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Abstract
With the rapid development of information technologies, we are entering the era of

big data. Large amount of data in urban spaces are collected from various domain-

s such as transportation, logistics, Point of Interests (POI), etc. The data reflect

different aspects of cities in various ways, offering great opportunities for better un-

derstanding of the city’s operation, and optimization of the infrastructure. Effective

data analytics is the key to unlock the power of these big data. Although previous

works mostly focus on data from single domain, Cross Domain Data Analytics

is attracting increasing attention and lies at the core of many urban problems and

applications.

Cross domain data analytics offers two additional opportunities than traditional

single domain data analytics. First, it provides a more comprehensive picture about

the studied problems based on the information from different angles, which helps

gain new insights by discovering the correlations among cross-domain datasets. Sec-

ond, it improves decision making by complementing data sources for joint analysis,

especially for the cases where data are insufficient in some domains. Meanwhile, ur-

ban computing aims at utilizing urban big data, typically from different domains, to

facilitate important urban operations such as traffic management, energy reduction

and so on. In this way, urban computing offers a perfect application scenario for

cross domain data analytics. Thus, this thesis focuses on Cross Domain Data

Analytics for Urban Computing , studies the problem of jointly analyzing da-

ta from different domains to generate hidden insights and enable intelligent

decision-making , and proposes effective solutions to three important applications

in urban computing for demonstration.

First, we study the problem of traffic congestion, and show how to jointly utilize

data from three domains, namely GPS trajectories, road network and POI data
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to generate insights. Previous work mainly focuses on the prediction of congestion

and analysis of traffic flows, while the congestion correlation between road segments

has not been studied yet. In this work, we propose a three-phase framework to

explore the congestion correlation between road segments from multiple real world

data. In the first phase, we extract congestion information on each road segment

from GPS trajectories of over 10,000 taxis, define congestion correlation and propose

a corresponding mining algorithm to find out all the existing correlations. In the

second phase, we extract various features on each pair of road segments from road

network and POI data. In the last phase, the results of the first two phases are

input into several classifiers to predict congestion correlation. We further analyze

the important features and evaluate the results of the trained classifiers through

experiments. We found some important patterns that lead to a high/low congestion

correlation, and they can facilitate building various transportation applications. In

addition, we found that traffic congestion correlation has obvious directionality and

transmissibility.

Second, we study the problem of order response time prediction to enable intelli-

gent decision-making in logistics services by jointly considering both order historical

records and driver GPS trajectories from two different domains. Accurate prediction

of order response time would not only facilitate decision making on order dispatch-

ing, but also pave ways for applications such as supply-demand analysis and driver

scheduling, leading to high system efficiency. In this work, we forecast order response

time on current day by fusing data from order history and driver historical location-

s. Specifically, we propose Coupled Sparse Matrix Factorization (CSMF) to deal

with the heterogeneous fusion and data sparsity challenges raised in this problem.

CSMF jointly learns from multiple heterogeneous sparse data through the proposed

weight setting mechanism therein. Experiments on real-world datasets demonstrate

the effectiveness of our approach, compared to various baseline methods. The per-

formances of many variants of the proposed method are also presented to show the

effectiveness of each component.

Third, we extend the previous method to incorporate more context information
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by proposing a Coupled Weighted Tensor-matrix Factorization (CWTF) for accurate

prediction on order accepting probabilities of van drivers, which would facilitate effi-

cient order dispatching and improve user experience. However, it is difficult to handle

the inherent heterogeneous data fusion, sparsity and efficiency challenges simultane-

ously. In this work, we propose a three-stage framework with a Coupled Weighted

Tensor-matrix Factorization method for order accepting probability prediction in l-

ogistics services. Specifically, orders are first grouped into clusters to enrich the

sparse interactions between orders and drivers; then an accepting probability tensor

with the three dimensions of driver, order cluster, and time is generated by a tensor-

matrix factorization method that fuses order characteristics and driver behaviors in

an efficient way; finally given a new order, the accepting probability of each driver is

efficiently predicted by directly retrieving from the learned tensor. The experiment

results on a large dataset from a famous app-based logistics platform, demonstrate

the superiority of the proposed method against various baseline methods.
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Chapter 1

Introduction

1.1 Background

As the data are collected from ever more ubiquitous sources in various types, at very

high velocity and a great volume, we are entering the era of big data. It may be

difficult for existing technologies to manage and process big data, but big data also

brings a big revolution and enable a wide range of new applications, since patterns

and knowledge of the physical world as well as human society are becoming more

detectable than ever before.

Specifically, big data generated by heterogeneous sources in urban spaces will lead

to a better understanding of the citys operation, and new possibilities for optimiza-

tion of the infrastructure. In addition, such data provides enormous opportunities

for the study of general social phenomena, such as crime, entertainment patterns, or

energy usage.

As a matter of fact, big data analytics for urban computing [109] has already

sparked a great deal of interest around the world. Early successes include the policing

in New York City and monitoring the traffic status in Singapore. Above all, when

urban big data is used properly, urban computing can help tackle the challenges

cities faced like pollution, energy, transportation problems. Thus, it is beneficial for

people, environment and cities.
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However, data analytics for urban computing is a challenging task in the complex

and changeable environment. In addition, most of current research works focus on

analyzing the data collected from a single domain, while there are actually multi-

domain data existing in the urban spaces which make the analysis even harder to

perform. There is not yet a systematic work on processing and analyzing cross

domains data sets. The mostly close related work is data fusion and correlation

mining in specific applications, aiming to extract correlation relationship between

variables to understand the dependency between them. We envision the research

paradigm of big data analytics for urban computing being horizontal cross domain

analysis based on data collected from various sources in different domains, which is

extended from current vertical intra-domain single source analysis.

The joint analysis of urban big data of different domains from multiple sources

is very useful. It helps us to gain the hidden insights and enable intelligent decision-

making. Specifically, cross domain data analytics has two advantages over traditional

single domain data analytics. First, it offers a more comprehensive picture about the

studied problems based on the information from different angles, where valuable in-

sights can be discovered by analyzing the cross domain big datasets. For example,

when we try to find out the reason of having difficulty to get taxis in rainy days

by GPS taxi trajectories and weather conditions, most people might think the un-

availability of taxis in rainy days is due to the high demand for services. However,

according to a report based on data study comparing two months of weather satellite

data with taxi GPS records, the true reason was that many taxi drivers did not work

during rainstorms, mainly due to the high probability for accident. Second, it im-

proves decision making by complementing data sources for joint analysis, especially

for the cases where data are insufficient in some domains. For example, when rec-

ommending restaurants to customers, only the historical data about the restaurants

such as types and price, are insufficient to achieve a satisfactory accuracy, along

2



with the data about customers such as tastes and income, the accuracy would be

improved.

Based on the above observations, we propose the topic Cross Domain Data

Analytics for Urban Computing , and study the problem of jointly analyzing

data from different domains to generate hidden insights and enable intelli-

gent decision-making with three important applications in urban computing as

discussed in Sec 1.2.

1.2 Research Framework and Scope

This research topic will focus on three important applications in urban computing to

show how cross domain urban data can be utilized to generate hidden insights and

enable intelligent decision making. Particularly, Considering the heterogeneity and

complexity of cross domain urban data, two unique challenging issues arise.

• The heterogeneous nature of cross domain data: multiple sources of data are

collected in urban computing in different forms, format and from different do-

mains, e.g., GPS and Point of Interest (POI). The analytics should be taken

based on the heterogeneous data. How to effectively analyze cross domain ur-

ban big data remains an open and challenging problem, which has not received

sufficient attention.

• The complex correlations: different from single source big data, cross domain

data usually have correlations among one another. How to model and discover

correlation between datasets from different domains is a grand challenge.

Corresponding to the two challenges, in this thesis, the contributions are:

• We model and discover correlations among cross domain data in an important

urban application, showing how to deal with the complexity of correlations to

3



generate hidden insights.

• We provide practical frameworks and solutions in two new urban applications

through the fusion cross domain data, showing how to handle heterogeneous

data to enable intelligent decision making.

Specifically, the studied three important applications demonstrate how the chal-

lenges can be addressed in different urban computing scenarios.

First, we jointly utilize cross domain data: GPS trajectories, road network and

POI data to conduct traffic congestions analysis. We design a new metric for con-

gestion correlation between road segments, and propose a three-phase framework to

explore the correlations from multiple real world data. In the first phase, we extract

congestion information on each road segment from GPS trajectories of over 10,000

taxis, define congestion correlation and propose a corresponding mining algorithm to

find out all the existing correlations. In the second phase, we extract various features

on each pair of road segments from road network and POI data. In the last phase, the

results of the first two phases are input into several classifiers to predict congestion

correlation. We further analyze the important features and evaluate the results of

the trained classifiers through experiments. We found some important patterns that

lead to a high/low congestion correlation, and they can facilitate building various

transportation applications. In addition, we found that traffic congestion correlation

has obvious directionality and transmissibility.

Second, we study the problem of order response time prediction to enable intelli-

gent decision-making in logistics services by jointly considering both order historical

records and driver GPS trajectories from two different domains. Accurate prediction

of order response time would not only facilitate decision making on order dispatch-

ing, but also pave ways for applications such as supply-demand analysis and driver

scheduling, leading to high system efficiency. In this work, we forecast order response
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time on current day by fusing data from order history and driver historical location-

s. Specifically, we propose Coupled Sparse Matrix Factorization (CSMF) to deal

with the heterogeneous fusion and data sparsity challenges raised in this problem.

CSMF jointly learns from multiple heterogeneous sparse data through the proposed

weight setting mechanism therein. Experiments on real-world datasets demonstrate

the effectiveness of our approach, compared to various baseline methods. The per-

formances of many variants of the proposed method are also presented to show the

effectiveness of each component.

Third, we extend the previous method to incorporate more context information

by proposing a Coupled Weighted Tensor-matrix Factorization (CWTF) for accurate

prediction on order accepting probabilities of van drivers, which would facilitate effi-

cient order dispatching and improve user experience. However, it is difficult to handle

the inherent heterogeneous data fusion, sparsity and efficiency challenges simultane-

ously. In this work, we propose a three-stage framework with a Coupled Weighted

Tensor-matrix Factorization method for order accepting probability prediction in l-

ogistics services. Specifically, orders are first grouped into clusters to enrich the

sparse interactions between orders and drivers; then an accepting probability tensor

with the three dimensions of driver, order cluster, and time is generated by a tensor-

matrix factorization method that fuses order characteristics and driver behaviors in

an efficient way; finally given a new order, the accepting probability of each driver is

efficiently predicted by directly retrieving from the learned tensor. The experiment

results on a large dataset from a famous app-based logistics platform, demonstrate

the superiority of the proposed method against various baseline methods.

Figure 1.1 shows framework of this topic. This framework first acquires and stores

data from different domains in urban spaces like transportation, POI, road network

and weather. Then features are extracted from datasets of different domains, which

may or may not have correlations among each other. For different applications, data
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with correlations are jointly analyzed to acquire hidden insights and enable intelligent

decision-making.

The scope of this topic is focused on data analytics and application side. Specif-

ically, I will study the requirements and issues on cross domain data analytics for

urban applications such as traffic congestion analysis in transportation, and supply

demand analysis in logistics.

Figure 1.1: Research framework of cross domain data analytics for urban computing

1.3 Organization

As shown in Figure 1.2, this thesis is consisted of six chapters, where
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Chapter 3   
Traf c Congestion

Correlation 

Chapter 5   
Coupled Weighted TF  

Chapter 4   
Coupled Sparse MF  

Chapter 1   
Introduction 

Chapter 2   
Literature Review  

Chapter 6  
Conclusions 

Figure 1.2: The organization of this thesis

• Chapter 1 introduces the background, and highlights the research framework

and scope of studying cross domain data analytics for urban computing;

• Chapter 2 reviews the related work and discusses pros and cons the cross

domain data analytics methods in different urban applications;

• Chapter 3 presents the problem of traffic congestion correlations, and proposes

a three-phase framework to generate hidden insights for congestions patterns

based on data from GPS trajectories, POI and road network;

• Chapter 4 proposes Coupled Sparse Matrix Factorization (CSMF) for order

response time prediction in logistics services, and demonstrates its effectiveness

in real-world data sets;

• Chapter 5 proposes Coupled Weighted Tensor-matrix Factorization (CWTF)

for order accepting probability prediction in logistics services, and shows its

feasibility in real-world data sets;

• Chapter 6 concludes the thesis.
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Chapter 2

Literature Review

This chapter gives a review and categorization of existing works on cross domain

data analytics for urban computing. Figure 2.1 shows the typical flowchart of the

research topic. There are four stages of the processing, namely multi-domain raw

data, feature representation, knowledge, applications. At the first stage, data from

different domains are collected in different forms such as structured, semi-structured

and unstructured; at feature representation stage, multi-domain raw data are pre-

processed into different feature representation using different techniques such as data

cleaning and feature extraction; at knowledge stage, different analytic models such as

regression, classification and clustering can be applied to discover the knowledge and

patterns in the data; at the last stage, the analytic results can be used by different

applications for prediction, inference, profiling, etc. During this processing flow,

the data from different domains can be jointly analyzed at both feature stage and

knowledge stage. We categorize the existing works into feature-based and model-

based methods based on where they jointly analyze multi-domain data. More details

are presented in next sections.
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Figure 2.1: Flowchart of cross domain data analytics for urban computing

2.1 Feature-based

Feature-based methods jointly fuse data from different domains into a unified feature

representation, and then the feature representation is used by the following analytic

models. The existing works can be divided into three kinds, i.e., direct concatenation,

domain knowledge-based and learning-based.

• Direct concatenation: As shown in Figure 2.2, the first kind of feature-based

methods directly concatenate features from different domains into a unified

feature representation. For example, Chen et al. [19] combine the indoor air

quality data and weather data, and input them into neural network model to

provide actionable suggestions to HVAC (heating, ventilation, and air condi-

tioning) system. This kind of methods are easy to implement, but treating the

features from different domains equally leads to loss of information on non-

linear relationship as well as dependency and redundancy among the features.
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Figure 2.2: Direct concatenation

• Domain knowledge-based: As shown in Figure 2.3, the second kind of

methods utilize domain knowledge when fusing data from different domains.

For example, in [112], Beijing is divided into several grids using road network

data, and then GPS trajectories of taxis are mapped into the grids for further

analysis to detect the flawed road network planning. In this way, the two

domains of data are combined into a unified representation. In [74], shops are

partitioned into grids based on floor plan data, then WiFi data are mapped into

the grids for network coverage analysis. This kinds of methods require some

domain knowledge to improve the interpretability of the feature representation,

and usually lead to better performance in following analytics.

• Learning-based: The third kind of methods are more advanced. As shown in

Figure 2.4, they utilize a learning model to extract a unified representation from

different domains of data. For example, Ngiam et al. [60] use a Deep Neural

Network (DNN) based model to learn a unified feature representation from

both audio and video features, and show its effectiveness in audio-visual speech

classification tasks. Lin et al. [93] propose a network embedding model to
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Figure 2.3: Domain knowledge-based

jointly combine both co-authorship network and word co-concurrence network

into a unified representation for link prediction. This kinds of methods are

able to discover the complex relations among the features and usually improve

the efficiency by reducing the dimension of features. However, building the

learning model require much efforts in both model designing and parameter

tuning.
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D3

...
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 Raw Data

Feature

...

   Feature 
Representation 

Learning Model

Figure 2.4: Learning-based representation
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2.2 Model-based

Model-based methods fuse the analytic models and the features from different do-

mains into a unified analytic model. There are mainly three kinds of existing works,

i.e., multi-view learning-based, similarity-based and dependency-based.

• Multi-view learning-based: Multi-view learning-based methods treat data

from different domains as different views on an object of interest. For example,

the characteristics of an online user can be reflected in many aspects such as

the browsing history, purchase records and click behaviors. Each of these as-

pects provides a view and some knowledge about the online user, and combing

these complementary knowledge would lead to a more accurate user profiling.

As show in Figure 2.5, different models are built and take features from dif-

ferent domains as input. Then these models are combined into an aggregated

model for joint analysis. Several works are done on this regard. Zheng et al.

[110] use a co-training based model to infer the air quality of Beijing in fine

granularity based on data from transportation, road network, POIs, air qual-

ity and meteorology. They also predict the air quality in the next 48 hours

with a Multi-Kernel Learning-based framework [113]. Liu et al. [52] propose

a multi-task multi-view learning method to predict urban water quality, where

they jointly consider six sources of data including water quality, hydraulic, road

networks, pipe attributes, meteorology and POIs.

