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Abstract

Moore’s law has driven the complexity of Integrated Circuits (ICs) to unman-

ageable levels. To address this issue, extensive research is being done to develop

new methodologies that can enable the design and verification of these complex ICs.

In addition, current consumer trends are forcing IC design companies to continu-

ously reduce the time-to-market while at the same time, the time-in-the-market of

their products is shrinking, thus increasing significantly the risk of not obtaining the

return-on-investment (ROI) targeted.

One of the main design methodologies that helps addressing these issues is to

re-use multiple components between different designs, as well as using third party

intellectual properties (3PIPs). In addition, companies have started raising the level

of VLSI design abstraction. From low-level Hardware Description Languages (HDLs),

.e.g. Verilog and VHDL, to high-level languages (HLLs) that were originally designed

for software (SW) development. High-Level Synthesis (HLS) enables the synthesis

of these HLLs into efficient hardware that implements their behavior. HLS has mul-

tiple advantages over traditional HDL-based VLSI design. One of the advantages

that this thesis studies extensively, is the ability to generate micro-architectures of

unique characteristics (i.e. area, power, performance), without the need to modify

the behavioral description. This is typically called Design Space Exploration (DSE).
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In particular, since most companies have large amounts of legacy Register Transfer

Level (RTL) code, this thesis investigates automatic methods to convert these HDLs

into HLL optimized for HLS, and in particular optimized for HLS DSE.

The contributions of this thesis are multi-fold: First, this work proposes a robust

translation framework which identifies patterns in RTL code (VHDL or Verilog) that

translate into high-level constructs that can in turn be explored such that different

unique micro-architectures are generated. These constructs mainly include loops,

arrays and functions. Second, the work introduces an improved DSE system using

a hybrid synthesis based predictive method. Third, the RTL abstraction framework

is applied to accelerate cycle-accurate system-level simulations by generating fast

behavioral templates. Finally, an open source synthesizable SystemC benchmark

suite was released to study the effectiveness of the proposed methodology. Moreover,

in three years the benchmark has grown from 13 designs to 18 and has reached over

100+ downloads.
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Chapter 1

Introduction

The research problem is summarized, along with the motivation for the research

problem. Moreover, a thorough background is presented to give a clear view to the

reader about the current problems in the VLSI industry.

1.1 Background

Very Large Scale Integration (VLSI) circuits are reaching complexities never seen

before. Most circuits are now heterogeneous Multiprocessor System-on-Chips (MP-

SoCs), which typically include embedded micro-processors, memory controllers, mem-

ories and dedicated hardware accelerators (HWAccs), all interconnected through a

single bus or bus-hierarchies.

They are faster and consume less power than general purpose solutions and hence

are well suited for typical consumer products’ applications. The main problem while

designing these heterogenous SoCs (System-on-Chip) is their increasing design com-

plexity, which leads to long development times. With the increasing demand for

newer products with more and more powerful features, new or reviewed versions of

the SoCs need to be taped-out at continuously shorter time frames. This means that
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Fig. 1.1: Heterogenous MPSoC overview

the time-to-market for a SoC is getting shorter. However, the time-in-market also

gets shorter and hence the risk of not achieving the estimated return on investment

(ROI) grows significantly.

Figure 1.1 shows an example of a typical heterogenous MPSoC composed of mul-

tiple CPUs, on-chip memory and four different dedicated hardware (HW) modules.

These are either specified in Register Transfer level (RTL) (e.g. VHDL or Verilog) or

as behavioral untimed descriptions for HLS (e.g. ANSI-C, C++ or SystemC). These

dedicated HW blocks are either developed in-house or sourced from third party ven-

dors.

HW accelerators can be typically classified as either loosely coupled accelerators or

tightly coupled accelerators. The tightly coupled are those that are directly controlled

by a single master i.e. CPU, whereas loosely coupled HW accelerators can be accessed

by any master in the system over the shared bus or Network-on-Chip (NoC). In figure

1.1, IP1 is tightly coupled with CPU whereas the rest of the accelerators are loosely

coupled via the on-chip bus.
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These accelerators are typically available as IPs in the form of legacy designs from

other teams within the same company or third-party IPs from external vendors as

shown in figure 1.1. In addition, these can be written in a HLS based behavioral-level

language or in RTL. In the latter case, the system designer has very limited design

options when re-targeting the IP for a new system, as each RTL IP has a fixed micro-

architecture with unique area and latency. Thus for re-targeting, the designer needs

to re-write the design manually each time to generate a different micro-architecture.

This is time-consuming in order to explore alternative micro-architectures for a single

RTL design. In contrast, the behavioral (HLS based) IPs can easily be explored auto-

matically to create different micro-architectures tuned for every new system. Figure

1.1 shows this difference as the trade-off curves for RTL IPs and the HLS IPs. The

RTL IP’s micro-architecture has a fixed area and latency, while from the behavioral

IP, a variety of micro-architectures can be obtained. Out of all the generated micro-

architectures, the designer is typically only interested in the Pareto-optimal ones

(D1, D2, D3, D4, D5, D6). These pareto-optimal micro-architectures form a trade-off

curve with unique area vs. latency (latency given in clock cycles). This is typically

called Design Space Exploration (DSE). Moreover, IPs written in HLS based lan-

guages provide the advantage of easy integration of third-party vendor IPs (Vendor

Y HLS IP in Figure 1.1) with existing in-house IPs. The reason is because the HLS

languages provide higher levels of abstraction and with easier DSE, enable faster gen-

eration of HW architectures. In addition, raising the level of abstraction has another

benefit of allowing the simulation of full systems orders of magnitude faster than at

the RT-level (RTL). This thesis attempts to utilize these benefits to overcome the

shortcomings of the traditional RTL design methodologies. Thus, the thesis proposes



4

a method to convert RTL code (in particular Verilog) into optimized behavioral de-

scriptions for HLS design space exploration.

1.2 Motivation

C-based design has multiple advantages compared to using low level HDLs. First,

C-based designs have constructs which are actually explorable in nature. They may

be in the form of loops, arrays, functions, etc. Secondly, one is able to automati-

cally generate micro-architectures with unique trade-offs of design metrics (e.g. area

vs. performance vs. power) without having to actually re-write the behavioral de-

scription. This method is termed as DSE. This is typically done using three main

exploration knobs : (1) The synthesis directives in the form of pragmas can be used

upon the explorable constructs that are extensively used by the commercial HLS tools.

These directives then allow the control of the synthesis of these constructs, e.g. loops

(unrolled, partially unrolled, not unrolled or pipelined), arrays (synthesized as RAMs

or registers) and functions (inline or not). (2) The second exploration knob includes

the number of functional units that the synthesizer can instantiate, while the third

knob (3) include global synthesis options, e.g. target synthesis frequency and Finite

State Machine (FSM) encoding.

Setting different knob values will lead to unique micro-architectures, which is not

possible at the RT-level. Given a RTL IP, if converted to HLS based IP, it can then

be used to perform DSE and maximize the design space of the RTL IP. Evidently,

the use of exploration knobs on the explorable constructs in HLS based designs have

the maximum impact in the quality of the DSE. The reason is that these constructs,

if altered, widely vary the resulting micro-architecture thus giving rise to a larger
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design space of DSE. A pareto-optimal set is a set of dominating designs that cannot

dominate each other for atleast one design objective. The designs in this set are the

most promising for finding best suitable micro-architecture.

Thus, the main focus of this thesis is to investigate effective methods that can

convert RTL descriptions given in synthesizable Verilog into HLS based descriptions

consisting of explorable constructs. In other terms, the method abstracts the RTL

designs to HLS based designs with explorable constructs. This implies generating

loops, arrays and functions from a given RTL code (in Verilog) which, in turn, can

be explored. From a single fixed RTL micro-architecture, the goal is to enhance its

exploration, thereby generating a set of unique micro-architectures with trade-offs of

different design metrics.

1.3 Challenges

Designs in RTL can be written in different ways as the program scope of RTL

is very wide. Firstly, in order to develop methods for converting RTL descriptions,

a robust method must be able to adapt to these diverse design styles written with

different constructs available in the RTL scope. Secondly, the goal for a robust method

is to be able to identify the functionality of the given RTL design and abstract the

explorable constructs. At the same time, the framework must be able to adapt to

different design styles of the RTL designs as input. These two constraints put together

pose a harder problem to solve. Hence, these goals become a challenge while devising

methodologies as one must make sure the quality of the exploration of the RTL design

in consideration, must result in a maximized design space with a unique trade-off

curve.



6

1.4 Scientific Contributions

Figure 1.2 pictorially describes the four main academic contributions in this thesis.

The target heterogenous SoC architecture in the center is highlighted in gray. First,

a set of synthesizable HLS designs complying with the synthesizable SystemC subset

[80] was created (made open source). The benchmark suite termed as S2CBench

served as the benchmarks for all our forthcoming experiments. The benchmark suite

has been very well received with 100+ downloads since its release. Next, we developed

a novel HLS DSE exploration method using machine learning that has speed-up

compared to existing DSE methods. The method follows a static-dynamic exploration

approach. In our major contribution, we attempted to solve the objectives of this

thesis by developing a method to convert synthesizable Verilog code into ANSI-C code

optimized for DSE that we call VeriIntel2C. This method was refined by introducing

further optimizations in our subsequent contribution. Finally, we use this method to

speed up system-level cycle-accurate simulations.

In summary, the scientific contribution made in this thesis are:

• Introduce an open-source Synthesizable SystemC benchmark suite called S2CBench.

• Develop a runtime efficient machine learning based Design Space Explorer im-

proving upon existing methods. This explorer serves to perform effective and

scalable analysis on our proposed RTL to C translation as well as subsequent

optimization methods.

• Propose and develop a graph-transformation based framework combined with

network of rule-base search algorithms to abstract loops and arrays in RTL
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Fig. 1.2: Complete overview of our proposed system

descriptions and maximize the range of HLS DSE. This RTL to C translation

framework is termed as VeriIntel2C.

• Design effective methods to extend the proposed RTL to C translation method

by introducing novel optimizations in the translation method that further en-

hance the design search space, thus giving rise to new and improved alternative

micro-architectures.

• Apply the VeriIntel2C framework to accelerate system level simulations by

abstracting RTL components to fast behavioral templates.

1.5 Thesis Structure

The rest of the thesis is divided into several chapters which are as follows.
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Chapter 2 introduces the fundamental theories behind High-Level Synthesis (HLS).

Then Chapter 3 describes the design and implementation of HLS benchmark suite

in SystemC. The benchmark suite is used for qualitative and quantitative analysis of

VeriIntel2C as well as to evaluate the qualitative performance, efficiency of the pro-

posed HLS DSE method. A brief introduction to C-based VLSI design methodology,

HLS and their use and advantages is provided in Chapter 2. Next, the Chapter 4

describes DSE for HLS in detail, followed by our proposed improved method called

Fast Simulated Annealing (FSA) using machine learning for efficient DSE. The Chap-

ter 5 describes in detail, the automatic translation methodology called VeriIntel2C

which abstracts the RTL designs to C/C++ descriptions (HLS). It consists of detailed

explanation of the design of the graph-based framework as well as the decision algo-

rithms. In Chapter 6, an optimization method is implemented upon the developed

VeriIntel2C to enhance the quality, as well as further improve the design space of the

exploration of RTL designs. The Chapter 7 describes an application use-case of our

translation framework VeriIntel2C, where a template-based method is proposed to

accelerate cycle-accurate system-level simulations of all combined HW accelerators.

Finally, Chapter 8 discusses the conclusion and future work.



Chapter 2

High Level Synthesis

2.1 Overview

ITRS has suggested that by 2020, a 10x productivity increase is required in order

to design complex SoCs [36]. Two main factors are mainly predicted which would

enable to achieve this goal. One of the factors is the use of new VLSI design flow

methodologies to raise the level of abstraction i.e. adoption of HLS. The second is the

re-use of components, ITRS estimates that around 90% of the SoCs will be composed

of re-used components. Design reuse is encouraged using languages of higher levels

of abstraction. One of them is High-level Synthesis (HLS). HLS increases the level of

abstraction in the VLSI design flow methodology.

2.2 Introduction to HLS

In earlier days, VLSI was based on a capture-and-simulate design methodology.

The design process used to start with the product requirements without any informa-

tion about the type of implementation, and block diagrams of the chip architecture

would be built and then converted into circuit schematic. This circuit was in turn

simulated to verify its functionality and timing. Over the past few decades, this

9
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process has shifted to a describe-and-synthesize methodology, where HW circuits are

described using Hardware Description Languages (HDLs) like Verilog or VHDL. This

improved methodology allows designers to describe the behavior of the HW with min-

imum or no implementation details. Logic synthesis tools then translate these HDLs

into gate-netlists.

The use of higher-levels of abstraction have been proposed to further increase

the design productivity [23]. These are based on synthesizing untimed behavioral

descriptions, e.g. ANSI-C or C++ into Verilog or VHDL. This synthesis process is

called High-Level Synthesis (HLS).

HLS provides several advantages compared to HLS over traditional RT-level.

2.3 HLS: Advantages

There are several points that highlight the advantages of HLS, and also motivates

the work done in this thesis.

Advantage 1: Increase in Design Productivity: C-based VLSI design has many

advantages compared to traditional RTL designs. Firstly, writing behavioral code is

much faster and and easier than low level RTLs. It is estimated that a single line of

C code generates 7⇥ more gates than RTL [20].

Advantage 2: Lowers barriers of entry to HW design : In addition, HLS

takes as inputs high-level languages (HLLs) like C, C++ or Matlab to describe the

behavior to be converted into HW. The advantage of using such HLLs are multi-fold:

Firstly, the use of such commonly used languages cater to a larger base of designers

with high-level programming knowledge. Secondly, different members in a design

team require modifications on different aspects of a design. The HLS languages for
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this reason, have the advantages of readability, manageability and maintainability.

The structure of these languages for HLS is very modular having separate constructs

pertinent to every set of operations which enables the designer to modify design styles

of individual constructs without affecting the overall structure of the design.

Advantage 3: Maximizes Resource Sharing: Moreover, HLS enables to maxi-

mize resource sharing by exploiting the resource allocation step of HLS design flow

methodology in section 2.3.3. Hence, this allows the creation of much smaller de-

signs, occupying lesser silicon area compared to hand-coded RTL designs [? ]. Most

HW designers avoid resource sharing because it is more difficult to debug these type

of circuits and hence, choose to over-design their circuits to make them easier for

verification.

Advantage 4: Design Space Exploration: In addition, one of the most important

advantages of HLS is the ability of generating a set of different micro-architectures

with different area vs. performance trade-offs without having to modify the original

behavioral description also called Design Space Exploration (DSE). Using HLS DSE,

the design team can easily create different configurations for the same description to

meet demands of different design metrics. Trade-off curves are formed to compare

the quality of the different micro-architectures created by implementing different con-

structs of the design in different forms in the hardware circuit. These modifications

significantly impact the design objectives like area, latency, power, etc., thus, enam-

eling the re-use of the behavioral code for different projects.

Advantage 5: Faster Verification: Finally, HLS allows the generation of fast

simulation models at different abstraction levels ranging from transaction to cycle-

accurate, which execute 10⇥ to 1,000⇥ faster than RTL simulations [20]. The main
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advantage of using HLS is that it shortens verification cycles thus shortening the over-

all design cycles. Thus, this leads to adopting design reuse methodology which is an

important factor to solve the challenges described in the earlier chapter. HLS allows

faster cycle-accurate simulations which again are one-level down than the transaction-

level simulation.

C-based VLSI design is finally being deployed extensively in industry for commercial

designs. The increase in productivity combined with the improvement in the quality

of the results of commercial HLS tools has convinced many design teams to make the

transition towards HLS. This transition is nevertheless gradual and currently most

of the applications being targeted through HLS are Digital Signal Processing (DSP).

It has also been shown in the past that HLS can rival hand-coded RTL designs for

these type of applications [75]. Now, we discuss the different steps involved in the

HLS methodology that enable the synthesis of untimed behavioral descriptions into

RT-level description ( e.g. Verilog or VHDL ).

Figure 2.1 highlights the main steps involved in HLS. HLS takes as input a be-

havioral description combined with a set of constraints and library of resources and

synthesizes the description into a RTL description that can efficiently be executed.

The resources constraints typically include the number and type of the functional

units, like adders and/or multipliers or storage units like memories or register files.

In addition, the global constraints include the target synthesis frequency, the FSM

encoding scheme, etc.
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2.3.1 Front-End

The HLS process starts by compiling and parsing the behavioral description, per-

forming syntactical checks and doing technology-independent optimizations like con-

stant propagation and dead code elimination. This is often considered as the front-end

of the HLS processor. It then continues to create a Control Data Flow Graph (CDFG)

onto which the three main synthesis steps are executed. The CDFG captures both

the control and data flow dependencies and are required by the subsequent operations

to be performed upon them. The next three steps form the major part of the HLS

process.

The synthesis process then continues with the three main stages in HLS. The

three main stages, allocation, scheduling and binding, are described in detailed in the

next subsections. The output of these stages are synthesizable RTL code which is

typically composed of a controller in the form of a Finite State Machine (FSM) and
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a datapath.

2.3.2 Allocation

Allocation involves the selection of number and type of functional units (FU)

onto which the different operation in the CDFG need to be mapped to. By default,

the allocation stage tries to allocate as many functional units as possible to fully

parallelize the CDFG leading to an implementation that maximizes the parallelism

in the implementation. Allowing a single FU of each type will lead to a hardware

circuit that can only execute one operation at a time, similar to a processor, and thus,

making a dedicated hardware implementation not so useful.

2.3.3 Scheduling

Once the allocation stage has finished, the HLS process continues by schedul-

ing the CDFG taking the resource constraints of the allocation stage into consid-

eration. Scheduling sequences the operations in the CDFG and allocates them to

individual control steps, where a control step can be defined as one clock cycle with

delay=1/ftarget. Moreover, independent operations can be scheduled at same clock

cycles and executed in parallel to make the optimum use of resources and to reduce

the latency. Also, operations can be directly connected another in the same control

step to further reduce the latency if the clock period is large enough. This concept is

called operation chaining.

It has been shown that resource constraint scheduling is an NP -hard problem [19],

thus multiple heuristics have been proposed to solve the problem efficiently. Existing

scheduling algorithms are broadly classified into two categories:

1. Data-flow (DF) based Scheduling
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2. Control-flow (CF) based Scheduling

DF-based scheduling is more suited for data-flow intensive applications such as

Digital Signal Processing or Image Processing. There are mainly two types of DF-

based scheduling based on the optimization objectives, time-constrained and resource-

constrained. Time and resource are two objectives that are in trade-off with each

other. Force-directed scheduling [63] is a commonly used heuristic to solve time-

constrained scheduling problem. Force-directed scheduling aims to reduce the re-

source usage by balancing the computations over the time steps. In contrast, list

scheduling is used to solve the resource-constrained scheduling problems. In list

scheduling, the available operations are sorted into a list according to a priority

function and scheduled into the control states with available resources [62],[37]. For

unconstrained scheduling problems, As Soon As Possible (ASAP) and As Late As

Possible (ALAP) scheduling algorithms are the earliest and simple approaches. With

ASAP scheduling, operations are scheduled in the earliest possible clock cycle whereas

ALAP scheduling assigns operations to the latest possible clock cycle. The ALAP

and ASAP schedules are often used in combination with other compute-intensive al-

gorithms to identify the bounds of the particular problem.

In contrast, CF-based scheduling handles control intensive applications like controllers

or network protocol processors. Path-based scheduling algorithms are the earliest ap-

proaches to solve CF-based scheduling using ASAP schedule [14]. SPARK [30] uses

list scheduling algorithm to dynamically select and apply code transformations in a

HLS framework. For time-constrained scheduling problems, Relative scheduling [40]

is preliminarily used to solve maximum/minimum timing constraints. Ly et al. [46]
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introduces behavioral templates by locking number of operations to certain schedul-

ing templates. ILP based scheduling techniques are introduced in [35], [27], symbolic

scheduling in [33], [84] and constraint-programming-based scheduling [41].

2.3.4 Binding

The final step in HLS is called binding. The process of binding involves the binding

of the operations in the scheduled DFG to the available functional units capable of

executing the operation. Every variable in the design should be bound to a specific

storage unit and every operator in the design should be bound to the functional unit.

Binding techniques are often used in conjunction with the allocation stage. A vast

amount of binding algorithms have been proposed in the past. In [61], the authors

propose a novel technique to perform register binding by dividing the lifetime of

variables into two intervals. Raj et al., [68] uses binding integrated with scheduling

immediately after control steps are scheduled. Moreover, the HAL system [81] decides

the number of registers for binding, by weighted clique partitioning method. The

HYPER system [66] determines the binding after it allocates and binds the functional

units and interconnections. In BUD/DAA system [51], the method is divided into

two stages wherein one method determines the registers of each cluster and the DAA

is a rule-based expert system to perform the mapping. The EMUCS system [81] uses

a binding method where it assumes that the number and width of the registers are

pre-determined either by the system or by users.

2.3.5 RTL Design Generation

After the execution of the three main stages (scheduling, allocation, binding,) the

HLS process can finally output the RTL code in the form of synthesizable Verilog or
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(FSM)

VHDL. This is often considered as the back-end of the HLS process.

