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Abstract 

 

In the last two decades, the surging proliferation of renewable generations and the 

inception of competitive electricity markets worldwide have forced the decision 

makers to reconsider the planning, operation and trading mechanisms in modern 

power system. For renewable generations, such as wind power and solar photovoltaic 

power, the power output is characterized by variability and intermittence due the 

nature of chaotic weather conditions. While for electricity prices in competitive 

markets, the fundamental reasons behind are much more complex, the net load 

variability, system congestions, fuel prices and CO2 allowances are always considered 

as the major contributors to the uncertainty of electricity price. All these factors drove 

the grid operators and energy traders to seek a powerful forecasting product to aid their 

decision-making processes.   

Over the years, extensive works have been carried out on point (or deterministic) 

forecasts, which only gives one plausible estimate of the future. However, such 

forecasts are limited as they fail to inform the inevitable error information involved, 

which is fairly crucial for sagacious decision makings considering diversified 

uncertainties. This boosts the shift towards a more informative forecast tool under a 

probabilistic framework in recent years. In a nutshell, the uncertainty needs to be 

properly quantified as inputs fed into the specific applications of interest in one of the 

popular forms: quantiles, prediction intervals, PDF/CDF and scenarios.  

This thesis concerns three types of them, i.e., prediction intervals, PDFs and 

scenarios, with respect to two vital forecasting tasks in Smart Grid, i.e., prognosis of 
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solar irradiance and market clearing prices. The research background and purpose are 

presented in Chapter 1. Chapter 2 gives a comprehensive review of the state-of-the-

art techniques for the main forecasting activities in Smart Grid (e.g. wind power, solar 

photovoltaic power and electricity price). Subsequently, inspired by the fundamentals 

of information granules, a reliable prediction interval construction framework based 

on temporal granules is proposed for very short-term solar irradiance forecasts in 

Chapter 3. In Chapter 4, an effective density forecast approach based on ensemble 

extreme learning machines and a parametric post-processing technique is presented, 

which gives a full description of the underlying uncertainty involved in the day-ahead 

forecasts of Swedish market clearing prices. To further facilitate the generation of time 

trajectories, an efficient covariance structure determination method is developed to 

model the temporal dependency in the latter part of this chapter. Chapter 5 concludes 

the whole thesis and indicates the related aspects that can be enhanced and extended 

in the future.  
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Chapter 1  Introduction 

1.1 Background of Research 

In the last decade, the world has noticed an explosion of renewable 

generations, particularly in 2016, the renewable power generating capacity saw 

its largest annual increase ever than before, with 161 gigawatts (GW) of 

capacity added, to nearly 2017 GW at the end of 2016 [1]. Among various 

types of renewable generations, such as wind power, photovoltaic (PV) power, 

hydropower, biomass, biofuel, geothermal energy and so forth [2], the 

cumulative global capacity of the variable renewable generations, such as wind 

power and PV power, accounted for 39% of the total renewable capacity and 

experienced a tremendous increment over the last decade, which can be seen 

in Fig. 1.1, from 80 GW in 2006 to 790 GW in 2016 [1]. The top countries for 

highest penetration levels of wind power and solar PV power are Denmark and 

Honduras, respectively. In Denmark, the wind power has met 37.6% of 

electricity demand in the whole country, and in Honduras, 9.8% of the total 

electricity consumption came from the PV power [1].  
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Fig. 1.1 Global cumulative capacity of wind and solar PV power, 2006 - 2016 
 

However, compared to the dispatchable power sources, the weather-

dependent nature gives rise to large uncertainty and variability of the wind 

power and PV power output, both issues can lead to unexpected consequences, 

such as the fluctuations of voltage and frequency, increasing demand for 

ancillary services and economic loss for energy traders. It has been pointed out 

that there is distinct difference between the terms “variability” and “uncertainty” 

[3]. “Variability” refers to the change of generation output due to fluctuations 

of wind or sun, while “uncertainty” describes the unpredictability the timing 

and magnitude of the changes in generation output. In this sense, application 

of accurate forecasting tools is indispensable to reduce the uncertainty of  

variable renewable energy (VRE) generation, so that its variability can be more 

precisely accommodated [3].  

The forecasting tools for VRE generations are tailored to different end-

using cases and forecasting horizons, as illustrated in Fig. 1.2, where very 

short-term and short-term forecasting achieve high popularity in Smart Grid. 
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Very short-term forecasting is normally used for power smooth, real-time 

dispatch, storage control and real-time energy trading (e.g., 5 minutes for 

Australian electricity market clearing). Short-term forecasting refers to the 

forecasts performed up to 24-72 hours in advance. Such forecasts are 

particularly crucial for the decision-making activities relating to system 

operation (e.g., unit commitment, economic dispatch, reserve setting) and day-

ahead energy bidding. Medium-term forecasting is useful for the maintenance 

scheduling of power grid and VRE plants. Long-term forecasting can be 

applied for the siting and planning of VRE plants. On the other hand, the 

purposes for different end users may be distinct. A forecast tuned for an 

individual energy producer might be designed to maximize its profits, whereas 

a regional forecast made by a system operator might aim to minimize risk and 

to secure the system reliability and security [4]. 

 

Fig. 1.2 Decision-making activities with respect to different forecasting horizons 
 

In the meanwhile, over the last two decades, the electricity markets have 

experienced a significant restructuring and deregulation worldwide [5]. Even 

China, as the world’s largest electricity producer, embarks on breaking through 

the past monopoly of electricity market up to 30 more years, and attempts to 

build up spot markets nationally by 2020 [6]. In deregulated market, the 
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electricity became a commodity that can be traded between producers and 

buyers through free competitions [5]. As a result, the electricity price was no 

longer regulated by certain departments as a fixed tariff but was determined by 

the offers provided by the producers and customers, which varies over the 

market horizon. Market participants acting on the energy exchange require 

accurate electricity price forecasts to maximum their profits [7]. For instance, 

power producers must optimize the use of their production portfolio by pricing 

and bidding their available production capacity into the market. On the other 

hand, demand-side participants look for feasible options to avoid the high 

electricity prices during peak hours. However, due to the distinct properties of 

electricity, that is the supply and demand should be matched instantaneously 

and it cannot be stored in an efficient and cost-effective manner [8], the 

electricity price exhibits high volatility. Moreover, the surging integration of 

renewable energy into grid and limited capacity of transmission lines can even 

give rise to extreme prices, this made the forecasts of electricity price more 

challengeable and unpredictable than that of load series, which indicates strong 

seasonal patterns. 

Over the past years, the bulk of forecasting activities concerning VRE 

generation and electricity price is carried out in the deterministic framework 

[9-11], which provides a single value for a certain lead time. However, this 

single value is only one representative of the multiple likely outcomes, and 

subject to evitable errors. Sometimes, the level of errors is acceptable within 

the risk threshold of the related applications, but sometimes it can be 
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significant to cause unexpected consequences. It is thus desired to inform the 

error information in the forecasting results in some reasonable and 

understandable manner, that can be made use of by decision makers to hedge 

against the risks and make optimal decisions. For example, to compensate the 

uncertainties of net load, the system operators have to procure a certain amount 

of reserve in advance, which is directly linked to the VRE generation 

forecasting errors [12]. Excessive reserve would lead to an economic loss and 

an inadequate amount of reserve could result in a potential reliability issue. 

Therefore, better knowledge of the associated error information with the point 

estimate in advance can significantly assist the grid operators to make a 

justified tradeoff between economics and risk management.  

To account for the uncertainty information, several prevailing operational 

solutions have been developed lately to facilitate the end-users’ problems, such 

as stochastic programming [13-18] and robust optimization [19-24], where the 

quantitative uncertainty information is normally served as input variables. 

Then, the key challenge translates to seek a proper tool to quantify the 

uncertainty information. Probabilistic forecast is a promising way to fulfil this 

task, which is favored by a great number of grid operators and market 

participants nowadays, as it gives a more informative description than point 

forecast with respect to the future uncertainty. In probabilistic forecast, the 

potential likely outcomes are given with different probabilities, end-users can 

easily know the occurring likelihood of certain event and the range of all 

possible outcomes. Incorporating probabilistic forecast into decision-making 
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processes is believed to benefit more for the end-users [25-30]. Therefore, in 

recent years, a surging interest has shifted to the research of probabilistic 

forecasts, particularly in the field of wind power. Generally, these studies can 

be categorized as quantiles [31], probabilistic intervals [32], predictive 

probability density function (PDF) [33] and scenarios [34].  

1.2 Motivation and Purpose 

At present, the probabilistic forecast for wind power has reached a 

relatively mature stage, considerable efforts have been spent by academics and 

practitioners in the last decade, to develop a variety of approaches or models 

concerning wind power [35]. Whereas the research on the forecast of solar 

energy and electricity price in the probabilistic regime still situates at a relative 

infancy. As mentioned-above, as increased PV generations, either at system 

level or custom level (behind-the-meter), are integrated into the grid, as well 

as the gradual reforming towards competitive electricity markets worldwide, it 

also necessitates advanced models to inform of the future uncertainty of PV 

power and electricity price for different related entities. Although the 

mechanism of wind power forecasting can be applicable to these two quantities, 

some unique properties [7, 10] make the prognosis of them even more 

challengeable. This motivates us to make a comprehensive investigation for 

PV energy and electricity price, respectively.  

This thesis aims at proposing effective solutions for analyzing, modeling 

and forecasting the potential uncertainties involved in the forecasting process 

for PV energy and electricity price. Specifically, three complementary 
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solutions are developed, including very short-term prediction interval (PI) 

construction for solar irradiance, day-ahead conditional density forecast for 

market clearing price (MCP) and temporal scenario generation for MCP. The 

solutions can be applied to the specific operational applications depending on 

the problem formulations. 

Very short-term PI construction for solar irradiance: Instead of 

directly predicting the solar PV power, we concentrate on the forecast of solar 

irradiance, as it is the primary source of PV generation. Besides, we believe 

that solar irradiance forecasting provides more utility than PV power output 

forecasting. For example, prior knowledge of the amount of solar irradiance 

over time under the local environmental conditions is a key input for choosing 

the optimal location, technology and size of a solar energy project. For the 

short-term respective, the solar irradiance can be converted into the solar power 

by a series of equations [10], offering the guidance for dispatch and operation 

in the near future. On the other hand, the expansive deployment of micro grids 

makes the very short-term (from a few seconds to minutes) forecast for the 

solar irradiance of particular importance, since the online dispatch order is 

normally made within a short period (e.g. 15 minutes). In light of above, the 

uncertainty quantification for the short-term solar irradiance forecasting is 

indispensable. In this work, a granule-based nonparametric PI constructing 

method is proposed. The irradiance data used is measured at King's Park 

Meteorological Station, provided by Hong Kong Observatory (HKO). The 

developed PI of solar irradiance allows the micro-grid operators to make the 
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optimal dispatch strategy for other generation units involved, reducing the risks 

associated with the forecasting errors. 

Day-ahead conditional density forecast for MCP: The ‘electricity price’ 

or ‘spot price’ appeared in previous surveys typically refers to MCP, which is 

determined by the centralized bidding in a day-ahead market. The bids and 

offers are submitted by the agents for the delivery of electricity during each 

hour (or a shorter load period) of the next day before a certain market closing 

time [9]. Great success has been achieved in the domain of deterministic MCP 

forecast during last three decades [9]. However, the forecasting errors are 

impossible to eliminate, even with highly accurate models. As a growing 

number of practitioners realize that the limitations of point forecasts, 

probabilistic forecast of MCP becomes popular in recent few years. As Amjady 

et. al [36] remark, high-quality MCP probabilistic forecasts would help utilities 

to submit effective bids with low risk. In this thesis, to give the end-users a full 

picture of all potential future outcomes, we build up a hybrid model for the 

entire distribution estimation, instead of merely a single or a set of 

PIs/quantiles.  

Temporal scenario generation for MCP: The current forecasting 

activities for MCP, like discussed above, are mostly carried out for a certain 

look-ahead time individually, while ignoring the interdependence in the look-

ahead horizons. However, some problem formulations (e.g., stochastic 

optimization) for trading electricity require a portfolio of price trajectories over 

the successive lead times as inputs [37, 38], rather than several independent 
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marginal distributions. In this sense, it is necessary to develop effective 

approaches to construct possible realizations of the stochastic prices. In this 

work, by taking advantages of the well-calibrated marginal distribution derived 

from the proposed density forecasting model for MCP, we further apply the 

Gaussian Copula [39] to capture the essential temporal interdependence among 

these marginals. To avoid arbitrary hypothesis and complicated computations, 

a highly efficient determination process for the covariance structure is 

developed.  

1.3 Scientific Contributions 

To achieve the original solutions presented in the last section, this thesis 

investigates into some novel approaches to fulfil these solutions. The primary 

scientific contributions are summarized as follows: 

1. The paradigm of information granules (IGs) is firstly incorporated into the 

construction of PIs. IGs are treated as collections of entities (say numeric 

readings) that are grouped together because of their similarity, functional 

closeness or any other criterion that captures a feature of 

indistinguishability [40]. It has been widely used in the field of control and 

decision-making. Considering the traditional artificial intelligence (AI) 

based PI construction models all depend on crisp (single numeric) inputs 

and interval outputs [41-43], which is not consistent in model 

establishment. Based on the conceptualization of IG, granulating both 

model inputs and model parameters seems to be a more straightforward and 

rational way to yield PIs, since the stochastic uncertainty involved in the 
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original data and knowledge uncertainty resulting from the 

misspecification of model parameters can be well captured by the proper 

IGs, respectively. Hence, in this thesis, a generic granular neural network 

(NN) design scheme for PI construction is proposed. The granular mapping 

is built upon the extreme learning machine (ELM) network due to its 

excellent generalization capabilities and fast learning speed, through 

endowing granular outputs with proper scoring rules, the PIs with different 

confidence levels can be yielded. Numeric experiments are carried out 

using the global horizonal irradiance (GHI) measurements provided by 

HKO, results show that the proposed granular ELM (GELM) is able to 

produce highly reliable and sharp PIs for very short-term GHI prediction.  

2. A hybrid model based on ensemble ELM and Logistic Ensemble Model 

Output Statistics (EMOS) is developed to construct the conditional 

predictive density for Swedish MCP. Density is more quantitatively 

informative than quantiles or PIs, particularly at the distribution tails. The 

instable property of ELM network motivates us to quantify the model 

uncertainty by combining multiple predictions via a bunch of ELM-NN 

networks. Logistic distribution is employed to model the predictive 

distribution as it is more robust to the outliers than Gaussian distribution. 

By further utilizing the Continuous Ranked Probability Score (CRPS) 

oriented EMOS to establish the relationship between distribution 

parameters and ensemble predictions, the MCP density can be forecasted 

in a time-adaptive way. Comprehensive skill verifications, including CRPS, 
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quantile reliability and Diebold-Mariano (DM) test, for the predictive 

density are carried out against benchmarks. Results show that the 

developed hybrid model can yield predictive density with superior quality. 

3. To model the aggregated uncertainties within contiguous lead times, a 

highly efficient determination process for the covariance structure is 

developed. Gaussian Copula theory [39] allows us to model the essential 

interdependence in the lead times once marginal distributions are obtained. 

The most crucial task is to determine a sound covariance structure for the 

multivariate gaussian variable. Without any hypothetical parameterization 

or enumerative computations in traditional approaches, the covariance 

structure is simply modeled by the observed probabilistic forecasts in the 

similar weekdays. Through verification via two complementary scores, 

energy score and variogram score, this dependency modeling method 

proves to yield most skillful trajectories with comparison to benchmarks.  

1.4 Thesis Layout 

The remainder of the thesis is organized as follows, 

Chapter 2 provides a brief survey of the state-of-the-art works related to 

this study. Besides, the fundamentals and practical values of probabilistic 

prognosis are discussed with several examples in Smart Grid. In the last part 

of this chapter, popular types of probabilistic forecasts are presented along with 

the corresponding proper evaluation criteria. 

Chapter 3 proposes a granule-based nonparametric PI construction model 

for GHI. The theoretical background of granular computing is presented at first. 
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The GHI data used for numeric study and its empirical investigation are 

described later on. ELM as the basis model is also reviewed in this chapter. It 

is followed by the uncertainty analysis in a modeling system. Setup of the 

proposed GELM and the associated PI-skill-oriented learning scheme is 

presented afterwards. Lastly, the evaluation is carried out against five 

benchmarks, showing the effectiveness of the proposed GELM model.  

In Chapter 4, a density constructing model using ensemble ELM and 

Logistic EMOS is developed for day-ahead MCP forecast. Appropriate input 

features are selected firstly from a family of candidates for each ensemble 

member. Then, the establishment of Logistic EMOS and its parameters’ tuning 

strategy in terms of CRPS is presented. The proposed modeling process for the 

temporal dependence structure of the next-day predictive margins is also 

described in this chapter. In the end of this chapter, the evaluations are 

performed with regard to the derived independent predictive densities and the 

time trajectories, respectively.  

Eventually, Chapter 5 concludes this thesis, and provides perspectives for 

future work. 
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Chapter 2  Literature Review 

2.1 Introduction 

With the surging integration of VRE into power system, the grid operators 

and market participants are facing new challenges arising from the 

undispatchable nature of VRE and the volatility of MCPs. All entities are 

seeking for the competitive forecast products to aid their decision-making 

processes. The prevailing practice for them is to produce a point estimate for a 

certain lead time, which is closely related to the forecasting quality, inferior 

quality yields large forecasting error that could cause severe consequences for 

the related applications. Therefore, the decision makers come to realize that 

simply knowing one single outcome is not enough, the associated uncertainty 

should be properly accounted for in the complex decision-making processes 

[44]. This leads to the emergence of probabilistic forecast, which aims to give 

a quantitative description of the uncertainty information. 

Among a series of crucial forecasting activities in Smart Grid, wind power 

probabilistic forecasting has reached a mature stage, this might be due to the 

expansive integration of wind farms into power grid in the early 21th century, 

particularly in Denmark, where it accounts for a large share of the total 

electricity supply, from 12.1% in 2000 to 49.2% in 2015 [45]. On the other 

hand, until recent few years, a dramatic increase of PV generations was seen 

throughout the world, as shown in Fig. 1.1. Hence, the investigation of PV 

power probabilistic forecasting is in the early stage. In addition, the 
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‘immaturity’ of PV power forecasting might results from its small-scale and 

geographical spreading characteristics. The PV power producer and 

independent system operator (ISO) are more inclined to know the 

approximating aggregated generations from a PV plant or a large control zone 

for a certain time. The individual small-scale PV generation is hard to predict 

as it is highly influenced by the unique weather condition and cloud motion in 

the specific region. On the contrary, the aggregated PV production is much 

more predictable, since the intermittent variations in the outputs of a PV plant 

or a zone can be cancelled out by each individual component. Consequently, 

in spite of the rapid development of PV generations worldwide, vast number 

of works still focus on the point forecast of aggregated PV power output.  

Similarly, although the competitive electricity market has been incepted 

over years, the probabilistic forecasting of electricity price still gains limited 

interest among academics and practitioners. This situation continues up to year 

2014, when the Global Energy Forecasting Competition (GEFCom2014) was 

hold. The price track in this competition attracts 287 contestants worldwide, 

and this makes the beginning of the era of probabilistic electricity price forecast 

[46]. Nevertheless, the competition is not the fundamental reason, rather the 

effect of increased interest in probabilistic price forecasting.  

In this chapter, we first discuss the key role of probabilistic forecast in 

today’s decision-making problems in power system, with the practical values 

tailored to different applications. Then, four typical representations of 

probabilistic forecasts are introduced, followed by the review of popular 
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evaluation metrics with regard to all representations. In Section 2.3, a 

comprehensive overview of state-of-the art approaches of probabilistic 

forecast is given in terms of parametric and nonparametric methods. 

Conclusion is made in Section 2.4. 

 

2.2 Beyond Point forecasts: Probabilistic Forecasts 

2.2.1 Why probabilistic forecasts? Benefits for different entities 

In today’s electricity market, with more variable and distributed resources 

flooded into the grid, decision makers are facing miscellaneous uncertainties 

than ever before. As a result, it seems less rational to solve the decision-making 

problems in a deterministic framework, analysing and translating these 

uncertainties into readily understandable forms would substantially aid to 

make a sound decision. Representing the uncertainty information (e.g., 

prediction errors) in the form of probabilistic forecasts has attracted great 

attentions of market participants, particularly for VRE power producers and 

system operators [35, 47]. VRE power producers pursuit the maximization of 

their profits, whereas the system operators are responsible for the stability of 

power system on a continuous basis in a cost-effective way. The related 

decision-making processes include energy bidding [24, 35, 47, 48] , operating 

reserve allocation [25, 26, 49, 50], unit commitment and economic dispatch 

[19, 27, 28, 51, 52]. 

(1) VRE power producers 
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The competitive electricity market requires the power producers to submit 

the bidding prices and amount of energy for the next operational day, usually 

ahead of 12-36 hours. The imbalance cost is a major influenced factor of VRE 

power producers’ revenue, which is directly linked to the quality of VRE 

forecast. The maximal revenue could not be obtained unless point forecast of 

VRE are perfect and error-free [35]. Nonetheless, this can be achieved by 

managing the forecasting uncertainty information of VRE via some advanced 

mathematical optimization tools.  

Literature [35] provides an optimal bidding strategy for wind power 

producers based on stochastic optimization [18], where the uncertainty of wind 

power production is modeled as a predictive distribution. A closed-form 

solution for the optimal bidding amount is eventually derived as a function of 

certain quantile of the predictive distribution. Through simulating in a multi-

MW wind farm in Dutch electricity market, it is proved that the bidding 

strategy derived from wind power probabilistic predictions can reduce the 

regulation costs by 39% as compared to that resorting to some advanced point 

forecast approaches [47]. 

