilinear transformation and cosine distance can accurately estimate the

score shift at high background noise level is unclear. As demonstrated in Fig. 6.8,

the relationship between score shifts and utterances’ SNR are fairly complex and

definitely non-linear.

Because i-vectors are noise-level dependent [40], it makes sense to directly predict

the score shifts from i-vectors rather than implicitly through the Gaussian models of

the i-vectors as in FQE. Therefore, we advocate that through multi-task supervised

learning, the DNNs can estimate the score shifts accurately and even recover the clean

scores. This is supported by the results to be presented next.
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6.5.2 Sensitivity of Score Output to Score Input
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Figure 6.9: Graph showing the relationship between the recovered clean scores S ′4
in Eq. 6.15 produced by a multi-task DNN and the noisy input scores S when the
i-vector pair is fixed. The input i-vector pair is a fixed non-target pair. Both S and
S ′4 were normalized by the same set of z-norm parameters. The DNN is a multi-task
one with 4 hidden layers.

For 200-dimensional pre-processed i-vectors, the number of input nodes corre-

sponding to the i-vector pairs is 400, whereas there is only one score input node. This

large ratio may cause the network insensitive to the noisy scores. To find out if it is

the case, we plotted the recovered clean scores S ′4 (Eq. 6.15) produced by a multi-task

DNN against the input noisy scores S. To focus on the sensitivity of S ′4 with respect

to S, the i-vector pair was fixed to an arbitrary non-target pair. Surprisingly, as

shown in Fig. 6.9, the recovered scores are fairly sensitive to the noisy input scores

despite of the large ratio between the two types of input nodes. This result, in fact,

agrees with our recent finding that the input noisy scores play an important role in

recovering the clean scores [82].
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6.5.3 Comparing Various Calibration Methods

Table 6.1: Performance of various score calibration methods in NIST 2012 SRE (CC4,
male speaker, core task) with test utterances contaminated with different levels of
babble noise. All networks have 4 hidden layers. LR: Logistic regression.

Original 15dB
Score Calibration Method EER(%) minDCF actDCF EER(%) minDCF actDCF

Baseline (LR on noisy PLDA scores) 1.56 0.218 0.855 2.27 0.225 0.778
SNR-dep Score Shift (Eq. 6.3) 1.68 0.209 0.780 2.24 0.215 0.770

Score Shift by Multi-task DNN (Eq. 6.12) 1.65 0.178 0.694 2.32 0.203 0.626
Recovered Clean Score by Multi-task DNN (Eq. 6.13) 1.50 0.189 0.517 2.21 0.211 0.455

6dB 0dB
Score Calibration Method EER(%) minDCF actDCF EER(%) minDCF actDCF

Baseline (LR on noisy PLDA scores) 2.29 0.276 0.749 5.37 0.753 0.779
SNR-dep Score Shift (Eq. 6.3) 2.28 0.269 0.811 5.35 0.754 0.794

Score Shift by Multi-task DNN (Eq. 6.12) 2.34 0.231 0.604 4.00 0.488 0.547
Recovered Clean Score by Multi-task DNN (Eq. 6.13) 2.16 0.243 0.470 3.48 0.409 0.516

Table 6.1 shows the performance of various score calibration strategies, including

SNR-dependent score shifts (Eq. 6.3) and recovering clean scores by multi-task DNNs

(Eq. 6.13). The baseline refers to using the noisy PLDA scores for computing EER

and minimum detection cost function (minDCF) and using logistic regression for

computing the actual DCF (actDCF). The results show that the proposed method

achieves the best performance across all of the SNR levels. At 0dB, it also outperforms

the baseline significantly.

Fig. 6.10 shows the normalized Bayes error rates of the minDCF and actDCF of

various systems as a function of effective target prior. Among all systems, the one

based on score shift computed by the multi-task DNN (green) has a very small margin

between the actDCF and minDCF.

The results of the same experiments on CC5 of NIST 2012 SRE are shown in

Table 6.2. Unlike the results in CC4, DNN calibration does not show obvious advan-

tage as compared to linear calibration. We suspect that this is because most of the

utterances in CC5 have higher SNRs than those in CC4 (see Fig. 5.4). When the SNR

is high, the benefit of DNN score calibration diminishes. Also, since the utterances in
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Figure 6.10: Normalized bayes error rate plots showing that the minDCF and actDCF
of different systems as a function of effective target prior in NIST 2012 SRE (CC4,
male speaker, core task) contaminated with babble noise at an SNR of 0dB.
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Table 6.2: Performance of various score calibration methods in NIST 2012 SRE (CC5,
male speaker, core task). The DNN has 4 hidden layers. LR: Logistic regression.

