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Abstract

In recent years, advances in Artificial Intelligence (AI) are opening the

door for intelligent health care data prediction and decision making.

Machine learning, as an increasingly popular approach to AI, has been

widely used to learn directly from data, adapt independently, and produce

predictive outcomes, which support doctors when encountering complex

health care predictive analytics. However, traditional machine learning

methods are not always perfectly working in the health field, intrinsically

due to little consideration for characteristic problems within health care

data. For example, the small sample size problem is common due to

complex data collection procedures and privacy concerns. Missing data

is also widely encountered since most data are collected as a second-

product of patient-care activities instead of following systematic research

protocols. The class imbalance is another inevitable problem in the

medical data as the normal class usually predominates over the disease

class. To solve aforementioned issues in health care predictive analytics,

this study stands on the principles of machine learning and transfer

learning to develop five advanced prediction models.

The first model is an output-based transfer least squares support vector

machines (LS-SVMs) model which can leverage knowledge learned from

the existing prediction model to facilitate the learning process on the target

domain with insufficient data. This model overcomes the small sample
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size problem and improves the health care data prediction by learning

knowledge from the other domain.

The second model is a novel additive LS-SVMs model which can directly

make predictions on missing data by simultaneously evaluating the influ-

ences on the classification error made by missing features. Moreover, this

model can generate explanatory information for health professionals to

improve the future data collection process.

The third model is a transfer-based additive LS-SVMs model which can

deal with missing data from a transfer learning perspective. It leverages the

model knowledge learned from the complete portion of the dataset to help

the learning process on the whole dataset with missing data. The proposed

model can provide supplementary information for health professionals to

improve the data quality via data cleaning.

The forth model is a deep transfer additive LS-SVMs model called

DTA-LS-SVMs and its imbalanced version called iDTA-LS-SVMs to

enhance the prediction performance on the balanced and imblanced

datasets. Enlightened by the deep architecture and transfer learning, the

model stacks multiple additive LS-SVMs based modules layer-by-layer

and embeds model transfer between adjacent modules to guarantee their

consistency.

The fifth model is a deep cross-output transfer LS-SVMs model called

DCOT-LS-SVMs and its imbalanced version called IDCOT-LS-SVMs

to improve the prediction performance on the balanced and imbalanced

datasets. The cross-output transfer is used to transfer the knowledge

of outcomes from the previous module to the adjacent higher layer to

achieve a better learning. Moreover, modules’ parameters can be randomly
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assigned in the proposed model which significantly simplifies the learning

process.

The proposed models are verified using the public UCI datasets. More-

over, case studies are conducted to validate and integrate the proposed

models with real world applications, including bladder cancer prognosis,

prostate cancer diagnosis, and predictions of elderly quality of life (QOL).

The experimental results have demonstrated that these models can enhance

the prediction performances while taking the characteristic problems

within health data into account, thus exhibiting potential to be widely used

in the real world applications in future.
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Chapter 1

Introduction

This chapter presents the introduction to this study. Section 1.1 introduces the

background of health care data analytics. Section 1.2 to Section 1.5 explain the

challenges, contributions, significance and structure of this thesis.

1.1 Health Care Data Analytics

In the big data era, data have already become one of the most significant components

in the health field. In a recent report on big data Manyika et al. [2011], the

overall potential of health care data is estimated to reach around $300 billion in the

United States. Thanks to the fast-growing sensing and data acquisition technologies,

hospitals and institutions can nowadays easily collect and store large amounts of health

care data in various forms, including sensor data, electronic health records (EHRs),

medical images and clinical notes. To gain a better understanding and find underlying

values from data, advanced data analytics techniques are required to dig deeply into

the raw data and transform them into the meaningful knowledge. The successful

implementations can gain new insights, leading to advances in patient care practices

and health care operations, such as the prompt diagnosis and prognosis of cancers

Afzal et al. [2013]; FitzHenry et al. [2013]; Gottlieb et al. [2013]; Makam et al. [2013];

Sylvester et al. [2006]; Van De Vijver et al. [2002], prediction of risk of readmission
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Amarasingham et al. [2010]; Donzé et al. [2013]; Gildersleeve and Cooper [2013]

and personalized medicine based on individual genomic profiles Chin et al. [2011a];

Ginsburg and McCarthy [2001]; Hamburg and Collins [2010].

Health care data can be stored in different forms. The structured electronic health

records (EHRs) and biomedical images are collected in the clinical environment.

EHRs describe patients’ medical history, including demographics, medications, vital

signs, laboratory test results, radiology reports, doctors’ notes and billing data.

EHRs store and manage personal health information in digital format which provide

convenience to share information instantly across different health care organizations

and institutions, motivate patients’ participation and support better patient diag-

nostic and prognostic outcomes. Medical images also play an important role in

the medical data analytics. Nowadays, there are various diagnostic techniques,

such as magnetic resonance imaging (MRI), computed tomography (CT), positron

emission tomography (PET) and ultrasound (U/S), to look inside the patient body

and gain a better understanding of the cause of an illness without making surgical

cuts. However, analyzing such complex medical scans is very time consuming and

expensive. Researchers and doctors recently have begun to benefit from the rise of

machine learning, especially deep learning Shen et al. [2017] for the more effective

computational medical image analysis. Sensor data is a type of health care data for

real-time and retrospective analysis. They can be collected from electrocardiogram

(ECG) and electroencephalogram (EEG) sensors on different parts of the human body.

A typical application of sensor data is a real-time remote monitoring of the patient with

the special medical condition in the intensive care units (ICUs) Vespa et al. [1999]. The

analytical tools for the sensor data must make excellent observations on the big volume

of data and be sensitive to any situational changes. Genomic data analysis also has been

given lots of attention recently. Finding the relationships between different genetic

markers, mutations and cancer conditions can considerably help the development of
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future gene therapies. Another research trend on this is to transform the genomic

knowledge into the personalized medicine practice. Many intelligent algorithms and

bioinformatics tools are developed to deal with genomic data to serve the purpose of

identification of disease biomarkers, therapeutic purposes and estimation of clinical

outcomes Chin et al. [2011b]; Garnett et al. [2012]; Kim et al. [2012]; Samuels

et al. [2004]; Welsh et al. [2001]. In addition, health care data can be stored in

an unstructured form, such as clinical notes. Although these notes contain wealthy

resources, it is very difficult to automatically extract information from textual clinical

documents without human intervention Jagannathan et al. [2009]. In recent years, the

computer-based methods such as Natural Language Processing (NLP) and machine

learning techniques have been widely utilized to identify and extract information from

the unstructured text Zheng et al. [2014].

1.2 Challenges

The advent of data era introduces big opportunities and challenges in the health

care field. To gain a better understanding and extract the underlying knowledge

from the complex health care data, traditional statistical and Artificial Intelligence

(AI) prediction models are commonly employed for predictive analytics. Successful

applications such as individualized diagnosis and prognosis, hospital readmission

prediction and personalized medicine can lead to improvements in medical practices

and health care experiences.

However, health care data has its uniqueness which deserves special attention

when constructing prediction models. Delving into this, we find three common

issues with the health care data. First, health care datasets are often characterized

by limited samples due to the complexity and high-cost patient data collection

procedures. However, most prediction models with superior performances require

sufficient training data. When handling small datasets, their prediction performances
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can be deteriorated. Second, missing data problems are also inevitable. They can

be caused inadvertently, or intentionally due to privacy concerns. When health care

data are collected as a byproduct of patient-care activities from the real world, it lacks

the integrity required by research protocols. Thus, it is very common in the health

care dataset that a patient record has missing values for certain features, or a feature

loses values for several patient records. Inappropriate handling of missing data can

easily cause bias or lead to loss of information which directly affect the prediction

performance. Third, health care data usually have class imbalance problems, since

there is a much larger number of samples in the normal group than those in the diseased

group during data collection. The constructed prediction models consequently get

influenced by the predominant classes and ignore the minor ones.

1.3 Research Contributions

To address the aforementioned challenges in the health data, this thesis proposes five

novel prediction models using advanced AI techniques, including an output-based

transfer LS-SVMs model, a novel additive LS-SVMs model, a transfer-based additive

LS-SVMs model, a deep transfer additive LS-SVMs model and a deep cross-output

transfer LS-SVMs model. The main contributions of this research are summarized as

follows:

An output-based transfer LS-SVMs model is proposed to deal with classification

with small data from a transfer learning perspective. It can efficiently leverage the

output knowledge from the existing prediction model or on-line tool to facilitate the

learning process on the current interest of domain with small data. This model does

not require the data and modeling details of the existing model, which is applicable to

be used in the real world health care scenarios (Chapter 3).

A novel additive LS-SVMs model is proposed to deal with missing data. It

can directly perform classification simultaneously while taking the influences on the
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classification error caused by missing features into consideration. The influence level

of the missing feature can be quickly and autonomously determined using a fast

leave-one-out cross validation strategy. Meanwhile, it can provide supplementary

information to guide health professionals to improve the future data collection process

in practice (Chapter 4).

This thesis also proposes a transfer-based additive LS-SVMs model from a transfer

learning perspective to deal with missing data. It can leverage the model knowledge

learned from the complete portion of the dataset to help the learning process on the

whole dataset with missing data. Like the previous model, the influences on the

classification error caused by incomplete samples can be determined using a fast leave-

one-out cross validation strategy, which also provides distinct information for data

cleaning to guarantee data quality (Chapter 5).

A deep transfer additive LS-SVMs model called DTA-LS-SVMs and its imbal-

anced version called iDTA-LS-SVMs is proposed to improve the classification perfor-

mances on balanced and imbalanced datasets. We enhance the model using data

argumentation via a deep stacked architecture to make the original data space more

separable. Model transfer is employed between adjacent modules to guarantee their

consistency and thus classification capability of the higher module is expected to be

further improved (Chapter 6).

This thesis also proposes a deep cross-output transfer LS-SVMs model (DOCT-LS-

SVMs) and its imbalanced version (IDCOT-LS-SVMs) to improve the classification

performances on balanced and imbalanced datasets. It combines multiple LS-SVMs

based modules layer-by-layer embedded with output knowledge transfer between

adjacent modules. Moreover, model parameters, such as trade-off parameter and kernel

width can be randomly selected in each module which greatly simplifies the learning

process (Chapter 7).

The experiments and empirical studies in this thesis can be divided into two
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categories: public UCI datasets and real-world health care data resources including the

bladder cancer dataset for prognosis, the community health care dataset for predicting

elderly QOL and the prostate cancer dataset for diagnosis. The empirical studies

demonstrate the feasibility and effectiveness of the proposed prediction models using

advanced AI techniques in the real world health care applications.

1.4 Research Significance

This thesis is expected to make contributions to the improvement of health care

predictive analytics using advanced AI techniques. Particularly, it is a significant

endeavor to customize AI techniques to handle the characteristic problems encountered

in analyzing health data, such as small sample size, missing data and class imbalances.

It will be an exemplar demonstrating the benefits of using AI in health care, thereby

promoting practical and advanced applications in clinical practice. Moreover, this

study is expected to make a practical and theoretical contribution in the areas of health

informatics and machine learning.

1.5 Thesis Structure

This thesis consists nine chapters. Chapter 1 presents the research background,

research challenges, contributions and significance related to this thesis. Chapter 2

presents the literature relevant to this research, including a review of traditional health

care data prediction models, transfer learning, deep architectures and common issues

in health care data and their solutions. Chapter 3 proposes an output-based transfer

LS-SVMs model to solve the small sample size problem. Chapter 4 proposes a

novel additive LS-SVMs model to handle classification with missing data. Chapter

5 develops a transfer-based additive LS-SVMs model to perform classification with

missing data from a transfer learning perspective. Chapter 6 proposes a deep transfer
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additive LS-SVMs model and its imbalanced version. Chapter 7 proposes a deep cross-

output transfer LS-SVMs model and its imbalanced version. Chapter 8 presents the

conclusions and future work directions. Lastly, Chapter lists the publications during

PhD study. The thesis structure is clearly shown in Fig. 1.1.
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Chapter 2

Literature Review

This chapter gives the background of the study. Sections 2.1 and 2.2 review the

traditional statistical and AI models for health care prediction, perspectively. Transfer

learning, missing data problem, class imbalance problem and deep architecture are

introduced from Section 2.3 to Section 2.6, respectively.

2.1 Health Care Data Prediction: Classical Statistical

Models

Various statistical models have been used to classify the patients’ status according to

their health status. In this section, we review three basic statistical methods which have

been widely investigated in health care.

• Linear Regression Regression analysis is a process of fitting prediction models

to data by investigating the relationship between independent variables (predic-

tors) and the dependent variable (outcome). Linear regression Hastie et al.

[2009] is a type of regression techniques which assumes that there is a

linearity between independent and continuous dependent variables in the case

of corresponding estimated regression parameters. The independent variable(s)
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can be continuous or discrete. Least squares method is the most frequently used

coefficient estimation method by minimizing the sum of the squared deviations

between the data points and the curve.

Although linear regression prediction models are very simple to understand,

they are based on the assumption that independent and dependent variables

are linearly associated, which is, in fact, very difficult to satisfy in many

health care applications. Moreover, linear regression is very sensitive to

outliers, which may strongly influence the fitting model and the predicted values.

Multiple regression also suffers from multicollinearity which results in unstable

coefficient estimates. These disadvantages limit the prediction performances of

linear regression models in complex health care predictive analytics compared

with computational-intelligence oriented AI techniques Catto et al. [2003];

Sousa et al. [2007].

• Logistic Regression Logistic regression is widely used for classification in

health care where the dependent variable is binary (e.g., 0/1, alive/dead,

normal/diseased) or ordinal (e.g, ’poor’, ’neutral’ and ’good’) Dreiseitl and

Ohno-Machado [2002]; Pregibon [1981]. The goal of logistic regression is

to estimate probabilities using a logistic function. The model coefficients are

usually approximated using maximum likelihood estimation. Logistic regression

can handle various types of relationship between dependent and independent

variables and have the interpretation capability of model parameters. However,

it carries a higher risk of over-fitting issues which may influence the prediction

performance on the unseen data Dreiseitl and Ohno-Machado [2002]. Moreover,

it requires big sample size such that the maximum likelihood estimates can
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be guaranteed to be powerful. In literature, logistic regression is frequently

compared with computational-intelligence oriented AI techniques in terms

of generalization performances Hanai et al. [2003]; Jefferson et al. [1997];

Marchevsky et al. [1998, 1999]; Singson et al. [1999].

• Survival Models Survival analysis is a set of methods to model time to

event data where the outcome is the time until an event occurs Klein and

Zhang [2005]; Miller Jr [2011]. This event can be death, discharge from the

hospitalization, cancer recurrence or any other incident of interest happening

during the observation. The starting point can be the diagnosis of cancer,

hospitalization admission and the first time to have a specific treatment. The

survival time can be measured in hours, days, years, etc. To model the survival

time associated with variables such as patient histological, pathological and

clinical characteristics, survival models are particularly effective in handling

censored observations. The observations with incomplete information of their

survival time is called censored. For example, the participant who drops out

from the study before the end of the study is right censored. The participant

who does not experience the event of interest in the whole study is censored.

Unlike ordinary regression analysis, survival models can combine information

from censored and uncensored observations to estimate model parameters. The

nonparametric Kaplan-Meier method and the semiparametric Cox proportional

hazards regression model are the most common approaches for survival analysis

Ohno-Machado [2001].
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2.2 Health Care Data Prediction: Artificial Intelligence

Models

Although statistical methods are widely used for analyzing health care data, there are

a number of pitfalls which may influence their performances and feasibilities in the

real-world scenarios. For example, most statistical methods are criticized regarding

their explicit assumptions, which are highly likely to be violated in clinical practice

Egner [2010]. On the other hand, the rapid growth of AI has been giving more and

more attention in the health field and motivate researchers to use advanced intelligent

techniques as alternative methods for predicting health care data.

The concept of Artificial Intelligence (AI) Russell and Norvig [2003] was proposed

in 1956 at Dartmouth College in Hanover. With the increasing computational power

and advances in big data over the past decades, AI has been growing very fast and

become one of the most significant research topics in computer science in the 21st

century. It imitates human being’s perception, learning, and reasoning to solve various

complex problems.

Machine learning as an important approach to AI can produce reliable prediction

outcomes by discovering hidden patterns from examples and experiences, which has

been regarded as a promising alternative to statistical models. Machine learning

methods have been extensively applied in different health care applications, such as

personalized and predictive medicine Bassi et al. [2007], cancer diagnosis and detec-

tion Millan-Rodriguez et al. [2000], recommendations for treatments and therapies

Rubin and Reisner [2009]. A detailed review of the most well-known machine learning

methods are introduced below.
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2.2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are originally inspired by the structure of the

biological neural network in neuroscience, in which billions of neurons are connected

with each other in a human brain through axons. Fig. 2.1 demonstrates the structure

of a biological neuron. The dendrites receive signals from the external environment. If

the sum of signals in this neuron exceeds a threshold, the neuron is activated and the

signal is sent through the axon to other neighbors, otherwise, the delivery stops.

In 1943, McCulloch and Pitts [1943] proposed the first artificial neuron called

McCulloch-Pitts (MCP) model, which performs like a linear threshold gate. In 1957,

the simplest ANNs - perceptron was invented by Rosenblatt [1958] at the Cornell

Aeronautical Laboratory. It consists of two layers of nodes to learn a binary classifier,

in which the nodes on the second layer functionally process the inputs. In order

to solve more complex non-linear problems, the traditional ANNs usually contains

several hidden layers to adequately model the underlying behavior of the input data.

The common type of ANNs include back-propagation feedforward neural networks

(BPNN) and radial basis function (RBF) networks.

ANNs are one of the most extensively used machine learning methods for health

care prediction Dreiseitl and Ohno-Machado [2002]; Solanki et al. [2016]. For

example, Bassi et al. [2007] constructed ANNs to predict the 5-year overall mortality

of bladder cancer patients undergoing radical cystectomy. Its prognostic performance

was comparable with that using logistic regression analysis. Er et al. [2010] evaluated

several ANNs on the diagnosis of chest disease and drew a conclusion that ANNs

can be successfully used to assist clinicians with the detection of the disease. Ecke

et al. [2012] evaluated an ANNs-based program ’ProstateClass’ for prostate cancer

detection. The experimental results showed that it has potential to be used in clinical

practice to increase the cancer detection accuracy and reduce unnecessary biopsies.
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Figure 2.1: THE STRUCTURE OF A BIOLOGICAL NEURON

2.2.2 Support Vector Machines

Support Vector Machines (SVMs) was proposed by Cortes and Vapnik [1995]. It

can project the original data to a higher dimensional feature space where an optimal

hyperplane can be found to maximize the margin between different classes. As

demonstrated in Fig. 2.2, several hyperplanes can be found between two classes. Of

them, only the solid line is the optimal hyperplane which keeps the largest distances

between the closest data points of two classes to this hyperplane. These data points

which help to identify the boundary are called support vectors. Once the boundary

is decided, the other data except support vectors become redundant. Therefore, the

performance of SVMs does not reply on the sample size of the training dataset.

Moreover, kernel trick can be used to implicitly transform the input data to a higher

dimensional space by simply computing the proper inner product of data in that

transformed space, which significantly reduces the computational burden. Hence,

SVMs is known as the famous kernel-based machine learning method for pattern

recognition. Other advantages of SVMs include no overfitting and local minima issues.

SVMs have been widely applied in health care applications especially with small

14



Figure 2.2: OPTIMAL HYPERPLANE SEPARATES TWO CLASSES WITH THE

MAXIMUM MARGIN.

datasets due to their excellent generalization performances. Sanchez-Carbayo et al.

[2006] used SVMs for predicting the outcome of advanced bladder cancer associated

with genes which help patients gain the maximum benefit from more aggressive

therapeutic intervention. Huang et al. [2008] built an accurate diagnostic model of

breast cancer and fibroadenoma using SVMs for young women in Taiwan, showing

that SVMs had a better prediction ability than that using Linear Discriminate Analysis

(LDA). In Çınar et al. [2009], SVMs were used to construct the prediction model for

the diagnosis of early prostate cancer, and achieved a better outcome compared with

ANNs.

2.2.3 Least Square Support Vector Machines

Least Squares Support Vector Machines (LS-SVMs) is a variant of the standard SVMs,

which was proposed by Suykens et al. [2002] in 1999. Its training process is much
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more simplified than SVMs, which is to solve a system of linear equations instead of

a quadratic programming (QP) problem in SVMs. Its objective function is modified

by converting the inequality constraints in SVMs to the equality one and changing the

empirical risk error from 1-norm to 2-norm. Several empirical studies Van Gestel et al.

[2004] Zhang and Peng [2004] have shown that LS-SVMs are comparable to SVMs

in terms of the generalization performance. Moreover, the analytical solution of LS-

SVMs can help formulate the fast leave-one-out cross validation strategy for model

selection, which lead to the significant improvement on the learning speed Cawley

[2006].

Selvaraj et al. [2007] proposed an advanced classification technique based on LS-

SVMs for brain image slices classification. Results showed the proposed approach

outperformed SVMs, RBF classifier, multilayer Perceptron classifier and k-nearest

neighbors (k-NN) classifier. Polat et al. [2008] applied the LS-SVMs on the ECG

dataset to detect patients with arrhythmia. 100% classification accuracies can be

achieved on the testing datasets, showing that LS-SVMs are more promising than

previously reported classifiers in the computer-aided diagnosis system of ECG data.

In Li et al. [2009], LS-SVMs were also used to classify normal people with eye open

and epileptic patients during epileptic seizure activity using EEG signals and achieved

80.05% accuracy, proving to be a potential technique to classify EEG signals. Polat

and Güneş [2007] used LS-SVMs for the diagnosis of breast cancer and evaluated the

performance on the Wisconsin breast cancer dataset (WBCD) using different metrics.

The results indicated that LS-SVMs had the superior advantages compared with the

other previously reported machine learning techniques.

2.2.4 Naive Bayes Classifiers

Naive Bayes classifiers are a class of probability models in machine learning using

Bayes’ theorem with strong independence assumptions between variables. They
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attempt to maximize the posterior probability to determine the class of the unseen

data. The idea of naive Bayes has been studied since the 1950s, and been extensively

introduced to solve problems such as automatic medical diagnosis Rish [2001].

Rajkumar and Reena [2010] constructed the Naive Bayes classifier to analyze a

heart disease dataset for diagnosis and compared the classification performance with

decision list algorithm and k-NN algorithm. The results showed that the naive Bayes

classifier achieved the best performances. In Parthiban et al. [2011], the naive Bayes

method was applied to diagnose heart disease for diabetic patients and performed well

compared with other similar methods in literature.

