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Abstract 
 

Diseases are usually associated with genetic variants, mainly single nucleotide 

polymorphisms (SNPs) or Single Sequence Repeat Polymorphisms (SSRPs). 

Therefore it’s an important task for researchers in human genetics to search for 

genetic factors having influence on diseases as it can be used in many medical 

case-control studies. In recent years, this research has been greatly improved by using 

genome-wide association studies (GWASs) which use a single-locus approach, where 

each variant is tested individually for association with a specific disease. However 

most complex diseases are considered to be the results of gene-gene and 

gene-environment interactions.  many computational methods have been proposed 

to detect if a particular set of genes has epistatic interaction with a particular complex 

disease.  

However, even though many such methods have been shown to be useful, they can 

be made more effective if the properties of gene-gene interactions can be better 

understood. Towards this goal, we have attempted to uncover patterns in gene-gene 

interaction and the patterns reveal an interesting property that can be reflected in an 

inequality that describes the relationship between two genotype variables that takes 

on the genotypes of two different genes as values, and a disease-status variable that 

takes on binary values representing the presence or absence of a complex disease. We 

show that this inequality can be derived for generalization to n genotype variables. 

Based on this inequality, we establish a conditional independence and redundancy 

(CIR) based definition of gene-gene interaction and the concept of an interaction 

group. We discuss the properties of these concepts and explain how they can be used 

in a novel algorithm that can be used to detect gene-gene interaction with an order of 

two and above greater than two. Experimental results using both simulated and real 

datasets show that the proposed algorithm can be very promising. Possible ways to 

further improve the effectiveness of the new algorithm are also provided. 

Like complex diseases, complex quantitative traits (QTs) are also usually 
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associated with genetic variants. The majority of innate and acquired body and 

behavioral characteristics. Many physiological characteristics are also reflected by 

complex traits. In addition, most diseases exhibit various symptoms through 

complex traits.  

The Multifactor Dimensionality Reduction (MDR) method was originally 

proposed as a nonparametric and model-free data reduction approach for identifying 

interactions without significant main effects and has been successfully applied to 

identify gene-gene interactions in many common complex diseases. Some efforts 

have been made to extend MDR to QTs. 

However these methods are still not computationally efficient or effective. 

Therefore we propose Extended Fuzzy Quantitative trait MDR (EFQMDR) to 

strengthen identification of gene-gene interactions associated with a quantitative trait 

by first transforming it to an ordinal trait and then using a balanced accuracy 

measure based on extended member functions of fuzzy sets to select multiple best 

sets of genetic markers as having strongest associations with the trait. Experimental 

results on simulated datasets and real datasets show that our algorithm has better 

performance in terms of test accuracy and consistency in identifying gene-gene 

interactions associated with QTs. 

Multiple correlated phenotypes often appear in complex traits or complex di

seases. These correlated phenotypes are useful in identifying gene-gene interact

ions associated with complex traits or complex disease more effectively. Some

 approaches have been proposed to use correlation among multiple phenotypes

 to identify gene-gene interactions that are common to multiple phenotypes. H

owever these approaches either didn’t find truly gene-gene interactions or the 

results are hard to explain, especially using all correlated phenotypes to identi

fy gene-gene interactions make identified interactions unreliable. Multivariate 

Quantitative trait based Ordinal MDR (MQOMDR) algorithm is therefore prop

osed to effectively identify gene-gene interactions associated with multiple corr

elated phenotypes by selecting the best classifier according to not only the tra
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ining accuracy of the phenotype under consideration but also other phenotypes

 with weights determined mainly by their pair correlation with the phenotype 

under consideration and also by repeated selection process to make use of tru

ly useful correlated phenotypes . Experimental results on two real datasets sho

w that our algorithm has better performance in identifying gene-gene interacti

ons associated with multiple correlated phenotypes. 
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Chapter 1  Introduction 
 

1.1 Background  
 

Diseases are usually associated with genetic variants, mainly single nucleotide 

polymorphisms (SNPs).The appearance of high-throughput genotyping technology 

made it possible and easy to scan whole-genome single-nucleotide polymorphisms 

(SNPs) for genes associated with diseases. As a result, doctors can utilize genetic data 

to analyze the mechanisms of diseases and customize medical treatment. Searching 

for genetic factors having influence on complex diseases and complex traits becomes 

an important and challenging for modern geneticists. 

In recent years, this research has been greatly improved by using genome-wide 

association studies (GWASs) to detect associations of SNPs with many diseases 

(WTCC Consortium, 2007). A single-locus approach, where each variant is tested 

individually for association with a specific phenotype is used by most of these studies. 

However confirmed associations account for a small part of the heredity of complex 

traits and complex diseases (Franke . et al., 2009). Most complex diseases are 

considered to be influenced by gene-gene and gene-environment interactions 

(Manolio et al., 2009). For example, two conditions of the hemoglobinopathies were 

previously found to be protective against malaria. One is structural variant 

hemoglobin S: heterozygote HbAS (homozygote HbSS is not considered since it can 

lead to premature death) and the other is lack of the normal α-globin component of 

hemoglobin，α+-thalassemia, which is caused by two variants: heterozygote -α/αα 

and homozygote -α/-α. However, in a malaria cohort study performed by Williams et 

al in Kenya (Williams et al, 2005), it was found that when two conditions were 

inherited together, the protection provided by each condition inherited alone 

disappeared. If a gene influences a disease mainly through interaction with other 

genes or environmental factors, the association might be missed if the gene is assessed 

individually without considering its interactions with other genes.  
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Except for a few cases such as replicating a previous study or testing a specific 

biological hypothesis, researchers are not satisfied with testing known interactions. 

They would more often search for possible unknown interactions at potentially many 

sites with given genotype data from a GWA study or from a local candidate gene 

study.  

However when the methods for GWAS are extended to multiple loci for identifying 

gene-gene interactions associated with complex diseases and complex traits, they will 

have decreased statistical power and be computationally costful due to high 

dimensionality and small sample size. For example, if we want to consider all 

combinations of two SNPs to identify second order gene-gene interactions for 10 

thousand SNPs in a genome, we will examine nearly 50 million possibilities. 

A variety of methods including principal components analysis, information gain 

and multifactor dimensionality reduction have been proposed to make complexity 

algorithms tractable by reducing dimensionality. 

Pathway and gene set methods use a set of genes having functional relation to 

jointly identify their association with a disease or a trait. These methods also have the 

advantage to identify genetic variants that individually have little association with a 

disease but collectively have a significant association and would be missed if they are 

individually tested in GWAS. 

Systems biology and network approaches make use of external biological 

knowledge from genome, transcriptome, metabolome, proteome or functional and 

regulatory networks (Kohl et al., 2010) to decide which genes or combinations of 

genes are more likely to have association, therefore greatly reduce the number of 

SNPs to be searched. A disease or a phenotype having response to a drug can be 

viewed as a perturbation of networks from their stable state (Auffray et al., 2009). For 

example, in one research, chemical similarity metrics, pharmaco- genomic 

interactions and PPI were integrated to predict pharmacogenes (Hansen et al., 2009), 

in another research, similarity of drug ligand sets were used to predict ‘off-target’ 

interactions (Keiser et al., 2007). 

The research achievements of association study can be applied in clinical practice 
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to improve medical care. Traditionally, drugs are developed to be applied in medical 

care without considering individual situation. Genetic variation is an important factor 

to consider in drug selection, dosing and adverse events (Giacomini et al., 2007) 

which was showed evidence for by many examples of drugs such as thiopurines for 

cancer (Weinshilboum, 2001) and the anticoagulant clopiogrel (Shuldiner et al., 2009). 

Drug development would benefit in therapy from a genetically tailored approach. For 

example, a hypothetical clinical application of the anticoagulant warfarin driven 

pharmacogenetically could reduce 40% of the cost and risk of adverse events (Ohashi 

and Tanaka, 2010). 

More measurements need to be taken to make personalized medicine a routine 

approach for many physicians in their clinical practice. These measurements include 

popularizing personalized medicine to physicians, further proving the efficacy of 

drugs developed and prescribed pharmacogeneticly, making discoveries available to 

the clinic by storing them in public databases, integrating bioinformatics with the 

electronic medical record (EMR) (Busis, 2010). 

 

1.2 Problem Statements 
 

A variety of diseases and quantitative traits have shown there association with 

multiple genetic variants. The combined effect of these genetic variants could be 

additive, therefore we could evaluate individual effect of each genetic variant first, 

then their overall effect could be accumulated from their individual effects. However 

in many cases, the combined effect could also be non-additive. The example in 1.1 

shows such a non-additive effect. Either heterozygote HbAS or α+-thalassemia is 

protective against malaria. However when two conditions are inherited together, the 

combined effect is not stronger protection against malaria, but results in the loss of 

protection. 

In order to detect these non-additive combined effects or gene-gene interaction, a 

set of genes should be examined as a whole. A number of different computational 
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methods have been proposed to detect gene-gene interactions existing in complex 

diseases and complex traits. As a first step, there should be an accurate definition of 

gene-gene interaction and a measure to detect such interaction. Bateson gave the first 

definition of gene-gene interaction (Bateson, 1909) which is actually a qualitative 

definition. Statistical definitions  (Armitage et al., 2002; McCullagh and Nelder, 

1989) and definitions based on information theory (Jakulin and Bratko, 2003; Jakulin 

et al., 2003; Chanda et al., 2007; Shang et al., 2016; Dong et al., 2008;  Yee et al., 

2013) were later proposed. 

However these definitions of gene-gene interaction are not quite reasonable. 

Statistical definitions depend very much on the specific models. Definitions based on 

information theory are mainly based on interaction gain. The value of interaction gain 

can be positive, zero or negative and the explanation of its sign is difficult and 

confusing. 

In a reasonable measure of gene-gene interaction, the measure should be computed 

without depending on any specific model and has its minimum value when there is no 

interaction. 

With the increase of the number of interaction genes, the exponential increase of 

the number of possible combinations of interaction genes will greatly increase the 

computational cost, on the other hand, the increase of the number of sparse cells will 

decrease the statistical power. If we could find the relation between high order 

interaction and low order interaction under some conditions, we would identify some   

high order interactions by identifying low order interactions, thus greatly decrease 

computational cost and increase statistical power. 

Complex traits are reflected in many aspects of human body. A variety of 

physiological parameters and body characteristics such as blood pressure, body 

temperature, height and weight are complex traits. Many innate and acquired 

behavioral characteristics such as memory, motivation, intelligence, emotion and 

learning are also complex traits. In addition symptoms of many diseases such as 

hypertension, obesity, cardiovascular diseases and neuropsychiatric disorders are 

reflected by complex traits. Therefore complex traits are closely related to our health 
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and diseases. To better understand complex diseases, we also need to understand 

complex traits. 

Complex traits not only have association with genetic factors, but also are related to 

many other factors. Genetic factors related to a specific complex trait could not 

determine alone a value of a complex trait precisely. Therefore an appropriate way to 

predict the value of a complex trait with genetic factors associated with it is to classify 

it into several categories and predict its category. For example, in Ordinal Multifactor 

Dimensionality Reduction (OMDR) (Kim et al., 2012), complex traits are classified 

into several ordinal levels and an extended MDR method is proposed. However 

quantitative information is lost in these methods. In Quantitative MDR (QMDR) (Gui 

et al., 2013), to better utilize quantitative information contained in complex traits, a 

t-distribution test statistic is employed to select the best interaction classifier. 

However this method only classified the trait into two levels, which results in the loss 

of the large variability of the quantitative outcome. 

Therefore we need a method which can not only fully utilize quantitative 

information, but also can classify the trait into any number of levels according to 

practical situations. 

Multiple correlated phenotypes often appear in complex traits or complex diseases. 

For example, hypertension is diagnosed by systolic and diastolic blood pressure, 

cognitive ability is usually measured by memory, intelligence, language, executive 

function and visual-spatial function. Since GWAS analyzed each phenotype 

separately, it has low power to detect genetic variants with small effects which are 

very common in genetic association studies. If these genetic variants have small 

effects across multiple phenotypes or pleiotropy effects which result in strong 

correlation among them, these correlated phenotypes could be analyzed jointly so that 

these genetic variants would be detected with better power. 

  A variety of methods have been proposed to combine multi-locus analysis with 

multi-phenotype analysis in genetic association studies. These methods use all 

correlated phenotypes to identify gene-gene interactions. If a set of SNPs have 

interaction on different phenotypes, then these phenotypes would have correlation 
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among each other. Conversely if some phenotypes have correlation among them, there 

may be not the result of a common set of SNPs having interaction on these 

phenotypes. Therefore there should be a method to filter out those correlated 

phenotypes whose correlation with the phenotype under studying is not caused by 

pleiotropy effects.  

 

1.3 Overview of Solutions 
 

In this section, we give an outline of the solutions to the problems stated in the last 

section. 

To identify gene-gene interaction associated with complex diseases, we derive a 

reasonable definition and measure of gene-gene interaction. Based on this new 

definition, we find an efficient way to identify high order gene-gene interactions. 

Since complex traits are common and important to understand complex diseases, we 

propose an extended MDR method to identify gene-gene interactions associated with 

complex traits by better utilizing quantitative information contained in complex traits. 

In addition, we propose an appropriate method to filter out those correlated 

phenotypes whose correlation with the phenotype under studying is not caused by 

pleiotropy effects for detecting gene-gene interactions associated with multiple 

correlated phenotypes 

To give a reasonable definition of gene-gene interaction, we first give and prove an 

inequality which describes the relationship between two genotype variables that takes 

on the genotypes of two different genes as values, and a disease-status variable that 

takes on binary values representing the presence or absence of a complex disease. 

This inequality can be further generalized to n genotype variables. Based on this 

inequality, we establish a conditional independence and redundancy (CIR) based 

definition of gene-gene interaction and the concept of an interaction group. CIR is not 

only intuitive but is also non-confusing as its properties can be proven mathematically. 

CIR can also be computed without depending on any specific model and reaches its 
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minimum value when there is no interaction. We also derive a kai square statistic to 

measure gene-gene interactions. According to some properties of the new definition, 

we find the relation between high order interaction and low order interaction under 

some conditions, and apply it to a novel algorithm to detect high order gene-gene 

interactions. This algorithm can greatly decrease computational cost and increase 

statistical power. Possible ways to further improve the effectiveness of the novel 

algorithm are also provided. 

To better utilize quantitative information contained in complex traits, we use 

extended member functions of fuzzy sets which extend the outcome range of 

traditional member functions of fuzzy sets from [0,1] to [-1,1] as a new measure to 

evaluate classification accuracy of a candidate interaction model. We then propose 

Extended Fuzzy Quantitative trait MDR (EFQMDR) to strengthen identification of 

gene-gene interactions associated with a quantitative trait by first transforming it to an 

ordinal trait and then using a balanced accuracy measure based on extended member 

functions of fuzzy sets to select multiple best sets of genetic markers as having 

strongest associations with the trait. Extended member functions is not only applied to 

the computation of training and testing accuracies, but also applied to the 

classification of each cell or genotype combination. EFQMDR can not only better 

utilize quantitative information contained in complex traits, but also can classify the 

trait into any number of levels according to practical situations. 

Multivariate Quantitative trait based Ordinal MDR (MQOMDR) algorithm is 

proposed to effectively identify gene-gene interactions associated with multiple 

correlated phenotypes by selecting the best classifier according to not only the 

training accuracy of the phenotype under consideration but also other phenotypes with 

weights determined mainly by their pair correlation. At first, all correlated phenotypes 

are used to identify interactive genetic loci. Then in order to filter out those correlated 

phenotypes whose correlation with the phenotype under studying is not caused by 

pleiotropy effects, phenotypes which have the same set of SNPs that has the largest 

cross validation consistency (CVC) for a fixed order of interaction are grouped 

together. In the next stage, for each phenotype in each group, all phenotypes in the 
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same group only are used to identify interactive genetic loci and the average CVC of 

the same set of SNPs for each phenotype in each group is calculated. Remove a 

phenotype in each group which has the smallest CVC and calculate the average CVC 

again. This process is repeated until the average CVC is equal to or smaller than that 

in the last repetition or there are only two phenotypes left in the group. Then the 

average CVC of each of the remaining groups is compared with that of MDR to 

decide whether it is retained or abandoned. Through such a filtering process, those 

correlated phenotypes whose correlation with the phenotype under studying is not 

caused by pleiotropy effects can be filtered out and genetic variants have small effects 

across multiple phenotypes could be detected with better power. 
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Chapter 2   
Background Knowledge and Related Work 

 

2.1 Background Knowledge 

 

Each of two complementary strands of DNA consists of a chain of nucleotides. There 

are four types of nucleotides based on four kinds of bases: adenine, thymine, guanine 

and cytosine (abbreviated as A, T, G and C respectively). DNAs from different people 

are almost the same except variations in a small part of these nucleotides, 90% of 

which are single nucleotide differences between the pairs of homologous 

chromosomes.  

A SNP can strictly be defined as a single nucleotide variant with the allele 

frequency higher than 1%. It can also be used in a broader sense to include variants 

with smaller allele frequencies (Fernald et al., 2011). Although theoretically a 

nucleotide can have four different forms, practically, only two of the four possible 

DNA bases (A,T,G,C) are seen in most SNPs; multiple base variations at a single 

SNP site are usually rare. 

The ratio of SNPs in the human genome which includes about 3×109 base pairs is 

estimated to fall between 3.7×10-4 and 8.3×10-4 (Carlson, 2004). SNPs may occur 

within both coding and noncoding regions of genes, or in the regions between genes. 

Since the genetic coding is redundant, some SNPs do not change the amino acid 

sequence of the protein produced. Such SNPs are termed synonymous, otherwise they 

are nonsynonymous. SNPs in noncoding regions may influence gene splicing, 

transcription factor binding, or the sequence of noncoding RNA. Although most SNPs 

in humans are neutral, some can affect their susceptibility to diseases and responses to 

drugs, chemicals and treatments. 

Sequencing of human genome greatly promotes the increase in the amount of SNP 

data and the number of SNP databases. These SNP data are very useful for disease 
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research and drug development. The dbSNP database (Sherry et al., 2001) is the most 

famous SNP database. In the dbSNP database Build 132, there are over 20 million 

validated human SNPs (Build 132, September 2010). Another important SNP 

database is the Online Mendelian Inheritance in Man (OMIM) database (Amberger et 

al., 2009) containing human SNPs associated with Mendelian disorders. The Human 

Gene Mutation Database (HGMD) includes germline mutations in genes associated 

with human inherited diseases. There are more than 76 000 mutations from ∼2900 

genes which are free for academic and nonprofit use. The SwissVar database contains 

56 000 manually annotated missense SNPs (mSNPs) from more than 11 000 genes. 

The PharmGKB database collects genetic variations having known drug response, 

including over 40 very important pharmacogenes (VIPs) and more than 3400 variants 

with annotated drug–response. 

Conventionally, a complex trait, also called a complex phenotype, is defined as a 

phenotype whose features are regulated by multiple genetic and environmental factors. 

This contrasts to monogenetic traits, which are directly controlled by variations in a 

single gene. Complex diseases are disease-associated complex traits. Complex traits 

do not follow the rules of Mendelian inheritance, the relationships between their 

genetic variants and phenotypes are not linear, which means their associated genes do 

not interact additively. 

The above definition can be further explained from clinical phenomenology and 

molecular backgrounds。 

Clinically, rather than single qualities , complex traits are usually described in 

terms of combinations of different heterogeneous phenotypes or symptoms which can 

involve multiple organs and/or tissues types. Some of the phenotypes or symptoms 

can be partially or entirely shared between two or more other complex traits. 

As to their molecular backgrounds, complex traits are not only regulated by genetic 

and environmental factors, but also products of genes (e.g., RNA, proteins or 

metabolites). These factors interact in different combinations and at different levels to 

form series of complex networks. 
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2.2 Related Works 

 

The effect of gene-gene interactions is considered to play a more important role than 

the main effect of any individual gene in the susceptibility to common human diseases. 

Traditional statistical methods are not appropriate for the task. Therefore detecting 

and characterizing gene-gene interactions are important and challenging problems that 

need to be solved to diagnose and treat complex diseases. New approaches need to be 

developed to address this problem. 

In the following sections, we will begin by introducing traditional analytical 

methods in gene-gene interaction studies of, and then focus on some prospective new 

approaches. 

 

2.2.1 Traditional analytical methods used in gene-gene 

interaction studies  

  

Statistically, a gene-gene interaction is defined as a departure from a given model on a 

particular scale. For simplicity, the following discussion is concentrated on interaction 

related to two genetic factors (two-locus interactions). 

An interaction associated with a quantitative trait Y is usually represented as a 

deviation from a model with an additive genetic effect on the phenotype, and is tested 

by adding a product term in the model: 

                Y=β0+βG1×G1+βG2×G2+βG1G2×G1×G2               （2.1） 

where G1 and G2 are the genotypes (usually assuming values 0,1,2 to represent the 

number of copies of the minor allele) of gene 1 and gene 2 respectively. The 

parameter βG1G2 represents the effect of gene-gene interaction; if βG1G2 = 0, there is no 

interaction, otherwise there exists an interaction between G1 and G2 on the trait Y. 

  For a binary trait or disease D (the presence/absence of a disease), the logarithm of 

the odds of the disease state D can be estimated using logistic regression. A gene-gene 

interaction is represented as a deviation from an additive genetic effect on the 
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log-odds of disease, and examined by testing whether βG1G2 = 0 in the following 

model: 

          log(P(D)/1-P(D))= β0+βG1×G1+βG2×G2+βG1G2×G1×G2        （2.2） 

  The parameters including βG1G2 in (2.1) and (2.2) are estimated and the null 

hypothesis that βG1G2=0 is tested. 

  If we let R=log(P(D)/1-P(D)), then P(D)=1/(1+e-R). So P(D) is actually a sigmoid 

function of R, which tend to saturate or converge to 1 or 0 when R approaches 

infinity. 

 The parameters in these two models are scale dependent. The absence of interaction 

indicated by βG1G2=0 in model (2.2) may be replaced by the presence of interaction 

when the model is transformed from the logit to the penetrance or probit scale. 

Conversely, an interaction shown by βG1G2≠0 may disappear after a specific 

transformation (Cordell, 2002). Such transformations may result in more 

parsimonious models that have better fit and greater power to detect association with 

the contributing factors for some types of interactions (Satagopan & Elston, 2013). 

  In addition to linear or logistic regression models, other approaches have also been 

proposed. For example additive allelic effects can be replaced by dominant or 

recessive ones. There is also a trend to use information theory to model genetic 

interactions (Moore et al., 2006; Chanda et al., 2007; Kang et al., 2008; Dong et al., 

2008). 

  In (Dong et al., 2008), an entropy-based method was developed to identify two 

locus gene-gene interaction and, furthermore the best-fit model from all two locus 

interaction models. Examples (Figure 2.1) of two locus interaction models include the 

threshold model, jointly recessive–recessive model, jointly dominant-dominant model, 

and so on. Li and Reich have enumerated all possible two-locus models, some of 

which have significant biological meaning (Li & Reich, 2000). The existing 

approaches usually identify gene-gene interaction without identifying interaction 

models, resulting in lack of biological or genetic meaning of identified interaction. 

Interaction effects of two SNPs in two genes are measured by gain ratio △R1,2: 

Gain(D|S1,2)=H0-H1,2-max{(H0-H1), (H0-H2)}=min{H1,H2}-H1,2         (2.3) 
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jointly recessive-recessive      jointly recessive-dominant 
 SNP 2 

SNP 1 BB Bb bb 
AA 0 0 0 
Aa 0 0 0 

 Aa 0 0 1 
       

            single-gene recessive               threshold 
 SNP 2 

SNP 1 BB Bb bb 
AA 0 0 0 
Aa 0 0 0 

 Aa 1 1 1 
              

modifying-effect          jointly dominant-dominant 
 SNP 2 

SNP 1 BB Bb bb 
AA 0 0 0 
Aa 0 0 1 

 Aa 1 1 1 
          
      exclusive OR                   diagonal 

 SNP 2 
SNP 1 BB Bb bb 

AA 0 0 1 
Aa 0 0 1 

 Aa 1 1 0 
 

Figure 2.1 Eight examples of two-locus models. 1 and 0 represent high-risk and 
low-risk genotype combinations respectively. (Dong et al., 2008)      
 

              △R1,2=𝐻0−𝐻1,2−max {(𝐻0−𝐻1),(𝐻0−𝐻2)}
min{𝐻1,𝐻2} =min{𝐻1,𝐻2}−𝐻1,2

min{𝐻1,𝐻2}          (2.4) 

where H0 is the entropy of disease status, H1, H2 are conditional entropies of disease 

status given SNP1 and SNP2 respectively, H1,2 is the conditional entropy of disease 

status given SNP1 and SNP2 simultaneously.  