Figure 2.2 shows an example of a typical architecture generated from a commercial

HLS tool [21]. The design usually consists of a data-path and a Finite State Machine

(FSM) module which synchronizes the data through the data path. The FSM controls

the flow of data is circulated in the data-path. This is important especially when

FUs and registers are shared. In a FSM, every state is responsible for controlling

a data-flow operation inside the datapath. States may have internal control logic

to decide the sequential order of the states. While in data-path, the operations can

be represented as multiplexers if there are not many resources available, or wires to

perform combinational logic. Multiplexers need control signals that are generated

from FSM. The reason is that the FSM sets the control signals for the multiplexers

that control the order of data inputs to other blocks. The data-path consists of the



18

flow of operations performing data manipulation, hence describing the behavior of

the design.

int coeff[8]		;	//Pragma	attr1
char	ary[16]	;	//Pragma	attr2

//Pragma	attr3
for(i=0	;	i<8	;	i++)
sum	=	sum	+	ary[i]	*	coeff[i];
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Fig. 2.3: Basic working flow of a DSE system

2.3.6 HLS Design Space Exploration

A typical DSE is described in figure 2.3 using a simple working example of a design

that computes the average of 8 numbers. The input C-based behavioral description

are inserted with pragmas to control the design of the resulting micro-architecture.

The constraints and resources refer to the number of hardware units and operators

that are allowed and the total hardware units used for allocation to be used in the

synthesis of the input description respectively. Attribute library is the database of

all the possible pragmas whereas technology library contains the hardware compo-

nents definitions in different technology standards. With these inputs, a typical DSE

method uses several types of heuristic algorithms to explore the HLS description using



19

combinations of different pragmas and generates a trade-off graph of different design

points. Each design point corresponds to a unique micro-architecture circuit (logic

circuit of data-path). Using DSE, designs using HLS can be enabled for re-use by

choosing other micro-architectures. This approach will be discussed in detail along

with the previous related work in chapter 4.

2.3.7 Conclusion

This chapter has presented the concept of HLS and its fundamental working

methodology. We have described in detail, the three main internal steps that are

(i) allocation (ii) scheduling and (iii) binding. Also, we highlighted some of its major

advantages over traditional VLSI design methodologies based on low-level HDLs such

as Verilog or VHDL. One particular advantage is the ability of generating multiple

micro-architectures with different trade-offs for the same HLS based behavioral de-

scription. This thesis will exploit this particular advantage in the subsequent chapters.
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Chapter 3

Synthesizable SystemC Benchmarks
for High Level Synthesis

3.1 Overview

High-Level Synthesis(HLS) is being increasingly used for commercial VLSI de-

signs. This has led to the proliferation of many HLS tools. In order to evaluate

their performance and functionalities, a standard benchmark suite in a common lan-

guage supported by all of them is required. Moreover, the benchmarks made for

diverse applications, form a strong base for verifying the robustness of our proposed

methodologies and contributions in the following chapters. This chapter introduces

the concept and requirement of synthesizable benchmarks for HLS and describes the

design and implementation of them as well. The benchmarks comply with the latest

Synthesizable SystemC standard, called S2CBench: Synthesizable SystemC Bench-

mark. They have been carefully chosen to not only include applications of different

sizes and from various domains typically used in HLS (e.g. encryption, image and

DSP application), but also to test specific optimization techniques in each of them.

This allows an easy comparison of not only Quality of Results (QoR) of the different

HLS tools under review, but also to test their completeness.

21
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3.2 Introduction

HLS has evolved significantly over the last decade and the QoR of commercial

HLS tools has improved to the level where HLS has begun to be used for commercial

designs. The adoption of HLS as part of standard VLSI design flows has led to the

proliferation of HLS tools. The main problem faced by many designers, wanting

to transition from traditional RTL to C-based design, is the absence of validated

standards to evaluate the different HLS tools available (a good comparative review of

these can be found at [52]). The evaluation phase is crucial in order to find the best

HLS tool for the type of applications being designed. However, the lack of expertise

in HLS combined with smaller time-to-market deadlines makes it hard to set up

an efficient evaluation methodology. Moreover, HLS tools depend on a wide range

of vendor-specific optimization features in order to get a good quality QoR. Thus,

this makes it more difficult to master different tools. Finally, different tools support

different input languages, further complicating the HLS tools evaluation process. This

often results in the behavioral descriptions being sent to different HLS tool vendors

and the designs would be manually optimized for that particular tool. Upon that,

the designers eventually determine the appropriate tool by evaluating the QoR of the

synthesized circuits.

Fortunately, there exists a common language supported by all of the main HLS

tools: SystemC. There have been many discussions to find the best input language

for HLS [25], but eventually SystemC has gained wider acceptance over ANSI-C and

C++ . It is mainly due to the IEEE standardization efforts of OSCI (now Accellera).

OSCI set up a working group to define a synthesizable SystemC subset currently sup-

ported by all of the HLS tools. Thus, in order to facilitate the evaluation of different
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commercial HLS tools, a synthesizable SystemC Benchmark suite is required. This

benchmark suite should not only cover applications of different domains and designs

of different sizes, but also include structures to test specific optimization techniques.

The success of many HLS tool evaluations often depends on the expertise of the Field

Application Engineer (FAE). The original behavioral descriptions often have to be

manually modified by the FAE to obtain the best QoR. Re-writing of behavioral de-

scriptions can sometimes be considerably time-consuming and should be taken into

account while evaluating different HLS tools. By designing a benchmark suite that

tests specific features, designers can easily understand the strengths and weaknesses

of each tool. SystemC is most recognized to create TLM models of IPs [4]. Many HLS

tools do not support ANSI-C. Using C benchmarks like Chstone etc, would require

an extra effort for designers to convert benchmarks to SystemC. Moreover, converting

to SystemC may reduce the capability of the original C benchmarks that they are

designed for. There are no direct tools presently available that directly convert to

SystemC. ANSI-C is inherantly sequential whereas SystemC is concurrent in nature.

Moreover, the result SystemC design must be synthesizable as well. These factors

pose a challenge for direct conversion from C to SystemC.

The main features to be tested may be classified in three main categories: (1) Lan-

guage support (e.g. templates, structures, and fixed point data types) (2) synthesis

optimizations (multi-dimensional array expansion, polynomial decompositions, func-

tions synthesis, loop unrolling, pipelining and array synthesis) and (3) tool perfor-

mance (e.g. synthesis running time, accuracy of area and timing report).
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3.3 Related Work

Multiple efforts in the area of general-purpose computing benchmarks have been

made since the 1980s with the SPEC benchmark suite [22] as one of the earliest.

The SPEC benchmark mainly intends to analyze the performance of major system

components. More recent benchmark suites specialize on specific domains. Amongst

them, MediaBench [42] focuses on multimedia applications and MiBench [31] on mod-

ern embedded applications. These benchmarks are often used as HLS benchmarks

because they represent computationally intensive applications amiable to HLS. How-

ever, these benchmark programs are not made synthesizable (by any HLS tool) and

allow only a very limited number of HLS features to be tested.

In terms of HLS benchmarks, some of the initial efforts were the HLS92 and

the HLS95 benchmarks [60]. Although many of the optimizations targeted in the

aforementioned benchmarks are still relevant, they were written in behavioral VHDL,

which is currently not supported by any commercial HLS tool. A more recent effort is

the CHStone [32] benchmark suite. Similar to our work, it targets HLS and includes

a set of ANSI-C programs. The main drawback of using ANSI-C is, as mentioned

before, that some of the main commercial HLS tools do not support ANSI-C. As ex-

ample, Forte Cynthesizer [24] only supports SystemC and Calypto’s CatapultC [12]

supports C++ and SystemC, but not ANSI-C. Other tools like NEC’s CyberWork-

Bench [21], support SystemC and a subset of C called BDL (Behavioral Description

Language). This tool forces descriptions given in C to be manually converted into this

subset. Another important limitation of ANSI-C benchmarks for HLS is that ANSI-

C does not support fixed point data types, which is extremely important in DSP
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applications, often targeted in HLS. There have also been recent works in bench-

marks using HLS languages. One of them being Spector benchmark suite [26] that

provides a benchmark suite for FPGA in openCL. Spector benchmarks aim to test

the exploration knobs of FPGA HLS tools. However, Spector is written in openCL

that restrict its use to FPGA only. Tools like Rosetta [88] provide benchmarks that

can be targeted for FPGA HLS tools as well as the HLS research community. But

Rosetta limits the application to FPGA, wherein the designs act as FPGA hardware

accelerators in HLS.

In this chapter, we present S2CBench, a freely available synthesizable SystemC

benchmark suite [76], initially consisting of 12+1 programs targeting a variety of

applications typically used in HLS. This suite has been downloaded more than 100

times and is available open-source. Out of the original benchmarks, 12 complied

with the latest SystemC synthesizable subset draft, while one design (FFT) is non-

synthesizable because it contains trigonometric and floating point operations. This

design was added in order to help users understand how the different HLS tools sup-

port these operations as most commercial tools have vendor specific ways to support

them. One of the unique features of the benchmark suite is that every application is

accompanied by its respective testbench. The testbench contains test vectors stored

in a file and compares the simulation results with a golden output included for each

design. The test vectors are not fixed and can be modified by the user. The option

to create a waveform has also been made available. In this case, the simulation will

produce a VCD file, which may be viewed by any waveform viewer. Finally, each

benchmark is designed to test specific optimization options allowing designers, eval-

uating different HLS tools, to understand the support of the tools for these options.
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The benchmarks are classified into different categories of applications. S2CBench is

also used or highlighted in [44], [43], [6], [13].

3.4 Benchmarks Description

Synthesizable SystemC Benchmark (S2CBench) suite is a collection of 12+1 pro-

grams following the latest SystemC Synthesizable Subset draft 1.3. Some of the main

objectives of S2CBench are:

• To enable the direct comparison of commercial HLS tools

• To test specific tool features classified as language support, synthesis optimiza-

tion techniques and tool performance.

• To help researchers analyze and compare their own techniques.

3.4.1 Benchmark programs

Every benchmark program in S2CBench is designed to test particular features.

Described below, is a brief overview of the programs included in the suite, each

categorized according to its application domain. The benchmarks are also classified

into data-dominant (dd) or control-dominant (cd) designs. HLS usually achieves very

good results for the former category, whereas it sometimes creates sub-optimal designs

for the latter category.

Automotive and Industrial

The category includes applications normally used in embedded control systems, which

perform extensive basic math operations and bit manipulations.

qsort (dd): Quick sort design sorts data in ascending order using the well-known quick
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sort algorithm. Sorting of data is important for designs, so that they can be analyzed

easier and priorities be established. This design helps in verifying the support for

basic HLS optimization techniques which include loop unrolling, array synthesis (reg-

ister or memory) and function synthesis with pointer argument support. It should

be noted that various disciplines require fast sorting. Thus, qsort design could be

categorized into many other categories.

A2 Security

The Security category includes several algorithms for data encryption and hashing.

HLS has proved to be a very good solution for designing data security applications

due to their mathematical complexity. Moreover, these types of applications are very

difficult to verify in RTL [55].

aes_cipher (dd): Advanced Encryption Standard (AES) Cipher encryption algo-

rithm performs encryption/decryption. This program consists of many user-defined

functions. It contains a large number of small for loops having inter-loop data de-

pendencies. The main optimization techniques addressed are input port expansion,

array synthesis (memory or registers), function synthesis (inline or goto operators)

and large fixed arrays synthesized as logic or ROMs.

kasumi(dd): Kasumi is a block cipher algorithm used in mobile communication

systems. The SystemC description includes two threads and multiple functions.

Therefore, this design is useful to verify the synthesis and especially the verifica-

tion of multi-process systems. The design also contains multi-dimensional I/O ports

and multiple arrays. Finally, the kasumi algorithm, similar to most encryption appli-

cations, contains large amount of logic operations (e.g. and, or, xor). HLS tools are
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notably not efficient, for accurately estimating the critical path of these applications,

because the discrete delay of all the operations are simply added, thus overestimating

the critical path. This application can provide an indication of the accuracy of the

HLS timing report, compared to that of the logic synthesis result.

md5C(dd): The Message Digest Algorithm is widely used in cryptography to

generate hash functions and check data integrity. MD5C is a single process design

consisting of multiple functions, arrays of different bit widths and different levels of

loop nesting. One of the unique language constructs to be tested with this design is

the extensive use of define macros.

snow3G (dd): Snow 3G is a stream cipher that produces a key stream that con-

sists of 32-bit blocks using a 128-bit key. Apart from the main optimization options,

this design tests the support of HLS tools for templates. A variable length multipli-

cation operation is performed in this algorithm, which may be easily simplified using

templates.

A3 Telecommunication With the explosion of portable electronic devices using

wireless communication, constrained by limited power budgets, some of the telecom-

munication functions are frequently being implemented as custom HW blocks in SoCs

(Systems on Chip). HLS is a natural choice for most of the complex applications in

this domain, having well known legacy C descriptions.

adpcm (cd): Adaptive Differential Pulse-Code modulation (encoder part only)

accepts 16-bit Pulse Code Modulation (PCM) samples as input and converts them

into 4-bit samples. Some of the optimization techniques that can be tested with this

design are loop unrolling, function synthesis, fixed array synthesis, the most important

being the support for inclusion of structures. Some HLS tools do not support the use
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Table 3.1: Benchmark domain and optimization summary

Design Type Domain Optimization and language support
qsort dd Auto/Ind. loops, arrays, functions, pointers
sobel dd Auto/Ind. loops, functions, I/O array expansion, multi-dimensional arrays expansion, fixed arrays

AES cipher dd Security I/O array expansion, multi-dimensional arrays expansion, large fixed arrays
Kasumi dd Security multi-process, delay report accuracy
md5c dd Security #define macros delay report accuracy
adpcm cd Telecom structures
FFT dd Telecom floating point, trigonometric functions

FIR filter dd Consumer I/O array expansion, arrays, loops, functions, Sum of Products (SoP)
decimation dd Consumer Resource sharing across loops, fixed point data type, SoP

Interpolation dd Consumer Polynomial decompositions, fixed point data, SoP
IDCT dd Consumer #include statement to initialize arrays

disparity cd/dd Consumer hierarchical design, multi-dimensional array expansion, synthesis running time

of structures, forcing the designer to re-rewrite the original descriptions manually.

fft (dd): (Fast Fourier Transform): The fft algorithm is the only design in the

benchmark suite that is not synthesizable since the design includes floating- point

data and trigonometric operations, which are not synthesizable as per the latest

synthesizable subset draft. However, the design has been included as part of the

suite since most HLS vendors do support floating point and trigonometric operations,

though the process of synthesizing is vendor specific. It is important to understand

the level of support for these operations by the HLS tool.

COMPARE

SEND RECEIVE

UNIT UNDER TEST
(UUT)

GOLDEN
OUTPUT

INPUT

OUTPUT

TESTBENCH

Fig. 3.1: Structure for testbench validation
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A4 Consumer

Consumer benchmarks represent applications that are closely related to multi-

media and digital signal processing (DSP) applications. The focus of this domain is

primarily on filters as HLS has shown to produce very good results for applications

involving filters and is widely used in this field.

fir (dd): The fir filter is a 10- tap FIR filter algorithm designed for 8- bit integer

operations. The aim of this design is to check for loop unrolling, automatic array

expansion of the I/O ports and accepting pointers to functions. This program can be

pipelined as well.

decimation (dd): The algorithm is a 5-stage decimation filter. It consists of 5 FIR

filters cascaded together where the output of one stage is the input to the next stage.

The main purpose of the design is to evaluate the level of resource sharing that the

HLS tool can extract by sharing the Multiply Accumulate (MAC) operations of the

filtering function across multiple loops. The secondary purpose is to verify that the

generated RTL is able to preserve the sum of product (SoP) construct provided in

the SystemC code, so that the logic synthesis tool can optimize the construct further.

Finally, this design also serves to identify if the HLS tool supports fixed- point data

types and its different rounding and saturation modes.

interpolation (dd): The algorithm is a 4-stage interpolation filter. Apart from the

above mentioned optimization techniques like loop unrolling and arrays synthesis,

the main purpose of this design is to test if the HLS tool can perform automatic

polynomial decompositions. It is because significant area reduction can be obtained

if polynomials can be decomposed into terms, so that the total number of arithmetic

operations required is reduced. Similar to the decimation filter, this design also makes
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extensive use of fixed point data types.

Sobel (dd): The sobel filter is an edge-detection algorithm that takes a bitmap im-

age directly as the input and returns a new bitmap image solely consisting of the edges

of the original image. The program specifically checks for nested-loop unrolling and

pipelining optimizations, I/O ports expansion (expanded inputs specified as arrays

to individual ports), multi-dimensional arrays expansion, fixed arrays synthesized as

logic or ROMs and pointer arguments to functions.

idct (dd): The Inverse Discrete Cosine Transform expresses a finite sequence of

data points in terms of, a sum of cosine functions of different frequencies. It is

normally used in many applications, e.g. image compression (jpeg) and solution of

partial differential equations. The synthesizable SystemC version of this algorithm

included in S2CBench serves additionally as a unique language support feature, to

test the initialization of an array using include statement.

disparity (cd/dd): This program estimates the disparity in a stereoscopic image.

It is the largest of all the designs and consists of 4 processes executed in parallel

(sc_cthreads). The design can serve to compare the synthesis running times of the

different tools, since the main thread contains a large number of loops leading to

extreme long synthesis run times, in case of the loops being fully unrolled or pipelined.

This design allows the testing of most of the optimization techniques of the designs

described previously as well as the ability of the HLS tools to deal with hierarchical

designs and their respective synthesis running times. The design contains control as

well as data dominant parts.

Table 3.1 shows the summary of all the designs included in the S2CBench bench-

mark suite and the associated targeted optimization features. Most of the designs
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Table 3.2: Benchmark program characteristics

Program qsort sobel aes kasumi md5c snow adpcm fft fir decim interp idct disparity
characteristics cipher 3G
Lines of Code 204 269 429 415 467 522 270 334 176 422 231 450 634

Processes 1 1 1 2 1 1 1 1 1 1 1 2 4
Function 1 2 11 5 7 11 3 1 2 1 1 2 4

No. of arrays 2 3 7 13 5 5 1 2 2 10 5 2 6
if statement 1 8 3 2 3 1 12 0 1 19 0 2 16
for statement 5 8 20 12 8 4 1 2 2 15 5 3 11

while statement 1 1 1 2 2 2 1 10 1 1 1 1 9
Test vector .txt .bmp .txt .txt .txt .txt .txt .txt .txt .txt .txt .txt .bmp
Operations

add/sub 8 26 65 44 284 11 15 17 7 50 14 123 33
Multiplications 0 2 16 0 4 0 2 5 1 5 10 33 2

Divisions 0 0 3 0 0 0 0 2 0 0 0 0 1
Logic ops 7 0 22 39 274 67 9 0 5 4 2 33 13

Comparisons 0 17 29 22 16 10 16 10 0 43 8 36 42

include loops, arrays and functions and hence are omitted in designs having unique

features.

3.4.2 Benchmark Characteristics

As discussed in the previous section, the designs range from smaller single process

designs (e.g. quick sort or FIR filter) to larger multi-process designs (e.g. kasumi

and disparity). Table 3.2 shows the detailed composition of the designs. The table is

divided into two categories; the first category describes the number of program lines

(not including comments, blank lines or the testbench), number of processes, func-

tions, loops and arrays while the second category describes the variety of operations

in the code.

From this table, it may be observed that the security applications contain a large

number of logic operations and comparisons, while the DSP applications require many

adders and multipliers mainly to compute the MAC operations of the filtering stage.

All designs included in this benchmark suite are directly synthesizable without any

modifications except for the FFT which is non-synthesizable.
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3.5 Benchmark Validation

A SystemC test-bench is provided with all of the designs in order to verify their

functionality. Figure 3.1 shows the modular structure of the test-bench interface with

the synthesizable design. The test-bench module contains a send and a receive process

which are modeled as clocked threads in SystemC. The send process transmits data

to the Unit Under Test (UUT) continuously until the test vectors stored at the input

file are exhausted and the receive process receives the data from the UUT and stores

the output data into another text file. Finally, the simulation result is compared

with the golden output before the simulation finishes and any discrepancies reported.

Additionally, the test-bench also contains the option to dump a VCD file in order

to view the waveform of the main signals. The input stimuli are all stored in text

files and can be modified by the user with the exception of the sobel and disparity

estimator benchmarks, which take bitmap file as input as indicated in Table 3.2.

3.6 Conclusions

This chapter has presented a SystemC benchmark suite, S2CBench which com-

plies with the latest Accellera’s synthesizable subset draft and which is freely available

online. All designs were successfully synthesized using a commercial HLS tool [21]

for validation. S2CBench is mainly targeted for designers wanting to evaluate differ-

ent commercial HLS tools, as all of main commercial HLS tools support SystemC’s

synthesizable subset. The test cases have been carefully chosen to represent different

application domains amiable to HLS and each of them serves to test the extension of

the language support, specific synthesis optimizations and tool performance.
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Chapter 4

HLS Design Space Exploration

This chapter highlights one of the most important advantages of raising the level

of abstraction: The ability of perform HLS based Design Space Exploration (DSE)

without the need to modify the behavioral description. In particular, this chap-

ter makes use of the S2CBench benchmarks described in the previous chapter and

proposes an efficient hybrid static-dynamic design space exploration method. The

method is based on a decision tree machine learning algorithm complemented with a

simulated annealing heuristic.

4.1 Introduction

First we give a brief explanation about HLS Design Space Exploration(DSE) and

how it takes advantage of explorable constructs to generate varying alternative micro-

architectures of a single behavioral description.

