

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

TOWARDS SELF-TUNING PARAMETER SERVERS

LIU CHUN YIN

MPhil

The Hong Kong Polytechnic University

2018

The Hong Kong Polytechnic University

Department of Computing

Towards Self-Tuning Parameter Servers

Liu Chun Yin

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Philosophy

November 2017

CERTIFICATE OF

ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

. .

Liu Chun Yin

November 2017

i

ii

Abstract

Machine Learning (ML) has driven advances in many applications in recent years.

Nowadays, it is common to see industrial-strength machine learning jobs that

involve billions of model parameters, petabytes of training data, and weeks of

training. Good efficiency, i.e., fast completion time of running a specific ML

job, therefore, is a key feature of a successful ML system. While the completion

time of a long-running ML job is determined by the time required to reach

model convergence, practically that is largely influenced by the values of various

system settings. In this thesis, we present techniques towards building self-tuning

parameter servers. Parameter Server (PS) is a de-facto system architecture for

large-scale machine learning; and by self-tuning we mean while a long-running

ML job is iteratively training the expert-suggested model, the system is also

iteratively learning which setting is more efficient for that job and applies it

online. We have implemented our three techniques, namely, (1) online ML job

optimization framework, (2) online ML job progress estimation, and (3) online

ML system reconfiguration, on top of TensorFlow. Experiments show that our

techniques can reduce the completion times of long-running TensorFlow jobs from

1.7× to 5.1×.

iii

iv

Acknowledgements

It is a pleasure to thank the many people who helped me a lot during my

study.

First and foremost I would like to thank my former supervisor, Dr. Eric

Lo. He has been supportive since I was a degree student until now. He opened

my eyes to do research and guided me a lot during my study period. He has

given me chances to participate in different kind of research projects. With his

patience, his encouragement and advice, I have learnt a lot about how to do a

meaningful research and how to express ideas in an efficient way.

I would like to thank my chief supervisor, Dr. Ken Yiu, who take care of

my last half of study period without hesitation. He has given me a lot of advice

on my research.

I would like to express my gratitude to my parents for their support over

my whole life. This thesis would not exist without them.

I also thank Dr. Ben Kao and Dr. Kevin Yip for their trust and guidance.

They shared their own research experience with me and gave me chances to

participate in different projects.

v

vi ACKNOWLEDGEMENTS

Last but not least, I need to thank my colleagues for their assistance. With-

out them, I can ’t complete my study in a stimulating and joyful environment. I

am especially indebted to Bo Tang, Andy Shen, PengFei Zhang, XuXuan Zhou,

Andy He, Petrie Wong, Qiang Zhang, Ziquang Feng, Wenjian Xu, Bai Ran. Bo

was helpful for giving me advice on the alogrithms of this thesis.

Table of contents

Declaration i

Abstract iii

Acknowledgements v

Table of contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background and Preliminary 9

2.1 Iterative-Convergent ML Algorithms 9

2.2 Parameter Server Architecture 11

vii

viii TABLE OF CONTENTS

2.3 Parallelism in Distributed Learning 13

3 Towards Self-Tuning Parameter Servers 15

3.1 Online Job Optimization Framework 15

3.1.1 Problem Formulation . 16

3.1.2 Bayesian Optimization . 17

3.1.3 Using BO in Online Tuning 20

3.2 Online Progress Estimation . 23

3.2.1 Stateless Progress Estimation 24

3.2.2 Stateful Progress Estimation 26

3.3 Online Reconfiguration . 29

3.4 Prototype Implementation . 34

3.5 Experimental Evaluation . 36

3.5.1 Experiment Setup . 36

3.5.2 Overall Performance Evaluation 39

3.5.3 Convergence Analysis . 39

3.5.4 Statistical Efficiency versus Hardware Efficiency 41

3.5.5 Reconfiguration Overhead 42

3.5.6 Stateful vs. Stateless Progress Estimation 42

TABLE OF CONTENTS ix

4 Related Work 45

5 Conclusion and Future Work 49

Bibliography 51

x TABLE OF CONTENTS

List of Figures

1.1 Iterative-convergent process . 2

1.2 A 2D response surface for a Convolutional Neural Network Ten-

sorFlow job . 3

1.3 Different system settings would influence statistical efficiency . . 4

2.1 Parameter server architecture: full model replication/caching . . 10

2.2 Worker group knob . 11

2.3 Thread affinity on 2 NUMA machines: 4 servers 12 workers . . . 14

3.1 Online job optimization framework 16

3.2 Execution metrics and training data 21

3.3 Statistical progress estimation: stateful vs. stateless 28

3.4 End-to-end completion time comparison 38

(a) CNN . 38

xi

xii LIST OF FIGURES

(b) LogR . 38

(c) SVM . 38

3.5 Model convergence rate vs. job training time 40

(a) CNN . 40

(b) LogR . 40

(c) SVM . 40

3.6 Model convergence rate vs. statistical efficiency 41

(a) CNN . 41

(b) LogR . 41

(c) SVM . 41

3.7 Estimation techniques among different models 43

List of Tables

3.1 Notation table . 17

3.2 Example of SelfTF module . 35

3.3 Training datasets . 36

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Machine Learning (ML) has driven advances in many applications in recent

years [2, 19, 67]. At the core of many ML jobs is an iterative-convergent process

(Figure 1.1) — given an expert-suggested model, the model parameters are itera-

tively refined by computing the refinements based on the training data. Recently,

the Parameter Server (PS) architecture [1, 18, 21, 46, 60, 79] has emerged as the

de-facto system architecture to support large-scale distributed machine learn-

ing. The PS architecture advocates the separation of working units as “servers”

and “workers”, where the servers collectively maintain the model state and the

workers duly “pull” the latest version of the model from the servers, scan their

own part of training data to compute the model refinements, and “push” the

model updates back to the servers for aggregation. The PS architecture has the

beauty to eschew the network communications between the workers so that it

can scale-out to both big model and big data.

With the PS architecture, nowadays industrial-strength machine learning

1

2

Figure 1.1. Iterative-convergent process

applications may involve petabytes of training data [1], billions of parameters [21],

clusters of machines [84], thousands of iterations [64], and weeks of training

[46]. Good efficiency, i.e., fast completion time of running a specific ML job,

is therefore one of the key features of a successful ML system. Generally, the

completion time of a long-running machine learning job is determined by the

time required to reach model convergence. Practically, however, the completion

time is largely influenced by the values of the various system knobs such as

the server-worker ratio (i.e., how many hardware threads are dedicated to the

servers and workers), the device placement (i.e., which operation shall be shipped

to the GPU for processing and which shall stay in the CPU), and the parallelism

degree (e.g., the model replication factor, the model partitioning scheme). Today,

unfortunately, the burden falls on the users who submit the ML jobs to specify

the knob values.

CHAPTER 1. INTRODUCTION 3

	4	8	12	16	20

tf.train.ClusterSpec:	Workers
	6 	8 	10 	12

intra_op_parallelism_threads

600

1200

1800

2400

C
om

pl
et

io
n	

tim
e	

(s
)

Figure 1.2. A 2D response surface for a Convolutional Neural Network TensorFlow
job

Unearthing the right set of knob values that achieve optimal completion

time has way surpassed human abilities. Part of what makes that so enigmatic

is that the response surfaces of ML jobs are highly complex. Figure 1.2 shows

a response surface of a Convolutional Neural Network job on CIFAR-10 dataset

[40] running on TensorFlow [1], a PS-style ML system. The two system knobs

involved are: tf.train.ClusterSpec::worker and intra op parallelism threads, which

respectively vary the server-worker ratio and the thread affinity of operations

(i.e., the mapping between TensorFlow operations and hardware threads). We

can observe that the response surface is complex and nonmonotonic, and the

optimal lies at where human can’t easily find. What adds to the challenge is

that, the completion time of a ML job, unlike traditional data processing, is a

complex interplay between statistical efficiency (how many iterations are needed

until convergence to a given tolerance) and hardware efficiency (how efficiently

4

0.4

0.8

1.2

1.6

2.0

2.4

0.5×104 1×104 1.5×104 2×104

Lo
ss

Iteration

server/worker=4/32

server/worker=32/4

Figure 1.3. Different system settings would influence statistical efficiency

those iterations are carried out) [83]. Consider the server-worker ratio as an

example. On the one hand, more workers would increase the hardware efficiency

by having a higher degree of data parallelism. On the other hand, that might

hurt the statistical efficiency when servers accept asynchronous updates from

workers, since more concurrent workers update the global model would make the

model more inconsistent, causing it more iterations to convergence. Figure 1.3

evidences such a case. It shows that varying just one system setting (different

server-worker ratio) would already yield a 2.5× difference in statistical efficiency.

Configuring distributed ML systems to reduce the long-running execution

time of ML jobs currently requires system expertise – something many ML users

may lack. Even for system experts, the dependencies between the knobs (e.g,

changing one knob may nullify the benefits of another) makes the whole task

nontrivial if that is not downright impossible. Furthermore, this manual tun-

ing task must be repeated whenever the expert-suggested model or hardware

resources changes.

CHAPTER 1. INTRODUCTION 5

In this thesis we present techniques towards building self-tuning parame-

ter servers. By self-tuning, we mean when a long-running ML job is iteratively

training the expert-suggested model, the system is also iteratively learning which

setting is more efficient for that job and dynamically applies it. Our goal is to

free ML users from the system details and progressively unearth and apply bet-

ter and better system settings for a job as it proceeds. In our field, online

self-tuning tools only exist for physical database design [12], where various physi-

cal structures like indexes are dynamically added or removed when the workload

change under the same system setting [72]. It has been shown that tuning sys-

tem configuration requires its own performance model, since the influences of

system knobs cannot be captured by the abstract cost-model of the query op-

timizer [5, 23]. Auto-tuning a database (DB) system configuration is still an

active research [5, 9, 11, 22, 23, 38, 41, 42, 57, 70, 71, 76, 82] and so far two of them

can (almost) completely keep human out of the loop: iTuned [23] and Otter-

Tune [5]. One remarkable difference between tuning DB systems and tuning ML

systems is that the former could hardly afford online tuning while the latter can.