In [24], both forecasting uncertainty of wind power and MCP are took into 

account and represented by 95%-level prediction intervals, respectively. Then, 

a robust formulation is developed considering both day-ahead market and 

balancing market to hedge the risk for wind power producers. In this way, the 

resulting revenue can be guaranteed to be maximal under the worst uncertainty 

scenario.  
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Robust optimization [21] has its merits on less computational burden and 

relaxed requirements for predictive distributions. However, it is often argued 

by the conservative nature and not as well linked to fundamental axioms of 

rational decisions under uncertainty, as it plans for worst-case scenarios rather 

than an expected utility metric [44]. 

(2) System operators  

One of the major task for system operators is to define the appropriate 

amount of operating reserves to be allocated to maintain a specified level of 

system security. In other words, enough reserve should be procured to restore 

the balance of supply and demand in the event of unexpected deviations from 

the forecasting system operation state [53]. In the history, the system 

uncertainties mainly come from two sources: the possibility of large generators 

failing and the load forecasting errors. Hence, the reserve amount can be set by 

simple rules based on the size of largest generator or some fractions of the total 

load [54]. However, as substantially increasing VRE generations integrated 

into grid, rules-of-thumb techniques are evidently too conservative and 

uneconomical to define the reserve levels, sophisticated quantification and 

management approaches are required to cater for the ever-changing 

uncertainties. In principle, the optimal level is defined by specific risk indices, 

such as loss of load probability (LOLP), loss of load expectation (LOLE) and 

expected energy not served (EENS), within the cost constraints in response to 

unscheduled deviations in generation and demand [53].  
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Literatures [25, 49] develop a decision tool to aid the day-ahead setting of 

operating reserves. The density forecasts of wind power and load, as well as a 

capacity outage probability table (COPT) and an outage replacement rate are 

used as inputs, the reserve level is finally determined by a risk/reserve curve 

and a risk/reserve cost curve according to the decision-makers’ preferences. 

This tool has been installed in the Portuguese Transmission System Operator 

(TSO), providing suggested reserve allocations during day-ahead and intra-day 

market sessions [49]. 

Literature [55] considers the uncertainty in an urban micro-grid arising 

from PV generations and load, the net demand forecasting errors are modeled 

through Gaussian distribution. The impact of net demand uncertainties to the 

system reliability are assessed under two risk indices: LOLP and EENS. 

Similar to the previously presented work, risk/reserve curve is obtained for 

each hour of the operational day, which guides the optimal setting of reserves 

for next day according to different risk indices. 

In literature [50], the uncertainties of wind power forecasts, load forecasts 

and power plant outages are modeled by scenarios, where the scenarios of wind 

production and load are generated together to account for their mutual 

correlation. Then, two approaches are framed to determine the reserve 

requirements in DK1 area of Nord Pool. The first one depends a chosen value 

of LOLP to deliver a set level of security, regardless of the cost. The second 

method considers both risk (the expected LOLP) and the associated costs, 

where the costs are defined as the sum of the expected costs of allocating and 
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deploying reserve and the expected costs of shedding load. Through 

minimizing the conditional value at risk (CVaR) at a given risk-parameter, the 

corresponding solution can be obtained. The numerical study shows the CVaR-

based method is more likely to yield a less expensive schedule as compared to 

the Danish TSO’s simple schedule, while procuring adequate levels or reserves. 

A stochastic formulation is developed in [27] to minimize the total costs 

of unit commitment, including expected production costs, the expected cost of 

unserved energy and reserve curtailment, and start-up costs. Seeing that the 

unit commitment problem has a strong time-dependency component in its 

definition (ramping, shut-down/start-up decisions), the uncertainty in wind 

power prognosis is modeled by the predictive scenarios with temporal 

interdependence of the forecasting errors instead of the independent 

distribution. Through numerical experiments, the stochastic unit commitment 

relying on the scenario representation of uncertainty is demonstrated to have 

advantages over deterministic approaches that mimic the classical models.  

Note that the beneficiaries of probabilistic forecasts are not limited to the 

energy producers and system operators, more operational problems (e.g., 

demand response, EV charging) in demand side are needed to exploit to 

accommodate various types of probabilistic forecasts.  

2.2.2 Forms of probabilistic forecasts 

Generally, the probabilistic forecasts applied in current decision-making 

cases of power system can be categorized into four forms: quantiles, 
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probabilistic intervals, PDF/cumulative distribution function (CDF) and 

scenarios. To a certain extent, they can be transformed mutually. 

2.2.2.1 Quantiles 

Quantiles refer to the points in a distribution that relate to the rank order 

of values in that distribution. In the context of quantile forecast, assuming that 

"# is the predictive CDF for variable X, as illustrated in Fig. 2.1, the forecasted 

quantile $#
(&) with proportion ( ∈ [0,1] of this CDF is defined as the value yt 

such that ( )tX y t£ =P . In general, the forecasted quantiles can be obtained 

by using the quantile regression models [56] or directly extracting from the 

predictive CDF.  

	

Fig. 2.1 !-th quantile of the predictive CDF for variable X 

	
2.2.2.2 Probabilistic intervals 

In the statistical analysis of power system, probabilistic interval 

commonly refers to “confidence interval (CI)” and “prediction interval (PI)”, 



21	
	

which are totally different in conception and are always used erroneously by 

researchers [57]. A confidence interval is a range for the expectation of certain 

random variable. Suppose one randomly sample from a dataset of MCP and 

calculate the 90% CI is from 20 EUR/MWh to 40 EUR/MWh, it means that 

there is 90% confidence that the mean of the entire MCP dataset falls within 

this range. When it comes to prediction, the CI describes a range that is likely 

to contain the mean response of a well-established forecast engine. On the 

other hand, PI is a range associated with a random variable yet to be observed, 

within a specified probability of the random variable lying within the range. 

For example, a 90% PI informs that one can be 90% confident that the future 

measurement can fall into this range. PI can be constructed either in a direct 

manner or by two different quantiles. For instance, a 90% PI can be derived by 

5%-quantile and 95%-quantile as its lower and upper bound, such PIs centered 

on the median of the predictive distribution are also called central prediction 

intervals [47].  

2.2.2.3 PDF and CDF 

The predictive PDF and CDF aim to give the full quantitative description 

of the uncertainty, from which one can be informed of any densities and 

quantiles throughout the entire distribution. Most importantly, such 

representations are capable of describing the extreme situations in the forecasts 

by distribution tails. To obtain the predictive PDF and CDF, one can simply 

rely on the parametric ways, that is, calculating the statistical parameters of the 

specified predictive distribution. Alternatively, they can be derived using a set 
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of forecasted individual quantiles along with some interpolation techniques. 

The latter one has its merits on the free-assumption of distribution shape, and 

thus being able to give a more rational description of the uncertainty 

information, since the time- and location-varying uncertainty does not always 

follow a specific distribution in practice.  Nonetheless, it suffers from high 

computational burden and requiring additional modeling of the distribution 

tails. 

2.2.2.4 Scenarios 

Although PDF and CDF provide considerable information about the 

inherent uncertainty in forecasting processes, they fail to inform about 

interdependence structure at different locations and/or lead times. The reason 

is that marginal PDF and CDF in the probabilistic forecast context are 

generated on per-site, per lead time basis.  

In this sense, if operational problems are spatially and/or temporally 

coupled, the predictive marginal distributions would be only suboptimal inputs 

to decision-making. Stochastic unit-commitment is an example for an 

operational problem which requires information about uncontrollable 

generation spread over a control area as well as the development of forecast 

errors through successive lead times. This drives us to seek a way to model the 

interdependence in all look-ahead times and all locations of interest. Copula 

[39] is powerful tool to allow us to specify the dependency between random 

variables independently of their marginal distributions, and thus establishing 

the joint distribution. By sampling from this joint distribution, a series of 
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trajectories can be generated, which are further fed into the multivariate 

stochastic process of interest as inputs. 

2.2.3 Evaluation tools for probabilistic forecasts 

Over the years, a number of metrics has been developed to evaluate the 

performance of probabilistic forecasts. In essence, these evaluation tools rely 

on the comparison between the observed (actual) values and the probabilistic 

forecasts over a certain period. In a broad view, they are designed based on 

two statistical criteria: reliability and sharpness [58-60]. 

Gneiting et al. state that ‘probabilistic forecasting aims to maximize the 

sharpness of the predictive distribution, subject to reliability’. Reliability (also 

called calibration or unbiasedness) refers to the statistical consistency between 

the distributional forecasts and the observations. Taking a PI estimation for 

example, the resultant PI is said to be reliable (well-calibrated or unbiased) if 

a 90% PI covers 90% of the observations over the calibration period. Sharpness, 

on the other hand, indicates how tightly the predictive distribution covers the 

actual one. In the following, we will discuss the most-commonly used 

evaluation metrics in terms of different forms of probabilistic forecasts. 

2.2.3.1 Reliability 

(1) Interval reliability 

Reliability is always deemed as the foremost attribute of the probabilistic 

forecasting quality [42]. It is widely used in the evaluation of PI and predicted 

quantiles, which measures the deviation of predicted proportion from the 
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nominal proportion. The smaller the deviation is, the higher reliability the PIs 

or predicted quantiles possesses.  

For the PIs, by the definition of reliability, the empirical coverage rate 

(also called PI coverage probability, PICP) should match the nominal coverage 

rate (also called PI nominal coverage, PINC): ˆ ˆ( [ , ]) (1 )t t ty L U aÎ = -P . For 

instance, the 90% PIs (i.e., with / = 10%) should yield the nominal coverage 

of 90%. To obtain PICP, we typically focus on an indicator It, implying weather 

the observation lies into the PI or not. 

ˆ ˆ   if  [ , ]1
ˆ ˆ0   if  [ , ]

t t t
t
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where yt is the observation at time t, 2# and 3# are the lower bound and upper 

bound of the PI at time t, respectively. Through evaluating over a calibrated 

period of length T, the PICP can be calculated as 

1

1PICP
T

t
t
IT =

= å
	

(2.2) 

To measure the deviation from PINC, the average coverage error (ACE = 

PICP-PINC) is introduced. Apparently, to yield a PI with high reliability, the 

absolute value of ACE should be as close to zero as possible [42]. 

(2) Quantile reliability 

The predictive individual quantiles can also be assessed in the context of 

reliability. Likewise, an indicator 4#
(&) is introduced to identify that if the 

observation yt is lower than the predicted (-th quantile $#
(&) or not: 
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Thus, we can write the predicted proportion (  by averaging the 

summation of  4#
(&) over the calibrated period: 
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(2.4) 

 

Similarly, ( should be kept as close as possible to its nominal proportion 

( to guarantee a high reliability of the derived quantiles. Hence, we introduce 

the absolute probabilistic deviation (APD = ( − ( ) to measure their 

difference [61]. 

2.2.3.2 Sharpness 

Sharpness determines the concentration of the predictive distributions. 

Diagnostic tools regarding sharpness involve the box plot and average width 

of PI. The latter is more straightforward once the lower and upper bound of PI 

are known, which is usually given as [62]: 
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(2.5) 

where R is the maximum range of the targets. Narrower PIs or predictive 

distributions would be more intuitively appealing to decision-makers. Unlike 

reliability, which is a joint property of the predictions and observations, 

sharpness only concerns the predictions [46]. However, it is more justified to 
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verify sharpness along with reliability through skill score for probabilistic 

forecasts [60]. 

2.2.3.3 Skill score 

Skill score provides a summary measurement for reliability and sharpness 

simultaneously.  

(1) Quantile score 

The overall performance of quantiles is often evaluated by the quantile 

score (QS), on the basis of the most-popular pinball loss function [63], which 

is expressed by an asymmetric piecewise linear function as: 
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Fig. 2.2 gives the shape of quantile score. As can be seen, this loss function 

is always positive, the further away from the target yt, the larger the value of 

quantile score. The slope is used to reflect the desired imbalance in the quantile 

forecast [63].  

	

Fig. 2.2 Schematic of quantile score (QS) 
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In practice, this score is usually computed over a set of forecasted 

quantiles instead of a single one over the calibrated period, thus yielding the 

average quantile score as: 

( )

1 1
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= × åå 	 (2.7) 

where M is the total number of quantiles verified. A lower score indicates a 

better quantile forecast. 

(2) Interval score 

 When evaluating the overall skill of PIs, the interval score (also called 

Winkler score) is extensively used [58]. For a central 1 − / ×100% PI, 

whose lower and upper bound are given by the predictive quantile at level //2 

and (1 − //2), its interval score is defined as: 
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This score is also negative-oriented. It rewards the forecaster for a narrow 

PI and gives a penalty if the PI does not include the observation. When multiple 

non-crossing PIs, with nominal coverage rate from 1 − /9  to 1 − /: , 

are examined, we adopt the average interval score as: 

11
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(3) Continuous ranked probability score (CRPS) 
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Unlike quantile score and interval score, that rely on the evaluations of 

aggregate individual quantiles or intervals, the CRPS is able to assess the 

distributions as a whole [64]. CRPS is fundamentally related to rank 

probability score by comparing two full distributions [58, 64], which is defined 

as: 

( )
2

1 2 1 2( ) ( ) ( )t t t tCRPS F ,F F x F x dx
¥

-¥
= -ò f

	
(2.10) 

where	"#9 and "#< are two distributions of variable X. This equation can be 

schematically interpreted by Fig. 2.3 (a), where the total area between two 

CDFs are the resultant CRPS value.  

	

(a) Area between two distinct 
CDFs 

(b) Area between predictive 
CDF and a crisp value  

Fig. 2.3 Schematic of CRPS 

When it comes to the probabilistic forecasts for a desired crisp value (e.g., 

yt), Eq. (2.10) can be transformed into a special form, by replacing one CDF 

with a single step-function (step from 0 to 1) at the observed value, resulting 

in: 
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where 1 is the Heavisible step function, which takes the value 0 when x<yt and 

the value 1 otherwise. This calculation process is illustrated in Fig. 2.3 (b), 

where the predictive CDF is denoted by the red line, and the observation is 

represented by a step-function in black at yt, CRPS is thereby calculated by the 

area filled with grey between them. Apparently, a smaller area (lower CRPS 

value) indicates a better predictive skill. The average CRPS can thus be 

calculated by examining all calibrated points as: 

1
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CRPS is more appealing than other skill scores mostly on its generalized 

definition, that is, it does not require the introduction of a number predefined 

classes (e.g., intervals in the interval score) on which results may depend [46]. 

It is applicable to all existing probabilistic forecasts. 

In the context of parametric forecasts, the CRPS can be written as analytic 

forms corresponding to different pre-defined distributions [64, 65]. Due to the 

simplicity of implementation, in such cases, the CRPS is always adopted as the 

optimum score to estimate the regression parameters. However, it is hampered 

in the nonparametric situation, where the forecasts are represented by a set of 

discrete values or quantiles, posing great numerical challenges. Literature [66] 

provides useful guidance on calculating the CRPS discretely. The CRPS is 

decomposed into absolute differences (first component) and spread (second 
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component; which measures the lack of sharpness), as expressed in the 

following: 

ˆ ˆ
1ˆ( ) '
2t tt t tF FCRPS F ,y X y X X= - - -E E 	 (2.13) 

where X and X’ are independent copies sampled from the predictive 

distribution "#. Moreover, the CRPS can be derived through examining a finite 

number of individual quantiles (e.g., ( = 0.01, … ,0.99) on the basis of pinball 

loss function (2.6) [65, 67]: 
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we can further write its compact form as: 

( ) ( )( )( ) ( )1

0
ˆ(ˆ ˆ2 )t t tt t tC F ,y y yPS dqR q t tt t= < - -ò 1 	 (2.15) 

In this manner, without any smoothing acts with respect to the estimated 

quantiles, the CRPS can be properly calculated in the case that numerous 

quantiles are provided. 

(4) Multivariate verification 

The above discussed metrics are all limited to univariate, when the 

probabilistic forecasts are generated in the form of temporal or spatial 

trajectories, a proper multivariate verification is needed. 

Energy score (ES) a multivariate generalization of CRPS by extending the 

univariate in (2.13) to a multivariate vector. For a given set of estimated 

scenarios ( ) 1j H
t

´Îs R  with dimension H, issued at time t, ES is expressed as  
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where J is the total number of scenarios, ∙ < is the multi-dimensional A< 

norm and 1 H
t

´Îy R is the observed vector. ES is effective in detecting the 

erroneous linear trend corresponding to the forecasts simulated. However, it is 

always limited by the discrimination issues, that is, it is insufficient to identify 

the incorrectly specified correlations between the components of the 

multivariate quantity [68, 69]. 

Variogram score (VS) is a powerful verification tool to address the above-

mentioned problem by considering the pairwise differences of the components 

of the multivariate quantity, its l-th order expression is given by  

( ) ( )
, , , , ,

1 1 1

1VS
H H J lll j j

t m n t m t n t m t n
m n j

w y y s s
J= = =

æ ö
= - - -ç ÷

è ø
åå å 	 (2.17) 

where BC,D  are nonnegative weights, indicating the significance of all 

pairwise differences of observations and forecasts. E#,C and E#,D are the m-

th and n-th component of observed vector yt, respectively. F#,C
(G)  and F#,D

(G) are 

j-th realizations of components 1
,

J
t m

´Îs R 	 and 1
,

J
t n

´Îs R , respectively. This 

score measures the dissimilarity between approximations of the variograms of 

order l of observations and forecasts over all pairs of components of the 

quantity [69]. Both ES and VS are negative-oriented. 

Note that in the context of multivariate verification, there is no single score 

rule in existence that can serve all purposes [69], therefore, utilization of 
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different scores based on different desired properties are strongly advocated 

before making a justified conclusion. 
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2.3 A Review on State-of-the-art Probabilistic Forecasts for VRE 

Generations and Electricity Prices 

In contrast to the bulk of research available on probabilistic forecasting of 

wind power [35] and its expansive applications in electricity market nowadays, 

one can hardly find the practices of PV power probabilistic forecasting. 

Generally, despite that the PV power has its unique characteristics, such as 

higher ramp rates due to lack of inertia and movements of clouds, distributed 

location or small-scale (behind-the-meter) generations [70], the forecast of 

solar PV energy can basically benefit from the developments in wind power 

due to the inherent weather-dependent nature they both share.  

The probabilistic forecasting of electricity prices has become of particular 

interests until last few years, yet it is an undeveloped topic. Other than the wind 

power forecasting, where its close relationship to meteorological predictions 

are well established and commonly accepted [46], the influential factors of 

electricity prices are even more complicated to identify. The potential drivers 

of the price volatility are reported to comprise, but not limited to: demand, 

transmission congestion, generation outage, market participants behaviors, etc. 

These factors, and the uncertainties associated with them, are hard to 

incorporate into the price forecasting model [46].  

Therefore, in this section, an overview of the current research activities is 

presented chiefly with regard to probabilistic forecast for wind power and 

electricity price. The approaches can be broadly classified into two categories: 

parametric and nonparametric. 
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2.3.1 Parametric methods 

In parametric models, the shape of predictive distribution needs to be pre-

defined, which is usually described as the analytic form with respect to the 

distribution parameters (e.g. location, scale). For example, the predictive 

distribution of wind power forecasting errors is often assumed as Gaussian 

distribution [71], which is characterized by only two statistical parameters: 

mean and standard deviation. This makes such parametric models fairly simple 

and computational efficient. Apart from Gaussian, Beta distribution is another 

widely-used statistical inference for wind power forecasting errors, mostly 

owing to its fat-tail property that accord with the large kurtosis of wind power 

forecasting error distribution [72]. In addition, the authors in [73] argued that 

wind power output should be viewed as the double-bounded variable, instead 

of unlimited variable following Gaussian distribution, which makes the Beta 

distribution (ranging from 0 to 1) more appropriate to describe the stochastic 

process of wind power [35].  

Once the predictive distribution shape is determined, one needs to identify 

a regression model to establish a functional link with the underlying statistical 

parameters, e.g., location parameter and scale parameter. In most cases, the 

location parameter is considered as the point forecast, whereas the scale 

parameter implies the uncertainty. 

2.3.1.1 Statistical time series models with parametric noise assumption 

The most well-known models used to estimate the scale parameters must 

be statistical time series models (e.g. ARMA, ARIMA, GARCH), as they are 
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the basic and standard models that take into account the random nature and 

underlying time correlations of phenomenon [74, 75]. Such approaches focus 

on the error terms, that are frequently assumed to be independent and 

identically distributed (iid) noises with zero means and finite variances (i.e. 

Gaussian white noise) (0, )esN . 

 In ARMA(p,q) model, the current value of the process is expressed 

linearly in terms of its p past values (autoregressive part) and in terms of q 

previous values of the residuals (moving average part) [74]. For q=0, it yields 

the most classic autoregressive AR(p) model. The ARMA modeling approach 

assumes that the time series under study is stationary. If it is not, then a 

transformation of the series to the stationary form has to be done first. In 

particular, this transformation can be performed by differencing. The resulting 

model known as the autoregressive integrated moving average (ARIMA) 

model. The ARMA-based model can be further extended to so called 

autoregressive moving average with exogenous variables (ARMAX) model, in 

which, the exogenous variables (e.g. NWP information) are incorporated to 

make the modeling process more rational.  

However, all the linear ARMA-based models are characterized by 

homoscedastic nature, i.e. a constant variance and covariance function. From 

a practical point of view, wind/PV power is non-linear and non-stationary 

process, thus the heteroskedasticity of residuals must be taken into account. 

This is successfully addressed by the generalized autoregressive conditional 

heteroskedastic (GARCH(p, q)) model [75], where the variance is conditional 
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on the past values of the time series and a moving average of past conditional 

variances. By using this model, the predictive Gaussian distribution of 

residuals is no longer a constant one, but varies with time, making it more 

appealing to forecasters.  