• Similarity-based: Similarity-based methods leverage the underlying similar-

ity (or correlation) between different objects of interests to fuse data from

different domains. Specifically, multiple similarities among objects can be dis-

covered from multiple domains, and these similarities can complement each

other, especially when some domains do not have sufficient data. For example,

13



Analytic Model 1

Analytic Model 2

Analytic Model 3

Aggregated Model

Knowledge/ 
 Patterns 

...

Multi-view LearningFeature 1

Feature 2

Feature 3

...

   Feature 
Representation 

Figure 2.5: Multi-view learning-based methods

if there are new users without any data in a book recommender system, it is

difficult to discover interesting books for them; however, if there are some data

for all users in a movie recommender system, by measuring and utilizing the

similarities between the new users and others in the movie recommender sys-

tem, the interesting books can be discovered. As shown in Figure 2.6, features

from different domains are fed into a unified similarity-based model, usually

a coupled matrix/tensor factorization model [72, 111, 106]. In this way, the

knowledge in different domains can reinforce each other based on similarities,

and enhance the performance of analytic models. For example, a coupled ma-

trix factorization method is proposed in [72] to infer the travel speed on each

road by jointly considering the information from GPS trajectories of taxis,

road network and POIs. With a coupled tensor factorization model, Zheng

et al. [111] jointly analyze data from social media, road network, POIs and

complaint data to estimate the noise situation in New York. GPS trajectories,

POIs and social network data are also jointly analyzed for location and activity

recommendation in [106].

• Dependency-based: Dependency-based methods model the dependency be-
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Figure 2.6: Similarity-based methods

tween different datasets using a graphic representation for analysis. As shown in

Figure 2.6, features from different domains are fed into a unified dependency-

based model, usually a probabilistic graphical model, where nodes represent

random variables and edges represent the dependencies among them. The

models can be divided into two groups, namely [59] Bayesian Networks and

Markov Random Field. The model structure, namely the dependency among

the variables, can be either pre-defined or automatically learned from data.

The model learning process is to estimate the state of unobserved variables or

probabilistic dependencies given the observed data. For example, Shang et al.

[72] estimate the traffic volume of roads with a Bayesian Network jointly con-

sidering travel speed, road network, POIs and weather. Yuan et al. [100] infer

the functions of each region in a city with a Latent Dirichlet Allocation-based

model using GPS trajectories of taxis, road network and POIs. In [99], a non-

parametric Bayesian method is proposed to fuse check-in and social account

profile data, and model the relationships among different activities among a

group of people. Fu et al. [30] model the dependency between geography data,

taxi trajectories data and real estate data for the prediction of real estate value
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in the future.
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Figure 2.7: Dependency-based methods

2.3 Remarks

Table 2.1 shows a comparison among different methods for cross domain data ana-

lytics, where Knowl. represents the domain knowledge required, Gen. represents the

ability to generalize to other applications, Interpr. represents the interpretability of

methods for knowledge discovery, Perf. represents the application performance, and

“L”, “M”, “H” denote Low, Medium, High, respectively. Generally, feature-based

methods require less domain knowledge and have better ability to generalize, while

model-based methods have better performance in the application domain, and better

interpretability for knowledge discovery.

Table 2.1: Comparison among different methods for cross domain data analytics

Methods Knowl. Gen. Interpr. Perf.

Direct Concatenation L H L L

Knowledge-based M H M M

Learning-based M H L H

Multi-view Learning-based H L M H

Similarity-based H L M H

Dependency-based H L H H
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Feature-based methods can also be combined with model-based methods. In

[112], a city is partitioned into regions by major roads, then the GPS trajectories

of taxicabs are mapped onto the regions to formulate a region graph, where a node

is a region and an edge denotes the aggregation of commutes (by taxis in this case)

between two regions. The region graph actually blends knowledge from the road

network and taxi trajectories. By analyzing the region graph, research on traffic

anomalies detection [18] is carried out. More details with a different categorization

of cross domain data analytics methods can be found in [108].

Table 2.2 summarizes representative existing works on cross domain data analyt-

ics in different domains. Works in urban planning domain refer to those facilitating

optimization of urban plan such as road network plan and function of regions; works

in transportation domain refer to those offer insights for transportation system such

as traffic analysis and anomaly detection; works in environment domain refer to those

related to the environment such as air quality and noise situation; works in social

application domain refers to those help improve social experience such as activity

recommendation and social event prediction; works in economy and logistics refer

to those related to the economy or supply demand analysis. Apparently, there have

been quite a lot studies on urban planning, transportation, environment and social

application, and very few studies on economy and logistics. Thus, in this thesis,

we study cross domain data analytics for urban applications not only in domain-

s that are very important, namely transportation, but also in domain that is less

studied, namely logistics, to deal with both the existing challenges in well-studied

domains and some new ones brought by requirements in other domains. Specifically,

we propose a domain knowledge-based method and study from a new perspective on

traffic congestion as an example application; we propose two similarity-based method

and study the problems of response time and accepting probability prediction in an

emerging logistic service as example applications.
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Table 2.2: Representative existing works on cross domain data analytics in different
domains

Domains Existing Works

Urban Planning [112, 100]
Transportation [72, 112, 18, 63]
Environment [19, 110, 113, 111, 52]
Social Application [93, 106, 99, 92, 104]
Economy, Logistics [30]
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Chapter 3

Exploring Traffic Congestion

Correlation from Multiple Data

Sources

In this chapter, we propose a domain knowledge-based method to model and discover

correlations among cross domain data. The reasons are that it generally has better

interpretability compared to other feature-based method, and has little assumption

on data compared to model-based method. As an example application, we study

traffic congestion correlation, as it is both useful and a new perspective on congestion

patterns.

3.1 Introduction

With the rapid process of urbanization, traffic congestion becomes an increasingly

serious problem in more and more cities around the world. Understanding, allevi-

ating, and further tackling traffic congestion have received urgent attentions from

governments and their citizens. Much research work has been conducted to study

congestion from different aspects, including traffic congestion prediction [5], traffic

condition estimation [40], impact [39] and correlation [62] of traffic congestion and

traffic flow propagation [53]. They provide many useful insights on traffic conges-
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tions, which may facilitate the building of many practical applications.

However, the existing work typically assumes or ignores correlations [67], leaving

the impact of correlated patterns on traffic congestion largely unknown. Analyzing

and uncovering the correlated patterns in traffic congestion can reveal the insights

of congestion such as what factors are correlated in congestion and how congestions

propagate from one road to another. Furthermore, it can also facilitate building

various applications including road planning, traffic condition prediction, impact

analysis of congestion and etc. As such, both governments and individuals can

benefit. For example, when a person is stuck in traffic congestion, the information

about nearby congestion correlated road segments (i.e., these roads are likely to be

congested as well) will be very useful since s/he can better estimate the travelling

time, or possibly choose to bypass those roads to avoid congestion. Besides, with the

information of congestion correlation between road segments acquired, governments

are able to make better decisions on traffic light management, road planning, etc.

To fill the gap of existing work on congestion correlation analysis, we utilize

multiple real world data to predict whether a road segment is correlated with another

one in terms of congestion, where we can uncover some correlated congestion patterns

from features on road segments. Thanks to the wide deployment of GPS devices and

the widely available road and Point Of Interest (POI) information, we are able to

obtain congestion information and features on road segments easily. To analyze the

correlation between road segments, we apply a mining algorithm to find out all the

existing correlations, and extract features on each road segment pair. We then build

learning models based on classifiers to infer the correlated road segments from data.

The models also help to identify some important features and correlated patterns.

To the best of our knowledge, we are the first to explore traffic congestion cor-

relation from a classification perspective using real world datasets. In sum, our

contributions are four folds:
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• We propose a novel framework to explore traffic congestion correlation between

road segments. The framework utilizes multiple sources of data to mine and

analyze congestion correlation. In addition, the framework is general, and can

be applied to other pairwise correlation analysis problems as well.

• We analyze the congestion correlation patterns based on our formulation, and

found traffic congestion correlation has obvious directionality and transmissi-

bility.

• We focus on congestion analysis of two peak periods during a day, train two

corresponding models on several well-known classifiers to predict congestion

correlation, and compare the results of different models on different feature

sets.

• We predict congestion correlation and found some important patterns, such as

congestions are very likely to propagate between trunk roads during the evening

peak hours, which can facilitate the decision making for both individuals and

governments.

3.2 Related Work

This section surveys the related work on traffic congestion prediction, traffic condi-

tion estimation, impact and correlation of congestion and traffic propagation. In [95],

Yang formulated congestion prediction as a binary classification problem and applied

feature selection techniques to reduce the dimensionality of data, yet still maintained

the comparable accuracy. In [57], Min et al. proposed an approach based on the mul-

tivariate spatial-temporal autoregressive model to incorporate spatial and temporal

characteristics for real-time traffic prediction, and found that congestion can change

the traffic flow patterns. Gajewski et al. proposed a Bayesian-based approach in [31]
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to estimate link travelling time correlation, and found that the heavier the conges-

tion, the lower the correlation of travelling time between links. In [67], Rachtan et

al. argued that correlation patterns among the traffic variables are largely unknown,

while most of the work ignores congestion correlation or assumes correlation exits.

Jenelius et al. estimated travelling time based on low frequency GPS data in [40],

and demonstrated that there is significant correlation between segments and showed

the feasibility of using low frequency GPS data for monitoring the performance of

transport system. In [58, 53], the authors studied the traffic flow propagation by

simulation. In [41, 24], the authors reviewed several approaches on traffic density

estimation, detection and avoidance. In [62, 85, 39, 46], the authors studied the

impact and correlation on weather, accident, employment, safety, respectively.

Different from the above work, we focus on congestion correlation between road

segments, which can benefit various applications including traffic prediction, traffic

light management, road planning and etc.

3.3 Overview

Figure 3.1 presents the framework of our work. In this framework, we utilize three

sources of data i.e., GPS trajectory of taxis, road network and POI data to explore

the congestion correlation between road segments. We divide the framework into

following three phases.

[1] Congestion and correlation extraction: Extract congestion information on each

road segment from GPS trajectories and road network data, define and mine

congestion correlation between each road segment pair.

[2] Feature and sample generation: Extract various topological features and POI

features from road network and POI data, respectively, and generate training

samples on road segment pairs.

22



[3] Classification and analysis: Input the results of the first two phases into several

classifiers to predict congestion correlation, and analyze the evaluation results

for pattern discovery.

We design the framework in a way that it is general enough to be used for other

pairwise correlation analysis problems by changing the specific data sources and

implementing techniques such as feature extraction and correlation definition.

POI Features

GPS Trajectory
of Taxis 

Road Network Point of Interest

Congestion Info

Correlation between 
Road Segments 

Topological Features

Features between 
Road Segments

Classifier

Correlation patternsCongestion and 
correlation  extraction 

Classification 
and analysis

2

1

3

Feature and 
sample generation

Figure 3.1: Framework of congestion correlation mining

3.4 Methodology

In this section, we describe the proposed framework in detail. Specifically, we first

present the three domains of data sources we use, and then show how each phase of

the framework works.

3.4.1 Data sources

Traffic congestion usually results from multiple factors. Intuitively, the underlying

transportation infrastructure and human mobility are the major ones. Therefore,

in this work, we exploit three data sources, i.e., road network, GPS trajectories of
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taxis and POIs to cover these major factors. Concretely, road network describes

the spatial topology of the transportation infrastructure; GPS trajectories of taxis

contain the traffic information related to human mobility; and POIs implicitly convey

some information about the mobility of people whose daily activities are relevant to

them. We formalize these information as follows.

Definition 3.1 (Road network). A road network is modelled as a directed graph

G “ pV,Eq, where vi P V represents an intersection of road segments, and ei,j P E

represents the direct road segment from vi to vj.

Definition 3.2 (GPS point). A GPS point, gp is denoted by a quadruple, i.e., gp “
pTaxiID, t, s, lq, where TaxiID is the identifier of the taxi, t is the time at which

this GPS point is sampled, s is the speed of the taxi, and l is the spatial location

consisting of longitude and latitude.

Definition 3.3 (GPS trajectory). A GPS trajectory, tr, is consisted of a sequence of

GPS points, i.e., tr “ pgp1, gp2, . . . , gpnq, where n is the length of tr and gpi.t ď gpj.t

if i ď j.

Definition 3.4 (Point of Interest, POI). A POI, oi, is denoted by oi “(ID, Cate,

Lng, Lat), where ID is the identifier of oi, Cate is the category of oi, and Lng and

Lat is the longitude and latitude, respectively, of the spatial location of oi.

3.4.2 Congestion and Correlation Extraction

In this phase, we first extract the congestion information from the GPS trajectories

of taxis on each road segment. After that, with a definition of congestion correlation

between road segments, we propose a mining algorithm to find out all the existing

congestion correlation from data.
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Congestion Extraction

To extract the congestion information, we need to first obtain the traffic informa-

tion on each road segment. According to the definition of GPS trajectories, a GPS

trajectory is a sequence of discrete spatial points. Thus, we need to map-match

each GPS trajectory to the underlying road segments. In this work, we leverage

the map-matching technique in [97]. Meanwhile, considering the time-consuming

characteristic of map-matching operation, a spatial index R*-tree [9] is built on all

road segments to accelerate the process of map-matching. After map-matching, each

road segment is associated with a set of GPS points capturing the traffic information

there.

To extract congestion information from traffic information, we divide a day into

time slots, and obtain the traffic information T t
r on road segment r in a specific time

slot t, using the average speed of all GPS points on road segment r in time slot t as

the proxy. Then we have the definition of congestion as follows.

Definition 3.5 (Congestion). A congestion on road segment r in a specific time slot

t is denoted by Ct
r, and

Ct
r “

"
1 if T t

r ď Tr ˚ Ratio;
0 otherwise.

where Tr is the average speed of all GPS points in road segment r in all time, and

Ratio is a parameter to set the speed threshold of congestion, and its settings will be

discussed in Section 3.5.

We store the congestion information of a day in a congestion matrix as illustrated

in Figure 3.2, where each row represents a road segment and each column represents

a time slot.
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Figure 3.2: Congestion matrix

Correlation Extraction

To study how congestion occurs sequentially in terms of time, and consider the

propagation rate of congestions in terms of space, as shown in figure 3.3, we define

congestion correlation between two road segments as follows.

Definition 3.6 (Congestion correlation between two road segments). A congestion

correlation from road segment a to road segment b, i.e., Corpa, bq, occurs if the

following requirements are satisfied:

(1) a congestion occurs on road a at time t0

(2) from time t0 to t0 ` t, a congestion occurs on road b

(3) a and b are within a certain distance d

Figure 3.3: Congestion correlation

We propose Algorithm 3.1 to mine all congestion correlations in a designated

time period, i.e., from tstart to tend. The correlations are stored in a square matrix

26



R, where Rik stores the occurrence count of congestion correlation between road

segments i and k from tstart to tend.

Algorithm 3.1 Congestion Correlation Mining

Input: the congestion matrix C, time threshold t, distance threshold d, start time
slot tstart and end time slot tend;

Output: the correlation matrix R;
1: R = 0; Create a vector cv of size C.rowNumber;
2: for j = tstart to tend do
3: cv = 0;
4: isFound = false;
5: for i = 1 to C.rowNumber do
6: if C[i][j] == 1 then
7: if isFound == false then
8: for k = 1 to C.rowNumber do
9: for t = j+1 to j+t do
10: if C[k][t] == 1 then
11: cv[k] = 1;
12: break;
13: isFound = true;
14: for k = 1 to C.rowNumber do
15: R[i][k] = R[i][k] + cv[k];
16: for i = 1 to C.rowNumber do
17: for k = 1 to C.colNumber do
18: if Dist(i, k) ą d then
19: R[i][k] = 0;

return R;

In Algorithm 3.1, at each time slot j, for each congested road segment i, we

retrieve all the congested road segments in next t time slots, and increase the occur-

rence count of correlation stored in Ri¨. We use a vector cv to store the retrieved

congested road segments, so that the retrieving process only executes once in each

time slot, thus improving the efficiency of the algorithm. Then, we also check the

distances of all pairs of road segments to make sure that the distance requirement is

also satisfied. The time complexity of the proposed algorithm is O(n2m), where n is

number of road segments and m is the number of time slots from tstart to tend.

To further refine congestion correlation, we have the following definition about

confidence of correlation.