Original
Score Calibration Method EER(%) minDCF actDCF

Baseline (LR on noisy PLDA scores) 2.48 0.267 0.861
Score Shift by Multi-task DNN (Eq. 6.12) 2.54 0.260 0.640

Recovered Clean Score by Multi-task DNN (Eq. 6.13) 2.51 0.242 0.716

CC5 were collected in a noisy environment while the DNN was trained by data with

artificially added noise, the DNN may be weak to deal with the natural noises and

the Lombard effect.

6.5.4 Single-task vs. Multi-task

Table 6.3: Performance of single-task and multi-task DNNs for estimating the score
shifts and recovering the clean score in NIST 2012 SRE (CC4, male speaker, core task)
with test utterances contaminated with different levels of babble noise. All networks
have 4 hidden layers.

Original 15dB 6dB 0dB
Score Calibration Method EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

Score Shift by Single-task
DNN (Eq. 6.7)

2.26 0.267 3.25 0.285 3.27 0.322 4.83 0.538

Score Shift by Multi-task
DNN (Eq. 6.12)

1.65 0.178 2.32 0.203 2.34 0.231 4.00 0.483

Recovered Clean Score by
Single-task DNN (Eq. 6.10)

7.35 0.693 8.11 0.643 8.06 0.733 12.25 0.989

Recovered Clean Score by
Multi-task DNN (Eq. 6.13)

1.50 0.189 2.21 0.211 2.16 0.248 3.48 0.409

Table 6.3 compares the performance between single-task DNNs and multi-task

DNNs. Regardless of which output to be used (the score shift output in Eq. 6.6 or

the direct score output in Eq. 6.10), the multi-task DNN performs much better than

the single-task DNN.

A comparison between the first row of Table 6.3 (Score Shift by Single-Task DNN)



91

and the first and second rows of Table 6.1 reveals that only under very noisy conditions

(0dB), the calibrated scores produced by the single-task DNN (Eq. 6.7) can improve

performance; in all other conditions, this approach performs even poorer than the

ones without score calibration or the conventional approach where the score shift is

linear with respect to utterances’ SNR. This result suggests that estimating the score

shifts entirely from the i-vector pairs and noisy scores (Eq. 6.7) is not a good idea.

Under the clean condition, the score shifts estimated by the DNN in Eq. 6.7 have

detrimental effect on the uncalibrated scores. However, the good performance in the

second row of Table 6.3 suggests that once the auxiliary information is added to the

network, the score shifts estimated by the multi-task DNN become very close to the

ideal ones.

Table 6.3 also allows us to compare the performance of using the DNN to estimate

the score shift (δscore, Fig. 6.3) and using the DNN to recover the clean scores (Scln,

Fig. 6.4). Specifically, for the single-task case, Row 1 and Row 3 of Table 6.3 show

that the scores recovered by the DNNs are so wrong that the error is 3 to 4 times

that of the baseline (c.f. Table 6.1 and the third row of Table 6.3), while the score

shifts by the DNNs are comparable to the baseline (c.f. Table 6.1 and the first row of

Table 6.3). For the multi-task case, Row 2 and Row 4 of Table 6.3 suggest that it is

better to recover the clean scores directly than to estimate the score shifts, provided

that multi-task learning is used to train the DNNs.

Fig. 6.11 compares the DET performance of the baseline against the multi-task

DNNs. The results clearly suggest that recovering the clean scores by DNNs leads to

superior performance across a wide range of decision thresholds.

6.5.5 Generalization Capability

Using the i-vectors from target speakers to train the PLDA model and the calibration

DNNs may lead to overfitting on target speakers. In NIST 2012 SRE, the enrollment

utterances of target speakers come from previous NIST SREs. As these utterances



92

  1     2     5     10    20  
  1   

  2   

  5   

  10  

  20  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

00dB CC4

 

 

Baseline (no calibration)
SNR−dep Score Shift (Eq.3)
Recovered Clean Score by Multi−Task DNN (Eq.13)
Score Shift by Multi−Task DNN (Eq.12)

Figure 6.11: The DET curves of the four systems in NIST 2012 SRE (CC4, male
speaker, core task). Test utterances were contaminated with babble noise at an SNR
of 0dB.

