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Abstract 

Commercial RGB-D cameras (e.g., Kinect) have been widely used in the gaming 

industry as non-touch remote controllers. RGB-D cameras are designed for maximum 

three-meter range applications where geometric fidelity is not of utmost importance. 

Recently, Structure Sensor was released in the commercial market as the first mobile 

RGB-D camera. As this promising camera has great potential to be used in indoor 

navigation and 3D modelling, precise calibration of their depth information, working 

range, and geometric sensor parameters should be thoroughly obtained. 

In this study, we propose a novel calibration method for Structured Light (SL) RGB-

D cameras. The calibration method uses a novel distortion model for the captured 

depth images. The depth distortion model consumes the distortion effects of both IR 

sensors. The method calibrates the geometric parameters of each RGB-D camera lens. 

Moreover, the method extends to modelling the systematic depth bias resulting from 

imaging conditions and IR sensors’ baseline. The method can thoroughly calibrate the 

SL RGB-D cameras’ full range independently of the IR sensors’ baseline. The 

calibration procedure was normalized and designed to be automatic. The proposed 

calibration method can calibrate the full range of the sensor and achieve a relative error 

of 0.8%, while ordinary calibration methods can only calibrate up to 34% of the 

sensor’s range and achieves a relative error of 4.0%. 

Due to indoor scalability, many RGB-D frames were collected and registered together 

to form a complete colored 3D model. The Simultaneous Localization And Mapping 

(SLAM) technique is used to track the RGB-D camera. The scene structure, the depth 

range, and feature types are the dominant elements affecting registration accuracy and 
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thus SLAM performance. Those elements can easily force SLAM into a severe drift 

or terminate the tracking status (lost tracking). Current SLAM systems use visual 

matched point features to compute the camera pose; therefore, those systems suffer 

from lost tracking problems and inevitable drift. 

To minimize the probability of lost tracking and drift, strong features (lines, planes) 

were added to the SLAM tracking core. In this context, a new procedure to detect, 

extract, describe, and match those 3D features was proposed. Line features were 

extracted using RGB and depth images while plane features were extracted using the 

depth image. The procedure uses a novel descriptor which adopted both visual and 

depth information to describe the 3D features for further matching. A new RGB-D 

SLAM system is proposed to utilize the valuable 3D matched features. The Fully 

Constrained RGB-D SLAM (FC RGB-D SLAM) system minimizes the combined 

geometric distance of 2D and 3D matched features to estimate the camera pose, then 

to enhance 3D model quality, the system applies a global refinement stage to refine 

the estimated camera poses based on indoor geometric constraints. Also, the system 

adopts the graph-based optimization technique to correct the closure error whenever a 

loop closure is detected. The results show that compared to visual RGB-D SLAM 

systems, FC RGB-D SLAM can achieve significant improvements in 3D model 

accuracy with and without loop closure constraints. 
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Chapter 1: Introduction 

1.1 Motivation 

Mapping indoor environments is important for numerous applications related to the 

construction and video game industries. The indoor three-dimensional (3D) model is 

a basic component of building an information modeling (BIM) system used to simulate 

the indoor environment conditions, such as temperature and humidity (Pătrăucean et 

al., 2015; Tang et al., 2010). Also, this model is a critical component in building virtual 

reality and augmented reality (Litomisky, 2012) for both gaming and industrial 

applications. In addition, precise floor plans of indoor environments are essential input 

for indoor navigation systems (Darwish et al., 2017a; Lee et al., 2012; Wang et al., 

2014a; Yamazoe et al., 2012). For precise applications, a 3D model can be used as an 

as-built drawing (known as AB BIM) and can be used to prepare the final drawings 

for maintenance and operation (Pătrăucean et al., 2015). During the construction 

process, a 3D model can be used to monitor the state of progress (Gupta, and Li, 2017; 

Kahn et al., 2013; Omar, and Nehdi, 2016). 

Many techniques are used to obtain 3D models of indoor environments, and some of 

them were already used long ago. Back in the 1840s, Aimé Laussedat proposed a 

photogrammetry system which, after 22 years, was accepted by the science academy 

in Madrid in 1827 (Jiang et al., 2008) for surveying applications. Since that time, 

photogrammetry technologies have been well developed for many applications in 

surveying and engineering. Nowadays, closed-range photogrammetry with non-metric 

cameras has been widely used in computer vision and surveying applications (Fathi et 

al., 2015; Jia et al., 2012; Mallick et al., 2014). Stereo camera systems are used to 
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reconstruct the 3D model (Pillai et al., 2016). However, the optical image system is 

computer-intensive and highly dependent on the visual features of the scene. The 

system has been demonstrated in indoor environments and gives a promising results 

(Gupta, and Li, 2017). Instead of using stereo camera systems, 3D models can be 

reconstructed up to a scale factor from a single camera using structure from motion 

(SFM) concept (Wu, 2011, 2013). 

Currently, terrestrial laser scanners are a commonly used for reconstructing 3D models 

for both indoor and outdoor environments (Lehtola et al., 2017). The working range 

and accuracy depend on the applications (Geosystems, 2016). While using the system 

indoors, the system faces problems of mobility and surveying cost. Compared to other 

mapping systems (e.g., cameras, RGB-D cameras), it costs around $HK 1-2M. 

Normally, the surveyors need around two square meters to smoothly function and 

operate the laser system, and this may not be possible in some indoor environments. 

Recently, laser and lidar systems have been developed to match indoor environment 

conditions. Size, cost, and mobility—all these factors have been considered for the 

laser systems development. The NavVis mobile mapping system (Navvis, 2018) is one 

such system; it combines three lidar sensor and six cameras, and it performs SLAM to 

build 3D models. The system cost is still high (i.e., the cost of one lidar sensor is around 

$HK 50K) compared with systems using RGB-D sensors (Matterport, 2018); 

moreover, the NavVis system cannot work in low texture environments (e.g., 

underground tunnels) due to SLAM failure. 

Recently, newly developed RGB-D cameras have the potential to replace time 

consuming and expensive indoor mapping systems (Stachniss et al., 2017). Since 

2010, when the first version of a Kinect sensor was released on the market as a remote 

controller for video games (Kinect), numerous research works have been trying to 
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adopt those cameras in precision surveying applications. 3D vision can be obtained 

through different principles, i.e. structured light (SL) (Khoshelham, and Elberink, 

2012), time of flight (ToF) (Gokturk et al., 2004), stereo triangulation (Hirschmuller, 

2005), and coded aperture (Martinello, and Favaro, 2011, 2012). Many sensors are 

already available on the commercial market. For example, Structure Sensor (Occipital, 

2014) and ASUS Xtion Pro Live (Asus, 2017) sensors are based on the SL concept 

while Tango (google, 2016) and Kinect version two are based on ToF, and both are 

available. 

Adopting RGB-D cameras in surveying applications can solve the cost and mobility 

problems of the current indoor mapping systems. For example, Structure sensor only 

costs around $HK3000. This cost includes the sensor cost, SLAM software, and SDK. 

It works with different operation platforms (e.g., window, IOS); therefore, it is highly 

compatible with different systems. The sensor is originally attached to iPad device 

with a several APPs for instant use.  Arguably, structure sensor could be the cheapest, 

fully mobile, indoor mobile mapping system. However, despite these valuable 

advantages, the sensor suffers from serious problems which prevent it from being used 

commercially in surveying applications. Two major problems exist in such 

commercial cameras: accuracy deteriorates as depth increases—creating a limited 

depth operation range, and the SLAM method used to reconstruct 3D models (Ahmed 

et al., 2015; Bose, and Richards, 2016; Camplani et al., 2013; dos Santos et al., 2016; 

Dryanovski et al., 2013; Hu et al., 2012; Khoshelham et al., 2013; Newcombe et al., 

2011; Whelan et al., 2013; Whelan et al., 2015). The sensor basically uses IR patterns 

to compute the depths of objects, and for its compatibility with gaming purposes and 

virtual reality applications the baseline between IR sensors is very short (i.e., 6.5cm). 

Due to the limited pattern of the IR projector and the short baseline between IR camera 
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and IR projector, the produced depth from such cameras does not exceed several 

meters (i.e., maximum nine meters) and the optimal working range is around quarter 

of the maximum detected depth (i.e., two meters) because of the depth resolution 

restriction (Basso et al., 2014; Chow, and Lichti, 2013; Darwish et al., 2016; Herrera 

et al., 2012; Lachat et al., 2015). The SLAM of such cameras is basically based on 

visual features detected from aligned RGB and depth images. In case of distant or few 

point features, the SLAM system can easily drift or lose tracking, which results in the 

SLAM failing to reconstruct 3D model from captured RGB-D frames. The reason for 

the SLAM failure is lack of nearby visual points. 

In light of what we know about using RGB-D cameras as 3D mapping devices, we 

believe that with an appropriate precision calibration method and with an adequate 

SLAM algorithm, the RGB-D camera can effectively replace the expensive and time-

consuming mobile 3D modelling technologies used to map indoor environments. 

1.2 Thesis objectives 

In order to convert low cost and flexible RGB-D cameras from gaming to construction 

applications, two main objectives are addressed in this thesis. The main objectives are 

divided into sub-objectives as follows:  

 Thorough calibration of RGB-D cameras to improve measurement accuracy and 

working range. 

To achieve this objective, we proposed a novel calibration method which deals with 

all the sensors implemented in RGB-D cameras and their geometric relations.  

o Relative calibration between RGB camera and IR camera to precisely co-

register depth and color information. 
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o Recalibration of the manufacturer’s constants to reveal the bias from IR 

camera and IR projector baseline. 

o Calibration of IR projector lens distortion, then model its effect on depth 

measurement. 

o Calibration of the depth measurement in accordance with the effects of 

rounding-off disparity, correlation algorithm, incident angle, and depth 

range. 

 Reducing the lost tracking rate and improving tracking accuracy by developing a 

new RGB-D SLAM algorithm. 

We enhanced the tracking ability of RGB-D SLAM by adding more features. Those 

features, like lines and planes, are automatically extracted and described in the RGB-

D domain. The additional features can overcome the lost tracking problem and 

minimize the SLAM drift. After performing SLAM, indoor structural constraints were 

automatically extracted and applied into the global optimization stage for further 

enhancement of the 3D model. This objective is divided into these minor objectives: 

o Extracting, descripting, and matching of 3D features of RGB-D frames 

such as lines and planes. 

o Developing the tracking core of SLAM to contain point, line, and plane 

features. 

o Automatically define the structural constraints of indoor environments and 

correctly implement those constraints in SLAM. 
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1.3 Thesis contributions and outlines  

The contribution of this research can be divided into two parts. The first part is related 

to RGB-D camera calibration, while the second part is related to the SLAM system. 

Concerning the RGB-D calibration contributions, a novel distortion model for both the 

IR camera and IR projector was proposed. The distortion model is mathematically 

derived from the basic distortion characteristics of both IR sensors. Also, a new 

calibration method for depth measurements based on the structured light concept is 

proposed. The method thoroughly calibrates the depth by considering several factors 

such as IR projector distortion, disparity rounding-off, IR sensors baseline, and 

incident angle. Also, the method adopts a 3D checkerboard to estimate the relative 

baseline between RGB and IR cameras. The calibration method and algorithms have 

been implemented in MATLAB, thus, an automatic calibration toolbox is designed to 

handle any RGB-D camera based on SL concept regardless of IR baselines. 

Regarding SLAM algorithms, a new method to extract and describe 3D features from 

RGB-D frame is proposed. The new method uses a novel description function for line 

and plane features based on both RGB and depth information, so the resulting 

description algorithm overcomes the problems of point cloud deteriorated quality. 

Features extraction, description, and matching all are implemented in MATLAB for 

later addition to the SLAM tracking core. The SLAM is enhanced based on two 

aspects. The first is the tracking algorithm. Besides 2D features, 3D features are added 

to estimate the camera’s pose. The second is a SLAM refinement stage. A new method 

is proposed to extract the constraints of the indoor environment based on camera pose 

information. The proposed SLAM method applies the global constraints stage before 

possibly applying a loop closure correction. The SLAM method is fully implemented 

in MATLAB as a post processing SLAM for RGB-D data. 
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The thesis is organized as follows: Chapter one shows a brief introduction to the thesis 

and gives both motivations and objectives for this research. Chapter two illustrates 

the current developments in RGB-D cameras done to adopt those cameras to surveying 

applications. This chapter surveys the current calibration methods and the latest depth 

enhancement models. It also describes the current SLAM algorithms used to produce 

3D models from RGB-D data. Chapter three shows in detail the current calibration 

models used to calibrate RGB-D cameras. The chapter includes our novel distortion 

model for IR sensors and systematic depth error model, as well as conventional DLT 

and Homography calibration methods. Chapter four presents our novel method for 

calibrating RGB-D cameras. This chapter also states the calibration results of two 

different RGB-D cameras. Quantitative and qualitative assessment results of our 

calibration method based on the proposed algorithms are also provided. Chapter five 

surveys the existing features in RGB-D frames. The features are divided into two 

categories: 2D and 3D. This chapter also introduces a new method with a novel 

description function to extract and describe in order to match 3D features from RGB-

D frames. This chapter also shows the impact of using both 2D and 3D features on the 

RGB-D frame registration results. Chapter Six introduces a new RGB-D SLAM 

method for precisely reconstructing indoor 3D models. This chapter also provides 

detailed descriptions of each step of the proposed SLAM, and it presents some of the 

key results that were used to assess the method. Chapter seven summarizes the 

conclusions and offers future recommendations. 
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Chapter 2: Recent development on 3D modeling using RGB-D 

sensors 

2.1 Introduction 

In this chapter, the basic components of SL RGB-D cameras and their working 

principles are introduced first. The calibrated parameters of SL RGB-D cameras will 

be clearly defined. And the effects of calibration parameters on both depth accuracy 

and point cloud quality will be discussed. Current calibration techniques for SL RGB-

D cameras and their applications will be reviewed. Some limitations of the existing 

methods for RGB-D camera calibration and 3D mapping applications will be also 

highlighted in this chapter. 

2.2 Principal of RGB-D sensors 

RGB-D depth measurement based on SL concept consists of two basic IR sensors: an 

IR camera and an IR projector. These two IR sensors are responsible for the depth 

computation, and unlike the ToF, the baseline between IR camera and IR projector 

restricts both minimum and maximum working range of RGB-D sensors based on SL 

concepts. Figure 2.1 shows the basic components of an RGB-D sensor based on SL 

concepts.  



9 
 

 

Figure 2.1: The elements of RGB-D sensors based on SL concepts: Left is S.S. and 
Right is Kinect (Darwish et al., 2017c) 

RGB-D cameras use their IR sensors to produce the depth information of each pixel in 

the observed scene and they use a normal RGB camera for coloring the depth 

information (i.e., when reconstructing 3D models using Kinect Fusion (Newcombe et 

al., 2011)) or for face detection and image processing applications for gaming purposes 

(i.e., for use as an advanced remote controller in video games). As the depth 

information does not depend on the RGB camera, the RGB-D sensor can be treated as 

a low-cost depth sensor without RGB information. This is clearly illustrated in the 

latest released senor (i.e., Structure Sensor (Occipital, 2014)). Structure Sensor 

combines only IR camera and IR projector which can be used alone without an RGB 

sensor. The manufacturer has built  the sensor with features enabling it to be attached 

to any mobile device (e.g., iPad), where it can use any existing RGB sensor in a mobile 

device to color the point cloud and with features that prepare it for advanced 

implementation in RGB-D SLAM systems (Tang et al., 2016). 

Two different stages are followed to compute the real pixel depth from RGB-D 

sensors. The first stage is the in-factory preparation stage (Zhang, and Zhang, 2014). 

At this stage, the sensor is placed parallel to a planar surface and positioned at a 

predefined distance (normally one meter). This distance is known as the distance of 

reference plane (𝑍଴). Next, the IR camera and projector were switched on and the 
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sensor started capturing the image of the reference planar surface. The output of this 

stage is the reference pattern used to produce the disparity which can be converted to 

the depth for each pixel (Shpunt et al., 2010). 

The second stage is real-time producing depth information. At this stage, the RGB-D 

camera simulates the in-factory stage, both IR sensors are switched on and the IR 

camera captures the projected pattern from the IR projector through the reflection of 

an object. By comparing the reflected captured pattern and the corresponding reference 

pattern stored in the sensor firmware, the sensor calculates the current depths of 

observed pixels. The concept of depth perception using an RGB-D sensor is illustrated 

in Figure 2.2. Assuming that the sensor has a factory-installed calibration process 

(Zhang, and Zhang, 2014), the manufacturer’s parameters are represented as follows: 

1) Reference plane depth (𝑍଴), 2) Predefined standard pattern (𝑥௜,଴
௖ ) of the existing 

feature point (𝑄௜),  3) Focal length of IR sensors (𝑓), and 4) Baseline between IR 

camera and IR projector (𝑤) are known and stored in the sensor firmware 

(Khoshelham, 2011; Khoshelham, and Elberink, 2012). In addition to the RGB-D 

measurements (i.e., the captured IR pixel location (𝑥௜
௖) of the feature point (𝑄௜) 

projected by IR projector), the depth of the imaged feature point (𝑄௜) can be computed 

using the triangulation geometry from Figure 2.2.  
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Figure 2.2: RGB-D sensor depth perception concept (Darwish et al., 2017c) 

Based on the factory-installed parameters and the measured location of the feature 

point (𝑍௜), the depth of the feature (𝑍௜) can be determined by triangulation 

(Khoshelham, 2011; Yamazoe et al., 2012). Equations (2.1) and (2.2) illustrate the 

relationship between the depth of the feature point and the measured and in-factory 

parameters. 

𝑥௜,଴
௖ = 𝑥௜

௣ + 𝑓𝑤/𝑍଴ (2.1) 

𝑥௜
௖ = 𝑥௜

௣ + 𝑓𝑤/𝑍௜ 
(2.2) 

The difference between the IR standard pattern location (𝑥௜,଴
௖ ) and the measured 

projected pattern of the IR projector is called the disparity (𝑑௜), where (𝑑௜ = 𝑥௜
௖ − 𝑥௜,଴

௖ ). 

In applying this concept to (2.1) and (2.2), the relationship between the disparity (𝑑௜) 

and the unknown depth can be written as: 
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𝑍௜ =
𝑓𝑤

𝑓𝑤
𝑍଴

+ 𝑑௜

 (2.3) 

where 

𝑍௜  is the perpendicular distance between the IR sensor’s baseline and feature point 

𝑓, which is the focal length of the IR camera or IR projector 

𝑤 the baseline between IR camera and IR projector 

𝑍௢ the depth of standard plane 

𝑑௜  the measured disparity 

Instead of measured disparity, the RGB-D sensor provides a normal disparity (𝑑௜
௡). 