  To further identify the best-fit model from all interaction models, the case and 

control dataset D is divided into high- and low-risk subsets for each model: 

𝑆1,2
′ (D)= 𝑆1,2

′ {Dhigh, Dlow}, where Dhigh consists of data from all high-risk genotype 

combinations and Dlow consists of data from all low-risk genotype combinations of a 

 SNP 2 
SNP 1 BB Bb bb 

AA 0 0 0 
Aa 0 0 0 

 Aa 0 1 1 

 SNP 2 
SNP 1 BB Bb bb 

AA 0 0 0 
Aa 0 0 1 

 Aa 0 1 1 

 SNP 2 
SNP 1 BB Bb bb 

AA 0 0 0 
Aa 0 1 1 

 Aa 0 1 1 

 SNP 2 
SNP 1 BB Bb bb 

AA 0 0 1 
Aa 0 1 0 

 Aa 1 0 0 
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specific model (a genotype combination is considered as a high-risk combination if it 

has a large case-control ratio than the total case-control ratio of the data set). 

                  𝐻1,2
′ =P(Dhigh)H(Dhigh)+ P(Dlow)H(Dlow)               (2.5) 

                         △𝑅1,2
′ =min

{𝐻1,𝐻2}−𝐻1,2
′

min{𝐻1,𝐻2}                       (2.6) 

where 𝐻1,2
′  is the entropy and △𝑅1,2

′  is the gain ratio. 

  New gain ratio △𝑅1,2
′  is evaluated for each candidate model and the model with 

maximal △𝑅1,2
′  is chosen as the best-fit model. 

  A more powerful approach for measuring gene-gene interaction is to use case-only 

analysis under the assumption that the frequencies of genes are independent in the 

population (Yang et al., 1999). 

  For simplicity, suppose each of two disease susceptibility genes (gene 1 and gene 

2) has two allelic variants (susceptible and nonsusceptible) that follow an autosomal 

dominant inheritance pattern and they are not in linkage disequilibrium, therefore 

their frequencies are independent in the population. For the two diallelic genes, let 

the first subscript i and the second subscript j indicate that the variant of gene 1 and 

gene 2 are present (1) or absent (0) respectively. Let Pij denote the proportion of the 

population who have the variant of gene 1 at level i and the variant of gene 2 at level 

j. Let Rij indicate the risk associated with the combinations of present and absent of 

the variants of gene 1 and gene 2. Table 2.1 shows the distribution of the number of 

cases expected to arise during follow-up of a "fixed" population in terms of gene 

frequencies in the population and risks associated with the combination of present 

and absent of the gene variants.  

Using cases only by the presence and absence of the gene 1 and gene 2 variants, 

we can construct a 2×2 table (Table 2.2), from which the case-only cross-product 

Ψco can be calculated as follows: 

Ψco=𝑎𝑎
𝑏𝑏

=(𝑃11×𝑁×𝑅11)(𝑃00×𝑁×𝑅00)
(𝑃10×𝑁×𝑅10)(𝑃01×𝑁×𝑅01)

=(𝑃11×𝑅11)(𝑃00×𝑅00)
(𝑃10×𝑅10)(𝑃01×𝑅01)

            (2.7) 

Let a period in the subscript refer to the marginal frequency of the genes in the 

population, then Pij=Pi. ×P.j. Therefore 

Ψco=
(𝑃1.×𝑃.1×𝑅11)(𝑃0.×𝑃.0×𝑅00)
(𝑃1.×𝑃.0×𝑅10)(𝑃0.×𝑃.1×𝑅01)

=𝑅11×𝑅00
𝑅10×𝑅01

               (2.8) 
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TABLE 2.1. The Expected Distribution of Cases expressed by Gene Frequencies in 
the Population and Risks Associated with Gene for Gene- Gene Interaction Analysis 
in a Case-Only Design. (Yang et al., 1999) 

             
“+” and “-” represent minority allele and majority allele respectively, subscripts “1” and “0” of P 
and R represent minority allele and majority allele respectively. 
 
TABLE 2.2. The distribution of cases by genotype combinations in a Case-Only 
Design. (Yang et al., 1999) 

                                
  If we define the risk ratios as RRij=Rij/R0, Ψco can be represented in terms of risk 

ratios as Ψco= RR11/RR×R10R01. If the effects for the two genes conform to a 

multiplicative relation, then the case-only Ψco should equal unity, that is, 

RR11/RR×R10R01 =1. Therefore departure of case only Ψco from unity provides a 

measure of gene-gene interaction under the assumption of independent gene 

frequencies in the population. 

 

 

2.2.2 Data-mining methods 

 

Since traditional regression-based methods measure interaction by departure from a 

linear model, they are not appropriate for nonlinear models and high order interaction 

corresponding to sparse contingency tables with a lot of empty cells.  
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To solve this problem, a variety of data-mining methods have been proposed 

recently. These methods search for patterns in high-dimensional data in a 

computationally efficient way. However, these methods test for association with a 

specific genetic factor and interaction with other genetic factors combined, rather than 

testing for interaction separately. Therefore, gene-gene interaction should be 

identified using additional statistical modeling. In addition, to avoid overfitting 

problems, cross validation is used. 

  A variety of data-mining approaches have been proposed to detect interactions in 

genetic association studies, such as logic regression (Kooperberg et al., 2001; 

Kooperberg et al., 2005), genetic programming (Nunkesser et al., 2007), neural 

networks (Motsinger, et al., 2006; Motsinger-Reif, et al., 2008) and pattern mining 

(Li et al., 2007; Long et al., 2009). In the remainder of this section, several popular 

and promising methods for detecting gene-gene interactions are discussed. 

 

2.2.2.1 Multifactor dimensionality reduction method 

   

One particularly popular data-mining method is Multifactor dimensionality reduction 

(MDR) (Ritchie et al., 2001; Moore et al., 2004; Chung et al., 2007). In order to 

detect high- dimensional gene-gene interaction, MDR groups genotype combinations 

of multiple genetic factors into two categories: high risk or low risk categories, then 

tests association between a binary trait or disease with this new one dimensional 

variable. Rather than testing for interaction separately, MDR tests main effects and 

interactions of multiple genetic factors combined. 

 The MDR method is proceeded as follows: the 10-fold cross validation is used. A set 

of n genetic loci is specified and all of their combinations or cells form an n 

dimensional space. Each locus has three genotypes and n loci can form n square of 

three genotype combinations. Then the ratio of the number of cases to the number of 

controls is estimated for each combination, which is then labeled either as “high-risk”, 

if the cases:controls ratio is equal or greater than some threshold, or otherwise as 
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“low-risk”. Thus all cells are allocated to either of high risk group or low risk group, 

which reduces the n-dimensional space into a one dimensional space. The processe is 

repeated for all possible n-loci combinations. The combination having maximal case–

control ratio of the high-risk group of the training data is selected and its prediction 

error can be estimated using the testing data. The model having minimal prediction 

error is selected as the final best n-locus model. The cross-validation consistency is 

defined as the number of cross-validation replicates in which that same n-locus model 

was chosen as the best model. A best multifactor model is selected for each of the two 

up to a certain maximum number of loci. The combination of loci having minimal 

prediction error is selected from these best multifactor models. Hypothesis testing for 

this final model can be performed by evaluating its cross-validation consistency.  

Like other exhaustive search techniques, the main problem with MDR is its 

prohibitive computational cost to search all n-locus combinations which increase 

exponentially with the increase of the number of locus (Ritchie et al., 2001). 

   

2.2.2.2 Ordinal MDR 

 

An extension of MDR, ordinal MDR (OMDR), is proposed to extend the application 

of MDR from binary traits to ordinal traits which often appear in trait description (e.g., 

obesity can be classified as normal, pre-obese, mild obese and severe obese) (Kim et 

al., 2012). 

  Suppose a given ordinal phenotype has J classes labeled as 1, 2,..., J. For an 

m-locus combination, nij denotes the number of individuals with the ith m-locus 

genotype and n+j denotes the overall number of individuals in class j, where i = {1, 

2,...,3m} and j = 1, 2,..., J.  

  The dataset is analyzed using L-fold cross-validation (CV). The ith m-locus 

genotype is labeled as class c(i) by OMDR as follows: 

                             c(i)= (𝑛𝑖𝑖
𝑛+𝑗

)                           (2.9) 

Then classification accuracy is used to select K best classifiers for each CV set. The 
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general cross-validation consistency based on top-K selection (GCVCK) which is the 

number of times a classifier is selected as one of the K best classifiers for all CV sets 

is calculated for each of the K best classifiers for all CV sets. Classifiers having the 

maximum predictability and maximum GCVCK for all CV sets are selected as best 

classifiers. Finally, classifiers having best predictability and GCVCK among those 

best classifiers for different number of locus are selected as the overall best classifiers. 

 

2.2.2.3 Random forest method 

   

Another data-mining approach extensively used to study of gene-gene interactions is 

random forest (RF). RF is an ensemble or ‘forest’ of some kind of classification or 

regression trees.  

A classification or regression tree maps each genotype combination to a disease 

status (Figure 2.2). Each node in the tree represents a genetic factor and is connected 

by arcs or edges to ‘child’ nodes. Each edge represents some possible values the 

parent node could take. A path through the tree forms a specific combination of values 

taken by the genetic factors in that path. The tree stops to grow at a node when no 

better classification accuracy can be obtained (for example, the node includes only 

one status: cases or controls, the path ending with the node contains or when all 

possible SNPs) or some stopping conditions are satisfied. Therefore the trees test for 

main effect and interaction combined, rather than testing for interaction separately..             

One problem for recursive partitioning is that, since it selects a variable at the root 

node according to its main effect, i.e., its ability to partition the data into more 

homogeneous sub-groups and at the internal nodes according to its main effect 

conditional on variables selected beforehand, pure interactions without main effects 

are missed.  

To address this problem, an ensemble of trees can be used. The random forest 

approach is a popular one (Breiman, 2001) employed in several association studies 

(Lunetta et al., 2004; Bureau et al., 2005). The trees in a random forest are grown on 
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Figure2.2 An example of a classification tree.  (Cordell, 2009) 
bootstrap samples of the original data. At each node, only a subset of rather than all 

possible genetic factors is randomly selected to determine the best split, therefore 

partially solving the problem of missing pure interactions. Each tree is trained on a 

different bootstrap sample, and prediction error is estimated using remaining sample. 

For each individual, its class is predicted across all trees where it was not in the 

corresponding bootstrap sample, and its final predicted class is the class predicted for 

the most times in all trees. Each genetic factor is assigned an importance score that 

measures its importance and therefore its priority by random forests. By using 

ensemble of trees in such a manner, it’s more likely to identify interactions among 

genetic factors with weak main effects.   

 

2.2.3 Pathway-based gene-set analyses 

 

Prior biological or functional knowledge has also been used to increase possibility to 

detect genetic association. An important approach is to use pathway-based gene-set 

analyses which use a set of genes having functional relation to collectively evaluate 

their association with a trait. 

Although GWAS increase power to detect genetic association and have found novel 
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genes for several complex diseases, but still many associations are lost. First, genetic 

factors that individually have a small impact but collectively have a significant impact 

on a disease may be missed by GWAS which only detect significant SNPs/genes. 

Second, even those factors that bring a significant effect may be missed due to the 

small sample size. To address these two limitations, the effects of biologic network 

context, especially metabolic pathways, can be considered and become feasible due to 

fast expansion of databases for metabolic pathways. The KEGG (Kyoto Encyclopedia 

of Genes and Genomes) pathway reflects reaction and interaction in a complex 

network (Ogata et al., 2000) and could be used in pathway-based gene-set analyses of 

complex diseases. 

In (Chen et al., 2008), the method of prioritizing risk pathways (PRP) is used. 

According to matrix D which depicts the frequency of cases and controls for each 

allele of a SNP locus, a P-value with the following statistics χ2 is calculated for each 

SNP: 

χ2= (𝑎𝑎−𝑏𝑏)2(𝑎+𝑏+𝑐+𝑑)
(𝑎+𝑏)(𝑏+𝑑)(𝑑+𝑐)(𝑐+𝑎)

                       (2.10) 

SNPs with a P-value beyond the significance level of 0.05 are filtered out for further 

study and their risk statistics calculated. Risk values for other SNPs are directly set to 

be 0. 

  In KEGG, a pathway is a network whose node is the metabolite and edge is an 

enzyme or a gene cluster. First, each KEGG pathway is transformed into a graph K in 

which an edge represents a metabolite and a node represents an enzyme or a gene 

cluster. Figure 2.3 gives an example of such a pathway .  

The degree attribution of the node which is the number of edges connecting to it in 

the graph K, also referred as the biologic network context reflects the diversity of the 

metabolites related to an enzyme or a gene cluster in the original pathway. 

All the screened SNPs are mapped to the corresponding gt (t =1,...,T, where T is the 

total number of genes involved in the pathway) that are located <500 kb away from gt. 

The maximum risk value Risk(gt ) is selected as the genetic statistic value for gt .  
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Figure 2.3 Sample pathway. (A) Sample pathway of KEGG with rectangles 
representing reactions named by genes encoding for their catalyzing enzymes and 
circles representing metabolites labeled with ‘m’. (B) The graph K transformed from 
the pathway in (A). (Ogata et al., 2000) 
  For each gene cluster sj ( j =1,...,Ni , where Ni is the count of gene clusters in 

pathway ki ) in pathway ki (i=1,...,U, where U is the number of human pathways in 

KEGG database), the biologic network context E(sj , ki) of the gene cluster sj is 

measured by the number of its edges connecting to it in the transformed pathway ki 

and the genetic factor G(P, sj) of the gene cluster sj is calculated as: 

G(P, sj)=
1
𝑀𝑗
∑ 𝑅𝑅𝑅𝑅(𝑔𝑡)
𝑀𝑗
1                    (2.11) 

  The RS (risk score) value preRS(P, ki) between phenotype P and pathway ki is: 

                 preRS(P, ki)=∑ {𝐺�𝑃, 𝑠𝑗� × 𝐸�𝑠𝑗 ,𝑘𝑖�}𝑁𝑖
𝑗=1               (2.12) 

  The standardized value RS(P, ki) is quantified as: 

                       RS(P, ki)=
𝑝𝑝𝑝𝑝𝑝(𝑃,𝑘𝑖)

max1≪𝑖≪𝑈{𝑝𝑝𝑝𝑝𝑝(𝑃,𝑘𝑖)}
                (2.13) 

  Then risk pathways are prioritized according to RS(P, ki). This provides a new 

channel to study the pathogenesis of complex diseases. 

   

2.2.2.4 Biological interpretation 

 

The relation between statistical interaction and biological or functional interaction 

has been extensively discussed. In a recent review (Phillips, 2008), three different 

forms of epistasis or interaction are defined: compositional epistasis, statistical 

epistasis and functional epistasis. Compositional epistasis is defined as the effect of an 

genetic variant is masked by another genetic variant; statistical epistasis is defined as 
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the average effect of substitution of alleles at combinations of loci, with respect to the 

average genetic background of the population and functional epistasis is defined as 

the interactions between biological molecules such as proteins and other genetic 

elements. The important thing in interaction modeling is how the main effect of a 

variable, the independence of the main effects are defined and, therefore, how 

deviation from the independence of effects is measured.  

Although there seems no obvious connection between biological interaction and 

statistical interaction (Greenland, et al., 2009), some work has been done to evaluate 

the fit of some biological models to given genetic or genomic data (Sepulveda et al., 

2007; Sepulveda et al., 2009; Aylor, et al., 2008). This work is more practical since it 

tries to use known biological knowledge to explain given genetic or genomic data. 
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Chapter 3 

 

A Novel Approach for Identifying 
Epistatic Interactions for Complex 

Disease Prediction 
 

3.1 Introduction 
 

Identifying genetic variants, in terms of single nucleotide polymorphisms (SNPs) or 

Single Sequence Repeat Polymorphisms (SSRPs), that are associated with complex 

diseases is important for the understanding of complex diseases. In most 

genome-wide association studies (GWASs), a single-locus approach, where each 

variant is tested individually for association with a disease, is usually used to find 

statistical associations of SNPs with important common diseases (the Wellcome 

Trust Case Control Consortium, 2007). However, the associations that are so 

identified account only for a small part of the heredity of complex diseases (Franke et 

al., 2009) which are considered to be mostly associated with gene-gene or 

gene-environment interactions (Manolio et al., 2009) and this has been confirmed 

with evidence by several studies (Bateson, 1909; Moore et al., 2005; Malmberg et al., 

2005; Segre et al., 2005).  

  To characterize and detect gene-gene interactions existing in complex diseases, a 

variety of different computational methods have been proposed which include such 

methods as logistic regression (Kooperberg et al., 2001; Kooperberg and Ruczinski, 

2005), recursive partitioning (Zhang and Bonney, 2000; Nelson et al., 2001; 

Culverhouse et al., 2004), Multifactor Dimensionality Reduction (MDR) (Ritchie et 

al., 2001; Hahn et al., 2003; Moore 2004), genetic programming (Nunkesser et al., 

2007), artificial neural networks (Motsinger et al., 2006; Motsinger et al., 2008) and 

pattern mining (Li et al., 2007; Long et al., 2009). The effectiveness of these methods 
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depends very much on how gene-gene interaction is defined but, unfortunately, such 

a definition is still not quite adequate. 

  

3.2 Related works 
 

The first definition of gene-gene interactions, which is also referred to as epistasis, 

was given in (Bateson, 1909) as a phenomenon where the effects of a given gene on a 

biological trait are either masked or enhanced by one or more of the other genes. This 

definition is actually a qualitative rather than a quantitative description.  

Currently, the most common statistical definition of interaction is that interaction 

represents departure from a linear model that predicts a phenotypic outcome with 

respect to several predictors. This kind of definition of interaction depends very much 

on the specific models. 

In addition to statistical definitions, gene-gene interactions are also defined based on 

information theory. 

According to (Jakulin and Bratko, 2003; Jakulin et al., 2003; Moore et al., 2006), if 

the genotypes of two genes are represented as two genotype variables, G1 and G2, 

then their dependency with respect to a disease-status variable, D, can be measured 

by interaction gain (IG) which is defined as follows.  Let H(X) be the entropy of X, 

then the IG of G1, G2, and D can be expressed as:  

IG(G1 G2 D) = I(G1 G2; D) − I(G1; D) − I(G2; D) = I(G1;G2| D) − I(G1;G2)  (3.1) 

where I denotes the mutual information measure, 

I(G1 G2; D) = H(G1 G2) + H(D) − H(G1 G2, D)             (3.2) 

I(G1;G2| D) = H(G1| D) + H(G2| D) − H(G1, G2| D)           (3.3)  

I(G1;G2) = H(G1) + H(G2) − H(G1, G2)                 (3.4) 

The variables G1 and G2 are joined into their Cartisian product G1 G2. According to 

this formula, interaction gain is regarded as the difference between the actual 

decrease in entropy achieved by the joint variables G1 G2 and the expected decrease 

in entropy, which is I(G1; D)+I(G2; D), with the assumption of independence 
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between G1 and G2. A positive difference indicates interaction between G1 and G2 

that cannot be linearly decomposed, while a negative difference indicates information 

redundancy between G1 and G2 and a zero difference indicates conditional 

independence or a mixture of synergy and redundancy. 

I(G1;G2) is a measure of dependence or “correlation” between two genes G1 and G2 

regardless of the context D, whereas I(G1;G2| D) is conditional mutual information, a 

measure of dependence of G1 and G2 given the context of D. Therefore IG is the 

change in the dependence of two genes by introducing context D. When IG is positive, 

context increased the amount of dependence between two genes; when IG is zero, 

context did not change the amount of dependence; when IG is negative, context 

decreased the amount of dependence. 

In (Chanda et al., 2007), the k-way interaction information (KWII) or 

co-information, which is a generalization of the mutual information and includes IG 

as a special case when k=3, and the total correlation information (TCI) are 

introduced to identify and visualize gene-gene and gene-environment interactions. 

Let X={ X1,X2, … ,Xk} is set of k variables. The KWII on X is an alternating sum 

over all possible subsets T of X.  

                    KWII(X)=- ∑
⊆

−−
XT

TX TH )()1( ||||                 (3.5) 

For k=3,   

KWII(X1,X2,X3)=-H(X1)-H(X2)-H(X3)+H(X1 X2)+H(X1 X3)+H(X2 X3)-H(X1X2X3) 

The TCI on X is the difference of entropies of the individual variables H(X1), 

H(X2), … , and H(Xk) and the entropy of their combination H(X1,X2, … ,Xk): 

            TCI(X1,X2, … ,Xk)=[∑
=

k

i
iXH

1

)( ]- H(X1,X2, … ,Xk)         (3.6) 

The KWII represents the change of information when all k variables are observed 

as a whole. The KWII is always positive for two variables, but it can be positive or 

negative for multiple variables. A positive value indicates synergy among variables, 

a negative value indicates information redundancy among variables, and a zero 

value indicates there is no K-way interactions. However an even number of 
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completely redundant variables will correspond to a positive value of KWII, rather 

than a negative value. 

The TCI is the amount of information shared among k variables or a measure of 

redundancy or dependency. A zero value shows independence among variables. The 

TCI reaches its maximal value when one variable is completely redundant with the 

others, which means one variable brings all the information that the others can 

provide. 

To lower the high computational cost of KWII which requires the entropies of all 

subsets, a novel information theoretic metric called phenotype associated information 

(PAI) is used to detect genetic factors involved in gene–gene and gene–environment 

interactions (Chanda et al., 2008). 

The PAI is the amount of information shared or dependency between genotype 

variables and the disease status variable. Therefore the PAI doesn’t include 

interdependencies among genotype variables, making it robust to correlations and 

redundancies among genotype variables such as LD which are interference factors to 

identification of gene-gene interaction.  It can be obtained by the difference between 

the TCI representing the overall dependency among the genotype variables and the 

disease status variable and the TCI representing the interdependencies among the 

genotype variables: 

PAI(G1,G2, … ,Gk,D)=TCI(G1,G2, … ,Gk,D)-TCI(G1,G2, … ,Gk)     (3.7) 

The KWII provides a more valuable and parsimonious interaction measure since it 

only measures interaction among a set of variables of interest as a whole and does not 

contain interactions from its subsets. However its computation requires the entropies 

of all subsets, making it computationally intractable. In addition, since its value could 

be either positive or negative determined by the nature of the interaction, it could not 

use hill climbing algorithms to reduce the search space. 

In contrast, the PAI don’t take negative values and increases monotonically with 

the increase of interaction order, making it appropriate for hill climbing algorithms. In 

addition, the computation of the PAI requires only individual and joint entropies, 

making it far more feasible than the KWII in computation. 
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The PAI is also closely related to the KWII since it can be derived that 

PAI(G1,G2, … ,Gk,D)=∑
⊆GT

DT ),(KWII                 (3.8) 

This equation shows that the PAI is the sum of the KWIIs of all subset 

combinations of the genotype variables and the disease status variable. Therefore a 

greedy search algorithm which avoids combinatorial explosion can be employed to 

search for gene-gene interactions associated with complex diseases. It uses the PAI to 

reduce the search space from the combinatorial space to the interesting regions and 

then calculate the KWII for the reduced search space. 

The PAI is further used to analyze the gene-gene and gene-environment 

interactions associated with quantitative (Chanda et al., 2009).  

The entropy H(Z) of a normally distributed variable Z is employed for the entropy 

of a QT, P: 

                         H(P)= )2ln( eπσ ,                     (3.9) 

where σ is the standard deviation. 

Accordingly the entropy of the joint distribution of a continuous QT, P, and a set 

of discrete genotype variables can be computed as: 

H(G,P)=-∑ ∫ ==
g p

dPgGPpgGPp ),(ln),( = H(G)+∑ =
g

egGp )2ln()( pσ , 

                                                                (3.10) 

where H(G) contains only discrete variables. 

These equations make it feasible to calculate the KWII and the PAI to identify 

gene-gene interactions associated with a QT. 

In (Shang et al., 2016), two co-information based measure: NCI, normalized 

n-order interaction effect and CCI which not only measures the impact of a set of 

SNPs itself but also measures the impact of its subsets are proposed to measure the 

impact of a set of SNPs to the phenotype. 