Table 6.4: Performance of various score calibration methods in a subset of NIST 2012
SRE (CC4, male speaker, core task) with test utterances contaminated with different
levels of babble noise. The speech from 500 speakers was used to train the multi-task
DNN as in Fig. 6.5, and the 38,820 trials in CC4 of the other 223 speakers were used
in the test trials. The DNN has 4 hidden layers. LR: Logistic regression.

Original 15dB
Score Calibration Method EER(%) minDCF actDCF EER(%) minDCF actDCF

Baseline (LR on noisy PLDA scores) 1.21 0.194 0.867 1.96 0.214 0.794
Score Shift by Multi-task DNN (Eq. 6.12) 0.94 0.168 0.751 1.96 0.206 0.698

Recovered Clean Score by Multi-task DNN (Eq. 6.13) 0.82 0.188 0.777 1.57 0.214 0.726
6dB 0dB

Score Calibration Method EER(%) minDCF actDCF EER(%) minDCF actDCF

Baseline (LR on noisy PLDA scores) 1.89 0.266 0.755 5.09 0.709 0.722
Score Shift by Multi-task DNN (Eq. 6.12) 1.65 0.274 0.673 3.67 0.507 0.634

Recovered Clean Score by Multi-task DNN (Eq. 6.13) 1.55 0.309 0.728 3.70 0.548 0.704
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were also used for training the PLDA model and the DNN, there may be chance that

they can only work for these target speakers. To demonstrate the generalization ca-

pability of the multi-task DNNs, we selected 500 target speakers from CC4 and used

their i-vectors and PLDA scores (scores between same targets and between different

targets) to train a multi-task DNN as in Fig. 6.5. The target and non-target trials

(totally 38,820) derived from the remaining 223 target-speakers were then used for

performance evaluation. To the PLDA model and the DNN, these 223 speakers are

unseen speakers. As shown in Table 6.4, the multi-task DNNs perform significantly

better than the baseline. More importantly, the performance in Table 6.4 is compa-

rable to and in many cases better than that in Table 6.1. This suggests that both

the PLDA model and DNN can generalize to unseen speakers and that using the

enrollment utterances for training does not lead to overfitting.

6.5.6 Different Numbers of Hidden Layers

Table 6.5: Performance of single-task and multi-task DNNs with different numbers
of hidden layers for estimating the score shifts (Eq. 6.7 and 6.12) in NIST 2012 SRE
(CC4, male speaker, core task). The test utterances were contaminated with different
levels of babble noise.

Original 15dB 6dB 0dB

Network Type
No. of
Hidden
Layers

EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

1 2.39 0.322 3.49 0.342 3.65 0.413 5.75 0.676
Single-task 2 2.14 0.264 3.21 0.298 3.18 0.339 4.87 0.575

3 2.50 0.296 3.70 0.330 3.79 0.398 5.68 0.632
4 2.26 0.267 3.25 0.285 3.27 0.322 4.83 0.538

1 1.55 0.202 2.16 0.208 2.21 0.242 4.49 0.624
Multi-task 2 1.55 0.187 2.17 0.197 2.14 0.228 4.04 0.554

3 1.55 0.193 2.11 0.201 2.08 0.239 4.20 0.571
4 1.65 0.178 2.32 0.203 2.34 0.231 4.00 0.488

All of the DNNs in Tables 6.1 and 6.3 comprise four hidden layers. It is of in-

terest to see how they perform if the number of hidden layers varies. Table 6.5
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Table 6.6: Performance of single-task and multi-task DNNs with different numbers of
hidden layers for recovering the direct clean scores (Eq. 6.10 and 6.13) in NIST 2012
SRE (CC4, male speaker, core task). The test utterances were contaminated with
different levels of babble noise.