The normal disparity is a normalized value ranging between 0 and 2047. Two linear 

factors (𝛼 and 𝛽) are used to convert the measured disparity into normal disparity. The 

relationship between normal disparity and measured disparity can be written as 𝑑௜
௡ =

ଵ

ఈ
(𝑑௜ − 𝛽), while replacing the disparity in (2.3) by the normal disparity, equation (2.3) 

can be rewritten as follows: 

 𝑍௜ =
1

൬
1

𝑍଴
+

𝛽
𝑓𝑤

൰ + ൬
𝛼

𝑓𝑤
൰ 𝑑௜

௡
 (2.4)

By combining all the constants in (2.4) and assigning them to two factors 𝑎 and 𝑏, 

equation (2.4) can be rewritten as follows: 

 𝑍௜ =
1

(𝑎) + (𝑏)𝑑௜
௡ (2.5)

where 𝑎 and 𝑏 are constants related to the in-factory calibration process and the linear 

factors which convert measured disparity to normal disparity. The 𝑎 and 𝑏 factors can 

be represented as follows: 
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 𝑎 = ൬
1

𝑍଴
+

𝛽

𝑓𝑤
൰ (2.6)

𝑏 = ൬
𝛼

𝑓𝑤
൰ (2.7)

For every pixel in a SL RGB-D sensor, the sensor measured the actual disparity then 

used the predefined in-factory parameters to compute the depth of each pixel. The 

previous formulas, provided in (2.1) to (2.7), showed that all the effects of in-factory 

parameters can be reduced to dominant factors 𝑎 and 𝑏. This is very important when 

the user re-calibrates the in-factory parameters of RGB-D sensors. The point cloud 

(𝑋 𝑌 𝑍) of the observed scene can be computed from the depth image by using the 

geometric parameters (focal length (𝑓), and the principal point (𝑐௫
௖ , 𝑐௬

௖) of the IR 

camera as follows: 

𝑍௜ =
1

(𝑎) + (𝑏)𝑑௜
௡

𝑋௜ =
(𝑥௜

௖ − 𝑐௫
௖)𝑍௜

𝑓

𝑌௜ =
൫𝑦௜

௖ − 𝑐௬
௖൯𝑍௜

𝑓

 (2.8)

For precise applications (mm-level precision for near depth or cm-level precision for 

far depth), in-factory parameters as well as the relative baseline between IR and RGB 

cameras must be recalibrated precisely. Beyond the calibration of the geometric 

parameters of the sensors involved in the RGB-D cameras, a rigorous calibration of 

the depth information must be able to handle distortions from both IR camera and IR 

projector. 



14 
 

2.3 Influence of IR sensors baseline on depth precision 

The disparity concept (𝑑௜ = 𝑥௜
௖ − 𝑥௜,଴

௖ ) is the principal of computing the depth in such 

sensors. The definition of disparity is the difference between the predefined pattern 

and the reflected pattern from the objects, stored in RGB-D firmware and captured by 

the IR camera, respectively. Therefore, the computed disparity is influenced by the 

distortion of both IR camera (receiver) and IR projector (emitter). This means that the 

depth distortion results from both IR camera and IR projector. In addition to the IR 

patterns, the manufacturer’s geometric constants (i.e., baseline between IR camera and 

projector) have a great effect on the sensor’s depth precision. 

The 6DoF geometric distance between IR camera and IR projector has a great 

influence in depth precision of RGB-D sensors. To investigate the effect of the baseline 

on depth precision, the covariance error propagation concept was adopted to depth 

observation equation (2.3). The relationship between disparity and depth variances can 

be stated as follows: 

𝜎௭ =
𝑍ଶ

𝑓𝑤
𝜎ௗ (2.9)

where 

𝜎௭ and 𝜎ௗ are the precision of depth and disparity, respectively 

𝑍  is the calculated depth 

𝑓 is IR sensor focal length 

𝑤 is the baseline between IR camera and IR projector 

We assume that we have two SL RGB-D sensors and that they have different physical 

properties, especially different IR sensors’ baselines. Figure 2.3 shows two different 
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RGB-D sensors capturing the same scene from the same distance. The figure illustrates 

the difference in depth precision against the IR sensors’ baselines. 

 

Figure 2.3: Depth uncertainty versus IR sensors baselines 

2.4 Review on current RGB-D calibration methods 

RGB-D sensors usually have visual and depth information for each pixel in the 

captured images. Thanks to this valuable information, numerous applications for RGB-

D sensors have been proposed since 2010. In order to enhance both the visual and 

depth information of RGB-D cameras, numerous RGB-D calibration methods have 

been investigated for their potential to thoroughly calibrate both RGB and depth 

information of such sensors (Chow, and Lichti, 2013; Haggag et al., 2013; Herrera et 

al., 2012; Shibo, and Qing, 2012; Wang et al., 2014a; Wang et al., 2014b). The 

calibration procedure of RGB-D sensors depends on the application accuracy 

requirements. For a specific application, a different level of data quality is required. 

For example, 3D computer vision applications are mostly concerned with 3D shape 

consistency; Virtual and Augmented Reality (VR & AR) applications are highly 
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focused on tracking and coloring information; and robot guidance applications give 

more attention to depth quality, especially near range depths, to create the Six Degrees 

of Freedom (6DoF) navigation data for the robot. 

Due to the nature of indoor environments (i.e., the systemic painting color and less 

distinctive 3D features), some indoor environments can be treated as 2.5D (Turner et 

al., 2015; Turner, 2015) instead of rich 3D (e.g., for the human body and objects). For 

3D reconstruction of indoor environments, usually the calibration procedure deals with 

the full range calibration as well as the distortion effect from the three sensors involved 

in the RGB-D cameras. Arguably, the RGB-D calibration for 3D indoor reconstruction 

can be assumed to integrate all calibration procedures because of the required high 

accuracy (cm-level precision) of 3D applications. The depth accuracy must be fully 

calibrated and corrected up to cm-level accuracy. While adopting RGB-D sensors to 

reconstruct the 3D models of indoor environments, usually the RGB-D SLAM 

algorithm is utilized to build 3D model. RGB-D SLAM uses the corresponding depth 

of detected RGB features to perform tracking; therefore, the relative calibration 

between IR camera and RGB camera must achieve pixel-level accuracy. 

The calibration process of RGB-D cameras is divided into two major parts; however, 

both parts can be carried out in one pipeline (Chow, and Lichti, 2013; Herrera et al., 

2012). The first part is related to the external baseline calibration between RGB and 

IR cameras; thus, this part is entirely a stereo calibration problem between RGB and 

IR cameras (Zhang, and Zhang, 2014). The second part is related to the depth 

calibration, which is mainly concentrated on the modeling of the depth distortion and 

systemic error (Darwish et al., 2016). The following sections will discuss the existing 

procedure to conduct both parts. 
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2.4.1 RGB-IR cameras baseline calibration  

The baseline calibration between RGB and IR cameras can be considered a stereo 

calibration problem. The main purpose of this calibration is to find the relationship 

between RGB and IR camera working reference frames. As the stereo calibration 

problem has been solved for closed range photogrammetry camera calibration using 

the Photogrammetric Bundle Adjustment (PBA) concept (Abdel-Aziz, and Karara, 

1971; McGlone, 1989) with precise compensation distortion models (Fryer, 1989; 

Fryer, and Brown, 1986)), the algorithm is well developed and can be applied to any 

stereo camera, even to small baseline camera pairs. When using commercial non-

topographic cameras (Harley, 1967), instead of PBA, the Direct Linear Transform 

(DLT) method (Abdel-Aziz, and Karara, 1971) is adopted into a computer vision 

community (known as Homography calibration), which can be simplified to use a 2D 

checkerboard for calibration (Bouguet, 2000; Heikkilä, and Silvén, 1997; Morvan, 

2009; Zhang, 2000). Lack of information regarding CCD size in commercial RGB-D 

camera lenses and the acceptable accuracy of DLT calibration results are two reasons 

given for the superior ability of DLT to calibrate RGB-D cameras, especially in 

computer vision and robotics applications. 

Despite the pinhole camera model solution differences (i.e., solving  linear (Abdel-

Aziz, and Karara, 1971) or nonlinear equations systems (Zhang, 2000)), the 

implemented observations in the calibration procedure strongly impacts the calibration 

result (Darwish et al., 2017c). Depth image or IR image along with the RGB image are 

used to calibrate the relative baseline between IR camera and RGB camera. The 

physical meaning of the distortion parameters as well the focal length must be clearly 

stated, as the output calibration parameters from the relative calibration step will be 

used in the depth calibration step. Three ways can be followed to calibrate RGB-D 
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cameras. Firstly, an IR camera image along with an RGB image can be used to 

precisely calibrate the baseline between RGB and IR cameras; however, the distortion 

of the IR projector is neglected in this case, and depth distortion cannot be thoroughly 

calibrated. Secondly, depth image produced from IR camera and IR projector can be 

used to thoroughly calibrate the RGB-D camera’s lenses; however, the distortion of 

the depth image must be adjusted to include the effects of both the IR projector and 

the IR camera. Finally, the RGB-D camera can be calibrated using RGB camera, IR 

camera, and IR projector data. Due to the unavailability of IR projector data, the 

calibration method should optimize IR projector data during the calibration process. 

Based on these three ways, the stereo calibration process of an RGB-D camera can be 

divided into three main categories. 

The first category uses the images of the RGB and IR cameras captured for a 

checkerboard and solves the camera pinhole model by using the image and ground 

points coordinates (Bouguet, 2000). In this method, the IR projector is switched off 

(Tang et al., 2016) or covered by tape (Macknojia et al., 2013) in the early version of 

the Kinect v1 sensor. The output of this method is a complete set of each camera’s 

geometric parameters: focal lengths, principal point, distortion parameters, and the 

relative 6DoF baseline between the RGB and IR cameras. Normally, a 2D 

checkerboard is used for the calibration, and Zhang’s method (Zhang, and Zhang, 

2011; Zhang, 2000) is utilized with the pinhole camera model as the core mathematical 

model and with a maximum likelihood estimation method to estimate geometrical 

parameters of both RGB and IR cameras. The output calibration results from this 

category can only apply to the RGB camera to project the color information to the 

depth information (i.e., point cloud coloring and co-registration between RGB and 

depth images). As the depth image results from both the IR camera and the IR 
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projector, the estimated distortion parameters of the IR camera cannot fully consume 

the depth distortion. 

The second category is designed to overcome the problem of IR projector distortion 

by using an empirical depth distortion model based on depth measurements. It adopts 

a depth image instead of an IR image (by keeping IR projector on) and an RGB image. 

This method uses different checkerboards to simultaneously work for both color and 

depth images (Gui et al., 2014; Herrera et al., 2012; Raposo et al., 2013). It applies the 

pinhole camera model to both RGB and depth images; however, the depth image is 

created from both IR sensors. Herrera C et al. (2011) uses an ordinary checkerboard 

attached to a planar surface, then the Homography method was adopted to the extracted 

point features from depth and color images. Only four points extracted from the depth 

images are used to estimate the internal parameters of the IR camera. In this method, 

the depth distortion of the depth image is not considered. Subsequently, the method 

was modified with an empirical distortion model for depth sensors (Herrera et al., 

2012; Raposo et al., 2013). The major problem of this method is that the estimated 

depth geometric parameters are estimated from only four points. To overcome those 

issues, different approaches were proposed for using checkerboards that produce more 

accurate points. For example, Herrera et al. (2012) added a high-resolution camera 

which was synchronized with the Kinect sensors. The high-resolution camera is 

responsible for providing the true depth measurement needed to calibrate the depth 

distortion and depth bias. Jung et al. (2015) adopted a 2.5D checkerboard to enrich the 

points in the depth images and extract them automatically. A 3D calibration 

environment with manually selected points in the depth images were adopted by Gui 

et al. (2014) and Khoshelham et al. (2013). Lastly, Liu et al. (2012) adopted a 3D line 

based calibration. In this category, the distortion model depends on the depth error 
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behavior; thus the error performance of the RGB-D sensor must be investigated in 

advance before carrying out the calibration procedure. 

The third category applies the pinhole camera concept separately to the IR camera and 

projector as well as to the RGB camera (Chow, and Lichti, 2013); consequently, the 

calibration tries to overcome the distortion problem  of IR projectors. As it is difficult 

to obtain an IR projector’s raw data, the author estimated such data from the disparities 

and approximated a baseline between the IR camera and projector. The two main 

limitations of this method are the data dependency of IR projectors and the unreliability 

of estimated IR distortion parameters. Other research deals with the implementation 

of a new mathematical distortion model for combined IR camera and projector 

(Yamazoe et al., 2012). The model only compensates the radial distortion effect of 

both IR sensors. It concentrates on depth distortion calibration using the fitted plane 

as a reference depth. 

Calibration of the relative baseline between RGB camera, IR camera, and the internal 

distortion of both RGB camera and IR sensors is crucial as the following step of the 

calibration procedure of depth is highly dependent on the estimated parameters of the 

RGB and IR cameras baseline calibration step. For the second category, the distortion 

parameters resulting from this calibration step can be applied to the depth image. 

However, in the first and third categories, the estimated distortion cannot be directly 

applied to the depth distortion as they are estimated based only on the IR camera or on 

both the IR camera and the IR projector, for first and third categories respectively. 

2.4.2 Depth calibration 

To fully calibrate RGB-D cameras, after calibrating the relative baseline between the 

RGB and IR cameras, any systematic depth errors and depth distortion must be 
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investigated and modeled. This section will highlight the traditional methods for 

calibrating the depth of RGB-D camera. 

The main characteristic of RGB-D cameras is their ability to simultaneously deliver 

the registered depth of an RGB image pixel (if the relative calibration was obtained). 

In fact, this beneficial characteristic is the major reason preventing RGB-D cameras 

from being applied in precise surveying applications. To overcome the lack of 

precision in depth information, systematic depth error and depth distortion must be 

robustly calibrated. Enormous research work has been done. The common methods 

use the concept of images (depth and color) rather than sensors (RGB, IR projector, 

IR camera) to investigate the distortion and systematic depth error of RGB-D sensors. 

These methods are largely applied to applications involving pattern recognition and 

single frame data interpretations (Han et al., 2013). When adopting RGB-D cameras 

in precise applications, both far and near depth errors should be investigated and 

modeled. 

After reviewing and summarizing the research work dealing with depth calibration 

methods, these methods can be divided into three major groups (Darwish et al., 2017c). 

The first group deals with each sensor involved in RGB-D camera (RGB camera, IR 

camera, IR projector) separately. This method assumed that the pinhole camera model 

is valid for three different sensors. This method calibrates the relative baseline between 

the IR and RGB cameras and calibrates the depth distortion in one mathematical model 

known as PBA (Chow, and Lichti, 2013). This method can individually model the IR 

camera and IR projector distortions; nevertheless, the distortion models lack rigorous 

IR projector distortion parameters. It modeled the systematic depth error as a function 

of radial distortion parameters. It can delete the artifacts of depth and enhance depth 

precision. The method was only applied to calibrate the normal working range of the 
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RGB-D cameras; it does not investigate the calibration of both near and far ranges of 

the RGB-D cameras. 

The second group calibrates the distortion and systemic error of depth by adopting an 

empirical distortion model for depth sensors (combining both IR camera and IR 

projector). This method begins with the disparity image provided by IR sensors and 

calibrates the manufacturer’s parameters (Herrera C et al., 2011). This method added 

a high-resolution camera for calibration with the system. Based on the pinhole camera 

model, the method calibrates the external RGB camera and RGB sensor of the RGB-

D camera and calibrates the distortion model for the depth sensor (Herrera et al., 2012; 

Raposo et al., 2013). The distortion model not only compensates for the distortion of 

the IR camera and IR projector, but it also models systematic depth error. When the 

empirical distortion model was applied to the Kinect v1 sensor it produced a significant 

improvement in near range depth precision. As the distortion model is empirical, it is 

highly dependent on the depth error behavior of the sensor, thus the baseline between 

the IR camera and IR projector. The main limitation of the distortion model is its 

incompatibility with RGB-D cameras that have different baselines between IR sensors. 

The third group is completely concentrated on minimizing depth error by combining 

the distortion of IR sensors with the systematic depth error (Haggag et al., 2013), or 

by separating distortion from systematic error (Basso et al., 2014). Several empirical 

models based on disparity or depth information have been discussed by Mallick et al. 

(2014). The model can work well with each unique sensor; however, the repeatability 

and the durability of the error model must be checked especially with different work 

environments (e.g., indoor or outdoor mapping) (Andújar et al., 2017). Recently, a new 

error model based on the covariance propagation concept for measurement models of 

RGB-D cameras was introduced in order to improve the error model (Lachat et al., 
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2015; Pagliari, and Pinto, 2015). Since the depth error in outer margins of the depth 

image cannot be fully modelled, the error model is used to reconstruct a 3D model for 

small objects. Table 2.1shows the comparison between the existing calibration 

methods used to calibrate both baseline between RGB camera and IR camera and depth 

sensor. 

Table 2.1: Calibration methods requirements and algorithms. 

Category of 
calibration method 

RGB camera-IR 
camera 

RGB camera-Depth 
sensor 

RGB camera-IR 
projector-IR camera 

Ours 

Captured data 

Stereo pairs of IR 
image (IR 

projector-off) and 
RGB image 

Stereo pairs of Depth 
image (IR projector-
on) and RGB image 

Stereo pairs of IR 
image (IR projector-
off) and RGB image 

Stereo pairs of IR and 
RGB images + Stereo 

pairs of RGB and 
Depth images 

Algorithm Homography Homography Bundle adjustments 
Direct Linear 

Transform 

Depth distortion 
models 

Not applied 
Empirical 

(Depend on the 
sensor behavior) 

Browns models for 
Both IR camera and 

IR projector 

Combined IR camera 
and IR projector 

Browns distortions 
effects 

Depth systematic 
model 

Not applied Not applied 
Modeled as function 
of radial distortion 

parameters 

Estimated as 3rd order 
polynomial model 

Depth 
manufacturer 

constants 
Not applied 

Applied as two 
factors (a, b) 

Applied separately (f, 
wd, wr, Z0) 

Applied as two 
factors (a, b) 

Limitations 

Has limitations 
on baseline 

accuracy between 
RGB and IR 

cameras 

Has limitations on 
baseline accuracy 

between RGB and IR 
cameras 

Has a limitation on 
the reliability of IR 
projector distortion 

parameters 

Automation process 
for full range 
application 

Applied for full 
depth range 

Not applied Not applied Not applied Applied 

Examples 

Herrera C et al. 
(2011),  Kim et 
al. (2015), and 

Zhang and Zhang 
(2011) 

Herrera et al. (2012) 
and Raposo et al. 

(2013) 

Chow and Lichti 
(2013) 

Darwish et al. (2017) 

 

To thoroughly calibrate RGB-D cameras’ depth information, depth calibration 

methods should follow the following pipeline. Firstly, the manufacturer’s parameters 

involved in depth computation concept must be calibrated to ensure that the systematic 

error resulting from an inaccurate baseline between IR camera and projector is 

recognized and corrected. Secondly, the remaining error related to the distortion effect 

of the IR camera and projector must be handled and mathematically modeled 

independent of the baseline between the IR camera and projector. Finally, the 
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undistorted depth error remaining after correcting for distortion and systematic error 

(due to calibration) should be modeled for further enhancement of depth precision for 

precise (cm-level of accuracy) applications. 

2.5 RGB-D sensor applications in surveying and mapping 

Surveying engineers and researchers have tried to switch RGB-D cameras from 

gaming purposes to surveying and mapping applications (Bell, and Gausebeck, 2014; 

Bell et al., 2016). Surveying applications, such as 3D modeling of existing structures, 

indoor base maps, and BIM models, can be done using RGB-D cameras even in static 

or kinematic mode (Lehtola et al., 2017). However, the sensors can produce better 

models in the post-processing mode (Halber, and Funkhouser, 2017). Major research 

has concentrated on adopting those sensors in kinematic mode. This research is done 

because of the potential a)  to decrease surveying time b) to produce real or near real 

time 3D models of indoor environments (Dai et al., 2017), and c)  to use those cameras 

to replace IMU in indoor navigation (Chow et al., 2014). 

The Kinect Fusion system (Newcombe et al., 2011) was the first trial to reconstruct 

the 3D model from the RGB-D data. This opened up research into using these low-

cost sensors to produce 3D rich models to fit surveying applications. The system 

depends on the depth information with ICP algorithm to register successive RGB-D 

frames ignoring the visual information of RGB images. The system uses only the RGB 

data for coloring the final 3D model; it does not apply the loop closure concept (e.g., 

g2o (Kümmerle et al., 2011) or bundle adjustment (Dai et al., 2017)). Two major 

disadvantages plagued the Kinect fusion system: computational cost and drift error. A 

lot of research works have been done to develop the existing system. Whelan et al. 