Specifically, in the quest of the best configuration, iTuned [23] and OtterTune [5]

establish a tuning session to execute the target workload on a sandbox/standby

environment using different candidate system settings X and collect their corre-

sponding execution metrics Y (e.g., running time) as the training examples. The

tuning sessions cannot be done on a live environment because a bad candidate

setting would immediately hurt the throughput and latency. ML programs, in

contrast, generally run up to thousands of iterations. Therefore, it is perfectly

fine to try some different settings (including some bad ones, as the negative

examples) in their early iterations — as long as the completion time of the long-

6

running job can be shorten in toto.

To our knowledge, this is the first work to discuss about live tuning ML jobs

towards shorter completion times. The principled contributions of this thesis are

as follows:

1. Online Job Optimization Framework In online tuning, we always

hope to unearth the optimal setting as soon as possible (so as to apply

that in the next iteration immediately) while minimizing the number of

iterations to unearth it. Therefore, an online job optimization framework

should make a decision between trying a potentially better system setting

or applying a known good setting at the beginning of each iteration. The

framework must learn, meaning the quality of its suggestion should im-

prove along the iterations by collecting training examples. Furthermore,

the framework must learn quick and with confidence, so that it can start

giving suggestion with confidence once some training examples are col-

lected. The framework shall also be noise resilience. Specifically, once

the job has started, what we want is no longer as simple as “what is the

estimated completion time if I start this job using setting X?”. Instead,

what we want is “after executing all these n iterations using m different

system settings, now what is the latest estimated remaining completion time

if I switch to setting X ′ starting from the next iteration?”. Time estimates

have noise and the framework shall be resilient to that. Last, the frame-

work should be system agnostic, so it can be easily adopted to different

system implementations (e.g., TensorFlow [1], Angel [35,36] , Petuum [79]).

Summarizing the above, our first contribution is an online job optimization

CHAPTER 1. INTRODUCTION 7

framework based on Bayesian Optimization (BO) [10,55,69], which is able

to address all the above requirements in one go.

2. Online Progress Estimation One key input to the online job opti-

mization framework is the estimated remaining completion time of an in-

flight ML job. That is essentially an ML job progress estimation problem.

Progress estimation (for long-running analytical queries) has been a chal-

lenging problem in DB systems [17, 44, 45, 47, 56] and this thesis would

be the first to study this issue on ML systems. The novelty here is sta-

tistical progress estimation (i.e., how many more iterations converge

after executing that many). While there are studies about convergence rate

(e.g., [49, 64, 66]), they are theoretical bounds based on an offline setting.

Our contribution here is to turn those theoretical bounds into live

estimates for feeding the online job optimization framework.

3. Online Reconfiguration None of the above would be meaningful unless

there is a way to reconfigure the system to a new setting online. Online

reconfiguration is not system agnostic but in this thesis we discuss different

approaches to achieve that. The discussions together cover the mainstream

ML system implementations that are based on the PS architecture.

4. Experimentation on TensorFlow As an initial effort towards the goal

of online ML job tuning, we have implemented our techniques on top of

TensorFlow [1], an open-source PS-style ML library/system. Experiments

show that our techniques in practice can reduce the long-running comple-

tion times of TensorFlow jobs by 1.7×-5.1×.

8

This thesis results from a joint research project with Dr. Tang Bo, Dr. Eric

Lo, Mr. Andy Shen, Mr. PengFei Zhang, Mr. XuXuan Zhou. I am the main

student of this project. I am supervised by Dr. Tang Bo and Dr. Eric Lo. Mr.

Andy Shen, Mr. PengFei Zhang and Mr. XuXuan Zhou helped in preparing and

running the experiments.

Next, we put down the preliminary and background for this thesis (Chapter

2), followed by our main contributions (Chapter 3). We give a review of related

work afterwards (Chapter 4) and conclude this thesis with a vision that go beyond

self-tuning — building self-improving ML systems (Chapter 5).

Chapter 2

Background and Preliminary

2.1 Iterative-Convergent ML Algorithms

ML jobs come in many forms, such as logistic regression and deep neural

networks. Nonetheless, almost all seek a set of parameters (values) to a global

model A that best summarizes or explains the training data D as measured by

an explicit objective function such as likelihood or risk. Such jobs are usually

solved by iterative-convergent algorithms and can be abstracted as the following

additive operation:

Ai = Ai−1 + α∆(Ai−1, D)

where, Ai is the state of the model parameters at iteration i and the update

function ∆ computes the parameter updates based on the data D ⊆ D, which

are added to form the new model state of the next iteration based on a learning

9

10 2.1. ITERATIVE-CONVERGENT ML ALGORITHMS

Model Shard 1 Model Shard 2 Model Shard 3

Server 1 Server 2 Server 3

Model

Data shard/
cache

Worker 1

Training Data

Data shard/
cache

Worker 3

Data shard/
cache

Worker 2

Data shard/
cache

Worker 4

Data shard/
cache

Worker 5
push pull

Model
replica
/cache

Distributed
File System

Figure 2.1. Parameter server architecture: full model replication/caching

rate α. This operation iterates itself until A converges, i.e., stops changing or

the objective function returns a value smaller than a threshold ε. Recent works

(e.g., [53, 65, 80]) have shown that many industrial-strength tasks require more

than 106 iterations or months to reach convergence.

Gradient Descent (GD) is arguably the most popular family of iterative-

convergent optimization algorithms. GD is applicable to most of the supervised,

semi-supervised, and unsupervised ML problems. By its name, GD is a class

of first-order methods whose update function ∆ is based on computing gradi-

ents from the data. Batch GD (BGD), Stochastic GD (SGD), Mini Batch GD

(MGD), SVRG++ [7], PSGD [86] are some example GD family members. In

these algorithms, a pass over the entire dataset is called an epoch.

CHAPTER 2. BACKGROUND AND PRELIMINARY 11

Model

Model Replica 1

Worker group 1

Model
Partition 1

Model
Partition 2

Model
Partition 3

Model
Partition 4

Model Replica 2

Worker group 2

Model
Partition 1

Model
Partition 2

Model
Partition 3

Model
Partition 4

Model
Partition 1

Model
Partition 2

Model
Partition 3

Model
Partition 4

Model Replica 3

Worker group 3

push
pull

Servers

Training Data

worker 1 worker 10

Distributed
File System

Figure 2.2. Worker group knob

2.2 Parameter Server Architecture

Recently, it is not uncommon to see models with billions of parameters

[21, 46] and training using billions of data examples [1]. To support learning

at that scale, the Parameter Server (PS) architecture [1, 18, 21, 46, 60, 79] has

become the de facto standard to distribute the workload across clusters of ma-

chines (e.g., Figure 2.1). In it, the model parameters are stored and distributed

in “servers”. Workers “pull” (part of) the latest model from the server(s), per-

form local computation like calculating stochastic gradient by accessing their

part of training data, and then “push” the updates back to the server(s) whose

parameters need to be updated. Servers update the global model by aggregat-

ing the local updates from workers (e.g., averaging the stochastic gradients from

workers). As opposed to traditional MPI message-passing and MapReduce-like

frameworks where pairwise communications between workers are needed in order

12 2.2. PARAMETER SERVER ARCHITECTURE

to exchange each other’s parameter updates, the PS architecture has the beauty

of only requiring communications between workers and servers, thereby mitigat-

ing the network bottleneck. In PS architecture, the server-worker ratio is a key

knob.

Another knob in PS-style ML systems is the consistency protocol, i.e., how

to synchronize the model between servers and workers:

– Bulk Synchronous Parallel (BSP). Systems like GraphX [25] and MLlib [52]

enforce a global barrier after each iteration, and thus guarantees that all

updates from the previous iteration can be seen by all workers in the cur-

rent iteration. Under BSP, distributed machine learning follows the same

execution logic as sequential algorithm on a single machine, making the

proof of convergence straightforward. However, the hardware efficiency of

BSP systems are prone to the straggler problem. That is, when some strag-

glers are significantly slower than other machines due to data skewness, all

workers cannot proceed to the next iteration until all stragglers are done.

– Asynchronous Parallel (ASP). Systems like DistBelief [21], Hogwild! [64,84]

and TensorFlow [1] completely remove the synchronization barrier where

workers proceed without waiting for each other, making ASP systems to

have a higher hardware efficiency than BSP systems in general. However,

the statistical efficiency of ASP systems are prone to the straggler problem

– they might lose their convergence guarantee in the presence of stragglers

[85]. Under ASP (or SSP below), a worker finishes a push of update to the

server is regarded as the end of one iteration.

– Stale Synchronous Parallel (SSP). Some systems (e.g., [35, 74]) exploit

CHAPTER 2. BACKGROUND AND PRELIMINARY 13

the SSP [32] strategy in which a worker is allowed to proceed to the next

iteration as long as it does not exceed the slowest one by more than s iter-

ations. SSP systems sit between ASP systems (s = ∞) and BSP systems

(where s = 0). As such, they explicitly expose yet another knob, s, for

users to tune.

2.3 Parallelism in Distributed Learning

PS-style ML systems have different levels of parallelisms.

– Data parallelism parallelizes a workload by assigning the data partitions

(shards) to different workers. Standard data partitioning knob values in-

clude range partitioning and hash partitioning.