Definition: HLS DSE can be defined as the automatic process of generating

micro-architectures from an untimed behavioral description (e.g. ANSI-C or Sys-

temC). Out of all the generated designs, the most important ones are the dominating

designs, also called Pareto-Optimal designs. Pareto-optimal designs can be defined

35
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as a micro-architecture that is impossible to improve along one axis making the other

worse. The curve formed by the set of Pareto-optimal designs is called the Pareto-

front. In DSE, the set of all generated designs is called the design space. In the

subsequent sections below, the terms Pareto-front and design space will be frequently

used throughout.

Commercial HLS tools make extensive use of synthesis directives in the form of

pragmas, also called attributes. These synthesis directives are directly inserted in

the C/C++ source code as comments and provide information to the synthesizer in

order to control the synthesis of the design. Some of the commonly used pragmas in-

clude loop unrolling, pipelining, array synthesis as registers or memories and function

inlining. Pragma based synthesis has the main advantage of allowing a fine controlla-

bility over the synthesis result and the final micro-architecture respectively. The HLS

explorer presented in this work, therefore targets the exploration of these synthesis

directives to obtain a Pareto-front efficiently. The design objectives used in this work

are the area and latency of the designs.

This can be explained using a small example. Figure 4.1 shows the graphical

flow of a generic DSE on a HLS description. The DSE process takes as inputs, the

behavioral description to be explored, a library with synthesis directives and a set of

constraints, e.g. maximum delay . The pragmas inserted in the code act as directives

to direct the type of resulting hardware implementations for the associated explorable

constructs like loops, arrays and functions. As a result of the synthesis using the

combinations of different pragmas, a variety of alternative micro-architectures are

generated.

In the case shown in the figure 4.1, the arrays can be synthesized as memories
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or registers, and the loops can be fully unrolled, not unrolled, partially unrolled or

pipelined. Other solutions outside this curve are non-dominating solutions and hence

irrelevant.

int coeff[8]  ; //Pragma attr1
char ary[16] ; //Pragma attr2

//Pragma attr3
for(i=0 ; i<8 ; i++)

sum = sum + ary[i] * coeff[i];

Heuristic HLS
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Fig. 4.1: DSE overall flow

4.1.1 Problems with HLS DSE

One of the problems with HLS DSE, is that the number of combinations in-

creases exponentially with the number of explorable constructs. HLS DSE is a typical

multi-objective optimization problem, thus, making it impossible to obtain one single

optimal solution. Instead, the solution is a trade-off curve of designs with unique

trade-off curves of design objectives [7]. In this thesis, we only consider design ob-

jectives as area vs. latency (in clock cycles), but other objectives like power could

be easily added. Out of all the resultant micro-architectures, the designer is only

interested in the Pareto-optimal designs.
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One additional problem in HLS DSE is that Pareto-optimality can only be guar-

anteed if the search space is exhaustively searched for all possible design solutions.

For most HLS descriptions, this is not possible. Firstly, the execution time grows

exponentially and secondly, this leads to increase in the time-to-market. Thus, it is

common to consider the combination of only best dominating designs obtained by

all the heuristics. These are cumulatively presented as the Pareto reference front.

Although this procedure is common in most HLS DSE work, however it only allows

to compare the quality of the result among different heuristics.

4.2 Related Work

Previous work on HLS DSE can be classified in different ways. One would be

based on the technique used for solving the multi-objective optimization problems,

namely, Heuristics and Integer Linear Programming (ILP). ILP can lead to the opti-

mal solution, but suffer from scalability issues having worst case run times that are

exponential. Heuristics, on the other hand, show much better runtime complexity

but create sub-optimal solutions.

Heuristics can be further sub-divided into two main categories: Meta-heuristics

and design space pruning techniques that try to reduce the design space [28]. Design

space pruning techniques typically try to restrict the design space, hence often miss-

ing entire exploration regions. Meta-heuristics search among alternatives and tolerate

locally worse solutions with the hope to find global or better sub-optimal solutions.

Amongst them, Simulated Annealing (SA) and Genetic Algorithm (GA) algorithms

has proven to be very useful heuristics for solving multi-objective optimization prob-

lems. However, they suffer from long execution times and are very sensitive to the
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input parameters (e.g. initial temperature, rate of reduction in the case of SA and in

the case of GA, mutation and cross-over rate).

Another classification of HLS DSE methods is based on the way they model the

impact of a new set of options on the area and performance of the resultant circuit.

In particular, these can be either predictive-based or synthesis-based.

The predictive-based methods generate a set of configurations (training set) and

then derive a predictive model to avoid having to re-synthesize every new configu-

ration, which is the most time-consuming part of the DSE. In [38] an example of

predictive-based HLS DSE is presented, where early estimators of area and delay for

FPGA implementations were used in order to evaluate the design space before using

any behavioral synthesis. Schafer et al. were one of the first to propose this flow

in [72]. Liu et al. [45] extended this flow and proposed a learning-based method

based on transductive experimental design techniques. More recent work in this di-

rection include [53]. Other predictive model based methods use response surface

models (RSMs) combined with spectral analysis [86] and RSM with design of experi-

ments (DoEs) [59]. The main drawback of predictive methods is that due to the large

search space and frequent non-linear behavior (especially at the micro-architectural

level) they seldom converge well. This implies that a relatively large training set is

required. Typically between 10-20% of the entire search space is reported [45, 59, 72].

Synthesis-based methods generate new configurations based on multi-objective

optimization heuristics and synthesize (HLS) each new configuration. These heuris-

tics have been shown to produce good results for these types of multi-objective op-

timization problems. The meta-heuristics include simulated annealing [77], genetic
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algorithms [23] or ant colony [16]. Multiple faster heuristics have been later pro-

posed, including techniques based on clustering dependent parameters were proposed

to prune the search space before exploration [73]. Other techniques include the in-

ternal clustering of dependent explorable operations (e.g. nested loops) and exploring

these separately and then merging the results to obtain the global best solution [74].

Other recent work, specifically target the loop unrolling factor combined with

the array synthesis by analyzing the access patterns and then pruning the search

space accordingly [65][17]. Most of these methods prune the design space more or

less aggressively in order to reduce the execution time [85]. Other works combine

both approaches by aggressively pruning the search space and predicting the system

performance using genetic Fuzzy systems[3].

In this chapter, we introduce a decision tree learning based method to improve

existing simulated annealing algorithm. The method follows a hybrid static-dynamic

approach and directly aimed at reducing the execution time of DSE while achieving

comparable results to a standard simulated annealing algorithm. In the initial phase,

standard simulated annealing is used to generate designs based on the previous de-

sign’s cost function. These initial designs are used to generate a decision tree to decide

which of the attributes contribute to maximizing the cost function. These attributes

are then fixed while those attributes which do not show any strong relation are se-

lected pseudo-randomly. This reduces the design space considerably and hence allows

finding the Pareto-optimal designs faster than using a standard simulated annealing

algorithm.
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4.3 Methodology

The primary objective of the design space exploration is to find a set of domi-

nating designs as fast as possible. Ideally, these dominating designs should be the

Pareto-optimal designs, although it is virtually impossible to prove the optimality of

the results for larger designs. In this work, we focus only on single process micro-

architectural DSE. An overview of the complete proposed explorer is shown in the

flow diagram in figure 4.2. Our explorer takes as inputs, the behavioral description

to be explored (ANSI-C or SystemC), a library file containing all the explorable at-

tributes, and the annealing parameters (i.e. initial temperature and cooling rate).

The algorithm then generates a new unique combination of attributes chosen from

the library and inserts it into the behavioral description. The generated source code

is parsed and synthesized in order to extract the area of the circuit from the Quality

of Report file (QoR). Although the HLS tool used in this work reports the latency of

the synthesized circuit, often this value only represents the state count, because the

actual latency cannot be determined statically. This is mainly due to data dependent

loops or continue/break statements in the behavioral description. Thus, in order to

obtain the accurate latency of the design, a cycle-accurate simulation for every new

design is performed. The cost function used for our work, is a linear function as used

in Schafer et al. [77]:

Cost = A↵ + L� (4.1)

where ↵ and � are weights to adjust the effect of the design objectives (area, A

and latency, L) respectively. The weights ↵ and � are adaptively modified during the
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Fig. 4.2: Flow diagram of FSA Design Space Explorer

exploration in order to capture the complete trade-off curve. Our explorer continues

until a given exit condition is satisfied and returns the dominating results found during

the exploration.

4.3.1 Simulated Annealing Review

Simulated Annealing was initially proposed by Kirkpatrick et al. [39], as an ef-

fective heuristic for multi-objective optimization problems which is similar to our

problem. Since then, different kinds of optimizations have been implemented upon

the basic simulated annealing. Simulated annealing has been optimized in various

ways [77] [29]. However, the application of machine learning upon simulated anneal-

ing heuristic is a novel concept as the proposed method initially learns statically using

a decision tree algorithm. Here, the training data is initially generated using several
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iterations of the standard simulated annealing.

One of the distinct characteristics of SA is that the decision to accept a solution

is based on an acceptance probability function P , where P = f(C 0
, C, T ). Here, C 0 is

the cost of the new design, C is the cost of the previous design and T is the current

temperature. Thus, the new design is accepted if C 0
< C or if exp(�(C0�C)/T ).

Some of the characterizations of SA specific to our implementation are mentioned

as follows:

• For our work, we have evaluated the function for updating of temperature as

mentioned below where Tnew is the updated temperature. In this work we em-

pirically make � to be a constant at 0.95. The performance of SA is dependent

on several factors, one of them being �. Increasing � enlarges the design space

of SA but also increases the running time.

Tnew = � ⇥ Told
(4.2)

• The stopping condition to exit the algorithm has been evaluated by counting

the number of designs which are not accepted by the default rule or acceptance

rule. The algorithm exits when it reaches the given threshold or when the

temperature is equal to zero. It has been empirically observed that either of

these conditions similarly impact the algorithm’s performance.

Thus the simulated annealing (SA) is executed in three steps: first, random de-

signs are generated using the random generation function. Second, the acceptance of

the design is decided using the acceptance probability function and then finally, the

temperature is updated using equation 4.2 when its condition is satisfied.
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4.3.2 Attributes for Exploration

The commercial HLS tool used in this work [21] includes a large number of at-

tributes (200+). Since the design space exponentially grows with the number of ex-

plorable constructs and their combinations, our work focuses on the most important

attributes. They include unrolling of loops, folding (pipelining), expanding functions

as inline or goto, implementing arrays as registers, memories or as combinational logic

circuits. These attributes affect the resulting micro-architecture most significantly.

As shown in figure 4.1, these attributes or pragmas are inserted as comments in the

source code targeting specific constructs i.e. a for loop and two arrays. It should be

noted that some of these attributes also may be accompanied by sub-attributes. For

example, the array=RAM attribute can be made more specific in terms of its spec-

ification by combining with sub-attributes such as number of memory ports (dual,

two-port, etc.). For reference, the attribute type refers to the type of explorable con-

structs and the attribute value is the architecture desired for that construct, e.g.

RAM or LOGIC.

4.3.3 Proposed Algorithm

The main objective here, is to find a trade-off curve that should be comparable

with that from using standard SA, while reducing the execution time. During the

analysis of the behaviour of SA, one of its characteristics is that it tends to traverse

through down-hill curves and is likely to end up searching local minima thereby

increasing the execution time. In order to make the SA more efficient, different

methods have been proposed in the past as mentioned earlier, mainly aiming at

improving its efficiency and execution time. The use of decision trees for design
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Algorithm 1: Algorithm for implementing Decision tree
Data: AL = Attribute List

T = Temperature of SA

Result: PS = Pareto-optimal set of Behavioral designs

1 begin
2 Step 1: Training set Generation

3 Run SA for X iterations

4 Step 2: Decision Tree Generation

5 while T > 0 do
6 Calculate P+, P� proportion of training samples

7 Calculate Information Gain for Attribute type, entropy for attribute

8 Attribute type with highest Information Gain is chosen

9 Root of Tree is created and children nodes as attributes

10 if all attributes in AL are not tested then
11 Decision is taken on Leaf nodes

12 Decision to select the node under which the next attribute type to be

tested is taken.

13 Step 3: SA with Decision tree

14 Continue SA using Decision tree to fix attributes that minimize cost function

15 Step 4: Delete all non-optimal designs

16 Step 5: Select Pareto-optimal designs

space exploration has been limited to either memory management levels [5] or on

multi-processor platform [7] explorations.

Our proposed new methodology for optimizing the simulated annealing for ef-

fective DSE in HLS uses a type of dynamic programming technique. Decision tree

learning (ID3 algorithm) is one of the most widely used and practical methods for

inductive inference [54]. In our work, the objective of the decision tree is to predict

the attribute combinations that make the most positive impact i.e. reduces the cost

function. For this purpose, the decision tree must be able to infer the impact of all

attribute combinations from the training set. The decision tree learns the perfor-

mance of different attribute combinations from the training set. The decision tree’s

prediction is used to fix some of the attributes that have been predicted to make the
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Fig. 4.3: Partially learned decision tree

highest impact on reducing the cost function. When SA is resumed, the predictions

from the decision tree are used to fix certain attributes and the rest are generated

randomly during the exploration. The basic function of decision trees is to classify

instances from the training set into attributes that contribute positively or negatively

towards reducing the cost function. The tree structure thus becomes hierarchical in

nature as shown in figure 4.3. The algorithm for implementing the decision tree in

the explorer is described in Algorithm 1. The overall methodology is executed in the

following steps.

Step(1) Training Set generation: In the initial phase of the explorer, the standard

simulating annealing algorithm is executed. The designs generated at this stage
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are half of the total number of possible combinations of attributes, Nh, in the

library, which act as the training set for creating the attribute tree. The exit

condition at this stage is evaluated by checking if the number of designs gener-

ated have reached the value of Nh. (line 2 of Algorithm 1)

Step(2) Decision tree generation: Once the training set is created, our method builds

a decision tree of attributes based on the ID3 algorithm. The term attribute

(⌫) refers to the specific attribute option inserted into the source code. The

term, attribute type (A), refers to the category of attributes which perform a

specific family (loop, array, function) of function under which the attributes are

categorized. Each attribute is evaluated using a statistical test to determine its

impacts on the quality of the training set [54]. (lines 4-11)

Step(3) SA with decision tree: Once the decision tree is created, our method con-

tinues by generating pseudo-random attribute configurations using the decision

tree. Attributes with high impact on reducing the cost function are fixed based

on the criteria explained previously, while attribute with no clear decision are

selected randomly. (lines 12-13)

Step(4) Delete non-optimal designs: The last step of our method is the deletion

of the dominated designs (non-optimal) in order to obtain the designs on the

trade-off curve. For this purpose, our method re-visits all the designs generated

and keeps only the dominating ones. (line 14)

4.3.4 Decision tree learning

Prior to the explanation of the method of generating attribute tree using ID3

algorithm, we define the following terms:
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Entropy: Information Gain (IG) as the statistical property for the purpose of sorting

the attributes (⌫) is based on their capacity to maximize/minimize one of the cost

function objectives (Area or Latency). The entropy), is used to characterize the purity

or impurity of a specific attribute for a collection of samples, S.

Entropy(S) = �p+log2p+ � p�log2p� (4.3)

In the equation, p+ represents the positive proportion of the training examples,

and p� represents the negative proportion of the examples. The term positive pro-

portion refers to the fraction of the training designs satisfying the minimization of an

objective and negative proportion is the fraction not contributing to minimizing of

objectives. With reference to DSE in HLS, the process of classifying the training de-

signs into a tree is different from its standard implementation used by ID3 algorithm.

For every design objective, the preliminary training set is initially sorted in ascending

order, and then the value of the objective of the first example in the sorted set with

the addition of 20% of its value is considered for setting the range of threshold. For

our implementation, all designs with objective values below this threshold are posi-

tive. Empirically, it has been shown that the indicated range achieves the best results.

The design space to be explored can be easily controlled by changing the threshold

value. Higher threshold value will fix more attributes and hence reduce the design

space to be explored reducing the execution time, while specifying a lower threshold

value would fix fewer attributes and hence increase the design space and thus also

the execution time. The user can therefore set this parameter in our system. Given

the entropy as a measure for the weight of each attribute, we define information gain,

IGi which decides the best attribute type as a root node to be effective for classifying

the designs.
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Information Gain(IG): The information gain (IG) of an attribute type Ai, relative

to a set of training designs, S is formulated as,

Gain(S,A) = Entropy(S)�
X

v✏values(A)

| S⌫ |
| S | Entropy(S⌫) (4.4)

In the above equation, values (A) is the set containing all the attributes under at-

tribute type A and S⌫ is the subset of S for which the attribute type A has attribute ⌫.

The first term in the equation is the entropy of the original collection of the examples

S, but the second term is simply the summation of the expected values of entropies of

each specific attribute under the attribute type A. Thus, Gain(S,A) is the information

provided about the classification of the sets, given the values of the attribute type A.

Fig. 4.4: Graph representing the
relation between entropy and p+

The ID3 algorithm uses a greedy, hill- climb-

ing approach, beginning with an empty tree and

subsequently progressing by searching through

the entire design space for a tree which would

completely classify the training data. In this

work, we have a binary target function for clas-

sifying each attribute in the library. For each

attribute, the decision is either true or false. A

leaf node in the tree is declared only when the de-

cision about the attribute has been taken i.e. if

the attribute has either zero true values or zero false values in the subset S⌫ . At each

node of the tree, the attribute type with the highest information gain is chosen for

being tested at that level. The procedure continues until all the attribute categories

have been completely exhausted or all the nodes in the tree have been classified as leaf
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nodes. The algorithm in figure 1 shows the summary of the implementation method

for creating the attribute tree. A partially created tree consisting of roots representing

attribute types and nodes representing the attributes is shown in figure 4.3. During

the tree search at each level, the attribute declared as a leaf node and having a true

value, is accepted for fixing, otherwise the attribute having the maximum entropy is

selected for fixing in the newly generated design. The rest of the attributes are left

for random selection. A true value indicates that the attribute satisfies the particular

design objective.

One of the important features of this implementation strategy of the decision

tree is the selection of an attribute under a root, in a situation when the root does

not have any leaf node with a true value. In these situations, we have developed a

unique strategy in order to find the exact attribute combination which contributes

to minimization of the design objective. The relation of entropy of an attribute and

the positive proportion of examples related to that attribute represents an inverted

bell curve as shown in figure 4.4. If p+ of an attribute is less than 0.5, then the

entropy is directly proportional to p+ otherwise the entropy is inversely proportional

to p+. Depending on the characteristics of the nodes under a particular root, if

there are no attributes with p+ more than 0.5, then the direct proportionality rule is

applied to check for the attribute with maximum entropy. If a single node exists with

entropy more than 0.5, then the inverse proportionality rule is applied to check for

the attribute having the minimum entropy since with the p+ more than 0.5, the lesser

the entropy, higher is the positive proportion. Thus, in this way, in the absence of

true leaf nodes, the attributes with highest p+ prove that they contribute to relatively

more number of designs having true values for the target function and those attributes
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are chosen. This procedure proves to be more efficient, in a way such that the search

technique is more focused on the combinations predicting to lead to minimizations of

the design objectives.

As shown in figure 4.3, the most important factors for creating the decision tree is

the information gain of each attribute type and the entropy of each attribute. While

the information gain helps in deciding the root at each level of the tree, the entropy

enables the decision for which attribute shall be used for inserting the next root in the

tree. The mode of selection of attributes from the tree is a depth-first search. At each

level of the tree, only if the attribute is a leaf node with all positive proportions, then

that attribute is selected otherwise the attribute with highest entropy is selected.

The positive proportions of each attribute play the most important role in deciding

the number of attributes to be fixed from the tree. For satisfying the design objectives,

it is important to choose the attribute having the largest positive proportion, or having

entropy as zero. It may be noted that while creating the decision tree, the impact of

the attributes on the quality of designs decreases as we go downwards the tree. Thus,

the priority of the attribute types is sorted in descending order throughout the tree.

Thus, the upper half of the tree shall prove to be more effective. Once the decision

tree is created with its classifications for the different attributes, the tree is parsed

to obtain a unique list by selecting the attributes from each level within the upper

half of the tree until a leaf node is reached. This list is used for fixing the attributes

as they are confirmed to have the highest impact on reducing the cost function. The

process is continued as shown in figure 4.2 until exit criterion is fulfilled.

The most timing consuming parts of our proposed method are the synthesis time
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after every unique attribute configuration is generated and the cycle-accurate simu-

lation required to determine the exact latency of each newly generated configuration.

Nevertheless, by fixing some of the attributes it is possible to considerably reduce the

exploration space and thus reducing the execution time. Upon analysis, it is seen that

performance of the decision tree depends on the initial X iterations of the simulated

annealing. First, the standard SA algorithm is studied for its behavior. When the

Tnew parameter is at the maximum, the tendency of SA for choosing attributes for

a design is purely random. It is also observed that higher the value of X, the more

attributes will be fixed by the decision tree thereby leading to a smaller search space

for SA. Given this case, the decision tree has higher chance of over-fitting, and SA

might leave out some designs on pareto-front. Thus, there is always a trade-off be-

tween the algorithm’s running time and the quality of the resulting pareto-front with

the number of iterations. Choosing a low value of X leads to under-fitting of the tree.

Thus, it is important to have a balance between the two scenarios.