Definition 3.7 (Correlation confidence). Correlation confidence from road segment

a to road segment b, i.e., CCab indicates the confidence level of the congestion corre-
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lation and is computed as below:

CCab “ occurrence count of Corpa, bq
No. of congestions at a

With the correlation confidence, an analogy to the confidence in Association

Analysis [79], we are able to identify some false positive and true positive correlations,

and use them to conduct analysis more accurately in later phases.

We also perform some analysis on the found congestion correlations, which will

be further discussed in Section 3.5.4 later.

3.4.3 Feature and Sample Generation

In this phase, we first extract various features on each road segment from road

network and POI data, and then fuse the features of each road segment pair to

generate training samples.

Feature Extraction

To extract features on each road segment from road network data, we consider not

only their traditional features, including length, type, and degree, but also some

advanced features, including betweenness and closeness. It is straightforward to

extract those traditional features. Therefore, we will only detail how to extract the

advanced features as follows.

In graph theory, betweenness is used to measure the importance of nodes in terms

of the number of shortest paths passing them. The intuition is that a node is more

important if more shortest paths go through it. The betweenness of a node vi is

computed with the following formula [21].

Bpviq “ 1

pN ´ 1qpN ´ 2q
ÿ

vj ,vkPV ^i‰j‰k

njkpviq
njk

(3.1)
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where njk is the total number of shortest paths between nodes vj and vk, njkpviq is

the number of shortest paths between nodes vj and vk that pass node vi.

Similarly, we compute the betweenness of a road segment, ei1,i2 as below (cf.

Definition 3.1).

Bpei1,i2q “ 1

pN ´ 1qpN ´ 2q
ÿ

vj ,vkPV

njkpei1,i2q
njk

(3.2)

where njk is the total number of shortest paths between nodes vj and vk, njkpei1,i2q
is the number of shortest paths between nodes vj and vk that pass edge ei1,i2 .

According to [21], closeness centrality is used to measure the centrality of a node,

vi, in the network and is computed as below.

Cpviq “ N ´ 1ř
jPV ^j‰i netDispvi, vjq (3.3)

where netDispvi, vjq is the network distance between nodes vi and vj.

To compute the closeness of a road segment, ei1,i2 , we change the formula above

to the following form.

Cpei1,i2q “ N ´ 1ř
ePE^e‰ei1,i2

netDispe, ei1,i2q (3.4)

where netDispe, ei1,i2q is the network distance between edges e and ei1,i2 (cf. E-

q.(3.6)).

To extract features from POI data on each road segment, we consider the total

number of POIs, the number of POIs in each category, and the Term Frequency-

Inverse Document Frequency(TF-IDF) value of each POI category. Specifically, we

treat road segments as documents and POI categories as terms, and TF-IDF value

indicates the importance of POI categories on road segments. Similar to [96], to

compute TF-IDF value of the i-th POI category of a given road segment, we have
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the following formula:

TF-IDFi “ ni

N
ˆ log

R

||tr|the i-th POI category P ru|| (3.5)

where ni is the number of POIs in the i-th category and N is the total number of

POIs on the given road segment. The first term calculates POI frequency in the

given road segments, and the second term calculates the inverse segment frequency

by taking the logarithm of a quotient, resulting from the number of road segments

R divided by the number of segments which have POIs in i-th category.

The extracted features are summarized in Table 3.1.

Table 3.1: Extracted features on a road segment

Features Description

length the length of each road segment
degree the degree of each road segment
type type of road segments, e.g., motorway and trunk
Bpei,jq the betweenness of the road segment ei,j
Cpei,jq the closeness of the road segment ei,j
#POIs the total number of POIs
#CatPOIs the number of POIs in each category
POI-TF-IDF the tf-idf value of each POI category

Sample Generation

To generate training samples, considering all features extracted on a road segment,

we need to fuse the features of each road segment pair, and generate features for

each pair.

For length, degree, betweenness, closeness and total number of POI, we calculate

their differences between two road segments, and then add them to the features for

each pair of road segments. We also add network distance and Pearson similarity of

POI TF-IDF value distributions between two road segments into features for each

pair.
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Network distance between road segments ei1,i2 and ej1,j2 is computed based on

the underlying road network (cf. Definition 3.1), i.e.,

netDispei1,i2 , ej1,j2q “ min
iPti1,i2u,jPtj1,j2u

tnetDispvi, vjqu (3.6)

where netDispvi, vjq is the length of the shortest path between nodes vi and vj. To

accelerate the computation of network distance, we index road network G with CH

(Contraction Hierarchy) [32] which organizes G in a hierarchy structure.

For each distinct ordered combination of two road types in a pair of road segments,

we create a binary indicator variable to represent the existence of it between road

segments. For example, a road segment type is ‘trunk’ and that of the other is

‘primary’, then the corresponding indicator variable that represents the existence of

the ordered combination ‘trunkÑprimary’ is set to 1, and all other indicator variables

of this ordered pair are set to 0. The idea of this design is to see how congestion

correlation varies from one road type to another. Slightly different, for each distinct

ordered combination of two POI categories, we create a variable to represent its

importance level by calculating the product of TF-IDF values of the two categories

on each pair of road segments. The idea of this design is to see how congestion

correlation varies from one POI category to another.

Finally, we apply Min-Max scaling [3] to scale all the features for each pair of

road segments into the range of [0, 1], which not only enhances the performance of

the trained models, but also facilitates the process of analysis on feature importance

later, since the trained models are not biased towards the features simply due to

their large numeric range.

The features for each road segment pair are summarized in Table 3.2.
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Table 3.2: Features for each road segment pair

Features Description

Diff-Len the difference of length
Diff-Degree the difference of degree
Diff-B the difference of betweenness
Diff-C the difference of closeness
Diff-POI the difference of the total number of POIs
netDis the network distance
SimPOIs Pearson similarity of POI TF-IDF value distributions
OrderedComb-types the binary indicator variable for ordered combination of

road types
OrderedComb-POI the variable for ordered combination of POI categories

3.4.4 Classification and Analysis

In this phase, we input the results of the first two phases into several classifiers to

predict congestion correlation, and analyze the evaluation results for pattern discov-

ery.

Classification After the first two phases, we have all congestion correlations and

extracted features for each pair of road segments. We now combine these two parts

to generate training samples and build models for binary classification.

For any given pair of road segments, the models will predict whether there exists

high congestion correlation between them. To refine and enhance the knowledge

models learn from data, we set a threshold of Correlation confidence (cf. Definition

3.7) for positive class and negative class, respectively. Thus, we only keep those

pairs of road segments, whose correlation confidence is higher than the threshold

for positive class, and treat them as positive training samples; or lower than the

threshold for negative class and higher than 0, and treat them as negative training

samples.

Usually the classes of training samples are highly imbalanced, i.e., the samples in

uncorrelated class are much more than those in the correlated class, which will impair
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the performance of classifiers. To deal with this issue, we apply random majority

undersampling (RUS) [84] to generate a balanced training samples, as it is effective

and makes the model learning process more efficient.

Finally, we input the balanced training samples into well-known classifiers includ-

ing Decision Tree (DT), Random Forest (RF), Logistic Regression (LR) and Support

Vector Machine (SVM), and then evaluate the performance of the built models using

classic metrics.

Analysis After the evaluation of the models, we analyze the built models for

pattern discovery.

Feature importance indicates how important a feature is for the prediction of

classifiers, which can help to identify important features and patterns during the

analysis process. We employ different feature importance measures for different

classifiers based on how those classifiers are built. For Decision Tree and Random

Forest, we use Gini importances [13]. For Logistic Regression and Support Vector

Machine, we consider the absolute values of feature coefficients as the measure of

feature importance. Besides, we also generate some decision rules from Decision tree

for better understanding of the analysis results.

With different training samples, we can build different models on different clas-

sifiers. The comparison of evaluation results, identified features and patterns among

different models on different classifiers can also provide useful insights on congestion

correlation between road segments.

3.5 Experiments

In this section, we present the details of datasets, experiment settings and results.
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3.5.1 Datasets

In the experiments, we use three datasets, i.e., road network, POIs, and the GPS

trajectories of taxis. All these three datasets are for Beijing, China and their details

are elaborated as below.

The road network data is extracted from OpenStreetMap (OSM),̊ an open source

online map. In Beijing road network, we have 109, 029 edges and 105, 030 nodes,

with 13 categories of road types.

POI data set contains all kinds of physical objects in spatial space such as shops,

schools, banks, and restaurants. Though we can also download POIs from OSM, the

number of POIs there is quite small. To collect enough POIs, we obtain the POI

data from a data sharing web site called DataTang:. This POI data set is comprised

of 220, 137 POIs, which is divided into 21 categories.

We collect a large set of GPS trajectories of over 10, 000 taxis in Beijing for 30

consecutive days in 2012.

3.5.2 Data Filtering

After map-matching the GPS trajectories to the underlying road network, each road

segment has a set of GPS records with time stamps. Considering that the goal of

this work is to explore the congestion correlation between road segments, it is very

important to obtain the traffic information on road segments as accurate as possible.

According to [96], more than 12 percent of traffic flow in Beijing is occupied by

taxi trips. Therefore, it is reasonable for us to use the speeds of GPS records of taxis

to approximate the real traffic congestion information. However, though we have

over 10, 000 taxis, the number of speed samples of some road segments are still very

small, which makes it difficult to capture the real traffic on these road segments. In

˚https://www.openstreetmap.org

:http://www.datatang.com/
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Figure 3.4: The distribution of the number of speed records on each road segment
per day

(a) Remaining roads (red) (b) Real traffic in Beijing at 6pm

Figure 3.5: The remaining road segments after filtering and the real traffic in Beijing
at 6pm.

the experiments, we divide a day into 10 minutes time slots, resulting in 144 time

slots one day.

As shown in Figure 3.4, many road segments have speed records less than 100

per day, meaning that there is no traffic information in some time slots for many

road segments. To alleviate the impact of data sparsity, we remove those segments

that have less than 500 speed samples in a whole day. Finally, we get 3,004 road

segments which have enough traffic information to support our further analysis. The
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remaining roads are plotted with red color in Figure 3.5(a). Figure 3.5(b) illustrates

the real traffic;in Beijing at 6 pm, where red color represents busy traffic. Obviously,

the remaining roads in Figure 3.5(a) cover most of the roads that have busy traffic

in Figure 3.5(b). Therefore, it is reasonable for us to conduct analysis on remaining

roads since our goal is to explore the congestion correlation between road segments.

3.5.3 Settings

In the experiments, we set the ratio in Definition 3.5 to 0.5, which is similar to [95],

and compute the average speed on a road segment by all GPS records on the segment

over 30 days.

Figure 3.6: The number of congested roads, the number of roads with GPS records,
and the proportion of congested roads

As illustrated in Figure 3.6, there are three sub-figures representing respectively

the number of congested roads, the number of roads with GPS records and the

proportion of congested roads from 0:00 to 23:59 over 30 days. We can see two

peaks of the number of congested roads and the proportion, which corresponds to

morning peak and evening peak in a day. Besides, during late night, the number

of roads with GPS records dramatically falls, which is probably because there are

;http://map.baidu.com
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much fewer taxis travelling during this period. Since our goal is to explore congestion

correlation between road segments, to ensure accurate traffic information extraction

and enough congested roads for analysis, we focus on morning peak and evening

peak. Specifically, we generate two sets of training samples from these two peaks in

30 days, respectively. The morning peak is from 7:30-9:00, and the evening peak is

from 17:30 - 19:00.

Recall Definition 3.6, in the experiments, we set the time threshold t = 2, which

is 20 minutes; d = 5 km, since the average speed of all GPS records in congested

roads is about 16 km/h, and in 20 minutes the congestion can propagate at most

around 5 km, thus reducing the false congestion correlation to some extent.

For the two sets of training samples, we set the threshold of correlation confidence

for positive sample to 0.6, and the threshold for negative sample to 0.4. In the

morning peak samples, 33,909 positive samples are collected, and 38,6875 negative

samples are collected. After RUS, a balanced morning peak samples are generated

with a total of 67,915 samples. In the evening peak samples, 53,968 positive samples

are collected, and 495,808 negative samples are collected. After RUS, a balanced

evening peak samples are generated with a total of 108,435 samples. For each sample,

we initially generate 618 features as described in Table 3.2. Then we discard Diff-Len

and Diff-Degree, since they hardly contribute to the performance of models during

the experiments, and end up with 616 features for each sample.

We input the two sets of training samples with selected features, and train the

two peak models on four well-known classifiers: Decision Tree (DT), Random Forest

(RF), Logistic Regression (LR) and Support Vector Machine (SVM) [66] to predict

congestion correlation. Then the average precision and recall computed by 10-fold

cross validation are applied to evaluate the performance of the trained models. The

precision and recall are defined as follows.
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Precision “ No. of predicted true correlations

No. of all predicited correlations
(3.7)

Recall “ No. of predicted true correlations

No. of all true correlations
(3.8)

We summarize the experiment settings as shown in Table 3.3.

Table 3.3: Experimental settings

Ratio 0.5

t 20 minutes

d 5 km

Positive correlation confidence threshold 0.6

Negative correlation confidence threshold 0.4

Number of features 616

Morning Peak 679,151 samples

Evening Peak 108,435 samples

Classifiers DT,RF,LR,SVM

3.5.4 Results and Analysis

Congestion Correlation and Transmissibility

After the data filtering, we show and analyze the congestion correlation heatmap of

road segments here. As shown in Figure 3.7, the axes represent the numbers of road

segments. Congestion correlation ranges from 0 to 1, and the denser the color, the

higher congestion correlation are between two road segments. We can see that points

with dense color are sparse overall, but we can also notice a clear diagonal line in the

heatmap, as well as some vertical and horizontal bars. The sparse points indicate

that congestion correlations are normally not high, which may be due to two reasons.

First, the congestions themselves only occur on some road segments, which make it

hard to find correlations among most road segments. Second, the number of road

segment pairs that can be considered as having high congestion correlations is quite
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small. Another observation of the diagonal line indicates that congestions on a road

segment usually lasts longer than one time slot i.e., 10 minutes. Besides, the bars

on the heatmap indicate that congestions on some road segments are more likely to

propagate to multiple other road segments, which may be because they are hubs in

the road network.

Figure 3.7: Congestion correlation heatmap of roads

As discussed above, some traffic congestions are highly correlated. Moreover, we

found that these correlations have some kind of transmissibility. In other words,

one traffic congestion may leads to a series of congestions at different locations. For

example, the congestion of road segment A results in the congestion of road segment

B, and road segment B further leads to the congestion of road segment C. In some

cases, such congestion transmission can cover a quite wide area.

As illustrated in Figure 3.8, traffic congestions propagate among road segments

56694, 77971 and 70407 in the morning, where the numbers are road segment iden-

tifiers. According to Figure 3.8, the traffic congestion at road segment 56694 (an

important motor way between the urban area and the suburbs of Beijing) will affect

the traffic at road segment 77971 (a trunk road on the third ring road next to a
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residential district). The congestion at road segment 77971 will then results in the

congestion at road segment 70407 (a trunk road at the traffic hub of Northeastern

Beijing).

(a) Road network (b) Real map

Figure 3.8: Case study for the traffic congestion transmission in the morning

Similarly, Figure 3.9 shows the traffic congestion transmission among road seg-

ments 83429, 74234, 50946 and 108657 in the evening. All these road segments are

trunk roads and the congestion transmits sequentially from road segment 83429 to

road segment 108657. Particulary, road segments 83429 and 74234 are next to the

Asian games village residential district and Wang Jing residential district, respective-

ly, while both road segments 50946 and 108657 are within the Sanlitun commercial

area.

(a) Road network (b) Real map

Figure 3.9: Case study for the traffic congestion transmission in the evening
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Model Performance and Feature Selection

We evaluate the trained models using average precision and recall. The 10-fold cross

validation results are shown in Table 3.4, where the number in the bracket is the

standard deviation. Generally, the results are stable with satisfactory precision and

recall, considering that we have not conducted a very fine parameter tuning for the

best performance.

Table 3.4: 10-fold CV results on different classifiers of two models

Morning Peak Evening Peak
�����������Classifiers

Metrics
Precision Recall Precision Recall

Decision Tree 0.615(0.012) 0.598(0.033) 0.661(0.014) 0.642(0.053)

Random Forest 0.693(0.020) 0.550(0.029) 0.742(0.013) 0.627(0.031)

Logistic Regression 0.626(0.017) 0.559(0.048) 0.682(0.012) 0.665(0.030)

SVM 0.639(0.027) 0.446(0.055) 0.692(0.011) 0.633(0.032)

In terms of the two peak models, the evening peak models achieve better per-

formance in both precision and recall than the morning peak models. In terms of

precision, models trained on Random Forest achieve the best performance in both

morning and evening peaks. This is probably because Random Forest achieves better

tradeoff performance between the bias and variance, as it is the only ensemble model

among the four classifiers. In terms of recall, models trained on Decision Tree and

Logistic Regression achieve the best performance, respectively in morning peak and

evening peak.

