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ABSTRACT 

Metamaterials are a class of artificial materials constructed on subwavelength scale to 

provide exotic properties absent in nature, enabling many counter-intuitive effects and 

innovative applications. Recently, the concept of metasurfaces was pushed forward as 

a promising evolution of metamaterials, where the modulation of wave behaviors is 

through the specific boundary conditions instead of the constitutive parameters. Among 

numerous emerging topics, this thesis focuses on metamaterials and metasurfaces for 

airborne sound either confined within waveguides or guided by structured surfaces open 

to the environment. Beyond the scope of seeking extraordinary properties along the real 

axis, the thesis also shows how judiciously tailored losses can play important roles in 

controlling sound propagation.  

 The thesis starts with a study on a type of gradient holey-structured metasurfaces, 

along which the dispersive group velocity of the structure-induced surface acoustic 

waves (SSAWs) slowly drops from that of air to zero. Broadband incident waves 

parallel and close to the metasurfaces can thus be effectively converted into the SSAWs, 

with various frequency components being decelerated until trapped at different 

positions, leading to spatial-spectrally modulated and highly compressed sound field, 

namely, the so-called acoustic rainbow trapping effect. The thesis further considers the 

inherent visco-thermal losses inside the holes, a non-negligible factor in practice. 

Unlike the lossless case, the gradually diminished group velocity becomes anomalous 

rather than zero at the trapping positions, suggesting that the system’s attenuation 

reaches maximum. Consequently, the unavoidable strong backscattering in the absence 

of losses, due to the facts that the trapping is temporarily achieved and the local 

oscillation eventually radiates backward, is almost fully absorbed.  

 In the following chapter, a design approach of gradient-index (GRIN) holey-
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structured metasurfaces is presented to manipulate airborne sound in the subwavelength 

regime via the SSAWs with large wave-vector values. Based on an explicit mapping 

relation between the effective index of the SSAWs and the hole depth of the unit cell, 

arbitrary GRIN profile of index values higher than that of air can be directly 

implemented by adjusting the depth distribution. As a representative example, 

subwavelength focusing is experimentally realized along a well-designed GRIN 

metasurface, in which the focal spot size is less than 1/7 of the wavelength in air. The 

thesis further demonstrates that two-dimensional (2D) subwavelength imaging is 

available when a scanning of the object plane is conducted, enabled by the near-field 

coupling between the evanescent waves and the slow SSAWs.  

 The meta-structured surfaces are capable of manipulating not only the SSAWs but 

also sound waves within waveguides. By decorating the rigid inner surfaces of acoustic 

waveguides with micro-structures, the resultant metamaterials can modulate the 

refractive index in a complex plane, which offers an intriguing opportunity to the study 

of parity-time (PT) symmetry in passive acoustic system. The exploration of non-

Hermitian Hamiltonians possessing PT symmetry has tremendously advanced in 

experiment with optical system through the quantum-classical analogue, yet still a 

challenge for acoustics due to the lack of natural gain medium. This thesis reports an 

all passive acoustic PT-symmetric metamaterials crystal constructed through 

interleaving groove-structured and holey-structured acoustic metamaterials. It provides 

intrinsic passive PT-symmetric potential available in 2D space, which allows a flexible 

manipulation of unpaired wave vectors. At the transition point from unbroken to broken 

PT symmetry phase, unidirectional sound focusing effect is experimentally observed.  
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Chapter 1: Introduction 

1.1 Acoustic metamaterials 

Metamaterials are artificial materials constructed with subwavelength building 

blocks while exhibiting on-demand macroscopic effective properties and functionalities 

not available in nature. Fundamentally, what distinguish them from other types of 

artificial materials, such as photonic and phononic crystals, are that: 1. the building 

blocks, also refer to as meta-atoms or unit cells, are much smaller than the wavelength 

(usually less than 1/10 wavelength) and are assembled in such a way that they 

collectively behave like a continuous medium; 2. the unconventional wave behaviors 

are governed by mainly the local behavior of individual building blocks rather than 

solely the multiple scattering among them. Rapid development in this field has been 

continuously bringing new insights into novel and extraordinary ways of wave 

manipulation, beyond the restriction of conventional materials, beyond what people 

have ever imagined. 

The notion of metamaterials originated from Veselago’s theoretical exploration on 

negative refractive index for electromagnetic waves [1], in which he predicted that an 

effective medium with simultaneously negative permittivity and permeability still 

obeys the Maxwell’s equations but allows unexpected ways of wave manipulation, e.g. 

negative refraction. It was Pendry et al.’s revolutionary works [2,3] almost three 

decades later that opened up the path to these unusual properties with practical 

structures (negative permittivity: metal wires; negative permeability: split ring 

resonators). Soon after Pendry’s proposals, Smith et al. [4] demonstrated the first 

experimental realization of a metamaterial possessing negative-index of refraction. In 

terms of applications, an intriguing part of negative-index metamaterial is that they are 

capable of amplifying the evanescent wave fields that decay exponentially outside a 
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source to restore sub-diffraction-limited images, namely, the so-called “superlens” [5]. 

Another milestone in this field is the introduction of transformation optics, a powerful 

tool for materials design to mold the flow of waves at will. The idea is based on the 

invariance of Maxwell equations under coordinate transformation. It suggests that any 

coordinate-transformation-based deformation, e.g. stretching and bending, is able to be 

accomplished through specific spatial distribution of the material properties. The 

required effective properties, albeit extreme and complicated in general, are exactly 

what inhomogeneous metamaterials can offer. One of the most exciting applications 

benefited from this technique is the so-called invisible cloak [6-8]. By steering the 

waves around the object, the ability to conceal an object, which only existed in science 

fiction before, now becomes possible with the help of transformation optics and well-

designed metamaterials. 

The first acoustic metamaterial was constructed by periodically embedding rubber-

coated metallic spheres in epoxy, leading to local resonance with frequency far below 

that corresponds to the Bragg scattering [9]. While originally proposed as a tremendous 

leap of phononic crystals and a new mechanism for sound insulation, this work echoed 

with the essence of the underlying physics of electromagnetic metamaterials and hence 

is well known as a groundbreaking investigation of acoustic metamaterials. In parallel 

to the progress of locally resonant phononic crystals, many novel concepts from 

electromagnetic metamaterials have been directly borrowed to create their acoustic 

counterparts, as the equations describing the two wave systems share very similar 

mathematical form (although the two wave phenomena are fundamentally different in 

some respects, e.g. electromagnetic waves are transverse vector waves while fluid-

borne acoustic waves are compressional scalar waves). In analogy to the electric 

permittivity and the magnetic permeability that govern electromagnetic wave behavior, 
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the mass density    and the bulk modulus K   are the two key material properties 

controlling sound propagation, as evidenced by the linearized acoustic wave equation 

in a homogeneous medium without source term 

2
2

2
0,

p
p

K t

 
  


                       (1.1) 

where p  is the acoustic pressure, and the speed of sound and acoustic impedance are 

given by /c K    and Z K  , respectively. Inspired by the advances of 

electromagnetic metamaterials as well as locally resonant phononic crystals, acoustic 

metamaterials with exotic properties, e.g. single/double-negative [10-19] and 

anisotropic effective properties [20-28], etc., have been designed and tested in 

experiments; accordingly, metamaterial-based devices for novel functionalities such as 

sub-wavelength focusing/imaging [19-22,24,28-32] and acoustic cloaking [33-39] have 

also been successfully demonstrated.  

The past 17 years have witnessed a growing amount of studies in the field of 

acoustic metamaterials, accompanied by its ever-expanding scope that covers more 

diverse topics and directions [40-42]. As have been mentioned in the first paragraph, 

nowadays, the term metamaterials can refer to any artificial material whose building 

blocks are of subwavelength feature (either resonant or non-resonant) and collectively 

act like a continuous medium (usually but not necessarily in periodic manner) to 

produce unusual effective properties and/or functionalities, not limited to those for 

linear and passive systems in early stage. For instance, the exploration of effective 

material properties has been broadened from the real axis to the entire complex domain, 

in which the imaginary part represents either the gain that offers energy to incoming 

waves or the loss that takes away energy from a system. For acoustic waves, gain 

medium is not readily available in nature, while loss is omnipresent yet not easy to be 
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precisely regulated. The well-tailored gain and loss enabled by acoustic metamaterials, 

especially when they are independent to the real part of the effective properties, would 

contribute to a series of sub-fields, not only the apparent ones including sound 

absorption and loss compensation, but also those emerging topics ranging from non-

reciprocal acoustic devices [43,44] to non-Hermitian or parity-time-symmetric 

acoustics [45-50]. Besides, there has been an increasing trend towards ultrathin and 

ultra-compact metamaterial-based devices, which led to the development of acoustic 

metasurfaces [51-55]. Acoustic metasurfaces are planar acoustic metamaterials with 

subwavelength thickness, composed of monolayer or multilayer stacks of meta-atoms. 

The modulation of wave behaviors with acoustic metasurfaces is through the specific 

boundary conditions rather than the constitutive parameters, thus enabling delicate 

ways of wave-front modulation and airborne guided mode manipulation. 

1.2 Organization of the thesis 

Although the field of acoustic metamaterials has tremendously advanced, as we 

have discussed above, it has been promptly evolving since its emergence, which leaves 

us many possibilities and new directions. Among numerous emerging topics in this field, 

this thesis will focus on the design of meta-structured surfaces for two types of guided 

waves: 1. structure-induced surface acoustic waves (SSAWs) supported a perforated 

surface open to the environment; 2. sound waves confined within waveguides. Also, 

beyond the scope of conventional artificial materials that modulate the effective 

properties in real-number space, the thesis would like to explore how judiciously 

tailored losses could be adjusted to respect the passive parity-time symmetry and 

subsequently control sound propagation. 

This thesis consists of five chapters including an introductory chapter (present 

chapter), a conclusion chapter (Chapter 5) and three main chapters (Chapters 2-4) on 
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the proposed meta-structured surfaces for acoustic wave manipulation. Appendices are 

provided at the end for additional but less significant details. The three main chapters 

are organized as follows: 

Chapter 2 firstly investigates the SSAWs that exist at rigid surfaces immersed in 

air and periodically perforated with subwavelength square holes. A theoretical model is 

developed to describe the SSAWs and is numerically verified using full-wave 

simulations. Based on the theoretical results, we then propose a type of gradient holey-

structured metasurfaces at which the frequency-dependent group velocity of the 

SSAWs slowly drops from that of airborne sound in free space to zero during 

propagation, to achieve the so-called acoustic rainbow trapping effect. The thesis then 

considers the inherent thermal and viscous losses inside the holes, a non-negligible 

factor in practice. Distinct from the lossless case, the gradually diminished group 

velocity exhibits anomalies rather than zero near the trapping positions, suggesting the 

maximum attenuation of the system. Consequently, the unavoidable strong 

backscattering in the absence of losses, due to the facts that the trapped sound is 

temporarily achieved and the local sound oscillation eventually radiates backward, can 

be almost fully absorbed, forming reflectionless spatial-spectral modulation. The study 

in this chapter may provide theoretical basis for the practical design of acoustic devices 

to achieve high performance sensing and filtering. It may also be helpful for the study 

of hypersonic boundary layer stabilization. 

Chapter 3 presents a design approach of gradient-index (GRIN) holey-structured 

metasurfaces to manipulate airborne sound in the subwavelength regime via the SSAWs 

with high wave-vector values. Based on the dispersion relation derived in Chapter 2, an 

explicit expression can be obtained to map the effective refractive index of the SSAWs 

into the hole depth of the unit cell. Arbitrary GRIN profile with effective refractive 
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index higher than that of air for the SSAWs can thus be straightforwardly achieved by 

simply introducing a specific spatial distribution of the hole depth. As a representative 

example, subwavelength focusing effect is experimentally realized with a well-

designed GRIN metasurface, in which the full width at half maximum of the focal spot 

is less than one-seventh of the wavelength in air. The thesis further demonstrates in 

experiment that two-dimensional subwavelength imaging with the same metasurface is 

also available when a scanning of the object plane is conducted. This work provides a 

feasible pathway to the subwavelength manipulation of airborne sound as well as an 

ideal experimental platform to directly observe the wave propagation and energy flow 

inside two-dimensional bulk metamaterial counterparts. Meanwhile, the proposed 

design approach can be easily applied to other GRIN acoustic devices due to its 

simplicity. 

In Chapter 4, this thesis shows that, by replacing the rigid inner boundaries of 

acoustic waveguides with meta-structured surfaces, the resultant metamaterials can be 

used to modulate the refractive index in complex plane, which offers an intriguing 

opportunity to the study of parity-time (PT) symmetry in passive acoustic system. An 

experimental investigation of PT-symmetric medium is conducted with passive acoustic 

metamaterials crystal. The metamaterials crystal consists of interleaved groove-

structured and holey-structured acoustic metamaterials (namely, groove-structured 

surfaces within waveguide and holey-structured surfaces connected the waveguide with 

outside). It is able to provide intrinsic PT-symmetric potential extended in two-

dimensional space, through which the unpaired wave vectors can be flexibly controlled. 

At the exceptional point where PT symmetry spontaneously breaks, one-way acoustic 

focusing (along with reflectionless acoustic transparency in the opposite direction) is 

experimentally demonstrated, available over a certain spectrum. It confirms that passive 
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acoustic systems are capable of carrying experimental studies of PT symmetry and at 

the same time shows the unique functionalities enabled by the unpaired wave vectors 

that are judiciously tailored in two-dimensional space. 
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Chapter 2: 

Acoustic rainbow trapping through gradient metasurfaces 

2.1 Introduction 

The ability to slow down and trap light opens the path to precise control and 

temporary storage of optical waves, and enhanced light-matter interactions, which 

suggests potential practical applications in areas such as nonlinear optics, quantum 

optics, all-optical memories, etc [56,57]. However, the intrinsic delay-bandwidth 

conflict due to causality limits the practical development of conventional slow-light 

systems. The concept of “trapped rainbow” was then introduced to overcome this 

challenge [58-66], based on which various frequency components of broadband optical 

waves can be slowed down and trapped at different positions. Hence a high delay-

bandwidth product can be achieved.  

Unlike the significant advances in optical waves, acoustic rainbow trapping (ART) 

had not been realized until recent years. It is due to the fact that, contrary to the strong 

chromatic dispersion available in nature, almost all naturally-occurring materials are 

regarded as being non-dispersive in the sense of airborne sound. The emergence of 

artificial materials with exotic effective properties absent in nature suggests a possible 

way to the strong dispersion required by slow sound system [67-70]. Following this 

idea, ART effect has been experimentally demonstrated in two seminal works, through 

a gradient anisotropic metamaterial [71] and a chirped sonic crystal [72], respectively, 

in analogy with the optical trapped rainbow. Structures that are spatially coiled have 

also been utilized to go into a deeper subwavelength regime and make better use of 

space [73,74]. Besides airborne sound, the concept of trapped rainbow has been 

extended to elastic waves, e.g. Lamb and Rayleigh waves [75-77]. These highly-

dispersive artificial materials may benefit many applications such as high performance 
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acoustic sensing/filtering [78,79] and stabilization of hypersonic boundary layers 

[80,81]. 

Among these artificial materials for ART effect, one of the most effective solutions 

is through the structure-induced surface acoustic waves (SSAWs, also referred to as 

spoof or designer surface acoustic waves) [82-89], a type of airborne surface acoustic 

mode supported by periodically corrugated, perforated or resonator-embedded rigid 

surfaces. Similar to spoof surface plasmon polaritons in electromagnetic wave system 

[90,91], the dispersion characteristics of the SSAWs can be engineered through 

adjusting the geometries of the unit cells to obtain high spatial frequency as well as 

enhanced and confined field that is open to the environment. The studies on this topic 

have enabled many fascinating functionalities and applications such as beam 

collimation [86,92-95], imaging [96], focusing [30,97,98], rainbow trapping [71,79,89], 

enhanced sensing [78], directional excitation/coupling [86,99,100], and topological 

insulator [101]. However, previous designs are all based on groove structures (two-

dimensional unit cell) that require infinite size in the third dimension. This makes them 

unrealistic for practical applications, especially at low frequency range where the 

difference between theoretical and experimental results become non-negligible [71,78]. 

Meanwhile, the thermal and viscous losses inside the narrow regions of ART structures 

cannot be neglected owing to the resonating nature of the unit cells yet has not hitherto 

been theoretically investigated. 

In this chapter, a theoretical model is built to investigate the SSAWs that exist at 

rigid surfaces immersed in air and periodically perforated with subwavelength square 

holes, which is numerically verified using full-wave simulations. Based on this, a type 

of gradient holey-structured metasurfaces is proposed, at which the dispersive group 

velocity of the SSAWs slowly drops from that of air to zero along the wave propagation 
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direction. Incident plane acoustic waves grazing the metasurface of various frequencies 

can thus be coupled to the SSAWs and be decelerated to standstill in different manners, 

resulting in enhanced sound field that is highly compressed and spatial-spectrally 

separated, namely, the so-called ART effect. The trapping patterns for different hole 

depth profiles are also discussed. Next, the inherent thermal and viscous losses are taken 

into consideration. What differs the lossy metasurface from the lossless one here is that 

an anomalous point of group velocity exists, indicating the maximum attenuation of the 

surface mode. As a result, the backscattering stems from the intermodal coupling 

between the bidirectional travelling modes is nearly eliminated, forming a so-called 

absorptive ART effect. This chapter has been published in Refs. [89] and [102]. 

2.2 Structure-induced surface acoustic waves 

To realize ART effect with a gradient holey-structured metasurface, an important 

step is to convert airborne acoustic waves in free space into the SSAWs and spatially 

modulate their dispersion behavior. Hence this section start with an analysis of the 

dispersion behavior of the SSAWs. 

As depicted in Fig. 2.1(a), consider a rigid surface perforated with periodic deep 

subwavelength square holes that form a two-dimensional array of quarter-wavelength 

resonators. It is immersed in air, with material properties being denote as density 0  

and speed of sound 0c . Geometrical parameters of the perforation includes the side 

length and depth of the holes a  and h , and the lattice constant of the unit cell d . For 

time dependence with form j te  , arbitrary incident plane acoustic wave penetrating to 

the surface can be expressed as 

,yx z
jk yjk x jk z

ip e e e                        (2.1) 

,
0 0

1
,yx z

jk yjk x jk zi z
z i

p k
v e e e

j z  


   


              (2.2) 



11 
 

where   denotes the acoustic pressure of incident wave, ,z iv   denotes the z-

component particle velocity and 1j    . Define 2 2
x yq k k    as the in-plane 

wavevector and 2 2
0zk k q   as the out-of-plane wavevector, in which 0 0k c  is 

the wavenumber or airborne sound in free space, with   being the angular frequency. 