Over the past years, the majority of works using statistical time series 

models to generate the parametric predictive distribution or PIs concerns the 

wind power [76-79]. Literature [80] introduces a method to obtain 95% PIs for 

global horizontal irradiance (GHI) based on standard error as a function of 

solar zenith angle and clear sky index. Two assumptions are made in this work, 

standard errors follow normal distributions and prediction intervals are central 

on point forecasts.  

Such parametric models, either with homoscedastic or heteroscedastic 

noise assumption, are popular in probabilistic forecasting of electricity price as 

well. Related works include [81-86].   

2.3.1.2 Artificial intelligence models with bootstrap  

Another prevailing technique used to yield parametric probabilistic 

forecasts is bootstrap [87], which is commonly combined with artificial 

intelligence (AI) models (e.g. NN, SVM). Bootstrap is a general approach of 

statistical inference introduced in [87], which aims to provide estimation of the 

sampling distribution of almost any statistic by uniform sampling with 

replacements from the original dataset [88]. Once the estimated distribution is 

obtained, PIs can be extracted by various means. In the process of regression, 

bootstrap has the merits on taking into account the model uncertainty arising 
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by the misspecification of the parameters, whereas it is limited by the high 

computational burden [46].  

Khosravi et al. [89] build B multilayer feedforward NN models with 

different number of layers and neurons per layer to estimate the model 

uncertainty, and one additional NN to estimate the data noise, the resultant PI 

is assumed to be located at the mean value of B bootstrapping forecasts, with 

the total variance associated to the model outcome. Considering the intensive 

computational efforts are required by using traditional NN, Wan et al. [90] 

combine the ELM [91] with bootstrap to derive the PIs. In their work, BM and 

BN ELM models are used to estimate the variances of model uncertainty and 

data noise, respectively. Three bootstrap methods are examined, and they find 

pair bootstrap is more robust than the other two rivals. In addition, the overall 

skill of yielded PIs is assessed via interval score, which is a proper scoring rule 

in terms of PI evaluation. A hybrid model is developed in [92] to provide intra-

hour PIs for one-minute averaged direct normal irradiance (DNI). The hybrid 

model comprises 4 NNs and 1 SVM. The proposed model first uses the SVM 

to classify the time series of DNI into two categories: low DNI variability 

period (lv) and high DNI variability period (hv). Then PIs are generated by 

ANNlv or ANNhv which are trained with data collected in lv and hv periods, 

respectively. Through comparing with the bootstrap-ANN model that consists 

of 201 NNs, this hybrid model is demonstrated to be more computationally 

efficient and can achieve high coverage probability during ramp events [92].  



38	
	

In parallel, bootstrap is also extensively applied to quantify the uncertainty 

involved in MCP forecasting. In [93], the ELM and a wild bootstrap are 

combined to produce the point forecasts and residual PIs of the Australian half-

hourly MCP. The resultant PIs are the specific quantiles taken from the 

bootstrap sampling distribution. In a follow-up paper, Wan et al. [88] deem 

that the prediction uncertainty mainly consists of model uncertainty and data 

noise. By using a bunch of ELMs (with the number of B) to estimate the 

variance of model uncertainty via bootstrap, and a separate maximum-

likelihood-estimation (MLE) NN to approximate the variance of residual 

noises, the overall prediction uncertainty can be obtained by adding these two 

independent variances up. The predictive distribution is assumed as normally 

distributed, with the mean of B bootstrapped replicates and the variance of 

overall prediction uncertainty. Therefore, rather than constructing the PIs 

nonparametrically from the empirical distribution in [93], the resultant PIs are 

centered around the point forecast symmetrically in [88]. In a more recent work, 

Rafiei et al. [94] propose a hybrid approach based on improved clonal selection 

algorithm, wavelet transform and ELM. The original series is firstly 

decomposed into one approximation and three details series by using wavelet 

technique. Then, each of them is fitted via NN, and thus the model uncertainty 

is computed via bootstrap. ELM is subsequently used to quickly train a single-

layer NN to estimate the noise uncertainty. Finally, the PIs are established by 

considering both uncertainties in the same way as developed in [88]. Other 
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studies of MCP probabilistic forecasts where bootstrap method is used include 

[95-97]. 

2.3.2 Nonparametric methods 

Although the observations at certain time or location follow a known and 

well-behaved marginal distribution, there is no guarantee that conditional 

predictive densities still follow the same distribution, incorrect distributional 

assumptions may directly cause biases in analyses and results. Without any 

efforts to make the statistical inference for the quantity of interest in advance, 

nonparametric approaches do not require the prior knowledge of the 

distribution shape.  

2.3.2.1 Empirical simulation 

Empirical simulation only concerns the past measurements or forecasting 

errors, no assumption is made before for the distribution family, which is 

essentially forecasting model-independent. The resultant distribution or PIs 

can be either in unconditional or conditional regime. Unconditional empirical 

simulation approach assumes the uncertainty is constant in certain location or 

period, the empirical distribution can be easily achieved as long as abundant 

past observations are available. Pinson et al. [98] proposes an adaptive 

resampling method to derive the conditional PI, which is able to inform the 

situation-dependent uncertainty. This method relies on a classification of 

recent of forecast errors, a fuzzy inference model and a multisample 

resampling scheme for combination of probability distribution. Empirical 
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simulation applied in probabilistic forecasting of electricity price include [26, 

34-36]. 

2.3.2.2 Statistical moments estimation  

The underlying rationale of such type of approaches is to estimate the first 

few moments of the random variable of interest. It distinct from the traditional 

methods for time series in that it considers the quantity of interest as 

realizations of a variable whose distribution function parameters vary 

dynamically with time and other explanatory variables, whereas the traditional 

techniques model the expected pattern and the residuals [99].  

Generalized Additive Models for Location, Scale and Shape (GAMLSS) 

is a powerful tool to achieve this goal, and is used to model the time-varying 

distribution of MCP by Serinaldi [100]. Through establishing the functional 

relationships between the distribution parameters (location, scale and shape) 

and the explanatory variables (e.g., past prices, loads, and weather information 

such as temperature) in a time-adaptive way, the price periodicities, trends and 

abrupt changes characterizing both the position parameter (linked to the 

expected value of prices), and the scale and shape parameters (related to price 

volatility, skewness, and kurtosis) can be explicitly informed by this model. 

2.3.2.3 Kernel density estimation (KDE) 

The rationale of KDE method is generating smooth histogram to estimate 

PDF of random variable. Given a finite data sample, a kernel density 

representing the contribution of each data point is placed at each data point. 

The estimated PDF can be obtained by adding up all kernel densities. KDE 
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technique could provide the whole predictive information via a smoothed PDF, 

instead of the discrete quantiles or PIs. 

A multivariate kernel density estimator is employed to predict the PDF of 

wind power production for the next 60 hours in three wind farms in France 

[101]. By using the mutual information based feature selection, 4 features are 

identified from 16 NWP candidates as the inputs, and further modeled by a d-

dimensional kernel density estimator. The bi-weight kernel is adopted for all 

variables in this case due to its low computational burden. Bessa et al. [102, 

103] consider the feasibility of different kernel functions to different variables, 

four types of kernel function are proposed for wind energy, depending on 

whether the corresponding variables are bounded, unlimited or periodic.  

Instead of directly establishing the multivariate relationships between in 

all variables, this nonparametric estimator can be alternatively used to model 

the error terms in time series models, particularly for electricity price 

approximating. In literature [82, 104], the authors employ the iterated Hsieh-

Manski estimator (IHM) and smoothed nonparametric maximum likelihood 

estimator (SN) associated with the AR model to derive the day-ahead PIs for 

the electricity prices in two markets (Nord Pool and California Market). 

Comprehensive case study is carried out by examining 12 time series models, 

including the models driven by empirical noises and Gaussian noises. They 

conclude that the developed IHMAR and SNAR models yield better PIs than 

the other models, in terms of both unconditional and conditional coverage. 
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The major issue influencing the accuracy of density estimation is the 

bandwidth selection, which is a crucial parameter that controls the smoothness 

of the estimated PDF. Large bandwidth would lead to oversmooth, while small 

bandwidth would lead to undersmooth. The optimal bandwidth should be 

identified based on specific performance criteria. Asymptotic Mean Integrated 

Square Error (AMISE) is hired as the optimality index in [105], which is 

subject to minimization by the multivariate plug-in selector. Qin et al. [106] 

propose to minimize Integrated Square Error (ISE) of two kernel estimation. 

Then, optimal bandwidth estimation is converted to an unconstrained 

optimization problem. 

2.3.2.4 Quantile regression (QR) 

QR is a popular nonparametric probabilistic forecasting tool in the 

community of econometrics and social sciences, which is firstly introduced in 

[107]. QR aims at estimating the conditional quantiles of the response variable 

given certain explanatory variables. Based on the pinball loss function, the QR 

model can be solved by linear programming algorithms and many variations 

have been proposed in the past years [35, 46]. Over the last two decades, this 

classic approach has also attracted much attention in the forecasting activities 

concerning electricity market.  

Local QR model is applied to [31, 108], where the dependence of 

predictive quantile on explanatory variables is modeled by a linear regression 

in the neighborhood of explanatory variable. In [109], the predictive quantiles 

are modeled by cubic B-Spline functions. Quantile regression forests (QRF) 
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models are proposed in [110], which is essentially an extension of regression 

forecast based on classifications and regression trees. In [111], multiple 

quantiles are estimated by the gradient boosted machines (GBM), and in [112], 

the multiple quantile regression is solved by the alternating direction method 

of multipliers (ADMM) algorithm. In recent studies, Wan et. al [61] develops 

a direct quantile regression (DQR) model for wind power in Bornholm Island 

in Denmark. By utilizing the unique merits of ELM, the complicated artificial 

NN-based nonparametric probabilistic forecasting is formulated as a linear 

programming (LP) problem with high computational efficiency. Hatalis et. al 

[113] performs a smooth approximation of the pinball loss function, thus the 

problem can be solved by the gradient based back-propagation NN. Moreover, 

they develop a novel weight initialization scheme to ensure multiple quantiles 

can be estimated simultaneously without overlapping. 

The earliest work on resorting quantile regression to generate the 

probabilistic forecasts of electricity price can be traced back to year 2014 by 

Nowotarski and Weron [114, 115]. Their methodology involves applying 

quantile regression with the point forecasts of a number of individual 

forecasting models. In other words, the individual point forecasts are used as 

independent regressors and the corresponding observed target variable as the 

dependent variable in a standard quantile regression setting. Such methodology 

containing a batch of individual forecasts is commonly interpreted as ‘quantile 

regression averaging (QRA)’ [114]. The choice of the number of forecasting 
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members can be made arbitrarily [46] or, in case of dozens of competing 

models, using dimension reduction techniques [116].  

The regressors can be further expanded to include useful explanatory 

variables, such as hourly, mean daily and ratios of load forecasts, average daily 

price forecasts and their squares [117]. Such models has helped two teams 

achieve spectacular success in the GEFCom2014 [117, 118]. 

Recently, Jonsson et al.[8] construct a time-adaptive quantile regression 

model to estimate the 5-95% quantiles for the residuals separately, besides, to 

obtain robust predictive distribution, they treat the distribution tails with an 

exponential assumption. Therefore, strictly speaking, this model belongs to 

semiparametric framework. 

2.3.2.5 PI-score-based direct estimation  

Lately, the PI-score-based prediction models has gained great popularity 

in the MCP probabilistic forecasting research. Khosravi et al. [43] proposes a 

new training method for NN to directly generate two outputs (lower and upper 

bounds) based on a hybrid PI-based cost function, Coverage-width-based 

Criterion (CWC), which covers two important aspects of PIs: informativeness 

(width) and correctness (coverage probability). Through verifying with 10 

datasets and comparison with three traditional PI construction method, the 

proposed method proves to be simpler, faster and more reliable. In a follow-up 

paper [119], they applied the same training method to GARCH model that 

directly deals with the quality of PIs, rather than forecasting error. The tuning 

of GARCH model parameters is driven by minimization of CWC, which 
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contrasts with the traditional MLE-based methods for GARCH training. Once 

tuned, the GARCH model is used for construction of PIs around forecasts 

obtained by the moving block bootstrapped NN. Performance of the proposed 

method is evaluated using datasets in two Australian and New York City 

deregulated markets.  

However, several researchers argue that CWC is not a proper scoring rule 

[32, 120], resulting in the illness of resultant PIs. Therefore, the score-oriented 

training scheme should be implemented on the condition that the proper 

scoring rule is hired beforehand. 

To address this issue, Wan et. al [42] proposes the interval-score-based 

learning strategy for NN. Owing to the unique merit of ELM, i.e., the hidden 

neurons are randomly assigned and free to tune, only the output weights are 

subject to minimization with the interval score. As such, the computational 

efficiency can be highly improved as compared to the traditional methods. In 

[41], a modified version of CWC, called deviation information-based criterion 

(DIC), is proposed as the objective function. The original wind power series is 

decomposed into three components by the ensemble empirical mode 

decomposition (EEMD) method. Only the noise component is used to 

construct the optimal PIs based on ELM. The effectiveness of this hybrid 

model is demonstrated using the read wind power measurement provided by 

Australian wind farms. 
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2.4 Summary 

The current use of probabilistic forecasts for VRE generation and 

electricity price in today’s electricity market are briefly described with some 

typical cases in the beginning of this chapter. Four frequently-used 

representations of probabilistic prognosis are presented afterwards, with the 

proper verification tools that applicable to each of them. Despite that the 

goodness of a forecast can be legitimately determined by these metrics, Pinson 

[47] argues on the fact that a forecast being considered as better than the others 

greatly depends on the operational context. For instance, some real-time 

control activities require the corresponding forecast should be given within 

seconds. In such cases, the forecasting engine with high learning speed is 

preferred to that with high forecasting accuracy. Hence, the metrics interpreted 

in this chapter are more likely to be favored by forecasters as they provide a 

generic and objective way to evaluate the underlying forecast. But from a 

practical perspective, decision makers are more inclined to use the prognosis 

that are tailored to their needs. Lastly, an overview of the current research 

statues of probabilistic forecasts for VRE generation and electricity price is 

given. Note that none of the methods discussed in Section 2.3 is restricted to 

certain variable, once the explanatory variables for the variable is identified 

explicitly, these approaches can be applied interchangeably to different 

variables (e.g. wind power, PV power, electricity price, load) in the context of 

probabilistic forecasting.  
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Chapter 3  Granule-based Interval Forecast for Solar 

Irradiance 

3.1 Introduction  

Predicting solar irradiance is essential but fairly challenging to estimate 

solar power production. To effectively quantify uncertainties in solar 

irradiance or PV power forecasting, a great deal of NN-based models has been 

developed to obtain the PIs following the paradigm of wind power forecasting. 

Traditional NN-based PI estimating methods always require the point forecasts 

and the associated error information to construct the PIs, with a prior 

assumption of the error distribution [121-123]. However, through empirical 

investigations, the distribution of prediction errors can be rather complicated 

in the realistic cases, exhibiting different shapes at different locations and look-

ahead horizons [70, 124]. 

 Recent advance aims to directly construct the PIs nonparametrically to 

pursue the best quality of derived PIs, without performing point forecasts or 

prior knowledge of the associated errors. This idea is originally introduced by 

Khosravi et. al [43], who uses the coverage width-based criterion (CWC) as 
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the optimum score to tune the parameters of traditional NNs to directly yield 

the estimated lower bound and upper bound. The authors further apply the 

same framework to construct the PIs for load [125] and wind power [89, 126]. 

Yet, CWC is reported to be not able to measure the overall skill of constructed 

PIs, and would mislead the construction of optimal PIs as the CWC-based cost 

function gives biased weights to reliability and sharpness [32, 120]. This issue 

is successfully addressed by bringing in a proper soring rule for PI assessment 

shortly thereafter, Wan et. al [42] develops a direct interval forecast (DIF) 

approach based on interval score, to account for both coverage probability and 

sharpness of PIs simultaneously.  

Although the DIF approach can ensure optimal quality of PIs in one single 

optimization process, it should be highlighted that it only concerns on the 

stochastic uncertainty of non-stationary time series, while the knowledge 

uncertainty is not considered at all. Stochastic uncertainty and knowledge 

uncertainty are always regarded as the two main contributors to the prediction 

errors in AI-based models. The former describes the inherent variability of the 

observed values due to the natural physical phenomenon, measured error, 

device failure and the like, while the latter reveals the uncertainty in knowledge 
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transfer, such as imperfect representation of processes in a model, as well as 

the imperfect knowledge of the parameters associated with these processes. In 

addition, the PIs are constructed based on crisp or deterministic inputs without 

explicitly recognizing the variability involved in the observed dataset. 

Lately, information granule (IG) has emerged as a new and powerful tool 

to deal with the situations characterized by manifold uncertainties [40, 127]. 

By granulating the underlying chaotic times series and model parameters with 

proper granularity level, a granular input-output mapping can be established, 

which can effectively reflect the potential attributes in the process of 

knowledge transfer. Therefore, in this chapter, a new framework based on the 

conceptualization of IGs is developed to directly generate the optimal PIs 

without extra efforts for point forecasting and error modeling. The granular 

model is built upon the existing crisp NN. ELM is an appealing option due to 

its fast learning speed, free-tuning of hidden neurons, and excellent 

approximation capabilities. The granular parameters are tuned through particle 

swarm optimization (PSO) with a cost function combining the reliability and 

interval score. Case study is carried out by using the 1-min GHI observations 

measured by Hong Kong King's Park Meteorological Station. Comparative 
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studies show the superiority of the proposed GELM model in producing the 

skillful PIs accounting for both reliability and sharpness. The effect of different 

time scales and granulation methods are also examined. 

 

3.2 Granular Computing 

Granular computing (GrC) is an emerging computing discipline of 

information processing [40, 128], which is more a theoretical perspective than 

a coherent set of methods or principles. It encompasses all the methods that 

concerned with the data abstraction and derivation of knowledge from 

information or data, where IG arises in a generic representation formalism. In 

the community of machine learning or data mining, IG is often used to deal 

with the situations characterized by excess or a lack of data [129]. The first 

situation occurs when there are collections of entities that exhibit some 

similarity in terms of their properties or functional appearance. In this case, IG 

provides a vehicle to abstract the complexity of the data set that one can 

organize into hierarchies and converts the original problem into manageable 

subtasks. The second situation occurs, for instance, when noisy data exists. 
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Here, IG allows modeling the precision of indirect measurements, providing a 

computationally appealing view of knowledge [130]. 

IG can be formalized and described in a variety of representations, such 

as, intervals, fuzzy sets, rough sets, shadow sets, probabilities and so forth 

[131]. The selection of representation type should be treated with caution, 

depending on the issue we encounter and the available knowledge we obtain.  

In light of this, in the AI-based models where uncertainty, inaccuracy and 

variability should be taken into account, generalizing (abstracting) the existing 

model by forming its granular counterpart is a straightforward and appealing 

way to tackle with these manifold uncertainties. In the granular model, 

parameters are regarded as IGs with certain type rather than numeric entities 

[132], correspondingly, the output is also in a granular form, comprising all the 

potential attributes resulting from the uncertainty of data and models. 

 

3.3 Experimental Data and Empirical Investigation 

The GHI time series with 1-min resolution recorded in Hong Kong King’s 

Park Meteorological Station, from 1st Jan 2012 to 31st Dec 2012, are collected 

for case study in this thesis. GHI is the total amount of solar irradiation incident 
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on a horizontal surface, measured by Wm-2. The other two crucial components 

closely related to this quantity is direct normal irradiance (DNI) and diffuse 

horizontal irradiance (DHI). The value of GHI is of particular interest to the 

forecasting of PV power output, a series of equations have been developed to 

convert the GHI parameter into PV power empirically [10, 133]. As studied in 

[133], the linear correlation between the observed GHI and PV production can 

be as high as 0.97. 

Fig. 3.1 is an illustration of the GHI series for a typical sunny day at King’s 

Park Meteorological Station, high variability and intermittence is observed 

before noon of the day, whereas a smoother profile is witnessed in the 

afternoon. The main factor for the fluctuations of GHI in the morning is the 

cloud motion, such effects can be amplified by the high resolution of 

underlying time series.  
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Fig. 3.1 Time series of 1-min GHI, measured at King’s Park Meteorological Station 
on 28th Mar 2018 in Hong Kong. A snapshot downloaded from HKO website [134] 

	
Fig. 3.2 2D plot of GHI throughout the year of 2012 

	

To have a broad view of its seasonality, the GHI throughout the year of 

2012 is depicted in Fig. 3.2 in a 2D view, from which we can clearly see the 

variations of daily sunshine duration and the amount of GHI during the whole 

year. The amount of solar radiation is more abundant between May and 
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September than that in the rest months, it peaks approximately in July and hits 

the bottom in Winter. To have a consistent prediction duration for all days, the 

nighttime data is removed, only the data from 7:00 to 18:00 is used for the 

following experiments.  