Original 15dB 6dB 0dB

Network Type
No. of
Hidden
Layers

EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

1 3.79 0.634 4.89 0.580 5.10 0.679 9.09 0.957
Single-task 2 5.02 0.719 5.93 0.675 6.38 0.750 10.81 0.980

3 7.81 0.779 8.86 0.741 9.52 0.818 14.27 0.997
4 14.61 0.910 15.41 0.881 17.05 0.942 21.44 1.002

1 1.50 0.234 2.08 0.222 2.11 0.278 4.48 0.605
Multi-task 2 1.48 0.199 2.37 0.210 2.14 0.241 3.83 0.502

3 1.71 0.187 2.53 0.213 2.34 0.243 3.58 0.448
4 1.50 0.189 2.21 0.211 2.16 0.248 3.48 0.409

and Table 6.6 show the performance of single-task and multi-task DNNs with differ-

ent number of hidden layers for estimating the score shifts and recovering the clean

scores, respectively. Theoretically, a network with a deeper structure should posses

a larger capacity to perform the mapping task. However, the results do not show

such trend, especially for the single-task DNNs in Table 6.5 where they were used for

estimating the score shifts. In particular, the single-task DNN with 3 hidden layers

performs worse than those with 2 and 4 hidden layers. In Table 6.6, the performance

of single-task DNNs (for recovering clean scores) becomes worse when the number of

hidden layers increases. But this phenomenon does not occur in the multi-task DNNs.

Further investigations on the error profiles during the BP training process reveal that

the training errors of single tasks DNNs increase when the number of hidden layers

increases. This contradicts to the common belief that networks with a higher capacity

should produce a lower training error. One possible cause of this contradiction is that

the networks are stuck at bad local minima. The multi-task DNNs do not suffer from

this problem, primarily because the auxiliary output nodes can introduce additional

errors to help the network to learn the main task [86].

As discussed in [91], when a DNN becomes deeper, its accuracy may get saturated;
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further increase in the depth will lead to performance degradation. This phenomenon

can also be observed in Table 6.6. In our case, this phenomenon is not caused by

overfitting, because adding more layers leads to higher training error; instead, van-

ishing gradients and slow convergence are more likely to be the cause. One possible

way to alleviate this difficulty is to use residual networks [91]. A special property

of residual networks is that they are trained to produce the difference between the

desired mapping function f(x) and the input x instead of producing f(x). With

this special arrangement, networks can enjoy performance gain from increased depth.

Eq. 6.7 is similar to the residual function in [91], where the score shift δscore is indeed

the residual between the desired clean score Scln and the input noisy score S. This

explains why the DNNs that estimate score shifts (Fig. 6.3) are easier to train than

the ones that recover clean scores (Fig. 6.4).
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Chapter 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

Chapter 4 has shown that Log-mel BN features from denoising deep classifier are

noise robust under low SNR environments. The noise robustness is mainly attributed

to the autoencoder’s denoising ability, which facilitates the upper hidden layers of

the DNN to extract more noise robust bottleneck features. The BN features are

comparable with the standard MFCC, and they are complementary to each other,

leading to significant performance gain after fusing the MFCC- and BN-based PLDA

scores.

In the experiment, we did not use a contextual window for the 256-dimensional

Log-spec input, since the input dimension is very high when compared with other

types of input. Even without contextual window, the performance of the Log-spec

BN features is still comparable with that of the Log-mel ones, but the performance

under low SNR conditions drops significantly.

The poor performance of the MFC BN features is surprising. The reason is possibly

that the distribution of the MFCC is more complex than a single Gaussian (otherwise

we do not need GMM for speaker recognition), and therefore the Gaussian-Bernoulli

RBM cannot model the input patterns properly. Some other preprocessing techniques,

e.g. the feature warping [67], deserve a try for the MFCC input.

Our preliminary experiment is done on the YOHO corpus, whose speech contents

do not have much phonetic variation. In future work, experiments on NIST datasets

are necessary.
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In Chapter 5, we demonstrated that robust BN features and frame posteriors can

be obtained from a denoising autoencoder–deep neural network (DAE–DNN) formed

by the combination of a denoising autoencoders (DAE) and a deep neural network

(DNN). The DAE provides a good initial condition for the backpropagation to find a

DNN that can suppress noise in MFCC vectors and enforces the frame alignments to

respect the phonetic context of input speech. No matter under the GMM i-vector or

the senone i-vector frameworks, the phonetically discriminative BN features outper-

form MFCCs in the speaker verification tasks, which suggests that the phonetically

discriminative BN features still contain speaker information. Furthermore, we demon-

strated that the denoising capability of the DAE is beneficial to the BN features in

senone i-vectors but not to the denoised-MFCC-based senone i-vectors.

