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ABSTRACT 

 

 

The structural health monitoring (SHM) technology has been developed and applied to 

numerous large-scale structures. Structural damage identification using the vibration data 

of the SHM systems has gained much attention during the past three decades. However, 

condition assessment and damage detection of large-scale structures are still challenging 

due to the slow convergence in the inverse problem with a large number of unknowns and 

limitation in computational resources. 

 

This thesis aims to develop a decentralized damage detection framework for large-scale 

structures, which would be used to evaluate the structural condition under seismic loading 

and ambient excitations. The study contributes to following aspects. 

 

First, a parallel, decentralized damage detection method is developed for large-scale 

structures. A large-scale structure is divided into several smaller zones according to its 

finite element configuration. Each zone is dynamically tested with the sensors in the zone. 

The dynamic responses in the zone are then used to update the corresponding structural 

parameters in that zone based on the assumption that the structural damage has more 

significant effects on the responses of the zone than other zones. The structural parameters 

in each zone are updated using the Newton Successive Over-Relaxation method. Parallel 

computing is used in the model updating process. 
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The decentralized damage detection under seismic and ambient excitations is then studied. 

Under the earthquake excitation, the nonlinear behaviors of the structure are studied and 

two kinds of nonlinear models are addressed. One is the simplified mass-spring-dashpot 

model, and the other is the nonlinear finite element model. In the case of the simplified 

nonlinear model, an output only decentralized damage detection method is developed, in 

which the nonlinear structural parameters and the unknown input force are identified 

iteratively. In the case of a large-scale structure modelled by nonlinear finite elements, a 

decentralized nonlinear finite element model updating is developed and the parameters of 

the nonlinear constitutive material laws (such as compressive strength of concrete, the 

yield stress of reinforcement, etc.) are identified.  

 

Structural damage detection under ambient excitations is then addressed, in which the 

ambient excitations are considered as white noise processes. Two damage detection 

methods are proposed based on correlation functions. In the first method, a two-stage 

model updating technique is developed to identify the structural damage with the 

correlation function. In the second method, the correlation function is treated as the free 

vibration response based on the natural excitation technique. The proposed decentralized 

technique is used to determine the structural damage. The measured correlation functions 

are divided into several subsets according to its finite element configuration. Each subset 

of correlation functions is used to identify the corresponding structural parameters in the 

zone.  

 

Besides the theoretical development, numerical and experimental investigations are 

conducted to verify the effectiveness of the proposed methods. 
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CHAPTER 1   
 

INTRODUCTION 
 

 

 

 

 

 

1.1 Background 

 

Structural damage and failure cause a huge loss of properties and human lives every 

year. In order to detect the structural damage at an early stage, many large-scale 

structures have been installed with a structural health monitoring (SHM) system, for 

example, Guangzhou New Television Tower (Ni et al., 2009), Tsing Ma Bridge (Ko 

and Ni, 2005), and Shanghai Tower (Su et al., 2013). During the last decades, 

Monitoring and condition assessment of large-scale civil infrastructure, such as dams, 

long-span bridge, radio masts/towers, have become more and more popular worldwide.  

 

Structural damage identification has attracted considerable attentions since the 1990s. 

Damage is usually considered as a reduction in the stiffness parameters, which may 

cause the adverse effects in the vibration characteristics of the structure (Doebling et al., 

1998). A large number of methods have been developed to identify the damage 

occurrence, location and severity of structures. A comprehensive review of vibration 
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based damage detection can be found by Doebling et al. (1998). Damage detection 

methods can be categorized according to their characteristics, e.g. frequency domain 

and time domain methods, model-based and model free methods. Frequency domain 

methods use the frequencies, mode shapes, flexibility matrix and modal strain energy to 

identify the structural damage, while time domain methods use the time history data (e.g. 

acceleration, velocity, displacement and strain data) directly. Model free methods are 

based on the measurement data only, also referred to as data-driven methods, while 

model-based methods need the finite element model of the structure. As the finite 

element model is able to simulate damage numerically, the model-based methods 

quantify the damage in general. Although a lot of methods have been developed, most 

of these methods are only suitable for small scale structures, which can only identify a 

small number of unknown structural parameters. 

 

For large-scale structures, model updating is still a challenging because there are a large 

number of unknown structural parameters to be identified. The increasing number of 

degrees of freedom (DOFs) and the unknown structural parameters make the model 

updating more complicated and time consuming. For example, Xia et al. (2008) updated 

a real bridge model, consisting of  more than 900 elements and 5000 DOFs, which took 

more than 400 hours. In another study, Li et al. (2013) proposed a damage detection 

method for bridge structures considering the interaction effect of the bridge-vehicle 

system. The computational time for each iteration was more than 6 hours and the entire 

damage identification process took more than one week. The low computational 

performance of existing methods discourages the use for large-scale structures and calls 

for efficient damage detection and model updating techniques. 
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This study aims at developing a more efficient damage detection method for large-scale 

structures, which would be used to evaluate the structural conditions under natural 

hazards (e.g., seismic events) and continually assess structural conditions under 

operational conditions. The loading characteristics and structural behaviors under the 

two situations are different. 

⚫ When the structure is under the operational conditions, the loading may not exceed 

the designed capacity, and the structural behavior is generally at the linear stage. 

Moreover, cracks may occur and the opening and closing of the cracks may causes 

nonlinearity (Chen et al., 2006). These nonlinearities should be considered in 

damage detection under earthquake loading. 

⚫ When the structure is under earthquake loading, the force locations are known. The 

earthquake loading can be measured from accelerometer or seismometer. However, 

the ambient loading (e.g., wind loading, traffic loading) are difficult to measure. The 

output only methods are then highly desired for damage detection under ambient 

loading. To the best knowledge of the author, most of time domain output only 

methods require that the number of sensors is more than the number of forces. In a 

practical SHM system, this requirement may be difficult to meet because it could be 

challenging to install large number of sensors. The new methods should be 

developed to overcome the limitation. 

 

1.2 Research Objectives 

 

Recognizing the challenging problems in damage detection under earthquake and 

ambient loadings, the main objectives of the PhD study are as follows: 
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1. Improve the computational performance of structural identification for large-scale 

structures through a decentralized method with parallel computing; 

2. Develop linear and nonlinear damage identification methods for large-scale 

structures under seismic loading via the decentralized approach; 

3. Develop a correlation function-based damage detection method for large-scale 

structures under ambient condition, which does not require the number of sensors is 

more than that of unknown forces. 

 

 

1.3 Thesis Organization 

 

The thesis consists of eight chapters, as illustrated in Figure 1.1. Details as follows. 

 

Chapter 1 introduces the research background, objectives, and structure of the thesis. 

 

In Chapter 2, the literature on relevant topics will be reviewed, which includes the 

general damage detection methods, the state-of-the-art of damage detection methods for 

civil structures, nonlinear damage detection methods under earthquake loading, and 

damage detection methods under ambient loading.  

 

A parallel decentralized damage detection method is proposed for condition evaluation 

in Chapter 3. A large-scale structure is divided into a limited number of smaller zones 

according to its finite element configuration. Each zone is dynamically tested in 

sequence with its own set of sensors. Then each subset of parameters is updated with its 



 

    

5 

own measurements using the Newton-SOR method. Parallel computing is used in the 

model updating process. 

 

Chapter 1: Introduction

Chapter 2: Literature Review

Chapter 4:

Decentralized Damage Detection of 

Nonlinear Structure Using Output 

Measurement Only

Chapter 5:

Nonlinear Finite Element Model 

Updating with the Decentralized 

Approach

Chapter 6:

Correlation Function based Damage 

Detection

Chapter 7:

Decentralized Damage Detection 

with Ambient Loadings via 

Correlation Functions

Chapter 8:

Conclusions and Future Research 

Seismic

loading

Ambient

loading

Chapter 3:

Decentralized Structural Damage Detection

 

 

Figure 1.1 Overview of the structure of the thesis 

 

 

The subsequent two chapters present decentralized structural damage identification 

methods under seismic loadings. In particular, Chapter 4 addresses linear and simplified 

nonlinear structures. The external excitation forces and structural parameters are 
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identified using the Kalman filter technique and Newton-SOR method, respectively. 

Chapter 5 addresses nonlinear reinforced concrete and steel structures. The nonlinear 

dynamic responses of the structure are computed based on nonlinear finite element 

models, and the sensitivity of dynamic responses with respect to material parameters is 

obtained from the direct differentiation method. The parameters of the constitutive 

model of concrete and steel are identified with the decentralized method.  

 

The correlation function-based damage identification methods with ambient vibration 

responses are developed in Chapters 6 and 7. In Chapter 6, the formula of correlation 

function under multiple ambient white noise or impact excitations are derived. The 

structural damage is identified with the sensitivity method. A decentralized method is 

developed in Chapter 7. The natural excitation technique (NExT) is used and the 

correlation functions are treated as free decay vibration responses. This method 

overcomes the limitations of most time domain methods, which require the information 

of force location and the number of sensors larger than the number of force. 

 

Finally, the main findings of this thesis are concluded in Chapter 8. Some 

recommendations for future work are also provided.  
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CHAPTER 2   

LITERATURE REVIEW 

 

 

 

 

 

Condition assessment of civil structures has attracted much attention since the 1990s, 

and numerous studies have been proposed. This thesis aims to develop novel damage 

detection methods for large-scale structures considering seismic loading and ambient 

loading. This chapter reviews the current development of relevant topics, which 

includes damage detection methods for civil structures, damage detection under 

earthquake loading, and damage detection under ambient excitations. 

 

2.1 Damage Detection Methods for Civil Structures 

 

The interesting to identify structural damage has gained much attention since the 1990s 

(Pandey et al., 1991; Pandey and Biswas, 1994; Salawu, 1997). The damage detection 

methods for civil structures can be categorized into global, substructural, and 

decentralized damage detection methods. 
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2.1.1 Global damage detection methods 

 

In earlier studies, researchers focused on the problem of damage detection in small civil 

structures. Many studies have investigated on the identification of structural damages. 

The finite element model usually consists of several structural elements, and the number 

of unknown structural parameters is small. Several widely used global damage detection 

methods are reviewed in the following section. 

 

Least-squares method is one of the earliest time domain damage detection methods 

(Wang and Haldar, 1994). The equation of motion of a linear system can be rewritten as 

an algebraic equation with unknown stiffness and damping coefficients. The structural 

parameter can then be identified from the algebraic equation with the least-square 

method and measurement response. The idea and implementation of this method is 

simple. However, this method requires full measurement from displacement, velocity, 

and acceleration. Wang and Haldar (1997) extended this method for structural damage 

detection with limited observations. The unavailable measurements were estimated by 

the extended Kalman filter method with a weighted global iteration. The stiffness and 

damping parameters were identified with the least-squares method. A recursive least-

squares estimation approach was proposed for online damage detection (Yang et al., 

2007b). The analytical recursive solutions were derived from the least-squares method. 

An adaptive tracking technique was implemented to track the damage events. 

 

The limitation of the least-squares method is that the full measurement of displacement, 

velocity, and acceleration is required for damage detection. When the displacement and 
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velocity measurements are unavailable, the responses can be used to computed from 

numerical integration of acceleration responses. However, a double numerical 

integration may cause a significant numerical drift in the displacement response. To 

address this problem, damage detection methods with extended Kalman filter technique 

were proposed. Hoshiya and Saito (1984) proposed the first study on system 

identification problems. The stiffness parameters of the two DOFs shear type were 

identified. Yang et al. (2006b) presented an adaptive damage detection method with the 

extended Kalman filter approach to detect the structural parameters and damage events. 

Zhou et al. (2008) presented experimental studies to verify the capability of the adaptive 

extended Kalman filter approach. The Kalman filter technique gains much attention for 

structural damage detection, and many studies have proposed this method (Chatzi and 

Smyth, 2009; Xie and Feng, 2012; Azam et al., 2015; Guo et al., 2018). 

 

Yang et al. (2009a) developed a damage detection method, using the analytical 

recursive solution of the quadratic sum-squares error method. The unknown structural 

parameters and unknown excitations were estimated directly by minimizing the error 

between the measured output data and the theoretical values. Wu et al. (2012) 

investigated the accuracy of the quadratic sum-squares error method for structural 

damage detection. A two-story reinforcement concrete structure with stiffness 

degradation was conducted in the experimental studies. The quadratic sum-squares error 

method required a large number of acceleration measurements for structural damage 

detection. To overcome this problem, Xia (2011) combined the model reduction 

technique with the quadratic sum-square error method for the experimental study of 

steel frame structure with joint damage. 
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Sensitivity-based model updating methods consider the unknown structural parameters 

as an implicit function of dynamic characteristics. The unknown parameter can be 

identified by minimizing the difference between the measured dynamic characteristics 

and the analytical part. The dynamic characteristics can be the time history of vibration 

responses, frequencies, and mode shapes. The structural damage can be detected by 

comparing the changes in the structural parameter before and after damage. Farhat and 

Hemez (1993) utilized the sensitivity method to update a beam and a truss. The mass 

and stiffness matrices were identified from the measured mode shapes with an iterative 

procedure. Bakir et al. (2007) updated the finite element model of a reinforced concrete 

structure with eigenfrequencies and mode shapes. The structural parameters were 

identified with the trust region algorithm. Lu and Law (2007a) derived the dynamic 

response sensitivity with respect to unknown structural parameters, and the dynamic 

response sensitivity was obtained from the Newmark method. Tikhonov regularization 

technique was proposed in model updating to reduce the ill-posed problem. Zhang et al. 

(2009) represented the unknown input force with Chebyshev polynomial 

approximation. The dynamic response sensitivity with respect to unknown structural 

parameters and coefficients of Chebyshev polynomial expansions were derived. The 

unknown structural parameters and input force were identified sequentially with the 

two-stage procedure. Zhu et al. (2014) derived the dynamic response sensitivity with 

respect to the element stiffness factor with the state space method. The structural 

damage was identified with a sensitivity-based method using transmissibility concept. 

However, the conventional sensitivity-based damage detection methods may not work 

for large damage. To address this problem, Lu and Wang (2017) proposed an enhanced 
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sensitivity method for structural damage detection. The trust-region restriction was 

applied to improve the identified results. 

 

Computational intelligence methods are a group of approaches inspired from the laws of 

nature and biology. Computational intelligence methods, such as genetic algorithm 

(Chou and Ghaboussi, 2001; Hao and Xia, 2002; Perry et al., 2006), artificial bee 

colony algorithm (Kang et al., 2009; Sun et al., 2013; Ding et al., 2018), and particle 

swarm optimization (Kang et al., 2012; Seyedpoor, 2012; Wei et al., 2018) are 

proposed for structural damage detection in recent years. The advantage of these 

methods is that they do not require the derivation of sensitivity matrix for damage 

detection because, in some cases, the sensitivity matrix is unavailable. The structural 

damage can be detected by minimizing the error between the measured vibration 

characteristics and the analytical section with the computational intelligence methods. 

The vibration characteristics can include time history of acceleration responses (Perry et 

al., 2006; Sun et al., 2013), static measurements of displacements (Chou and 

Ghaboussi, 2001), modal strain energy (Seyedpoor, 2012), frequencies, and mode 

shapes (Hao and Xia, 2002; Kang et al., 2012). However, the nature-inspired methods 

consume large amount of computational time to obtain the results. In addition, it can 

easily obtain the local minimum solution when the structural model is complex.  

 

The above-mentioned methods are suitable for damage detection in simple structures, 

which involve only several unknown structural elements and DOFs. In a complex 

structure, the computation workload is usually heavy because a large number of 

structural parameters need to be updated. In addition, a large number of sensors are 
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installed in the SHM system of the large-scale structure. A huge number of data is 

difficult to process at once. Thus, effects have been performed to improve the 

performance of condition assessment in the large-scale structure. 

 

2.1.2 Substructural damage detection methods 

 

Substructural analysis and identification approaches have been proven effective and 

efficient methods for large-scale structures. 

 

The first notable method is the component mode synthesis (CMS) technique, which is 

frequently used in dynamics analysis of large-scale structures. A given structure is 

decomposed into several components/substructures, and each one can be analyzed 

independently. The frequencies and mode shapes of the global structure can be 

constructed from the modal data of each component (Farhat and Geradin, 1994). The 

CMS method is applied to model the update of large-scale structures (Arruda and 

Santos, 1993; Liu et al., 2014). Papadimitriou and Papadioti (2013) used Craig–

Bampton CMS method to update the finite element model of bridge. The computational 

time was reduced from one month to several minutes. Yu et al. (2016) proposed a 

sensitivity-based damage detection approach with CMS method. The eigensensitivity of 

the entire structure with respect to the element parameter was assembled from the 

corresponding section of each substructure. The computational time for the calculation 

of eigenvalue and eigensensitivity was reduced. One limitation of this method is that 

minor damage cannot be detected accurately because the changes in dynamic properties 

are infinitesimal. 
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The changes in flexibility may reflect the structural parameter damage. Alvin and Park 

(1999) proposed a damage detection method based on substructural flexibility matrix. 

They developed a method to extract the substructure flexibility matrix from global 

modal parameters. The damages were determined by the difference of substructure 

flexibility matrix between the healthy and damaged conditions. Another similar study 

was proposed by Weng et al. (2013). The damage in a substructure may change the 

mode shapes of only the substructure, whereas the mode shapes of other substructures 

may remain unchanged. The damage locations were then detected from the changes in 

the substructural flexibility matrix. The eigenvalues and eigenvectors of the 

substructural flexibility matrix were used as indicators for damage detection. 

 

Damage detection methods with the frequency response function (FRF) of a 

substructure were also proposed. Park and Park (2005) detected the substructural 

damage using the force balance equation. The damage severity and location were 

identified from the reduced dynamic stiffness matrix and measured frequency response 

function. Sjövall and Abrahamsson (2008) proposed a method to extract the FRF of a 

substructural system. A frequency domain force identification method was initially 

developed, and the unknown subsystem FRF was extracted by the least-squares estimate. 

The proposed method could extract the unknown subsystem FRF when a sufficient 

number of experimental tests on the global system were carried out. Similarly, Lin et al. 

(2012) used substructure-based frequency response function to detect the damage 

location of a 1/4-scale six-story steel structure. The substructure-based FRFs of the 

shear-type structure were analytically derived.  



 

    

14 

 

The time domain substructural damage detection methods are also reported. The global 

structure is divided into several substructures, and each substructure is applied with 

additional force, considering the coupling effect of the other substructures. Koh et al. 

(1991) used extended Kalman filter and a global iteration scheme to estimate the 

structural parameters from vibration data. In the identification process, the substructural 

members with and without overlap were considered. Numerical studies with different 

types of structures were conducted to verify the performance of the proposed method. 

Compared with the global identification method, the substructural-based method 

consumed less computation time. Lei et al. (2012a) developed a Kalman filter-based 

method to identify the structural parameter of a linear structure. Two methods were 

developed to identify the unknown interface forces. One was treated interconnection 

force as additional unknown input. However, the measurement at the interfaces should 

be available. Another method used was the extended state vector to estimate the 

interconnection force. However, the extended state vector of the adjacent substructures 

should be known. This method was also proposed for nonlinear system identification 

(Lei & He, 2013). 

 

One critical issue of the time domain substructure identification methods is estimating 

the interface force. If the interface force can be estimated, then each substructure can be 

assessed independently. Koh et al. (2003) utilized the quasi-static displacement and 

relative displacement of the structure to represent the interface force on the substructure. 

The damping force and inertia effect were ignored. However, the accelerations at 

interface DOFs were required. Another method to evaluate the interface force was 
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proposed by Trinh and Koh (2012). The interface forces were reconstructed from the 

displacement, velocity, and acceleration at the interface DOFs. The interface velocity 

and displacement, which were usually unknown, were obtained from the numerical 

integration of measured interface acceleration. Law and Yong (2011) proposed a 

substructure condition assessment method. The interface force was estimated from state 

space, whereas the structural parameters were updated with sensitivity method. 

 

Some researchers utilized structural interface forces for condition assessment. Koh and 

Shankar (2003) proposed the substructural damage detection method with genetic 

algorithms. The interface forces of the structures were reconstructed by using 

frequencies and mode shapes with the concept of receptance. Then, the structural 

damage and severity can be detected by minimizing the difference between the 

measured interface and the analytical forces. Law et al. (2010) derived the dynamic 

response sensitivity of the coupling forces with respect to the unknown structural 

parameter using the state space method. The structural damage was identified with the 

damped least-squares method. 

 

Studies to eliminate the interface force for the substructural damage detection were also 

explored. Li and Law (2012b) developed a substructural condition assessment method 

with the concept of transmissibility. The dynamic responses at one set of the structure 

were reconstructed from another set of vibration responses. The wavelet domain and 

frequency domain methods for dynamic signal reconstruction were investigated (Li and 

Law, 2012a; Li et al., 2012). The structural damage of the target substructure was 
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estimated by minimizing the error between the measured and reconstructed vibration 

responses.  

 

2.1.3 Decentralized damage detection methods 

 

Decentralized methods have been proposed for modal identification, vibration control, 

and damage detection in large-scale structures. Decentralized methods are used in SHM 

in combination with wireless smart sensor networks (WSSNs). Traditional signal 

processing methods need to collect all sensor data from a signal location. However, 

power consumption increases with increasing size of WSSNs. The long-distance signal 

transmission causes unreliable sensor communication. To acquire and process a large 

number of dynamic data at once, the central sensor should possess a high computational 

capability. When decentralized methods are embedded in WSSNs, they can be used to 

acquire and process their own data because each smart wireless sensor has a low level 

of computational capability. The final data transmission and computational workload in 

the central section are reduced. Jo et al. (2011) developed a decentralized modal 

identification method by combining natural excitation technique and stochastic modal 

identification. The method was applied in Imote2 WSS platform. The efficacy of the 

decentralized modal identification method was verified by experimental studies of a 

steel truss bridge. Kim and Lynch (2011) proposed a decentralized computational 

framework for system parameter estimation. The Markov parameters were estimated at 

each wireless sensor and then sent to the base station to assemble global structural 

properties. Sim et al. (2011) developed a new aggregation approach with decentralized 

random decrement technique. The proposed data aggregation approach reduces data 
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communication in system identification but maintains the same accuracy in the results. 

Nagayama et al. (2009) utilized smart sensors to realize autonomous structural 

condition assessment. Decentralized damage detection algorithm was applied to a 3D 

truss structure to evaluate its performance. 

 

Decentralized methods are considered a promising solution in a large SHM system. The 

large system is divided into several subsystems, and each subsystem makes a decision 

by its own sensors and actuator. If one subsystem fails to function, then the other 

subsystems can still work effectively, and the robustness of the system is improved. 

Each subsystem only needs to make a decision by its own sensors and actuator; thus, the 

workload for signal processing and decision making is reduced, and finally, the time 

delay of the system is reduced.  

 

Decentralized algorithms were also proposed for structural damage detection. Wu et al. 

(2002) proposed a decentralized approach for damage detection by using neural 

networks. The dynamic outputs (e.g., displacement, velocity, and restoring force) were 

used as input to train the neural networks. The errors between the measured and 

predicted restoring force were used as a damage index to detect the damage location. 