– Model parallelism is a unique in ML systems. Under the PS architecture,

the servers and workers could have separate model parallelism strategies.

On the server side, the model is usually partitioned using standard parti-

tioning schemes (e.g., hash partitioning). On the worker side, the model

can be replicated, partitioned, or both. Figure 2.1 shows a case where the

full model is replicated on each worker whereas the model is partitioned

into three shards on the server side to balance the model push/pull loads

from the workers [21]. Figure 2.2 shows another case, where the full model

is replicated on each “worker group”, and within each group the full model

is partitioned across all workers of that group [18, 80]. For that case, the

worker group size g is a knob. g = 1 means full replication – each group

has only 1 worker and each gets a full model replica to work on. g = n

14 2.3. PARALLELISM IN DISTRIBUTED LEARNING

Machine 1

CPU 1

CPU 3

CPU 2

CPU 4

Machine 2

Worker

Server

CPU 1 CPU 2

CPU 3 CPU 4

Machine 1

CPU 1

CPU 3

CPU 2

CPU 4

Machine 2

Worker

Server

CPU 1

CPU 3

CPU 2

CPU 4

(a) server threads on the same CPU (b) server threads on different CPUs

Figure 2.3. Thread affinity on 2 NUMA machines: 4 servers 12 workers

means full partitioning and no replication – all n available workers are in

the same group and each gets a partition of the model to work on. For the

case in Figure 2.2, g = 4.

– Hardware parallelism refers to the type of parallelism defined by the ma-

chine architecture and hardware multiplicity. For example, TensorFlow has

a “device placement” knob to specify which operation shall be executed on

which GPU/CPU. Furthermore, it is important to set the “thread affinity”

knob so as to affix the worker/server placement to the hardware threads.

Figure 2.3 shows two different thread affinity designs based on the same

cluster with the same worker-server ratio. It is easy to imagine that the

same ML job executed on the two would have different completion times

because of the non-uniform memory access (NUMA) nature of modern

servers.

Chapter 3

Towards Self-Tuning

Parameter Servers

3.1 Online Job Optimization Framework

Figure 3.1 shows our proposed framework to carry out online ML job op-

timization. In this thesis, we endeavor to devise off-the-shelf techniques that

could be integrated with as many existing ML systems as possible. Therefore,

the framework aims to reuse the ML system front-end so that ML users do not

need to learn a new API but can enjoy the completion time speedup brought by

auto-tuning.

On receiving an ML job J from the front-end, the job will be instrumented

as J ′ before sending to the ML system back-end so that it would emit various

per-iteration metrics (e.g., execution time, loss) to a repository during its ex-

ecution. Before starting an iteration, the Tuning Manager will (1) update a

15

16 3.1. ONLINE JOB OPTIMIZATION FRAMEWORK

ML
Program ML System

Front-end
J

Repository
ML System
Back-end

Instrumentation Tuning Manager

Metrics

J

Figure 3.1. Online job optimization framework

statistical model based on the newly collected metrics, (2) recommend a new

configuration of system setting X ′, and (3) reconfigure the system to setting X ′.

Practically, the Tuning Manager might not return a new recommendation after

every iteration but execute a certain number of iterations for each setting in

order to understand its statistics efficiency (e.g., the live convergence rate).

3.1.1 Problem Formulation

Given an ML job J , one key goal of the tuning manager is to find the optimal

or near-optimal system setting X∗ that minimizes the remaining completion

time. Let X = 〈c1 = v1, . . . , cd = vd〉 be a system setting, where each ci is a

configurable system parameter with value vi. We use T (〈X, lj〉) to denote the

remaining completion time of the job if we switch to setting X where the model

has reached a loss down to lj . 〈X, lj〉 is simply a (d+ 1)-dimensional vector that

includes both the system setting values and the loss of the model.

Then, the problem is, given a model whose loss is lj , find the X that mini-

mizes T (〈X, lj〉). Knowing T (〈X, lj〉) ahead would be infeasible. Therefore, we

employ Bayesian Optimization (BO) [10, 55, 69] to search for an approximation

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 17

solution with significantly smaller cost. In what follows, we drop X and lj if the

context is clear and represent T (〈X, lj〉) as T .

We summarized all used notations in Table 3.1.

Notation Meaning

X system setting

X∗ optimal or near-optimal system setting

li the loss of the first iteration of using setting Xi

〈X, lj〉 (d + 1)-dimensional vector that includes both the system
setting values and the loss of the model

T (〈X, lj〉) the remaining completion time of the job if we switch to
setting X where the model has reached a loss down to lj

tji the execution time of j-th iteration

lji the loss of iteration j

Yi the estimated remaining completion time at setting Xi

〈j,Xi, t
j
i , l

j
i 〉 collected execution metrics

〈Xi, li, Yi〉 training data of Bayesian Optimization (BO)

wj model parameters after j-th iteration

w∗ the optimal model parameters

Table 3.1. Notation table

3.1.2 Bayesian Optimization

Bayesian Optimization (BO) is a strategy for optimizing a black-box ob-

jective function that is unknown beforehand but observable through conducting

experiments, like our T . By modeling T as a Gaussian Process [63], BO can

return an estimate of T given any X and l. The estimate and its confidence

interval would progressively improve with the number of observations.

BO has the ability to suggest the next setting using a pre-defined acquisition

function that also gets updated with more observations. There are many choices

of acquisition function such as (i) Probability of Improvement (PI) [69], which

18 3.1. ONLINE JOB OPTIMIZATION FRAMEWORK

picks the next setting that can maximize the probability of improving the current

best; (ii) Expected Improvement (EI) [63], which picks the next setting that can

maximize the expected improvement over the current best; (iii) Upper Confidence

Bound (UCB) [20], which picks the one that has the smallest lower bound in

its certainty region. Different acquisition functions have different strategies to

balance between exploring T (so that it tends to suggest a setting in an unknown

region of the response surface) and exploiting the knowledge so far (so that it

tends to suggest a setting that lies in a known high performance region). In

this thesis, we choose EI because it has shown to be more robust than PI, and

unlike UCB, it is parameter-free. Using BO with EI has the ability to learn the

objective function quickly and always return the expected optimal setting.

BO itself is noise resilient. Specifically, what we can collect from experiments

is actually T ′:

T ′ = T + e (3.1)

where e is a Gaussian noise with zero mean, i.e., e ∼ N(0, σ2). Since T ′, T , and e

are Gaussian, we can infer T and its confidence interval [6]. As we will discuss in

Section 3.2, the observation noise comes from the fact T ′ is not a direct measure-

ment but a product between (i) per-iteration execution time (hardware efficiency)

and (ii) estimated number of iterations left (statistical progress). Although (i)

could be directly observed, (ii) has to be based on turning a theoretical bound

into an estimate based on the current progress (Section 3.2).

There are also some other reasons that we choose BO. First, BO has an

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 19

advantage of being non-parametric, meaning it does not impose any limit on

T , making our techniques useful for a variety of ML systems and platforms

(system agnostic). Furthermore, it can deal with non-linear response surface but

require far fewer samples (quick learner with confidence) than others with similar

power like deep network. Lastly, BO has a good track record on tuning database

systems [5,23].

In the following, we briefly describe how to model T as a Gaussian Process

(GP). For details about GP, we refer readers to [63]. In a nutshell, GP models

T (〈X, lj〉) by a mean function m(·) and a covariance kernel function k(·, ·):

m(〈Xi, li〉) = E[T (〈Xi, li〉)]

m(〈Xj , lj〉) = E[T (〈Xj , lj〉)]

k(〈Xi, li〉, 〈Xj , lj〉) = E[(T (〈Xi, li〉)−m(〈Xi, li〉))

(T (〈Xj , lj〉)−m(〈Xj , lj〉))]

where the kernel function makes sure T (〈Xi, li〉) and T (〈Xj , lj〉) have large co-

variance if 〈Xi, li〉 and 〈Xj , lj〉 are similar and have small covariance otherwise.

In this work, we adopt Matérn covariance [54] as the kernel function because it

does not require strong smoothness.

There is a closed-form for the EI acquisition function from [37]. Let t be

the minimum value of T observed from the current best setting so far. For

each candidate setting X and a model with loss l, we can compute its expected

improvement of using X (over the current best known setting) as:

20 3.1. ONLINE JOB OPTIMIZATION FRAMEWORK

EI(〈X, l〉) =

 (t−m(〈X, l〉))Φ(Z) + σ(〈X, l〉)φ(Z) if σ(Xi) > 0

0 if σ(Xi) = 0

σ(〈X, l〉) =
√
k(〈X, l〉, 〈X, l〉), Z = t−m(〈X,l〉)

σ(〈X,l〉) , and Φ and φ are the CDF and

PDF of standard normal, respectively.

3.1.3 Using BO in Online Tuning

We propose to divide the execution of an ML job into two phases: initial-

ization and online tuning.

Initialization Phase The initialization phase refers to the early iterations of

the job. Its goal is to quickly bring in a small set of representative settings

and their execution metrics to set up the BO. Initially, the job starts the first a

iterations using the setting X0, which is the default or the one given by the user.

Iterations after that will select the one with the highest expected improvement

EI, from an initial orthogonal sample S [81] of candidate settings from the

setting space. Orthogonal sampling is chosen over random sampling because the

latter is often ineffective when only a few samples are collected from a fairly high

dimensional space. So, assume the initial sample size is m and each setting runs

a iterations, the first a+m · a iterations belong to the initialization phase.