Co-information is actually the same as the KWII. It has two confusing properties 

which prevent it from widely adopted as an interaction measure. One is its value. 

Except for 2-order interaction whose co-information is actually always positive 

mutual information, its value can be positive, negative or zero. The explanation of its 
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sign is only given intuitively and confusing. Another is its sensitivity to the SNP 

combination order which makes it difficult to rank sets of SNPs with different   

combination orders. To tackle the second problem, NCI, n-order interaction effect 

which is the averages of co-information values fixed for different orders is proposed 

to normalize co-information. NCI only measures the impact of a set of SNPs as a 

whole. The total impact of a set of SNPs to the phenotype should include not only the 

interaction effect of itself as a whole, but also interaction effects of all its subsets and 

main effects of all individual SNPs in the SNP combination. Therefore another 

association measure based on co-information is proposed to measure the total impact 

of a set of SNPs to the phenotype which includes its impact, and impacts of its subsets 

with their NCI values greater than or equal to the user-specified thresholds. 

The methods as proposed in (Chanda et al., 2007; Chanda et al., 2008; Chanda et al., 

2009; Shang et al., 2016) are all based on KWII or the co-information measure. 

However, the explanation of the signs of the co-information measure (including that of 

the IG) can only be understood intuitively rather than mathematically and is 

considered a confusing property of the measures (Shang et al., 2016). 

In [33], the standardized relative information gain (RIG) was proposed to measure 

the interactions of a set of SNPs. Suppose Y is the disease status and X is the set of 

SNPs, then RIG U0 is defined as follows: 

U0=
)(

)|(-)(

YH

XYHYH                      (3.11) 

where H(Y) and H(Y|X) are the entropy of Y and the entropy of Y given X respectively. 

It quantifies the proportion of uncertainty of Y that is reduced after X is introduced. 

The value of U0 reflects the strength of impact a specific set of SNPs have on the 

disease. 

  Since the value of U0 tends to increase with the order of interactions when a 

higher order interaction includes SNPs in a lower order interaction as a subset 

regardless of the true additional contribution, direct comparison of RIGs among 

different orders of interaction is not appropriate. Therefore RIGs need to be 

standardized with the mean and standard deviation from the permuted datasets 
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generated by repeatedly shuffling the phenotypes in original data with all genotypes 

unchanged. Standardized relative information gain obtained from initial relative 

information gain of the original data, Uo, is defined as follows: 

                             Ur=
P

Po

S

UU
−

−                       (3.12) 

where Uo and PU
−

 are the average and the standard deviation of the maximum RIG of 

the permuted datasets respectively. 

The RIG essentially measures the mutual information of X and Y relative to H(Y).  

As discussed above, neither statistical approaches nor information theoretical 

approaches to the definition of epistatic gene-gene interactions are quite resonable. 

We propose here new definitions of gene-gene interaction, called CIR which can 

better allow such interactions to be discovered. CIR is not only intuitive but is also 

non-confusing as its properties can be proven mathematically. CIR can also be 

computed without depending on any specific model.   

In the following sections, we introduce the details of the derivation of CIR and 

provide proofs to some properties and a theorem related to CIR. Three cases where 

there is no interaction among genes on the disease status are also identified. A new 

algorithm to detect gene-gene interaction with order greater than two is also proposed 

based on these new definitions and corresponding properties and theorem. 

Experiments on simulated and real datasets show the effectiveness of these new 

definitions and the effectiveness and efficiency of this new algorithm. 

 

3.3 Methodology 
 

3.3.1 New definitions of gene-gene interaction and an interaction 

group 

 

From previous analysis, existing definitions of gene-gene interactions are not quite 
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reasonable. To introduce our new definition, we first prove the following inequality:   

I(G1 ,G2; D)≥I(G1; D)+I(G2; D)-I(G1;G2).                (3.13) 

where G1 and G2 represent two genotype variables; D represents the disease status 

variable, I denote mutual information. 

Proof: 

I(A;C)=∑
CA

CpAp

CAp
CAp

,
)()(

),(
log),( , 

 I(B;C)=∑
CB

CpBp

CBp
CBp

,
)()(

),(
log),( , 

I(A;B)=∑
BA

BpAp

BAp
BAp

,
)()(

),(
log),(  , 

I(A,B;C)=∑
,, )(),(

),,(
log),,(

CBA CpBAp

CBAp
CBAp , 

I(G1;D)+I(G2;D)-I(G1,G2;D)= ∑
,, 21

2
21

2121
21

21
),,()()()(

)(),(),(),(
log),,(

DGG DGGpDpGpGp

DpGGpDGpDGp
DGGp = 

∑
,, 21

21
21

21
),,()(

),(),(
log),,(

DGG DGGpDp

DGpDGp
DGGp + I(G1;G2) ≤log ∑

,,

21

21
)(

),(),(

DGG Dp

DGpDGp + I(G1;G2)= 

∑ ∑∑ ]).(),([
)(

1
log

21

21
D GG

DGpDGp
Dp

+I(G1; G2) = I(G1; G2). 

 ∴  I(G1,G2;D)≥ I(G1;D)+I(G2;D)-I(G1;G2), with equality iff p(G1,D)p(G2,D)= 

p(D)p(G1,G2,D), i.e., p(G1| D)p(G2| D)=p(G1 G2| D). �   

If A,B are independent, then we have I(A,B;C)≥ I(A;C)+I(B;C). 

This inequality suggests that if I(G1,G2;D)=I(G1;D)+I(G2;D)-I(G1; G2) or 

p(G1|D)p(G2|D)= p(G1G2|D), i.e., G1 and G2 are conditionally independent of D, then 

G1 and G2 have no interaction on D. This inequality can be further generalized to n 

genotype variables G1, G2, …, Gn and a disease-status D: 

I(G1, G2, …, Gn;D)≥I(G1;D)+I(G2;D)+…+I(Gn;D) -I(Gn; G1, , …, Gn-1)-I(Gn-1; 

G1, , …, Gn-2) -…- I(G2; G1).            (3.14) 

with equality iff p(G1| D) p(G2| D)…p(Gn | D)= p(G1, G2, …, Gn | D) .   

In order to better understand the inequality in (10), we let Si, where  i ∈{1, …, n}, 
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be a set of elements in any universe X If we map I(G 1;D), I(G 2;D),…, I(G n; D) to the 

cardinality of n sets S1, S2,…, Sn, respectively, denoted as |S1|, |S2|,…, |Sn|, I(G n; G 

1, , …, G n-1),…, I(G 2;G 1) to |Sn∩(S1∪…∪Sn-1) |,…, |S2∩S1| respectively and I(G  

1,G 2, …,Gn;D) to |S1∪…∪Sn|, then the right hand side of the inequality is equivalent 

to |S1|+…+|Sn |-| Sn∩(S1∪…∪Sn-1) |-… -|S2∩S1| = |S1∪…∪Sn |, which is equivalent 

to the left hand side of the inequality.  This can be illustrated in Figure 3.1 below 

when the equality holds for three genotype variables and one disease status variable 

and the proof is also given as follows.  

 

 

 

 

 

 
Figure. 3.1 |S1∪S2∪S3|=| S1 |+| S2 |+|S3 |-| S3∩(S1∪S2) |-| S1∩S2) | 

Proof: 

I(G 1, G 2, …, G n;D)≥ I(G 1, G 2, …, G n-1;D) + I(G n;D)-I(G n; G 1, , …, G n-1)≥  

I(G 1,G 2, …,G n-2;D)+I(G n-1;D)- I(G n-1; G 1, , …,G n-2)+I(G n;D)-I(G n; G 1, , …, G n-1) 

≥…≥I(G 1;D)+I(G 2; D)+…+ I(G n;D)-I(G n; G 1, , …, G n-1)-I(G n-1; G 1, , …, G n-2) 

-…-I(G 2; G 1) 

with equality iff p(G 1, G 2, …, G n-1 |D) p(G n |D)= p(G 1, G 2, …, G n |D), p(G 1, G 

2, …, G n-2 | D) p(G n-1 | D) =p(G 1, G 2, …, G n-1| D),…,p(G 1| D) p(G 2| D) = p(G 1, G 2 

| D), i.e., p(G 1| D) p(G 2| D)…p(G n | D)= p(G 1, G  2, …, G n | D)                �. 

In the case that we have two genotype variables G 1 and G 2, in addition to I(G1 ,G2; 

D) ≥ I(G1; D)+I(G2; D)-I(G1;G2), we also have I(G1 ,G2; D)≥max{I(G1; D), I(G2; D)}. 

I(G1,G2; D)=I(G1; D) iff p(D|G1)=p(D|G1,G2), i.e. G2, G1, D form a Markov chain 

(Mceliece, 2002). Likewise, I(G1 ,G2; D)= I(G2; D)  iff G1 ,G2, D form a Markov 

chain. In these two cases, G1 and G2 are also considered to have no interaction on D.   

For n (n>2) genotype variables G 1, G 2, …, G n, if, for a subset G i1, G i 2, …, G i m 

of them, p(D|Gi1, Gi2, …, Gim)=p(D| G1, G2, …, Gn), p(Gi1,Gi2, …, Gim |D)= p(Gi1|D) 

S1 

S2 S3 
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p(Gi2|D)…p(Gim|D), 1≤m<n, 1≤i1,i2,…, im≤n, they should also be considered to have 

no interaction on D. Therefore, we have the following definition:   

Definition 3.1 n genotype variables G1, G 2, …,G n have no interaction with a disease 

state variable D if one of the following two conditions is satisfied: 

(1) p(G1,G2,…,Gn|D)=p(G1|D)p(G2|D)…p(Gn|D); or equivalently I(G1,G2,…,Gn;D)= 

I(G1;D)+I(G2;D)+…+I(Gn;D)-I(Gn;G1, ,…,Gn-1)-I(Gn-1;G1,…,Gn-2)-…-I(G2;G1). 

(2) ∃ a subset Gi1,Gi 2, …,Gi m of G1,G 2,…,G n, p(D| G1, G2, …, Gn)=p(D|Gi1, Gi2, …, 

Gim), and  p(Gi1, Gi2, …, Gim|D)= p(Gi1 |D)   p(Gi2| D) … p(Gim|D) ;  

or equivalently I(G1, G2, …, Gn;D)= I(Gi1;D)+ I(Gi2;D)+…+ I(Gim;D)- I(Gim; 

Gi1, , …, Gim-1)- I(Gim-1;Gi1, , …, Gim-2) -…- I(Gi2; Gi1). (1≤m<n, 1≤i1,i2,…, im≤n). 

We call this new definition of interaction: Conditional Independence and 

Redundancy (CIR) based definition of interaction.  Since I(G;null)=0, when m=1 in 

condition (2), I(G1, G2, …, Gn;D)= I(Gi1;D). If we replace 1≤m<n in (2) with 1≤m≤n, 

then (1) and (2) can be merged as “ ∃ a subset Gi1, Gi 2, …, Gi m of G1, G 2, …, G n, 

p(D| G1, G2, …, Gn)=p(D|Gi1, Gi2, …, Gim), and p(Gi1, Gi2, …, Gim|D)= p(Gi1 |D) 

p(Gi2 |D)…p(Gin|D) ; or equivalently I(G1, G2, …, Gn;D)=I(Gi1;D)+ I(Gi2;D)+…+ 

I(Gim;D)-I(Gim; Gi1, , …, Gim-1)- I(Gim-1; Gi1, , …, Gim-2) -…- I(Gi2; Gi1). (1≤m≤n, 

1≤i1,i2,…, im≤n).” 

If m=n, G1, G 2, …, G n are called (completely) conditionally independent of D; if 

m=1, G1, G 2, …, G n are called completely redundant on D, in this case, I(G1, G2, …, 

Gn;D)=I(Gi1;D); otherwise G1, G 2, …, G n are called partially redundant on and 

partially conditionally independent of D. 

Definition 3.1 shows that the naïve assumption of class conditional independence in 

naïve Bayesian classification is not naïve, it actually assumes that there is no 

interaction among attribute variables on the class variable. 

Definition 3.2 n genotype variables G1, G2, …, Gn form an interaction group on a 

disease status variable D if any two groups of variables derived from a partition of 

them are not conditionally independent of D and for any Gi of them, the following 

equality is violated:  

p(D|G1,…,Gi-1,Gi+1…,Gn)=p(D|G1,G2,…,Gn). 
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3.3.2 Some Properties Related to the New Definitions 

 

Relating to the above definitions, we have the following results: 

Property 3.1 If for a subset Gi1, Gi2, …, Gim of n genotype variables G1, G2, …, Gn 

and a disease status variable D, p(D|Gi1, Gi2, …, Gim)=p(D| G1, G2, …, Gn), (1≤m<n-1, 

1≤i1,i2,…, im ≤n), then p(D| G1,… Gj-1, Gj+1…, Gn)=p(D| G1, G2, …, Gn), {Gi1, 

Gi2, …, Gim}⊂ { G1,… Gj-1, Gj+1…, Gn }. 

Proof: p(D| G1,… Gj-1, Gj+1…, Gn)=∑ +
jG

njj-j , …, G,G,...,GGD,Gp )( 111| = 

∑ +
jG

njjj GGGDpGGGGGp ) ,… ,,|() ,… ,,,...,|( n2111-1 = 

∑ +
jG

imiinjjj GGGDpGGGGGp ) ,… ,,|() ,… ,,,...,|( 2111-1  

= p(D|Gi1, Gi2, …, Gim)=p(D| G1, G2, …, Gn). 

Property 3.2 If any two groups of genotype variables derived from a partition of n 

genotype variables G1, G2, …, Gn  are not conditionally independent on a disease 

status variable D, then any k (3≤k≤n) groups of variables derived from a partition of 

them are also not conditionally independent on D. 

Proof: Assume that there are k groups of variables S1, …, Sk derived from a partition 

of G1, G2, …, Gn which are conditionally independent on D ,where S1∪ …∪ Sk= {G1, 

G2, …, Gn}, then 

                 p(g1, g2, …, gn |D)= p(s1 |D) p(s2 |D)…p(sk |D), 

where si is any combination of values of Si (1≤i≤k), 

          ∑
1

)| ,...,,( 21s n cgggp =∑
1

)|()|()|( 21s k cs…pcs pcsp , 

                  p(s2, …, sk |D)= p(s2 |D)…p(sk |D), 

so p(g1, g2, …, gn |D)= p(s1 |D) p(s2, …, sk |D). 

  This contradicts with the assumption that any two groups of variables derived from 

a partition of G1, G2, …, Gn  are not conditionally independent on D.     

   According to property 3.1 and property 3.2, we have the following equivalent 

definition of definition 3.2. 

Definition 3.2′  n genotype variables G1, G2, …, Gn form an interaction group on a 
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disease status variable D if any two groups of variables derived from a partition of 

them are not conditionally independent on D and for any Gi of them, the following 

equality is violated: 

                  p(d| g1,… gi-1, gi+1…, gn)=p(d| g1, g2, …, gn).                              

Property 3.3 If n random variables X1, X2, …, Xn are conditionally independent on a 

random variable C, then any subset Xi1, Xi2, …, Xis of them have no interaction on C. 

Proof: Since p(x1, x2, …, xn |c)= p(x1 |c) p(x2 |c)…p(xn |c), we have  

p(xi1, xi2, …, xis |c)=∑
jtjj xxx n cxxxp

 ,… , , 21
21

) | ,… , ,( = 

) |()...|()|( 2,…,, 1
21

cxpcxpcxp nxxx jtjj
∑ p(xi1,xi2,…,xis|c)= p(xi1|c) p(xi2|c)…p(xis|c), 

where  { Xj1, Xj2, …, Xjt}={ X1, X2, …, Xn}-{ Xi1, Xi2, …, Xis}. 

Therefore Xi1, Xi2, …, Xis  have no interaction on C. 

 

3.3.3 Measurement of Gene-Gene Interaction  

 

The interaction among n genotype variables G1, G2, …, Gn given a disease status 

variable D can be tested using a 2χ  test. The degree of freedom of the 2χ  test can be 

determined using the limit theorem of 2χ  statistic due to K. Pearson and its 

generalization due to R. A. Fisher [34]. To do so, we first need to prove the following 

property. 

Property 3.4  For a subset Gi1, Gi 2, …, Gi m (1≤m≤n, 1≤i1,i2,…, im≤n) of n 

genotype variables G1, G 2, …, G n, p(D| G1, G2, …, Gn)=p(D|Gi1, Gi2, …, Gim) and 

p(Gi1, Gi2, …, Gim|D)=p(Gi1 |D) p(Gi2 |D)…p(Gim|D) iff p(G1, G2, …, Gn|D)= 

)|()...|(
),...,(

),...,(
1

1

1 DGpDGp
GGp

GGp
imi

imi

n . 

Proof:    

If p(D| G1, G2, …, Gn)=p(D|Gi1, Gi2, …, Gim) and p(Gi1, Gi2, …, Gim|D)= p(Gi1 |D) 

p(Gi2 |D)…p(Gim|D), then 

p(G1, G2, …, Gn|D)=
)(

),...,|(),...,( 11

Dp

GGDpGGp nn =
)(

),...,|(),...,( 11

Dp

GGDpGGp imin = 
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Conversely, if p(G1, G2, …, Gn|D)= )|()...|(
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where {Gj1, Gj2, …, Gjk}={ G1, G2, …, Gn }-{Gi1, Gi2, …, Gim}, so  

p(Gi1, Gi2, …, Gim|D)= p(Gi1 |D) p(Gi2 |D)…p(Gim|D) 

In addition，by using the equation above, we have 

  p(D| G1, G2, …, Gn)= 
),...,(

)|,...,()(

1

1

n

n

GGp

DGGpDp = 
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If  
nm ≤≤1

max {I(Gi1;D)+I(Gi2;D)+…+ I(Gim;D)-I(Gim; Gi1 , …, Gim-1)- I(Gim-1; Gi1,…, 

Gim-2) -…- I(Gi2; Gi1)}= I(G1;D)+ I(G2;D)+…+ I(Gn;D)-I(Gn; G1, , …, Gn-1)- I(Gn-1; 

G1, , …, Gn-2) -…- I(G2; G1)， (1≤  m≤n, 1≤ i1,i2,…, im≤n), we need to test p(G1, 

G2, …, Gn |D)= p(G1 |D) p(G2 |D)…p(Gn|D). In order to use 2χ  test, we transform it 

to p(G1, G2, …, Gn ,D)= p(D)p(G1 |D) p(G2 |D)…p(Gn|D). The test statistic is:  
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where m0,m1,…,mn are the numbers of values of D,G1, G2, …, Gn respectively, k is the 

total number of samples, 
niiik ...10
 is the number of samples when (D, G1, …, Gn)=( i0, 

i1,…, in), 
0i

p
∧

, 0|iij
p
∧

 are the maximum likelihood estimation of 
0i

p , the probability 

of D=i0 , 
and 

0|.iij
p , the probability of Gj=ij given D= i0 , respectively (1≤ j≤n).  

Since there are m0(m1+…+ mn-n)+m0-1 parameters in the test statistic, so in the 

limit, it obeys a 2χ  distribution with m0m1…mn-1-[m0(m1+…+ mn-n)+m0-1]= 

m0m1…mn- m0(m1+…+ mn)+(n-1) m0 degrees of freedom.  

If 
nm ≤≤1

max { I(Gi1;D)+ I(Gi2;D)+…+ I(Gim;D)-I(Gim; Gi1, , …, Gim-1)- I(Gim-1; Gi1, , …, 

Gim-2) -…- I(Gi2; Gi1)}= I(Gj;D), 1≤ j≤n, we need to test p(D|G1, G2, …, Gn )= p(D 
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|Gj ). In order to use 2χ  test, we transform it to p(D, G1, G2, …, Gn )= p(G1, G2, …, 

Gn ) p(D |Gj ).The test statistic is:  

        2χ =∑ ∑∑= = ∧∧
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Since there are m1…mn-1+ mj(m0-1) parameters in the test statistic, so in the limit, it 

obeys a 2χ  distribution with m0m1…mn-1-[m1…mn-1+ mj(m0-1)]=m0m1…mn- 

m1…mn - mjm0+mj degrees of freedom. 

If  
nm ≤≤1

max {I(Gi1;D)+ I(Gi2;D)+…+ I(Gim;D)-I(Gim; Gi1, , …, Gim-1)- I(Gim-1; 

Gi1, , …, Gim-2) -…- I(Gi2; Gi1)}= I(Gi1;D)+ I(Gi2;D)+…+ I(Gim;D)-I(Gim; Gi1, , …, 

Gim-1)- I(Gim-1; Gi1, , …, Gim-2) -…- I(Gi2; Gi1), (1<m<n), we need to test p(D| G1, 

G2, …, Gn)=p(D|Gi1, Gi2, …, Gim) and p(Gi1, Gi2, …, Gim|D) p(Gi1 |D) p(Gi2 

|D)…p(Gin|D). In order to use 2χ  test, according property 4, we transform it to p(G1, 

G2, …, Gn|D)= )|()...|(
),...,(

),...,(
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1
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n , then to p(D ,G1, G2, …, Gn)=

)()|()...|(),...,|,...,( 11)-(1 DpcGpDGpGGGGp imiimimnjj , {Gj1, Gj2, …, Gj(n-m)}={ G1, 

G2, …, Gn }-{Gi1, Gi2, …, Gim}. The test statistic is: 
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Since there are mi1…mim (mj1…mj(n-m)-1)+m0 (mi1+…+ mim-m)+m0-1 parameters in 

the test statistic, so in the limit, it obeys a 2χ  distribution with 

m0m1…mn-1-[ mi1…mim (mj1…mj(n-m)-1)+m0 (mi1+…+ mim-m)+m0-1] degrees of 

freedom. Actually the formula of degrees of freedom for the second case is a special 

case of this formula. 
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3.3.4 An Algorithm to Detect High Order Gene-Gene Interaction 

 

Before we present the algorithm, We first prove the following property and theorem. 

Property 3.5 If two groups of genotype variables {G11, G12, …, G1m} and { G21, 

G22, …, G2n} are conditionally independent of a disease status variable D, then any 

two variables from different groups have no interaction on D. 

 

 

 

 

 

Figure. 3.2 The graphical model representation of property 3.5. (A node represents a 

genotype variable and an edge represents conditional independency.) 

Proof: 

Let G1’ denote “G11,…,G1,i-1,G1,i+1,…,G1m”, G2’ denote “G21,…,G2,j-1,G2,j+1,…,G2n”. 

Since {G11,G12,…,G1m } and { G21,G22,…,G2n } have no interaction on D, we have  

p(G11,G12,…,G1m, G21,G22, …,G2n |D)= p(G11,G12, …,G1m |D) p(G21,G22, …,G2n |D). 

So for any G1i∈{ G11, G12, …, G1m}, G2j∈{ G21, G22, …, G2n}, 

∑ '' 2222111211
21

) | , , , , , , ,(
GG nm DGGGGGGp …… =

∑ '' 2222111211
21

) | , , ,()| , , ,(
GG nm DGGGpDGGGp …… =

∑ ∑' ' 2222111211
1 2

) | , , ,()| , , ,(
G G nm DGGGpDGGGp …… . 

   Therefore p(G1i, G2j |D)=p(G1i |D)p(G2j |D). So G1i and G2j have no interaction on 

D.  � 

Theorem 3.1 For n genotype variables G1, G2, …, Gn , if G1 and G2 are not 

conditionally independent of a disease status variable D, G3 and one of { G1, G2} are 

not conditionally independent of D,…,Gn and one of {G1,G2,…,Gn-1 } are not 

conditionally independent of D, for any Gi of G1, G2, …, Gn, the following equality is 

violated: 

... 

... 

... 

... 
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p(D|G1,…Gi-1,Gi+1…,Gn)=p(D|G1,G2,…,Gn),  

then G1, G2, …, Gn form an interaction group. 

      

           + p(D|G1,…Gi-1,Gi+1…,G5)≠p(D|G1,G2,…,G5) 

 

 

Figure. 3.3 The graphical model representation of Theorem 3.1. (A node represents a 

genotype variable and an edge represents conditional dependency.) 

Proof: If we use a node to represent a genotype variable from G1, G2, …, Gn , an edge 

to mean  that the two variables represented by the two nodes connected by the edge 

are not conditionally independent of D, then nodes representing G1, G2, …, Gn 

respectively and corresponding edges form a connected graph.  