Jayawardhana et al. (2013) developed a correlation function-based and a time series-

based decentralized method for condition assessment of a reinforced concrete slab. Both 

methods can detect the damage location using only the output. The results show that the 

correlation function-based method is more effective, whereas the time series-based 

method is more reliable in the damage detection. Gao et al. (2006) used the distributed 

computing strategy to identify damage in a planar truss structure, in which a flexibility-
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based method was embedded in the wireless sensors. Yun et al. (2011) proposed a 

decentralized damage identification method and embedded on the Imote2 sensor. The 

Imote2 sensor was used to calculate the wavelet coefficients of acceleration responses, 

and a base station was used to calculate wavelet entropy indices. Structural damage can 

be detected from the wavelet entropy indices. 

 

2.2 Nonlinear Damage Detection Methods under Earthquake loading 

 

Post-earthquake condition assessment of large-scale structures has gained considerable 

attention in recent years. The dynamic behavior of civil structures (e.g. opening and 

closing of cracks) under extreme loadings is typically nonlinear, thereby leading to the 

hysteretic performance of the structures. Therefore, the nonlinear hysteretic restoring 

force should be considered during the post-earthquake condition assessment. In this 

section, the nonlinear dynamic analysis models are reviewed first, followed by the 

nonlinear damage detection technique. 

 

2.2.1 Nonlinear dynamic analysis models 

 

The models for the nonlinear response analysis of structures can be divided into three 

categories, as follows: global models, microscopic finite element models, and discrete 

finite element models (Taucer et al., 1991).  

 

Most of the existing studies used the first type of models to simulate the nonlinear 

vibration responses for structural damage detection. These models, such as mass-spring-
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damper models and shear-building models, are based on simplified assumptions and are 

insufficient to predict the vibration characteristics/responses of actual structures. The 

restoring force of the system was represented by a polynomial function of displacement 

and velocity. For example, Toussi and Yao (1983) used a polynomial function to 

represent the hysteretic behavior of a 10-story reinforced concrete structure under 

earthquake loading. The nonlinear force-deformation relationship due to the strength 

deterioration, energy dissipation, and permanent deformation was considered. 

Benedettini et al. (1995) proposed the orthogonal and nonorthogonal polynomial 

functions to approximate the restoring force. A nonparametric estimation technique was 

proposed to identify the nonlinear system parameters. The dynamic restoring force of a 

base isolation system subjected to strong ground motion is usually considered nonlinear. 

Furukawa et al. (2005) used a trilinear hysteretic multiple shear spring model to 

represent the nonlinear restoring force of a base-isolation system. The hysteretic 

restoring force is frequently used to simulate the non-linear behavior of civil structures 

under extreme loadings (Baber and Wen, 1981; Sireteanu et al., 2010). Ma et al. (2006) 

developed a generalized Bouc–Wen model to represent the structural strength 

degradation, stiffness degradation, and pinching characteristics of the structure. The 

differential evolution approach was proposed to evaluate the system parameters of the 

hysteresis model. Kunnath et al. (1997) used a modified Bouc-Wen model to simulate 

the behavior of prestressed concrete elements and beam-column joints. The control 

parameters of the hysteretic model were determined by the modified Gauss-Newton 

method. Foliente (1995) proposed a modified Bouc-Wen Baber-Noori model to 

represent the hysteretic behavior of wood joints. 
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The second type is the microscopic finite element model, which has been widely used in 

the forward analysis. Each structural member (e.g. beam, column) is discretized into 

thousands of solid finite elements in the computation, causing the entire structure to 

obtain thousands of solid finite elements. Bi and Hao (2013) used a 3D finite element 

model to simulate the dynamic behavior of bridge structure under seismic loading. The 

pounding damages between girders and abutment were investigated. The bridge consists 

of more than 500000 nodes, and the dynamic analysis of this model was conducted for 

more than one week. The microscopic finite element models have been successfully 

used to simulate the behavior of bond-slip of the refinement bar (Naaman and Najm, 

1991), crack extension phenomena (Moës et al., 1999), concrete deterioration (Coronelli 

and Gambarova, 2004), and FRP-concrete debonding (Lu et al., 2005). However, due to 

the high computational workloads in the forward problem analysis, this model is rarely 

used in the inverse problem analysis. 

 

The discrete finite element models can also be used to simulate the complex nonlinear 

behavior of structures (e.g., bond-slip of reinforcement), but not suffer such a heavy 

computational workload. Each element is subdivided into longitudinal fibers, which 

follow the uniaxial stress–strain relation of the particular material. This model is 

considered a compromise between the global model and microscopic finite element 

model (Taucer et al., 1991). This model has been proposed for dynamic analysis of 

large-scale structures, performance-based seismic design, and structural reliability 

evaluation. Lu et al. (2015) used multi-layer shell elements to simulate the collapse of 

super-tall buildings. The numerical results using the discrete finite element model 

matched effectively with the experimental results. Val et al. (1997) evaluated the 
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reliability of a reinforced concrete structure with the discrete finite element model. The 

influence of random parameters on structural reliability is evaluated with sensitivity 

analysis. The discrete finite element models gain much attention because they can better 

simulate the structural nonlinear behavior. Some damage detection methods are reported 

and reviewed in the next section. 

 

2.2.2 Nonlinear damage detection methods 

 

Identifying parameters in a hysteretic system (e.g., stiffness and strength degradations) 

is considered a challenging problem in the engineering field. Most existing methods are 

proposed to identify the parameters using the global nonlinear models. For example, 

Yang et al. (2014) used an adaptive quadratic sum-square error estimate method to 

identify the time-varying parameters of nonlinear structures. The hysteretic behavior 

due to the stiffness degradations and pinching effect was simulated with the Duffing 

model. Numerical and experimental studies showed that the unknown ground motion 

and system parameters can be identified. 

 

Bayesian inference methods are proposed to identify the structural parameter and their 

confidence bounds. It is considered an efficient method because the results provide the 

probability density functions of each identified parameter. Some studies on Bayesian-

based damage detection approach were proposed. Yuen and Beck (2003) presented a 

Bayesian approach for nonlinear parameter identification with incomplete 

measurements. The nonlinear parameters and their probability density function were 

updated by the spectral density of output responses. Li et al. (2004) presented a method 



 

    

22 

to estimate the parameters of hysteretic systems, considering pinching effect in wood 

buildings and reinforced concrete structures. The proposed method was based on the 

Bayesian state estimation and bootstrap filter. The simulation results showed that the 

Bayesian method was more advantageous in handling nonlinear system identification 

with high-level measurement noise than the least-squares methods. Worden and 

Hensman (2012) proposed a Bayesian inference method to identify the parameter of a 

Duffing oscillator. A deviance information criterion was proposed for model selection, 

and the Markov Chain Monte Carlo method was proposed for the parameter 

identification. 

 

The least-squares methods and Kalman filtering technique are two widely used methods 

for nonlinear system identification. The least-squares methods for nonlinear system 

identification are reviewed in the following section. Lin et al. (2001) presented a 

recursive least-squares algorithm to identify the parameters in Bouc–Wen model. The 

variable trace approach was proposed to update the adaptation gain matrix and the 

parameter variation given that the progressive damage could be captured. Yang and Lin 

(2004) used the least-squares estimation to identify the parameters of non-linear 

hysteretic structures. An adaptive tracking technique was proposed to track the damage 

event. The simulation results showed that the abrupt and slow degradations of hysteretic 

parameters were accurately identified. Xu et al. (2012) used power series polynomial 

model to represent the nonlinear restoring force. The least-squares technique was 

proposed to identify the coefficient of the polynomial functions. The advantage of the 

proposed method is that it does not need any assumption and prior knowledge of the 

system. This method was subsequently extended to identify the nonlinear restoring 
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force and unknown dynamic loadings in a nonlinear MDOF chain-like structural system 

(He et al., 2012). Experimental studies on a four-story steel frame structure equipped 

with two actively-controlled MR dampers were conducted to verify the accuracy of the 

proposed method.  

 

Ching et al. (2006) compared the performance of the extended Kalman filter and the 

particle filter for nonlinear system identification. The results showed that the particle 

filter was more advantageous than the extended Kalman filter in tracking the moderately 

and highly nonlinear behavior. Wu and Smyth (2007b) used unscented Kalman filter 

and extended Kalman filter for real-time nonlinear structural system identification. The 

results showed that the unscented Kalman filter was less sensitive to measurement 

noise. Chatzi and Smyth (2009) used unscented Kalman filter and particle filter methods 

to identify the system parameters of a three-DOFs system. The Bouc–Wen hysteretic 

model was used to simulate the hysteretic behavior, whereas displacement and 

acceleration measurements were performed for parameter identification. Lei and Wu 

(2011) proposed an identification method with limited input and output measurements. 

The identification algorithm was based on the sequential use of the classical Kalman 

estimator for the structural responses and the recursive least squares estimation for the 

nonlinear restoring force. Ghorbani and Cha (2018) presented a cubature Kalman filter-

based method to improve the identification performance of the large-scale structures. 

The results showed that the new proposed method was better than the traditional 

unscented Kalman filter approach when the high-level noise was considered in the 

measurement noise. Guo et al. (2018) proposed a force identification method for 

hysteretic nonlinear structures. The seismic loading was estimated from the unscented 
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Kalman filter. The effect of measurement noise, model error, and environmental 

disturbances was also studied.  

 

Nonlinear finite element analysis can better simulate the dynamic behavior of the 

structure under earthquake loading. Nonlinear model updating technique was proposed 

to calibrate the nonlinear numerical model of the actual structure. Ebrahimian et al. 

(2015) proposed a novel method for material parameter identification. The nonlinear 

dynamic response of the structure was simulated with the nonlinear finite element 

method framework. The extended Kalman filter was proposed to update the parameters 

in the concrete and reinforcement, whereas the dynamic response sensitivities were 

obtained using the direct differentiation method. The numerical example on model 

updating of a reinforced concrete was studied to verify the proposed method. Astroza et 

al. (2014) identified the material parameters of a distributed plasticity finite element 

model. The nonlinear stochastic filtering technique was proposed to update the frame-

type structure. Similar studies also reported the use of batch Bayesian approach 

(Ebrahimian et al., 2017). These methods require seismic input information. Some 

studies were proposed to identify the material parameter and the seismic input (Astroza 

et al., 2017; Ebrahimian et al., 2018). Asgarieh et al. (2014) calibrated the nonlinear 

finite element model of a masonry infilled frame structure. The hysteretic material 

models were used to simulate the nonlinear behavior at the element level. Li et al. 

(2017b) performed an experimental investigation on model updating of a seismic 

isolated bridge. The parameters of the isolators were calibrated from the experimental 

test data. The results showed that the predicted responses from the updated bridge 

model were in good agreement with the measured ones.  
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2.3 Damage Detection Methods under Ambient loading 

 

Without considering extreme loadings, the civil infrastructure is generally subjected to 

ambient excitation. Structural identification methods with ambient vibration tests are 

preferred over forced vibration ones because the artificial excitation of large structures 

with low natural frequencies is quite difficult and expensive (Bahlous et al., 2009). In 

the ambient vibration test, the structure is subjected to a variety of excitations (e.g., 

traffic loading, wind loading, and temperature loading). These excitations are 

immeasurable and are considered broadband in the frequency domain. The spectral 

characteristics of the ambient vibration response contain the dynamic properties of the 

structure; thus, structural damage can be detected from the ambient vibration response. 

Some studies have been conducted to extract the vibration characteristics and identify 

the structural damages. In this section, modal parameter identification methods are 

initially reviewed, and followed by damage detection methods, particularly correlation 

function-based damage detection methods. 

 

2.3.1 Modal parameter identification methods 

 

The conventional methods utilize impulse response function or frequency response 

function to extract the modal parameters. For example, Sun et al. (2017) proposed a 

model parameter identification method in the Bayesian probabilistic framework. The 

impulse response functions were obtained by deconvolving the measurement 

accelerations with respect to the recorded ground motion. However, the measurement of 

the input force of the structure is unknown. Carrying out field tests in large engineering 
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structures with artificial excitation is challenging. The output -only method is desirable, 

and some approaches have been proposed. 

 

Peeters and De Roeck (2001) reviewed stochastic system identification methods for 

civil structures under operational conditions. The input–output based methods and 

output-only based modal parameter estimation methods were appropriately discussed. 

The results showed that the classical input–output modal parameter identification 

methods can be modified into the output-only method. For example, FRF-based 

methods can be converted to spectrum-based methods. Ren and Peng (2005) updated a 

large span bridge with ambient vibration measurement. The dynamic characteristics of 

the bridge were extracted from peak picking method and stochastic subspace 

identification (SSI) method. The results showed that the ambient vibration signals can 

be used to identify the frequencies and mode shapes of the bridge. Deraemaeker et al. 

(2008) proposed the output-only identification method, considering the environmental 

effect on the vibration characteristics. The SSI approach and peak value from the 

Fourier transform of modal filters were used for feature extraction.  

 

The operational modal analysis (OMA) techniques gain much attention because these 

methods can extract the frequencies and mode shapes without interrupting the daily use 

of the structure. Reynders et al. (2010) proposed a hybrid vibration test, namely, 

operational modal analysis with exogenous forces (OMAX) technique, for modal 

parameter identification. Exogenous inputs were applied to the structure under 

operational conditions. The experimental results of a three-span bridge showed that the 

OMAX technique could achieve better results than the OMA technique. Brownjohn 
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(2003) identified the frequencies of a tower structure and a smaller office block with 

Natural Excitation Technique (NExT) and Eigensystem Realization Algorithm (ERA). 

The results showed that the frequencies were underestimated, and the design is 

conservative. Yuen and Kuok (2010) studied the effect of seasonal variation on the 

vibration characteristics of the reinforced concrete building. Bayesian spectral density 

approach with ambient vibration responses was used to quantify the variation of modal 

frequencies and modal shapes. Siringoringo and Fujino (2008) developed two system 

identification methods for a suspension bridge using ambient vibration response. One 

method was based on Random Decrement Technique (RDT) and Ibrahim time domain 

approach. The other method was based on NExT combined with ERA. The modal 

parameters were identified with ambient response. Gul and Catbas (2008) used 

Complex Mode Indicator Functions (CMIFs) for system identification. The random 

decrement technique was used to generate the input for the CMIF method. The natural 

frequencies, mode shapes, and damping ratios of a long-span bridge were identified.  

 

Among these studies, the NExT and RDT are two widely used signal pre-processing 

methods for ambient vibration responses. These two methods are based on the 

assumption that the input excitation is broadband and stationary. When sufficient long-

time histories of continuous data are collected, the correlation function/random 

decrement function can be written as a summation of free decay vibration signals. Each 

vibration signal has a damped natural frequency and damping ratio, which is equal to 

the corresponding structural mode. The correlation function/random decrement function 

can reflect the properties of the structure, thereby indicating that structural damages can 

be detected using this information. 
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2.3.2 Structural damage detection methods 

 

The time domain damage detection methods cannot be easily applied to civil structures 

because the input excitation force is unknown in the ambient conditions. For this reason, 

frequency domain methods can be used for structural parameter identification methods. 

Most of the studies extracted modal parameters and then used the frequency domain 

information (e.g., frequencies, mode shape, and flexibility matrix) to identify the 

structural parameters.  

 

Teughels and De Roeck (2004) proposed a sensitivity-based method for damage 

detection of a concrete bridge. The frequencies and mode shapes were extracted from 

SSI method with ambient vibration responses. The Gauss-Newton method was used to 

update the Young’s and the shear modulus of the actual bridge with the modal 

parameters.  

 

Lee and Yun (2006) presented a conventional back-propagation neural network-based damage detection 

method for steel girder bridges. The modal parameters obtained from frequency domain decomposition 

(FDD) technique were used as input feature vectors to train the neural networks. A modal strain energy-

based damage indicator was also proposed to detect the potentially damaged elements. Only the identified 

potential elements were considered in the neural networks for further damage identification. Michel et al. 

(2008) also used the FDD technique to estimate the modal parameters of a nine-story reinforced concrete 

dwelling. The stiffness parameters of the reinforced concrete structure were evaluated using the extracted 

frequencies and mode shapes. 
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Sohn and Law (1997) developed a damage detection method based on the Bayesian 

probabilistic framework. The most probable damage location and severities were 

identified with a few fundamental modes. The measurement noise was also considered. 

A two-stage Bayesian-based identification method was proposed by Yuen et al. (2004). 

The approach was used to identify the modal properties and structural parameters, 

sequentially. The model error and measurement noise were considered.  

 

Miguel et al. (2012) extracted the modal parameters o from SSI technique. The 

structural damage in a cantilever beam was identified by using the evolutionary 

harmony search algorithm with the extracted modal parameters. Amani et al. (2007) 

detected the structural damage location and intensity from changes of damping and 

stiffness matrices. The structure was constructed from the natural frequencies and modal 

properties. Experimental studies on a reinforced concrete beam and multi-story frame 

structure under ambient excitations were conducted to verify the accuracy of the 

proposed method.  

 

Caicedo et al. (2004) proposed a damage detection method based on the modal 

identification and least-squares method. The model parameters were extracted from 

ambient vibration responses using NExT and ERA. The stiffness parameters of the 

structure were identified by the least-squares approach with the extracted model 

parameters. Yin et al. (2009) developed a substructural based method to detect the 

damage in a three-dimensional transmission tower. The frequency domain vibration 

characteristics of the tower were extracted by a combination of the NExT and ERA 
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methods. After obtaining the frequencies and mode shapes, the substructural damage 

was identified with dynamic model reduction.  

 

Jaishi and Ren (2005) presented a comparative study on vibration characteristics for 

structural damage detection. The field test results from an actual bridge under ambient 

excitations were conducted for experimental study. The different vibration 

characteristics, such as frequencies, mode shape, flexibility matrix, and their 

combinations, were selected as objective functions for model updating.  

 

These methods utilized frequency domain information (e.g., frequencies and mode 

shapes) for structural damage detection. However, these methods have some common 

problems. For example, the low-frequency modes are less sensitive to structural 

damage, whereas the high-frequency modes cannot be easily estimated in the ambient 

condition because large amount of energy is required to excite the high-frequency 

component of a structure. Structural damage is usually considered a local phenomenon, 

and the local response is used to better capture the local damage. The second problem is 

identifying errors in the frequencies and mode shapes. The measurement data always 

contain environment noise, thereby resulting in errors in the results of modal parameter 

extraction. The errors in the first stage affect the second stage of damage identification, 

and this problem cannot be ignored. The third problem is that frequency domain 

methods need a large number of measurement points to identify the structural 

parameters. When the structure is complicated and the number of unknown structural 

parameters is large, evaluating the condition of this structure is difficult. 
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2.3.3 Correlation function-based damage detection methods  

 

The conventional time domain methods cannot easily identify the structural parameters 

under ambient conditions because these methods require larger number of sensors than 

the number of excitation forces. In the ambient conditions, the input location and the 

number of excitation are unknown, causing much difficult identification. The 

correlation function can be written as a summation of free decay vibration signals. Each 

signal is equal to the corresponding structural mode. Some researchers found that the 

structural damage can be detected with the correlation function, which may be a new 

solution for condition assessment under operational conditions. The correlation 

function-based damage detection methods are reviewed in the following section. 

 

Yang et al. (2007c) utilized the amplitude vector of correlation functions for structural 

damage detection. Experimental experiments on a composite beam and an aircraft panel 

were performed to verify that the proposed index can detect and locate the structural 

damages. Wang et al. (2010) utilized the inner product vector of correlation functions 

for structural damage detection. Experimental studies on a shear frame structure, a 

composite beam, and an aircraft stiffened panel were carried out to verify the accuracy 

and effectiveness of the developed method. Zhang and Schmidt (2014) proposed a 

damage index, namely, Auto Correlation Function at Maximum Point Value Vector 

(AMV) for damage detection. The structural damage location can be detected from the 

changes of the normalized AMV. Sensitivity analysis of the AMV damage index was 

also studied (Zhang and Schmidt, 2015). These correlation-based methods can detect 

structural damages. However, the damage severity and location cannot be identified. 
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Law et al. (2012) proposed a damage detection method based on the covariance of 

covariance (CoC) matrix. The CoC matrix was obtained from the correlation function of 

acceleration response. The sensitivity matrix of CoC with respect to a local stiffness 

change was derived. A two-dimensional truss was used to verify the accuracy and 

effectiveness of the proposed damage detection method. The results showed that the 

CoC was more sensitive to the structural damage than frequencies and mode shapes. 

The CoC-based method requires many sensors for structural condition assessment in a 

complex structure. Li et al. (2017a) used the covariance of strain responses to identify 

the stiffness degradation in a seven-story planar frame structure and a circular arch 

structure. 

 

The damage detection methods with the time history of correlation function are also 

explored. Ni et al. (2014) presented a correlation function-based method for structural 

condition assessment with multiple ambient excitations. The correlation functions were 

formed by two components. One component was a nonlinear function of structural 

parameters, and the other was a constant value, which depends on the energy of the 

excitation. The two components were updated sequentially using an iterative method. 

The numerical and experimental examples were studied to verify the effectiveness of 

the technique. Lei et al. (2017) utilized the correlation functions to detect the damage in 

a four-story building structure and a cantilever beam. The extended Kalman filter was 

used to identify the stiffness parameters. The stationary and non-stationary ambient 

excitations were considered.  
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2.4 Summary 

 

This chapter presents the background on condition assessment methods for civil 

structures and related topics. Decentralized damage detection methods are considered 

alternative methods for damage detection in the large-scale civil structures. When the 

vibration responses under earthquake loading are used for damage detection, the 

nonlinear behavior in the civil structures should be considered. The nonlinear behavior 

of structures can be simulated with the global model or nonlinear finite element model. 

The correlation function-based methods show more advantages in damage detection 

under ambient excitations, because the time history and location excitation force are 

unknown. The correlation function-based method for damage detection will be explored 

in this thesis and extension studies with the proposed decentralized method for damage 

detection in large-scale civil structures will also be investigated.  
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CHAPTER 3   

DECENTRALIZED STRUCTURAL DAMAGE 

DETECTION  

 

 

 

 

 

3.1 Introduction 

 

Many damage detection methods have been proposed for a structure with unknown 

input to meet the general practical requirement in field measurement (Li and Chen, 

2003; Carden and Fanning, 2004; Yang et al., 2006a; Lu and Law, 2007b; Yang et al., 

2007a; Huang et al., 2010). However, all existing methods for damage detection down 

to element level are suitable for a small to medium-size structure, and they are difficult 

to be applied to a large-scale structure with many structural components. The main 

reasons are that the large amount of data need to be collected and analysed and a lot of 

unknown parameters are to be identified. When iteration based method is used for 

damage detection, each iteration of identification with large number of data from the 

SHM system takes a long duration and the identification is computationally inefficient. 

The capital cost on sensor installation, problems with power supply and power 
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consumption by the sensors, and data processing capability of hardware are several of 

the many adverse factors for a high-density sensor configuration. A new method for 

damage detection from only a few number of sensors should be explored.   