2.2.5 Extreme Learning Machines

Extreme learning machines (ELMs) are simple and effective feed-forward neural

networks with one or more hidden layers, where the parameters of hidden nodes

can be randomly assigned or inherited from their ancestors with no change instead

of being tuned. Therefore, the learning process of the output weights in ELMs is

essentially equivalent to learning a linear model. Due to these characteristics, ELMs

can achieve the good generalization performance at an extremely low running time,

compared with the traditional BPNNs. Huang et al. [2006a] used ELMs to detect

diabetes and compared the results with those using other popular machine learning

methods. According to the experimental results, ELMs outperformed SVMs Rätsch

et al. [1998], SAOCIF Romero and Alquezar [2002], Cascade-Correlation algorithm

Romero and Alquezar [2002], bagging and boosting methodsFreund et al. [1996], C4.5

Freund et al. [1996], and Radial basis function network Wilson and Martinez [1996]

reported in the previous studies, showing a promising potential in health care data

prediction.
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2.2.6 k-nearest Neighbors Algorithms

Unlike machine learning methods introduced above, the k-nearest neighbors algorithm

(k-NN) Cover and Hart [1967] is a non-parametric machine learning method, which

can directly classify the unseen data by voting from the selected k neighbors. The

simplest example is that if k = 1, the new sample is assigned to the same class of the

nearest neighbor. Fig. 2.3 illustrates an example of k-NN classification. The triangle

represents a new incoming sample for labeling either as ’+’ class or to ’-’ class. If k

is set to 1, the testing sample is assigned to ’+’ class since there are 1 ’+’ class and

0 ’-’ class within the solid black line circle. If k is set to 3, the testing sample is

assigned to ’-’ class since there are 2 ’-’ classes and 1 ’+’ class within the dashed line

circle. If k is set to 5, the testing sample is assigned to ’+’ class since there are 3 ’+’

classes and 2 ’-’ class within the outer circle. We can observe that the value of k needs

to be set very carefully to reduce the effect of outliers and noise. Euclidean distance

and Hamming distance are the common distance metrics for continuous and discrete

variables respectively.

k-NN has been used to support health care prediction mainly due to its simple

and easy implementation. Shouman et al. [2012] adopted k-NN to diagnose heart

disease and found that it achieved higher accuracy compared with ANNs with easy

implementation. Li et al. [2014] utilized principal component analysis (PCA) to image

feature extraction followed by applying k-NN for diagnosing sperm health. This

combination achieved the higher diagnostic accuracy compared with that using the

combination of PCA and the propagation neural networks. In some health studies, k-

NN was also used as the comparative method for performance evaluation Tama [2010];

Vijayan and Ravikumar [2014].
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Figure 2.3: EXAMPLE OF k-NN CLASSIFICATION

2.3 Transfer Learning

Traditional machine learning methods for predictive analytics have many successful

achievements in health care. However, most of them are developed based on an

assumption that the training and testing data must have the same feature space under

the same distribution. If either condition is not satisfied, the prediction model must be

constructed from beginning using the newly collected training data. This process is

very expensive and impractical in many real-world scenarios due to the complex data

collection and patient privacy concerns. On the other hand, most machine learning

methods require sufficient data for training. Small training data may substantially

deteriorate the prediction performance of the constructed model.

These challenges make researchers wonder if there is a way that they can leverage

the knowledge from a related but different domain (source domain) with sufficient

data to help the learning process in the current interest of domain (target domain) with

few data. For example, we want to construct a prediction model for predicting the

5-year mortality of bladder cancer in the Chinese population. However, there are only

a few Chinese patient electronic records available for training (target domain). We

have another big amount of bladder cancer data from American participants (source

domain). Although the target populations are different, these two domains are still to
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Figure 2.4: DIFFERENT LEARNING PROCESSES OF TRADITIONAL MACHINE

LEARNING AND TRANSFER LEARNING

some extent similar due to the same cancer type. Therefore, if there is a way to find

a bridge to share the learned knowledge between two domains, it can benefit many

real-world small data scenarios.

Transfer learning is proposed to achieve this goal. It aims to leverage the

knowledge from a source domain onto a target one to improve the performance of

learning. It is inspired by how human being transfer knowledge between similar

contexts in Psychology and Education. For example, learning Chinese can help a

person later to learn Japanese more quickly, and learning repairing a smartphone can

help a person to repair a tablet more easily. Fig. 2.4 demonstrates the difference

between the learning processes of traditional machine learning and transfer learning

techniques Pan and Yang [2010]. It can be clearly seen that traditional machine

learning techniques must learn from scratch for every task or domain, while transfer

learning can leverage previously learned knowledge from other tasks or domains to

help the learning process on the current one.

2.3.1 Definition and Notations

In this section, the definition and notation of transfer learning is introduced.

20



Domain: A domain is defined as D = {χ, P (X)} Pan and Yang [2010], which

includes:

(1) a feature space χ; and

(2) a marginal probability distribution P (X), where X = {x1, x2, · · · , xd} ∈ χ.

Task: A task is defined as T = {Y, f(·)} Pan and Yang [2010], which includes:

(1) a label space Y ; and

(2) a prediction function f(·) learned from the training data containing pairs of

{~xi, yi}, where ~xi ∈ X and yi ∈ Y . The function f(·) can be used to predict the label

for the new incoming sample ~x, and written as P (y|~x) from a probabilistic point of

view.

Specifically, we denote the source domain as DS = {(~xS1 , yS1), · · · , (~xSN , ySN )},

where ~xSi ∈ χS , ySi ∈ YS , and the target domain as DT = {(~xT1 , yT1), · · · , (~xTN ,

yTN )}, where ~xTi ∈ χT , yTi ∈ YT . Take the prognosis of bladder cancer as an example,

~xSi is a patient instance from the United States and yi is the corresponding outcome

which is labeled as ’dead’ or ’alive’. ~xTi is a patient instance from Hong Kong and yT i

is its corresponding outcome.

Transfer learning: Given a source domain DS , a source task TS , a target domain

DT and target task TT , transfer learning aims to help the learning of the target

prediction function fT (·) in DT by leveraging the knowledge from the DS and TS ,

where DS 6= DT or TS 6= TT Pan and Yang [2010].

The condition DS 6= DT implies that either (1) χS 6= χT , or (2) PS(X) 6= PT (X).

In the example of bladder cancer prognosis, case (1) may correspond to that the

characteristics of two sets of patient records are different, and case (2) may correspond

to that the source and target domains concentrate on different bladder cancer types.

Transductive transfer learning refers to the situation that the source and target domains

are different while the learning tasks are the same in both domains (DS 6= DT ,

TS = TT ), which is also the focus of this study.
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The condition TS 6= TT implies that either (1) YS 6= YT , or (2) fS(x) 6= fT (x). Take

an example of prostate cancer diagnosis, case (1) may correspond to that the source

dataset has class labels of ’benign’ and ’prostate cancer’, while the target one has three

class labels of ’benign’, ’insignificant prostate cancer’ and ’significant prostate cancer’,

and case (2) may correspond to that the two sets are very imbalanced in terms of class

labels. Inductive transfer learning refers to the situation that the learning tasks in the

source and target domains are different (TS 6= TT ).

In transfer learning, if the feature spaces in source and target domains share some

commonality explicitly or implicitly, we imply that the source and target domains

are related. It must be noticed that if the source and target domains are the same

(DS = DT ) and their tasks are the same (TS = TT ), it becomes the traditional machine

learning problem.

2.3.2 A Categorization of Transfer Learning Techniques

To have a better understanding of transfer learning, we have to consider three questions

Pan and Yang [2010]: (1) what to transfer; (2) how to transfer; (3) when to transfer.

’What to transfer’ concerns which part of knowledge and how much knowledge

should be shared across domains. Regarding this, transfer learning techniques in

literature can be broadly categorized into four groups.

Instance transfer Techniques under this category assume that a certain amount of

source data can be reused for learning in the target domain using instance re-weighting

and importance sampling techniques. In Huang et al. [2006b], a nonparametric method

was proposed to directly get re-sampling weights without estimating distribution. Liu

et al. [2002] presented a novel method to re-evaluate the training samples using in-

target-domain probability using positive and unsupervised learning.

Feature representation transfer Techniques under this category aim to learn a
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proper common feature representation to decrease the differences between the source

and target domains and their classification errors. The knowledge to transfer is

embedded in the new feature representation. Jebara proposed a transfer learning based

framework for common feature and kernel selection in multiple SVMs constructed

using different but related datasets. In Pan et al. [2011], a feature representation method

called transfer component analysis (TCA) was proposed. By using TCA, the distance

between domains can be reduced in a latent space for domain adaptation. Duan

et al. [2012] proposed a method to first perform heterogeneous feature augmentation

across different domains using two novel feature mapping functions. Then the newly

generated feature representation is used for classification using the SVMs. Zuo et al.

[2015a] developed a method using Stacked Denoising Autoencoder (SDA) to extract

several feature spaces from the related domains. Then two fuzzy sets are introduced to

analyze the variation of prediction accuracies using different feature spaces.

Relational knowledge transfer Techniques under this category does not assume

that the data drawn from each domain be independent and identically distributed (i.i.d.)

as traditionally assumed. It tends to transfer the relationship among data from a source

domain to a target domain. In this context, statistical relational learning techniques

are commonly used to solve these problems. For example, Mihalkova et al. [2007]

proposed a Markov logic networks (MLN) based transfer system which can map the

predictions in the source MLN to the target domain to further revise the mapping

structure for the performance enhancement.

Parameter transfer Techniques under this category assume that the source and

target domains share parameters or priors of the models at some extent. The knowledge

to transfer is embedded into the shared parameters or priors. For example, Bonilla

et al. [2007] proposed a novel model to study a shared covariance function on input
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dependent features and a ”free-form” covariance matrix among tasks. Schwaighofer

et al. [2004] presented a method under a hierarchical Bayesian architecture which

can learn a common prior to mean and covariance across domains. Gao et al.

[2008] proposed a locally weighted ensemble framework to learn the information from

multiple models for knowledge transfer. The weights are autonomously determined

according to each constructed model’s prediction ability. In Deng et al. [2013] and

Deng et al. [2016], a knowledge-leverage-based Takagi-Sugeno-Kang fuzzy system

(KL-TSK-FS) and an advanced version were proposed for parameter knowledge

transfer on the target domain based on the traditional TSK-FS model.

After determining the knowledge to transfer, ’how to transfer’ is another problem to

consider. Numerous techniques in computational intelligence have been applied to this

area, including neural network transfer learning, Bayes transfer learning, fuzzy transfer

learning Lu et al. [2015]. Liu et al. [2009] employed neural network to initialize the

weights of labeled data in the source domain. Then the source data are placed into the

trained neural network on the small target data to determine their contribution levels

based on errors. In Luis et al. [2010], a novel aggregation method was designed for

transfer learning which can estimate and weight the average confidence probability of

the source task on its similarity to the target task. Zuo et al. [2015b] proposed a deep

transfer learning method to extract hierarchical feature representations, such that the

source domain knowledge in various feature spaces with different levels of abstraction

can be investigated and transferred to the target domain. Behbood et al. [2014] et

al. developed a fuzzy refinement domain adaptation method with the application of

long-term bank failure prediction using similarity/dissimilarity concepts to modify the

sample label information in the target domain.

’When to transfer’ concerns the circumstances in which knowledge transfer can
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or cannot be done. For example, in some scenarios there is no relation between the

source and target domains, brute force transfer then may not work or even hurt the

performance of learning in the target domain. This is also known as ’negative transfer’

Rosenstein et al. [2005]. An ideal transfer learning method should benefit from related

domains or tasks but avoid the negative transfers.

From literature, transfer learning has already been applied to some health-related

applications Caruana [1998]; Silver and Mercer [2002, 2007]; Zhou et al. [2011, 2013].

However, there was little literature on using transfer learning methods for health care

data prediction with the consideration of common problems encountered in the health

care datasets, such as small sample size, missing data and class imbalances. This

presents the opportunity for the applications of transfer learning in this specific area in

this thesis.

2.4 Missing Data Problem and Solutions

Missing data is a common problem in the health field, which may be attributed to

various causes. For example, participants may skip questions in surveys or drop out

of experiments. Patients may not qualify for certain medical tests, or operators may

take incorrect measurements during data acquisition. Any inappropriate treatment of

missing data may consequently deteriorate classification performance and as such, the

ability to appropriately handle missing data in classification problems has always been

an essential demand. Numerous methods were proposed in literature to handle the

classification with missing data. Generally, we can summarize the current solutions

into four categories Garcı́a-Laencina et al. [2010].

Methods in the first category simply remove incomplete samples and use complete
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samples for classifier construction Little and Rubin [2014]. However, deleting samples

may cause loss of information and introduce bias into the analysis, particularly when

the missing values are not entirely randomly distributed Batista and Monard [2003];

Little and Rubin [2014].

Methods in the second category impute missing values and construct classifiers

using the recovered dataset. The statistical imputation methods used include mean

imputation Donders et al. [2006a], regression imputation Little and Rubin [2014] and

so on. Mean imputation is the simplest: a missing value is estimated using the average

value of the same feature. In regression imputation, a missing feature is estimated using

a regression model constructed using non-missing features. The former method does

not consider the correlations between missing and non-missing features Donders et al.

[2006b] while the latter method only follows a single regression curve limited by the

inherent variation in the data Little and Rubin [2014]. Imputation can also use machine

learning techniques such as k-nearest neighbor (k-NN). In this method, the k-nearest

neighboring complete samples are used to estimate the missing values. However, the

performance of k-NN imputation is dependent on parameter settings, such as the value

of k, the distance function, and the weighting function which no theoretical approaches

can perfectly determine them. Moreover, the search for the nearest neighbors, i.e. the

most similar complete samples is usually computationally expensive.

Methods in the third category estimate the data distributions of the complete and

incomplete data portions in the dataset and make use of them for pattern classification.

In this approach, an expectation maximization (EM) algorithm is commonly used to

estimate the data distribution, and Bayesian decision theory is applied for classification

Dempster et al. [1977]. However, the methods in this category have massive

computational costs. The calculation of standard errors for the estimates Horton and
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Kleinman [2012] and Monte Carlo implementation of the EM algorithm (MCEM)

to model joint distribution of the covariates Ibrahim et al. [1999] are complicated

procedures which restrict the practicality of these methods.

Methods in the fourth category handle missing data and construct the classifier at

the same time. An increasing number of studies in this category have attempted to

improve the generalization ability, and many have demonstrated satisfactory results

Garcı́a-Laencina et al. [2010]. In recent years, some works have concentrated on

SVMs for handling missing data Chechik et al. [2006]; Pelckmans et al. [2005];

Shivaswamy et al. [2006]; Smola et al. [2005]; Zhang [2005]. Pelckmans et al.

[2005] presented an idea to integrate the uncertainty caused by missing values into

an appropriate risk function, and an extension of this work was based on a formulation

of an SVMs and LS-SVMs classifier. In Smola et al. [2005], SVMs was incorporated

into a Gaussian process to handle missing data. In this approach, how to estimate

missing values is equivalent to finding efficient optimization methods such as the

EM algorithm. Chechik et al. [2006] proposed a max-margin learning framework

using a geometrically-inspired objective function to directly classify incomplete data

with lower computational costs. Zhang [2005] were also inspired by the probability

modeling approach, and proposed a new SVMs classification formulation, which

handles missing data with an intuitive geometric interpretation. In Shivaswamy et al.

[2006], a SVM based classifier was proposed for classification with missing data by

using probabilistic classification constraints instead of linear ones.

Most existing solutions apply classifiers after the missing data has been prepro-

cessed, such as case deletion and imputation. However, methods in the last category

goes beyond the traditional. They use machine learning techniques to work directly

with the missing data instead of hypothetically predicting missing values. Research
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work on this topic is rapidly growing and many intelligent methods have achieved

satisfactory performance. Nevertheless, so far there are no reports of using transfer

learning as part of an approach. Additionally, most machine learning methods focus

on improving generalization performance on missing data, but little attention has been

given to how to detect corrupt and/or meaningless incomplete samples or features

from the dataset simultaneously and quickly with an unbiased estimation guarantee

to further improve the data quality.

2.5 Class Imbalance Problem and Solutions

Class imbalances refer to the problem that one class is represented by a large number of

samples while the other class is only represented by a few. This is especially common

in cancer diagnosis and prognosis, since there are a larger number of normal cases

compared with the diseased ones in the clinical practice. Most machine learning

methods which do not concern the class imbalance issue, have a tendency to be

overwhelmed by the majority class and thus lead to the poor classification performance

Chawla et al. [2004]. In literature, many relevant techniques and methods have been

proposed to deal with this issue. They can be broadly summarized into two main

categories, re-sampling, and case-sensitive learning.

Methods in the re-sampling category are designed to balance the class distribution

via re-sampling the data input space, such as random over-sampling, focused over-

sampling, random under-sampling and focused under-sampling. The main advantage

of re-sampling methods is that they can work independently and be easily adapted

to most prediction models. Random over-sampling aims to balance class distribution

by randomly duplicating samples from minority class. Focused oversampling only
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duplicates samples from minority class which are close to the boundaries between

two classes. However, these methods may have the higher risk of over-fitting. Random

under-sampling aims to balance class distribution by randomly removing samples from

majority class. Focused under-sampling only discards samples from majority class

which are further away from boundaries between two classes. The main disadvantage

is that this may also delete some cases which are useful for classifier construction.

Other advanced guided sampling methods, such as Tomek-Link (T-Link) Tomek

[1976], Synthetic Minority Oversampling Technique (SMOTE) Chawla et al. [2002],

Neighborhood Cleaning Rule (NCR) Laurikkala [2001], Edited Nearest Neighbor

(ENN) Wilson [1972] and Condensed Nearest Neighbor (CNN) Angiulli [2005] were

proposed to improve the performance of basic re-sampling.

Methods falling in the cost-sensitive learning category assume that the actual

misclassification costs vary with different kinds of errors in real-world applications.

These methods, therefore, need to determine a cost matrix to embed the penalty of

classifying a sample to a wrong class based on real situations in the learning process.

For example, for the diagnosis of a disease, the significance level of recognizing a

patient with disease is supposed to be higher than that of recognizing a normal case.

Therefore, the cost of misclassifying a disease case is supposed to outweigh that of

misclassifying a healthy one. After defining the cost matrix, the goal of cost-sensitive

learning methods is to minimize the total misclassification cost when constructing

the prediction model. Methods under this category include the modification of

training data, moving the decision thresholds Elkan [2001]; Zhou and Liu [2006] or

assigning weights to the training samples with different classes proportional to their

corresponding misclassification costs Elkan [2001]; Ting [2002]. Another group of

cost-sensitive learning methods can directly construct the prediction model by revising
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the learning process or the objective function. For example, several work in literature

studied on modifying the objective function of SVMs or extreme learning machine

(ELMs) using a weighting strategy Casañola-Martin et al. [2016]; Maldonado and

López [2014]; Phoungphol et al. [2012]; Wu et al. [2016]. Compared with re-sampling

methods, cost-sensitive learning is more computationally efficient to handle a large

amount of data with class imbalance issues Haixiang et al. [2017], and can work

readily with the classifier learning algorithms, which provides the opportunities to

further expand the work on imbalanced datasets.

2.6 Deep and Shallow Architectures

Most traditional machine learning methods, such as SVMs and LS-SVMs, fall

under the shallow architecture in which only one processing layer exists. Although

these shallow machines have well-performed in a wide range of applications, they

experience difficulties in representing complex functions between the input and

output. Conversely, deep architecture containing several processing layers of non-

linear functions can learn a better underlying representation via a hierarchical structure,

thus is more suitable to handle complex data.

There are different types of deep architectures, such as convolutional neural

networks (CNNs) Krizhevsky et al. [2012], deep belief networks (DBNs) Hinton

[2009], deep Boltzmann machines (DBM) Salakhutdinov and Hinton [2009] and deep

auto encoders Wang et al. [2016b]. In this research, we are interested in a deep

stacked architecture proposed by Deng and Yu [2011]. It is trained in a supervised

and module-wise framework. Unlike other deep architectures such as DBNs that use

back propagation over all modules, this hierarchy architecture stacks multiple modules
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Figure 2.5: TWO WAYS TO EXPAND THE FEATURE SPACE IN DEEP STACKED

ARCHITECTURE

in a chain, and the predicted outputs from the previous adjacent module are fed into

the data input of the higher module. Comparatively, deep stacked architecture is

relatively simple and easy to implement. Moreover, the appended feature space can

open the original data manifold to make it more separable. Following the philosophy

of ’stacked generalization’ Wolpert [1992], such architecture is expected to learn

complex mappings between the input and output to further enhance the classification

performance. Deep stacked architecture was first introduced in 2011 Deng and Yu

[2011]. After that, a kernel version DSNs (K-DSNs) was proposed by Deng et al.

[2012]. By using the kernel trick, the hidden neurons in each DSN layer becomes

infinity. Another novel DSNs, which is called tensor-DSNs (T-DSNs) was presented

by Hutchinson et al. [2013]. In this method, each module has a bilinear mapping from

two hidden layers to the output layer by combining higher order statistics of the hidden

binary features through a weight tensor. Vinyals et al. [2012] proposed a recursive

perceptual representation using layers of linear SVMs and incorporating with random

projections of weak predictions from each layer.

Through the deep stacked architecture, the appended feature space using the

predictions from the module(s) of the previous layers open the original data manifolds

such that the generalization performances may be improved. There are two ways to

append the feature space with the increase of the depth in deep stacking architecture.
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As depicted in Fig. 2.5 (a), the new feature space for the module in the l-th layer

(l > 2) comes from the concatenation of the predicted outputs from all the modules of

the previous layers and the original input features. Fig 2.5 (b) illustrates a different type

which concatenates the predicted outputs from the previous module only. So far, little

attention has been paid to embed transfer learning into the deep stacked architecture

and apply it in the health analytics.
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Chapter 3

An Output-based Transfer LS-SVMs

Model for Bladder Cancer Prognosis

with Insufficient Data

*The content of this Chapter was published in Wang et al. [2017a]:

Wang, G., Zhang, G., Choi, K.S., Lam, K.M. and Lu, J., ”An output-based knowledge

transfer approach and its application in bladder cancer prediction,” in Proceedings of

2017 IEEE International Joint Conference on Neural Networks (IJCNN), May. 2017,

Anchorage, USA (pp. 356-363).
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3.1 Introduction

Accurate prediction and prognosis play an important role in heath care which can help

doctors to make prompt treatment decisions on individual patients Knaus et al. [1991];

Ohno-Machado [2001]. For example, advanced bladder cancer patients with poor

prognosis are advised not to take the ultra major surgery such as radical cystectomy.

There are two dilemmas frequently occur in many health prediction applications.

First, the on-hand data cannot be completely put into the existing prediction model

or on-line tool, since features in the new data do not perfectly match those required

in the models or tools. As a result, some unique patient features collected in the

current domain of interest might be wasted. Another significant dilemma is the lack

of data due to the complex data collection procedures and privacy concerns, which

may substantially deteriorate the prediction performance. To solve these problems, in

this chapter, the output-based transfer LS-SVMs model with two versions is proposed.

It stands on transfer learning mechanism which can leverage the probabilistic output

information from an existing model or on-line tool (source domain) to help train a

prediction model on the current domain of interest (target domain) with few samples.

The influence level of the leveraged knowledge onto the target domain can be

autonomously and quickly determined using the fast leave-one-out cross validation

strategy.

The output-based transfer LS-SVMs model is evaluated on a real world small

bladder cancer dataset for predicting 5-year mortality after radical cystectomy. The

proposed model effectively handles the small sample size problem and produces better

performance than traditional machine learning methods.

This chapter is organized as follows: Section 3.2 presents the proposed output-
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based transfer LS-SVMs model with two versions. Section 3.3 shows the experimental

evaluations and results. Finally, summary of this chapter are discussed in Section 3.4.

3.2 Output-based Transfer LS-SVMs Model with Insuf-

ficient Data

In this section, an output-based transfer LS-SVMs model is proposed to deal with small

data from a transfer learning perspective. The proposed model can effectively learn a

target domain with insufficient data by utilizing the output knowledge learned from

the existing model or on-line tool in a related source domain. It can autonomously and

rapidly determine the extent of output knowledge to transfer from the source domain

to the target one using a proposed fast leave-one-out cross validation strategy. The

output-based transfer LS-SVMs model is given as follows.