If two groups of variables derived from a partition of G1, G2, …, Gn are 

conditionally independent on D, then according to property 3.5, any two random 

variables from different groups are also conditionally independent on D, therefore 

these two groups are not connected, a contradiction. � 

To search for interaction of more than two genotypes variables on a disease status 

variable, many methods, such as famous MDR (Ritchie et al., 2001; Hahn et al., 2003; 

Nunkesser et al., 2007),  search all combinations of a fixed number of genotype 

variables. This is quite time consuming. Theorem 3.1 sheds light to an easy way to 

find interaction of more than two genotype variables on a disease status variable.                              

The algorithm which we call CIR based algorithm first finds two genotype variables 

which have the biggest interaction on a disease status variable D among all pairs of 

genotype variables in a set of genotype variables A in a training dataset S, i.e., 

arg
ji ≠

max {I(Gi,Gj;D)-max{I(Gi;D) +I(Gj;D) -I(Gi; Gj), I(Gi;D), I(Gj;D)} }  (3.18) 

and add them to a set B which is initialized as empty. Then find the next variable Gk in 

A and not in B according to the following criteria and add it to B: 

k
max {

i
max { I(Gi,Gk;D)-max{I(Gi;D)+  I(Gk;D)- I(Gi; Gk), I(Gi;D), I(Gk;D)}

j
min

{ I(Gj,Gk;D)- I(Gj;D)}}                                            (3.19) 

Interaction group 
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where Gi, Gj∈B, Gk∈A, Gk ∉ B. 

The above process is repeated until the required number of attributes is selected or 

the value of the formula (3.19) is smaller than a threshold. 

A complete description of the CIR based algorithm is shown in Table 3.1. 

Since directly reducing redundancy among n variables on D is difficult and 

unreliable, we approximate this goal by reducing redundancy between two variables 

on D in (3.19), i.e. 
j

min { I(Gj,Gk;D)- I(Gj;D)} is used.   

Using this method, only all combinations of two genotype variables need to be 

searched when gene-gen interactions are being identified. 

Table 3.1 CIR based algorithm 

Algorithm 1: CIR based algorithm 
Input: attributenumber, interactionorder,threshold, 

a training dataset S 
Output: B 
1:  Initialize B as empty. 

2:  (optimalsnp1, optimalsnp2)← arg max umberattributenjiumberattributeni ≤≤+≤≤ 1,1  

{I(Gi,Gj;D)-max{I(Gi;D)+I(Gj;D)-I(Gi; Gj), I(Gi;D), I(Gj;D)} } 
3:  add optimalsnp1, optimalsnp2 to B 
4:  n=2 
5:  repeat 

6:   maxinteraction← max Bkumberattributenk ∉≤≤ ,1 {max Bi∈ {I(Gi,Gk;D)-max{I(Gi;D)+I(Gk;D)-I(Gi;Gk)   

I(Gi;D), I(Gk;D)}} min Bj∈ { I(Gj,Gk;D)- I(Gj;D)}} 

7:   optimalsnp← arg max Bkumberattributenk ∉≤≤ ,1 {max Bi∈ {I(Gi,Gk;D)-max{I(Gi;D)+I(Gk;D)-I(Gi;Gk)   

I(Gi;D), I(Gk;D)}}min Bj∈ { I(Gj,Gk;D)- I(Gj;D)}} 

8:   add optimalsnp to B 
9:    n=n+1 
10: until n= interactionorder or maxinteraction< threshold 
11: return B 

For computational efficiency of the algorithm，if we want to find a k-order 

interaction group,  interaction between any two genotype variables needs to be 

computed when searching the first two interactive genotype variables. The complexity 

is O(mn2), where m is the number of genotype variables and n is the sample size. Then 



40 

these computed interactions can be used to find the third until the kth genotype 

variable in the remaining variables. Since k is much smaller than m, the complexity is 

O(m). So the overall complexity is O(mn2), not relevant to the order k. Therefore the 

time costs for finding interaction groups of different orders are close. 

 

3.4 Experimental results and analysis 

 

3.4.1. Experiments on Simulated Datasets  

 

3.4.1.1. Program gs 2.0 

 

Since the true risk of SNPs for most complex diseases are unknown, real world data is 

not especially useful for assessing performance. For this reason, most approaches are 

evaluated based on experiments using realistically simulated data for performance 

evaluation (Assareh et al., 2012). Here we use the program gs 2.0 (Li and Chen, 2008; 

Chen and Li, 2012) to generate simulated data to test the usefulness of the new 

definition of gene-gene interaction and the performance of the proposed CIR based 

algorithm. 

The program gs 2.0, can quickly generate a large number of samples based on real 

data that share similar local linkage disequilibrium (LD) patterns as those that can be 

found in human populations. It is aimed at providing a public available program to 

compare results from different research groups.. It can be used to implement various 

interaction models. 

Two heuristic methods have been used to generate samples with haplotype/ 

genotype data. One generate samples from haplotype pairs and the other from patterns 

of haplotype block structures. 

 In the first approach, a disease model is first created by using the disease allele 

frequency (DAF) and the penetrance of each genotype or alternatively the population 
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prevalence and genotype relative risks. There is a simple relationship between these 

two sets of parameters. Then a SNP t with the frequency of one allele approximately 

equal to the specified DAF is selected from the input data such as the haplotype results 

from the HapMap project or alternatively a SNP at a particular locus can be specified 

as the disease susceptibility locus. Its genotype g is generated based on the conditional 

probability of each genotype given that the disease is present: 

             Pr(gi |case)=Pr(gi)Pr(case| gi)/ Pr(gj) Pr(case| gj), 

where Pr(gi) is the frequency of genotype gi obtained from allele frequencies under the 

assumption of Hardy-Weinberg equilibrium and Pr(case| gi), the probability of a case 

given a specific genotype is a user specified penetrance parameter. The haplotype pairs 

h1 and h2 for this case are generated by randomly selecting two haplotypes h3 and h4 

from the inputs having genotype equal to g at the disease locus t. The haplotype h1 has 

the same alleles as h3 from locus t-ll to t+lr, where lmin ≤ll ,lr≤lmax with lmin and lmax 

being specified by users. The values of ll and lr are specified based on the strength of 

local LD.The value of lr is set to lmin at first, then it will be increased by 1 

continuously until the LD measure D’ between locus t+lr and locus t+lr+1 is smaller 

than a random number which follows a uniformly distribution between 0 and 1 or 

when lr=lmax. The values of ll can be obtained in a same way on the opposite direction. 

The haplotype h2 can be determined similarly as h1. The process can be repeated to 

generate the specified number of cases. Normal individuals can be generated in the 

same way based on the genotype’s conditional probability given that the disease is 

absent. Two parameters lmin and lmax are adopted to make it possible to consider both 

long-range LD and short-range LD. 

  For dense SNPs, a block-like structure of LD patterns is common. Therefore in the 

second approach, the haplotype block structures rather than haplotype pairs are used as 

inputs. Each block is a Markov chain state consisting of several common haplotypes 

with their population frequencies. A transition probability matrix describes the 

connection patterns between haplotypes in adjacent blocks. A pair of common 

haplotypes with the genotype at the disease locus generated based on the conditional 

probability will be selected based on their frequency distribution. Then they will be 
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extended independently to both directions according the transition probabilities. The 

process will be repeated to generate a required number of samples having similar LD 

patterns with real data but different haplotypes and genotypes. SNPs that are not in any 

blocks and rare haplotypes not appearing the input block file are also considered to 

maintain a proper level of variety. 

These two approaches can be extended to multi-locus disease model in a similar 

manner. 

 

3.4.1.2. Evaluation of the New Definition of Gene-Gene Interaction 

 

 In the first experiment, two different two locus models, the threshold model and the 

exclusive OR model (Table 3.2), were simulated. For each model, one pair of SNPs 

was simulated as a causal factor among all possible combinations. Minor allele 

frequencies (MAF) and effect size (θ) varied with fixed sample size (200 cases and 

200 controls), SNP number (882 SNPs) and baseline (α=0.01). Hit ratio which is 

defined as the proportion of replicated datasets with which the true causal SNPs are 

detected as the best SNPs among all possible same number of SNPs is used to measure 

the effectiveness of the new definition of gene-gene interaction. Hit ratios of CIR 

based definition are compared with that of IG based definition of interaction.  

 Table 3.2 Penetrance table for two two-locus interaction models 

Threshold BB   Bb    Bb 

     AA    α α α 

     Aa α α(1+θ) α(1+θ) 

     Aa α α(1+θ) α(1+θ) 

Exclusive OR BB   Bb    Bb 

     AA α α α(1+θ) 

     Aa α α α(1+θ) 

     Aa α(1+θ) α(1+θ) α 

Table 3.3 and Table 3.4 are the results of the first experiment.  
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From these two tables, we can see that except for MAF=0.1, in most cases, these 

two models can be detected with high hit ratios with CIR based definition and hit 

ratios of CIR based definition are generally higher than that of IG based definition. 

Table 3.3 Hit ratios for threshold model                                          

   MAF  

θ Method 0.1 0.3 0.5 

9 CIR 0 0.41 0.94 

 IG 0 0.1 0.47 

19 CIR 0 0.48 0.93 

 IG 0 0.13 0.61 

49 CIR 0.05 0.7 0.93 

 IG 0 0.1 0.79 

 

Table 3.4  Hit ratios for exclusive or model 

   MAF  

θ Method 0.1 0.3 0.5 

9 CIR 0 0.59 0.99 

 IG 0 0.4 0.99 

19 CIR 0 0.59 1 

 IG 0 0.53 1 

49 CIR 0.01 0.71 1 

 IG 0 0.75 1 

 

3.4.1.3. Type I error 

 

To determine type I error rates, the null datasets with no causal pair of SNPs were 

simulated for different sample sizes (n=200, 400 and 800) and different SNP numbers 

(m=10, 20, 30). Permutation P values of the identified strongest interaction pair of 
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SNPs were calculated by permuting disease status of each dataset 1000 times. The 

ratio of the permutation 𝑃 values smaller than the significance level 𝛼=0.05 in 1000 

replicates is calculated as the type I error rate. The number of the permutation ensured 

its accuracy to one decimal place when expressed in percent. 

Results given in Table 3.5 show that CIR based definition has type I error rates 

tightly gathering around 5% with a range from 4.2% to 5.7%, better than that of IG 

based definition (from 3.5% to 5.4%). Therefore CIR controls type I error better. 

TABLE 3.5 Type I error rate with the significance level 𝛼 of 0.05 from datasets with 

1000 replicates 

 

 

 

 

 

 

 

 

 

 

 

3.4.1.4. Evaluation of the Proposed Algorithm 

 

In the third experiment, two three-locus epistasis models (Table 3.6 and Table 3.7) 

were simulated. Three SNPs were simulated as causal SNPs among all possible 

combinations. MAF and effect size (θ) varied with fixed sample size (100 cases and 

100 controls), SNP number (441 SNPs) and baseline (α=0.01). The performance of 

CIR based algorithm is compared with that of IG based algorithm (using IG to 

measure interaction) and MDR method. Figure 3.4 and Fig. 3.5 are the results of the 

third experiment.  

   n  

m Method 200 400 800 

10 CIR 5% 4.2% 5.1% 

 IG 4.2% 3.5% 5.4% 

20 CIR 5.3% 5.7% 5% 

 IG 4.8% 5.3% 4.8% 

30 CIR 5.4% 5.6% 4.2% 

 IG 5.4% 5.3% 3.9% 
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Also, from these two figures, we can see that except for MAF=0.1, in most cases, 

these two three-locus epistasis models can be detected with relatively high hit ratios 

in general and the performance of CIR based algorithm is better than that of IG based 

Table 3.6 Penetrance table for the first three-locus interaction model                 

 

       

 

 

 

 

 

 

         

 

Table 3.7 Penetrance table for the second three-locus interaction model 

 

 

 

 

 

 

 

 

 

 

 

 

algorithm and MDR in most cases (in the figures the value is 0 where there is no 

rectangle). Actually for Figure 3.4, besides for MAF=0.1, θ=9 and 19 where all three 

Genotype  BB  Bb  bb 

AA CC α CC α CC α 

 Cc α Cc α Cc α 

 cc α Cc α cc α(1+θ) 

Aa CC α CC α CC α 

 Cc α Cc α(1+θ) Cc α 

 cc α Cc α cc α 

aa CC α(1+θ) CC α CC α 

 Cc α Cc α Cc α 

 cc α Cc α cc α 

Genotyp

e 
 BB  Bb  bb 

AA CC α CC α CC α(1+θ) 

 Cc α Cc α Cc α 

 cc α(1+θ) cc α cc α 

Aa CC α CC α CC α(1+θ) 

 Cc α Cc α(1+θ) Cc α 

 cc α cc α cc α 

aa CC α CC α CC α 

 Cc α Cc α(1+θ) Cc α 

 cc α(1+θ) cc α cc α 
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methods have 0 hit ratios, MDR also has 0 hit ratios in other five scenarios, therefore 

the proposed algorithm is more powerful than MDR in nine scenarios in the remaining 

thirteen scenarios. Similarly for Figure 3.5, the proposed algorithm is more powerful 

than MDR in a majority of scenarios. In addition the ratio of execution time of MDR 

versus CIR based algorithm is about 150:1, so CIR based algorithm is much more 

efficient than MDR. 

The proposed algorithm is based on a more reasonable definition of gene-gene 

interaction which would increase hit ratio and utilizes the relation between high order 

interaction and low order interaction under some conditions and search high order 

interactions by searching low order interactions which would improve efficiency but 

may decrease effectiveness, whereas MDR searches high order interactions directly. 

Therefore MDR may occasionally attain a higher hit ratio than the proposed algorithm. 

  
Figure 3.4 Hit ratios for the first three locus epistasis model 

 

 

Figure 3.5 Hit ratios for the second three loci epistasis model 
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The reason for the peak to appear in Figure 3.2 at MAF=0.2 is that for the first three 

locus epistasis model, when MAF=0.3, two of the three causal markers have 

neighboring loci, leading to strong linkage disequilibrium, i.e., strong redundancy and 

therefore resulting in low hit ratios for all algorithms. 

Table 3.8 and Table 3.9 show the average ratios of the values in (3.19) of the fourth 

selected gene to the third selected gene for 100 replicates when the true causal SNPs 

are selected for these two models. These ratios are much smaller than one in most 

cases. So in these cases three SNPs rather than other number of SNPs are selected as 

causal SNPs. 

Table 3.8 Average ratios for the first three locus epistasis model 

         

                 

 

 

 

 

“-”  represents that hit ratios are 0s in these cases, so there are no such average ratios. 

Table 3.9 Average ratios for the second three locus epistasis model 

 

 

 

 

 

 

“-”  represents that hit ratios are 0s in these cases, so there are no such average ratios. 

To test the sensitivity of the algorithm scale with the order of interaction, we have 

done experiments to search for interaction groups with orders ranging from 3 to 6, 

MAF=0.2 and 0.4, θ=19 and 49, sample size=400 (200 cases and 200 controls). The 

high risk genotype combinations are 133, 222 and 311 for the 3-order interaction 

model, 1133, 2222 and 3311 for the 4-order interaction model, 11333, 22222 and 

   MAF   

θ 0.1 0.2 0.3 0.4 0.5 

9 -* 0.71 0.81 0.28 0.28 

19 - 0.99 1.49 0.13 0.07 

49 0.63 0.14 0.87 0.09 0.05 

   MAF   

θ 0.1 0.2 0.3 0.4 0.5 

9 -* 0.89 0.67 0.57 0.83 

19 - 0.30 0.82 0.18 0.73 

49 0.551 0.25 0.34 0.26 0.24 
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33111 for the 5-order interaction model, 111333, 222222 and 333111 for the 6-order 

interaction model respectively, where “1” represents the common homogeneous 

genotype, “2”, the heterogeneous genotype and “3”, the minor homogeneous genotype. 

Figure 3.6 shows the hit-ratios for these models. 

   Generally the hit ratios decrease with the increase of the order of interaction and 

the decrease of MAF or θ. The computational costs are close for different orders. 

        

                  
Figure 3.6 Hit ratios for different orders of epistasis models 

 

3.4.2. Experiments on a Real Datasets 

 

A real data set of malaria cohort study, conducted by Williams et al in Kenya 

(Williams et al, 2005) was used to further show the effectiveness of the proposed new 

definition. Two conditions of the hemoglobinopathies were previously found to protect 

against severe and fatal P. falciparum malaria. One is structural variant hemoglobin S: 

heterozygote HbAS (homozygote HbSS is not considered since it can lead to 

premature death) and the other is reduced production of the normal α-globin 

component of hemoglobin， α+-thalassemia, which is caused by two variants: 

heterozygote -α/αα and homozygote -α/-α. However a negative epistatic interaction 

was found between HbAS and a+-thalassemia on malaria infection (Table 3.10). 

Interaction order
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From Table 3.10, we can get MAF for α-globin component is 0.407, while for 

hemoglobin, since homozygote HbSS is not considered, the percentage of HbAS can 

be computed, which is 0.147. Both are above 0.1, so it’s appropriate to test 

interaction here. 

Let G1 denote hemoglobin type, G2 denote α+-thalassemia genotype, D denote 

malaria infection status.   

For malaria admission, I(G1;D)=0.009979, I(G2;D)=0.001299, I(G1;D)+I(G2;D)- 

I(G1;G2)=0.01108, max{I(G1;D), I(G2;D), I(G1;D)+I(G2;D)-I(G1; G2)}=I(G1;D)+ 

I(G2;D)-I(G1; G2), therefore p(G1 G2)|D)=p(G1|D)p(G2)|D) should be tested. The 

corresponding 2χ  value is 18.08, the degree of freedom is 2×2×3-2×(2+3)+2=4, so 

P=0.00119. 

Table 3.10 Malaria admission and severe malaria by hemoglobin type and a+- 

thalassemia genotype. (Williams et al, 2005). 

 

 

 

 

 

 

 

 

 

   For severe malaria, I(G1;D)=0.2643, I(G2;D)=0.2628, I(G1;D)+I(G2;D)-I(G1;G2) 

=0.5269,  max{I(G1;D), I(G2;D), I(G1;D)+ I(G2;D)-I(G1; G2)}= I(G1;D)+ I(G2;D)- 

I(G1;G2), therefore again p(G1 G2 |D)=p(G1 |D) p(G2 |D) should be tested. The 

corresponding 
2χ  value is 21.81, the degree of freedom is also 4, so P=0.000219. 

Both P values computed by our proposed measure of gene-gene interaction are 

much smaller than those of Wald test for interaction given in Williams et al, 2005 (P 

values are 0.026 and 0.0012 respectively), providing more confidence to rejecting the 

Hb 
α-globin 

component 
n 

Malaria 

admission 

Severe 

Malaria 

HbAA αα/αα 626 168 67 

 -α/αα 867 187 53 

 -α/-α 302 56 17 

HbAS αα/αα 113 6 0 

 -α/αα 150 9 2 

 -α/-α 46 10 5 
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null hypothesis that there is no interaction between hemoglobin type and 

α+-thalassemia genotype on malaria infection.  

For MDR and IG there are no statistics by now to test the null hypothesis that there 

is no interaction among a set of markers. This is also an advantage of the proposed 

approach over MDR and IG. 

 

3.5. Conclusion  
 

In this chapter, we present a new definition of gene-gene interaction according to an 

inequality and the corresponding definition of an interaction group. We identify three 

cases where there is no interaction among genes. Based on these new definitions, we 

also derive a statistic to measure gene-gene interaction. Experimental results using the 

proposed definition of gene-gene interaction with simulated data show that our new 

definition of gene-gene interaction can effectively identify two locus gene-gene 

interaction models among a large number of SNPs. The experiments with the real data 

sets also show the effectiveness of our proposed measure of gene-gene interaction. 

With the increase of the number of interaction genes, the number of possible 

combinations of interaction genes increases exponentially, and the number of sparse 

cells also increases. A new algorithm is therefore proposed based on the new 

definition of gene-gene interaction to detect high order gene-gene interactions. 

Experimental results show that this algorithm can effectively detect many high order 

gene-gene interactions with high efficiency. 

If n genotype variables G1, G2, …, Gn are independent of a disease status variable D, 

i.e. p(D| G1, G2, …, Gn)=p(D), then we can prove that any subset Gi1, Gi2, …, Gis of 

them are also independent of D. Therefore, it is appropriate to define G1, G2, …, Gn to 

have no interaction on D when they are independent of D. However in this case, we 

have p(D| G1)=p(D)=p(D| G1, G2, …, Gn), the condition (2) in definition 1 is satisfied, 

so it is not listed out separately in definition 1.  

In the proposed CIR based algorithm, we use an approximate method to reduce 
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redundancy among genes by reducing redundancy between two genes. Experiment 

results show that it greatly increases hit ratios. Unlike (Ding and Peng, 2005) where 

I(Gi,Gj) is used to measure redundancy between two genes Gi and Gj, we use 

I(Gi,Gj;D)-I(Gi;D) instead, where Gi is a gene already selected, C is the disease status 

variable, and the performance is much better. 

One limitation of the proposed algorithm is that it could not detect high-order pure 

epistasis. However, it can detect many other epistases with very high efficiency, as 

demonstrated in our experiments. Also high-order pure epistasis has not been 

identified by now and “lower-order effects” are considered by many existing work, 

including the ones described in (Shang et al., 2016), as effective ways to approximate 

effects of higher-order. In addition, we can detect high order epistasis with our 

proposed algorithm first, if no satisfactory result can be obtained, we can continue to 

detect pure epistasis with the definition directly, although it may require more 

computational effort 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 

Chapter 4 
An Extended Fuzzy Classification Method 

for Identifying Gene-Gene Interactions 
Associated with Complex Quantitative 

Traits 
 

4.1 Introduction 
 

Like complex diseases, complex quantitative traits (QTs) are also usually associated 

with genetic variants, mainly single nucleotide polymorphisms (SNPs) or simple 

sequence length polymorphic markers (SSLPs). The majority of innate and acquired 

body and behavioral characteristics such as height, weight, learning, memory and 

emotions, are complex traits. Many physiological characteristics such as blood 

pressure and body temperature are also reflected by complex traits. In addition, most 

diseases such as hypertension, diabetes, obesity, cancer and neuropsychiatric 

disorders exhibit various symptoms through complex traits.  

In many cases, complex QTs with continuous outcomes can provide more accurate 

analysis. 

The Multifactor Dimensionality Reduction (MDR) method was originally 

proposed as a nonparametric and model-free data reduction approach for identifying 

interactions without significant main effects and has been successfully applied to 

identify gene-gene interactions in many common complex diseases (Ritchie et al., 

2001; Moore, 2004; Moore et al., 2006). 

Some efforts have been made to extend MDR to QTs. 
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4.2 Related works 
 

The combinatorial partitioning method (CPM) (Nelson et al., 2001) was proposed 

to identify sets partitions of multi-locus genotypes for predicting variation in 

quantitative trait levels. 

Let M be a subset of L loci that are measured for a sample and corresponding 

lower letters denote their sizes, GM denotes the set of m-locus genotypes with size gM. 

Let K be a set of k genotypic partitions which is a partition of all the possible m-locus 

genotypes, 2≤k≤gM. CPM searches over the state space made up of all possible sets 

of genotypic partitions of the GM genotypes obtained from each subset M of L total 

loci to identify m loci that divide gM genotypes into k partitions with the mean of a 

quantitative trait having most similar values within and most dissimilar values 

between partitions. 

The process is composed of three steps.  

The first step is to search all possible k sets of genotypic partitions that partition 

m-locus genotypes for all subsets of l loci with k ranging from 2 to gM. The number 

of k sets of genotypic partitions is a Stirling number of the second kind: 

                 S(gM,k)= ∑
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The sum of the squared deviations of the trait means of the partitions from the trait 

mean(SSk) of overall sample is used as a statistical measure of phenotypic 

characteristics of each set of genotypic partitions to evaluate the state space. The 

value of this measure increases when the similarities of trait values within genotypic 

partitions increases and the differences between partitions increase. The partition sum 

of squares will increase with the increase of k, giving advantage to a greater number 

of partitions of genotypes. To compensate for this bias, a bias-corrected estimate of 

genotypic variance (Boerwinkle and Sing 1986) is used: 
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where n is the sample size, 
−
Y is the sample mean, ni and iY

−
 are the sample size and 

mean of partition I respectively, Yij is the phenotype of the jth individual in the ith 

partition, and MSW is the mean squared estimate of the phenotypic variability among 

individuals within genotypic partitions. In this formula, the partition sum of squares 

increasing with k is penalizes by a term also increasing with k if the estimate of MSW 

does not decrease as additional partitions are considered. The ratio of variability 

explained by a set of genotypic partitions can be computed as: 

                        pγK=
2

2
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s =
WK

K

MSs

s
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2

                      (4.3)  

Some criterion (such the significance level of an F-test, biological significance or 

some proportion of all of the sets considered) is used as a filter to select sets of 

genotypic partitions for further consideration.  