4.4 Experimental Results

The experiments for validation of the proposed methodology were performed us-

ing benchmark designs from the open source Synthesizable SystemC Benchmark suite

S2CBench [34]. Our proposed method FSA is evaluated by comparing against the

DSE method using standard Simulated Annealing. Although there are various meth-

ods used in DSE discussed in related work, FSA method acts as a helper based

improvement upon standard SA method, thus SA is the baseline method for compar-

ison. Table 4.1 summarizes the results of analysis of exploration using SA algorithm

and our proposed FSA algorithm. Column 1 indicates the benchmark name and
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Table 4.1: Experimental Results for FSA

Benchmark execution time Dominance Cardinality
name lines SA FSA diff SA FSA SA FSA

[sec.] [sec.] [sec.] [ratio] [ratio]
Fibonacci 31 343 182 161 1 1 3 3

IDCT 131 4202 4167 35 1 1 2 2
Snow 3G 311 5519 3161 2358 1 1 1 1
FIR filter 110 2179 934 1245 0.8 0.6 4 3
Gfilter 381 2309 1922 387 1 1 3 3

AES cipher 259 5281 3398 1883 0.3 0.67 1 2
Kasumi algorithm 291 11376 6292 5084 1 1 2 2
ADPCM encoder 113 892 505 387 1 1 2 2

Avg. 203.3 4012.6 2570.1 1443 0.8 0.90 2.1 2.2

column 2 their size in terms of numbers of lines of code. Fibonacci is a Fibonacci

sequence generator, IDCT an inverse cosine transform, Snow3G is a stream cipher

which produces a key stream that consists of 32-bit blocks using a 128-bit key, FIR

is a 9-tap FIR filter. Gfilter is a graphical filter, sobel an edge detection filter. Fi-

nally AES is an advanced encryption standard implementation and ADPCM is an

Adaptive-differential pulse-code Modulator (only encoder part).

The experiments were run on an Intel dual 2.40 GHz Xeon processor machine

with 16GBytes of RAM execution Linux CentOS version 3.11.7-200. The HLS tool

used is CyberWorkBench v.5.4 [21]. The target HLS frequency in all cases is 100MHz

(10ns maximum delay) and the target technology is Nangate’s OpenCell 45nm ASIC

technology [57]. The execution time discussed here comprises of the entire flow from

the parsing of the behavioral descriptions until the end of the DSE. Two quality indi-

cators were used in order to compare our proposed method (FSA) against a standard

SA: (i) Pareto dominance and (ii) Cardinality. Pareto dominance is equal to the ratio

between the total numbers of points in the Pareto set being evaluated, also present
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in the reference Pareto set. The higher the value, the better the Pareto set is. The

cardinality indicates the number of dominating designs found by each method. A

high cardinality indicates a larger number of solutions to choose from, which should

be considered to be positive, although it needs to be interpreted carefully with the

rest of the results. The results reported were computed by comparing the pareto-front

of each method compared to the reference Pareto front (the combination of the best

non-dominated results of each method). The execution times for each benchmark are

used for quantitative analysis.

Columns 3 to 5 in Table 4.1 show the execution times of SA and FSA executions

and their differences. Results indicate that our proposed FSA explorer runs faster

than SA by an average of 36% and can run up to a maximum of 48% faster than the

standard SA algorithm (almost 2x faster). According to our qualitative analysis, our

proposed FSA algorithm produces comparable sets of dominating designs compared

to SA while execution almost twice as fast. Based on these results it can be concluded

that our proposed algorithm produces the similar results as a generic SA algorithm,

while reducing the execution time significantly.

4.5 Conclusion

High Level Synthesis is becoming more necessary in order to further increase

VLSI design productivity. In this chapter we have presented HLS DSE explorer

that enables designers to automatically generate a trade-off curve of unique micro-

architectures given a behavioral description for HLS. Results show that our proposed

method is faster than a standard SA-based explorer by a maximum of 43%. Since

our algorithm statically learns the combination of attributes which minimizes the
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given cost function, it can reduce the search space considerably and hence reduce the

execution time of the exploration.

0This work has been published as proceedings of Electronic System Level Synthesis Conference
(ESLSyn), 2014.
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Chapter 5

VeriIntel2C: Abstraction of C from
RTL to enable Design Space
Exploration

As discussed earlier, there is a need for abstracting RTL to C. Thus, a new method

called VeriIntel2C is introduced to abstract C program with explorable constructs

from RTL designs given in synthesizable Verilog. The subsequent section starts by

describing the modeling of the Petri Net based framework that generates the Control

Data Flow graph (CDFG). In the second phase, the rule-based search methods in-

cluding graph matching is introduced and described. Finally, the experiment results

section evaluations the quality of the conversion.

5.1 Introduction

Most System on Chips (SoCs) are created from a combination of legacy Register

Transfer Level (RTL) blocks, Intellectual Properties (IPs), newly developed RTL and

C/SystemC descriptions synthesized using behavioral synthesis (also called High-

Level Synthesis). This re-use of existing legacy code allows design teams to focus

only on the new features that need to be implemented, thus reducing time-to-market

57



58

considerably.

However, one problem faced by most VLSI design teams using HLS is having

large amount of legacy RTL code/IPs. It is challenging for the teams to integrate

newly generated C/SystemC code with those legacy RTL designs [8]. RTL designs are

challenging to re-target using different constraints because of their highly restricted

levels of abstraction. In contrast, C-based designs, using commercial HLS tools,

allow to generate alternative micro-architectures with varying design metric trade-offs

without having to modify the original code, called as Design Space Exploration (DSE).

Also, C designs enable maximum resource sharing [20] using HLS, and their efficiency

can rival hand-coded RTL designs for Digital Signal Processing (DSP) applications

[18].

DSE using HLS are most exploited by targeting explorable constructs in a HLS

based design. Explorable constructs imply constructs that when explored result in

very different RTL micro-architectures, which result in a larger design space. Exam-

ples of these constructs maybe loops, arrays, functions.

For this reason, a previous work, Bombieri et al. [9] (R2C ) proposed abstraction

methods to convert legacy RTL IP components of SoCs to HLS-optimized C++ pro-

grams in order to enhance re-usability enable DSE at the system-level using HLS com-

mercial tools. This approach translates RTL designs syntactically with all processes

(synchronous and asynchronous) mapped into C++ functions, while using static-

scheduling to resolve the functionality. Their method is able to recover the IP func-

tionality in the form of C++ program with functions, and also enable component-level

and system-level exploration.

This approach, however, has its own set of limitations. The method firstly does
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not focus on identifying loops, arrays from the RTL design. During the translation,

it identifies and rolls up loops only when the RTL design contains for-generate syn-

tax statements or multiple instances of RTL modules. Loops and arrays in RTL

can be described in different ways and are mostly not straightforward with for or

while syntax, thus allowing designers to write RTL designs in diverse styles. This

makes RTL designs without for-generate syntax and multiple modules unable to be

converted using this approach. Their approach works well if the RTL IP contains

multiple components, from where they create input/output (I/O) arrays of the inter-

faces connecting these components. However, I/O arrays are unable to significantly

improve the component-level DSE of a RTL component as operations of I/O arrays

are restricted to purely read or write, implementable in the form of registers or wires.

Their approach treats a RTL design as a system with several modules as individual

components with their main focus being to roll up instances of every component into

functions and create I/O interfaces, to enable and enrich system-level exploration.

It is therefore desirable to design abstraction methods to abstract C/SystemC de-

signs optimized for DSE in particular, from RTL designs with purely single modules.

C-based designs optimized for DSE must consist of explorable constructs, in particu-

lar, loops and arrays. As the level of abstraction of RTL is highly limited, the loop

forms like unrolled, partially unrolled are described indirectly using hardware details.

Also, arrays in the computations are embedded within the RTL as registers, wires,

logic, memories, etc. which makes the identification further challenging.

In this chapter, we address the aforementioned problems by proposing a robust

translation method, VeriIntel2C [49] that identifies the explorable constructs from
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module ave8(clock, reset,indata, avg);

input clock;

input reset;

input [7:0]indata;

output [7:0]avg;

reg [7:0] rg1,rg2,rg3,rg4,rg5,rg6,rg7,rg8 ;

reg [11:0] o1;

always @ (posedge clock or posedge reset)

begin

if (reset)

begin

rg1 <= 0; rg2 <= 0; rg3<=0; rg4<=0;rg5<=0; rg6<=0; rg7<=0; rg8<=0; o1<=0;

end

else

begin

rg1 <= indata ; rg2 <= rg1 ;rg3 <= rg2 ; rg4 <= rg3 ;

rg5 <= rg4 ; rg6 <= rg5 ;rg7 <= rg6 ; rg8 <= rg7 ;

o1 <= rg8 + rg7 + rg6+ rg5 + rg4 + rg3 + rg2 + rg1;

end

end

assign avg = o1[11:3];

endmodule

Fig. 5.1: RTL (Verilog) design example that computes the average of 8 numbers
(ave8 ))

RTL designs that, upon DSE, have the strongest impact on the resulting micro-

architecture. Our proposed approach purely focuses on generating C designs with ex-

plorable constructs to enable the DSE of RTL designs with single modules to broaden

the design space of micro-architectures. Our robust translation methodology is able

to identify array structures in forms of registers, wires, or memories and in variable or

constant forms unlike previous approach as well as internal and I/O. While the func-

tionality is extracted and preserved using Hardware Petri Nets, the generated CDFG

along with the various graph search techniques allow our methodology to identify

loops in unrolled, folded, nested loop forms from RTL designs and generate them in
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int rg[8]; //array
int ave8(){

int j,sum=0, indata;

//loop
for(j=7;j>0;j--)

rg[j] = rg[j-1];

rg[0]=indata;

sum = rg[0];

// loop
for(j=1;j<8;j++){

sum = sum + rg[j];

}

return sum/8 ;

}

(a) Resulting C design from VeriIn-
tel2C

int ave8(){

int sum=0,indata;

int rg1,rg2,rg3,

rg4,rg5,rg6,rg7,rg8;

rg8=rg7; rg7=rg6;

rg6=rg5; rg5=rg4;

rg4=rg3; rg3=rg2;

rg2=rg1;

rg1=indata;

sum=rg1+rg2+rg3

+rg4+rg5+rg6+rg7+rg8;

return sum/8 ;

}

(b) Resulting C design from previous

work (R2C )

Fig. 5.2: Resulting C code comparison of VeriIntel2Cwith previous work for ave8
design

the resulting C programs.

Figure 5.1 shows a typical RTL design that computes the moving average of 8

numbers. Figure 5.2 shows the results of the translation of the given RTL design.

Figure 5.2a shows the C code generated by the proposed method in this chapter

VeriIntel2C, while Figure 5.2b shows the results obtained by the closest previous work

[9]. The differences are clear. VeriIntel2C is able to generate a loop and an array

which in turn can be explored generate micro-architectures with different trade-offs,

while the previous work C code cannot be explored as it does not have any explorable

constructs.

Figure 1.2 in chapter 1 showed the overview of the system using the proposed

abstraction methodology indicated in dotted boxes. The proposed methodology uses

an extended Hardware Petri Nets [50] to model and extract the behaviour of RTL
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designs (synthesizable) written in diverse styles, unlike previous approaches, and gen-

erates a CDFG. The CDFG is then analyzed using graph matching techniques along

with a rule-base to identify loops in unrolled, folded, nested loop forms. These forms

identified from RTL designs are generated in the resulting C programs. The HLS

DSE is purely used as a tool for our experiments to prove the quality of the result-

ing C designs from VeriIntel2C. The impact of the generated C design with loops,

arrays on the design space can be evaluated by performing HLS DSE and analyzing

the trade-off curve of micro-architectures obtained. It is to be noted here that the

proposed translation method does not identify or generate pipelined loop forms and

nested loops that have conditional blocks.

The next section discusses the literature review of previous works related to this

topic. Section 3 describes the proposed methodology in detail, consisting of three

components. The first component describes the Petri Net modelling of RTL designs,

followed by the mapping method for generating the CDFG. The third component

introduces and describes the rule-based search and graph matching methods to gen-

erate and construct loops and arrays. Finally, the experiment section describes the

experimental setup and the experimental results.

5.2 Related Work in RTL to C Translation

With respect to abstraction of C/C++ from RTL, most of the approaches describe

the generation of C/C++ models to optimize simulation. Verilator [83] is a simula-

tion tool that generates a generic C++ executable from RTL (Verilog) but does not

produce a synthesizable C program which can be directly used for HLS or DSE. In

Stoye et al. [79], synthesizable RTL (Verilog) design is again translated into C++
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executable to reduce the number of delta cycles in simulation by merging processes

together. Bombieri et al. [10] generate C++ models by abstracting architectural

details of the original RTL code for faster simulation. There are also some com-

mercial products that target this application domain. Aldec [2] tool converts RTL

test-benches into C++. Carbon Design Systems (recently acquired by ARM) [15]

converts RTL models into cycle-accurate and register-accurate C++ models targeted

mainly for the creation of virtual platform from legacy RTL code. The purpose of

the above mentioned works is mainly to enable faster verification and do not target

to create synthesizable behavioral designs with high-level constructs.

Approach for DSE: Closely related to this area, a recent approach discussed

earlier, Bombieri et al. [9] (R2C ) focuses on the optimization of RTL to C++ con-

version for HLS DSE with the similar objective of maximizing the design space of

the HLS-optimized RTL designs and IPs. As described earlier, although their work

is motivated for enabling DSE as VeriIntel2C, their method aims to enable system-

level exploration with RTL designs treated as a system with modules as components.

Whereas, the proposed work aims to focus on DSE for single-module RTL micro-

architectures with no components or interfaces. Secondly, their method fails to iden-

tify and generate internal arrays and loops in the absence of for-generate syntax,

which can be easily shown in the experiment results section.

Structural approaches: Other works related to this thesis are presented here.

Fummi et al. [10] transforms a RTL IP model into C++ by extracting and gener-

ating Extended Finite State Machines (EFSM). It also uses a rule-based approach

to abstract the RTL design aiming to preserve concurrency of the original design.

Their method generates a software which attempts to partition the RTL code into
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several processes e.g., sequential and combinational statements, and concurrent state-

ments. The processes are simulated using a simulator model (scheduler), to extract

the behavior and ultimately generate the EFSM with the C++ code. CHESS tool

[56] proposes a method to directly extract the CDFG from VHDL designs for HLS of

VLSI systems. Here, the method heavily relies on the presence of high-level VHDL

constructs like if-else, for, etc., to generate CDFGs with abstracted loops and array

constructs. Song et al. [78] proposes an automatic method to extract pure dataflow

paths from RTL designs, but their objective is to verify functionality of large-scale

synchronous VLSI designs, and they remove all the control information, which does

not help the objective of this thesis. Bombieri et al. [11] presents an approach for

automatic generation of C++ code by abstracting HW details from existing RTL

IPs and extracting their functionality. However, the objective of this work is to en-

able HW/SW partitioning for MPSoCs and does not focus on enabling DSE of RTL

designs, thus not aiming to create loops or arrays.

Petri Net related approaches: One of the main contributions of this work is

the use of Petri nets to generate the CDFG since direct transformation to CDFG may

result in a loss of inter-connections between control and data signals and define dual

functionalities of different signals which are present in complex RTL designs. This is

further explained in detail in the following section.

Thus, the important related work in the use of Petri nets is also reviewed in

this section. Petri net, as a model, has had many applications at various levels

of abstraction in hardware design. A summary of the most relevant works can be

found in [50]. A HLS system called CAMAD uses timed Petri nets for modeling the

intermediate design description at the behavioral level, prior to subsequent synthesis
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transformations to finally obtain an RT-level representation [64]. In another work

[67], Petri nets have been modeled using VHDL to simulate the operations at different

levels of abstraction. For modelling at the behavioral level, Rust et al. [71] proposed

an approach for realizing Petri Net models in SystemC. Petri Nets have also been

used for modeling asynchronous digital circuits, whose basic analysis and explanation

has been provided in [87]. Petri Nets described in the previously mentioned work

have been mainly used for verification, modelling, and synthesis. In another work

[70], the authors extend Petri Net models to Hardware Petri Nets (HPN), used as an

intermediate representation for generation of synthesizable VHDL code.

The work of this chapter is different from previous works, because it considers

all the main explorable constructs (arrays and loops) in HLS DSE and explicitly

targets their generation without relying on fixed or specific syntax in the RTL code.

Moreover, the use of Hardware Petri Nets (HPN) [70] in VeriIntel2C is unique, as

previous works using HPN have not targeted reverse translation methods from RTL

to C. VeriIntel2C extends HPN to define a Petri net graph and extract the behaviour

of the synthesizable RTL design in order to facilitate the extraction of loops and

arrays. A clearer explanation with a use case of the Petri Nets is explained in the

following sections which highlights the importance of Petri Net in this chapter.

5.3 RTL to C Abstraction Methodology

This section presents VeriIntel2C, a translation methodology for RTL descriptions

to generate behavioral descriptions optimized for HLS DSE. The objective of the

methodology is to identify structures of loops and arrays in diverse forms. These

forms can be represented in different ways in a RTL design and it is imperative for
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a method to effectively identify the behaviour of these structures and map them to

loops and arrays accordingly.

The novelty of VeriIntel2C lies in the robust methodology that can generate flat-

tened, folded, nested as well as variable (R/W), read-only, constant array forms and

their operations, independent of the RTL program style and constructs (structural or

behavioral).

The major components described in the proposed VeriIntel2C framework are:

Petri Net (PN) modelling of the RTL program (section 5.3.1), CDFG generation

(section 5.3.2) and finally, loops and arrays identification (section 5.3.3). The work

flow of VeriIntel2C consists of two phases. In the first phase, the first step is the

novel mapping method of RTL components to model Petri Net graph representation.

The next step generates the CDFG from the Petri Net. The second phase is loops

and arrays identification which analyzes the CDFG using rule-based graph search and

matching techniques to generate the C program with explorable constructs.

5.3.1 Petri Net Graph

Overview. In this section, a novel mapping method between different RTL design

components and Petri Net graph is proposed, and the model specification of the Petri

Net graph is defined. The use of Petri Net graph for behaviour modelling is significant

for VeriIntel2C. Petri Nets have been commonly used for modelling in EDA [50], but

mostly to represent the control part of synchronous designs. In contrast, the approach

in this chapter extends the HPN to abstract C program with loop and array structures

from RTL designs. Petri Nets is used instead of typical state machines because they

have shown to be a powerful formal method to model the behaviour of parallel designs

at a high abstraction level (C/C++) and they are more flexible in nature. The Petri
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Net representation of RTL components enables to model the underlying behaviour of

the control and data flow in RTL, so that the operations and their sequences can be

obtained for the resulting C program. Thus, the mapping to Petri Net identifies the

nature of the components, if any are of dual nature, control and/or data dependent,

and enables their separation in the CDFG irrespective of their design styles in the

RTL program. Overall, the role of the Petri Net graph is key to create the CDFG

without which the CDFG will be a pure data-flow graph without control blocks.

Any given RTL design represents two separate aspects of the process, computa-

tional (data) and control but the design does not explicitly distinguish between control

and data. The proposed mapping method is required to model the behaviour of the

RTL design, because it ensures to represent RTL components of varying structures

and enables a simplified view of the inter-connection between the components which

may be control or data in nature. This is needed since the objective is to preserve

the operation sequences and their dependencies.

C program is purely sequential in nature in contrast to the concurrent nature of

the RTL design. Thus, only the information about the sequence of operations and

their dependencies needs to be preserved during the translation and the rest to be

abstracted away. The mapping method of Petri Net graph representation abstracts

away the hardware level details from the RTL design and preserves the information

necessary to represent the control and data dependencies between every RTL compo-

nent and their sequences. Thus, the objectives of modelling a Petri Net are twofold:

(1) model behaviour between data and control components in RTL design to iden-

tify functionality irrespective of program style (2) enable the CDFG to identify and

separate control and data loop structures.
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RTL code

AST

Petri Net

CDFG

reg [7:0] rg1, rg2, rg3, rd0, sum_t ;
reg sum, j ;
wire [2:0] state;
wire[7:0] out_a ;
always @*
case( j )
3’h0: rd0 = rg1;
3’h1: rd0 = rg2;
3’h2: rd0 = rg3;
endcase
assign out_a = sum + rd0 ;
always @clock sum=> sum_t ;
always @clock
begin
if reset

j  => 0 ;
else
j => j + 1 ;
always @*
begin
if  (j == 0 and state== 2’d3 )

sum_t = rd0 ;
else if ( state == 2’d4)

sum_t =   out_a;

=

+

rd0

COND

rg1 rg2
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Fig. 5.3: Flow of translation from RTL to CDFG for a simple motivational example
design

The transformation to Petri Net graph from RTL design has to be achieved using

an intermediate representation. For a faster and stable transformation, the RTL

program was initially parsed using a commercial parser (Verific [82]) to obtain a

parse tree. The parse tree ensures stability and representation of different design

styles. Since this parse tree is difficult to traverse or manipulate, for implementation,

the parse tree is converted to an Abstract Syntax tree (AST) categorizing the different

types of RTL constructs into different nodes in the tree.

We extend the basic HPN [50] to define the Petri Net graph structure using defi-

nition .

Definition 5.3.1. Petri Net(PN) is a 3-unit tuple: PN = (P ,T ,OP ) where P is a
place , T is a transition and OP is an operation node.

The fundamental structure of the Petri Net graph extended from HPN [50] is de-

vised in figure 5.4. In this representation, the place P holds all data/control variables
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Fig. 5.4: A fundamental view of Petri Net defined for VeriIntel2C

which affect the data-flow inside a transition. A transition T describes data-flow op-

erations using a DFG. A data-flow graph DFG is used to model processes inside

Always blocks of RTL designs. DFG is described in detail in the next section. A

Petri Net graph is modeled for a motivational example of RTL design in figure 5.3.

In figure 5.3, variables rg1, rg2, rg3 are inputs to a place which controls a transition

represented by a conditional (COND) and assignment node (EQ) respectively. A

control variable is only present in the input to a place, whereas a data variable is an

input to a place as well as a transition. Moreover, Always RTL components with for

loops can easily be mapped to a DFG using the mapping rules presented below.