(2015) used volumetric fusion and implemented GPU to achieve real time SLAM 
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performance. This method uses both photometric and geometric information to 

estimate the camera pose in addition to successively searching for loop closure to 

enhance the 3D reconstructed model (Whelan et al., 2013; Whelan et al., 2015). Zeng 

et al. (2012) used GPU implementation with an octree based structure for voxel to 

reduce memory consumption and increase mapped volumeZeng et al. (2012). This 

system can map an area eight times larger than the Kinect fusion system can map. 

Chen et al. (2013) proposed a sparse data structure to extend the mapping volume as 

well enrich the fine details. Unfortunately, all the above methods still suffer from the 

inevitable drift of camera pose (Mur-Artal, and Tardos, 2017). 

For visual features in RGB-D frames, another SLAM system is proposed for 

reconstructing a 3D model from RGB-D data. Henry et al. (2010) defined the basic 

visual RGB-D SLAM system by considering that it uses both ICP and visual features 

combined with loop closure correction. Several research works considered adding all 

other possible features to enhance RGB-D SLAM performance. They started by adding 

simple matched visual features (e.g., SIFT (Cornelis, and Van Gool, 2008), SURF 

(Bay et al., 2008)) and by applying the concept of SFM (Koenderink, and Van Doorn, 

1991) to recover the relative transformation between each successive RGB-D frame. 

dos Santos et al. (2016) used a disparity-based model with maximum stable color 

region to estimate the relative movement between two successive RGB-D frames. 

Regarding to visual RGB-D SLAM concept, many research efforts have explored the 

possibility of  integrating different algorithms and different methodologies to enhance 

RGB-D SLAM performance for specific applications (Stachniss et al., 2017). To apply 

a visual-based RGB-D SLAM with continuous searching for loop closure optimization 

between each key frame, investigating the possibility of closing current frame to be 

close to the previous frames. This procedure was introduced as DVO SLAM (Kerl et 
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al., 2013). Recently, Dai et al. (2017) designed a system which can handle on-the-fly 

RGB-D SLAM system by implementing sparse points and dense model optimization. 

A plethora of SLAM algorithms have been published (Stachniss et al., 2017) with 

specific performance reports based on available observations, details regarding the 

optimization technique used, and the identifications of applications (e.g., surveying, 

robotics and navigation, indoor and outdoor navigation, looped environments). Endres 

et al. (2012) proposed a system that implements the visual matched features with local 

loop closure using g2o (Kümmerle et al., 2011). The system was tested on a room 

environment with many distinctive visual near-depth features. The system gave precise 

results in both modeling and navigation. Fioraio and Konolige (2011) used bundle 

adjustment with ICP (Besl, and McKay, 1992b) and used graph optimization for final 

pose optimization. The common limitation of these methods is that the operation 

distance should be less than three meters and the number of matching features should 

be more than five to reliably recover pose information. When the matched features are 

farther from the camera (i.e., depth is greater than three meters) and the scene lacks 

distinguishing visual details, the visual SLAM system can easily fail. 

Instead of depending on visual features to compute the relative camera pose, the Edge 

RGB-D SLAM (Bose, and Richards, 2016) introduces edge detection based on depth 

images with the ICP algorithm to evaluate the relative pose. This method can work 

well in 3D spaces with 3D lines and edges even if they have less visual features. The 

main constraints of this method are the mapping speed and local minima problem of 

ICP, as the edges were extracted from depth images without further matching. 

As the point clouds produced from depth images are noisy, especially if the points used 

have a depth more than three meters, the classical way to detect and extract and match 

3D features (Díez et al., 2015) has not yet been implemented because the descriptor of 
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the 3D features is based on the surrounding structure of the 3D features and its greatly 

affected by the depth noise. Hsiao et al. (2017) used the planar constraint to decrease 

the drift problem of the visual SLAM system for a 30 Hz frame rate. To overcome the 

RGB-D depth precision problem of remotely matched visual points, integration of the 

SFM technique and the RGB-D SLAM system was carried out by many research 

works (Concha, and Civera, 2017; Dai et al., 2017; Kerl et al., 2013; Melbouci et al., 

2015; Stückler, and Behnke, 2012). For example Kerl et al. (2013) minimized both 

geometric (depth) and photometric (color) distances with the g2o algorithm as a global 

optimization container, the system achieved a 3cm error average compared with a 4cm 

error average for the MRSMap system (Stückler, and Behnke, 2012). 

Other research works have concentrated on the offline enhancement of RGB-D SLAM 

performance. Those studies have mainly focused on surveying applications and 3D 

model reconstruction. Halber and Funkhouser (2017) introduce an off-line planar 

constraint method to refine the reconstructed 3D model by adopting the predefined 

geometry of the model (e.g., orthogonality, parallelism). The system can work well in 

reconstructing large indoor spaces; however, the user must provide the system the with 

pre-known structural data for the environment to be surveyed. The system mainly used 

the planar constraints to iteratively refine the global 3D model. Tang et al. (2016) 

presented a method for integrating the concept of SFM with the visual RGB-D SLAM 

system to produce consistent and complete 3D models of close and far range 

surveying. To some extent, this method can be applied in outdoor environments. 

Darwish et al. (2017b) introduced a method for computing the camera’s pose from 3D 

line features. It can be the first attempt to match the depth features (lines and edges) 

extracted from RGB-D frames before deploying them in the ICP algorithm, which can 

effectively solve the local minima problem of ICP. 
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Arguably, on existing disadvantage of RGB-D SLAM algorithms is the applying of 

the manually extracted conditions from the mapped indoor environments (e.g., a wall 

is always perpendicular, a ceiling is perpendicular to a wall, a floor is parallel to a 

ceiling), and this is a time-consuming step, particularly in large indoor environments. 

The main disadvantage is that the extraction stage demands extensive interaction from 

the users. 

2.6 Summary 

Recently, many research efforts have been done to adopt RGB-D cameras to surveying 

applications. For reconstructing 3D models from captured RGB-D frames, the 

procedure is divided into three stages. The first stage is the data collection, the second 

stage is the tracking algorithms which include both feature tracking and tracking 

optimization models. Thirdly, the refinement stage is applied on post-processing. 

In the first step, the data collected from RGB-D cameras always suffers from depth 

distortion, lens distortion, systematic depth error, and the limited working range of 

those cameras (usually three meters). A rigorous calibration must be carefully applied 

to RGB-D cameras to produce the best quality of both RGB and depth images. The 

depth range of the RGB-D cameras is also the major problem of existing calibration 

procedure, as the conventional calibration methods can calibrate the depth up to three 

meters only; however, RGB-D cameras can produce depth information up to nine 

meters. This is possible for two reasons: they ignored the calibration of the baseline 

between the IR camera and projector and calibrated depth by only considering the 

depth distortion, ignoring the rounding-off and correlation algorithm uncertainty of 

disparity, which together are major causes of depth far range distortion. The calibration 

parameters of RGB-D cameras are 1) the relative baseline between the RGB and IR 
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cameras, 2) the geometric parameters of the RGB camera and its distortion coefficient, 

3) the systematic depth error, 4) the distortion and geometric parameters of both the 

IR camera and projector. 

In the second and third steps, the features implemented in the camera pose computation 

have a great impact of the camera pose quality. 3D line and plane features exiting in 

both RGB and depth images must be detected, extracted, described, then matched to 

solve the local minima problem of ICP algorithm. To simplify the implementation of 

constrained conditions, those conditions must be automatically extracted from the 

observation data. The RGB-D SLAM process and its tracking core strongly impact the 

reconstructed 3D models and their accuracy. 
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Chapter 3: RGB-D Cameras Calibration Models 

3.1 Introduction 

The main problems affecting RGB-D calibration are lens distortion and the depth error 

modelling of RGB-D sensors. This chapter will survey the current calibration models 

used to simultaneously calibrate the distortion effect of both the IR camera and 

projector along with the distortion effect of the RGB camera. The chapter will also 

introduce the basics about the Direct Linear Transform (DLT) and Homomorphy 

methods used to solve the calibration problem of non-metric camera based on pinhole 

camera model. Potential combination between stereo cameras calibration and depth 

distortion calibration models will also be discussed. Finally, the chapter will address a 

newly proposed distortion model which compensates for both IR camera and IR 

projector distortion effects. 

3.2 RGB and IR stereo cameras calibration 

The RGB-D camera combines data from three sensors: the RGB and IR camera as well 

as the IR projector. The depth is reported according to the IR camera reference frame 

while the RGB image is captured according to the RGB camera reference frame. To 

accurately align the depth pixel to the corresponding RGB pixel, a precise calibration 

of the baseline between the IR and RGB cameras must be obtained. Moreover, the 

distortion of both lenses should be corrected. The stereo calibration method is a 

commonly used method for obtaining both geometric camera parameters and an 

external baseline between two-fixed camera systems. Due to the unavailability of the 

initial parameters of the camera lens (e.g., CCD size), Homography and DLT methods 

are the widely used methods to calibrate commercial cameras. The following sections 
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will illustrate the concepts of pinhole camera model in addition to Homography and 

DLT calibration methods. 

3.2.1 Pinhole camera model 

The pinhole camera model is a widely applicable model used in close-range 

photogrammetry (Raposo et al., 2013). Figure 3.1 shows the relationship between 

image coordinate system and ground coordinate system. 

 

Figure 3.1: Camera coordinate system versus object coordinate system definitions. 

The pinhole camera model expresses the relationship between the image point 

coordinates (𝑥, 𝑦) and the corresponding ground point coordinates (𝑋, 𝑌, 𝑍). 

𝑠[𝑥 𝑦 1] = [𝑋 𝑌 𝑍 1] ቂ
𝑅
𝑇

ቃ [𝐾] (3.1) 

where,    

𝑠              the scale factor 

𝑥, 𝑦         the image point coordinates in pixels 

𝑋, 𝑌, 𝑍   the ground point coordinates 

𝑅           3x3 rotation matrix  

𝑇            3x1 translation vector; where   𝑇 = [𝑑𝑥 𝑑𝑦 𝑑𝑧] 
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𝐾           3x3 intrinsic matrix  𝐾 = ൥
𝑓௫ 𝑒 𝑐௫

0 𝑓௬ 𝑐௬

0 0 1

൩ 

𝑓௫ and 𝑓௬ the focal length in pixels 

𝑐௫ and 𝑐௬ the coordinate of the principal point in pixels 

𝑒               the skew between x and y direction 

To simplify, treat the image point coordinates as 𝑝 = [𝑥 𝑦 1] and the 

corresponding ground point coordinates as 𝑃 = [𝑋 𝑌 𝑍 1]. Thus, equation (3.1) 

can be simplified as, 

𝑠𝑝 = 𝑃 ቂ
𝑅
𝑇

ቃ [𝐾] (3.2) 

Equation (3.2) is the fundamental mathematical model used to calibrate both internal 

and external parameters for a specific camera. If the ground control points and 

corresponding image point coordinates are known, all geometric parameters related to 

camera lens can be estimated. As camera lens suffer from distortion effects, radial and 

tangential distortion models (Fryer, 1989; Fryer, and Brown, 1986) are proposed to 

compensate for the effect of both manufacturing imprecision (tangential distortion 

(3.3)) and poor quality lens material (radial distortion (3.4)). Usually, Brown’s model 

is used to describe both distortion patterns as follows: 
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𝑥ௗ = 𝑥(1 + 𝑘ଵ𝑟ଶ + +𝑘ଶ𝑟ସ + 𝑘ଷ𝑟଺)

𝑦ௗ = 𝑦(1 + 𝑘ଵ𝑟ଶ + +𝑘ଶ𝑟ସ + 𝑘ଷ𝑟଺)
 (3.3) 

𝑥ௗ = 𝑥 + ൫2𝑦𝑝ଵ + 𝑝ଶ(𝑟ଶ + 2𝑥ଶ)൯

𝑦ௗ = 𝑦 + ൫2𝑥𝑝ଶ + 𝑝ଵ(𝑟ଶ + 2𝑦ଶ)൯
 (3.4) 

where 

𝑥𝑑 and 𝑦
𝑑
 are the distorted image point coordinates 

𝑥 and 𝑦 are the coordinates of the free distortion points 

𝑘1, 𝑘2, and 𝑘3 are the radial distortion parameters  

𝑝
1
and 𝑝

2
 are the tangential distortion parameters  

Equations (3.3) and (3.4) represent the radial and the tangential distortion effects, 

respectively. The full vector of distortion models is [𝑘1 𝑘2 𝑘3 𝑝
1

 𝑝
2
], which are treated 

as the internal parameters for the camera. The Homography and DLT methods are two 

different techniques that can solve (3.2) and obtain both the internal parameters of 

camera and the external parameters of each captured image. 

3.2.2 Homography calibration method  

The Homography method was proposed by Zhang (2000) and implemented in 

MATLAB (Bouguet, 2000). The procedure is discussed in detail by Morvan (2009). 

The procedure estimates the Homography matrix and then divides it into external and 

internal parameters for each camera based on the pre-known properties of rotation 

matrix. The pinhole camera model is used as a cost function. It is minimized using 

least square method during the calibration procedure. The method can be divided into 

three steps. The first step is the geometric camera calibration stage in which focal 
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length, principal point, and distortion parameters are estimated. The second step is the 

estimation of the external baseline between two stereo cameras. The third stage is the 

global refinement stage. 

3.2.2.1 Estimating the internal parameters 

Combining both internal and external parameters in one matrix which represents the 

relationship between image frame and the corresponding ground coordinate system, 

an equation (3.2) can be rewritten as follow: 

𝑠𝑝 = 𝑃𝐻 (3.5) 

where H is the Homography matrix:  𝐻 = ቂ
𝑅
𝑇

ቃ [𝐾] 

The Homography matrix is a 4x4 matrix when the calibration adopts 3D ground 

control points, but it can be reduced to a 3x3 matrix (𝐻 = [ℎଵ; ℎଶ; ℎଷ]) for a 2D 

checkerboard as the 𝑍 coordinate is zero. We can eliminate the scale factor by just 

applying the cross product of both sides of (3.5) by vector 𝑝, The results are shown in 

(3.6), where i refers to the point number. 

𝑝௜ × (𝑠𝑝௜) = 𝑝௜ × (𝑃௜𝐻) = 0ଷ (3.6) 

By applying the cross product and knowing the linear combination of (3.6) as, ℎଵ𝑃௜ =

ℎଵ
௧ 𝑃௜

௧ we can rewrite equation (3.6) as: 
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𝑝௜ × (𝑃௜𝐻) = 𝑝௜ × ൥

ℎଵ𝑃௜

ℎଶ𝑃௜

ℎଷ𝑃௜

൩ = ൥
0 −1 𝑦௜

1 0 −𝑥௜

−𝑦௜ 𝑥௜ 0
൩ ൥

ℎଵ𝑃௜

ℎଶ𝑃௜

ℎଷ𝑃௜

൩ = 0ଷ (3.7) 

𝑝௜ × (𝑃௜𝐻) = 𝑝௜ × ൥

ℎଵ𝑃௜

ℎଶ𝑃௜

ℎଷ𝑃௜

൩ = ቎

0 −𝑃௜
௧ 𝑦௜𝑃௜

௧

𝑃௜
௧ 0 −𝑥௜𝑃௜

௧

−𝑦௜𝑃௜
௧ 𝑥௜𝑃௜

௧ 0

቏ ቎

ℎଵ
௧

ℎଶ
௧

ℎଷ
௧

቏ = 0ଷ (3.8) 

Equation (3.8) is the fundamental formulae for estimating the Homography matrix (𝐻). 

The system can be represented as 𝐴𝐻 = 0 where 𝐴 =

[0 −𝑃௜
௧ 𝑦௜𝑃௜

௧; 𝑃௜
௧ 0 −𝑥௜𝑃௜

௧; −𝑦௜𝑃௜
௧ 𝑥௜𝑃௜

௧ 0] thus, Singular Value 

Decomposition (SVD) (Pilu, 1997) or Principal Component Analysis (PCA) (Corke, 

2011) can be adopted to solve (3.8). 

The Homography matrix (𝐻), according to its definition, already contains the camera’s 

internal parameters (𝐾), the rotation matrix 𝑅 = [𝑟ଵ 𝑟ଶ 𝑟ଷ], and the translation 

vector 𝑇 = [𝑑𝑥 𝑑𝑦 𝑑𝑧]. 𝑇 and 𝑅 are combined and they are referred to as the 

camera pose. For 2D checkerboards, the constraint of 𝑍 = 0 is applied; thus, the 

Homography matrix becomes 𝐻 = [𝐾][𝑟ଵ 𝑟ଶ 𝑇௧]. From (3.2), we can realize that 

𝐻 = [𝐾][𝑟ଵ 𝑟ଶ 𝑇௧] = 𝑠[ℎଵ
௧ ℎଶ

௧ ℎଷ
௧ ], and the relationship between (ℎଵ

௧  and ℎଶ
௧ ) 

and (𝑟ଵ and 𝑟ଶ) can be written as follows: 

𝐾[𝑟ଵ 𝑟ଶ] = 𝑠[ℎଵ
௧ ℎଶ

௧ ] (3.9) 

𝑠௧[𝑟ଵ 𝑟ଶ] = 𝐾ିଵ[ℎଵ
௧ ℎଶ

௧ ] (3.10) 

Based on the prior knowledge of rotation matrix properties, 𝑟ଵ and 𝑟ଶ are orthonormal 

and perpendicular to each other and they share an equal norm (Zhang, 2000). This can 

be used as a constrained condition illustrated in (3.11). 
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𝑟ଵ
௧ . 𝑟ଶ = 0

𝑟ଵ
௧. 𝑟ଵ = 𝑟ଶ

௧ . 𝑟ଶ

 (3.11) 

𝑟ଵ  ≅ 𝐾ିଵℎଵ
௧

𝑟ଶ  ≅ 𝐾ିଵℎଶ
௧  

(3.12) 

ℎଵ𝐾ି௧𝐾ିଵℎଶ
௧ = 0

ℎଵ𝐾ି௧𝐾ିଵℎଵ
௧ = ℎଶ𝐾ି௧𝐾ିଵℎଶ

௧  (3.13) 

As ℎଵ and ℎଶ are estimated beforehand, the camera matrix (𝐾) can be recovered using 

(3.13), and by letting 𝐵 = 𝐾ି௧𝐾ିଵ. This leads to: 

ℎଵ𝐵ℎଶ
௧ = 0

ℎଵ𝐵ℎଵ
௧ = ℎଶ𝐵ℎଶ

௧  (3.14) 

B = ൥

Bଵଵ Bଵଶ Bଵଷ

Bଶଵ Bଶଶ Bଶଷ

Bଷଵ Bଷଶ Bଷଷ

൩ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1

f୶
ଶ

−
e

f୶
ଶf୷

ec୷ − f୷c୶

eଶf୷

−
e

f୶
ଶf୷

eଶ + f୶
ଶ

f୶
ଶf୷

ଶ

−c୷(eଶ + f୶
ଶ) + f୷ec୶

f୶
ଶf୷

ଶ

ec୷ − f୷c୶

eଶf୷

−c୷(eଶ + f୶
ଶ) + f୷ec୶

f୶
ଶf୷

ଶ

c୶
ଶ(eଶ + f୶

ଶ) − 2ef୷c୷c୷ + c୷
ଶf୷

ଶ + f୶
ଶf୷

ଶ

f୶
ଶf୷

ଶ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (3.15) 

Considering the unrepeated elements of the 𝐵 matrix, 𝐵 can be reduced to a 𝑏 vector 

as follows: 

𝑏 = [𝐵ଵଵ 𝐵ଵଶ 𝐵ଶଶ 𝐵ଵଷ 𝐵ଶଷ 𝐵ଷଷ]௧ (3.16) 

Vector b can be applied in (3.14); thus, (3.14) can be converted into 𝑉𝑏 = 0, where 

𝑉௜௝ = [ℎଵ௜ℎଵ௝ ℎଵ௜ℎଶ௝ + ℎଶ௜ℎଵ௝ ℎଶ௜ℎଶ௝ ℎଷ௜ℎଵ௝ + ℎଵ௜ℎଷ௝ ℎଷ௝ℎଶ௝ + ℎଶ௜ℎଷ௝ ℎଷ௜ℎଷ௝]௧ , 

and where i and j are the column index for 𝐻 matrix: 
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൤
𝑉ଵଶ

௧

(𝑉ଵଵ − 𝑉ଶଶ)௧൨ [𝑏] = 0 (3.17) 

Equation (3.17) can be solved by the SVD concept to create a simplified vector 𝑏. 