To control estimate bias of partition means and deviations caused by sparse 

partitions with a few individuals due to low frequency alleles, a partition with the 

number of individuals below a lower bound is filtered out. 

The second step is to validate those retained sets of genotypic partitions. Multifold 

cross-validation is employed for validation. The predictive ability of a set of 

genotypic partitions is evaluated by the cross-validated proportion (pvK,CV) of the trait 

variability it explains. Larger pvK,CV implicates more predictability of the set. 

The third step is to select a subset of the validated sets of genotypic partitions as 

classifiers according to some criteria. 

The Restricted Partition Method (RPM) is proposed to improve the CPM 

(Culverhouse et al., 2010). It detects multi-locus genotypes as predictors of a 

quantitative trait by a partitioning of genotypes into subgroups. 

The CPM has two drawbacks. One is its prohibitive computational burden due to 

huge number of partitions possible with multiple loci when 3-way or above 

interactions are to be analyzed. Another one is its permutation testing method to 

evaluate the statistical significance of the models. Since this method needs many 

(usually 1000) permutations of the data set to generate a null distribution, it makes 
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the computational burden increase by orders of magnitude. 

Realizing that most of the computational burden associated with the CPM can be 

avoided, the RPM tries to partition the genotypes in the most reasonable way for 

evaluation that makes a tradeoff between maximization of the between group 

variation with minal number of groups and the within group variation. 

The RPM employs an iterative search procedure to search the best way to partition 

the genotypes by merging most similar groups of genotypes in each iteration, rather 

than exhaustively search all possible partition of multi-locus genotypes. The 

similarity of different groups of genotypes is based on a multiple comparisons test of 

the mean values of their quantitative trait. The algorithm includes the following steps: 

Step 1. Initially, each multi-locus genotype forms a group. 

Step 2. A multiple comparisons test is performed to determine the similarity of 

mean quantitative trait values between any two groups of genotypes. The algorithm 

ends if all groups have significantly different means  

Step 3. Merge the pair of groups which have most similar mean values to form a 

new group. 

Step 4. Return to step 1. 

The importance of the final partition can be measured by estimating the R2 value 

for the model of the quantitative trait value regressed on the final genotype groups. 

For each iteration, before the algorithm ends, the number of groups is reduced by 

one by merging two groups. Thus the algorithm will end after at most n-1 iterations if 

there are initially n genotypes. Therefore the RPM is much more efficient than the 

CPM. 

To measure statistical significance of the final partition, P values for the R2 values 

are estimated using a permutation test. The trait values in the original data are 

permutated and then the RPM is executed. Significance is estimated by the frequency 

with which the R2 value from the original data exceeds the permuted R2 values. 

The generalized MDR (Lou et al., 2007) extends MDR to continuous phenotypes 

and includes covariate adjustment. 

A phenotype which is dichotomous for a disease and continuous for a quantitative 
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trait can usually be represented by a generalized linear model with respect to genes 

and covariates in the exponential family of distributions including the normal, 

Poisson, and Bernoulli distributions.  

Suppose yiis the phenotype of individual i, μi=E(yi), the expectation of yi, then we 

have 

                         θ(μi)=α+ T
ix β+ T

iz γ                      (4.4) 

where θ(μi) is an appropriate link function, α is the intercept, xi is the vector that 

represents gene-by-gene and/or gene-by-environment interactions, zi is the vector 

representing for covariates, and β and γ are the parameter vectors. For dichotomous 

phenotypes having a Bernoulli distribution, the link function is the logit, 

                        θ(μi)=log[
i

i

-1 µ
µ ]                       (4.5) 

For continuous phenotypes having a normal distribution, the link is the identity. 

The probability functions of exponential family models coud be expressed as 
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where f(·), g(·), and h(·) are known functions, θ is the link function, a function of the 

expectation μ of Y. Therefore the log likelihood for independent observations yi, 

i=1,2,…,n, can be written as  

                   logL(y|Ω)=∑
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where y is the vector of observations, Ω is the vector of parameters, Ω=(α, β, γ), and 

f[θ(μi)] is a function of θ(μi) with the property that ∂ f[θ(μi)]/ ∂ θ(μi)=μi.. a(ф) and 

c(y,ф) don’t appear because they make no difference for score defined as the 

following first partial derivative of the log-likelihood, 
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where p∈Ω. The residual score vector can be obtained by setting β=0 in model (1),  

               ）,0,（ 00
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− µ  is the contribution of individual i to the score 

for βj. 

The score-based statistics for individual i is defined as normalized contributions: 
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where )( iyVar
∧

 is the estimated variance of yi. 

In the GMDR method, the ratio of cases to controls is replaced by the score in 

each genotype combination or cell to classify it into a high-risk group or low-risk 

group and calculate classification accuracy and prediction error. First each individual 

has its score computed under the null hypothesis, H0: β=0. Then the scores of 

individual are summed within each genotype combination and each genotype 

combination is assigned to either a “high-risk” group if the average score is greater 

than or equal to a preassigned threshold T (e.g., 0) or a “low-risk” group otherwise. 

The scores are also used to identify the best model. 

This method is flexible in the use of covariates, different study designs, and 

various kinds of phenotypes including continuous, dichotomous and other 

phenotypes. It can also be employed for unbalanced case-control, random, and 

selected samples. In addition to score functions, other statistics, can also be used. 

In Model based MDR (MB-MDR) (Calle et al., 2008), MDR is extended to 

continuous outcomes by using parametric regression. 

Although MDR increase the power to identify significant gene-gene interactions 

by partitioning genotype combinations into only two groups, high-risk and low-risk 

groups, it has some limitations. 

  First, some important interactions could be missed. Any cell having a 

cases/controls ratio above the global threshold will be assigned to high risk group no 

matter its size of the ratio is. This will lead to missing some cells with significant 
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association with the disease when they are combined with not significant ones. When 

combining together, the ratio of the number of cases and controls is similar to that in 

the overall sample. False positive will also appear if there are a few individuals for 

both cases and controls in a genotype combination. Therefore more specific 

alternative hypotheses needs to be considered to increase the power for 

high-dimensional data. 

  The second limitation is its lack of adjustment for main effects. For a detected 

interaction by MDR, it is difficult to decide whether it is because of the main effects, 

or because a real epistatic interaction. 

  The third one is its lack of adjustment for confounding factors. MDR can not 

identify confounding factors without conducting a stratified analysis. However it is 

important to adjust for confounding factors when two populations not perfectly 

matched are compared. 

  The fourth one is that it can only be applied to binary outcomes while gene-gene 

interactions associated with other kind of outcomes, such as time-to-event variables, 

which also often appear in practical applications. 

  The fifth one is its computational burden to evaluate significance. The 

cross-validation consistency or the average balanced predictive accuracy used in the 

permutation test to evaluate significance is not invariant reference statistics and 

therefore the construction of the specific permutation null distribution for any 

particular case is required. 

  Finally, MDR has low power when there are genotyping error, missing data, 

phenocopy and genetic heterogeneity. 

  To overcome these limitations, Model-Based Multifactor Dimensionality 

Reduction (MB-MDR) only assigns cells showing significant different cases/controls 

ratio from the global threshold to the high or low risk group. Those cells which have 

a cases/controls ratio close the global threshold or have small sample size are 

assigned to an additional category, that of no evidence of risk. The procedure of 

MB-MDR is as follows: 

  Let each multifactor cell be denoted by cj , where 1≤j≤N, N is the total number of 
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multifactor cells. 

Step 1: 

 Each genotype cell, cj , is labeled as High risk (H), Low risk (L) or no evidence (0) 

according to its Odd Ratio (ORj). The null hypothesis is ORj =1. This association test 

can either be nonparametric (chi-squared test) or parametric (logistic regression) and, 

adjustment for main effects and confounder factors can be performed for the latter 

one. 

Cells with an OR of individuals in that cell versus the rest of individuals 

significantly greater than 1 and smaller than 1 (a p-value smaller than 0.10) are 

labeled as High risk and Low risk respectively. A conservative threshold of 0.10 is 

used because the power to detect association using individual cells is very limited. 

Cells with a p-value larger than 0.1, are labeled as zero. 

A new variable X taking values H, L, or 0 is therefore created. 

Step 2:  

This new predictive variable X on the outcome variable Y leads a new association 

test. This can also be a nonparametric test (chi-squared test) or a parametric one 

(logistic regression). Odds ratios for risk categories can be obtained to test the 

significance of association. 

Step 3: 

  Since after combining cells the statistic don’t follow chi-squared distribution, 

the Wald statistic is employed to test the association instead. The raw p-value should 

be adjusted for the number of cells combined in each risk category. Permutation null 

distributions are invariant distributions for interaction of different orders conditional 

on the number of combined cells. Therefore they could be tabulated and used in 

future applications. 

There are also methods based on information theory. In (Chanda et al., 2009), a 

method based on two information-theoretic metrics, the k-way interaction information 

(KWII) and phenotype-associated information (PAI) is developed for identifying 

gene-gene and gene-environmental interactions associated with quantitative traits. In 

(Yee et al., 2015), as an extension of information gain, a nonparametric evaluation 
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method of conditional entropy of a quantitative phenotype associated with a given 

genotype is proposed.  

However none of the above methods is computationally efficient. 

In Quantitative MDR (QMDR) (Gui et al., 2013), to exploit continuous outcomes to 

make the analysis more accurate, a test statistic, rather than the balanced accuracy, is 

used to determine the best interaction model. 

To examine a k-order interaction, K SNPs are selected from a dataset which has m 

SNPs. The mean value of the phenotype for each genotype combination of the K 

SNPs is calculate and compared with the overall mean of the phenotype. The 

genotype combination is labeled high-level if its mean value is larger than the overall 

mean or low-level otherwise. Therefore all genotype combinations are reduced to an 

attribute which has two categories: high-level and low-level. Rather than balanced 

accuracy, a T-test is used to compare phenotype mean values between high and low 

level groups. The value of the T-test is then used as a training score to select the best 

interaction model and the best overall model is selected using the maximum testing 

score. The permutation method can be further used to determine whether the selected 

best overall model has a significant level to be considered to have association with 

the phenotype. 

This is a computationally efficient algorithm. However this method still classified 

the outcome into two groups: high and low level groups, which results in the loss of 

the large variability of the quantitative outcome. 

Also there are few methods applied to ordinal categorical traits. Ordinal categorical 

traits such as the obesity classification based on body mass index (e.g., normal, 

pre-obese, mild obese and severe obese), the diabetes diagnosis based on glucose 

level (e.g., normal, impaired glucose tolerance and diabetes) are common in many 

genetic association studies. These traits are also derived from quantitative traits. In 

Ordinal MDR (OMDR) (Kim et al., 2013), MDR is extended to analyze gene-gene 

interaction for ordinal traits and tau-b (Agresti and Kateri, 2011), a common ordinal 

association measure, is used to replace balanced accuracy to evaluate interactions. 

However the tau-b measure only measures the degree of tendency of positive 
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association between true categories of an ordinal trait and predicted categories and 

doesn’t consider the difference between true categories and predicted categories. 

In order to better use the information contained in QTs, we first classify the 

quantitative outcome into several (greater than two) ordinal levels. Then an extended 

MDR is used to identify gene-gene interactions on this converted ordinal categorical 

trait. Rather than using balanced accuracy or common ordinal association measures, 

such as tau-b, we use an extended fuzzy classification method to select the set of 

genetic markers as having strongest associations with the trait. Usually for each 

prediction of a category, its accuracy value is either 1, if the prediction is right, or 0, if 

the prediction is wrong. However for quantitative or ordinal traits, when the 

prediction is wrong, the closeness of different quantitative values to the true category 

is different. To reflect such difference, member functions of fuzzy sets could be 

employed to compute accuracy in classification. Since the range of a member function 

is between 0 and 1, to better describe the difference of quantitative values to a 

category, we extend its range to [-1, 1] when it is used in fuzzy classification. 

  In this paper, a new kind of member functions which have an extended output 

range from -1 to 1 are proposed to be used in fuzzy classification first. Then Extended 

Fuzzy Quantitative MDR (EFQMDR) algorithm is given to strengthen identification 

of gene-gene interactions associated with QTs. This algorithm first transforms a 

quantitative trait into an ordinal trait and then selects multiple best sets of SNPs as 

having strongest association with the trait using such kind of member functions in the 

extended MDR. To test the performance of the proposed algorithm, we use it to 

identify five different interaction models in simulated data and compare success rates 

with three other methods. We also use it in two real data sets to select multiple SNPs 

having strong association with the trait and compare balanced test accuracy and 

consistency with the same three other methods. 
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4.3 Methods 

 

4.3.1 Extended fuzzy classification using extended member 

functions 

 

Real world is complicated, we usually couldn’t get or handle simultaneously abundant 

information to make prediction. Therefore fuzzy set theory proposed by Zadeh (Zadeh, 

1965) founds its application in many areas where information is imprecise, such as 

control theory (Tanaka and Sugeno, 1992; Tanaka and Wang, 2004; Procyk and 

Mamdani, 1979), data mining (Gustafson and Kessel, 1978; de Oliveira and Pedrycz, 

2007; Timm et al., 2004), medicine and bioinformatics (Barro and Marín, 2002; 

Phuong and Kreinovich, 2001; Angela and Nieto,2006; Dembélé and Kastner, 2003). 

As an extension of classical set theory where an element has a dichotomous relation 

with a set:it can either belong to it or not, fuzzy set theory allows an element to 

partially belong to a set to reflect imprecise situations. Such a relation can be 

described using a membership function with its values between 0 and 1. Let A be a 

fuzzy set in the universal space X, its elements can be described using an ordered 

pairs (x, μA), where x∈X, μA is a membership function taking values on [0,1] and 

representing the degree of membership of x belonging to X. The classical set can be 

considered as a special case of the fuzzy set where its membership function can take 

on only the value 1, if x belongs to A, or 0 if x does not belong to A. Therefore the 

membership function of a classical set reduces to the indicator function IA(x) of a set 

A. 

  In addition to genetic factors, QTs are also related to many other factors. Genetic 

factors related to a specific QT could not determine alone a value of a QT precisely. 

Therefore an appropriate way to predict the value of a QT with genetic factors relating 

to it is to classify it into several categories and predict its category. To fully utilize the 

information contained in a QT, each category can be represented by a fuzzy set and 
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the relation of a QT with a category can be described using a membership function 

rather than a binary status. 

By introducing these fuzzy sets, training balanced accuracy used to select the best 

classifier can be replaced by training balanced accuracy based on member functions to 

reflect partial membership of a sample with a particular genotype combination to the 

category labeled to this genotype combination, while the original MDR assigns either 

0 or 1 to a sample to reflect its accuracy to be classified as the category labeled to its 

genotype combination. Training balanced accuracy used in MDR is a special case of 

training balanced accuracy based on member functions when the indicator function is 

used as the member function. 

A variety of member functions have been proposed for fuzzy sets. Two popular 

types are linear and sigmoid. In this paper, linear member functions are used. Here as 

an example, we divide a QT into three categories or levels: high(H), average(A) and 

low(L) associated with three fuzzy sets using equal length intervals, as shown in 

Figure 4.1.  

 
Figure 4.1 The linear membership functions of high(H), average(A) and low(L) levels 

of a QT. 
Let Qmin and Qmax denote the maximum and minimum values that a QT takes on in 

all samples in a dataset. B1 and B2 are upper borders of the low level and the average 

level respectively. P1 ,P2 and P3 are the middle positions of the low level, average 

level and high level respectively can be derived as follows: 
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P2=
2

21 BB +                          (4.12) 

P3=
2

max2 QB + .                        (4.13) 

Then member functions for L,A and H levels in Fig.1 can be expressed as:  
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Membership functions of fuzzy sets can also be used as an accuracy measure in 

fuzzy classification. For example, when different values are classified to the high 

level, we can get different accuracies between 0 and 1 from μH1(x). However when 

selecting a best classifier composed of a set of SNPs to classify a QT, such a range 

could not fully show differences among different classifiers. For example, if there are 

both 500 samples in genotypes that are classified as the high level for two classifiers, 

for classifier 1 there are 300 samples located at P3, 200 samples located at P2 and 100 

samples located at P1 in genotypes that are classified as the high level, for classifier 2 

there are 300 sample located at P3, 100 samples located at P2 and 200 samples located 

at P1 in genotypes that are classified as high levels, then the accuracies of the high 

level for these two classifiers would be the same: 0.6. However classifier 1 is 

obviously a better classifier to classify the high level. To reflect such difference, we 

extend the range of member functions from [0,1] to [-1,1] when they are used in fuzzy 

classification to select the best classifier. 

Such an extended linear member function is illustrated in Figure 4.2 and can be 
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expressed as:  
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Figure 4.2  The extended linear membership functions of high(H), average(A) and 

low(L) levels of a QT 

 

4.3.2 EFQMDR Algorithm 
  
In order to detect high- dimensional gene-gene interaction, MDR reduces genotype 

combinations at multiple loci into a single class variable taking values of either high 

risk or low risk categories, then tests association between a binary trait or disease with 

this new one dimensional variable. The training balanced accuracy of the two 

categories is used to select the best classifier. Balanced accuracy is defined as the 
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arithmetic mean of sensitivity and specificity: 

             (sensitivity+specif icity)/2=(TP/(TP+FN)+TN/(TN+FP))/2 

where TP represents true positives, TN represents true negatives, FP represents false 

positives, and FN represents false negatives. The m-locus classifier that has the 

maximum testing balanced accuracy and highest cross-validation consistency is 

selected as the final best m-locus classifier, where cross-validation consistency is used 

as a tie-break. 

For an ordinal categorical trait with J levels, an m dimensional cell is labeled as one 

of J groups as follows. Let 1, 2,..., J be J levels or categories for an ordinal trait . For 

any combination of m SNPs, let n+j be the number of individuals in class j, nij be the 

number of individuals with the ith multi-locus genotype in category j, where i = {1, 

2,...,3m} and j = 1, 2,..., J. Then the ith m-locus genotype will be labeled as category 

c(i) as follows: 

                       c(i)= 










+∈ j

ij

Jj n

n

},...,1{
maxarg                           

EFQMDR extends MDR to analyze quantitative traits by first converting them to 

ordinal traits. Then Instead of evaluating each classifier using balanced accuracy or 

common ordinal association measures, it uses generalized fuzzy classification based 

on extended member functions to evaluate each classifier and select the best one as 

having the strongest association with the trait. The procedure of EFQMDR is as 

follows: 

1. Divide the range of a quantitative trait into J intervals and label them as    

categories 1,2,…,J respectively.  

2. Partition the dataset into L subsets for L-fold cross-validation (CV). Use one of 

the L subsets as a testing set and the rest as a training set. 

3. For each m-way interaction derived from m SNPs or SSLPs, let nij be the 

number of individuals belonging to category j with the ith multi-locus genotype 

in the training set, n+j be the total number of individuals belonging to category j 

in the training set, where i = {1, 2,...,3m} and j = 1, 2,..., J. Then all individuals 

with the ith multi-locus genotype will be assigned into the category c(i) by the 
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classifier corresponding to the m given SNPs as follows: 

                           c(i)= 










+∈ j

ij

Jj n

n

},...,1{
maxarg                    (4.20) 

where nij and n+j are real numbers, nij is computed using the extended linear 

member function, n+j , the size of class j, is computed using the traditional linear 

member function. 

4. Compute the training balanced accuracy for each m-way interaction: 

                              ∑
= +

m

i ic

ici

n

n

J

3

1 )(

)(,1                       (4.21) 

where ni,c(i), the number of individuals with the ith multi-locus genotype which 

really belong to the class they are classified to, is computed using the extended 

linear member function.  

5. Since multiple gene-gene interactions associated with a QT is common in 

complex traits, multiple classifiers that have best training balanced accuracies 

are selected and their testing balanced accuracies based on the extended linear 

member function are computed. 

6. Repeat steps 3-5 on all L CV dataset.  

7. Multiple candidates of m-way gene-gene interactions are selected as having the 

maximal testing balanced accuracy and highest generalized cross-validation 

consistency based on top-K selection (GCVCK or simplified as GCVC) [33], 

where general cross-validation consistency is used as a tie-break.. The GCVCK is 

calculated as follows: 

GCVCK= ∑ =

L

l lI1
 where Il=










otherwise 0,

dataset CV at sclassifier -top of  

 one as identified is classifier 　MDR the if ，1
 thlK                     

(4.22) 
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4.4 Experimental results and analysis 

 

4.4.1 Experiments and analysis of results on simulated data 
 

4.4.1.1 Experimental setup 

 

The simulation experiment is designed to study the success rate of the proposed 

method and compare it with that of MDR, OMDR and Fuzzy Quantitative MDR 

(FQMDR) which uses fuzzy classification based on traditional member functions. 

Five different interaction models were used for the ordinal trait transferred from a 

quantitative trait (Figure 4.3)[33]. For each model, one pair of SNPs were simulated 

as a causal factor among all possible combinations. 

We use gs 2.0 to generate simulated genotype data. 

Since the outcome is binary status (case or control), we derive continuous outcome 

from the penetrance functions (the penetrance function denotes the probability of 

being a case for each genotype combination.) of the five models as follows: 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.3 Models of two way interactions for ordinal traits. White, light grey and 
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dark grey represent normal, low risk and high risk of an ordinal trait respectively. 
(Kim et al., 2013) 

  Let fij be the element from the ith row and jth column of a penetrance function for 

two interacting SNPs, two interacting SNPs, the quantitative trait is generated from 

the following normal distribution: 

                         y|SNP1=i, SNP2=j~N(fij , σ*)             (4.23) 

where fij and σ* are the mean and variance of the normal distribution respectively. 

Then the quantitative trait is transferred to an ordinary trait with three categories. Let 

μ, σ be the mean value and variance of the quantitative trait, any quantitative trait 

value smaller than μ-σ/2 is classified as low category; any value between μ-σ/2 and 

μ+σ/2 is classified as middle category; any value larger than μ+σ/2 is classified as 

high category. 

  We use two different minor allele frequencies (MAF=0.2 and 0.4), five different 

variances (σ*=0.1, 0.2, 0.3, 0.4 and 0.5) and two different sample size (n=200 and 800) 

with fixed SNP number (441 SNPs) and penetrance functions (0.01, 0.25, 0.5 for 

white, light grey, dark grey in Figure 3. respectively) to create simulated datasets. For 

each interaction model, 100 replicated datasets were generated. Varying variances 

with fixed penetrance functions is equivalent to varying penetrance functions with 

fixed variances. 

Hit ratio which is defined as the proportion of replicates with which the true causal 

SNPs are detected as the best SNPs among all possible same number of SNPs is used 

to measure the success rate.  

To test the type I error rate, the null datasets with no causal pair of SNPs were 

simulated for different sample sizes (n=200, 400 and 600) and different SNP numbers 

(m=10, 15, 20). Permutation P values of the identified strongest interaction pair of 

SNPs were calculated by permuting trait values of each dataset 1000 times. The ratio 

of the permutation 𝑃 values smaller than the significance level 𝛼=0.05 in 1000 

replicates is calculated as the type I error rate. The number of the permutation ensured 

its accuracy to one decimal place when expressed in percent. 
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4.4.1.2 Experimental Results 

 

Experiment results of five models are shown in Table 4.1 through Table 4.5.   