3.2.1 Inverted Pyramid Dataset

Given a small dataset in the target domain as DT = {(~x1, y1), · · · , (~xi, yi), · · · , (~xN ,

yN)}, where ~xi = (xi1, x
i
2, · · · , xid) ∈ XT ⊂ Rd and yi ∈ YT = {−1, 1}, XT is

the input dataset and YT is the corresponding output dataset. Each instance ~xi has d

features, i.e., f1, f2,· · · , fd. Since the existing model only requires a subset of features

from the target domain, we project DT to the source domain DS using the common

features, to fit into the existing model. DS = {(~x′1, y1), · · · , (~x′i, yi), · · · , (~x′N , yN)},

where ~x′i = (xi1, x
i
2, · · · , xid′) ∈ XS ⊂ Rd′ and yi ∈ YS = [0, 1]. XS is the input

dataset and YS is the probabilistic outputs predicted from the existing model. Each

instance ~x′i contains d′ features, i.e., f1, f2, · · · , fd′ (d′ < d). We want to find a
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Figure 3.1: THE INVERTED PYRAMID DATASET IN WHICH d′ < d

decision function F : XT → YT , such that the matching y for any new incoming

instance ~x can be determined.

If we stack DT onto DS as demonstrated in Fig. 3.1, it shapes like an inverted

pyramid. Thus we call the adopted dataset in the proposed model inverted pyramid

dataset.

3.2.2 Framework of the Proposed Model

Fig. 3.2 illustrates the framework of the proposed model. The whole on-hand dataset

is the target data DT . Its subset which only contains the common features with the

existing model or on-line tool is the source data DS . After inputting the source data

into the existing prediction model, we can obtain the predicted probabilistic outputs.

These are the knowledge we attempt to learn and leverage to facilitate the learning

process in the target domain with small data.
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3.2.3 Handle Probabilistic Outputs From the Existing Model

Most of the prediction models used in the medical field are built using the traditional

statistical methods which produce probabilistic outputs. Hence, we design the

proposed model to directly handle the probabilistic outputs from the existing model

for the convenient use.

We put the source data DS into the existing prediction model and obtain the

corresponding probabilistic output pi (0 ≤ pi ≤ 1, i = 1, 2, ..., N). pi and 1 − pi

are the probabilities of ~xi to be categorized into the positive and negative classes. We

set a threshold θ to 0.5. If the output probability is greater than 0.5, ~xi is classified into

the positive class, otherwise, the negative class. For example, if an instance ~xi obtains

the probabilistic output of 0.65 from an existing prediction model, the probabilities

of ~xi being classified into the positive class and negative class are 0.65 and 0.35

(1−0.65 = 0.35) respectively. According to threshold, ~xi is classified into the positive

class (0.65− 0.5 = 0.15 > 0) instead of the negative class (0.35− 0.5 = −0.15 < 0).

Here, the processed probabilistic output 2pi − 1(i = 1, · · · , N) are the knowledge we

want to learn from the existing model or on-line tool.

3.2.4 Output-based Transfer LS-SVMs in Target Domain

The proposed model in the target domain is based on the LS-SVMs framework.

LS-SVMs have two simplifications compared with the traditional SVMs Suykens

et al. [2002]. First, the inequality constraints in the SVMs are replaced by the

equality constraints. Second, the hinge loss function in the SVMs is replaced by a

squared loss function. Therefore the LS-SVMs can be solved easily using a system

of linear equations instead of quadratic programming in the SVMs. Besides, LS-
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SVMs’ analytical solution can help form the leave-one-out cross validation strategy

for parameter tuning, which can reduce the high computational cost. The traditional

LS-SVMs classifier formulation is formulated as follows:

min
~w,b

1

2
~w2 +

C

2

N∑
i=1

ξ2i

s.t yi = ~wTϕ(~xi) + b+ ξi, i = 1, 2, ..., N

(3.1)

The input ~xi can be classified based on the decision function:

~wTϕ(~xi) + b

 > 0 positive class

< 0 negative class

Therefore, to keep the sign of yi to be the same of (2pi−1) (i = 1, 2..., N),
∑N

i=1(yi−

ξi)(2pi − 1) should be as large as possible.

A weighting parameter µ is added to reflect the overall influence level of all the

processed outputs from the existing model or on-line tool onto the constructed model.

In the circumstances, all the output results from the existing model are utilized to

make the maximum use to facilitate the learning process on the current domain. A

fast leave-one-out cross-validation strategy is proposed to determine the optimal value

of µ, which is discussed in Section 3.2.5. The proposed model with two versions are

presented.
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First version: The objective function of the LS-SVMs is modified into:

min
~w,b

1

2
~w2 +

C

2

N∑
i=1

ξ2i − µ
N∑
i=1

(yi − ξi)(2pi − 1)

s.t yi = ~wTϕ(~xi) + b+ ξi, i = 1, 2, ..., N

(3.2)

After rewriting, we get

1

2
~w2 +

C

2

N∑
i=1

ξ2i − µ
N∑
i=1

(yi − ξi)(2pi − 1)

=
1

2
~w2 +

C

2

N∑
i=1

ξ2i + µ
N∑
i=1

ξi(2pi − 1)− µ
N∑
i=1

yi(2pi − 1)

(3.3)

We exclude µ
∑N

i=1 yi(2pi − 1) since it is a constant value. We can then get the

equivalent optimization problem using

min
~w,b

1

2
~w2 +

C

2

N∑
i=1

(ξi +
µ

2C
(2pi − 1))2

s.t yi = ~wTϕ(~xi) + b+ ξi, i = 1, 2, ..., N

(3.4)

where µ
2C

indicates the influence level of the processed probabilistic outputs onto

the target domain. If µ is set to 0, Eq. (3.4) becomes the objective function of the

traditional LS-SVMs. The Lagrangian L for this problem is

L = 1
2
~w2+ C

2

∑N
i=1(ξi + µ

2C
(2pi − 1))2 +

∑N
i=1 αi(yi − ~wTϕ(~xi)− b− ξi) (3.5)
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where ~α = (α1, α2, ..., αN) ∈ RN is the vector of all Lagrangian multipliers. The

optimality conditions with respect to ~w, ξi, b, αi can be represented as follows:

∂L

∂ ~w
= 0 ⇒~w =

N∑
i=1

αiϕ(~xi) (3.6)

∂L

∂ξi
= 0 ⇒ξi =

1

C
[αi −

µ

2
(2pi − 1)] (3.7)

∂L

∂b
= 0 ⇒

N∑
i=1

αi = 0 (3.8)

∂L

∂αi
= 0 ⇒yi = ~wTϕ(~xi) + b+ ξi (3.9)

Combining Eq. (3.6) and Eq. (3.7) with Eq. (3.9), we obtain

N∑
j=1

αiϕ(~xj)
Tϕ(~xi) + b+

αi
C

= yi +
µ

2C
(2pi − 1) (3.10)

Using the kernel trick, ϕ(~xj)ϕ(~xi) is replaced by K(~xj, ~xi), and the system of linear

equations can be written in matrix as

K + 1
C

Λ ~1

~1T 0


~α
b

 =

~y + µ
2C

~M

0

 (3.11)

where Λ is a matrix in which each diagonal entry is 1 and all other entries are 0, ~y is

the output vector of all the training samples, and ~M = (2p1−1, 2p2−1, ..., 2pN −1)T .
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Lastly, the model parameters can be calculated simply by using matrix inversion:

~α
b

 = P

~y + µ
2C

~M

0

 (3.12)

where P = V−1 and V is the first matrix on the left in Eq. (3.11). Once we determine

the value of µ, ~α and b can be easily calculated from Eq. (3.12). The resulting decision

function is
F1(~xt) = ~wTϕ(~xt) + b

=
N∑
i=1

αiK(~xi, ~xt) + b
(3.13)

Second version: We replace (yi − ξi) in the first version with (~wTϕ(~xi) + b),

therefore the objective function of the LS-SVMs becomes:

min
~w,b

1

2
~w2 +

C

2

N∑
i=1

ξ2i − λ
N∑
i=1

(2pi − 1)(~wTϕ(~xi) + b)

s.t yi = ~wTϕ(~xi) + b+ ξi, i = 1, 2, ..., N

(3.14)

The Lagrangian J of Eq. (3.14) gives the unconstrained minimization problem:

J = 1
2
~w2+ C

2

∑N
i=1 ξ

2
i − λ

∑N
i=1(2pi − 1)(~wTϕ(~xi) + b) +

∑N
i=1 αi(yi − ~wTϕ(~xi)− b− ξi) (3.15)

where ~α = (α1, α2, ..., αN) ∈ RN is the vector of all Lagrangian multipliers. The

optimality conditions for this problem, respect to ~w, ξi, b, αi, can be expressed as

follows
∂L

∂ ~w
= 0 ⇒~w = µ

N∑
i=1

(2pi − 1)ϕ(~xi) +
N∑
i=1

αiϕ(~xi) (3.16)
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∂L

∂ξi
= 0 ⇒ξi =

αi
C

(3.17)

∂L

∂b
= 0 ⇒µ

N∑
i=1

(1− 2pi) =
N∑
i=1

αi (3.18)

∂L

∂αi
= 0 ⇒yi = ~wTϕ(~xi) + b+ ξi (3.19)

Combining Eq. (3.16) and Eq. (3.17) with Eq. (3.19), we obtain

∑N
i=1 αiϕ(~xi)

Tϕ(~xj) + b+ αi
C

= yi − λ
∑N

i=1(2pi − 1)ϕ(~xi)
Tϕ(~xj) (3.20)

Using the kernel trick, ϕ(~xj)ϕ(~xi) is replaced with K(~xj, ~xi), and the system of linear

equations can be written in matrix form:

K + 1
C
~Λ ~1

~1T 0


~α
b

 =

 ~y − λ~Z

λ
∑N

i=1(2pi − 1)

 =

~y
0

− λ
 ~Z∑N

i=1(1− 2pi)

 (3.21)

where ~Λ is a matrix in which each diagonal entry is one and all other entries

are zero, ~y is the output vector of all the samples in the training dataset, and

~Z = (
∑N

j=1(2pi − 1)ϕ(~xj)
Tϕ(~x1),

∑N
j=1(2pi − 1)ϕ(~xj)

Tϕ(~x2), · · · ,
∑N

j=1(2pi − 1)ϕ(~xj)
Tϕ(~xN)). The

model parameters can be calculated simply by using the matrix inversion:

~α
b

 = P

 ~y − λ~Z

λ
∑N

i=1(1− 2pi)

 = P

~y
0

− λP

 ~Z∑N
i=1(1− 2pi)

 (3.22)
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where P = V−1 and V is the first matrix on the left in Eq. (3.21). Once we have

obtained µ, ~α and b can be calculated from Eq. (3.22). Combined with Eq. (3.16), the

decision function for the new sample ~xt becomes

F2(~xt) = ~wTϕ(~xt) + b

= µ

N∑
i=1

(2pi − 1)K(~xi, ~xt) +
N∑
i=1

αiK(~xi, ~xt) + b

=
N∑
i=1

(µ(2pi − 1) + αi)K(~xi, ~xt) + b

(3.23)

3.2.5 Fast Leave-one-out Cross Validation Strategy for Parameter

Tuning

From Section 3.2.4, we can see that the classification performance of the proposed

model replies on the value of parameter µ (version 1) and λ (version 2). Traditionally,

leave-one-out cross-validation strategy is commonly used as an almost unbiased

estimator for parameter tuning, particularly on the small datasets; however, it is very

time-consuming. In this section, we propose a fast leave-one-out cross validation for

the proposed model to determine the optimal value of µ in Eq. (3.12) and λ in Eq.

(3.22) respectively.

First version: We decompose V into block presentation with the isolation of the

first row and column as follows:

V =

K + 1
C
~Λ ~1

~1T 0

 =

v11 vT1

v1 V(−1)

 (3.24)
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~α(−i) and b(−i) are denoted as the model parameters in the i-th iteration of the leave-

one-out cross validation. In the first iteration, we have:

~α(−1)

b(−1)

 = P(−1)

(
~y(−1) +

µ

2C
~M
)

(3.25)

where P(−1) = V−1(−1) and y(−1) = [y2, y3, ..., yN , 0]T . The predicted label of i-th sample

is denoted as ỹi. The predicted label of the first training sample can be represented

using

ỹ1 = vT1

~α(−1)

b(−1)

+
µ

2C
~M(−1) = vT1 P(−1)

(
~y(−1) +

µ

2C
~M(−1)

)
+

µ

2C
~M(−1) (3.26)

Considering the last N equations in Eq. (3.11), we obtain
[
v1 V(−1)

] [
~αT , b

]T
=(

~y(−1) + µ
2C

~M(−1)

)
. Eq. (3.26) can be rewritten into

ỹ1 = vT1 P(−1)
[
v1 V(−1)

]
[α1, · · · , αN , b]T −

µ

2C
~M(−1)

= vT1 P(−1)v1α1 + vT1 [α2, · · · , αN , b]T −
µ

2C
~M(−1)

(3.27)

In Eq. (3.11), the first equation of the system is y1 + µ
2C

~M(−1) = v11α1 +

vT1 [α2, α3, · · · , αN , b]T . Combined with Eq. (3.27), we get ỹ1 = y1 − α1(v11 −

vT1 P(−1)v1). By using P = V−1 and the block matrix inversion lemma, we obtain

P =

 u−1 −u−1v1P−1

P(−1) + u−1P(−1)vT1 v1P(−1) −u−1P(−1)vT1

 (3.28)
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where u = v11 − vT1 P(−1)v1. Since the system of linear equations in Eq. (3.11) is not

sensitive to permutations of the ordering of the equations, we obtain

ỹi = yi − αi/Pii (3.29)

By defining
[
~α
′T , b

′]T
= P

[
~yT , 0

]
,
[
~α
′′T , b

′′]
= P

[
~MT , 0

]
, and ~α = ~α

′
+ µ

2C
~α
′′ , we

obtain

ỹi = yi −
α
′
i

Pii
−

µ
2C
α
′′
i

Pii
(3.30)

It can be seen that we only need to calculate the matrix inversion for P once, the leave-

one-out cross-validation estimate can be calculated, which is much less computational

expensive. It is assumed that the optimal µwill retain the sign of ỹi to be the same of yi

for all the samples in the training dataset. However, this might result in local minima

issues due to its non-convex formulation. Thus, we use the following loss function,

which is similar to hinge loss:

l(ỹi, yi) = |1− ỹiyi|+ =

∣∣∣∣∣yiα
′
i + µ

2C
α
′′
i

Pii

∣∣∣∣∣
+

(3.31)

where |x|+ = max{0, x}. This is a convex upper bound to the leave-one-out

misclassification loss. It prefers the solutions in which ỹi has an absolute value that

is equal to or bigger than 1 and retain the same sign of yi. The objective function

becomes:

min
µ

N∑
i=i

l(ỹi, yi)

s.t 0 ≤ µ ≤ D

(3.32)
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where D is a constant. This optimization process can be implemented by using a

projected sub-gradient descent algorithm. The pseudo-code is given in Algorithm 3.1.

Second version: Similar to the first version, by defining
[
~α
′T , b

′]T
= P

[
~yT , 0

]
,[

~α
′′T , b

′′]
= P

[
~MT , 0

]
, and ~α = ~α

′ − λ~α
′′ , the predicted label of the i-th training

sample can be represented as

ỹi = yi −
α
′
i

Pii
+
λα
′′
i

Pii
(3.33)

The same loss function in the first version is adopted to avoid local minima issues:

l(ỹi, yi) = |1− ỹiyi|+ =

∣∣∣∣yiα′i − λα′′iPii

∣∣∣∣
+

(3.34)

where |x|+ = max{0, x}. Finally, the objective function is:

min
λ

N∑
i=i

l(ỹi, yi)

s.t 0 ≤ λ ≤ D

(3.35)

where λ is a constant. This optimization process can be implemented by a projected

sub-gradient descent algorithm. The pseudo-code is given in Algorithm 3.2.

3.2.6 Computational Complexity

The computational cost of the proposed fast leave-one-out cross validation can be

represented using O(N3 + N). The first part O(N3) is the computational cost of

the matrix inversion for P, which is related to the sample size of the training dataset.
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Algorithm 3.1: Projected Sub-gradient Descent Algorithm for version 1
Input: ~α′ , ~α′′

Initialize: µ← 0 and t← 1
Repeat

ỹi = yi − α′i
Pii
−

µ
2C
α
′′
i

Pii
, i = 1, 2, ..., N

di ← ~1{ỹiyi > 0}, i = 1, 2, ..., N

µ← µ− 1√
t
diyi

α
′′
i

Pii

If µ > D then µ← D
End if
µ← max(µ, 0)
t← t+ 1
Until convergence
Output: µ

Algorithm 3.2: Projected Sub-gradient Descent Algorithm for version 2
Input: ~α′ , ~α′′

Initialize: λ← 0 and t← 1
Repeat

ỹi = yi − α′i
Pii

+
λα
′′
i

Pii
, i = 1, 2, ..., N

di ← ~1{ỹiyi > 0}, i = 1, 2, ..., N

λ← λ− 1√
t

∑N
i=1 diyi

α
′′
i

Pii

If λ > D then λ← D
End if
λ← max(λ, 0)
t← t+ 1
Until convergence
Output: λ
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The second partO(N) is the computational cost of optimizing Eq. (3.32) in Algorithm

3.1 or Eq. (3.35) in Algorithm 3.2.

In terms of the traditional leave-one-out cross-validation with grid search from

[µ1, µ2, ..., µT ] for µ in the first version and from [λ1, λ2, ..., λT ] for λ in the second

version, the whole computational cost can be represented using T ∗ O(N3 ∗ N) =

T ∗O(N4), which is much more computationally expensive.

3.3 A Case Study on a Real World Bladder Cancer

Dataset

3.3.1 Data Collection and Existing Prediction Model

The dataset employed in this study originated from a retrospective review on the 5-

year survival of patients treated with radical cystectmy for bladder cancer Chan et al.

[2013]. It consists of 117 patient clinical records after radical cystectomy within the

period from 2003 to 2011 in a urology unit in Hong Kong. The data include the results

from preoperative evaluations, such as transurethral resection (TUR) of the bladder

tumor and computed tomography (CT). Tumor stages were classified based on the

2002 American Joint Committee on Cancer guidelines. There was no loss of follow-

up during the study. The 30-day mortality, 5-year cancer-specific mortality, 5-year

other-cause mortality, and the 5-year overall mortality were 3%, 33%, 22% and 55%

respectively. The baseline characteristics of this cohort are described in Table. 3.1.

Referring to the results of statistical analysis reported in Chan et al. [2013] and doctors’

experience, the inputs and output to construct the prediction model are selected and

listed in Table. 3.2.
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Figure 3.3: ONLINE NOMOGRAM PREDICTING THE PROBABILITY OF MORTALITY

DUE TO BLADDER CANCER VERSUS OTHER CAUSES

The existing prediction model can be accessed from CancerNomograms.com

Nomograms. It was created on 11,260 bladder cancer patients treated with radical

cystectomy between 1988 and 2006 within 17 Surveillance, Epidemiology, and End

Results registries in the United States Lughezzani et al. [2011]. Patients were stratified

into 20 groups based on patient age, tumour stage and lymph node stage following

radical cystectomy. A smoothed Poisson regression model was constructed to predict

the probability of overall mortality, cancer-specific mortality and mortality due to other

causes after five years. In this study, we only focus on the five-year overall mortality

outcome. The user interface of the existing model is shown in Fig. 3.3.

It can be observed that a subset of the clinical dataset could be fit into this on-line

tool which contains the features ’age at operation’, ’tumour stage’ and ’lymph node

stage’, and the corresponding probabilistic outputs could thus be obtained. This subset

and the whole clinical dataset form the inverted pyramid dataset which is appropriate

to be used in the proposed output-based transfer LS-SVMs.
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Table 3.1: BASELINE CHARACTERISTICS OF THE COHORT
Demographics/Characteristics No. (%) of patients or mean ± standard deviation

Overall Age<=75 years Age>75 years
No. of patients 117(100) 83(71) 34(29)
Mean age (years) 68±10 64±9 80±4
Gender

Male 99 (85) 72 (87) 27 (79)
Female 18 (15) 11 (13) 7 (21)

Cystectomy
Open 71 (61) 52 (63) 19 (56)
Laparoscopic/ robotic-assisted 46 (39) 31 (37) 15 (44)

Urinary diversion
Ileal conduit 96 (82) 62 (75) 34 (100)
Neo-bladder/ continence diversion 21 (18) 21 (25) 0

Hospital stay duration (mouths)
Mean 22±17 23±18 22±15
Median 18 17 (14-26) 18 (12-24)

Preoperative serum albumin level (g/L) 38±6 39±6 36±7
CCI
0 77 (66) 60 (72) 17 (50)
1-2 38 (32) 22 (27) 16 (47)
>=3 2 (2) 1 (1) 1 (3)

Tumour grade
G0 5 (4) 5 (6) 0
G2 24 (21) 17 (20) 7 (21)
G3 69 (59) 48 (58) 21 (62)
CIS 4 (3) 4 (5) 0
N/A 15 (13) 9 (11) 6 (18)

Tumour stage
NMIBC 34 (29) 25 (30) 9 (26)
T0 11 6 5
Tis 7 7 0
Ta 4 3 1
T1 12 9 3

MIBC 82 (70) 57 (69) 25 (74)
T2 32 23 9
T3 32 23 9
T4 18 11 7
N/A

Lymph node
N0 88 (75) 65 (78) 23 (68)
N1 6 (5) 5 (6) 1 (3)
N2 14 (12) 8 (10) 6 (18)
N3 1 (1) 0 1 (3)
N/A 8 (7) 5 (6) 3 (9)

Follow-up (months)
Mean 31±29 34±31 24±23
Range (0-100) (0-100) (0-77)
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Table 3.2: THE INPUTS AND OUTPUT OF THE PREDICTION MODEL
Input Value(s)

Gender
1 (femele)
2 (male)

Age at operation Normalized to [0, 1]

Surgery Type
1 (open surgery)
2 (laparoscopic surgery)
3 (robotic surgery)

Preoperative serum albumin level Normalized to [0,1]

Tumor stage

1 (T1)
2 (T2)
3 (T3)
4 (T4)

Lymph node stage

0 (N0)
1 (N1)
2 (N2)
3 (N3)

Overall cancer stage

1 (Stage I)
2 (Stage II)
3 (Stage III)
4 (Stage IV)

Follow up period Normalized to [0,1]

Grade
1 (Grade 1)
2 (Grade 2)
3 (Grade 3)

Type of diversion
1 (ideal conduit)
2 (neo bladder)

Ouput Value(s)

5-year overall mortality
1 (dead)
0 (alive)
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3.3.2 Experimental Design

The main purpose of the experiment is to evaluate the performances of the proposed

output-based transfer LS-SVMs with two versions for bladder cancer prognosis and

compare the results with those using traditional machine learning methods, including

LS-SVMs, SVMs, BPNNs and k-NN.

The subset of the real world dataset was fed into the existing on-line tool to

obtain the corresponding probabilistic outputs for the proposed method. This is the

knowledge we want to leverage to assist the target domain construction. Both versions,

called proposed model-v1 and proposed model-v2, were applied to the whole clinical

dataset to train a prediction model with the help of the learned knowledge from the

previous step. The comparative methods were directly applied on the whole clinical

dataset for model construction.