The reflected acoustic pressure ( , )m n
rp  and z-component particle velocity ( , )

,
m n

z rv  of the 

( , )m n -th order diffracted wave are written as 

( )( ) ( , )( , )
nm m n

yx z
jk yjk x jk zm n

r mnp R e e e  ，                  (2.3) 

( )( ) ( , )
( , )

( , )
,

0

.
nm m n

yx z

m n
jk yjk x jk zm n z

z r mn

k
v R e e e

 
                  (2.4) 

where ( ) 2πm
x x

m
k k

d
  , ( ) 2πn

y y

n
k k

d
  , and ( , ) 2 ( ) 2 ( ) 2

0 ( ) ( )m n m n
z x yk k k k    with 

,m n . mnR  is the reflection coefficient of the ( , )m n -diffraction order, in which 

(0,0)  represents the specular reflection.  

Since the side length a  is much smaller than the operating wavelength ( a  ), 

fundamental mode dominates inside the holes. Consequently, the sound pressure and z-

component particle velocity take the form 

0 0
1 2

jk z jk z
hp C e C e  ，                      (2.5) 

0 00
, 1 2

0

( ).jk z jk z
z h

k
v C e C e

 
                     (2.6) 

Here 1C   and 2C   denote the pressure amplitudes of the forward and backward 

propagating modes, respectively. The hole bottom is rigid ( , 0z h z h
v


  ) so that 

0 02 2
2 1

jk h jk hC C e Ce  .  

For a  , the continuity condition of acoustic pressure at the interface requires 

ip
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that the mean pressure over the opening area at 0z   equals that inside the holes at 

0z  , yielding  

( )( )
0

, /2 2
2 , /2

,

1
( )d d (1 )

nm
y yx x

x y a jk y jk yjk x jk x jk h
mnx y a

m n

e e R e e x y C e
a

   




   ，    (2.7) 

which can be further derived as 

0
,0

,
0

2( ) (1 ),jk h
mn mn

m n
mn R S C e





                   (2.8) 

where 
( )( )2 2

2 2

2 ( ) ( )d d  sinc( 2)sinc( 2)
a a nm

yx

a a

jk yjk x m n
mn x yS a e x y e k a k a

 
     is the overlap 

integral between the ( , )m n -th order diffracted mode and the fundamental mode inside 

the holes; ,00mn   is the Kronecker delta function [ ,00 1mn    for ( , ) (0,0)m n    and 

,00 0mn   for ( , ) (0,0)m n  ]. The z-component particle velocity 
0z z

v


 is continuous 

at the opening area while equals to zero elsewhere: 

0

( )( )

20
( , )

0

,0 0

(1 )    , ( , )
2 2

.

             0              , ( , )
2 2

nm
y yx x

jk h
m n

jk y jk yjk x jk xz z
mn

m n

k a a
C e x y

k k
e e R e e

a a
x y

 
   


  



      
  

  

(2.9) 

One may multiply the above equation by 
( )( ) sr
yx

jk yjk xe e  ( ,r s ) and average over the 

unit cell area: 

( ) ( )( ) ( )

( )( )
0

, /2 ( )( )( , )
2 , /2

,

, /2 2
02 , /2

,00

1
( ) d d

1
                          (1 ) d d .

n sm r
y yx x

sr
yx

x y d j k k yj k k xm n
mn zx y d

m n

x y a jk yjk h jk x

x y a

mnR k e e x y
d

Ck e e e x y
d


    










 

 


     (2.10) 

Based on the orthogonality of the exponential function, Eq. (2.10) can be derived as 

0

2

,00
2 *0

, )2 (
(1 ) .jk h

rs rsr s
z

rs

a

d

k
R C e S

k
                 (2.11) 
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where 
( )( )2 2

2 2

* 2 ( ) ( )d d  sinc( 2)sinc( 2)
a a sr

yx

a a

jk yjk x r s
rs x yS a e x y e k a k a

 
    . Substituting Eq. 

(2.11) into Eq. (2.8) yields 

0 0

2
2 2*0

00 2 ( , )
,

2 (1 ) (1 ).jk h jk h
rs rsr s

r s z

ka
S C e S S C e

d k





             (2.12) 

The coefficient C  is subsequently determined as 

0 0

00
2

2 2 *0
2 ( , )

,

2
.

(1 ) (1 )jk h jk h
rs rsr s

r s z

S
C

ka
e e S S

d k






   

           (2.13) 

The reflection coefficients in Eq. (2.11) can thus be written as  

0

0 0

2 *0
00( , )

2
2 2 *0

2 ( , )

2

2

, 0

,

0

2(1 )

.
(1 ) (1 )

jk h
mnm n

z
mn

jk h jk h
rs rsr s

r s z

mn

k
e S S

k
R

ka
e S

a

S
d

d

e
k






  
 




       (2.14) 

Note that 
0

0

2

0 2

1
tan( )

1

jk h

jk h

e
j k h

e


 


  and    * ( ) ( )sinc 2 sinc 2r s

rs rs x yS S k a k a   . Hence 

Eq. (2.14) is simplified as 

 

 

2
0

0 002 ,

2
20

,

0 2
,

00

,

tan( )

1 tan( )

2

.
mn m n

z

rsr s
r s z

mn mn

ka
k h S S

d k

k

j

a
j k h S

d k

R 








 

            (2.15) 

A true surface mode should be propagative within the xy-plane along the surface 

while evanescent in the half-space 0z   away from the surface, which requires 0q k  

and 0zjk  . Thus, by letting ( ) 2 ( ), 2( ) 2
0( ) ( )r s

x y
r s

z k kkj k   , the dispersion relation of 

the SSAWs can be obtained by analyzing the divergences of the reflection coefficients 

[103], namely, the zeros of the denominator of Eq. (2.15) 

( , ) 2 2
0

22

0 0 2
,

1 tan( ) ,
)

0
(

rs

r s
r sq k

Sa
k k h

d



 
                (2.16) 
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where  , 2 ( ) 2 ( ) 2( ) ( ) ( )r s r s
x yq k k  . It can be perceived from Eq. (2.16) that the SSAWs 

are a result of the interaction between the local sound oscillation inside individual 

building blocks and the mutual coupling among neighboring building blocks. The 

propagation characteristics of such surface mode are governed by the geometrical 

parameters of the structures. This is distinct from conventional elastic surface waves 

such as Rayleigh or Stoneley waves that arise from the superposition of at least two 

types of bulk modes along a free surface or an interface between two media. 

 

FIG. 2.1. Geometry-governed dispersion characteristics of the structure-induced 

surface acoustic waves. (a) Schematic illustration of the rigid surface perforated with 

uniform blind square holes. The lower-right inset shows the unit cell, where the side 

length and depth of the square hole are a  and h , with lattice constant being d . (b) 

Dispersion curves for different hole depths ( 2.0 / 2.5 / 3.0h d ) with 0.75a d . The 

solid lines and symbols represent the theoretical and simulation results, respectively, 

while colors are used to distinguish different h . The dispersion of sound waves in free 

space (air) is denoted by dashed black line. 

Based on Eq. (2.16), we conduct theoretical calculations to investigate the 

dispersion behavior of the SSAWs at perforated surfaces with uniform unit cells. The 

geometrical parameters are set as 0.75d a  and 2.0 / 2.5 / 3.0h d . The background 

medium is air with 3
0 =1.21 kg/m   and 0 =343 m/sc  . Finite-element-method (FEM) 
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simulations (see Appendix A) are also performed to confirm the theoretical model.  

As presented in Fig. 2.1(b), the theoretical results (solid lines) agree excellently 

with the simulation results (symbols). Each dispersion curve asymptotically approaches 

the sound line (dashed black line) within low frequency range and tends to deviate away 

as frequency increases. The curves flatten at the edge of the first Brillouin zone, 

suggesting the vicinity of a zero-group-velocity point. Evidently, the geometrical 

parameters determine the curve shape and the band edge, namely, the dispersion 

characteristics of the surface mode. Such dispersion behavior can be well understood if 

ideal effective medium approximation 0d   is applied. In this case, the dispersion 

relation of Eq. (2.16) can be simplified into the form 

 
2 2 2

0
02

0

tan ,
q k a

k h
k d


                     (2.17) 

which clearly shares very similar mathematical expression with the typical dispersion 

relation of spoof surface plasmon polaritons [90]. 

2.3 Acoustic rainbow trapping of controllable spatial-spectral modulation 

2.3.1 Gradient holey-structured metasurface 

To realize ART effect with the SSAWs, a gradually increased hole depth 

distribution ( )h x  is introduced to form a gradient metasurface as shown in Figs. 2.2(a) 

and 2.2(b). Equivalently, it offers an adiabatic control over the dispersion of the SSAWs 

in space. Incident plane waves grazing the metasurface would be converted into the 

SSAWs travelling with slowly vanished group velocity. One may examine this from the 

viewpoint of effective medium approximation, in which the group velocity of the 

SSAWs can be directly derived based on Eq. (2.17) and associated with both the 

frequency and the position as  
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0
2

2 2 2 0
0 0 2 2

0

1
( , ) ,

tan ( ( )) 1d / d
1 tan ( ( )) ( )

cot ( ( ))

g

c
v x f

k h xq
S k h x k h x S

k h x S


 


 



(2.18) 

where 2 2/S a d . As shown in Fig. 2.2(c), the group velocity is the same as that of air 

at 0x    and gradually decreases along the x   direction. It ultimately approaches 

zero when 0 ( ) π 2k h x   , which denotes the trapping point. Meanwhile, this 

decelerating process is available over a broad bandwidth, required by ART effect. 

 

FIG. 2.2. Acoustic rainbow trapping through a gradient holey-structured metasurface. 

(a) Schematic illustration of the gradient holey-structured metasurface. The hole depth 

slowly increases along the wave propagation direction x . (b) Detailed view of the 

structures within xz-plane. (c) Group velocity distribution along the wave propagation 

direction. Different colors and line styles denote different operating frequencies. 

It should be noted that the effective medium approximation tends to be invalid at 

high frequency range near the edge of the first Brillouin zone, which means that the 

wavenumber of the SSAWs cannot be infinitely large due to the non-zero lattice 

constant d  of a gradient metasurface constructed with actual structures. To precisely 

predict the where the trapping happens, the dispersion relation based on rigorous 
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microscopic model given by Eq. (2.16) is recalled here. Given that the x-component 

maximum momentum of the SSAWs is ,max π /xk d  instead of   ( y -component is 

neglect in 1D propagation case), the equation that correlates the trapping position and 

the frequency can be expressed as 

22
1

220 2

0

0sinc ( / 2)
tan( ( )) ( ) ,r

r rK

k K ad
k h x

a k









              (2.19) 

where (2 1)π /rK r d    ( r  ). The left-hand side represents the local resonance 

inside individual holes, while the right-hand side corresponds to the mutual coupling 

among neighboring units via the diffracted waves. Hence Eq. (2.19) implies a balanced 

interplay between these two physical processes that contributes to the trapping effect. 

2.3.2 Design of trapping pattern 

It is also of value to investigate if one can control the spatial-spectral modulation 

through adjusting the gradient profile of the hole depth. In this thesis, three different 

gradient profiles are considered, as illustrated in Fig. 2.3(a). The first one is simply the 

linear hole depth profile defined as 

0( ) tan( ), ,  ( 1,2,..., ,  ),h x x x x md m n n              (2.20) 

in which 5    is the tapering angle. For the second type, by mapping the trapping 

frequencies in Eq. (2.19) linearly to the hole positions, the depth profile that 

corresponds to the model of linear frequency trapping is written as 

2
0

22
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2
0

2

0
0

0

(

( ) sinc ( / 2)1
( ) arctan( ( ) ),

( )

( ) ( )2π ( )
( ) ,  ( ) + , 

,  ( 1, 2,...,  )

)

, ,

r

r

h
l

r

l

k x K ad
h x

k x a

f f x xf x
k x f x f

c n d
x x md m

K x

n n

k




 




 
  

   





        (2.21) 

where lf  and hf  are the pre-designed upper and lower frequency limits, respectively. 

Another one that might be preferred in engineering application is the 1/48-octave-band 
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profile. It can also be derived by mapping the upper frequency limit of each 1/48 octave 

band to the required hole depth as 

2
0

22
10

2
0

2

0

0

( )

( ) sinc ( / 2)1
( ) arctan( ( ) ),

( )

2π ( )
( )= ,  ( ) 1/48 octave bands,

,  ( band number),

r

r r

k x K ad
h x

k x a

f x
k x f x

c
x x md

xkK

m











  




        (2.22) 

in which the trapping frequencies are mapped to the upper band limits instead of the 

central frequencies of the 1/48 octave band since the trapping point indicates the upper 

cut-off within the frequency domain.  

 

FIG. 2.3. Design of gradient hole depth profiles. (a) Schematic illustration of the three 

studied profiles within xz-plane. (b) Designed hole depth distributions along the wave 

propagation direction. The side length of the square hole and the period of the unit cell 

are set as 3 mma   and 5 mmd  , respectively. The total number of unit cells is 99 

in the x  direction with depths ranging from 0.5 mm to 25 mm (  10,500  mmx ), 

among which the first 39 units (  10,200  mmx ) are with linearly distributed depths 

and the rests are designed using Eqs. (2.20) to (2.22).  
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This thesis designs three gradient metasurfaces based on Eqs. (2.20) to (2.22) to 

examine their effectiveness, as presented in Fig. 2.3(b). The side length of the square 

hole and the period of the unit cell are set as 3 mma   and 5 mmd  , respectively. 

The total number of unit cells along the x  direction is 99, with hole depths ranging 

from 0.5 mm to 25 mm. It is important to note that, for all three cases, the depths of the 

first 39 holes are linearly distributed. This is because, on the one hand, the trapping 

frequency is nearly reciprocal to the hole depths so that the depth difference between 

adjacent holes become extremely small at high frequencies, e.g. less than 0.1 mm, 

which is difficult to achieve in practice. On the other hand, the hole depth profile that 

increases from nearly zero value can help to minimize the impedance mismatch 

between background medium and the gradient metasurfaces, guaranteeing as low as 

reflection during the slowing down process. 

2.3.3 Numerical simulation 

Since the gradient profiles of the studied metasurfaces are arranged only in the 

wave propagation direction and periodically repeated in the transverse direction [see 

Fig. 2.2(a)], the problem can be simplified as one column of unit cells in the x  

direction together with rigid boundary conditions being applied on both sides in the y  

direction [104]. In other words, the simulation model becomes an array of graded holes 

mounted on a waveguide of open half space and width equal to the lattice constant. The 

geometries of the structures and other material properties are the same as those defined 

in Fig. 2.3(b). Plane waves of unit amplitude come from the inlet and travel along the 

x   direction. The inlet, outlet and upper half-space are employed with perfect-

matched layer (PML) to mitigate unwanted reflections. The mesh size is at most one-

tenth of the smallest wavelength. All the simulations are performed in the commercial 

FEM software COMSOL Multiphysics. 
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FIG. 2.4. Simulated absolute acoustic pressure fields for the linear hole-depth 

distribution at three different frequencies: (a) 4000 Hz; (b) 5500 Hz; (c) 7000 Hz. The 

pressure values in each sub-figure is normalized to the maximum value of the whole 

sound field. (d) Enlarged view of the absolute pressure field at 4000 Hz. The color range 

is rescaled from 0~1 to 0~0.2. 

The simulated absolute acoustic pressure fields for the linear hole-depth 

distribution at three representative frequencies are presented in Fig. 2.4. These pressure 

fields are extracted at the symmetry plane (xz-plane at 0y  ) of the simulation model. 

As expected, the incident plane waves are gradually converted into the SSAWs 

travelling along the x  direction, manifested by the energy distribution confined to 

the metasurface near the trapping point [see Fig. 2.4(d)]. The local sound oscillations 

of neighboring holes are coupled with each other through the diffractions, leading to 

the trapping phenomenon when they reach a balance. As shown in Figs. 2.4(a)-2.4(c), 

incident waves of different frequencies are trapped at different horizontal positions, 

forming extremely enhanced sound fields. Note that this enhancement is induced by 
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resonance and can be very intensive without taken into consideration the inherent 

viscous and thermal losses. Figure 2.5 further presents the absolute acoustic pressure 

fields for the three types of gradient profiles at 5000 Hz. This reveals that the trapping 

pattern can indeed be well tailored through adjusting the gradient profile. 

 

FIG. 2.5. Simulated absolute acoustic pressure fields for the three types of gradient 

profiles at 5000 Hz: (a) linear hole depth; (b) linear frequency; (c) 1/48 octave band. 

The pressure values in each sub-figure is normalized to the maximum value of the 

whole sound field. 

For each of the studied gradient profiles, the frequency responses at the bottoms of 

the holes of three equally spaced horizontal positions are plotted in Figs. 2.6(a)-2.6(c). 

As the operating frequency increases, the acoustic pressure rises in an oscillating 

manner before reaching its maximum, followed by an abrupt decline. The highest peak 

of each curve represents the resonance of the unit cell while other peaks and valleys are 

results of the interference between the reflection from the trapping position and the 

incidence. Such resonance generates drastically enhanced sound field, with the peak 

value being several tens of times of the incident pressure amplitude. A clear cut-off can 

be observed after the highest peak, indicating the trapping frequency of the unit cell. 
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Note that the spatial-spectral modulation is well controlled by the gradient profiles, e.g. 

for every two neighboring curves of the linear frequency case [Fig. 2.6(b)], nearly equal 

intervals between two cut-off frequencies are prominent in the spectrum (linear 

coordinates), being consistent with the design in Fig. 2.3(b). As presented in Fig. 2.6(d), 

the correlations between horizontal position and trapping frequency are also extracted. 

It further demonstrates that the spatial-spectral modulation can indeed be precisely 

controlled by adjusting the gradient profile, which are in good agreement with the 

results calculated using the theoretical model given by Eq. (2.19). Such profile-

governed ART effect can provide greater flexibility and adaptivity to the design of 

acoustic sensing and filtering devices. 

 

FIG. 2.6. Demonstration of the controllable spatial-spectral modulation. Frequency 

responses at the bottoms of the holes at three different horizontal positions: (a) linear 

hole depth (black); (b) linear frequency (red); (c) 1/48 octave band (blue). (d) Trapping 

position versus frequency for the three gradient profiles. 

2.4 Inherent losses induced absorptive acoustic rainbow trapping 

One may notice that, for a lossless gradient metasurface demonstrated above, the 

group velocity of the SSAWs cannot be slowed down to exactly zero owing to the 

inevitable coupling between the forward- and backward- propagating modes [65]. 

Consequently, the local sound oscillation eventually radiates backward rather than 
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being permanently trapped, despite an obvious deceleration and compression process 

of the propagating waves. Meanwhile, there is a growing interest in exploring the 

influence of inherent losses on the performance of acoustic metamaterials and 

metasurfaces [105-107], as well as the possibilities to utilize them to achieve 

functionalities such as sound absorption [107-111] and asymmetric sound transmission 

[112]. However, it has not been theoretically investigated how the inherent losses would 

affect the performance of the gradient metasurfaces for ART, which hinders their 

practical development.  