 

In this chapter, a decentralized damage detection method for large-scale structures is 

proposed. The large-scale structure is divided into a number of smaller zones according 

to its finite element configuration. Vibration tests are conducted in each zone in 

sequence with the sensors in the zone. After all the response sets are obtained, the 

external excitations in each test are identified in the wavelet domain. The structural 

parameters of the whole structure are divided into several subsets and they are updated 

using the Newton-SOR method. Both the external excitations and the physical structural 

parameters will be closer to their true value in further iterations of model updating. The 

iteration continues until a prescribed convergence condition is satisfied. This 

decentralized damage detection method is implemented in a multi-core central 

processing unit with parallel processing. Each subset of parameters is updated in 

separate core of the processing unit using the Parallel Computing Toolbox in 

MATLAB. Simulation results with a plane frame structure show that both unknown 

structural parameters and unknown excitation force can be identified. The parallel 

computing achieves a reduction of approximately 37% computation time compared to 

that from computation in sequence. 

 

3.2 Force Identification 

 

3.2.1 Equation of motion 
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The equation of motion of an N-DOFs damped structural system under external 

excitations can be written as 

 ( ) ( ) ( ) ( )t t t tMx + Cx + Kx = Bf   (3.1) 

where x , x , and x  are vectors of displacements, velocity and acceleration responses of 

the structure, respectively; M, C and K are the mass, damping, and stiffness matrices of 

the structure, respectively. ( )tf  is the external excitation force vector, and B is the 

force location matrix associated with vector ( )tf . As suggested by Clough and Penzien 

(1975), Rayleigh damping is used in this study. The coefficients of the mass and 

stiffness are obtained from the first two natural frequencies and the damping ratio for 

the first two modes is assumed as 2%. The dynamic responses of the structure are 

calculated from Newmark method with coefficients beta = 0.25 and gamma = 0.5. 

 

3.2.2 Unit impulse response (UIR) function in wavelet domain 

 

UIR is the response function of the system under the input of a unit pulse at a specific 

location. It is an intrinsic function of the structural system. The wavelet domain UIR 

function of a structure at a specific DOF has been derived analytically from the general 

system equation of motion (Law and Li, 2007) and it will be introduced briefly in the 

following section.  

 

The equation of motion of an N-DOFs damped structural system under the unit impulse 

excitation can be written as 
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 ( ) ( ) ( ) ( )t t t δ t+ + =Mx Cx Kx B   (3.2) 

where ( )t  is the Dirac delta function. The impulse response function can be 

represented as a free vibration state under some specific initial conditions. Assuming 

that the system is in static equilibrium initially, the UIR function can be computed from 

the equation of motion using the Newmark method: 

 
( ) ( ) ( )

( ) ( ) 10 , 0

t t tMh Ch Kh

h h M B
−

 + + =


= =

0

0
  (3.3) 

where h , h , and h  are the unit impulse displacement, velocity and acceleration 

vectors, respectively.  

 

When the structural system is under general excitation ( )tf  with zero initial 

conditions, the acceleration response ( )s ntx  at sensor location s at time instant tn is 

 ( ) ( ) ( )
0

nt

s n s nt t d  = −x h f   (3.4) 

where sh  is the UIR function at sensor location s. Eq. (3.4) represents the input-output 

relationship of the dynamic structural system under the input force ( )tf  at a specific 

location. Vectors ( )ns th −  and ( )f   can be expanded in terms of the discrete wavelet 

transform as (Peppin, 1994), 

 ( ) ( ),0 ,2
2j

DWT DWT j

s n s s k
j k

t h h kh
+

− = + −     (3.5) 

 ( ) ( )0 2
2j

DWT DWT j

k
j k

f f k  
+

= + −f   (3.6) 

where ( )2 j k  −  is the wavelet basis function, 
,2 j

DWT

s k
h

+
 and 

2 j

DWT

k
f

+
 are the expansion 

coefficients of the impulse response function and external excitation respectively. 
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Substituting Eqs. (3.5) and (3.6) into the convolution integral in Eq. (3.4), and using the 

orthogonal conditions of the wavelet basis functions (Daubechies, 1992) as follows, 

 ( )
0

2 0
nt j k d  − =   (3.7) 

 ( ) ( )
0

1/ 2 when  and 
2 2

0 otherwise

n

j
t

j r r j s k
k s d    

 = =
− − = 


   (3.8) 

The following formula can then be derived as 

 ( ) ( )DWT DWT

s n s nt tx h f=   (3.9) 

where ( )DWT

s nth  and 
DWT

f  are the discrete wavelet transforms of ( )s nth −  and ( )f , 

respectively, and are given as 

( ) ( ) ( ) ( ),0 ,1 ,2
, , , j

DWT DWT DWT DWT

s n s n s n ns k
t t t th h h h

+
 =
 

 

0 1 2
, , , j

T
DWT DWT DWT DWT

k
f f f f

+
 =  

 

 

3.2.3  Force identification in wavelet domain 

 

For the entire set of time history data, for example, ( ) ( ) ( )1 2, , ,
T

s s s s nx t x t x tx =     the 

system input-output relationship for the structure can be expressed as, 

 ( ) ( ) ( )1 1

DWT DWT

s n s n rl rl  
=x h f   (3.10) 

and 

( ) ( ) ( )1 2, , ,
T

DWT DWT DWT DWT

s s s s nt t th h h h =    
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where n, r and l are the number of time steps of the response data, the number of input 

excitations and the number of wavelet coefficients in the discrete wavelet transform, 

respectively. 

 

The force identification by using the impulse response function in the wavelet domain 

will be adopted in the following studies. The measured responses ( )mea tx  can be 

represented in the wavelet domain from Eq. (3.10) as follows, 

 ( ) ( ) ( 1)( 1)

DWT DWT

mea mn rl rlmn
t  

=x h f   (3.11) 

where m is the number of sensors. When the number of measurements is at least equal 

or larger than the number of external excitation on the structure, the pseudo-inverse 

( )DWT
+

h  exists (Penrose, 1955). The discrete wavelet coefficient of the unknown force 

can be obtained from Eq. (3.11) as 

 ( ) ( )DWT DWT

mea tf h x
+

=   (3.12) 

The unknown external excitation can be obtained by substituting Eq. (3.12) into Eq. 

(3.6). 

 

3.3 Damage Detection with Unknown Input Force 

 

In practice, the input excitations such as wind, seismic and vehicle loadings are difficult 

to be measured. In the cases, output only method is more promising for structural 

damage detection. In this section, a output only decentralized damage detection method 

is proposed. The dynamic response sensitivities of a structure with respect to the 

structural parameters are derived first, and then sensitivity-based model updating 
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technique is reviewed. The proposed decentralized method utilizes the solution of the 

Newton-SOR method for structural damage detection. Parallel computing is also 

applied during the processing of damage detection in order to improve the 

computational performance. 

 

3.3.1 Sensitivities of dynamic responses 

 

Assuming that the structural local damages are in the form of a change of a structural 

stiffness parameter, the stiffness matrix of the damaged structure is expressed as  

 ( )
1

1
ne

d

i i

i=

KK = −   (3.13) 

where Ki is the stiffness matrix of the i-th finite element in the intact state, and Kd is the 

global stiffness matrix in the damaged state. In addition, i  ( 0 1i  ) is defined as 

the damage index, which is a fraction of the intact stiffness of the i-th finite element of 

the structure, and ne is the total number of elements in the structure. Further, 1i =  

denotes that the i-th structural element completely loses its stiffness, whereas 0i =  

indicates that the structural element is intact. 

 

The sensitivity method can be applied to identify local damages in the structure when 

external excitations are available. Performing differentiation to both sides of Eq. (3.1) 

with respect to the damage index, we have 

 2

i i i i i

+ + = a
x x x K K

M C K x x− −
    

    

    
  (3.14) 
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The responses of the structure have been calculated from Eq. (3.1). The response 

sensitivities ix   , ix   , and ix    can therefore be solved from Eq. (3.14) 

using Newmark method (Lu and Law, 2007b). 

 

3.3.2 Sensitivity-based model updating 

 

The model updating based on acceleration response sensitivity can be expressed in the 

Taylor’s expansion without the second and higher order terms as 

 ( )2

mea cal= = +Οx x x S θ θ−     (3.15) 

1 2

, , ,cal cal cal cal

ne

x x x x
S

θ   

    
= =  

    
 

where meax  and calx  are the measured and calculated acceleration responses, 

respectively;  1 2, , , ne  =θ  is the damage index vector, and S is the sensitivity 

matrix of acceleration obtained from Eq. (3.14). The high order terms ( )2Ο θ  are 

small and can be ignored. 

 

Eq. (3.15) can be solved by the simple least-squares method as follows: 

 ( )
1

T T
−

 = θ S S S x   (3.16) 

However, the matrix S is generally ill-conditioned and the damped least-squares method 

is used instead with  

 ( )
1

T T
−

 = + θ S S λ S x   (3.17) 
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where λ is the non-negative optimal regularization parameter and can be  obtained by 

the L-curve method (Tikhonov et al., 1995). 

 

3.3.3 Damage detection from several sets of responses 

 

Sensitivity-based model updating is used in the following studies, considering with 

different sets of measurement responses. In a short-term field measurement, the sensors 

are not fixed locations but roved at different parts of the structure in sequence. 

Therefore, the number of sensors and the data acquisition units can be reduced 

significantly. The capital cost of the hardware can be reduced to a fraction of that in the 

SHM system. In practice, there are many measurement points for a large civil structure 

and the measurement duration is long. The sensitivity matrix S has n×m rows and ne 

columns, causing a very heavy computational load. To improve the computational 

efficiency, a decentralized approach is proposed in the subsequent section. Compared 

with the conventional global sensitivity based methods, the proposed decentralized 

approach only requires the diagonal block of the sensitivity matrix for finite element 

model updating. The computational workload and computer memory in each iteration 

are thus reduced. 

 

 

 

A large structure is divided into several smaller groups in physical zones based on its 

finite element formulation. Consequently, the unknown damage index θ can be divided 

into several subsets  1 2, , , r=θ θ θ θ , where iθ  contains all the unknown damage 
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indices of the i-th ( )1 i r   zone. Field measurement is conducted in different zones of 

the structure using different sensor configurations and excitation to obtain different sets 

of measured responses. The measured responses from i-th zones ,mea ix  can be written as 

a function of the structure parameters   and excitations fi, given that 

( )1 2, , , ,i r ig θ θ θ f . When all the measurements of the whole structure are collected, 

the measured responses from different zones can be written as: 

 

( )

( )

( )

( )

1 1 2 1 1

2 1 2 2 2

1 2

1 2

, , , , 0

, , , , 0

, , , , 0

, , , , 0

r mea,

r mea,

i r i mea,i

r r r mea,r

g θ θ θ f x

g θ θ θ f x

g θ θ θ f x

g θ θ θ f x

− =

− =

− =

− =

  (3.18) 

The unknown values are the damage indices of the structural parameters, and the 

problem is to find the roots of Eq. (3.18). Eq. (3.18) can be written as Eq. (3.19) and 

solved using the Newton method (Ortega and Rheinboldt, 1970) 

 ( ) 0=G    (3.19) 

with 

 ( ) ( ) ( )( )1 0n n n+ n=G G G+ − =       (3.20) 

 ( ) ( ) ( )1n n+ n n n=G G G  −       (3.21) 

 ( ) ( )
1

1n+ n n n= G G
−

 −
 

      (3.22) 

where n denotes the number of iteration and ( )n
G   is the Jacobian matrix of ( )n

G  , 

which can be obtained from Eqs. (3.14) and (3.23). 
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 ( )

1 1 1

1 2

2 2 2

1 2

1 2

r

n

r

r r r

r

=

g g g

θ θ θ

g g g

θ θ θG

g g g

θ θ θ

   
   
 
   
    
 
 
 
   
    

   (3.23) 

 

When an iterative successive-over-relaxation (SOR) method is used to solve Eq. (3.21)

for each Newton iteration, the whole process is called Newton-SOR method (Ortega and 

Rheinboldt, 1970). If P iterations are used inside the SOR loop the method is called P-

step Newton-SOR method. The comprehensive descriptions of the method can be found 

in Ortega and Rheinboldt (1970). The SOR solution is used to reconstruct the Jacobian 

for the next Newton step so that the SOR solution is not required to have a high 

precision (Carey and Krishnan, 1982). Therefore, we only consider One-step Newton-

SOR method. Compared with global method (the classic sensitivity method), the 

proposed decentralized approach only requires that the diagonal block of the sensitivity 

matrix is calculated for the finite element model updating. Within each iteration, the 

computational workload and computer memory are thus reduced significantly. Other 

methods to reduce the computational resources, for example, the substructuring 

approach (Weng et al., 2009; Weng et al., 2013), are not studied and compared in this 

thesis. 

 

Eq. (3.21) can be written as Eq. (3.24) with ( )n
G   decomposed as Eq. (3.25) 

 ( ) ( ) ( )1n+ n n n=L U G G− −      (3.24) 
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 ( )n
G L U = −   (3.25) 

where L and U are a diagonal block matrix and a non-diagonal block matrix of ( )nG  , 

respectively. On the right-hand-side of Eq. (3.24), set ( ) ( )n n n
G Gb =  −     

 1 1n+ n+= +L U b    (3.26) 

 ( )1, 1, 1 1, 1 1, 1, 1 2 3n+ q n+ q n+ q n+ q= +  = + , q=− − −
L U b L U b , ,      (3.27) 

where the superscript q denotes the iteration number in the SOR iteration. Defining 

matrix V=L−1U, we have 

 ( )1 1=V I L U I L U L
− −− = − −   (3.28) 

Then Eq. (3.27) can be rewritten as: 

 1, 1, 1 1n+ q n+ q= +V L b
− −    (3.29) 

Expanding the term 1, 1n+ q−
V  in full, we have 

 

( )

( ) ( )

( ) ( )( )

1, 1,0 2 1

1,0 1,0 2 1 1

1,0 2 1 1,0 1

n+ q q n+ q

n+ q n+ q

n+ q n+

− −

− −

− −

+ + +

+ − + + +

+ + + − +

= V I V V V L b

= V I I V V V L b

= I V V V V I L b

 

 

 

  (3.30) 

Substituting b and V=L-1U into the last bracket on the right-hand-side of Eq. (3.30), we 

obtain 

 
( )

( ) ( ) ( )( )

1,0 1

1 1,0 1

n+

n+ n n= +

V I L b

L U L L L U G

−

− −

− +

− − −



  
  (3.31) 

The initial and ending values of the SOR iteration are the initial and ending values of 

the Newton iteration and they are: 1,0n+ n   and 1, 1n+ q n+  , respectively. 

Substituting Eq. (3.31) into Eq. (3.30), we have 

 ( ) ( )1 2 1 1n+ n q n
= I V V V L G

− −− + +     (3.32) 
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When q→∞, Eq. (3.32) is equivalent to the Newton method in Eq. (3.22). When q=1, 

we have the One-step Newton-SOR iteration as 

 ( )1 1n+ n n
= L G

−−     (3.33) 

Rewriting 1n+  into a vector of subsets 
1 1 1

1 2, , ,n+ n+ n+

r θ θ θ   , we have 

 

( )

( )

( )

1

1

11 1 1
1 1

21
2 2 22 2

2

1

0 0 0
,

0 0 0 ,

0 0 0

,
0 0 0

n
n

n+ n mea,

nn+ n
mea,n

n+ n
n

r r
r r mea,r

r

n

r

=

g

θ g f x
θ θ

g
g f xθ θ

θ

θ θ g f xg

θ

−



 
   −            −     −                      −    
  







  (3.34) 

or 

 ( ) ( )
1

1 , 1,2, ,n+ n ni
i i i i mea,in

i

i r
g

θ θ g θ f x
θ

−

 
 = − − =    

，   (3.35) 

The damped least-squares method by Tikhonov et al. (1995) is applied to obtain the 

solution with bound for Eq. (3.35). Eq. (3.36) gives the regularization solution in the 

One-step Newton-SOR iteration as 

( ) ( )

1

1 , 1,2, ,

T T

n+ n ni i i
i i i i i mea,in n n

i i

+ i r
g g g

θ θ λ g f x
θ θ θ



−

        
  = − − =                

，


   (3.36) 

 

When a limited number of measurement points are available, and the number of 

unknown parameters is large, the solution may not be unique. The increasing of 

measurement points and optimizing the sensor placements may provide more structural 

information in the measurement sets and thus the non-uniqueness problem in the 
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identified results can be avoided. In the following examples, the non-uniqueness issue 

does not occur 

 

3.3.4 Parallel computing 

 

Traditionally, all unknown parameters of a structure are updated at the same time, and 

the operations are conducted in the serial computation manner on a single-core CPU. 

That is the computer instructions are executed one by one in sequence. Note that in the 

One-Step Newton-SOR method, the identified vector 
1n

iθ
+

 is a function of 

1 2, , ,n n n

r
  θ θ θ  and the excitation force fi. The unknown parameters 

1n

iθ
+

 and 
1n

jθ
+

 

( )i j  can be computed at the same time by performing the instructions using 

multithreads with different core of the CPUs or multiple CPUs. Therefore in this paper, 

the Parallel Computing Toolbox in MATLAB is used to execute instructions to update 

 (i=1, 2, ∙∙∙, r) in different cores (or threads) of the CPU. The parallel for-loops 

(parfor) are used to manage the computation and data between the MATLAB session 

and the computing resources. The framework of the parallel computation is shown in 

Figure 3.1. The process of updating of each subset of parameters is shown in Figure 3.2. 

The iteration continues until a prescribed convergence condition is satisfied, which is 

defined as  

1

1
100%

n n

n
Tol

θ θ

θ

+

+

−
                             (3.37) 

where Tol is the convergence criterion. 
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n iteration
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Figure 3.1 Framework of the parallel computation 
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Input data

Calculate the responses from Eq. (3.1)

Calculate the sensitivity matrix from Eq. (3.14)

Obtain the subset parameters from Eq. (3.35)

Output data

(force and structural parameters)

Obtain the force via wavelet domain from Eqs. (3.6)-(3.12)

 

 

 

Figure 3.2 Computation for each zone 

 

 

3.4 Numerical Study 

 

A simply-supported planer truss structure as shown in Figure 3.3 with forty-six 

members serves for the simulation study. The truss has a pin support at Node 1 and 

roller support at Node 19. The cross-sectional area of the bar is 0.0016 m2. Rayleigh 

damping is adopted for the system with ξ1=0.01 and ξ2=0.01 assumed for the first two 

modes. The mass density of the material is 7.8×103 kg/m3 and the elastic modulus of the 

material is 206 GPa.  

 

The truss structure is divided into three zones arbitrarily. The first zone consists of 

members 1 to 15 with unknown parameters α1 ~ α15. The second zone consists of 

members 16 to 31 with unknown parameters α16 ~ α31, and the third zone consists of 
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members 32 to 46 with unknown parameters α32 ~ α46. Each zone has 4 accelerometers 

as shown in Figure 3.4, two measuring horizontal acceleration and two verticals. The 

initial value of the modulus of material of the whole structure are equal to the health 

status. The convergence criterion in Eq. (3.37) is set to 10−3 and 10−6 for the case with 

and without noise in the measured responses, respectively.  
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Figure 3.3 Truss structure 
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(c) Test 3 

Note:  denotes horizontal measurement;  denotes vertical measurement 

 

Figure 3.4 Location of sensors and excitation 

 

 

3.4.1 Damage detection without measurement noise 

 

The structure is assumed to be at rest before applying white noise excitation at the 

selected node. Short-term field tests are carried out from zone 1 to zone 3 to obtain the 

vibration data as shown in Figure 3.4. The sampling rate is 200Hz. When there is no 

noise in the measurement responses, the response data of a duration of 2.5s is used for 

the studies. 
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The modulus of elasticity of material is assumed to suffer a reduction of 15% in 

Elements 7 and 32, 10% in Element 19 and 5% in element 24 to simulate the damage in 

the structure.  The 15% stiffness reduction of Element 7 is the structural damage in zone 

1, while the stiffness reduction of Elements 19 and 24 are the damage in zone 2. 

Similarly, the Element 32 is in zone 3. 

 

The dynamic responses of the structure are divided into three subsets. Each subset of 

vibration responses is obtained from the corresponding field test and they are used to 

identify the structural parameters in that zone. The solution from the One-step Newton-

SOR method is used to identify the unknown structural parameters in each zone, 

because the structural damage is assumed to be more sensitive to the local responses but 

less sensitive to the responses that far away from the damage location. In each iteration, 

the subset unknown structural parameters are updated using the corresponding subset 

measurement responses in one CPU. After that, the global damage index is generated 

and sent to each CPU for performing the next iteration. The detailed procedures can be 

found in Figure 3.1 and 3.2. Figure 3.5 shows the evolution of damage indices of each 

subset with respect to iteration. All simulated damages are correctly identified after 

around 300 iterations. For the undamaged elements, the identified damage indices 

finally converged to zero and they are the same as the true values, which indicates that 

the proposed method can be used for structural damage detection accurately. Figure 3.6 

shows the variation of the relative error with iterations. In this study, the convergence 

criterion is set at 10−6, which may be too small. As the results convergence to true 

values after 300 iterations, the accuracy improvement in the further iterations is limited. 

The final identified unknown excitation force in zone 1 is shown in Figure 3.7, which 
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agrees with the true input force well with small error. The difference increases along 

with the time step, which may be caused by accumulation of numerical discrete error. 

However, the difference between the identified force and true input force is less than 

0.1%. The results indicate that the proposed method is accurate, and it can be used for 

damage detection with unknown excitations. 

 

 
(a) Subset 1 

 
(b)Subset 2 
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(c) Subset 3 

Figure 3.5 Evolution of the identified results without measurement noise 

 

 

 

Figure 3.6 Relative error with iteration. 
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(a) Comparison of the identified input force with the true excitation force. 

 

(b) Error of the identified input force. 

 Figure 3.7 Comparison of the identified input force without noise 

 

3.4.2 Damage scenario with measurement noise 

 

In practice, noise exists inevitably. The measurement noise effect on the identified 

resulted is studied. The measured response is simulated by adding a random component 

to the actual responses as 
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 ( )mea p noiseE N = +x x x   (3.38) 

where Ep is the percentage noise level, Nnoise is a standard normal distribution vector 

with zero mean and unit standard deviation, and ( )x  is the standard deviation of the 

actual acceleration response. The 5 s response data are used in the damage 

identification. The error of the identified stiffness parameter is calculated from 

 error 100%
identify true

true

θ θ

θ

−
=    (3.39) 

 

With the same procedures as described in the last section, the identified damage indices 

of each subset of parameters under different noise levels are shown in Figure 3.8. The 

damage location and severity are accurately identified. However, some undamaged 

elements are falsely identified. In the case of 5% noise, most of the errors are less than 

2% and the maximum identification error is 3.72% at Element 34. In the case of 10% 

noise, several elements have relatively large errors. For example, 9.93% at Element 33, 

6.52% at Element 17, and 5.56% at Element 36. The other identified errors are less than 

5%. In the high noise environment, the proposed method may fail to detect some 

damaged elements. The errors of identification results at two noise levels are shown in 

Table 3.1. The error in the 1st zone with 5% noise in the responses is larger than that 

with 10% noise. The reason is unknown, probably due to the large randomness in the 

artificially generated noise in the responses. 