 

3.4 Extreme Learning Machine (ELM) 

ELM has received great popularity lately [84, 88, 93], since iterative 

parameters’ tuning in traditional gradient-based NN are avoided in the learning 

process of ELM [91]. In essence, this novel learning algorithm is proposed [91] 

to train single hidden-layer feedforward neural networks (SLFNs), where the 

input weights and biases of hidden nodes are randomly assigned and free to be 

tuned further. The output weights of SLFNs are analytically determined by a 

direct matrix calculation. According the experimental results reported in [91], 

ELM achieves better generalization performance with extremely fast learning 

speed. As such, ELM is utilized as the basis forecasting engine to efficiently 

generate granular outputs in this thesis, the detailed algorithm is introduced as 

follows. 
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Given N arbitrary distinct samples (HI, JI)|HI ∈ L
D, JI ∈ L

C
IM9
N , where 

xi denotes the input vector and ti denotes the target vector. ELM with a specific 

activation function g(·) and randomly assigned input weights and biases can 

efficiently approximate all samples with zero error: 
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(3.1) 

where OI ∈ L
D is the input weight vector associated with the i-th hidden node 

and all input nodes; PI ∈ LC is the output weight vector connecting the i-th 

hidden node and all output nodes; bi is the threshold of the i-th hidden node; 

and L is the number of hidden neurons. Eq (3.1) can be rewritten as the 

following matrix form: 

= THβ  (3.2) 

 

where H is expressed as: 
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β and T are respectively expressed as: 
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Since the input weights and biases are randomly assigned, training an 

ELM-based SLFN is equivalent to obtaining the least square solution for 

output weights Q of the linear system in (3.1), which can be expressed as: 

( )
( )

1 1

1 1

ˆ, , , , ,
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(3.5) 

It can be proven that the smallest norm least-squares solution of the above 

linear formulation can be achieved by:  

†ˆ=H Tb  (3.6) 

where H† is the Moore-Penrose generalized inverse of matrix H [135] and it is 

generally derived by singular value decomposition. 

ELM effectively overcomes the limitations of traditional gradient-based 

NNs, such as the local minima, overfitting and the high computational cost. 

For any infinitely differentiable activation function, the ELM with N hidden 

layer neurons can learn N distinct samples exactly with zero error. In addition, 

ELM training can obtain the best results according to the assigned input 

weights. The training speed is extremely fast due to the simple matrix operation 
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in (3.6). ELM also distinguishes from traditional NNs in superior 

generalization capability without the overtraining issue [136, 137]. 

 

3.5 Uncertainty Analysis 

Prediction plays a crucial role in various decision-making processes 

nowadays, more than in the realm of power system. For this reason, during the 

last decade, a large family of works [138-140] have been carried out to find 

out the fundamental sources that might contribute to the prediction uncertainty. 

Generally, prediction uncertainty can arise due to the stochastic process of time 

series, measurement errors, the misspecification of model formulations and 

alike. These factors can be broadly classified into two distinct types: stochastic 

uncertainty and knowledge uncertainty [138].  

3.5.1 Stochastic uncertainty 

Stochastic uncertainty describes the inherent variability of the observed 

values due to the natural physical phenomenon, measured error, device failure 

and the like [62]. Hence, it is also named as natural uncertainty, inherent 

certainty, or aleatory uncertainty in other existing literatures [138, 141, 142]. 

Natural variability is a property of the natural system, reflecting the stochastic 



58	
	

process of quantity in meteorological forces, thus it is always deemed as the 

leading source of stochastic uncertainty, that cannot be eliminated. On the 

other hand, humans can easily improve the measurement accuracy and device 

reliability in reality, as a result, the uncertainty arising from inaccurate 

measurement, mistake recording and missing data is reducible. In this sense, 

to diminish the stochastic uncertainty, great efforts must be spent to make a 

better knowledge of the stochastic behavior of the underlying quantity.  

For GHI series, the uncertainty is heavily influenced by the local cloud 

states, cloud passages can cause a sudden shade on the measurement site, thus 

leading to a dramatic drop of GHI within few seconds. To tackle with this issue, 

a wide range of practices have developed to use satellites or ground-based sky 

imagers to predict the cloud motions [10, 80, 143]. However, it is still 

challengeable to model the variability of GHI, since the cloud state is also a 

complex modeling process, wherein the cloud cover, cloud thickness and 

duration are hard to estimate.  

3.5.2 Knowledge uncertainty  

 Another possible source of uncertainty in model output results is the 

imperfect model representation of the system behavior, in terms of the 
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imprecise representation the model processes (structural uncertainty) and 

imperfect knowledge of the values of parameters associated with these 

processes (parameter uncertainty) [138, 142]. Such uncertainties related to the 

system models are also referred to as model uncertainty or epistemic 

uncertainty [90, 142].  

Knowledge uncertainty exists in the process of knowledge transfer, but it 

is not always due to a lack of knowledge. Given a model that are calibrated 

repeatedly by different datasets, different model parameter values would result 

correspondingly. Those values would further yield different simulated system 

behavior and, thus, different predictions. If such imprecise specification of 

parameters were eliminated, then the predictions would be consistent and the 

parameter uncertainty in the forecasting results would be zero [138]. But, it 

does not mean this model would be perfectly accurate. Additionally, the 

misspecification of model structure (e.g., number of layers and number of 

neurons in each layer in a NN) can also give rise to the variability in model 

output.  

In recognition of the main sources of prediction uncertainties, the key task 

translates to identify a proper representing approach that can effectively 
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propagating these uncertainties through computational models. Traditionally, 

the exercise of uncertainty quantification is conducted mostly based on 

simulation ways, e.g., bootstrap. Nonetheless, they are always limited by the 

considerable computational cost, this motivates us to exploit a more 

straightforward and efficient technique to represent the uncertainty. IG is a 

powerful tool to bounding solutions under uncertainty, by constructing a 

granular counterpart to the original crisp model, where the stochastic 

uncertainty and knowledge uncertainty are well captured by certain type of IGs, 

the potential outcomes resulting from these uncertainties can be revealed 

efficiently by the derived granular outputs.  

 

3.6 Formulation of Granular Prediction Model on the basis of 

ELM 

The proposed granular prediction model aims to employ a proper type of 

representations to deal with the uncertainty in the system inputs and parameters, 

thereby propagating it through the model and revealing the resulting 

uncertainty in the granular output. By dressing with designated criteria, the 

output granule leads to an equivalent description of PI.  
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3.6.1 Granular GHI time series 

The interpretability of time series is of significant interest in data mining 

and is still an ongoing challenge, particularly in the era of big data, where the 

data is characterized by large size, high dimensionality and a stream-like nature. 

It thus becomes an ever-visible trend to design user-centric models of data, 

considering that humans are more inclined to perceive and organize knowledge 

at a higher level of abstraction than the one being supported by numeric models 

[18].  

The abstraction of detailed numeric data can be realized with the aid of IG, 

through a family of representative forms, including intervals, fuzzy sets, rough 

sets, probabilities, etc. [131, 144]. These granular representations are 

commonly built from two pints of views: time and space. With regard to 

temporal granulation, time series is split into finite temporal windows leading 

in this way to the formation of temporal granules, wherein the key features are 

perceived. Alternatively, we can construct granules over the space of amplitude 

by using some clustering techniques, this process is often linked to feature 

dimension reduction in the modeling systems plagued with sizable features. 

Given that our experiment only involves univariate – the historical GHI 
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measurements, while exogenous important variables (e.g., NWP information 

and cloud motion) are not available, only temporal granules can be constructed 

over the raw GHI time series. More specifically, the granule is expressed in the 

form of interval due to its compact form, low computational burden, and 

coherence with PI. In the remainder of this thesis, the term granule and interval 

are used interchangeably. 

To fully describe the variability in each temporal window, the upper and 

lower bound of an interval must be selected with caution. Once the interval is 

determined, all elements included in this temporal segment lose their identity 

in the sense they become fully indistinguishable. Fig. 3.3 shows the 

construction of interval-valued time series on a 2-day crisp (single-valued) 

GHI series.  

	
Fig. 3.3 From numeric time series to granular time series 
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Here, two approaches are offered to derive the temporal intervals with 

different granularities, which we refer to as min-max-Gr and FCM-Gr.  

Min-max-Gr builds the lower and upper bound of interval by simply 

taking the minimum and maximum value within each temporal segment. 

Suppose HG is the vector of k observations contained in j-th time window, the 

associated interval can be formulated by: HG = R9,G, R<,G, ⋯ , RT,G →

VG
CIDWCXY = [min HG ,max	(HG)]. 

FCM-Gr approach takes advantages of fuzzy sets theory that each data 

point could belong to two or more clusters with different degrees of 

membership measured in [0,1], thus giving the flexibility to represent the 

membership relationship of each data. Further, the shape of membership 

function is not required to be pre-assumed in this method; instead, it depends 

on the clusters’ centers to establish the lower and upper bounds [145]. The 

algorithm is presented as follows. 

Given a vector of numeric measurements HG = R9,G, R<,G, ⋯ , RT,G  within 

j-th time window, FCM attempts to partition it into d clusters _G =

`9,G, `<,G, ⋯ , `a,G  In this process, a partition matrix, bG = cCD
(G)

∈ [0,1],d =
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1,2,⋯e, f = 1,2,⋯ , g, is obtained, indicating the degree to which element, 

RCG, belongs to each cluster `DG. Through minimizing an objective function: 

( ) 2( )
, ,

1 1
argmin

j

k d lj
mn m j n j

m n

u x c
= =

-åå
c  
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The n-th cluster centroid thus can be expressed as: 

( ) ( )( ) ( )
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1 1
=

k kl lj j
n j mn m j mn

m m

c u x u
= =
å å , where l is the fuzziness coefficient. Two 

cluster centers are required to describe the variability of each time segment, 

i.e., d=2. Smaller centroid is taken as the lower bound and larger centroid is 

for the upper bound. As a result, the granule derived by FCM-Gr for j-th time 

window is given by VGhi: = [min _G ,max	(_G)]. 

3.6.2 Granular ELM-based NN 

The SLFN based on ELM algorithm is selected as the basis model due to 

its superiorities described in Section 3.4. To accommodate the granular inputs, 

the crisp ELM model is generalized by forming its granular counterpart – 

granular ELM, wherein the parameters are regarded as granules rather than 

numeric entities. The architecture of GELM is illustrated in Fig. 3.4, where the 

crisp weights and bias are augmented in an interval-valued form. By doing this, 
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we form a granular mapping to provide a granular output, which in light of a 

proper PI skill becomes more in rapport with the granular inputs. 

. .
 .

. .
 .

. .
 .

. .
 .

Input Layer Hidden Layer Output Layer

	

Fig. 3.4 Architecture of GELM 

3.6.3 PI-skill-oriented training strategy 

3.6.3.1 Fitness function 

As the original problem is expected to generate PIs, we resort to intervals 

score as the optimized perform index to pursue optimal reliability and 

sharpness of the yielded granular output simultaneously. It has to be stressed 

that the interval score is able to account for reliability and sharpness, it cannot 

quantitatively distinguish the contributions of the two aspects [146]. Given that 

the reliability of PIs is the primary metric in probabilistic forecasting, we 

highlight the reliability respect by combining it with the interval score to form 

fitness function. It worth noting that the input weights and bias of GELM are 

randomly generated, only the granular output weights serve as design variables. 
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Recall the discussion of proper scoring rules of PIs in Section 2.2.3, the 

reliability of PI is expressed by ACE, the overall fitness function can thus be 

written as:  

1

ˆ ˆargmin ACE(PICP, ) ( , , , )

ˆ ˆ ˆ ˆs.t.  ,0.1 , 0.9

tN

opt i i i i
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(3.8) 

where Nt is the size of training samples and Q = [j9, j9,⋯ , jC, jC] is the 

vector of granular output weights. The derived lower bound and upper bound 

are restricted within the range of GHI, i.e., the normalized minimum and 

maximum value of GHI, respectively. 

3.6.3.2 Particle swarm optimization (PSO) 

The objective function in (3.8) is non-differentiable with respect to the 

granular output weights, thus requiring a computational optimization tool with 

high efficiency. PSO is a classic heuristic optimization algorithm, which has 

been proved to be an efficient, robust and gradient-free optimization tool [147] 

in numerous science and engineering applications. The major inspiration 

behind PSO is the flocking behavior of birds. It solves the problem by having 

a population of candidate solutions, here dubbed particles, and moving these 

particles around in the search-space according to simple mathematical 
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formulae over the particle's position and velocity. Besides, the fast 

convergence speed differs PSO from other heuristic optimization methods 

[146], hence it is applied to tune the granular output weights to achieve the 

optimal quality of granular outputs. The algorithm is briefly presented in the 

following. 

Given a group of random particles (solutions) with size Np, in a S-

dimensional search space, the i-th particle can be expressed by HI =

RI9, RI<,⋯ , RIk . In the iterative process of PSO, each particle is updated by 

following two best values. The first is called global optimal solution, i.e., the 

particle with the best fitness value in the population, which is denoted by lmnop#. 

The other is the best position of any particles achieved in the previous search, 

which is stored in a vector and expressed as lInop# = qI9
nop#, qI<

nop#,⋯ , qIk
nop# , 

the associated velocity of i-th particle is given as rI = sI9, sI<,⋯ , sIk . In 

every iteration, the particle updates its velocity and position with the following 

equations: 

1 1 2 2( ) ( )best best
i i i i g iw c R c R= + - + -v v p x p x  (3.9) 

i i if= +x x v  (3.10) 
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where w is the inertia weight; t  is a constriction factor controlling and 

keeping the velocity within the range −sCXY, +sCXY ; `9  and `<  are 

learning factors; v9 and v< are random numbers within [0,1]. As seen from 

(3.9) and (3.10), the velocity of the i-th particle is related to three components: 

the previous velocity of particle, the distance between the previous best 

position of the particle and its current position, and the distance between the 

swarm’s best success and the particle’s current location. 

3.6.3.3 Granular parameters tuning via PSO 

The underlying optimization procedure is described as follows: 

Step 1) The original numeric GHI dataset is normalized into [0.1,0.9], then 

based on the granulation methods introduced in Section 3.6.1, the 

corresponding granular time series is constructed with a certain level of 

granularity (e.g., 10min).  

Step 2) To initialize the GELM, a set of granular training samples are 

formulated as (w#,I, V#xT|#,I) IM9

Ny , where w#,I  is the granular input vector 

consisting of the lagged observed granules available at time t and V#xT|#,I is 

the target granule for look-ahead time t+k. Note that, in this stage, the initial 

parameters of ELM can be determined by interval regression approaches [148-
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150], with the goal of minimizing the interval error by interval arithmetic [40] 

and genetic algorithm. This is more compliant with the nature of intervals, as 

the interval-valued NN is originally developed to estimate the unconditional 

intervals, irrespective of certain crisp entity. However, it seems much 

computationally expensive to involve an extra optimization process in the 

initialization stage. To address this issue, we resort ourselves to the wealth of 

NN’s own learning scheme. Specifically, two individual ELM networks are 

used to train the lower bound and upper bound series of granular samples, 

separately, then two sets of ELM parameters can be quickly derived to 

initialize GELM. The core idea behind this manipulation is that searching 

around the unconditional specified intervals can significantly facilitate the 

seeking process for optimum solutions. 

Step 3) Initialize the population with z{  randomly generated particles 

around the initial output weights QIDI obtained in step 2) and velocities rIDI. 

Owing to the random nature of ELM, i.e., the input weights and bias are 

randomly determined, the optimization phase is only concerned with the 

granular output weights Q = [j9, j9,⋯ , jC, jC].  
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. Step 4) For each positioned particle, according to (3.9), the corresponding 

PIs and fitness value can be computed. 

Step 5) Do the iterative optimization procedure until the maximum number 

of iterations is reached or the convergence criterion is met. In each iteration, if 

the fitness value with the current position lI, | = 1,… ,z} is better than that 

of lInop#, then set lInop# as the best location. In parallel, the global optimal 

particle is identified by comparing all current positions, which is stored in the 

updated vector lmnop#. Then, the velocities are changed to move towards the 

next positions according to (3.9) and (3.10). 

Step 6) Once the optimization phase is ended, the optimal GELM model 

is determined in regards of the fitness function (3.8) and used to construct PIs 

for out-of-the-samples. 
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3.7 Experimental Results 

3.7.1 Benchmarking methods 

3.7.1.1 Persistence method 

As a simple and popular benchmark in deterministic point forecasts, 

persistence method [98, 151] is commonly used to give the estimation for the 

very short-term horizon (e.g. one-time step ahead). A probabilistic 

generalization of it is considered here to benchmark the proposed GELM 

model. The persistence predictive distribution "#xT|# issued at time t for lead 

time t+k is assumed to be normally distributed "#xT|#~z(�#xT|#, Ä#xT|#< ). The 

mean �#xT|# is the latest available observation E#, and the estimated variance 

Ä#xT|#
<  is determined by the past samples over a certain period. Therefore, to 

obtain a PI with nominal proportion of 1 − / ×100%, the quantiles of //2 

and (1 − //2) are extracted from the predictive distribution as the symmetric 

lower and upper bound, respectively: 

( /2) -1 2
| | |
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where "#xT|#W9  is the inverse CDF; $#xT|#
(&)  is the estimated quantile with 

nominal level ( ; Å#xT|#9WÇ  is the resultant PI centered at E#  with nominal 

proportion 1 − / ×100%. 

3.7.1.2 Climatology method 

Climatology is another widely-used benchmark in probabilistic 

forecasting, particularly for weather-related processes. It simply relies on the 

nonparametric fitting of the past observations, regardless of any current 

available information, hence it is essentially unconditional and unique. The 

distribution can be fitted empirically or using KDE [70] based on the data for 

the same time of all days in the same season. Here, the empirical distribution 

is adopted due to its simple fitting process, and the pair quantiles of //2 and 

(1 − //2) can be easily computed via some interpolation techniques. Let us 

define "#xT
oC} is the empirical distribution for all past samples at the same look-

ahead time t+k for all days in the same season, the central PI can thus be derived 

as: 

-1
|
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3.7.1.3 B-Spline quantile regression (BS-QR) 

The above two benchmarks are relatively simple and less challengeable. 

To better demonstrate the effectiveness of the proposed model, a classical 

nonparametric model, BS-QR [109, 110], is introduced as a competitive rival 

in this thesis. Instead of use a simple linear combination of underlying 

regressors to estimate the desired quantile, BS-QR uses an additive model 

combining with some known basis functions (e.g., B-Spline basis). The general 

form of additive models can be written as: 

1 1 2 2( ) ( ) ( )p py a f x f x f x e= + + + + +!
 (3.13) 

where y is the desired variable depending on R9, … , R}, É is the constant and 

Ñ  represents the Gaussian white noise. As described in [152], each of the 

functions Ö∙(∙) can be approximated by linear combinations of known basis 

functions of the corresponding explanatory variable, i.e., 

1
( ) ( )

jn

j j jk j jk
k

f x b x q
=

=å
 

(3.14) 

where ÜGT(∙) are the basis functions and áGT are unknown coefficients. As a 

consequence, substituting (3.14) into (3.13), we can obtain a linear regression 
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model. This can be further generalized to the quantile regression by modeling 

the (-th quantile $#
(&) as: 

( ) ( ) ( ) ( ) ( )
, ,

1 1 1
( ) ( )

knp p

t t j j t t jk j t jk
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(3.15) 

with the basis functions constructed under appropriate restrictions on 

ÖG ∙ , à = 1,… , q [109].  

Recall the definition of pinball loss function [107],  
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(3.16) 

quantile regression aims to identify the ( -th quantile by minimizing 

â&(E# − $#
(&)
)ä

#M9  [107]. Replacing $#
(&) with (3.16) leads to the coefficients 

estimation: 
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 (3.17) 

where T is the number of training samples, E# is the observation at time t, 

É#xT|#
(&)

, ã#xT|#
(&)  are the constant and coefficient vector of basis functions 

estimated at time t for time t+k, respectively.  

Once deriving the regression coefficients É#xT|#
(&)

	and	ã#xT|#
(&) , the 

forecasted quantile $#xT|#
(&)  can be readily computed nonparametrically via 
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(3.15). Similar to climatology PI, the resulting PI by BS-QR is also supposed 

to be centered on its median, that is, constituted by $#xT|#
(Ç/<) and $#xT|#

(9WÇ/<). 

3.7.1.4 Bootstrap ELM (BELM) 

BELM [90] is another powerful approach to derive PIs by taking data 

uncertainty and model uncertainty into account. Both uncertainties are 

assumed to be Gaussian distribution, wherein the noise uncertainty is modeled 

by the variance Äç<, and the model uncertainty is modeled by Äé
<. Assuming 

they are statistically independent, the total prediction uncertainty for time t 

associated with input vector H# is mathematically given by: 

2 2 2
ˆ( ) ( ) ( )t i i y ies s s= +x x x  (3.18) 

To estimate the model uncertainty, bootstrap is used to construct BM 

training datasets by resampling with replacement from the original training 

dataset (HI, EI) IM9
N  and BM ELMs are correspondingly applied to these 

bootstrapped datasets to generate BM predictions. Suppose Eè(HI)  is the 

output of l-th bootstrapped ELM, the mean of model uncertainty distribution 

is calculated by: 

1

1ˆ ˆ( ) ( )
MB

i l i
lM

y y
B =

= åx x
 

(3.19) 

and the variance of model uncertainty is calculated by: 
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(3.20) 

To estimate the uncertainty of data noise, by replacing the original target 

EI  with (E HI − EI)
< , a transformed training dataset can be obtained as 

(HI, (E HI − EI)
<) IM9

N . Likewise, bootstrap is used to generate BN 

predictions via BN ELMs, suppose êè(HI) is the output of l-th bootstrapped 

ELM, the estimated variance of noise Äç<(HI)  and variance related to the 

model Äë
<(HI) are computed by: 
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(3.22) 

Thus, the total noise uncertainty can be obtained through: 

2 2 2
ˆˆ( ) ( ) ( )i i y ie es s s= +x x x  (3.23) 

Eventually, the PI with nominal coverage rate of 1 − / ×100% can be 

expressed by: 

1 2 2
| 1 /2 1 /2

ˆ ˆ ˆ( ) ( ), ( ) ( )t k t i t i i t iI y z y za
a as s-

+ - -
é ù= - +ë ûx x x x

 

(3.24) 

where í9WÇ/< is the critical value of standard Gaussian distribution.  
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3.7.1.5 Direct interval forecasting (DIF) 

As the crisp counterpart of the proposed GELM, DIF approach is more 

appealing than most traditional PI construction methods on that it can directly 

produces the optimal PIs in terms of interval score [42, 153] without any 

statistical inference of the forecasting errors. Compared with our GELM model, 

the main difference is that DIF simply depends on the crisp inputs and crisp 

ELM, whereas the fitness function is identical to (3.8) in our model.  