Now we further perform Recursive Feature Elimination on the features. The basic

idea is to iterate over all combinations of features on a designated model to find the

optimal number of features with best performance. Here, we performed 3-fold cross

validation to measure the overall precision of Decision Tree and Random Forest with

different number of features selected. As shown in Figure 3.10, with the increasing

number of selected feature, the overall precisions of Decision Tree keep increasing,
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though oscillating from time to time, until reaching the optimum, and then go down

a little bit and become stable; while in Figure 3.11, the overall precisions of Random

Forest, though show similar trends, keep increasing and oscillating a little slower,

and reach the optimal on a larger number of features with higher value. The optimal

number of features for Decision Tree is much smaller than that of Random Forest,

and the precision is also lower. This may be because that Random Forest is capable

of extracting more useful information from large feature sets for prediction, and

making better prediction.

(a) Feature selection of Decision Tree in the
morning peak

(b) Feature selection of Decision Tree in the
evening peak

Figure 3.10: Feature selection of Decision Tree

(a) Feature selection of Random Forest in
the morning peak

(b) Feature selection of Random Forest in
the evening peak

Figure 3.11: Feature selection of Random Forest

We also divide the feature sets into two categories. One includes features ex-
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tracted from road network, the other includes features extracted from POI. We are

trying to see how features from these two different categories contribute to the final

prediction. As shown in Table 3.5, classifiers using Road network features achieve

higher precision than using POI features, and again Random Forest achieve best

precision overall. Besides, for some classifiers e.g., Decision Tree, solely using road

network features achieve higher precision than using both two categories of features,

while for others e.g., Random Forest, using both achieve best precision. The reason

may be some classifiers are not able to extract useful features from a large number of

features, when introducing more features, more noise are also introduced, resulting

to a lower precision. While for others, they are able to extract useful information

for prediction from a large number of features even with more noise, resulting to a

higher precision. This is somehow in line with our analysis on optimal number of

features previously.

Table 3.5: 10-fold CV results on different classifiers of two models based on two
categories of features

Morning Peak Evening Peak
�����������Classifiers

Features
RoadNetwork POI RoadNetwork POI

Decision Tree 0.622(0.019) 0.586(0.010) 0.676(0.016) 0.591(0.010)

Random Forest 0.646(0.018) 0.613(0.017) 0.700(0.012) 0.623(0.016)

Logistic Regression 0.631(0.023) 0.556(0.020) 0.680(0.012) 0.550(0.011)

SVM 0.635(0.022) 0.592(0.016) 0.687(0.013) 0.602(0.015)

Importance Features and Generated Rules

We also compare the top 10 important features identified by two models on different

classifiers, and list the commonly identified important features on two models in

Table 3.6. In addition, Table 3.7 shows some rules generated by Decision Tree on

the two models (note that all the features have been scaled into the range of [0, 1]

as described in Section 3.4).
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Table 3.6: Commonly identified important features

Features Description

Morning Peak

Diff-B the difference of betweenness
Diff-C the difference of closeness
Diff-POI the difference of the total number of POIs
SimPOIs Pearson similarity of POI TF-IDF value

distributions
netDis the network distance
‘trunkÑtrunk’ binary indicator variable for the ordered

combination ‘trunkÑtrunk’of road types
‘motorwayÑmotorway’ binary indicator variable for the ordered

combination ‘motorwayÑmotorway’of
road types

‘cateringÑcatering’ variable for the ordered combination
‘cateringÑcatering’of POI categories

Evening Peak

Diff-B the difference of betweenness
Diff-C the difference of closeness
Diff-POI the difference of the total number of POIs
netDis the network distance
‘trunkÑtrunk’ binary indicator variable for the ordered

combination ‘trunkÑtrunk’ of road types
‘trunkÑsecondary’ binary indicator variable for the ordered

combination ‘trunkÑsecondary’ of road
types

‘tertiaryÑsecondary’ binary indicator variable for the ordered
combination ‘tertiaryÑsecondary’ of road
types

Table 3.7: Generated rules

Rules

Morning Peak
If 0.4184 ă Diff-POI ď 0.4454 and Diff-B ą 0.4755 and
Diff-C ď 0.4906, then uncorrelated
If Diff-POI ą 0.4947 and netDis ď 0.294 and
‘motorwayÑmotorway’ = 1, then correlated

Evening Peak
If Diff-POI ď 0.49 and Diff-B ą 0.4938 and
‘tertiaryÑsecondary’ = 1, then uncorrelated
If 0.0038 ă netDis ď 0.0877 and ‘trunkÑtrunk’ = 1,
then correlated
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As we can see, Diff-B, Diff-C, Diff-POI, netDis, and ‘trunkÑtrunk’ are both com-

monly identified important features in the two models, meaning that they are impor-

tant to predict whether a road segment is correlated with another one in terms of con-

gestion in both morning and evening peaks. On the other hand, ‘motorwayÑmotorway’

and ‘cateringÑcatering’ are more important in the morning peak, and ‘trunkÑsecondary’

and ‘tertiaryÑsecondary’ are more important in the evening peak. The results reveal

the common and different patterns between morning and evening peaks.

From the generated rules, we can observe more different patterns in the morning

and evening peaks. For example, in the morning peak, there exits high congestion

correlation from one motorway to another if the POI numbers of them are quite

different, meaning that congestions are more likely to propagate from a motorway

with more POIs to another one with less POIs in the morning peak. On the other

hand, there exits high congestion correlation from one trunk road to another in the

evening peak, meaning that congestions are more likely to propagate between trunk

roads in the evening peak.

3.6 Conclusion

In this work, we outline a three-phase framework to explore the congestion correla-

tion between road segments from multiple data sources. We first obtain congestion

information on road segments from GPS data, give the definition of congestion cor-

relation and design the mining algorithm. Then we extract topological and POI

features on each road segment, and fuse them to generate the features of training

samples for each pair of road segments. Finally, the congestion correlation and fea-

tures on each pair of road segments are input to well-known classifiers including

Decision Tree, Random Forest, Logistic Regression and Support Vector Machine.

We train two models on different classifiers to predict congestion correlation, com-

45



pare and analyze the performance and important features. The experiment results

show stable and satisfactory performance as well as some important patterns of con-

gestion correlation. In addition, we discuss the patterns of congestion correlations,

and found obvious directionality and transmissibility. Meanwhile, we also analyze

the impact of feature selection on the performance of models. Notably, the proposed

framework is general and can be applied to other pairwise correlation analysis.
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Chapter 4

Coupled Sparse Matrix

Factorization for Response Time

Prediction in Logistics Services

In this chapter, we propose a similarity-based method for cross domain data ana-

lytics to enable intelligent decision making. The reasons are that it generally has

good application performance compared to feature-based method, and it has a weak

assumption on data and a medium computation cost compared to other model-based

method. As an example application, we study response time prediction in an emerg-

ing logistics service, as it is a brand new application and important to both users

and service providers.

4.1 Introduction

There is an emerging and convenient way to transport goods in logistics services:

Users can make goods delivery orders via a mobile application as illustrated in Figure

4.1, and registered van drivers would respond to take these orders in less than couple

of minutes, which is much faster than that of traditional way through van calling

centers. The platform behind the service connects large numbers of registered van

drivers with on-demand logistics needs from users. Response time, i.e., the time
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it takes for a newly created order to be responded by drivers, is an important key

performance indicator of such a logistics service. Long response time would lead

to low user satisfaction and low system efficiency, which would eventually impair

the benefits of the service provider. If the order response time can be predicted

accurately, this prediction can be used to reduce the long response time, e.g., service

providers can add extra bonus on those orders with long response time to attract

drivers. Furthermore, the prediction can also be utilized for supply-demand analysis

and driver scheduling, so that both the user experience and system efficiency would

be improved. Thus, predicting response time in such logistics service is important

and beneficial.

Figure 4.1: Emerging way of transporting goods in logistics services

However, order response time prediction is a challenging task due to the follow-

ing reasons. First, the heterogeneous fusion challenge: as different driver would have

different response times towards different orders in different situations, such a task

is affected by many factors including order characteristics, driver preference, driver

routine behavior, time of day, etc. In addition, the information of these factors usual-

ly can only be extracted from heterogeneous data sources. To effectively consider all

these factors simultaneously is quite difficult. Simply extracting a combined feature

vector from all these data sources, and feeding the feature vector into traditional

regression models can hardly capture the complex relation between these factors,

which would lead to poor performance. Second, the sparsity challenge: interaction
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between orders and drivers in these data sources are quite sparse, as one order can

only be responded by one driver. Thus how to enrich these interactions and extract

useful information for better response time prediction is a challenging task.

To address the aforementioned issues, we predict the response time using two

domains of data: order histories, which describe characteristics of orders, and driver

historical GPS locations, which indicate driver routine behaviors and preferences.

Specifically, we formulate the response time prediction problem as a matrix factor-

ization problem, and propose a coupled sparse matrix factorization (CSMF) model

to fuse these heterogeneous and sparse data from different domains to capture both

order and driver information for accurate prediction.

We summarize the contributions as follows:

• We propose a novel framework to fuse heterogeneous and sparse data for re-

sponse time prediction. In addition, the framework is general, and can be

applied to other response time prediction problems.

• We propose a coupled sparse matrix factorization (CSMF) model to deal with

the heterogeneous and sparse data. Specifically, coupled matrix factorization

with Laplacian and �2,1 regularizations are utilized for heterogeneous fusion,

and a weight setting mechanism is utilized to handle sparsity. In the end, a

corresponding efficient optimization algorithm is also devised.

• We compare the proposed CSMF method with many baseline methods, and

demonstrate its superiority. We also show the performances of many variants

of our method to show the effectiveness of each component.
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4.2 Related Work

Response Time Prediction: In terms of response time prediction, two groups of

work are most related. One considers response time in Question and Answers (Q&A)

communities, while the other considers response time in web services.

For research on Q&A communities, response time is considered as the time it

takes for a newly post question to be answered. Predictions on response time in

different Q&A communities have been made. Mahmud et al. [54] proposed several

statistical models based on Poisson process to predict the response time for questions

asked on Twitter. Rechavi et al. [68] analyzed Q&A data from Yahoo! Answers,

and conclude that askers tend to choose the best answer based on response time,

while the communities pay more attention to the quality of answers. Avrahami et

al. [8] generated various features from different settings in instant messaging, and

applied decision tree classifiers to predict and analyze whether a message will receive

a response within a certain period. Arunapuram et al. [6] made a preliminary ef-

fort on analysis of distribution, correlated features as well as prediction of response

time on StackOverflow. Burlutskiy et al. [15] proposed a framework which can vary

features and machine learning algorithms to predict response time, and validated its

effectiveness on datasets from Stack Exchange. Bhat et al. [10] analyzed the factors

related to response time in StackOverflow, and found that tag-related factors have

a major on response time. They further demonstrated the findings by applying ma-

chine learning algorithm on these factors in response time prediction tasks. Goderie

et al. [34] predicted response time StackOverflow based on similarity of tags, and

achieved an acceptable performance.

For research on response time in web services, response time is considered as the

time it takes for a use request to receive a response from web services. Zheng et

al. [107] analyzed the historical data of web services, and identified four modes of
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response time. Then, they applied different statistical method for different mode to

predict the response time of web services. Liang et al. [49] leveraged the content

and structure of the social discussion on public discussion boards to predict the

response time of web services. Cheung et al. [20] proposed a queueing model based

framework along with regression analysis techniques for response time prediction of

web services. The response time data of a university website is collected in [103]

for 84 days. Then, support vector machine with information granulation is applied

for prediction. Atluri et al. [7] decomposed response time as a summation of three

constituent times, and predicted them individually using hidden Markov model and

Bayesian networks. Zheng et al. [114] proposed a neighborhood-integrated matrix

factorization approach for response time prediction, and validated it in large-scale

experiments with 5,825 real-world web services.

In both the above related work and ours, response time is crucial to user satisfac-

tion, and accurate prediction would benefit both users and system. Differently, the

response time prediction problem in our work contains either richer information i.e.,

spatial and temporal relation, or more complicated settings, e.g., the response time

of a new order, unlike the response time of web services, does not have historical data

from exactly the same order. Furthermore, more complicated multiple driver-order

dependencies are involved. Thus, the response time prediction problem here is more

challenging than previous studies.

Matrix Factorization: Matrix factorization has been widely used in many

applications including computer vision [23], natural language processing [11], traffic

congestion analysis [88] and especially successful in recommendation systems [47]. It

can not only allow for a flexible and generic integration of data, but also discover the

hidden patterns among rows and columns of matrices through the factorized latent

factors. As large amount of data from multiple sources are available nowadays, each

source of data can be represented as a matrix, and jointly analyzing these correlated
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data can usually enhance knowledge discovery. Different kinds of coupled matrix

factorization methods have been proposed for different applications. Tang et al. [80]

proposed a coupled matrix factorization method with graph Laplacian regularization

for action recognition. Sung et al. [43] jointly factorize user-item matrix with user-

tag matrix to improve the recommendation results. Acar et al. [2] identify potential

biomarkers using coupled matrix factorization with �1 penalties on factors. To deal

with missing values, they set the weights for known values as 1, and missing values

as 0. Zheng et al. [105] utilize location data, activity data as well as the correlation

among them with the proposed coupled matrix factorization method for location

and activity recommendations. Shang et al. [73] estimate travel speed of vehicles by

jointly factorizing three matrices extracted from map data and historical trajectories.

In both the above related work and ours, matrices from different sources of data

are jointly factorized, so that the correlations among them can be discovered and

utilized for prediction. Differently, the matrix is much more sparse in our problem,

as one order can only be responded by one driver. Through filling the missing entries

with their physical meaning along with the corresponding weight setting mechanism,

we make the proposed method effective for order response time prediction. Further-

more, we also impose �2,1 pelnalties on factorized matrices to enable automatic group

feature selection within the model for accurate prediction.

4.3 Framework Overview

Figure 4.2 presents the framework of this work. In this framework, we utilize order

history and driver historical GPS locations for order response time prediction. We

first collect these two sources of datasets. Then, we build an order-driver response

time matrix, where each entry stores the response time of a driver to an order. Note

that, this matrix is very sparse, i.e., each row only has one non-zero value, since
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Figure 4.2: CSMF framework

one order can only be responded by one driver. We fill some entries with physical

meanings, and use a weight matrix to indicate the confidence of the filled values.

Meanwhile, we extract a feature matrix and a correlation matrix from each of these

two sources. Lastly, we fuse all the information with the response time matrix to

alleviate its sparsity for accurate prediction.

4.4 Data Sources and Feature Extraction

4.4.1 Order History

Each order oi is associated with an order id and driver id. In addition, for each oi,

we extract a large set of features which are relevant to the corresponding response

time. Concretely, these extracted features are detailed below.

• Time relevant features: The day type (i.e., day of week), the hour in which

the order is created.

• User relevant features: The rating of the user who made the order, and

whether he/she has social welfare.
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• Price relevant features: The price of the order and the tips provided by the

user.

• Personalized requirements: the tunnel/bridge/route required to pass, re-

quired language, whether the user has pets, whether it needs cart, whether the

cargo is over 6 feet, whether it needs to help carry, rent hours, cart count, the

number of passengers, and whether the order will be paid by the receiver.

• Location relevant features: The start location, the number of total orders

at the start location historically, end location, the number of order at the end

location historically, and the intermediate location and its name, if any.

We then use one-hot encoding to transform all categorical features to numerical

values. Also, each order is associated with a real response time.

4.4.2 Driver Historical Location

In addition, we also have the corresponding GPS trajectory data for all drivers

corresponding to the orders above. For each driver dri, his GPS trajectory tri is a

sequence of GPS points, i.e.,

tri “ pp1, p2, . . . , pnq

where each GPS point pj “ ploc, t, statusq has its location pj.loc, time stamp pj.t,

and status flag pj.status (i.e., if being busy with orders, status “ 1, otherwise

status “ 0).

In this work, we compute four kinds of features for each driver based on his/her

trajectories, i.e., the average and variance of his travel distances in the same hour of

all days, and average and variance of the idle ratio in the same hour of all days.

A. Computing average and variance of travel distance

Assuming that the trajectory of driver dri during hour j on the k-th day is trki,j “
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pp1, p2, ¨ ¨ ¨ , pmq, the corresponding travel distance dki,j is computed by

dki,j “
m´1ÿ
e“1

distppe, pe`1q

where distppe, pe`1q is the network distance between points pe and pe`1.