 

The identified input force of zone 1 is shown in Figure 3.9, as compare with the true 

value. The accuracy of the identified force decreases with increasing noise level in the 

response as shown in Figures 3.9 (a) and (b). In each iteration, the unknown input 
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excitations are identified in the first stage and the subset unknown structural parameters 

are updated in the second stage. The errors of the force identification may affect the 

results of the unknown structural parameters. As shown in Figure 3.9, the identification 

force can be separated into a dynamic part and static part (linear trend). In the second 

stage of damage detection, the structure is subjected to the white noise as well as the 

identified low-frequency excitation. The static loading part changes very slowly and 

does not affect the dynamic acceleration responses. Therefore, the predicted responses 

match well with the measured dynamic responses. The other probable reason is that 

there are 4×1000×3 data (four sensors for measurement and 5s of response data is used 

for the identification in each zone) used for the identification of the 46 unknown 

parameters and only 4×1000 data used for the identification of 5×200 unknown force 

values for one excitation in each subset study.  

 

 

(a) Subset 1 
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(b) Subset 2 

 

(c) Subset 3 

 

Figure 3.8 Identified stiffness reduction factor 

 

 

Table 3.1 The identification error (%) 

Noise level The 1th subset  The 2nd subset The 3rd subset 

5% 1.41 1.00 1.29 

10% 1.08 2.35 3.57 
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(a) Comparison of the identified input force with 5% measurement noise 

 

 

(b) Comparison of the identified input force with 10% measurement noise 

 

 Figure 3.9 Comparison of the identified input force with measurement noise 

 

 

3.4.3 Damage detection with unknown damping ratios 

 

The accuracy of the proposed method has been proved in Sections 3.4.1 and 3.4.2. 

However, the damping coefficients have been assumed to be known. In this section, the 

damping ratios are assumed to be unknown and the 5% of measurement noise is 
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considered. Prior to damage detection, experimental modal testing is performed to 

obtain the modal properties of the structure. An impulse excitation with an amplitude of 

300N and duration of 0.1s is applied at Node 10 of the above structure in the vertical 

direction The first 60s responses at Node 11 in the vertical direction are collected. The 

Fourier transform of the responses is shown in Figure 3.10. The first three modes fall in 

the respective frequency ranges of 0.5 ~ 1 Hz, 2.2~2.6 Hz, and 3.2 ~3.7 Hz. The band-

pass filters are then applied sequentially to the measured response to obtain three 

separate time histories each with one dominating frequency. The Logarithmic 

decrement method (Inman, 2008) is adopted to identify the damping ratios. The 

Logarithmic decrement   is obtained from the natural logarithm of the ratio of the 

amplitudes of any two successive peaks. 

 
( )

( )
1

ln

*

i

i *

i

t

n t+ T
 =



y

y
  (3.40) 

where ( )*

i ty  is the amplitude at time t and ( )*

i t+ Ty   is the amplitude of the peak Δ 

periods away, and Δ is an integer number of successive, positive peaks. 

 

The damping ratio is then calculated from the logarithmic decrement as: 

 
2

1

2
2

1

i
i

i









= 

 
+  
 

  (3.41) 

The damping coefficients can be determined from the following: 

 ( )1 2 2

2 i j

j i i j

j j

a


  
 

= −
−

  (3.42) 

 ( )2 2 2

2
j j i i

j j

a   
 

= −
−

  (3.43) 
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where ξi and ξj correspond to two circular frequencies ωi and ωj, respectively. Usually, 

the damping coefficients can be obtained by using the first two damping ratios. The 

final identified damping ratios and damping coefficients of the structure are listed in 

Table 3.2. It should be noted that the first two damping ratios are the same as the true 

values. Damage detection is then subsequently performed, and the final identified 

damage indices are shown in Figure 3.11. The identified values are almost matching 

with the true ones but with a maximum error of 6% at Element 29. These results show 

that the proposed method can identify the structural damage when the damping ratio is 

unknown. 

 

 

Figure 3.10 Fourier transform of the vertical acceleration of Node 10 
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Table 3.2 The identified modal frequencies and damping ratios  

Frequency (Hz) 
1st  2nd 3rd 

0.87 2.45 3.44 

Damping ratio 
1st  2nd 3rd 

1.00% 1.00% 1.22% 

Damping coefficient a1 a2 

True value 0.0807 9.5876×10-4 

Identified value 0.0697 8.4899×10-4 

 

 

 

      
Subset 1 Subset 3Subset 2

 

 

Figure 3.11 The identified results with unknown damping ratios 

 

 

3.4.4 Modelling error effect and computation effort 

 

Model errors due to the uncertainty of material parameters widely exist in civil 

structures. A numerical model can be built according to the geometric and material 
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information of the physic structure. However, due to the uncertainty of material 

parameters, the numerical model is not accurate for structural damage detection. A more 

accurate finite element model should be updated using the vibration responses in the 

undamaged stage. The finite element model updating with the proposed decentralized 

method is studied in this section. The effect of the random modelling error is 

investigated with a normal random distributed error with 5% coefficient of variation 

included in the initial value of the modulus of material of the structure. The coefficients 

of damping are known. They are identified using the logarithmic decrement method. 

Figures 3.12 and 3.13 present the identified results without measurement noise and with 

10% measurement noise, respectively. The result obtained from the no measurement 

noise case has a good accuracy with the actual value, which can verify the accuracy of 

the proposed method again. The results of the case with 10% measurement noise is a 

little bit larger but satisfactory due to the combined effect of the modelling error and 

measurement noise. These results are similar to that in damage detection cases (Sections 

3.4.1 and 3.4.2). 

 

Table 3.3 compares the computational time required for model updating with and 

without using parallel computing. The table shows that using the parallel computing 

improves the computational efficiency. Nominally, the computational time in using the 

parallel computing should be 60% less than without using parallel computing. It is, 

however, only 56% less for the noise free case as shown in Table 3.3, and only 38% ~ 

40% less for the noisy cases. When there is no noise in the measured response, only the 

2.5 s responses are used for damage detection. In the noisy cases, the 5 s responses are 

used for model updating, which requires longer time for the housekeeping work of 
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reading and writing data. Therefore, the improvement in the efficiency of model 

updating with long duration of measurement data is less than that with short duration of 

measurement data. 

 

    
Subset 1 Subset 3Subset 2

 

  
 

Figure 3.12 Identified result including model error and without measurement noise 

 

Subset 1 Subset 3Subset 2
 

 
 

Figure 3.13 Identified result including model error and measurement noise 
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Table 3.3 Computational time in model updating 

 

CPU Time (hours) 

 Noise free 5% noise 10% noise 

Number of iterations  483 350 247 

Without using Parallel 

Computing Toolbox 
 0.81 2.1 1.5 

With the use of Parallel 

Computing Toolbox  
 0.35 1.3 0.9 

Percentage improvement 56.8% 38.1% 40.0% 

 

 

 

3.5  Summary 

 

A decentralized damage detection method for large-scale structures is proposed in this 

chapter. The structure is divided into several smaller zones and each zone is tested in 

sequence. The external excitations in each zone are identified in the wavelet domain, 

and the unknown structural parameters are updated by using the Newton-SOR method 

in the time domain. The external excitations and the structural parameters are updated 

iteratively with the parallel computing technology included in the model updating of the 

structure. Numerical studies on a planar frame structure indicate that the method is 

effective for damage detection with few sensors and even with 10% noise in the 

measurement data. An approximately 37% improvement is achieved in the required 

computational time when parallel computing is used.  
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CHAPTER 4   

DECENTRALIZED DAMAGE DETECTION OF 

NONLINEAR STRUCTURES USING OUTPUT 

MEASUREMENT ONLY  

 

 

 

 

 

4.1 Introduction 

 

In Chapter 3, an output−only decentralized method was proposed for structural damage 

detection. The output responses are represented by convolution integral of impulse 

response function and input force in the wavelet domain. The unknown excitation force 

can then be identified based on the linear relationship of the input force and output 

responses. However, the proposed force identification method can only be used for the 

linear systems. In this chapter, structural damage detection under seismic loading is 

studied, in which the nonlinear behaviour of structure is represented by a mass-spring-

damper models (shear-building model). The hysteretic behaviors due to stiffness 
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degradation are simulated with Duffing model (Worden and Hensman, 2012; Yang et 

al., 2014). 

 

Extended and unscented Kalman filter based methods are promising for nonlinear 

system identification and have been intensively studied (Yang et al., 2006b; Wu and 

Smyth, 2007a; Lei et al., 2012b; Xie and Feng, 2012). In the extended Kalman filter 

technique, both unknown structural parameters, velocity, and displacement are included 

in the extended state vector and a large number of unknowns may cause the state space 

equation unstable. Therefore, the method is usually applied to identification of small-

scale structures with several unknown parameters. To improve the decentralized 

damage detection method for nonlinear structure, the Kalman filter technique is used to 

identify the unknown ground motion. 

 

In this chapter, the Kalman filter technique is used for the state estimation only, and the 

unknown input forces are identified from the state vector with the optimization method. 

Since the unknown structural parameters are not included in the state vector, the 

dimension of the state vector is not large and the force identification can then be 

achieved even for large-scale structures. Structural parameters of the whole structure are 

divided into several subsets and then updated by using the Newton-SOR method, 

similarly to the approach in the last chapter. Both the external excitations and structural 

parameters are iteratively updated until a defined convergence criterion is satisfied.  
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4.2 Theoretical Development 

 

4.2.1 Equation of motion 

 

The equation of motion of a structure under the external excitation can be written as  

 ( ) ( )( ) ( ) ( ) ( )c st t t tMx + F x + F x ,θ = Bf   (4.1) 

where M is the n×n mass matrix; x , x , and x  are the displacement, velocity and 

acceleration vectors, respectively; ( )( )c tF x , ( )( ),s tF x θ , and ( )tf  are the dissipating 

force vector, the stiffness force vector and the excitation force vector, respectively; B is 

the mapping matrix relating with the location of the applied forces, and 

1 2[ ]ne, , , θ   =  is the unknown parameter vector of the structure with the number 

of elements as ne. It should be noted that the structural system could be linear or 

nonlinear, depending on the definition of the dissipating and stiffness force vectors.  

 

The state vector is defined as  

 
( )

( )
( )

t
t

t

x
X

x

 
=  
 

  (4.2) 

Transforming the equation of motion in Eq. (4.1) as a state equation, we have 

     
( ) ( ) ( )( )1

( )
( ) ( ( ), , ( ))

( ) ( ), s

t
t t t

t t t−

 
 

− − c

x
X = J X θ f =

M Bf F x F x θ
             (4.3) 

Usually, only a limited number of accelerometers are deployed on structures to measure 

the vibrational acceleration responses. The measurement vector can be written as  
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( )

( ) ( )( ) ( )1

( ) ( )

( ) ( ) ( )c s

t t t

       t t t , t−

= +

= − +

Y dx v

Df dM F x + F x θ v
  (4.4) 

where 1
D dM B

−= , d is associated with the locations of accelerometers and ( )tv  is the 

measurement noise vector assumed to be a Gaussian white noise vector with zero mean 

and a covariance matrix ( )T

i j ij ijE v v R = , in which ij  is the Kroneker delta and Rij is 

the variance matrix of the measurement noises. 

 

Eq. (4.4) can be further expressed in the discrete form as (Yang et al., 2006b; Yang et 

al., 2007a) 

 ( , )k k k kY h X θ Df ν= + +  (4.5) 

where ( ) ( ) ( )( )1,k c k s k , −= −X θ dM F x + F xh θ  with kx  and kx  representing the 

corresponding discrete values of ( )tx  and ( )tx  at the time instant t k t=  , Yk is the l-

dimensional observation (measured) vector at t k t=   ( t  is the time step), and kX , 

kf , and kν  are the corresponding discrete values at time instant t k t=  . 

 

4.2.2 Force identification based on Kalman filter technique 

 

The state vector will be estimated first by using the classic Kalman estimator (Lei et al., 

2012b), and the unknown excitations are identified by the least squares estimation. 

Based on the classic Kalman estimator, the state vector at time ( 1)t k t= +   can be 

estimated as follows 

  1 1
ˆˆ ˆ( , )e

k k k k k k+X X K Y h X θ Df+ += − −   (4.6) 
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and 

 ( )
( )1

1
ˆˆ ˆ , , 

k t

k k k k
k t

dt
+ 

+
X = X + J X θ f   (4.7) 

where 
1

ˆ
k+X , 

1k+X , ˆ
kf  are the estimation of 1k+X , the state prediction of 1kX +  and the 

estimation of kf , respectively. e

kK  is the Kalman gain matrix at time instant t k t=  , 

given by 

 ( )
1

e T T

k k k k k k k

−

K =Φ P  H H P H + R   (4.8) 

where  

 k k tΦ = I A+    (4.9) 

 
ˆˆ( )

ˆ
k k

k

k

J X ,θ, f
A

X


=


  (4.10) 
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X
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and Pk is the error covariance matrix of ˆ
kX , which can be obtained in a recursive 

formula as (Lei et al., 2012b) 

 
1 1 1 1 1

T e

k k k k k k k kP =Φ P Φ K H P Φ− − − − −−   (4.12) 

 

When the measurements are available at the DOFs where the external excitations are 

applied, D in Eq. (4.4) is a non-zero matrix. The unknown external excitations 
1

ˆ
k+f  can 

then be identified from Eq. (4.5) by using the least square method through the following 

equation  

 ( ) ( ) 
1

1 1 1
ˆ ˆ ,T T

k k k

−

+ + +−f = D D D Y h X θ   (4.13) 
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4.2.3 Damage detection from subset responses 

 

A large number of unknowns in a large structure can be divided into several smaller 

zones based on its finite element mesh configuration. Accordingly, the unknown system 

parameter vector θ can be separated as several system parameter subsets  1 2, , , rθ θ θ , 

where iθ  contains all the unknown damage indices of the i-th (1 i r ) zone. In this 

chapter, the accelerometers are fixed in a structure, rather than roving different zones. 

When an earthquake event happens, the vibration data can be recorded. The measured 

acceleration response vector from the sensors in the i-th zone is defined as mea,ix . The 

responses measured at each zone can be written as a separate function of the structural 

parameters and excitations as 

 

1 1 2 1

2 1 2 2

1 2

1 2

( , , , , ) 0

( , , , , ) 0

( , , , , ) 0

( , , , , ) 0

r mea,

r mea,

r mea,i

r mea,r

i

r

g θ θ θ f x

g θ θ θ f x

g θ θ θ f x

g θ θ θ f x

− =

− =

− =

− =

  (4.14) 

 

It is noteworthy that all responses are under the same ground motion. After the 

unknown ground motion is identified in the first stage with Eqs. (4.6) ~ (4.13), the 

unknown structural parameters can be then updated. The structural parameter 

identification problem is to find out the solution from Eq.(4.14), which can be 

assembled as Eq. (4.15)  

 ( ) 0=G    (4.15) 

By using Newton method (Ortega and Rheinboldt, 1970), we have 
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 1( ) ( ) ( )( ) 0n n n+ n= + − =G G G       (4.16) 

 1( ) ( ) ( )n n+ n n n=G G G  −       (4.17) 

 
1

1 ( ) ( )n+ n n n= G G
−

 −        (4.18) 

where ( )n G  is the Jacobin matrix of ( )nG  and can be calculated from Eq. (4.19). 
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Following the derivation discussed in Section 3.3.3, the iterative SOR method is 

embedded in Eq. (7.25). Considering the solution from One-step Newton-SOR method, 

the unknown structural parameters can be updated with  
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  (4.20) 

or 

 ( ) ( )
1

1 1 2n+ n ni
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i

 i    r
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 
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  (4.21) 

Tikhonov regularization technique (Tikhonov et al., 1995) is applied to solve Eq. (7.27) 

and the solution is obtained as 
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 (4.22) 

 

After each subset parameters 
1n+

i  is solved from Eq. (7.28), the global structural 

parameters are obtained and the sensitivity matrix 1( )n+
G   is re-calculated. The 

analytical responses and sensitivities in each iteration are obtained based on the global 

structure. Although the proposed approach is conducted by formulating the global 

optimization as a set of optimization problems for several smaller zones, the 

convergence can be achieved by using the iterative identification scheme (Ortega and 

Rheinboldt, 1970), as demonstrated in the examples described in Section 4.3. 

 

4.2.4  Computational procedure of the proposed approach 

 

The proposed approach can be applicable for both linear and nonlinear structural 

identification. The procedures are summarized as follows: 

Step 1: Divide the structure into smaller zones according to its finite element mesh 

configuration. The measured vibation responses are also divided into several 

subsets according to sensor locations. 

Step 2: Define the initial value of parameters as 
0 0 0 0

1 2, , , r
 =  θ θ θ θ  based on the 

baseline model.  

Step 3: Identify the unknown excitation force from Eqs. (4.6) ~ (4.13) with the 

measured vibration data of the whole structure. 
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Step 4: Calculate responses of the whole structure from Eq. (4.1) for each test in a 

specific zone. The sensitivity of responses with respect to the structural 

parameters of each zone 
1n

i i

+
 g θ  are obtained by using forward difference 

method or Newmark-β method (Law et al., 2014). 

Step 5: The parameters of each zone 1n+

iθ  are updated by using Eq. (7.28). The finite 

element model of the global structure is then assembled as

1 1 1 1

1 2

n n n n

r, , , θ θ θ θ
+ + + + =   .  

Step 6: Repeat Steps 3–5 until the convergence criterion in Eq. (4.23) is satisfied. 

 

1

1
100%

n n

n
Tol

θ θ

θ

+

+

−
    (4.23) 

where Tol is the defined tolerance value, and will be given in the following 

numerical and experimental studies.  

 

It should be noted that like many output only damage detection methods (Koh et al., 

2003; Yang and Huang, 2007; Lei et al., 2012b; Lei et al., 2013), the proposed approach 

requires that: a) the number of measured responses is larger than that of the unknown 

excitations; and b) the responses at the locations of the applied excitations shall be 

available. These two conditions can be satisfied for engineering applications, for 

example, when performing damage detection for the civil structure under earthquake 

loading, the locations of the unknown ground motions is usually known and the number 

of placed sensors shall be larger than the number of a few excitation forces.  
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4.3 Numerical Studies 

 

To validate the effectiveness and accuracy of the proposed approach for system 

identification of linear and nonlinear structures, numerical studies on a nonlinear multi-

story shear frame and a planar steel truss are conducted. Only measured responses are 

used for the identification of the ground motion and structural parameters. 

 

4.3.1  Model updating of a 6-DOFs nonlinear structure 

 

Considering a six-storey nonlinear elastic Duffing-type shear building subjected to a 

ground motion acceleration ( )gx t , the system equation of motion is given by (Yang et 

al., 2006b; Yang et al., 2007a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3

1 1 1 1 1 1

1

i

i j i i i i i i i i i i i i i g

j

m x t c x t c x t k x t k x t K x t K x t m x t+ + + + + +

=

 
+ − + − + − = 

 
   

 (i=1 ~ 5)                                             (4.24) 

 ( ) ( ) ( ) ( ) ( ) ( )3

1

, 6
i

i j i i i i i i i g

j

m x t c x t k x t K x t m x t i
=

 
+ + + = = 

 
     (4.25) 

where xi is the inter-storey drift displacement between the i-th and (i+1)-th stories (i=1 ~ 

5), m1 = m2 =∙∙∙= m6 = 600kg, c1 = c2= ∙∙∙ = c6 = 1kNs/m, k1 = k2= ∙∙∙ = k5 = 1.2×105N/m, 

k6=0.6×105N/m, K1 = K2 = ∙∙∙ = K5= 2×108N/m3, and K6=108N/m3. The ground motion 

is simulated based on a similar procedure in a previous study (Xu et al., 2009) and 

generated as a white noise acceleration history, which is then scaled to a maximum peak 

ground acceleration (PGA) of 0.3g and is filtered with a cutting frequency 20Hz. For 
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the elastic structure with no nonlinear terms, that is 
1 2 6 0K K K= = = = , and the first 

three natural frequencies are ω1=0.538 Hz, ω2=1.473 Hz and ω3=2.251 Hz. 

 

( )gx t

Zone 2

Zone 1

m1

m2

m3

m4

m5

m6

c1

c2

c3

c4

c5

c6

 

Figure 4.1 The nonlinear shear building model 

 

Sensors are installed at each floor to measure the accelerations with a sampling 

frequency of 2000 Hz. In this example, the masses (m1, m2, ∙∙∙, m6), damping (c1, c2, ∙∙∙, 

c6) and stiffness (k1, k2, ∙∙∙, k6) are assumed known. The parameters of the nonlinear 

Duffing model (K1, K2, ∙∙∙, K6) and the input ground motion ( )gx t  are unknowns to be 

identified. Based on the proposed approach, the Kalman filter technique is used to 

identify the excitation force, and the system parameters are updated with the Newton-

SOR method. The shear building structure is divided into two zones, namely, a lower 

level structure and an upper-level structure, as shown in Figure 4.1. The first zone 
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consists of three unknown parameters. i.e. θ1=[K1, K2, K3] and the second zone θ2=[K4, 

K5, K6]. Each zone has three accelerometers to measure the vibration responses. The 

response data collected in the first one second are used for the identification. The 

convergence criterion in Eq. (4.23) is set to 10-6 for the case without noise and 10-3 for 

the case with noise. The initial value of unknown parameters are defined as K1= K 2=∙∙∙= 

K5=2.4×108 N/m3, and K6 = 1.2×108N/m3. The purpose of this example is to verify 

accuracy of the proposed method for the identification of the unknown parameters in the 

nonlinear restoring force model. Therefore, the stiffness, mass and damping values are 

all given. 

 

Firstly, the unpolluted acceleration responses are used to verify the accuracy of the 

proposed approach for the identification of nonlinear system parameters. Figure 4.2 

shows the identified system parameters with iterations. The identified ground motion as 

shown in Figure 4.3 matches well with the true ground motion. The relative error of the 

ground motion identification is 0.115%. These results show that the proposed approach 

can identify the system parameters and unknown ground motion simultaneously with a 

very good accuracy.  
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Figure 4.2 Identified system parameters with iterations 

 

 

Figure 4.3 Identified ground motion using noise-free responses 

 

 

To study the noise effect on the identification accuracy, the noisy response is simulated 

by adding a random white noise to the actual response as 

 ( )mea p noiseE N x= +x x   (4.26) 
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where Ep is percentage of the noise level, Nnoise is a standard normal distribution vector 

with zero mean and unit standard deviation, and ( )x  is the standard deviation of the 

actual acceleration response. 5% and 10% noise levels are considered in this study. The 

4th-order Butterworth band-pass filter of a frequency range 0.1~100 Hz is used to pre-

process the signals and remove the high frequency noise.  