In this section, the intrinsic viscosity and thermal conductivity within the holes of 

the gradient metasurface are taken into consideration. As a result, acoustic waves 

grazingly incident upon the lossy gradient metasurface are converted into the SSAWs 

with not only slowly diminished group velocity but also increased attenuation. At the 

trapping position, the attenuation dominates and balances with the local oscillation and 

the mutual units coupling. The unwanted backscattering is mitigated owing to the 

dissipation so that the ART effect is reflectionless. The proposed lossy gradient 

metasurface is a significant step towards the practical application of ART devices in r 

acoustic sensing and filtering, as well as artificial cochlea. It may also be utilized to 

design absorptive metasurfaces to delay the hypersonic boundary layer transition 

[80,81]. 

2.4.1 Effect of the inherent losses 

The effect of the intrinsic losses on the SSAWs arises from the thermal and viscous 

boundary layers within those narrow regions of a holey-structured metasurface, which 

is non-trivial for resonance elements in real life [88,106,113]. Such effect can be 

theoretically modeled by considering the thermal conductivity   and the viscosity   

of air inside the holes. The effective density h  , the compressibility hC  , and the 
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wavenumber hk   inside the holes thus become complex and frequency-dependent, 

which are given by [114-116] 
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where /P VC C    is the ratio of the specific heat at constant pressure PC   and the 

specific heat at constant volume VC  .    and t   are functions governed by the 

geometry of the hole’s cross-section. For rectangular holes of side lengths a  and b  
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Subscript i   is either v   or t   that denotes the term of viscous or thermal boundary 

layer. The standing wave field inside the holes given by Eqs. (2.5) and (2.6) can thus 

be rewritten as 
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It is worth mentioning that the incident and reflected wave fields remain unchanged 

(see Section 2.2). This is because the sound attenuation in the upper half space is 
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negligible compared to that induced by the inherent visco-thermal losses inside the 

holes. 

Following a similar procedure as presented in Section. 2.2 (applying the continuity 

conditions of both the pressure and the z-component particle velocity at 0z   ), the 

reflection coefficient of the ( , )m n -th order diffraction in the presence of the inherent 

losses can be obtained as [89] 
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As we have mentioned above, a structure-induced surface mode is propagative along 

the parallel directions requiring 0Re( )q k   with Re( ) 0xk    and Re( ) 0yk   . 

Meanwhile, it is confined to the surface so that Re( ) 0zjk  . For the lossy case here, 

the propagation is with inherent attenuation, corresponding to Im( ) 0q  . Again, by 

setting ( , ) 2 2
0

( , ) ( )r rs s
zjk q k  and analyzing the divergences of mnR , the dispersion 

relation of the SSAWs becomes 
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For such lossy model where h  and hk  are complex, the wavenumber of the SSAWs 

q   must be complex as well, which means the SSAWs propagate with inherent 

attenuation. Another important feature of the SSAWs is that they become a leaky 

surface mode in the presence of the inherent losses, namely, the propagation constant 

along the z  direction 2 2
0zjk q k   is not a purely real number anymore. Note that 

the surface mode radiates energy to the standing-wave mode in side holes instead of the 

bulk mode in the upper half space owing to the fact 2 2
0Im( ) 0q k  . Hence, without 
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any leakage to the upper semi-space, the attenuation of the SSAWs completely comes 

from the inherent visco-thermal losses within the holes. 

Theoretical calculation based on Eq. (2.30) is conducted to investigate the 

dispersion behavior of the SSAWs at a lossy metasurface with uniform unit cells of 

3 mma    , 5 mmd    , and 25 mmh   .The physical properties of air at 20 ˚C, 

standard atmospheric pressure, are respectively 3
0 1.21 kg/m   , 0 343 m/sc   , 

0.0258 W/m K    , 51.81 10  kg/m s     , 31.005 10  J/kg KpC      and 1.4   . 

Meanwhile, three-dimensional full-wave simulations using COMSOL Multiphysics are 

performed to examine the surface wave field above an holey-structured metasurface. 

40 building blocks are arranged along the x  direction to mimic a sufficiently large 

metasurface. Periodic boundary condition and perfectly matched layers are employed 

to imitate the infinitely repeated building blacks in the y   direction and the semi-

infinite half space 0z   , respectively. The inherent losses inside the holes due to 

thermal conductivity and viscosity are numerically considered via replacing the purely 

real properties with those complex ones given in Eq. (2.23). To effectively excite the 

surface mode [79,83,86,99], a line source is applied near the inlet of the metasurface, 

namely, a near field excitation technique. The mesh size is at most one-tenth of the 

smallest wavelength. 

As shown in Fig. 2.7(a), the real part of the dispersion curve of the lossy 

metasurface (red solid line) overlaps with those of the lossless case (blue solid line) and 

the background medium (black solid line). It gradually deviates from the sound cone 

(black solid line) as frequency rises while remaining similar to the lossless case. A 

increased imaginary part is observable (red dashed line), representing the attenuation 

of the SSAWs, as illustrated by the simulated sound field in Fig. 2.7(b) and 2.7(c). It is 

worth noting that for the lossy case, the dispersion curve of the SSAWs cannot touch 
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the edge of the first Brillouin zone, namely, the maximum real part of the wave vector 

Re( )xk  is not π / d  any more. This interesting result clearly differes from the lossless 

case, in which xk   is a purely real number within the first band and increases with 

frequency and reaches its maximum at the zone edge ( xk d ). It is also different 

from the case studied in Ref. [88]: a lossy metasurface with relatively shorter holes still 

permits Re( )xk  to reach the zone edge, although similar attenuation behavior of the 

SSAWs can be observed. Here in our case, there exists a turning point in the dispersion 

curve [the peak of the red solid line in Fig. 2.7(a)], which represents the infinite-group-

velocity d / dgv k  . As pointed out by Ref. [117], the group velocity in a lossy 

medium becomes abnormal (e.g. infinite or negative) for the frequency at which the 

attenuation is maximum. Since the attenuation of the SSAWs completely results from 

the inherent thermal and viscous losses, such group velocity anomaly suggests that the 

turning point is where the absorption of the SSAWs reaches its maximum. As shown in 

Fig. 2.7(e), the SSAW mode is still propagative, but suffers severe attenuation 

stemming from the inherent absorption, which is in stark contrast to the result of lossless 

model as presented in Fig. 2.7(d). Beyond this group velocity anomaly, the imaginary 

part of the wavenumber is much larger than the corresponding real part, leading to the 

pseudo-stopband of the SSAWs. Accordingly, the surface mode can no longer be 

excited and the pressure oscillation is almost all confined to the source region, as 

rendered in Figs. 2.7(f) and 2.7(g). Whereas in lossless case, the wavenumber is purely 

imaginary within the bandgap. 
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FIG. 2.7. Dispersion properties of the structure-induced surface acoustic waves at the 

metasurfaces with and without inherent losses [89]. (a) Calculated dispersion relation 

of the SSAWs. The curves of the lossless case (blue solid line) and the air line (black 

solid line) are also presented, where 0 0 4f c h  is the cavity resonance frequency. The 

unit cell is designed to have 3 mma  , 5 mmd    and 25 mmh  . (b)-(g) Simulated 

acoustic pressure fields at three different frequencies for both lossless and lossy cases. 

The star in each subfigure represents a line source that is applied near the edge of the 

metasurface and infinitely extended in the y  direction. 

2.4.2 Lossy gradient metasurface model 

As depicted in Fig. 2.8(a), the hole depth distribution is also arranged in a graded 

way along the wave propagation direction. In this case, a gradient metasurface is 

constructed, which consists of 99 holes with depth varying (0.25-mm step) from 0.5 

mm to 25 mm. Other properties remain unchanged as those given in previous sections. 

The local dispersion curves of different types of building blocks (different hole depths) 

are combined to create the spatial distributions of both the group velocity and 

attenuation. As shown in Fig. 2.8(b), for any given frequency within the designed band, 

the group velocity (solid lines) drops from that of airborne sound in free space to a non-

zero minimum. These curves then abruptly turn to infinities, manifesting that the 

absorption of this lossy system reaches maximum [117]. Such frequency-dependent 
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group velocity distribution would contribute to a reflectionless spatial-spectral 

separation. Therefore, the metasurface can act as an absorptive structure, mimicking a 

“permanently” trapped rainbow. The quote mark is used to distinguish this trapping 

phenomenon from the ideal ART model built that can actually diminish the group 

velocity to exactly zero. 

 

FIG. 2.8. Absorptive acoustic rainbow trapping with a gradient metasurface [89]. (a) 

Schematic illustration of the gradient metasurface. It consists of 99 graded square holes, 

whose depth linearly varied from 0.5 mm to 25 mm with a step 0.25 mm. (b) Group 

velocity and specific attenuation of the SSAWs along the gradient metasurface. The 

solid lines denote the group velocity and the dashed lines the absolute value of the 

specific attenuation (attenuation per wavelength). Red, green and blue represent three 

different frequencies 1 3860 Hzf   , 2 4730 Hzf    and 3 6110 Hzf    . The group 

velocity anomaly (infinite) implies the maximum absorption of the lossy system [117].  

2.4.3 Numerical simulation 

Full-wave FEM simulations are conducted to test the designed model. The settings 

are the same as those we used in the metasurface of uniform holes except that plane 

incident acoustic wave from the left-hand side grazes the gradient metasurface [Fig. 

2.9(a)]. 
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FIG. 2.9. Comparison of simulated acoustic pressure fields of lossy and lossless models 

at 5000 Hz [89]. (a) Background acoustic pressure field. The incident plane wave of 

unit amplitude travels from the left-hand side to the right-hand side. (b)-(e) scattered 

and total acoustic pressure fields of lossy and lossless models. The upper and lower 

limits of the acoustic pressure are set to two times the amplitude of the incident wave 

to guarantee that the wave pattern above the gradient metasurface is clear enough. 

It can be seen from the scattered and total acoustic pressure fields [Figs. 2.9(b) to 

2.9(d)] that the incident wave near the surface is efficiently converted into the SSAWs. 

They are confined to the surface and their wavelength are highly compressed, which 

forms strongly enhanced sound field. The maximum compression appears at the 

trapping position where the SSAWs cannot transmit further so that the near-surface 

sound field beyond this position is rather weak. Incident waves further away from the 

metasurface cannot interact with the structures and thus continue to propagate with 
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hardly any change in the shape of wavefront. For lossless case as shown in Figs. 2.9(c) 

and 2.9(e), the deceleration of the SSAWs is restricted by the non-zero group velocity 

subject to intermodal coupling between the forward and backward modes [65]. Hence 

the trapping is only temporarily achieved and the SSAWs eventually radiates back to 

the half space. In contrast, no obvious backscattering takes places in the lossy model 

[Figs. 2.9(b) and 2.9(d)], leading to reflectionless spatial-spectral modulation, namely 

a so-called absorptive trapping effect. Basically, two facts contribute to the 

reflectionlessness behavior: first, the mode conversion between the incident wave and 

the surface mode is in an adiabatic manner due to the gradient distribution of group 

velocity that slowly drops from that of airborne sound in free space to the vicinity of 

zero, with little mismatch during the propagation; secondly, the attenuation of the 

SSAWs also gradually increases and becomes dominant at the trapping position so that 

the backward mode is nearly fully absorbed. It shows that the inherent thermal and 

viscous losses can help to rebuild the balanced interpaly between the local sound 

oscillation and the mutual interaction [71]. 

The simulated total acoustic pressure fields and the corresponding absolute values 

at several different frequencies in the presence of losses are displayed in Fig. 2.10. The 

operating frequency increases linearly from Figs. 2.10(a) and 2.10(e) to Figs. 2.10(d) 

and 2.10(f). Incident waves of different frequencies are compressed and slowed down 

in different manners, depending on the spatial group velocity distributions shown in Fig. 

2.8(b). The trapping takes place at deeper holes for lower frequencies and at shallower 

holes for higher frequencies, which are determined by the group velocity anomaly 

points in space. The whole process is accompanied by very weak backscattering. Else 

clear interference patterns would appear on the left-hand side of the absolute acoustic 

pressure fields [Figs. 2.10(e)-2.10(h)]. The overall phenomenon well meets our 
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theoretical expectation, which confirms that the ART effect previously investigated in 

lossless system [71] is still valid even in the presence of inherent visco-thermal losses, 

an important effect cannot be neglected in real life. 

 

FIG. 2.10. Simulated total acoustic pressure fields and the corresponding absolute 

values at several different frequencies in the presence of losses [89]. (a)-(d) Total 

acoustic pressure fields. The upper and lower limits of the acoustic pressure are set to 

two times the amplitude of the incident wave to guarantee that the wave pattern above 

the gradient metasurface is clear enough. (e)-(h) Absolute total acoustic pressure fields. 

The pressure amplitudes are normalized per the maximum among the results of the four 

frequencies. 

Figures 2.11(a) and 2.11(b) present the frequency responses at the hole bottoms of 

four different horizontal positions. Compared to the results of lossless case [dashed 

lines in Fig. 2.11(a)], the oscillatory rise of pressure amplitude with respect to frequency 

is smoothed due to the vanished reflection. The enhancement of sound field, albeit 

weakened by the dissipations, still produces pressure amplitude more than ten times 

over that of the background field. In each curve of Fig. 2.11(a), the rapid decline of 

pressure amplitude after the peak shows a clear cutoff, signifying the so-called trapping 

frequency. From the lossless model (solid curves) to lossy model (dashed curves), these 

trapping points shift slightly towards low frequency range. This phenomenon can be 
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well understood by the examining the change in propagation characteristics of the 

SSAWs brought by the inherent losses: the losses lead to complex effective 

wavenumber hk  and lower speed of sound inside the holes, which slightly reduces the 

resonance frequency [106,107]; since the SSAWs is a result of the interaction between 

the local resonance and the mutual coupling via diffractions, such change in resonance 

behavior subsequently has an impact on the propagation characteristics of the SSAWs. 

This low-frequency shift is consistent with our theoretical prediction, as evidenced by 

the extracted trapping curves [ Fig. 2.11(c)], in which the lossy model undoubtedly 

offers a more accurate estimation. It also provides a theoretical explanation to the 

deviation of the measured results from the lossless model in Ref. [71]. 

 

FIG. 2.11. Simulated frequency responses at the hole bottoms of four different 

horizontal positions and the extracted trapping curves [89]. (a) Absolute acoustic 

pressure versus frequency. The results of lossless case are shown with dashed lines. (b) 

Instantaneous acoustic pressure versus frequency. In (a) and (b), different colors denote 

different horizontal positions. (c) Extracted trapping frequency versus position. The red 

and blue solid lines represent the theoretical calculations of lossy and lossless cases; 

circles and squares correspond to the simulation results of lossy and lossless cases. 

The backscattering is further evaluated by examining the scattered pressure 

amplitude scatabs( )p  at several different heights near the inlet. As shown in Fig. 2.12, 
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the backscattering generated by the metaurface is rather weak throughout the studied 

frequency range, which indicates that the sound waves are truly trapped and absorbed 

inside the gradient metasurface. On the contrary, the lossless metasurface generates 

strong backscattering [dashed lines in Fig. 2.12] within the same frequency band, 

resulting from the intermodal coupling between the forward and backward modes. At 

higher frequencies, the attenuation of the surface mode offered by the lossy metasurface 

becomes smaller because of the decreased inherent losses inside the holes, giving rise 

to gradually emerged (yet still much weaker than the lossless case) backscattering. Note 

that in lossless case the reduced backscattering for higher frequencies originates from 

the weakened interaction between the incident wave and the structured surface. This is 

due to the fact that less building blocks participate into the deceleration process at high 

frequencies. The large contrast between the lossy and lossless cases confirms that the 

phenomenon presented in Figs. 2.9 and 2.10 is valid for a broad frequency range. 

Clearly, the inherent thermal and viscous losses play a key role to realize the absorptive 

ART, leading to the reflectionless spatial-spectral splitting and sound field enhancement. 

 

FIG. 2.12. Scattered acoustic pressure amplitudes versus frequency within upper half 

space at 0x    [89]. Different colors represent different heights away from the 

metasurface. The solid and dashed lines denote lossy and lossless cases, respectively. 

Fundamentally, the structure-induced surface mode is a result of the interplay 
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between the local oscillation inside individual holes and the mutual coupling among 

adjacent units. It forces the acoustic wave to go inside and outside the holes and transmit 

among the units through diffractions. For lossless case, the local oscillation experiences 

a process of periodic storage and release of energy subject to the operating frequency 

and strikes a balance with the mutual coupling at the resonance frequency [71]. While 

for lossy case, the losses within the holes participate in the process and dissipate energy 

into heat. Such dissipation effect slowly becomes stronger along the direction where 

hole depth increases, namely, along the wave propagation direction. At the trapping 

position, the local oscillation reaches resonance and the dissipation dominates, resulting 

in strong absorption of the surface mode. Therefore, the fundamental reason to absorb 

the SSAWs is the resonance behavior change of the holes due to the inherent losses, 

together with the spatial modulation of the SSAWs offered by the gradient distribution 

of these building blocks in space. 

2.5 Summary 

In summary, this chapter has demonstrated that, by carefully adjusting the gradient 

profile, the pattern of ART effect can be well tailored on demand. Three different 

profiles have been numerically evaluated. The simulation results show that broadband 

incident acoustic waves travelling along the holey-structured metasurfaces are 

effectively converted into the SSAWs. Such airborne surface mode is gradually slowed 

down until ultimately trapped at a specific position determined by both the operating 

frequency and the gradient profile, forming spatial-spectrally modulated and 

intensively enhanced sound field. The profile-controlled ART can provide greater 

flexibility and adaptivity to the design of acoustic devices for sensing, filtering and 

detection. 