3.7.2 Comparative studies and discussion 

3.7.2.1 Skill verification on different months 

The modeling capabilities of the proposed GELM are verified against the 

five benchmarks from perspectives of reliability, sharpness and overall skill. 

The mathematic expressions for these verification metrics have been described 

in Section 2.2.3, here we rewrite them as follows. Given the test dataset 

(H#,I, E#xT|#,I) IM9

Nì , and the corresponding PIs with 1 − / ×100% nominal 

coverage, the reliability of PIs is determined by ACE, 
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The sharpness of PI is expressed by 
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and the IS is written as  
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Model training is implemented using a sliding window of two previous 

months to forecast the third month. For example, the data in January and 

February is used for training, and the data in March is used for model validating. 

Subsequently, training is performed for February and March, and prognosis is 

done for April. This rolling process continues until the last month in our dataset 

is evaluated. Besides, considering that the PIs with high confidence levels are 

more practically appealing to system operators and a shorter time scale is 
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coherent with the requirements of micro-grid dispatch, in this case study, PIs 

are evaluated with PINCs of 90%, 95% and 99% (i.e., /=10%,5% and 1%), 

respectively. The granularity level is chosen as 10-min, meaning that each PI 

is constructed for the average GHI of next 10 mins. In this sense, the 

benchmarking models can be built with two input patterns, i.e., the previous 1-

min raw data or the lagged 10-min averages. Through our numerical 

comparisons, see Appendix A, the models using 1-min raw data as inputs can 

yield better performance than that with the latter setting, therefore all results of 

benchmarks are obtained using the 1-min crisp inputs. Furthermore, to give the 

unbiased outcomes, each test is carried out for 10 times for DIF and the 

proposed model, the mean performance value is taken as the validating result. 

Finally, the results are summarized in Table 3.1, Table 3.2 and Table 3.3. 
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Table 3.1 Skill of proposed GELM model against benchmarks in terms of 90% PI over different months in 2012. 
Best performance values are marked in bold. 

Month 
Persistence Climatology BS-QR BELM DIF Proposed GELM 

PICP PINAW IS PICP PINAW IS PICP PINAW IS PICP PINAW IS PICP PINAW IS PICP PINAW IS 

Mar 98.24% 44.64% -5.66% 62.22% 39.98% -12.12% 86.70% 13.58% -2.65% 90.71% 15.30% -2.66% 86.46% 24.68% -5.57% 87.22% 14.77% -2.50% 

Apr 95.71% 45.67% -5.97% 74.14% 51.07% -9.54% 75.05% 12.98% -4.23% 82.63% 19.82% -4.10% 84.34% 31.66% -7.53% 88.79% 23.00% -4.34% 

May 96.04% 52.13% -7.98% 75.12% 50.73% -11.10% 78.00% 16.71% -5.96% 82.36% 19.20% -5.45% 83.24% 19.33% -5.86% 86.02% 24.05% -4.89% 

Jun 94.90% 50.38% -7.55% 92.86% 59.77% -8.88% 86.51% 23.35% -5.08% 87.63% 23.29% -5.10% 86.77% 21.95% -5.30% 86.57% 32.06% -6.59% 

Jul 95.50% 52.74% -8.39% 76.25% 55.30% -9.96% 85.38% 27.03% -6.30% 88.51% 27.27% -6.35% 86.36% 30.43% -7.05% 90.62% 31.31% -6.06% 

Aug 96.53% 54.76% -8.06% 97.84% 59.81% -8.26% 94.43% 31.41% -4.97% 93.26% 27.25% -4.85% 94.89% 32.54% -5.44% 89.05% 24.60% -4.47% 

Sep 96.76% 60.61% -8.72% 91.66% 59.03% -8.31% 90.55% 28.88% -5.32% 87.78% 27.33% -5.54% 91.11% 31.72% -5.94% 91.72% 32.40% -5.28% 

Oct 98.28% 61.67% -7.11% 89.59% 61.67% -7.63% 82.56% 29.87% -5.88% 88.22% 26.48% -3.64% 94.33% 28.58% -3.95% 93.30% 29.03% -3.88% 

Nov 97.88% 44.71% -4.95% 69.65% 64.42% -9.20% 78.11% 24.50% -5.16% 84.85% 21.49% -2.86% 92.63% 21.26% -3.01% 91.36% 18.58% -2.47% 

Dec 97.61% 50.20% -4.83% 94.92% 65.68% -6.10% 95.11% 18.98% -2.34% 90.78% 18.57% -2.32% 92.86% 29.84% -3.55% 89.30% 16.54% -2.22% 

Avg 96.74% 51.75% -6.92% 82.42% 56.75% -9.11% 85.24% 22.73% -4.79% 87.67% 22.60% -4.29% 89.30% 27.20% -5.32% 89.39% 24.64% -4.27% 
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Table 3.2 Skill of proposed GELM model against benchmarks in terms of 95% PI over different months in 2012. 
Best performance values are marked in bold. 

Month 
Persistence Climatology BS-QR BELM DIF Proposed GELM 

PICP PINAW IS PICP PINAW IS PICP PINAW IS PICP PINAW IS PICP PINAW IS PICP PINAW IS 

Mar 98.92% 53.19% -3.38% 65.74% 42.63% -8.61% 90.08% 16.69% -1.72% 93.70% 17.94% -1.63% 92.62% 23.80% -2.83% 94.04% 24.02% -2.00% 

Apr 97.42% 54.42% -3.54% 78.43% 54.23% -5.65% 84.64% 17.07% -2.66% 87.27% 23.32% -2.64% 85.35% 17.27% -3.42% 91.31% 25.77% -2.49% 

May 97.51% 62.12% -4.75% 81.04% 54.94% -6.22% 85.09% 21.65% -4.11% 86.22% 22.90% -3.56% 88.91% 22.25% -3.94% 89.35% 24.36% -3.65% 

Jun 96.92% 60.04% -4.50% 94.60% 63.49% -4.76% 93.43% 30.04% -3.07% 89.95% 27.86% -3.33% 92.32% 29.04% -3.34% 91.72% 29.76% -3.69% 

Jul 97.07% 62.84% -4.98% 84.16% 59.29% -5.26% 90.91% 33.55% -3.72% 91.15% 32.64% -3.80% 92.28% 36.31% -4.24% 93.16% 34.54% -3.69% 

Aug 97.95% 65.25% -4.77% 98.97% 63.73% -4.37% 97.21% 39.38% -2.99% 95.41% 32.48% -2.90% 97.75% 39.68% -3.04% 96.09% 37.35% -3.29% 

Sep 98.03% 72.22% -5.20% 96.97% 64.43% -4.37% 94.89% 38.42% -3.31% 89.90% 32.59% -3.53% 95.20% 37.23% -3.60% 94.90% 36.82% -3.49% 

Oct 99.27% 73.49% -4.22% 93.16% 66.78% -4.04% 83.67% 40.65% -3.20% 89.64% 31.98% -2.22% 97.61% 37.62% -2.38% 97.95% 39.07% -2.50% 

Nov 98.74% 53.28% -2.96% 83.64% 70.65% -4.50% 85.60% 34.46% -2.63% 86.41% 25.41% -1.75% 95.51% 27.66% -1.78% 96.21% 32.71% -1.96% 

Dec 98.53% 59.82% -2.88% 97.61% 68.58% -3.17% 97.40% 26.48% -1.84% 91.89% 22.09% -1.46% 95.26% 30.14% -1.93% 95.11% 27.21% -1.80% 

Avg 98.04% 61.67% -4.12% 87.43% 60.87% -5.10% 90.29% 29.84% -2.92% 90.15% 26.92% -2.68% 93.28% 30.10% -3.05% 93.98% 31.16% -2.86% 
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Table 3.3 Skill of proposed GELM model against benchmarks in terms of 99% PI over different months in 2012. 
Best performance values are marked in bold. 

Month 
Persistence Climatology BS-QR BELM DIF Proposed GELM 

PICP PINAW IS PICP PINAW IS PICP PINAW IS PICP PINAW IS PICP PINAW IS PICP PINAW IS 

Mar 99.76% 69.90% -0.90% 99.66% 67.40% -0.93% 97.99% 27.03% -0.57% 96.97% 23.64% -0.57% 98.00% 34.31% -0.68% 98.44% 32.33% -0.53% 

Apr 99.04% 71.51% -0.94% 82.58% 57.40% -2.32% 93.28% 26.40% -1.04% 91.52% 30.68% -1.06% 95.56% 41.34% -1.34% 96.05% 31.69% -0.93% 

May 99.17% 81.64% -1.30% 85.92% 57.30% -2.34% 91.10% 30.19% -1.93% 93.84% 36.64% -1.33% 96.43% 35.88% -1.14% 96.58% 35.93% -1.10% 

Jun 98.64% 78.90% -1.25% 97.02% 66.85% -1.18% 97.22% 42.43% -0.95% 94.04% 36.47% -1.32% 96.52% 39.32% -1.16% 97.32% 44.13% -0.97% 

Jul 98.78% 82.59% -1.31% 92.52% 63.07% -1.34% 97.31% 51.13% -1.06% 94.92% 43.03% -1.28% 97.02% 48.89% -1.17% 97.61% 51.72% -1.15% 

Aug 99.17% 85.76% -1.27% 98.97% 63.73% -0.93% 99.75% 56.22% -0.87% 97.21% 42.63% -0.92% 99.27% 58.16% -0.92% 99.12% 41.81% -0.76% 

Sep 99.19% 94.92% -1.41% 98.48% 68.29% -0.95% 98.48% 55.26% -0.94% 91.16% 43.23% -1.43% 98.48% 57.32% -1.08% 98.03% 52.30% -1.09% 

Oct 99.90% 96.58% -1.12% 94.38% 71.42% -0.98% 95.99% 63.50% -0.79% 91.10% 42.05% -0.70% 99.46% 58.33% -0.70% 99.56% 58.03% -0.68% 

Nov 99.29% 70.02% -0.79% 88.23% 75.25% -1.32% 95.10% 53.70% -0.69% 87.68% 33.58% -0.55% 97.37% 49.88% -0.58% 97.17% 42.52% -0.51% 

Dec 99.51% 78.62% -0.78% 98.19% 71.22% -0.67% 99.41% 41.24% -0.42% 93.94% 29.01% -0.51% 97.80% 38.38% -0.44% 97.31% 39.09% -0.54% 

Avg 99.25% 81.04% -1.11% 93.60% 66.19% -1.30% 96.56% 44.71% -0.93% 93.24% 36.10% -0.97% 97.59% 46.18% -0.92% 97.72% 42.96% -0.83% 
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Inspecting the reliability of PIs with PICP in above three tables, we can 

see the proposed GELM model generally assures a superior performance on 

reliability, particularly in terms of 90% PIs, where the PIs in most months are 

identified to give the closest coverage rates to PINCs. As the PINC increases, 

this dominance fades away, but can still outperform the benchmarks with 

regard to average ACEs of 95% PI and take the second rank under 99% PI. 

This can be further illustrated by the means and standard deviations of ACEs 

listed in Table 3.4 and the scatters delineated in Fig. 3.5. 

 

Table 3.4 Means and standard deviations of ACEs in terms of different PINCs over 
10 months in 2012. 

PINC Statistics 
of ACEs Persistence Climatology BS-QR BELM DIF Proposed 

GELM 

90% 
Mean 6.74% -7.58% -4.76% -2.33% -0.70% -0.61% 
Std 1.21% 12.34% 6.90% 3.54% 4.32% 2.37% 

95% 
Mean 3.04% -7.57% -4.71% -4.85% -1.72% -1.02% 
Std 0.81% 10.69% 5.32% 3.02% 3.88% 2.62% 

99% 
Mean 0.25% -5.40% -2.44% -5.76% -1.41% -1.28% 
Std 0.40% 6.09% 2.75% 2.92% 1.26% 1.09% 
 

It is clearly observed from Table 3.4 that the persistence benchmark is 

more likely to give the unbiased ACEs, with the smallest standard deviations 

among all models. This is also visualized in Fig. 3.5, where the black circles 

closely spread around their means, this can be explained by its persistent nature. 

Despite the low variability of ACEs obtained in different months, it remarkably 

deviates from the PINCs in terms of 90% and 95% PIs, as it tends to over-

estimate the PICP. It is also for this reason, the persistence benchmark 
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performs the best on both average and standard deviation of ACE for 99% PIs. 

Yet, by further looking into the sharpness indices with PINAW values in Table 

3.1-3.3, the persistence model can hardly be used in practice due to the large 

PI width for all verified PINCs. 

 

 

(a) Scatters of ACEs in terms of 90% PI 

 

(b) Scatters of ACEs in terms of 95% PI 
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(c) Scatters of ACEs in terms of 99% PI 

Fig. 3.5 ACE Scatters of different approaches over 10 months in 2012 in terms of 
different PINCs. 

 

The proposed GELM model is able to guarantee the smallest average 

ACEs for both 90% and 95% PIs, while for 99% PI, it surpasses the other 

benchmarks (excluding persistence model), as can be seen in Table 3.4 and Fig. 

3.5. In light of the standard deviations, the GELM model achieves the lowest 

values as compared to the benchmarks (excluding persistence model) for all 

PINCs, indicating its robustness in yielding reliable PIs in different situations.  

Looking at the PINAW values recorded in Table 3.1-3.3 we see that, the 

BELM model is capable of generating the sharpest PIs for all evaluated PINCs. 

However, as shown in Fig. 3.5, BELM model is apt to under-estimate the 

PINCs, particularly for 95% and 99% PIs. In other words, the sharp PIs derived 

by BELM benchmark are achieved at the expense of lower PI reliability, which 
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is undesirable in probabilistic forecasts. The similar cases are discovered for 

BS-QR approach in March, April and May. 

In respect of the overall skill, BELM comes as the most competitive rival 

to our GELM model, showing minor gaps on average IS for 90% PI, and even 

surpassing the GELM for the 95% PI. The fundamental reason underneath can 

be also attributed to the under-coverage property of BELM model, as collated 

in Table 3.4, larger mean ACEs and spread are identified compared with the 

GELM model. Given reliability is the foremost metric in probabilistic forecast, 

ACE should be assessed in priority. Therefore, the proposed GELM model is 

obviously more compelling than benchmarks as it can ensure both reliability 

and overall skill simultaneously for PIs with different nominal coverages.  

Among the benchmarks, the DIF model appears to be more capable of 

producing PIs with high reliability, notwithstanding the inferior sharpness and 

IS. BS-QR and BELM can secure the best performance on PI sharpness, hence 

not surprisingly, the absolute IS values in several months are lower than that 

of GELM model. However, from Table 3.4 and Fig. 3.5, one can clearly notice 

that both BS-QR and BELM fail to provide reliable PIs, they tend to under-

estimate the corresponding PINCs and show poor robustness with regard to 

different cases. In this view, to give a comprehensive and justified assessment 

of the PI quality, the indices of ACE and IS should be integrated into 

consideration, which confirms the intention of our objective function (3.8). 

Overall, the proposed GELM model is able to guarantee the high reliability of 
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yielded PIs while keeping the PI width within an acceptable level, revealing its 

superior capability of constructing PIs with different levels.  

Fig. 3.6 depicts the PIs with 90% confidence level estimated for 10 

successive days in November, where most observations are noticed to be well 

included by the derived PIs with descent sharpness, even for the days with high 

volatility, e.g., the fourth and seventh day.  

	

Fig. 3.6 Snapshot of 90% PIs associated with the 10-min average GHI observed in 
10 successive days in November 2012. 

 

3.7.2.2 Skill verification on different granularities and granulation 

methods 

This section investigates the performance of different granulation methods 

with three different levels of granularity (temporal scales): 10 minutes, 30 

minutes and 1 hour. The data in November is used for validating. As seen from 

Table 3.5, the range of PIs gets wider as the granularity level increases, so does 

the absolute interval score. This can be explained by the fact that more 

variability and uncertainty is involved in larger granules. In general, both 

granulation techniques are effective in generating PIs with high reliability, 
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while min-max-Gr is likely to achieve narrower PIs with different nominal 

levels, thus leading to a better overall performance than that of FCM-Gr. This 

might be due to that the FCM-Gr offers more conservative temporal granules 

than min-max-Gr. 

 

Table 3.5 Skills of different granularities and different granulation methods 
evaluated in November 2012. 

PINC 
Granularity 10min 30min 60min 
Granulation 

Methods PICP PINAW IS PICP PINAW IS PICP PINAW IS 

99% 
min-max-Gr 97.27% 34.83% -0.46% 98.94% 39.34% -0.71% 98.18% 55.67% -0.69% 

FCM-Gr 97.02% 36.04% -0.50% 99.09% 57.91% -0.73% 99.09% 69.72% -0.87% 

95% 
min-max-Gr 95.86% 24.82% -1.57% 97.58% 39.39% -2.46% 95.76% 43.39% -2.61% 

FCM-Gr 95.00% 31.22% -1.96% 97.12% 43.06% -2.59% 98.79% 54.47% -3.09% 

90% 
min-max-Gr 91.36% 18.58% -2.47% 91.52% 26.03% -3.42% 89.70% 36.86% -4.76% 

FCM-Gr 92.98% 24.75% -3.17% 90.30% 36.15% -4.80% 91.76% 43.44% -5.05% 
 

 

3.8 Summary 

Generally, different decision-makers in power systems have different 

lookahead time preferences ranging from minutes to days for renewable 

generation forecasts according to their own operational requirements. Very 

short-term solar power or solar irradiance prognosis is crucial for micro-grid 

economic dispatch, the operation of storage systems associated with temporal 

market regulations such as Australian National Electricity Market with 5 

minutes resolution, and the TSO which aims to optimally dispatch reserves for 

the continuous balance of the power system.  
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The goal of this research is to quantitatively represent the uncertainty of 

the AI-based forecasting process, originating both from the uncertainty in 

inputs and in the forecasting model itself. Inspired by the conceptualization of 

IGs, the variability involved in the raw detailed numeric data are abstracted by 

specified temporal granules thus providing granular model inputs. In parallel, 

the original crisp prediction model is granulated as well to accommodate the 

granular inputs. As such, the uncertainty can be well reflected in the resulting 

granular output. In this thesis, we rely on the ELM-based NN, whose powerful 

mapping ability could immensely benefit the learning process of its generalized 

granular counterpart. Specifically, the 10-min granules are focused that given 

to the model inputs, which can faithfully capture the variability within 10 

minutes. Then, PSO is used to train the underlying granular model in a PI-

score-oriented framework. Through verifying against five benchmarks, 

including its crisp counterpart - DIF, the proposed GELM model proves to be 

effective in yielding PIs with higher reliability and overall quality. 

Additionally, in regards of the two granulation methods we offer, the min-max-

Gr achieves slightly better PI skill than FCM-Gr in this experiment.  

All in all, compared to traditional crisp models, the advantages of 

proposed GELM are manifold. Firstly, in the situation of massive data with 

high resolution and variability, by constructing IGs over a lower temporal scale, 

the mapping capability of the underlying model could be improved as the 

granulated time series virtually mitigate the variability of raw complicated 

numeric data with refined time scales. In the meanwhile, the key features are 
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retained thus being able to give a faithful quantification of the natural 

variability. Secondly, this framework is not solely limited to temporal 

variability, while it can be flexibly extended to data measuring noises if the 

information within certain temporal scale is unavailable in a more detailed 

level. In such cases, the information granules, depending on the gaussian noise 

or the empirical measurement errors of sensors, are advocated to build for 

inputs. Thirdly, unlike most of existing PI construction methods, GELM does 

not require any quantile analysis of point forecasting errors involving statistical 

inferences. Instead, it only involves one optimization stage to directly derive 

the optimal PIs. 

Note that this research only provides a generic framework to quantify the 

uncertainties of NN-based models, the future improvement can be emphasized 

on the following aspects: 

(1) Since our model is completely dependent on the historical observations, 

satisfactory predictive skill can be achieved over horizons only within few 

time-steps. To accurately predict the solar irradiance or PV power for longer 

look-ahead times, more influential factors are advocated to be included, such 

as cloud motion, pressure, sky clearness index and geographical coordinates 

[154]. Furthermore, if the ramp events are focused in the very short-term 

forecast for the small-scaled PV, sky cameras are commonly deployed to track 

the positions and velocities of sun and cloud, which proves to be a reliable tool 

for ramp rates management. Therefore, future work is anticipated to construct 

the granular counterparts for more potential predictors. 
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(2) This study builds up the temporal granules in an intuitive and 

straightforward manner, i.e., min-max-Gr and FCM-Gr. Some sophisticated 

granulation approaches are highly needed to be exploited to construct a more 

justifiable granule. Currently, a comprehensive discussion on the realization of 

IGs is evidently lacking, further work can be focused on the optimal 

construction of IGs based on a well-defined justifiable principle, e.g., 

legitimate and specificity [144]. Additionally, instead of assigning a fixed 

temporal scale for all granules in this thesis, a scalable granularity is more 

appealing to adhere to the underlying principle of IGs. 

(3) Other formalisms of IGs that might be appropriate to quantify the 

uncertainties are highlighted to investigate. Interval Type-2 Fuzzy Sets (IT2 

FS) is demonstrated to be a vigorous tool to handle the uncertainties [155]. 