To make our comparison fair, we used grid search with cross validation to discover

the optimal parameters during the training process. We used the polynomial kernel

Wang et al. [2015] and chose the trade-off parameter C and the degree parameter

γ by searching C ∈ {1, 10, 50, 100, 150, 200, 250} and γ ∈ {2e − 5, 2e − 4, 2e −

3, 2e− 2, 2e− 1, 1} for the proposed method, LS-SVMs and SVMs. For BPNNs, the

number of hidden neurons, the momentum and the learning rate were selected from

{3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29}, {0, 0.2, 0.5, 0.9} and {0.01,0.05,0.09}

respectively. For k-NN, the value of the neighbouring parameter k was experimentally

selected from {10,12,15,18,20}. The parameter settings are summarized in the Table

3.3. All the experiments are implemented using 64 bit MATLAB on a computer with

Intel Core i5-6300 2.40 GHz CPU and 8.00GB RAM.
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Table 3.3: PARAMETER SETTINGS OF THE PROPOSED AND COMPARATIVE

METHODS
Models Proposed model v1 & v2 LS-SVMs SVMs BPNNs k-NN

Parameter
settings

C=150
γ = 2e− 2

C=150
γ = 2e− 2

C=200
γ = 2e− 2

number of
hidden neurons=15
learning rate=0.05
momentum=0.9

k=18

3.3.3 Results Analysis

In the experiments, we compare the performance of the proposed model with four

traditional machine learning methods for predicting the five-year overall mortality

of bladder cancer patients after radical cystectomy. From the experimental results

presented in Table 3.4, it can be seen that two versions of our proposed model

achieved the highest classification accuracy of 0.7697 and 0.7618 respectively. Their

performances also stood out in terms of sensitivity, specificity, precision and area under

the curve (AUC) compared to those using other methods. BPNNs and k-NN obtained

comparatively low performance, with a mean classification accuracy of 0.6758 and

0.7061 respectively. The standard LS-SVMs and SVMs exhibited better performance

than BPNNs and k-NN with a mean accuracy of 0.7424 and 0.7485 respectively. The

ROC curves of the proposed model with two versions and the comparison methods

are shown in Fig. 3.4 and Fig. 3.5 respectively. In addition, we also directly use

the existing model to predict the mortality outcome on the same dataset and obtain an

accuracy of 0.6330. The low classification performance is mainly due to the fact that

the existing model uses limited number of features for prediction.

The experimental results demonstrate the proposed models v1 and v2 have the

superior advantages over directly using the existing on-line tool and can achieve

comparatively better classification performance than traditional machine learning
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Table 3.4: PERFORMANCE RESULTS OF THE PROPOSED MODELS AND COMPARA-
TIVE METHODS

Performance Proposed model
v1

Proposed model
v2 LS-SVMs SVMs BPNNs k-NN

Accuracy

Mean 0.7697 0.7618 0.7424 0.7485 0.6758 0.7061
SD 0.0456 0.0621 0.0860 0.0655 0.0516 0.0516

Max 0.8788 0.8824 0.8182 0.7879 0.7879 0.8182
Min 0.6970 0.6176 0.6364 0.6364 0.6061 0.6061

Sensitivity
Mean 0.7848 0.7829 0.7805 0.7551 0.6542 0.6940
SD 0.0678 0.0993 0.1365 0.0806 0.0900 0.0876

Specificity
Mean 0.7579 0.7433 0.7216 0.7507 0.7119 0.7287
SD 0.0625 0.1121 0.1315 0.1105 0.1368 0.0688

Precision
Mean 0.7805 0.7834 0.7462 0.7672 0.7485 0.7497
SD 0.0612 0.0901 0.1261 0.1154 0.1124 0.0767

AUC
Mean 0.8385 0.8369 0.8016 0.7757 0.6667 0.7869
SD 0.0720 0.0839 0.0676 0.0746 0.1210 0.0698

methods without knowledge transfer. Exploring knowledge from the probabilistic

output using the existing on-line model can benefit model construction on the on-

hand clinical dataset, showing that it has great potential for real-world implementation.

The main advantage of this study is that by using either version of the proposed

model, we are able to construct a reliable model on a small number of samples. The

improved accuracy of prognosis could assist doctors to advise the best treatment plans

for patients. Moreover, the proposed model has the capability to work readily with the

existing model or on-line tool in the medical field by leveraging their probabilistic

output knowledge to help the learning process in the current domain of interest.

Importantly, it is not necessary to know the details of the existing model and its

training data, which is very practical in most real-world scenarios where the data and

its modeling are private. In other words, the proposed approach can be regarded as a

module-based model which has the capacity be extended to various medical problems

and situations.
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Figure 3.4: ROC CURVE OF THE PROPOSED MODEL-V1 AND COMPARATIVE

METHODS

Figure 3.5: ROC CURVE OF THE PROPOSED MODEL-V2 AND COMPARATIVE

METHODS
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3.4 Summary

This chapter proposes a novel output-based transfer LS-SVMs model with two versions

to deal with small sample problems in health care data prediction. The proposed model

can leverage the probabilistic outcomes from the existing model or on-line tool to make

the maximum use of small data and guarantee an enhanced generalization capability.

The proposed model can autonomously and quickly decide the influence level on

the target domain caused by the leveraged output knowledge using a fast leave-one-

out cross validation strategy. Importantly, the output-based transfer LS-SVMs model

works readily with the statistical prediction software or on-line tool where the data

and and modeling details are usually private. The proposed model is evaluated on a

real world bladder cancer dataset for prognosis and compared with traditional machine

learning methods. The experimental results show that the proposed model has good

performances with insufficient data and can be well implemented in the real world

health care applications.
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Chapter 4

A Novel Additive LS-SVMs Model for

Predicting Elderly QOL with Missing

Data

*The content of this Chapter was published in Wang et al. [2016a]:

Wang, G., Deng, Z. and Choi, K.S., 2016. ”Tackling missing data in community

health studies using additive LS-SVM classifier,” IEEE Journal of Biomedical and

Health Informatics, 22(2), pp. 579-587.

58



4.1 Introduction

Missing data is a common issue in health care data, and is attributed to various causes.

For example, participants may skip questions in the survey or drop out of the study.

Patients may not quality for certain medical tests, or operators take the incorrect

measurements during the data collection. Any inappropriate treatment of missing

data may consequently deteriorate prediction performance and, as such, the ability

to appropriately handle classification with missing data has always been an essential

demand.

In this chapter, a novel additive LS-SVMs model is proposed to deal with classifi-

cation with missing data. Instead of handling missing data in the data pre-processing

process separately, such as imputation, the proposed model can perform classification

simultaneously with the evaluation of influences on the classification error caused

by missing features using the fast leave-one-out cross validation strategy. Moreover,

the significance levels of missing features can further guide health professionals to

improve the future data collection process.

The novel additive LS-SVMs model is evaluated on a real-world community

health care dataset with missing data for predicting the elderly quality of life (QOL).

The proposed model outperforms four conventional missing data treatment methods,

including case deletion, feature deletion, mean imputation and k-NN imputation,

showing a promising potential for tackling missing data in health care predictive

analytics.

This chapter is organized as follows. Section 4.2 presents the proposed novel

additive LS-SVMs model. Section 4.3 shows the experimental evaluations and results

on the real world community health care dataset. Section 4.4 concludes the chapter.
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4.2 Novel Additive LS-SVMs Model with Missing Data

The proposed novel additive LS-SVMs model and its fast leave-one-out cross-

validation strategy to estimate the influence levels on the classification error caused

by missing features are given below.

4.2.1 Problem Description

Given a training dataset T with N samples, an input dataset X and the corresponding

output dataset Y, where T = {(~x1, y1), · · · , (~xN , yN)}, ~xi = (xi1, x
i
2, · · · , xil, · · · , xid) ∈

X ⊂ Rd and yi ∈ Y = {+1,−1}. Each sample ~xi contains d features. Fig. 4.1(a)

shows the scenario of a normal classification problem, where all the features have

values. On the contrary, Fig. 4.1(b) shows the scenario of the classification with

missing data problem, where data for certain features are missing and denoted by the

symbol ’?’.

4.2.2 Novel Additive LS-SVMs Model

The upper bound of the classification error caused by the l-th missing feature is

considered and denoted as cl (l = 1, 2, · · · , d). Therefore, for the i-th sample, the upper

bound of the classification error caused by all the missing features can be represented

as
∑d

l=1 clI
i
l , where I il is an indicator defined as

I il =


1 if the value of the l-th feature in ~xi (i.e. xil) is missing

0 otherwise
(4.1)

60



Figure 4.1: PATTERN CLASSIFICATION ON (A) COMPLETE AND (B) INCOMPLETE

DATASET

For classification with missing data, by introducing the upper bound cl defined above,

the objective function of the LS-SVMs can be modified into

min
~w,b

1

2
~w2 +

C

2

N∑
i=1

ξ2i

s.t yi = ~wTϕ(~xi) + b+
d∑
l=1

clI
i
l + ξi, i = 1, 2, ..., N

(4.2)

which is mathematically equivalent to

min
~w,b

1

2
~w2 +

C

2

N∑
i=1

(ξi −
d∑
l=1

clI
i
l )

2

s.t yi = ~wTϕ(~xi) + b+ ξi, i = 1, 2, ..., N

(4.3)
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where ϕ(~xi) = (ϕ̃(xi1), ϕ̃(xi2), · · · , ϕ̃(xid)) and ϕ̃(xil) is a feature mapping such that

the kernel function K can be adopted in Eq. (4.3). That is

K(~xi, ~xj) = ϕ(~xi)
Tϕ(~xj) =

d∑
l=1

k(xil, x
j
l ) (4.4)

where

k(xil, x
j
l ) =


k̃(xil, x

j
l ) both xil and xjl are not missing

0 otherwise
(4.5)

Gaussian kernel is adopted in this study, i.e., k̃(xil, x
j
l ) = e

−(xil−x
j
l
)2

δ2 , where δ is the

kernel width. Obviously, K(~xi, ~xj) in Eq. (4.4) is an additive Gaussian kernel, which

can be calculated depending on whether each feature contains missing values or not.

It can be observed that after subtracting the classification error caused by missing

features in the training dataset, the optimization problem in Eq. (4.3) is essentially to

minimize the total classification error caused by the features without missing data. If

there is no missing data in the training dataset, i.e., I il (i = 1, · · · , N, l = 1, · · · , d)

is zero, Eq. (4.3) becomes the objective function of the standard LS-SVMs. The

Lagrangian J of Eq. (4.3) gives the unconstrained minimization problem:

J = 1
2
~w2+ C

2

∑N
i=1(ξi −

∑d
l=1 clIl)

2 +
∑N

i=1 αi(yi − ~wTϕ(~xi)− b− ξi) (4.6)

where ~α = (α1, α2, ..., αN) ∈ RN is the vector of all Lagrangian multipliers. The

system of linear equations can be obtained

N∑
j=1

αiϕ(~xj)
Tϕ(~xi) + b+

αi
C

= yi −
d∑
l=1

clI
i
l (4.7)
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Using the kernel trick, ϕ(~xj)
Tϕ(~xi) is replaced by ~K(~xi, ~xj), Eq. (4.7) can be further

written in matrix form asK + 1
C
~Λ ~1

~1T 0


~α
b

 =

~y −∑d
l=1 cl

~Il

0

 (4.8)

where ~y is the actual label vector of all the training samples, i.e., ~y = (y1, y2, · · · , yN),

~Λ is a diagonal matrix with unity diagonal entries, and ~Il = (I1l , I
2
l , · · · , INl )T .

Lastly, the model parameters can be calculated simply by using matrix inversion:

~α
b

 = Q

~y −∑d
l=1 cl

~Il

0

 (4.9)

where Q = H−1 and H is the first matrix from the left in Eq. (4.8). Once cl is

determined, ~α, ~w and b can be readily obtained. Therefore, we can easily obtain the

decision function for the new sample ~xt as below:

f(~xt) =


~wTϕ(~xt) + b if ~xt has no missing value

~wTϕ(~xt) + b+
d∑
l=1

clI
t
l otherwise

(4.10)

The proposed model can be used to solve multi-class classification problems by using

the one-against-all strategy. Thus, the predicted output of the new sample ~xt is

determined by max
k=1,··· ,M

yk(~xt), where M denotes the number of the classes.
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4.2.3 Fast Leave-one-out Cross Validation Strategy

4.2.3.1 Fast Leave-one-out Cross Validation for Parameter Tuning

The classification performance of the proposed model depends on the value of the

parameter cl. The fast leave-one-out cross validation strategy introduced in Chapter

3.2.5 is employed to determine the optimal value of cl.

Similarly, by defining
[
~α
′T , b

′]T
= Q

[
~yT , 0

]T ,
[
~α
′′T , b

′′]T
= Q

[
~ITl , 0

]T
, and

~α = ~α
′ −

∑d
l=1 cl~α

′′

l , the leave-one-out output ỹi of the i-th training sample can be

represented as

ỹi = yi −
α
′
i

Qii

+

∑d
l=1 clα

′′

li

Qii

(4.11)

The loss function below is adopted to avoid local minima issues:

l(ỹi, yi) = |1− ỹiyi|+ =

∣∣∣∣∣yiα
′
i −
∑d

l=1 clα
′′

li

Qii

∣∣∣∣∣
+

, (4.12)

where |x|+ = max{0, x}. Finally, the objective function becomes:

min
cl

N∑
i=i

l(ỹi, yi)

s.t ||~c||2 ≤ D

(4.13)

where D is a constant and the L2 norm constraint is added on the vector ~c as a form

of regularization. This optimization process can be implemented by a projected sub-

gradient descent algorithm. The pseudo-code is given in Algorithm 4.
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Algorithm 4: Projected Sub-gradient Descent Algorithm
Input: ~α′ , ~α′′l
Initialize: ~c← ~0 and t← 1
Repeat

ỹi = yi − α′i
~Qii

+
∑d
l=1 clα

′′
li

~Qii
, i = 1, 2, ..., N

di ← ~1{ỹiyi > 0}, i = 1, 2, ..., N

cl ← cl − 1√
t
diyi

α
′′
li

Qii
, l = 1, 2, · · · , d

If ||~c||2 > D then ~c← ~c
‖~c‖2D

End if
t← t+ 1
Until convergence
Output: ~c

4.2.3.2 Interpretation of Influences of Missing Features

The parameter cl represents the influence level on the classification error caused by

the missing feature l, which consequently provides the guidance for the future data

collection.

Given a multi-class classification task, after obtaining the corresponding value of

ck for M classes (k = 1, 2, · · · ,M ), two cases are considered as below:

Case 1: If ckl for each class equals 0 or max
k=1,2,··· ,M

|ckl | is less than a given small

positive threshold, the upper bound of the influence of the l-th feature can be regarded

as negligible.

Case 2: If min
k=1,2,··· ,M

|ckl |, denoted as Inf, is greater than 0 or a given small

positive threshold, the l-th feature has a certain extent of influence on the classification

performance. The greater the value of Inf is, the more significantly the influence on the

classification performance are caused by this missing feature.
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4.3 A Case Study on a Real World Community Health

Care Dataset

4.3.1 Data Collection

The real-world dataset adopted in this study was collected from the PolyU-Henry G.

Leong Mobile Integrative Health Centre (MIHC), which is a nurse-led mobile clinic in

Hong Kong providing free health screening services for elderly people at the age of 60

years or above Choi et al. [2013]. The data were collected in August 2013 from two

communities, which include demographics, socioeconomic status, health history and

the outcomes of several health assessments of 444 clients. The participants were asked

to complete a questionnaire about their QOL.

Some data were missing from the dataset, which were mainly caused by (i)

language barriers due to incomprehension of dialectical differences, (ii) physical

frailty, hearing or cognitive impairment, (iii) clients lacking patience to finish the health

assessments, (iv) time conflicts, and (v) reluctance to disclose personal information due

to privacy concerns. There are 33 features in total, in which 14 of them are without

missing data. 14 of them are with missing data in 5% of all the samples. 4 of them are

with missing data in 5% to 10% of all the samples. One feature is with missing data in

more than half (60.1%) of all the samples. Therefore, in total, 19 of 33 features in the

dataset contain missing values. Table 4.1 shows the extent of missing data for certain

features. In the dataset, demographic data including gender, age and marital status;

socioeconomic data including the type of residency, relationships with roommates and

social participation; and health history data including smoking and drinking habits

and chronic health conditions are available. Data obtained from a series of health
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Table 4.1: THE EXTENT OF MISSING DATA IN CERTAIN FEATURES (N = 444)

Features
No. (%) of

missing values Mean±SD
No. (%) of

patients
Age 0 75.30±7.87
Gender 0

Male 136(30.6)
Female 308(69.4)

Mobility 0
Wheel chair 8 (1.8)
Walking stick 53(11.9)
Independent 382 (86.0)
Walking frame 1 (.2)

Social participation 0
Unengaged 99 (22.3)
Partial unengaged 119 (26.8)
Engaged 226 (50.9)

Marital status 7 (1.6)
Single 25 (5.6)
Married 250 (56.3)
Widowed 138 (31.1)
Separated/divorced 24 (5.4)

Residence 7 (1.6)
Private housing 95 (21.4)
Public housing 197 (44.4)
Elderly home 2 (0.5)
Nursing home 7 (1.6)
Others 136 (30.6)

Smoking habit 7 (1.6)
Smoker 24 (5.4)
Non-smoker 413 (93.0)

Drinking habit 7 (1.6)
Drinker 52 (11.7)
Non-drinker 385 (86.7)

Hypertension 0
Without hypertension 185 (41.7)
With hypertension 259 (58.3)

Number of co-morbidities 267 (60.1) 2.16±1.62
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assessments are also available and described in Table. 4.2.
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Table 4.3: RE-CATEGORIZATION OF THE RESPONSES TO OVERALL QOL
Original score Re-categorized score QOL description

1,2 1 poor
3 2 neutral

4,5 3 good

4.3.2 Data pre-processing

The scores measured using the WHO quality of Life-BREF questionnaire (Hong Kong

version) (WHOQOL-BREF (HK)) are re-categorized into three classes, namely, (i) ’1’

indicating poor QOL, (ii) ’2’ for neutral QOL and (iii) ’3’ for good QOL, by grouping

participants choosing ’1’ and ’2’ in the original 5-point scale into the first class and

those choosing ’4’ and ’5’ into the third class, as shown in Table 4.3.

4.3.3 Results Analysis

In the experiments, the novel additive LS-SVMs model is verified and evaluated on

the real-world community dataset with missing data for predicting the elderly QOL.

The performance is compared with those using methods (A) to (D), referring to (A)

case deletion, (B) feature deletion, (C) mean imputation and (D) k-NN imputation

respectively. For the proposed model, the missing data were handled simultaneously

with the construction of the classification model. For methods (A) to (D), missing

data are handled in the data pre-processing stage followed by the traditional SVMs

for classification. The experimental results are shown in Table 4.4. The classification

performance of method (A) is also compared with those using other methods via t-

test. We find that the proposed method can achieve a better classification performance.

Moreover, the influence level on the classification error caused by the missing feature

can be represented using Inf. Table 4.5 lists the values of Inf with missing features in
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Table 4.4: CLASSIFICATION ACCURACIES OF THE PROPOSED AND COMPARATIVE

METHODS

Performances
Methods

proposed method method (A) method (B) method (C) method (D)

Accuracy

Mean 0.7438 0.7149 0.7187 0.6896 0.7052
SD 0.0215 0.0441 0.0407 0.0163 0.0297

Max. 0.7612 0.7447 0.7836 0.7164 0.7487
Min. 0.7164 0.6783 0.6716 0.6643 0.6816

p-value - 0.002 0.003 0.000 0.008

descending order.

From Table 4.4, we can observe that the proposed model achieved the best

classification performance with the mean accuracy of 0.7438 and the maximum

accuracy of 0.7612. The prediction models developed using methods (A), (B), (C) and

(D) had comparatively lower performances. Their mean classification accuracies were

0.7149, 0.7187, 0.6896 and 0.7052 respectively. The performance of the proposed

model was statistically better than those using other methods as evidence from the

results of the t-tests. In general, in this real-world community health care application,

the proposed additive LS-SVMs model outperformed the other methods that employ

conventional treatments for handling missing data and SVMs for classification.

In terms of the running time, the proposed model with the fast leave-one-out cross

validation strategy took around 60 seconds (on a computer equipped with a 3.4 GHz

Intel Core i7-4930K processor and 16 GB RAM), which cannot be achieved if the

missing data were handled using the standard leave-one-out cross-validation. Given d

missing features in a training dataset of size N , suppose it takes t seconds to randomly

assign a value from 0.0 to 1.0 at a step size of 0.001 to cl l = 1, 2, , d, by using

the standard leave-one-out cross-validation, the running time can be represented as

(1/0.001)d×N×t = (1000)dNt. We can observe that it is impractical when d is large.

On the other hand, the proposed model only took around 60 seconds for classification
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Table 4.5: INFLUENCES OF MISSING FEATURES
Missing features Inf

Number of co-morbidity 0.5837
Duration of doing exercise (each time) 0.0859
Skeletal muscle mass 0.0585
Body fat mass 0.0585
BFP 0.0585
BMI 0.0311
Roommate 0.0173
Marital status 0.0173
Residence 0.0173
Smoking habit 0.0173
Drinking habit 0.0173
VAS for pain 0.0132
Day of doing exercise (per week) 0.0125
Blood glucose 0.0124
Body temperature 0.0124
Relation with roommate(s) 0.0111
Abbreviated mental test (AMT) score 0.0072
WHR 0.0000
30-s CST test 0.0000
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with the community health care dataset although there were 19 missing features in it.

The proposed additive LS-SVMs model can also provide information about the

influence on the classification performance caused by the missing feature. For the

multi-class classification, if Inf of the missing feature is equal to zero or negligibly

small, it can be inferred that this feature has little effect in the classification process. As

shown in Table 4.5, features ’30-s CST test’ and ’WHR’ are with Inf of zero. Therefore,

they are not significant features for predicting QOL and the effect of missing data is

minimal. On the other hand, the feature ’Number of co-morbidity’ achieves the highest

Inf of (0.5837), indicating that this feature has the high level of importance on the

prediction performance and the effect of missing data was significant. Besides, the Inf

of features associated with body composition analysis (e.g. skeletal muscle mass, body

fat mass, BFP and BMI) were higher than those associated with socio-demographic

characteristics (e.g. marital status, residence, roommate), which were in turn higher

than those associated with health history (e.g. drinking habit and smoking habit) and

health assessments (e.g. pain and AMT score). The results suggest that more attention

should be paid to those features with high values of Inf so as to guarantee better data

quality in the future data collection.