Figure 3.2a illustrates the execution metrics that would be inserted into the

repository after trying m different settings, with a = 5 iterations. Each record in

the collected execution metrics is a quadruple 〈j,Xi, t
j
i , l

j
i 〉, with Xi indicates that

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 21

〈j,Xi, t
j
i , l

j
i 〉

〈0, X0, t
0
0, l

0
0〉

. . .
〈4, X0, t

4
0, l

4
0〉

〈5, X1, t
5
1, l

5
1〉

. . .
〈9, X1, t

9
1, l

9
1〉

. . .
〈n,Xm, t

n
m, l

n
m〉

〈Xi, li, Yi〉
〈X0, l0, Y0〉
〈X1, l1, Y1〉
〈X2, l2, Y2〉

. . .
〈Xm, lm, Ym〉

(a) collected execution metrics (b) training data

Figure 3.2. Execution metrics and training data

iteration j was executed using setting Xi, t
j
i indicates the execution time of that

iteration, and lji indicates the loss of the model after that iteration. Hereafter, we

also refer lji as “the loss of iteration j”, which is:

lji = f(wj)− f(w∗) (3.2)

where f is the learning function specified in the expert-suggested model (e.g., the

labeling function, in classification), w∗ is the optimal model parameter (while w∗

is unknown, f(w∗) is known from the ground truth, e.g., the labels of the training

data), and wj is the updated model parameter after this iteration j.

The loss of one iteration alone is insufficient to judge whether a setting has

good statistical efficiency. Furthermore, even a lousy setting could improve the

loss a lot in early iterations whereas an optimal setting could hardly improve the

loss if it is applied in late iterations. Consequently, the execution metrics would

be preprocessed into triples 〈Xi, li, Yi〉, where li is the loss of the first iteration of

using setting Xi, i.e., li = liai (e.g., l00, l51 in Figure 3.2a), and Yi is the estimated

remaining completion time assuming that the remaining iterations will use Xi

22 3.1. ONLINE JOB OPTIMIZATION FRAMEWORK

and resume from where the model has reached a loss down to li. We set liai as

li, but not or any other values like l
(i+1)a−1
i (i.e., the loss of the last iteration of

using setting Xi; e.g., l40, l91 in Figure 3.2a), because BO is going to predict what

setting it shall use if it picks up the job from a model whose loss is liai . Figure

3.2b shows the training data after preprocessing.

The initialization phase takes a total of n = a+m · a iterations and it ends

with feeding all training data to the BO (i.e., to learn σ, parameter values of the

kernel function, etc.). After that is the online tuning phase.

Online Tuning Phase In this phase, a new set of orthogonal sample S will be

generated at the beginning of every a iterations. The set of candidate settings

at the beginning of those iterations would then be S ∪ X, where X is the set

of settings that has been selected by BO and executed so far. Then, the next

recommended setting X ′ is the one with the highest EI :

X ′ = arg maxX∈S∪X EI (〈X, lj〉)

Note that the sample size S in the online tuning phase can be way larger

than the size of the initial sample S because the EIs in this phase are obtained

through calculation but not actual execution. Furthermore, depending on the

reconfiguration cost Rcost (Section 3.3), a reconfiguration only happens when

EI (〈X ′, lj〉) − Rcost > 0. In other words, if a reconfiguration costs more than

it will potentially save, that reconfiguration would not take place. Overall, the

online tuning phase goes on until the job finishes.

Values of a and m We end this section by discussing how to set the values of a

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 23

andm. Our major purpose is to avoid our techniques being parametric if possible.

The main usage of a is to deduce the statistical progress (convergence rate). So,

we set a, the number of iterations executed for each setting, be the number of

workers so as to assume that each worker has already pushed the update to

the server at least once, by default. We discuss how that default value can be

overridden based on the application’s semantic in Section 3.3. Nonetheless, we

remark that no systems can reach 100% parameter-free. For example, OtterTune,

iTuned, and our approach also at least need to specify m, the initial sample size.

While the initial sample size used in Ottertune is unclear, iTuned evidences that

a very small sample size is enough. In this thesis, we adopt m = 20. In Chapter

5, we put down interesting directions about how to possibly eliminate this very

last knob by transfer learning.

3.2 Online Progress Estimation

One key input to the online job optimization framework is the estimated

remaining completion time Yi, assuming that the j-th iteration has just finished,

the current model has a loss of lj , and the remaining iterations will continue to

use setting Xi.

Estimating Yi has to base on both the collected quadruples 〈j,Xi, t
j
i , l

j
i 〉 and

statistical progress estimation techniques. More specifically, Yi can be estimated

as:

Yi = t̄i × rj

24 3.2. ONLINE PROGRESS ESTIMATION

which is a product between (i) per-iteration execution time t̄i (hardware effi-

ciency) and (ii) estimated number of iterations left rj (statistical progress). t̄i

could be directly computed as the average of the recorded iteration times of using

that setting Xi, e.g., t̄1 can be computed as (t51 + t61 + · · ·+ t91)/5 in Figure 3.2a.

In this section, we present two approaches to obtain rj , the remaining number

of iterations required to reach model convergence.

3.2.1 Stateless Progress Estimation

The machine learning community has well studied the convergence proper-

ties of various machine learning algorithms [51, 58, 64, 66]. For instance, if the

learning function f is strongly convex and L-smooth1, then the convergence rate

of serial SGD is O(1ε) [58], where ε is the user-specific convergence threshold.

More specifically, referring to Eq. 3.2, if lji ≤ ε, then the model is regarded as

converged. In other words, let k be the total number of iterations required to

reach a loss ε, then k ≥ H1
ε , where H1 is the hidden constant in O(1ε).

So far, all convergence analysis are based on an offline setting: (1) the

learning always starts from an initial model whose parameter w0 which are

all 0’s in theoretical analysis [66]; and (2) the system setting never changes in

the course of the job. A recent work [39] has leveraged the above to predict

the actual value of k by establishing an offline tuning session like iTuned and

OtterTune. First, the losses of some iterations of an ML job are collected, e.g.,

〈0, l0〉, 〈1, l1〉, 〈2, l2〉, · · · . Then those 〈j, lj〉 pairs are fitted to a function j = H1

lj

1 A convex function f is L-smooth when ||∇f(wa)−∇f(wb)|| ≤ L||wa−wb||, ∀ wa,wb ∈ Rn,
where || · || denotes the Euclidean norm and ∇f(w) denotes the gradient of function f : Rd → R
at w.

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 25

to deduce H1. Finally, k, the number of iterations that a new ML job required

to converge to a loss ε is derived as k = H1
ε .

We can extend the approach above to online predict rj . For example, if we

also focus on SGD, then we (i) use the convergence rate of parallel SGD instead

of that of serial SGD and (ii) use only the losses collected during the iterations

related to the current setting of interest, Xi, to do the fitting. Specifically, the

convergence rate of parallel SGD can be represented by the function

j =
H2

lji
log

d

lji
(3.3)

where d is any constant greater than Ld0, with d0 = ||w0 − w∗||2 and L is the

Lipschitz constant [64]. Since w∗ is unknown until the training is done, Ld0

becomes a hidden constant d that has to be greater than lji , or else the log inside

the fitting function becomes negative. Recall from Eq. 3.2 that lji can be arbitrary

large. So the off-the-shelf safest way is to set d as the maximum value in domain.

Although correct, we regard this approach only as a baseline because the

resulting estimates would not be that reliable — (i) the large d would dominate

the fitting function even after the log and (ii) d is static in a way that would not

get tighten even with the update of the model state. More specifically, d is static

because it is stateless — it is always L times the constant distance between the

initial model w0 and the optimal model w∗ (c.f. d0 = ||w0−w∗||2). That explains

why we name this approach a stateless approach. In Section 3.2.2 up next, we

present a stateful approach that takes the latest model state into account so that

the value d keeps tighten as the model approaches convergence, resulting in far

more accurate estimations.

26 3.2. ONLINE PROGRESS ESTIMATION

As a summary, rj is estimated by: (i) fitting the function j = H2

lji
log d

lji

using lji from iterations of using Xi and determine the value of H2. Referring to

Figure 3.2a as an example, after the j=9-th iteration, we can fit 〈5, l51〉 to 〈9, l91〉

to determine the constant H2 specifically for setting X1. (ii) Substitute ljiwith

the value ε to the fitting function and regard the result as k, i.e., k = H2
ε log d

ε .

(iii) Since k is an estimated value about the total number of iterations required

but in fact j iterations have been elapsed, we set rj = k − j.

3.2.2 Stateful Progress Estimation

Our goal now is to derive a better value of d for Eq. 3.3 to satisfy two

requirements:

– (R1) d

lji
> 1; otherwise log d

lji
is negative.

– (R2) d is tighter than Ld0; hopefully, gets tighten with the model updates.

In the following, we show that we can satisfy both (R1) and (R2) by setting

d = li, where li is the observed loss of the first iteration of using setting Xi (c.f.

Section 3.1.3):

1. lji = f(wj)− f(w∗) by Eq. 3.2

2. f(wj)− f(w∗) ≤ L
2 ||w

j −w∗||2 by [64], which upper bound the loss.

3. E[||wj − w∗||2] ≤ E[||w0 − w∗||2] by [64], which expects the model

parameter wj of any executed iteration is closer to the optimal w∗ than the

initial model w0.