Further work would attempt to incorporate the IT2 FS into AI models to yield 

the probabilistic forecasts. 
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Chapter 4  Conditional Density Forecast of Electricity 

Price based on Ensemble ELM and Logistic EMOS 

4.1 Introduction  

With the deregulation of electricity market worldwide, electricity price has 

become an indispensable signal for all participants involved in this competitive 

environment, as it constitutes considerably valuable information for their decision-

makings. Despite a variety of periodicities (e.g., daily and weekly) can be tracked in 

spot price series, it normally exhibits volatile and irregular patterns, even 

unanticipated spikes [36, 156] that impose great challenges to trading activities of 

various market agents. A good knowledge of future prices in advance can help market 

participants submit effective bids with low risks and make sensible bilateral 

transaction decisions [36].  

Extensive research work has been carried out on the point prediction of electricity 

prices over last two decades [9]. Nevertheless, such forecasts have limitations due to 

their inability to inform the inevitable error information involved, which is fairly 

crucial for sagacious decision makings considering diverse uncertainties. This boosts 

the shift towards a more informative forecast tool based on a probabilistic framework 

[46]. Generally, the probabilistic forecasts can be represented by prediction intervals 

(PIs) or probability density functions (PDFs). The majority of existing PIs 

construction approaches rely on the forecasting residuals to derive the PIs via either 

Gaussian noise assumption [81, 82, 84] or bootstrap method [88, 93]. Alternatively, 
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the PIs can be obtained by combining several specific quantiles of interest in 

nonparametric or semiparametric ways, such as quantile regression (QR) [61, 114, 

157],  kernel density estimation [82, 104] and statistical moments estimation [100]. 

Recent advance [42, 158, 159] aims to construct optimal PIs by using a PI-score-

based cost function for the parameters’ estimation via a direct optimization approach.  

Despite pervasive studies done in interval forecast, density forecast is believed 

to provide more utility to decision makers since it provides full distributional 

information on the future uncertainties than merely a single or a set of PIs. Most 

importantly, due to miscellaneous uncertainties in modern market, decision makers 

are inclined to consider their objectives in a stochastic framework [14, 16, 17] instead 

of conventional deterministic ones. Predictive density is therefore a valuable input 

for, e.g. stochastic programming based decision-making models, as it allows the 

generation of temporal scenarios. Similar to interval forecasts, the predictive errors 

are commonly assumed as normally distributed and a variety of generalized 

autoregressive conditional heteroscedasticity (GARCH) based models were 

developed [85, 86]. A time-varying model for the first few moments estimation of 

price densities was presented in [100] to overcome the limitations in traditional 

simulation-based PI construction approaches, but the authors only discussed the 

coverage accuracy of several extracted PIs without evaluating the performance of full 

predictive distribution. [83] proposed a vector autoregressive model with a skew t-

distribution for price forecasting noises, despite the lack of back-transforming the 

logarithmic price series, the skill assessment for the issued densities by CRPS is fully 

described and found to be more appealing than Probability Integral Transform Score 
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(PITS) and Logarithmic Score [85] for density forecasts. Further, predictive density 

can be approximately built on the basis of finite quantiles. [160] applied QR to 

generate 5%-95% (in steps of 5%) quantiles for forecasting residuals and treated 

predictive distribution tails with an exponential assumption. Although this 

semiparametric hybrid model is demonstrated to be superior in several benchmarks, 

it can only provide a discrete description of the predictive distribution.  

This work aims to develop a conditional density forecast for the Marginal 

Clearing Price (MCP) on the purpose of offering the users a comprehensive 

understanding of the statistical description of stochastic uncertainty and knowledge 

uncertainty –the two of which are considered to constitute the total uncertainty 

involved in a modeling system [138]. The former is subject to the natural variability 

of the underlying dataset and the measurement errors, whereas the latter chiefly 

accounts for the imperfect representation of processes in a model and imperfect 

knowledge of parameters associated with these processes. A NN based on ELM [91] 

is adopted as the point estimator in this thesis. ELM-based NNs have received great 

popularity lately since iterative parameters’ tuning in traditional gradient-based NN 

are avoided in the learning process of ELM [62, 88, 90, 93]. However, what is 

controversial for ELM is the instability owing to its random nature [161], i.e., the 

generalization performance varies with different initial parameter settings, which 

gives rise to large uncertainty in the outputs. In this sense, an appropriate 

representation of the knowledge uncertainty in ELM based NNs is imperative as it 

consists of more uncertainty concerning models’ setting than traditional NNs.  
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An aggregate structure comprising collective ELM networks is employed to 

generate multiple predictions in this study. Later, these ensemble forecasts are fed 

into a post-processing unit - EMOS to derive the predictive distribution. Current 

applications of EMOS [64] are largely confined to the numerical weather prediction, 

in which the bias and dispersion errors requires to be corrected by the post-processing 

unit. This inspires us to apply it into our model to quantify the uncertainty of ELM. 

Through fitting the EMOS model in a performance-oriented framework with CRPS, 

both the reliability and sharpness of the predictive density can be guaranteed. 

Additionally, given Normal distribution is too conservative to model the MCPs with 

occasional spikes, the Logistic distribution is proposed to model the ensemble 

forecasting errors due to its property of heavy tails that are more robust to the outliers.  

The main contributions of this work are summarized as follows: (1). To the best 

of the authors’ knowledge, this research is the first to apply the Logistic-EMOS model 

to derive the predictive density of MCP conditional on the ensemble forecasts via 

ELMs. By assessing the predictive skill for the full distribution with CRPS, the entire 

ELM-Logistic-CRPS-based EMOS (ELC-EMOS) model proves to outperform the 

benchmarks. (2). A comprehensive analysis of significant price drivers is conducted 

with respect to the case market, where substantial explanatory variables can be 

collected. (3). By taking advantages of the well-calibrated predictive density and 

Gaussian copula, the next-day price scenarios are produced. When dealing with the 

temporal interdependence, a highly efficient approach relying on the empirical 

correlation coefficients of the observed probabilistic forecasts in the similar 

weekdays is proposed to determine the covariance structure, thus avoiding 
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complicated computations and assumptions in traditional scenario generation 

methods. At last, the estimated price scenarios based on the developed covariance 

structure are verified against benchmarks with two proper scoring rules: energy score 

and variogram score. Results demonstrate that the proposed covariance structure can 

yield most skillful scenarios.  

4.2 The Data 

Nord Pool Spot operates two different physical operation markets, the day-ahead 

market (Elspot) and the intraday market (Elbas), in 15 bidding areas over 7 Nordic 

countries [7]. In Elspot, participants are required to submit their sell and buy orders, 

including prices and volumes, to Nord Pool no later than the deadline of clearing for 

the following operation day. Based on these bids, Nord Pool releases the system price 

in hourly format at 12:00 noon before the following day. 
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Fig. 4.1 Four bidding areas (SE1, SE2, SE3, SE4) in Sweden with 
corresponding MCP at certain hour on 23rd Apr 2018 

 
The Swedish Elspot is selected as the case market in this thesis and the average 

MCPs of 4 bidding areas are used as the targets. Fig. 4.1 is a snapshot of 4 bidding 

areas in Sweden. Considering that different areas in Sweden show minor differences 

on MCPs, the selected market be regarded as an entirety. The Swedish MCPs and the 

other explanatory dataset can be publicly accessed on Nordic Pool Website [162], 

Swedish TSO Website [163] and the Global Weather Information Website [164]. 

Totally 31 explanatory variables are collected from 1st Jan 2013 to 31st Jul 2016, as 

listed in Appendix B. The clock-change issue is neglected in this study, for all missing 
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variables at 02:00 am in March, the mean value of its previous and next hour is 

interpolated; for the duplicates occurring at 2:00 am in October, we averaged them to 

ensure the equal size of samples for each day. 

4.3 Quantification of Uncertainty in Swedish MCP Forecasting 

	

Fig. 4.2 Schematic of proposed forecasting strategy 

 

The entire forecasting strategy is illustrated in Fig. 4.2. At first, all candidates 

listed in Appendix B are collected to perform correlation analysis to extract the most 

relevant features as inputs. Then, these inputs are fed into several individual ELM 

networks to generate a set of forecasts !",$|"&'
()) . These ensemble forecasts are further 
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incorporated into EMOS model to derive the conditional density with proper 

distribution. Finally, we can generate the next-day scenarios based on the predictive 

densities and Gaussian copula. !",$|"&'
())

 is the point estimate of MCP for hour h in 

day d issued in the previous day d-1 via the i-th ELM network, i = 1,2,···,m. m is the 

total number of ELMs. Details of each block are described in the following sub-

sections. 

4.3.1 Feature Selection 

Feature selection is an important task in the process of machine learning, aiming 

to seek the most relevant candidates as inputs to improve generalizing performance 

and reduce overfitting [156]. This can be achieved by a set of metrics, such as mutual 

information, distance correlation, learning-based search and linear correlation 

analysis. The former three are commonly restricted by the abundant time 

complexities of dealing with a number of explanatory variables and the associated 

lags. Linear correlation has the merits of its simple interpretation and low 

computational burden for large datasets. Moreover, it can measure both the degree 

and direction of the correlation between two series. Pearson correlation coefficient 

[165] is used to identify the appropriate input features of ELMs in this phase. 

	

Fig. 4.3 Timeline of Nord Pool Elspot 
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The potential influential variables are listed in Appendix B. All the forecasted 

variables are available before the auction deadline, as Fig. 4.3 illustrates. Correlation 

analysis is executed between each candidate feature (with different lags) and the 

target Swedish MCP under the mechanisms of Elspot. Through comprehensive 

analysis, some interesting findings are presented as follows.  

The total Nordic system production was identified to have a higher correlation 

with Swedish MCP than domestic generation, the same observation holds for the 

demand. This could be explained by that the area prices are not purely dependent on 

the area demand and supply but also reckon on the transmission capacity between the 

connected bidding areas. Hence, from a broad view, the Swedish MCP is more 

correlated with the aggregated load and production in the Nordic system. 

Some literatures report that the reservoir level and the nuclear power are the 

prominent price drivers, since the hydro and nuclear power dominate the production 

in Nordic. However, through our experiments, both energy forms have weak 

correlations with the Swedish MCP. This might be owing to that the hydrologic level 

and nuclear production is quite stable, thus only having strong impacts on variations 

of MCP in the long-run, rather than the hourly behavior, i.e. the higher the reservoir 

level the lower the prices and vice versa. This can also be used to explain the minor 

influence of temperature on the hourly spot prices. As the leading source in 

renewables, wind power generation shows a negative but small effect on Swedish 

MCPs due to its zero fuel cost. 

The predominant price contributors were exposed to be the net demand, 

generation from conventional units and the import/export power. The term ‘net 
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demand’ refers to the gross demand minus the generation from non-dispatchable 

renewables (wind power and PV power). In parallel, ‘generation from conventional 

units’ represents the gross electricity production minus the generation from non-

dispatchable renewables. It is worth noting that the exchange power shows a 

hysteretic effect on the MCP, through analysis, the highest correlation with MCP was 

identified in historical exchange power before 54 hours and the forecasting exchange 

power of 7 hours ago.  

In light of the correlation coefficients, the most relevant variables for MCP are 

its lagged observations, particularly for those at the same hour lagged by 1, 2, 6 and 

7 days, as Fig. 4.4 shows. Recent study [166] advises us to take the most recent 

available MCP (i.e. the last observation of the previous day) into account, as a result, 

a strong correlation is also observed in our case, as clearly seen in Fig. 4.5, especially 

for the nighttime during 21:00-06:00. In addition, the weekday dummies have a 

notable impact on the daily patterns of MCP. Through examining the average intraday 

price series with respect to different weekdays (Mon, Tue, …, Sun) in Swedish Elspot, 

as visualized in Fig. 4.6, the mean daily price series within Monday to Thursday are 

noticed to be extremely close, whereas the profiles in Saturday and Sunday show 

clear deviations. The price series in Friday during 12:00-24:00 exhibits a distinct 

difference from that in both weekend and other working days, hence, four weekday 

dummy variables - +', +,, +-, +.  - representing Monday, Friday, Saturday and 

Sunday, are took into account for the weekly seasonality. 
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Fig. 4.4 Autocorrelation coefficients of Swedish MCP in 2013. Grey lines mean data 
that are not available at forecast. 

 

	

Fig. 4.5 Correlation coefficients between MCP and its most recent price over 24 
hours in 2013. 
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Fig. 4.6 Intraday profiles of average MCP in terms of different weekdays in 2013. 

 

Table 4.1 Selected features for Swedish MCP 

Predictor Symbol Units 
24 hour ahead domestic MCP  PSE,t-24 €/MWh 
48 hour ahead domestic MCP PSE,t-48

 €/MWh 
144 hour ahead domestic MCP PSE,t-144 €/MWh 
168 hour ahead domestic MCP PSE,t-168 €/MWh 

The most recent available domestic MCP /01,2
3452 €/MWh 

54 hour ahead actual import/export power  Et-54 MWh 
Prognosis domestic net demand 601782,2 MWh 
Prognosis system net demand 6090782,2 MWh 

Prognosis system generation from conventional 
units :090;<7=,2 MWh 

Prognosis import/export power at 7 hours before 
the time of interest >2&? MWh 

Weekday dummies (Mon, Fri, Sat, Sun) +)(i=1,2,3,4) - 
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Performing the correlation analysis with regard to the endogenous and 

exogenous variables, respectively, the irrelevant attributes are removed and the rest 

are further examined by the redundancy analysis [156] to filter out the redundant 

features that would also lead to the degradation of forecasting performance. 

Eventually, 11 predictors are selected in Table 4.1. It should be noted that the variable 

selection in such an ad hoc manner is somehow simple, since our study does not focus 

on the sophisticated feature engineering, but to showcase the feasibility of our method 

as a forecasting model given a certain set of features and compare it with benchmarks. 

To further improve the forecasting skill and efficiency, regression models with 

automated variable selection or shrinkage ability can be applied, such as LASSO 

[166], elastic nets [167], random forests [164], regularized ELM [168], etc. 

4.3.2 Ensemble Forecasts on the basis of ELM Networks 

ELM is an emerging training algorithm for single hidden-layer feedforward 

neural networks (SLFNs). The essence of ELM is the input weights and biases of 

hidden layer are randomly assigned and free to be tuned further [91]. 
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Fig. 4.7 Typical generalization performance with respect to different ELM 
structures. 

 

Despite a variety of superiorities over traditional networks, such as better 

generalization performance with extremely fast learning speed, evasion of local 

minima, learning rate, momentum  rate  and  over-fitting [91]. The biggest issue of 

ELM is the instability due to its random nature [161], that is, it is not able guarantee 

the optimal performance in the training phase, not even for an unseen test dataset. 

This can be illustrated in Fig. 4.7, where the generalization performance with respect 

to different ELM structures (with hidden neurons from 1 to 30) but the same training 

dataset are examined for forecasting of the hourly Swedish MCP in Jun 2015. For 

each structure, a group of ELMs with different initial parameter settings are 

implemented to yield the statistical results of generalization performance indicated 

by mean absolute errors (MAEs). As depicted in Fig. 4.7, large variability and outliers 

are discovered with a small number of hidden neurons, indicating significant model 
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uncertainty. With the increase of hidden neurons, MAE drops off distinctly and 

finally converges at around 4 EUR/MWh. However, a variability range of roughly 1 

EUR/MWh is still noticeable at the end, which cannot be ignored and needs proper 

quantification in the output.  

In view of the above, combining a number of ELMs can be an effective way to 

quantify such model uncertainty. Suppose m ELMs with predefined same structure 

are independent of each other, by randomly assigning the initial parameters to each 

ELM, m different outputs can be derived and are further fed into EMOS module to 

generate predictive densities, thus the model uncertainty can be well informed. In this 

study, the individual ELM is fitted by the samples over the lagged 84 days (12 weeks) 

in a time-adaptive way for the next day. 

4.3.3 Logistic Distribution based EMOS 

EMOS [64] is essentially a post-processing technique to calibrate the ensemble 

forecasts, where the unknown parameters are estimated with a pre-defined 

distribution in a time-adaptive learning manner [169]. The EMOS is found to be more 

compelling than Bayesian Moving Average (BMA) due to its conceptual simplicity 

[64]. To identify the most appropriate shape of ensemble forecasts’ distribution, 

numerous ELMs with different initial settings are run to generate a series of potential 

predictions of MCPs. Through examining various ensemble forecast errors at 

different time slot, a notably underdispersive character among the forecasts was 

explored, which means the ensemble ELMs either underestimate or overestimate the 

validating observations. As illustrated in Fig. 4.8 (a), most forecasts are below the 

real MCPs before 7:00 am, and turn to overestimate in the following period. Such 
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bias may result from the structural model deficiencies shared among all ensemble 

members or the insufficient explanatory information [170]. Broadly, the ensemble 

errors exhibit a unimodal and symmetric property, as shown in Fig. 4.8 (b), which 

can be well fitted by Normal or Logistic distribution [171]. 

 

	

(b) 
Fig. 4.8 (a) The potential ensemble predictions and real MCPs on 17th Nov 2015. (b) 
Histogram of potential ELM’s ensemble errors and the corresponding Normal and 

Logistic fits 

 
Gaussian-based EMOS model has been fully developed and extensively used to 

calibrate the ensemble forecasts for weather quantities [172]. Logistic distribution 

[171] is close to Normal distribution in shape but has slightly fatter tails (higher 
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kurtosis), thus being more robust to the ensemble outliers and small spike prices in 

this case. The comparative results between Normal and Logistic models will be 

elaborated in Section 4.5.  

The probability density function (PDF) of Logistic distribution is defined as 
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where @ is the location parameter, A is the scale parameter and is proportional to its 

standard deviation via B, = D,A,/3 . According to the formulated process of 

Gaussian based EMOS [64], the predictive mean is the bias-corrected weighted 

average of the ensemble forecasts !",$|"&'
(') , !",$|"&'

(,) , … , !",$|"&'
(H) and the variance is a 

linear function of the ensemble variance I",$, . Hence, the Logistic predictive 

distribution for hour h in day d issued in the previous day d-1 can be viewed as 

conditional on the ensemble estimates, which is parameterized by 
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As a result, the entire process translates to the estimation of parameters, J",$ =

K",$
(L), … , K",$

(H)  and M",$ = (N",$
(L), N",$

(')), for a linear model. 

4.3.4 Parameter Estimation 

In this stage, a proper scoring rule must be determined as the optimum objective 

since J",$, M",$ are desired to be estimated in a performance-oriented framework. In 

order to assess the reliability and sharpness of predictive density simultaneously, the 

CRPS is considered as a robust choice. Unlike the other metrics, such as interval score 

and quantile score [58], CRPS does not focus on any specific point of the probability 
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distribution, but considers the distribution as whole. The general form of CRPS has 

been given in (2.11). 

In order to facilitate the further manipulation by optimization tool, the integral 

form of CRPS should be replaced by a generalized closed-form expression, which 

has been done concerning Normal distribution [64]. In this research, the Logistic 

distribution based closed-form analytic expression of CRPS is derived using the 

pinball loss function [58], as expressed in (4.3). The detailed mathematical 

derivations are given in Appendix C. 
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where p is the evaluated point and F(p) is the associated probability, logit is the 

inverse Logistic function, given by logit ! = log ! − log	(1 − !). 

Therefore, the regression coefficients J",$, M",$ can be estimated by 
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where T is the length of training days, the identification of optimal T will be discussed 

in the following section. The optimization is implemented by Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm [173]. Finally, the predictive density can be 

obtained by (4.2). 

 

4.4 Temporal Dependency Modeling  

Based on the well calibrated marginal predictive distribution obtained in the last 

section, a set of temporal forecasting scenarios can be generated by using the popular 

multivariate statistical tool, Gaussian copula [68].  
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By introducing a multivariate random vector W" = X",',⋯ , X",$,⋯ , X",,.  for 

the 24 hours in day d, where 1
,d h

JZ ´ÎRs  is a random variable following standard 

normal distribution, J realizations can be issued. W"  follows multivariate normal 

distribution with zero expectation vector 24 1
dµ

´ÎRs  and a covariance matrix 

24 24
d

´ÎR Rs . Subsequently, using the CDF of standard normal distribution Φ and the 

inverse CDF [",$|"&'&'  of the marginal predictive distribution, the realization /",$ at 

hour h in day d can be expressed as [68] 

( )1
, , | 1 ,

ˆ ( ) ,    1,2, ,24d h d h d d hP F Z h-
-= F = !  (4.5) 

This transformation process can be illustrated by Fig. 4.9, where the arrows 

indicate the inverse transformation from standard normal random variable X",$ to 

the prediction realization /",$.  

 

	

Fig. 4.9 Schematic diagram of inverse transformation for a realization in predictive 
margins. 
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The critical issue of this approach is the determination of the covariance structure 

\" for the multivariate random variable W", which informs the interdependence of 

look-ahead horizons. A recursive estimation approach was applied to adaptively 

estimate the covariance structure in literature [34]. But it suffers from the lack of 

theoretical backgrounds to define analytically or numerically an optimal forgetting 

factor for tracking the type of covariance matrices. Further, [174] used an exponential 

function to express the covariance structure, in which the optimal range parameter 

was determined by the consistency between the variability of measured wind power 

and the generated scenarios. However, the range parameter needs to be examined in 

an enumerative way before each forecast, which is computationally expensive.  

In this study, we assume that the intercorrelation of multivariate Gaussian 

random vector W"  is consistent with that of the transformed multivariate vector 

W]
^ = [X],'

^ , … , X],$
^ , … , X],,.

^ ] of the observed probabilistic forecasts series in the 

past K similar weekdays, the matrix form of vector W]
^ can be expressed as 
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where + is the weekday dummy, ab,$
^ = Φ&' [b,$|b&' !b,$ , c = 1,2, … , e , is 

the transformed value of the probabilistic forecast [b,$|b&' !b,$  for hour h in 

similar weekday k through inversed standard normal CDF Φ&'. This process can be 

also illustrated in Fig. 4.9 by following opposite direction of the arrow marked. !b,$ 

is the real MCP at hour h in day k, and [b,$|b&' is the corresponding forecasted CDF 

issued at its previous day. 
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After deriving the Gaussian transformed matrix of the observed probabilistic 

forecasts in (4.6), its temporal interdependence can be informed by the Pearson 

correlation coefficient between hour n and hour m 
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where cov(∙)  and B  denote the covariance and standard deviation, respectively. 