The edges of the Petri Net graph play a key role to represent the dual behavior of

certain components. If an output of a place or an OP node controls another place,

the edge is incident on that place from the variable but is not incident on its corre-

sponding transition. This allows the framework to have better reachability in terms

of searching control nodes. Before we describe the mapping rules used to model the

Petri Net graph, the most important RTL design components will be briefly explained
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to enable the mapping method.

Always block: Synchronous and asynchronous processes are described in Always

block i.e., procedural blocks where the data-flow operations are executed based on

the control inputs in the form of a sensitivity list.

Continuous assignments: Assignment expressions which are described outside pro-

cedural blocks remain in force until the variables are de-assigned and are independent

of any conditions.

Non-blocking assignments: Assignment expressions are dependent on ’clock’ or

’reset’ signals synchronous in nature and are mostly assigned to registers. Since a

behavioral design does not require the presence of these signals, the expressions are

treated as ordinary assignments in C-based program.

The RTL design consisting of above mentioned components are mapped to model

Petri Net graph using the following mapping rules:

1. The place and transition nodes are formed from Always RTL blocks where a

place holds all the control and data inputs of Always component.

2. Conditional nodes (COND) are mapped from if-else and switch-case statements

in RTL design which is internally created using assignment nodes.

3. Operation nodes (OP ) are formed from statements with arithmetic operators

in RTL design.

4. Assignment node(EQ) are mapped from various forms of procedural and con-

tinuous assignments in RTL design, shown in Table 5.1.
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Table 5.1: Types of combinational constructs

Construct Example
Assignments(variable) out_a = sum

Assignments(constant) out_a = 40h9
Operations out_a = sum+ rd0

5. If back edges are identified in a path using the classic back-edge detection

method [20], loops are formed in the path of connecting the nodes.

Using these mapping rules, The Petri Net graph is able to model RTL designs

independent of program style. There are several important features of the Petri Net

graph representation which are to be mentioned. Firstly, the graph is able to recognize

the Always block with multiple statements in the RTL code and identify them as

separate place-transition pairs. Secondly, the mapping method, while traversing the

RTL program, identifies back edges in a path using the classic back-edge detection

method [20], and forms a loop in the path of connecting the nodes. Thirdly, the

resulting model enables to identify the nature of the loops formed i.e., control or

data. Overall, the Petri Net representation enables to generate a CDFG from which

the complete data-flow can easily be separated from the control path.

5.3.2 CDFG generation

We define the CDFG for VeriIntel2C using definition :

Definition 5.3.2. Control Data Flow Graph(CDFG) is a directed graph that shows
data and control dependencies inter-connected to each other using the form:

CDFG = (CB, DB) where CB = (CBL, CBv) , DB = (OP , EQ) and every
graph is of the form G = (V ,E) and V = Vertex, E = Edge connecting between V .

In the generation of CDFG, we propose a mapping method from Petri Net graph.

A CDFG can be described as a directed graph that represents control and data
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dependencies among different functions. From the definition in 5.3.2, CB is a control

block which can be of two types. CBL is a graph G that has the form of loop sub-

graph. CBv is of the form G that can have only V . DB is a data block having the

standard data-flow graphs described by G. Some of the major features of the CDFG

created in this section are: it adapts its structure based on the corresponding Petri

Net graph and all the loop sub-graphs from the previous stage are classified as control

loop and data flow loop graphs.

Previous works like [56], [78] have described methods to extract CDFG from RTL

designs for HLS where mostly, the data-path is extracted from the module and purely

created as a CDFG and the control blocks are either trimmed or not required. How-

ever, in the CDFG, we separate control blocks with control loops and control variables

from the data blocks which contain the data-flow path.

We describe the mapping rules from Petri Net graph to the CDFG structure as

follows:

1. A loop sub-graph in Petri Net that purely controls the place nodes is trans-

formed to a control loop block (CBL) shown in figure 5.3.

2. A loop sub-graph which does not control a place is mapped inside a data block.

3. The nodes that generate a control input to a place in Petri Net are mapped as

control blocks and the transition of the place is mapped inside the corresponding

data block.

Figure 5.3 using the above mapping rules shows control loops separated from

data-flow and state variables are mapped as control blocks (CBV ). The dotted edges
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indicate that the control block controls the assignments for certain conditions which

are stored internally.

Figure 5.3 uses the mapping rules stated in the above sections to create a CDFG.

Given an example RTL design that computes the sum of 3 numbers, a Petri Net

graph is obtained where it shows the different always blocks in a loop and operations

acting concurrently. Using the concept of place, transition nodes in Petri Net, the

data and control operations are separated in the CDFG. Variables rg1, rg2, rg3 are

inputs to a place which controls a transition represented by a conditional (COND)

and assignment node (EQ) respectively. The loop with j variable is a control signal

to the place nodes, thus it becomes a control loop block in CDFG, CBL. In this

way, the Petri Net graph next enables the generation of the final CDFG.Thus, the

generated CDFG represents diverse forms of array and loop operations which enables

the methods in following section to identify those structures.

5.3.3 Loops and Arrays Identification

In order to form loop and arrays that broaden the design space, this section uses

the generated CDFG in section 5.3.2 in the proposed rule-based classification method

with graph matching. The proposed method VeriIntel2C identifies patterns in the

generated CDFG that map to different types of loop and array operations of a result-

ing C program. This rule-based method poses an advantage over the usual continuous

graph-traversal or graph analysis methods as the algorithm uses the explicitly defined

edges and nodes in the CDFG to directly look for standard structures and patterns

defined in the section 5.3.2. This reduces the search space of the algorithm and

traverses the edges indicated by the rules.

The rule-based method uses a set of hierarchical conditions to describe the rule



74

FSM

Control 
loop 

block?

Flattened graph 
with multi-cycle 

operation

Flattened graph

Graph_matching(FGP)

Arrays & 
loops

Multiple LSG in 
associated Data 

Block?

Graph_matching(LSG)

Arrays & 
loops

Search all Single 
LSG in CDFG

Graph_matching(FGP)

Arrays & 
loops

N
Y

YN

N
Y

Search all FGP in 
CDFG

Fig. 5.5: Rule-based flowchart for arrays and loops formation

base, shown in the flowchart in figure 5.5. The flowchart along with Algorithm 2 and

graph matching identifies structures of loops and arrays based on a specific set of

search conditions.

The rule-based flowchart uses state variables (CBV ) as the root condition to iden-

tify presence of state registers from FSM modules of the RTL design. These variables

enables the method to deduce that the CDFG structure is parallel in nature i.e., fully

flattened, having flat graph patterns (FGP) without the presence of any back edge.

In order to map these structures, the flowchart with algorithm 2 uses graph matching

method i.e., Graph_matching(FGP) (lines 17-22). This algorithm maps the matched

graph patterns to loop and array operations. The CDFG is classified as a flattened
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Algorithm 2: Algorithm for array and loop detection
Data: CBL = Loop control block

FGP [M ] = Flat graph patterns or Flattened graph

Gcdfg = Generated CDFG from Phase 1

Result: ARR[N ] = Set of array elements

Ld[N ],CBL[N ] = set of Loop sub-graphs with Control loop block

S[M ] = Graph patterns to be folded in loop

1 begin
2 if CBL exists then
3 LSG[N ] Multiple loop sub-graphs in same Data Block

4 Lp[K] Graph_matching(LSG[N ])
5 if Graph_matching(LSG[N ]) exists then
6 ARR[i] Arrays from matched graphs

7 for i 1 to n do
8 if multiple assignments controlled by CBL and converge to same variable

then
9 ARR[i] Array-read operations

10 if Input of assignments are constant then
11 ARR[N ] array of constants

12 Ld[i] Disjoint loop sub-graphs(LSG[N])

13 if FGP [M ] OR not LSG[N ] then
14 Ld[N ], CBL[N ] Search all single LSG(Gcdfg)

15 if not LSG[N ] then
16 FGP [M ] Search_Graph_patterns(Gcdfg)

17 MatchedGraphs Graph_matching(FGP [M ])
18 for i 1 to M do
19 for each assignment node in matched graph do
20 if assignment nodes are parallel then
21 ARR[i] Inputs of assignments

graph with FGP executed in multi cycle operations in the presence of state variables

but without loop control blocks.

Algorithm 2 identifies and extracts multiple loop sub-graphs with back edge

(LSG) in every data block which are connected from a control loop block. The

Graph_matching(LSG) method searches and groups the array operations from matched
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Fig. 5.6: Example patterns for Graph matching algorithm

graphs (lines 4-6), as an example shown in figure 5.6b. The design scenario of mul-

tiple assignments controlled by loop control blocks (CBL) depicted in the CDFG of

motivational example in figure 5.3 is identified using the rule-base in Algorithm 2

(lines 8-11). Algorithm 2 exhaustively extracts all possible patterns of assignments

and operation node paths from the CDFG which include multiple LSG with their

corresponding loop control blocks as well as multiple FGPs (lines 15-17). In this way,

all disjoint loops in folded forms can be extracted and mapped to C program, whereas

graph patterns if matched, are formed as individual loop structures and array oper-

ations. This rule set proves that multiple types of structures can be identified and

mapped to behavioral operations of arrays and loops by the proposed method.

Graph Matching: Algorithm 2 also uses algorithm 3, a graph matching method

to identify and match graph patterns and map them to loop structures or array

operations following specific rules. The method takes as input, two different types

of patterns, multiple LSGs and flat graph patterns (FGPs). A header node here is

the entry point of a loop sub-graph [20]. In the case of multiple LSGs in a single

DB shown in figure 5.6b, the assignment paths and header nodes are matched for

each sub-graph being investigated (lines 8-10). Graph patterns as assignment and
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Algorithm 3: Graph matching algorithm
Data: FGP [M ] = Set of entry assignment nodes

LSG[N ] = Set of loop sub-graphs

Result: P [M ] = Set of similar sub-graphs or graph patterns

Li = Loop index

1 begin
2 if FGP present then
3 for j  0 to Y do
4 Match and group sub-patterns
5 if Child operator matches previous grouped graph then
6 P [j] Add to matched patterns
7 Li Number of matched groups

8 for j  0 to Z do
9 if assignment paths of LSG[j],LSG[j + 1] match then

10 if Headers are similar then
11 P [N + j] Add to matched patterns

12 return P [M ]

operation node paths are extracted from CDFG typically like in figure 5.6a and taken

as input, FGP by the algorithm. These patterns are iteratively grouped together as

a single graph until the patterns mismatch with the already formed graph (lines 4-7).

The degree of matching is also considered as the algorithm uses the matched portion

of the structures to extract the patterns and uses this degree to compute the loop

index.

Once the CDFG is fully analyzed, the proposed method writes out the synthe-

sizable ANSI-C code. In cases e.g. when the graph is fully flattened with nested

loops and conditional blocks, VeriIntel2C is unable to find possible loops and arrays.

In the other cases, it can find a large number of arrays and loops, thus enabling a

wider range of design space and hence should lead to a trade-off curve with many

dominating designs.
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Table 5.2: RTL Benchmarks Overview
Benchmark Lines of Code Arrays Loops CC

2D 1D Nested Single
bnch_enc 226 0 1 5 7 high
dct_JPEG 631 0 25 0 5 high
quantizer_JPEG 845 0 40 0 5 high
aes 174 0 3 3 1 low
mean_filter 207 0 2 0 2 low

5.4 Experiments and Discussion

The experimental setup is now described and experimental results are discussed

for evaluating VeriIntel2C using qualitative as well as quantitative analysis.

5.4.1 Experimental Setup

In order to fully characterize the effectiveness of our proposed method, three

separate set of experiments are conducted. In the first set, four open-source RTL IPs

from OpenCores [58] are used to demonstrate the ability of VeriIntel2C to enable

DSE of hand-coded RTL descriptions, as this is the final goal of this work.

Although the open source designs highlight the robustness of our method, it is

also required to measure the ability of our method to identify loop and arrays of

different forms in RTL designs and expose full strengths and weaknesses of our pro-

posed method. Therefore, additional experiments are required. The second set of

experiments compare the quality of DSE of original C-based descriptions against the

C designs generated by VeriIntel2C and finally the third set of experiments evaluate

our method against a previous work. These 3 experiments are described in detail in

the following sections termed as Experiments 1, Experiments 2, Experiments 3 .

In order to quantitatively analyze the results of our method, we evaluate the

number of loops and arrays which have been abstracted successfully into the resulting
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Fig. 5.7: Example of DSE result with a reference Pareto-set

C description from the input RTL designs that are obtained from DSE of original C-

based benchmarks. In terms of qualitative analysis, we perform DSE of the resulting

C descriptions from VeriIntel2C, translated from the various RTL design forms of all

the stated benchmarks.

For the purpose of the analysis of the DSE results as multi-objective optimization

functions, there are a multitude of unary indicators available, e.g., average distance

from reference set(ADRS), hypervolume indicator, cardinality measure, a review of

which is provided in [89]. A reference Pareto-set is obtained by combining the Pareto-

sets from DSE of Dsmall, Dmed, Dfast and forming the best curve. The approximate

Pareto-set is the one to be measured. In figure 5.7, a reference set is obtained by

combining the design points in all pareto-fronts being tested, and choosing the designs

that most minimize the objectives on X and Y axes. This pareto-set is the most

optimal set in a graph and all approximate sets are evaluated against this reference

set. In this case, ADRS and Pareto Dominance are used to measure the quality of

the methods which are explained as following:
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1. Average distance from reference set(ADRS): ADRS indicates the average dis-

tance between reference pareto front and the approximate pareto set i.e., tells

hows close a pareto front is to the reference front. Given a reference Pareto

front, � = �1 = (a1, l1), �2 = (a2, l2), ..., �n = (an, ln) and an approximate

pareto set ⌦ = !1 = (a1, l1),!2 = (a2, l2), ...,!n = (an, ln) with a 2 A and l 2 L

where A is the design area and l is the corresponding latency, then,

ADRS(�,⌦) =
1

|�|
X

�2�

min
!2⌦

f(�,!)

where

f(� = (a�, l�),! = (a!, l!)) =

max

⇢����
a! � a�

a�

���� ,
����
l! � l�

l�

����

�

The value of ADRS is inversely proportional to the degree of similarity between

two pareto-sets, reference and approximate, being compared. A high ADRS

value (%) implies that a significant number of points of the reference pareto-set

is missing in the approximate pareto-set. The higher the ADRS is, the lower is

the quality of the approximate Pareto-set.

2. Pareto Dominance: This index is equal to the ratio between the total number of

designs in the Pareto set being evaluated (obtained by executing one exploration

method), also present in the reference Pareto set. The reference Pareto set is

obtained by combining the best results of each method over 4 runs. The higher

is the value, the better is the Pareto set.
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Fig. 5.8: Conversion results for open-source RTL designs.

The experiments were run on an Intel Xeon processor running at frequency of 2.4

GHz, having a RAM of 16GBytes. For the purpose of design space exploration, a

commercial HLS tool is used, i.e., CyberWorkBench v5.4, wherein Nangate’s open

cell (45nm) technology library (set by simulator) is chosen as the target technology.

The target frequency for generating RTL descriptions is 100 MHz, with the trade-off

objectives restricted to area and latency respectively (set by simulator). The design

space explorer used solely for the experiments is based on [47] and is performed on

each original benchmark design as well as on the resulting C design respectively. The

set of best quality design points chosen by combining all trade-off curves of each

benchmark scenario of Fig. 5.9 is computed as the reference Pareto-front. The ADRS
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Table 5.3: C Benchmarks Overview
Benchmark Lines of Code Arrays Loops CC

2D 1D Nested Single
ave8 42 0 1 0 2 low
fir 23 0 2 0 2 low

sobel 85 3 1 4 1 low
Interp 74 0 4 0 4 medium

disparity 119 1 5 5 2 high

Table 5.4: Experimental Results Summary (Original HLS DSE vs. VeriIntel2C )
Benchmark Converted by VeriIntel2C Original ADRS Dom

Name Ver Arrays Loops ADRS Dom Arrays Loops ADRS Dom diff diff
2D 1D [%] [%] 2D 1D [%] [%] [%] [%]

av
e8

Dfast 0 1 2 20 60 0 1 2 9 40 11 20
Dmed 0 1 2 10 20 0 1 2 9 40 1 -20
Dsmall 0 1 2 6 40 0 1 2 9 40 -3 0

fir

Dfast 0 2 2 0.15 83 0 2 2 3 50 -2.85 33
Dmed 0 2 2 3.1 33 0 2 2 3 50 0.1 -17
Dsmall 0 2 2 3.1 16 0 2 2 3 50 0.1 -34

so
be

l Dfast 3 1 5 18 20 3 1 5 22 40 -4 -20
Dmed 0 4 4 7.7 40 3 1 5 22 40 -14.3 0
Dsmall 1 1 5 22 20 3 1 5 22 40 0 -20

in
te

rp Dfast 0 4 4 7 20 0 4 4 7.4 30 1.6 -10
Dmed 0 4 4 4.1 50 0 4 4 7.4 30 -3.3 20
Dsmall 0 4 4 6.5 30 0 4 4 7.4 30 -0.9 0

di
sp

Dfast 1 5 7 9.3 69 1 5 7 15 15 -5.7 54
Dmed 1 5 7 25 7.6 1 5 7 15 15 10 -7.4
Dsmall 1 5 6 19 7.6 1 5 7 15 15 4 -7.4

Avg. 10.7 34.4 11.3 35 -0.416 -0.58

and Pareto-dominance for every trade-off curve under evaluation, is calculated against

this reference front.

The three set of results should fully validate our proposed method. The following

sections describe the different sets of experiments and explain their results, namely

Experiments 1, Experiments 2, Experiments 3.
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Fig. 5.9: Design Space Exploration trade-off curve results using S2CBench designs
(Original HLS DSE vs. VeriIntel2C )

5.4.2 Experimental Results

This subsection describes the experimental results of the three sets of experiments

described previously.

Experiments 1: Hand-coded RTL to C using VeriIntel2C

In the first set, five different RTL IPs from OpenCores [58] are used to verify the ability

of VeriIntel2C to generate loops and arrays from hand-coded RTL descriptions, as this

is the final goal of this work. The designs used are BNCH encoder, AES encryption,

DCT and Quantizer components of JPEG encoder design and a Mean filter, where

each design has distinct program style. Our method generates a synthesizable C
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Fig. 5.10: Design Space Exploration trade-off curve results for S2CBench designs
(VeriIntel2C vs. R2C [9]).

program for each RTL design. The complexity of the RTL designs are provided in

Table 5.2. CC refers to the conditional complexity of a design. The number of loops

and arrays for the RTL designs correspond to the number found upon translation to C

design using our method. The reason to select these designs is because of their varying

complexity and that the designs have loop and array constructs. VeriIntel2C however

has some limitations in the type of RTL designs, that it cannot handle designs with

pipelined loops, and partially folded loop forms with conditional constructs.

Fig. 5.8 shows the trade-off curves obtained upon performing DSE of the resulting
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Fig. 5.11: DSE results of open-source RTL JPEG encoder components (VeriIntel2C
vs. R2C ).

C codes generated by our method (indicated by red as DSE) against the single,

hand-coded RTL designs (indicated by a single blue square as RTLIP ). The graphs

in Fig. 5.8 prove that our proposed conversion method enables DSE of manually

written RTL designs with diverse structural styles.

Experiments 2: VeriIntel2C vs. HLS DSE

The second set of experiments begins with a set of C-based designs taken from the

open-source Synthesizable SystemC benchmarks suite (S2CBench) [76]. Table 5.3

gives an overview of the complexity of these benchmarks in terms of their number of

lines of code, arrays (one and two dimensional) and loops (nested and single). Here,

CC refers to the conditional complexity of the benchmarks inside the loops where,

’low’ means the code is mainly data-path centric and ’high’ indicates control-path

centric. Conditional complexity indicates the number of loops in the design that has

conditional constructs, and the level of complexity of these constructs inside the loops.

If a nested loop contains conditional constructs, then the CC is high. The design space

of these benchmarks varied from a minimum of 36 design points to a maximum of 1728.

The most important thing to note is their varying complexity of the benchmarks that

is reflected in VeriIntel2C ’s evaluation analysis. The quality of the generated C code
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Table 5.5: Experimental Results comparison of VeriIntel2C and R2C
Benchmark Converted by VeriIntel2C R2C ADRS Dom

Name Ver Arrays Loops ADRS Dom Arrays Loops ADRS Dom diff diff
2D 1D [%] [%] 2D 1D [%] [%] [%] [%]

av
e8

Dfast 0 1 2 12 75 0 1 0 37 25 -25 50
Dmed 0 1 2 10 100 0 0 0 NA NA NA NA
Dsmall 0 1 2 5 80 0 1 0 35 20 -30 60

fir

Dfast 0 2 2 0 83.3 0 2 1 29 16.6 -29 66.7
Dmed 0 2 2 0 60 0 2 1 20 40 -20 20
Dsmall 0 2 2 0 60 0 2 1 20 40 -20 20

so
be

l Dfast 3 1 5 9 50 3 1 1 8.2 50 0.8 0
Dmed 3 1 5 16 50 3 1 1 16 50 0 0
Dsmall 3 1 5 0 100 1 1 1 78 0 -78 100

in
te

rp Dfast 0 4 4 8 80 0 4 0 74 20 -66 60
Dmed 0 4 4 8 80 0 3 0 96 20 -88 60
Dsmall 0 4 4 8 80 0 3 0 75 20 -67 60

di
sp

Dfast 1 5 7 23 80 1 2 0 93 20 -70 60
Dmed 1 5 7 1 100 1 5 0 99 0 -98 100
Dsmall 1 5 7 0.7 100 0 3 0 98 0 -97.3 100

JP
E

G DCT 0 25 5 0 100 0 12 3 63 0 -63 100
quantizer 0 40 5 0 100 0 24 1 26 0 -26 100

Avg. 6.71 78.5 54.2 20.1 -48.5 59.79

using VeriIntel2C depends on the number of loops and arrays generated, since these

explorable constructs aim to increase the design space of a single RTL design. In our

experimental setup, to evaluate this, we first used a previously developed HLS DSE

explorer [47] to obtain sets of pareto-optimal RTL micro-architectures for each of the

above mentioned 5 SystemC benchmarks. Each of the pareto-optimal RTL designs

have different characteristics e.g., arrays implemented as registers, wires, memory

blocks or loop structures unrolled (flattened), fully or partially folded in different

ways.