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 27

4. Take expectation on both sides of (2), and then combine that with (3), we

have:

E[f(wj)− f(w∗)] ≤ L

2
E[||wj − w∗||2] ≤ L

2
E[||w0 − w∗||2] =

L

2
d0 ≤ Ld0

5. Take expectation on both sides of (1), and then combine that with (4), we

have:

E[lji] = E[f(wj)− f(w∗)] ≤ Ld0, ∀j = ia+ z, ∀z ∈ [1, a)

6. Now, consider another view of (2):

E[f(wj)− f(w∗)] ≥ E[f(wj+z)− f(w∗)], ∀z > 0

then we can regard:

E[li] ≥ E[lji], ∀j = ia+ z, ∀z ∈ [1, a)

which follows [58] to assume the loss of the first iteration of using setting

Xi is expected to be larger than the loss of the subsequent iterations and

more importantly:

E[li]

E[lji]
≥ 1

So, during online tuning, we can set d = li, it satisfies (R1) by (6) and

28 3.2. ONLINE PROGRESS ESTIMATION

satisfies (R2) by (5). As a result, the fitting function now becomes:

j =
H2

lji
log

li

lji
(3.4)

Referring to Figure 3.2a as an example again and assume l51 to l91 are 0.9,

0.8, 0.7, 0.6, 0.5 respectively. Then, after the j=9-th iteration, we fit 〈5, 0.9〉 to

〈9, 0.5〉 to determine the constant H2 using li = 0.9.

We call this approach a stateful approach because the estimation of k now

takes into account the model state li instead of the constant initial state. Figure

3.3a visualizes the importance of turning the fitting function from stateless (using

d in the log) to stateful (using li in the log), where the online prediction of k

could yield a significant difference.

lo
ss

iterations0 j

dk
i

k

Figure 3.3. Statistical progress estimation: stateful vs. stateless

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 29

3.3 Online Reconfiguration

Online reconfiguration changes the system setting in the course of an MJ

job. Under the PS architecture, the following physical changes could be triggered

by a reconfiguration:

– (Type I) Data Relocation: Reconfigurations like turning a worker node to

a server node and moving data from CPU to GPU within a worker would

involve data relocation. Here, we further bifurcate data relocation into:

– (Type I-a) Training Data Relocation

– (Type I-b) Model Data Relocation

– (Type II) System Setting Reconfiguration: For example, in TensorFlow,

there is a knob to turn on or off the function inlining optimization. This

kind of knobs would not trigger any data relocation.

In terms of online reconfiguration facilities, most ML systems already have

one that can be re-used by us — the checkpointing and recovery feature (e.g., the

save & restore in TensorFlow). In most circumstances, that feature is collectively

implemented by four techniques:

1. Checkpointing (CKP): This saves the model state (e.g, the model param-

eter wj , the current iteration number j) to a persistent storage. Usually,

this would not save any system settings (e.g., whether function inlining is

on or off) because those values are stored separately in a system config-

uration/property file/in-memory data structure. Moreover, checkpointing

30 3.3. ONLINE RECONFIGURATION

does not involve the training data because there is a master copy of the

training data in the shared storage (e.g., HDFS).

2. System Setting Recovery (SSR): This is built-in as part of the recovery

process, in which the system is reinitialized based on the setting specified

in the configuration/property file/data structure.

3. Model Data Recovery (MDR): This is the other part of the build-in

recovery process, in which the model state is restored to the servers based

on the system setting.

4. Training Data Recovery (TDR): Because the training data is read only

and stored in the shared storage. Therefore, on recovery, the workers would

simply fetch the missing data from the shared storage directly.

Existing ML systems implement their checkpointing and recovery process

as a CKP and a full SSR+MDR+TDR, respectively. For online reconfiguration

purpose, we can however implement that more efficiently by mix-and-match those

techniques. One such reconfiguration scheme is as follows:

Reconfiguration Scheme 1 :

– For Type II reconfiguration only, change the system configuration file and

invoke SSR.

– For Type I-a reconfiguration only, just invoke TDR.

– For Type I-b reconfiguration only, invoke CKP+MDR.

– For any combination of the above, invoke the union of their actions.

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 31

The advantages of this scheme is its readiness — almost all open-source

ML systems that we have examined, including TensorFlow [1] , Petuum [79], An-

gel [36], PS-lite [46] can support this online reconfiguration scheme with minimal

effort. One issue of this scheme, however, is its save and restore overhead for

some reconfiguration types. Nonetheless, that is seldom a big issue in nowadays

setting because many industrial-strength ML jobs issue checkpoints regularly

anyway. For example, the default checkpoint frequency of TensorFlow is 10 min-

utes 2. More frequent checkpoints could be found from use cases like real-time

model serving (e.g., [28]) and continuous training (e.g., [8]). In those cases, one

can simply set the reconfiguration frequency as the application’s checkpointing

frequency so that the online reconfiguration overlaps with the inevitable check-

pointing cost. That is, they can override the default value of a, the number

of iterations between two settings, based on their requirements on the model

freshness.

In the following, we present another reconfiguration technique, namely, On-

Demand-Model-Replicatoin, specifically design for Type I-b reconfiguration.

On-Demand-Model-Relocation (ODMR) In our experience of applying

our techniques on TensorFlow, a lion share of reconfiguration cost attributes to

Type I-b, i.e., the cost of relocating some model parameters from one node to

another node (e.g., when a recommendation suggests to increase the number

of servers). Consequently, we design a technique, namely, On-Demand-Model-

Relocation, that can achieve Type I-b model data relocation at almost no cost.

The idea of ODMR is to carry out parameter relocation reactively. Con-

2https://www.tensorflow.org/api_docs/python/tf/train/Supervisor

https://www.tensorflow.org/api_docs/python/tf/train/Supervisor

32 3.3. ONLINE RECONFIGURATION

cretely, on receiving a Type I-b request, the system only invokes SSR to reflect

the decision of moving a parameter from a source to a destination. The actual

parameter movement takes place only when a parameter is pulled from the source

server and pushes back to the destination server. Suppose there are two servers S1

and S2 and they originally manage parameters {w1, . . . , w6} and {w7, . . . , w12},

respectively. Now, assume a reconfiguration suggests to add one more server

S3 so that the three servers, S1, S2, and S3 manage parameters {w1, . . . , w4},

{w7, . . . , w10}, and {w5, w6, w11, w12}, respectively. So, when a worker requests a

parameter that is supposed to be relocated, e.g., w12, we simply let the worker to

pull from the old destination S2. After the workers have computed the updates,

they push both their original values and the updates to the new destination S3.

The reasons of pushing the original value are that (1) the destination S3 does not

have the original value o, so sending the updates u alone is not enough and (2)

the original value “flags” the servers that this push is special and to avoid possi-

bly repeated counting — the first time the server receives the message 〈o, u1〉 it

should create a new parameter with value o+u1, but the second time it receives

a message 〈o, u2〉, it should act like receiving a normal push with u2.

The ODMR approach has the merit of carrying out Type I-b relocation at

zero cost. Unfortunately it is invasive — it requires modifications to the under-

lying ML systems to support this. Systems that support ODMR however should

implement it because of its efficiency. The following reconfiguration scheme sum-

marizes the use of ODMR for different cases:

Reconfiguration Scheme 2 :

– For Type II reconfiguration only, change the system configuration file and

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 33

invoke SSR.

– For Type I-a reconfiguration only, just invoke TDR.

– For Type I-b reconfiguration only, then invoke ODMR.

– For any combination of the above, invoke the union of their actions.

We did a small survey on the source-code of TensorFlow, Petuum, Angel, and

PS-lite to check their “friendliness” with respect to incorporating ODMR/Scheme

2, we found out that:

System Friendliness with Scheme 2

Angel Yes, with minimal effort

Petuum Yes, with some effort

PS-lite Yes, with some effort

TensorFlow No, almost needs to turn on its head

Angel is most ready to use Scheme 2 off-the-shelf because it not only has

an explicit push/pull API, it also exposes user-defined functions called psFunc

for developers to customize the push and pull functions. With that, one can

implement Scheme 2 on Angel non-invasively. Petuum and PS-lite can also use

Scheme 2 because they also have explicit push/pull API. However they do not

expose facilities like psFunc as in Angel. Implementing Scheme 2 on TensorFlow

would turn on its head because TensorFlow was deliberately architected to make

the push and pull API implicit and many system settings are immutable except

through the system save-and-restore facility [1]. Nonetheless, TensorFlow has the

largest community among the four ML systems that we have studied. Therefore,

34 3.4. PROTOTYPE IMPLEMENTATION

as the initial effort towards the vision of self-tuning ML systems, we have decided

to build our first prototype on TensorFlow. Implementing our techniques on

others is our future work.

3.4 Prototype Implementation

We implemented our techniques on top of TensorFlow v1.3 (TF). The imple-

mentation includes a user-level library written in Python 2.7 in order to abstract

out the system setting of a TensorFlow program. We implemented the Tuning

Manager and the repository using Python.

In details, TensorFlow has a front-end written in Python and a back-end

written in C++.

Currently TensorFlow exposes all system settings through the class construc-

tors and class attributes of the core classes. Table 3.2 (left) shows how ML users

specify those settings within the program. We have implemented a Python mod-

ule SelfTF so that users no longer need to specify the system settings anymore.

Table 3.2 (right) shows the corresponding TensorFlow with SelfTF installed.

We modified TensorFlow’s back-end (in C++) so that it can support recon-

figuration scheme 1. We refer this prototype implementation as SelfTF in this

section. Currently, SelfTF can only support SGD.

We end this section by recalling the need to estimate the reconfiguration

cost Rcost for the online tuning phase (Section 3.1). With the discussion above,

it becomes clear that Rcost depends on the scheme and the type of reconfigu-

ration technique. Nonetheless, empirically we observe that the cost variance of

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 35

TensorFlow SelfTF

Manually define the configuration of the
TensorFlow training server

cluster = tf.train.ClusterSpec({"ps":
parameter_servers_list, "worker":
workers_list})

server_config = tf.ConfigProto(
inter_op_parallelism_threads=8,
intra_op_parallelism_threads=8,
....