Then, the internal parameter of the camera are as follows: 

𝑐௬ =
𝐵ଵଵ𝐵ଵଷ − 𝐵ଵଵ𝐵ଶଷ

𝐵ଵଵ𝐵ଶଶ − 𝐵ଵଶ
ଶ

𝑠 = 𝐵ଷଷ −
𝐵ଵଶ

ଶ + 𝑐௬(𝐵ଵଶ𝐵ଵଷ − 𝐵ଵଵ𝐵ଶଷ)

𝐵ଵଵ

𝑓௫ = ඨ
𝑠

𝐵ଵଵ

𝑓௬ = ඨ
𝑠𝐵ଵଵ

𝐵ଵଵ𝐵ଶଶ − 𝐵ଵଶ
ଶ

𝑒 = −
𝐵ଵଶ𝑓௫

ଶ𝑓௬

𝑠

𝑐௫ =
𝑒𝑐௬

𝑓௬
−

𝐵ଵଷ𝑓௫
ଶ

𝑠

 (3.18) 

3.2.2.2 Estimating camera external parameters 

To estimate the pose information during the calibration process, the relationship 

between the Homography matrix columns and rotation matrix columns (3.19) can be 

used, as the camera matrix a 𝐾 is already determined. For a complete rotation matrix, 

the third column is reassembled as 𝑟ଷ = 𝑟ଵ × 𝑟ଶ, since the rotation matrix is orthogonal. 

𝑟ଵ = 𝑠ଵ𝐾ିଵℎଵ

𝑟ଶ = 𝑠ଶ𝐾ିଵℎଶ

𝑇 = 𝑠ଷ𝐾ିଵℎଷ

 (3.19) 

In (3.19), the scaling factors are 𝑠ଵ, 𝑠ଶ and 𝑠ଷ are equal to 𝑠, but due to the inaccuracy 

involved in estimating the corresponding points from an image, differences might arise 



38 
 

(Morvan, 2009). But, this can be compensated for by applying three different scale 

factors as follows: 

𝑠ଵ =
1

‖𝐾ିଵℎଵ‖

𝑠ଶ =
1

‖𝐾ିଵℎଶ‖

𝑠ଷ =
𝑠ଵ + 𝑠ଶ

2

 (3.20) 

3.2.2.3 Nonlinear refinement using pinhole camera model 

After estimating both internal and external parameters for the IR and RGB cameras 

using a 2D checkerboard, a general cost function was applied to globally refine the 

calibration results. The output of this step includes the refined internal and external 

parameters in addition to the external baseline between both cameras. The cost 

function of stereo calibration is presented as follows: 

𝑚𝑖𝑛 ෍ ෍ ቆฯ𝑝௠௡ − ൬𝑃௠௡ ൤
𝑅௡

𝑇௡
൨ 𝐾൰ฯ

௖௢௟௢௥

ଶ

+ ฯ𝑝௠௡ − ൬𝑃௠௡ ൤
𝑅௡

𝑇௡
൨ 𝐾൰ฯ

ூோ

ଶ

ቇ

ெ

௠

ே

௡

 
(3.21) 

where  

𝑁 is the total number of images 

𝑀 is the total number of points 

The cost function (3.21) minimizes the pinhole camera model for the RGB and IR 

cameras and produces a full set of calibration parameters. The algorithms were already 

implemented in MATLAB (Bouguet, 2000) with the cost function. 



39 
 

3.2.3 Direct Linear Transform calibration method 

The Direct Linear Transform (DLT) method was first proposed by (Abdel-Aziz, and 

Karara, 1971) with basic camera geometric parameters, focal length, principal point as 

well as  external parameters. Then, the DLT method was modified by (Fryer, 1989) to 

take into account the full distortion parameters of camera lens. Due to the unknown 

manufacturer’s properties of commercial cameras (e.g., CCD size) and the 

unavailability of initial parameters needed to initiate the PBA solution, the DLT 

method has become the most extensively used method for calibrating commercial 

cameras. Moreover, the DLT solution has acceptable accuracy compared to the PBA 

solution when working in close range applications (McGlone, 1989). 

The DLT method directly solves the camera pinhole model (3.1) using the collinearity 

concept. According to Figure 3.1, the ray connected the focal point (N) and the image 

point (I) in the camera coordinate system corresponds to the ray connected to focal 

point (N) and the corresponding ground point (O) of image point (I). Assuming that 1) 

the camera coordinate system is centered at the principal point (𝑐௫, 𝑐௫) and the x-axis 

and y-axis are perpendicular to each other in the image plane and the z axis is 

perpendicular to image plane, 2) the ground coordinate system can be assumed to be 

centered on an arbitrary point (𝑋ீ , 𝑌 , 𝑍ீ). Therefore, the focal point and image point 

coordinates will be (𝑐௫, 𝑐௫, 𝑓) and (𝑥, 𝑦, 0), respectively, where 𝑓 is the focal length. 

According to the camera coordinate system, the corresponding coordinates of focal 

and image points will be (𝑋ே , 𝑌ே, 𝑍ே) and (𝑋, 𝑌, 𝑍), respectively. The relationship 

between both vectors can be expressed as 
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𝑁𝐼ሬሬሬሬ⃗
௜௠௔௚௘ = 𝑠𝑇𝑁𝑂ሬሬሬሬሬሬ⃗

௚௥௢௨௡ௗ (3.22) 

where  

𝑁𝐼ሬሬሬሬ⃗
௜௠௔௚௘ the vector connecting the focal point to image point in image frame 

𝑁𝑂ሬሬሬሬሬሬ⃗
௚௥௢௨௡ௗ  the vector connecting the focal point and corresponding ground point in 

ground frame 

𝑠 scale factor  

𝑇 the transformation between image coordinate frame and ground coordinate frame 

Using the known coordinates of points N, I, and O, (3.22) can be expanded and 

formulated as:  

൥

𝑥 − 𝑐௫

𝑦 − 𝑐௬

0 − 𝑓
൩ = 𝑠 ൥

𝑚ଵଵ 𝑚ଵଶ 𝑚ଵଷ

𝑚ଶଵ 𝑚ଶଶ 𝑚ଶଷ

𝑚ଷଵ 𝑚ଷଶ 𝑚ଷଷ

൩ ൥
𝑋 − 𝑋ே

𝑌 − 𝑌ே

𝑍 − 𝑍ே

൩ (3.23) 

To expressing the matrix equation as a linear equation, (3.23) can be expressed as 

𝑥 − 𝑐௫ = 𝑠൫𝑚ଵଵ(𝑋 − 𝑋ே) + 𝑚ଵଶ(𝑌 − 𝑌ே) + 𝑚ଵଷ(𝑍 − 𝑍ே)൯

𝑦 − 𝑐௬ = 𝑠൫𝑚ଶଵ(𝑋 − 𝑋ே) + 𝑚ଶଶ(𝑌 − 𝑌ே) + 𝑚ଶଷ(𝑍 − 𝑍ே)൯

−𝑓 = 𝑠൫𝑚ଷଵ(𝑋 − 𝑋ே) + 𝑚ଷଶ(𝑌 − 𝑌ே) + 𝑚ଷଷ(𝑍 − 𝑍ே)൯

 (3.24) 

From (3.24), we can replace 𝑠 as a function of the internal and external parameters of 

the camera as follows: 

𝑠 =
−𝑓

൫𝑚ଷଵ(𝑋 − 𝑋ே) + 𝑚ଷଶ(𝑌 − 𝑌ே) + 𝑚ଷଷ(𝑍 − 𝑍ே)൯
 (3.25) 

Substituting (3.25) into (3.24) leads to the following coplanarity equation:  
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𝑥 − 𝑐௫ = −𝑓
൫𝑚ଵଵ(𝑋 − 𝑋ே) + 𝑚ଵଶ(𝑌 − 𝑌ே) + 𝑚ଵଷ(𝑍 − 𝑍ே)൯

൫𝑚ଷଵ(𝑋 − 𝑋ே) + 𝑚ଷଶ(𝑌 − 𝑌ே) + 𝑚ଷଷ(𝑍 − 𝑍ே)൯

𝑦 − 𝑐௬ = −𝑓
൫𝑚ଶଵ(𝑋 − 𝑋ே) + 𝑚ଶଶ(𝑌 − 𝑌ே) + 𝑚ଶଷ(𝑍 − 𝑍ே)൯

൫𝑚ଷଵ(𝑋 − 𝑋ே) + 𝑚ଷଶ(𝑌 − 𝑌ே) + 𝑚ଷଷ(𝑍 − 𝑍ே)൯

 (3.26) 

Equation (3.26) suffers from unit inconsistency as the image units are in pixels and the 

ground units are in metric (e.g., mm). 𝑆௫and 𝑆௬ are two conversion factors for x and y 

axis, respectively. The conversion factors were added to solve the unit homogeneity 

problem. 

𝑥 − 𝑐௫ =
−𝑓

𝑆௫

൫𝑚ଵଵ(𝑋 − 𝑋ே) + 𝑚ଵଶ(𝑌 − 𝑌ே) + 𝑚ଵଷ(𝑍 − 𝑍ே)൯

൫𝑚ଷଵ(𝑋 − 𝑋ே) + 𝑚ଷଶ(𝑌 − 𝑌ே) + 𝑚ଷଷ(𝑍 − 𝑍ே)൯

𝑦 − 𝑐௬ =
−𝑓

𝑆௬

൫𝑚ଶଵ(𝑋 − 𝑋ே) + 𝑚ଶଶ(𝑌 − 𝑌ே) + 𝑚ଶଷ(𝑍 − 𝑍ே)൯

൫𝑚ଷଵ(𝑋 − 𝑋ே) + 𝑚ଷଶ(𝑌 − 𝑌ே) + 𝑚ଷଷ(𝑍 − 𝑍ே)൯

 (3.27) 

Equation (3.27) can be expressed as a function of unknowns as follows: 

𝑥 =
𝑋𝐿ଵ + 𝑌𝐿ଶ + 𝑍𝐿ଷ + 𝐿ସ

𝑋𝐿ଽ + 𝑌𝐿ଵ଴ + 𝑍𝐿ଵଵ + 1

𝑦 =
𝑋𝐿ହ + 𝑌𝐿଺ + 𝑍𝐿଻ + 𝐿଼

𝑋𝐿ଽ + 𝑌𝐿ଵ଴ + 𝑍𝐿ଵଵ + 1

 (3.28) 

 

where 𝐿௜  is the DLT coefficients containing both internal and external camera 

parameters. 

Equation (3.28) can be used for camera calibration if, and only if, both ground 

coordinates (𝑋, 𝑌, 𝑍) and corresponding image coordinates (𝑥, 𝑦) are known in 

advance. Thus 𝐿௜ (where i=1, 2, ….11) will represent the unknowns and they can be 

computed as follows: 

𝐿ଵ = −
𝑐௫𝑚ଷଵ −

𝑓
𝑆௫

𝑚ଵଵ

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
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𝐿ଶ = −
𝑐௫𝑚ଷଶ −

𝑓
𝑆௫

𝑚ଵଶ

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

𝐿ଷ = −
𝑐௫𝑚ଷଷ −

𝑓
𝑆௫

𝑚ଵଷ

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

𝐿ସ = −
൬

𝑓
𝑆௫

𝑚ଵଵ − 𝑐௫𝑚ଷଵ൰ 𝑋ே + ൬
𝑓
𝑆௫

𝑚ଵଶ − 𝑐௫𝑚ଷଶ൰ 𝑌ே + ൬
𝑓
𝑆௫

𝑚ଵଷ − 𝑐௫𝑚ଷଷ൰ 𝑍ே

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

𝐿ହ = −

𝑐௬𝑚ଷଵ −
𝑓
𝑆௬

𝑚ଶଵ

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

𝐿଺ = −

𝑐௬𝑚ଷଶ −
𝑓
𝑆௬

𝑚ଶଶ

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

𝐿଻ = −

𝑐௬𝑚ଷଷ −
𝑓
𝑆௬

𝑚ଶଷ

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

𝐿଼ = −

൬
𝑓
𝑆௬

𝑚ଶଵ − 𝑐௬𝑚ଷଵ൰ 𝑋ே + ൬
𝑓
𝑆௬

𝑚ଶଶ − 𝑐௬𝑚ଷଶ൰ 𝑌ே + ൬
𝑓
𝑆௬

𝑚ଶଷ − 𝑐௬𝑚ଷଷ൰ 𝑍ே

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

𝐿ଽ = −
𝑚ଷଵ

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

𝐿ଵ଴ = −
𝑚ଷଶ

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

𝐿ଵଵ = −
𝑚ଷଷ

𝑋ே𝑚ଷଵ + 𝑌ே𝑚ଶଷ + 𝑍ே𝑚ଷଷ
 

As commercial cameras suffer from a severe tangential and radial distortion effects, a 

distortion vector of five parameters represented by 𝐿௝ (where j=12, 13…. 16), can be 

added to the DLT method to help model both tangential and radial distortion. The 

solution of (3.28) can be carried out using the least square algorithm. A MATLAB 
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code was designed to automatically calibrate stereo cameras based using the DLT 

method with a 3D checkerboard. After estimating both internal and external 

parameters, the general cost function illustrated in (3.21) is adopted to globally refine 

the calibration parameters. 

Joint calibration methods, which can be adopted to calibrate short baseline stereo 

cameras, provide geometric camera parameters as well as the distortion models’ 

coefficients. Moreover, the baseline between both cameras is computed from the 

recovered pose of each camera. In the following section, a new distortion model of 

depth sensor is presented based on the critical review of the distortion dilemma of the 

depth sensors showed in 2.4.2. Therefore, the RGB-D camera can now be 

geometrically fully calibrated. 

3.3 Depth sensor distortion calibration 

Disparity, as defined in 2.2, is the raw measurements the RGB-D sensor used to 

measure depth. The disparity measurement is originally computed from three 

manufacturer’s constants (i.e., IR camera focal length (𝑓), baseline between IR camera 

and projector (𝑤), and the standard projector depth (𝑍଴)), and two measurements 

(projected IR pattern from IR projector (𝑥௜
௣) and reflected IR pattern received by IR 

camera (𝑥௜
௖)). Both measured values are affected by both the IR camera and projector 

distortion. Consider both measured disparity and true disparity, the relationship 

between true and measured disparity can be expressed as follows: 

𝑑௧௜ = 𝑑௜ − 𝑑௘  (3.29) 

where  

𝑑௧௜  is the true disparity 
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𝑑௜ is the measured disparity 

𝑑௘  represents the error resulting from IR camera and projectors lenses distortion 

As each IR sensor suffers from tangential and radial distortion, the combined effect of 

such distortion, which is the disparity error, can be expressed as follows: 

𝑑௘ = ൫𝛿௧௔௡௚
௖ + 𝛿௥௔ௗ

௖ ൯ − ൫𝛿௧௔௡௚
௣

+ 𝛿௥௔ௗ
௣

൯ (3.30) 

where 

𝛿௧௔௡௚
௖  and 𝛿௧௔௡௚

௣  are the tangential distortion effect for the IR camera and projector, 

respectively 

𝛿௥௔ௗ
௖  and 𝛿௥௔ௗ

௣  are the radial distortion effect for the IR camera and projector, 

respectively. 

Factors 𝑝ଵ, and 𝑝ଶ are used to compensate tangential lens distortion based on Brown’s 

model (Fryer, and Brown, 1986; Heikkilä, and Silvén, 1997), and other two factors 𝑘ଵ, 

and 𝑘ଶ are adopted to model the radial distortion error based on extended Brown’s 

model (Fryer, 1989). Equations (3.31) and (3.32) consider the tangential and radial 

distortion effects implemented in disparity computation, respectively. From the 

definition, the disparity is the difference between x-location of the IR camera and the 

IR projector image point, thus, the distortion of y-direction is not included when 

calculating disparity error. 

𝛿௧௔௡௚ = 𝑝ଵ൫(𝑥௧
ଶ + 𝑦௧

ଶ) + 2𝑥௧൯ + 𝑝ଶ𝑥௧𝑦௧ (3.31) 

𝛿௥௔ௗ = 𝑥௧(𝑘ଵ(𝑥௧
ଶ + 𝑦௧

ଶ) + 𝑘ଶ(𝑥௧
ଶ + 𝑦௧

ଶ)ଶ) (3.32) 

where  
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𝑝ଵ, and 𝑝ଶare the factors representing the tangential distortion model 

𝑘ଵ, and 𝑘ଶare the factors representing the radial distortion model 

𝑥௧ and 𝑦௧ are the undistorted coordinates of the image point 

Considering both tangential and radial distortion effects on pixel location, the 

relationship between true and measured pixel location can be expressed as: 

𝑥௠ = 𝑥௧ + 𝛿௧௔௡௚ + 𝛿௥௔ௗ  (3.33) 

where  

𝑥௠ the measured x-coordinate 

𝑥௧ the true x-coordinate 

𝛿௧௔௡௚ tangential distortion effect along the x-axis 

𝛿௥௔ௗ radial distortion effect along the x-axis 

After inserting (3.31) and (3.32) into (3.30), the disparity error model of RGB-D 

cameras can be written as follows: 

𝑑௘ = ൫𝑝ଵ൫(𝑥௧
ଶ + 𝑦௧

ଶ) + 2𝑥௧൯ + 𝑝ଶ𝑥௧𝑦௧൯
௖

− ൫𝑝ଵ൫(𝑥௧
ଶ + 𝑦௧

ଶ) + 2𝑥௧൯ + 𝑝ଶ𝑥௧𝑦௧൯
௣

+ ൫𝑥௧(𝑘ଵ(𝑥௧
ଶ + 𝑦௧

ଶ) + 𝑘ଶ(𝑥௧
ଶ + 𝑦௧

ଶ)ଶ)൯
௖

− ൫𝑥௧(𝑘ଵ(𝑥௧
ଶ + 𝑦௧

ଶ) + 𝑘ଶ(𝑥௧
ଶ + 𝑦௧

ଶ)ଶ)൯
௣

 

(3.34) 

where 

 𝑝 refers to the IR projector 

𝑐 refers to the IR camera 

Equation (3.34) is a complete disparity distortion model for SL RGB-D cameras. The 

distortion model combines a total of eight factors, four of them eliminate the radial 
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distortion of both the IR camera and projector, and others compensate for the tangential 

distortion of the IR camera and projector.  To further simplify the distortion model 

(3.34), four factors (𝑤ଵ, 𝑤ଶ, 𝑤ଷ, and 𝑤ସ) are introduced to represent the full disparity 

distortion. 𝑤ଵ and 𝑤ଶ present the combined tangential distortion of IR camera and IR 

projector, while 𝑤ଷ and 𝑤ସ present the combined radial distortion of IR camera and IR 

projector. 

Two major assumptions are applied for further simplifying (3.34). They are as follows: 

1- As the relative orientation between IR camera and IR projector is well fixed 

and pre-calibrated using the manufacturer’s parameters ((2.6) and (2.7)), 

therefore, the y-axes for the IR camera and projector can be assumed to be 

identical. 