 

The identified nonlinear system parameters using noisy measurement data are shown in 

Figure 4.4. The maximum identified error for 5% noise case is 4.25% at the floor 6, 

while the maximum identified error for 10% noise case is 5.63% at the floor 3. The 

other identification errors are small. The comparison between the identified and true 

ground motions is shown in Figure 4.5. The relative errors are 1.45% and 3.49% for the 

5% and 10% noise cases, respectively. These results demonstrate that the proposed 

approach can well identify the nonlinear system parameters and the excitation force 

even under a significant measurement noise. 

 

 

Figure 4.4 Identified system parameters with noise effect 
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Figure 4.5 Identified ground motion with noise effect 

 

4.3.2 Damage detection of a linear plane truss structure 

 

A simply-supported plane truss structure used in Chapter 3 is selected for conducting a 

comparison study. The dimensions are shown in Figure 4.6. The structure is modeled 

with forty-six planar truss finite elements. The cross-sectional area of the bar is 0.0016 

m2. Rayleigh damping with ξ1=0.01 and ξ2=0.01 is assumed as the damping ratios of the 

first two modes. The mass density is 7.8×103 kg/m3, and the elastic modulus is 206 

GPa. The truss is pin-supported at Node 1 and roller-supported at Node 19.  
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Figure 4.6 A linear planar truss structure model 
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Figure 4.7 The sensor placement of the truss model 

 

 

The truss structure is arbitrarily divided into three zones. The sensor layout is shown in 

Figure 4.7. In Zone 1, horizontal vibration (at Node 6) and vertical vibration (at Node 4, 

and 5) are measured. Zone 2 contains two accelerometers installed at Nodes 9 and 12 in 

the horizontal direction and two at Nodes 10 and 11 in the vertical direction. Zone 3 has 

two accelerometers at Nodes 16 and 18 in the vertical direction and one at Node 15 in 

the horizontal direction. The first zone, second zone and third zone consist of members 

1 to 15 with unknown elemental stiffness parameters α1~α15, members 16 to 31 with 

unknown elemental stiffness parameters α16~α31 and members 32 to 46 with unknown 

parameters α32~α46. 

 

The proposed approach requires to identify the unknown input force and structural 

parameters at each iteration. Since the accuracy of the force identification results would 

affect the accuracy of damage identification, the accuracy of force identification with 
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different settings is studied in this section. To investigate the selection of different 

sampling rates and covariance matrices on the force identification accuracy, structural 

parameters are assumed as known. No ground motion is applied to the structure and 

only a vertical force on Node 10 is considered as unknown.  

 

The effect of different sampling rates and covariance matrices on the force identification 

is studied. Table 4.1 shows the errors in the force identification results with four 

different sampling rates from 500Hz to 5000Hz and three covariance matrices in 

Kalman filter. Since the structure is at rest before the application of external force, the 

value of 
0X̂  in Eq. (4.6) is selected as zero for all studies.  

 

The identification results listed in Table 4.1 indicate that the sampling rate may 

significantly affect the accuracy of force identification, however, the definition of 

covariance matrix of measurement noise may not. The error in the identified force 

increases when the sampling rate decreases because the responses with a higher 

sampling rate consist of more information. Generally, the sampling frequency should be 

four or five times larger than the bandwidth of interested frequency. Based on this 

parametric study and considering the balance between the computational load and 

identification accuracy, the sampling rate and the covariance matrix are defined as 

2000Hz and 0.01×I, respectively.  
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Table 4.1 Identification results with different sampling rates and 

covariance matrices  

Sampling 

frequency (Hz) 

Covariance matrix R 

I 0.01×I 0.001×I 

500 7.69% 7.21% 6.41% 

1000 2.42% 2.18% 2.41% 

2000 0.625% 0.64% 1.1% 

5000 0.25% 0.22% 0.14% 

                 Note: I is an identity matrix 

 

 

Structural damage detection with unknown ground motion is then studied. The structure 

is subjected to unknown ground motion in both directions. The applied ground motion 

is simulated based on a similar procedure in a previous study (Xu et al., 2009) and 

generated as a white noise acceleration history, which is then scaled to have a maximum 

PGA of 0.6 g and low pass filtered with a frequency range from 0-400 Hz. The placed 

accelerometers for measuring the vibration responses in each zone are shown in Figure 

4.7. Vibration measurements in a specific zone are only used for the identification of 

stiffness parameters associated with this zone. That is the measurements from Nodes 4 ~ 

6 are used to update α1 ~ α15, the measurements from Nodes 9 ~ 12 are used to update 

α16 ~ α31, and the measurements from Nodes 15, 16, 18 are used to update α32 ~ α46. The 

unknown ground motions are identified with all of the responses. The sampling rate is 

2000 Hz and 2 second vibration data are used for the identification. The health status of 
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the structure is known, and the structural damage is modelled by a reduction in the 

stiffness parameters. Three damages are considered in this study and one element is 

damaged in each zone. 10%, 20% and 15% stiffness reductions are assumed in elements 

8, 24 and 38, respectively.   

 

First, the acceleration responses without noise effect from the damaged structures are 

used. Figure 4.8 compares the true and identified excitation forces. The identified 

ground motion matches well with the true one. Figure 4.9 shows the identified damage 

indices of three subsets. The locations and severities of the three damaged elements in 

different zones are accurately identified. Small identification errors (less than 2%) are 

observed in the undamaged elements, which may be caused by the numerical errors in 

the proposed algorithm. These results demonstrate the accuracy of the proposed 

technique in the idetification of structural damage and unknown ground motion. 

 

 

(a) Horizontal ground motion 
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(b) Vertical ground motion 

 

Figure 4.8 Identified and true ground motions without measurement noise 

 

 

(a) Subset 1 

 

(b) Subset 2 
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(c) Subset 3 

 

Figure 4.9 Damage identification results without noise effect 

 

 

The robust of the proposed method is then investigated. 5% and 10% noise are added in 

the measurement responses. The fourth-order Butterworth band-pass filter with a 

frequency range from 0.1 to 500 Hz is used to remove the high frequency noise. The 

final identified damage indiceswith different levels of measurement noise are shown in 

Figure 4.10. Both damage locations and severities in different zones are well identified. 

The maximum identified error for the 5% noise case is 4.36% at Element 29 and the 

other errors are less than 4%. There are two large identified errors, that is, 6.32% at 

Element 26 and 5.83% at Element 24, for 10% noise case. The identified unknown 

ground motions are compared with the true ones and shown in Figure 4.11. The 

identified ground motions generally show a good agreement with the true input ground 

motion, even the recorded data are polluted with noise. These results demonstrate that 

the proposed approach can accurately identify the structural damage and earthquake 

input when noise responses are used.  
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It should be noted that in the last chapter, it took about 3 hours for the model updating. 

However, the proposed approach in this chapter only takes less than 5 mins with the 

same simulation data since the input force is identified in a recursive procedure. The 

force identification in wavelet domain takes a long time, because of the large 

computational workload in the calculation of pseudo-inverse and wavelet transform (Li 

and Law, 2011; Li and Hao, 2014). The proposed method in Chapter 4 can be used to 

identify the unknown input force and parameters of linear and nonlinear structures. 

Compared with the example in Chapter 3, the advantages of the improved method, 

which can identify unknown structural parameters with less computation time, can be 

verified.  Two advantages of the improved approach has been demonstrated through the 

numerical studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

    

89 

 

 

(a) Subset 1 

 

(b) Subset 2 

 

(c) Subset 3 

 

Figure 4.10 Damage identification results with different noise levels 

 



  

    

90 

 

 

 

(a) Horizontal ground motion 

 

(b) Vertical ground motion 

Figure 4.11 Identified and true forces with different noise levels in the measurements 

 

 

4.4  Experimental Verification 

 

The experimental case study is used to verify the accuracy of the proposed method in 

Chapter 4. A laboratory-tested eight-story shear-type steel frame model, as shown in 
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Figure 4.12 is used. The height and width of steel structure are 2000 mm and 600 mm, 

respectively. The floor of each story was constructed by thick steel plates (100 

mm×25mm), and the two columns of each story have the same cross section with a 

width of 50 mm and a thickness of 5 mm. The beams and columns were welded to form 

rigid joints. The bottom of two columns was welded onto a thick and solid steel plate, 

which is fixed to the strong floor. The dimensions of the frame model are shown in 

Figure 4.13. The initial elastic modulus of the steel is estimated as 200 GPa, and the 

mass density 7850 kg/m3. 

 

 

Figure 4.12 Laboratory steel frame model 
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Figure 4.13 Dimensions of the steel frame model (unit: mm, not to scale) 

 

 

4.4.1  Experimental setup and initial model updating 

 

An SINOCERA LC-04A hammer with a rubber tip was used to apply the excitation on 

the model. KD1300 accelerometers were used to record the horizontal acceleration 

responses. A commercial data logging system INV306U and its associated signal 

analysis package DASP V10 were used for data acquisition. The initial shear-type 

building finite element model is built based on the dimensions and material properties 

of the frame. The discrepancy between the numerical finite element model and 

experimental model exist inevitably due to the modelling errors and uncertainties in the 

material properties and boundary conditions. Vibration testing data from the 
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experimental model under the healthy state are used to perform an initial model 

updating to minimize the difference between the experimental and analytical models.  

 

Vibration test was performed by using the hammer to hit at the fourth floor of the frame 

model. Both applied force from the hammer and accelerations were recorded for 60s. 

Only the first 0.5 second data are selected for initial model updating. The sampling rate 

is set as 1024 Hz, and the cut-off frequency range for the band-pass filter is defined 

from 1 Hz to 100 Hz for all tests. In each floor, one accelerometer is installed to record 

the horizontal vibration response and totally, there are eight accelerometers installed in 

the frame structure. The finite element model of the shear frame is divided into two 

zones. The first zone consists of the 1st to 4th floors, and the second zone 5th to 8th 

floors. Accordingly, the measurement responses are divided into two subsets. Each 

subset of measurements was used to updating the corresponding structural stiffness 

parameters of the subset, while the unknown hammer force was identified from the 

measurements of both subsets. Both the structural stiffness parameters and excitation 

forces are updated iteratively with the proposed approach. Figure 4.14 shows the finial 

identified structural stiffness parameters with their initial values. Slightly difference can 

be found due to the error between the numerical model and the experimental model. The 

identified input force matches well the recorded one, as shown in Figure 4.15.  
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Figure 4.14 Initial model updating 

 

 

Figure 4.15 Identified force in the undamaged state 

 

 

The measured and analytcial natural frequencies of the frame in the undamaged state 

before and after model updating are listed in Table 4.2. The measured natural 

frequencies and model shapes are extracted by using the recorded input force and output 

responses with DIAMOND (Doebling et al., 1997). The maximum error in the 

frequencies after updating is only 0.26%. The measured and analytical mode shapes of 

the model are shown in Figure 4.16. The mode shapes after model updating match very 
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well with the measured mode shapes from the vibration tests. These indicate that the 

updated initial finite element model represents the undamaged frame accurately and 

serves as the baseline model in the subsequent damage detection.  

 

Table 4.2 Measured and analytical natural frequencies of the frame 

in the undamaged state 

 

  

Mode Tested 

Before updating After updating 

Analytical 

 (Hz) 

Error (%) MAC 
Analytical  

(Hz) 
Error (%) MAC 

1 4.645 4.810 -3.552 0.988 4.636 -0.1905 0.998 

2 13.705 14.267 -4.101 0.975 13.714 0.0635 0.992 

3 22.554 23.238 -3.033 0.978 22.558 0.0156 0.987 

4 30.695 31.418 -2.355 0.981 30.776 0.2649 0.990 

5 38.241 38.528 -0.7505 0.974 38.225 -0.0426 0.995 

6 44.434 44.325 0.245 0.979 44.422 -0.0269 0.982 

7 48.826 48.614 0.434 0.993 48.712 -0.2343 0.993 

8 52.306 51.246 2.027 0.973 52.161 -0.2771 0.989 
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Figure 4.16 Mode shapes of the frame before and after updating 
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4.4.2  Decentralized damage detection 

 

Structural damage was introduced by reducing the cross section of the column of the 

frame model. Two damage cases, i.e. Case 1 and 2, were introduced. Only a single 

damage was introduced in Case 1 with 40% cross section reduction in one column of 

the 2nd floor. This produced 20% reduction in the equivalent stiffness of the 2nd floor. 

Case 2 has multiple damages. Besides the damage in case 1, another damage was 

introduced with 20% cross section reduction in one column at the 7th floor of the frame 

model. This is equivalent to 10% stiffness reduction in the 7th floor. Those introduced 

damages in the second and seventh floors are shown in Figure 4.17.  

 

  

(a) Introduced damage at the 2nd floor (b) Introduced damage at the 7th floor 

 

Figure 4.17 Introduced damages of the frame model 
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The frame was tested similarly described in Section 4.4.1. The reduction of the mass 

caused by the damage is neglected. Measured responses are used to identify the 

structure damages and applied excitation force. The updated numerical model obtained 

in Section 4.4.1 is used as the baseline model. The identification results for the two 

cases are shown in Figure 4.18. In Case 1, the identified damage in the second floor is 

19%, which is very close to the true value of 20%. For Case 2, the identified stiffness 

reductions are 19.8% at floor 2 and 10.4% at floor 7. It can be observed from the 

identification results of these two cases, that both damage locations and severities can 

be well identified with the proposed approach. Around 4% false identified stiffness 

reductions are observed in the 3rd floor to the 6th floor. The identified forces have a 

good agreement with the measured ones, as shown in Figure 4.19. These errors in the 

identified excitation force and stiffness parameters are due to the noises in the 

measurements and uncertainties in the finite element model. 

 

 

(a) Case 1 
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(b) Case 2 

 

Figure 4.18 Damage identification results of the frame 

 
 

 

(a) Case 1 

 

(b) Case 2 

 

Figure 4.19 Identified force of the frame in the damage cases  
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4.5 Summary 

 

An improved decentralized damage detection identification approach is proposed for 

both linear and nonlinear structures with output only. The approach divides a large-scale 

structure into several zones. The Kalman filter technique is used to identify the 

unknown earthquake loading, and Newton-SOR method is adopted for identifying the 

unknown structural parameters of subsets using the vibration measurement of the subset 

only. The external excitations and structural parameters are updated iteratively. 

Numerical studies on a six-floor nonlinear system and a linear planar truss structure 

demonstrate that the proposed approach is effective for output−only structural 

identification with a few sensors, even at the presence of 10% noise included in the 

measured data. An experimental eight-story shear-type steel frame structure was also 

tested in the laboratory to validate the proposed approach. Two damage cases were 

introduced in the frame model. The applied excitation force and structure damage in 

both damage cases are well identified with the measured responses. It is demonstrated 

that the proposed approach can be used for both linear and nonlinear system 

identification by using only measured responses, and less computational time compared 

with the existing methods.  
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CHAPTER 5   

NONLINEAR FINITE ELEMENT MODEL UPDATING 

WITH THE DECENTRALIZED APPROACH 

 

 

 

 

 

5.1 Introduction 

 

In Chapter 4, the nonlinear behaviour of a structure is modelled with a nonlinear mass–

spring–dashpot model. For a complex civil structure, the dynamic responses predicted 

from such a model may be not accurate enough. Nonlinear finite element models can 

predict the dynamic responses of a large complex structure with more precision, which 

has been widely used in the structural analysis (De Borst et al., 2012; Belytschko et al., 

2013). The nonlinear finite element model updating technique gains much attention in 

recent years. Several studies (Cooreman et al., 2007; Rossi and Pierron, 2012; Astroza 

et al., 2017; Ebrahimian et al., 2017) have been proposed. 
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In this chapter, a nonlinear finite element model updating technique is proposed by 

using the decentralized approach. The dynamic responses of the structure are computed 

based on discrete finite element models and the nonlinear behaviour of the structure is 

simulated with distributed plastic model (Taucer et al., 1991). Following the studies in 

Chapter 3 and 4, a large-scale structure is divided into some smaller zones according to 

its finite element configuration. The unknown structural material parameters of the 

whole structure are divided into several subsets according to their location. They are 

updated by using the vibration response at each zone with the Newton-SOR method. 

The proposed method is implemented in MATLAB and interfaced with OpenSees 

(McKenna, 2011) for calculation of dynamic response and response sensitivity. 

Numerical studies on a three-story two-bay reinforced concrete structure and a six-story 

one-bay steel building structure under ground motion input are employed to verify the 

accuracy of the proposed method. Different material parameters in the constitutive 

parameters (such as compressive strength fc of concrete, yield stress fy of reinforcement, 

etc) are treated as unknown variables to be updated. The results from the two structures 

show that the proposed method can update nonlinear material parameters accurately. 

The global model updating method is also studied to verify the efficiency and 

effectiveness of the proposed decentralized method. In this study, due to the long 

computational time for the nonlinear finite element analysis, the input earthquake is 

known. 

 

5.2  Methodology 

 

5.2.1 Nonlinear finite element analysis procedure 
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The equation of motion of an N-DOFs damped nonlinear system under ground motion 

excitation can be written as   

 ( ) ( ) ( )( ) ( ),
r g

t t t x tMx + Cx + K x = MIθ   (5.1) 

where ( )tx , ( )tx  and ( )tx  are vectors of displacements, velocity and acceleration 

responses of the structure, respectively; M, and C are the mass and damping matrices of 

the structure, θ is the material parameter vector in the material constitutive model and 

( )( ),r tK x   is the resisting force vector and depends on   and ( )tx ; and ( )gx t  is 

the ground motion acceleration. The mass matrix of a structure can be estimated 

accurately from the geometry dimension and material density, and these are assumed 

invariant.  

 

In this chapter, fiber beam-column elements are used for the nonlinear dynamic 

responses of frame structures under seismic input (Taucer et al., 1991). The structural 

model is divided into several finite elements, and each section of element is further 

discreted into fibers. The computational framework of the nonlinear dynamic analysis is 

shown in Figure 5.1. The nonlinear analysis procedure contains state determination at 

element, section and fiber levels. The fiber strain can be computed from section/element 

deformation with the assumption that plane sections remain plane and normal to the 

reference longitudinal axis after deformation occurs. The stress and tangent module of 

each fiber can be computed from material constitutive models with fiber strain, and the 

section resisting forces can be calculated by summation of the axial force and biaxial 

bending moment contributions of all fibers. Finally, the element flexibility matrix can 

be formed by the integration of the section flexibility. This matrix can then be inverted 
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to obtain the element tangent stiffness matrix. This technique has been widely used in 

nonlinear analysis and design of frame-type structures. The details description of the 

technique can be found in (Taucer et al., 1991). 

 

Strain-stress curve

Element

Section

Fiber

 

 

 

 

Figure 5.1 Computational framework of nonlinear dynamic analysis 

 

 

5.2.2 Decentralized identification of nonlinear material parameters 

 

Due to the distance for signal transmission and the ability for data processing, a SHM 

system contains central station and several sub-stations. The large structure is divided 

into several zones, and each sub-station is used for data acquisition in each zone. The 

proposed decentralized model updating method can be installed in each sub-station to 

update the structural parameters in each zone. The measurements in a large structure are 

divided into smaller groups in physical zones based on its finite element formulation. 
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The unknown damage index θ can be divided into r subsets  1 2,  ,  , r   , where 
iθ  

contains all the unknown material parameters of the i-th ( 1 i r  ) zone. Field 

measurement is conducted in different zones of the structure and the measured nonlinear 

dynamic responses from i-th zone ,mea ix  can be written as a function as 

1 2( , , , , )i r gxg θ θ θ . When all of responses are collected, the measured responses from 

different zones can then be written as 

 

1 1 2 1

2 1 2 2

1 2

1 2

( , , , , ) 0

( , , , , ) 0

( , , , , ) 0

( , , , , ) 0

r g mea,

r g mea,

i r g mea,i

r r g mea,r

x

x

x

x

− =

− =

− =

− =

g θ θ θ x

g θ θ θ x

g θ θ θ x

g θ θ θ x

  (5.2) 

 

The unknowns in this chapter are material parameters in the constitutive model, and the 

problem is to find the solution of Eq. (5.2). Eq. (5.2) can be written as Eq. (5.3) and 

solved using the Newton method (Ortega and Rheinboldt, 1970) 

 ( ) 0=G    (5.3) 

With 

 
1( ) ( ) ( )( ) 0n n n+ n= + − =G G G       (5.4) 

 
1( ) ( ) ( )n n+ n n n=  −G G G       (5.5) 

 
1

1 ( ) ( )n+ n n n=
−

 −  G G      (5.6) 

where n denotes the number of iteration and ( )' n
G θ  is the Jacobian matrix of ( )n

G  , 

and 
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1 1 1

1 2

2 2 2

1 2

1 2

( )

r

n

r

r r r

r

=

   
   
 
   
    
 
 
 
   
    

g g g

θ θ θ

g g g

θ θ θG

g g g

θ θ θ

   (5.7) 

Following the derivation discussed in Section 3.3.3, the iterative SOR method is 

embedded in Eq. (5.6). Considering the solution from One-step Newton-SOR method, 

the unknown structural material parameters can be updated with  

 

( )

( )

( )

1

1

11 1
1 1

21
2 22 2

2

1

0 0 0
,

0 0 0 ,

0 0 0

,
0 0 0

n
n

n+ n g mea,

nn+ n
g mea,n

n+ n
n

r r
r g mea,r

r

n

r

x

x
=

x

−



 
   −            −     −                      −    
  

g

θ g x
θ θ

g
g xθ θ

θ

θ θ g xg

θ







  (5.8) 

or 

 ( ) ( )
1

1 , 1,2n+ n ni
i i i g mea,in

i

x i r

−

 
 = − − =    

g
θ θ g θ x

θ
，   (5.9) 

 

The least-squares method is applied to Eq. (5.9) and the resulting One-step Newton-

SOR is obtained as 

 ( ) ( )

1

1 , 1,2

T T

n+ n ni i i
i i i g mea,in n n

i i

x i r


−

        
  = − − =                

g g g
θ θ g x

θ θ θ
，   (5.10) 
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5.2.3 Dynamic response sensitivity considering material nonlinearity 

 

Response sensitivity analysis has been studied for a long time and widely used for 

structural design optimization, probabilistic analysis and reliability analysis (Conte, 

2001; Haukaas and Der Kiureghian, 2004). Many methods have been proposed, such as 

finite difference method, adjoint method, perturbation method, and direct differentiation 

method. The perturbation method is computationally efficient but not accurate. Forward 

finite difference method is the simplest method but time-consuming and easy to be 

negatively affected by the numerical error. The direct differentiation method is more 

accurate and computationally efficient than other methods (Shayanfar et al., 2014; 

Ebrahimian et al., 2015), and therefore, is employed in this section. The direct 

differentiation method in OpenSees is briefly introduced as follows (Ebrahimian et al., 

2015). 