The inherent losses induced by viscosity and thermal conductivity inside the holes 
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are further taken into consideration, which introduces both gradually diminished group 

velocity and progressively increased attenuation of the SSAWs along the lossy 

metasurface. The resultant group velocity anomalies at the trapping position leads to 

spatial-spectral separation with vanished backscattering, namely, a so-called absorptive 

ART effect. This study deepens the understanding of the SSAWs at a lossy metasurface 

and is a significant step towards the practical introduction of ART-based devices. It may 

also provide theoretical support to the study of absorptive metasurfaces to stabilize 

hypersonic boundary layers [80,81]. 
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Chapter 3: 

Subwavelength focusing/imaging along a gradient-index metasurface 

3.1 Introduction 

Diffraction effects fundamentally limit the spatial resolution of an imaging system 

or the minimum focal spot size to about half the wavelength, due to the fact that near-

field evanescent waves carrying rich sub-wavelength information decay exponentially 

outside the object/source region. There has long been a desire to overcome this barrier 

as sub-diffraction-limited techniques would benefit a wide variety of applications, for 

example, specific to acoustics-related fields, ranging from seismic exploration and 

sonic well logging, to ultrasonic non-destructive evaluation, to ultrasonic biomedical 

imaging and therapy. In essence, the so-called diffraction limit is a fundamental 

restriction of nature that cannot be really violated. As highlighted by Ref. [118], people 

can only circumvent it and get better resolution through the loopholes in the theory. The 

emergence of metamaterials opens up the possibilities to go into such loopholes, by 

providing exotic properties and unconventional functionalities beyond what nature 

offers. Stimulated by the concepts of superlens and hyperlens in optics [5,119-122], 

acoustic metamaterials with negative index/density [19,29,31,123-125] or extremely 

anisotropic density [20-22,24,25,28,126-128] have been reported to circumvent the 

diffraction limit, through amplifying the evanescent waves or converting/magnifying 

them to propagating modes inside/outside the metamaterials. An alternative strategy is 

the time-reversal mirrors combined with an acoustic sink or a resonators array [30,129], 

which allows flexible control of sound field and recovery of evanescent waves based 

on an inversion procedure. It has also been shown recently that, by carefully designing 

the plane wave bandgap and the trapped resonances of an acoustic metamaterial within 

the same band, low spatial frequency components can be filtered so that only 
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evanescent waves are utilized to create the edge-based image with sub-diffraction 

resolution [32]. However, despite these exciting advances, only a few studies have 

achieved subwavelength focusing effect. Successful proposals that have been verified 

by experiment either rely on additional time-reversal techniques [30,129], or require 

the sound source to be closely attached to the lens [19,130]. Although Maznev, et al. 

have pointed out that time-reversal technique is not the unique factor that contributes 

to the sharp focal spot [98,131], it still plays an important role in controlling over the 

focusing process. More importantly, the capability to focus plane acoustic waves into a 

subwavelength hot spot, which corresponds to the Fourier transform function essential 

for many imaging systems, has not been demonstrated so far. 

The structure-induced surface acoustic waves (SSAWs) guided by periodically 

structured surfaces bring new possibilities to the subwavelength manipulation of 

airborne sound due to the high spatial-frequency feature and the confined sound field 

that is open to the environment. The subwavelength feature of SSAW can be well 

understood from the dispersion relation 2 2 2
0k k k  , where k  is the in-plane wave 

wavevector, k   is out-of-plane wave wavevector, and 0k   is the wavenumber of 

airborne sound in free space. For the SSAW, k  is an imaginary number as the surface 

mode is evanescent along the vertical direction, and thus k  must be larger than 0k , 

which means that the SSAW has wavelength smaller than that in free space and can 

carry subwavelength information. Moreover, as has been discussed in Chapter 2, the 

dispersion behavior of such airborne surface acoustic mode is governed by the 

geometrical parameters of the periodical structures and can be engineered to provide 

various effective properties. 
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FIG. 3.1. Conceptual illustration of the gradient-index (GRIN) metasurface and the self-

focused surface waves. The GRIN metasurface offers a hyperbolic secant refractive 

index profile to the structure-induced surface acoustic waves along the transverse 

direction. The yellow lines denote the trajectories of the incident plane waves. 

Inspired by the unique properties of the SSAWs, this chapter presents a design 

approach of gradient-index (GRIN) metasurfaces to manipulate airborne sound on 

subwavelength scale. Different from previous study [97], the depth of the unit cell holes 

is utilized as a unique and direct variable to control the GRIN profile. It permits a large 

tunable range of the effective refractive index, and the relation between the hole depth 

and the refractive index can be analytically built in an explicit expression, which greatly 

simplifies the design process. The effectiveness of the proposed design approach is 

numerically and experimentally examined by considering a hyperbolic secant index 

profile [132-134]. As conceptually illustrated in Fig. 3.1, the GRIN metasurface is able 

to support self-focused SSAWs converted from incident plane waves. A focal spot with 

a full width at half maximum (FWHM) less than 1/7 of the wavelength in air is 

successfully achieved. With the same configuration, subwavelength imaging is also 

experimentally realized, through coupling the non-propagative evanescent field of the 



40 
 

source into the travelling SSAWs with large wave vectors. We then go a step further to 

extend the imaging into two dimensions by performing a scanning of the object plane 

in the third direction and synthesizing all the acquired energy density distributions. The 

proposed design approach offers a simple and direct way to the subwavelength 

manipulation of airborne sound with GRIN metasurfaces, which may facilitate the 

development of novel acoustic devices for focusing, imaging and sensing, etc. 

3.2 Gradient-index metasurface 

3.2.1 Mapping relation 

We recall Eq. (2.16) obtained in Section 2.2 that describes the dispersion 

characteristics of the SSAWs travelling along a lossless holey-structured surface as 

depicted in Fig. 3.2(a): 

( , ) 2 2
0

22

0 0 2
,

1 tan( ) ,
)

0
(

mn

m n
m nq k

Sa
k k h

d



 
                 (3.1) 

where 2 2
x yq k k   is the Bloch wave vector of the SSAWs in the first Brillouin zone. 

In addition to what has been discussed in Section 2.2, the propagation characteristics of 

the SSAWs along all possible directions within the xy-plane are further investigated 

here. Figures 3.2(b) and 3.2(c) present the calculated and simulated dispersion curves 

of several different geometrical parameters along the high symmetry orientations of a 

square lattice [inset of Fig. 3.2(a)]. During the calculation/simulation, the density and 

the speed of sound are set as 3
0 1.21 kg/m    and 0 343 m/sc   , respectively. The 

numerical simulations are performed in commercial finite-element-method (FEM) 

solver COMSOL Multiphysics (see Appendix A). Typical dispersion behavior of the 

SSAWs can be observed: the dispersion curves asymptotically approach the air line 

(dashed line) at very low frequency range and start to deviate below the “sound cone” 



41 
 

with the increase of frequency until becoming flat at the edge of the first Brillouin zone. 

Evidently, the geometrical parameters determine the curve shape and the band edge, 

namely, the propagation characteristics of the surface mode. For large /h d  value, the 

band edge appears in low frequency regime, indicating that subwavelength 

manipulation of airborne sound is possible. It should be noted that the difference 

between the wave vectors in the ΓX and the ΓM orientations gradually emerges as the 

frequency approaches the edge of the first Brillouin zone, leading to directional 

effective properties (non-circular equifrequency contour) and a narrow partial bandgap 

at even higher frequencies [96]. 

 

FIG. 3.2. Geometry-governed dispersion characteristics of the structure-induced 

surface acoustic waves. (a) Schematic illustration of the metasurface perforated with 

uniform square holes. The lower-right and the upper-right insets are the unit cell and 

the corresponding first Brillouin zone. (b) Dispersion curves for different side lengths 

( 5, 10, 15 mm   a  ) with fixed hole depth 60 mmh   and lattice constant 20 mm d  . 

(c) Dispersion curves for different hole depths ( 40, 50, 60 mm  h   ) with fixed side 

length 15 mm a    and lattice constant 20 mmd   . The solid lines and symbols 

represent the theoretical and simulation results, respectively, while colors are used to 

distinguish different a  or h . The dispersion of sound waves in free space filled with 

air is denoted by dashed black line. 
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Based on the dispersion relation Eq. (3.1), this thesis then attempts to build a 

straightforward mapping relationship between the geometrical parameters and the 

effective refractive index 0/effn q k . Note that the maximum effective indices along 

the high symmetry orientations ΓX and ΓM are X,max / 2n d   and M,max / 2n d  , 

respectively, where   is the wavelength in air. It suggests to what degree the SSAWs 

can be compressed and the highest spatial frequency can be achieved, theoretically. 

However, as the difference between the effective refractive indices Xn   and Mn  

becomes non-negligible near the edge of the first Brillouin zone, here we focus on the 

frequency range slightly away from the band edge. In this case, the approximation 

X Meffn n n    is valid and hence Eq. (3.1) can be rewritten as  

 2 22
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2 2 2 2
,0 0 0

sinc ( / 2)sinc / 21 1
arctan( ( ) ),m n

m n m n

K a K ad
h
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where 0

2 2π

2m eff

m
K n k

d
   and 0

2 2π

2n eff

n
K n k

d
  . Clearly, Eq. (3.2) provides a 

direct mapping relation between the effective refractive index and the hole depth. In 

other words, it is able to unequivocally determine the required hole depth for any 

desired refractive index ( 1effn   ) at a given frequency if a   and d   are fixed. This 

treatment largely reduces the complexity of design process, especially when the 

uniform distribution of refractive index is further changed into a GRIN manner. To the 

best of our knowledge, in order to obtain the target refractive index profile with large 

adjustable range (e.g. the maximum effn  is several times larger than that of air), most 

GRIN design had to rely on time-consuming parametric sweep, during which a series 

of numerical calculations need to be performed before one can finally determine the 

required geometrical parameters. 
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3.2.2 Gradient-index design 

The design principle of a planar GRIN lens that is able to focus incident plane 

acoustic waves can be summarized as to construct a specific refractive index profile 

along the transverse direction. Let x   and y   be the propagating and transverse 

directions, respectively. Here this thesis considers the hyperbolic secant refractive index 

distribution that has been widely used [132-134], namely, 0( ) sech( )n y n y , where 

0n  is the refractive index at the center axis 0y   (also the maximum value) and   is 

the gradient coefficient. As has been illustrated in Fig. 3.1, a planar incident beam 

travelling along the x   direction would gradually converge towards the central axis 

until being focused into a small spot; the converged sound waves will then be redirected 

to parallel beams. The trajectory follows a sinusoidal path and the focal length is 

analytically given by focal π/2L  . 

With the mapping correlation Eq. (3.2), the uniform distribution of hole depth is 

modified into a graded way [Figs. 3.3(a) and 3.3(b)], forming a 19×25-elements GRIN 

metasurface that enables the SSAWs focusing, to numerically and experimentally 

examine the proposed design approach. The side length of the holes and the lattice 

constant are 15 mma    and 20 mmd   , respectively; the transverse spatial 

distribution of hole depth as a function of y   is presented in Fig. 3.3(c), with the 

deepest ones that locate at the central axis 0y    being 
0

60 mm
y

h

  . Such 

arrangement is directly determined using Eq. (3.2) according to the refractive index 

profile of 0 3.13n   and 8.27   [Fig. 3.3(d)], in which the operating frequency and 

the designed focal length are 1250 Hzf    and focal 190 mmL   , respectively. The 

corresponding local dispersion relations of these individual unit cells are plotted in Fig. 

3.3(e). The hole depth can well tailor the shape of the curves and thus introduces a 
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graded distribution of effective refractive index as shown in Fig. 2.3(d). Along the x  

direction, a total of 25 columns of unit cells ( 0 500 mmx  ) are sufficient to fully 

demonstrate the converged and redirected sound field.  

 

FIG. 3.3. Design of the gradient-index metasurface. (a) Photograph of the metasurface 

sample and the experimental setup. (b) Schematic illustration of the graded square holes 

in the yz-plane. (c) Hole depth distribution along the y   direction. (d) Effective 

refractive index distribution at 1250 Hz along the y  direction. The solid line is the 

exact hyperbolic secant index profile of our design, in which 0 3.13n   and 8.27  , 

corresponding to a focal length of focal 190 mmL  . (e) Local dispersion curves of the 

unit cells used in our design. Different colors denote different hole depths ranging from 

43.9 mm to 60.0 mm. The inset is a zoomed plot of the curves around 1250 Hz. 

3.2.3 Effect of the inherent losses 

An important factor that cannot be neglected in practice is the inherent thermal and 

viscous losses inside the narrow regions, as has been illustrated in Section 2.4. As 

shown in Fig. 3.4(a), in the presence of these losses, the real part of the wavenumber 

(red solid line) gradually deviates from the lossless dispersion curve (black solid line) 

while the imaginary part (blue dashed line) progressively increases as the frequency 
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rises and approaches the band edge, resulting in slightly raised effective refractive index 

and obvious attenuation along the wave propagation direction [88,89]. To alleviate this 

impact, larger hole opening a  and relatively lower operating frequency away from the 

band edge have been selected in our design, where an inevitable tradeoff between high 

refractive index and low attenuation should be taken into account. It is worth 

mentioning that the effect of the visco-thermal losses may be theoretically included in 

the dispersion relation Eq. (3.1) by considering complex effective properties inside the 

holes [89]. However, this modified dispersion relation, albeit more precise, becomes a 

complex transcendental equation, and an explicit expression like Eq. (3.2) cannot be 

derived any more.  

 

FIG. 3.4. Effect of the inherent thermal and viscous losses. (a) Dispersion relation of 

the structure-induced surface acoustic waves (SSAWs) in the presence of the inherent 

losses. The calculation is based on the lossy model presented in Section 2.4 with 

15 mm a  , 20 mmd   and 60 mmh  . The wave vector of the SSAWs becomes a 

complex number for the lossy case (red solid line: real part; blue dashed line: imaginary 

part). The lossless dispersion curve (black solid line) and the air line (black short-dashed 

line) are also plotted for comparison. (b) Complex effective refractive index distribution 

at 1250 Hz in the presence of the inherent losses. Compared to the lossless model (black 

circles), a slight increase of effRe( )n  (red squares) can be observed, accompanied by 

the emergence of effIm( )n  (blue squares) that is much smaller than effRe( )n . 

Actually, the effect of the inherent losses can be utilized as an additional correction 
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to the ideal lossless model after a preliminary GRIN design based on Eq. (3.2). To 

confirm this point, the effective refractive index distribution of the lossy metasurface 

model is calculated and compared with the lossless one. As can be seen in Fig. 3.4(b), 

the thermal and viscous losses only induce slightly increased overall refractive indices 

and moderate attenuation of the SSAWs. In this case, the focal length would move 

closer to the source, and sound field would be weakened to some extent. 

3.3 Subwavelength focusing 

3.3.1 Experimental and simulation setup  

The GRIN metasurface sample exhibited in Fig. 3.3(a) is fabricated using three-

dimensional printing technique (stereolithography), with material (photosensitive resin) 

being much rigid compared to air. The last 5 columns of holes ( 400 mm 500 mmx  ) 

are filled with sound absorption materials to mimic a reflectionless boundary for the 

SSAWs, otherwise obvious interference pattern would appear as the structure is not 

infinitely extended. As shown in Fig. 3.5, the lock-in amplifier (Zurich Instrument 

HF2LI) controlled by the computer is used for signal generation and acquisition. It 

sends sinusoidal signals to the loudspeaker box via an audio power amplifier (Brüel & 

Kjær, Type 2716C) to generate acoustic waves. The loudspeaker box with a 10-mm-

width, 380-mm-long slit acts as a line-like source, which consists of 9 1.5-inch full-

range loudspeaker units (Peerless by Tymphany, PMT-40N25AL01-04). The sound 

field above the metasurface sample is measured by a 1/4-inch free-field microphone 

with built-in preamplifier (Brüel & Kjær, Type 4935), mounted on a two-dimensional 

moving stage. The recorded signals are sent back to the lock-in amplifier via a 

conditioning amplifier (Brüel & Kjær, NEXUS Type 2693A).  
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FIG. 3.5. Experimental setup for the measurement of subwavelength focusing. The 

loudspeaker box with a 10-mm-width, 380-mm-long slit is equivalent to a line-like 

source that can effectively excite the surface mode. 

The simulated sound fields above the GRIN metasurface in the following section 

are obtained from three-dimensional full-wave FEM simulation in frequency domain. 

The line-like source is accomplished by applying plane wave radiation condition at a 

10 mm × 380 mm area near the metasurface. The inherent losses due to thermal and 

viscous boundary layers inside the holes are introduced by replacing the purely real 

physical properties of air with frequency-dependent complex quantities [114-116]. The 

background medium is air (20 ˚C, standard atmospheric pressure), whose physical 

properties are: density 3
0 1.21 kg/m   , speed of sound 0 343 m/sc   , thermal 
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conductivity 22.58 10  W/m K     , viscosity 51.81 10  kg/m s     , the specific 

heat at constant pressure 31.005 10  J/kg KpC    , and the ratio of the specific heats 

1.4   . The mesh size is at most one-tenth of the smallest wavelength. Perfectly 

matched layers are implemented around the metasurface to mimic a semi-infinite space. 

3.3.2 Experimental and simulation results 

 

FIG. 3.6. Subwavelength focusing of airborne sound. (a) and (b) Simulated acoustic 

energy density and pressure fields. (c) and (d) Measured acoustic energy density and 

pressure fields. The measurements are conducted 10 mm above the metasurface, and 

the operating frequency is 1250 Hz. (e) and (f) Normalized energy density distributions 

along 0y   and 190 mmx  . The white dashed lines in (c) mark where these curves 

are extracted. The results are normalized based on the energy density distribution along 

190 mmx   [blue line and symbol in (f)] of a control experiment as shown in Fig. 3.7. 

The error bars are generated from 5 repeated measurements. 

Figures 3.6(a)-3.6(d) are the simulated/measured acoustic energy density and 

pressure fields 10 mm above the GRIN metasurface at the designed operating frequency 

1250 Hz, in which the overall experimental and simulation results agree very well with 
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each other. The incident plane SSAWs travelling from left to right gradually bend 

towards the central axis and converge to a small spot around 190 mmx   . At the 

position about 360 ~ 380 mmx  , the wavefront becomes nearly planar again and the 

sound field beyond that point would continue to be self-focused if the sample is long 

enough in the x  direction. The whole propagation process is rather remarkable in the 

pressure field patterns given by Figs. 3.6(b) and 3.6(d), following the expected 

sinusoidal trajectory of a GRIN medium with transverse hyperbolic secant index profile 

[132]. This is in stark contrast to the control experiment as shown in Fig. 3.7, in which 

the simulated and measured sound fields above a rigid plain surface are presented. 

The detailed acoustic energy density distributions along 190 mmx   and 0y   

[white dashed lines in Fig. 3.6(c)] are presented in Figs. 3.6(e) and 3.6(f). The focal 

spot indeed locates around (190,0) mm   [highest peaks in Fig. 3.6(e)], which is 

consistent with our design. The measured and simulated FWHM are both about 36 mm 

[red dotted lines in Fig. 3.6(f)], roughly 0 / 7.6  , where 0 274.4 mm    is the 

wavelength in air at 1250 Hz. The measured energy density at the focal position is about 

8.65 times (about 9.94 times in simulation) greater than that obtained from the control 

experiment as shown Fig. 3.7, revealing an intensively focused and compressed 

acoustic field. It is worth emphasizing that, unlike Refs. [30] and [98], the 

subwavelength focusing effect achieved here is not based on time reversal or array 

shape but induced by the GRIN profile despite that the slow surface mode plays equally 

crucial roles. This also breaks the restriction of the self-focusing effect inside a GRIN 

medium [132] or a high refractive index immersion lens [135] as the near-field high 

spatial frequency information brought by the airborne SSAWs is measurable in the open 

upper half-space. In this sense, such manipulation of airborne sound can be treated as 

being on subwavelength scale. 
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FIG. 3.7. Control experiment: sound fields above a rigid plain surface for the same line-

like source at 1250 Hz. (a) and (b) Simulated acoustic energy density and pressure fields. 