2- Due to the absence of IR projector data, a combined radial distortion effect 

known as Seidal aberrations (Fryer, 1989) and the IR camera’s pixel location 

are adopted to assign the x-distortion effect. 

The above two assumptions give the constraints illustrated in (3.35). 

𝑦௧
௖ ≅ 𝑦௧

௣

𝛿௥௔ௗ
௦௘௡௦௢௥ = 𝑥௧

௖𝐹(𝑥௧
௖ , 𝑦௧

௖ , 𝑤ଷ, 𝑤ସ)
 (3.35) 

Inserting (3.35) into (3.34), the global distortion model can be stated as follows: 

𝑑௘ = 3𝑤ଵ൫𝑥௖
ଶ − 𝑥௣

ଶ൯ + 𝑦௖𝑤ଶ൫𝑥௖ − 𝑥௣൯ + 𝑥௖𝑤ଷ൫𝑥௖
ଶ − 𝑥௣

ଶ൯

+ 𝑥௖𝑤ସ ቀ𝑥௖
ସ − 𝑥௣

ସ + 2𝑦௖
ଶ൫𝑥௖

ଶ − 𝑥௣
ଶ൯ቁ 

(3.36) 

Equation (3.36) illustrates the depth sensor distortion as a function of new distortion 

parameters 𝑤ଵ, 𝑤ଶ, 𝑤ଷ, and 𝑤ସ. Based on the concept of disparity, the relationship 

between image coordinates and disparity can be stated as 𝑥௖ − 𝑥௣ = 𝑑௧ and 𝑥௖ + 𝑥௣ =
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2 𝑥௖ − 𝑑௧. Therefore, the squared terms in (3.36) can be replaced by the following 

formulae: 

𝑥௖
ଶ − 𝑥௣

ଶ = 𝑑௧(2 𝑥௖ − 𝑑௧)

𝑥௖
ଶ + 𝑥௣

ଶ = 𝑑௧(2 𝑥௖ − 𝑑௧) + 2 (𝑥௖ − 𝑑௧)ଶ (3.37) 

Finally, the full distortion model for the SL RGB-D cameras can be stated as follows: 

𝑑௘௜ = ൦

𝑤ଵ

𝑤ଶ

𝑤ଷ

𝑤ସ

൪

௧

⎣
⎢
⎢
⎢
⎡

3𝑑௧௜(2𝑥௜ − 𝑑௧௜)

2𝑦௜𝑑௧௜

𝑥௜൫𝑑௧௜(2𝑥௜ − 𝑑௧௜)൯

𝑥௜ ቀ𝑑௧௜(2𝑥௜ − 𝑑௧௜) + 2(𝑥௜ − 𝑑௧௜)ଶ൫𝑑௧௜(2𝑥௜ − 𝑑௧௜)൯ + 2𝑦௜
ଶ𝑑௧௜(2𝑥௜ − 𝑑௧௜)ቁ⎦

⎥
⎥
⎥
⎤

 
(3.38) 

With four parameters 𝑤ଵ, 𝑤ଶ, 𝑤ଷ, and 𝑤ସ, the effect of the combined radial and 

tangential distortion can be model for the SL RGB-D cameras independently of the 

baseline between the IR camera and projector using (3.38). 

3.4 Systemic depth error calibration 

After calibrating the baseline between RGB and IR cameras, revealing the distortion 

models of depth sensor, and calibrating the manufacturer’s constants (a, and b), the 

RGB and IR sensors can be geometrically calibrated. However, many other factors 

affect depth precision such as depth uncertainty due to a short baseline between IR 

sensors, correlation algorithms and rounding-off disparity, incident angle, and object 

distance (Khoshelham, 2011; Park et al., 2012). The baseline between IR camera and 

projector is a few centimeters, which is very short; thus, the depth precision is 

dramatically decreased in far range. Based on the covariance disparity error 

propagation concept, a depth error model which compensates for the remaining depth 

error resulting from imaging conditions and disparity related errors is proposed. 

The geometric sensor calibration does not deal with the imaging conditions and 

properties of the imaged scene. Thus, an extended calibration depth model is proposed 
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to handle the non-geometric effect of RGB-D cameras. we adopted a polynomial 

function to calibrate the remaining depth error after correcting the bias from the IR 

sensors’ baseline and the IR camera and projector distortion effects. The depth error 

model was proposed as follows: 

𝑑௦௬௦ = 𝐴𝑑ଷ + 𝐵𝑑ଶ + 𝐶𝑑 + 𝐷 (3.39) 

where 

𝑑௦௬௦  the systemic depth error remaining after applying the distortion 

𝐴, 𝐵, 𝐶, 𝐷 the polynomial coefficients to be determined from calibration 

𝑑  the undistorted depth. 

Equation (3.39) is proposed to calibrate the undistorted depth of the SL RGB-D 

camera. The resulting coefficients A, B, C, and D are basically per-pixel numbers 

which can form four calibration images. SL RGB-D cameras can be fully calibrated 

sensors when the calibration of the manufacturer’s constant, depth distortion and 

systematic depth error all have been handled. 

3.5 Summary  

In this chapter, the pinhole camera model is introduced as a calibration mathematical 

model for RGB-D camera lenses, and, the stereo calibration concept for the baselines 

of separate lenses are introduced. Both Homography and DLT methods are discussed 

in detail as methods for optimizing the computing of internal and external camera 

parameters. Also, in this chapter, a novel distortion model for depth sensors is 

introduced. The depth distortion model considers the distortion effect of both IR 

camera and IR projector lenses. Moreover, a new depth error model is proposed to 
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compensate for errors which are irrelevant to geometric camera calibration (e.g., 

rounding-off disparity, disparity correlation algorithm, incident angle, and depth 

range).  

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

Chapter 4: Calibration of commercial SL RGB-D 

4.1 Introduction  

In this chapter, the procedure used to robustly calibrate SL RGB-D cameras is 

proposed. The procedure is divided into two major threads. The first thread considers 

the calibration of the external baseline between RGB and IR cameras and the geometric 

parameters of both RGB and IR cameras. The geometric camera parameters include 

focal length, principal point, and lens distortion parameters. The second thread 

calibrates the depth measurement parameters, including manufacturer constants, depth 

distortion, and systemic depth error. The procedure is fully implemented in MATLAB, 

the code can calibrate any type of SL RGB-D. 

4.2 RGB and IR cameras baseline calibration procedure 

The baseline between RGB and IR cameras can be solved using either the DLT method 

or the Homography method. The difference between the two methods is automation. 

The Homography method is a fully automated method implemented in MATLAB 

(Bouguet, 2000); however, it has limited orientation parameter accuracy; this is due to 

the short baseline between RGB and IR cameras relative to the checkerboard captured 

distances (Khoshelham et al., 2013). The baseline and object distance strongly affect 

depth accuracy and therefore both internal and external camera parameters (Gallup et 

al., 2008; Kytö et al., 2011). In order to automate the DLT method, a new function is 

designated to extract a predefined 3D checkerboard. The 3D checkerboard combines 

two 2D checkerboards which are placed perpendicular to each other. First, the function 

detects one of two 2D checkerboards, then extracts the point features. The function 

replaces the detected 2D checkerboard with a blank area; therefore, the captured image 
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is processed again in order to detect a new checkerboard. If a new checkerboard exists, 

the algorithm detects the checkerboard and replaces with a blank area. The process 

ends when no checkerboard is found. The final step combines the extracted 2D 

checkerboards is applied to form the 3D checkerboard’s point features. The baseline 

calibration methodology is presented in Figure 4.1. 

 

Figure 4.1: RGB-IR cameras baseline calibration methodology. 

Figure 4.1 shows the general methodology for baseline calibration between stereo 

cameras. At this stage, the IR projector is covered or turned off, thus instead of a depth 

image an IR image is captured by the RGB-D camera. As indicated in Figure 4.2, a 3D 

checkerboard is designed to calibrate RGB-D cameras. After capturing the pair of 

images, the proposed function to extract the corner points is applied. By adopting the 
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equation series indicated in 3.2.3, a sole camera calibration is applied based on the 

DLT method.  The method is applied separately to each camera image, which means 

that every camera has its own internal and external calibration parameters. Using this 

information, we extracted common images to be used to stereo calibrate RGB and IR 

cameras based on the residual image. Using the initial parameters obtained from a 

single camera calibration and a mean value for the external baseline between RGB and 

IR cameras, a nonlinear least squared method optimizes the pinhole camera model 

(3.2), illustrated in 3.2.1,  including the camera distortion parameters. The optimization 

model (3.21) is illustrated in 3.2.2.3. 

 

Figure 4.2: 3D designed checkerboard proposed to calibrate RGB-D cameras. 

4.3 RGB-D depth calibration methodology 

The depth calibration procedure handles three major components: 1) manufacturer’s 

constants, 2) depth distortion, 3) systematic depth error. Figure 4.3 shows the depth 

calibration methodology for RGB-D cameras. Three major parts are indicated in 

Figure 4.3;  they are highlighted by dotted-red lines. The middle part deals with the 

calibration of manufacturer’s constants, the lower part estimates the distortion model 

parameters, the left part models the remaining systematic depth error. The calibration 

of manufacturer’s constants is proposed to compensate for the depth bias resulting 
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from the inaccuracy of the IR camera and projector baseline. This part of the 

calibration adopts the disparity and true ground depth to calibrate the manufacturer’s 

constants (𝑎 and 𝑏), as indicated in (2.5) and described in detail in (2.6) and (2.7), 

respectively. Calibrating those constants is supposed to eliminate the effects of the IR 

camera and projector baseline, IR sensor focal length, and the mapping factors (𝛼 and 

𝛽) which normalize the disparity. After calibrating the manufacturer’s constants, the 

true depth image is converted back to the disparity domain; therefore, the ground truth 

disparity is generated. The second part of the calibration is calibrating the distortion of 

IR camera and projector lenses. This part adopts the proposed distortion model (3.38) 

which deals with RGB-D camera disparities. The least square method is used to obtain 

the distortion parameters (𝑤ଵ, 𝑤ଶ, 𝑤ଷ, and 𝑤ସ) of the depth sensor. Then the captured 

disparity is corrected regarding the IR sensors’ lenses, therefore the resulting disparity 

from IR sensors baseline and IR lenses distortion is corrected. Finally, the depth error 

model is proposed based on (3.39). The ground truth depth image is used with the 

corrected disparity to compute the residual depth error. The polynomial model is 

adopted to fit the depth residual, then the model parameters (𝐴, 𝐵, 𝐶, and 𝐷) are stored 

as correction images. 



54 
 

 

 

Figure 4.3: Depth calibration methodology divided into three threads 

Based on the methodologies indicated in Figure 4.1 and Figure 4.3, a mobile APP is 

developed to extract the raw images (i.e., IR and RGB images, depth and disparity 

images). These images are saved to help thoroughly calibrate the SL RGB-D cameras. 

In the following section, the calibration results for different SL RGB-D cameras are 

illustrated to examine the performance of the calibration methodologies. 

4.4 Experimental Design and Data Collection 

4.4.1 RGB-D cameras calibration results 

The required data to be captured by the sensor and the calibration results are listed in 

Table 4.1. 

True disparity  

Disparity 
error      

Weighted Least 
Squares (3.38) to find 
W1, W2, W3, and W4     

Depth calibration 
parameters  

a, b, W1, W2, W3, W4     

Undistorted depth image 

Remaining error 

Error Model (3.39) 
optimization (A, B, C, D) 

Normal disparity image  Depth image 

Recover the manufacturers’ 
parameters a & b  

True depth image 

Minimize the manufacturer equation 
(2.5) by least square optimization 

Calibrated constants a 
and b    
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Table 4.1: Calibration data and calibration results for the SL RGB-D cameras. 

Calibration thread Required data Output calibrated parameters 

External baseline 
calibration 

Pair of RGB and IR images 
for 2D or 3D checkerboard 
(IR projector switched off) 

For both RGB and IR cameras: 
1. Geometric camera parameters 
2. Distortion camera parameters 
3. RGB-IR baseline parameters 

Depth calibration 
RGB, depth, and disparity 
images for known surface 
(IR projector switched on) 

1. Recalibrated manufacturer (a, 
b) parameters 
2. Depth distortion parameters 
3. Per-pixel systemic error 
model parameters 

 

In this study, a two-step IOS APP is developed to aid the structure sensor in capturing 

the data required for thoroughly calibrating the sensor. In the first step, the APP 

switches the IR projector to off mode and starts capturing both RGB and IR camera 

images at the same time for RGB-IR camera baseline calibration. In the second step, 

the IR projector is switched on and a pair of RGB depth images are captured. For 

example, two structure sensors are calibrated using our method. The two structure 

sensors are attached to two different iPads to obtain RGB images. The first sensor 

(S.N. 26779) is attached to an iPad Air, while the second sensor (S.N. 27414) is 

attached to an iPad Air 2. Table 4.2 shows the data captured by both sensors.  

Table 4.2: Data captured by SL RGB-D sensors 

Sensor 
Step 1 (RGB and IR 

images) 
Step 2 (RGB and Depth 

images) 
Sensor 1 (IPad Air) 53 90 
Sensor 2 (IPad Air2) 59 44 

 

For geometric camera and RGB-IR baseline calibration, the DLT method is used to 

solve the pinhole camera model. The pinhole model is refined using tangential and 

radial distortion models. The geometric camera parameters for both RGB and IR 

cameras as well for the RGB-IR baseline are given in Table 4.3. Camera focal lengths 
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(Fx, Fy) and principal points (Cx, Cy) in pixels, three radial distortion parameters (K1, 

K2, K3), and two tangential distortion parameters (P1, P2) are the calibrated geometric 

parameters for both IR and RGB cameras’ lenses. The RGB-IR baseline is expressed 

as a 6DoF vector which includes translation components (dx, dy, dz) and rotational 

components (Rx, Ry, Rz). Translation is expressed in mm while rotation is quantified 

as Euler angles in rad. 

Table 4.3: RGB-IR baseline calibration results (Sensor 1, and Sensor 2) 

Sensor 
Sensor 2 (iPad Air2) Sensor 1 (iPad Air) 

Value STD Value STD 

R
G

B
 c

am
er

a 
in

te
rn

al
 p

ar
am

et
er

s Fx 552.690 0.490 550.060 0.620 

Fy 551.160 0.460 549.040 0.600 

Cx 315.850 0.620 321.380 0.640 

Cy 241.640 0.660 234.890 0.870 

K1 0.160 0.007 0.149 0.010 

K2 -0.338 0.051 -0.302 0.083 

P1 0.002 0.001 -0.004 0.001 

P2 0.003 0.001 0.009 0.001 

K3 -0.005 0.110 -0.286 0.201 

IR
 c

am
er

a 
in

te
rn

al
 p

ar
am

et
er

s Fx 552.440 0.450 552.150 0.590 

Fy 550.850 0.440 550.470 0.570 

Cx 316.080 0.550 314.440 0.610 

Cy 238.930 0.690 233.640 0.850 

K1 0.058 0.008 0.110 0.013 

K2 -0.577 0.067 -1.090 0.120 

P1 -0.001 0.000 -0.004 0.001 

P2 0.004 0.000 0.005 0.000 

K3 1.065 0.165 2.456 0.347 

R
G

B
-I

R
 b

as
el

in
e 

dx 37.502 0.121 36.399 0.180 

dy 2.877 0.113 3.357 0.192 

dz 21.539 0.464 18.812 0.770 

Rx -0.010 0.001 0.005 0.002 

Ry 0.013 0.001 0.001 0.002 

Rz -0.006 0.000 -0.008 0.000 

 

The focal lengths, principal point, and distortion parameters vary significantly among 

both examined sensors. The manufacturer provided an SDK to adopt those cameras to 
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produce color point clouds from captured RGB-D frames, then the manufacturer 

assigns a value of 566.6 pixels for both Fx and Fy and uses the image center as the 

principal point while ignoring the radial and tangential distortions of cameras lenses. 

Comparing the calibrated results with the manufacturer’s parameters, there are 

significant discrepancies between the calibrated parameter of both sensors and the 

manufacturer’s default parameters. This leads to the conclusion that the sensors must 

be calibrated before adopting them for extremely precise applications. According to 

(2.8), the resulting point cloud is completely affected by the focal length and principal 

point. To evaluate the effects of focal lengths and principal point on the point cloud, 

one calibrated sensor (Sensor 1), is used to capture a scene with known control points 

for further quantitative assessment. The captured RGB-D images were converted to a 

color point cloud using the calibrated data shown in Table 4.1, and the original 

manufacturer’s parameters. Figure 4.4 shows the point clouds of the observed scene 

for a square checkerboard with a width and length of 63.5mm. Sixty distances were 

measured from five captured frames. The frames were captured from a distance under 

one meter in order to overcome the effect of RGB image resolution on the accuracy of 

extracted checkerboard corners. 

  
(a) (b) 

Figure 4.4: Reconstructed point cloud (a) using the calibrated parameters of our 
method, (b) using the default parameters. 
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Sixty control distances were measured from the point cloud and compared to the 

ground truth distances. Figure 4.5 shows the error performance of both calibrated and 

default parameters. 

 

Figure 4.5: Distance residuals using both calibrated and default parameters. 

Figure 4.5 clearly shows that the error bias is reduced, for when using the calibrated 

parameters, the distance bias is around -0.5mm; on the other hand, while using the 

default parameters, the bias is around -2.5mm. Between calibrated focal length and 

default focal length, a 16 pixel difference exists, which leads to a bias of 2mm. The 

effect of this bias will be severe in far range applications due to other factors effecting 

depth precision (e.g., depth resolution). 

Regarding the depth calibration procedure illustrated in Figure 4.3, the true depth 

image used in the calibration process was produced as follows: The sensor was 

attached to an iPad device, four control points were placed on the iPad screen and 

another thirty points were placed on a designed wall. Then a total station was used to 

calculate the true depth image. For a range of nine meters, a structure sensor was placed 

at a designated station around 0.50 meters from other stations (12 stations are 

involved). The total station was placed on a remote station 15 meters from the wall 

and perpendicular to the iPad and the wall. For each station, the four control points 
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posted on the iPad were captured, then the true depth image was recovered using the 

information of the control points on the wall and the control points on the iPad. Using 

the methodology indicated in Figure 4.3, the manufacturer’s parameters, distortion 

depth model, and the systematic error model have been recovered. The following table 

shows the manufacturer’s and calibrated constants a, and b. These parameters 

represent the effect of inaccuracy of the baseline between the IR camera and projector. 

Table 4.4: Manufacturer’s parameters a, and b for both sensors before and after the 
calibration process 

Sensor 
In-Factory Calibrated Value Calibrated Value 

a b a b 
1 −3.38807× 10−6 3.82665× 10−3 −3.42936 × 10−6 3.86688 × 10−3 
2 −3.38649× 10−6 3.82538× 10−3 −3.34912 × 10−6 3.78253 × 10−3 

 

After adopting the calibrated a, and b parameters, the depth distortion parameters were 

recovered. Figure 4.6 shows the depth distortion parameters of both sensors. From 

Figure 4.6, it can be clearly seen that the four depth distortion parameters tend to be 

the same value beyond a depth range of 2.50 m. This means a depth distortion model 

can be approximated for observation data of depths ranging to up to 2.5 meters. One 

reason for this is that beyond the 2.50-meter depth range, the dominant error affecting 

the depth value is not distortion but relative biases resulting from the depth uncertainty, 

rounded off disparity and disparity correlation (Khoshelham, 2011; Park et al., 2012). 

  
(a) (b) 
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(c) (d) 

Figure 4.6: Distortion parameters for both sensors. (a) is W1; (b) is W2; (c) is W3; (d) 

is W4. 