4.4 Summary

This chapter proposes a novel additive LS-SVMs model to tackle the classification with

missing data in health care. Instead of handling missing data in the data pre-processing

stage, the proposed model can directly perform the classification with missing data by

simultaneously considering the influences on the classification error caused by missing

features using the fast leave-one-out cross validation strategy. Moreover, the influence
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levels of missing features can give the relative importance of those features and guide

health professionals to further improve the data collection in future. The proposed

model is evaluated on a real world community health care dataset for predicting the

elderly QOL and compared with the traditional data imputation methods, namely, case

deletion, features deletion, mean imputation and k-NN imputation, followed by the

traditional SVMs. The experimental results show that the proposed model can achieve

the good performance with missing data and provide insights into missing features.
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Chapter 5

A Transfer-based Additive LS-SVMs

Model for Predicting Elderly QOL

with Missing Data

5.1 Introduction

In this chapter, a transfer-based additive LS-SVMs model is proposed from a transfer

learning perspective to handle classification with missing data. The LS-SVMs

framework is adopted in the source and target domains, where the source domain

represents the complete portion of the dataset, while the target domain represents the

whole dataset with missing data. The proposed model aims to leverage the model-

based knowledge from the source domain to the target domain by finding a correlation

between weight parameters of two domains within the LS-SVMs framework. The

proposed model can simultaneously evaluate the influence on the classification error

caused by each incomplete sample using a fast leave-one-out cross validation strategy,
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which provides distinct information for data cleaning to guarantee data quality. For

example, incomplete samples with higher error influences can be discovered and

removed from the dataset.

The novel transfer-based additive LS-SVMs model is evaluated on the public UCI

datasets with various combinations of missing data rates and missing features, and

compared with traditional missing data treatment methods, including case deletion,

mean imputation and k-NN imputation followed by the traditional LS-SVMs. The

proposed model is also conducted on the community heath care dataset for predicting

the elderly QOL, which particularly highlights the contributions and benefits of the

proposed model to the real world application.

We must notice that although the proposed model in this chapter and the novel

additive LS-SVMs model presented in Chapter 4 are both based on the LS-SVMs

framework using the additive kernel for missing data classification, there are two main

differences between them. First, the former model introduces the transfer learning

mechanism to minimize the disagreement between the source and target domains on

the incomplete data, while the later one does not. Second, the former model introduces

the influence levels of missing features in the dataset, while the latter one introduces

the influence levels of incomplete samples in the dataset. The obtained information

from the influence values thus have different meanings for health professionals in real-

world applications.

This chapter is organized as follows. Section 5.2 presents the proposed transfer-

based additive LS-SVMs model in detail. Section 5.3 shows the experimental

evaluations on the UCI public datasets. Section 5.4 shows a case study on a real world

community health care dataset. Section 5.5 concludes the chapter.
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5.2 Transfer-based Additive LS-SVMs Model with Missing

data

The proposed transfer-based additive LS-SVMs model and its fast leave-one-out cross-

validation strategy to estimate the influence levels on the classification error caused by

incomplete samples are given below.

5.2.1 Problem Description

Given a training dataset S with N samples, the input dataset is denoted as X, the

corresponding output dataset is denoted as Y, where S = {(~x1, y1), ..., (~xN , yN)},

~xl = (xl1, x
l
2, ..., x

l
d) ∈ X ⊂ Rd and yl ∈ Y = {+1,−1}. Each sample ~xi contains

d features. S consists of two data portions of data (N = N1 + N2), N1 includes the

complete data samples (~x1, ~x2, ..., ~xN1) and N2 includes the incomplete data samples

(~xN1+1,~xN1+2,...,~xN1+N2). We want to find a decision function f : X → Y, such that

it can find the matching y for any new incoming sample ~x. Fig. 5.1 demonstrates the

dataset S where missing data are denoted by the symbol ?.

5.2.2 Framework of the Proposed Model

The framework of the proposed transfer-based additive LS-SVMs model is illustrated

in Fig. 5.2. The source domain contains complete data N1, and the target domain

contains both N1 and incomplete data N2. The additive LS-SVMs classifier is first

constructed on the source domain and then a transfer-based additive LS-SVMs model

is constructed for classification in the target domain with missing data.
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Figure 5.1: DATASET REPRESENTATION

5.2.3 Adaptive Regularization

In order to find the function H in the hypothesis space which approximates the

unknown decision function f , the learning process can be formalized as an optimiza-

tion problem to minimize the structural risk:

ηΩ(f) +Remp(f(~xl), yl) (5.1)

where η > 0 is a regularization parameter which balances good generalization

performance with the smoothness or simplicity enforced by a small Ω(f). The

empirical risk Remp(f) can be those using square loss or the -insensitive loss. To

maximize the margin of classification in the feature space using the regularization term

1
2
‖~w‖2, we get:

1

2
‖~w‖2 +Remp(f(~xl), yl) (5.2)

In the proposed model, the distribution Ps in the source domain and the distribution

Pt in the target domain are related, and the model on each domain shares the similarity
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Figure 5.2: THE FRAMEWORK OF THE PROPOSED TRANSFER-BASED ADDITIVE LS-
SVMS

to some extent. Thus, the model knowledge learned from the source domain can be

leveraged to help the learning process in the target domain. For example, we can first

find the optimal ~ws by minimizing Eq. (5.2) in the source domain. When we encounter

a new target domain, we can construct a model in which ~wt gets as close as possible

to the known ~ws. Through editing the regularization term, the optimization problem

becomes to minimize

1

2
‖~wt − ~ws‖2 +Remp(f(~xl), yl) (5.3)

where f(~xl) on the target domain is parameterized in terms of ~wt.

In addition, to evaluate the similarity between ~ws and ~wt in the optimization

problem above, we can further edit the regularization term into ‖~wt − λ~ws‖ by adding
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the weighting factor λ.

5.2.4 Transfer-based Additive LS-SVMs Model

To construct the proposed transfer-based additive LS-SVMs model for missing data,

we use λ~ws as reference in the regularization term in Eq. (5.3), and the square loss

Remp(f(~xl), yl) = (f(~xl)− yl)2. Moreover, the upper bound of the classification error

caused by each incomplete sample in the target domain is denoted as cl. The learning

parameters λ and cl are selected by the fast leave-one-out cross validation strategy.

Thus, the proposed model is obtained by reformulating the minimization problem of

LS-SVMs as:

min
~w,b

1

2
(~w − λ~ws)2 +

C

2

N∑
l=1

(ξl − cl)2

s.t. yl =
d∑
j=1

~wTj ϕ(xlj)I
l
j + b+ ξl

l = 1, 2, ..., N1 +N2(= N)

(5.4)

where

I lj =

 1 if feature j of the l-th sample has value

0 if feature j of the l-th sample has no value

Since (~x1, ~x2, ..., ~xN1) is a group of the complete data, I lj (l = 1, 2, ..., N1) is set to 1,

and cl (l = 1, 2, ..., N1) is set to 0 accordingly. Also, ϕ(~xl) = (ϕ̃(xl1), ϕ̃(xl2), · · · ,

ϕ̃(xlj), · · · , ϕ̃(xld)) and ϕ̃(xlj) is a feature mapping such that the kernel K below can be

adopted in Eq. (5.4).

K(~xl, ~xk) = ϕ(~xl)
Tϕ(~xk) =

d∑
j=1

k(xlj, x
k
j ) (5.5)

80



where

k(xlj, x
k
j ) =

 k̃(xlj, x
k
j ) both xlj and xkj are not missing

0 otherwise

k̃(xlj, x
k
j ) is a kernel function. In this study, Gaussian function is adopted, i.e.,

k̃(xlj, x
k
j ) = e

−(xlj−x
k
j )

2

σ2 , where σ is the kernel width. It is obvious that K(~xl, ~xk) in

Eq. (5.5) is an additive Gaussian kernel Duvenaud et al. [2011]. The Lagrangian L of

Eq. (5.4) gives the unconstrained minimization problem:

L = 1
2
(~w − λ~ws)2 + C

2

∑N
l=1(ξl − cl)2 +

∑N
l=1 αl(yl −

∑d
j=1w

T
j ϕ(xlj)I

l
j − b− ξl) (5.6)

where ~α ∈ RN is the vector of all Lagrangian multipliers. The system of linear

equations can be obtained

∑N
l=1

∑d
j=1 αlI

k
j I

l
jϕ(xkj )

Tϕ(xlj) + b+ ~αl/C = yl − λ
∑d

j=1wjI
l
jϕ(xlj)− cl (5.7)

Based on a kernel trick, we can replace ϕ(~xl)
Tϕ(~xk) by K(~xl, ~xk), Eq. (5.7) can be

further written in matrix form as:K + 1
C
~Λ ~1

~1T 0


~α
b

 =

~y − ~γ
0

 (5.8)
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where ~Λ is a matrix in which each diagonal entry is one and all other entries are zero,

~y is the real label vector of all the samples in the training dataset and

~γ =



λ
∑d

j=1w
s
jI

1
j φ(x1j)

λ
∑d

j=1w
s
jI
N1
j φ(xN1

j )

λ
∑d

j=1w
s
jI
N1+1
j φ(xN1+1

j ) + cN1+1

λ
∑d

j=1w
s
jI
N1+2
j φ(xN1+2

j ) + cN1+2

...

λ
∑d

j=1w
s
jI
N
j φ(xNj ) + cN


= λ



∑d
j=1w

s
jI

1
j φ(x1j)

...∑d
j=1w

s
jI
N1
j φ(xN1

j )∑d
j=1w

s
jI
N1+1
j φ(xN1+1

j )∑d
j=1w

s
jI
N1+2
j φ(xN1+2

j )

...∑d
j=1w

s
jI
N
j φ(xNj )



+ cN1+1



0

...

0

1

0

...

0



+ cN1+2



0

...

0

0

1

...

0



+ · · ·+ cN



0

...

0

0

0

...

1


(5.9)

Since (~x1, ~x2, ..., ~xN1) is a group of the complete data, cl (l = 1, · · · , N1) should be

~0. Thus, we do not represent them in the above formula. Our goal is to evaluate cl

(l = N1 + 1, · · · , N) and λ using the proposed fast leave-one-out cross validation. Eq.

(5.8) can be further rewritten into

K + 1
C
~Λ ~1

~1T 0


~α
b

 =

~y − λ~I1 − cN1+1
~I2 − cN1+2

~I3 − · · · − cN ~IN2+1

0

 =

~y −∑N2+1
l=1 βl~Il

0


(5.10)

where ~β = (λ, cN1+1, cN1+2, · · · , cN), and

~I1 =



∑d
j=1w

s
jI

1
j φ(x1j)∑d

j=1w
s
jI
N1
j φ(xN1

j )∑d
j=1w

s
jI
N1+1
j φ(xN1+1

j )∑d
j=1w

s
jI
N1+2
j φ(xN1+2

j )

...∑d
j=1w

s
jI
N
j φ(xNj )


, ~I2 =



0

...

0

−1

0

...

0



, ~I3 =



0

...

0

0

−1

...

0



, · · · , ~IN2+1 =



0

...

0

0

0

...

−1


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Lastly, the model parameters can be calculated simply by using a matrix inversion:

~α
b

 = Q

~y −∑N2+1
l=1 βl~Il

0

 (5.11)

where Q = H−1 and H is the first matrix from the left in Eq. (5.10). ~w can be

determined by

~w = λ~ws +
N∑
l=1

αl(I
l
1φ(xl1), I

l
2φ(xl2), ..., I

l
dφ(xld)) (5.12)

Therefore, the decision function for the new sample ~xt is

f(~xt) =
d∑
j=1

(
λwsj +

N∑
l=1

αlI
l
jφ(xlj)

)
φ(xtj) + b

=
d∑
j=1

(
λwsjφ(xtj) +

N∑
l=1

αlI
l
jk(xlj, x

t
j)

)
+ b

(5.13)

The proposed model can be used to solve multi-class classification problems by using

the one-against-all strategy. Thus, the predicted output of the new sample ~xt is

determined by max
k=1,...,M

yk(~xt), where M denotes the number of the classes.

5.2.5 Fast Leave-one-out Cross Validation Strategy

5.2.5.1 Fast Leave-one-out Cross Validation for Parameter Tuning

The classification performance of the proposed model relies on the value of the

parameter ~β. The fast version of the leave-one-out cross-validation strategy introduced

in Chapter 3.2.5 is employed to find the optimal value of ~β.
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Similarly, by defining
[
~α
′T , b

′]T
= Q

[
~yT , 0

]
,
[
~α
′′T , b

′′]
= Q

[
~ITl , 0

]
, and ~α =

~α
′ −
∑N2+1

l=1 β ~αl
′′
, the predicted label of the i-th training sample can be represented as

ỹi = yi −
α
′
i

Qii

+

∑N2+1
l=1 βlα

′′

li

Qii

(5.14)

The loss function below is adopted to avoid local minima issues:

l(ỹi, yi) = |1− ỹiyi|+ =

∣∣∣∣∣yiα
′
i −
∑N2+1

l=1 βlα
′′

li

Qii

∣∣∣∣∣
+

(5.15)

where |x|+ = max{0, x}. Finally, the objective function becomes:

min
βl

N∑
i=i

l(ỹi, yi)

s.t ‖~β‖2 ≤ D

(5.16)

where D is a constant and the L2 norm constraint is added on the vector ~β.

This optimization process can be implemented by a projected sub-gradient descent

algorithm. The pseudo-code is given in Algorithm 5.

5.2.5.2 Interpretation of Influences of Incomplete Samples

The parameter cl provides the relative influence level on the classification error caused

by of each incomplete sample, which consequently helps us to clean data and further

improve the quality of data.

If |cl| or max
k=1,...,M

|ckl | of the l-th incomplete sample is greater than a given small

positive threshold, the influence on the classification error from this incomplete sample

is serious and should be cleaned from the dataset. Inversely, if |cl| or min
k=1,...,M

|ckl | of the
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Algorithm 5: Projected Sub-gradient Descent Algorithm
Input: ~α′ , ~α′′l
Initialize: ~β ← ~0 and t← 1
Repeat

ỹi = yi − α′i
~Qii

+
∑N2+1
l=1 βlα

′′
li

~Qii
, i = 1, 2, ..., N

di ← ~1{ỹiyi > 0}, i = 1, 2, ..., N

βl ← βl − 1√
t

∑N
i=1 diyi

α
′′
li

Qii
, l = 1, 2, ..., N2 + 1

If ‖~β‖2 > D then ~β ← ~β

‖~β‖2
D

End if
β1 ← max(β1, 0)
t← t+ 1
Until convergence
Output: ~β

l-th incomplete sample is less than a given small positive threshold, the influence on

the classification error caused by this incomplete sample is tolerable and this sample

can be kept in the training dataset.

5.2.6 Computational Complexity

One highlight in the proposed model is its fast computational ability. Its computational

cost contains three parts, which can be represented as O(N3
1 +N3 +N(N2 + 1)). The

first part includes the model knowledge obtained using LS-SVMs on the source domain

N1. Therefore, the complexity of this part is O(N3
1 ), which is the complexity of LS-

SVMs. The second part includes the calculation of the matrix Q by the inverse related

to the training dataset on the target domain, and so the corresponding computational

complexity becomes O(N3). The third part includes the computational complexity of

each iteration in the Algorithm 5 to optimize Eq. (5.16), which can be represented as

O((N2 + 1)N).

Let us consider the traditional cross-validation strategy. If a standard LS-SVMs is
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Table 5.1: DATASET DESCRIPTIONS

Dataset
Number

of samples Features Class Class(%)

Surgery 470 17
F
T

85.11
14.89

Diabetic 1151 19
0
1

46.92
53.08

Pima 769 8
0
1

65.02
34.98

Bupa 345 6
1
2

42.03
57.97

Breast 699 9
2
4

65.52
34.48

Titanic 887 6
0
1

61.44
38.56

German 1000 24
1
2

70.00
30.00

adopted and T (≥ 3) grid values for each parameter are simply considered, the whole

time complexity would become O(N3
1 + (N3 ∗ N)T (N2+1)) = O(N3

1 + N4T (N2+1))

which is much more computationally expensive, and even impractical, than O(N3
1 +

N3 +N(N2 + 1)) occupied by the proposed fast cross-validation strategy.

5.3 Experiments

5.3.1 UCI Datasets

In the experiments, seven public datasets (Surgery, Diabetic, Pima, Bupa, Breast,

Titanic and German) were adopted. The original breast dataset has missing values,

which were removed during data processing in order to fully control the missing data

in our experiments. The rest of datasets are complete with no missing data. Table 5.1

summarizes the datasets adopted in this work.
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5.3.2 Experimental Design

The main purpose of the experiments conducted in this work is to evaluate the

performance of the proposed transfer-based additive LS-SVMs model for missing data,

compared to traditional missing data classification methods, denoted as follows:

(A) Case deletion all samples with missing values were removed.

(B) Mean imputation missing values for a certain feature were replaced with the mean

of values of complete samples for that feature.

(C) k-NN imputation missing values were replaced with the weighted mean of the k

nearest-neighbour columns.

Using the proposed method, missing data was assembled by constructing a

classifier. Using the comparative methods (A), (B) and (C), missing data were first

manipulated, and then both standard LS-SVMs and SVMs classifiers were used on

the processed data for model construction. To make the comparison fair, we adopted

the additive Gaussian kernel on both proposed and comparative methods. We first

calculated the standard deviation of each feature in the dataset and then took their

average value as σ. Accordingly, we established a trade-off parameter C and a

Gaussian kernel parameter σ by searching C ∈ {1, 10, 50, 100, 1000, 10000} and

σ ∈ {σ/16, σ/8, σ/4, σ/2, σ, 2σ, 4σ, 8σ, 16σ}. Additionally, we obtained ~ws from

the source domain for the proposed model transfer method in advance. Finding an

optimal value for the neighbouring parameter k for the method (C) was a major issue.

The missing values were filled using estimated values from their 1, 3, 7, 9 and 10

nearest neighbours. Due to the space limitations, we only show results from the 3 and

10 nearest neighbours, identified as k-NN3 and k-NN10 respectively in this work. All

the experiments were implemented using 64-bit MATLAB on a computer with an Intel
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Core i5-6300 2.40 GHz CPU and 8.00GB RAM.

Missing data were artificially inserted in different features with different propor-

tions into the public datasets. We first selected the first, second and third most relevant

feature(s) using wrapper and filter techniques, then modified their values to unknown.

Doing this allowed us to consider that less relevant or non relevant features might

not contribute to classifier construction or even compromise the experimental analysis.

We also inserted various proportions of missing data in the datasets (10%, 20%, 30%,

40%, 50%, 60%) such that we could analyse the corresponding performance of the

classifiers.

5.3.3 Experimental Results Analysis

The 10-fold cross validation strategy was used in the experiments for performance

evaluation, to ensure that every sample from the dataset had a chance to be used in

the training and testing sets. Here, the dataset was randomly divided into ten subsets.

The model was built using nine subsets and tested on the remaining one. This process

was repeated 10 times, and the mean and standard deviation of accuracy in the 10-fold

cross validation procedure was calculated.

Tables 5.2-5.8 display the numerical experimental results of the proposed and

comparative methods on seven public datasets in terms of accuracy. Figure 5.5 use line

graphs to further demonstrate the change tendencies of performances with different

missing data rates. In order to detect significant differences among the performances

of the proposed and comparative methods, we also carried out the Friedman ranking

test followed by Holm post-hoc test Demšar [2006]; Garcia and Herrera [2008] for

multiple comparisons on seven datasets. The Friedman ranking test was used to
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evaluate whether there was a statistically significant difference among all the methods.

If the p-value is smaller than 0.05, the null hypothesis is rejected and there is significant

difference. The Holm post-hoc test was used to further verify if there was a statistical

difference between the best Friedman ranking method and each of the rest, and the

hypothesis of equivalence of the methods is rejected if p < α/i. Tables 5.11 and 5.12

list the corresponding statistical results about Friedman ranking test and Holm post-

hoc test, respectively. According to these results, we make the following observations:

(1) In most cases, our proposed classifier achieved better classification performances

than those using other comparative methods. This indicates that our proposed

classifier, by leveraging the knowledge learned from the model on the source domain

to the target domain, has the ability to perform classification with missing data

and achieve advantageous performances compared with the traditional missing data

treatments followed by LS-SVMs or SVMs.

(2) In very few cases, with a specific combination of the missing data rate and missing

feature(s), the performance results of our proposed method were lower than those

using the case deletion method. For example, in Table 5.6, when there were 40%

missing data in the Breast dataset, (case deletion + SVMs) achieved marginally higher

accuracies than the other methods. The similar situation occurs in Table 5.3, when

there were 20% missing data in the Diabetic dataset. This might be due to the

reason that those randomly selected missing data coincidently had the noise and thus

data removal enhanced the classification performance, particularly of the SVM which

suffers from the noise sensitivity problem. Also, there are few cases in Tables 5.2 and

5.5 that the proposed method was beaten by (k-NN3+SVMs) and (k-NN10+SVMs).

We noticed that these usually occurred when the missing data rate was comparatively

higher (≥ 30%), which may greatly fluctuate the classification performance. In terms
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of Tables 5.11 and 5.12, there are significant differences between the proposed method

and all the comparative methods except (case deletion + SVMs) (0.171857 > 0.05) in

terms of accuracy, we must notice that the proposed classifier also has the advantage on

data cleaning via the fast leave-one-out cross validation strategy, which case deletion

and all other imputation methods cannot achieve. Further details are discussed in the

case study of the real world dataset.

5.4 A Case Study on a Real World Community Health

Care Dataset

5.4.1 Data Collection and Pre-processing

In this case study, the proposed model was evaluated on the same community health

care dataset introduced in Chapter 4.3.1 for predicting the elderly QOL. The range of

QOL scores recorded under the World Health Organization questionnaire on quality of

life: short form Hong Kong version (WHOQOL-BREF(HK)) framework Leung et al.

[1997, 2005] lacked extreme values for an overall quality of life score on a 1 to 5 scale.

Therefore, some data pre-processing was required. To avoid unintended bias in the

training set, these values were re-mapped to a scale of 3, where ”1” indicates poor, ”2”

indicates neutral, and ”3” indicates good quality of life.

5.4.2 Challenge

Using 33 features inherent in the community health care dataset, we intended to

construct a classifier to predict the quality of life of elderly patients using the same

scale mentioned above - poor, neutral, and good. However, in this dataset 19 of the 33
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features, and 159 of the 444 patient records, contain missing values, which presents

problems for constructing a prediction model.

5.4.3 Results Analysis

Table 5.9 and Fig. 5.3 demonstrate that the proposed model provided the best

classification performance. The mean accuracy of the proposed method was 0.7258

among all the methods. The running time of the proposed method which had the fast

leave-one-out cross validation was 4.03 seconds. Thus, in this practical application,

the proposed transfer-based additive LS-SVM model outperforms both conventional

methods and the standard LS-SVMs classifier for missing data classification.

Additionally, the influence of each incomplete sample in the training dataset can be

determined by |cl| (binary classification) or max
k=1,2,3

|ckl | (the multi-class classification)

obtained during the classification process. We performed data cleaning on the

community health care dataset and observed the corresponding classification results

on the cleaned dataset. Fig. 5.4 shows max
k=1,2,3

|ckl | of each incomplete sample in the

community health care training dataset. We can observe that the max
k=1,2,3

|ckl | ranged

from 0 to 1.8499. In fact, the max
k=1,2,3

|ckl | of all the samples were below 1 except

one (1.8499), which indicated that this incomplete sample had a comparatively big

influence on the classification error and must be removed. Based on the range of these

values, the threshold was set to 0.6, 0.65, 0.80, 1.00. The l-th incomplete sample

whose max
k=1,2,3

|ckl | was bigger than the chosen threshold was then removed and the

corresponding performance results were displayed in Table. 5.10. We observe that

the performance after data cleaning was maintained or improved, to a certain extent,

by given different thresholds. The best classification accuracy achieved was 0.7327
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when the incomplete samples with max
k=1,2,3

|ckl | greater than 0.8 were removed. This

result shows that the proposed classifier has the ability to clean unnecessary incomplete

samples in the real-world dataset based on their influences on the classification error.