After computing the travel distance dki,j for all days in the history, we get a set of

travel distance values Di,j for each hour j of day. Then, the average d̄i,j and variance

σd
i,j of Di,j are computed as below.

d̄i,j “ 1

|Di,j|
ÿ

dPDi,j

d

and

σd
i,j “ 1

|Di,j|
ÿ

dPDi,j

pd ´ d̄i,jq2

B. Computing average and variance of idle ratio

Given the trajectory trki,j “ pp1, p2, ¨ ¨ ¨ , pmq of driver dri in hour j on the k-th day,

the corresponding idle ratio cki,j is

cki,j “ 1

pm.t ´ p1.t
¨

ÿ
ppe,pe`1qPtrki,j^pe.status“pe`1.status“0

pe`1.t ´ pe.t

Similar to computing the travel distance, we then have a set of idle ratio values

Ci,j for each hour j of day. The average c̄i,j and variance σc
i,j of Ci,j are computed

as below.

c̄i,j “ 1

|Ci,j|
ÿ

cPCi,j

c

and

σc
i,j “ 1

|Ci,j|
ÿ

cPCi,j

pc ´ c̄i,jq2
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4.5 Problem Formulation

Notation. To facilitate the distinction, scalars are denoted by lowercase letters

px, y, ¨ ¨ ¨ q, vectors by boldfaced lowercase letters px,y, ¨ ¨ ¨ q, and matrices by boldface

uppercase letters pX,Y, ¨ ¨ ¨ q. All vectors are row vectors unless otherwise specified.

An element of a vector x and a matrix X is denoted by xi and xi,j, respectively.

Suppose that the problem includes N orders and M drivers, where each of them

is respectively represented by a feature vector denoted by xi P R
S and yj P R

T , i “
1, 2, ¨ ¨ ¨ , N , j “ 1, 2, ¨ ¨ ¨ ,M , where S and T are the dimension of order feature vector

and that of driver feature vector, respectively. Let X “ rx1,x2, ¨ ¨ ¨ ,xN s P R
NˆS

and Y “ ry1,y2, ¨ ¨ ¨ ,yM s P R
MˆT denote the feature matrix of orders and drivers,

respectively. We also assume that each order can only be responded by one driver

with the minimal time, so all such responses can be arranged into a response time

matrix R P R
NˆM , whose entry ri,j is the value of response time between order i and

driver j. If order i is not responded by driver j, then the corresponding entry ri,j inR

is missing. Note that, for each observed order, only the one entry with real response

time is observed; for each unobserved order, all entries are missing. In particular,

assuming the problem is associated with N1 observed orders L “ �pxi, ri,kq(N1

i“1

and N2 unobserved orders U “ �pxjq
(N2

j“1
, where N1 ` N2 “ N , ri,k is the response

time of order i, and k indicates which driver has responded to order i. The goal of

our response time prediction is to estimate the response time of unobserved orders

xj. Specifically, we aim at leveraging the observed order information and driver

information inX,Y andR to help accurately predict the response time of unobserved

orders.
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4.6 The CSMF Model

4.6.1 Weighted Matrix Factorization

The matrix factorization [78] has been widely used in many applications including

computer vision, recommendation systems and natural language processing. In our

problem, the basic idea is to factorize the response time matrix R P R
NˆM into two

low-rank latent matrices U P R
NˆL and V P R

MˆL, representing order and driver

distributions on latent semantics, respectively. Then, the unobserved entry in the

response time matrix can be predicted through these two specific matrices. However,

in our problem, the response time matrix R is very sparse, only one observed entry

in each row, since one order can only be responded by one driver. We fill some of the

missing entries to facilitate accurate factorization and use an additional weight matrix

to indicate the confidence we have on each filled entry. This approach minimizes the

following objective function:

min
U,V

L “ 1

2
}W d pR ´ UVTq}2F

where d represents the Hadamard product (i.e., elementwise product), and W “
rwi,js is a corresponding weight matrix.

We fill a small portion of missing entries in matrix R with physical meaning as

follows, where ri,j is the missing value in i-th row of R and ri,k is the real response

time in i-th row of R. Since in reality if the entry is missing, then the corresponding

driver would probably have a longer response time.

ri,j “ ri,k ` 1, if j ‰ k (4.1)

After filling a small portion of missing entries, we need to set the weight matrix for

each entry, which is vital for accurate factorization. Notice that we assume order i

is responded by driver k, we set the weight matrix as follows, where corrdrj ,drk is the
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correlation between driver j and driver k. We will discuss about how to compute the

correlation in Sec 4.8.

wi,j “
$&
%

1 if j “ k;
corrdrj ,drk if ri,j is filled and j ‰ k;
0 otherwise.

(4.2)

The intuition behind this setting is that if the entry ri,j represents real response time,

then the weight is as high as 1. If the entry represents the entry we filled previously,

then the weight is set to the correlation between driver j whose response time is filled

and the driver k who actually respond to the order, with the assumption that the

more two drivers are correlated, the more likely they would both consider to respond

to same orders, and that missing of entry is simply because the driver j has a longer

response time than driver k, so that ri,j is filled in the way close to the real situation.

If the entry is missing and not filled, then the weight is as low as 0, which would not

affect the model learning process.

4.6.2 Coupled Matrix Factorization

Since the response time matrix is originally very sparse, in order to facilitate a more

accurate factorization, we incorporate more information from order and driver data.

Specifically, we use order feature matrix X to help determine the order latent matrix

U. This is achieved by factorizing order feature matrix X P R
NˆS into low-rank

latent matrices U P R
NˆL and G P R

LˆS. Similarly, we use driver feature matrix

Y to help determine the driver latent matrix V, which is achieved by factorizing

driver feature matrix Y P R
MˆT into V P R

MˆL and H P R
LˆT . That is to say, we

collaboratively factorize R to U and VT, with order feature matrix X to low-rank

latent matrices U and G, and driver feature matrix Y to V and H, where they

share the latent matrices U and V. In this way, order feature matrix X and driver

feature matrix Y would contribute to a more accurate factorization of R through the
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shared matrices U and V. The objective function can be formed as follows, where

λ1 and λ2 are the parameters to control the contribution of each component during

the copuled factorization.

min
U,V,G,H

L “1

2
}W d pR ´ UVTq}2F ` λ1

2
}X ´ UG}2F`

λ2

2
}Y ´ VH}2F

4.6.3 Correlations and Group Feature Selection

To further alleviate the data sparsity problem, we also utilize correlations between

orders as well as drivers to facilitate the process of coupled factorization, by incorpo-

rating information in Laplacian matrices of their correlation graphs using trpUTLuUq
and trpVTLvVq, respectively. For order correlation, Lu “ pD ´ Zq P R

NˆN is the

Laplacian matrix of the order correlation graph, in which Z is a correlation matrix

of orders, with each entry zi,j represent the correlation between order oi and oj, and

D is a diagonal matrix with diagonal entries di,i “ ř
i zi,j. Then, trpUTLuUq is ob-

tained through the following deduction, which guarantees two orders oi and oj with

a higher correlation (i.e., zi,j is big) should also have a closer distance between the

vector ui and uj in the matrix U.

1

2

ÿ
i,j

zi,j}ui ´ uj}22 “
ÿ
i,j

uizi,ju
T
i ´

ÿ
i,j

uizi,ju
T
j

“
ÿ
i

uidi,iu
T
i ´

ÿ
i,j

uizi,ju
T
j

“ trpUT pD ´ ZqUq
“ trpUTLuUq

where trp¨q denotes the matrix trace. Similarly, we define Lv “ pD̃ ´ Z̃q P
R

MˆM as the Laplacian matrix of the driver correlation graph, and consider the

59



driver correlation as trpVTLvVq. In this way, we utilize order correlations and driver

correlations for accurate factorization of R to U and V.

Since the collected features contain various kinds of information, we assume only a

small part of features are predictive. To this end, we add an �2,1-norm regularization

on each latent matrix. The �2,1-norm promotes row-wise sparsity of the target matrix,

such property makes it suitable for the task of feature selection. In particular, as �2

norm is combined through an �1 norm, it encourages all feature matrices to select a

common set of features and thus play the role of group feature selection [98].

4.6.4 Coupled Sparse Matrix Factorization

All components mentioned in previous subsections are combined, and the final model

is illustrated in Figure 4.3. We first fill some of the missing entries in response time

matrix R, and set the corresponding weight matrix W. Then, we factorize R with

order feature matrix X and driver feature matrix Y, so that the factorized share

latent matricesU andV are more accurate. Furthermore, we utilize order correlation

matrix Z, so that if two orders i, j are correlated, they would have a closer distance

between the vector ui and uj in the matrix U. We utilize driver correlation matrix Z̃

in the same way to make V more accurate. Finally, the factorized matrices U and V

are used to reconstruct R to R̃, namely R̃ “ UVT. The reconstructed R̃ is used to

predict the response time of unobserved orders in the following way. Each unobserved

order in R̃ would have values, which are missing in the original response time matrix

R. The minimal value of each unobserved order is consider as the predicted response

time of that order.
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Figure 4.3: Coupled sparse matrix factorization

The objective function of the proposed CSMF model is formally given as follows.

min
U,V,G,H

L “ 1

2
}W d pR ´ UVTq}2Floooooooooooomoooooooooooon
response time factorization

`λ1

2
}X ´ UG}2Floooooomoooooon
order factorization

` λ2

2
}Y ´ VH}2Floooooomoooooon

driver factorization

`λ3

2
trpUTLuUqlooooomooooon
order correlation

`λ4

2
trpVTLvVqlooooomooooon
driver correlation

` λ5

2
p}U}2,1 ` }V}2,1 ` }G}2,1 ` }H}2,1qloooooooooooooooooooooomoooooooooooooooooooooon

row-wise sparsity regularization

(4.3)

where }W d pR ´ UVTq}2F is to control the error of factorizing response time ma-

trix R, }X ´ UG}2F is to control the error of factorization of order feature matrix

X, }Y ´ VH}2F is to control the error of factorization of driver feature matrix Y,

tr(UTLuU) and tr(VTLvV) is to utilize information in order and driver correlations,

λ1, λ2, λ3 and λ4 are used to control the contribution of each component during the

coupled factorization, and λ5 is a regularization parameter preventing overfitting and

controlling group feature selection.
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4.7 Optimization Algorithm

Since the objective function in Eq. (4.3) is non-convex with all variablesU,V,G, and

H together, we employ an efficient iterative algorithm to solve this problem, by alter-

natively updating one variable while fixing others until convergence. In addition, it is

difficult to directly minimize the compound �2,1 objective function, because �2,1-norm

is not continuous on the origin. Inspired by the half-quadratic minimization method

[61], we transform the �2,1-norm term into an approximate form by introducing an

auxiliary variable. Taking U as an example, we transform:

}U}2,1 « trpUTQuUq (4.4)

where Qu is a diagonal matrix with the i-th diagonal element as qui,i “ 1
2}ui}2 . Sim-

ilarly, we will introduce auxiliary variables Qv,Qg, and Qh for variables V,G,H,

respectively.

Based on the above transformation, we calculate the derivative of Eq. (4.3) with

respect to U,V,G and H, respectively, and set them to zero, we have:

$’’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’’%

BL
BU “W d W d pUVT ´ RqV ` λ1pUG ´ XqGT

` λ3LuU ` λ5QuU “ 0

BL
BV “pUTpW d W d pUVT ´ RqqqT

` λ2pVH ´ YqHT ` λ4LvV ` λ5QvV “ 0

BL
BG “λ1U

TpUG ´ Xq ` λ5Qg “ 0

BL
BH “λ2V

TpVH ´ Yq ` λ5Qh “ 0

(4.5)

Eq. (4.5) involves solving four linear systems, where we use conjugate gradient

(CG) method to solve it, which is an effective and widely used technique [42], and

only needs to perform matrix multiplications of Eq. (4.5).
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Algorithm 4.1 Algorithm to solve the problem in Eq. (4.3)
Input: Response time matrix R, weight matrix W, order feature matrix X, driver feature

matrix Y, Laplacian matrices Lu,Lv and regularization parameters
Output: U, V
1: Initialize U,V,G,H randomly
2: Calculate the diagonal matrices Qu, Qv, Qg, Qh
3: repeat
4: Update U, V, G, H by solving Eq. (4.5) using CG method
5: Update the diagonal matrices Qu, Qv, Qg, Qh by

qui,i “ 1

2}ui}2 , q
v
i,i “ 1

2}vi}2 , q
g
i,i “ 1

2}gi}2 , q
h
i,i “ 1

2}hi}2
6: until convergence

The overall algorithm is summarized in Algorithm 4.1.

Convergence Analysis. Although we have to solve Eq. (4.3) in an iterative

process, due to non-convexity and non-smoothness, the objective monotonically de-

creases in each iteration and it has a lower bound (proof can be derived in a similar

manner as in [38]). Therefore, it guarantees that we can find the optimal solution

of each iteration and finally, Algorithm 4.1 can converge to a local minimum of the

objective function in Eq. (4.3).

4.8 Experiments

4.8.1 Datasets

The order data used in this study is from a leading logistics company in Hong Kong,

which offers an on-demand goods transport service. The data covers a time span

of three months and has around 570,000 orders (the real number is about 900,000

among which we remove those orders whose drivers have no enough location data)

in total. In addition, we also have the corresponding GPS trajectory data for all

drivers during the period above. The total number of drivers is around 7,000.

Figure 4.4 shows the distribution of orders over different day types, i.e., day of

the week, where 0 represents Sunday, 1 represents Monday, and so on. According
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to Figure 4.4, Sunday has the smallest number of orders during a week, and except

Sunday the distribution of orders does not change much.

Figure 4.4: The distribution of orders in different day types during all three months.

We use absolute value of Pearson Correlation [77] to calculate order-order and

driver-driver correlations, and calculate the corresponding Laplacian Matrix. In

order to avoid introducing too much noise, we also only fill some of the missing

entries so that 15% of entries in response time matrix R have values.

Ground Truth and Metric

We predict the order response time of current day based on order history of the

previous day, order features of current day and driver historical locations. The ground

truth is obtained from current day. All methods are evaluated by the accuracy of

their predicted response time averaged over three months. The metric we use in the

experiment is Mean Absolute Value (MAE):

MAE “ Σi|yi ´ ŷi|
N

(4.6)

where N is the number of predicted orders, yi is the real response time of order i in

testing data, and ŷi is calculated by getting the minimal predicted value of order i.
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4.8.2 Baselines and Metrics

In order to demonstrate the effectiveness of our CSMF method, we compared the

proposed framework with the following existing baselines. For all these baselines

methods, as they are all vector-based methods, we join the order feature with the

driver feature into a combined feature vector via driver id, and use the combined

feature vector as input.

• Ridge: Ridge regression [37] is a commonly used method for regression prob-

lem by imposing a penalty on the size of coefficients of ordinary least squares.

• Lasso: The Lasso [81] is another widely used method for regression problem

by imposing a penalty on the number of nonzero coefficients of ordinary least

squares

• EN: The elastic net [115] is a regularized regression method that linearly com-

bines the �1 and �2 penalties of the lasso and ridge models, providing a trade-off

option between sparsity of coefficients and sizes of coefficients.

• KNN: The K Nearest Neighbours method [4] predicts the label, i.e., response

time using a weighted sum of its k-nearest neighbours. The neighbour is cal-

culated by Minkowski distance between feature vectors.

• SVR: Support Vector Regression [76] is implemented with Gaussian-RBF k-

ernel, which is the most widely used vector-based method.

• GBR: Gradient Boosting Regression [29] produces a prediction model in the

form of an ensemble of weak prediction models, typically decision trees.
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4.8.3 Model Comparison

Figure 4.5 shows the performance comparison among various methods. The lower

the MAE value is, the better the method performs. We can see that ridge, Lasso,

EN and KNN perform similarly, among which EN performs slightly better. SVR

and GBR perform much better than previous methods, and SVR performs the best

among baseline methods, which may be due to it can capture nonlinear relationships

in the data. The proposed CSMF method achieves the best MAE value compared

to all baseline methods.

Figure 4.5: Performance comparison among various methods

4.8.4 Evaluation on Model Components

To evaluate each component of the CSMF model, we compared it with its three

different variants.

• CSMF-Y: In this variant, the driver feature matrix Y is not included in the

model. We can derive it by setting λ2 “ 0.