Figure 4.6 shows that both sensors have an inverse performance regarding distortion 

parameters; this is mainly due to the initial bias of depth measurements. Apparently, 

sensor 1 has a negative bias in its measurement (see Figure 4.5); therefore, the positive 

value of the distortion parameters overcome this bias; in contrast, sensor 2’s distortion 

parameters have a negative value to compensate for its positive bias. 

After computing the distortion parameters of the depth sensor, the systemic depth error 

remaining after the manufacturer’s calibration and the distortion modeling are 

calibrated using the proposed polynomial model shown in (3.39). Figure 4.7 and 

Figure 4.8 show the depth error model coefficients for each pixel for sensor 1 and 

sensor 2, respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.7: The systemic depth error model coefficient for sensor 1; (a) represents A 
coefficient; (b) represents B coefficient; (c) represents C coefficient; (d) represents D 

coefficient 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.8: The systemic depth error model coefficient for sensor 2; (a) represents A 
coefficient; (b) represents B coefficient; (c) represents C coefficient; (d) represents D 

coefficient in equation 
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4.4.2 Calibration procedure validation 

To examine the performance of RGB-IR baseline calibration, the depth and color 

images were collected using a structure sensor, then the calibrated parameters of the 

RGB-IR baseline were applied. Figure 4.9 shows the aligned point cloud before and 

after calibration. 

  

(a) (b) 

Figure 4.9: Calibration of the IR-RGB camera baseline effect; (a) after applying 
baseline calibration; (b) before applying baseline calibration. 

For depth calibration verification, three different experiments were carried out to 

ensure the effectiveness of the calibration models. Three experiments were designated 

to examine depth precision, depth distortion, and RGB-IR camera baseline calibration 

accuracy. In the first experiment, a sensor was used to capture a distant plane from 

different distances. The RGB-D camera was used to capture the plane from distances 

ranging from 0.50 to nearly five meters. Then, for each step (0.50 meters), the 

calibrated and uncalibrated depth images were compared with the true depth images. 

Then the RMSE of the fitted plane was used to evaluate the depth performance. Figure 

4.10 shows the depth performance of one of the examined RGB-D cameras. 
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Figure 4.10: The default and calibrated depth precision performance of the examined 
RGBD sensors 

Figure 4.10 shows that after applying our proposed calibration method, the depth 

precision did not exceed 0.4% of the measured depth, while for the default calibrated 

depth, the depth precision dramatically decreased, and exceeded 1%. 

The second experiment examined a part of a room using only one RGB-D frame to 

compute the angle between ceiling and wall. The data was captured using one of the 

calibrated sensors (Sensor 1). The sensor was placed an average distance of three 

meters from the walls. The minimum and maximum depths were two and five meters, 

respectively. The planes of both wall and ceiling were extracted and the angle between 

them was computed. Figure 4.11 shows the difference between calibrated and 

uncalibrated depth. It reveals that the deformations in the wall and ceiling were 

corrected using calibrated data, and significant improvements in depth distortion—

especially in corners—was noted. Table 4.5 shows the recovered angle using both 

default depth and calibrated depth. Using random sample consensus (RANSAC) with 

different thresholds to compute the angle between ceiling and wall, the calibrated 

depth can measure the angle as 89.897 ± 0.37, while it was 90.812 ± 7.17 for the default 

depth data. 
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Figure 4.11: Ceiling and wall point cloud for both calibrated (red) and uncalibrated 
(blue) depth; the highlighted black-doted circles show the calibration impact on the 

point cloud. 

 

Table 4.5: Recovered angle between two perpendicular planes using the calibrated 
and uncalibrated depth images. 

RANSAC Threshold (m) 
Recovered Angle (Degrees) 

Default Depth Calibrated Depth 
0.001 79.8288 89.8004 
0.002 99.8740 89.3294 
0.005 91.5966 89.9098 
0.010 92.2871 90.2850 
0.020 90.4728 90.1596 

 

The third experiment showed the full impact of the calibration procedure on 3D model 

quality. The thorough calibration process should produce high quality depth 

information as well as an accurate information between depth and RGB images. These 

two aims help visual RGB-D SLAM (Dryanovski et al., 2013; Hu et al., 2012; Whelan 

et al., 2013; Whelan et al., 2015) produce reliable cm-precision level 3D models for 

indoor environments (e.g., offices, corridors, rooms). Using a calibrated RGB-D 

camera to collect several RGB-D frames to survey an office measuring 4.5x3.5 meters. 

Figure 4.12 and Figure 4.13 show the reconstructed 3D model for the surveyed office 

with and without calibration. 



65 
 

Figure 4.13 (calibrated depth result), clearly shows that the edges of both chair and 

door as well as bookshelves all are perfectly straight lines and the projected office’s 

wall to the floor plane is more accurate than the model produced from uncalibrated 

images. On the opposite side, Figure 4.12 represents the reconstructed 3D model using 

the uncalibrated depth. It reveals that the borders of the objects (e.g., chairs, 

bookshelves, and door) have a lot of noise and they cannot be easily recognized. 

 

Figure 4.12: 3D model reconstruction of an office using the uncalibrated data of 
sensor 1 

Figure 4.13: 3D model reconstruction of an office using the calibrated data of  
sensor 1 
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For quantitative analysis purposes, eleven distances were selected and marked. They 

were used to conduct the accuracy evaluation of the reconstructed models. The total 

station was used to measure distances for further quantifying the model’s accuracy. 

Table 4.6 presents the comparison between the distance errors of the default and 

calibrated models. The results show a significant improvement in model accuracy. The 

overall accuracy of the 3D model reconstructed using the calibrated data is 0.8% 

compared to 4.0% using the uncalibrated data. 

Table 4.6: Comparison between calibrated and default data for room reconstruction 
(meters) 

Check 
distances  

Distances 
measured by a 

total station  

Distance from 
calibrated data  

Error  
Relative E 

(%) 

Distance 
from default 

data 
Error  

Relative E 
(%) 

d1 0.800 0.807 0.007 0.867 0.767 -0.033 -4.329 

d2 0.802 0.792 -0.011 -1.346 0.835 0.033 3.968 

d3 0.947 0.942 -0.005 -0.520 0.841 -0.106 -12.56 

d4 1.110 1.113 0.003 0.298 1.076 -0.034 -3.145 

d5 2.337 2.299 -0.039 -1.675 2.173 -0.165 -7.571 

d6 2.560 2.564 0.004 0.159 2.441 -0.119 -4.888 

d7 3.067 3.071 0.004 0.131 2.909 -0.158 -5.434 

d8 3.360 3.356 -0.004 -0.131 3.291 -0.069 -2.102 

d9 3.402 3.423 0.02 0.597 3.262 -0.141 -4.317 

d10 3.855 3.858 0.003 0.079 3.720 -0.135 -3.638 

d11 4.670 4.672 0.002 0.043 4.478 -0.192 -4.292 

Mean --  --  -0.001 -0.136 --  -0.102 -4.392 

RMSE  -- --  0.015 0.771  -- 0.068 3.942 

 

The average error between the true and measured distances using calibrated and 

uncalibrated models were 1.5cm and 6.8cm, respectively. This improvement comes 

from two main reasons, the first reason is the depth precision enhancement. The second 

reason is the accurate registration between depth and RGB images which served to 

precisely assign the matched feature points to their corresponding depth. These two 

reasons highly affected the visual RGB-D SLAM results as assigned wrong depth to 
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matched features or having a depth bias may cause failure, resulting in lost tracking or 

severe drift of the whole reconstructed 3D model. 

The experiments have shown the significance of RGB-D camera calibration effects on 

reconstructing the 3D model of indoor environments. The calibration procedure 

mainly addresses two problems: the alignment between RGB image and depth image, 

and the depth accuracy of the matched feature points. Miss-alignment between 

matched features or/and huge errors in depth information can be lead to SLAM failure 

or severe drift in the reconstructed 3D models. The experiments show that with 

calibrated data the accuracy of the resulting model is less than 1% relative error within 

2cm absolute error for an indoor area (about 14 square meters). The resulting model 

can be efficiently used in surveying applications requiring cm-level precision 3D 

models. 

4.5 Summary 

In this chapter, the calibration procedure for RGB-D cameras is developed and 

implemented. The method calibrates the geometric parameters of RGB camera, IR 

camera, and IR projector lenses. The method also calibrates the external baseline 

between RGB and IR cameras in addition to the baseline between IR sensors. The 

method achieves a relative accuracy of 1% error for regular indoor spaces with 80% 

error improvement. The calibration method can enhance the RGB-D cameras’ 

measurements’ precision. RGB-D measurements obtained from calibrated cameras 

can be adopted in 3D reconstructions with a range of nine meters instead of a mere 

two meters for uncalibrated cameras. 
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Chapter 5: Line and plane features of RGB-D frame 

5.1 Introduction  

The registration between successive RGB-D frames is a critical issue for SLAM, 

which requires building the whole environment from successive RGB-D frames. Due 

to the limited field of view and working range of RGB-D cameras, applying such 

cameras in relatively wide spaces is a challenging task. To overcome the limited depth 

range, the registration of successive RGB-D frames requires the matching of their 

common features. There are three types of features in RGB-D frames: point, line, and 

plane features. Visual point features are commonly used to compute the relative 

transformation between two successive RGB-D frames; thus, the corresponding spatial 

coordinates of those feature have a severe effect on registration accuracy (Tang et al., 

2016). There are many reliable and precise methods and algorithms available for 

extracting and describing visual point features on RGB space. In this chapter, we will 

concentrate on the line and plane features exiting in RGB-D frames which have not 

been fully investigated before.  A novel method to extract, describe, and match the line 

and plane features in RGB-D frames is proposed. Examples are given to demonstrate 

that the new method can significantly improve RGB-D frame registration. 

5.2 Features in RGB-D frames 

Registration between two successive RGB-D frames can be handled using the color 

information integrated with the depth information which is well co-registered after an 

adequate calibration. The registration concept is extended from the Structure From 

Motion (SFM) (Koenderink, and Van Doorn, 1991) concept and applied to RGB-D 

data. The Scale Invariant Feature Transform (SIFT) (Lowe, 2004) detection algorithm 
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has been widely used for color images and the corresponding depths are used to 

recover the scale in registration (Darwish et al., 2017b). After estimating the coarse 

registration between two successive RGB-D frames, the Iterative Closest Point (ICP) 

(Besl, and McKay, 1992b) method can be applied to refine the transformation. This 

registration method has been widely adopted in many RGB-D SLAM systems (Henry 

et al., 2010; Kerl et al., 2013; Whelan et al., 2013; Whelan et al., 2015). 

The main problems of RGB-D frame registration are the convergence and local 

minima problems of ICP; and the corresponding depth value of SIFT points. As the 

sensor is moving fast or dealing with processing key frames, the overlap between two 

successive RGB-D frames is weak, and consequently the matched SIFT points 

decrease. If enough matched points are exist to process the relative transformation 

(more than 5 points) the corresponding depths will significantly affect the accuracy of 

the registration. 

Many research efforts have been done to overcome these problems. Most of them deal 

with working factors such as moving the camera slowly when scanning or putting 

some targets on the scenes to enrich SIFT features. Other adopted line and edge to be 

integrated with SIFT features (Bose, and Richards, 2016) or virtual points based on 

planar surfaces (Ahmed et al., 2015), or using the disparity instead of depth to improve 

the registration state (dos Santos et al., 2016). The RGB-D frames contain several 

features besides SIFT features which can be implemented in the registration process. 

However, those features must be extracted and described for further matching before 

adopting them in the registration process. 

RGB-D frame combines two different types of data. The first type is visual information 

of the scene stored in three-dimensional array representing the color intensities in three 

visual bands which are Red, Green, and Blue. The second type is the distance of each 
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pixel from the focal point of the IR camera. Considering the geometric calibration of 

RGB-D cameras, each RGB-D frame can be converted to a 3D colored point cloud. 

Figure 5.1 shows the possible features existing in RGB-D frames. 

 

 
(a) RGB image 

 

 
(b) Depth image 

 
(c) SIFT features 

 
(d) Line features from RGB 

 
(e) Line features from depth 

 
(f) Plane features from Depth 

Figure 5.1: RGB-D frame data and features 

Figure 5.1 demonstrates that all possible data can be found in one RGB-D frame. It is 

divided into three rows. The first row presents RGB and depth, the original data 

captured by RGB-D cameras. For further processing, the second row presents SIFT 

features’ points and line features extracted from an RGB image using canny method. 

The third row shows the line and plane features extracted from a depth image using 

surface normal and RANSAC, respectively. 



71 
 

Depending only on visual features extracted from RGB-D may lead to unreliable 

registration between successive RGB-D frames. Considering the output colored point 

cloud instead of images, there are many additional features that can be extracted such 

as lines and planes. Due to the deteriorated quality of the point cloud, traditional 

methods to define the 3D features cannot be applied (Darwish et al., 2017a; Díez et 

al., 2015). In this chapter, we introduce a novel method to detect, extract, and describe 

3D features like lines and planes existing in RGB-D frames. We divided the features 

into two main categories: the first category has 2D features in which the features—

mainly visual point features—are extracted and described based on RGB images only. 

This kind of feature is intensively investigated before in many research starts, and the 

widely used methods to extract and describe these features are SIFT (Lowe, 2004), 

SURF (Cornelis, and Van Gool, 2008), and ORB (Rublee et al., 2011). The second 

category, which is our main concern, has 3D features in which the features are 

extracted and described based on both visual and spatial data. The following sections 

will discuss in detail our proposed methods to obtain line and plane features. 

5.2.1  Linear features 

To obtain fully functioning linear features from RGB-D frames, the detected feature 

should be well-defined using proper parameters, filtered using a suitable nomination 

criterion, then each nominated feature must be labeled using a distinctive descriptor. 

This procedure can be expressed in three steps which are detection, nomination, and 

description. Once fully described linear features are extracted, matching successive 

RGB-D frames is possible. Figure 5.2 shows the methodology used to detect, extract, 

and describe the line features. 
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Figure 5.2: Line feature determination methodology: red-dotted line indicates 
detection stage, blue-dotted line indicates nomination stage, green-dotted line 

indicates description stage. 

The detection stage is presented by a red-dotted line, in which line’s properties are 

based on three different sources: RGB image, surface normal image, and depth image. 

The blue-dotted line describes the nomination stage in which all the detected line 

features were defined using two points. Then, based on the feature length, the detected 

features are filtered out. The green-dotted line presented the description function which 

is based on the matched visual SIFT points. 

Detection step:  

Line features can be extracted using RGB or depth image or both. In this method, we 

adopted both RGB and depth images to extract all possible line features. Firstly, RGB 

images were processed using the canny edge detection method to extract possible lines 

from the visual characteristics of the scene (Canny, 1987). The detected edges were 

RGB image Depth image 

Surface Normal 

Edge detection Depth Difference 

Projecting edge to depth 
image  

SIFT points 

Check the nomination 
criterion 

Description function 

Line features 
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projected to the depth image to obtain 3D line information. on the other side, 

considering the depth image, the line existed in depth images generated from two 

cases. Firstly, when a significant change of the surface normal (e.g., line between wall 

and ceiling) occurred; secondly, when a noticeable depth difference is detected even 

within a normal surface (e.g., T.V screen border on the wall). Utilizing those two cases 

based on surface normal and depth difference images, a new set of line features were 

extracted. Those linear features can be very useful in registering RGB-D frames; 

however, they cannot be directly applied without matching. They may have similarity 

problems and some of them are just noise and too short to be considered a feature. So, 

the nomination stage must be carried out based on a certain criterion. 

 Nomination step: 

The nomination stage is responsible for filtering out the weak line features. Basically, 

we use the length to consider the strong line features. Line features exceeding a certain 

length (e.g., 50cm) will be nominated as a feature.  

Description step: 

Due to depth noise, the description stage is crucial for the line features extracted from 

RGB-D frames. Many conventional ways have been developed to describe features in 

3D space, especially points (Díez et al., 2015). These methods use the properties of 

surrounding structures to describe features. PCA is one of these methods (Ilin, and 

Raiko, 2010; Pacella, and Colosimo, 2013). The traditional method cannot be applied 

to describe the line features extracted from RGB-D frames, because of the deteriorated 

spatial quality of the point cloud (Darwish et al., 2017b). Instead of depending on 

spatial information only, we proposed a new description function combining both 
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visual features and line features (5.1). The description vector is based on the Euclidian 

distances between the matched SIFT points and the nominated line features. 

𝐷ଷௗ = ሡฮ𝐹௝ − 𝑃௞ฮ

௝∈௡

௞∈௠

 (5.1) 

where  

𝐷ଷௗ the descriptor of each 3D feature, presented as line either extracted from an RGB 

image and projected back to the point cloud or directly extracted from a depth image 

based on normal 

𝐹௝ the 3D feature information line uses two points 

𝑃௞ the coordinate of projected matched SIFT point to 3D point cloud 

𝑚 and 𝑛 are the total number of matched SIFT points and extracted 3D features, 

respectively 

5.2.2 Planar features 

In addition to line features, other planar features can be extracted and described as 

well. In contrast to line feature extraction, RGB information cannot be simply used to 

detect the planar object. However, the revolution of deep learning can be helpful in the 

long run. In this way, we only used the depth image to detect planar surfaces, then we 

defined a nomination criterion to overcome the similarity problem between features. 

We adopted the same function used to describe the line features in the description 

stage. 

Detection step: 
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We combined the depth image and RANSAC method to extract the possible planes in 

the observed scene (Fischler, and Bolles, 1981). Equation (5.2) indicates the output of 

the RANSAC method. Using a certain threshold to fit the planar objects, the detected 

planes were sorted based on the number of points.  

𝐼 = Ω ൭෍ 𝜙(𝑃𝐿௜ , 𝑃) ≤ 𝑡ℎ𝑟𝑒𝑠௣௧௦

௠

௜ୀଵ

൱ (5.2) 

where 

𝑃𝐿௜  parameters define the ith plane 

𝑃 point cloud generated from a depth image 

𝑡ℎ𝑟𝑒𝑠௣௧௦ the distance threshold defining the point outliers 

𝜙 function computes the orthogonal distance between points 𝑃 and plane 𝑃𝐿௜  

Ω  function sorts the detected planes 𝑃𝐿 based on the number of inliers 

𝐼 indices of sorted planes based on the point inliers 

𝑚 the total number of detected planes 

Nomination step: 

To keep only distinguishing planar features, we used two concepts to define the 

nomination criterion. The first concept is the number of points belonging to plane 

features and the second concept is the distance from the nearest plane. We defined the 

relationship between each detected plane using the Euclidean distance between every 

pair of points. The percentage of similarity between each plane can be carried out using 

(5.3). The final nominated plane features based on number of points and surrounding 

distance can be obtained using (5.4). 
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𝑅௣௟௔௡௘ =
1

𝑃𝐿𝑐ூ(௜ାଵ)
෍ 𝜔൫𝑃𝐿ூ(௜), 𝑃𝐿𝑐ூ(௜ାଵ)൯ ≥ 𝑡ℎ𝑟𝑒𝑠௣௟௦

௠ିଵ

௜ୀଵ

 (5.3) 

where  

𝑃𝐿(௜)      parameters define the ith plane 

𝑃𝐿𝑐(௜ାଵ) point cloud defines (i+1)th plane 

𝑡ℎ𝑟𝑒𝑠௣௟௦ the distance threshold needed to filter out the identical planes 

𝜔            the function returns the orthogonal distance between two planes 

𝑚           the total number of detected planes 

𝐼            indices of sorted planes based on the point inliers 

𝑅௣௟௔௡௘    the percentage of point cloud of the (i+1)th plane lies inside the ith plane within 

𝑡ℎ𝑟𝑒𝑠௣௟௦ distance 

𝑃𝐿௡௢௠ = 𝑃𝐿൫1, 𝑅௣௟௔௡௘ ≥ 𝑡ℎ𝑟𝑒𝑠௡௢௠൯ (5.4) 

where 

𝑅௣௟௔௡௘  the percentage of point cloud of the (i+1)th plane lies inside the ith plane 

𝑃𝐿    cell array contains parameters defining all detected planes 

𝑡ℎ𝑟𝑒𝑠௡௢௠ the threshold defining the overlap between two planes 

𝑃𝐿௡௢௠  the nominated planes’ parameters 

Description stage: 
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The nominated plane features are defined by three points which can be used to 

reconstruct the plane information. In order to describe the plane features, (5.1) is 

adopted to find description vector. 𝐹௝ is replaced by 3D information about plane 

features. 