)

server = tf.train.Server(
cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index,
config=server_config)

Configuration is managed by SelfTF

server =
SelfTF.create_training_server())

Graph operation device placement by
TensorFlow

with tf.device(tf.train.
replica_device_setter(

worker_device="/job:worker/
task:%d" % FLAGS.
task_index,

cluster=cluster)):

Graph operation device placement by
SelfTF

with tf.device(
SelfTF.device_placement()):

TensorFlow graph definition
Define a variable
tf.get_variable(
partitioner=

tf.fixed_size_partitioner(10)
)

Other operations
tf.add(...)

End of graph definition

TensorFlow graph definition
Define a variable
tf.get_variable(
partitioner=

SelfTF.get_variable_partitioner()
)

Other operations
tf.add(...)

End of graph definition

Table 3.2. Example of SelfTF module

36 3.5. EXPERIMENTAL EVALUATION

each technique (e.g., MDR) is fairly stable and thus we can simply deduce the

individual costs from the execution metrics collected during the initialization

phase.

3.5 Experimental Evaluation

3.5.1 Experiment Setup

Machine Learning Models and Datasets We evaluate SelfTF with three

widely used machine learning models: (i) l2 regularized Logistic Regression

(LogR), (ii) Support Vector Machine (SVM), and (iii) Convolutional Neural Net-

work (CNN). For CNN, we used a convolutional neural network with five layers.

The first convolutional layer filters the 24×24 input image with 64 kernels of size

5 × 5. The second convolutional layer takes as input the (response-normalized

and pooled) output of the first convolutional layer and filters it with 64 kernels

of size 5× 5. The third and the fourth layer are fully-connected layers with 394

and 192 neurons, respectively. The last layer is a 10-way softmax output layer.

This CNN model has also been used in [18,43].

We used CIFAR-10 as [40] the training data for CNN and a malicious URL

dataset [48] as the training data for both LogR and SVM models. Table 3.3

shows the characteristics of the datasets we used.

Dataset ML model(s) # of records # of features Size

CIFAR-10 CNN 60,000 1,024 160M
URL LogR, SVM 2,396,130 3,231,961 4G

Table 3.3. Training datasets

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 37

Metrics Following [35], we used the variance of the objective values of the last

five iterations to determine whether SGD steadily converges. The convergence

thresholds ε for LogR, SVM, and CNN are 0.07, 0.07, and 0.5, respectively.

We report the completion time as the wall-clock time of a machine learning

job. The completion time includes the time used for data loading and result

outputting. Furthermore, we decompose the completion time as the statistical

efficiency and hardware efficiency.

Computing Cluster We performed all the experiments on a cluster of 36

identical commodity servers, connected by Ethernet. The network bandwidth is

1Gbps. The computing nodes run a 64-bit Centos 7.3, with the training datasets

on HDFS 2.6.0. Each node is Intel Xeon E5-2620 system with 8 cores CPU

running at 2.1 GHz, 64GB of memory, and 800GB SSD.

Comparison In the experiments, we implemented a brute-force solution that

exhausts the setting space for 60 days and report:

1. Worst: the worst completion time among all examined settings

2. Average: the average completion time among all examined settings.

3. Optimal: the best completion time among all examined settings.

We especially remark the brute-force solution is only for comparison but

impractical. For example, Optimal is impractical because nobody would run the

same job multiple times to identify the best system settings. We also remark that

38 3.5. EXPERIMENTAL EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

Worst Average SelfTF Optimal

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

(a) CNN

 0

 4000

 8000

 12000

Worst Average SelfTF Optimal

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

(b) LogR

 0

 2000

 4000

 6000

Worst Average SelfTF Optimal

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

(c) SVM

Figure 3.4. End-to-end completion time comparison

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 39

TensorFlow, although popular, is more like a software library than a system —

currently users need to specify most system parameters (e.g., the worker-server

ratio) and there are no default values for those. Therefore, while Worst and

Optimal are unlikely to happen, Average could more or less reflect the real cases.

3.5.2 Overall Performance Evaluation

Figure 3.4 compare the completion time of SelfTF on CNN, LogR, and SVM.

The major observations are:

1. SelfTF has a performance on a par with Optimal, meaning SelfTF has the

ability to unearth a near-optimal setting during its on-job-training.

2. SelfTF has about 1.7× to 2.2× speedup when compared with Average,

meaning SelfTF saves ML users much time on average.

3. SelfTF is about 4.1× to 5.1× faster than Worst, which shows that an ML

user should never try her luck when determining the setting but adopt

SelfTF whenever possible.

3.5.3 Convergence Analysis

We next study how SelfTF internally behaves within an ML job. Figure 3.5

show that the convergence rate of SelfTF with respect to the job training time.

In the figure, we include the convergence rate of one random setting in Average

for comparison and we label that as TF. We also indicate the point where SelfTF

switches from its initialization phase to the online tuning phase (with a vertical

dotted line).

40 3.5. EXPERIMENTAL EVALUATION

0.5

1.0

1.5

2.0

 0 500 1000 1500

ε=0.5

L
o

s
s

Execution time (sec)

SelfTF
TF

(a) CNN

0.0

0.2

0.4

0.6

0.8

 0 1000 2000 3000 4000

ε=0.07

L
o

s
s

Execution time (sec)

SelfTF
TF

(b) LogR

0.0

0.3

0.6

0.9

 0 1000 2000 3000

ε=0.07

L
o

s
s

Execution time (sec)

SelfTF
TF

(c) SVM

Figure 3.5. Model convergence rate vs. job training time

From the figure, we observe that SelfTF might have a slower convergence

rate during the initialization phase (for CNN and LogR) because it was trying

different settings and some of those might include bad ones. Nonetheless, we

know that is worth because that lets SelfTF unearth a near-optimal setting and

save significant running time afterwards. The case in CNN is more apparent —

the convergence rate improves significantly once online tuning phase has started.

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 41

0.5

1.0

1.5

2.0

 0 5000 10000 15000

ε=0.5

L
o

s
s

of iterations

SelfTF
TF

(a) CNN

0.0

0.2

0.4

0.6

0.8

 0 2000 4000 6000 8000

ε=0.07

L
o

s
s

of iterations

SelfTF
TF

(b) LogR

0.0

0.3

0.6

0.9

 0 2000 4000 6000

ε=0.07

L
o

s
s

of iterations

SelfTF
TF

(c) SVM

Figure 3.6. Model convergence rate vs. statistical efficiency

3.5.4 Statistical Efficiency versus Hardware Efficiency

We have been emphasizing that the completion time of an MJ job is a

complex interplay between statistical efficiency and hardware efficiency and a

setting good at one might be a bad setting overall. Figure 3.6 evidences that. In

particular in CNN and LogR, SelfTF has chosen settings that need slightly more

iterations to convergence but the table below shows that those settings actually

have better hardware efficiency. Of course, we iterate that is actually a correct

42 3.5. EXPERIMENTAL EVALUATION

decision because SelfTF outperforms TF in end-to-end completion time.

SelfTF TF

of time per # of time per

iterations iteration iterations iteration

CNN 16,590 0.05 14,504 0.11

LogR 7,924 0.32 5,360 0.83

SVM 5,063 0.30 5,802 0.59

3.5.5 Reconfiguration Overhead

The table below shows the percentage of time a SelfTF job spent on reconfig-

uration. It shows that our reconfiguration scheme for TensorFlow has not incurred

any significant overhead to the jobs, not to mention that those reconfiguration

overheads indeed cover some TensorFlow’s checkpointing cost.

Job % of time on reconfiguration

CNN 12.7%

LogR 4.3%

SVM 9.1%

3.5.6 Stateful vs. Stateless Progress Estimation

Lastly, we compare the power between the stateless approach and the state-

ful approach in estimating the statistical progress by showing the completion time

differences between them. We use completion time instead of accuracy/error in

this experiment because the latter would need running SelfTF on each setting

completely till convergence for each reconfiguration point — that simply

CHAPTER 3. TOWARDS SELF-TUNING PARAMETER SERVERS 43

does not worth the time to collect those numbers if reporting the completion

time between the two approaches can tell us the efficiency differences. Figure 3.7

shows the experimental results. It clearly shows that a stateful approach is al-

ways better than a stateless approach by the completion time difference.

 0

 1000

 2000

 3000

 4000

CNN LogR SVM

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
)

stateful stateless

Figure 3.7. Estimation techniques among different models

44 3.5. EXPERIMENTAL EVALUATION

Chapter 4

Related Work

Self-tuning database systems has been an active research topic for almost

two decades [15, 16, 34, 77]. Nonetheless, most of them focused on choosing the

best logical or physical design (e.g., index) of a database (e.g., [3,4,26]). Tuning

system configuration is a different challenge because the influences of system

knobs cannot be captured by the internal cost-model of the query optimizer [5,

23]. Existing works mostly adopt a feedback-driven approach to adjust the knobs

[5, 9, 11, 22, 23, 38, 41, 42, 57, 70, 71, 76, 82]. So far, however, only iTuned [23] and

OtterTune [5] can (almost) completely keep the human out of the loop (e.g., don’t

need to specify which knob to be tuned). The idea of self-tuning actually goes

beyond database systems. There are projects about tuning MapReduce system

configurations [29,31] and selecting the best (e.g., cheapest) cloud containers for

a specific workload [6, 30, 33]. To our best knowledge, none of them focus on

online tuning an in-flight ML job. Furthermore, most existing works dedicate

a specific tuning session to collect execution metrics and train the performance

45

46

model; the query results obtained in the tuning session are however disposed. In

this work, the execution metrics are collected while the ML job is making real

progress – there is no waste of resources.