• CSMF-Lp: In this variant, the Laplacian matrices of order and driver correla-

tion graphs are not included in the model. We can derive it by setting λ3, and

λ4 “ 0.
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• CSMF-W: In this variant, we do not fill any of the missing entries in response

time matrix R. The weights of all missing entries in weight matrix W are set

to 0, while the weights of entries with real response time remain 1.

Figure 4.6 shows the performance comparison among these variants. Without driver

feature, CSMF-Y performs worst, which indicates fusing driver information is quite

crucial in prediction. Without Laplacian matrices of order and driver correlation

graphs, CSMF-Lp also cannot achieve a good MAE value, which shows utilizing

correlations between orders and drivers is important. Without filling missing entries

and setting corresponding weights, CSMF-W also performs worse than the original

model, which indicates the filling and weight setting effectively contribute to the

prediction.

Figure 4.6: Performance comparison among variants

4.8.5 Evaluation on Filling Missing Entries and Weight Set-
tings

To further investigate how filling missing entries and weight setting affect the perfor-

mance of the proposed CSMF model, we evaluate three parts of the proposed weight

settings and filling method.

The first part is to investigate how the percentage of filled entries would affect the

performance of the model. We vary the percentage of filled entries in response time
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matrix R from 0% to 30%, and show the results in Figure 4.7. As the percentage of

filled entries increases from 0% to 15%, the MAE value decreases, which indicates

the filling process introduces useful information for prediction. As the percentage

increases from 15% to 30%, the MAE value goes up and down. This is probably

because there is a trade-off between the useful information and noise introduced in

the filling process.

Figure 4.7: Evaluation on percentage of filled missing entries

The second part is to investigate how the weight of filled entries would affect

the performance of the model. Previously in Section 4.6.1, we set the weight of

missing entries using Pearson correlation. Now we also compare Pearson correlation

to another widely used correlation metric: Spearman’s rank correlation [77]. While

Pearson correlation measures linear relationships, Spearman’s rank correlation mea-

sures monotonic relationships including both linear and nonlinear relationships. The

results are shown in Figure 4.8. The performance is very similar, and CSMF using

Pearson correlation is slightly better than CSMF using Spearman’s rank correlation,

which may be because the correlation in the data is mainly linear.

The third part is to investigate how the value of filled entries would affect the

performance of the model. Previously in Section 4.6.1, we set the value of missing

entries to real response time plus 1, now we vary the value from real response time

plus 1 to 5, and show the results in Figure 4.9. As the value increases, we can see the
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Figure 4.8: Evaluation on weights of filled entries

MAE value also increases, which indicate that a larger value would introduce more

noise to the model learning process.

Figure 4.9: Evaluation on values of filled entries

4.8.6 Evaluation on Parameters of CSMF

We also investigate how parameters affect the performance of the CSMF model. As

shown in Section 4.6.4, there are 5 parameters in the proposed model, namely λ1, λ2,

λ3, λ4, and λ5. We range all the parameters from 10´2 to 101, and the parameters

that achieve optimal performance are λ1 “ 1, λ2 “ 10´1, λ3 “ 10´1, λ4 “ 10´1, and

λ5 “ 1. To analyze how each parameter affects the performance of the model, below

we show the performance of varying one parameter while fixing other parameters as

the optimal values.
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Figure 4.10 shows the performance comparison of λ1 and λ2. We can see as

the value of λ1 increases, the MAE value of the model first decreases, achieves the

optimal value when λ1 “ 1, and then increases. Similar trend can be observed on

λ2, while the MAE achieves the optimal value when λ2 “ 10´1. Recall that λ1

and λ2 are respectively to control the contributions of the order feature matrix and

the driver feature matrix. Figure 4.10 indicates that when first incorporating the

order and driver feature information into the model, the performance of the model

gets improved. However, when this information is given too much attention, as the

corresponding parameters increase, much noise is also introduced into the model,

which impairs the performance of the model. Note that, although the two parameters

show similar trends, order feature information with the corresponding parameter λ1

contributes more and introduces less noise to the model, since the MAE values are

smaller compared to that of driver feature information with λ2.

λ

λ

Figure 4.10: Evaluation on λ1 and λ2

Figure 4.11 shows the performance comparison of λ3 and λ4. We can see as

the value of λ3 increases, the MAE value of the model first decreases, achieves the

optimal value when λ3 “ 10´1, and then increases. Similar trend can be observed

on λ4. Recall that λ3 and λ4 are respectively to control the contributions of the

order correlations and the driver correlations. Figure 4.11 indicates that when first

incorporating the order and driver correlations into the model, the performance of the
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model gets improved. However, when this information is given too much attention,

as the values of corresponding parameters increase, much noise is also introduced into

the model, impairing the performance of the model. Note that, although the two

parameters show similar trends, driver correlations with the corresponding parameter

λ4 contribute more and introduce more noise to the model, since the MAE values

are smaller at the beginning and larger at the end compared to that of order feature

information with λ3.

λ

λ

Figure 4.11: Evaluation on λ3 and λ4

Figure 4.12 shows the performance comparison of λ5. We can see as the value

of λ5 increases, the MAE value of the model first decreases, achieves the optimal

value when λ5 “ 1, and then dramatically increases. Recall that λ5 is to control

overfitting and group feature selection. Figure 4.12 indicates that the group feature

selection would help improve the performance of the model when the parameter is

relatively small (smaller than 1). While the parameter is too large (say larger than

1), the model could be under-fitting or not many useful group features are selected,

constraining the model performance from its best.
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Figure 4.12: Evaluation on λ5

4.9 Conclusion

In this work, we propose a coupled sparse matrix factorization (CSMF) model to

predict order response time on current day by fusing data from order history and

driver historical locations. Specifically, we address the heterogeneous fusion and data

sparsity challenges raised in this problem using our proposed model, which jointly

learns from multiple heterogeneous sparse data through the proposed weight setting

mechanism therein. Experiments on real-world datasets show improvement of our

approach as compared to various baseline models as well as its different variants.

The performances of many variants of the proposed method are also presented to

show the effectiveness of each component.
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Chapter 5

Coupled Weighted Tensor-matrix

Factorization for Order Accepting

Probability Prediction in Logistics

Services

In this chapter, we extend the previous similarity-based method to higher dimension

to consider more factors: not only the similarity among orders and drivers, but al-

so among time. Moreover, we improve the efficiency of the model. As an example

application, we study accepting time prediction in logistics, as it is a brand new ap-

plication and facilitate informed order dispatching, benefiting both users and service

providers.

5.1 Introduction

Using a mobile application to make on-demand orders for goods transportation is

becoming prevalent in logistics services. In this case, users can specify requirements

about the orders in real time, and autonomous van drivers can choose to accept

the interesting orders. Figure 5.1 illustrates the distributions of orders and drivers

in Kowloon, where orders are dispatched to available drivers through a dispatching

center. By connecting on-demand logistics needs with large numbers of autonomous
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van drivers, the emerging logistics service outperforms the traditional counterparts

(e.g., call centers) with faster response and higher efficiency.

However, most existing dispatching algorithms in on-demand logistics are imple-

mented just based on the spatial distances between drivers and orders, while ignore

the personalized preferences of drivers. This not only leads to inferior experience

for drivers, but also results into a high order cancel rate due to the large number of

mismatched orders and drivers. Therefore, to make more informed dispatching, it

is of high importance to estimate the probability of a driver accepting a particular

order. This order accepting probability, measuring how likely a driver will take an

order, is a key indicator for both of the attractiveness of the order and the prefer-

ences of the driver. Precisely predicting the order accepting probability of drivers

could guide order dispatching when particular orders have special requirements, offer

suggestions on order requirement adjustment when current requirements are hard to

fulfill, facilitate supply and demand analysis, etc. Thus, effective prediction on order

accepting probability would improve the user satisfaction and service efficiency, and

is desired in practice.

Figure 5.1: The distributions of orders and drivers, where the green balloon markers
represent idle drivers, the red balloon makers represent busy drivers, and the circles
represent orders.
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Nevertheless, effective order accepting probability prediction involves three major

challenges that cannot be easily addressed. The first challenge is heterogeneous data

fusion. Order accepting probability is affected by many factors such as order char-

acteristics, driver preferences and routine behaviors, and spatio-temporal contexts.

The information of these factors is usually extracted from different data sources and

heterogeneous in terms of formats and domains. Directly concatenating the features

extracted from different sources would lead to undesirable performance [108]. Thus,

to effectively consider all these factors is difficult, and requires advanced models.

The second challenge is sparsity. As each order is unique and can only be accepted

by one driver, the interactions between orders and drivers are very sparse, especially

for new drivers with very limited number of accepted orders. The third challenge is

efficiency. Computationally expensive models cannot be directly applied, since the

prediction has to be made in an efficient manner, so that the predicted order accept-

ing probability can be utilized for order dispatching and suggestions on requirement

adjustment in real time.

To address the aforementioned challenges, we propose a three-stage framework

with a Coupled Weighted Tensor-matrix Factorization (CWTF) model to predict the

order accepting probability accurately and efficiently. Specifically, we first group the

orders into clusters based on historical order data to solve the sparsity challenge;

then to fuse order characteristics and driver behaviors, we design an efficient tensor-

matrix factorization method to model and infer the accepting probability of each

driver with respect to each order cluster in each time slot; finally, given a new order

at a specific time, we find the most similar cluster, and use the cluster accepting

probability of the driver at that time as the prediction, which could be done in real

time.

We summarize the contributions of this work as follows:
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• To our knowledge, we are the first to study the important problem of order

accepting probability prediction in logistics services, and propose a three-stage

framework to effectively and efficiently address it.

• We propose the CWTF, which introduces weight setting and slice-based re-

formulation on the tensor, for effective and efficient heterogeneous fusion. A

corresponding optimization algorithm is also devised.

• We compare the proposed method with various baseline methods, and demon-

strate its superiority. We also evaluate the performance of several variants to

show the effectiveness of model components.

5.2 Related Work

In this section, we will review recent literatures that are closely related to our work

from the aspects of taxi order dispatching, logistics order forecasting & planning,

regression-based prediction and coupled tensor-matrix factorization.

Taxi Order Dispatching. To our knowledge, there are few works studying

the problem of order accepting probability prediction for goods in logistics services.

Most existing works focus on studying taxi order dispatch modeling [71, 22, 101, 56,

48, 87, 55, 33], which is similar to our task. Seow et al. [71] presented a novel multi-

agent approach to automating taxi dispatch in a distributed fashion. Ravina et al.

[33] proposed a taxi order supply forecasting methodology which incorporated infor-

mation from the affecting factors on taxi supply, such as driver incentive schemes,

holidays, hour of the day and the day of the week. Neema et al. [22] proposed a

multi-level clustering approach for forecasting taxi travel demand in the context of

a mobile application-based taxi hailing service. Miao et al. [55] studied the taxi

dispatch model with real-time sensing data, and proposed a Receding Horizon Con-

trol (RHC) framework to dispatch taxis in metropolitan areas. Fei Miao et al. [56]
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further studied the demand uncertainty issue in taxi order dispatch. To address this

issue, they developed a data-driven robust taxi dispatch framework to consider the

spatial-temporally correlated demand uncertainties. Zhang et al. [101] proposed a

combinatorial optimization model to maximize the global success rate in the dispatch

system of a taxi-booking app. Tong et al. [82] proposed a unified regression model

to accurately predict the Unit Original Taxi Demand (UOTD) for online taxicab

platforms. Although many models are proposed for taxi order dispatch modeling,

whether a taxi driver will accept the order of a customer is not fully explored, let

alone our studied problem of order accepting probability prediction for goods in l-

ogistics services. The differences in both the studied problem and the application

scenarios make the above mentioned models not applicable to our problem.

Logistics Order Forecasting & Planning. The studied problem is also related

to logistics services, and thus we also review the related work in order forecasting &

planning in logistics services. Previous researches on order planning mostly focused

on travel time prediction of the orders. Lin et al. [50] provided an early survey

on this problem. Simroth and Zahle studied the problem of travel time prediction

in transportation and logistics [75]. A nonparametric distribution-free regression

model is proposed to predict the remaining travel times of long-range trips. Ehmike

et al. [26] proposed to utilize the source of Floating Car Data (FCD) to develop

and provide the travel times in logistics services. Cattaruzza et al. [16] reviewed the

vehicle routing problems for the logistics orders in a city. They gave a comprehensive

overview of the literature devoted to vehicle route optimization in cities. Ehmke

and Campbell [25] developed and compared strategies that maximize the profits

of a logistics service provider by accepting as many delivery requests as possible,

while assessing the potential impact of a request on the service quality of a delivery

tour. Groß et al. [35] proposed the usage of interval travel times (ITT) to enable

cost-efficient and reliable routing for logistics services in urban areas. Laan et al
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[83] analyzed the logistics order forecasting and planning process, and found several

internal and external factors that can influence the performance of order forecasting

and planning. Brent and Mattew [91] studied the the problem of creating order

forecasting problem, and they discovered that the order historical data is essential to

forecast the future orders placed by retailers. To summarize, most previous work on

logistics order planning & forecasting focused on travel route planning, order arriving

time prediction, and order number prediction. Predicting the probability of a driver

accepting an on-demand order is less touched.

Regression-based Prediction. The focus of regression analysis is on modeling

the relationship between a dependent variable and one or more independent variables

[28], and has been widely used for prediction and forecasting in various applications

[44, 86, 102, 94]. Wang et al. [86] proposed a sparse logistic regression model that

can effectively handle the multi-dimensional data, and applied the model to predict

the onset risk of patients with Alzheimer’s disease and heart failure. Zhang et al.

[102] proposed a generalized linear mixed regression model for response prediction of

the LinkedIn users. A significant advantage of their model is that it scales to very

large datasets. Yan et al. [94] proposed a coupled group lasso regression model CGL

to predict the click through rate in display advertising. Compared to traditional

linear regression models, CGL can capture the conjunction information from user

features and ad features. In our studied problem, directly applying regression-based

models may not achieve promising results due to the heterogeneity and sparsity of

the data.

Coupled Tensor-Matrix Factorization. As in this paper we utilize the cou-

pled tensor-matrix factorization model, we also briefly review recent advances in this

topic. Tensor matrix or coupled tensor-matrix factorization is widely used for data

fusion [1, 65] and missing data completion [27, 51, 90]. This technique has attracted

rising research interests recently and has been explored in various areas and tasks,
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including graph mining [27], urban computing [89, 88, 111], natural language pro-

cessing [17], and image processing [51]. Beyza et al. [27] applied coupled tensor

factorization technique to link prediction with heterogeneous data. They modelled

this problem as filling the missing entries in a relational dataset, and proposed to

address this issue by coupled tensor factorization. Wang et al. [88] proposed to

model urban traffic congestions in different regions and time slots as a tensor, and

utilized a tensor-matrix co-factorization method to estimate city-level traffic con-

gestions. Zheng et al. [111] for the first time studied the urban noise diagnose

problem with a coupled tensor-matrix factorization model. Their model can effec-

tively discover the major types of noise in different areas of New York. As coupled

tensor-matrix factorization is usually time consuming, some recent works also pro-

posed some efficient solutions. Rendle and Thieme [69] proposed the factorization

model Pairwise Interaction Tensor Factorization to explicitly model the pairwise in-

teractions between users, items and tags for item recommendation. Evangelos et al.

[64] proposed Turbo-SMT algorithm which can accelerate coupled tensor-matrix fac-

torization by 200x. Tensor decompositions have been very popular and successful in

achieving state-of-the-art performance in many applications. However, our proposed

weighted coupled tensor-matrix factorization model is different from existing models

in both the weight setting mechanism and the reformulation of the CP model into

the coupled factorization, which bring more improvement in accuracy and efficiency.

5.3 Framework Overview

Figure 5.2 presents the framework of our work, which consists of three stages, i.e.,

grouping, inferring and retrieving. In the grouping stage, orders are grouped into

different clusters C1, C2, . . . , Cm based on their characteristics so as to enrich the

interactions between orders and drivers. In the inferring stage, we build a three-
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mode tensor P , and each entry pi,j,t stores the accepting probability of driver drj to

an order cluster Ci in a specific time slot t. Some of the entries in the tensor can be

directly derived from historical data, while others are missing and can be inferred

with the proposed CWTF method. In the retrieving stage, given a new order oi

and time t, we find the most similar cluster Ck to it, and then use cluster accepting

probability pk,j,t as the prediction result of driver drj to the order oi in time slot t.

The framework is general that different clustering and tensor factorization methods

can be fitted into it for order accepting probability prediction.