 

The acceleration and velocity at time step (t+1) can be interpolated with implicit time 

integration scheme as 

 ( ) ( ) ( ) ( ) ( )1 2 3 41 1t b t b t b t b tx x x x x+ = + + + +   (5.11) 

 ( ) ( ) ( ) ( ) ( )5 6 7 81 1t b t b t b t b tx x x x x+ = + + + +   (5.12) 

where b1 to b8 are constant integration coefficients. Substitution of Eqs. (5.11) and 

(5.12) into Eq. (5.1), we have  

 ( ) ( ) ( )( ) ( )1 51 1 1 , 1rb t b t t t+ + + + + = +Mx Cx K x P   (5.13) 

where 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 3 4

6 7 8

1 1

             

gt x t b t b t b t

b t b t b t

P MI M x x x

C x x x

+ = + − + +  

− + +  

                 (5.14) 

Eq. (5.13) is differentiated with respect to each material parameter 
i  to obtain the 

response sensitivity, that is, 

 

( ) ( )
( )( )
( )

( )

( )( ) ( )
( )

1 5

1 5

1 , 1
1 1

1

1 , 1
1

r

i

i i i i

t t
b t b t

t

t t
b b t



   

  +  +
+ + + + 

 +   

 +  +   
= − + − + + 

    

K x x
Mx Cx

x

K x P M C
x




            (5.15) 

 

In this chapter, only the material parameters in the material constitutive model are 

considered, therefore, 0iM  =  and 0iC  = . The last term on the right-hand side 

of Eq. (5.15) can be negligible. Similarly, taking derivative of Eq. (5.14) with respect to 

θi, we have 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 4

6 7 8 2 3 4

6 7 8

2 3 4 6

11 g

i i i

i i i i

i i i

i i i i

x tt
b t b t b t

b t b t b t b t b t b t

b t b t b t

b t b t b t b t b

  

   

  

   

 + + 
= − + +    

    
− + + − + +        

   
− + + 

   

    
= − + + − + 

    

MIP M
x x x

C x x x
x x x M

x x x
C

x x x x
M C ( ) ( )7 8

i i

t b t
 

  
+ 

  

x x

 

(5.16) 

The vectors ( ) it  x , ( ) it  x  and ( ) it  x  are available from the last time step 

sensitivity computation. Therefore, ( )1 it  + P  can be obtained without difficulty. 
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The first term on the right-hand side of Eq. (5.15), ( )( )1 ,r it  + K x  , represents the 

partial derivative of the internal resisting force vector with respect to the material 

parameter θi. The internal resisting force vector can be assembled from the element 

nodal resisting force vectors as 

 ( )( ) ( )( ) ,

1

1

1 , 1 ,
ne

ele i

r t i

i

t K t+

=

+ = +K x x    (5.17) 

where 
,

1

ele i

tK +  denotes the i-th element nodal resisting force vector at time step (t+1), and 

( )1i t +x  is the element nodal displacement vector in the element local coordinate 

system, and ne is the total number of the element. The element nodal resisting force 

vector is obtained from the integral of the section stress vector as 

 ( )( ), sec sec

1 1 1 ,ele i T

t t tK dl+ + += B       (5.18) 

where B is the strain-displacement transformation matrix, 1

sec

t+  is the section stress 

vector, and 1

sec

t+  is the section strain. Finally, the section stress vector is obtained by 

integrating the fiber stresses over the cross section as 

 ( )( )1 1 1 ,sec fib fib

t t tσ ε dA+ + += b     (5.19) 

where b is section kinematic vector, 1

fib

tσ +  is fiber stress, and 1

fib

tε +  is fiber strain.  

 

Substituting Eqs. (5.18) and (5.19) into Eq. (5.17), and the partial derivative computed 

as 

 
( )( ) ( )( )1 1

1

,1 ,
fib fib

ne
t tr T

ii i

σ εt
dAdl

 

+ +

=

  +  
=  

   
  

K x
B b

 
  (5.20) 
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where 
( )( )1 1 ,fib fib

t t

i

σ ε


+ +



 
 is the derivative of the fiber stress with respect to the 

material parameter 
i  and can be computed by analytically differentiating the material 

constitutive law (Zhang and Der Kiureghian, 1993; Kleiber et al., 1997; Conte et al., 

2003). 

 

5.2.4 Implementation procedure of the model updating technique 

 

The proposed method is implemented in Matlab and interfaced with OpenSees 

(McKenna, 2011) for structural response and response sensitivity computations. The 

implementation procedures of the proposed method are as follows. 

Step 1: Divide the structure into smaller zones according to its finite element 

formulation and obtain the corresponding sets of responses from each zone. 

Step 2: Setting the initial value of parameters as 0 0 0

1 2, , , r
 =  θ θ θ θ . 

Step 3: Compute the sensitivity of responses with respect to the structural parameters of 

each zone with OpenSees. 

Step 4: Update the parameters of each zone 
1n+

iθ  using Eq. (5.10). 

Step 5: Repeat Steps 3 – 4 until the following convergence criterion in Eq. (5.22) is 

satisfied. 

 

1

1
100%

n n

n
Tol

+

+

−
 

θ θ

θ
  (5.21) 

Tol  is tolerance of convergence criterion, which is 1.0×10−8 in for the case 

without noise and 1.0×10−5 for the case with noise. 
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5.3  Numerical Examples 

 

5.3.1 A reinforced concrete frame 

 

A 2D two-bay three-floor reinforced concrete structure is studied. The dimensions of 

the frame model are shown in Figure 5.2(a). Each bay of the structure has a width of 5 

m and the height of each floor is 3 m. The cross sections of columns and beams are 

0.5×0.5 m2 and 0.25×0.4m2, respectively, as shown in Figures 5.2(b-c). This structure is 

modelled with displacement-based fiber-section beam-column elements using 

OpenSees. The column and beam at each floor are further divided into five elements 

and ten elements, respectively, along the longitudinal direction. Therefore, the finite 

element model of the structure consists of 102 nodes, 105 elements, and 306 DOFs. 

Different material parameters are selected to simulate the nonlinear behavior of the 

structure. The longitudinal reinforcement is modelled with uniaxial Menegotto-Pinto 

steel material (Barbato and Conte, 2006). The concrete is modelled with uniaxial 

smoothed Popovics-Saenz concrete material (Zona et al., 2005). The stress-strain 

relations and the hysteresis curves of the steel and concrete are shown in Figures 5.3 (a-

f). Section stress resultants are obtained by discretizing the frame sections into fibers, as 

shown in Figure 5.4. The material parameters of the longitudinal reinforcement, 

confined concrete, and unconfined concreter are shown in Table 5.1. These parameters 

are selected according to (Barbato et al., 2013; Astroza et al., 2014; Ebrahimian, 2015). 

 

The nonlinear dynamic responses of the structure under seismic input are computed 

using Newmark method. The time history of the El-Centro earthquake (PGA=0.8g) is 
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selected as the input for this study. Additional mass (4000 kg/m) is added to the beam 

element to simulate the weight of floors and other dead loads. The sampling frequency 

is 1000 Hz and the ground motion last for 20 seconds. Three accelerometers are 

installed in each zone to measure the horizontal responses, as illustrated in Figure 5.5. 

Based on the proposed method, the measurement responses in each zone are used to 

update the material parameters of the zone. For example, the dynamic responses from 

zone 2 are used to update the nine material parameters in the zone. 

 

5×2 m

3
×

3
 m

 

(a) The frame structure 
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(b) Column (unit: mm) (c) Beam (unit: mm) 

Figure 5.2 Dimensions of the reinforcement concrete structure 
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(a) Stain-stress curve of 

reinforcement 

(d) Hysteresis loop of unconfined 

concrete 

 

  

(b) Stain-stress curve of unconfined 

concrete 

 

(e) Hysteresis loop of unconfined 

concrete 

  

(c) Stain-stress curve of confined 

concrete 

(f) Hysteresis loop of confined 

concrete 

 

Figure 5.3 Material models 
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Concrete 2

 (confined concrete) 

Concrete 1

 (unconfined concrete) 

Reinforcement

 

(a) Column 

Concrete 1

 (unconfined concrete) 

Concrete 2

 (confined concrete) 

Reinforcement

 

(b) Beam 

 

Figure 5.4 Materials defined in the cross section 

 

 

Table 5.1 Material parameters of the reinforcement concrete structure 

Material Unknown material parameters 

Confined concrete 

Compressive strength fc 34.4738 MPa 

Concrete strain at maximum strength εc 0.005 

Initial tangent stiffness Ec 27.851 GPa 

Unconfined concrete 

Compressive strength fuc 27.57904 MPa 

Concrete strain at maximum strength εuc 0.002 

Initial tangent stiffness Euc 24.91 GPa 

Reinforcement 

Initial yield stress fy 248.200 MPa 

Young's modulus Es 210GPa 

Strain-hardening ratio b 0.02 
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Zone 1

Zone 2

Zone 3

Ground motion
Measurement points

 
 

Figure 5.5 Finite element model of the frame structure  

 

 

Modelling errors in reinforce concrete structures are usually signification (Barbato et 

al., 2013). In this study, the model error is added to the material parameters of each 

floor. That means the material parameters in the constitutive model of each floor are the 

same. The material constitutive parameters such as compressive strength fc, concrete 

strain at maximum strength εc, and initial tangent stiffness Ec of confined concrete; 

compressive strength fuc, concrete strain at maximum strength εuc, and initial tangent 

stiffness Euc of unconfined concrete; initial yield stress fy, Young's modulus Es, and 

strain-hardening ratio b of reinforcement are treated as unknown variables and the other 

empirical parameters controlling the curvature of the hysteretic loops are assumed as 

known constants. Therefore, there are 9 unknown material parameters in each zone, and 
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27 material parameters of the entire structure need to be identified. The initial value of 

material parameters used in this example are listed in Table 5.1. 10% random errors are 

added in the material parameters to simulate the uncertainty in the material parameters. 

 

First, the acceleration responses under earthquake loading are used for this study. Figure 

5.6 compares the computational time and relative errors from the proposed 

decentralized method and global model updating method. The global model updating 

method is based on classic Newton method or so-called sensitivity-based model 

updating method (Lu and Law, 2007a). In the decentralized method, the results 

converge to the true values after around 24 iterations (about 200 mins), while in the 

global method the results converge to its true values after around 15 iterations (500 

mins). From these results, we can find that the Newton method converges fast and 

requires fewer iteration steps since this method has a second order convergence rate 

(Ortega and Rheinboldt, 1970). Both methods finally converge to the true values. 

However, the decentralized method requires less computation time. Figure 5.7 compares 

the identified results using the decentralized method with the true values. The identified 

results match the true values well, which could verify the accuracy of the proposed 

method for the identification of material parameters. 
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Figure 5.6 Comparison of the computation time of global method 

and decentralized method  

 

 

 

(a) Subset 1 
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(b) Subset 2 

 

(c) Subset 3 

Figure 5.7 Identified results of reinforcement concrete structure   

 

The effect of measurement noise on the identified results is considered. 5% and 10% 

measurement noise are studied. The polluted acceleration responses are simulated by 

adding a random component to the actual responses as 

 ( )mea p noiseE N = +x x x   (5.22) 

where Ep is percentage of the noise level, Nnoise is a standard normal distribution vector 

with zero mean and unit standard deviation, and ( )x  is the standard deviation of the 

actual acceleration response. 
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Figure 5.8 shows the identified normalized parameters of each subset with different 

noise levels. The error increases, in general, as the noise level increases. When 5% 

measurement noise is considered, some larger identification errors are 3.64% (fc in 

subset 1), 4.45% (εc in subset 2), and 4.21% (Ec in subset 3). The other errors are very 

small. When 10% measurement noise is considered, the larger errors are 7.26% (Euc in 

subset 1), 5.72% (b in subset 2), and 6.48% (εuc in subset 3). These identified results can 

verify the robustness of the proposed method. 

  

 

(a) Subset 1 

 

(b) Subset 2 
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(c) Subset 3 

Figure 5.8 Identified material parameter of reinforcement concrete 

structure using noisy measurement data 

 

 

5.3.2 A steel frame 

 

A 2D one-bay six-floor steel frame structure is employed in this section. The 

dimensions of the frame structure model are shown in Figure 5.9(a). The height of each 

floor is 3.5 m and the width of the building is 6 m. The beams of frame are made of 

W14×61 wide flange beam, while the columns of each floor have the same section 

with a width of 400 mm and a thickness of 8 mm. The cross sections of the column and 

beam are shown in Figures. 5.9 (b) and (c), respectively. The beams and columns are 

welded together to form rigid joints. The bottom of the frame is fixed on the strong 

floor. The column and beam at each floor are further divided into five elements. The 

structural elements are modelled with displacement-based fiber-section beam-column 

elements. Therefore, the finite element model of the structure consists of 86 nodes, 90 

elements, and 258 DOFs, as shown in Figure 5.10. The constitutive behavior of steel 



  

    

121 

material is simulated with the uniaxial Menegotto-Pinto steel material (Barbato and 

Conte, 2006). The initial yield stress fy, and Young's modulus Es in the constitutive 

model of each column/beam are treated as unknown variables to be identified. 

Therefore, 4 unknown material parameters in each floor and totally 6×4 unknown 

material parameters will be identified. The initial material parameters used in this 

example are listed in Table 5.2. 10% model error is considered in the material 

parameters for this study. 

 

The dynamic responses of the building under earthquake loading are computed from the 

nonlinear finite element model. The time history of El- Centro earthquake (PGA=0.8g) 

is selected as the ground motion input. The sampling frequency is 1000 Hz. Totally, six 

accelerometers are installed in this structure to measure the responses of each floor. The 

sensors locations are selected at the beam and column joints as illustrated in Figure 5.10 

and horizontal responses are recorded. The structure is divided into two zones. Based on 

the proposed method, the measurements are also divided into two subsets. The first 

subset of measurements contains the acceleration responses from 1st~3rd floor and the 

second subset of measurements contains the responses from 4st~6th floor. In the 

processing of model updating, each subset of response is used to update the 

corresponding material parameters in the same zone. The first 50 second vibration 

responses are used for model updating. 
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(a) dimension of reinforced concrete structure 
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(b) Cross section of beam (unit: mm) (c) Cross section of column (unit: mm) 

 

Figure 5.9 Dimension of the steel structure 
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Ground motion

Zone 1

Zone 2

Measurement points

 
 

Figure 5.10 Finite element of the steel structure  

 

 

Table 5.2 Material parameters of the steel structure 

Member 
Initial yield 

stress (fy, MPa) 

Young's modulus 

(Es, GPa) 

Strain-

hardening ratio 

Column 1~2 

Beam 1~2 
350 210 0.02 

Column 3~4 

Beam 3~4 
300 210 0.02 

Column 5~6 

Beam 5~6 
200 210 0.02 

 

 

The model updating results using the real measurement data are shown in Figure 5.11. 

Again, the accuracy of the proposed decentralized model updating method is verified. 
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The identified normalized parameters without considering measurement noise match 

their true value well. When 10% noise is added in the actual responses, some 

identification errors occur. The largest identification error is 5.72% (Es, B3) in Subset 1 

and 5.49% (fy, C4) in Subset 2. It should be noted that in this example, because the input 

ground motion is known, the identification error is smaller than that of output. Also, the 

number of iterations for model updating is small. Figure 5.12 shows the identify errors 

with computational time. It takes about 30 iterations for the decentralized method, while 

only 24 for the global model updating. The computational time for the decentralized 

method and global method is 6 hours and 12 hours, respectively. These results show the 

accuracy and robustness of the proposed method, again. 

 

The proposed method can identify the material parameters with the nonlinear vibration 

responses. When the amplitude value of earthquake is low, most parts of the structure is 

still in the linear elastic stage. The dynamic response may insensitive to the material 

parameters. Figure 5.13 shows the results with different level of earthquake (PGA=0.6g, 

0.8g, 1g). The results in the case of PGA=0.8g, and 1g match well with their true 

values. However, the results from a lower amplitude value of earthquake (PGA=0.6g) 

are different. The results of subset 1 from PGA=0.6g converge to their true vales, while 

the results of Subset 2 cannot converge to their true vales. The response sensitivity with 

respect to the yield stress fy, B6 with different level of earthquake input are shown in 

Figure 5.14. The response sensitivity is too small when PGA= 0.6g, which may lead to 

the wrong identification results.  
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(a) Subset 1 

 

(b) Subset 2 

Figure 5.11 Normalized identified results of steel structure  

(note: fy, Bi and fy, Ci mean the yield stress of the beam and column at i-th floor, 

respectively; Es, Bi and Es, Ci mean the Young's modulus of the beam and column at i-

th floor, respectively) 

 

  



  

    

126 

 

           

 

 

 

 

 

 

 

 

Figure 5.12 Comparison of computational time of steel structure 

with global method and decentralized method 

 

 

 

 
 

(a) Subset 1 
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(b) Subset 2 

Figure 5.13 Normalized identification results with different level of 

earthquake loading 

 

 
 

Figure 5.14 The sensitivity aacceleration response at the top floor with 

respect to 
6,y Bf  at the top floor 
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5.4 Summary 

 

In this chapter, a decentralized nonlinear model updating technique is proposed for civil 

infrastructure under earthquake loading. The nonlinear dynamic behavior of the 

structure is calculated based on a distributed plastic model. When the nonlinear dynamic 

responses are recorded, the material parameters in the constitutive model can be updated 

with the proposed method. The dynamic response sensitivity with respect to the material 

parameters is derived based on the direct difference method. Two numerical structures 

subjected to seismic input are used to verify the accuracy of the proposed method. One 

is a three-floor reinforcement concrete structure, and the other is a six-floor steel frame 

structure. Results show that the nonlinear parameters in the material constitutive model 

(such as, compressive strength fc, concrete strain at maximum strength εc, initial tangent 

stiffness Ec, etc.) can be identified with high accuracy when 10% of the noise is 

considered. Comparison studies with the global model updating technique are also 

investigated. The results show that the proposed method can identify the unknown 

material parameters with less computational time than the global model updating 

method. 
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CHAPTER 6   
 

CORRELATION FUNCTION BASED DAMAGE 

DETECTION 

 

 

 

 

 

6.1  Introduction 

 

The following two chapters, we focus on developing time domain damage detection 

methods for civil structures under multiple unknown excitations. The time domain 

methods use the measured time history responses directly for structural damage 

detection. The error between the calculated dynamic responses (such as acceleration) 

and measured counterparts is minimized. Several methods, such as quadratic sum-

squares error method (Yang et al., 2009a), extended Kalman filter method (Yang et al., 

2006b; Lei et al., 2012a), and least-squares method (Yang et al., 2007b), etc. have been 

proposed for damage detection using acceleration responses. The output-only methods 

are more promising for damage detection under ambient excitations, because the 

ambient excitations (for example, wind loading) are usually difficult to measure. The 

wind loading of high-rise buildings and long span bridges are usually stationary and can 
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be approximated as ergodic and band-limited Gaussian noise processes (Shinozuka et 

al., 1976; Quek et al., 1999). However, the existing output-only methods require that the 

number of sensors should be larger than the total number of unknown excitations and 

the measurements (sensors) must be available at the DOFs where the external 

excitations act (Yang et al., 2007a; Lei et al., 2012a). These limitations are the 

necessary conditions for the existence of the analytical recursive solution (Lei et al., 

2012a), which discourages the use of most existing algorithms for a practical structure, 

and a new method for damage detection without these limitations should be developed. 

 

Recently, the correlation-function based damage detection methods have been 

developed. Several studies have been explored (Yang et al., 2007c; Yang et al., 2009b; 

Li and Law, 2010; Wang et al., 2010). In this chapter, a correlation function-based 

damage detection method is proposed for civil structures under multi-excitations 

without above mentioned limitations. The correlation function under multiple 

excitations is derived as two parts. One is associated with the UIR function that depends 

on structural parameters. The other is a constant part that depends on the energy of the 

excitation force. The structural parameters are then obtained through the model updating 

technique. Numerical and experimental studies are performed to demonstrate the 

effectiveness of the proposed method. Results show that the proposed method can 

identify the structural damage when the number of sensors is less than the total number 

of unknown excitations. Also, the responses at the force location are not necessary to be 

measured. 
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6.2  Correlation Function of Vibration Response 

 

6.2.1  Correlation function of response under single white noise excitation  

 

 

The equation of motion of a damped structural system is given as 

 ( ) ( ) ( ) ( )t t t f t+ + =Mx Cx Kx B   (6.1) 

where M, C, and K are the N×N mass, damping, and stiffness matrices, respectively; 

( )f t  is the excitation force; and B is the mapping vector with 1 at the excitation 

location and 0 at others. x(t), ẋ(t), and ẍ(t) are the N×1 displacement, velocity, and 

acceleration vectors, respectively. Assume that the structure has zero initial conditions 

and excitation force ( )f t  is a white noise process.  

 

The acceleration response of the structure at i-th DOF can be expressed as 

 ( ) ( ) ( )i ix t h t f d  


−
= −   (6.2) 

where ( )ih t −  is the UIR function at i when the structure is subjected to a unit impulse 

force. 

 

Let ( )ijR   denote the correlation function of the accelerations at the i-th and j-th DOFs 

of the system, which can be written as follows (Bendat and Piersol, 1980; Li and Law, 

2008): 
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 ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2

t t-

ij i jR E h t f d h t τ f d


      
− −

 = − − −
      (6.3) 

where μ1 and μ2 are the small time variations. With the assumption of white noise 

excitation, the above equation can be rewritten as 

 ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2

t t-

ij i jR h t h t E f f d d


       
− −

= − − −       (6.4) 

The auto-correlation function of ( )f t  is 

 ( ) ( ) ( )1 2 1 2E f f S= −         (6.5) 

where S is a constant defining the excitation energy, and δ is the Dirac delta function. 

 

When μ1=μ2, Eqs. (6.4) and (6.5) give (Li and Law, 2008) 

 ( ) ( ) ( )
0

+

ij i jR S h t h t dt 


= −   (6.6) 

Define  

 ( ) ( ) ( )
0

ij i jH h t h t dtθ
+

= −    (6.7) 

Eq. (6.7) is the function of structural physical parameters only. θ is a vector consisting 

of the stiffness parameters of each element. Consequently, Eq. (6.6) can be written as  

 ( ) ( )ij ijR H Sθ=   (6.8) 

Eq. (6.8) indicates that the correlation function depends only on structural parameters 

( )ijH θ  and constant S.  

 

6.2.2 Correlation function of response under unit impulse excitation 
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Instrumented hammers have likewise been widely used in laboratory experiments. The 

excitation force can be described as a large constant force lasting a very short time 

duration as 

 ( )
( ) , 0

0,

A t   t
f t

  else     

   
= 


  (6.9) 

where A is a constant, and ε is the impulse duration.  

Substituting Eq. (6.9) into Eq. (6.2), the acceleration response of the structure can be 

expressed as 

 ( ) ( ) ( )
0

i ix t A h t d   


= −   (6.10) 

According to the property of Dirac delta function, 

 ( ) ( )i ix t Ah t=   (6.11) 

Therefore, the correlation function ( )ijR τ  can be written as 

 

( ) ( ) ( )

( ) ( )

( ) ( )

0

0

2

0

ij i j

i j

i j

R τ x t x t τ dt

         Ah t Ah t τ dt

         A h t h t τ dt

+

+

+

= −

= −

= −







  (6.12) 

The correlation functions under a impulse excitation and a white noise excitation have 

the similar form as shown in Eq. (6.6) and Eq. (6.12), respectively. The UIR function 

ḧi(t) in both cases can be obtained in Eq. (6.1), where ( )f t  is a Dirac delta function. 