The performance of EFQMDR is better than other three methods in general. The 

performance of EFQMDR is better than that of MDR except in a few cases for model 

4 when the sample size is not small, MAF is low and variance is not small. It is better 

than that of OMDR except in a few cases for model 1 when the sample size is small,  
Table 4.1 Hit ratios (%) for model 1  

 
Table 4.2  Hit ratios (%) for model 2  

Sample MAF Method Variance 

Sample 
size MAF Method 

Variance 
0.1 0.2 0.3 0.4 0.5 

200 0.2 EFQMDR 82 56 18 4 2 
  FQMDR 81 51 18 3 2 
  OMDR 64 55 25 6 3 
  MDR 78 45 9 4 1 
 0.4 EFQMDR 99 79 53 27 13 
  FQMDR 99 66 38 15 8 
  OMDR 97 71 43 17 7 
  MDR 94 66 30 11 6 

400 0.2 EFQMDR 98 75 46 18 8 
  FQMDR 98 76 53 23 9 
  OMDR 90 73 44 22 13 
  MDR 96 68 40 13 4 
 0.4 GFQMDR 100 89 75 54 39 
  FQMDR 99 83 64 39 23 
  OMDR 100 81 59 41 35 
  MDR 99 75 56 35 18 

800 0.2 EFQMDR 100 90 70 51 21 
  FQMDR 100 92 67 49 36 
  OMDR 89 86 63 50 34 
  MDR 99 87 60 47 24 
 0.4 EFQMDR 100 99 96 89 76 
  FQMDR 100 95 91 73 62 
  OMDR 100 98 83 71 59 
  MDR 100 95 82 66 55 
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size 0.1 0.2 0.3 0.4 0.5 
200 0.2 EFQMDR 90 66 43 19 7 

  FQMDR 89 58 38 21 6 
  OMDR 89 62 33 19 9 
  MDR 82 59 28 6 3 
 0.4 EFQMDR 97 82 61 40 23 
  FQMDR 96 77 52 36 20 
  OMDR 93 80 53 37 26 
  MDR 90 69 51 28 11 

400 0.2 EFQMDR 98 84 71 54 32 
  FQMDR 97 82 66 52 32 
  OMDR 99 78 63 48 34 
  MDR 92 80 56 40 27 
 0.4 EFQMDR 99 95 81 67 48 
  FQMDR 98 92 78 63 50 
  OMDR 98 92 78 71 50 
  MDR 97 91 73 62 42 

800 0.2 EFQMDR 100 96 90 75 54 
  FQMDR 100 96 88 70 56 
  OMDR 100 95 85 68 53 
  MDR 99 94 84 63 51 
 0.4 EFQMDR 100 100 94 82 70 
  FQMDR 100 100 93 83 74 
  OMDR 100 100 90 83 73 
  MDR 100 98 91 76 66 

 
 
Table 4.3 Hit ratios (%) for model 3 

Sample 
size MAF Method 

Variance 
0.1 0.2 0.3 0.4 0.5 

200 0.2 EFQMDR 93 65 41 19 3 
  FQMDR 90 51 20 6 1 
  OMDR 87 50 20 7 3 
  MDR 87 50 17 3 0 
 0.4 EFQMDR 83 73 54 34 17 
  FQMDR 83 69 51 31 17 
  OMDR 80 65 50 36 17 
  MDR 80 59 39 17 4 

400 0.2 EFQMDR 99 79 61 39 19 
  FQMDR 95 66 43 15 2 
  OMDR 98 64 34 16 12 
  MDR 96 61 28 6 1 
 0.4 EFQMDR 100 92 81 69 53 
  FQMDR 99 91 75 56 44 
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  OMDR 100 91 74 55 39 
  MDR 96 89 72 51 30 

800 0.2 EFQMDR 100 99 84 64 43 
  FQMDR 100 95 76 51 30 
  OMDR 100 89 72 37 31 
  MDR 99 91 71 37 16 
 0.4 EFQMDR 100 100 97 93 82 
  FQMDR 100 100 93 86 73 
  OMDR 100 100 93 82 70 
  MDR 100 99 94 82 72 

 
 
Table 4.4 Hit ratios (%) for model 4 

Sample 
size MAF Method 

Variance 
0.1 0.2 0.3 0.4 0.5 

200 0.2 EFQMDR 76 35 12 3 1 
  FQMDR 76 40 18 4 1 
  OMDR 69 41 19 6 3 
  MDR 65 36 10 0 1 
 0.4 EFQMDR 86 65 46 23 10 
  FQMDR 83 59 26 12 5 
  OMDR 85 56 36 11 5 
  MDR 76 47 19 6 2 

400 0.2 EFQMDR 88 52 19 5 1 
  FQMDR 85 61 33 9 4 
  OMDR 69 47 33 16 8 
  MDR 80 59 22 8 3 
 0.4 EFQMDR 95 77 52 29 19 
  FQMDR 95 66 41 22 10 
  OMDR 96 71 44 30 19 
  MDR 90 57 32 19 8 

800 0.2 EFQMDR 98 75 39 22 9 
  FQMDR 98 77 46 27 17 
  OMDR 88 61 33 26 13 
  MDR 95 71 45 23 13 
 0.4 EFQMDR 100 91 74 57 48 
  FQMDR 100 87 65 43 32 
  OMDR 100 91 61 44 29 
  MDR 100 74 55 42 30 

 
Table 4.5  Hit ratios (%) for model 5 

Sample 
size MAF Method 

Variance 
0.1 0.2 0.3 0.4 0.5 
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200 0.2 EFQMDR 83 47 25 6 1 
  FQMDR 79 38 9 1 1 
  OMDR 85 38 12 2 0 
  MDR 71 29 5 1 0 
 0.4 EFQMDR 81 51 32 11 5 
  FQMDR 75 49 24 7 2 
  OMDR 76 47 27 10 4 
  MDR 72 37 12 3 1 

400 0.2 EFQMDR 94 78 54 26 12 
  FQMDR 93 59 21 8 5 
  OMDR 97 62 32 15 3 
  MDR 90 52 20 6 2 
 0.4 EFQMDR 94 78 54 33 18 
  FQMDR 93 68 42 21 11 
  OMDR 96 64 43 28 13 
  MDR 90 63 30 15 5 

800 0.2 EFQMDR 99 90 73 58 43 
  FQMDR 99 75 55 34 18 
  OMDR 99 86 50 36 28 
  MDR 98 60 46 22 13 
 0.4 EFQMDR 100 94 76 57 40 
  FQMDR 100 91 64 41 33 
  OMDR 98 86 60 47 31 
  MDR 100 81 47 44 28 

 

MAF is low and variance is not small; for model 2 when the sample size is large, 

MAF is high and variance is large; for model 4 when the sample size is not large, 

MAF is low and variance is not small. It is also better than that of FQMDR except in a 

few cases for model 1 when the sample size is not small, MAF is low and variance is 

not small; for model 2 when the sample size is large, MAF is high and variance is 

large; for model 4 when MAF is low and variance is not small. It is also observed that 

the performance of FQOMDR is better than that of MDR in all 30 cases, the 

performance of OMDR is better than that of MDR in general, and the performance of 

FQOMDR is slightly better than that of OMDR.  

For the type I error rate, results given in Table 4.6 show that EFQMDR has type I 

error rate tightly gathering around 5% with a range from 4.3% to 5.8%, better than 

three other methods. Therefore EFQMDR controls type I error rate better. 
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Table 4.6  Type I Error Rate with the Significance Level 𝛼 of 0.05 from Datasets 
with 1000 1000 Replicates 

 

 

 

 

 

 

4.4.2  

4.4.3  

4.4.4 Experiments and analysis of results on real data  

 

4.4.4.1 Experimental setup 

 

  We use two real datasets to show applications and performance of the proposed 

method.    

One is Ultra-violet (UV) Light-Induced Immunosuppression Data. F1 backcross 

mice are derived from a backcross between low susceptibility BALB/c female mice 

and high susceptibility (BALB/c ×C57BL/6) F1 male mice. This dataset contains 64 

markers, sex and UV light-induced percent immunosuppression (PI) of a contact 

hypersensitivity response of 134 F1 backcross mice (Clemens et al., 2000). The data 

were acquired from the Center for Genome Dynamics at the Jackson 

Laboratory http://cgd.jax.org/nav/qtlarchive1.htm. UV light-induced percent immuno- 

suppression is the quantitative trait of interest. 

  Another is intercross mouse population from intercross of DBA2 and NMRI8. 

   n  
m Method 200 400 600 
10 EFQMDR 4.6% 4.6% 4.3% 
 FQMDR 4.5% 5% 4.9% 
 OMDR 5% 5.5% 6.1% 
 MDR 3.8% 5.3% 5.7% 

15 EFQMDR 5.8% 4.6% 4.9% 
 FQMDR 5.2% 4.3% 6.5% 
 OMDR 5% 4.4% 5.6% 
 MDR 4.2% 3.5% 6.1% 

20 EFQMDR 4.9% 5.2% 4.8% 
 FQMDR 5.3% 4.7% 5.3% 
 OMDR 4.1% 5.7% 3.8% 
 MDR 4.2% 5.6% 4.9% 

http://cgd.jax.org/nav/qtlarchive1.htm
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NMRI8 is a long-term high body weight-selected mouse line and analyzed at the age 

of 6 weeks. It is extremely different in body composition from the control mouse line 

DBA/2. There are 275 mice (142 females, 133 males), 98 markers and 18 phenotypes. 

Since genetic factors contributing to obesity and body weight are considered to act 

through mechanisms affecting muscle weight, fat weight, or both, we use three 

phenotypes in the population in our experiments which are body weight (bw), 

abdominal fat (afw) and muscle weight (mw) (Brockmann et al., 2009) The data were 

downloaded from the QTL Archive curated by the Jackson 

Laboratories http://phenome.jax.org/db/q?rtn =projects/projdet&reqprojid=213. 

  For missing values of SNP or SSLP, we set them to the majority value of that SNP 

or SSLP; for missing values of QTs, we set them to the mean value of that 

quantitative trait. 

All four QTs are divided into three categories. For UV light-induced percent 

immunosuppression three categories are defined as high percent immunosuppression, 

medium percent immunosuppression and low percent immunosuppression states 

respectively; for bw, afw and mw, three categories are defined as heavy weight, 

medium weight and light weight respectively. 

 

4.4.4.2 Experimental results 
 
The EFQMDR method is used to select the best 2-way, 3-way and 4-way 

interactions in the above real datasets associated with bw, afw, mw and PI 

respectively. 

The performance of the EFQMDR method is evaluated in maximum testing 

balanced classification accuracy (MTSBCA) on ten CVs and corresponding GCVC, 

where GCVC is used as a tie break, and compared with that of FQMDR, OMDR and 

MDR methods. Balanced accuracy using the extended linear member function, 

balanced accuracy using the traditional linear member function, tau-b and balanced 

accuracy are used to select the best interaction SNPs in each CV in EFQMDR, 

FQMDR, OMDR and MDR methods respectively. We choose k best set of SNPs for 

http://phenome.jax.org/db/q?rtn%20=projects/projdet&reqprojid=213
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each of 2-way, 3-way and 4-way interactions. 

We first set k to 1, i.e. for each CV of a specific QT, we choose one best set of 

SNPs of a fixed order. In this case GCVC is equivalent to CVC. 

From Table 4.7, we can see that the performance of EFQMDR evaluated by 

MTSBCA and GCVC are better than that of FQMDR, OMDR and MDR in most 

cases. Figure 4.4 shows that the average maximum testing balanced classification 

accuracy on 2-way, 3-way and 4-way interactions (AMTSBCA1) with EFQMDR is 

higher than that with three other methods for each of the four QTs except for afw 

with FQMDR and average AMTSBCA1 on all four QTs (AMTSBCA2) with 

EFQMDR is higher than that of three other methods. 

To reflect multiple gene-gene interactions associated with a trait in complex traits, 

we also set k to 5, i.e. for each CV of a specific QT, we choose five best sets of 

SNPs of a fixed order. MTSBCA1 through MTSBCA5 are used to represent five sets 

of SNPs which have largest MTSBCAs in the descending order and GCVC1 through 

GCVC5 are corresponding GCVCs which are used as a tie break.  

Again, from Table 4.8 to Table 4.11, we can see that the performance of 

EFQMDR is better than that of FQMDR, OMDR and MDR in most cases. Figure 

4.5 shows that AMTSBCA1 with EFQMDR is higher than that with three other 

methods for each of the four QTs except for PI with OMDR and bw with FQMDR, 

AMTSBCA2 with EFQMDR is higher than that of three other methods. 
Table 4.7 Comparison of MTSBCA and GCVC among EFQMDR, FQMDR, OMDR 
and MDR when k=1 

  Two-locus classifier Three-locus classifier Four-locus classifier 
QT Method MTSBCA GCVC MTSBCA GCVC MTSBCA GCVC 

PI EFQMDR 0.563 3 0.488 2 0.590 4 
 FQMDR 0.597 4 0.333 1 0.375 1 
 OMDR 0.347 1 0.625 2 0.587 1 

 MDR 0.417 2 0.389 1 0.583 1 

bw EFQMDR 0.6 7 0.583 3 0.5 1 

 FQMDR 0.625 2 0.5 1 0.628 1 
 OMDR 0.517 1 0.472 2 0.544 2 
 MDR 0.533 2 0.522 2 0.5 3 
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afw EFQMDR 0.739 1 0.636 1 0.592 1 

 FQMDR 0.537 3 0.476 3 0.736 6 
 OMDR 0.481 1 0.616 2 0.642 3 
 MDR 0.506 4 0.470 1 0.576 1 

mw EFQMDR 0.592 6 0.699 3 0.594 3 
 FQMDR 0.630 3 0.490 1 0.520 1 
 OMDR 0.505 5 0.520 1 0.556 1 
 MDR 0.544 1 0.520 2 0.45 1 

 

 
Figure 4.4. Comparison of AMTSBCA1(average maximum testing balanced 
classification accuracy on 2-way, 3-way and 4-way interactions) and AMTSBCA2 
(average AMTSBCA1 on all four QTs) among EFQOMDR, FQMDR, OMDR and 
MDR when k=1.  
Table 4.8 Comparison of MTSBCA and GCVC of PI classifiers among EFQMDR, 
FQMDR, OMDR and MDR when k=5. (a) For two loci. (b) For three loci. (c) For 
four loci. 
                                 (a) 
 

Classifier Two loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.588 0.639 0.6 0.476 

MTSBCA2 0.563 0.597 0.583 0.456 

MTSBCA3 0.488 0.542 0.5 0.45 

MTSBCA4 0.476 0.458 0.467 0.417 

MTSBCA5 0.472 0.456 0.45 0.413 

GCVC1 5 6 5 1 

PI bw afw mw AMTSBCA2
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GCVC2 5 8 6 3 

GCVC3 5 4 2 6 

GCVC4 3 2 2 1 

GCVC5 1 4 4 3 

 
                                    

(b) 
 

Classifier Three loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.686 0.583 0.857 0.533 

MTSBCA2 0.657 0.486 0.625 0.514 

MTSBCA3 0.542 0.45 0.562 0.5 

MTSBCA4 0.488 0.4 0.478 0.45 

MTSBCA5 0.389 0.388 0.458 0.431 

GCVC1 2 2 7 1 

GCVC2 6 2 9 2 

GCVC3 2 4 4 1 

GCVC4 2 1 1 2 

GCVC5 2 2 2 1 

 
(c) 

Classifier Four loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.783 0.543 0.651 0.583 

MTSBCA2 0.783 0.514 0.651 0.514 

MTSBCA3 0.617 0.5 0.613 0.5 

MTSBCA4 0.55 0.475 0.590 0.5 

MTSBCA5 0.533 0.467 0.583 0.5 

GCVC1 8 2 1 5 

GCVC2 7 2 1 1 

GCVC3 4 1 2 2 

GCVC4 5 2 5 1 
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GCVC5 3 1 5 1 

 
Table 4.9 Comparison of MTSBCA and GCVC of bw classifiers among EFQMDR, 
FQMDR, OMDR and MDR when k=5. (a) For two loci. (b) For three loci. (c) For 
four loci. 
                                  (a) 
 

Classifier Two loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.6 0.719 0.667 0.667 

MTSBCA2 0.6 0.688 0.517 0.533 

MTSBCA3 0.588 0.625 0.483 0.458 

MTSBCA4 0.552 0.533 0.444 0.433 

MTSBCA5 0.55 0.5 0.433 0.433 

GCVC1 9 7 9 8 

GCVC2 6 6 6 6 

GCVC3 1 3 4 3 

GCVC4 4 7 3 5 

GCVC5 4 8 5 4 

 

                               (b) 

Classifier Three loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.640 0.656 0.65 0.659 

MTSBCA2 0.610 0.568 0.559 0.583 

MTSBCA3 0.599 0.567 0.533 0.55 

MTSBCA4 0.567 0.560 0.533 0.523 

MTSBCA5 0.558 0.533 0.459 0.522 

GCVC1 5 4 5 7 

GCVC2 1 6 3 5 

GCVC3 7 4 6 3 

GCVC4 4 1 5 1 

GCVC5 4 4 2 3 
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                             (c) 

 

Classifier Four loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.640 0.659 0.695 0.608 

MTSBCA2 0.632 0.628 0.653 0.608 

MTSBCA3 0.611 0.628 0.595 0.547 

MTSBCA4 0.556 0.620 0.582 0.541 

MTSBCA5 0.525 0.604 0.558 0.532 

GCVC1 1 7 5 4 

GCVC2 1 5 2 2 

GCVC3 6 3 1 2 

GCVC4 2 1 1 1 

GCVC5 1 1 4 2 

 
Table 4.10 Comparison of MTSBCA and GCVC of afw classifiers among EFQMDR, 
FQMDR, OMDR and MDR when k=5. (a) For two loci. (b) For three loci. (c) For 
four loci.                                 

 (a) 

Classifier Two loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.739 0.588 0.614 0.644 

MTSBCA2 0.739 0.537 0.574 0.494 

MTSBCA3 0.717 0.537 0.556 0.459 

MTSBCA4 0.717 0.515 0.537 0.455 

MTSBCA5 0.717 0.5 0.524 0.441 

GCVC1 3 7 2 9 

GCVC2 1 6 3 5 

GCVC3 4 4 6 3 

GCVC4 1 4 4 5 

GCVC5 1 4 5 3 
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                                (b) 

Classifier Three loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.826 0.639 0.634 561 

MTSBCA2 0.783 0.574 0.620 541 

MTSBCA3 0.636 0.562 0.611 532 

MTSBCA4 0.597 0.554 0.520 511 

MTSBCA5 0.576 0.541 0.506 0.5 

GCVC1 7 10 9 5 

GCVC2 8 5 7 4 

GCVC3 1 4 1 3 

GCVC4 1 5 3 4 

GCVC5 4 5 2 2 

 

                              (c) 

Classifier Three loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.826 0.639 0.634 561 

MTSBCA2 0.783 0.574 0.620 541 

MTSBCA3 0.636 0.562 0.611 532 

MTSBCA4 0.597 0.554 0.520 511 

MTSBCA5 0.576 0.541 0.506 0.5 

GCVC1 7 10 9 5 

GCVC2 8 5 7 4 

GCVC3 1 4 1 3 

GCVC4 1 5 3 4 

GCVC5 4 5 2 2 
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Table 4.11 Comparison of MTSBCA and GCVC of mw classifiers among EFQMDR, 
FQMDR, OMDR and MDR when k=5. (a) For two loci. (b) For three loci. (c) For 
four loci. 
                                 (a) 
 

Classifier Two loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.691 0.681 0.572 0.650 

MTSBCA2 0.567 0.630 0.544 0.544 

MTSBCA3 0.556 0.630 0.544 0.544 

MTSBCA4 0.547 0.576 0.535 0.505 

MTSBCA5 0.545 0.505 0.505 0.499 

GCVC1 9 9 3 7 

GCVC2 1 6 3 5 

GCVC3 7 4 2 2 

GCVC4 1 1 6 9 

GCVC5 5 7 6 3 

 

                                (b) 

Classifier Three loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.699 0.593 0.586 0.586 

MTSBCA2 0.606 0.526 0.520 0.535 

MTSBCA3 0.6 0.526 0.491 0.520 

MTSBCA4 0.569 0.514 0.483 0.491 

MTSBCA5 0.558 0.513 0.451 0.467 

GCVC1 3 2 4 3 

GCVC2 6 4 3 2 

GCVC3 5 4 2 6 

GCVC4 6 2 1 2 

GCVC5 1 1 6 2 
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                                (c) 

Classifier Four loci 

Method EFQMDR FQMDR OMDR MDR 

MTSBCA1 0.594 0.646 0.661 0.618 

MTSBCA2 0.581 0.574 0.565 0.563 

MTSBCA3 0.576 0.564 0.556 0.475 

MTSBCA4 0.566 0.552 0.542 0.45 

MTSBCA5 0.533 0.544 0.511 0.433 

GCVC1 3 5 2 4 

GCVC2 1 1 1 2 

GCVC3 4 1 1 1 

GCVC4 4 1 1 1 

GCVC5 1 1 1 1 

 

 

 
Figure 4.5. Comparison of AMTSBCA1(average maximum testing balanced classification accuracy on 2-way, 3-way and 4-way 

interactions) and AMTSBCA2 (average AMTSBCA1 on all four QTs) among EFQOMDR, FQMDR, OMDR and MDR when k=5. 

In summary the performance of the proposed algorithm is better than that of 

FQMDR, OMDR and MDR. 
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4.5 Conclusion 
 

In this chapter, we propose a new method to identify gene-gene interactions 

associated with complex quantitative traits based on extended fuzzy classification. To 

reduce loss of information contained in a quantitative trait, it is first divided into 

several (greater than two) ordinal levels. Then a new ordinal association measure, 

balanced accuracy based on extended fuzzy classification is employed to select 

multiple best sets of SNPs as having strongest association with the trait in our 

proposed EFQMDR algorithm. Experimental results on simulated datasets and real 

datasets show that our algorithm has better performance in identifying gene-gene 

interactions associated with a complex quantitative trait. 

  In step 3 and step 4 of EFQMDR Algorithm, an extended linear member function is 

used to compute the size of each category in a particular cell, while a traditional linear 

member function is used to compute the total size of each category in all cells. The 

reason is that when deciding the label or category of a particular cell, the difference 

among different categories when being tried to assign to that cell can be reflected by the 

size of different categories in that cell, rather than the total size of different categories 

in all cells. Such a difference can be better reflected by an extended linear member 

function. Experiments also show much better performance when using the extended 

linear member function and the traditional linear member function in different cases. 

 In EFQMDR Algorithm, fuzzification is not only applied to the computation of 

training and testing accuracies, but also applied to the classification of each cell or 

genotype combination. Experiments show better performance of such a double 

fuzzification than that of a single fuzzification in either the computation of training and 

testing accuracies or the classification of each cell or genotype combination. 

Alternative methods could be to use balanced accuracy based on traditional member 

function of fuzzy sets, or balanced signed accuracy where 1 is used to denote that the 

predicted category is the same as the true category, 0 to denote that the predicted 

category is close to the true category, -1 to denote that the predicted category is far 
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from the true category. However our experiments show the performance of our 

algorithm is better than that of the above two methods. 

To test the performance of the algorithm when other types of fuzzy membership 

functions are used, a sigmoid member function is used. Similar results are obtained, 

but not so good as the extended linear member function. The following are the 

traditional sigmoid member function and extended sigmoid member function 

respectively: 
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where P0=P1-(P2- P1)=2P1-P2, P4=P3+(P3-P2)=2P3-P2. 

We can also use parameters in the fuzzy membership functions. To adaptively 

estimate the parameters, we can compute hit ratios or testing balanced accuracy for 

new data and get overall average hit ratios or average testing balanced accuracies for 

all data for different parameters. Then we can select the parameter having the highest 

hit ratio or average testing balanced accuracy for all data. 
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 Chapter 5  
A Multi-stage Approach to Detect 

Gene-gene Interactions Associated with 
Multiple Correlated Phenotypes 

 

5.1 Introduction 
 

Genome-wide association studies (GWAS) which identify association between a 

genotype and a phenotype univariately with several hundred thousand to tens of 

millions SNPs may be underpowered to detect polygenetic effect of numerous 

genetic variants with small individual effects. On the other hand, much evidence has 

shown the correlation among quantitative phenotypes. For example, hypertension is 

evaluated using systolic and diastolic blood pressures; obesity is related to the 

increase of muscle weight and fat weight. Exploiting the correlation among these 

phenotypes may strengthen power to detect additional genetic variants with small 

effects across multiple phenotypes or pleiotropy effects. Identifying those interacting 

genetic factors shared by related multiple phenotypes will give us a deeper 

understanding on genetic mechanism on complex traits and complex diseases. 

Therefore multi-locus analysis combined with multi-phenotype analysis has 

become a new tendency in the genome wide association study.  

 

5.2 Related works 
 

First, methods were proposed to consider multiple correlated phenotypes associated 

with genetic marker. 
Multivariate analysis of variance (MANOVA) is the natural extension of the 

analysis of variance (ANOVA) for correlated multivariate phenotypic traits  (Smith 
et al., 1962). Its assumption of the multivariate normal distribution provides many 
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good statistical properties for testing and estimation (Morrison, 1967). 
Let n denote the total number of observation points in an experiment. If there are p 

outputs which are observed on each of the n observation points, then a p×n output 

matrix would be obtained. 