From each of these sets obtained from the DSE of 5 systemC benchmarks, 3

different RTL micro-architectures (Dfast, Dmed and Dsmall) were chosen to test our

proposed flow. Figure 5.12 shows a pareto-set that is generated for each SystemC
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Fig. 5.12: Setup for Experiments 2

benchmark. In this trade-off curve, a design that has minimum latency is chosen as

Dfast is selected. The design that has smallest area is chosen as Dsmall, and a random

design is chosen from the middle, that minimizes the cost function as Dmed. Thus

using 3 different RTL variants for all 5 benchmarks, a total of 15 unique RTL designs

were used for testing.

Each of the RTL micro-architecture selected has a distinct design structure, i.e.

fastest design Dfast is the fastest design (lowest latency) but highest area, smallest

Dsmall has the lowest area but highest latency and intermediate, Dmed is an interme-

diate design. Our work uses area and latency as the design trade-off metrics, where

the latency is given in clock cycles.

The quantitative and qualitative results reported in Table 5.4 were obtained by

running the DSE explorer for every original C-based benchmark as well as every

abstracted C variant design translated by VeriIntel2C. In Table 5.4, the ADRS and

dominance diff columns indicate the difference between the original benchmarks’

values and that of the converted variants.
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Table 5.4 evaluates the ADRS and dominance values of all the DSE curves, where

the ADRS and dominance is obtained by comparing the trade-off curves obtained by

each of the methods against a reference front obtained by combining all of the results

of both methods. As mentioned earlier, a decreased ADRS value indicates better

quality of DSE. Thus, a negative value in the ADRS diff column in Table 5.4 implies

that the quality of DSE curve generated by Converted design is better than that by

the Original design and vice-versa. Also, an increased Dominance value indicates

better quality of DSE i.e., a positive value in Dominance diff column implies that

the DSE quality of the Converted design is better than that of the Original design.

On average, using VeriIntel2C, the ADRS improved by reducing by 0.41%. More-

over, the dominance reduces by merely 0.58%. From the results, it can be observed

that our proposed method works well as it overall maintains the similar quality to

that of the original HLS DSE.

Fig. 5.9 provides the graphical representations of the set of dominating design

points for every benchmark along with that of their corresponding design variants

with respect to design trade-offs of area and latency.

Table 5.4 also shows that for most of the designs e.g.fir, ave8, interp and disparity,

VeriIntel2C is able to re-generate all the loops and arrays that were present in the

original benchmark (original column of Table 5.4). The results also show that our

proposed method can re-generate different types of arrays including multi-dimensional

arrays implemented in varying forms, e.g. dedicated logic, memories or registers.

One interesting observation happens in the sobel benchmark case, where the re-

sulting curve of Dfast using VeriIntel2C has a design point with higher latency, but
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smaller area, than that of the original DSE curve. This is because VeriIntel2C gen-

erates if-else conditional expressions inside the main inner nested loop. As a result,

the micro-architecture generated has a higher latency, but lower area. Thus, it can be

said that the method expands the existing design space by adding more design points

on the reference Pareto-front. The results obtained from Dmed and Dsmall were able to

re-produce all the loops with one-dimensional arrays rather than 2-dimensional arrays

without any conditional statements inside the loop (converted column in Table 5.4).

Thus, their DSE produces similar trade-off curves compared to that of the original

one. As a result in Table 5.4, the ADRS % for Dmed in converted column is lower

than that of the original column.

As observed in Table 5.4, almost the entire search space is very well replicated,

as compared with the average ADRS of the original designs (11.3%) being similar

to that of the average ADRS of the converted designs (10.7%). This indicates that

VeriIntel2C can very well re-generate and conserve the quality of the DSE of the

original benchmarks even if their design styles are varied.

Experiments 3: VeriIntel2C vs. R2C[9]

Finally, the very last set of experiments compares VeriIntel2C with a previous work

that is most closely related to this work, called R2C [9]. For this purpose, R2C was

reproduced. The Dsmall, Dmed, Dfast RTL variants of the same benchmarks used in

Experiments 2 were passed as input to both R2C and VeriIntel2C. The resulting C

designs from R2C are denoted as Rsmall, Rmed, Rfast while that from VeriIntel2C

as Vsmall, Vmed, Vfast. ADRS and Dominance of the final trade-off curves obtained

after DSE of the resulting C codes is used to measure the quality of the conversion.

Finally, DCT and quantizer, i.e., Verilog components of a JPEG encoder taken from
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Opencores[58] are used in this experiment to fully characterize both methods.

Table 5.5 tabulates the qualitative and quantitative comparison results of both

the methods VeriIntel2C and R2C, that can also be graphically correlated with the

exploration trade-off curves of this experiment in Fig. 5.10. Similar to the previous

results, the quality of the exploration for each of the curves in Fig. 5.10 is measured

against the reference pareto-front composed by combining the overall dominating

results of both methods. Fig. 5.10 corroborates with the Table 5.5. Here, disparity,

interp and ave8, R2C cases produces few of the arrays but does not generate any

loops, thus leading to higher ADRS and lower dominance % values i.e. worse in

quality.

From Table 5.5, the averaged ADRS of these cases worsen by 88%, 73%, 27%

respectively. Moreover, in the case of ave8, the Dmed variant, R2C does not produce

any loops or arrays making any qualitative analysis non-applicable (R2C column in

Table 5.5). In the case of fir, the R2C method produces 1 of the 2 loops that leads

to a much worse design space. This results in the average ADRS of fir being worse

by 27% for R2C.

It is also shown in Fig. 5.9c sobel that most of the points in the reference front is

produced by VeriIntel2C since the dominance improves on average by 33%.

With respect to the comparison of R2C against our proposed method for the

hand-coded Verilog designs (DCT and quantizer), Table 5.5 (last two rows) shows that

our proposed method also outperforms R2C. Here, our proposed method generates

trade-off curves with ADRS lowered by 63% and 26% (negative indicating improved

value) for the DCT and quantizer designs respectively. For example in Fig. ??, the

reason for R2C to be able to generate a trade-off curve is because the Verilog design
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has for-generate syntax, thus R2C identifies only those loops with that syntax and

arrays associated with them. However, the quality of the DSE is worse than that of

VeriIntel2C as stated above.

In summary, previous work generates trade-off curves that are on average, worse

in quality compared to that generated by our method (ADRS improved by 48.5%,

dominance by 59.79%) . Moreover, our proposed method is able to generate trade-off

curves that almost replicate the quality of DSE of original designs with ADRS being

better by 0.41% and dominance being worse by only 0.58%. This clearly proves that

our proposed method leads to a better quality design space, with a higher number

of micro-architectures to choose from, thus, expanding the design space. Based on

these results, we can therefore conclude that VeriIntel2C works well and it is able to

generate arrays and loops from different RTL styles.

0This work has been accepted for publication in Integration the VLSI journal, 2018.
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Chapter 6

Optimization of RTL to C
Abstraction to Maximize Design
Space Exploration of RTL designs

6.1 Introduction

As discussed in the previous chapter, a translation method called VeriIntel2C is

proposed and described. This method is able to abstract a RTL design into C design

and leverage HLS to perform DSE and enlarge its design space.

This work aims to expand the above mentioned design search space, by propos-

ing an optimization method from the CDFG generated by VeriIntel2C based on

feature-extraction. The proposed algorithm determines the formation of the multi-

dimensional arrays by obtaining the various characteristics of the existing array forms

and their respective read/write operations in associated loop structures in the CDFG.

Generating multi-dimensional arrays helps expanding the search space as modern

HLS tools allow to either fuse them into a single array, expand them into separate

arrays, or expand different dimensions of the array. The loop fusion and array merg-

ing techniques are classic concepts of compiler design [1]. They have mostly been

93
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implemented so far in commercial HLS tools as these techniques are implementable

upon CDFG of sequential programs (C/C++). Sequential languages are high in the

abstraction level. The inputs to HLS tools are C/C++/SystemC languages that are

sequential in nature. Thus, the HLS tools may use merging techniques to improve

latency overheads or enhance parallel processing, leading to circuit area, latency or

throughput improvements. However, in the current industry, the RTL abstraction

level cannot take direct advantage of these techniques as the behaviour of RTL is

generally concurrent as opposed to that of the HLS languages. Thus, in this case,

VeriIntel2C is put to use as it extracts a CDFG from the RTL design and creates

the sequential flow of operations of the design written in RTL. Custom optimizations

which are based on the classic merging techniques can then be implemented on the

CDFG in order to obtain a much improved C design which when synthesized directly

in hardware would lead to reduced area/latency overheads.

In particular this chapter makes the following contributions:

• Proposes a feature- based extraction method to perform array merging to extend

the search space of behavioral descriptions obtained from synthesizable RTL

descriptions.

• Uses a rule-based method along with the features extracted, to merge existing

loop structures of a C program generated from a previously developed RTL to

C translator.

• Performance based experimental analysis to compare the impact of these opti-

mizations on the resultant trade-off curve compared to that of the state-of-the-

art.
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Fig. 6.1: Complete flow overview of overall system

The figure 6.1 explains the overall flow of the proposed system. Based on a

previously developed translation system from RTL to C,the system takes a single

RTL IP as input and uses VeriIntel2C to translate into C program(CDSE). In this

thesis, we develop a further layer of optimization called VeriIntel2C-Opt as shown

in figure 6.1 and subsequently translate into a synthesizable C program(CDSE_opt ).

The HLS Design Space exploration, previously in-house developed in [47], is used as

a experiment platform to measure the quality of the generated C design against the

C program generated without using optimization. The resulting trade-off curves as

shown in figure 6.1 indicate that using the optimization layer expands the existing

design search space indicated in fig 6.1, by introducing additional micro-architectures,

some of which are better in quality. The entire design space is divided into 3 phases

in fig 6.1. Phase 1 has designs that minimize area, Phase 2 that minimize the cost

function, and Phase 3 for minimizing the latency. Merging loops and arrays, in

general, gives rise to more designs with increased latency thus, extending the curve in

phase 2 and 3. The resulting trade-off curves as shown in figure 6.1 indicate that using

the optimization layer leads to either the same results are the previously generated C

code (phase 1), improves the quality of the trade-off curve (phase 2) and/or extends

the search space by introducing additional micro-architectures (phase 3).
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6.2 Motivation

N x N
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N x 1data

data

data

Fig. 6.2: Graphical view of array
unrolling by VeriIntel2C

Upon exploration of the generated C design

from VeriIntel2C, it was observed for certain test-

cases, that the pareto-front of the variant is better

in quality than that of the original design. This

occurred in the designs wherein VeriIntel2C is

able to unroll multi-dimensional arrays into series

of one-dimensional(1D) arrays which upon explo-

ration, expands the design space by adding more

designs to the reference front. Figure 6.2 shows the multi-dimensional NxN sized ar-

ray(left) being split into series of inter-connected one-dimensional N-size arrays during

the formation of C design in VeriIntel2C. The framework’s algorithm interprets the

structure in the generated CDFG as a series of 1D arrays and creates the C design

accordingly. This observation formed as a base for our motivation to experiment sev-

eral 1D arrays together and perform exploration on this modified design. Thus, upon

exploration of this modified design using HLS as a black box, commercial tools per-

form automatic splitting of multi-dimensional arrays with varying dimensions in each

iteration of creating different micro-architectures during the exploration. This would

lead to generation of several new micro-architectures of better quality than that of the

exploration of designs generated by VeriIntel2C. This experiment led to the formation

of optimization techniques discussed in this chapter. The overall reference front for

every exploration is computed by collecting and selecting the pareto-optimal designs

amongst all the design points from the exploration of the four designs in the search

space. From this observation, it leads to our hypothesis, that by merging existing
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arrays of the resulting design together, the optimization creates more designs which

are smaller in area but much slower.

6.3 Related Work

There have been some works in the past related to translation of RTL to C/C++

for different objectives. Bombieri et al., [9] focus on creating synthesizable C++

models from RTL optimized for HLS that in turn can be explored using a previously

developed DSE, which is closely related to the preliminary work. The shortcomings

of this work are that its loop rolling method relies on the fact that the input Ver-

ilog/VHDL design must contain syntax of for generate statements, ignoring other

representations of loops or fully unrolled loops which may not be explicitly instanti-

ated in the RTL design. In another work, [10] transforms a RTL IP model into C++

by extracting and generating Extended Finite State Machines(EFSM). Namballa et

al., [69] develop a tool for automatic CDFG extraction from behavioral level VHDL

descriptions, but, however, they do not focus on the optimization of the extracted

CDFG for enhancing DSE for HLS. Also, the tool depends on the syntax of the VHDL

keywords for creation of the CDFG. Commercial HLS tools, mostly provide options

for optimizing the behavioral designs using loop merging and array merging.

6.4 Methodology

6.4.1 Feature Extraction

The methodology for both the stated optimizations, begin with the feature extrac-

tion from the generated CDFG followed by the optimization methods. The feature
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Algorithm 4: Algorithm for merging arrays
Data: CDFGin = Grapharray ,GraphCL,GraphDL
Result: CDFGout = GraphArrMerged,GraphCLm,GraphDLm

1 begin
2 A2Dn  Search2DArrays(CDFGin)
3 A1Dn  Search1DArrays(CDFGin)
4 if A2Di exists then
5 Abase  Search_Largest_Array(A2Di)
6 if Abase is homogeneous then
7 for A1Di  A1D1 to A1Dn do
8 if A1DiSize == Abaserow_size then
9 Abase[row_size + 1] = A1Di[Size]

10 A1Di  A1Di+1

11 else
12 Only if all A1Di is homogeneous
13 total_elements = [(row_size ⇤ col_size) + ...+ (row_size ⇤ col_size)]Abase + [index1 + ...+ indexn]A1D
14 (X1, Y1), .., (Xn) SearchPairOfFactors(total_elements)
15 (X, Y ) Search if X or Y is same as indexA1D
16 if X == rowsizeAbase then
17 Abase[rowsizeAbase + 1] = A1D

18 else if A1Di only exists and A1Di Homogeneous then
19 total_elements = [index1D1

+ .. + index1Dn ]

20 X = Number of A1Di
21 Y = total_elements
22 A2D = Newarr2D[X][Y]
23 Newarr2D [X][Y ] Replace A1Di
24 Modify_loop( A1Di , Newarr2D[X][Y]);
25

26 Modify_loop(A1Di , Newarr2D[X][Y]) begin
27 Li  Search_loop_structures(A1Di)
28 [Ep1, Ep2, .., EpN ] Search_ExitPoint_of_loop
29 if Epi is connected to A1Di then
30 if CLindex of Li == X or Y of Newarr2D[X][Y] then
31 Z  Search_position_inLoop(A1Di, Newarr2D[X][Y],Li)
32 Z is fixed position of A1Di in Newarr2D[X][Y]
33 else
34 Insert outer or inner loop of Newarr2D[X][Y]

extraction method extracts the different characteristics of the CDFG, as requirements

for merging arrays and loops, and enumerates them in the form of features. The pro-

posed algorithms are applied on the CDFGA generated from Verilog to be converted

[48]. The features can be enumerated as follows:

1. A vector representing the list and number of the one-dimensional arrays which

are not read-only and not constant, where Lnd = A[]1, A[]2, · · · , A[]i, Nnd >

where Nnd is the cumulative number of dimensions from A[]1 to A[]i

2. A vector representing the list, number of the multi-dimensional arrays which are

of the highest dimension in the C design along with the highest dimension among
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them, where Lhd =< A[][]1, A[][]2, · · · , A[][]i, Nhd, DH > where Nhd is cumulative

number of dimensions in the first set and DH is the highest dimension

3. Number of the read-only accesses of the arrays from the loop structures in a

single iteration, Nre

4. Number of the write-only accesses of the arrays from the loop structures in a

single iteration, Nwe

5. A vector consisting of the number of simultaneous read and write accesses of

the existing arrays in a single operation along with the respective arrays and

the respective operation label, where Lsrw =< Nsr, Nsw, An, OPn > is the list

of information for An, OPn the number of operations

6. A vector representing the basic characteristics of every loop, Featureloop =

[CLindex, OP,Nexit], where CLindex is the control index of the loop, Nexit is the

exit node with the output data, and OP are all the operations executed inside

the loop sub-graph

The above features are collected and used as inputs to the two optimization algo-

rithms discussed in Algorithm 4 and Algorithm 5.

6.4.2 Array merging

The effect of array merging optimization on the existing CDFG impacts the op-

erations and assignments in the program which read or write onto the arrays. Thus,

this method must serve two objectives, first arrange the array structures into a single

structure, and as a result of that, the second is modifying the operations accessing
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these arrays inside loop sub-graphs such that the existing functionality of the program

is not altered.

The method to merge arrays begins with the extraction of the above described

features(1-5), from the CDFG. These features are then used upon two principle con-

ditions to compute the dimension of the merged array. If the arrays from the features

are of varying dimensions, then the highest dimension amongst them is selected, oth-

erwise, in other cases, a new array is created wherein the cumulative dimension may

be calculated using the following formula:

X = Xin +NndX ,

Y = Yin +NndY .

(6.1)

The rule-based algorithm shown in algorithm 4, describes the rule base for all the

stated conditions. The term ’homogenous’ refers to the condition that 4 size of the

1D arrays has to match either the length of the rows or columns of the existing 2D

array. The function Search_Largest_Array searches for the array with the highest

dimension amongst existing 2-D arrays, during the former condition(lines 5-10). In

the case where dimensions of the existing 1-D arrays are homogenous, having existing

2-D arrays(lines 12-15), the row and column indices can be computed using following

steps:

Step 1: The indices of the existing 1D arrays are added together and all the possible

factor pairs of the sum is produced.

Step 2: The factor pair is selected based on if one of the elements of the pair match

the majority of the 1D array indices.

If there are no existing 2-D arrays found(lines 18-24), then the cumulative row
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Algorithm 5: Algorithm for merging loops
Data: CDFGin = Featuresloop[N]

Result: CDFGout = GraphCLm,GraphDLm

1 begin
2 CLindex[N] = Loop indices from Featuresloop[N]

3 for CLindex[i] CLindex[1] to CLindex[N] do
4 if CLindex[i] >= CLindex[i+1] then
5 if CLindex[i+1] < CLindex[i] then
6 Insert condition with operation of Li+1

7 Merge the loops
8 if Li and Li+1 are independent then
9 Merge the loops

10 else
11 if result of Li is not updated by past iterations then
12 Conserve order and Merge loops

13 CLindex[i] CLindex[i+1]

index of the newly formed array is the sum of the indices of all the existing arrays

and the column index being the number of existing arrays. The second objective

of modifying the loop operations is implemented using the Modify_loop function in

Algorithm 4. In this function, it is also checked if the control loop indices of the graph

correspond to the size of the existing 1D arrays(A1Di) and obtains the row or column

size of the merged array,Newarr2D which must be equal to the control loop value(lines

31-34). In this case, the existing loop is transformed into a nested loop structure.

In this way, the algorithm handles both the conditions which are inter-dependent on

each other.

6.4.3 Merging of loops

Merging of loop sub-graphs with similar structures creates a more complex sub-

graph by increasing the cumulative operations inside the loop, but allows the HLS
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process to optimize these reducing the total latency and area, as often HLS tools

do not perform optimizations across loops. Loop fusion, thus, in some cases, can

lead to better results than the original behavioral description. For implementing this

optimization, feature 6 is used to extract the characteristics of each loop.

Algorithm 5 describes the flow of the rule-base used to merge loops using these

features. Here, CLindex from feature 6, is the control loop index of every loop and

Nexit is the set of exit nodes of each loop, which is used to check for data dependencies

between the resulting outputs of the different loops. OP contains the set of operations,

described in CDFG form, which is used to search if the overall output of the loop

is dependent on the operation in the past iterations of the same loop. Algorithm

5 uses these features with their associated conditions in a sequential manner, to

make modifications inside the selected loop structure to accommodate the combined

operations. In the event of unequal loop indices(lines 4-7), the loop with the lower

index is merged inside the loop with the larger index, using a conditional construct.

The output of Algorithm 5 is GraphCLm which is the control loop for the merged

structure and GraphDLm is the merged data-flow loop sub-graph. In the event of a

loop’s total iterations(CLindex[i]) lesser than that of another loop(CLindex[j]), Li is

executed for CLindex iterations, with their associated OP preserving the OP of Lj

in the same loop at the same time.A new condition is inserted for controlling the

execution of operations of Li only until its respective CLindex, and their associated

OP are inserted under that condition, preserving the OP of Lj in the same loop at

the same time.