By comparing different combinations of BN features and senone posteriors (with

and without DAE training), we also validated that the DAE training is more beneficial

for BN features extraction than for senone posteriors estimation. It was found that

the BN features extracted from DAE–DNN is rich in speaker information, while the

DNN without DAE training is good at estimating the speaker-independent senone

posteriors. The DAE training helps DAE–DNN to keep speaker information until the

fifth layer in DAE–DNN, while DNN without DAE training can estimate speaker-

independent senone posteriors more accurately, but loses more speaker information

because no part of the network is trained to keep speaker information.

Overall speaking, our experiment results show that the demonised senone I-vectors

whose BN features and senone posteriors are both extracted from a DAE–DNN are

comparable with the one whose senone posteriors are estimated by a DNN, but the

system involves only one neural network and thus has the advantage in accelerating

the extraction of i-vectors and system implementation.

In Chapter 6, we proposed several DNN-based score calibration algorithms,

where the calibrated scores and score shifts are estimated from the i-vector pairs

of verification trials. The conventional calibration methods such as quality measure
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functions (QMF) assume that score shift caused by background noise is a linear func-

tion of the utterance’s SNR. Our results, however, suggest that the score shift is

nonlinearly related to SNR. Also, QMFs are deterministic functions of SNR in that

when the SNR is fixed, the score shift will also be fixed. Our results, however, show

that the lower the SNR, the larger the variability in the ideal score shift, which

suggests that SNR alone is not adequate for estimating the score shift. These obser-

vations motivate us to use more flexible models such as DNNs to model the complex

relationship between the i-vector pairs, uncalibrated scores, and score shifts. This

chapter has shown that DNNs are flexible enough for recovering the clean PLDA

scores directly, allowing us to skip the score-shift estimation entirely. By introducing

auxiliary tasks to the DNNs through multi-task learning, we demonstrated that the

resulting DNNs can learn the main task better, which is supported by their superior

performance across a wide-range of SNRs.

Overall speaking, DNNs can be integrated into different processing stages of a

speaker verification system, including i-vector extraction (front-end) and PLDA mod-

eling (back-end). For the i-vector front-end, the discriminative training helps the

DNNs to suppress the environmental noise in the frame-based acoustic features and

to integrate the speaker and phonetic information into i-vectors. For the PLDA back-

end, the calibration DNNs are able to suppress the noise variabilities in the distorted

i-vector pairs and recover the ideal clean scores.

7.2 Future Work

Despite the promising results, the proposed score calibration methods in Chapter 6

have some weaknesses. First, the methods are more computationally demanding than

the conventional ones because of the DNNs. However, the extra computation time is

insignificant when compared with the time for i-vector extraction. This is especially

the case for long test utterances as the complexity of i-vector extraction is proportional
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to the number of speech frames in the utterances. Second, the DNNs are not trained

to produce true likelihood ratios; therefore further calibration is essential. Third,

the DNNs require clean and noisy utterance pairs for training, whereas conventional

methods such as QMFs and FQEs do not have this requirement.

The multi-task DNNs have five auxiliary output nodes, three for the SNR infor-

mation and two for the speaker information. The current study did not investigate

which of the auxiliary information is more important or helpful. Also, there may be

other auxiliary information, such as the duration of utterances, that is also useful.

These are the interesting directions that are worth investigation in the future.

In this work, both of the training and testing datasets cover a wide range of SNR,

meaning that the DNNs were trained to handle test utterances with different SNRs.

Because the SNR ranges are the same for both training and testing, the behaviour

of the DNNs under unseen SNR is unclear. In future work, it is of interest to use

one SNR group for training a DNN and test it on anther SNR group to investigate

the generalization capability of the DNN under SNR mismatch conditions. Currently,

utterances were contaminated with babble noise only. The robustness of DNN-based

calibration for other types of noise and for reverberated speech also are worth inves-

tigation.

We adopted the DNN training procedure in [68]. Over the years, a number of

advanced training procedures have been developed. For example, the RBM pre-

training can be replaced by discriminative pre-training [92]. The stochastic gradient

descent can also be enhanced by using adaptive moment estimation (Adam) [93]. It

is also possible to replace the sigmoid activation by other nonlinear functions, such

as hyperbolic tangent and softsign, to avoid saturation at the top hidden layer [94]

or to achieve better performance [95]. Furthermore, it has been found that rectifier

nonlinearity, such as ReLU, is beneficial for acoustic modeling [96]. Training can

be sped up by using batch normalization [97]. Deeper networks can be trained by

using the strategy in residual networks [91]. These modern DNN training methods
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can potentially improve the performance of the DNN-score calibration techniques

proposed in this chapter.
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