5.2.3 Feature matching 

After detection, extraction, and description of plane and line features, the matching 

step is applied to remove the outliers. The description vector of each nominated feature 

is based on the Euclidean distances between the nominated feature and the position of 

matched SIFT points (Darwish et al., 2017b). The descriptor length depends on how 

many matched SIFT points exist between two successive RGB-D frames. In practice, 

the minimum number of matched SIFT points to construct a distinctive descriptor is 

ten points (Darwish et al., 2017b). As the matching between the nominated features is 

based on their descriptors, the features are matched based on the normalized Pearson’s 

cross correlation concept (5.5). 

𝑆௜௞ =
𝑐𝑜𝑣(𝐷௜ , 𝐷௞)

𝜎ௗ௜𝜎ௗ௞
 (5.5) 

where 

𝑆௜௞    matching score between descriptors i and k 

𝑐𝑜𝑣   covariance between descriptors i and k 

𝐷௜ and 𝐷௞ descriptors of features i and k, respectively 

𝜎ௗ௜ and 𝜎ௗ௞  descriptors of standard deviation of features i and k, respectively 
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Assuming 20 features were extracted from first image and 30 features from the second 

image, a new matrix called matching matrix is constructed to carry out the matching 

process. The matching matrix consists of 20 rows and 30 columns with each element 

presented as a value of 𝑆௜௞ between two corresponding features, then the searching 

among the rows to select the maximum 𝑆௜௞ value corresponding to the matched feature 

presented as a column index. 

5.3 Effect of feature types on RGB-D frames registration 

To evaluate the effect of the proposed extraction and matching methods on the RGB-

D frame registration accuracy, some examples of RGB-D images are collected in 

different indoor spaces. Those frames are registered by using both visual 2D features 

as a conventional way to combine them, and by using the proposed method wherein 

line and plane features are added to conduct the registration between RGB-D frames. 

Three different data sets are collected for indoor environments and each set is 

combined from ten RGB-D frames. The following figures show the difference between 

2D visual and 3D feature registration methods. 

 

Figure 5.3: Classroom model reconstructed using the point, line, and plane features 
of the proposed registration method. 
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Figure 5.4: Classroom model reconstructed by the 2D visual registration method. 

Figure 5.3 and Figure 5.4 show a reconstructed point cloud from ten RGB-D frames 

captured for a class room. The scanned environment has a lot of distinctive visual 2D 

features which can produce a relatively good 3D model; however, the resulting model 

has a mismatching problem due to the accuracy of the corresponding depth and the 3D 

geometry of the 2D visual features: neither is rigorous enough to produce reliable 

registration between RGB-D frames. It can be clearly seen that the line and plane 

features method is helping to reconstruct a precise model for studying desk and lectern 

edges (highlighted in red-dotted line). 

 

Figure 5.5: Reconstructed model of part of large space (lift area) using point, line, 
and plane features registration method, (a) and (b) are different views. 
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Figure 5.6: Reconstructed model of part of large space (lift area) using the visual 2D 
features registration method. (a) and (b) are different views. 

Figure 5.5 and Figure 5.6 represent an example of a corridor area. The examined part 

of the corridor has an orange glass wall and few paintings on the opposite wall; 

consequently, this is considered a hard environment for RGB-D camera to produce an 

accurate 3D model. The difficulty of this environment stems from the scene structure 

as it combines mainly planar surfaces and its captured features averaged a distance of 

around five meters. According to our calibration method, stated in 4.4.2, the depth 

precision is around three centimeters. The orange wall is a glass wall and the poster on 

the right wall is also made of glass; since the glass scatters the IR patterns, the detected 

depth becomes unreliable. As we can see from the figures, the reconstructed point 

cloud from 2D visual points has a lot of problems such as lack of alignment between 

captured frames. The problem is highlighted by red-dotted line. On contrast to the 

visual 2D registration method, adopting the point, line, and plane features registration 

method can achieve a precise model for these hard environments. 

Figure 5.7 and Figure 5.8 show the tested data for part of a corridor. The typical 

corridor has only a few distant 2D distinctive features on the ceiling and floor. Thus, 

using the 2D visual features registration method may lead to a severe bias. This can be 



81 
 

clearly seen from the presented results. The red-dotted line indicates the wall and door 

edge. The model reconstructed using the point, line, and plane features registration 

method is more precise than the one reconstructed based on the 2D visual features 

registration method. 

 

Figure 5.7: Reconstructed corridor using the point, line, and plane features 
registration method, (a) and (b) are different views. 
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Figure 5.8: Reconstructed corridor using the 2D visual features registration method. 
(a) and (b) are different views. 

 

5.4 Summary 

Feature extraction and description are crucial steps for handling RGB-D frame 

registration problems. In contrast to the visual 2D features existing in RGB images, 

3D features, presented as planes and lines, existing in RGB-D frames have not been 

thoroughly investigated. This study proposes a new method for extracting and 

describing 3D features including lines and planes. The extraction method uses both 
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depth and RGB images to firstly detect all 3D features exiting in RGB and depth 

images, then, secondly, to apply a certain criterion to the detect features to filter out 

the weak features. The description method uses a novel description function which 

combines both RGB and depth information to distinctively describe the nominated 

feature. The tested data demonstrated the advantage of adding 3D features to register 

RGB-D frames. With respect to the tested classroom, wide indoor space and corridor, 

the performance of the new registration method always proved better than the 

conventional 2D visual features registration method. 
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Chapter 6: Indoor reconstruction using RGB-D cameras 

6.1 Introduction 

The reconstruction of indoor environments using RGB-D cameras requires registering 

the collected RGB-D frames. The registration between successive RGB-D frames can 

be carried out by the RGB-D SLAM system. RGB-D SLAM is one kind of 

simultaneous localization and mapping algorithm which mainly deals with the data 

produced from RGB-D cameras. The earliest method used to reconstruct the 3D model 

of indoor spaces from RGB-D frames is the Kinect Fusion system (Newcombe et al., 

2011), which uses the depth images of RGB-D cameras and adopts the Iterative Closet 

Point (ICP) algorithm (Besl, and McKay, 1992a; Rusinkiewicz, and Levoy, 2001) to 

register two successive RGB-D frames. Also, the system uses RGB images to color 

the final 3D reconstructed model. Recently, the fusion of both depth and RGB image 

information is being integrated with existing RGB-D SLAM algorithms. 

The RGB-D SLAM function depends on different applications. The first type of 

application involves enabling robots to avoid obstacles in indoor environments. For 

this type of application, SLAM must be achieved in real time with accurate camera 

pose estimates (Endres et al., 2014; Huang et al., 2017). The second type of application 

involves reconstructing the 3D models of certain indoor environments. This 

application mainly relates to surveying application with high precision while post-the 

processing option is acceptable (dos Santos et al., 2016; Tang et al., 2016; Tsai et al., 

2015). 

The general framework of current RGB-D SLAM systems can be divided into three 

major threads. Firstly, the system adopts a proper calibration procedure to eliminate 
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the systemic visual and depth error from the captured RGB and depth images 

respectively. Secondly, RGB-D frames are registered using visual point features 

extracted from RGB images. Extracting matched visual point features with their depth 

information from two successive RGB-D frames converts the tracking problem into a 

rigid transformation problem (Bay et al., 2008; Cornelis, and Van Gool, 2008; Lowe, 

2004). Thirdly, the global optimization step is introduced to mitigate the loop closure 

error. The loop closure can be detected based on either visual or geometric features 

(Zhang et al., 2015). These three threads form the framework of current RGB-D SLAM 

systems. 

As the current RGB-D SLAM system uses only point features to compute the camera 

pose, so the reliability and accuracy of the camera pose is highly affected by depth 

error and the geometric distribution of the point features. In case of brittle RGB-D 

frames or distant feature points, the RGB-D SLAM system can easily drift or lose its 

location (lost tracking). Lost tracking and drift can be overcome or minimized while 

using more and stronger features exiting in RGB-D frames. As highlighted in the 

previous chapter, many features can be extracted from RGB-D frames such as lines 

and planes. The new system overcomes the problems of current SLAM systems, drift 

and lost tracking, by utilizing both 2D and 3D features to register successive RGB-D 

frames. In case of less textured RGB-D frames, the SLAM can continuously keep 

tracking using the 3D features; thus, lost tracking is overcome. Instead of 2D features, 

both 2D and 3D features are used to compute the camera pose and the drift problem is 

accordingly minimized (Darwish et al., 2017a).  For further refinement of the 3D 

reconstructed model, the proposed SLAM system automatically extracts the 

environment’s structural constraints for further applying them in the global refinement 

stage. Then, in case of a loop closure constraint, the system applies the loop closure 
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correction based on a graph-based optimization (Kümmerle et al., 2011). The full 

description of the system is indicated in the following section. 

6.2 Constrained RGB-D SLAM  

In this study, we propose a Fully Constrained (FC) RGB-D SLAM system which 

considers all possible exiting features in both RGB and depth images to precisely 

reconstruct a 3D model of an indoor environment. Figure 6.1 shows the major 

functions of the FC RGB-D SLAM system; these functions have five major threads. 

The first thread is calibration, which is mandatory for improving depth precision and 

for eliminating lens distortion. The disparity-based calibration model (Darwish et al., 

2017c) is adopted to compensate for the systematic depth error and lens distortion. 

This method is described in 3.4 and 3.3, respectively. The second thread mainly 

focuses on extracting features from both 2D space (RGB) and 3D space (point cloud). 

The third thread deals with the description of the nominated features for further 

matching. Before the global optimization thread (i.e., in case of loop closure 

correction), the fourth thread is added to deal with the tracking algorithm which keeps 

the RGB-D camera in the same frame-work. The following subsections describe in 

detail the aforesaid threads. The major contributions of this chapter consist of outlining 

both a strategy of applying both 3D and 2D features in the tracking core and in 

describing the global constraints optimization stage of the SLAM system. 

 



87 
 

 

Figure 6.1: FC RGBD SLAM method threads. 

In Figure 6.1, the proposed RGB-D SLAM is divided into several blocks. In the first 

block (1), we develop a mobile APP to capture both processed and raw data for further 

offline processing. In the second block (2), we adopt the method mentioned in 4.2, and 

4.3 to calibrate both RGB and depth images. In the third and fourth blocks (a, b), 2D 

and 3D features are extracted and described then matched based on the procedure 

indicated in 5.2. In the fifth block (c), the general cost function which minimizes the 

geometric distances between matched features is applied to estimate the relative 

camera transformation. In the sixth block (d), the global consistency of perpendicular 

and parallel planes is generated and optimized. The seventh block (e) presents loop 

closure detection and correction. We adopt the method presented in (Kümmerle et al., 

2011). The final block (3) presents the final camera pose and 3D model outputs. 

6.2.1 Feature detection and extraction 

FC RGB-D SLAM depends on extracted features from both RGB and depth images. 

The extracted features are divided into two categories. The first category is presented 

as 2D features which can be obtained from a SIFT algorithm (Cornelis, and Van Gool, 

2008). The second category is 3D features and contains lines, edges and planes 

extracted from both RGB and depth images. The method described in 5.2 is used to 

extract 3D features existing in RGB-D frames. The color gradient based on the hessian 
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matrix (Bay, 2006) is also applied to detect 2D features (Bay et al., 2008; Cornelis, 

and Van Gool, 2008). 

6.2.2 Feature description and matching 

After detecting and extracting the strongest 2D and 3D features, the describing process 

for each feature is applied for further matching as well as for removing outliers. For 

2D features, a SIFT descriptor based on the color gradient is used with a correction of 

scale and orientation of each nominated feature point (i.e., the SIFT descriptor length 

is 64 bit). The description vector of each selected 3D feature is based on the Euclidean 

distances between the 3D feature and the position of matched SIFT points (Darwish et 

al., 2017b). Equation (6.1) shows the descriptors of 2D features. As the matching 

between the nominated features is based on the descriptors, 2D feature matching is 

based on the Sum of Squared Differences (SSD) between each pair of descriptors, and 

the best matching is based on the minimal of SSD (Cornelis, and Van Gool, 2008). 

Equation (6.2) presents the matching concept between 2D features. 3D features are 

matched based on the normalized Pearson’s cross correlation concept. 

𝐷ଶௗ = ሡ ቌ෍ 𝑑𝑥௜

௜ୀସ

௜ୀଵ

, ෍|𝑑𝑥௜|

௜ୀସ

௜ୀଵ

, ෍ 𝑑𝑦௜

௜ୀସ

௜ୀଵ

, ෍|𝑑𝑦௜|

௜ୀସ

௜ୀଵ

ቍ

௕௟௢௖௞ୀଵ଺

௕௟௢௖௞ୀଵ

 (6.1) 

where 

𝐷2𝑑 the descriptor of the 2D feature image point  

𝑑𝑥𝑖 the image gradient of sub block (i) along x direction  

𝑑𝑦
𝑖
 the image gradient of sub block (i) along y direction  
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Normally, the SIFT descriptor uses a 4x4 pixel sub block size with a global block of 

4x4 of the sub blocks. This means that the descriptor has a vector length of 64.  

𝑆𝑆𝐷௙భ௙మ
= ෍ ቀ𝐷௙భ

(𝑖) − 𝐷௙భ
(𝑖)ቁ

௜ୀ଺ସ

௜ୀଵ

 (6.2) 

where 

𝑓ଵ and 𝑓ଶ point features existing in the first and second image respectively 

𝑆𝑆𝐷𝑓1𝑓2
 the sum of squared difference distances between point features 

𝐷𝑓1
 the descriptor of point features located on the first image 

𝐷𝑓2
 the descriptor of point features located on the second image 

6.2.3 Tracking core 

Computing the relative movement between two captured RGB-D frames is crucial step 

for continuous tracking of RGB-D cameras. The visual RGB-D SLAM system 

minimizes the geometric distance of corresponding SIFT matched points between 

RGB-D frames to compute the camera pose (Tang et al., 2016). The proposed FC 

RGB-D SLAM system uses all the geometric information to compute the relative pose 

between RGB-D frames. Three types of information are extracted from two successive 

RGB-D frames including point features from RGB images and matched 3D points 

from the point cloud, line features extracted from both RGB and depth information, 

and planes extracted from the point cloud. 

Annotations: For each extracted feature type, we adopted a different representation. 

Thus, different relationships are introduced to compute the relative movement between 

two RGB-D frames depending on the feature types. This assumes that each frame has 
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(m) matched point features and (n) matched line features and (q) matched plane 

features. For 3D point features with correspondences between two successive frames, 

we present 𝑃ଵ and 𝑃ଶ as two matrices with the dimension of mx3, and each matrix 

contains points information, and each row has [𝑋௜  𝑌௜ 𝑍௜]. For the extracted lines, we 

present 𝐿ଵ and 𝐿ଶ as two matrices with the dimension of nx6, and each matrix contains 

the line information as  [𝑋𝐶௟௜  𝑌𝐶௟௜  𝑍𝐶௟௜  𝑋𝐷௟௜  𝑌𝐷௟௜  𝑍𝐷௟௜] where the first three elements 

refer to the coordinates of the center point of line (we choose the nearest matched SIFT 

point to the line and compute its projected coordinate to the line), and the next three 

elements refer to the direction vector of the extracted line. For the matched plane 

features, we present 𝑃𝐿ଵ and 𝑃𝐿ଶ as two matrices with the dimension of qx6, each row 

represents the plane information as [𝑋𝐶௡௜  𝑌𝐶௡௜  𝑍𝐶௡௜  𝑁𝑋௡௜  𝑁𝑌௡௜ 𝑁𝑍௡௜] where the first 

three elements refer to the center point of the plane, we used the same concept of line 

to detect such point, the next three elements refer to the normal vector of the plane 

feature. 

𝑅 and 𝑇 are the rotation and translation of the rigid relative transformation between 

two RGB-D frames, respectively. The Möller and Hughes (1999) method is adopted 

to compute the relative rotation between two corresponding vectors. Three geometric 

quantities should be minimized during the pose estimation process: first, 𝐸௣ is the 

back-projection error of the matched 3D point features between the RGB-D frames 

(6.3); secondly, 𝐸௟ is the residuals vector between matched line features (6.4); and 

finally, 𝐸௡ is the vector of residuals between matched plane features (6.5). 

𝐸௣ = ෍‖𝑅𝑃ଵ + 𝑇 − 𝑃ଶ‖ଶ

௜ୀ௠

௜ୀଵ

 (6.3) 

where  
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𝑚   total number of matched point features  

𝑃ଵ and 𝑃ଶ mx3 matrix contain coordinates of all matched points for RGB-D frame 1 

and 2, respectively. 

𝐸௟ = ෍ฮ൫𝑅𝑓(𝐷ଵ) − 𝑓(𝐷ଶ)൯ + (𝑅𝐶௟ଵ + 𝑇 − 𝐶௟ଶ)ฮ
ଶ

௝ୀ௡

௝ୀଵ

 (6.4) 

where 

 𝑛 total number of matched line features 

𝑓 function converts the direction vector to a normal vector 

𝐶௟ଵ and 𝐶௟ଶ matched line’s center point of RGB-D frames 1 and 2, respectively. 

𝐷ଵ and 𝐷ଶ direction vectors of matched lines between RGB-D frames 1 and 2, 

respectively. 

𝐸௡ = ෍‖(𝑅𝑁ଵ − 𝑁ଶ) + (𝑅𝐶௡ଵ + 𝑇 − 𝐶௡ଶ)‖ଶ

௞ୀ௤

௞ୀଵ

 (6.5) 

Where 

𝑞 total number of matched plane features 

𝐶௡ଵ and 𝐶௡ଶ matched plane’s center point coordinates for RGB-D frames 1 and 2, 

respectively 

𝑁ଵ and 𝑁ଶ normal vectors of matched planes between RGB-D frames 1 and 2, 

respectively 

The global motion estimation of the RGB-D camera can be represented as in (6.6), as 

from the geometry principals, line and plane features introduce more constraints on 
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rotation rather than the translation opposite to the point features. Here, we apply a 

weighting parameter 𝛼, which gives more weight to lines and planes than to points. 

The general formula can be written as 

൛𝑅෠, 𝑇෠ൟ = 𝑎𝑟𝑔 𝑚𝑖𝑛 ቀ𝐸௣ + 𝛼(𝐸௟ + 𝐸௡)ቁ (6.6) 

where  

𝑅෠ and 𝑇෠  estimated camera rotation and translation, respectively 

𝐸௣, 𝐸௟, and 𝐸௡ point, line, and plane features reprojection error, respectively.  

𝛼 weighting factor 

First, the system initializes the pose between two RGB-D frames by adopting the 

concept of visual RGB-D SLAM. The point features’ correspondences are used to 

calculate the relative pose, then SLAM used this information to match all extracted 

planes and lines extracted from both depth and RGB images. The final pose is 

calculated through (6.6). After optimizing the pose information between successive 

RGB-D frames, the global constraints stage is introduced for further smoothing the 

reconstructed 3D models. 