The purpose of inserting the condition for searching if the output of Li is dependent

on and updated by past iterations(lines 11-12), in the event of Li and Li+1 being
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data dependent, is to make sure that the values would get over-written wrongly by

the former loops and functionality would get tampered. The statement, Conserve

order and merge loops preserves the sequential order of the loop operations before

inserting the condition accordingly to merge the loop with lower CLindex[i]. Lines 11-

12 in algorithm 5 describe the scenarios where data dependencies exist between loops

but the updating of the variables used in the dependent loop is not affected by past

iterations of the primary loop. Thus, it necessitates the requirement of preserving the

order of operations of both loops as identified in the CDFG.

Thus, in this way, the two optimization layers, consolidated into one as VeriIntel2C-

opt is implemented upon the CDFG generated from the basic VeriIntel2C.

6.5 Experimental Results

6.5.1 Experimental Setup

In order to effectively test our proposed optimization method over the previously

developed framework VeriIntel2C, a qualitative analysis is performed by compar-

ing the quality of the Pareto-optimal trade-off curves of the C designs generated by

VeriIntel2C-Opt and VeriIntel2C.

Three different RTL designs were generated using benchmarks from open-source

Synthesizable SystemC benchmarks suite (S2CBench) [76]. These benchmarks were

initially explored using a previously developed DSE[47] to obtain a pareto-optimal

set of alternative RTL micro-architectures, amongst which the fastest RTL design

(Df ) and the smallest(Ds) were chosen. Another three hand-coded RTL designs were

selected from open-source domain[58] having varying complexity and characteristics.

The first set are designs with alternative variant micro-architectures which tests the
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Table 6.1: Benchmarks Overview

Benchmark Lines of Code Arrays Loops level
2D 1D Nested Single

IIR filter 30 0 1 0 2 low
Interp 74 0 4 0 4 medium
sobel 85 3 1 4 1 medium

disparity 119 1 5 5 2 high
encoder 140 0 1 3 7 high

decimation 332 0 10 0 15 high

ability of our proposed method to optimize the C design irrespective of the design

style of RTL description. The second set of open-source hand coded RTL designs

test the ability of VeriIntel2C-opt to perform optimization on open-source fixed ar-

chitecture RTL IP’s written manually by designers. Table 6.1 provides overview of

the benchmarks used where comp is the complexity level.

The ADRS and pareto-dominance(dom) was used to measure the quality of the

pareto-optimal sets from both methods [89]. The ADRS value indicates the average

distance between the reference pareto-front and the approximate pareto-set i.e., tells

how close a pareto-front is to the reference front. Pareto-dominance indicates the ratio

of the total number of designs in the pareto-set being evaluated, also present in the

reference pareto-set. Column 1 in table 6.2 indicates the designs where, column ver

shows the type of RTL variants for every SystemC benchmark whose variant RTL

micro-architectures upon being translated using VeriIntel2C has produced diverse

C descriptions . The columns of VeriIntel2C and VeriIntel2C-Opt consist of the

respective ADRS and dominance values.
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Table 6.2: Experimental Results Summary

Benchmark VeriIntel2C VeriIntel2C-opt ADRS Dom
name version ADRS Dom ADRS Dom diff diff

[%] [%] [%] [%] [%] [%]
disparity Df 9.1 63 1.5 90 -7.6 27
disparity Ds 6.7 21 1 78 -5.7 57

decimation RTL IP 21 25 7.2 75 -13.8 50
interp Df 2.7 50 3.5 50 0.8 0
interp Ds 1.4 60 4.2 40 2.8 -20

encoder RTL IP 41 25 3.5 75 -37.5 50
sobel Ds 26.1 29 0 86 -26.1 57

IIR filter RTL IP 21.4 60 7.8 40 -13.6 -20
Avg. 16 41 3.5 66 -12.58 25

6.5.2 Results and Discussion

Table 6.2 compares the quality of the trade-off curves generated by VeriIntel2C-opt

over the basic framework, VeriIntel2C. The ADRS values of the exploration trade-off

curve obtained by design using our proposed method overall improve by 12.5% which

indicate that our proposed method generate better quality pareto-optimal designs

compared to that of the original results. The average decrease in ADRS indicates

it generates a Pareto-front better in quality than that of VeriIntel2C, since lower

the ADRS, the better is the quality. The increase in dominance values suggest the

same improvement in quality as higher the dominance is, the better is the quality.

The dominance values overall increase as well by 25% thereby indicating an increased

number of designs in the resulting trade-off exploration curve. From the observa-

tions in table 6.2, in the case of interpolation design (interp), the merging of the

loops does not affect the quality of the trade-off curve significantly. The reason is

because the loops used for merging were independent of each other and had equal
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number of iterations. In contrast, the disparity design for both its variants, upon

merging two of the loops having unequal iterations, significantly improves the quality

of the pareto set and introduces more number of designs in the design search space,

similarly for other designs respectively. The disparity design’s results indicate that

new designs were introduced in phase 3 of the design space as loop merging was

performed by VeriIntel2C-opt. It should be noted that our proposed optimization

method VeriIntel2C-opt does only work in designs that contain memories or registers

blocks which can be converted to arrays and iterative structures in the CDFG, thus

for some benchmarks without these constructs, the results of our proposed method is

the same as the VeriIntel2C.

0This work has been submitted for review in IEEE Embedded System letters, 2018.



Chapter 7

Application of RTL to C abstraction
methodology to Accelerate
System-level simulations

The need for shortening verification time of SoC in order to reduce the overall

design time, leads to identifying some important bottlenecks in verification of accel-

erators. We introduce some of the problems faced in this area, and propose methods

using VeriIntel2C to solve some of the problems and enable system-level exploration

of a SoC.

7.1 Introduction

VLSI circuits are reaching complexities never seen before. Most circuits are now

heterogeneous Multi-Processor System-on-Chips (MPSoCs), which typically include

embedded micro-processors, memory controllers, memories and dedicated hardware

accelerators (HWAccs), all interconnected through a single bus or bus-hierarchies.

The problem that arises while designing these complex Integrated Circuits (ICs)

is the complexity to determine overall system architecture. For this purpose, system

107
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designers tend to use fast transaction level models (TLM) based on high-level lan-

guages such as SystemC, which allows modeling of concurrent processes. Once the

overall system structure has been fixed, the model needs to be refined by using more

accurate models, typically cycle-accurate models. These models allow to fine-tune

the system’s performance by e.g. matching the Data Initiation Interval (DII) of cer-

tain dedicated hardware accelerators (HWaccs) with the memories’ DII and/or the

bus bandwidth. For large systems, this can prove inviable or take extremely long

execution time.

However, this strategy has several key advantages: Firstly, the workload pattern

of the entire system is preserved (considering that the master is not using the returned

data for control actions). Secondly, the compile time of the entire model is accelerated,

as the complexity of these behavioral templates (BT ) is much lower than that of the

actual IPs (it should be noted that for larger circuits the compilation time can be

significant). Thirdly, the cycle-accurate simulation is much faster as each template

does not require to perform any actual computation. Lastly, it allows the exploration

of configuration of any latencies, hence it is very easy to generate different what-if

scenarios.

The main problem is that many IPs often have variable execution latency. Figure 7.1

shows an example of a FIR filter, which computes the sum of products (sop) of the

given data and coefficients for a certain number of taps (N). In this case, if the sop

reaches a maximum saturation value, the sop computation is terminated. The latency

of the synthesized design is therefore data dependent. In the worst case, the loop is

iterated N times, while in the best case, it only executes the loop a single time, i.e,

L = [1, N ]. If this IP is substituted by a behavioral template, in order to maintain
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the accuracy, conditional constructs (COND) such as if-else, break, continue that

affect the latency need to be preserved.

Thus, new methods to speed-up these cycle-accurate simulations are needed. The

main contributions of this chapter can be summarized as follows:

• Developed an extended feature using the translation framework of VeriIntel2C

to identify different conditional scenarios in RTL IPs with data dependencies in

behavioral system descriptions.

• Introduced the concept of behavioral template to accelerate cycle-accurate simu-

lations by abstracting away the functionality of dedicated hardware accelerators,

while maintaining their timing accuracy.

• Proposed different types of templates based on the internal structure of the

accelerator, by investigating data dependencies in order to increase the accuracy

of the simulations.

The goal of creating behavioral IP(BIP) templates is to substitute each IP (either

RTL IP or behavioral IP) with a template which mimics the IPs’ I/O behavior, but is

empty inside. This implies that it only reads data from the master and returns data

after X cycles similar to the original IP, where X is the latency of the IP. Although

the results returned are functionally incorrect, the timing behavior is preserved. As

a result, the advantage of preserving the workload pattern is preserved as mentioned

earlier. The compile time of the entire model is accelerated as the complexity of these

BIP templates is much lower than that of the actual IPs, and the simulation is much

faster as each template does not require to perform any actual computation.
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int fir(int *data,

int *coef){

int sop=0;

for(i=0;i<N;i++){

sop+=data[i]*coef[i];

if(sop>MAX)

break;

}

return sop;

}

(a) FIR filter with con-

trol dependent break
example.

fir

cond body

+=

sop *

data[i] coef[i]

if

cond

>

sop MAX

break

(b) Parse tree of FIR

example.

Fig. 7.1: Behavioral description of FIR filter with its parse tree representation

7.2 Methodology

7.2.1 Proposed Cycle-accurate System Simulation

This work introduces the concept of Behavioral IP(BIP) templates to substitute

the hardware accelerators mapped as slaves in the system to reduce the run-time of

cycle-accurate simulations of very large complex systems. The overall flow of the

process is shown in figure 7.2 and algorithm 6. The input to the system can be either

a BIP written in C/C++/SystemC or a RTL IP written in Verilog. This chapter

describes the methodology solely for the latter input type. The three main steps are

outlined below which are used to design a BIP template generator for the system.

Pre-Step: The input of the proposed method can be either a behavioral IP (BIP)

given in ANSI-C or SystemC or a RTL IP given in Verilog. In this second case, a
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Fig. 7.2: BIP template generator and BIP template overview.

previously developed RTL to C (RTL2C) converter is used to convert this RTL IP

into synthesizable ANSI-C code(lines 1-4). This RTL2C converter has been modi-

fied in order to identify data dependencies that might affect the timing, especially

the latency, of the synthesized circuit. The timing of each accelerator is critical to

speeding up cycle-accurate simulation. At this stage, the functional correctness is not

important as the objective is to generate and improve the traffic of the overall SoC.

Once the overall SoC architecture is fixed, the design can be forwarded for circuit

generation. The next subsection describe in detail these changes. The output of the
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RTL2C converter has the same format as the synthesizable ANSI-C or SystemC code

taken as inputs otherwise.

Algorithm 6: System creation using Behavioral Templates (BTs).
Data: IP, interface, L, f, techlib

IP : IP in RTL or C/SC
L: IP latency
f : HLS target frequency
techlib: technology library
Result: BT : : Behavioral Template for IP

1 /* Pre-Step: Convert RTL to C code */
2 if IP=RTL then
3 C = convert_rtl2c(IP );

4 else
5 C = IP ;

6 /* Step 1: Check for data dependent code */
7 AST = parse(C);
8 /* Step 2: Extract delay of loop */
9 (Lmin_IP , Lmax_IP ) = hls(C, f, techlib);

10 if (AST) then
11 BT_no_dly = gen_BT_no_dly(C);
12 (Lmin_BT , Lmax_BT ) = hls(BT_no_dly, f, techlib);
13 Ldly = Lmin_C � Lmin_BT ;

14 else
15 Ldly = Lmin = Lmax;

16 /* Step 3: Write Behavioral template */
17 BT = gen_BT (C,Ldly, bus);
18 return(BT );

Step 1: Check for Data Dependencies. The synthesizable C code is parsed and

analyzed for data dependencies (DD) that might affect the latency of the synthesized

circuit (line 9) . These data dependencies include DD = {break, continue, exit, return}

keywords in the source code combined with their execution condition (i.e.if � else,

switch � case and loops). Although if � else conditions by themselves might also

result in executions of different latencies, modern HLS tools extensively exploit static

speculation. This significantly reduces or even eliminates the uneven execution of
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conditional statements. We also did not see any latency difference in the benchmarks

that contained if-else conditions.

Upon synthesizing (HLS) behavioral descriptions having these constructs, the la-

tency of the resultant circuit will not be constant and will depend on when the COND

constructs are executed. This implies that the latency L is not a single value, but can

take any value between L = [Lmin, Lmax], where Lmin, is the smallest possible latency

(e.g. when all the COND statements are executed on the very first iterations of each

loop) and Lmax implies that none of the COND statements are never executed and

hence all loop iterations are fully executed. The average latency would therefore be

Lavg = (Lmax�Lmin)
2 . Thus, it is important to take into account these data depen-

dencies in order to preserve the timing accuracy. If any COND exist, the proposed

method generates a Abstract Syntax Tree (AST) of the C code, as shown in figure

7.1.

Step 2: Latency estimation. If the behavioral description does not contain any

COND constructs, the BIP is synthesized (HLS) and the latency (in clock cycles)

reported by the synthesizer LHLS assigned to the accelerator Ldly = LHLS. The HLS

tool by default returns the latency as LHLS = [Lmin_IP , Lmax_IP ], where in this case

Lmin_IP = Lmax_IP and thus the BT latency is Ldly = Lmin_IP = Lmax_IP .The BT

is in turn fully abstracted away and substituted by the behavioral template (BT ).

The structure of the template is described in detailed in the next subsection. In

the scenario of BIP containing COND constructs, the portion of the code that is

required until the COND construct is resolved is preserved in the BT , while the

rest is abstracted away using algorithm 6 (lines 1-4). In this case the latency of the

behavioral template needs to be adjusted in a different way. The method is described
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in Algorithm 6. In this case, the method synthesizes (HLS) the code twice. First,

similarly to the previous case (without COND), it synthesizes the original C code

obtaining L = [Lmin_IP , Lmax_IP ], where in this case Lmin_IP 6= Lmax_IP . Then, a

trimmed version of the BT is generated which only contains the code with the data

dependent part of the C code and is again, synthesized. The result is another latency

pair Lmin_BT 6= Lmax_BT . The final BT latency is hence the difference between any of

the two latencies obtained, Ldly = [Lmin_BT +(Lmin_IP�Lmin_BT ), Lmax_BT +max_IP

�Lmax_BT ] (lines 11 to 15 of Algorithm 6).

Step 3: Behavioral Template Output. This very last step, takes as inputs the C

code with or without data dependent code, the delay required by the delay loop of the

template (Ldly), and the interface type (interface) and generates the synthesizable

C code for the behavioral template (line 21).

The important contribution in this scenario is to detect the COND constructs

from input RTL HW accelerators using an extended version of our already devised

framework, VeriIntel2C. The framework creates a CDFG of the input design and

then identifies the COND. The following sub-section describes the algorithm over

VeriIntel2C that preserves the code section with the identified constructs.

7.2.2 CDFG of conditional constructs

The section of CDFG particular to identifying the COND constructs, is the con-

trol block which also houses the conditional structures, if present, in the design. There

are mostly two distinct scenarios inside a conditional construct of a loop which can

occur in a design. The control dependencies may be present in conditions inside loops

and/or along with 1. break or 2. continue keywords. These scenarios also termed as

COND are mostly like to impact the execution latencies.
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Fig. 7.3: CDFG with conditional scenarios

The generated CDFG consists of a loop representation split in two parts. The

first part is the loop control graph defined as the control loop block(CLB) and the

second part is the loop body in the basic block. Thus, if a loop structure consists

of conditional forms, their respective data-flow nodes(part of loop sub-graph) are

controlled by conditional control blocks representing comparator nodes. Figure 7.3

shows the graphical description of the CDFG of a loop with a conditional structure

having break and continue scenario for FIR filter code in figure 7.1a. The first part

is the loop control graph defined as the control block and the second part is the

loop body in the basic block. Thus, if a loop structure consists of conditional forms,

their respective data-flow nodes (part of loop sub-graph) are controlled by conditional

control blocks representing comparator nodes.

The CDFG generated in VeriIntel2C already provides a clear distinction of all

the representation of the aforementioned scenarios. The loop structures in the basic

block are executed depending on the result of the conditional control node. In the
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event of this scenario, there is also the possibility of a loop sub-graph having multiple

exit points. The exit points of a loop may also be incident on the conditional con-

trol node(COMP ) connected from the main loop sub-graph and then the resultant

edge from COMP controls the final assignment to the output node of the program

filter_out. The negation on the conditional edge indicates it should be executed if

the condition is not satisfied. The negation operator controls the data-flow within

resulting nodes. This particular CDFG indicates that upon the execution of the con-

ditional loop sub-graph, the following nodes from the exit-point constitute operations

external to the loop body and this is an indirect branch connecting loop operations

and non-loop operations. These scenarios are created as a standard template and

categorized as break scenarios wherein, the control switches to operations outside the

loop under specific conditional statements inside the loop. The method builds an

abstract syntax tree (AST ) shown in Figure 7.1b and keeps all the code required to

resolve this data dependency. In the case of figure 7.1b, all the code is kept in the

same tree branch(in the enclosed box). In the worst case, this could imply that the

BIP can not be abstracted away and thus the BT would be exactly the same as the

BIP.

The execution behavior of continue scenario is functionally opposite to that of

the break condition. Thus, the structure of CDFG must still be able to adapt to

the loops with these conditions while maintaining the basic underlying form bounded

by its basic structural rules. The counter variable node, RG_i (i in figure 7.1a) is

controlled using a control edge by the COMP , where the value of the control variable

is sent to the edge controlling the write operation to the array. The negating edge

from the greater than operator node, is described for the continue scenario wherein
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Algorithm 7: Rule-base algorithm for identifying break and continue sce-
narios in CDFG

Data: CDFGloop

Result: BTwithloop

1 /* Step 1: Extract all CLB from CDFG */
2 if CLB is present then
3 for each CLB

4 /*Extract all exit points from CLB*/
5 if COMP exists as exit node then
6 /*Search for negation edges */
7 /*Trace path of negation edges*/
8 if path leads to loop operations then
9 loopsBT  CLB

10 /*Insert break in loopsBT*/
11 else
12 /*Trace path of non-negation edges*/
13 if /*path repeats in loop operations*/ then
14 loopsBT  CLB

15 OPloop  Extract node before entering loop
16 /*Insert continue before OPloopin loopsBT*/

the negation of the edge decides the flow of control to iterate the RG_i. Thus, in

occurrence of this type of scenario, it is implied that the conditional CN demands

its associated nodes to execute following which the loop condition should continue

to iterate further, hence justifying the use of continue keyword at the end of the

condition. This scenario is classified as the continue condition.

7.2.3 Search algorithm

A proposed rule-based search-and-traverse algorithm shown in algorithm 7 is used

upon the generated CDFG to identify the aforementioned scenarios. The algorithm

uses CLB to traverse through the exit nodes until one of them has a COMP attached

to one of them (lines 3-5). Here, it is to be noted that COMP is a conditional

node and hence has two exit edges, amongst which one has a negation operator
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called as negation edges. The algorithm 7 clearly shows that the break scenario

requires the negation edge must lead to loop operations along with the other edge

re-iterating to the external non-loop operations(lines 8-10) and continue having the

reverse conditions to be satisfied(lines 12-16). This is based on the programming

theory that a break scenario occurs when a condition inside a loop is satisfied and

the control passes onto the external operations beyond the loop. A continue scenario

occurs when the condition of the loop is satisfied and the control continues to be upon

the loop block in the CDFG. Finally, a template code is generated consisting of the

I/Os identified from the RTL design with the loop constructs having conditions with

break and continue scenarios. In this manner, the CDFG framework is utilized for

generating behavioral templates to improve the run time of behavioral simulations.

7.3 Behavioral Template (BT) Generator

Figure 7.2 also shows the main structure of the BT . The input to the template

generator is the target HLS frequency and technology library, the interface type,

either standard or custom, and the latency (Ldly) given in clock cycles. Alternatively

the user can also manually specify the BT
0
s latency. This allows the user to explore

different scenarios quickly. In order to create a more flexible template, the latency is

passed as an input parameter to each template, thus making it fully parameterizable

at runtime (it does not require to be re-synthesized each time the latency changes).

The template generator takes these inputs and generates two different types of

synthesizable ANSI-C programs: BT type I and BT type II. Both types of templates

are composed of 4 main parts:

Part 1: Interface read. The first part contains the synthesizable interface API
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module fir_dat ();

filter_out = aot;

assign li2 = 4’h9 ;

assign gi1 = aot ;

assign gi2 = 8’hff ;

assign li1 = RG_i + 1;

assign aot = sop+mot;

assign mot = in00 * coeff00;

always @ ( aot or ST1_02d )

sop = ( { 8{ ST1_02d } } &

aot );

always @ ( iot or ST1_02d )

RG_i_t = iot ;

always @ ( posedge clk )

RG_i <= RG_i_t ;

assign out_en = ( ( ST1_02d &

got ) | ( ( ST1_02d & (

~got ) ) & (~lot ) ) ) ;

always @ ( posedge clk )

if ( out_en )

filter_out <= aot ;

endmodule

(a) RTL description of a FIR filter

int fir(void){

int RG_SOP=0;

int in_read[8];

int coeff_read[8];

int mulot,addot;

int filter_out;

for(i=0;i<9;i++){

mulot = in_read[i] *

coeff_read[i];

addot = RG_SOP + mulot;

RG_SOP = addot;

if(addot < 255)

filter_out = addot;

else if(addot>255)

break;

}

return filter_out;

}

(b) Generated C program with

COND constructs.