The function can be regarded as a free vibration state with some specific initial 

conditions. Assuming that the system is initially in static equilibrium, the UIR function 

can be calculated using the Newmark method (Li et al., 2013): 
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( ) ( ) ( )

( ) ( ) 10 ,  0

t t tMh Ch Kh

h h M B
−

 + + =


= =

0

0
  (6.13) 

where ( )th , ( )th  and ( )th  are the unit impulse displacement, velocity and acceleration 

vectors, respectively. 

 

 

 

6.2.3 Correlation function of response under multiple excitations  

 

Previous studies usually considered single excitation only. However, practical structures 

are generally subjected to external forces applied at multiple points. Multiple white 

noise or impulse excitations are investigated in this section. The equation of motion of 

an N-DOF damped structural system under multiple excitations is given as 

 ( ) ( ) ( ) ( )
1

nf

i i

i=

t t t f t+ + =Mx Cx Kx B   (6.14) 

where ( )if t  is the i-th excitation force, Bi is the mapping vector corresponding to 

excitation ( )if t , and nf is the number of excitations. 

 

The responses under the multiple excitations can be written as the superposition of those 

under single excitation. That is, 

 ( ) ( ) ( ) ( ) ( )1 2

1

nf

i i, i, i,nf i,p

p

x t x t x t x t x t
=

= + + =   (6.15) 

where ( ),i px t  is the response at the i-th DOF under the p-th single excitation force. 
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Let ( ),i jx xR   denote the cross-correlation function of the accelerations at the i-th and j-

th DOFs of the system under the multiple excitations. It can be written as 

 ( ) ( ) ( ) ( ) ( )
1 2 1 2

, ,,
1 1

i j i,p j,qi, i, i,nf j, j, j,nf

nf nf

x x x xx x x x x x
p q

R τ R τ R τ
+ + + + + +

= =

= =   (6.16) 

and 

( ) ( ) ( ) ( ) ( )
, ,, , 1 , 2 1 2 1 2i p j q

t t-τ

x x i p j q p qR τ h t μ h t τ μ E f μ f μ dμ dμ
− −

 = − − −      (6.17) 

where ,i ph  is the UIR function at i-th DOF under excitation at location p. 

 

The excitations are uncorrelated and, consequently, ( ) ( )1 2 0p qE f μ f μ  =   (p≠q). This 

leads to  

 ( )
, , 0

i p j,qx xR τ =  ( p q ). (6.18) 

Therefore, Eq. (6.16) can be expressed as 

 ( ) ( ), ,

1
i j i,p j,p

nf

x x x x

p

R τ R τ
=

=   (6.19) 

As discussed in Section 6.1.1, the auto-correlation function of ( )pf t  is 

 ( ) ( ) ( )1 2 1 2p p pE f f S  = −        (6.20) 

Then, 

 ( )
, ,,i p j px x p ij,pR τ S H=   (6.21) 

and 

 ( ) ( ), ,
0

ij,p i p j pH h t h t τ dt
+

= −   (6.22) 
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Define  

 ( ) 1 2, , ,ij ij, ij, ij,p ij,nfH H H HH   =     (6.23) 

 1 2, , , ,
T

p nfS S S S =  s   (6.24) 

Eq. (6.19) can then be further simplified as  

 ( ) ( ),

1
i j

nf

x x p ij,p ij

p

R τ S H H s
=

= =   (6.25) 

The correlation functions between responses at different points can be expressed as 

 ( ) ( ) ( ),τ = =R H s R s    (6.26) 

In practice, the correlation function of accelerations can be obtained as a discrete 

inverse Fourier transform of the cross-spectral density function, while the latter is 

computed directly from the vibration data (Caicedo et al., 2004). 

 

 

6.3 Damage Detection Using Correlation Function 

 

The above sections show that the correlation function of acceleration responses, 

regardless of whether under single or multiple excitations, can be written as the product 

of a constant and a function of structural parameters. A damage detection method based 

on the correlation function is proposed in this section. 

 

Assuming that structural damage is in the form of a change in the structural stiffness, 

the stiffness matrix of the damaged structure can then be expressed as 

 ( )
1

1
ne

d

i i

i

KK
=

= −    (6.27) 
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where Ki is the stiffness matrix of the i-th element in the intact state, 
i  ( 0 1i  ) is 

defined as the stiffness fraction to the intact stiffness of the i-th element, and ne is the 

total number of elements in the structure. 1i =  denotes that the element loses its 

stiffness completely, whereas 0i =  indicates that the element is intact. The nonzero 

value of 
i  denotes the damage at element i. 

 

The problem of system identification with correlation function is to determine the 

system parameters  1 2, , ne  =θ  from the measured correlation function using the 

model updating technique. The objective function for model updating is defined as the 

difference between the measured and calculated correlation functions  

 ( ) ( ) ( )mea calJ θ R θ R θ= −   (6.28) 

where Rmea is the measured correlation functions and Rcal is the corresponding 

correlation functions calculated from the finite element model. 

 

A two-stage method is employed in model updating. In the first stage, constant 

coefficient part s can be estimated from Eq. (6.26) as 

 ( ) mea

+
=s H R   (6.29) 

given the initial value of θ, where ( )
+

H θ  is the pseudo-inverse of ( )H θ . 

 

In the second stage, the correlation function can be expressed as a first-order Taylor 

expansion (Lu and Law, 2007b)  

 ( )2cal
mea cal= = +Ο

R
R R R θ θ

θ


  


−   (6.30) 
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1 2

, , ,cal cal cal cal cal

i ne

R R R R R



     
=  

        
  (6.31) 

The high order terms ( )2Ο θ  are small and can be ignored. cal R θ  is the sensitivity 

matrix of the correlation function with respect to the structural parameters, which can be 

obtained using the Newmark method (Li and Law, 2008) or the forward difference 

method (Morton and Mayers, 2005) as  

 ( )  ( )

 ( )  ( )

1 2 1 2

0

1 2 1 2

, , , , , , , ,
lim

, , , , , , , ,

cal i ne cal i necal

i

cal i ne cal i ne

α α α + , α α α α , α

α

α α α + , α α α α , α
         

R s R sR

R s R s

→

−
=



−
=











     (6.32) 

where φ is the difference step for the finite difference method. 

 

Eq. (6.30) can be solved by the damped least-squares method as  

 

1
T T

cal cal cal

−

        
 = +       

         

R R R
θ λ R

θ θ θ
  (6.33) 

where λ  is the non-negative optimal regularization parameter determined by the L-curve 

method (Tikhonov et al., 1995).  

 

The above correlation function-based damage detection procedure can be summarized 

as follows:  

Step 1: Measure the structural responses under ambient white noise excitations or 

impulse excitations, and calculate the correlation functions. 

Step 2: Set the initial values of the structural parameters 0 0 0 0

1 2, , neθ  =     .  

Step 3: Calculate ( )H θ  from Eq. (6.23) and estimate constant value s from Eq. (6.29). 
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Step 4: Calculate the correlation function from Eq. (6.26) and the sensitivity matrix 

from Eq. (6.32). 

Step 5: Update the structural parameters from 1n n+ = +θ θ θ , where θ  is obtained 

from Eq. (6.33). 

Step 6: Repeat steps 3 to 5 until the following convergence condition in Eq. (6.34) is 

satisfied, where the tolerance in this paper is set to 10−5 in this study  

 

1

1
100%

n n

n
Tol

+

+

−
 

θ θ

θ
                               (6.34) 

Step 7: For damage detection, the measurement responses before and after damage are 

both available. The stiffness parameters can be updated with these two sets of 

measurements. The structural damage then can be identified by comparing the 

changes in the element stiffness parameters. 

 

 

6.4  Numerical Study 

  

The steel cantilever beam (Hao and Xia, 2002) as shown in Figure 6.1 is used for the 

numerical study. The size of the cross-section is 50.75 mm×6.0 mm, and the mass 

density is 7.67×103 kg/m3. The structure is modeled with nine Euler–Bernoulli beam 

elements (i.e., ne=9). The initial Young’s modulus in the intact state is 2.0×1011 N/m2. 

 

The structure is subjected to two white noise excitations as shown in Figure 6.1. One 

force is applied at Node 3 and the other at Node 7, both in the vertical direction. The 

force is assumed with a zero mean and unit standard deviation. The dynamic responses 
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computed from Eq. (6.1) are taken as the actual responses for the following studies. The 

sampling frequency was 1000 Hz and 1 hours force vibration responses are recorded. 

The auto/cross-correlation function is calculated from the measured responses, and the 

first 100 data of auto/cross-correlation function are selected for the numerical study. 

 

 

6

900

50.75

 

(a) Configuration of the beam specimen (unit: mm) 

1 2 3 4 5 6 7 8 9

Force 1 Force 2

 

(b) Finite element model of the cantilever beam 

Figure 6.1 Cantilever beam 

 

 

6.4.1 Structural stiffness identification 

 

The real elastic modulus of the structural material is simulated by adding a random 

variation to the ideal ones (i.e., 2.0×1011 N/m2). The random variation has a normal 

distribution, with 10% standard deviation of its initial value. The cross-correlation 

function of accelerations at Nodes 4 and 6 (R4,6) is used for system identification.  
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The real stiffness parameter of each element is identified using the proposed two-stage 

model updating technique. The initial value of the stiffness parameters for iteration are 

set the same at 2×1011, as shown in Figure 6.2. The model updating results converge 

approximately after 10 iterations. The final identified stiffness parameters highly agree 

with the true values accurately without any false alarm, as shown in Figure 6.3. These 

results show the proposed output only method can identify the structural parameters. 

Moreover, the measurement at the force locations is not required.  

 

 

 

 

 

 

 

Figure 6.2 Evolution of identification results of the cantilever beam 
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Figure 6.3 Model updating results without measurement noise 

 

 

 

6.4.2  Effect of measurement noise  

 

Random noise is added to the measured response to simulate the uncertainty of the 

measurements as  

 ( )mea p noiseE N σ= +x x x   (6.35) 

where Ep is the percentage noise level, Nnoise is the standard normal distribution vector 

with zero mean and unit standard deviation, and ( ) x  is the standard deviation of the 

actual acceleration response.  

 

10% and 20% random noise are respectively added to the actual responses. Figure 6.4 

shows the identified stiffness parameters under different noise levels. The maximum 

relative error was 1.1% at Element 2 for the case of 10% noise and 2.7% at Element 9 

for the case of 20% noise. The results are satisfactory even when 20% noise is included. 
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These results show that the proposed method is insensitive to the measurement noise. 

The effect of the measurement noise is analyzed as follows. 

 

 

Figure 6.4 Model updating results with different noise levels 

 

The correlation function of noised responses at i and j locations can be expressed as  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , ,

, , , ,

,

, , , ,

mea i mea j i noise i j noise j

i j i noise j noise i j noise i noise j

N N

N N N N

x x x x

x x x x

R R

R R R R

+ +
=

= + + +

 

   
  (6.36) 

For white noise, it has ( )
,, 0

i noise jN  =
x

R  and ( )
, , 0

noise i jN  =
x

R . Therefore, it has 

 ( )
( )

( ) ( ) ( )
, ,

,

2

,

 ( )

 ( )

i j

mea i mea j

i j p

i j

E i j




   

 


= 
+ =

x x

x x

x x

R

R
R

  (6.37) 

In theory, the cross-correlation function is noise free, and the auto-correlation function 

contains noise only when τ=0. Thus, the effect of measurement noise on the system 

identification results is very small as shown in Figure 6.5, where the cross-correlation 

function of R4,6 with 20% noise is almost the same as that without noise. 
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Figure 6.5 Comparison between the correlation functions R4,6 

with and without measurement noise 

 

6.4.3  Effect of measurement point  

 

The cross-correlation function of Nodes 4 and 6 are used in the above section. 

Responses from different measurement points may cause different identification results. 

In this section, the effect of measurement point will be studied. The excitation force and 

structural parameters used in Section 6.4.1 remain unchanged. The auto-correlation 

function of the vertical acceleration at one measurement point is employed for system 

identification each time. The identification errors with respect to different measurement 

point are shown in Figure 6.6. The identification errors for all cases are small and the 

maximum relative error is 2.3% at Element 6 when the auto-correlation function of the 

response at Node 8 is used. The effect of sensor location on the identification results is 

small and the proposed system identification technique is robust. These results 
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demonstrate that the proposed method is able to identify the structural damage when the 

number of sensors is less than the total number of unknown excitations. 

 

 

Figure 6.6 Identification error from different sensor locations 

6.5  Experimental Study 

 

A steel shear-type four-story building model was tested in the laboratory. The 

experiment is employed to verify the accuracy of the correlation-based damage 

detection method. The constructed building model is shown in Figure 6.7 and the 

dimensions are shown in Figure 6.8. The height of each floor is 300 mm, and the floor 

of each story is composed of 25 mm-thick steel plate. The two columns of each story 

have the same section shape with a width of 50 mm and a thickness of 5 mm. The 

beams and columns were welded together to form rigid joints. The bottom of the 

columns was welded onto a thick and solid steel plate, which was fixed to the strong 

floor. The elastic modulus of the steel is estimated to be 200 GPa, and the mass density 

is 7850 kg/m3. 
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Figure 6.7 Laboratory tested steel frame model 
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Figure 6.8 Dimensions of the frame (unit: mm) 
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6.5.1 Experimental setup 

 

A SINOCERA LC-04A hammer with a rubber tip was used to excite the frame. The 

horizontal acceleration responses at each floor were measured by using KD1300 

accelerometers. A commercial data logging system INV306U and its associated signal 

analysis package DASP V10 were used for data acquisition. The sampling frequency 

was 1024 Hz, and the cut-off frequency range was preset at 1 Hz to 300 Hz for all test 

cases.  

 

 

6.5.2  Modal testing and model updating in the undamaged state 

 

The test was performed by using the hammer to hit the top floor of the frame. In each 

test, only output time history were recorded for 60 s. Typical curves of auto/cross-

correlation functions (R2,2 and R2,1) are displayed in Figure 6.9. The first four natural 

frequencies of the undamaged structure were extracted from the measured input and 

output using modal analysis. The results are listed in Table 6.1 as compared with those 

calculated from the numerical model. In the numerical model, the stiffness of each floor 

is calculated from the physical configuration and material properties of the model, as 

listed in Table 6.2. The mass of columns, beams, and sensors are lumped at each floor. 

The calculated mass results are 13.1280, 13.0976, 13.0838, and 12.4948 kg for the first, 

second, third, and fourth floors, respectively. The analytical frequencies are very close 

to the measured counterparts. Thus, the model will be used for subsequent model 
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updating. The first four damping ratios were measured as ξ1=0.74%, ξ2=0.41%, 

ξ3=0.34%, and ξ4=0.27%.  

 

 

(a) Auto-correlation function R2,2 

 

(b) Cross-correlation function R2,1 

Figure 6.9 Auto- and cross-correlation functions 
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Table 6.1 Frequencies of the structure in the undamaged state 

Mode No. 
Calculated  

(Hz) 

Measured  

(Hz) 

Relative difference  

(%) 

1st 5.18 5.17 0.19 

2nd 15.01 15.05 -0.27 

3rd 23.19 23.52 -1.42 

4th 28.60 29.20 -2.10 

 

 

The correlation function between the measurement responses at the first to fourth floors 

and that at the second floor (R2,1, R2,2, R2,3, and R2,4) are used for the initial model 

updating in the undamaged state. The first 100 data of the correlation functions are 

employed for model updating. The updated stiffness parameters are listed in Table 6.2 

(3rd column). They are very close to the initial ones. 

 

 

Figure 6.10 Damage of the frame 
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Table 6.2 Identified flexural stiffness of columns in the undamaged and damage state 

Story No. 
Initial value 

(kN/m) 

Before damage 

(kN/m) 

After damage 

(kN/m) 

Stiffness 

reduction (%) 

1st 104.66 102.99 107.95 -4.8 

2nd 122.21 124.75 73.14 41.4 

3rd 122.21 130.16 133.18 -2.3 

4th 122.21 117.30 116.83 0.4 

 

 

6.5.3  Damage detection 

 

Artificial damage was then introduced by reducing the width of two columns in the 

second floor from 50 mm to 30 mm, as shown in Figure 6.10, indicating 40% reduction 

in the stiffness of the columns. The frame was tested in a similar manner as in the 

undamaged state. The auto/cross-correlation functions (R2,1, R 2,2, R 2,3, and R2,4) are 

used to update the model in the damaged state. The initial model for damage detection 

is from the identification results in Section 6.5.2. The iteration process converges 

approximately after 10 runs, as shown in Figure 6.11. The updated stiffness parameters 

are shown in Table 6.2. The stiffness parameter of the second floor is reduced by 

41.37% from 124.75 kN/m to 73.14 kN/m, which is the close to the acutal value (40%). 

The parameters of the other columns remain almost unchanged, because there was not 

artificial damage happened. Therefore, both damage location and damage severity are 

correctly identified, and no false detection occurs. 
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Figure 6.11 Iteration of damage identification results 

 

 

6.6 Summary 

 

Previous methods for damage detection under multiple unknown excitations are rare. In 

this chapter, a correlation function-based damage detection method is proposed when 

the structure is under multiple white noise or impulse excitations. The structural damage 

is detected by minimizing the error between the measured correlation functions and the 

calculated counterparts. The numerical study on a cantilever beam and experimental 

study on a steel frame model demonstrate the effectiveness and robustness of the 

proposed technique. Results show that the proposed method can identify the structural 

damage under multiple unknown excitations. The correlation function is insensitive to 

the measurement noise and the proposed method can detection the structural damage 

under the high noise condition. Moreover, the proposed method does not require the 

number of sensor larger than the number of excitations, as required in other methods. 
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CHAPTER 7   
 

DECENTRALIZED DAMAGE DETECTION WITH 

AMBIENT LOADING VIA CORRELATION FUNCTION 

 

 

 

 

 

7.1 Introduction 

 

In Chapter 6, a correlation function-based damage detection method was presented for 

damage detection with multiple unknown input forces. The proposed method does not 

require that the number of sensor should be greater than the amount of unknown input 

force. However, the force location should be known in advance. 

 

In this chapter, the proposed decentralized method is combined with correlation 

function based damage detection method. The new proposed method can identify the 

structural parameters with less computational time and without the limitations, in which 

the force location is unknown, and the number of sensor can be less than the number of 

unknown input forces. The excitation forces are assumed to be broadband white noise, 

and the ambient vibration responses are used for damage detection. On the basis of 
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NExT theory (James et al., 1995; Caicedo et al., 2004), the correlation functions of 

vibration responses can be treated as free vibration responses of the structure with non-

zero initial conditions. The correlation function of the vibration signal can be 

represented in two parts. One part comprises the Markov parameters that depend on 

structural parameters, and the other part is a vector of the equivalent initial values. 

Structural damage is identified by minimizing the errors between the calculated and 

measured correlation functions. The decentralized technique proposed in previous 

chapters is used to determine the structural damage. Numerical and experimental studies 

are performed to demonstrate accuracy and effectiveness of the proposed method. 

Results show that the proposed technique can detect structural damage accurately and is 

insensitive to the measurement noise. 

 

 

7.2 Representation of the Correlation Function of Vibration Response 

via NExT 

 

7.2.1 Natural excitation technique (NExT) 

 

The equation of motion of an n-DOF damped structural system under external 

excitation can be written as  

 ( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx Bf   (7.1) 

where ( )tx , ( )tx and ( )tx  are vectors of displacement, velocity and acceleration 

responses of the structure, respectively; M, C, and K, are the mass, damping, and 
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stiffness matrices of the structure, respectively, ( )tf  is the external excitation force 

vector, and B is the mapping matrix relating the excitations to the DOFs of the structure. 

Rayleigh damping is assumed with the form 1 2a aC M K= + , where a1 and a2 are 

damping coefficients determined from two modal damping ratios. Other damping 

models can also be used. The dynamic responses of the structure can be obtained from 

Eq. (7.1) by using the Newmark- method. 

 

The correlation function between two response vectors has been successfully used for 

modal parameter identification (James et al., 1995). Caicedo et al. (2004) showed that 

the correlation function satisfies the homogeneous equation of motion provided that the 

excitation and responses are weakly stationary random processes.  

 

Multiplying both sides of Eq. (7.1) by a reference response vector ( )ref tx  and taking 

the expected value, one has 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ref ref ref refE t t E t t E t t E t tM x x C x x K x x x f       + + =           (7.2) 

where ( )E •  denotes the expectation value. Eq. (7.2) can be rewritten as 

 ( ) ( ) ( ) ( )
ref ref ref ref

τ τ τ τ+ + =
x x x x x x x f

MR CR KR R   (7.3) 

where ( )
refx x

R   is the correlation function between refx  and x . ( )
refx x

R  , ( )
ref


x x

R  and 

( )
ref


x f

R  are similarly defined. 
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The excitation and the system responses are uncorrelated because they are assumed 

weakly stationary random processes. This condition leads to the following equations 

(Bendat and Piersol, 2011): 

( ) 0
ref

τ
x f

R = , ( ) ( )
ref ref

τ τ=
x x x x

R R , and ( ) ( )
ref ref

τ τ=
x x x x

R R      (7.4) 

Eq. (7.3) then becomes 

 ( ) ( ) ( )
ref ref ref

τ τ τ
x x x x x x

MR CR KR+ + = 0   (7.5) 

Eq.(7.5) shows that the correlation function of responses can be treated as the free 

vibration response. 

 

In practical applications, correlation function ( )ABR t
 
can be obtained as a discrete 

inverse Fourier transform of the cross-spectral density function (James et al., 1995; 

Caicedo et al., 2004) as 

 ( ) ( )
1

0

1 2
exp

N

AB AB

k=

πkt
R t S k j

N N

−
 

=  
 

   (7.6) 

where ( )ABS k  is the discrete cross-spectral density function of the measured responses 

A and B, k is the discrete frequency index, and N is the total number of time steps.  

 

7.2.2 Equivalent initial free vibration responses 

 

Eq. (7.5) shows the system correlation function can be equivalent to the free vibration 

response of the same system as 

 
( ) ( ) ( )

( ) ( ) ( )0 0 0 0 0 0, ,

t t t

t t t

Mz Cz Kz

z z z z z z

+ + =


= = =

0
  (7.7)  
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where ( )tz , ( )tz , and ( )tz  are vectors of displacements, velocity, and acceleration 

responses, respectively, in the equivalent free vibration system; 0z , 0z , and 0z  are the 

initial displacements, velocity, and acceleration, respectively. 

 

Eq. (7.7) can be written in the form of state space as 

 ( ) ( )c
t tZ A Z=   (7.8) 

where 

( )
( )

t

t

z
Z

z

 
=  
 

 and 
1 1c

0 I
A

M K M C
− −

 
=  

− − 
 

 

Measurements are generally obtained at several sensor locations only. The observation 

equation is 

 ( ) ( ) ( ) ( )a v d
t t t ty C z C z C z= + +   (7.9) 

where ( )ty  is the vector of the output, Ca, Cv, and Cd are the mapping matrices for the 

acceleration, velocity, and displacement output, respectively. 