Figure 5.2: Framework for order accepting probability prediction

5.4 Feature Extraction

The essential objective of this work is to explore the preferences of drivers to different

orders. Therefore, we extract features from two domains of data: features of orders

to capture their characteristics and features of drivers to capture their behaviors,

respectively. The extracted features are then utilized to analyze the preferences of

drivers to different orders using the proposed model.

5.4.1 Order Feature Extraction

For each order in on-demand logistics services, we extract the following four categories

of features that may affect the preferences of drivers.
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• Temporal features : the hour of the day, the day of the week, and whether the

day is a public holiday when the order is made.

• Spatial features : the origin and destination regions of the order, where origin

region is the region in which the order is made, and the destination region is

the region to which the goods will be delivered. Specifically, the data used

for evaluation in this work is from Hong Kong and we partition the whole city

into 140 regions according to its administration partition, which is illustrated in

Figure 5.3. Note that, the solution proposed in this work can also be applicable

for other partition methods, e.g., grid partition.

• Price relevant features : the price computed based on the start and the end

locations of the order and the travelling distance between the two locations,

and the bonus provided by the user to attract drivers.

• Personalized requirement features : the additional requirements specified by

users, e.g., whether the user has pets and whether the user needs help to carry.

Specifically, there are 27 types of additional requirements in total for users to

mark in the data used by this work.

(a) Map of Hong Kong (b) Admin partition of Hong Kong

Figure 5.3: The map and the administration partition of Hong Kong.
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We then use one-hot encoding to transform all categorical features to numerical

values before further processing. In addition, each order is associated with an ac-

cepting time (i.e., the time costed for the order to be accepted by the driver who

completed it) that serves as the indicator of order accepting probability (more details

in Section 5.6.2).

5.4.2 Driver Feature Extraction

In addition to order features, we also extract the following features for each driver

to obtain the behavior information.

• Order accepting features : the count, the average response time, the average

price, and the average bonus of all the orders accepted by the driver.

• Spatial features : the top-5 regions in which the driver accepts the most orders,

capturing the locality preference of the driver.

• Temporal features : working time and idle ratio. The working time is quite flex-

ible for drivers in on-demand logistics services because they have the autonomy

to decide when to work. Therefore, with the GPS trajectory data with geo-

graphic location and status (busy or idle, as shown in Figure 5.4), we compute

the working time as well as the idle ratio, i.e., the ratio of time that the driver

is idle, for each driver.

• Order requirement features : the number of orders with each particular type

of additional requirement. As stated previously, many orders are associated

with some additional requirements, which may greatly affect drivers’ willing to

accept these orders. For example, some drivers may directly reject the orders

with additional requirements which they cannot satisfy, e.g., speaking English.

Therefore, for each driver, we count the number of orders accepted in history

with respect to each particular type of additional requirement.
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Figure 5.4: The GPS trajectory of a driver, where green balloon markers indicate
that the driver is idle and red balloon makers mean that the driver is busy with an
order.

5.5 Methodology

5.5.1 Notation and Basic Operations

The mode of a tensor is the number of dimensions, also known as ways. An N -mode

tensor is represented as A P R
I1ˆI2ˆ¨¨¨ˆIN , where In is the cardinality of its n-th mode,

n P t1, 2, ¨ ¨ ¨ , Nu. An element of a vector a, a matrix A, or a tensor A is denoted by

ai, ai,j, ai,j,k, etc., depending on the number of modes. The Hadamard product and

the outer product [45] are denoted by ˚ and b, respectively. The diagonal matrix

and the trace of matrix A are denoted by diagpAq and trpAq, respectively. A slice of

a three-mode tensor is a matrix, extracted by fixing all modes but two. Specifically,

the frontal slice of a three-mode tensor A is a:,:,k, denoted as Ak.

5.5.2 Order Clustering

With the extracted features for orders, we cluster all orders into different groups

using Mini Batch K-Means [70], which is much more efficient than other clustering

algorithms when applied for a large number of orders. To determine the cluster
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number m, we evaluate the inertia I (i.e., the sum of the square distances of samples

to the nearest cluster center) of each m by the following formula.

I “
ÿ
o

}fo ´ fc}22 (5.1)

where fo is the feature vector of order o, and fc is the features of the nearest cluster

center of order o. Essentially, inertia is used to quantify the cohesion of generated

clusters and the smaller the better. Figure 5.5(a) illustrates the inertia with different

values of m. As suggested by Figure 5.5(a), we set m to 130 because a smaller m has

higher processing efficiency and the inertias of other m values larger than 130 keep

almost the same.

(a) The inertia for different values of m in Mini Batch K-Means

(b) The distribution of orders over different clusters

Figure 5.5: The clustering of orders.

Figure 5.5(b) illustrates the clustering results when setting m to 130. Without

loss of generality, we assume that all orders are clustered into clusters C1, C2, . . . , Cm.

For each cluster Ci, we compute the average values of the features of all the orders

in Ci as the corresponding cluster features. For example, the feature vector fCi
of
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cluster Ci is computed by

fCi
“

ř
oPCi

fo

|Ci| (5.2)

where |Ci| is the number of orders in cluster Ci. We organize the features of all

clusters into a cluster feature matrix X.

As suggested by Figure 5.5(b), the number of orders varies greatly across clusters.

With one cluster of few orders, we cannot get enough information about it. To deal

with this issue, as discussed in Section 5.5.3, we will introduce a weight for each

cluster with respect to the size to indicate its confidence for analysis.

5.5.3 The CWTF Model

Weighted Slice-based CP Reformulation

CANDECOMP/PARAFAC (CP) factorization [36] is a widely used technique for

exploring and extracting the underlying structure of multi-way data, which is critical

to the development of our proposed method. The CP factorization of a three-mode

tensor P P R
MˆNˆK is approximated by 3 latent matrices U,V and T, such that

P «
Rÿ

r“1

ur b vr b tr “ �U,V,T� (5.3)

where �¨� is defined as the CP factorization operator for shorthand and the latent

matrices U P R
MˆR “ ru1, ¨ ¨ ¨ ,uRs, V P R

NˆR “ rv1, ¨ ¨ ¨ ,vRs, T P R
KˆR “

rt1, ¨ ¨ ¨ , tRs, and R is referred to as the rank of the tensor P , indicating the number of

factors. To increase memory efficiency and facilitate parallel computation, Eq. (5.3)

can be reformulated with respect to the frontal slice Pk of the tensor P [14]:

Pk « USkV
T (5.4)

where Sk “ diagpTpk :qq and k “ 1, 2, ...K.

In this work, we build a three-mode tensor P , and each entry pi,j,t stores the

accepting probability of a driver drj to an order cluster Ci in a specific time slot
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t. Some of the entries in the tensor can be directly derived from historical data,

while others are inferred with the above slice-based CP reformulation efficiently. For

the entries that can be derived from historical data, each entry pi,j,t is computed by

averaging the accepting probabilities of orders in Oi,j,t, which denotes the orders in

cluster Ci accepted by driver drj in time slot t. In addition, we build a corresponding

weight tensor W , where each entry wi,j,t indicates the confidence of the accepting

probability pi,j,t. A smaller wi,j,t means lower confidence on pi,j,t, and the weight

wi,j,t is computed by

wi,j,t “ minp|Oi,j,t|, 5q
5

¨ p0.5 ` 0.05

maxpσi,j,t, 0.1qq (5.5)

where |Oi,j,t| computes the number of orders in Oi,j,t, and σi,j,t is the standard devi-

ation of the accepting probabilities of orders in Oi,j,t. Specifically, term
minp|Oi,j,t|,5q

5

considers the number of orders, so that if there are less orders in Oi,j,t, then the

weight corresponds to pi,j,t is smaller. We set the upper bound to 5 based on the

statistical analysis of the data used in this work. Generally, if the number of or-

ders is larger, we can set the upper bound to a larger value, otherwise a smaller

value is assigned. The second term p0.5 ` 0.05
maxpσi,j,t,0.1qq considers the distribution of

order accept probabilities, so that if the order accepting probabilities in Oi,j,t vary

a lot, then the corresponding weight is smaller. The three numbers 0.05, 0.5 and

0.1 are introduced to control the contributions of this term, and make the value of

p0.5 ` 0.05
maxpσi,j,t,0.1qq between 0 and 1.

As a result, the objective function for the weighted slice-based reformulation of

CP is given as below.

min
U,V,T

L “ 1

2

Kÿ
k“1

}Wk ˚ pPk ´ USkV
Tq}2F (5.6)

86



Coupled Tensor-matrix Factorization

The probability tensor is originally very sparse, i.e., many entries are missing due

to either some drivers have never accepted orders in some clusters or time slots, or

few orders were made in some time slots. Thus, we incorporate more information

based on order and driver data to achieve a more accurate factorization. Specifically,

we use cluster feature matrix X to help determine the cluster latent matrix U,

which is achieved by factorizing X P R
MˆS into low-rank latent matrices U P R

MˆR

and G P R
RˆS. Similarly, we factorize the driver feature matrix Y P R

NˆT into

V P R
NˆR and H P R

RˆT . That is to say, we collaboratively factorize P to U, V

and T, with cluster feature matrix X to low-rank latent matrices U and G, and

driver feature matrix Y to V and H, where they share the latent matrices U and V.

In this way, cluster feature matrix X and driver feature matrix Y would contribute

to a more accurate factorization of P through the shared matrices U and V. The

objective function is formulated as below, where λ1 and λ2 are the parameters to

control the contribution of each component during the coupled factorization.

min
U,V,T,G,H

L “1

2

Kÿ
k“1

}Wk ˚ pPk ´ USkV
Tq}2F`

λ1

2
}X ´ UG}2F ` λ2

2
}Y ´ VH}2F (5.7)

Correlation Utilization and Group Feature Selection

To further alleviate the data sparsity problem, we also utilize correlations between

clusters as well as drivers to help determine the cluster latent matrix U and the

driver latent matrix V. This is achieved by incorporating information in Laplacian

matrices of their correlation graphs using trpUTLuUq and trpVTLvVq, respectively.
For cluster correlation, we have Lu “ pD ´ Zq P R

MˆM , where Z is a correlation
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matrix of order clusters, with each entry zi,j representing the value of absolute Pear-

son correlation between order cluster Ci and Cj, and D is a diagonal matrix with

the diagonal entry di,i “ ř
i zi,j. Then, trpUTLuUq is obtained through the following

deduction, which guarantees that two clusters Ci and Cj with a higher correlation

(i.e., zi,j is larger) should also have a closer distance between the vectors ui and uj

in the matrix U [111].

1

2

ÿ
i,j

zi,j}ui ´ uj}22 “
ÿ
i,j

uizi,ju
T
i ´

ÿ
i,j

uizi,ju
T
j

“
ÿ
i

uidi,iu
T
i ´

ÿ
i,j

uizi,ju
T
j

“ trpUT pD ´ ZqUq
“ trpUTLuUq

Similarly, we define Lv “ pD̃ ´ Z̃q P R
NˆN as the Laplacian matrix of the driver

correlation graph, and consider the driver correlation as trpVTLvVq. In this way, we

utilize cluster correlations and driver correlations for accurate factorization of P to

U, V and T.

We also add an �2,1-norm regularization on each latent matrix to encourage all

feature matrices to select a common set of features and thus play the role of group

feature selection [98]. Since the data contain various kinds of information, we assume

only a small part of features are predictive.

Coupled Weighted Tensor-matrix Factorization

All the components mentioned in previous subsections are combined, and the final

model is illustrated in Figure 5.6. We first set the corresponding weight tensor W ,

and factorize P with cluster feature matrix X and driver feature matrix Y, so that

the factorized shared latent matrices U and V are more accurate. Additionally,
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we utilize the cluster correlation matrix Z, so that if two clusters Ci and Cj are

correlated, they would have a closer distance between the vectors ui and uj in the

matrix U. We utilize the driver correlation matrix Z̃ in the same way to make V

more accurate.

Figure 5.6: Coupled Weighted Tensor-matrix Factorization

The objective function of the proposed CWTF model is formally given as below.

min
U,V,T,G,H

L “ 1

2

Kÿ
k“1

}Wk ˚ pPk ´ USkV
Tq}2Flooooooooooooooooomooooooooooooooooon

accepting probability factorization

`

λ1

2
}X ´ UG}2Floooooomoooooon

cluster factorization

`λ2

2
}Y ´ VH}2Floooooomoooooon

driver factorization

`

λ3

2
trpUTLuUqlooooomooooon
cluster correlation

`λ4

2
trpVTLvVqlooooomooooon
driver correlation

`

λ5

2
p}U}2,1 ` }V}2,1 ` }T}2,1 ` }G}2,1 ` }H}2,1qloooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

row-wise sparsity regularization

(5.8)
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where
řK

k“1 }Wk ˚ pPk ´ USkV
Tq}2F is to control the error of factorizing accepting

probability tensor P ; }X ´ UG}2F is to control the error of factorization of cluster

feature matrix X; }Y´VH}2F is to control the error of factorization of driver feature

matrixY; tr(UTLuU) and tr(VTLvV) is to utilize the cluster and driver correlations;

λ1, λ2, λ3 and λ4 are used to control the contribution of each component during the

coupled factorization, and λ5 is a regularization parameter preventing overfitting and

controlling group feature selection.

Optimization Algorithm

We devise an efficient iterative algorithm to solve the non-convex objective function

in Eq. (5.8), by alternatively updating one variable while fixing others until conver-

gence. Besides, as the �2,1-norm is not continuous on the origin, directly minimizing

the compound �2,1 objective function is difficult. We employ the half-quadratic min-

imization method [61] to approximate the �2,1-norm. Taking U as an example, we

transform:

}U}2,1 « trpUTQuUq (5.9)

where Qu is a diagonal matrix with the i-th diagonal element as qui,i “ 1
2}ui}2 . Simi-

larly, we introduce the auxiliary variables Qv, Qt, Qg, and Qh for V, T, G, and H,

respectively.

Based on the above transformation, we calculate the derivative of Eq. (5.8) with

respect to U,V,Tk,G and H, respectively, and set them to zero as shown in E-

q. (5.10). Particularly, we make the following deduction to calculate the derivative

of Eq. (5.8) with respect to Tk.
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B 1
2
} řK

k“1 Wk ˚ pPk ´ USkV
Tq}2F

BTk

“ Bp´ ă Wk ˚ Pk,Wk ˚ pUSkV
Tq ąq

BTk

` B 1
2
p}Wk ˚ Pk}2F ` }Wk ˚ pUSkV

Tq}2F q
BTk

“ Bp´trppWk ˚ PkqTpWk ˚ pUSkV
Tqqq

BTk

` BptrppWk ˚ pUSkV
TqqTWk ˚ pUSkV

Tqqq
BTk

“ Bp´trppWk ˚ pUSkV
TqqTpWk ˚ Pkqqq

BTk

` BptrppUSkV
TqTpWk ˚ Wk ˚ pUSkV

Tqqqq
BTk

“ Bp´trppUSkV
TqTpWk ˚ Wk ˚ Pkqqq

BTk

` BptrpdiagpTkqpUTpWk ˚ Wk ˚ pUSkV
TqqVqq

BTk

“ Bp´trpdiagpTkqpUTpWk ˚ Wk ˚ PkqVqqq
BTk

` BpTkdiagpUTpWk ˚ Wk ˚ pUSkV
TqqVq

BTk

“ diagpUTpWk ˚ Wk ˚ pUSkV
T ´ PkqqVq
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$’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’%

BL
BU “

Kÿ
k“1

Wk ˚ Wk ˚ pUSkV
T ´ PkqVSk

` λ1pUG ´ XqGT ` λ3LuU ` λ5QuU “ 0

BL
BV “

Kÿ
k“1

pWk ˚ Wk ˚ pUSkV
T ´ PkqUSkqT

` λ2pVH ´ YqHT ` λ4LvV ` λ5QvV “ 0

BL
BTk

“diagpUTpWk ˚ Wk ˚ pUSkV
T ´ PkqqVq

` λ5QtTk “ 0

BL
BG “λ1U

TpUG ´ Xq ` λ5QgG “ 0

BL
BH “λ2V

TpVH ´ Yq ` λ5QhH “ 0

(5.10)

Eq. (5.10) involves solving five linear systems. We use conjugate gradient (CG)

method to solve it, which is an effective and widely used technique [42], and only

needs to perform matrix multiplications of Eq. (5.10). The overall algorithm is

summarized in Algorithm 5.1.