The (short) history of PS architecture began with systems that were specifi-

cally designed for LDA topic modeling [68] and deep network [18,21]. Afterwards,

general-purpose ML systems also adopt the PS architecture [46, 79]. Compared

with auto-tuning DB systems, auto-tuning ML systems is in infancy. In [80],

an offline tuner specifically designed for Adam [18], a close-source ML system,

was presented. The work manually established an analytical cost-model based

on Adam’s architecture and design. Latest works [39] and [59] discusses the au-

tomatic selection of different GD algorithms by manually creating an analytical

cost-model and the automatic placement of operators on CPU/GPU using re-

inforcement learning, respectively. Our scope is way broader than only those.

More importantly, we target online tuning, i.e., a job is executed using better

and better system settings as it proceeds. In contrast, [39] targets offline tun-

ing — first decide on which GD algorithm to use and never change that even

though a job may last for hours or weeks. In [62], experiments based on a BSP

PS system show that changing the cluster resources online could influence the

completion time of ML jobs, which supports the arguments of this thesis. In

machine learning, auto hyper-parameter tuning (e.g., tuning the number of the

hidden layers in a deep neural network) that finds the best model is a grand

challenge [27]. Currently, most ML users follow a trial-and-error process to find

their “right” model: (i) pick an initial setting for the hyper-parameters, and then

train the model for a fixed amount of time (e.g., days); (ii) if the final accuracy

is not desirable, then choose another set of hyper-parameter values and repeat

CHAPTER 4. RELATED WORK 47

the process, until the model has reached the user’s expectation. Under this trial-

and-error cycle, what we propose in this thesis would significantly reduce the

time of each trial, thereby expediting the ideal model seeking process.

Performance modeling and progress estimation are interesting problems in

their own right. For example, Ernest [73] trains a performance model for ma-

chine learning applications. However, even that latest work has only put the

estimation of statistical efficiency as a future work. Progress indicator is an en-

lightening feature in analytical systems because that lets users know when will

they obtain the results [17, 44, 45, 47, 56]. In this thesis, we have pioneered the

first progress indicator for ML systems through giving initial solutions to the

statistical progress estimation problem.

Our work bear a resemblance to query reoptimization for long-running queries

[50,78]. Nonetheless, the contexts are entirely different because query reoptimiza-

tion focuses on switching execution strategies of individual operators under the

same system setting while we focus on switching to another system setting in

the midst of an iterative job. There has been some discussions about live recon-

figuration in cloud databases (e.g., [24]) and in-memory transactional systems

(e.g., [75]). Our On-Demand-Model-Relocation (ODMR) technique is inspired

by the on-demand data migration method of the former but we customize that

for model data relocation under the PS architecture. There are also works to

reduce the costs of checkpointing and system suspend-and-resume (e.g., [13,14]).

Those works are orthogonal to us and any advance in that area could inspire

improvement on our reconfiguration techniques.

48

Chapter 5

Conclusion and Future Work

In this thesis, we make a case for building an online tuner for ML systems.

We show that the performances of machine learning (ML) systems, like database

(DB) systems, are also subjected to the values of many system parameters. How-

ever, unlike DB systems, ML systems can afford online on-job training and tuning

because of the long-running nature of ML. To this end, we propose an online job

optimization framework that is suitable to all ML systems. We also develop

initial solutions to solve the online statistical progress estimation problem. We

discuss an array of existing and new techniques to support online reconfiguration

on existing ML systems. As an initial effort to showcase our techniques, we have

implemented a prototype on top of TensorFlow. Experiments show that various

ML tasks gain speedup by a factor of 1.7× to 5.1×.

The area of self-tuning ML systems is still in infancy. Our next step is to

extend our idea to other ML systems (e.g., Angel [36]), optimization algorithms

(e.g., SVRG++ [7]), and on platforms with heterogenous machines (e.g., [35]).

49

50

We will also study the use of transfer learning [61] to eliminate the initialization

phase. Specifically, when the framework receives a new ML job J , it shall search

the repository and locate a previous job Ĵ that is most similar to J . Then it shall

transfer all candidate settings XĴ that Ĵ had ever picked to be J ’s candidate

settings. OtterTune [5] has also leveraged a similar idea when facing new DB

workloads. By using this transfer learning idea, we might eliminate the whole

initialization phase and proceed to online tuning phase directly. We expect the

effectiveness of this idea would increase with the number of jobs optimized by

the framework, thereby achieving a vision of self-improving ML systems.

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan,

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow:

A system for large-scale machine learning. In OSDI, pages 265–283, 2016.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next genera-

tion of recommender systems: A survey of the state-of-the-art and possible

extensions. TKDE, 17(6):734–749, 2005.

[3] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated

selection of materialized views and indexes in SQL databases. In VLDB,

pages 496–505, 2000.

[4] Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang. Integrating vertical

and horizontal partitioning into automated physical database design. In

SIGMOD, pages 359–370, 2004.

51

52 BIBLIOGRAPHY

[5] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Au-

tomatic database management system tuning through large-scale machine

learning. In SIGMOD, pages 1009–1024, 2017.

[6] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. Cherrypick: Adaptively un-

earthing the best cloud configurations for big data analytics. In NSDI, pages

469–482, 2017.

[7] Zeyuan Allen Zhu and Yang Yuan. Improved SVRG for non-strongly-convex

or sum-of-non-convex objectives. In ICML, pages 1080–1089, 2016.

[8] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo,

Zakaria Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al.

Tfx: A tensorflow-based production-scale machine learning platform. In

SIGKDD, pages 1387–1395, 2017.

[9] Peter Belknap, Benôıt Dageville, Karl Dias, and Khaled Yagoub. Self-tuning

for SQL performance in oracle database 11g. In ICDE, pages 1694–1700,

2009.

[10] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian

optimization of expensive cost functions, with application to active user

modeling and hierarchical reinforcement learning. CoRR, 2010.

[11] Kurt P. Brown, Michael J. Carey, and Miron Livny. Goal-oriented buffer

management revisited. In SIGMOD, pages 353–364, 1996.

[12] Nicolas Bruno and Surajit Chaudhuri. An online approach to physical design

tuning. In ICDE, pages 826–835, 2007.

BIBLIOGRAPHY 53

[13] Tuan Cao, Marcos Vaz Salles, Benjamin Sowell, Yao Yue, Alan Demers,

Johannes Gehrke, and Walker White. Fast checkpoint recovery algorithms

for frequently consistent applications. In SIGMOD, pages 265–276, 2011.

[14] Badrish Chandramouli, Christopher N Bond, Shivnath Babu, and Jun Yang.

Query suspend and resume. In SIGMOD, pages 557–568, 2007.

[15] Surajit Chaudhuri and Vivek R. Narasayya. An efficient cost-driven index

selection tool for microsoft SQL server. In VLDB, pages 146–155, 1997.

[16] Surajit Chaudhuri and Vivek R. Narasayya. Self-tuning database systems:

A decade of progress. In VLDB, pages 3–14, 2007.

[17] Surajit Chaudhuri, Vivek R. Narasayya, and Ravishankar Ramamurthy. Es-

timating progress of long running SQL queries. In SIGMOD, pages 803–814,

2004.

[18] Trishul M. Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalya-

naraman. Project adam: Building an efficient and scalable deep learning

training system. In OSDI, pages 571–582, 2014.

[19] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel P. Kuksa. Natural language processing (almost)

from scratch. Journal of Machine Learning Research, 12, 2011.

[20] Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis.

Parallel gaussian process optimization with upper confidence bound and

pure exploration. In ECML PKDD, pages 225–240, 2013.

[21] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior,

54 BIBLIOGRAPHY

Paul A. Tucker, Ke Yang, and Andrew Y. Ng. Large scale distributed deep

networks. In NIPS, pages 1232–1240, 2012.

[22] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and

Graham Wood. Automatic performance diagnosis and tuning in oracle. In

CIDR, pages 84–94, 2005.

[23] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning

database configuration parameters with ituned. PVLDB, 2(1):1246–1257,

2009.

[24] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant

Agrawal, and Amr El Abbadi. Squall: Fine-grained live reconfiguration for

partitioned main memory databases. In SIGMOD, pages 299–313, 2015.

[25] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,

Michael J Franklin, and Ion Stoica. Graphx: Graph processing in a dis-

tributed dataflow framework. In OSDI, pages 599–613, 2014.

[26] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey D.

Ullman. Index selection for OLAP. In ICDE, pages 208–219, 1997.

[27] Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera,

Damir Jajetic, James Robert Lloyd, Núria Macià, Bisakha Ray, Lukasz

Romaszko, Michèle Sebag, Alexander R. Statnikov, Sébastien Treguer, and

Evelyne Viegas. A brief Review of the ChaLearn AutoML Challenge: Any-

time Any-dataset Learning without Human Intervention. In Workshop on

Automatic Machine Learning, pages 21–30, 2016.

BIBLIOGRAPHY 55

[28] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin

Shi, Antoine Atallah, Ralf Herbrich, Stuart Bowers, et al. Practical lessons

from predicting clicks on ads at facebook. In Proceedings of the Eighth

International Workshop on Data Mining for Online Advertising, pages 1–9.

ACM, 2014.

[29] Herodotos Herodotou, Fei Dong, and Shivnath Babu. Mapreduce pro-

gramming and cost-based optimization? crossing this chasm with starfish.

PVLDB, 4(12):1446–1449, 2011.

[30] Herodotos Herodotou, Fei Dong, and Shivnath Babu. No one (cluster) size

fits all: Automatic cluster sizing for data-intensive analytics. SoCC, page 18,

2011.

[31] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang

Dong, Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A self-tuning

system for big data analytics. In CIDR, pages 261–272, 2011.

[32] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,

Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing.