(c) and (d) Measured acoustic energy density and pressure fields. The line-like source 

generates near plane waves that decay away from the source, with wavelength much 

larger than those in Figs. 3.6(a)-3.6(d). Weak interference appears in (c) since the plain 

surface is not infinitely large and there exist trivial reflections from the edge. 

In addition, it can be inferred from Eq. (3.2) that the effective refractive index 

profile offered by the metasurface is frequency-dependent and approximately fits to the 

function 0( ) sech( )n y n y   with specific 0n   and    values for operating 

frequencies other than 1250 Hz. To illustrate this point, the acoustic energy density 

fields at different frequencies are provided in Fig. 3.8. One may unequivocally observe 

that the focal spot moves towards the source and becomes smaller as the operating 

frequency rises, resulting from the increased   and 0n  in 0( ) sech( )n y n y . 
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FIG. 3.8. Measured acoustic energy density fields at different frequencies: (a) 1210Hz; 

(b) 1220Hz; (c) 1230Hz; (d) 1240Hz; (e) 1250Hz; (f) 1260Hz; (g) 1270Hz; (h) 1280Hz; 

(i) 1290Hz. The field in each sub-figure is normalized to its own maximum value.  

One may notice that the focal spot is “surprisingly” smaller than half the minimum 

wavelength of the SSAWs 2 / 87.7 mms q     . This seemingly unreasonable 

phenomenon is due to two facts. First, the overall effective indices are underestimated 

in the lossless theoretical model of Eq. (3.2), namely, their actual values (in the presence 

of the inherent visco-thermal losses) should be slightly higher than our initial design 

[88,89], as evidenced in Fig. 3.4. Second, the energy density field within the opening 

area of a unit cell, namely, the inlet of the resonator, is stronger than that of its remaining 
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area, which is especially obvious for lower measuring height. Consequently, the 

sharpened focal spot leads to the small FWHM in Fig. 3.6(f). To explain the second 

point, we further examine the measured energy density fields at different heights above 

the metausrface [see Fig. 3.9]. It can be inferred from these results [Fig. 3.9(b)] that, 

the lower the measuring height, the more the FWHM approaches the side length of the 

holes. As has been pointed out by Refs. [30,98,131], the FWHM here is associated with 

yet not equivalent to the minimum spatial resolution, and the latter is determined by the 

highest effective refractive index of the SSAWs. 

 

FIG. 3.9. Measured acoustic energy density fields at different heights above the 

gradient-index metasurface. (a) Normalized acoustic energy density values of the focal 

spot at different heights. The result is normalized based on the control experiment. 

Clearly, the energy density value decays exponentially away from the metasurface. (b) 

Measured energy density fields around the focal spot. ①-⑥ correspond to different 

heights marked in (a), which are normalized to the maximum value among all the results. 

3.4 Subwavelength imaging 

3.4.1 Sound fields subject to point-like sources 

The essential reason of the so-called diffraction limit stems from the evanescent 

wave field which carries rich sub-wavelength information but decays exponentially 

outside the source region. As we have demonstrated above, the metasurface is capable 

of coupling the non-propagative evanescent fields into the propagating SSAWs with 
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large wave vectors, during which the information of high spatial frequency can be well 

preserved. It suggests that sub-diffraction-limited imaging should also be available with 

the same configuration. To find the image plane of the GRIN metasurface, now let us 

experimentally examine the sound fields subject to: (1) a single point-like source; (2) a 

pair of in-phase point-like sources; (3) a pair of out-of-phase point-like sources. The 

source is 10 mm × 10 mm in size, which can be regarded as a point compared to the 

wavelength in air. The experimental setup is depicted in Fig. 3.10. 

 

FIG. 3.10. Experimental setup for the measurement of sound fields subject to point-like 

source(s). Each loudspeaker box has a 10 mm × 10 mm square aperture, whcih is much 

smaller than the wavelength and can be regarded as a point-like source. 
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FIG. 3.11. Simulated and measured acoustic pressure fields at 1250 Hz subject to: (a) 

and (d) a single point-like source; (b) and (e) a pair of in-phase point-like sources; (c) 

and (f) a pair of out-of-phase point-like sources. The solid circles are the point-like 

sources, with colors denoting their phases. The object and image planes are marked by 

the black dashed lines. The simulation results are consistent with the those of the 

experiment, except that the location of the image plane (simulation: 360 mmx   ; 

experiment: 350 mmx  ) is slightly farther away from the source. 

As shown in Figs. 3.11(a) and 3.11(d), in both simulation and experiment, the 

wavefront of the SSAWs generated by a single point-like source is modulated by the 

GRIN metasurface and refocused in the opposite side of the y  -axis at about 

340 ~ 360 mmx  , forming an inverted image with sub-diffraction-limited resolution. 

In Figs. 3.11(b)-3.11(c) and 3.11(e)-3.11(f), we further present the simulated and 

measured acoustic pressure fields induced by a pair of in-phase or out-of-phase point-

like sources to demonstrate this fact. The center-to-center distance between the two 

sources is 80 mm, approximately 0 / 3.4  at 1250 Hz. It can be observed that the two 

point-like sources are distinguishable at about 340 ~ 360 mmx    after propagating 

along the GRIN metasurface. The overall measured pressure patterns [Fig. 3.11(d)-
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3.11(f)] are consistent with those of the simulation [Fig. 3.11(a)-3.11(c)], but with minor 

differences in the location of the image plane along the x  direction. Based on these 

results, we choose 350 mmx   [dashed lines in Figs. 5(d)-5(f)] as the image plane of 

the system. It slightly shifts towards the object plane ( 0x  ) in comparison with the 

simulation results [dashed lines in Fig. 3.11(a)-3.11(c)], which may be caused by the 

near-surface boundary layer losses (only losses inside the holes are considered in 

simulations), the environmental factors, the fabrication errors, etc. 

3.4.2 Two-dimensional imaging 

We note that the enhanced sound field of the SSAWs is confined to the GRIN 

metasurface and attenuates exponentially with the increase of z  as shown in Fig. 3.9. 

It implies that the subwavelength imaging may potentially be extended to two-

dimensional case since only the evanescent components near the metasurface can be 

effectively coupled to the propagative SSAWs. To this end, we perform a scanning of 

the object plane along the z   direction and synthesize the measured energy density 

distributions in the image plane for different scanning heights hz  , as schematically 

illustrated in Fig. 3.12(a). Here a relatively complex object shaped like the letter “C” 

with subwavelength features [Fig. 3.12(b)] is used as a representative example. In 

experiment, the C-shaped object plane is implemented by inserting a carved thin plate 

that can move up and down in the z  direction, between the line-like source and the 

metasurface sample [see Fig. 3.12(a)]. The carved plate is several times larger than the 

wavelength to suppress diffraction at the plate edges, and it is 10-mm away from both 

the speaker box and the metasurface sample so that the sound radiation is relatively 

stable for different scanning height hz . The scanning height is controlled by adjusting 

the vertical position of the C-shaped opening. The energy density distribution 10-mm 

above the metasurface sample along 350 mmx   is then measured for each scanning 
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height.  

As can be seen from Figs. 3.12(c)-3.12(e), most subwavelength features of the C-

shaped object, e.g. edges and gaps, no matter along the y   or z   direction, are 

successfully rebuilt in the synthesized image plane and well validated by the experiment. 

Hence it is evidenced that the subwavelength imaging can be extended to two-

dimensional case, without necessarily stacking the metasurfaces in the third direction 

to form a bulky structure. 

 

FIG. 3.12. Two-dimensional subdiffraction imaging. (a) Schematic illustration of the 

experimental setup. (b) C-shaped object plane. The scanning is conducted along the z  

direction. (c) and (d) Synthesized image planes in simulation ( 360 mmx   ) and 

experiment ( 350 mmx   ). The image planes are synthesized by combining all the 

energy density distributions obtained at different scanning heights hz . (e) Normalized 

energy density distribution for 100 mmhz  . The location of 100 mmhz   is marked 

by dashed white line in (d). The circles and solid line denote experimental and 

simulation results, respectively. 
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3.5 Summary 

This chapter has experimentally demonstrated the subwavelength focusing and 

imaging effects, with a gradient-index (GRIN) metasurface for the structure-induced 

surface acoustic waves (SSAWs) with large wave vectors. The design of this type of 

GRIN metasurfaces is greatly simplified benefited from the explicit mapping relation 

between the effective refractive index and the hole depth, avoiding massive time-

consuming calculations. In this sense, the proposed GRIN design method offers a 

straightforward way to the subwavelength manipulation of airborne sound, not limited 

to the effects of focusing and imaging demonstrated here. Other GRIN-enabled devices 

[134] such as acoustic Eaton lens, Luneburg lens, Maxwell-fish-eye lens and black hole, 

or functionalities such as airy beam and Talbot effect under conformal transformation 

[136], can also be realized following similar approaches. Meanwhile, it is not difficult 

to imagine that even deeper subwavelength scale would become accessible if space-

coiling [14,137] or helical-structured [138] metamaterials are adopted during the unit 

cell design. 

In addition, the system is open to the surrounding environment and the enhanced 

wave field is measurable in the upper half-space near the metasurface. It is therefore an 

ideal platform to directly observe and investigate in experiment the propagation and 

energy flow of sound “inside” the metamaterials or sonic crystals counterparts. For 

instance, the phenomenon of backscattering-immune wave guiding in an acoustic 

topological insulator can be experimentally visualized in the subwavelength regime 

through measuring the topological structure-induced surface acoustic polaritons [101], 

which remains difficult for bulk composites or structures. Moreover, the non-leaky slow 

surface mode can further be coupled into a radiative mode, or vice versa, based on 

wave-vector matching via acoustic antennas [86,100]. It may enable more flexible ways 
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of sound manipulation and open new possibilities to innovative applications for 

acoustic focusing, imaging, sensing and detection beyond the diffraction limit. 
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Chapter 4: 

All passive acoustic parity-time-symmetric metamaterials crystal 

4.1 Introduction 

The meta-structured surfaces can manipulate not only the structure-induced surface 

acoustic waves (SSAWs) but also the acoustic waves within waveguides. By replacing 

the rigid inner boundaries of acoustic waveguides with meta-structured surfaces, the 

resultant metamaterials can be used to modulate the refractive index in complex plane, 

which offers an intriguing opportunity to the study of parity-time (PT) symmetry in 

passive acoustic system. 

The concept of PT symmetry originated from quantum mechanics and is regarded 

as a complex generalization of conventional quantum theory. Consider a Hamiltonian 

2ˆ ˆ ˆ/ 2 ( )H p m V x   that specifies the energy levels and time evolution of a quantum 

system, where p̂  is momentum operators, x̂  is position operator, m  is mass and V  

is the potential, respectively. It is Hermitian if it is invariant under conjugate transpose. 

Hermiticity guarantees that the energy spectrum is real, and that time evolution is 

unitary (probability-preserving). The introduction of complex potential 

ˆ ˆ ˆ( ) ( ) ( )R IV x V x iV x   would result in non-Hermiticity. It had long been believed that 

non-Hermitian Hamiltonians do not possess real eigenvalues. However, in 1998, 

Bender and Boettcher [139] demonstrated that non-Hermitian Hamiltonians can still 

exhibit real spectra and conserved probability as long as they respect PT symmetry, 

namely, they commute with combined PT operator ˆ ˆPTH HPT . And the symmetry 

is unbroken provided that the Hamiltonian and PT operator share the same eigenvectors. 

The action of parity operator P   is the spatial reflection that flips the sign of 

momentum and position, defined as ˆ ˆ ˆ ˆ,p p x x   . The action of time reversal 
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operator T  flips the sign of momentum and leads to complex conjugation, defined as  

ˆ ˆ ˆ ˆ, ,p p x x i i    . Thus, a necessary (but not sufficient) condition of PT 

symmetry is that the complex potential obeys ˆ ˆ( ) ( )V x V x  . This is to say that it is 

spatially even in its real part ˆ ˆ( ) ( )R RV x V x    and odd in its imaginary part 

ˆ ˆ( ) ( )I IV x V x   .  

For many years, PT-symmetric quantum mechanics had only been treated as an 

interesting mathematical discovery with hardly any practical application, because the 

experimental realization of complex potential in quantum system is extremely difficult. 

This changed in 2007, soon after the concept being introduced to optics, based on the 

analogy between the time dependent Schrodinger equation and the paraxial wave 

equation [140]. The PT-symmetric potential in quantum mechanics corresponds to a 

complex spatial distribution of refractive index in optical system, namely, symmetric in 

its real part and antisymmetric in its imaginary part, which can be expressed as 

( ) ( )n x n x   . Such index distribution suggests a practical implementation of PT 

symmetry by using balanced optical gain and loss, and optics provide a fertile ground 

where PT symmetry physics can be widely exploited [141-146].  

The most intriguing feature of PT-symmetric systems is the spontaneous PT 

symmetry breaking. As the non-Hermiticity parameters exceed a certain threshold, the 

eigenvalues of the Hamiltonian abruptly change from real to complex, and the system 

experiences a phase transition, from the unbroken to broken PT symmetry phase. At the 

broken PT symmetry phase, the condition ˆ ˆPTH HPT   is still valid, but Ĥ   and 

PT   cease to share the same eigenvectors. This phase transition signifies a non-

Hermitian singularity or the so-called exceptional point, where the eigenstates become 

degenerate. In classical wave systems, exceptional point is associated with many 
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counter-intuitive phenomena and functionalities, which alternatively sheds new lights 

on a series of physical problems that have been described with frameworks other than 

PT symmetry. In the past decade, great effort has been dedicated to the realization of 

PT-synthetic medium [141-146] that can meet the requirement of complex PT-

symmetric potentials through balanced gain/loss modulation. Unconventional 

phenomena, such as Bloch oscillations [147,148], unidirectional reflectionless 

resonance [149-153], coherent perfect laser/absorber [154-156], single-mode or vortex 

lasing [157-159], and low-power all-optical switch [160], have been demonstrated. 

However, the experimental investigations of PT-synthetic medium for optical systems 

are hitherto based on one-dimensional waveguides, in which the wave propagation 

direction is parallel or perpendicular to the PT-symmetric potential. The study of PT 

symmetry in higher dimensional space has only been theoretically discussed [161-166].  

PT symmetry has also been introduced to acoustic wave system [45-48,50,167,168]. 

Although still in an early stage, it has already exhibited significant value and potential 

in many aspects including one-way cloak [45], invisible acoustic sensing [46], and 

phonon lasing [167]. Those designs followed the similar approach of one-dimensional 

gain/loss dimer configuration. To overcome the absence of acoustic gain medium in 

nature, active sound generating unit (e.g. electro-acoustic components) [43,46,48] or 

additional fluid field [168] has been applied to experimentally mimic the sound 

amplification behavior. Yet, the complicated circuit set-up and external energy supply 

unavoidably reduce the robustness and usability of these systems. Nevertheless, 

airborne sound is an ideal candidate that shows great flexibility in expanding PT-

symmetry in higher-dimensional space due to its longitudinal wave nature (without the 

necessity to consider polarization) as well as the zero cut-off within waveguides.   

To demonstrate the capability of passive acoustic system to carry the PT symmetry 
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study and manipulate the unpaired wave vectors in two-dimensional space, this chapter 

shows the realization of a one-way sound focusing effect, with an all passive acoustic 

PT-symmetric metamaterials crystal. For our design, the groove-structured and holey-

structured acoustic metamaterials are interleaved to modulate the refractive index 

distribution in the complex plane, forming the so-called acoustic metamaterials crystal 

[121]. It offers intrinsic passive PT-symmetric potential that is equivalent to 

unidirectional wave vectors applying to the incoming acoustic waves. We 

systematically show how such passive PT symmetry is evolved from the exact PT 

symmetry, theoretically examined by the coupled-mode theory and the transfer matrix 

calculation. Making full use of the unique feature of the passive PT-symmetric system 

in two-dimensional space, one-way sound focusing effect along with reflectionless 

transparency in the opposite direction is achieved in both simulation and experiment. 

The proposed work presents a feasible way to implement PT-related novel devices, 

breaking the restrictions of gain medium. It may enable many unconventional 

functionalities and applications that are not available with Hermitian systems, e.g., one-

way transmission and vortex radiation. More importantly, our passive acoustic PT-

symmetric metamaterials crystal provides an entire new platform to investigate general 

quantum-analogs phenomena and to tailor the unpaired wave vectors in two-

dimensional space. This chapter has been published in Ref. [169] 

4.2 Passive acoustic parity-time symmetry 

4.2.1 Evolution from the exact to the passive parity-time symmetry 

The evolution from the exact to the passive PT-symmetric potential in one-

dimensional space is illustrated in Fig. 4.1(a). The exact PT-symmetric potential, 

namely, a complex exponential modulation of the acoustic refractive index, can be 

written in a generalized form as 
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0( ) ( ) cos( ) sin( )n x n x n n qx i n qx                   (4.1) 

with 0n n  and 02q k , where 0n   is the background refractive index, n  is the 

modulation amplitude, 0k  is the wave number, and   denotes the amplitude ratio 

between the imaginary and real parts. For a balanced modulation ( 1   ), note that 

( ) exp( )n x n iqx  , equivalent to an unpaired wave vector applied to incoming waves. 

The sinusoidal modulation is then simplified to a square-wave modulation [I→II, Fig. 

4.1(a)] to reduce the structure design requirement since both modulations share similar 

scattering properties at the Bragg wavelength [45], which is expressed as 
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         (4.2) 

where m . Alternatively, the sinusoidal modulation can be regarded as the first-

order Fourier expansion of a square-wave modulation. Due to the lack of gain medium 

for sound, Eq. (4.2) is truncated by only considering [4 ,4 2 ]x m q q m q q    + + , 

and rewritten as 

(p)
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         (4.3) 

After truncation [II→III, Fig. 4.1(a)], only one negative half cycle out of two periods 

of the imaginary part modulation is retained, making the modulation period mT  

doubled (from (e) 2π /mT q  to (p) 4π /mT q ), where the second-order Bragg scattering 

of the system is considered [152] (hereinafter, we use the superscript (e)  or (p)  to 
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denote the exact or passive case). This treatment allows us to conduct an in-phase shift 

of the real part so that the spatial overlap between the two modulations can be separated, 

as we will present later.  

 

FIG. 4.1. Exact and passive acoustic PT-symmetric potentials [169]. (a) Evolution of 

the acoustic PT-symmetric potential through refractive index modulations: I. Exact PT-

symmetric potential (complex exponential modulation) → II. Exact PT-symmetric 

potential (complex square-wave modulation) → III. Passive PT-symmetric potential 

(truncated complex square-wave modulation) → IV. Passive PT-symmetric potential 

( 3π / 2   in-phase shift of the real part modulation). The red/blue curves denote the 

real/imaginary part modulations. (b) Arrangement of the real part and imaginary part 

refractive index modulators. The modulation period is 2mT T  . The passive PT-

symmetric system experiences an exceptional point where a π  phase-shift occurs with 

backward reflection vanished. 