Algorithm 5.1 Algorithm to solve the problem in Eq. (5.8)
Input: Accepting probability tensor P, weight tensor W, cluster feature matrix X, driver

feature matrix Y, Laplacian matrices Lu,Lv and regularization parameters
Output: U, V, T
1: Initialize U,V,T,G,H randomly
2: Calculate the diagonal matrices Qu, Qv, Qt, Qg, Qh
3: repeat
4: Update U, V, T, G, H by solving Eq. (5.10) using CG method
5: Update the diagonal matrices Qu, Qv, Qt, Qg, Qh by

qui,i “ 1

2}ui}2 , q
v
i,i “ 1

2}vi}2 , q
t
i,i “ 1

2}ti}2 ,

qgi,i “ 1

2}gi}2 , q
h
i,i “ 1

2}hi}2
6: until convergence

Convergence Analysis. The objective monotonically decreases in each itera-

tion and it has a lower bound (proof can be derived in a similar manner as in [38]).
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Therefore, Algorithm 5.1 can converge to a local minimum of the objective function

in Eq. (5.8).

5.5.4 Prediction

After inferring the missing entries in the probability tensor P , we have the knowledge

about each driver’s preference to each cluster of orders in each time slot. Therefore,

with the probability tensor P , we can predict the accepting probability for new

orders. Concretely, given a new order oi in time slot t, we first calculate the most

similar order cluster Ck for oi by

Ck “ arg min
CPtC1,C2,...,Cmu

}foi ´ fC}22 (5.11)

where foi is the feature vector of order oi, and fC is the feature vector of cluster C.

Intuitively, cluster Ck has the minimum Euclidean distance to order oi in the feature

space. Then, the accepting probability pk,j,t of driver j to order oi in time slot t is

retrieved from the probability tensor P and returned as the predicted result.

5.6 Experiments

5.6.1 Datasets

In this work, we take a real-world dataset from a leading logistics company in Hong

Kong, as a use case to present the application of our solution to order accepting

probability prediction. We collect around 800,000 orders within 61 consecutive days

in 2016. Figure 5.7 illustrates the spatial and temporal distributions of the collected

orders. The features of collected orders are extracted according to Section 5.4.1.

Among the collected orders, we have around 4,000 distinct regular drivers. Fig-

ure 5.8(a) presents the average number of active drivers in each hour of the day.

For each particular hour, the number of active drivers is computed by counting the
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(a) Spatial distribution (b) Temporal distribution

Figure 5.7: The spatial and temporal distributions of collected orders

number of distinct drivers who have picked at least one order within that hour. Ac-

cording to Figure 5.8(a), we have around 1,250 active drivers during the peak hours.

In addition, the drivers are required to report their locations to the order dispatching

center. As illustrated in Figure 5.8(b), most drivers report their GPS locations with

a time interval less than one minute. The features of drivers are extracted according

to Section 5.4.2.

(a) Number of drivers in each hour of the day (b) Distribution of sampling time intervals of GPS
records

Figure 5.8: The average number of active drivers in different hours of a day and the
distribution of sampling time intervals of GPS records

Note that, we conduct some data pre-processing to remove the outliers before

extracting the features of orders and drivers. Concretely, we utilize both temporal
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and spatial filters to remove those orders and drivers that have abnormal locations

and time records. In addition, we also remove the time slots with abnormal numbers

of orders, e.g., the time slots on day 295 in Figure 5.7(b).

5.6.2 Transform Accepting Time to Accepting Probability

In practice, it is difficult to get the order accepting probability directly. However,

we can compute the order accepting probability indirectly from other indicators.

In on-demand logistics services, users make orders while drivers provide services to

satisfy the order demand. Particularly, once an order is made, the time costed for

it to be accepted by a driver can capture its attraction to the driver and express

the preference of the driver. Therefore, we compute the order accepting probability

based on the order accepting time.

Figure 5.9(a) illustrates the distribution of order accepting time for all the col-

lected orders. According to the figure, most orders are accepted within 40 seconds.

(a) Distribution of order accepting time (b) Order accepting probability vs. accepting time

Figure 5.9: The distribution of order accepting time, and order accepting probability
vs. order accepting time

To compute the order accepting probability based on order accepting time, we

introduce an exponential function to convert the accepting time to the accepting

probability. Given order accepting time t, the corresponding order accepting proba-
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bility p is computed by

p “ eat (5.12)

where a is a parameter set by the logistics service providers according to their re-

quirements for the service. For example, in this work, we assume that the accepting

time of 40 seconds corresponds to an order accepting probability of 0.8. We can

then get the value of a by solving the equation e40a“0.8. The corresponding curve

of the order accepting probability is plotted in Figure 5.9(b). Note that the longer

the accepting time is, the lower the accepting probability is. The pivot probability

value (i.e., 0.8) to determine the value of a could be set flexibly according to the

application scenarios.

5.6.3 Settings and Baselines

Among the collected 840,538 orders within 61 consecutive days, the orders in the

first 46 days are used for training while the others are used for testing. Without loss

of generality, we set a time slot to 60 minutes in this work.

In order to demonstrate the effectiveness of our CWTF method, we compared it

with the following baselines.

• Ridge: Ridge regression [37] is a commonly used method for regression prob-

lem by imposing a penalty on the size of coefficients of ordinary least squares.

• Lasso: The Lasso [81] is another widely used method for regression problem

by imposing a penalty on the number of nonzero coefficients of ordinary least

squares.

• EN: The Elastic Net [115] is a regularized regression method that linearly

combines the �1 and �2 penalties of the lasso and ridge models, providing a

trade-off option between the sparsity of coefficients and the sizes of coefficients.
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• RF: Random Forest [12] regression produces a prediction model in the form of

an ensemble of decision tree models through bagging.

• GB: Gradient Boosting [29] regression is an ensemble of tree models in a boost-

ing manner. It always achieves optimal performance in various machine learn-

ing competitions.

For all these baselines methods, we join the order features with the driver features

into a combined feature vector via driver id, and use the combined feature vector

as input. We apply grid search on the important parameters to achieve the optimal

performance of the baseline methods. Specifically, for Ridge, Lasso and Elastic Net,

alpha is tuned; for Random Forest, multiple parameters including the number of trees

in the forest, the minimum number of samples required to be at a leaf node, and the

maximum depth of the tree, are tuned; for Gradient Boosting, multiple parameters

including the number of boosting stages, the minimum number of samples required to

be at a leaf node, the maximum depth of the individual regression, and the learning

rate shrinking the contribution of each tree, are tuned.

Evaluation Metric. All methods are evaluated by the accuracy of their pre-

dicted accepting probability. The metric we use in the experiment is Mean Absolute

Error (MAE):

MAE “
řN

i“1 |yi,ji,ti ´ ŷi,ji,ti |
N

(5.13)

where N is the number of predicted orders, yi,ji,ti is the real accepting probability of

driver ji to order i in time ti from testing data, and ŷi,ji,ti is the predicted accepting

probability.

5.6.4 Model Comparison

Figure 5.10 shows the performance comparison among various methods. The lower

the MAE value is, the better the method performs. One can see that among the
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three linear baseline methods, Ridge performs better than Lasso and EN. Among

the two tree ensemble models, GB performs much better than RF. The proposed

CWTF method achieves the best MAE value compared to all the baseline methods,

which demonstrates a considerable performance improvement.

Figure 5.10: Performance comparison among various methods

5.6.5 Evaluation on Model Components

Recall in Section 5.5.3, there are several components in the proposed model. To

evaluate each component of the CWTF model, we compare it with the following

three variants.

• CWTF-Y: In this variant, the driver feature matrix Y is not included in the

model. We can derive it by setting λ2 “ 0.

• CWTF-Lp: In this variant, the cluster and driver correlations are not included

in the model. We can derive it by setting λ3, λ4 “ 0.

• CWTF-W: In this variant, the weights of all the non-missing entries in weight

tensor W are fixed to 1.

Figure 5.11 shows the performance comparison among these variants. Without the

cluster and driver correlations, CWTF-Lp performs worst, which indicates fusing
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correlation information is quite crucial in prediction. Without the proposed weight

setting mechanism, CWTF-W cannot achieve a low MAE value, which shows that the

weights contribute significantly in the prediction. CWTF-Y also performs slightly

worse than CWTF, which indicates that the driver features have a positive effect on

the prediction.

Figure 5.11: Performance comparison among variants

5.6.6 Evaluation on Parameters

We also investigate how the parameters affect the performance of the CWTF model.

As shown in Section 5.5.3, there are 5 parameters in the proposed model, namely

λ1, λ2, λ3, λ4, and λ5. We range all the parameters from 10´2 to 101, and the

parameters that achieve the optimal performance are λ1 “ 0.5, λ2 “ 0.5, λ3 “ 10´1,

λ4 “ 10´1, and λ5 “ 10´1. To analyze how each parameter affects the performance

of the model, below we show the performance of varying one parameter while fixing

other parameters as the optimal values.

Figure 5.12 shows the performance comparison of λ1 and λ2. We can see as

the value of λ1 increases, the MAE value of the model first decreases, achieves the

optimal value when λ1 “ 0.5, and then increases. Similar trend can be observed

on λ2, while the MAE achieves the optimal value when λ2 “ 0.5. Recall that λ1

and λ2 are respectively to control the contributions of the cluster feature matrix and
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the driver feature matrix. Figure 5.12 indicates that when first incorporating cluster

and driver feature information into the model, the performance of the model gets

improved. However, when this information is given too much attention, as the values

of corresponding parameters increase, much noise is also introduced into the model,

which impairs the performance of the model. Note that, although the two parameters

show similar trends, cluster feature information with the corresponding parameter

λ1 contributes more and introduces less noise to the model, since the MAE values

are smaller compared to that of driver feature information with λ2.

λ

λ

Figure 5.12: Evaluation on λ1 and λ2

Figure 5.13 shows the performance comparison of λ3 and λ4. We can see as

the value of λ3 increases, the MAE value of the model first decreases, achieves the

optimal value when λ3 “ 10´1, and then increases. Similar trend can be observed

on λ4. Recall that λ3 and λ4 are respectively to control the contributions of the

cluster correlations and the driver correlations. Figure 5.13 indicates that when first

incorporating the cluster and driver correlations into the model, the performance

of the model gets improved. However, when this information is given too much

attention, as the values of corresponding parameters increase, much noise is also

introduced into the model. Note that, although the two parameters show similar

trends, cluster correlations with the corresponding parameter λ3 contribute more

and introduce more noise to the model, since the MAE values are smaller at the
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beginning and larger at the end compared to that of driver correlation information

with λ4.

λ

λ

Figure 5.13: Evaluation on λ3 and λ4

Figure 5.14 shows the performance comparison of λ5. We can see as the value

of λ5 increases, the MAE value of the model first decreases, achieves the optimal

value when λ5 “ 10´1, and then dramatically increases. Recall that λ5 is to control

overfitting and group feature selection. Figure 5.14 indicates that the group feature

selection would help improve the performance of the model when the parameter is

relatively small (e.g., 0.1). While the parameter is too large (e.g., 1), the model

could be under-fitting or not many useful group features are selected, constraining

the model performance from its best.

Figure 5.14: Evaluation on λ5

101



5.6.7 Evaluation on Setting of Rank, Correlation and Con-
vergence

To further investigate the performance of the proposed model, we evaluate another

three important parts of CWTF.

The first part is to investigate how the setting of rank R would affect the perfor-

mance of the model. We range the value of rank R from 10 to 180 to see its impact.

The results are shown in Figure 5.15. As the value of rank increases, the MAE first

decreases and achieves the optimal value when R “ 90, and then increases. Recall in

Section 5.5.3, rank R is the rank of tensor, and it also determines the rank of latent

matrices. If the rank is set too low, the model may not be able to effectively learn

from data; if the rank is set too high, the model may be overfitting.

Figure 5.15: Evaluation on the setting of rank

The second part is to investigate how the setting of correlation affects the per-

formance of the model. Previously in Section 5.5.3, we use Pearson correlation to

measure the correlations among clusters and drivers. Now we also compare it to

another widely used correlation metric: Spearman’s rank correlation [77]. While

Pearson correlation measures linear relationships, Spearman’s rank correlation mea-

sures monotonic relationships including both linear and nonlinear relationships. The

results are shown in Figure 5.16. The CWTF using Pearson correlation is slight-
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ly better than CWTF using Spearman’s rank correlation, which may indicate the

correlations in the data is mainly linear.

Figure 5.16: Evaluation on the setting of correlation

The last part is to investigate the convergence rate of CWTF. As shown in Figure

5.17, we can see that the value of the objective function decreases dramatically in

the first 5 iterations. The decreasing trend becomes slower after 5 iterations, and

finally the algorithm converges after 15 iterations.

Figure 5.17: Evaluation on convergence

5.7 Conclusion

In this work, we study the important problem of order accepting probability pre-

diction in logistics services. Specifically, we propose a three-stage framework with a
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Coupled Weighted Tensor-matrix Factorization model to deal with the heterogeneous

data fusion, sparsity and efficiency challenges. Experiments on real world datasets

demonstrate the superiority of the proposed method. The performance of its several

variants is also presented to show the effectiveness of each model component.
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Chapter 6

Conclusions

Data analytics for urban computing is a challenging task in the complex and change-

able environment. In addition, most of current research works focus on analyzing

the data collected from a single domain, while there are actually multi-domain data

existing in the urban spaces which make the analysis even harder to perform. The

joint analysis of urban big data of different domains from multiple sources is very

useful. It helps us to gain the hidden insights and enable intelligent decision-making.

Specifically, cross domain data analytics has two advantages over traditional single

domain data analytics. First, it offers a more comprehensive picture about the stud-

ied problems based on the information from different angles, where valuable insights

can be discovered by analyzing the cross domain big datasets. Second, it improves

decision making by complementing data sources for joint analysis, especially for the

cases where data are insufficient in some domains.

Based on the above observations, I focus on Cross Domain Data Analytics

for Urban Computing , and study the problem of jointly analyzing data from dif-

ferent domains to generate hidden insights and enable intelligent decision-

making with following three important applications in urban computing.

First, we study the problem of traffic congestion, and show how to jointly utilize

data from three domains, namely GPS trajectories, road network and POI to generate
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insights. Specifically, we propose a three-phase framework to explore the congestion

correlation between road segments from multiple real world data. In the first phase,

we extract congestion information on each road segment from GPS trajectories of

over 10,000 taxis, define congestion correlation and propose a corresponding mining

algorithm to find out all the existing correlations. In the second phase, we extract

various features on each pair of road segments from road network and POI data. In

the last phase, the results of the first two phases are input into several classifiers

to predict congestion correlation. We further analyze the important features and

evaluate the results of the trained classifiers through experiments. We found some

important patterns that lead to a high/low congestion correlation, and they can

facilitate building various transportation applications. In addition, we found that

traffic congestion correlation has obvious directionality and transmissibility.

Second, we study the problem of order response time prediction to enable intelli-

gent decision-making in logistics services by jointly considering both order historical

records and driver GPS trajectories from two different domains. Specifically, we fore-

cast order response time on current day by fusing data from order history and driver

historical locations. Specifically, we propose Coupled Sparse Matrix Factorization

(CSMF) to deal with the heterogeneous fusion and data sparsity challenges raised in

this problem. CSMF jointly learns from multiple heterogeneous sparse data through

the proposed weight setting mechanism therein. Experiments on real-world datasets

demonstrate the effectiveness of our approach, compared to various baseline meth-

ods. The performances of many variants of the proposed method are also presented

to show the effectiveness of each component.

Third, we extend the previous method to incorporate more context information

by proposing a Coupled Weighted Tensor-matrix Factorization (CWTF) for accurate

prediction on order accepting probabilities of van drivers, which would facilitate

efficient order dispatching and improve user experience. Concretely, we propose a
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three-stage framework with a Coupled Weighted Tensor-matrix Factorization method

for order accepting probability prediction in logistics services. Specifically, orders

are first grouped into clusters to enrich the sparse interactions between orders and

drivers; then an accepting probability tensor with the three dimensions of driver,

order cluster, and time is generated by a tensor-matrix factorization method that

fuses order characteristics and driver behaviors in an efficient way; finally given a

new order, the accepting probability of each driver is efficiently predicted by directly

retrieving from the learned tensor. The experiment results on a large dataset from

a famous app-based logistics platform, demonstrate the superiority of the proposed

method against various baseline methods.

In summary, we propose new cross domain data analytics methods for urban

computing to generate hidden insights and enable intelligent decision-making. The

proposed methods are applied in three important applications involving both impor-

tant application domains namely transportation, and domains that are less studied in

terms of cross-domain data analytics, namely logistics. We identify the requirements

and address the challenges therein, providing effective frameworks and solutions for

practitioners as well as offering useful insights for future research.
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