5.4.4 Contribution

Due to the complex nature of the way the mobile integrative health centre (MIHC)

acquires data, any automated predictive algorithm that could decrease the workload

for staff nurses would be valuable. More importantly, given the patient type, it is

highly likely that future datasets from the MIHC will contain missing data and any

over-collection of data will only increase the likelihood of missing features. As

previously mentioned, a common reason for missing features is a loss of patience by

the patient or an inability to communicate. Using the proposed method, it is possible

to perform classification directly on the missing data. Moreover, unnecessary samples

are automatically removed by determining which samples have the least impact on

the overall accuracy of the classification when they are missing from the dataset.

Beyond assisting with data cleaning, determining a classifier that effectively handles

the corrupt or missing data samples, may vastly improve the overall performance and

effectiveness of the MIHC itself. If patients and practitioners are less concerned about

fully complying with the rigors of the tests, it is likely that stress levels and therefore

test times will decrease. As a result, interpersonal relationships improve, leading to

increased participation and better overall accuracy, and the cycle perpetuates.
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Table 5.10: PERFORMANCE RESULTS AFTER DATA CLEANING FOR THE

COMMUNITY HEALTH CARE DATASET
Threshold 0.60 0.65 0.80 1.00

Performance 0.7265±0.0212 0.7288±0.0210 0.7327±0.0098 0.7300±0.0331

Table 5.11: AVERAGE RANKINGS OF THE PROPOSED AND COMPARATIVE

METHODS ON SEVEN PUBLIC DATASETS IN TERMS OF AVERAGE ACCURACY (p-
VALUE=0.000704)

Methods Ranking
Proposed method 1

case deletion + SVMs 3
mean imputation + SVMs 5
case deletion + LS-SVMs 5

mean imputation + LS-SVMs 5.4286
k-NN10 + SVMs 5.7143

k-NN10 + LS-SVMs 6.1429
k-NN3 + SVMs 6.7143

k-NN3 + LS-SVMs 7

5.5 Summary

Missing data is an inevitable problem in many real world health prediction applica-

tions. In this chapter, a transfer-based additive LS-SVMs model is proposed to handle

missing data from a transfer learning perspective. The proposed model can learn the

model weights from the source domain with the complete portion of the dataset, and

transfer the learned knowledge to the target domain with missing data. The model

can simultaneously determine the influence on the classification error caused by each

incomplete sample using a fast leave-one-out cross validation strategy, which provides

an alternative way to clean data to further improve the quality of data.

Experiments were conducted to compare the proposed model with different
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Figure 5.5: COMPARATIVE RESULTS OF PROPOSED AND COMPARATIVE METHODS

ON SEVEN PUBLIC DATASETS
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Table 5.12: HOLM POST-HOC COMPARISON RESULTS FOR THE PROPOSED AND

COMPARATIVE METHODS IN TERMS OF AVERAGE ACCURACY WITH α = 0.05
i Methods z-value p-value Holm=α/i
8 k-NN3 + LS-SVMs 4.09878 0.000042 0.00625
7 k-NN3 + SVMs 3.9036 0.000095 0.007143
6 k-NN10 + LS-SVMs 3.51324 0.000443 0.008333
5 k-NN10 + SVMs 3.22047 0.00128 0.01
4 mean imputation + LS-SVMs 3.02529 0.002484 0.0125
3 case deletion + LS-SVMs 2.73252 0.006285 0.016667
2 mean imputation + SVMs 2.73252 0.006285 0.025
1 case deletion + SVMs 1.36626 0.171857 0.05

traditional missing data treatments followed by LS-SVMs using the public UCI

datasets. Experimental results confirm the effectiveness of the proposed model for

classification with different combinations of missing data rates and missing features.

Moreover, the proposed model is employed in a real world prediction of elderly QOL

using a community health care dataset, which highlights the benefits and contributions

of the proposed model to the health care application.
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Chapter 6

A Deep Transfer Additive LS-SVMs

Model for Predicting Elderly QOL

with Imbalance Data

*The content of this Chapter was published in Wang et al. [2017b]:

Wang, G., Zhang, G., Choi, K.S. and Lu, J., ”Deep additive Least Squares Support

Vector Machines for classification with model transfer,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 2017 (Accepted and on-line available)
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6.1 Introduction

The additive kernel LS-SVMs (AK-LS-SVMs) have been widely used in many

applications due to inherent advantages Duvenaud et al. [2011]; Maji et al. [2013];

Vedaldi and Zisserman [2012]. Additive kernels are commonly used specific for

certain tasks including vision recognition, medical data analytics, and some specialized

real-world scenarios Salgado et al. [2016]. Additionally, the analytical solution of AK-

LS-SVMs can help formulate the fast leave-one-out cross-validation error estimate,

which can drastically reduce the computational cost. However, AK-LS-SVMs still

remain two problems. First, the classification performance of AK-LS-SVMs is

comparatively low. Second, grid search for parameter tuning, such as generalization

parameter C is time consuming. To overcome these problems, in this chapter, a

novel model called deep transfer additive LS-SVMs (DTA-LS-SVMs) which stacks

several AK-LS-SVMs based modules in a deep architecture and embeds model transfer

learning is proposed. Considering that class imbalance problems are very common in

the health data, we also gives an imbalanced version of the proposed model called

iDTA-LS-SVMs to deal with imbalanced datasets. The generalization performances

of the proposed model and its imbalanced version are expected to be improved by

augmenting data input space via the hierarchical architecture, such that the manifold

structure of the original data can be opened up to make it more separable. Besides,

transfer learning is embedded to guarantee the consistency between adjacent modules

to further enhance the higher module’ classification capability. In the proposed model,

the regularization parameter in each module can be randomly selected which also

simplifies the learning process.

Extensive experiments are conducted on the public UCI datasets to compare the
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performances of the proposed model and the traditional SVMs and LS-SVMs using

additive kernels. The results show that DTA-LS-SVMs and iDTA-LS-SVMs can

achieve better classification performance at a faster learning speed. A case study

is conducted on the community health care dataset for predicting the elderly QOL,

demonstrating the advantages of using the proposed model to handle class imbalance

problems in the practical application in health care.

This chapter is organized as follows. Section 6.2 presents the proposed DTA-

LS-SVMs and its imbalanced version iDTA-LS-SVMs. Section 6.3 extends the

proposed model on class imbalance problems. Section 6.4 shows the experimental

evaluations on the UCI public datasets. Section 6.5 shows a case study on a real

world community health care dataset. Section 6.6 shows the statistical analysis of

classification performances. Section 6.7 concludes the chapter.

6.2 Deep Transfer Additive LS-SVMs Model

6.2.1 Framework of the Proposed Model

Fig. 6.1 illustrates the framework of the proposed model. DTA-LS-SVMs consist

of multiple AK-LS-SVMs based modules via a deep architecture. In the first layer,

the original data input is used to construct the traditional AK-LS-SVMs. From the

second layer, the original data input and the predicted output from the previous module

are concatenated to be the new data input space to train the adjacent higher module.

Moreover, model transfer learning is embedded to leverage the learned knowledge

from the adjacent previous module to facilitate the learning process in the higher

module.
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Figure 6.2: THE AUGMENTED SPACE ~X ′l OF ~X

6.2.2 Deep Transfer Additive LS-SVMs Model

The main motivation of using deep hierarchy architecture in the proposed model is that

it has a tendency to have a better performance at untangling the underlying factors of

variation Bengio et al. [2013]. The recursive leverage of the predicted outcome from

the adjacent previous module can help open the manifold of the original data space to

make it more separable Vinyals et al. [2012].

Given a training dataset S of N samples S = {(~x1, y1), · · · , (~xN , yN)}, the input

dataset is denoted as X and the corresponding output dataset is denoted as Y, where

~xi = (xi1, x
i
2, · · · , xid) ∈ X ⊂ Rd, yi ∈ Y = {+1,−1}. Each sample ~xi contains d

features. In the first layer L1, the traditional AK-LS-SVMs is constructed and we can

get the decision function f1(~xi) = ~wT1 ϕ(~xi) + b1 and consequently the predicted label

vector ~F1 of X, where ~F1 = (f1(~x1), f1(~x2), · · · , f1(~xN)).

For the layer Ll (l = 2, 3, ...L), the new data input X′l is the concatenation of the

original data input X and the predicted label vector ~Fl−1 from the previous module,

which can be denoted as X⊕ ~Fl−1 for simplicity. X′l is illustrated in Fig. 6.2. AK-LS-

SVMs with model transfer is used for the layer Ll to leverage the knowledge learned
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from the source model in Ll−1 to have λl ~wl−1, which can be obtained by reformulating

the minimization problem of AK-LS-SVMs as:

min
~wl,bl

1

2
(~wl − λl ~wl−1)2 +

Cl
2

N∑
i=1

ξ2li

s.t. yi = ~wTl ϕ(~x
′

i) + bl + ξli

i = 1, 2, ..., N

(6.1)

Lagrangian Ll of Eq. (6.1) is

Ll(~wl, bl, ~ξl; ~αl) = J(~wl, bl) +
∑N

i=1 αli(yi − ~wTl ϕ(~x
′
i)− bl − ξli) (6.2)

where ~αl ∈ RN is the vector of all Lagrangian multipliers. The system of linear

equations can be obtained

∑N
i=1 αliϕ(~x

′
i)
Tϕ(~x

′
j) + bl + αli/Cl = yi − λl ~wTl−1ϕ(~x

′
i) (6.3)

The equation can be further written in matrix form as:

K̃l + C−1l I ~1

~1T 0


~αl
bl

 =

~Y − λl ~̃Y l

0

 (6.4)

where K̃l = [K(~x
′
i, ~x

′
j)]N∗N , I is a diagonal matrix with unity diagonal entries, ~Y is the

actual labels of training samples, and ~̃Y l is the predicted labels of training samples

obtained from the source model, i.e. ~Y = [y1; · · · ; yN ], ~̃Y l = [y
′

l1; · · · ; y
′

lN ] =[
~wTl−1ϕ(~x

′

l1); · · · ; ~wTl−1ϕ(~x
′

lN)
]

=
[∑N

i=1 α(l−1)iK(~x(l−1)i, ~x
′

l1), · · · ,
∑N

i=1 α(l−1)iK(~x(l−1)i, ~x
′

lN)
]
.

Here ~̃Y l can be obtained in a kernel form as long as ~wl−1 in the previous model and ~wl
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in the current model are using the same kernel. Hence, for the safe use of the adopted

Gaussian additive kernel, δ in each model must be the same.

Lastly, the model parameters can be calculated simply by using a matrix inversion:

~αl
bl

 = Q

~Y − λl ~̃Y l

0

 (6.5)

where Ql = H−1l and Hl is the first matrix from the left in Eq. (6.4). ~w can be

determined by

~w = λl ~wl−1 +
N∑
l=1

αliϕ(~x
′

i) (6.6)

Once λl is obtained, ~αl and bl can be calculated. and then ~wl and bl can be calculated

consequently. As a result, we can obtain the decision function fl(~x
′

il) = ~wTl ϕ(~x
′

il) + bl

on Ll (l ≥ 2), and the predicted label vector ~Fl = (fl(~x
′

1l), fl(~x
′

2l), · · · , fl(~x
′

Nl))

for X′l. The layer continues to be added until the prediction accuracy performance

has no improvement or the improvement is negligible, (i.e., ||~Fl − ~Fl−1||2F <

ε). Here, the complete learning algorithm of the proposed model is given in

Algorithm 6.1 that outputs the final decision function. Please note that in this

study we select the parameter Cl from comparatively big intervals, i.e., Cl ∈

{1, 10, 50, 100, 150, 200, 250, 500}, to guarantee diversities between the modules from

adjacent layers. However Cl can also be selected from different intervals depending

upon the practical situations.

In DTA-LS-SVMs, transfer learning is embedded from the second layer. Referring

to Eq. (6.6), we can observe that the classification on the l-th (l >= 2) layer is in fact

achieved in a way like a combination of multiple kernel functions from different layers.

According to the excellent generalization performances of multi-kernel classifiers
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Lanckriet et al. [2004]; Senechal et al. [2011]; Yeh et al. [2011], the module from

the second layer in the proposed approach is supposed to obtain a better generalization

performance than the previous one. In this sense, the learning process under such a

stacked architecture tends to be greedy. Our experiments show that normally L = 3, 4

or 5 is an appropriate reference for small or medium datasets. If L is too big, it might

lead to overfitting issues.

DTA-LS-SVMs can be used to solve multi-class classification problems by using

the one-against-all strategy. Thus, the predicted output of the new sample ~xi is

determined by max
k=1,··· ,M

yk(~xi), where M denotes the number of the classes.

6.2.3 Fast Leave-one-out Cross Validation Strategy

The classification performance of the proposed model highly relies on the value of

parameter λl. The fast leave-one-out cross validation strategy introduced in Chapter

3.2.5 is employed to find the optimal value of λl.

Similarly, by defining
[
~α
′T
l , b

′

l

]T
= Ql

[
~yT , 0

]T ,
[
~α
′′T
l , b

′′

l

]T
= Ql

[
~Y T
l , 0

]T
, and

~αl = ~α
′

l −
∑d

l=1 λl~α
′′

l , the leave-one-out output ỹi of the i-th training sample can be

represented as

ỹil = yi −
α
′

il

Qiil

+
λlα

′′

il

Qiil

(6.7)

The loss function below is adopted to avoid local minima issues:

l(ỹil, yi) = |1− ỹilyi|+ =

∣∣∣∣yiα′il − λlα′′ilQiil

∣∣∣∣
+

(6.8)
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where |x|+ = max{0, x}. The objective function becomes:

N∑
i=i

l(ỹil, yi)

s.t 0 ≤ λl ≤ D

(6.9)

whereD is a constant. This optimization process can be implemented using a projected

sub-gradient descent algorithm. The pseudo-code is given in Algorithm 6.2.

6.2.4 Computational Complexity

One highlight of the proposed classifier DTA-LS-SVMs is its fast leave-one-out cross

validation strategy for parameter tuning. The computational cost of DTA-LS-SVMs

can be represented as O(N3 + (L − 1)(N3 + N)) = O(LN3 + (L − 1)N). O(N3)

represents the computational cost for training the traditional AK-LS-SVMs module in

the first layer. From the layer (l ≥ 2), the computational cost of each module consists

of two parts. The first part O(N3) is the calculation of the matrix Ql inverse related to

the training set on the Ll. The second part O(N) is the computational complexity to

optimize Eq. (6.9) in each iteration in Algorithm 6.2.

Let us consider the traditional leave-one-out cross-validation strategy on SVMs.

Theoretically, it takes O(N3) to train the SVMs. By using specific speed-up strategies

Tsang et al. [2006], the training time can be accelerated toO(N)−O(N2.3). Therefore,

the computational cost of the leave-one-out cross validation becomes O(N ∗ N) −

O(N ∗N2.3) = O(N2)−O(N3.3). For grid search for generalization parameter C (s1

grid values) and kernel width σ (s2 grid values), the computational cost is increased to

s1s2O(N2) − s1s2O(N3.3). Normally s1 and s2 are greater than 3 in the experiment
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Algorithm 6.1: Learning algorithm of DTA-LS-SVMs
Input: training set ~X = [~x1, ~x2, · · · , ~xN ], ~xi ∈ ~Rd,
output set ~Y = [y1, y2, · · · , yN ], yi ∈ {+1,−1} for binary
classification, kernel width δ, number of layers L, l = 1
Output: The stacked structure of DTA-LS-SVMs with
tuned parameter values
Procedure
Step 1:

1.1 Choose the regularization parameter C1 randomly from
an interval, i.e., C1 ∈ {1, 10, 50, 100, 150, 200, 250, 500}.

1.2 Construct the 1st module using the traditional additive
kernel LS-SVM shown and obtain ~w1, b1 and the predicted labels
~F1 (f1(~x11), f1(~x21), · · · , f1(~xN1)).
Step 2: For l = 2 : L do

2.1 ~X
′

l = ~X ⊕ ~Fl−1
2.2 Choose the regularization parameter Cl randomly from

an interval, i.e., Cl ∈ {1, 10, 50, 100, 150, 200, 250, 500}.
3.3 Construct the l-th module by invoking Algorithm 6.2 on

~X
′

l and obtain λl.
2.4 Calculate ~wl and the predicted labels

~Fl (fl(~x1l), fl(~x2l), · · · , fl(~xNl)).
Step 3: Calculate4F = ||~Fl − ~Fl−1||2F
Step 4: If4F ≤ ε (a given threshold)
End else
Step 5: l = l + 1
Step 6: Output the stacked structure of the proposed classifier
DTA-LS-SVM with tuned parameter values and the decision
function in the L-th module as the final decision function.
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Algorithm 6.2: Projected Sub-gradient Descent Algorithm
Input: ~wl−1, ~X

′

l , ~Y , Cl and kernel width σ
Output: λl
Procedure
Step 1: Calculate Ql, ~α

′

l, ~α
′′

l

Step 2: t = 1
Step 3: Repeat

ỹil = yi −
α′li
~Qiil

+
λlα
′′
il

~Qiil
, i = 1, 2, ..., N

di ← ~1{ỹilyi > 0}, i = 1, 2, ..., N

λl ← λl − 1√
t
diyi

α
′′
il

Qiil

If λl > D then λl ← D
End if
λl ← max(λl, 0)
t← t+ 1

Step 4: Until convergence
Step 5: Output λl

setting while the number of layers L in DTA-LS-SVMs is small (3 ≤ L ≤ 5).

Therefore, although it seems that the SVMs are less computationally complex than

DTA-LS-SVMs, experimentally, the actual running time of SVMs with grid search is

much longer than that of DTA-LS-SVMs.

In terms of LS-SVMs, the computational complexity to train the LS-SVMs is

O(N3) due to the calculation of the matrix Q by the inverse of H. Therefore,

its computational cost of leave-one-out cross validation with grid search becomes

s1s2O(N ∗N3) = s1s2O(N4). Referring to Eq. (6.7) and Eq. (6.8) with λl equal to 0,

the computational complexity of LS-SVMs could be accelerated into s1s2O(N3 +N).

In summary, the proposed classifier DTA-LS-SVMs has a superior advantage in the

running speed compared with SVMs and LS-SVMs.
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6.3 Extension on Class Imbalance Problems

Class imbalance problems frequently occur in many real world scenarios. We extend

the proposed DTA-LS-SVMs model to its cost-sensitive or imbalanced version to

specifically deal with it.

For classification with imbalanced data, the decision boundary tends to get too

close to the minority class, which needs to be pushed away. One solution is to give

different error costs to the positive and negative classes Batuwita and Palade [2013].

Thus, the optimization problem of AK-LS-SVMs is reformulated accordingly as below

min
~w,b

1

2
‖~w‖2 + C

2

N−
N

N+∑
i=1

ξ2i +
N+

N

N∑
i=N++1

ξ2i


s.t. yi = ~wTϕ(~xi) + b+ ξi

(6.10)

where N+ and N− represent the number of positive and negative classes respectively.

Consequently, according to Eq. (6.10), DTA-LS-SVMs can be extended to its

imbalanced version called iDTA-LS-SVMs.

Similar to Eqs. (6.2)-(6.5), we observe that only Hl in the first matrix in Eq. (6.4)

needs to be modified:

Hl =

 ~̃K l + C−1l E ~1

~1T 0

 (6.11)

where

E =



N−

N
0 0 0 0 0

0
. . . 0 0 0 0

0 0 N−

N
0 0 0

0 0 0 N+

N
0 0

0
. . . 0 0

. . . 0

0 0 0 0 0 N+

N


(6.12)
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The remaining derivations still remain the same. By comparing Hl in Eq. (6.11) with

the first matrix in Eq. (6.4), the only difference is between E in Eq. (6.11) and I in Eq.

(6.4). Only under the condition that N− equals N+, E degenerates into I. Moreover,

the fast leave-one-out cross validation strategy proposed in DTA-LS-SVMs still can be

used in iDTA-LS-SVMs to reduce the high computational complexity.

6.4 Experiments

The proposed model DTA-LS-SVMs and its imbalanced version iDTA-LS-SVMs were

evaluated on the balanced and imbalanced UCI datasets and compare the performances

with those using the additive kernel LS-SVMs and additive kernel SVMs. In the

data pre-processing stage, the input data were normalized. For any UCI datasets

with missing data, case deletion treatment method was applied. For performance

measurements, we use both accuracy and F1-score for balanced datasets and only F1-

score for imbalanced datasets. F1-score Lewis and Gale [1994] given in Eq. (6.13) is

a harmonic mean between precision and recall. A higher F1-Score implies that both

recall and precision are comparatively higher.

F1-score = 2× Precision× Recall
Precision + Recall

(6.13)

where Precision = TP/(TP + FP) and Recall = TP/(TP + FN). All the experiments

were implemented using 64-bit MATLAB on a computer with an Intel Core i5-6300

2.40 GHz CPU and 8.00GB RAM.
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Table 6.1: UCI DATASETS DESCRIPTION
Type Dataset Sample size Feature Class(%)

Imbalanced
breast cancer 683 9

65.52
34.48

Pima Indians 768 8
65.02
34.98

Indians Liver 579 10
71.50
28.50

Balanced

Australian 690 14
44.50
55.50

diabetic 1151 19
53.08
46.92

credit approval 653 15
45.33
54.67

mammographic 830 5
48.55
51.45

6.4.1 UCI datasets

The performances of the proposed model and the comparative methods are evaluated

on seven public UCI datasets. The dataset information are summarized in Table 6.1.

6.4.2 Parameter Setup

In the experiments, different additive kernels were tested in DTA-LS-SVMs, iDTA-

LS-SVMs and the comparative methods on each dataset. Here only the experimental

results using the Gaussian additive kernel are displayed. For DTA-LS-SVMs and

iDTA-LS-SVMs, the number of modules is usually set to 3 or 4 due to the small

or medium sample size of the adopted datasets. ε is set to 0.1. δ is set to

be the average value of the standard deviations for all respective features. For

the comparative methods, the grid search algorithm with 10-fold cross-validation

was used to find the optimal values for parameters C and δ. The intervals of
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{1, 10, 50, 100, 150, 200, 250, 500} and {0.1, 1, 5, 10, 20, 50, 100, 150, 200}were searched

for C and δ, respectively. Here only the performances using the optimal parameters

are displayed.

6.4.3 Experimental Results Analysis
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Table 6.2 lists the results of DTA-LS-SVMs and the comparative methods on

imbalanced datasets. Table 6.3 lists the results of iDTA-LS-SVMs and the comparative

methods on balanced datasets. For DTA-LS-SVMs and iDTA-LS-SVMs, if the training

accuracy of the adjacent higher layer was improved compared with the previous layer,

one more processing layer wa added, otherwise we terminated the learning process.

We take a complete training process on the Australian dataset as an example. The

first module obtained a training accuracy of 0.8589. The second module obtained an

accuracy of 0.8734. The third module obtained an accuracy of 0.8880. Obviously

the classification performance was improving. Therefore, we continued training the

fourth module which obtained an accuracy of 0.8734. Since there was a decrease in

the classification performance, we stopped the learning process. In table 6.2, DTA-

LS-SVMs obtained considerably higher accuracies than those using the comparative

methods on the balanced UCI datasets. In Table 6.3, iDTA-LS-SVMs maintained the

advantage on the imbalanced datasets in terms of F1-score. We also observed that

although in some cases LS-SVMs performed worse than SVMs, DTA-LS-SVMs and

iDTA-LS-SVMs which are based on LS-SVMs can always achieve better performance

results. Overall, the proposed DT-AK-LS-SVMs and iDTA-LS-SVMs exhibited good

generalization performances on both balanced and imbalanced datasets.