The scattering matrix of such exact or passive PT-symmetric potential (square-

wave modulation) can be derived based on the coupled-mode theory. Consider the 

pressure field with time dependence i te   ( 2πf   is the angular frequency) inside 

the modulated region that contains forward and backward plane waves: 
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( ) ( ) ,ikx ikx
f bP P x e P x e                      (4.4) 

where ( )fP x  and ( )bP x  are respectively the amplitudes of forward and backward 

propagating components. In weak coupling regime ( 0n n ), the coupled-mode 

equations take the form 
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                (4.5) 

Here    is the attenuation coefficient inside the modulated region, and   is the 

coupling coefficient between forward and backward propagating modes. The 

coefficients 0C , qC  and qC  can be determined by applying the Fourier 

transformation to Eqs. (4.2) and (4.3) as 0( ) / exp( ) exp( )q qn x n C iqx C iqx C      

and averaging over the entire modulation period mT  ( (e) 2π /mT q  and (p) 4π /mT q ) 
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which yields 

(e) (e) (e)
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Comparing these two groups of coefficients we may found that : the attenuation terms 

0C  is not zero any more for the passive PT-symmetric case due to the absence of gain 

medium; there exists a factor of 4 in qC   and qC  , namely, (e) (p)4q qC C   and 
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(e) (p)4q qC C  . For the modulations as given in Eqs. (4.2) and (4.3) ranging from 0x   

to x L  ( 4πL q ), the elements of the transfer matrix 
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                  (4.7) 

are deduced as ( n  is omitted for simplicity) 
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where 

(e) 22 (1 ) .      

(p) 2 2 2 2( / 4) (1 ) / 4π .       

The scattering matrix is subsequently derived as 
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             (4.8) 

where t , fr  and br  represent the transmission, forward-reflection, and backward-

reflection coefficients, respectively. The eigenvalues of S  can thus be acquired by 

substituting the elements of the transfer matrix into Eq. (4.8) as 

1,2 ,f bt r r                           (4.9) 

specifically, for the studied exact and passive PT-symmetric systems 
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Still, we can find that a factor of 4 is involved in the coefficient before the hyperbolic 

sine function of the numerator between Eqs. (4.10) and (4.11). To clarify the physical 

meaning of the expression of (p)
1,2 , a loss factor (p) (p) (p) 1

12 21 221 ( )a M M M     is 

introduced and one may further obtain 
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         (4.13) 

It is evident that the eigen-spectrum of the passive PT-symmetric system ( (p)
1,2 ) is that 

of an exact PT-symmetric system ( (p)
1,2  ) multiplied by a additional factor 1a   that 

shifts the eigenvalues towards losses. When 0 1  , (p)
1,2   are conjugated and 

unimodular. The system operates in the passive unbroken PT symmetry phase, 

corresponding to the unbroken PT symmetry phase in an exact PT-symmetric system 

with balanced gain and loss. If 1  , (p)
1,2   are nonunimodular with a pair of reciprocal 

moduli. The system operates in the passive broken PT symmetry phase, corresponding 

to the broken PT symmetry phase in an exact PT-symmetric system. When 1  , the 

eigenvalues become degenerate with (p)
1,2 1     and (p)

1,2 exp( / 4)a L    . In this 

case, similar to the phase transition behavior from the unbroken to broken PT symmetry 
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phase in a complete PT-symmetric system, the passive system experiences a 

spontaneous PT symmetry breaking, or the so-called exceptional point, where a π  

phase-shift occurs with backward reflection vanished. 

In order to remove the overlap with the imaginary part modulation, the real part 

modulation is then shifted 3π / 2  in phase [III→Ⅳ, Fig. 4.1(a)]. It permits us to go a 

step further towards the simple and practical impelmentation of the passive PT-

symmetric system as now the real and imaginary part modulators can be independently 

design. In the next section, the transfer-matrix calculations are performed to examine 

the effectiveness of our treatment in a rigorous and straightforward way. As we show 

in the following, the studied acoustic system [Ⅳ, Fig. 4.1(a)] is equivalent to the exact 

PT-symmetric system with balanced gain and loss, except that an additional loss factor 

a  is introduced owing to the purely passive modulation. Alternatively, such passive 

PT-symmetric modulation can be regarded as a balanced gain-loss modulation applied 

to the background medium with global loss. It can still provide an unpaired wave vector 

to incoming waves [149,152] so that the backward reflection vanishes.  

4.2.2 Transfer matrix modeling 

The phenomenon of unidirectional reflectionlessness predicted by the coupled-

mode theory may be explained from the view of a multiple-reflection/transmission 

process, in which each interface of a one-dimensional passive PT-symmetric system 

can be regarded as a secondary plane source. As shown in Fig. 4.2, incident plane waves 

(continuous waves) penetrating upon the passive PT-symmetric medium generate 

multiple transient reflections and transmissions that bounce back and forth within each 

layer. At steady-state, the stationary reflection/transmission of each interface is the sum 

of an infinite number of transient reflections/transmissions at that interface. In this sense, 

each interface (e.g. ( , )m jx x ) is equivalent to a secondary plane source that radiates 
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forward-traveling component ( 1, )m j
fP    and backward-traveling component ( , )m j

bP  . 

Therefore, the out-going components at the two outside boundaries of the stratified 

medium suggest the overall reflections  fr  and br  of the one-dimensional passive PT-

symmetric system. Note that the transient reflections are in-phase in the forward 

direction, whereas out-of-phase in the backward direction. In other words, they 

constructively interfered with each other to generate forward-reflection and cancel out 

with each other to eliminate the backward-reflection. 

 

FIG. 4.2. Transfer-matrix calculation of the reflections from a one-dimensional passive 

PT-symmetric medium [169]. Each period contains four layers of homogenous media, 

and each interface located at ( , )m jx x  can be treated as a secondary plane source. The 

inset is the amplitudes of the reflections for forward and backward incidences as a 

function of  . In the calculation, the modulation amplitude is set as 00.001n n   and 

the total length is 100L T , with operating frequency being the Bragg frequency.  

These components can be easily determined using the transfer matrix method. Here 

each period of the studied passive PT-symmetric potential as shown in Fig. 4.2 contains 

four layers: one layer of real part modulation, one layer of imaginary part modulation, 

and two layers of background medium. Consider the pressure field and the associated 
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particle velocity field of the forward and backward propagating waves in the j-th layer, 

m-th period ( 1,2,3,4j   and m  is an integer) 

( , ) ( , ) ,j jik x ik xm j m j
f bP P e P e                     (4.14) 
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where j , jc , and jk  are the density, the speed of sound, and the wavenumber in the 

j-th layer of thickness jl . The pressures and particle velocities on both ends of the layer 

are connected through a transfer matrix Tj  

( , 1) ( , )

( , 1) ( , )

( ) ( )
,

( ) ( )
T

m j m j

j
m j m j

P x P x

V x V x




   
   

   
                  (4.16) 
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For a passive PT-symmetric system consisting of mN   periods, the overall transfer 

matrix in the forward and backward directions can be written in the form 

( )
1 2 3 4[ ] ,mNf    T T T T T                     (4.18) 

( )
4 3 2 1[ ] .mNb    T T T T T                     (4.19) 

The reflection coefficient can be obtained from the elements in ( )T f  or ( )T b  as 
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r
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 
 

  

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                (4.20) 

where 0  and 0c  are the density and the speed of sound in the background medium. 

We then use the transfer matrix method to examine the overall reflections from a 

passive PT-symmetric medium with 00.001n n   and 100L T  ( (p) (e)2 2m mT T T  ). 

As shown in the inset of Fig. 4.2, the backward reflection vanishes when the real and 
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imaginary part modulations become balanced, namely, when 1  , which corresponds 

to the vicinity of exceptional point. With the transfer matrix model, we may conclude 

that, from the view of a multiple-reflection process, the unidirectional reflectionlessness 

phenomenon is a result of the constructive and destructive interferences of all the 

reflections and transmissions within the passive PT-symmetric medium. The absolute 

value of the eigenvalues 1,2 f bt r r    and the second components /b fr r  of the 

eigenvectors (1 / )T
b fr r  for both the exact and passive PT-symmetric systems [Ⅱ 

and Ⅳ in Fig. 4.1(a)] are also calculated to more fundamentally examine the studied 

passive system. The black and red curves/circles presented in Fig. 4.3(a) overlap with 

each other (due to conjugation) in exact/passive unbroken PT symmetry phase 

( 0 1   ), degenerate at the exceptional point ( 1   ), and are unequal in the 

exact/passive broken PT symmetry phase ( 1  ). This is further confirmed by Fig. 

4.3(b), in which /b fr r  are either purely real at 0 1   or purely imaginary at 

1   [45]. The results unequivocally show similar underlying physics and behavior in 

PT phase evolution between the two systems. 

 

FIG. 4.3. Transfer-matrix calculation of the scattering matrix [169]. (a) Absolute value 

of the eigenvalues and (b) the second term of the eigenvectors of the scattering matrix, 

where lines and circles denote the exact and passive PT-symmetric potentials [Ⅱ and 

Ⅳ in Fig. 4.1(a)].  
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4.2.3 Setting the amplitude and number of modulation periods 

The coupled-mode theory requires that the modulation amplitude of the passive 

acoustic PT-symmetric potential to be as low as possible, compared with the refractive 

index of background medium. Hence the number of modulation periods should be 

sufficiently large to observe the unidirectional reflection effect. For example, for the 

theoretical calculations shown in Figs. 4.2, 4.3(a) and 4.3(b), 00.001n n   and 

50 mL T   ( (p) (e)2 2m mT T T   ). However, two elements have prevented us from 

applying those parameters into the final design. First, to provide a low-amplitude 

modulation, the features of designed structures must be small enough. Considering the 

audible frequency range (with wavelength about 2 110 ~10 m ), the required highly 

precise machining is hard to accomplish and high in cost. Secondly, a large amount of 

modulation periods will eventually lead to unpractically large size of the final sample.  

It is then necessary to discuss how the number of modulation periods mN  affects 

the reflection and transmission characteristics. Here the modulation amplitude and 

period are set as 00.05n n   and (p) 2 4π 120 mmm T qT    , and conduct transfer-

matrix-based calculations. Figure 4.4(a) shows the broadband reflection/transmission 

characteristics for different mN : larger mN  results in higher amplitude of the forward-

reflection fr  (red lines) around the Bragg frequency and narrower overall bandwidth, 

until mN   reaches about 40; the overall amplitude of the backward-reflection br   is 

very low over the studied spectrum for any mN ; the amplitude of the transmission t  

declines and tends to be diminished as mN   increases. The reflectance and 

transmittance 2| |fr  , 2| |br   and 2| |t   as a function of mN   at 2820 Hz (near the peak 

that corresponds to the Bragg resonance) are further plotted in Fig. 4.4(b) to clearly 
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demonstrate this behavior. These calculations help us to determine a proper mN   to 

experimentally investigate the phenomenon of unidirectional reflectionlessness with a 

practical design. For instance, in our design (5% modulation amplitude), a reasonable 

number of modulation periods ( 3 ~ 10mN  ) is sufficient to generate obvious reflection 

from only one side together with partial transparency, a unique and typical functionality 

of the passive PT-symmetric system. 

 

FIG. 4.4. Effects of the number of modulation periods on the reflection and transmission 

characteristics [169]. (a) Broadband reflection and transmission coefficients for 

different numbers of modulation periods mN . (b) Reflectance and transmittance versus 

the number of modulation periods at 2820 Hz. For all the calculations, the modulation 

amplitude and period are set as 00.05n n    and (p) 2 4π 120 mmm T qT     , 

respectively. 

After careful evaluation, we set the modulation amplitude as 00.05n  (still can be 

treated as weak modulation) and limit the number of the combined real/imaginary 

modulations to 5 pairs (total length corresponding to 10 periods of the exact PT-

symmetric modulation) in the following metamaterials crystal design. Such treatment 

allows us to clearly observe the phenomenon of unidirectional reflection, while 

restricting the overall scale of the system within a reasonable range. 
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4.3 Acoustic metamaterials crystal respecting passive parity-time symmetry 

4.3.1 Effective medium simulation 

 

FIG. 4.5. Effective medium design and simulation of the one-dimensional passive 

acoustic PT-symmetric medium [169]. (a) Schematic of the effective medium model. 

The red and blue regions represent the real and imaginary part modulators, respectively. 

The length of the modulators is 30 mm and the center-to-center distance between the 

real and imaginary modulators is 45 mm. (b) Simulated energy density fields in xz-

plane for forward and backward incidences. The amplitude is normalized per the 

background field. (c) and (d) are the spectral amplitude and phase responses, including 

reflection (red, forward; blue, backward) and transmission (black) coefficients in both 

directions. The reference point of the phase responses locates at the output surfaces of 

the PT-symmetric medium. The transfer-matrix calculation (solid line) and the 

numerical result (circle) are consistent with each other. 

Before designing metamaterials for the real and imaginary part acoustic 



75 
 

modulations, the one-dimensional passive PT-symmetric metamaterials crystal model 

was analyzed with effective medium approach in simulation, as shown in Fig. 4.5(a). 

The effective speeds of sound in the real and imaginary part modulators are defined as 

Re 326.67 m / sc    and Im 342.14 17.107 m / sc i   , respectively. Their densities are 

the same as that of the background medium. The background medium is air with density 

3
0 1.21 kg / m    , speed of sound 0 343 m / sc    , and refractive index 0 1n   . The 

designed modulation period is 2 120 mmmT T   and the height of the waveguide is 

2 40 mmH    .The full-wave numerical simulations were performed with finite-

element method (FEM) using COMSOL Multiphysics. The mesh size is at most one-

tenth of the smallest wavelength. Perfectly-matched layers were employed around the 

passive PT-symmetric medium to mitigate the reflection of sound waves. 

Simulated energy density fields in Fig. 4.5(b) exhibit asymmetric reflection 

patterns when incident waves come from opposite directions. In the forward direction 

(left to right), remarkable interference indicates strong sound reflections from the 

passive PT-symmetric material. The energy density field induced by the backward 

incidence is rather homogenous without much fluctuation. Figures 4.5(c) and 4.5(d) 

present the amplitude and phase responses of the passive acoustic PT-symmetric 

medium over the studied spectrum, including reflection and transmission coefficients 

in the forward and backward directions. The difference of amplitudes between reflected 

waves fr   (forward-direction incidence) and br   (backward-direction incidence) can 

be clearly observed over the simulated frequency range, with the contrast reaching 

maximum at the actual Bragg frequency near 2820 Hz [Fig. 4.5(c)]. Compared with the 

designed frequency 2858 Hz, there is a 38 Hz red shift. It is due to a slightly increased 

average refractive index of the passive PT-symmetric medium, arising from the 

removed negative half cycles of the square-wave modulation. The phase difference of 
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fr   and br   experiences a π   transition, from out-of-phase to in-phase, around the 

Bragg frequency [Fig. 4.5(d)], showing a typical PT phase evolution in terms of 

frequency. A transfer matrix calculation of the same model is also rendered in Figs. 

4.5(c) and 4.5(d), which is in good agreement with the simulation result.  

4.3.2 Acoustic metamaterials crystal design 

Our theoretical analysis and numerical simulation have proved that a well-designed 

passive system still possesses PT-symmetric characteristics, even without gain medium. 

However, tailoring the loss behavior or the material properties in real space remains a 

tough challenge. Because the refractive index modulation respecting passive PT-

symmetry should be of small amplitude, we need not only fine-tuned subwavelength 

structures for delicate manipulation of the effective properties, but also large amount of 

such structures for prominent performance. It differs from the design of conventional 

metamaterials (e.g. near-zero- or negative-index materials) whose function can be 

regarded as strong modulations of the dynamic properties.  

During our design and the corresponding simulations for the real/imaginary part 

modulators, we directly replace the effective medium with metamaterials and perform 

a parametric sweep to fit the desired amplitudes and phases of the reflection and 

transmission coefficients simultaneously. This is reasonable as the scattering matrix of 

a passive and linear system is uniquely determined by the effective properties. 

The real part modulation within an acoustic waveguide is achieved by introducing 

deep-subwavelength periodic grooves decorated on the waveguide walls, namely, the 

groove-structured inner surfaces, as depicted in Fig. 4.6(a). With this so-called groove-

structured metamaterial for waveguide, the desired weak and accurate modulation of 

the real part of the refractive index part can be realized. FEM simulations for both the 

effective medium and actual structures are performed to examine the effectiveness. As 
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shown in Figs. 4.6(b) and 4.6(c), excellent agreement can be found between the two 

groups of simulation results, which verifies that the groove-structured metamaterials 

indeed function well as a real part modulation of the refractive index. Note that for the 

purely real or imaginary part modulation, the forward and backward reflections are 

identical as the system is spatially symmetric, and thus only one reflection coefficient 

is presented. 

 

FIG. 4.6. Acoustic metamaterial design for the real part modulation. (a) Schematic of 

the groove-structured metamaterial [169]. (b) and (c) are the simulated amplitude and 

phase of the reflection (red) and transmission (black) coefficients. The results of both 

the effective medium (solid line) and the groove-structured metamaterial (circle) are 

included. The geometrical parameters of the grooves [inset of (a)] in the simulations 

are 1.2 mmw   , 3 mmh    and 2 mmp  . 

For the modulation on the imaginary part demanded by our passive acoustic PT-

symmetric medium, a deliberate control of sound loss is required. It has been revealed 

that the leakage induced by vent slits is feasible to acquire the attenuation effect, but 

only at a few specific frequencies [48]. According to the lumped element model, such 

structure is equivalent to a shunt resistor and a shunt inductor in series, resulting in the 

frequency-dependent leakage. It behaves as a high-pass filter for wave propagation in 
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waveguides. The associated complex acoustic impedance can be roughly estimated 

using the theories developed by Lord Rayleigh [170]. For arrangement with slits of 1-

mm opening width, the reactance is comparable to or even larger than the resistance 

throughout the entire audio frequency range, giving rise to the inherent dispersion. 

However, the ideal loss medium with a fixed imaginary part of the refractive index 

( 0n n ) is equivalent to a low-pass filter with a very smooth roll-off, which can be 

perceived from the simulation result given by Fig. 4.5(c). In order to modulate the sound 

loss with leakage structures in a relatively broader bandwidth, further steps are needed 

to reduce the frequency dependence of the acoustic impedance.  

Our proposed leakage metamaterial consists of multiple holes connecting the 

waveguide with outside. For simplicity, we investigate the acoustic wave propagation 

within a short circular tube in which the fluid viscosity is considered. Based on the 

approximate solutions of the Kirchhoff theory [171] suggested by Zwikker and Kosten 

[172] and Maa [173], the acoustic impedance of the short tube can be expressed as 
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where 00.5K d   ,   is the viscosity, d  and t  are the diameter and the 

thickness of the tube. It can be concluded from the equations that, as long as 1K  , 

both the resistance R  and the reactance X  are functions of frequency and the latter 

is non-negligible. Only when 1K  , R  becomes a frequency-independent constant. 