                 Y=





















pnp2p1

2n2221

1n1211

Y...YY

............

Y...YY

Y...YY

=[Y1, Y2, …, Yn]           (5.1) 

where Yi is the column vector of p outputs observed at the ith observation point. 

Then the usual fixed model of MANOVA can be written as: 

                           Y’=Aξ+ε                           (5.2) 

where A is an n×m input matrix, ξ is an parameter m×p matrix which decides the 

effects of the inputs, ε is an n×p error matrix following p-dimensional normal 

distribution, p is assumed to be ≤  (n-r). 

From these assumptions, we have that Y1, Y2, …, Yn are independent samples 

with distribution N[E(Yi), Σ]. Assumption (d) ensures that the sample error matrix is 

positive definite almost everywhere. 

Since A has a rank r, we can partition A in the form [AIAD], where AI is a basis of 

A and form an n×r submatrix, AD is a n×(n-r) submatrix. Therefore we can rewrite (1) 

as 

                     Y’= [AIAD] 








D

I

ξ
ξ

+ ε                         (5.3) 

The object is to test the general linear hypothesis.  

                         H0: CξM=O                           (5.4) 

where C is an s×m matrix of rank s≤ r≤m<n, M is a p×u matrix of rank u≤p and O is 

an s×u null matrix. C is to used to state between treatments hypothesis, while M is 

used to state between responses hypothesis. 

Let’s consider a simple example. Suppose in an experiment with three treatments, 

two responses have been measured on each experimental unit, then the fixed effects 

of the three treatments on the two responses can be expressed in the following table: 
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Treatment 
Response 

Y1 Y2 

T1 ξ11 ξ12 

T2 ξ21 ξ22 

T3 ξ31 ξ32 

Where ξij represents the effect of treatment Ti on response Yi (i=1,2,3 and j=1,2). 

The hypothesis of no difference between treatments can be stated as 

                        H: 








12

11

ξ
ξ

= 








22

21

ξ
ξ

= 








32

31

ξ
ξ

                

This is equivalent to ξ11=ξ21=ξ31 and ξ12=ξ22=ξ32. The alternative hypothesis H1 

is: not H0, i.e., at least one of the above equalities is violated. Here M is 2×2 identity 

matrix, 

                C= 







−

−
101

011 ,        ξ=
















3231

2221

1211

ξξ
ξξ
ξξ

. 

The hypothesis of no difference between responses can be stated as 

                          H: 









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



31
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  This is equivalent to ξ11=ξ12, ξ21=ξ22 and ξ31=ξ32.  Here C is 3×3 identity 

matrix, ξ is the same as above, 

                             M = 







1-

1  

  The alternative hypothesis may be stated as  

                              H1: CξM=n                      (5.5) 

where n≠ O. Let C be partitioned in the form [CICD] determined by the partitioning 

of ξ in the form 

                                








D

I

ξ
ξ

 

Now we define two matrices. The first is the matrix due to the hypothesis, 
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    SH(u×u)=M’YAI(AI’AI)-1C’I[CI(AI’AI)-1 C’I]-1 CI(AI’AI)-1A’IY’M.  (5.6) 

The second is called the matrix due to error 

                SE(u×u)= M’Y[I(n)-AI(AI’AI)-1A’I] Y’M            (5.7) 

where I(n) denotes the identity matrix of order n. 

  SH is symmetric at least positive semi-definite of rank k=min[rank(M),rank(C)], 

while SE is symmetric positive definite since u≤p≤ (n-r). 

   To test (5.4) against (5.5), there are at least three alternative criteria, the 

largest-root criterion(C1), the product-of –the roots criterion(C2) and the sum-of–the 

roots criterion(C3): 

      (C1)       chmax(SH SE
-1)/[1+ chmax(SH SE

-1)];  

      (C2)       Λ=| SE |/| SH+ SE |=1/| SH SE
-1+ I |;                     

      (C3)       tr(SH SE
-1); 

where chmax denotes the largest characteristic root, | | denotes determinant and “tr” 

denotes trace (sum of the diagonal elements). 

In mixed effects models, the value of a phenotype is related to a mixture of the 

genetic marker effect and random effects caused by other correlated phenotypes 

(Laird and Ware, 1982; Fitzmaurice and Laird, 1993). Random effects are described 

using a multivariate normal distribution with elements of variance and covariance 

matrices as parameters. The parameters of these effects can be estimated using 

restricted maximum likelihood method. 

Mixed effects models include linear mixed effects model (LME) and generalized 

linear mixed effects model (GLMM)  

If yij represents the jth (j=1, . . . , J) component of the J-dimensional phenotype of 

the jth (j = 1, . . . , J) individual, gi represents the genotype of a genetic marker of the 

ith individual and X(gi), its corresponding score, then the linear mixed effects model 

has the following form: 

                    Yij=β0+βj X(gi)+ηij+eij                                    (5.8) 

where β0 represents effects caused by factors; βk represents the effect size of X(gi) on 

the jth phenotype; ηij(j=1, . . . , J)∼N(0, Σ) are the random effects caused by multiple 

correlated components of a phenotype within ith person; eij is the random errors iid. ∼ 
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N(0, σ 2
e ).ηij are independent between any two individuals. The null hypothesis of no 

association between the genetic marker and any phenotype component can be stated as 

H0 : β1=, . . . , βJ =0. 

This model can be extended to generalized mixed effects model (GLMM) for 

phenotypes consisting of categorical components: 

                    E(yij | ηj)=μ−1(β0+βj X(gi)+ηij)                  (5.9) 

where μ−1 is the inverse of a link function. μ takes the form of identity function when 

the components have Gaussian distribution and the model reduced to the linear mixed 

effects model; for binary components, it takes the form of logit function μ(x)= ln(x/1 – 

x). 

The likelihood ratio test or Wald chi-squared test can be used to test the null 

hypothesis under the LME or GLMM. The Wald chi-squared test statistic can be 

expressed as βTcov(β)−1β ∼ χ 2
K ,where β = (β1, . . . , βK) is estimated using (5.8) or 

(5.9). When the effect sizes are similar, the null hypothesis of β1 =· · ·=βK =β can be 

tested with a a single degree-of-freedom (df) test 
∧

β /se(
∧

β ) and this test has better 

performance than the multi-df Wald chi-squared test in this case. 

The principal component of quantitative trait locus heritability (PCQH) uses a 

linear combination of the phenotypes with coefficients which make the linear 

combination and the genetic marker have maximum correlation (Lange et al., 2003; 

Lange et al., 2004; Klei et al., 2008). 

For a multivariate phenotype consisting of all continuous components that are 

approximately normal distributed, variable reduction approaches can be used. It uses a 

linear combination of the components: 

                      Y’=a1Y1+ a2Y2+…+ aMYM                 (5.10) 

where Y’=( Y1,Y2,…,YM) is an m-dimensional phenotype. The principal component 

of quantitative trait locus heritability (PCQH) uses a linear combination of the 

components with coefficients making the linear combination and the genetic marker 

have maximum correlation, and therefore the phenotype variation of Y’ reflected by 

the genetic marker (Lange et al., 2003; Lange et al., 2004; Klei et al., 2008). 
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Let yij denote the jth (j=1,…,M) component of Y’ of the ith (i=1,…,N) subject, xi 

denote the number of copies of the minor allele of a QTL for the ith subject. For each 

phenotype j, the relationship between yij and xi can be approximated with a linear 

regression model: 

                           yij=μl+βjxi+εij                       (5.11) 

where μl is the intercept of the model, βj is the effect of the QTL on the jth trait and εij 

is the residual error being normally distributed with mean 0. 

The total phenotype variance can be partitioned as 

                           VP=VQ+VR,                        (5.12) 

where VQ=Var(β1x,…,βMx,) is the genetic variance due to the QTL and VR is the 

residual variance. Accordingly the variance of Y’ attributable to the QTL is 

                           h 2
A =

AVA

AVA

P
t

Q
t

,                        (5.13) 

where A=( a1,…, aM). 

In canonical correlation analysis, coefficients which maximize the squared 

correlation between Y’ and the score of genetic marker X(g) are used. (Muller and 

Peterson,1984). 

Here canonical correlation refers to 
∧

ρ =corr(Y’,X). 
∧

ρ  can be obtained by 

partitioning the covariance matrix of Y and X as follows: 

                      cov 







X

Y = 







ΣΣ
ΣΣ

XXXY

YXYY                      (5.14) 

where Σ is the covariance-variance matrix. The sample covariance-variance matrix can 

be used to estimate each of the submatrix. The canonical correlation 
∧

ρ  can be 

expressed as 
∧

ρ =ΣXYA/(AtΣYYAΣXX)1/2 where A=( a1,…, aM) is the coefficients of 

Y’ and has its maximum value as the squared root of the largest eigenvalue of 1−ΣYY Σ

YX
1−ΣXX ΣXY when A is the corresponding eigenvector. 

Similar to PCQH, canonical correlation analysis uses a linear combination of 

components to maximize its variation reflected by the genetic marker. Their 
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difference is that the former partition the sample into two subsets, one is used to 

estimate the coefficients, another is used to test the association, while the latter uses 

the whole sample to evaluate squared correlation. 

Multivariate phenotypes can also be analyzing phenotype-genotype association for 

each phenotype and then combining their test statistics. This approach takes the 

advantage of simplicity of methods for analyzing univariate phenotypes, especially 

when multivariate phenotype consists of different types of components such as 

dichotomous, categorical and continuous. In addition, there are already many 

ready-made univariate phenotype analysis results available for many complex traits. 

a) Methods for Homogeneous Genetic Effects across Phenotypes 

Let T=[T1,…, TK] denote a vector of K test statistics for each individual phenotype 

analysis following a multivariate normal distribution with mean τ=(τ1,…,τk)T and a 

nonsingular covariance matrix. The null hypothesis of no association for any 

phenotype is H0: τ=(τ1,…,τk)T=0. O’Brien used the following linear combination of 

T1,…, TK which maximizes the power whenτ1=…=τk≠0 to combine K individual test 

statistics (O’Brien, 1984): 

                              S=eTΣ-1T                        (5.15) 

where e =(1,…,1) T is the weight. 

b) Methods for Heterogeneous Genetic Effects across Phenotypes 

O’Brien’s method may not be efficient when the means are not similar. In these 

cases, Yang et al. partitioned the sample into two subsets, one is used to estimate 

weights w to replace the uniform weight eT , another is used to estimate T in the above 

equation (Yang et al., 2010). 

Another way is to use a quadratic form to combine individual association test 

statistics. For example, Xu et al. employed the following Wald chi-squared type test 

statistic (Xu et al., 2003): 

                           Sw=TTΣ-1T                          (5.16)   

It replaces e in (5.15) with T. The distribution of Sw is a linear combination of one 

degree-of-freedom chi-squared distribution with coefficients being the eigenvalues of 
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Σ. To prevent the decreased power of (5.16) when the number of phenotypes increases 

due to “curse of dimensionality”, the variance-covariance matrix Σ is taken away from 

(2) to form the following test statistic (Yang and Wang, 2012): 

                            Ssq= TT T                          (5.17) 

It follows a a 2
dχ +b distribution with  
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∑
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When there are highly correlated phenotypes, d may be less than K. 

TATES (Trait-based Association Test that uses Extended Simes procedure) 

combines p-values of test of association with genetic variants for each phenotype of a 

multivariate trait to get an overall trait-based p-value to test the association of the 

trait with genetic variants by calculating through correlations between phenotypes 

and using the effective number of p-values (Van der Sluis S, et al., 2013). 

Suppose there are m phenotypes contained in a trait. A statistically appropriate 

method (e.g., linear or logistic regression) is used to test the association between all 

m phenotypes and all n genotyped genetic variants (GVs) separately, rather than 

combining them into one general phenotype. Then p values of m phenotypes for a 

given GV are combined to obtain one overall trait-based p-value PT as follows: 

                        PT=min 








ej

je

m

pm
                        (5.19) 

where p1…pm are the ascending p-values of the m phenotypes for a given GV, me is 

the number of independent p-values which all m phenotypes for a given GV are 

equivalent to, mej is the number of independent p-values which the top j p-values 

with j running from 1 to m are equivalent to. Therefore PT is the smallest weighted 

p-value used to test the null hypothesis that none of the phenotypes is associated with 

the GV, while the alternative hypothesis is that at least one of the phenotypes is 

associated with the GV. 

mej can be estimated using eigenvalues of the m×m correlation matrix ρbetween 

the m p-values. It is calculated as: 
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                      mej =j-∑
=

−
j

i
iI

1

)1(λ                       (5.20) 

where iλ  is the ith eigenvalue, and I( iλ -1) is an indicator func`tion which equals 0 

if iλ ≤1 and 1 if iλ >1. This means mej equals j minus the number of eigenvalues 

which are greater than 1. mej equals me when all phenotypes are selected for top 

phenotypes. 

The m×m correlation matrix ρ  between the p-values can be accurately 

approximated through the m×m correlation matrix r between the phenotypes. 

Later, methods combining multi-locus analysis and multi-phenotype analysis were 

proposed. 

Low rank regularization adopts the tensor l2,1 norm regularization to identify 

imaging markers having common effects on all regression tasks and time points and 

regularizes the unfolded coefficient tensor with the trace norm to identify interaction 

among SNPs by achieving low rank (Wang et al., 2012).  

Unlike most studies where SNPs are selected and associated to disease status or 

imaging phenotypes, the authors use as input and SNP values as output to examine 

how phenotypic values  influence SNP values, expecting to identify genetic 

associations with imaging phenotypes from a different angle. 

Measuring the imaging markers on different time points may increase power to 

identify genetic markers associated with them. The longitudinal input imaging features 

at T consecutive time points can be described with a set of matrices X={X1,X2,…,XT}

∈Rd╳n╳T, where Xt is the measurement matrix of imaging markers at time t (1≤t≤T) 

and therefore X is a tensor with d imaging features, n subject samples and T time 

points. The matrix Y=[y1,...,yn]T∈Rn×c  denotes the output genotypes of c SNPs for 

the n subject samples. Then the associations between the longitudinal imaging 

phenotypes X and the genotypes Y can be explored by learning a model from {X,Y}. 

However this method has the limitation of ignoring valuable information contained 

in the longitudinal patterns of the phenotypic inputs. Therefore a unified longitudinal 

regression model called the task-correlated longitudinal sparse regression model that 



96 

unifies the measurement at different time points is proposed to learn a coefficient 

tensor B={B1,··· ,BT}∈Rd×c×T  to explore temporal patterns of the coefficient 

matrices by using the low-rank structured sparse regularizations. 

The regression coefficient matrix can be learned for each time point individually by 

solving the following optimization problem: 

          
B

min J0=
B

min (L(B)+γ||B|| 22 )=
B

min (L(B)+ γ∑∑
= =

T

t

d

k1 1

||b k
t || 22 )       (5.21) 

where b k
t  denotes the kth row of coefficient matrix Bt and L(B) is the longitudinal 

loss defined as follows: 

                      L(B)= ∑
=

T

t 1

||XT
t Bt-Y || 2F                    (5.22) 

Since J0 can be decoupled for each individual time point, the temporal correlations 

between the imaging features and the SNPs are not reflected. To reflect such 

correlations, the structured sparse regularization is introduced into the longitudinal 

data regression and feature selection model: 

               
B

min J1=
B

min (L(B)+ γ1∑
=

d

k 1

(∑
=

T

t 1

||b k
t || 22 )1/2)           (5.23) 

With this expression, J1 can not be decoupled over time dimension and thus the 

model can reflect temporal patterns of the phenotypic components. The second term in 

Equation (3) is actually a tensor extension of the widely used l2,1-norm for matrices.  

Since many SNPs are interrelated and their effects on phenotypic traits can overlap，

the columns (bt)j of Bt should have some linear correlation, causing Bt (1≤t≤T) to 

have low rank. The unfolding operation of an n-mode tensor T∈RI1×I2×···×In along its 

kth mode can be denoted as unfoldk(T)= T(k)∈RIk×(I1…I (k-1)I(k+1)…In). Then interrelation 

among SNPs can be reflected by minimizing the rank of B(1)=[B1,B2,...,BT ]∈Rd×(c×T) 

and the optimization problem becomes: 

             
B

min J1=
B

min (L(B)+ γ1∑
=

d

k 1

(∑
=

T

t 1

||b k
t || 22 )1/2+γ2||B||*)      (5.24) 

where || ||∗ denotes the trace-norm of a matrix, and the subscript of the matrix B(1) is 
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omitted for notation brevity. The trace-norm of a matrixM∈Rn×m is defined as ||M||*=

∑ =

),min(

1

mn

i iσ =Tr(MMT)1/2 and has been shown to be the best convex approximation of 

the rank-norm. 

  Graph-guided fuse lasso incorporates the correlation structure among multiple 

phenotypes into a multivariate regression model using a threshold correlation graph to 

identify the genetic markers having common effects on a group of phenotypes having 

high correlation with high sensitivity and specificity (Kim S, et al., 2009). 

Let X be an N×J matrix of genotypes for N individuals and J SNPs. Each genotype 

has a value 0, 1 or 2 to represent its number of minor alleles. Let Y be an N×K matrix 

of K QT values for the above N individuals and yk be the k-th column of Y. Then the 

relationship between multiple quantitative traits and multiple SNPs can be sought by 

fitting a linear regression model for each trait separately: 

                       yk= Xβk+εk,    k=1,...,K,                 (5.25) 

where βk is a vector of regression coefficients measuring significance of association, 

and εk represents N independent errors. Each column of X and Y has a mean value of 

zero, so there is no intercept in equation (1).  The estimates of B={β1,...,βK} can be 

obtained by minimizing the following residual sum of squares: 

                
∧
B =argmin∑ −•−

k

kk
T

kk XyXy )()( ββ               (5.26) 

Since straightly applying Equation (5.25) to detect SNP markers with large J could 

make the estimated regression coefficients unstable and make many irrelevant 

markers have significant regression coefficients to cause difficulty in interpretation, 

sparse regression methods have been proposed that select a subset of markers having 

true association. Ridge regression adds a penalizing term in Equation (5.25) with the 

L2 norm of regression coefficients to shrink them toward 0 but does not set them 

exactly to 0. Instead lasso regression adds a penalizing term with the L1 norm of 

regression coefficients to set them exactly to 0 as follows: 

          
lasso

B
∧

= argmin∑ −•−
k

kk
T

kk XyXy )()( ββ +λ∑
jk

kj

,

|| β        (5.27) 
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where λ is a parameter that regularizes the extent of sparsity of the estimation of 

regression coefficients. The larger λ is, the more penalization is imposed and the more 

regression coefficients which are set to 0. 

Solving equation (5.26) is equivalent to solving K sets of regression coefficients 

independently for K traits and therefore they could not reflect correlation among traits 

which may be caused by common SNPs. 

In order to identify these common SNPs having influence on multiple traits, 

pairwise Pearson correlation coefficients which measure the strength of correlation 

between two traits within multiple traits can be represented as a graph with weighted 

edge and then embedded in the lasso framework. If two traits have a correlation 

coefficient above the given threshold ρ, they are connected with an edge (m,l) whose 

weight is equal to the absolute value of correlation coefficient |rm,l |. The authors 

assume that highly correlated traits may be influenced by common SNP markers and 

possibly have the same amount of influence from these markers. This can be reflected 

by an adding a penalty term which tends to make two regression coefficients βjm and 

βjl similar, where j represents any marker, m and l represent two highly correlated 

traits, and is weighted by the strength of their correlation to control the extent of their 

similarity. The strength of correlation can be generalized to its monotonically 

increasing function to get the following estimate of the regression coefficients: 

         
GW

B
∧

= argmin∑ −•−
k

kk
T

kk XyXy )()( ββ +λ∑
jk

kj

,

|| β   

             +γ ∑ ∑
∈

−
E(m,l) j

jlmljmml rrf ββ )(sign)(   .                 (5.28) 

where λ and γ control the amount of penalization. The last term controls the similarity 

between βjm and sign(rm,l)βjl. The larger γ and f(rml) is, the more similar they are. Two 

examples of f(rml) are f1(r)=|r| and f2(r)=r2. With the two penalty terms combined, 

equation (5.28) makes many regression coefficients become 0 and decreases the 

differences among multiple highly correlated phenotypes for each marker for the 

remaining non-zero regression coefficients so that each marker has similar influence 

on these correlated phenotypes. 
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  For trait networks, identifying genetic markers that influence all traits in each 

sub-network where nodes are densely connected can strengthen the power of 

detecting genetic markers having small effects across multiple phenotypes. The 

fusion effect can propagate automatically to all nodes in such subgroups to make 

regression coefficients having similar values on correlated traits if a genetic marker 

has pleiotropic effect on those traits. On the contrary, if a group of nodes are sparsely 

connected, such fusion effect would not be obvious in the group. 

However the above methods depend on a specific model and only use a linear 

combination of genetic markers in the regression model. Although they can detect 

multiple genetic loci associated with diseases or traits simultaneously, they can not 

detect interactive loci, because interaction should be represented by cross terms in the 

model and these cross term would make regression models much more complicated. 

MDR was originally proposed as a method for detecting gene-gene interaction 

without significant main effects in case control studies and then extended to ordinal 

traits and quantitative traits (Yu, et al., 2015). 

Multivariate quantitative MDR (Multi-QMDR) extended MDR to multivariate 

phenotypes by reducing multivariate phenotypes into a univariate score based on 

principle component analysis and then labeling the samples as high-risk and low-risk 

using this score according to MDR. 

Let Y=(Y1,…,Yd) be a d-dimensional phenotype. The sample covariance matrix of 

d components of Y can be decomposed as 

                           S=∑ =

d

j

T
jjj1
ξξλ                      (5.29) 

where λ j is the j -th eigenvalue of S and ξ j is its corresponding eigenvector. 

Let PC ij = YT
i ξ j be the j-th principal component (PC) score for the i-th subject. 

The following three summary scores can be employed to classify each cell of a 

genotype combination as a high-risk or low-risk group. 

(1) Weighted Summation of PC (WPC): 

                           Swi=∑ =

d

j jijPC
1

λ                   (5.30) 

(2) First PC (FPC): 
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                               SFi= PC i1                                 (5.31) 

(3) Weighted Squared Summation of PC (WSPC): 

                             SSi=∑ =

d

j jijPC
1

2 λ                   (5.32) 

If the score of a genotype combination is greater than or equal to the global mean, it 

is classified into H group, otherwise, it is classified into L group. The HT2 statistic on 

the original traits or t statistic on the combined univariate trait for comparing H group 

and L group is then employed to choose the best m-order interaction in each K-fold cv 

and CV consistency (CVC) is employed to select the best overall m-order model. 

However biological explanation of principle components for this method is 

difficult. 

In this chapter, we propose a new method extended from MDR to identify 

interactive genetic loci associated with multiple correlated phenotypes by selecting the 

best classifier according to not only the training accuracy of the phenotype under 

consideration but also other phenotypes with weights determined mainly by their pair 

correlation with the phenotype under consideration. If a set of SNPs have interaction 

on different phenotypes, then these phenotypes would have correlation among each 

other. Conversely if some phenotypes have correlation among them, there may not be 

a common set of SNPs having interaction on these phenotypes. However current 

methods use all correlations among phenotypes to select common sets of SNPs having 

interaction on multiple phenotypes. The selected sets of SNPs may be very unreliable. 

To select more reliable sets of SNPs, we also identify interactive genetic loci 

associated with multiple correlated phenotypes through repeated selection. At first all 

correlated phenotypes are used to identify interactive genetic loci, but then less and 

less phenotypes are used to select more reliable ones. 

In section 3 of this chapter, the procedure of our proposed Multivariate Quantitative 

trait based Ordinal MDR (MQOMDR) algorithm is described in detail. Then two real 

datasets are described and experimental results are given in section 4. Finally 

conclusion and discussion are made in section 5. 
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5.3. Methods 
   

5.3.1. Deciding Weight of Correlated Phenotypes 

  

For quantitative traits, most extended MDR also classified the outcome into two 

groups: high and low level groups, which results in the loss of the large variability of 

the quantitative outcome. Therefore in order to better use the information contained in 

the quantitative trait, we first classify the quantitative outcome into several (greater 

than two) ordinal levels. For MDR extended to ordinal traits, a natural way is to select 

the best classifier according to the training balanced accuracy of the phenotype under 

consideration. However for multiple phenotypes, the training balanced accuracy of 

other correlated phenotypes may also be useful in selecting the best classifier. 