 

In many practical applications, only accelerations are measured. It then has 

 ( ) ( ) ( ) ( )1 1

a a o
t t t ty C z C M K M C Z C Z

− − = = − =    (7.10) 

 1 1

o a a

− − = − − C C M K C M C   (7.11) 

Eqs. (7.10) and (7.8) constitute a deterministic state-space model and can be converted 

into the following discrete equations:  

 
1i d i

Z A Z
+
=   (7.12) 

 
i o i
=y C Z  (i=1, 2, 3, ∙∙∙, l)                                     (7.13) 
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where ( )i
i t= Z Z  is the discrete state vector, ( )d c

exp tA A=   is the discrete state 

matrix, and l is the total number of sampling points.
 
 

 

The output response 
1

y
+i  

can be solved from Eqs. (7.12) and (7.13) in terms of the 

previous input as 

 
2 1

1 1 1 0

i

i o i o d i o d i- o d
y C Z C A Z C A Z C A Z

+

+ +
= = = =   (7.14) 

Eq. (7.14) can then be rewritten as (Siringoringo and Fujino, 2006) 

 

1

2

2

0

o d

o d

l

o dl

C Ay

C Ay
Z

C Ay

   
   
   =
   
   
    

  (7.15) 

or 

 
0

=Y HZ   (7.16) 

The constant matrices in H are known as system Markov parameters (Siringoringo and 

Fujino, 2008), which are associated with the structural parameters.  

 

From Eqs. (7.4), (7.5), (7.7), and (7.16), we find that the correlation function of the 

acceleration responses can be expressed as 

 0ref ref
= =

x x x x
R R HZ   (7.17) 

Eq. (7.17) shows that the correlation function can be written as two parts. One part is 

associated with the system Markov parameters and the other is the equivalent initial 

values of the dynamic system.  
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If the structural parameters are known, then the equivalent initial velocity and 

displacement can be obtained from 

 ( ) ( )0 refx x
Z H Y H R

+ +
= =   (7.18) 

where ( )
+

H  is the pseudo-inverse of H. The equivalent initial acceleration can be 

obtained from 

 ( )1

0 0 0
z M Kz Cz

−= − +   (7.19) 

 

 

7.3 Decentralized Damage Detection with Correlation Functions 

 

Assuming that the structural damage is in the form of a reduction in the structural 

stiffness, the stiffness matrix of the damaged structure can then be expressed as  

 ( )
1

1
ne

d

i i

i

K
=

= −K   (7.20) 

where Ki is the stiffness matrix of the i-th element in the intact state, αi (0≤αi≤1) is 

defined as the damage index of the i-th element, and ne is the total number of elements 

in the structure. αi=1 denotes that the element loses its stiffness completely, whereas 

αi=0 indicates that the element is intact. 

 

The idea is to identify the damage indices  1 2, , , ne  =θ  from the correlation 

functions. In a large structure, the correlation function measured from the i-zone can be 

expressed as Ymea, i and can be written as a function of the unknown structural 
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parameters and equivalent initial values ( )0,ig Z . The correlation functions of all 

zones can be expressed as 

 

( )

( )

( )

1 0 ,1

0 ,

0 ,

, 0

, 0

, 0

mea

i mea i

r mea r

− =

− =

− =

g Z Y

g Z Y

g Z Y







  (7.21) 

After the initial values of the correlation functions are estimated in an early stage, Eq. 

(7.21) can be written as 

 ( ) 0=G θ   (7.22) 

By using the Newton method (Ortega and Rheinboldt, 1970), we obtain 

 1( ) ( ) ( )( ) 0n n n+ n=G G G    + − =                           (7.23) 

 1( ) ( ) ( )n n+ n n n=  −G G G       (7.24) 

 
1

1 ( ) ( )n+ n n n= G G
−

 −        (7.25) 

where ( )nG   is the Jacobin matrix of ( )n
G  .  

 

Following the derivation discussed in Section 3.3.3, the structural parameter is divided 

into r subsets as  1 2, , , r   = . Using the solution from the One-step Newton–SOR 

method, the unknown structural parameters can be updated as  
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( )

( )

( )

1

1

11 0 1
1 1

21
2 0 22 2

2

1

0

0 0 0
,

0 0 0 ,

0 0 0

,
0 0 0

n
n

n+ n mea,

nn+ n
mea,n

n+ n
n

r r
r mea,r

r

n

r

=

−



 
   −            −     −                      −    
  

g

θ g Z Y
θ θ

g
g Z Yθ θ

θ

θ θ g Z Yg

θ







  (7.26) 

or 

 ( ) ( )
1

1

0
1 2n+ n ni

i i i mea,in

i

, i , , , r
g

g ,Z Y

−

 
 = − − =    

   


  (7.27) 

The Tikhonov regularization technique (Tikhonov et al., 1995) is applied to Eq. (7.27), 

and the solution is obtained as 

 ( ) ( )

1

1

0
1 2

T T

n+ n ni i i
i i i i mea,in n n

i i i

+ ,  i , , , r
g g g

g Z Y

−

        
  = − − =                

，   
  

  (7.28) 

 

After each subset parameter 
1n+

i  is calculated from Eq. (7.28), the global structural 

parameters are obtained, and the sensitivity matrix 1( )n+
G   is re-calculated. The 

correlation function (equivalent free vibration responses) in each zone are then 

computed. 

 

The proposed approach is implemented as follows. 

Step 1: Divide the structure into r small zones according to its finite element model. The 

correlation functions in each zone can be obtained from Eq. (7.6) using the 

measured acceleration. 
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Step 2: Divide the unknown structural parameters into r subset and set the initial values 

θ0=[θ
0 

1 , θ
0 

2 , ···, θ
0 

r ]. 

Step 3: The initial values of correlation functions Z0 can be identified from Eq. (7.18). 

Step 4: Compute gi(θ
n, Z0) from Eq. (7.7) and the sensitivity matrix of responses with 

respect to the structural parameters.  

Step 5: Update each subset of the structural parameters 
1n+

iθ  from Eq. (7.28).  

Step 6: Repeat Steps 3 to 5 until the following convergence criterion is satisfied.  

 

1

1
100%

n n

n+
Tol

+ −
 

θ θ

θ
  (7.29) 

The convergence criterion is set as Tol = 1.010−6.  

The details of the damage identification process is given in Figure 7.1. 
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Set the initial value of unknown structural parameters, and 

divide them into r subsets 

Global damage index

Convergence 

check

No

Finish

Yes

1st zone i-th zone r-th zone

Identify the initial value of the correlation 

functions from Eq. (7.18) 

Update the subset of the 

structural parameters 

from Eq. (7.29).

Update the subset of the 

structural parameters 

from Eq. (7.29).

Update the subset of the 

structural parameters 

from Eq. (7.29).

Divide the structure into r zones, and obtain the correlation 
function of each zone

 

 

Figure 7.1 Flow chart of proposed damage detection method 

 

 

7.4 Numerical Study 

 

A two-dimensional truss structure, as shown in Figure 7.2, is adopted for the numerical 

study. The truss has a pin support at Node 1 and a roller support at Node 20. The finite 

element model consists of 37 planar truss elements with 37 DOFs. The cross-sectional 

area of each element is 0.0016 m2. Rayleigh damping is adopted for the system with 
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damping ratios ξ1=ξ2=0.01 for the first two modes. The mass density of the material is 

7.8×103 kg/m3, and the elastic modulus of the material is 206 GPa.  
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Figure 7.2 Truss structure 

 

The structure is subjected to ambient white noise excitations in the x- and y-directions at 

the nodes in the top chord, as shown in Figure 7.3. The amplitude of excitation is 10.0 N 

to simulate low-level white noise loadings. The sampling frequency is 2000 Hz. Ten 

sensors are installed in this structure, as shown in Figure 7.3. Each zone has five sensors 

to measure two horizontal and three vertical acceleration responses. The vertical 

acceleration of Node 9 is selected as the reference point for the calculation of 

correlation functions. The final correlation functions of the acceleration responses are 

divided into two subsets according to their locations. Accordingly, the unknown 

structural parameters are divided into two subsets. The first subset consists of unknown 

stiffness parameters α1–α18 and the second α19–α37.  
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Note: (1):     denotes horizontal and vertical measurement.

          (2):     denotes vertical measurement.
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Figure 7.3 Sensor and force locations 

 

7.4.1 Initial value identification 

 

An important assumption in this chapter is that the correlation function of the 

acceleration responses can be treated as free vibration responses of the same structure 

when the structure is under ambient white noise excitations. The correlation function of 

the measured acceleration responses can be obtained from Eq. (7.6). 

 

The correlation functions from the acceleration responses are used for initial value 

identification. In this study, the structural parameters are known. The true initial values 

of the correlation functions ( )0
refx x

R , ( )0
refx x

R , and ( )0
refx x

R  in Eq. (7.5) can be 

obtained from 
refx xR , 

refx xR ,and 
refx xR  with 0τ = . The initial values of the correlation 
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functions are identified from the measurement correlation function with Eqs. (7.7) to 

(7.18) 

 

The identified initial values are shown in Figure 7.3. In this example, 20 min vibration 

responses are used for the calculation of the correlation functions, and the first 300 data 

points of the correlation functions are used for the initial value identification. The 

identified initial values from the measured correlation function match their true values 

well. These results can verify the accuracy of initial value identification and the above 

assumption. 

 

 

(a) Initial value of 
refx x

R  
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(b) Initial value of 
refx x

R  

 

(c) Initial value of 
refx xR  

Figure 7.4 Initial values of correlation function 

 

7.4.2 Damage detection without noise 

 

The structure is assumed to suffer a reduction of 15% in the elastic modulus of the 

material in Element 11, 10% in Element 17, and 20% in Element 32 due to an adverse 

event. Different durations of vibration responses, say 10, 20, and 30 min of vibration 
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data are respectively used to calcualte the correlation functions. They are divided into 

two subsets according to their locations and used to update the structural parameters of 

each subset.  

  

 

(a) Subset 1 

 

(b) Subset 2 

Figure 7.5 Identified structural parameters with different durations 

of measurement data 
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The final identified results are shown in Figure 7.5. All of the damage locations and 

severities are correctly identified without significant false alarms in other elements. A 

longer vibration responses may lead to better identification results. The maximum errors 

in the results from 10 min vibration responses are 4.36% at Element 4, 3.95% at 

Element 10, and 3.79% at Element 19. The errors from 20 and 30 min vibration 

responses are less than 3%. These results can verify the accuracy of the proposed 

method in the identification of structural damage. 

 

7.4.3 Damage detection with noise 

 

The measurement noise is then considered by adding a random component to the actual 

responses as 

 ( )mea p noiseE N= +x x x  (7.30) 

where Ep is the percentage noise level, Nnoise is a standard normal distribution vector 

with zero mean and unit standard deviation, and ( )x  is the standard deviation of the 

acceleration response.  

 

The correlation function is insensitive to the measurement noise, as proved in Chapter 6. 

Here 20% of measurement noise is added. The correlation functions are calculated from 

the noisy responses and used for damage detection. The identified results using the 

different durations of the responses (10, 20, and 30 minutes) are shown in Figure 7.6. 

Damage location and severity are correctly identified in all cases with small 

identification errors in Elements 4, 19, and 36. A longer measurement of vibration 
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responses may improve the results slightly. These results verify that the proposed 

method is insensitive to the measurement noise. 

 

 

(a) Subset 1 

 

(b) Subset 2 

Figure 7.6 Final identified results with measurement noise  
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7.4.4 Damage detection under non-standard white noise excitation 

 

In practice, excitations such as taffic loading and wind loading, may not be white noise. 

Non-standard white noise excitations are considered in this section. The excitation force 

is simulated with a combination of three times of standard white noise and one time of 

standard pink noise. The pink noise excitation force has a 3 dB attenuation with 

increasing frequency (Li, 2005). The forces locations are the same as the previous 

studies (Figure 7.3). The first second time history of the simulated excitation force and 

the spectrum are shown in Figure 7.7. The sampling rate is 2000 Hz. The measurement 

and the reference point are the same as those in previous studies. The first 30 and 60 

min acceleration responses under the non-standard white noise force are computed from 

the structure, from which the correlation functions are calculated. The first 300 data 

points of the correlation functions are used for damage detection.  

 

The damage identified results are shown in Figure 7.8. Generally, results with 30 min of 

vibration data have relatively large errors (e.g., 7.03%, 7.53%, 8.37%, and 7.58% in 

Elements 10, 18, 24, and 27, respectively). A longer duration of measurement (60 mins) 

improves the identification results (all elements less than 5%). 
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(a) Time history of the input force 

 

(b) Fourier amplitude spectrum 

Figure 7.7 Non-standard white noise excitation 
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(a) Subset 1 

 

(b) Subset 2 

Figure 7.8 Identified results under non-standard white noise excitations 
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7.5 Experimental Study 

 

The vibration response data in the experimental study in Chapter 4 are used here to 

validate the proposed decentralized damage detection method. The impact force is in 

broadband in the frequency domain. Therefore, the correlation function of vibration 

responses can also be treated as free vibration response (Ewins, 2003). After the initial 

finite element model was updated, the correlation functions from the experimental data 

of damage Cases 1 and 2 are used to identify the stiffness parameters of the eight-floor 

frame structure. The eight acceleration responses are used for damage detection, and the 

acceleration responses of the first floor is selected as the reference signal for the 

calculation of the correlation functions. The impact force was applied on the third floor. 

However, the force location and time history are not used in the damage detection. The 

correlation functions (R11 ~ R18) are divided into two subsets. The first subset includes 

R11 ~ R14, and the second subset includes R15 ~ R18. The former subset of correlation 

functions are used to update the stiffness parameters of 1st to 4th floors and the second 

for 5th to 8th floors. Figure 7.9 shows the correlation functions of R11 and R16. Only the 

first 300 data points of the correlation function are used.  

 



  

    

175 

 

(a) Correlation function R11 

 

(b) Correlation function R16 

Figure 7.9 Time history of correlation function in damage Case 1 

 

 

The identified results are shown in Figure 7.10 In Case 1, 20% of stiffness reduction in 

Element 2 is successfully identified. In Case 2, 20% stiffness reduction in Element 2 

and 10% in Element 7 are also identified, correctly. The results match their true values 

well.  
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The modal assurance criterion (MAC) is a statistical indicator of the difference between 

two mode shapes, which is calculated from the following equation: 

 
  ( )

  ( )   ( )

2
T

A,i E,i

T T

A,i A,i E, i E,i

Φ Φ
MAC=

Φ Φ Φ Φ
  (7.31) 

 

where A,iΦ  and E,iΦ  are the i-th mode shape from the analytical and experimental 

models, respectively. The MAC indicator has a value between 0 and 1, 0 indicating the 

two vectors are perpendicular and 1 indicating they are the same but differ by a scalar 

only. The mode shapes from the updated numerical model should be consistent with 

those from the experimental model. Table 7.1 shows the MAC values of damage Cases 

1 and 2. The results, which are all near 1, show that the updated numerical model is 

remarkably close to the experimental model. Thus, the accuracy of the damage detection 

method was verified. 

 

 

Figure 7.10 Damage identification results 
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Table 7.1 Modal data of the structure in damage Cases 1 and 2 

 Case 1 Case 2 

Mode 

NO. 

Tested 

(Hz) 

Analytical  

(Hz) 
MAC 

Tested  

(Hz) 

Analytical 

(Hz) 
MAC 

1 4.57 4.57 0.9998 4.54 4.54 0.9999 

2 13.56 13.44 0.9991 13.38 13.24 0.9974 

3 22.73 22.69 0.9992 22.34 22.26 0.9961 

4 30.43 30.44 0.9954 30.14 30.17 0.9922 

5 37.18 36.98 0.9807 37.19 36.95 0.9869 

6 42.66 42.70 0.9793 42.29 41.8 0.9722 

7 47.65 47.50 0.9652 46.69 45.98 0.9843 

8 51.03 50.17 0.9701 50.54 51.40 0.9900 

 

 

7.6 Summary 

 

A decentralized damage detection method is proposed in this chapter for civil structures 

under multiple ambient white noise excitations. The correlation function of acceleration 

responses is treated as a free vibration response of the same structure on the basis of 

NExT theory (James et al., 1995). The initial values of the correlation function can be 

identified from the system Markov parameters by using the state space method. A 

decentralized technique is used to identify the structural damage parameters of each 

subset using the correlation function of the subset. A simply-supported two-dimensional 
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numerical truss structure and a laboratory tested eight-floor steel frame structure are 

studied. The accuracy of the proposed method and the effect of measurement noise and 

non-standard white excitation forces are investigated. The results show that the 

proposed method in Chapter 7 can identify the structural damage with unknown input 

force location and the number of sensors can be less than the number of unknown input 

force. Both numerical and experimental studies are conducted to verify the advantages 

of the proposed method. 
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CHAPTER 8   
 

CONCLUSIONS AND FUTURE RESEARCH 

 

 

 

 

 

8.1 Conclusions 

 

Structural damage detection using the time domain vibration responses has been 

receiving more and more attention in the past decades. This dissertation focused on the 

development of a decentralized damage detection framework for civil structures under 

earthquake and ambient loadings. The main contributions and conclusions of this 

dissertation are summarized as follows: 

 

1) A decentralized damage detection method is proposed for large-scale civil 

structures. The structure can be divided into several zones for short term field test. 

The dynamic test in each zone is performed in sequence with its own set of sensors. 

After all the response sets are obtained, the external excitations in each test are 
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identified in the wavelet domain. The structural parameters of the whole structure 

are divided into several subsets according to their locations. Each subset of 

structural parameters is updated with the corresponding measurement subset with 

the Newton-SOR method. The unknown excitations and the physical structural 

parameters can be identified with iterations until a prescribed convergence condition 

is satisfied. The accuracy of the proposed decentralized method for structural 

damage detection is verified with numerical study of a truss structure. The 

decentralized method is implemented in a multi-core central processing unit with 

parallel processing and a reduction of approximately 37% of computation time can 

be achieved, compared with those results from computation in sequence. 

 

2) The Kalman filter technique can be used to identify the unknown input force of the 

linear and nonlinear structures. An improved approach is proposed by using the 

Kalman filter technique for force identification and the decentralized method for 

unknown structural parameter identification. The unknown external excitations and 

the structural parameters are updated iteratively. Numerical studies on a six-floor 

nonlinear system and a linear planar truss structure demonstrate that the proposed 

approach is effective for output−only structural identification with a few sensors, 

even at the presence of 10% noise included in the measured data.  

 

3) A structure may behave nonlinearly under earthquake excitation. The nonlinear 

dynamic behavior of a structure is simulated with the distributed plastic model. The 

nonlinear finite element model is updated with the proposed decentralized 

technique. In the process of model updating, the dynamic response sensitivity with 
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respect to the material parameters can be obtained from the direct difference 

method. Two numerical structures subjected to seismic input are employed to verify 

the accuracy of the proposed method. One is a three-floor reinforcement concrete 

structure, and the other is a six-floor steel frame structure. Results show that the 

parameters in the constitutive models can be identified, even with 10% of 

measurement noise. Also, proposed decentralized method takes less computational 

time than the global model updating method. 

 

4) Correlation functions are used for structural damage identification under multiple 

unknown excitations. The correlation function is represented by two parts. One is 

obtained from the UIR function and the other is a constant part that depends on the 

energy of the excitation force. The correlation function is insensitive to the 

measurement noise and the correlation function based method can identify the 

structural damage even with high noise measurement condition. Moreover, the 

correlation function based damage detection method does not require the number of 

sensor larger than the number of excitations, as required in other methods. 

 

5) The correlation function of acceleration responses are treated as the free vibration 

response of the same structure. The initial values of the correlation function are 

identified from the system Markov parameters by using the state space method. The 

proposed decentralized technique are combined with the correlation function for 

structural damge detection. The new proposed method can identify structural 

damage with unknown force location. Also, the number of sensor can be less than 

the number of unknown excitations. Numerical studies on a simply-supported two-
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dimensional truss structure and experimental studies on a eight-floor steel frame 

structure are performed to demonstrate the accuracy and effectiveness of the 

proposed method. The results show that structural damage can be successfully 

identified with the proposed decentralized correlation function based damage 

detection, even with 20% noise.   

 

8.2 Recommendations for Further Research 

 

Although progress has been made in this thesis for the condition assessment of large 

civil structures, the proposed decentralized damage detection methods are still 

preliminary. Several important issues are suggested to be investigated in the future  

 

1) Environmental variations have significant influences on the dynamic characteristics 

of the structure. For example, the temperature variation of a bridge during a year can 

be 50oC. Accordingly, the dynamic characteristics of the bridge may change, 

because the Young’s modulus decreases with increasing temperature. The boundary 

conditions are also temperature-dependent. Environmental effects may cause false 

alarms and reduce the effectiveness of damage detection methods. Eliminating 

environmental impact in damage detection should be considered. 

 

2) In the proposed decentralized damage detection method, a large-scale structure is 

divided into several zones and the structural damage is identified by the 

measurement data in the same zone. If the structure is divided into a smaller number 

of zones, each consisting of a large number of unknown structural parameters and 
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the computation is inefficient. On the other hand, if the structure is divided into a 

larger number of zones, the measurements and unknown structural parameters have 

to be divided into a larger number of subsets. The proposed method may fail to 

converge. An addition, the number of unknown in each subset should be similar to 

avoid one CPU waiting others. Therefore, the structure should be divided into 

several zones with the same size. However, the algorithm to divide the structure into 

several smaller zones and how to arrange the sensor placement in each zone are not 

touched in this thesis and worth further studying. Experimental verification of the 

proposed method in Chapter 3 is worth further study 

 

3) In this thesis, the structural damage is identified by using the acceleration responses 

only. Usually, different types of sensors are installed in an SHM system (e.g. Fiber 

Bragg grating strain sensor, displacement meters and accelerometers). Utilizing 

different types of sensors and the multi-sensor data fusion technique for structural 

damage detection are worth exploring. 

 

4) Nonlinear finite element model updating is a challenging job and has gained much 

attention in recent years. Nonlinear finite element model updating is time 

consuming since nonlinear dynamic analysis should be considered in each time step. 

When the ground acceleration input is given, the computational time for the 

reinforcement concrete structure and the steel structure is 3 and 4 hours, 

respectively. When the ground motion input is unknown and more unknown need to 

be identified, the computational time may five or six times longer than that case 

with known input. Due to the large computational workload, the output only method 
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has not been investigated in this thesis. Also, the experimental validation of the 

nonlinear finite element model updating technique needs further investigations.  

  

5) To investigate the proposed decentralized method for operational condition 

assessment, the ambient loading is assumed to be broadband white noise excitation 

force. However, in many cases, the loading of a structure is non-white noise. For 

example, the sea wave loading of offshore structures is represented by Joint North 

Sea Wave Project spectrum. Damage detection with multiple unknown non-white 

noise excitation forces merits further study. 

 

6) The measurement noise in vibration responses may lead to false positive 

identification results. It is essential to find out the influence of the uncertainties in 

the identified structural parameters. The probability-based model updating 

procedure (e. g. Bayesian methods) may be further introduced to investigate the 

measurement noise effect. 
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