Likewise, we can write the correlation coefficient of multivariate Gaussian random 

vector W" 
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which is considered equal to the empirical correlation coefficient i7,H
^,] . Note that 

Bjk,l = Bjk,m = 1, we can quickly calculate the covariance between each pair of 

look-ahead times by cov X",7, X",H = i7,H
^,], thus yielding its covariance matrix \". 

In this sense, without introducing any extra hypothetic parameters or involving any 

recursive or enumerative process, the proposed empirical correlation based 

dependence structure determination method could significantly decrease the 

computational cost as compared to traditional ones. 

 

4.5 Results 

The whole dataset described in Section 4.2 is divided into four parts. The 

explanatory analysis is conducted using the dataset in year 2013. The dataset within 

the period from 1st Jan 2014 to 30th Jun 2014 is used to determine the structure of 

individual ELM, while EMOS’s training period and ensembles’ dimensionality are 
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determined by the samples from 1st Jul 2014 to 31st Jan 2015. The out-of-sample test 

period is from 1st Feb 2015 to 31st Jul 2016. 

4.5.1 Determination of ensembles’ dimensionality and EMOS’s training 

periods 

 For each ensemble member, an optimal structure should be determined 

beforehand to guarantee the minimum uncertainty arising from the individual ELM 

structure. The k-fold cross-validation is used to identify such structure using the 

samples from 1st Jan 2014 to 30th Jun 2014. Then, multiple ELMs dressed with this 

structure but different initial parameters are combined to produce ensemble forecasts 

of MCP.  

The dimensionality of ensembles should also be examined on the account of the 

efficiency of the subsequent optimization. The EMOS model is fitted in a time-

adaptive way with short training periods, which allows for a rapid adaption to changes 

in environmental conditions while longer training periods reduce the statistical 

variability in parameter estimation [64].  

Fig. 4.10 depicts the forecasting skill indicated by average CRPS values tested 

from 1st Jul 2014 to 31st Jan 2015 by varying the training sample size (T = 1,2, ···,20, 

30, ···, 60 days) and number of ensemble members (m = 2,3, ···,20,30,40,50). As can 

be seen clearly from Fig. 4.10, extremely short training periods yield inferior 

performance, so do the larger length of training samples. The optimal training period 

is located at around 14 days. No obvious trend is discovered in the performance with 

respect to the number of ensembles. Given the computational burden of optimization, 
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a small number of ensembles is preferred. In this case, the minimum average CRPS 

value comes at T = 14 days and m = 13.  

	

Fig. 4.10 Forecasting skill over period from 1st Jul 2014 to 31st Jan 2015 in terms of 
different training days and dimensionalities of ensembles. 

 

4.5.2 Discussion of the predictive density via ELC-EMOS 

With the well-trained EMOS model, the density of each hour for next-day can be 

estimated independently. Fig. 4.11 shows the 24 hourly predicted density curves of 

MCPs on 28th Jul 2016 in a 3D view. 

Generally, the price variation perceives a nature pattern like the demand, which 

is much predictable. Somehow, in Nordic system, with increasing wind energy and 

frequent congestions occurring at the interconnectors [175], the variation doesn’t 

always show cyclic property but involves fluctuations and spikes with various 

magnitudes, posing great challenges to forecasters. In order to evaluate the 

performance of the proposed model from a global perspective, three weekly scenarios 

are considered in this thesis, i.e., (1) weeks with normal trend, (2) weeks with small 
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spikes and (3) weeks with large spikes. The number of weeks belonging to each 

scenario during the test period is listed in TABLE 4.2. It should be noted here, as 

ELM and EMOS are fitted by the samples of the lagged 84 days and 14 days in a 

rolling way, respectively, the density forecast is available from 10th May 2016. The 

time-adaptive fitting strategy is illustrated in Fig. 4.12. 

 

	
Fig. 4.11 3D visualization of predictive densities of Swedish MCPs on 28th Jul 2016  

 

	
Fig. 4.12 Time-adaptive model fitting strategy 

 

Typical price series of each weekly pattern associated with the prediction 

intervals (PIs) extracted from the Logistic predictive distribution is illustrated in Fig. 

4.13. In the first block, a normal and stable trend is observed during the entire week, 
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the resultant PIs are extremely sharp accordingly. In the second block, the series 

becomes more volatile with some unexpected spike occurred on the second day of 

the week, but far less severe, so the forecasting skill over the entire week is acceptable 

as most observations fall into the PIs with satisfactory sharpness except for the spike. 

When the spikes emerge with large magnitude (as shown in the last block), the PIs 

are unable to cover most of the prices, particularly for the huge spikes. The sharpness 

turns to be rather poor, revealing the large uncertainty involved in this situation. This 

can be further reflected by the average CRPS value with regard to each weekly 

scenario in Table 4.2. Stationary price series appears in nearly half of the test period 

with the lowest average CRPS value (1.0054 EUR/MWh). When rare small spikes 

occur, performance of the predictive density degrades, giving a larger CRPS around 

2 EUR/MWh. The worst case comes in the weeks with significant spikes, yielding a 

330% decline of the overall forecasting skill as compared with that in weeks with 

normal trend. 

	

Fig. 4.13 MCP series with prediction intervals in weeks with different price 
patterns. 
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The fundamental reasons behind the poor forecasting performance at huge price 

spikes were studied comprehensively in [176]. From the economic perspective, high 

price volatility occurs in the regions where the demand and supply are very inelastic. 

In this sense, models that simply depend on the past price observations and forecasted 

supply/demand are not so favorable for predicting the large spikes. The authors in 

[176] have showed that the spikes can be well detected if the underlying mechanic of 

the price process could be obtained in advance. They utilize the structural approaches 

to learn from the bidding behavior itself (i.e. forecasting the supply and demand 

curves) to accommodate forecast with large spikes [176]. In this thesis, extreme price 

events are not focused due to the lack of real auction information and other related 

processes. 

 

Table 4.2 Average CRPS (EUR/MWh) of Normal- and Logistic- EMOS Models in 
the Context of Different Weekly Scenarios 

Weekly Pattern Number of 
weeks  

Gaussian based 
model 

Logistic based 
model 

Weeks with normal trend 33 1.0070 1.0054 

Weeks with small spikes 18 1.9992 1.9890 

Weeks with large spikes 14 4.3090 4.2944 
 

 

4.5.3 Comparison with Gaussian EMOS model  

The well-known Gaussian EMOS model is tested in comparison with the 

Logistic model. Full analytic expressions of CRPS for Gaussian model is well 

established in [64]. From the results in Table 4.2, the average CRPS values of two 
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distributions show minor difference, whereas the Logistic distribution yields a slight 

improvement over the Gaussian one in all three weekly scenarios. Given the 

improvement of average CRPS is imperceptible, the significance test needs further 

implementation. 

Diebold-Mariano (DM) test [177] allows to assess the statistical significance of 

the CRPS differences between two models. Denote the loss differential series as 

( ) ( )1 1, 2 2,
ˆ ˆ, ,

i ii P i P id CRPS F p CRPS F p= -   (4.9) 

where CRPSn(·) is the CRPS value for model n. Then the testing statistic is computed 

as 

i iN d dt N µ s=  (4.10) 

where N is the length of the testing period, @") and B") are the sample mean and 

standard deviation of series di, respectively. Under the null hypothesis of equal 

predictive performance, i.e. E(di)=0, tN follows a standard normal distribution. 

Negative values of tN indicate a better forecasting skill of model 1, whereas model 2 

is preferred in case of positive values of tN. The statistical significance of the test 

statistic can be assessed by calculating the corresponding p-values (probability) under 

the null hypothesis, values that are significant at the 0.05 level are marked with ‘*’. 

Table 4.3 summarizes the DM testing results of the forecasts via Logistic-EMOS and 

Gaussian-EMOS. 

As clearly seen from Table 4.3, all DM testing statistics tN are negative, implying 

that the better predictive skill can be obtained in the context of Logistic density for 

all three scenarios. However, the p value in weeks with normal trend is greater than 

the significance level of 0.05, showing the equal performance for both models in this 
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situation. In contrast, in weeks with price spikes, the proposed Logistic-EMOS 

significantly outperforms the Gaussian-EMOS in terms of CRPS. 

 
Table 4.3 Test Statistics and Probability of DM Test of Equal Forecast 

Performance for Comparison of Logistic-EMOS and Gaussian-EMOS 
‘*’ Symbols Mark Statistically Significant Difference in CRPS 

 Weeks with normal 
trend 

Weeks with small 
spikes 

Weeks with large 
spikes 

tN -1.50 -2.81 -3.04 

p 0.133 0.0049* 0.0024* 
 

Another assessment is performed with regard to the predictive reliability. For 

density forecast, the reliability is usually indicated by the absolute probabilistic 

deviation (APD) through examining finite quantiles, which can be written as 
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where Tp is the length of verifying horizon,	 n ∈ 0,1 	 is the nominal quantile level 

of interest and [",$	|"&'&' (n) denotes the predictive quantile of level τ for hour h in day 

d issued at the last day d-1. It can be seen from (4.11) that high reliability can be 

obtained when APD turns to zero. 

Since the performance of distribution tail is paramount in this case, the whole 

predictive distribution is evaluated by three parts, the lower tail (τ=0.01~0.1, in steps 

of 0.01), the middle part (τ=0.1~0.9, in steps of 0.05) and the upper tail (τ=0.9 ~ 0.99, 

in steps of 0.01). Fig. 4.14 interprets the predictive proportions and APD values at all 

evaluated quantiles for Normal and Logistic predictive distribution. As noticed Fig. 

4.14 (a), both models perform poorly towards the distributional ends. It is particularly 
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true for Normal distribution (the red dashed line in Fig. 4.14 (a)). Fig. 4.14 (b) 

displays the APDs at different quantiles. The Logistic distribution achieves the 

improvement of 19.78% and 35.83% APDs at upper and lower tail over Normal 

model, respectively. Both models show higher reliability at middle quantiles (0.1-

0.9), sharing the same average APDs of 0.0126. Lastly, by averaging all APDs over 

the evaluated quantiles, a 20.43% improvement over the Normal model can be 

obtained, indicating the Logistic model is capable of producing more reliable 

quantiles. 

	

(a) Reliability diagram (b) APDs of different 
quantiles 

Fig. 4.14 Quantile reliability diagram for the Normal and Logistic models. 

 

4.5.4 Comparison with benchmarks of density forecasts  

The last comparative study is carried out against five benchmarks in the 

framework of density forecast, whose technical details are given as follows, 
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4.5.4.1 Empirical unconditional density forecast (EU) 

In this model, the predictions within each lead time are simply assumed to obey 

a constant empirical distribution by fitting the past observations of the same look-

ahead time, 

, | 1 1, 2, , 24ˆ ,  d h d hF F h- = = !  (4.12) 

where [",$|"&' denotes the predictive CDF of hour h for day d issued in its previous 

day d-1, [$ represents the empirical CDF of the past MCP observations at hour h. 

We used the past one year’s samples to fit [$ . Recall the empirical quantile 

decomposition [67] of CRPS in (2.15), which allows us to examine the finite quantiles. 

4.5.4.2 Multivariate kernel density estimator (KDE)  

The general formulation of this model is expressed as [101], 
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which intends to compute the conditional PDF of the variable /",$ for hour h in day 

d, given the available information Xd up to day d. The key task of this approach is to 

estimate the underlying marginal and the joint PDFs using the kernel density 

estimator [178], the conditional PDF of MCP for hour h in day d evaluated at price p 

thus can be expressed by 
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where N is the number of samples considered; q is the multivariate Gaussian kernel 

function; H and r are the smoothing matrix and smoothing parameter used to control 

the smoothness of conditional variables s and the resultant predictive distribution, 
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respectively. !t  is the MCP corresponding to explanatory vector s) and !  is the 

evaluated point. 

4.5.4.3 Gradient boost machines based quantile regression with 

exponentially distributed tails (GBM-QRE)  

Quantile regression is another classic technique that doesn’t require any prior 

knowledge of the distribution shape. Here, the gradient boosting machines (GBM) 

[179] is employed to estimate the conditional quantiles (τ=0.05~0.95, in steps of 0.01) 

separately. The core idea of this powerful algorithm is that it builds the model in a 

stage-wise fashion and then generalizes them by allowing optimization of an arbitrary 

differential loss function. By following the detailed algorithm interpreted in [179], 

the estimation of the τ-th quantile function ubv  at k-th iteration can be formulated as 
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where ib  is the step-size at each iteration, ℎ(s), θ) is the base-learner function, 

which heavily influences the properties of the GBM model and needs to be specified 

beforehand. In order to capture interaction between variables in a computationally-

feasible way, the decision-trees is used as the base-learner function here. y(∙) is the 

pinball loss function given by 

( ) ( )( )( ), ( ) ( ) ( )i i i i i iL p u p u u pt t tt= < - -x 1 x x   (4.16) 

where s) is the vector of explanatory variables and !) is the MCP. 

GBM aims to estimate the parameters in a gradient descent way for the loss 

function as 
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Finally, (4.15) can be rewritten as 
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Considering that a robust quantile regression model is always coupled with a 

justified modeling process for the extremes, the exponential distribution is employed 

here to model the tails beyond the last quantiles (τ=0.05,0.95) estimated via GBM.  

The detailed modeling process of exponential distributed tails for extreme electricity 

prices can be found in [160]. The overall forecasting skill of this GBM-QRE model 

is then verified over 99 quantiles, including the center quantiles (0.05-0.95 in steps 

of 0.01) estimated by GBM and additional tail quantiles (0.01-0.04 in steps of 0.01 

and 0.96-0.99 in steps of 0.01). 

4.5.4.4 GARCH  

Gaussian distribution attempts to quantify the uncertainties arising from 

forecasting errors in GARCH model [160], which is formulated by 

, , | 1 , ,ˆd h d h d d h d hp p s-= + z  (4.19) 

where B",$  is the standard deviation of error z",$ = !",$ − !",$|"&' . {",$  is a 

sequence of independent and identically distributed (i.i.d) standard Gaussian variable, 

which translates the error to be a Gaussian variable 2
, ,~ (0, )d h d he sN . 

The classical GARCH process of order (p,q) for estimating the conditional 

variance is established as 
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where K",$
(L)  is constant, K",$

())  is the ARCH parameter and N",$
(|)  is the GARCH 

parameter. The GARCH(1,1) specification is adopted. Besides, to achieve good 

regressive performance, the model is fitted separately for each forecast horizon h. The 

point forecast series is also obtained by ELM. 

4.5.4.5 Maximum likelihood estimation for EMOS (MLE-EMOS)  

The alternative way to estimate the statistical parameters in (4.2) is maximum 

likelihood [64]. The ignorance score (IGN) is commonly used in such problems, 

which is defined as the negative of the logarithm of the predictive density } 

(likelihood function) at the verifying value p, 

( ) ( )ˆ ˆign , logf p f p= -  (4.21) 

In case of the logistic predictive PDF with location @",$  and scale A",$ , the 

following expression is derived, 
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The IGN is also a negatively oriented score like CRPS. As a result, the EMOS 

coefficients J",$, M",$ are estimated by 

( ) ( )
, ,

24

, , , , ,
, 1 1

1, =argmin IGN ( , ),
d h d h

d T

d h d h d h d h d h
d h

p
T

µ V
-

- =

æ ö
ç ÷
è ø
åå

α
α L

b
b  (4.23) 

 

4.5.4.6 Comparative results and discussion  

The comparative results in terms of monthly average CRPS during the verifying 

period are summarized in Table 4.4. Among the benchmarks, not surprisingly, EU 

shows the worst skill due to its persistent nature, which totally depends on the past 

observations of MCPs. KDE and GBM-QRE significantly improve the predictive 
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performance over EU by 63.9% and 68.8%, respectively, since they both incorporate 

the abundant explanatory information into the statistical models. The GARCH model 

gives the better average CRPS than the former three benchmarks regardless of its 

parametric properties. Both EMOS-based models outperform other benchmarking 

models, with around 14% improvement over the GARCH model, this can be 

explained by the rationale of the underlying models: the density estimated via 

GARCH is conditional on a single point prediction without calibration, and the 

conditional noise variance is estimated separately via a heteroscedastic model. In 

contrast, EMOS-based models are conditional on multiple estimates, both predictive 

mean and variance can be well calibrated by the optimum score. In the monthly 

perspective, the ELC-EMOS model can lead best forecasts in 12 months out of 15 

months, even in the highly volatile month (Jan 2016), showing its robustness in 

dealing with various situations. However, by comparing ELC-EMOS model and 

MLE-EMOS model (the last two columns in Table 4.4), it can be found that the two 

models struggle to distinguish which is the better for MCP density forecast due to the 

minor difference between them. In light of this, we performed the DM test of equal 

forecast performance to benchmark the ELC-EMOS model in terms of CRPS. The 

results are given in Table 4.5.  

It can be observed in Table 4.5 that the lowest tN occurs in the EU model, which 

is followed by KDE, GBM-QRE and GARCH model successively, which confirms 

the outcomes reported in Table 4.4. The MLE-EMOS model comes with a highest tN 

of -4.21 over the underlying test period. But its corresponding probability is still far 
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less than 0.05, indicating that the improvement over MLE-EMOS can be considered 

statistically significant. 

 

Table 4.4 Average CRPS (EUR/MWh) against benchmarking models on a monthly 
Basis. Smallest CRPS values are marked in bold 

Month EU  KDE GBM-
QRE GARCH MLE-

EMOS 
ELC-

EMOS 

May 2015 6.3638 2.0407 2.4361 2.1766 2.0492 2.0395 

Jun 2015 12.1296 2.8042 3.4128 2.4638 2.4204 2.4013 

Jul 2015 18.8402 1.5446 1.8136 1.4233 0.9238 0.9152 

Aug 2015 13.5270 4.3783 3.9751 3.2385 3.0397 3.0878 

Sep 2015 8.7320 3.6494 3.4344 2.9301 2.8016 2.7927 

Oct 2015 7.1295 3.1223 2.0465 2.8363 2.4705 2.4818 

Nov 2015 4.8133 3.1117 3.3250 2.9163 1.9156 1.9030 

Dec 2015 10.1976 2.8726 4.2576 2.1541 1.9768 1.9192 

Jan 2016 10.3806 8.1768 5.5380 6.1248 6.1836 5.7863 

Feb 2016 8.6886 2.7563 1.2686 2.0761 1.5050 1.5123 

Mar 2016 6.6276 3.5239 2.1651 1.8352 1.3573 1.3317 

Apr 2016 6.2289 2.678 1.3873 1.6557 0.9315 0.9199 

May 2016 5.3685 1.9385 1.5451 1.197 1.1602 1.1505 

Jun 2016 2.8358 1.3257 1.6454 0.8931 0.7244 0.7238 

Jul 2016 3.5280 1.4000 0.8247 0.8517 0.7534 0.7443 

Average 8.3594 3.0215 2.6050 2.3182 2.0142 1.9806 
 

Table 4.5 Test Statistics and Probability of DM Test of Equal Forecast Performance 
for Comparison of ELC-EMOS and Benchmarks. 

 vs  
EU  

vs  
KDE 

vs  
GBM-QRE 

vs 
GARCH 

vs 
MLE-EMOS 

tN -101.36 -27.67 -22.16 -18.09 -4.21 
p 0* 0* 0* 0* 2.55E-05 * 
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By further looking into the average CRPS as a function of the look-ahead 

horizons, as visualized in Fig. 4.15, the skill generally follows the typical intraday 

MCP pattern. Satisfactory performance is observed in night and early morning, while 

it deteriorates sharply from 7:00, and reaches the highest CRPS at 9:00. A ‘valley’ 

shape is noticed during the working hours, followed by another peak CPRS occurring 

at 18:00. 

	

Fig. 4.15 Average CRPS in terms of 24 hours 

 

 
Table 4.6 Testing for Quantile Reliability by Averaging APDs over Quantiles From 

0.01 to 0.99 with 0.1 Increment 

 EU  KDE GBM-
QRE GARCH MLE-

EMOS 
ELC-

EMOS 
Avg. 
APD 0.3893 0.1071 0.0817 0.0284 0.0188 0.0273 
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Finally, the quantile reliability test is conducted for all models, 99 quantiles 

ranging from 0.01 to 0.99 with increment of 0.01 are verified using (4.11). Table 4.6 

summarizes the average APDs of each model. Apparently, poor reliability is noticed 

in EU, KDE and GBM-QRE models. In contrast, GARCH, MLE-EMOS and ELC-

EMOS models give more acceptable average APDs over the entire test period. The 

MLE-EMOS model exhibits the highest overall reliability therein, whereas ELC-

EMOS and GARCH model is slightly inferior to the MLE-EMOS, which is 

inconsistent with the results of CRPS. This is mainly due to the nature of scoring 

rules, that is, IGN score (maximum likelihood) gives harsher penalties to the poor 

probabilistic forecast to pursue a higher reliability. Nonetheless, given the worse 

overall performance (higher CRPS) achieved by GARCH and MLE-EMOS as 

compare to ELC-EMOS, the sharpness of both ML-oriented methods must be poorer, 

as we know, predictive density with unsatisfied sharpness can scarcely provide the 

end-users with valuable information.  