Therefore we use a weighted sum of the phenotype under consideration and other 

correlated phenotypes (the absolute value of whose correlation coefficients with the 

phenotype under consideration are greater than or equal to 0.2) to select the best 

classifier. Since highly correlated phenotypes provide redundant information (Yu, et 

al.,2015), as a first step we take the weight of a phenotype j as: 

weight1(j)=(0.5-abs(abs(cov(i,j))-0.5))/0.5   (abs(cov(i,j)≥0.2)     (5.33) 

where cov(i,j) is the correlation coefficient of i: the phenotype under consideration, 

and j: another phenotype correlated with i, abs() is the absolute function. Weight1() 

function obtained its maximum value when abs(cov(i,j))=0.5, i.e., a correlated 

phenotype j has a maximum contribution to the phenotype i under consideration when 

their correlation coefficient is 0.5. The reason is that, when cov(i,j)=0, the two 

phenotypes have no correlation, when abs(cov(i,j))=1, the two phenotypes are actually 

the same phenotype, they have no contribution to each other in these two cases. 

Therefore it’s natural to assume that when abs(cov(i,j))=0.5, the contribution is the 

biggest.  

If another phenotype k correlated with i whose weight has been evaluated 

beforehand has a high correlation with j (cov(j,k)>0.5), then j will also become 



102 

redundant. So as a second step, we take the weight as: 

weight(j)=






>
≤

∈
0.5cov(j,k) if /0.5,weight1(j)×,k)))(abs(cov(jmax-(1

0.5cov(j,k) if                              ），j（weight1

Ak

   (5.34) 

where A is a set of phenotypes whose weights have been evaluated beforehand. 0.5 is 

used in (5.34) because it is in the middle of cov(j,k)=0, no redundancy, and cov(j,k)=1, 

biggest redundancy. 

Since if the phenotype k having a smaller weight(k) evaluated before weight(j) is 

evaluated, then even if j has a high weight1(j), its weight(j) will also become small, 

resulting in the loss of impact of j on i without being compensated from k, therefore 

weight() function should be evaluated in a descending order. 

 

5.3.2. Filtering of Correlated Phenotypes 

 

Then we group phenotypes which have the same set of SNPs that has the largest 

CVC and calculate the average CVC of the same set of SNPs for each phenotype in 

each group using all phenotypes in the same group only. Remove a phenotype in each 

group which has the smallest CVC and calculate the average CVC again. This process 

is repeated until the average CVC is equal to or smaller than that in the last repetition 

or there are only two phenotypes left in the group. 

 

5.3.3. The MQOMDR Algorithm 

 

According to the above analysis, we have the following procedure for our proposed 

MQOMDR algorithm multiple quantitative phenotypes: 

1. For each of q quantitative phenotypes, divide the range of the phenotype into J 

intervals and label them as categories 1,2,…,J respectively. 

2. Partition the dataset into L subsets for L-fold cross-validation (CV). Use one of the 

L subsets as a testing set and the rest as a training set. 

3. For each m-way interaction derived from m SNPs and each of q phenotypes, let nij 
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be the number of individuals belonging to category j with the ith multi-locus 

genotype in the training set, n+j be the total number of individuals belonging to 

category j in the training set, where i = {1, 2,...,3m}and j = 1, 2,..., J. Then all 

individuals with the ith multi-locus genotype will be assigned into the class c(i) by 

the classifier corresponding to the m given SNPs as follows: 

                  c(i)= 










+∈ j

ij

jj n

n

},...,1{
maxarg                       (5.35) 

4. Compute the weighted sum of training balanced accuracies for each of q phenotype, 

e.g., for phenotype i, the weighted sum is  

             TA(i)+ ∑
≥≠

×
2.0),cov(,j

)()(
jii

jTAjweight                  (5.36) 

where TA( ) is the training balanced accuracy function and weight(j) is evaluated in a 

descending order. 

5. Select the best classifier that has the largest value in (4) for each of q phenotypes. 

6. Repeat steps 3-5 on all L CV dataset.  

7. The strongest gene-gene interaction is selected according to the cross-validation 

consistency (CVC) for each of q phenotypes.  

8. Group phenotypes which have the same set of SNPs that has the largest CVC for a 

fixed order of interaction.  

9. For each phenotype in each group, using all phenotypes in the same group only to 

execute MQOMDR algorithm again and calculate CVC of the same set of SNPs. 

For each group, if the average CVC for all phenotypes becomes smaller, the group 

is abandoned. 

10.For each remaining group, remove a phenotype which has the smallest CVC and 

repeat step 9 again. This process is repeated until the average CVC for phenotypes 

remaining in the group is equal to or smaller than that for the same phenotypes in 

the last repetition. If the average CVC in the last repetition is larger than or equal to 

that of MDR, then the corresponding set of SNPs are considered as having strongest 

interaction on all phenotypes left in the group. Or if there are only two phenotypes 

left in the group and the average CVC is larger than or equal to that of MDR, then 
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the corresponding set of SNPs are also considered as having strongest interaction 

for these two phenotypes. Otherwise, i.e. the average CVC is less than that of MDR, 

remove a phenotype which has the next smallest CVC in the beginning of step 10 

and repeat this step again. 
 

5.4 Experimental Results and Analysis 
 

5.4.1. Experimental setup 

 

Since mouse weight and body size provide analogy to human traits of adult weight 

and height, we use two real mouse datasets for our experiments.    

In the first experiment, an intercross mouse population from intercross of DBA2 

and NMRI8 is used to identify genetic determinants for body weight and its 

components, such as fat weight and muscle weight. NMRI8 is a long-term high 

body weight-selected mouse line and analyzed at the age of 6 weeks. It is extremely 

different in body composition from the control mouse line DBA2. For the DBA2 x 

NMRI8 intercross population, there are 275 mice (142 females, 133 males), 98 

markers and 18 phenotypes. We use six phenotypes in the experiment which are 

body weight (bw), abdominal fat (afw), muscle weight (mw), the weight of liver 

(liver), the weight of kidney (kidney) and the weight of spleen (spleen). The data 

were downloaded from the QTL Archive curated by the Jackson 

Laboratories http://phenome.jax.org/db/q?rtn =projects/projdet&reqprojid=213.    

Each of the above six continuous phenotypes is transferred to an ordinary 

phenotype with three categories. Let μ, σ be the mean value and variance of the 

quantitative phenotype, any phenotype value smaller than μ-σ/2 is classified as low 

category; any value between μ-σ/2 and μ+σ/2 is classified as middle category; any 

value larger than μ+σ/2 is classified as high category. 

Our proposed MQOMDR method is used to select the best 2-way and 3-way 

common gene-gene interactions in the above dataset associated with multiple 

http://phenome.jax.org/db/q?rtn%20=projects/projdet&reqprojid=213
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phenotypes among the six ordinal phenotypes transferred from continuous 

phenotypes. As in [26], CVC and whether same sets of genetic markers are 

identified as the best models in different ordinal phenotypes are used to evaluate the 

performance of MQOMDR and compare with that of MDR, Quantitative MDR 

(QMDR) and Multi-QMDR. 

In the second experiment, a mouse dataset of a 4-way cross between inbred strain 

BALB/cJ, C57BL/6J, C3H/HeJ and DBA/2J is used. The mouse samples are the 

result of the cross of two F1 hybrid parents: the (BALB/cJ×C57BL/6J) F1 maternal 

parent and the (C3H/HeJ×DBA/2J) F1 paternal parent. The sample size is 505. 558 

loci known to be polymorphic among the four founder strains were genotyped 

across the genome and 17 phenotype were measured. Genotyped locations are 

either single nucleotide polymorphisms (SNP) or simple sequence length 

polymorphisms. We use five body size phenotypes: (1) femur length (right femur, 

proximal–distal), (2) vertebra length (eighth caudal vertebra, cranio-caudal), (3) 

early adult weight at 3 months, (4) late adult weight at 13 months, and (5) the slope 

of the best-fit linear trajectory for each animal between 3 months and 13 months, 

and three trabecular bone morphology and microstructure phenotypes: (6 )bone 

volume fraction (bone volume/total volume), (7) trabecular organization (plate 

number/millimeter) and (8) ultimate load to failure. The data were downloaded 

from the QTL Archive curated by the Jackson 

Laboratories http://qtlarchive.org/db/q?pg=projdetails& proj=burke_2012. 

Each of the above eight continuous phenotypes is transferred to an ordinary trait 

with three categories as in the first experiment. Our proposed MQOMDR method is 

used to select the best 2-way and 3-way gene-gene interactions in the above real 

dataset associated with eight ordinal traits transferred from eight continuous 

phenotypes. CVC and whether same sets of genetic markers are identified as the 

best models in different ordinal traits are also used to evaluate the performance of 

MQOMDR and compare with that of MDR, QMDR and Multi-QMDR. 

 

 

http://qtlarchive.org/db/q?pg=projdetails&%20proj=burke_2012


106 

5.4.2. Experimental results 

 

For the first experiment, the correlation coefficient values across different 

phenotypes are shown in a matrix of gray level values in Figure 5.1: 

 
Figure 5.1. Absolute values of correlation coefficient between 6 phenotypes in 
experiment 1 presented as gray level values. 

For the first stage of MQOMDR, all six phenotypes are used to select the best 

2-way and 3-way gene-gene interactions.  

As can be seen from Table 5.1, for 2-way interactions, bw, mw and spleen have the 

same set of SNPs (D1Mit68 and Dx9Mit192) as the best two-locus classifier, while 

afw, liver and kidney have another same set of SNPs (D7Mit26 and Dx9Mit192) as the 

best two-locus classifier. Therefore bw, mw and spleen form one group: group 1, afw, 

liver and kidney form another group: group 2. For each phenotype in each group, 

using all phenotypes in the same group only to execute MQOMDR algorithm again 

and calculate CVC of the same set of SNPs. CVCs are 4,3,6 for phenotypes in group 1 

and 4,5,3 for phenotypes in group 2. Both average CVCs for two groups become larger. 

So both groups are remained for further treatment. For group 1, we remove mw which 

has the smallest CVC (2) from the group and use bw and spleen only to execute 

MQOMDR algorithm again for both bw and spleen and calculate CVCs of the same 
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set of SNPs. CVCs are both 6 for bw and spleen, resulting in a larger average of CVCs 

(6) than that in the last repetition (3.5) and also that for MDR (3.5). Since there are 

only two phenotypes left in group 1 now, SNPs D1Mit68 and Dx9Mit192 are 

considered as having strongest interaction on both bw and spleen. Similarly for group 

2, liver which has the smallest CVC (2) is removed from the group firstly, however the 

resulting average CVC of afw and kidney is smaller than that of MDR, so afw is 

removed instead. The resulting CVCs are also both 6 for liver and kidney, resulting in 

a larger average CVC (6) than that in the last repetition (2.5) and also that for MDR 

(3.5). Since there are only two phenotypes left in group 2 now, SNPs D7Mit26 and 

Dx9Mit192 are considered as having strongest interaction on both liver and kidney. 

Table 5.1 Best set of snps and corresponding cvc of the dba2╳nmri8 dataset for 

mqomdr, mdr, qmdr and multi-qmdr 

Method Phenotype 
Two-locus classifier Three-locus classifier 

SNPs CVC SNPs CVC 

MQOMDR bw D1Mit68 Dx9Mit192 4 D1Mit68 D7Mit21 DX9Mit95 3 

 afw D7Mit26 Dx9Mit192 3 D1Mit68 D7Mit21 DX9Mit95 3 

 mw D1Mit68 Dx9Mit192 2 D1Mit68 D7Mit21 DX9Mit95 3 

 liver D7Mit26 Dx9Mit192 2 D1Mit68 D7Mit21 DX9Mit95 6 

 kidney D7Mit26 Dx9Mit192 3 D1Mit68 D7Mit21 DX9Mit95 2 

 spleen D1Mit68 Dx9Mit192 3 D1Mit68 D7Mit21 DX9Mit95 4 

MDR bw D14Mit87 DX9Mit95 2 D2Mit447 D13Mit130 Dx9Mit192 5 

 afw D2Mit266 Dx9Mit192 3 D1Mit49 14Mit257 Dx9Mit192 2 

 mw D14Mit87 Dx9Mit192 3 D14Mit87 D15Mit193a Dx9Mit192 2 

 liver D2Mit447 DX9Mit95 3 D1Mit68 D7Mit21 DX9Mit95 2 

 kidney D9Mit229 Dx9Mit192 4 D9Mit229 D14Mit87 DX9Mit119 2 

 spleen D1Mit68 Dx9Mit192 5 D7Mit26 D9Mit64 DX9Mit95 3 

QMDR bw D13Mit78 DX9Mit119 7 D7Mit246 D13Mit78 DX9Mit119 4 

 afw 14Mit257 Dx9Mit192 6 D2Mit6 14Mit257 DX9Mit119 3 

 mw D10Mit16 Dx9Mit192 3 D8Mit4 14Mit257 Dx9Mit192 4 

 liver D2Mit447 DX9Mit119 5 D2Mit447 D9Mit136 DX9Mit119 5 

 kidney D13Mit78 DX9Mit119 2 D2Mit447 D9Mit229 DX9Mit119 5 

 spleen D1Mit46 DX9Mit95 3 D7Mit26 D9Mit64 DX9Mit95 3 

Multi-QMDR  D13Mit78 DX9Mit119 7 D7Mit26 D9Mit229 Dx9Mit192 3 

 For 3-way interactions, all six phenotypes have the same set of SNPs (D1Mit68, 

D7Mit21 and DX9Mit95) as the best three-locus classifier and form a single group: 

group 3. Kidney which has the smallest CVC is removed from the group and the 
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remaining five phenotypes are used to execute MQOMDR algorithm again for each 

of these five phenotypes. Their CVCs of the set of SNPs D1Mit68, D7Mit21 and 

DX9Mit95 now are 4, 3, 3, 7, 3 respectively and the average is 4, greater than that 

of the last repetition (3.8) and for MDR (2.8). If we continue to remove any of the 

remaining five phenotype, the average CVC would become smaller. Therefore 

SNPs D1Mit68, D7Mit21 and DX9Mit95 are considered as having strongest 

interaction on each of bw, afw, mw, liver and spleen. 

From the process of MQOMDR algorithm, the average CVCs of the sets of SNPs 

identified by MQOMDR for each of the final groups of phenotypes are certainly 

larger than or equal to that of the sets of SNPs identified by MDR for each of the 

same groups of phenotypes. Also the sets of SNPs identified by MDR within each 

group are different with each other. For QMDR, the average CVCs are also smaller 

than that for MQOMDR and the sets of SNPs identified by QMDR within each 

group are also different with each other. Multi-QMDR has similar average CVCs as 

MQOMDR in general, however biological explanation of the univariate score based 

on principle components is difficult (Figure 5.2). 

 
Figure 5.2 Comparison of average CVCs for three groups of phenotypes among 
MQOMDR, MDR, QMDR and Multi-QMDR for the DBA2╳NMRI8 dataset. 
Group 1 represents phenotypes: bw, mw and spleen for 2-way interactions. Group 2 
represents phenotypes: afw, liver and kidney for 2-way interactions. Group 3 
represents phenotypes: bw, afw, mw, liver and sleen for 3-way interactions. 

For the second experiment, the correlation coefficient values across different 

phenotypes are shown in a matrix of gray level values in Figure 5.3. 

For the first stage of MQOMDR, all eight phenotypes are used to select the best 

2-way and 3-way gene-gene interactions.  
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As can be seen from Table 5.2, for 2-way interactions, femur length and vertebra 

length have the same set of SNPs (D1Mit105 and D2Mit58) as the best two-locus 

classifier, while plate number and 3 month weight have another same set of SNPs  

 
Figure 5.3. Absolute values correlation coefficient between  phenotypes in 
experiment 2 presented as gray level values. (0 through 7 represent phenotype femur 
length, vertebra length, bone volume fraction, plate number, ultimate load to failure, 
3 month weight, 13 month weight, weight slope) 
(D14Mit170 and D15Mit100) as the best two-locus classifier. Therefore femur length 

and vertebra length form one group: group 1, plate number and 3 month weight form 

another group: group 2. For each phenotype in each group, using all phenotypes in 

the same group only to execute MQOMDR algorithm again and calculate CVC of the 

same set of SNPs. CVCs are 6,10 for phenotypes in group1 and 9,10 for phenotypes 

in group 2. Their average CVCs are larger or equal than that in the previous stage 

and much larger than that of MDR. So these two groups are both remained. Since 

there are now only two phenotypes in both groups, D1Mit105 and D2Mit58 are 

considered as having strongest interaction on both femur length and vertebra, while 

D14Mit170 and D15Mit100 are considered as having strongest interaction on both 

plate number and 3 month weight.  

For 3-way interactions, no phenotypes have the same set of SNPs as the best 

three-locus classifier. Therefore there are no 3-way common gene-gene interactions 
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for these eight phenotypes. 

As can be seen from Figure 5.4, MQOMDR has significantly larger average CVCs 

for each of the final groups of phenotypes than that of MDR, QMDR and 

Multi-QMDR. 
Table 5.2 Best set of snps and corresponding cvc of the dba2╳du6i dataset for 
mqomdr, mdr, qmdr and multi-qmdr 

Method Phenotype 
Two-locus classifier 

SNPs CVC 

MQOMDR Femur length D1Mit105 D2Mit58 5 

 Vertebra length D1Mit105 D2Mit58 6 

 Bone volume fraction D5Mit251 D14Mit263 3 

 Plate number D14Mit170 D15Mit100 10 

 Ultimate load to failure D1Mit105 D15Mit100 5 

 3 month weight D14Mit170 D15Mit100 9 

 13 month weight D2Mit285 D15Mit100 7 

 Weight slope D3Mit127 D7Mit91 4 

MDR Femur length D2Mit58 D5Mit95 6 

 Vertebra length D1Mit105 D2Mit58 4 

 Bone volume fraction D5Mit251 D14Mit263 3 

 Plate number D14Mit170 D15Mit63 6 

 Ultimate load to failure D9Mit12 D15Mit63 7 

 3 month weight D14Mit170 D15Mit100 7 

 13 month weight D13Mit26 D19Mit88 8 

 Weight slope D7Mit91 D13Mit57 3 

QMDR Femur length rs4223558 rs3091203 4 

 Vertebra length D1Mit67 D1Mit105 2 

 Bone volume fraction rs13478469 D14Mit170 5 

 Plate number rs13480005 D14Mit263 4 

 Ultimate load to failure D3Mit64 D17Mit46 3 

 3 month weight D14Mit170 D15Mit100 6 

 13 month weight D14Mit170 D15Mit100 5 

 Weight slope D2Mit58 D13Mit64 2 

Multi-QMDR  D13Mit64 D17Mit46 3 
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Figure 5.4 Comparison of average CVCs for three groups of phenotypes among 
MQOMDR, MDR, QMDR and Multi-QMDR for the DBA2╳DU6i dataset. Group 
2 represents phenotypes: afw, mw and kidney for 2-way interactions. Group 3 
represents phenotypes: afw, mw and kidney for 3-way interactions. Group 1 is 
abandoned. 
 

5.5 Conclusion  
 

In this chapter, a new approach to detect genetic factors associated with multiple 

correlated phenotypes is proposed. The best classifier is selected according to both 

the training accuracy of the phenotype under consideration and other phenotypes 

with weights determined mainly by their pair correlation with the phenotype under 

consideration. To select more reliable classifiers, a repeated selection process is 

adopted. All correlated phenotypes are used to identify interactive genetic loci at 

the beginning, then unreliable ones are gradually filtered out. Experimental results 

on two real datasets show better performance of our proposed algorithm than MDR, 

QMDR and Multi-QMDR. 

     For estimation of correlation coefficient ρ, we have the following statistics: 
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The probability density function of R is complex. However when ρ=0, it can 

be reduced and 

                        T=
21

2
R

R
n

−
−  

follows a t-distribution with n-2 degrees of freedom. When significance level 

α=0.05, n=100, p value is 0.1946. In our experiments, n=275 and 505 respectively, 

so estimation bias for ρ=0 can be effectively controlled. From this, we can 

approximately conclude that other ρ values can also be effectively controlled. 

In our proposed algorithm, only one best classifier is selected for each phenotype 

at first. Actually multiple best classifiers can be selected. This will not only increase 

the number of best classifiers, but also provide more opportunities to find out more 

reliable classifiers, since more groups which may overlap can be formed as long as 

the phenotypes in the group have one of multiple best classifiers in common. This 

will be our future work. 

  The MQOMDR extends MDR to multiple phenotypes. An alternative is to 

extend QMDR to multiple phenotypes in the same manner. Our experiments show 

that the performances of these two methods are similar. In addition, QMDR and its 

extension can only divide a quantitative trait into two categories, while our method 

can divided it into any number of categories as needed. 
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Chapter 6  Conclusions and Suggestions 
for Future Research  
 

In this thesis, we have studied the problem of identifying gene-gene interactions 

associated with complex diseases and complex traits. 

  Gene-gene interaction is an important factor which needs to be considered when 

searching for genetic factors that influence complex diseases and complex traits. If a 

genetic factor influences a complex disease or complex trait primarily through 

interaction with other genetic factors or environmental factors, the effect might be 

missed if the gene is examined individually. 

  Although there are a variety of definitions of gene-gene interaction, they are 

potentially conflicting and not satisfying. Therefore we start our study by trying to 

provide a more reasonable definition of gene-gene interaction. We first derive an 

inequality describing the relationship between two genotype variables that represent 

the genotypes of two different genes, and a disease-status variable that represents the 

presence or absence of a complex disease and generalize it to n genotype variables. 

Based on this inequality, we provide a conditional independence and redundancy 

based definition of gene-gene interaction and the definition of an interaction group. 

We also derive a kai square statistic to measure gene-gene interaction.  

Since with the increase of the number of interaction genes, the number of possible 

combinations of interaction genes increases exponentially and the number of sparse 

cells also increases, a new algorithm is proposed to efficiently detect high order 

gene-gene interactions after some properties and a theorem relating to these new 

definitions are given and proved which reveal the relation between high order 

interaction and low order interaction. 

Experimental results on simulated and real datasets show the effectiveness of the 

new definition and measure of gene-gene interaction and the effectiveness and 

efficiency of the new algorithm to detect many high order gene-gene interactions. 

Complex traits are very common in human bodies which exist in the majority of 
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human innate and acquired body and behavioral characteristics, many physiological 

characteristics and also are closely related to most diseases. Unlike complex diseases 

which have only two states, complex traits have continuous outcomes can provide 

more accurate analysis. 

To better use the information contained in complex traits, we employ fuzzy logic in 

the selection of classifier. We propose extended member function in fuzzy 

classification which extend the range of traditional member function of fuzzy set from 

[0,1] to [-1,1] to better reflect the difference of different classifiers. The EFQMDR 

algorithm we proposed first transforms a quantitative trait into an ordinal trait by 

dividing it into several ordinal levels, then employs a new ordinal association measure, 

balanced accuracy based on extended member function to select multiple best sets of 

SNPs as having strongest association with the trait. Experimental results on simulated 

datasets and real datasets show that our algorithm has better performance in 

identifying gene-gene interactions associated with a complex quantitative trait. 

Complex traits usually have several correlated phenotypes. These correlated 

phenotypes are useful to detect additional genetic variants with small effects across 

multiple phenotypes or pleiotropy effects.  

To effectively identify gene-gene interactions associated with multiple correlated 

phenotypes, we propose MQOMDR algorithm which selects the best classifier 

according to not only the training accuracy of the phenotype under consideration but 

also other phenotypes with weights determined mainly by their pair correlation with 

the phenotype under consideration. Current methods use all correlations among 

phenotypes to select common sets of SNPs having interaction on multiple phenotypes. 

However these correlations may be caused by other factors. To make use of truly 

useful correlated phenotypes, we also employ a repeated selection process to filter out 

those phenotypes whose correlation with the phenotype under consideration is caused 

by other factors. Experimental results show that our algorithm has better performance 

in identifying gene-gene interactions associated with multiple correlated phenotypes. 

In the future, in order to increase the hit ratio of CIR algorithm, more combinations 

of genes can be selected at the first step and true interaction genes can be identified by 
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executing permutation test at the second step. For EFQMDR algorithm, we will try to 

conduct mathematical analysis to explain the better performance of the extended fuzzy 

classification based on extended member functions and do more experiments to check 

whether our algorithm is still better when QTs are divided in larger number of 

categories. In step 3 and step 4 of MQOMDR algorithm, fuzzy logic can be adopted to 

better use the information contained in a quantitative trait.  
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