The reactance is proportional to K , which indicates that the tube can be treated as a 

purely resistive acoustic component if the diameter is sufficiently small. 
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FIG. 4.7. Acoustic metamaterial design for the imaginary part modulation [169]. (a) 

Schematic of the acoustic metamaterial (impedance boundary equivalent to the holey-

structured metamaterial). (b) and (c) are the simulated amplitude and phase of the 

reflection (red) and transmission (black) coefficients. The results of both the effective 

medium (solid line) and the acoustic metamaterial (circle) are included. The acoustic 

impedance is set as 4000 Pa·s/m. 

The impedance boundary conditions are subsequently utilized during the holey-

structured metamaterial design and simulation [Fig. 4.7(a)], through which the complex 

structures can be easily modeled by an effective acoustic impedance homogeneously 

distributed at the boundaries. This would largely reduce the computational consumption 

as the wavelength is more than one thousand times of the required hole diameter. As 

shown in Figs. 4.7(b) and 4.8(c), the reflection coefficient that results from the well-

arranged impedance boundaries fits that of the effective medium well both in amplitude 

and phase. The amplitude of transmitted signal remains smooth and flat over the studied 

frequency range, intersecting the effective medium result near the Bragg frequency. As 

has been discussed above, the side-branch leakage that contains reactive components 

has a high-pass acoustic response. Hence the transmission curve resembles a straight 

line with positive slope. It is worth noting that the decrease of resistance-reactance ratio 
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would result in the increase of such slope, deviating the transmission curve from that 

of the suitable effective medium. Clearly, a purely resistive leakage is preferred for the 

imaginary part modulation in a broader bandwidth. 

For further verification, the effective properties as functions of frequency are also 

retrieved, which are given in Fig. 4.8. The curves are obtained based on a standard 

retrieving procedure [174] in simulation. The imaginary part of the effective refractive 

index of the real part modulator is not exactly zero [squares in Fig. 4.8(a)] since we take 

into consideration the inherent losses within the grooves during the simulation. As 

expected, the results well fit our design target, namely, a balanced complex modulation 

with an amplitude of about 5%. 

 

FIG. 4.8. Retrieved effective properties of the metamaterial modulators [169]. (a) Real 

part modulation (groove-structured metamaterial). (b) Imaginary part modulation 

(holey-structured metamaterial). RMn   and IMn   denote the retrieved complex 

refractive indices of the real and imaginary part modulations, respectively. Squares 

(black) and circles (red) respresent the real and imaginary parts of RMn  and IMn . 

Eventually we combine the two modulators into the form of a metamaterials crystal 

as illustrated in Fig. 4.9(a) and perform the full-wave simulation accordingly. The 

simulated energy density fields at 2820 Hz [Fig. 4.9(b)] match well with those of the 

effective medium [Fig. 4.5(b)]. Unambiguous interference fringe emerges only for the 

incidence in the forward direction, witnessed by the reflection spectra presented in Figs. 
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4.9(c) and 4.9(d). The transmission coefficient around the Bragg frequency is consistent 

with the result of effective medium simulation and becomes diverged as the frequency 

shifts away. Yet, the unique unidirectional reflection effect persists, leading to the 

obvious amplitude difference between the forward and backward reflections. 

 

FIG. 4.9. One-dimensional passive acoustic PT-symmetric medium constructed by 

metamaterials [169]. (a) Schematic of the passive acoustic PT-symmetric metamaterials 

crystal merging the real (red) and imaginary (blue) part modulations. (b) Simulated 

energy density fields in xz-plane for forward and backward incidences. The amplitude 

is normalized per the background field. (c) and (d) are the spectral amplitude and phase 

responses, including reflection (red, forward; blue, backward) and transmission (black) 

coefficients in both directions. The solid lines and circles denote the results of the 

effective medium and the acoustic metamaterials, respectively. 
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4.4 Interaction between unpaired wave vectors and oblique incidences 

Before extending the passive PT-symmetric potential in two-dimensional space to 

realize the unidirectional focusing effect, the interplay between unpaired wave vectors 

and oblique incidences is explored in this section. We present two numerical examples 

to demonstrate that, strong reflection takes place when the incidence wave vector ik , 

the reflection wave vector rk , and the unidirectional wave vector q  provided by the 

passive PT-symmetric modulation satisfy the rule of two-dimensional vector addition, 

namely, the so-called wave-vector matching condition [175]. Otherwise, the 

mismatched wave vectors hardly generate any reflection. For the following numerical 

examples, the passive PT-symmetric medium is immersed in air and occupies a 

rectangular area, in which the passive PT-symmetric potential is designed to be along a 

specific direction non-parallel to the incident acoustic waves. 

In numerical example 1, the passive PT-symmetric medium is constructed using 9 

pairs of complex modulations with a modulation amplitude of 3% to provide an 

unpaired wave-vector of magnitude 02k  towards lower left (45˚ to the horizontal), as 

shown in Fig. 4.10. The complex modulation of refractive index is based on the one-

dimensional configuration in Fig. 4.5. It satisfies wave-vector matching condition for 

the incidence of wavenumber 0k   (4042.3 Hz) pointing to the x   direction. As 

shown in Fig. 4.10(a), a side-way scattering can be observed, which is not determined 

by the shape of the medium, but the unpaired wave vector offered by the passive PT-

symmetric potential. For wave propagating in the reverse direction, there is no side-

way scattering [Fig. 4.10(b)]. 
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FIG. 4.10. Interaction between unpaired wave vectors and incidence (example 1: 

unidirectional side-way scattering) [169]. Total (upper) and scattered (lower) acoustic 

pressure fields for incidences (a) from the left and (b) from the right. The passive PT-

symmetric medium provides an unpaired wave-vector of magnitude 02k   towards 

lower left (red arrows, 45˚ to the horizontal). The white and black arrows denote the 

incidence and reflection directions. All the amplitudes are normalized per maximum. 

In numerical example 2, the designed passive PT-symmetric medium consists 9 

pairs of complex modulations with a modulation amplitude of 3%, which provides a 

unidirectional wave vector of magnitude 0k  that is 60˚ to the horizontal, as shown in 

Fig. 4.11. Again, the complex modulation follows the one-dimensional configuration 

given in Fig. 4.5. The wave-vector matching condition is satisfied when the acoustic 

wave of wavenumber 0k   (5716.7 Hz) is incident from the left-hand side [see Fig. 

4.11(a)], leading to a nontrivial phenomenon of forward scattering. On the contrary, for 
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acoustic wave propagating in the reverse direction as presented in Fig. 4.11(b), the 

forward scattering phenomenon does not happen. 

 

FIG. 4.11. Interaction between unpaired wave vectors and incidence (example 2: 

unidirectional forward scattering) [169]. Total (upper) and scattered (lower) acoustic 

pressure fields for incidences (a) from the left and (b) from the right. The passive PT-

symmetric medium provides an unpaired wave-vector of magnitude 0k  towards lower 

left (red arrows, 60˚ to the horizontal). The white and black arrows denote the incidence 

and reflection directions. All the amplitudes are normalized per maximum. 

4.5 Unidirectional sound focusing based on directional wave-vector matching 

4.5.1 Extending parity-time-symmetric potential in two-dimensional space 

As shown in Fig. 4.12, by curling the one-dimensional passive PT-symmetric 

potential circumferentially, the resultant passive acoustic PT-symmetric medium in 

two-dimensional space offers radial unidirectional wave vectors for incoming sound 
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waves, through modulating the acoustic refractive index along the radial direction,  

0 0( ) exp[ ( )],n r n iq r r n n                       (4.22) 

where 0r  is the starting radius of the PT-symmetric potential sector. 

 

FIG. 4.12. Schematics of the global and local coordinates in two-dimensional space for 

the studied passive PT-symmetric medium [169]. The purple area denotes the passive 

PT-symmetric medium, where the complex index is modulated along the radial 

direction but uniform along the tangential direction. Define global coordinate system 

(x-y), and local coordinate systems (xi-yi, i=1, 2, …). In each local coordinate system, 

the modulation offers a one-dimensional passive PT-symmetric potential along ix . 

Now let us explain how such extension is implemented. In a two-dimensional plane 

of global coordinates (x-y), we can define local coordinates (xi-yi, i=1, 2, …), e.g. the 

local coordinates x1-y1 and x2-y2 as shown in Fig. 4.12. Here, a passive PT-symmetric 

structure with balanced real-imaginary-part modulations is designed along the local 

coordinates of ix . Here, the P operator in each local coordinate is acting in the same 
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way as the one in a one-dimensional system, viz., ˆ ˆ: ( ) ( ),i i i iP p x p x x x  . Note 

that those local coordinates are not necessarily parallel with each other. The action of P 

operator in the global coordinates (x-y) can be deduced from the coordinate 

transformation 

cos sin ,

sin cos ,
i i i

i i i

x x y

y x y

 
 

 
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                    (4.23) 

where i  is the angle between ix  and x . As a result, the action of P operator in the 

two-dimensional case is obtained as 

ˆ ˆ: ( cos sin ) ( cos sin ),

cos sin cos sin .
i i i i

i i i i

P p x y p x y

x y x y

   
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   

        
           (4.24) 

Basically, there exist an infinite number of ports in two-dimensional system. For 

simplicity, we only consider the ports along certain directions, e.g. 1x  and 2x . It is 

worth mentioning that this is a different treatment compared to the transformation 

acoustics as we are not trying to map a rectangular-shaped domain into a fan-shaped 

domain, which would result in radially dependent material parameters. What studied is 

a curved passive PT-symmetric potential in two-dimensional space where the balanced 

real and imaginary part modulations are preset to be radius-independent in both local 

and global coordinates. Here only an operation of rotation is conducted, without 

distorting the space. As shown in Fig. 4.13, the complex modulation of refractive index 

along the radial direction is the same as the one-dimensional configuration in Fig. 4.5 

(5 modulation periods with a modulation amplitude of 5%). It provides unpaired wave 

vectors of magnitude 02k  pointing to the intersection of 1x  and 2x  axes. The incident 

waves with a wavenumber of 0k   experience one-way reflectionlessness when 

propagating along 1x   and 2x  , which indicates the unidirectional reflectionless 

resonance happened nearby an exceptional point [149]. 
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FIG. 4.13. Unidirectional reflectionlessness for the passive PT-symmetric medium 

extended in two-dimensional space [169]. Incident angles: (a) –15˚, (b) 165˚, (c) 5˚, and 

(d) 185˚. The white, black, and red arrows represent the incident, the reflected, and the 

unpaired modulation wave vectors, respectively. For each incidence, both the total 

(upper) and scattered (lower) acoustic fields are presented, which are normalized per 

maximum. 

4.5.2 Directional wave-vector matching and its implementation 

As illustrated in Fig. 4.14, the passive acoustic PT-symmetric metamaterials crystal 

curved in two-dimensional space is realized through interleaving two different types of 

passive metastructures along the radial direction inside a planar acoustic waveguide 

between two rigid plates: the groove-structured and the holey-structured acoustic 

metamaterials, arranged in such a way that they form a circumferentially expanded 

Bragg reflector. Subtle combination of the two metamaterials offers balanced real and 

imaginary part modulations, required by the passive PT-symmetric potential, to the 

refractive index. This complex modulation creates an unpaired wave vector [149,152] 

2 /Bk r q r   towards the sector center. Here Bk   is the wavenumber at the Bragg 



88 
 

frequency 0 / 2Bf c T  , where the Bragg resonance happens, with 0c   and T   being 

the speed of sound and the lattice constant, respectively.  

For the unidirectional reflectionlessness phenomenon in one-dimensional scenario 

as we discussed in Section 4.3, when the operating frequency f  is away from Bf , 

the incidence wave vector ik , the reflection wave vector rk , and the unidirectional 

wave vector q  provided by the complex modulation are mismatched for both forward 

and backward incidences, giving rise to a trivial bidirectional reflectionless effect. 

When the system operates at Bf  , the wave-vector matching condition r i k q k  

( i r Bk k k  ) is satisfied only along the forward direction, leading to a nontrivial 

effect of unidirectional reflectionlessness. For the proposed passive acoustic PT-

symmetric metamaterials crystal in two-dimensional space, the wave-vector matching 

obeys the rule of vector addition [175] and thus strong specular reflection occurs at 

particular positions where ik , rk , and q  (that are not necessarily parallel) become 

matched [the inset of Fig. 4.14(a)], allowing the frequency of reflection to be possibly 

higher than Bf   ( i r k k q   when Bf f  ), so that the unidirectional focusing 

phenomenon can be observed over the spectrum (see Appendix B). Note that such 

wave-vector match does not require the local incident angle to be small with respect to 

the unpaired wave vector q  as has been demonstrated in Section 4.3, and thus it is not 

simply the case of paraxial wave propagation in one-dimensional PT-symmetric 

medium, but rather a physical problem of the interaction between incident waves and 

passive PT-symmetric potential in a two-dimensional space. 



89 
 

 

FIG. 4.14. All passive acoustic PT-symmetric metamaterials crystal [169]. (a) 

Unidirectional focusing based on directional wave-vector matching. The upper-left 

inset illustrates the two-dimensional wave-vector matching r i k q k . For different 

spatial frequencies 0 0 0(red) (green) (blue)k k k    , the reflections exist at different 

areas along the arc to form focused sound field. The wave vectors are mismatched for 

backward incidence, thus leading to no reflection. (b) The fabricated acoustic 

metamaterials crystal. The circumferential opening angle 60˚ in the xy-plane is divided 

into 6 segments of equal opening angle 9.7˚. The waveguide height is 20 mmH  . (c) 

The real and imaginary part modulations. Real part modulation (lower-right inset: 

enlarged photo): groove-structured metamaterial of 1.2 mmw    , 3 mmh     and 

2 mmp    . Imaginary part modulation (upper-right inset: scanning electron 

microscope image): holey-structured metamaterial, viz., the 60-μm-thick mesh fabrics. 

The average pore size and open area are 7 μm and 2%. Its acoustic impedance is about 

4000 Pa·s/m. 

In experiment, the rigid plates are carved with curved slot openings for the 
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installment of the index modulators [see Fig. 4.14(b)]. The real part modulation is 

realized by the 3D-printed groove-structured metamaterials sketched in Fig. 4.14(c), 

which is able to decelerate sound waves as we have presented in Section 4.3. The 

imaginary part modulation can be accomplished through purposely introduced sound 

leakage, similar to the radiative losses in optical systems [176]. Slit structures have been 

demonstrated for such purpose, but with strong dispersion and changed real part of 

refractive index [48]. Instead the holey-structured acoustic metamaterials, namely, the 

commercial mesh fabrics, are used here, as shown in Fig. 4.14(c). The deep-

subwavelength pores are homogeneously distributed so that they guarantee nearly 

purely resistive impedance boundary and precise leakage control, leading to almost 

nondispersive loss, without affecting the real part of index. It would enable the 

approximately-balanced modulation in a relatively broader bandwidth. 

4.5.3 Sample fabrication and experimental setup 

The parameters of the holey-structured metamaterials that satisfy the imaginary 

part modulation can be evaluated based on Eq. (4.21). The hole diameter d  must be 

smaller than 30 μm to guarantee a sufficiently large resistance-reactance ratio (e.g., 

/ 10R X  ) around the Bragg frequency of 2820 Hz. Therefore, we choose the mesh 

fabrics [Fig. 4.15(a)], which are woven with monofilament fibers (Saatifil Acoustex 

HD7), as the holey-structured metamaterial modulator. As shown in the scanning 

electron microscope image given by Fig. 4.15(b), this type of material has controllable 

acoustic impedance governed by the uniformly distributed pores that can be precisely 

manufactured on micron-scale. The overall acoustic impedance is determined by mean 

of the flow resistance measurement. 

As exhibited in Fig. 4.15(a), the real part metamaterial modulator and the 

frameworks of the imaginary part metamaterial modulator are fabricated using additive 
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manufacturing based on fused deposition modeling. The base material is polylactic acid, 

which can be treated as rigid for airborne sound due to the large contrast in acoustic 

impedance. The mesh fabrics for imaginary part modulation are firmly attached to the 

framework with glues. The contact edges are covered with adhesive paper to avoid any 

possible gap. While such materials are thin and flexible, the vibroacoustic coupling is 

extremely weak and no resonance behavior is observed in practice. 

 

FIG. 4.15. The metamaterial samples used to construct the passive acoustic PT-

symmetric metamaterials crystal [169]. (a) The groove-structured metamaterial is used 

for real part modulation, while the mesh fabrics attached on frame provides imaginary 

part modulation. (b) The scanning electron microscope image of the mesh fabrics side 

view. 

The experimental setup is shown in Fig. 4.16. The computer controls an automated 

scanning system via LabVIEW. The lock-in amplifier (Zurich Instrument HF2LI) is 

used for signal generation and acquisition. A series of continuous sinusoidal signals 

sweeping from 2500 Hz to 3200 Hz are sent to the audio power amplifier (Brüel & Kjær 

type 2716C) before being applied to the transducer array that consists of 36 identical 

1.5-inch full-range loudspeaker units (Peerless by Tymphany PMT-40N25AL01-04). 

The center-to-center distance between two neighboring speaker units is 40 mm so that 

the array can effectively generate nearly plane acoustic waves travelling inside the 

waveguide.  
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FIG. 4.16. Experimental measurement of the passive acoustic PT-symmetric 

metamaterials crystal [169]. (a) Working flow of the measurement. (b) Photo of the 

experimental arrangement in an anechoic chamber. The dashed rectangle denotes the 

measuring area inside the waveguide. (c) Inner surface of the plate mounted with the 

mesh fabrics and the groove-structured metamaterials. 

The acoustic pressure fields inside the waveguide are scanned using a micro-

electro-mechanical microphone (GoerTek Inc. S08OT421). The microphone is very 

small in size (3.8 mm×3.0 mm×1.1 mm) and installed at the end of a 3-mm diameter 

slender boompole, whose movement is controlled by the motion stage. The total 

measured area is 400 mm×400 mm, with a spatial resolution of 10 mm that is less than 

one-tenth of the shortest wavelength. The recorded signals are sent back to the lock-in 

amplifier via a pre-amplifier.  