More effective distributed ML via a stale synchronous parallel parameter

server. In NIPS, pages 1223–1231, 2013.

[33] Botong Huang, Shivnath Babu, and Jun Yang. Cumulon: optimizing sta-

tistical data analysis in the cloud. In SIGMOD, pages 1–12, 2013.

[34] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database cracking.

In CIDR, pages 68–78, 2007.

56 BIBLIOGRAPHY

[35] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. Heterogeneity-aware dis-

tributed parameter servers. In SIGMOD, pages 463–478, 2017.

[36] Jie Jiang, Lele Yu, Jiawei Jiang, Yuhong Liu, and Bin Cui. Angel: a new

large-scale machine learning system. National Science Review, 2017.

[37] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global

optimization of expensive black-box functions. Journal of Global Optimiza-

tion, 13(4):455–492, Dec 1998.

[38] B. Dageville K. Dias S. Joshi K. Yagoub, P. Belknap and H. Yu. Oracle‘s

sql performance analyzer. IEEE Data Engineering Bulletin, 2008.

[39] Zoi Kaoudi, Jorge-Arnulfo Quiane-Ruiz, Saravanan Thirumuruganathan,

Sanjay Chawla, and Divy Agrawal. A cost-based optimizer for gradient

descent optimization. In SIGMOD, pages 977–992, 2017.

[40] Alex Krizhevsky. Learning multiple layers of features from tiny images.

Technical report, 2009.

[41] S. Kumar. Oracle database 10g: The self-managing database. White Paper,

Feb, 2003.

[42] E. Kwan, S. Lightstone, A. Storm, and L. Wu. Automatic configuration for

ibm db2 universal database. Technical report, IBM, Jan, 2002.

[43] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

BIBLIOGRAPHY 57

[44] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaud-

huri. Robust estimation of resource consumption for SQL queries using

statistical techniques. PVLDB, 5(11):1555–1566, 2012.

[45] Jiexing Li, Rimma V. Nehme, and Jeffrey F. Naughton. Toward progress

indicators on steroids for big data systems. In CIDR, 2013.

[46] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr

Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing

Su. Scaling distributed machine learning with the parameter server. In

OSDI, pages 583–598, 2014.

[47] Gang Luo, Jeffrey F Naughton, Curt J Ellmann, and Michael W Watzke.

Toward a progress indicator for database queries. In SIGMOD, pages 791–

802, 2004.

[48] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Identi-

fying suspicious urls: an application of large-scale online learning. In ICML,

pages 681–688, 2009.

[49] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kan-

nan Ramchandran, and Michael I Jordan. Perturbed iterate analysis for

asynchronous stochastic optimization. arXiv preprint arXiv:1507.06970,

2015.

[50] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman,

and Hamid Pirahesh. Robust query processing through progressive opti-

mization. In SIGMOD, pages 659–670, 2004.

58 BIBLIOGRAPHY

[51] Qi Meng, Wei Chen, Yue Wang, Zhi-Ming Ma, and Tie-Yan Liu. Con-

vergence analysis of distributed stochastic gradient descent with shuffling.

NIPS, 2017.

[52] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde,

Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei

Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache spark.

Journal of Machine Learning Research, 17:34:1–34:7, 2016.

[53] Ofer Meshi, Mehrdad Mahdavi, and Alex Schwing. Smooth and strong:

Map inference with linear convergence. In NIPS, pages 298–306. 2015.

[54] Budiman Minasny and Alex. B. McBratney. The matrn function as a general

model for soil variograms. Geoderma, 128(3):192 – 207, 2005.

[55] Jonas Mockus. Bayesian approach to global optimization: theory and appli-

cations. Springer Science & Business Media, 2012.

[56] Kristi Morton, Abram L. Friesen, Magdalena Balazinska, and Dan Gross-

man. Estimating the progress of mapreduce pipelines. In ICDE, pages

681–684, 2010.

[57] Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki. Continuous

resource monitoring for self-predicting DBMS. In 13th International Sym-

posium on Modeling, Analysis, and Simulation of Computer and Telecom-

munication Systems (MASCOTS), pages 239–248, 2005.

BIBLIOGRAPHY 59

[58] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander

Shapiro. Robust stochastic approximation approach to stochastic program-

ming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

[59] Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. Reinforcement

learning for bandit neural machine translation with simulated human feed-

back. arXiv preprint arXiv:1707.07402, 2017.

[60] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai,

Gang Chen, Jinyang Gao, Zhaojing Luo, Anthony KH Tung, Yuan Wang,

and Zhongle Xie. Singa: A distributed deep learning platform. In ACM

Multimedia, pages 685–688, 2015.

[61] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. TKDE,

22(10):1345–1359, October 2010.

[62] Xinghao Pan, Shivaram Venkataraman, Zizheng Tai, and Joseph Gonzalez.

Hemingway: Modeling distributed optimization algorithms. CoRR, 2017.

[63] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes

for Machine Learning (Adaptive Computation and Machine Learning). The

MIT Press, 2005.

[64] Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. Hog-

wild: A lock-free approach to parallelizing stochastic gradient descent. In

NIPS, pages 693–701, 2011.

[65] Tom Schaul, Dan Horgan, Karol Gregor, and David Silver. Universal value

function approximators. In ICML, pages 1312–1320, 2015.

60 BIBLIOGRAPHY

[66] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:

From theory to algorithms. Cambridge university press, 2014.

[67] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Ve-

davyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,

John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,

Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hass-

abis. Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489, 2016.

[68] Alexander J. Smola and Shravan M. Narayanamurthy. An architecture for

parallel topic models. PVLDB, 3(1):703–710, 2010.

[69] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian

optimization of machine learning algorithms. In NIPS, pages 2960–2968,

2012.

[70] Adam J. Storm, Christian Garcia-Arellano, Sam Lightstone, Yixin Diao,

and Maheswaran Surendra. Adaptive self-tuning memory in DB2. In VLDB,

pages 1081–1092, 2006.

[71] Wenhu Tian, Patrick Martin, and Wendy Powley. Techniques for auto-

matically sizing multiple buffer pools in DB2. In Proceedings of the 2003

conference of the Centre for Advanced Studies on Collaborative Research,

pages 294–302, 2003.

BIBLIOGRAPHY 61

[72] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan

Skelley. DB2 advisor: An optimizer smart enough to recommend its own

indexes. In ICDE, pages 101–110, 2000.

[73] Shivaram Venkataraman, Zongheng Yang, Michael J. Franklin, Benjamin

Recht, and Ion Stoica. Ernest: Efficient performance prediction for large-

scale advanced analytics. In USENIX, pages 363–378, 2016.

[74] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gregory R.

Ganger, Phillip B. Gibbons, Garth A. Gibson, and Eric P. Xing. Managed

communication and consistency for fast data-parallel iterative analytics. In

SoCC, pages 381–394, 2015.

[75] Xingda Wei, Sijie Shen, Rong Chen, and Haibo Chen. Replication-driven

live reconfiguration for fast distributed transaction processing. In USENIX,

pages 335–347, 2017.

[76] Gerhard Weikum, Christof Hasse, Alex Moenkeberg, and Peter Zabback.

The COMFORT automatic tuning project, invited project review. Inf. Syst.,

19(5):381–432, 1994.

[77] Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zabback.

Self-tuning database technology and information services: From wishful

thinking to viable engineering. VLDB, pages 20–31, 2002.

[78] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. Sampling-based query

re-optimization. In SIGMOD, pages 1721–1736, 2016.

[79] Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak

Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum:

62 BIBLIOGRAPHY

A new platform for distributed machine learning on big data. In SIGKDD,

pages 1335–1344, 2015.

[80] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. Performance

modeling and scalability optimization of distributed deep learning systems.

In KDD, pages 1355–1364, 2015.

[81] Kenny Q. Ye. Orthogonal column latin hypercubes and their application

in computer experiments. Journal of the American Statistical Association,

93(444):1430–1439, 1998.

[82] Dong Young Yoon, Ning Niu, and Barzan Mozafari. Dbsherlock: A per-

formance diagnostic tool for transactional databases. In SIGMOD, pages

1599–1614, 2016.

[83] Ce Zhang and Christopher Ré. Dimmwitted: A study of main-memory

statistical analytics. PVLDB, 7(12):1283–1294, 2014.

[84] Huan Zhang, Cho-Jui Hsieh, and Venkatesh Akella. Hogwild++: A new

mechanism for decentralized asynchronous stochastic gradient descent. In

ICDM, pages 629–638, 2016.

[85] Shen-Yi Zhao and Wu-Jun Li. Fast asynchronous parallel stochastic gradient

descent: A lock-free approach with convergence guarantee. In AAAI, pages

2379–2385, 2016.

[86] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J. Smola. Paral-

lelized stochastic gradient descent. In NIPS, pages 2595–2603. 2010.

	Declaration
	Abstract
	Acknowledgements
	Table of contents
	List of Figures
	List of Tables
	Introduction
	Background and Preliminary
	Iterative-Convergent ML Algorithms
	Parameter Server Architecture
	Parallelism in Distributed Learning

	Towards Self-Tuning Parameter Servers
	Online Job Optimization Framework
	Problem Formulation
	Bayesian Optimization
	Using BO in Online Tuning

	Online Progress Estimation
	Stateless Progress Estimation
	Stateful Progress Estimation

	Online Reconfiguration
	Prototype Implementation
	Experimental Evaluation
	Experiment Setup
	Overall Performance Evaluation
	Convergence Analysis
	Statistical Efficiency versus Hardware Efficiency
	Reconfiguration Overhead
	Stateful vs. Stateless Progress Estimation

	Related Work
	Conclusion and Future Work
	Bibliography