Fig. 7.4: Input RTL design and the resulting C design using proposed method of
VeriIntel2C

required to read data into the accelerator. The choice of interfaces is based on the

synthesizable APIs provided by the commercial tool used in this work. HLS tools

provide libraries of synthesizable APIs for standard interfaces in order to facilitate

the work of the designer. Currently, FIFO, RAM, AHB, and AXI are supported. For

custom interfaces (e.g. a module which has to interface with an LCD display), the

user can encapsulate the interface as a synthesizable function and include into the

interface API library used by the BT template generator. In this case the interface
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is taken from this library and only the computational and delay loop are generated

(parts 2 and 3).

Part 2: Computational Loop. The second part differs based on the type of BT

to be generated. In the case that no COND constructs are found in the original code

to be abstracted, BT type I is generated. For this type of BT , the computational

loop performs some basic computation on the input data. This is important because

the HLS tool would optimize the logic of the entire template away if no computation

is performed. Hence this part ensures that the template structure is preserved. In

the case that COND are present, a BT type II is generated. This implies that the

the code that computes the COND condition is preserved from the original BIP

including the loop where it is used. The rest of the code is fully abstracted away. In

the worst case, this could imply that the BIP can not be abstracted away and thus

the BT would be exactly the same as the BIP. It should be nevertheless noted that

most of the accelerators lead to BT of type I.

Part 3: Delay Loop. The third part contains the delay loop to make the BT
0
s

final latency match the latency of the original BIP . For this purpose a loop con-

taining only a timing description is used. The timing descriptor symbolizes a clock

cycle. Commercial HLS tools normally support different types of scheduling modes.

The traditional one is the automatic scheduling mode, in which the HLS scheduler

automatically times the behavioral description. Another scheduling mode provided is

manually mode. This implies that the user can manually time the behavioral descrip-

tion by inserting the clock boundaries directly in the code. In SystemC this is done

with wait statements, while at the ANSI-C level, this is vendor specific. In the case of
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the commercial HLS tool used in this work, a $ sign is used to denote a clock bound-

ary. Hence when having a loop with N iterations it will take N cycles to execute the

loop. For HLS tools that do not allow this type delay control, the delay can easily be

achieved in the computationally loop by performing simple operations in a for loop

sequentially. As mentioned previously, the main problem in some applications is that

the exact circuit latency is unknown a priori. For this purpose the proposed method

has two options. By default, if the user does not specify the latency as an input, the

method synthesizes (HLS) the input BIP once and extracts the latency reported by

the HLS tool. For case I types, with no COND, this should be accurate. For case II,

with COND, the method synthesizes the BIP and extracts the min and max latency

reported by the HLS tool for the full original C description and for a C description

with only the COND part of the code.

Part 4: Interface write. Finally, the last part contains write back portion of the

interface using again the synthesizable API provided by the vendor or the custom

interface encapsulated in a library by the user.

With regards to the time required to generate the BT , it should be noted that the

most time consuming part is the HLS in order to extract the latency of the accelerator.

Only a single HLS is required for BT of type I (without data dependencies), while

for BT of type II (with loop data dependencies), our template abstraction method

requires two HLS. The first synthesis on the original behavioral description and the

second of the optimized one in order to determine the latency of the delay loop. During

the experimental phase we noted that a single HLS on any of the benchmarks did not

exceed 10 seconds. It should also be noted that the RTL to C conversion is extremely
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fast, taking less than 1 second. In case that the user knows the accelerator’s latency

or wants to explore different what-if scenarios, the time to generate these templates

is negligible as the latency is passed as a parameter to the BT .

7.4 Experiment Results

The experimental results here, shall solely focus on the result of implementation

of the algorithm using the VeriIntel2C and would not be reflecting upon the overall

quality of the result of cycle-accurate behavioral simulations since the objective of

this work is to show the ability of the designed translation framework to be applied

for solving challenges in different domains and not just for enabling DSE for RTL

descriptions.

The explorer is built around a behavioral MPSoC generator shown in figure 7.5,

which takes as inputs M masters and N slaves acting as accelerators connected

through a standard shared bus (e.g., AHB/AXI). Thus, the type of bus, its bitwidth

and arbiter also need to be specified as inputs. The masters and slaves are given as

synthesizable (HLS) behavioral IPs in ANSI-C or SystemC. These BIPs have been

modified to include synthesizable APIs for sending and receiving data over the bus

that the commercial HLS tool used in this work supports to abstract the bus inter-

face away during the design. The bus definition file with the bus information and the

BIPs are passed to the commercial HLS tool bus generator which after generating the

bus and bus interfaces synthesizes each module and generates a cycle-accurate model

of the complete SoC. This cycle-accurate model is generated in SystemC, which in

turn can be compiled with any C++ compiler. Figure 7.5 is color coded, where black

boxes represent third party tool and gray boxes parts of the flow implemented by us.
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BIP1/TB1	,	BIP2/TB2	,…,	BIPN/TBN	

	Generate	C-Based	SoC		
(Number	masters,	map	tasks)	
	

Slaves:	S1,	S2,…,SN	

Bus	Type:	AHB/AXI	
Bus	bitwidth=32bits	
Arbiter:	round	robin	
Memory	map	
#Masters=M	
#Slaves	=N	

Bus	definition	file	Masters:	M1,	M2,…,MN	

 Bus	Generator	
  

Slaves	IF:	SIF1,	SIF2,…,	SIFZ	
Masters	IF:	MIF1,MIF2,…,MIFN	

Bus,	Top		

Timing	report		

 
High-Level	Synthesis	

Cycle-accurate	SoC	model	
g++	

  

Bus	Parameters:	
Type:	AHB/AXI	
Bus	bitw=32bits	
Arbiter:	round	robin	

 

API_burst_write(0x1000ff00,	fifo,	DSIZE);	
API_single_write(0x1000ff00,	out0);	

while(1){	
API_poll_req(&stat);	/*	get	status	*/	
if	(stat.req	==	API_WRITE_REQ)	{	
	 API_set_response(API_OKAY);	
	 array[num]	=	API_get_data();	
	 num++;}	
if(num	==	DSIZE)	break;	}	

Fig. 7.5: Automatic MPSoC generator overview.

As mentioned in the introduction, C-based design has an additional advantage

over traditional RTL design. A single behavioral description allows the generation

of different micro-architectures with unique area vs. performance trade-offs. This is

typically done by setting different synthesis options to determine how to synthesize

e.g. arrays (RAM, register), loops (unroll, folded), and functions (inline or not). Thus,

in order to enable the system explorer, a variety of micro-architectures obtained from

a previously developed HLS DSE proposed in the earlier chapters [47] is used as input

for each hardware accelerator used in the system .
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Table 7.1: Runtime results for 10 million cycles of S2Cbench benchmarks .

Kernel Lines Lines BT Ldiff Run [s] Speedup
No runtime data dependencies

qsort 104 25 4.2 59 8.6
sobel 134 25 5.4 71 10.3
aes 429 25 17.2 173 25.1

kasumi 321 25 12.8 130 18.9
md5c 215 25 8.6 70 10.2

snow3G 314 25 12.6 103 14.9
adpcm 297 25 11.9 111 16.1

fft 142 25 5.7 98 14.2
fir 109 25 4.4 69 10.0

interp 134 25 5.4 106 15.4
Avg. 8.8 14.7

With runtime data dependencies
decim 156 66 2.4 100 8.8

cholesly 161 161 0 113 0
idct 187 95 2.0 97 7.6

disparity 604 273 2.2 203 8.5
jpeg enc 1,509 874 1.7 287 5.3
Avg. 2.2 8.3

The experiments were run on an Intel dual-core 2.40 GHz Xeon processor machine

with 16 GBytes of RAM running Linux Fedora release 19. The HLS tool used is

CyberWorkBench v.5.52 [21]. The target technology is Nangates 45nm Opencell

technology and the HLS target frequency for all of the processes in the system is set

to 100MHz. The experimental results are divided into two sets of experiments.

A. Single Kernels: This first set of experiments compares the running time of a

cycle-accurate simulation of single kernels against the proposed abstracted BTs. For

this, all of the 14 designs of the open source synthesizable SystemC benchmarks suite

S2CBench were used [76]. Table 7.1 shows the list of benchmarks, divided into two
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groups. The first does not contain data dependencies, while the second group does.

Thus, for each of them a different type of BT is generated. All these benchmarks are

synthesized (HLS) with default synthesis options using a commercial HLS tool and a

cycle-accurate model is generated for each of them using the same commercial HLS

tool[21]. The running time comprises the compilation time as well as the runtime to

simulate 10 million random inputs.

The first observation is that, as expected, the BT simplifies the description of the

BIP as indicated by the reduction of the lines of code. In the case of BT of type I,

the template size is fixed (only the latency changes), and therefore the reduction in

number of lines depends on the complexity of the accelerator. In the case of BT of

type II, the complexity of the template depends on when the COND can be resolved.

The average line number reduction is 8.8⇥ in the first and 2.2⇥ for the latter. For

BT of type II, the line number reduction obviously varies case by case, e.g. for

the cholesky case no abstraction was possible. The simplification of the accelerator

directly translates into faster execution time. From the results, it can be observed

that the BT of type I is on average 14.7⇥ faster, while the BT type II is slower, as

expected, achieving averages speedups of 8.3⇥. The results indicate that the running

time of the cycle-accurate simulations depend on the complexity of the kernel. From

these results, it can be observed that the number of lines reduction seem to be a good

indicator of the simulation speedup for BT of type I. In the case of BTs of type II,

there is not such a direct relationship as in the worst case, no speedup is achieved(e.g.

cholesky benchmark).

B. MPSoC Design Space Exploration: Different computational intensive applications,
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Table 7.2: Complex System Benchmarks.
Only BTs of type I Only BTs of type II BTs of type I and II

Kernel BT Type DSE S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Behavioral Benchmarks

md5c I 3 1 1 1 1 1 1 1 1
kasumi I 3 1 1 1 1 1 1
adpcm I 5 1 1 1 1 1
idct II 3 1 1 1 1 1 1 1 1

cholesky II 4 1 1 1 1 1 1 1
jpeg enc II 8 1 1 1 1 1

RTL Benchmarks
aes I 1 1 1 1

decim II 1 1 1 1
Tasks 2 2 3 4 2 3 3 4 4 4 6 8

Designs 6 8 7 12 7 15 8 16 13 19 26 28
Masters 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3

amenable to HW acceleration, were selected and grouped together into complex sys-

tems in order to test our proposed method. These designs were again taken from

the open source Synthesizable SystemC Benchmark suite (S2CBench) [76]. Table 7.3

shows the individual benchmarks selected from S2Cbench and their characteristics in

terms of data dependencies, lines of code, arrays and functions. Two RTL IPs were

also used from open-source [58]. Table 7.2 shows how these complex benchmarks were

formed. The first column indicates the name of benchmark, and the second column

indicates the type of behavioral template that can be generated for this particular

benchmark. The third column indicates the total number of dominating designs re-

ported by the DSE for each benchmark. Columns S1-S12 indicate the benchmark

used to build each complex system benchmark. The last three rows report the total

number of applications (benchmarks/tasks) used in each system benchmark, the to-

tal number of design candidates contained (adding up the results of the DSE of each

application) and the number of masters considered. Three distinct group of systems
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Table 7.3: Characteristics of Hardware Accelerators (kernels).

Kernel DD lines arrays functions
Behavioral Accelerators

cholesky Y 211 2 2
md5c N 265 5 7

kasumi N 373 13 5
adpcm N 342 1 3
idct Y 237 2 2

jpeg enc Y 1,561 16 8
RTL Accelerators

decim Y 231
aes N 174

are created in order to fully characterize our proposed method. The first (S1 to S4)

only contain benchmarks that can be translated into BTs of type I (no COND). The

second (S5 to S8) only contain benchmarks which are translated into BT of type II

(COND present). Finally, group three contain a mixture of both (S9 to S12).

The target architecture, for these experiments, is a multi-core processor system

with masters ranging from 1 to 3 depending on the benchmark. The masters and

slaves are connected through a 32-bit AMBA-AHB bus using a round robin arbiter

(loosely coupled hardware accelerator system).

Table 7.4 and Table 7.5 show the qualitative and quantitative results respectively

of our method, making use of the behavioral templates to speed up the simulation,

for the exhaustive search exploration method (BFT ) and for the simulated annealing

based exploration method with exact SAexact and approximate SABT ) versions. No

results are show for the exhaustive search explorer with exact slaves in Table 7.4, as

this is the reference front and hence has an ADRS=0 and a Pareto dominance 100%.

Different conclusions can be drawn from the results shown in Table 7.4 and Table
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Table 7.4: Experimental Results
Exhaustive Search Simulated Annealing

BFBT SABT SAexact

Bench Masters ADRS[%] Dom[%] ADRS[%] Dom[%] ADRS[%] Dom[%]

S1 M=1 0.0 100 0.0 100 0 100
M=2 0.0 100 1.1 75 4.3 75
M=3 0.0 100 1.8 75 6.5 70

S2 M=1 0.0 100 2.2 90 3.8 50
M=2 0.0 100 4.1 66 7.7 33
M=3 0.0 100 5.3 66 7.8 43

S3 M=1 0.0 100 1.4 75 3.4 50
M=2 0.0 100 3.7 75 8.4 33
M=3 0.0 100 1.4 75 8.6 25

S4 M=1 0.0 100 3.2 100 7.6 41
M=2 0.0 100 0.0 100 8.6 50
M=3 0.0 100 3.2 75 7.9 33

S5 M=1 0.0 100 0.0 100 0.0 100
M=2 0.0 100 0.0 100 1.5 50
M=3 1.2 75 1.2 75 3.5 50

S6 M=1 3.5 50 3.5 50 7.8 75
M=2 6.7 50 10.6 33 3.5 75
M=3 5.7 50 5.7 50 6.5 50

S7 M=1 6.5 80 6.5 80 0.0 100
M=2 9.6 80 9.6 80 10.4 25
M=3 8.1 80 8.1 80 12.6 33

S8 M=1 8.5 75 10.2 75 11.3 25
M=2 9.3 75 9.3 75 6.7 25
M=3 10.4 75 12.8 75 15.5 25

S10 M=1 1.3 90 2.6 75 0.5 90
M=2 2.4 85 2.4 85 2.1 90
M=3 2.7 85 2.7 85 5.8 25

S10 M=1 3.1 75 3.7 50 6.4 33
M=2 3.6 75 3.6 50 8.1 25
M=3 4.1 66 4.5 50 8.7 25

S11 M=1 4.3 66 4.3 50 10.2 50
M=2 5.1 75 5.7 33 12.3 25
M=3 4.9 75 4.9 33 10.1 33

S12 M=1 5.8 80 9.6 80 17.3 25
M=2 6.7 75 9.4 66 19.5 15
M=3 7.1 66 10.4 66 21.2 10

Avg. BT Type I only (S1-S4) 0.0 100 2.3 81 6.2 50
Avg. BT Type II only(S5-S8) 5.8 69 6.5 65 6.6 53
Avg. BT Type I+II (S9-S12) 4.3 76 5.3 67 10.2 37

Avg. Total 3.4 82 4.7 72 7.7 47
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Table 7.5: Running time results [min]

BF BFtemplate Comparison
Bench Run[min] Run[min] �BF�BFT

S1 50 9 5.6
S2 110 15 7.3
S3 55 8 6.9
S4 802 63 12.7
S5 386 204 1.9
S6 957 499 1.9
S7 1,741 801 2.2
S8 1,478 1,205 1.2
S9 1,045 487 2.1
S10 4877 980 5.0
S11 12,554 2,591 4.8
S12 13,904 3,184 4.4

Avg. BT Type I (S1-S4) 8.12
Avg.BT Type II (S5-S8) 1.80

Avg. BT Type I+II (S9-S12) 4.73
Total Avg. (S1-S12) 4.67

7.5. In general the proposed method works well as shown by the low average ADRS

and dominance. The exhaustive search (BFBT ) is only 3.4% worse for the ADRS and

82% for the dominance. The results have to anyway be analyzed carefully. When the

accelerators have no data dependencies and thus, BTs of type I can be used for all

of them, the method works extremely well matching the exact solution results in all

cases (S1-S4 systems). In the case that data dependencies exists and BT of type II

need to be used, the method still works well, but the quality of the solution degrades

to an ADRS of 5.8% and dominance of 69%. Finally when systems mixed with both

types of accelerators the average ADRS is 4.3% and average dominance is 76%. This

implies that the QoR degrades depending on the type of accelerator, but the results

are still very good.
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The main benefit of the proposed method is shown in Table 7.4. Given a maximum

amount of time to produce an exploration result, our proposed method can generate

more combinations and hence leads to better results. In this case, given only 10% of

the runtime taken by the exhaustive search, the average ADRS and dominance values

are still very good (4.7% and 72%), while using the exact slaves lead to much worse

results with an average ADRS=7.7% and an average Pareto dominance of 47%. On

an average, this is an ADRS of 39% and a Pareto dominance decreased by 34%. The

large ADRS value means that the exact method misses complete sections of the trade-

off curve, which can be extremely important for system designers. Upon investigation

of this results, it was found that the main culprit for the discrepancies in results is

that the HLS tool used in this work, would often not report the accurate latency

values for each benchmark. One way to increase the accuracy, would be to perform

a cycle-accurate simulation of every accelerator in order to accurately annotate the

latency instead of relying on the latency reported right after HLS.

Table 7.5 shows the quantitative by comparing the running times of the exhaustive

search of both methods. Results shows that the template based method is on average

4.67 ⇥ faster further indicating the effectiveness of our method. Here again, speedup

difference can be observed depending on the type of templates used. When the accel-

erator can be fully abstracted away speedups of on average 8.12⇥ are obtained(S1-S4).

In the case that every accelerator contains DDs (S5 to S8), speedups of on average

1.8⇥ are obtained and finally in mixed systems (S9 to S12) average speedups of 4.73⇥

are reached.
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7.5 Summary

This chapter describes the application of the proposed translation framework Veri-

Intel2C for generating behavioral templates for accelerating system-level simulations.

The rule-based algorithm successfully identifies the constructs which are control-

dependent and impact the overall circuit’s latency indirectly affecting the system

simulations. The main objective of the VeriIntel2C is to identify those critical sec-

tions of RTL IPs for simulation and translate them into behavioral templates. The

scenarios commonly identified as loops with conditional constructs having break and

continue keywords are successfully identified and extracted solely into the behavioral

templates.

0This work is accepted for publication in Integration the VLSI Journal, 2018.
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Chapter 8

Conclusion

In summary, this thesis enables and improves the Design Space Exploration (DSE)

and simulation of heterogenous SoC platforms by unifying all HW accelerators to the

behavioral level using VeriIntel2C.

The thesis introduces High Level Synthesis, describes its methodology and advan-

tages of being able to perform Design Space Exploration (DSE) without modifying

the behavioral description to be explored. Further, the thesis presents the first open

source benchmark suite in SystemC (language common in all HLS tools), S2CBench.

These benchmarks were used to advance the state-of-the-art in HLS DSE by proposing

a mixed static-dynamic method for DSE which uses machine learning and simulated

annealing.

The main contribution of this thesis can be found in chapter 5, where an ab-

straction framework is introduced called VeriIntel2C to translate RTL IPs given in

synthesizable Verilog to C programs to maximize HLS DSE. For this purpose, appli-

cations of Petri Net model in graph modeling applications were studied, given at the

RT-Level and its advantages in the RTL to C translation. Using the advantages of

Petri Net graphs, a graph-based translation framework is developed that extracts the
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CDFG using the model of Petri Net graph. The Petri Net graph is modeled from an

Abstract Syntax tree (AST) by parsing the RTL design. The generated CDFG con-

tains distinct patterns and structures which are identified by the proposed rule-based

algorithms for graph traversal.

Furthermore, the thesis investigates the shortcomings of VeriIntel2C by perform-

ing extensive experiments on the exploration of the generated designs. It was identi-

fied that the designs having multi-dimensional arrays and nested loops, upon explo-

ration, produce more number of pareto-optimal design points compared with that of

designs with read-only one-dimensional arrays. As a result, optimization algorithms

were proposed and developed using loop fusion methods in order to merge loops and

array merging methods. Upon experiments, it was observed that the proposed opti-

mization methods expanded the design space for certain RTL designs and the results

were compared with that of the base method, VeriIntel2C.

Finally, in order to demonstrate an application of VeriIntel2C, a method was

developed to accelerate cycle accurate simulations of hardware accelerators in het-

erogenous SoCs. This method generates Behavioral Templates and uses VeriIntel2C

to create the templates for RTL designs. Experiments were also performed on system-

level exploration of the heterogenous SoC and prove improvement on the run time of

the exploration.
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Future Work

Our future research direction is outlined as follows. In the era of heterogenous

SoCs with IPs both in HLS and RTL, it is imperative to translate RTL towards HLS

for expanding the DSE for RTL IPs with the objective of generating different forms

of loops and arrays. The proposed translation method, VeriIntel2C and its optimiza-

tions VeriIntel2C-opt have aimed to translate synthesizable RTL designs into HLS

descriptions that expands DSE of RTL designs. However, in lieu of the limitations of

our method described in previous chapters, the thesis aims to extend this work beyond

graph and rule-base and create an intelligent tool using deep learning. This would

enable the method to evolve on learning the functionalities of RTL designs written

in different design styles. Another feature to be added would be the abstraction of

modules or operations into functions in C level. Functions are also one amongst the

explorable constructs that contribute towards expanding the design space. Thus, we

will aim to extend VeriIntel2C using these proposed features to effectively expand the

design space of different types of HW accelerators. The measure, for original C-based

designs, can be used as a reference to reach the optimal quality of DSE.
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