One may argue that the proposed ELC-EMOS model seems a little bit complex 

as it requires extra point estimates while nonparametric approaches, such as KDE and 

QR, can directly produce the density without deterministic estimates and pre-

assumption of distribution shape. However, from the results reported above, the 

parametric models (GARCH, MLE-EMOS, ELC-EMOS) conditional on the point 

forecasts outperform the nonparametric ones regarding to the predictive performance 

of full distribution, particularly for the models that the multiple potential forecasts are 

dressed with proper distribution and the desired scoring rule is used. 
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4.5.5 Day-ahead scenarios generation and evaluation  

In this sub-section, by using the dependency modeling strategy introduced in 

Section 4.4, we present the derived day-ahead price scenarios based on the well 

calibrated predictive densities. The empirical correlation coefficients are determined 

by the observed probabilistic forecasts in the similar weekdays over the past 6 months. 

The quality of forecasted scenarios are verified against four rivals, including the 

uncalibrated ensemble forecasts, independent sampling, Gaussian copula approaches 

based on empirical covariance [34] and exponential covariance structure [174], 

respectively. Energy score (ES) and variogram score (VS) [69] are used to evaluate 

the multivariate skill. The verification period is from 1st Nov 2015 to 31st Jul 2016, 

and J = 1000 scenarios are generated for each verifying day. 

4.5.5.1 Uncalibrated ensemble forecasts 

In a natural way, the raw forecasts generated by ensemble ELMs can be regarded 

as the predicted scenarios. To be specific, each time trajectory is represented by the 

deterministic forecasts via one individual ELM, aggregating a large number of ELMs 

would be a straightforward way to mimic the potential scenarios.  

4.5.5.2 Independent sampling 

Independent sampling benchmark, as its name indicates, is introduced to 

uniformly sample from the same marginal predictive distributions obtained by the 

proposed ELC-EMOS model but neglects the temporal dependency. 
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4.5.5.3 Gaussian copula with recursive empirical covariance (GC-REC) 

This classic method introduced by Pinson et al. [34] generally relies on the 

adaptive estimation of the interdependence structure by an exponential smoothing 

scheme. At time t, the covariance structure is recursively updated with 

∞ ∞
1 (1 )

T
t H t Ht tl l - --= + -R R X X  

(4.24) 
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is the vector of past observations transformed through the probabilistic forecasts 

series issued at time t-H, and then through the probit function Φ&' . The initial 

covariance structure is by setting all its off-diagonal elements to 0 and its diagonal 

elements to 1. λ is the forgetting factor, r ∈ [0,1). However, the main deficiency of 

this approach is the lack of theoretical backgrounds to define analytically or 

numerically an optimal forgetting factor [174].  

4.5.5.4 Gaussian copula with exponential covariance (GC-EC) 

Another prevailing way to derive the covariance is based on the exponential 

function [174], which can be written as 
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where e is the range parameter controlling the strength of the correlation of normal 

random variables among set of look-ahead horizons in day d. By further introducing 

an indicator Ie to measure the difference in the statistical characteristics of the 

variability between the observations and generated scenarios, we had to examine the 

different values of Ie by varying e and eventually determine the optimal range 
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parameter at the minimum Ie. Obviously, this enumerative way will give rise to large 

computational cost.  

 

4.5.5.5 Comparative results and discussion  

ES has a good discriminating ability to evaluate forecasts relying on marginals 

with correct variances but biased means, but it fails to detect the misspecified 

dependence structures between elements of a multivariate quantity. VS is introduced 

as a proper score to offset the deficiency of ES by considering the pairwise differences 

of the elements of a multivariate quantity. Therefore, two scores are combined to give 

a justified assessment of the generated time trajectories. Following (2.16) and (2.17) 

presented before, the ES and VS for day d in this case can be written as 
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In this experiment, VS is normalized by setting ~H.7 as 1/(24*24), implying that 

the significance of all pairwise differences of observations and forecasts are treated 

as equivalent. l is fixed as 0.5 due to its best discrimination ability [69].  
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Fig. 4.16 Average ES (EUR/MWh) and VS-0.5 ([EUR/MWh]0.5) of scenarios 
obtained by different approaches. Blue bar and red bar represent ES and VS-0.5, 

respectively 

 

Fig. 4.16 visualizes the average ES and VS over all verifying days. Not 

surprisingly, the scenarios represented by the uncalibrated ensemble forecasts give 

the worst performance in terms of both ES and VS-0.5, which highlights the need of 

calibration of the independent forecasts. ES is considerably improved when these 

forecasts are deployed with probabilistic distribution for each look-ahead time. It 

deserves noting that the independent sampling shows comparative ES with respect to 

that of copula-based methods by taking advantage of the well-calibrated marginal 

probabilistic forecasts. However, when the metric turns to VS, a distinguishable 

difference is noticed as compared to copula-based methods. This supports the 

argument in [69] that ES is weak at detecting the miscalibrated dependency structure 

between the multivariate components. Fig. 4.17 further emphasizes the importance of 

taking into account the temporal correlations for generating time trajectories. The 
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similar weekdays for 1st Nov 2015 in the past 6 months are collected to derive the 

correlation matrix of the transformed gaussian random variables of the observed 

probabilistic forecasts. As depicted in this figure, there are obvious correlations 

between in most temporal pairs. Strong temporal dependency appears to emerge in 

the adjacent hours and decreases as the temporal difference increases. Hence, through 

establishing a proper dependency structure, the Copula-based approaches notably 

outperform the independent sampling method in terms of VS. The proposed empirical 

correlation based approach considering the similar weekdays’ patterns is more able 

to mimic the inherent dependency structure for the prices in different look-ahead 

horizons, thus leading to a slight improvement over GC-REC and GC-EC.  

 

	

Fig. 4.17 Empirical correlation matrix of the transformed gaussian random 
variables of the observed probabilistic forecasts for 1st Nov 2015. Highest to 

lowest correlations are represented by yellow to blue colors. 
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Given that a small number of representatives are more favored by decision-

makers, 20 time trajectories are extracted from the initial set by backward reduction 

approach [180], as shown in Fig. 4.18, where the three daily patterns (normal trend, 

small spike and large spike) can be well captured visually by the reduced scenarios 

with discrepancy, respectively. 

	

Fig. 4.18 20 representative day-ahead scenarios for different daily pattern. 

 

It should be remarked that a justified multivariate evaluation should be 

performed by considering several different scores based on different desired 

properties, since there doesn’t exist a single scoring rule that can fulfill all purposes. 

From a more intuitive and sound perspective, the quality of the estimated scenarios 

may be assessed by the benefits from their use as input to various decision-making 

cases [68]. 
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4.6 Summary 

An effective density forecast strategy for MCP is proposed in this thesis. In 

recognizing that the knowledge uncertainty arising from the forecasting models 

necessitates proper quantifications, the Logistic distribution is proposed to model the 

potential ensemble forecasts, which is demonstrated to be more robust than normal 

distribution. Moreover, by comparing with the existing popular density forecast 

methods, the ELC-EMOS outperforms them in respect of the full predictive 

distribution assessing by CRPS. Lastly, based on the well calibrated marginal 

densities, an efficient covariance structure based on the empirical correlation 

coefficients is developed to quickly generate the highly skillful day-ahead price 

scenarios without any computational complication. 

To further enhance the performance of the proposed hybrid model, future work 

will be emphasized on three aspects: (1) It is advisable to fit underlying model 

separately for each forecast horizon [166], and different feature sets need to be 

selected to accommodate the specific property of each hour. (2) To achieve the better 

performance at spikes, real auction information will be acquired and incorporated into 

our model by studying on other markets where the data are available. (3) Instead of 

ELM, some other powerful forecast engines, such as regularized ELM, random 

forests, generalized additive models, etc., can be adopted with Logistic-EMOS for 

further increasing the predictive robustness. 
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Chapter 5  Conclusions and Future Scope 

5.1 Conclusions  

The rapid growing penetration of renewable generations into the main grid and 

the widespread deregulating of electricity markets worldwide forces the system 

operators and planners to reconsider the mechanisms of their decision-making 

processes. Diversified uncertainties are brought into each part of the grid 

unprecedentedly, which requires advanced tools developed to cater for these 

uncertainties so that the security and economy of power system can be ensured. Over 

the last two decades, prediction has played a major role in power system, allowing 

the system operators to implement corresponding actions in advance, e.g., reserve 

setting, unit commitment, storage sizing, etc. However, the deterministic decision 

dependent on one plausible forecast appears fairly inadequate in today’s market, the 

market participants are more inclined to evaluate their revenues and risks under all 

possible scenarios. This highlights the necessity of probabilistic forecasts, which 

gives a probabilistic description of the potential predictions.  

This thesis endeavors to develop some effective approaches to model the 

potential uncertainties in a modeling system and prognosis them in the output, the 

contributions are categorized into three distinctive while related types in probabilistic 

forecasts, which are interval forecast, density forecast and scenario forecast. 

In the context of global warming, as the largest renewable energy resource 

available on our planet, solar energy is increasingly exploited globally, aiming to 

substitute the traditional fossil fuels integrated into the main grid. Nonetheless, the 
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extensive installation of PV plants raises a grid integration concern in particular due 

to its difficulty to dispatch the energy. While storing the PV energy has long be seen 

as a solution to tackle this problem, a precise forecast of the available energy is 

necessary for the proper control. Additionally, to manage the viable power output, an 

accurate PV forecast is also needed to assist in the setting of alternative compensatory 

controllable resources. However, PV power output forecast is still relatively recent as 

compared to wind power, particularly in the domain of probabilistic forecasts. This 

work proposes a novel framework to construct the very short-term PI in a 

nonparametric way. Inspired by the fundamentals of IGs, the traditional crisp input 

and model parameters are granulated by intervals, accounting for both input 

uncertainty and model uncertainty. PI score is used to directly tune the interval 

parameters so that the optimal PIs can be ensured. The effectiveness of the developed 

GELM model is verified against benchmarks on a real irradiance measurement station 

in Hong Kong. It should be noted that this study only develops the generic framework 

of granule-based AI model to derive the probabilistic forecasts, to further improve 

the PI skill, this model can be flexibly enhanced in the aspects of input parameters, 

fitness functions, basis NN, IG forms and granularity levels.  

Another initiative to fulfil the vision of Smart Grid [162] is to establish a fully 

liberalized electricity market. The market deregulation is heating up globally, as the 

world’s largest electricity consumer, China is currently undergoing reforms towards 

a spot electricity market. In spot market, the generation companies compete to 

produce and sell electricity through an “auction” instead of a fixed tariff, making their 

bids to produce a specified quantity of electricity at a particular price in advance. 
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Therefore, forecasting the electricity price is essential to the revenues of market 

participants. As reported in [181], a 1% improvement in the mean absolute percentage 

error (MAPE) in forecasting accuracy would lead to 0.1%-0.35% cost reductions 

from short-term forecast of electricity price. For a typical medium-scale utility with 

5GW peak load, this would be equal to a remarkable savings of $1.5 million per year 

[167, 182]. By far, most studies still focus on the point forecast of electricity price, 

yet the forecasting errors cannot be avoided, and can be rather significant sometimes 

that bring about considerable economic losses as previously mentioned. Better 

understanding and proper quantification of the uncertainties in the forecasting process 

can guide the participants to make more reasonable behaviors, thus maximizing their 

revenues while considering the associated risks. This study develops an effective 

density forecasting model to provide a full picture of the potential uncertainties the 

model may be subject to. CRPS-based EMOS is used to recalibrate the ensemble 

forecasts from a collection of ELMs, where Logistic distribution is proposed to 

characterize the potential forecasting errors due to its robustness to the price outliers. 

The quality is verified against benchmarks over Swedish Elspot in terms of CRPS 

and Diebold-Mariano (DM) test. In addition, to model the aggregated uncertainties 

within contiguous lead times, the joint or multivariate distribution is constructed via 

Gaussian copula through the well-calibrated marginal predictive distribution. In this 

process, an efficient dependency modeling approach is developed to quickly generate 

the time trajectories without hypothetic parametrization or enumeration computations. 

The skill of scenarios is also evaluated against benchmarks to show both superiorities 

of the derived predictive marginal density and the developed covariance structure. 
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5.2 Future Scope  

This thesis dedicates to provide several effective models to yield the highly 

skillful probabilistic forecasts, the possible specific enhancement with respect to each 

model has been given in the end of related chapters. In view of a more generalized 

prediction framework, the research perspectives are outlined as follows, 

1. Robust probabilistic forecasts: In regression problems, the concept of ‘robust’ 

was originally proposed to ensure the predictions are robust to data missing and 

perturbations [183, 184]. For the evaluation, in addition to the classic metrics, 

such as MAPE and RMSE, the worst-case error (WCE) and the standard 

deviation (STD) are always required to examine the robustness of the results. 

While in probabilistic forecasts, the resultant performance (e.g., reliability) is 

also anticipated to spread around the expectation within a small range in the 

presence of contaminated data. Even though our proposed granule-based 

regression model has improved the STD of reliability to some extend as 

compared to other crisp models over different datasets, the data perturbations in 

different datasets is not taken into account. The relevant work is underway to 

incorporate the robust criteria into the probabilistic forecasting formulations, 

with the purpose of constructing a robust model to handle various types of data 

uncertainty. 

2. Automated feature selection via Regularized ELM: In the statistical modeling 

field, selecting appropriate features is always a crucial and challenging task, 

which attracts a number of researchers to optimize and standardize this process. 

Typically, this can be achieved in an ad hoc fashion, which identifies a subset of 
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predictors that are believed to be influential according to certain metrics (e.g., 

Chi-square, ANOVA, Pearson's correlation) [163]. Our practices reckoning on 

correlations to select the predictors exactly belongs to this scope. Another 

prevalent practice is based on ‘wrapper’, that is, different subsets of predictors 

are used to fit different models, the best subset is selected through validating on 

a test dataset. However, these two methods are limited by the large 

computational burden in case of high-dimensional explanatory variables. Recent 

works [134, 164, 166, 167] highly promote the usage of regularization regression 

models (e.g., LASSO, Elastic net) to fit the full model with all potential variables. 

Such techniques involve a shrinking (regularization) process which penalizes the 

coefficients of the regressors shrinking some of them towards zero. In this way, 

the variables with zero coefficients are excluded from the model, while the rest 

are retained as the final predictors. Following this idea, the original ELM can be 

restricted by regularization penalties to avoid the feature selection process. 

Feasible regularizations on ELM have already been studied, such as L1 penalty 

(LARS), L2 penalty (Tikhonov regularization) and both of them [168]. Further 

work is focused on integrating such regularized models into our proposed 

probabilistic forecasting framework. 

3. Case-oriented probabilistic forecasts: Most of existing probabilistic forecasts 

are qualitatively assessed through certain mathematic evaluation tools, which is 

widely accepted by forecasters or statisticians. However, what the decision 

makers really care about is the benefits (e.g., profits, security, reliability) by 

using these forecasts. Hence, the true value of probabilistic forecasts is supposed 
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to be evaluated by deploying them as inputs to related practical cases, e.g., 

energy bidding, reserve setting, wind turbine control. To this end, great efforts 

will be devoted to the study of case-oriented optimal PI or predictive density. On 

the other hand, apart from reaching the certain foreseen objectives as described 

previously, possible scenarios or applications that can benefit from these 

probabilistic forecasts are needed to be further exploited. 
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Appendix 

A. Comparisons between benchmarking models with different input 

patterns. 

 
Table A. 1 Skills of 90% PI obtained by BS-QR model with past 10-min GHI 

averages (BS-QR-V1) versus with past 1-min raw data (BS-QR-V2). 

Month 
BS-QR-V1 BS-QR-V2 

PICP PINAW IS PICP PINAW IS 
March 71.80% 13.72% -4.92% 86.70% 13.58% -2.65% 
April 78.69% 15.58% -4.24% 75.05% 12.98% -4.23% 
May 73.80% 18.75% -6.90% 78.00% 16.71% -5.96% 
June 85.90% 25.84% -5.83% 86.51% 23.35% -5.08% 
July 87.63% 30.33% -6.52% 85.38% 27.03% -6.30% 

August 93.74% 33.47% -5.62% 94.43% 31.41% -4.97% 
September 89.64% 31.84% -5.96% 90.55% 28.88% -5.32% 

October 85.19% 35.68% -4.72% 82.56% 29.87% -5.88% 
November 81.01% 24.48% -3.63% 78.11% 24.50% -5.16% 
December 80.50% 21.54% -3.39% 95.11% 18.98% -2.34% 
Average 82.79% 25.12% -5.17% 85.24% 22.73% -4.79% 

 
 

Table A. 2 Skills of 90% PI obtained by BELM model with past 10-min GHI 
averages (BELM-V1) versus with past 1-min raw data (BELM-V2). 

Month 
BELM-V1 BELM-V2 

PICP PINAW IS PICP PINAW IS 
March 79.28% 14.72% -2.83% 90.71% 15.30% -2.66% 
April 78.28% 18.33% -4.18% 82.63% 19.82% -4.10% 
May 80.74% 22.53% -5.34% 82.36% 19.20% -5.45% 
June 84.85% 27.38% -5.69% 87.63% 23.29% -5.10% 
July 83.58% 30.29% -6.67% 88.51% 27.27% -6.35% 

August 92.08% 32.22% -5.36% 93.26% 27.25% -4.85% 
September 85.15% 31.62% -5.73% 87.78% 27.33% -5.54% 

October 85.14% 30.07% -3.89% 88.22% 26.48% -3.64% 
November 76.97% 22.92% -3.15% 84.85% 21.49% -2.86% 
December 85.63% 20.34% -2.56% 90.78% 18.57% -2.32% 
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Average 83.17% 25.04% -4.54% 87.67% 22.60% -4.29% 
 

 
Table A. 3 Skills of 90% PI obtained by DIF model with past 10-min GHI averages 

(DIF-V1) versus with past 1-min raw data (DIF-V2). 

Month 
DIF-V1 DIF-V2 

PICP PINAW IS PICP PINAW IS 
March 87.05% 17.21% -3.47% 86.46% 24.68% -5.57% 
April 80.10% 25.09% -7.41% 84.34% 31.66% -7.53% 
May 82.80% 24.42% -5.95% 83.24% 19.33% -5.86% 
June 87.31% 29.81% -6.04% 86.77% 21.95% -5.30% 
July 87.39% 30.26% -7.11% 86.36% 30.43% -7.05% 

August 93.21% 34.77% -6.16% 94.89% 32.54% -5.44% 
September 89.75% 31.84% -6.13% 91.11% 31.72% -5.94% 

October 94.13% 33.24% -4.45% 94.33% 28.58% -3.95% 
November 94.29% 30.41% -3.76% 92.63% 21.26% -3.01% 
December 92.28% 25.65% -3.20% 92.86% 29.84% -3.55% 
Average 88.83% 28.27% -5.37% 89.30% 27.20% -5.32% 

 
 
 
B. Input variable candidates for Swedish MCP 

Table B. 1 Input variable candidates for Swedish MCP 
Categories Sub- 

categories Candidates 

Historical 
Explanatory 
Information 

Price 
Domestic market clearing price 
(EUR/MWh) 
System market clearing price (EUR/MWh) 

Demand 

Domestic demand (MWh) 
System demand (MWh) 
Domestic net demand (MWh) 
System net demand (MWh) 

Generation 

Domestic generation (MWh) 
System generation (MWh) 
Domestic wind power generation (MWh) 
System wind power generation (MWh) 
Domestic hydro power generation (MWh) 
Domestic nuclear power generation (MWh) 
Domestic thermal power generation (MWh) 
Domestic generation from conventional 
units (MWh) 
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System generation from conventional units 
(MWh) 

Exchange 
Power Import/export power (MWh) 

Weather Info Temperature (OC) 
Reservoir 

Levels 
Domestic reservoir levels (%) 
System reservoir levels (%) 

Prognosis 
Explanatory 
Information 

Demand 

Domestic demand (MWh) 
System demand (MWh) 
Domestic net demand (MWh) 
System net demand (MWh) 

Generation 

Domestic generation (MWh) 
System generation (MWh) 
Domestic wind power generation (MWh) 
System wind power generation (MWh) 
Domestic generation from conventional 
units (MWh) 
System generation from conventional units 
(MWh) 

Exchange 
Power Import/export power (MWh)  

Weekday 
Dummies - Mon, Tue, …, Sun 

 

 

C. Derivation of closed-form analytic expression of CRPS for 

Logistic distribution 

 

The quantile score expression for CRPS can be written as: 

( )
( )( )

( ) 1

0
1 1

( )

CRPS( ) 2 ( )

2 1 ( )

F p

F p

F, p p F d

p F d

t t t

t t t

-

-

= -

- - -

ò
ò

 C-1 

where F is the CDF, p is the observed value and	n ∈ (0,1) is the quantile level.  

For Logistic distribution, the n-th quantile is given by 

1
( , ) ( ) logit( )F µ V t µ V t- = +L  C-2 

Suppose Ä = [ ! , Å = ! − @ . Do the indefinite integral and 
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substitution for the first term in C-1 we obtain 

( )
2

2 2

2 logit( )

2 log( ) 2 log(1 )

logit( ) log(1 )

b d

b d d

b

t V t t

t V t t t V t t t

t Vt t V t Vt

-

= - + -

= - - - -

ò
ò ò  C-3 

Likewise, the second term of C-1 can be derived as 

( )( )
( ) ( )

( )

2

22

2 1 logit( )

2 2 1 log( ) 2 1 log(1 )

2 1 logit( ) log( ) 2

b d

b b d d

b b

t V t t

t t V t t t V t t t

t t V t t V t Vt V

- -

= - - - + - -

= - + - - + +

ò
ò ò  C-4 

Finally, by calculating the results of Eq. C-3 and C-4 on [0, a] and [a, 1], 

respectively, and substituting F(p) and p-µ back, we can obtain the analytical 

expression of C-1 as 

( ) ( )( )( , ) , 2 ( ) 1

2 ( ) logit( ( )) 2 log(1 ( ))

CRPS F p p F p

F p F p F p
µ V µ

V V V

= - -

- - - -
L  C-5 
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