Since the studied model is symmetric along the z  direction, we may simplify the 

experimental implementation by constructing only half the waveguide structure and 
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replacing the symmetry plane with a rigid boundary (i.e. waveguide height becomes 

20 mmH    for single-side meta-structures rather than 2 40 mmH    for double-

side meta-structures). In this sense, a total of 60 pieces (30 pairs) of the metamaterial 

samples, including the groove-structured metamaterials for real part modulation and the 

mesh fabrics for imaginary part modulation, are mounted on the slots of the aluminum 

top plate [Fig. 4.16(b)], forming an integrated waveguide along with the rigid middle 

density fiberboard at the bottom. The sample positions are carefully adjusted so that 

they can be in alignment with the inner surface of the plate [Fig. 4.16(c)]. The 

waveguide height is guaranteed by inserting several adjustable supports between the 

two plates. Sealing putty is utilized to prevent waveguide leakage other than those 

intentionally introduced through the mesh fabrics. In addition, to alleviate the 

reflections from the waveguide openings, sound absorbing materials are arranged 

around the sound field inside the waveguide. All the equipment and samples are placed 

in an anechoic room so that high signal-to-noise ratio can be obtained. 

4.5.4 Experimental results 

Full-wave FEM simulations and experimental measurements have been conducted 

to test our hypothesis. Figure 4.17(a) presents the normalized sound energy density 

fields for both incidences at 3000 Hz, in which the simulated and measured results agree 

well with each other. Remarkable contrast of the responses in opposite directions can 

be observed from the interference patterns within the measurement areas, marked by 

the white boxes. Strong reflections only occur at the positions that satisfy the wave-

vector matching condition. In other words, not all unpaired wave vectors provided by 

the passive PT-symmetric structure interact with incident waves in two-dimensional 

space.  
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FIG. 4.17. Unidirectional reflection and focusing [169]. (a) Simulated (left) and 

measured (right) acoustic energy density fields for the forward (upper) and backward 

(lower) incidences at 3000 Hz. The white boxes mark the measurement areas. The 

arrows denote the incidences. (b) Absolute acoustic pressure distributions for forward 

(upper) and backward (lower) incidences, along the dashed lines marked in (a). The 

dashed rectangles indicate the areas where the standing-wave ratios fG  and bG  are 

extracted. (c) Simulated and measured standing wave patterns at 3000 Hz for forward 

incidence. The red/black arrow marks the peak and valley employed to calculate fG  

and bG   in experiment/simulation. (d) Extracted contrast ratio f bG G   versus 

frequency. The error bars are generated from four repeated measurements. 

To validate that the focusing effect is indeed due to the unpaired wave vectors 

offered by the passive PT-symmetric metamaterials crystal instead of simply the 

geometric shape of the concave surface, the measured sound pressure distributions at 

different frequencies along 0y   are presented in Fig. 4.17(b). The overall amplitude 

of the standing wave fields is frequency-dependent for forward incidence [Fig. 4.17(b), 

the upper sub-figure], while being relatively stable and frequency-independent for 

backward incidence [Fig. 4.17(b), the lower sub-figure]. In contrast, it is not difficult 

to imagine that, when the metamaterials crystal is replaced by a rigid concave reflector, 
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the overall amplitude of the standing-wave fields would in both directions would be 

independent to the frequency within the studied spectrum (see Appendix C).  

Nearby the exceptional point, the system is strongly reflective from one side but 

almost reflectionless from the other. Here, the forward and backward standing-wave 

ratios fG  and bG , viz., the ratio between the peak and valley values of the standing-

wave fields [Fig. 4.17(c)], are extracted to evaluate the reflection strengths in both 

directions. The contrast ratio /f bG G  plotted in Fig. 4.17(d) can thus be utilized to 

estimate the contrast between the two reflections. Note that the interference pattern is a 

result of the superposition between the incident plane waves and the reflected waves 

propagating in all possible directions. To reduce the disturbance of reflections from the 

positions other than 0y   , fG   is extracted in the area away from the focal spot 

[dashed rectangles in Fig. 4.17(b)], where the reflected waves diverge, and the normal 

reflection dominates. In Fig. 4.17(d), the peak serves as an indicator to show that the 

contrast between forward and backward reflections reaches maximum, which occurs 

nearby exceptional point. Another way to further confirm the one-way wave-vector 

matching behavior is by simply reversing the complex modulation, that is, by switching 

the reflective and the reflectionless sides. In this scenario, the concave surface would 

only generate very weak focusing effect (see Appendix B). 

The acoustic focusing effect over a relatively wide spectrum enabled by directional 

wave-vector matching is further confirmed using the simulated scattered energy density 

fields as presented in Fig. 4.18(a). At 2500 Hz, lower than the Bragg frequency Bf , the 

existing wave-vector mismatch hardly induces any reflection for the forward incidence. 

As the frequency approaches and eventually surpasses the Bragg frequency Bf , the 

wave-vector matching condition becomes approximately satisfied within the two-
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dimensional plane, giving rise to clear reflections and the resultant focused sound field. 

The experimentally measured interference patterns shown in Fig. 4.18(b) are 

remarkably frequency-dependent, which is a strong evidence of the reflection 

wavefront change [see dashed arrows in Fig. 4.18(b)]. The simulated scattered energy 

density distributions along 350 mmx      and 0 mmy     [dashed lines in Fig. 

4.18(a)] for multiple operating frequencies are displayed in Figs. 4.18(c) and 4.18(d) as 

well. Clearly, the focal spots locate within a small area over the studied spectrum. 

 

FIG. 4.18. Unidirectional sound focusing over spectrum [169]. (a) Simulated scattered 

energy density fields at four operating frequencies: 2500 Hz, 2850 Hz, 3050 Hz, and 

3150 Hz. For different frequencies, strong reflections occur at different locations, 

marked by the white asterisks, to form focal areas. (b) Measured total energy density 

fields for the forward incidence at frequencies shown in (a). The interference pattern 

varies with frequency due to the change of reflected wavefront normal, indicated by the 

white arrows. (c) and (d) Simulated scattered energy density distributions along the 

dashed lines 350 mmx     and 0 mmy    in (a). All the curves are normalized per 

maximum. The shadow area in (d) indicates the spatial range of focal zones at multiple 

frequencies. 
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4.6 Summary 

In summary, modulating refractive index in complex plane enables the study of PT 

symmetry with acoustic systems. In contrast to the balanced gain-loss configurations 

that require gain medium or external intervention, our all passive acoustic 

metamaterials crystal offers intrinsic PT-symmetric potential to create unpaired wave 

vector via complex modulation of the effective refractive index. By expanding the 

potential in two-dimensional space, it is consequently able to demonstrate the 

exceptional point as well as the unidirectional acoustic focusing effect over a certain 

bandwidth. In addition, the zero cut-off of such acoustic PT-symmetric system makes 

it much easier to extend PT symmetry study in multi-dimensional space, which remains 

a great challenge in other classical wave systems. To further realize a genuine two-

dimensional passive PT-symmetric system, one may synthesize multiple passive PT-

symmetric potentials together so that the material can simultaneously offer varies 

unpaired wave vectors to incident waves (see Appendix D). Our demonstration provides 

a new degree of freedom to the implementation of unique wave dynamics, and at the 

same time paves the way towards practical investigation of general quantum-analogs 

phenomena beyond one-dimensional waveguide configuration. 
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Chapter 5: Conclusion 

This thesis has studied the meta-structured surfaces for airborne guided acoustic 

mode, and the corresponding functionalities and applications including acoustic 

rainbow trapping (ART), subwavelength sound focusing/imaging, and unidirectional 

wave vectors manipulation. Meanwhile, it has also been highlighted that well-tailored 

losses can be used to explore passive parity time (PT) symmetry in acoustic system.  

 In Chapter 2, a type of gradient holey-structured metasurfaces has been proposed 

to achieve ART effect with controllable trapping pattern. Such metasurfaces allow 

broadband sound grazing the metasurfaces to be converted into a surface acoustic mode 

travelling in gradually vanished group velocity, giving rise to spatial-spectral separation 

and strong compression governed by both the frequency and the gradient profile. The 

effect of the inherent visco-thermal losses inside the holes has also been investigated to 

evaluate the performance of the metasurface in real life. Our analysis has shown that 

the inherent losses contribute to an anomaly of the group velocity distribution at the 

trapping position, accompanied by progressively increased attenuation along the wave 

propagation direction. Accordingly, the intense backscattering observed in the lossless 

case, due to the mode conversion between the bidirectional waves, is no longer 

remarkable. This so-called absorptive ART effect deepens our understanding about the 

structure-induced surface acoustic waves (SSAWs) at a lossy metasurface and is a 

significant step towards the practical introduction of ART-based devices. It may also be 

utilized to construct broadband absorptive metasurfaces for hypersonic boundary layer 

stabilization [80,81]. 

 In Chapter 3, the thesis has experimentally presented the subwavelength focusing 

and imaging effects enabled by a gradient-index (GRIN) metasurface via the SSAWs 

with large wave vectors. The GRIN metasurface design has been significantly 
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simplified because of the straightforward correlation between the hole depth and the 

required index values. Such design method may be further applied to other GRIN 

devices [134], e.g. acoustic Eaton lens, Luneburg lens, Maxwell-fish-eye lens and black 

hole. Functionalities such as airy beam and Talbot effect under conformal 

transformation [136], can also be realized with a similar configuration. Meanwhile, 

even deeper subwavelength scale would be available if the unit cells are spatially coiled 

[14,137] or helically structured [138]. In addition, the system is open to the surrounding 

environment and the confined sound field is measurable in the upper half-space. It is 

thus an ideal platform to experimentally observe, characterize and investigate the 

propagation and energy flow of sound “inside” the metamaterials or sonic crystals 

counterparts. For instance, the phenomenon of backscattering-immune wave guiding in 

an acoustic topological insulator is able to be visualized with experiment in the 

subwavelength regime through measuring the topological surface acoustic polaritons 

[101], which is still a difficult task for bulk composites or structures. Moreover, the 

coupling between the non-leaky surface mode and a radiative mode is possible through 

acoustic antennas [86,100]. It may enable more flexible ways of sound manipulation 

and open new possibilities to innovative applications for acoustic focusing, imaging, 

sensing and detection beyond the diffraction limit. 

In Chapter 4, we have shown that the proposed acoustic metamaterials crystal 

provides intrinsic passive parity-time-symmetric (PT-symmetric) potential to generate 

unpaired wave vector through modulating the effective refractive index in complex 

domain. By two-dimensionally expanding the potential, the exceptional point and the 

associated unidirectional sound focusing effect (along with reflectionless acoustic 

transparency in the opposite direction) can be observed over a certain bandwidth. The 

absence of cut-off in such acoustic PT-symmetric system suggests a feasible way to 
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extend general PT symmetry study to multi-dimensional space, which remains a great 

challenge in experiment with other classical wave systems. To further construct a 

genuine two-dimensional passive PT-symmetric material, one may synthesize multiple 

passive PT-symmetric potentials into one compact region so that the material can 

simultaneously offer differently-oriented unpaired wave vectors (see Appendix E). Our 

demonstration not only provides a new degree of freedom to the realization of unique 

wave dynamics for applications like noise control, acoustic sensing, and imaging, but 

also paves the way towards practical investigation of general quantum-analogs 

phenomena beyond one-dimensional waveguide configuration. 
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Appendices 

A. Simulation of the dispersion relation of the structure-induced surface mode 

The simulated dispersion curves (scatters, finite element results) in Figs. 2.1(c) 

3.2(b) and 3.2(c) are obtained by numerically calculating the eigenfrequencies of a unit 

cell for wave vectors within the irreducible Brillouin zone in COMSOL Multiphysics. 

As shown in Fig. A1, the three-dimensional simulation domain includes a single square 

hole and a cuboid region above it, corresponding to a square lattice within the xy-plane. 

Floquet periodic boundary conditions are applied in the x  and y  directions of the 

cuboid region while rigid wall boundary conditions for all other boundaries. The top 

wall of the simulation domain is sufficiently far away from the hole [98] to guarantee 

an accurate calculation of the surface mode (scattering boundary condition also works 

[101]). Else, the returned results would become the case of a planar waveguide 

connected with periodic side-branched quarter-wavelength resonators, in which an 

avoided crossing bandgap can be observed. 

 

FIG. A1. Simulation model for obtaining the dispersion relation of the structure-

induced surface acoustic mode. The lower right inset is a detailed view of the blind 

square hole. The upper right inset shows the irreducible Brillouin zone in calculation. 
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B. Effective medium simulation of the curved passive PT-symmetric material  

For the purpose of verification, we also numerically simulate the effective medium 

model of the two-dimensionally extended acoustic PT-symmetric metamaterials crystal. 

As shown in Fig. B1(a), similarly, the one-dimensional refractive index distribution is 

circumferentially expanded. The result is consequently the effective medium model of 

the metamaterials crystal proposed in Section 4.5.  

The obtained energy density fields in Figs. B1(b) and B1(c) agree well with the 

results that have been demonstrated in Fig. 4.17(a), showing the same one-way focusing 

phenomenon. To better evaluate the directional wave-vector matching, the scattered 

pressure and energy density [Figs. B2(a) and B2(b)] fields for forward incidence at 

different frequencies are simulated and presented as well. The reflected wavefront 

varies in accordance with the wave-vector matching condition, when the operating 

frequency reaches the Bragg frequency from below. 

 

FIG. B1. Effective medium simulation of the passive acoustic PT-symmetric material 

in two-dimensional space for one-way sound focusing [169]. (a) Schematic of the 

effective medium model. Simulated energy density fields for (b) forward and (c) 

backward incidences. The bold arrows denote the directions of incident waves. 
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FIG. B2. Directional wave-vector match observed in the effective medium simulation 

[169]. (a) Scattered acoustic pressure fields and (b) scattered energy density fields at 

four representative frequencies. All amplitudes (pressure and energy density) are 

normalized per maximum value of the sound fields among the four frequencies. 

To comprehensively verify the unidirectional focusing phenomenon and the 

underlying physics, we perform numerical simulation to study the passive PT-

symmetric medium with direction-reversed one-way wave vectors, namely, when the 

concave side is reflectionless while the convex side is reflective. In this case, a counter-

intuitive phenomenon can be expected: the passive PT-symmetric medium would 

prevent the concave surface from focusing waves as a result of the reflectionless nature. 

As illustrated in Fig. B3(a), the passive PT-symmetric potential due to the complex 

modulation of refractive index is flipped in direction compared to Figs. B1 and B2, 

which provides unidirectional wave vectors towards the outer radius. The simulated 

results for forward incidence are shown in Figs. B3(b). It can be observed that the 

scattered waves from the concave side are very weak and lead to trivial focusing effect. 

This is in stark contrast to the results in Figs. 4.17, 4.18, B1, and B2, in which the 

reflective side is concave and thus generates strongly focused sound field. On the other 
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hand, the wave-vector matching occurs for incident waves penetrating upon the convex 

side. It induces obvious reflected waves, especially prominent along the two directions 

that satisfy the wave-vector matching condition in two-dimensional space, as marked 

by the black arrows in Fig. B3(c). This further confirms the effectiveness of the 

unpaired wave vectors offered by the passive PT-symmetric potential. 

 

FIG. B3. Passive PT-symmetric medium with direction-reversed potential [169]. (a) 

Schematic of the effective medium model. The direction of the refractive index 

modulation is reversed, which makes the concave side reflectionless and the convex 

side reflective. Total (left) and scattered (right) fields for (b) forward and (c) backward 

incidences are simulated. The white, black, and red arrows represent the incident, the 

reflected, and the unpaired modulation wave vectors, respectively. Clearly, the concave 

side (that should have led to intensively focused sound field if the reflections are 

symmetric) generates very weak focusing effect. 
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C. Sound fields of a rigid concave reflector 

 

FIG. C1. Asymmetric focusing for a rigid concave reflector with the same shape of the 

passive PT-symmetric metamaterials crystal [169]. (a) Simulated acoustic energy 

density fields for forward (top half) and backward (bottom half) incidences at 2500 Hz 

and 3000 Hz, respectively. The arrows denote incidence directions. (b) Absolute 

acoustic pressure distributions for forward (top) and backward (bottom) incidences, 

along the white dashed lines marked in (a), from 2500 Hz to 3200 Hz with 50 Hz 

stepping.  

Here we perform a numerical simulation to show the sound fields for a rigid 

concave reflector with the same shape of the passive PT-symmetric metamaterials 

crystal. Figure C1(a) gives the acoustic energy density fields for forward and backward 

incidences at 2500 Hz and 3000 Hz, respectively. Note that the designed Bragg 

frequency is about 2858 Hz. We recall the results for the passive PT-symmetric 

metamaterial crystal, where the reflection sound field is nearly negligible at 2500 Hz 

[Figs. 4.18(a) and 4.18(b)] but obviously focused at 3000 Hz [Fig. 4.17(a)] for the 
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forward incidence. Meanwhile, the reflection is nearly negligible at both 2500 Hz and 

3000 Hz [Figs. 4.17(a) and 4.17(b) in the main text] for the backward incidence. In 

stark contrast, the reflection sound fields for the rigid reflector are strongly focused for 

the forward incidence but completely diverged for the backward incidence at both 2500 

Hz and 3000 Hz, as shown in Figs. C1(a) and C1(b). By examining the standing wave 

patterns in Fig. C1(b), we further find that the standing wave ratio is approximately 

frequency-independent, which is also very different from the case of the passive PT-

symmetric metamaterials crystal [Fig. 4.17(b)]. In addition, the focal spot of the rigid 

reflector is farther away from the inner concave surface than the one of the passive PT-

symmetric metamaterials crystal. This is due to the fact that the effective surface of 

reflection for the passive PT-symmetric metamaterials crystal is actually located within 

the metamaterials rather than exactly at the inner concave surface. 

D. Superposition of the passive parity-time-symmetric potentials 

To demonstrate the possibility of constructing a rigorous two-dimensional PT-

symmetric medium, we further combine the passive PT-symmetric potentials along two 

different directions together (linear superposition of the complex modulations ( )n x ) 

as presented in Fig. D1. The constructed passive PT-symmetric medium is composed 

of 9 pairs of complex modulations with a modulation amplitude of 3% in both the x and 

the y directions, following the one-dimensional configuration presented in Fig. 4.5. It 

simultaneously generates two unpaired wave vectors of magnitude 02k  that can 

interact with incident waves of wavenumber 0k  from two distinct directions, resulting 

in clear reflections in these directions as shown in Fig. D1(a) and D1(b). Such synthesis 

of PT-symmetric potentials makes the passive PT-symmetric medium a genuine two-

dimensional system. 
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FIG. D1. Synthesizing passive PT-symmetric potentials in two-dimensional space [169]. 

Total (upper) and scattered (lower) acoustic pressure fields for (a) incidence from the 

left, (b) incidence from below, (c) incidence from the right, and (d) incidence from 

above. The passive PT-symmetric medium is composed of 9 pairs of complex 

modulations with a modulation amplitude of 3% in both the x and the y directions, 

providing two unpaired wave-vectors of magnitude 02k  towards left and down (red 

arrows), for incident plane waves at 2858.3 Hz. Along the modulation directions, the 

PT-symmetric potentials are the same as the one-dimensional configuration in Fig. 4.5. 

The white and black arrows denote the incidence and reflection directions. All the 

amplitudes are normalized per maximum. 
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