6.2.4 Global constraint 

The global constraint stage is the final refinement process before the loop closure 

concept can be applied. In this stage, the spatial relations (i.e., perpendiculars, 

parallels) are basically generated from the camera pose to roughly determine the 3D 

shape constraints. Thus, the global model (𝑔𝑀) is divided into separate sub models 

(𝑠𝑀) for enhancing the accuracy of alignments. The global constraints stage is based 

on the planar objects between the successive sub models. The proposed method is 
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based on the camera pose information. Figure 6.2 shows the coordinate system of the 

structure sensor camera. 

 

Figure 6.2: Structure sensor coordinate system. 

Regarding the sensor coordinate system, the rotation around y direction (𝜃௬) indicates 

planar movement constraints in a 2D floor plan. In an indoor environment, the 

dominant axis which controls the scanning process is the y axis. Equation (6.7) shows 

the formula used to detect the turned frames from the y-axis rotation. The turned 

frames were detected because they are the most likely to contain constrained 

structures. Based on these turned frames, the global model is divided to several sub 

models using (6.8) for further refinements. 

𝑁 = ൥1, 𝑃𝐸 ൭𝐺 ቆ
𝜕𝜃௬

𝜕𝑦
ቇ൱ , 𝑒𝑛𝑑൩ (6.7) 

where 

𝑁 IDs of turned RGB-D frames 

𝑃𝐸 the function that detects the peaks in a time series 

𝐺 Gaussian filter that functions to smooth the gradient of y axis rotation 

x y 

z 
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𝜃௬ rotation angle around y axis 

𝑠𝑀 = ሡ 𝑔𝑀൫𝑁(𝑖): 𝑁(𝑖 + 1)൯

௟௘௡௚௧௛(ே)ିଵ

௜ୀଵ

 (6.8) 

where  

𝑁 IDs of turned RGB-D frames 

𝑔𝑀 global model to be smoothed 

𝑠𝑀 sub models divided by turned frames’ indices 𝑁 

Once all sub models are constructed, the global refinement stage is carried using the 

pre-known spatial relations between each sub model. The spatial relations are stored 

in (𝑆), which contains the turn angles around the three axes. 𝑆 is reconstructed using 

the planar relation between two successive sub models, i.e. perpendiculars, parallels, 

and artificially defined angles (e.g., 𝜋
4ൗ , 𝜋

2ൗ , 3 𝜋
4ൗ ). The global refinement stage 

deals with forcing back these artificial angles. Equation (6.9) presents the formula used 

in the global refinement stage. 

{𝑟𝑝𝑜𝑠𝑒, 𝑟𝑀} = 𝐶𝑜𝑛(𝑠𝑀, 𝑆) (6.9) 

where 

𝑟𝑝𝑜𝑠𝑒 the refined camera poses after the refinement stage  

𝑟𝑀  the refined global model after the refinement stage  

𝑆  spatial constrained information 

𝐶𝑜𝑛  constrained function reinforces the predefined spatial information 𝑆 
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After estimating and refining the relative pose between successive RGB-D frames, the 

detection and correction of loop closure, if any, is performed. 

6.2.5 Loop closure 

Loop closure is a basic concept for correcting a closed mapped space. The common 

method is a graph optimization technique based on nonlinear least square optimization 

(Kümmerle et al., 2011). This method constructs a graph problem based on nodes and 

edges. Each node represents the pose information of each RGB-D frame, while the 

edges represent the 6DoF relative baseline between two successive RGB-D frames. 

The method is adopted to most existing RGB-D SLAM algorithms, and produces 

stable results. Thus, we also adopt this approach in our proposed FC RGB-D SLAM. 

6.3 Three-dimensional model reconstruction 

Two experiments are conducted to evaluate the FC RGB-D SLAM performance. The 

first experiment consists of scanning an open (no loop closure) corridor. The second 

experiment consists of surveying a closed (loop closure existed) corridor. Additional 

experiments for constructing small and big rooms are illustrated. In the experiments, 

the performance of FC RGB-D SLAM is evaluated by comparing its results to those 

of other existing RGB-D SLAM systems (i.e., visual RGB-D SLAM, SensorFusion). 

6.3.1 Scanning of an open environment 

In this experiment, we use the proposed SLAM to precisely reconstruct 3D models of 

indoor corridors which has long length with less distinctive 2D and 3D features. The 

data are captured by structure sensor. The sensor is attached to an iPad Air 2 to capture 

and process the data. The Structure sensor has its own processing framework (SDK) 
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for processing the captured depth images, color images, and the IMU data from the 

iPad to produce the 3D model of the captured environment (we note this SDK as 

SensorFusion system). Then the data are processed by both the proposed FC RGB-D 

SLAM system and by visual RGB-D SLAM for post-processing. The data for a narrow 

corridor measuring 58m in length, 2.5m in height and 1.5m in width are captured. Two 

kinds of scanning methods associated with iPad position are used: vertical scanning 

and horizontal scanning methods (see Figure 6.3). A laser scanner was used to capture 

the ground truth of the corridor for further quantitative evaluation. Four different 

experiments are conducted for the examined corridor. 

 

   

(a)    

 

(b) 

Figure 6.3: Scanning methods for structure sensor, vertical (a) and horizontal (b) 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 6.4: The scanned corridor for the vertical scanning method, (a) model from 
SensorFusion; (b) model from FC RGB-D SLAM; (c) model from visual RGB-D 
SLAM; (d) laser scanner model (ground truth); (e) projected wall to the ground of 

four models (black is ground truth, blue is FC RGB-D SLAM, red is Visual RGB-D 
SLAM, and green is SensorFusion) 

The accuracy assessment is based on model quality. Each model is compared to the 

ground truth; thus, the error of each point is quantified and a summary histogram of 

each model is used to check for model accuracy. The error of each mapped point is 

quantified based on the Euclidean distance difference between the mapped point and 

the corresponding ground truth point obtained from the laser scanner. Figure 6.5 shows 

the quantitative results among the three different RGB-D SLAM systems. It can be 

clearly seen that the model of FC RGB-D SLAM can enhance overall model accuracy 

and its alignment. The model is divided into patches A, B, and C. These three patched 

are completely perpendicular. Corner angles are perfect right angles in the 

reconstructing model using FC RGB-D SLAM; however, they are not right angles in 

either visual RGB-D SLAM or SensorFusion methods. Although visual SLAM can 
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achieve better accuracy compared to SensorFusion system, part A and C show severe 

drift in both SensorFusion and visual RGB-D SLAM results, while the drift is 

significantly reduced by FC RGB-D SLAM. The largest error existed in the corner 

between A and B because at that spot the corridor has a glass window. Thus, the depth 

data produced by the RGB-D camera has a lot of noise. Furthermore, the error existing 

at the end of part C is due to the structure of the E area (highlighted by black-dot line). 

This area lacks 2D and 3D feature, as it is an open space. 

(a) (b) 
 

(c) 

(d) 

Figure 6.5: The spatial error distributions for corridor scanned in vertical scanning 
mode, (a) model from SesnorFusion; (b) model from Visual RGB-D SLAM; (c) 

model from FC RGB-D SLAM; (d) error histogram of the three different systems. 

B 

C A 

B 

C A 

B 

C A 

 

 

 

E E 

E 
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To validate the FC RGB-D SLAM method, three more data sets are captured using the 

same sensor with different data collection procedures: one set used a horizontal 

position, another set used a horizontal iPad position with a low frame rate (5 fps), and 

the third set used a horizontal iPad position facing the ground (uncaptured ceiling). To 

summarize the results of the four experiments, the average cumulative error histogram 

is presented in Figure 6.6. It can be clearly seen that the error rate for 95% of points 

does not exceeded 0.20m for the FC RGB-D SLAM, which is better than the 1.00m 

and 1.20m error rates for the visual RGB-D SLAM and SensorFusion methods, 

respectively. 

 

Figure 6.6: The average cumulative error histogram for all captured experiments. 

6.3.2 Scanning of a closed environment 

The purpose of this experiment is to evaluate the FC RGB-D SLAM performance in 

closed spaces, which means the camera will be forced to revisit the first captured scene. 

A corridor measuring 80m in length, 2.5m in height and 1.5m in width is captured and 

processed using SensorFusion, visual RGB-D SLAM, and FC RGB-D SLAM. For 

accuracy evaluation, the mapped corridor ground truth (used as reference) is captured 

using laser scanner. Figure 6.7 shows the comparison between the results of the three 



100 
 

systems. In Figure 6.7, it can be clearly seen that the performances of FC RGB-D 

SLAM and visual RGB-D SLAM are quite similar. This is because the D area 

(highlighted by a black dotted line in Figure 6.7) of the corridor has a glass wall; thus, 

depth from structure sensors are almost missing, and only the ceiling and floor of the 

corridor can be mapped. Furthermore, the loop closure correction, which optimizes the 

global camera’s locations based on the closure error, is applied to both cases. 

  

(a) 

   

(b)  

  

(c) 

 

(d) 

Figure 6.7: The spatial error distributions for a scanned corridor using the vertical 
scanning mode, (a) model from SesnorFusion; (b) model from visual RGB-D SLAM; 
(c) model from FC RGB-D SLAM; (d) error histogram of the three different systems. 

Other experiments involving closed space with different environmental conditions are 

tested for a printing room measuring 3.5mx2.5m and a classroom measuring 

11.4mx6.7m. The FC RGB-D SLAM system’s results are compared to the results of 

visual RGB-D SLAM. Qualitative and quantitative assessments of the resulting 

D 
 

D 

 

D 
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models are investigated using ground truth measurements (Laser scanner) for the 

examined environments. 

  
(a) (b) 

 
(c) 

Figure 6.8: Error of printing room reconstructed model; (a) using visual RGB-D 
SLAM; (b) using proposed FC RGB-D SLAM; (c) the error histogram of both 

methods. 

Figure 6.8 shows the point cloud errors of the printer room projected in the horizontal 

plan from the visual RGB-D SLAM method and the FC RGB-D SLAM method, and 

compares them to the results from the terrestrial Laser Scanner.  By comparing Figure 

6.8 (a) with Figure 6.8 (b), it can be clearly seen that large errors (brown colors) are 

significantly reduced at the corners of the room and around objects in the room. This 

is because in those places there are many line and plane features and FC RGB-D 

SLAM can utilize those features to improve 3D model accuracy. Figure 6.8 (c) 

compares the point cloud error distributions with the visual RGB-D SLAM and the FC 
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RGB-D SLAM methods. It is clearly demonstrated that with the FC RGB-D SLAM 

method the 3D model is more accurate than with the visual RGB-D SLAM method. 

         

          

 

Figure 6.9: Classroom model constructed by visual RGB-D SLAM. 

          

       

Figure 6.10: Classroom model constructed by FC RGB-D SLAM. 
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Table 6.1: Error difference between the FC RGB-D SLAM and visual RGB-D 
SLAM methods (meters). 

Distance Laser Proposed SLAM 
Absolute Relative 
Error (FC RGB-D 

SLAM%)  

Absolute Relative 
Error (Visual RGB-D 

SLAM %) 

D1 0.360 0.352 0.373 2.222 3.611 

D2 0.450 0.444 0.522 1.333 16.000 

D3 0.550 0.548 0.502 0.364 8.727 

D4 0.680 0.674 0.774 0.882 13.824 

D5 0.800 0.797 0.791 0.375 1.125 

D6 0.900 0.887 0.861 1.444 4.333 

D7 0.940 0.918 0.908 2.340 3.404 

D8 1.350 1.317 1.300 2.444 3.704 

D9 6.660 6.736 6.838 1.141 2.673 

D10 11.400 11.430 11.556 0.263 1.368 

Mean    1.281 5.877 

STD    0.792 4.953 

 

For the classroom, 131 RGB-D frames were collected. The scanning distance ranges 

from one to five meters. Both visual RGB-D SLAM and FC RGB-D SLAM are applied 

to the data set to reconstruct the 3D model. Figure 6.9 and Figure 6.10 show the 

reconstructed 3D models for the classroom using visual RGB-D SLAM and FC RGB-

D SLAM, respectively. In each figure, the whole model appears on the upper left 

corner and the projected wall appears on the lower left corner, while the remaining sub 

figures are three zoomed-in photos which emphasize the difference between the FC 

RGB-D SLAM and visual RGB-D SLAM methods. The projected wall from the 

proposed method was reconstructed precisely. The edges for both the chair and the 

lectern can be distinctly distinguished from the FC RGB-D SLAM results. 

For further quantitative assessments, after incorporating the length and width of the 

classroom, eight predefined distances are measured using a total station. A total of ten 

measured distances are used to conduct the comparison between FC RGB-D SLAM 

and visual RGB-D SLAM. Table 6.1 shows the error statistics for each model. FC 
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RGB-D SLAM achieved a 1.30% relative error rate compared with to 5.90% for visual 

RGB-D SLAM. 

6.4 summary 

In this chapter, a new FC RGB-D SLAM system is proposed to overcome such 

problems as the lost tracking and drift of current RGB-D SLAM systems. The system 

overcomes those problems by adopting both 2D and 3D features to register successive 

RGB-D frames. In case of brittle RGB-D frames, the system merges both 3D and 2D 

features to track the camera; as a result, lost tracking is overcome. For normal tracking, 

the system uses point, line, and plane features to compute the camera pose; thus, the 

drift problem is minimized. The newly proposed SLAM system uses the existing 

constraints between 3D features to globally refine the reconstructed 3D model. If any 

loop closure is detected, FC RGB-D SLAM system adopts a graph-based optimization 

technique to distribute the closure error to each node and edge of the graph. Then the 

FC RGB-D SLAM system is compared to the current RGB-D SLAM systems to 

evaluate its performance. The results demonstrated the advantages of the FC RGB-D 

SLAM system in terms of both tracking stability and model accuracy. 
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Chapter 7: Conclusions and future works 

7.1 Conclusions 

RGB-D cameras capture both RGB and depth images at video recording speed rate. 

Numerous modeling and navigation applications can adopt such sensors to reduce 

costs or to integrate with other systems to improve system integrity. For instance, 

RGB-D cameras are adapted to the mobile mapping system in indoor environments to 

help smooth cheap IMU data. They are also used in the indoor navigation platform 

(Tango) produced by Google. Thanks to their low cost and high mobility, RGB-D 

cameras have become the most popular cameras used in 3D indoor modelling and 

navigation applications. Unlike outdoor environments, indoor environments have a lot 

of constraints on features and mapping system requirements (e.g., mobility, processing 

time, and complexity). Although RGB-D cameras have a great potential to replace the 

time consuming and expensive traditional ways like laser scanners to reconstructing 

3D indoor models, they still suffer from problems that restrict the working range and 

the scanning space. Some problems are related to the sensors themselves and others 

are related to the scanning procedures. 

Firstly, the main problems related to the RGB-D sensors are limited operational range 

and depth precision. Normally, RGB-D cameras produce a low resolution RGB image 

accompanied with depth image for ranges up to nine meters. As a commercial sensor, 

RGB-D camera lenses suffer from distortion and geometrical inaccuracy of 

manufacturer’s parameters (e.g., focal point location). Those problems can be 

overcome by adopting a suitable calibration method. Thus, the sensor can function 

with utmost precision. In this study, we introduce a novel distortion model to 

compensate for both IR camera and IR projector distortion effects. Also, a new 
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calibration procedure is proposed to thoroughly calibrate RGB-D cameras. The 

calibration method has been implemented in MATLAB; thus, an automatic calibration 

toolbox has been produced to fully calibrate RGB-D cameras. The calibration method 

rigorously calibrates all the RGB-D camera’s geometric parameters and precisely 

calibrates the full depth range. The method has been examined through three 

experiments: the 3D models of a plane surface, a right-angle scene, and a room 

reconstructed using both calibrated and uncalibrated cameras. For the plane surface, 

two different sensors are examined and revealed that the calibration method gives a 

relative accuracy of 0.49% and 0.72% compared with 1.26% and 1.95% of the 

uncalibrated depth for both sensors from manufacturers. Moreover, the calibration 

method extends the working range from three to nine meters. Calibrated depth can 

estimate the angle features captured from a five-meter distance with a precision of 0.37 

degrees compared to 7.17 degrees using uncalibrated depth. The results of the 

reconstructed 3D model of the indoor environment demonstrated qualitatively and 

quantitatively the usefulness of the proposed calibration. The model of an office can 

be reconstructed with 1.5-cm precision compared to 7.5-cm precising using the default 

depth. 

Secondly, the problems related to the scanning procedure and indoor scene properties 

have significant effects on quality of 3D models of indoor environments. These effects 

can be classified into two categories: the scene structure and the SLAM procedure 

which handles the RGB-D frames to construct the 3D models. Regarding the scene 

structure, many indoor environments lack distinguishing point features; thus, 

depending only on these features can create imperfect SLAM results. Imperfect SLAM 

performance is presented as lost tracking or severe drift in the resulting 3D model.  
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Extracting additional features besides points from indoor scenes and using the indoor 

constraints (e.g., parallelism, perpendicularity) in the SLAM algorithm can overcome 

both lost tracking and drift of current RGB-D SLAM systems. In this study, a novel 

method is proposed to extract and describe line and plane features using both RGB and 

depth images; thus, the depth noise and bias effects on descriptor is minimized. Using 

those 3D features besides point features in current RGB-D SLAM algorithms can 

achieve a significant improvement in the alignment state of the RGB-D frames. In 

cases where too few distant point features exist, the current RGB-D SLAM easily fails; 

however, when the proposed tracking algorithm uses those point features to describe 

the other existing 3D features in the scene, the camera continues tracking. A novel 

RGB-D SLAM method (Fully constrained (FC) RGB-D SLAM) has been proposed to 

reconstruct indoor 3D models from RGB-D frames. The system uses all features 

existing in the indoor environments (e.g., points, lines, planes) to compute the relative 

transformation between successive RGB-D frames. Moreover, this system adopts 

advantageous constraints in indoor scenes to refine the final reconstructed model. FC 

RGB-D SLAM uses the tracking information to automatically detect the changes in 

indoor environments, thus the indoor constraints are automatically extracted and 

refined by the system in the post-processing stage. The constraint conditions are 

extracted based on the planar features, then the system optimizes those conditions in 

the global optimization stage. In case loop closure error is detected, then the system 

uses the graph-based optimization technique to correct the closure error. The system 

is implemented in MATLAB, two cores are added to the visual RGB-D SLAM: the 

tracking algorithm with 3D features detection and description, and the global 

refinement algorithm. The system has been tested using different indoor environments. 

For instance, applied to a corridor measuring 58m in length, the system can reconstruct 

the 3D model with up to 0.20m error, which is much better than the 1.00m error and 
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1.20m error of visual RGB-D SLAM and sensor default tracking algorithms, 

respectively. For a big room measuring 11.4x6.7m, FC REG-D SLAM achieved 1.30% 

relative error, which is much better than the 5.90% relative error of visual RGB-D 

SLAM. Also, the model reconstructed from FC RGB-D SLAM has clearly 

distinguished objects compared to the model reconstructed using visual RGB-D 

SLAM. 

7.2 Recommendations and future work  

To some extent, two major and promising research directions can be followed and they 

to further contribute to this field. The first direction is related to integration between 

different kinds of RGB-D cameras. Structured light (SL), Time of flight (ToF), and 

Stereo cameras (SC) are three basic concepts for RGB-D camera manufacturers. 

Integration between those concepts can enhance system performance by overcoming 

depth bias and noise from SL and SC, and the multipath and edges imperfection of 

ToF, and the limited working range of both SL and ToF. Using integrated camera 

system can be useful for producing 3D videos, which can be used for automation 

processes in the construction industry. Calibration and system design are both major 

research points for this direction. 

The other direction is related to the SLAM system. Instead of using the point based 

visual SLAM, the new research prospects use the photogrammetric principle assisted 

with the power of computer vision algorithms, especially in the areas of object 

recognition and tracking. Converting from feature-based SLAM to sematic SLAM 

seems to be the future of RGB-D SLAM. Object recognition and description as well 

as pose estimation based on objects are the basic research points for this direction. 
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