To further evaluate the performance of the proposed model, we divided the training

and testing datasets at different ratios. The ratios were set to 6:4, 5:5, 4:6 and 3:7 on

each UCI dataset. Table 6.4-6.7 display the experimental results of DTA-LS-SVMs

and the comparative methods on the balanced datasets in terms of accuracy and F1-

score. Tables 6.8-6.10 display the experimental results of iDTA-LS-SVMs and the

comparative methods for the imbalanced datasets in terms of F1-score. it can be

seen that after changing the ratios of training and testing sets, the proposed classifiers
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DTA-LS-SVMs and iDTA-LS-SVMs still outperformed the other methods on all the

datasets. For example, in Table 6.5 for the mammographic dataset at the 5:5 ratio;

DTA-LS-SVMs not only achieved the highest accuracy but also the highest F1-score

on the testing sets. Another example is for the imbalanced Pima Indians dataset in

Table 6.9 in which iDTA-LS-SVMs maintained an advantage over the comparative

methods in terms of the F1-score. We also noticed that DTA-LS-SVMs and iDTA-

LS-SVMs did not exhibit a rising trend in accuracy and F1-score when enlarging the

size of the training dataset. This could be because in essential DTA-LS-SVMs and

iDTA-LS-SVMs are multiple kernel combination methods that usually have a better

representation capability on training small data.

Overall, from the experimental results, DTA-LS-SVMs and iDTA-LS-SVMs are

tolerant to the changes of the training dataset sample size and is a favorable choice for

classification on balanced and imbalanced datasets.

In terms of the running time, Table. 6.11 shows that DTA-LS-SVMs and iDTA-

LS-SVMs run much faster at training compared to the other methods. As explained

in Section 6.2.4, the running time of the proposed model is the summation of the time

taken in each module and the time taken for parameter tuning of λl (l = 1, 2, · · · , L)

using a fast leave-one-out cross validation strategy. The regularization parameter Cl

(l = 1, 2, · · · , L) in each module can be randomly selected, which also significantly

simplifies the learning process. In comparison, LS-SVMs and SVMs need to find

the optimal values for C and δ in each module by grid search which is much more

computationally expensive.
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Table 6.11: TRAINING AND TESTING TIME (SECONDS) ON UCI DATASETS

Type Datasets
Running time

(i)DTA-LS-SVMs LS-SVMs SVMs
training testing training testing training testing

Imbalanced
breast cancer 2.278 1.979 8776.1 1.399 19553 2.498
Pima Indians 2.731 2.376 10512 1.447 28950 3.018
Indians liver 1.886 1.679 6488.1 1.249 13304 2.087

Balanced

australian 3.472 2.935 12103 1.835 22059 3.209
diabetic 12.698 10.600 73863 6.568 129790 12.943

credit approval 3.638 2.782 11660 2.203 18138 3.190
mammographic 2.279 1.933 8340.3 1.034 29387 3.212

6.5 A Case Study on a Real World Community Health

Care Dataset

6.5.1 Data Collection

The same community health care dataset introduced in Chapter 4.3.1 was employed to

investigate the classification performances of the proposed model and its imbalanced

version for predicting the elderly QOL. We re-categorized the QOL outcome based on

the scale of 1 to 5 into two classes ’poor’ and ’good’ with the ratio of 1:2.64. The

missing data were pre-processed using the k-NN imputation method.

6.5.2 Experimental Design

We applied iDTA-LS-SVMs on this imbalanced dataset and compared its classification

performance with those using DTA-LS-SVMs, LS-SVMs, and SVMs. The number of

processing layers was set to three. To make a detailed comparison on the performances

of the proposed models, experiments were divided into two parts:
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Exp (1): In the first layer of DTA-LS-SVMs and iDTA-LS-SVMs, the complete

portion of the dataset was used to train an AK-LS-SVMs model. From the second

layer, the whole dataset after k-NN imputation treatment and the outputs predicted

from the previous layer were concatenated to be the new data input.

Exp (2): In the first layer of DTA-LS-SVMs and iDTA-LS-SVMs, the whole

pre-processed dataset after imputation is the data input.

6.5.3 Results Analysis

Tables 6.12, 6.13, and 6.14 show the classification accuracies and running time of

DTA-LS-SVMs, iDTA-LS-SVMs, LS-SVMs and SVMs. We can see that in Exp

(2) iDTA-LS-SVMs achieved the highest accuracy (0.7425) and F1-score (0.8553)

on the testing dataset among all the methods. In Exp (1), iDTA-LS-SVMs achieved

an accuracy of 0.7331 and a F1-score of 0.8492, which still outperformed the

other methods. In addition, DTA-LS-SVMs and iDTA-LS-SVMs have the superior

advantage in terms of the running time. The experimental results demonstrated that

iDTA-LS-SVMs have the strong capability for classification of imbalanced datasets

in the real world sceneries. Moreover, although the traditional LS-SVMs gained

the lowest accuracy and F1-score, iDTA-LS-SVMs consisting of several AK-LS-

SVMs based modules can achieve the best accuracy. We believe such performance

improvement is attributed to the deep stacked architecture and the embedded transfer

learning.

We also found that DTA-LS-SVMs and iDTA-LS-SVMs had higher accuracy and

F1-score on the testing dataset than the training dataset. There are two possible

reasons to explain this. First, the deep stacked architecture resulted in the enhanced

126



performance result. Second, in the data pre-processing stage, missing data in

the dataset were imputed using the k-NN imputation treatment. Therefore, the

distributions in the training and testing datasets might be mismatched. Referring to

the conclusions in González and Abu-Mostafa [2015], we postulate that mismatched

distributions occurred in this experiment, which led to a higher testing accuracy and

F1-score in the proposed model and its imbalanced version.
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6.6 Statistical Analysis

To test for statistical differences among the experimental results of the proposed model

and the comparative methods, we conducted the Friedman test followed by Holm post-

hoc test Demšar [2006]; Garcia and Herrera [2008] for multiple comparisons on four

balanced and four imbalanced datasets. The Friedman ranking test evaluates whether

there is a statistically significant difference among all the methods. If the p-value

is smaller than 0.5, the null hypothesis that there is no significant difference will be

rejected. The Holm post-hoc test further verifies whether there is a statistical difference

between the outstanding Friedman ranking method and the other remaining method.

The level of confidence is set as α = 0.05. First, we conducted two Friedman ranking

tests to evaluate differences between (1) DTA-LS-SVMs and the comparative methods

on four balanced UCI datasets in terms of accuracy and F1-score; (2) iDTA-LS-SVMs

and the comparative methods on three imbalanced UCI datasets and one real-world

TRUS dataset in terms of F1-score. Experimental results of Exp (1) and Exp (2) on the

TRUS dataset were included.

The results of Friedman test (1) in terms of accuracy and F1-score are shown in

Tables 6.15 and 6.17, respectively. We can see that there are significant differences

between DTA-LS-SVMs and other comparative methods using different performance

measurements. Following that, we conducted the Holm post-hoc tests to compare the

best ranking method DTA-LS-SVMs with LS-SVMs and SVMs in terms of accuracy

and F1-score. The results are listed in Tables 6.16 and 6.18 where the methods are

ranked based on the obtained z-values. Holm post-hoc test rejects the hypothesis of

equivalence for the methods with p < α/i. It is clearly seen that DTA-LS-SVMs is at

least comparable to LS-SVMs and SVMs on balanced datasets in terms of accuracy;
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and is comparable to LS-SVMs and statistically better than SVMs in terms of F1-score.

The results of Friedman test (2) in terms of F1-score are shown in Table 6.19. The

results show that there are significant differences between iDTA-LS-SVMs and the

other comparative methods. Holm post-hoc test results are listed in Table 6.20. iDTA-

LS-SVMs statistically outperforms the other methods on the imbalanced datasets.

In summary, the proposed model and its imbalanced version are at least comparable

to LS-SVMs and SVMs or even outperform them in terms of accuracy and/or F1-score.

Table 6.15: AVERAGE RANKINGS OF DTA-LS-SVMS AND THE COMPARATIVE

METHODS ON BALANCED DATASETS IN TERMS OF ACCURACY (p-VALUE=
0.049787)

Methods Ranking
DTA-LS-SVMs 1

LS-SVMs 2.5
SVMs 2.5

Table 6.16: HOLM POST-HOC COMPARISON RESULTS FOR DTA-LS-SVMS AND

THE OTHER METHODS IN TERMS OF ACCURACY WITH α = 0.05
i Methods z-value p-value Holm = α/i
2 LS-SVMs 2.12132 0.033895 0.025
1 SVMs 2.12132 0.033895 0.05

Table 6.17: AVERAGE RANKINGS OF DTA-LS-SVMS AND THE COMPARATIVE

METHODS ON BALANCED DATASETS IN TERMS OF F1-SCORE (p-VALUE=
0.038774)

Methods Ranking
DTA-LS-SVMs 1

LS-SVMs 2.25
SVMs 2.75
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Table 6.18: HOLM POST-HOC COMPARISON RESULTS FOR DTA-LS-SVMS AND

THE OTHER METHODS IN TERMS OF F1-SCORE WITH α = 0.05
i Methods z-value p-value Holm = α/i
2 SVMs 2.474874 0.013328 0.025
1 LS-SVMs 1.767767 0.0771 0.05

Table 6.19: AVERAGE RANKINGS OF iDTA-LS-SVMS AND THE COMPARATIVE

METHODS ON IMBALANCED DATASETS IN TERMS OF F1-SCORE (p-VALUE=
0.022371)

Methods Ranking
iDTA-LS-SVMs 1

LS-SVMs 2.6
SVMs 2.4

Table 6.20: HOLM POST-HOC COMPARISON RESULTS FOR iDTA-LS-SVMS AND

THE OTHER METHODS WITH α = 0.05
i Methods z-value p-value Holm = α/i

2 LS-SVMs 2.529822 0.011412 0.025

1 SVMs 2.213594 0.026857 0.05
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6.7 Summary

This chapter proposes a novel deep transfer additive LS-SVMs model DTA-LS-

SVMs and its imbalanced version iDTA-LS-SVMs to enhance the generalization

performance of AK-LS-SVMs. Inspired by the deep stacked architecture and transfer

learning, the proposed model stacks multiple AK-LS-SVMs in a chain, where the

predicted outputs from the previous module are concatenated with the original data

to become the new data input in the higher module. The novelty embodies in model

transfer between the adjacent modules to guarantee their consistency. In addition, a

proposed fast leave-one-out cross validation strategy for parameter tuning guarantees

the advantageous classification performance of the proposed model in circumstances

that the regularization parameter in each module can be randomly selected.

The proposed model and its imbalanced version are evaluated on seven public UCI

datasets and one real world community health care dataset. Experimental results show

that the proposed model can achieve comparatively better classification performances

on both balanced and imbalanced datasets at a faster speed, particularly exhibiting

potential to be used in the real world health data with class imbalance problems.
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Chapter 7

A Deep Cross-output Transfer

LS-SVMs Model for Diagnosing

Prostate Cancer with Imbalance Data

7.1 Introduction

This chapter proposes a novel deep cross-output knowledge transfer model based

on LS-SVMs called DCOT-LS-SVMs to improve the classification capability of LS-

SVMs while avoiding the complicated parameter tuning process that occurs in many

kernel machines. The proposed model has two significant characteristics: (1) the

DCOT-LS-SVMs is inspired by a stacked hierarchical architecture that combines

several layer-by-layer LS-SVMs modules. The module in the higher layer has

appended features of the predictions from all previous modules; and (2) cross-output

knowledge transfer is used to leverage the learned knowledge from the predictions of

the adjacent lower module to improve the learning process in the higher module. Model
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parameters, such as a trade-off parameter C and a kernel width δ, can be randomly

assigned to each module which greatly simplifies the learning process. Moreover,

DCOT-LS-SVMs is able to autonomously and quickly decide the extent of the cross-

output knowledge transfer between adjacent modules through a fast leave-one-out

cross-validation strategy. Additionally, we present an imbalanced version of DCOT-

LS-SVMs, called IDCOT-LS-SVMs, given that imbalanced datasets are common in

real-world health care scenarios.

The effectiveness of the proposed model is demonstrated through a comparison

with traditional SVMs and LS-SVMs on public UCI datasets and a real-world health

care application for the diagnosis of prostate cancer.

We must notice that the proposed model in this chapter and the deep transfer

additive LS-SVMs model presented in Chapter 6 have the commonality that they both

utilize the predicted outcome containing discriminative information from the previous

layer(s) to open the manifold structure of the original data to make it more separable.

Therefore, essentially both models are trying to extract high-level or deep features so

as to enhance classification performance via a stacking design. The novelty of these

two proposed models is embodied in the incorporation of it with transfer learning, and

the use of the fast leave one-out cross validation strategy for tuning the parameter

reflecting the degree of knowledge transfer. The differences between two models

can be summarized into three points. First, The former model focuses on output

knowledge transfer across domains in adjacent layers while the latter one focuses on

model knowledge transfer. Second, the ways of two models to expand the feature

space in the higher layers of the deep stacked architecture are different. Third, the

former model can randomly assign the model’s parameters in every module which

greatly simplifies the learning process, while the latter one requires the same kernel
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width in each module for the safe use of the additive kernel.

This chapter is organized as follows. Section 7.2 presents the proposed deep cross-

output transfer model. Section 7.3 discusses how to extend the proposed model on class

imbalance problems. Section 7.4 gives the evaluation on UCI public datasets. Section

7.5 gives a case study on a real-world health care dataset for diagnosis of prostate

cancer. Section 7.6 shows the statistical analysis of classification performances.

Section 7.7 concludes the chapter.

7.2 Deep Cross-output Transfer LS-SVMs Model

7.2.1 Framework of the Proposed Model

The encompassing framework of the proposed model conforms to a deep stacked

architecture. It combines several layers of LS-SVMs modules. The original dataset

provides the input data for the first layer to construct a traditional LS-SVMs classifier.

Each module from the second layer upwards is a cross-output knowledge transfer

LS-SVMs classifier. The input data for these layers comprises the original features

and the appended features from all previous layers’ prediction outputs. Cross-output

knowledge transfer is used to leverage the learned output knowledge from the module

in the previous layer to improve the learning process in the current layer. The

framework of the cross-output knowledge transfer approach using stacked-structure

LS-SVMs is illustrated in Fig. 7.1.
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7.2.2 Cross-output Knowledge Transfer Under a Stacked Archi-

tecture

This subsection explains in detail how the proposed model DCOT-LS-SVMs and its

imbalanced version IDCOT-LS-SVMs work.

Given a dataset D = {(~x1, y1), · · · , (~xi, yi), · · · , (~xN , yN)}, where ~xi = (xi1, x
i
2,

· · · , xid) ∈ X ⊂ Rd and yi ∈ Y = {−1, 1}. X and Y are the input dataset and

output dataset, respectively. Each input ~xi contains d features, i.e., f1, f2, · · · , fd. In

the first layer L1 of DCOT-LS-SVMs, a traditional LS-SVMs is trained to find an

optimal hyperplane f(~x) = ~wTϕ(~x) + b. From the second layer Ll(l = 2, 3, · · · , L),

the data input Xl is an augmentation of the data input set Xl−1 and the predicted

output vector from the previous layer. Xl can be denoted as Xl−1 ⊕ ~Fl−1. The output

knowledge is embedded across adjacent modules to improve the learning process in

the current module. In this scenario, the dataset in the previous module is regarded

as a source domain DS(l−1), and the dataset in the current module is regarded as a

target domain D(T l). We postulate that the outputs from adjacent modules retain some

similarity. yi(l−1), (i = 1, 2, · · · , N) gives the predicted outputs from the (l − 1)-th

module in DS(l−1). (yi − ξil), (i = 1, 2, · · · , N) gives the predicted outputs from the

l-th module inDT l. The goal is to construct a model inDT l where (yi−ξil) can remain

as similar to the known yi(l−1) as possible. In other words,
∑N

i=1(yi− ξi)yi(l−1) should

be maximized. A weighting parameter µl is used to reflect the influence level of the

learned output knowledge from DS(l−1) to that of DT l. Therefore, the optimization
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problem of LS-SVMs is reformulated as

min
~wl,bl

1

2
~w2
l +

Cl
2

N∑
i=1

ξ2il − µl
N∑
i=1

(yi − ξil)yi(l−1)

s.t yi = ~wTl ϕ(~xil) + bl + ξil, i = 1, 2, ..., N

(7.1)

After derivations, we have the equivalent formulation:

min
~wl,bl

1

2
~w2
l +

Cl
2

N∑
i=1

(ξil +
µl

2Cl
y(l−1)i)

2

s.t yi = ~wTl ϕ(~xil) + bl + ξil, i = 1, 2, ..., N

(7.2)

where µl
2Cl

represents the influence level of the probabilistic outputs from DS(l−1) to

DT l. We can observe that if µl is set to 0 in Eq. (7.2), it becomes the objective function

of traditional LS-SVMs. The Lagrangian Jl of Eq. (7.2) is

Jl = 1
2
~w2
l + Cl

2

∑N
i=1(ξil + µl

2Cl
y
′

i(l−1))
2 +

∑N
i=1 αil(yi − ~wTl ϕ(~xil)− bl − ξil) (7.3)

where ~αl = (α1l, α2l, ..., αNl) ∈ RN is the vector of all the Lagrangian multipliers.

The system of linear equations can be obtained

N∑
j=1

αilϕl(~xjl)
Tϕl(~xil) + bl +

αil
Cl

= yi +
µl

2Cl
y
′

i(l−1) (7.4)

Replacing ϕl(~xjl)ϕl(~xil) using K(~xjl, ~xil), the above equation can be further written in

matrix form as Kl + 1
Cl
N ~1

~1T 0


~αl
bl

 =

~Y + µl
2Cl

~Ml

0

 (7.5)
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where N is an identity matrix, ~Y is the output vector of all the samples in the

training dataset, and ~Ml is the predicted output vector of these training samples that

are obtained from the previous module, i.e., ~Ml =

(
y1(l−1), y2(l−1), · · · , yN(l−1)

)T
=(∑N

i=1 αi(l−1)Kl−1(~xi(l−1), ~x1(l−1)), · · · ,
∑N

i=1 αi(l−1)Kl−1(~xi(l−1), ~xN(l−1))

)T
. Obvi-

ously, we can see that the kernel functions Kl−1 and Kl do not need to be the same. The

kernel function in each module is therefore independent and can be selected randomly

without generality. In this study, we use Gaussian kernels with different kernel widths

in different modules.

Lastly, the module parameters can be calculated simply by using a matrix inversion:

~αl
bl

 = Pl

~Y + µl
2Cl

~Ml

0

 (7.6)

where Pl = H−1l and Hl is the first matrix on the left in Eq. (7.5). Once we obtain µl,

~αl, ~wl and bl can be calculated. We can easily obtain the decision function for the new

sample ~xt (i.e., ~xtl at the l-th layer) as below:

fl(~xt) = ~wTl ϕl(~xtl) + bl

=
N∑
i=1

αiKl(~xil, ~xtl) + bl

(7.7)

and the predicted output vector ~Fl = (fl(~x
′

1l), fl(~x
′

2l), · · · , fl(~x
′

Nl)) in the l-th layer

(l ≥ 2) can be obtained. L layers are added until the accuracy shows no further

improvement (i.e., |~Fl+1 − ~Fl| < ε). Although classification performance increases

with the number of modules, an appropriate value of L may lead to over-fitting

that heavily distorts the original feature space due to the successive expansion of
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the feature space. From extensive experiments, we determined that L = 3, 4 or

5 is appropriate for small- and medium-sized datasets. Pseudo-code for the entire

learning algorithm for the proposed DCOT-LS-SVMs is presented in Algorithm

7.1. Note that we select the parameters Cl and δl from wide interval ranges, i.e.,

Cl ∈ {1, 10, 50, 100, 150, 200, 250, 500} and δl ∈ {1, 10, 50, 100, 150, 200, 250, 500}

to guarantee diversity between modules in adjacent layers. However, the range of these

intervals could be adjusted to suit the situation.

7.2.3 Fast Leave-one-out Cross Validation Strategy

The classification performance of the proposed model depends on the value of the

parameter µl. The fast leave-one-out cross validation strategy introduced in Chapter

3.2.5 is employed to determine the optimal value of µl.

Similarly, by defining
[
~α
′T
l , b

′

l

]T
= Pl

[
~yT , 0

]T ,
[
~α
′′T
l , b

′′

l

]T
= Pl

[
~MT
l , 0

]T
, and

~αl = ~α
′

l + µl
2Cl
~α
′′

l , the leave-one-out output ỹi of the i-th training sample can be

represented as

ỹil = yi −
α
′

il

Piil
−

µl
2Cl
α
′′

il

Piil
(7.8)

The loss function below is adopted to avoid local minima issues:

l(ỹil, yi) = |1− ỹilyi|+ =

∣∣∣∣∣yiα
′

il −
µl
2Cl
α
′′

il

Piil

∣∣∣∣∣
+

(7.9)

where |x|+ = max{0, x}. Finally, the objective function becomes

N∑
i=i

l(ỹil, yi)

s.t 0 ≤ µl ≤ D

(7.10)
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where D is a constant. This optimization process can be implemented by a projected

sub-gradient descent algorithm. The pseudo-code is given in Algorithm 7.2.

7.2.4 Computational Complexity

DCOT-LS-SVMs and IDCOT-LS-SVMs feature fast computation, attribute to the

leave-one-out cross validation for parameter tuning under the above stacked archi-

tecture. The computational complexity can be represented as O(N3 + (L − 1)(N3 +

N)), which contains two parts. The first part O(N3) represents the computational

complexity of the traditional LS-SVM model construction in the first layer. The second

part O((L− 1)(N3 +N)) represents the computational complexity from the second to

the L layer. Since the complexity of inverse computation of matrix Pl for the training

set at the l-th layer (l ≥ 2) is O(N3) and the complexity of each iteration in Algorithm

7.2 to optimize Eq. (7.10) is O(N), the total computational cost of IDCOT-LS-SVMs

becomes O(N3 + (L− 1)(N3 +N)) = O(L ∗N3 + (L− 1) ∗N).

Let us consider the traditional leave-one-out cross-validation strategy for SVMs.

Theoretically, the computational complexity to train a SVMs is O(N3). By using

specific speed-up strategies Tsang et al. [2006], the computational complexity can

be reduced to O(N) − O(N2.3) such that the complexity of the leave-one-out cross

validation for SVMs becomesO(N∗N)−O(N∗N2.3) = O(N2)−O(N3.3). Also, grid

search is needed for tuning the generalization parameterCl(l = 1, 2, · · · , L) (assuming

s1 grid values) and the kernel width σl(l = 1, 2, · · · , L) (assuming s2 grid values).

Therefore the complexity of SVMs becomes s1s2O(N2) − s1s2O(N3.3). In general,

s1 and s2 are normally greater than 3 but the number of layers L in DCOT-LS-SVM is

small (3 ≤ L ≤ 5). Therefore, although it seems that the computational complexity of
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Algorithm 7.1: Learning algorithm of DCOT-LS-SVMs
Input: training set ~X = [~x1, ~x2, · · · , ~xN ], ~xi ∈ ~Rd,
output set ~Y = [y1, y2, · · · , yN ], yi ∈ {+1,−1} for binary
classification, number of layers L, l = 1
Output: The stacked structure of DCOT-LS-SVMs with
tuned parameter values
Procedure
Step 1:

1.1 Randomly choose the regularization parameter C1 and kernel
width δ1 from intervals, i.e., C1 ∈ {1, 10, 50, 100, 150, 200,
250, 500}, δ1 ∈ {1, 10, 50, 100, 150, 200, 250, 500}.

1.2 Construct the 1st module using the traditional LS-SVMs and
obtain ~w1, b1 and the predicted output vector ~F1 = (f1(~x11), f1(~x21),
· · · , f1(~xN1)).
Step 2: For l = 2 : L do

2.1 ~Xl = ~Xl−1 ⊕ ~Fl−1
2.2 Randomly choose the regularization parameter Cl and kernel

width δl from intervals, i.e., Cl ∈ {1, 10, 50, 100, 150, 200,
250, 500}, δl ∈ {1, 10, 50, 100, 150, 200, 250, 500}.

2.3 Construct the lth module by applying 7.1 on ~Xl and obtain µl.
2.4 Calculate ~wl and the predicted output vector ~Fl = (fl(~x1l),

fl(~x2l), · · · , fl(~xNl)) accordingly.
Step 3: Calculate4F = ||~Fl − ~Fl−1||2F
Step 4: If4F ≤ ε (a given threshold)
End else
Step 5: l = l + 1
Step 6: Output the stacked structure of the proposed classifier
DTO-LS-SVMs with tuned parameter values and the decision
function in the L-th module as the final decision function.
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Algorithm 7.2: Projected Sub-gradient Descent Algorithm
Input: ~wl−1, ~Xl, ~Y , Cl and kernel width σl
Output: µl
Procedure
Step 1: Calculate Pl, ~α

′

l, ~α
′′

l

Step 2: t = 1
Step 3: Repeat

ỹil = yi −
α′li
Piil
−

µl
2Cl

α
′′
il

Piil
, i = 1, 2, ..., N

di ← ~1{ỹilyi > 0}, i = 1, 2, ..., N

µl ← µl − 1√
t
diyi

α
′′
il

Piil

If µl > D then µl ← D
End if
µl ← max(µl, 0)
t← t+ 1

Step 4: Until convergence
Step 5: Output µl

DCOT-LS-SVMs and IDCOT-LS-SVMs is higher than that of SVMs, our experiments

reveal that the actual running time of SVM with grid search is much longer than that

of DCOT-LS-SVMs and IDCOT-LS-SVMs.

On the other hand, the computational complexity to train a LS-SVMs is O(N3).

Therefore, when the leave-one-out cross validation with grid search is applied, the

complexity is s1s2O(N ∗ N3) = s1s2O(N4). Also, if we set µl in Eq. (7.9) and Eq.

(7.10) to 0, it is reduced to the fast leave-one-out cross validation for the traditional

LS-SVMs and can be expressed as s1s2O(N3 +N). In summary, the proposed DCOT-

LS-SVMs and IDCOT-LS-SVMs are advantageous in running speed when compared

with the traditional SVMs and LS-SVMs.
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7.3 Extension on Class Imbalance Problems

Considering class imbalance problems are very common in heath care prediction,

DCOT-LS-SVMs can be extended to an imbalanced version IDCOT-LS-SVMs such

that classification with class imbalances can also be solved using the proposed deep

cross-output knowledge transfer.

When handling imbalanced datasets, the decision boundary of LS-SVMs tend to

get too close to the minority class which needs to be pushed away. One solution is

to apply different error costs to the positive and negative classes. Here, a simple cost

matrix is introduced to the learning process. The objective function of LS-SVMs is

reformulated to handle imbalanced datasets

min
~w,b

1

2
‖~w‖2 + C1

N+

N+∑
i=1

ξ2i +
C2

N−

N∑
i=N++1

ξ2i

s.t. yi = ~wTϕ(~xi) + b+ ξi, i = 1, 2, · · · , N+, N+ + 1, · · · , N

(7.11)

whereN+ andN− represent the numbers of positive and negative classes respectively.

C1 and C2 are two different given constants. When N+ > N−, C2 must be bigger than

C1.

Similar to Eq. (7.3) to Eq. (7.6), we can easily find that only Hl in the first matrix

in Eq. (7.5) needs to be modified into

Hl =

Kl + El
~1

~1T 0

 (7.12)
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where

El =



Cl1
N+ 0 0 0 0 0

0
. . . 0 0 0 0

0 0 Cl1
N+ 0 0 0

0 0 0 Cl2
N−

0 0

0
. . . 0 0

. . . 0

0 0 0 0 0 Cl2
N−


(7.13)

Cl1 and Cl2 have the same roles as C1 and C2 in Eq. (7.11) and the remaining

derivations remain the same.

7.4 Experiments

In the experiments, the proposed model DCOT-LS-SVMs and its imbalanced version

IDCOT-LS-SVMs were evaluated on the public UCI datasets. Their performances

are compared with those using the traditional LS-SVMs and SVMs. Non-parametric

statistical tests are used to check if the differences observed are significant or not. The

experiments are implemented in 64-bit MATLAB R2014a on a computer with an Intel

Core i5-6300 2.4 GHz CPU and 8.00GB RAM.

7.4.1 UCI Datasets

To evaluate the classification performances of the proposed methods, we adopted

seven standard UCI datasets, including four balanced and three imbalanced which are

summarized in Table 7.1.
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Table 7.1: UCI DATASETS DESCRIPTION

Types Datasets
Sample

sizes Features Class(%)

Imbalanced
BREAST 683 9

65.52
34.48

PIMA 768 8
65.02
34.98

ILPD 579 10
71.50
28.50

Balanced

AUS 690 14
44.50
55.50

DIABETIC 1151 19
53.08
46.92

CREDIT 653 15
45.33
54.67

MAMMOGRAPHIC 830 5
48.55
51.45

7.4.2 Parameter Setup

For DCOT-LS-SVMs and IDCOT-LS-SVMs, Gaussian kernel parameters were randomly

selected according to Algorithm 7.1. Different kernels were used for LS-SVMs and

SVMs for each adopted dataset. Here we only display the best experimental results

using the Gaussian kernel. Kernel width δ was selected from {0.1, 1, 5, 10, 20, 50, 100, 150, 200}.

Regularization parameterC was selected from {1, 10, 50, 100, 150, 200, 250, 500}. For

DCOT-LS-SVMs and IDCOT-LS-SVMs, the number of modules L was set to 3, 4 or

5 since the size of the adopted datasets was small or medium. The value of D in

Algorithm 7.2 was set to 1, and the value of ε in Algorithm 7.1 was set to 0.1.

7.4.3 Experimental Results Analysis

DCOT-LS-SVMs were evaluated on four balanced UCI datasets and the results, in

terms of accuracy and AUC, are shown in Table 7.2. IDCOT-LS-SVMs were evaluated

on three imbalanced UCI datasets and the results, in terms of AUC, are shown in
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Table 7.3. We can observe that the proposed DCOT-LS-SVMs achieved the best

classification performances on both balanced and imbalanced datasets compared with

the traditional LS-SVMs and SVMs.

In addition, the running time of all the methods on each dataset are shown in Table

7.11. We can see that DCOT-LS-SVMs and IDCOT-LS-SVMs, under the stacked

architecture, spent the minimum running time to train the models when compared with

the other methods that follows a shallow architecture. Here, the running time of DCOT-

LS-SVMs and IDCOT-LS-SVMs are defined as the accumulation of the running time

of each module and the time used to optimize parameter µl(l = 2, 3, · · · , L) at the

l-th layer. The experimental results show that the proposed approaches have superior

advantages in speed. This is each module’s parameters can be randomly assigned and

the optimal value of µl can be found autonomously and efficiently using the fast leave-

one-out cross validation strategy. LS-SVMs and SVMs however took much longer

time for model selection (C and δ) by grid search.

To further verify the effectiveness and robustness of the proposed model, we

performed one more experiment as follows. We added white Gaussian noise of

different levels (5%, 8%, 12%) on the adopted UCI datasets. Tables 7.4, 7.5, 7.6,

7.8, 7.9, 7.10 and 7.7 show the corresponding experimental results. The noises indeed

influenced the performance of all the methods, which resulted in steady decrease in

performance metrics with increasing noise levels. Experimental results show that

DCOT-LS-SVMs and IDCOT-LS-SVMs still remain advantageous over traditional LS-

SVMs and SVMs with the noisy data, demonstrating the robustness of the proposed

model.
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Table 7.11: TRAINING AND TESTING TIME (SECONDS) ON SEVEN UCI DATASETS

Datasets
Running time

DCOT-LS-SVMs LS-SVMs SVMs

Imbalanced
BREAST 3.387 7768.2 21597

PIMA 4.446 10439.3 30664
ILPD 3.058 6190.7 15496

balanced

AUS 5.376 11306 25908
DIABETIC 14.439 71870 130696
CREDIT 4.018 10871 19902

MAMMOGRAPHIC 3.326 8784.7 26390

7.5 A Case Study on a Real World Prostate Cancer

Dataset

This section describes a real-world case study with the application of the proposed

model and its imbalanced version in detail. In this case study, DCOT-LS-SVMs

and IDOCT-LS-SVMs were used to detect prostate cancer based upon the findings

from transrectal ultrasound (TRUS)-guided biopsy, digital rectal examination (DRE),

prostate-specific antigen (PSA) level and risk factors in Chinese population.

7.5.1 Data Collection

The adopted dataset includes 1230 records of Chinese men who had undergone

TRUS-guided prostate biopsy, which is retrieved from a TRUS-guided prostate biopsy

database in a hospital in Hong Kong. The clinicopathological data include age, PSA

level, DRE finding, TRUS prostate volume and TRUS finding. They are indeed the

risk factors in several existing statistical diagnostic models that are used to predict

the outcome of biopsy, such as the European Randomized Study of Screening for

Prostate Cancer (ERSPC) risk calculator Kranse et al. [2008] and the Prostate Cancer

Prevention Trial (PCPT) risk calculator Ankerst et al. [2014].
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In our dataset, continuous variables such as age and PSA level were represented

as mean values with standard deviations. Categorical variables were represented as

percentages. For example, the percentage difference in men with abnormal DRE versus

men with normal DRE was calculated. Table 7.12 list the baseline characteristics of

the cohort.

The purpose of the case study is to diagnose prostate cancer based on the findings

from TRUS-guided biopsy, DRE finding, PSA level and other diagnostic factors in

Chinese population. The proposed approaches are used to predict the diagnostic

outcome, i.e., whether a patient has prostate cancer or not.

It can be observed from the last row in Table 7.12 that there is a class imbalance

issue in the dataset. IDCOT-LS-SVMs were therefore applied for model construction

and the generalization performances were compared with those using DCOT-LS-

SVMs, LS-SVMs and SVMs. The number of layers of the IDCOT-LS-SVMs and

DCOT-LS-SVMs were set to 3.

7.5.2 Results Analysis

We can see from the experimental results given in Table 7.13 that IDCOT-LS-

SVMs had the best classification performance among all the methods (accuracy =

0.9290 and AUC = 0.8138), proving that it is effective for handling imbalanced

datasets and demonstrates better generalization performance. Also, it is shown that

although DCOT-LS-SVMs is primarily developed for handling balanced datasets, it

still outperformed the traditional LS-SVMs and SVMs in both tasks in terms of

accuracy and AUC. We believe that such advances on the generalization performance

are caused by the stacked structure and the embedded knowledge transfer learning.
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7.5.3 Contribution

Class imbalance is a common issue in health datasets as uneven distribution of classes

is not unusual, e.g. normal cases outweighing diseased or rare cases. This can lead

to a very poor prediction outcome on the minority class when traditional classification

methods are adopted. On the other hand, to collect large volumes of data from patients

is often very expensive and time-consuming due to the low proportion of cancer

cases in screening, privacy concerns and more. Therefore it is impractical to achieve

more balanced class distributions by adding patient samples. Using the proposed

approach IDCOT-LS-SVMs, generalization performance on imbalanced datasets can

be enhanced such that more reliable prediction can be obtained to assist doctors

in making prostate cancer diagnosis. IDCOT-LS-SVMs also greatly improve the

effectiveness of imbalanced health care datasets like the prostate cancer dataset so as

to avoid the waste of data.

7.6 Statistical Analysis

To evaluate the statistical significance of the difference in performance observed from

the above experiments, we carried out the Friedman ranking test followed by the Holm

Post-Hoc test on the classification results of the UCI datasets with no noise and the

prostate cancer dataset.

We conducted two Friedman ranking tests. The first test was to evaluate whether

there were differences in classification performance between DCOT-LS-SVMs and the

comparative methods on four balanced UCI datasets and the prostate cancer dataset in

terms of accuracy and AUC. The second test was to evaluate if there were differences

in classification performance between IDCOT-LS-SVMs and the comparative methods
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Table 7.12: BASELINE CHARACTERISTICS OF THE COHORT
Value Percentage

Total number of patients 1230
Number and percentage of patients with respect to
PSA level (ng ml−1)
<4 144 11.71
4-10 662 53.82
10.1-20 231 18.78
20.1-50 91 7.40
>50 102 8.29

Age(year, mean±s.d.) 67±8
Estimated prostate volume on TRUS (ml, mean±s.d.) 52.30±26.43
PSA level (ng ml−1) 42.45±274.26
DRE (number of patients)

Normal 993 80.73
Abnormal 237 19.27

TRUS finding (number of patients)
Normal 1125 91.46
Abnormal 105 8.54

Overall prostate cancer detection rate 24.57

Table 7.13: PERFORMANCE RESULTS ON THE PROSTATE CANCER DATASET

Methods Data sets
Performances

Accuracy AUC

IDCOT-LS-SVMs
training 0.9549±0.0052 0.8524±0.0160
testing 0.9290±0.0181 0.8138±0.0259

DCOT-LS-SVMs
training 0.9361±0.0028 0.8515±0.0118
testing 0.9133±0.0027 0.7913±0.0323

LS-SVMs
training 0.8977±0.0055 0.8110±0.0354
testing 0.8957±0.0129 0.7539±0.0460

SVMs
training 0.9055±0.0088 0.8064±0.0279
testing 0.8962±0.0227 0.7747±0.0226

Table 7.14: TRAINING AND TESTING TIME (SECONDS) ON THE PROSTATE CANCER

DATASET
Methods IDCOT-LS-SVMs DCOT-LS-SVMs LS-SVMs SVMs
Data set training testing training testing training testing training testing

Running time 5.837 5.437 4.673 4.217 4950.6 2.398 1157.8 4.183
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Table 7.15: AVERAGE RANKINGS OF DCOT-LS-SVMS AND THE COMPARATIVE

METHODS IN TERMS OF ACCURACY (p=0.022371)
Methods Ranking

DCOT-LS-SVMs 1
LS-SVMs 2.6

SVMs 2.4

on three imbalanced UCI datasets and the prostate cancer dataset in terms of AUC.

The ranking results of the first Friedman test in terms of accuracy and AUC are

shown in Tables 7.15 and 7.17, respectively. Statistical results reveal that there are

significant differences in classification performance between DCOT-LS-SVMs and the

other comparative methods. Then we conducted the Holm Post-Hoc tests to compare

the top-ranked DCOT-LS-SVMs with LS-SVMs and SVMs in terms of accuracy and

AUC. The results are presented in Tables 7.16 and 7.18 where the methods are ranked

according to the obtained z-values obtained. The results in these tables show that

DCOT-LS-SVMs statistically outperforms SVMs and LS-SVMs on the five datasets in

terms of accuracy and AUC respectively.

The ranking results of the second Friedman test are shown in Table 7.19. The

results reveal that there are significant differences between IDCOT-LS-SVMs and the

other comparative methods. Then we conducted the Holm Post-Hoc test to compare

the top-ranked IDCOT-LS-SVMs with LS-SVMs and SVMs. The results in Table

7.20 show that IDCOT-LS-SVMs is at least comparable to LS-SVMs; and statistically

outperforms SVMs on the four datasets in our experiments.

In summary, the proposed methods DCOT-LS-SVMs and IDCOT-LS-SVMs are

at least comparable to or even better than LS-SVMs and SVMs in terms of accuracy

and/or AUC with the much faster learning speed.

155



Table 7.16: HOLM POST-HOC COMPARISON RESULTS FOR DCOT-LS-SVM AND

THE OTHER METHODS IN TERMS OF ACCURACY WITH α = 0.05
i Methods z-value p-value Holm = α/i
2 LS-SVMs 2.529822 0.011412 0.025
1 SVMs 2.213594 0.026857 0.05

Table 7.17: AVERAGE RANKINGS OF DCOT-LS-SVMS AND THE COMPARATIVE

METHODS IN TERMS OF AUC (p = 0.022371)
Methods Ranking

DCOT-LS-SVMs 1
LS-SVMs 2.4

SVMs 2.6

Table 7.18: HOLM POST-HOC COMPARISON RESULTS FOR DCOT-LS-SVMS AND

THE OTHER METHODS IN TERMS OF AUC WITH α = 0.05
i Methods z-value p-value Holm = α/i
2 SVMs 2.529822 0.011412 0.025
1 LS-SVMs 2.213594 0.026857 0.05

Table 7.19: AVERAGE RANKINGS OF IDCOT-LS-SVMS AND THE COMPARATIVE

METHODS IN TERMS OF AUC (p = 0.038774)
Methods Ranking

IDCOT-LS-SVMs 1
LS-SVMs 2.25

SVMs 2.75

Table 7.20: HOLM POST HOC COMPARISON RESULTS FOR IDCOT-LS-SVMS AND

THE OTHER METHODS IN TERMS OF AUC WITH α = 0.05
i Methods z-value p-value Holm = α/i
2 SVMs 2.474874 0.013328 0.025
1 LS-SVMs 1.767767 0.0771 0.05
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7.7 Summary

This chapter proposes a deep cross-output knowledge transfer LS-SVMs model DCOT-

LS-SVMs and its imbalanced version IDCOT-LS-SVMs to improve the classification

performance of LS-SVMs on both balanced and imbalanced datasets. Moreover, the

proposed model can effectively avoid complicated process of parameter tuning of

C and δ, which significantly simplifies the learning process. In addition, grounded

on LS-SVMs, DCOT-LS-SVMs and IDCOT-LS-SVMs can rapidly determine how

much output knowledge to transfer between modules using a fast leave-one-out cross

validation strategy. Compared with the traditional SVMs and LS-SVMs, DCOT-

LS-SVMs and IDCOT-LS-SVMs exhibit comparable or even better classification

performances with much faster learning speed and are more robust against different

levels of noise. The case study illustrates that the proposed model is beneficial for

solving real world health care prediction problems with imbalance data.
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Chapter 8

Conclusion and Future Work

This chapter concludes the thesis and provides the future research directions for this

topic.

8.1 Conclusions

In this thesis, advanced AI techniques are leveraged as a lens to explore the health data

for prediction. A serial of prediction models are customized to improve the accuracy

of prediction with the consideration of characteristic problems within the health data,

including small sample size, missing data and class imbalances. The findings of this

study are summarized as follows:

The output-based transfer LS-SVMs model transfers the probabilistic output

knowledge from the existing prediction model or on-line tool to the current interest

of domain for classification with insufficient data. The experimental evaluation

demonstrate the effectiveness of the proposed model in handling small sample size

problem in medical prognosis by achieving better accuracy than other methods. The

output-based transfer LS-SVMs model require no prior knowledge of the modeling

details and the training data of the existing model or on-line tool, which pose no
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challenges to the real world health care applications.

The novel additive LS-SVMs model is to handle classification with missing data.

The key feature of the model is evaluating the influences on the classification error

caused by missing features using a fast leave-one-out cross validation strategy when

performing classification. That is, the proposed model work readily with missing data

instead of preprocessing them. Moreover, knowledge of the influence can provide the

guidance for the health professionals to further improve the data collection process.

The transfer-based additive LS-SVMs model follows the core idea of the additive

LS-SVMs model for tackling missing data. The main difference is that the proposed

model is trained from a transfer learning perspective to minimize the disagreement

between the complete portion of the dataset and the whole dataset with missing data.

In addition,the proposed model concentrates on the influence levels of incomplete

instances and thus can be used as an alternative way for data cleaning to guarantee

data quality.

The deep transfer additive LS-SVMs model DTA-LS-SVMs and its imbalanced

version iDTA-LS-SVMs are to improve the prediction performance on balanced and

imbalanced datasets. It uses a hierarchical architecture to unfold the manifold of the

original data space in a stacked way to enhance the learning process and model transfer

to guarantee the consistency between adjacent modules. iDTA-LS-SVMs especially

show good accuracy of prediction to handle class imbalance problems in the real world

application.

Similarly, the deep cross-output transfer LS-SVMs model DCOT-LS-SVMs and

its imbalanced version IDCOT-LS-SVMs uses the deep architecture to enhance the

prediction performance on balanced and imbalanced datasets. The novelty of the

proposed model lies in that it is the output knowledge to be leveraged across adjacent
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modules to guarantee the consistency, and the kernels in each modules are therefore

independent which greatly reduces the time for model selection. The experimental

results demonstrate that the proposed model exhibit good prediction performances with

much faster learning speed and are robust against different levels of noise compared to

other methods. The case study exhibits the feasibility of using the IDCOT-LS-SVMs

for dealing with the class imbalance problem in the cancer diagnosis.

Each of the proposed prediction model has been applied to a real world health

care application and achieved an overall improvement in the predictive performance.

Moreover, the characteristic problems within health care data, such as insufficient data,

missing data and class imbalance, are particularly taken into account. They can be

well handled simultaneously when performing classification instead of being tackled

separately in the data pre-processing stage, which provide convenience to use. These

real world case studies are exemplars to demonstrate the benefits of using advanced

machine learning models in health care, hereby promoting practical applications in

clinical practice in future.

8.2 Future Study

This thesis raises a number of opportunities for future research in terms of feasibility

validation and theory development.

(a) Our main aim in this study is to transform AI techniques to perform advanced

health care predictive analytics. Accordingly, we have proposed five prediction models

with special attention to the characteristic health data problem in practice. In future,

we shall apply these models to various health applications for clinical practice to assist

practitioners in diagnosis and treatment planning with more confidence.
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(b) The proposed models are based on the LS-SVMs framework. In future the core

ideas of these models can be extended to different frameworks in the family of kernel

ridge regression, such as ELMs for health data analytics.

(c) The proposed transfer learning based models only leverage knowledge from

a single source domain. This motivates us to extend them into multiple source

domain transfer in future. For example, for the output-based transfer LS-SVMs model

presented in Chapter 3, the output knowledge can be learned and integrated from

several existing prediction models or on-line tools to facilitate the learning process

on the current interest of domain.

(d) The proposed models are supervised learning algorithms that assume the labels

of the dataset are always available. In future, this study can also be extended in refining

the proposed models to learn from unlabeled data or noisy labels, which has great

practical significance in health care.

(e) More challenging situations may occur in the health data analytics, such as

dynamic and data-intensive environments. How to upgrade our proposed models to

specifically deal with the associated issues is worthy to be further investigated.
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cancer diagnosis by using artificial neural networks and support vector machines.

Expert Systems with Applications, 36(3):6357–6361, 2009. 15

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, 1995. 14

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE

transactions on Information Theory, 13(1):21–27, 1967. 18

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series

B (Methodological), pages 1–38, 1977. 26
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