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Abstract

Because the edge of a hypergraph can join more than two vertices, hypergraphs are

much more powerful than graphs in storing multi-dimensional information, mod-

elling complex relationship in real world. Tensors arising from a hypergraph, such as

adjacency tensor, Laplacian tensor and signless Laplacian tensor, provide us a funda-

mental instrument to analyse the structure of a hypergraph, enrich the hypergraph

theory, resolve the application problems in hypergraph.

Eigenvalues of tensors associated with hypergraphs are the core objects in spectral

hypergraph theory. Although many achievements have been made in computation of

tensor eigenvalues, the problem of computing eigenvalues of tensors arising from hy-

pergraphs has not been completely settled yet, especially for large scale hypergraph-

s. By taking advantage of the sparsity of these tensors, we avoid saving the tensor

information and propose a fast computational framework for the most time consum-

ing operations. For the eigenvalue problem, we introduce a first-order optimization

method called CEST (Computing Eigenvalues of large Sparse Tensors arising from

hypergraphs) to solve it. It is proved that the sequence of function values and iter-

ate points produced by the CEST method converge to the extremal eigenvalue and

its associated eigenvector with a high probability. The CEST method is capable of

calculating eigenvalues of tensors from hypergraphs with millions of vertices.

The p-spectral radius of a hypergraph is a concept that covers many importan-

t invariants and connected with Turán-type problems in the extremal hypergraph

i



theory. The existing results about p-spectral radius problem are mainly based on

theoretical analysis. Upper bounds or lower bounds of p-spectral radius of several

structured hypergraphs are given, and as far as we know, there is not any compu-

tational method designed particularly for the p-spectral radius problem. By using

adjacency tensors, we reformulate the original p-spectral radius problem to a spheri-

cal constraint maximization model and propose a method, named CSRH (Computing

p-Spectral Radii of Hypergraphs), to solve it. The CSRH method can calculate the

p-spectral radius when p is greater than 1, and estimate the 1-spectral radii of u-

niform hypergraphs with high accuracy. As an application, we link the p-spectral

radius model to data rank problems and successfully apply the CSRH method to

rank 10305 authors according to their publication information from real life data set.
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Chapter 1

Introduction

1.1 Background and motivation

In this subsection, we review the background of hypergraphs and tensors associ-

ated with hypergraphs. We explain our motivation on tackling the computational

problems arising from hypergraph related tensors by displaying current state and

illustrating the importance of this topic.

1.1.1 Why hypergraph?

It was in 1735 that Euler studied the“ seven bridges of K:onigsberg” problem and

the graph theory arose subsequently (Gross and Yellen, 2004). Graph then became

a useful tool in modeling a variety of problems in conceivable areas, such as social

networks (Easley and Kleinberg, 2010), communication networks (Newman, 2010),

software design applications (Agnarsson and Greenlaw, 2007), biological networks

(Aldous and Wilson, 2003). Despite the advantages and widely applications, graph is

confined to describe pairwise relationships via graph edges. Meanwhile, the complex

relational objects in real life possess higher-order than binary relations. Here we cite

the problem of grouping a set of articles raised in Zhou et al. (2007) to illustrate

the limitation of graph in modeling complex relations. Suppose there are 3 authors

pAu1, Au2, Au3q who collaborate 7 articles pAr1, . . . , Ar7q as shown in Table 1.1. If

1



CHAPTER 1. INTRODUCTION PhD Thesis

Aui is an author of the article Arj, then the entry pAui, Arjq in Table 1.1 is set to 1

and otherwise 0.

Table 1.1: Cooperations among 3 authors on 7 articles.

Ar1 Ar2 Ar3 Ar4 Ar5 Ar6 Ar7

Au1 1 1 0 0 0 0 0
Au2 0 0 0 0 1 1 1
Au3 0 1 1 1 0 1 0

In order to model the connections of objects in Table 1.1, one may construct a

graph such that the two articles pAri, Arjq are joined by an edge if they have at least

one common author or a graph such that the two authors pAui, Aujq are contained

in an edge if they have collaborations as presented in Figure 1.1 and Figure 1.2.

Figure 1.1: Articles that have common authors.

Figure 1.2: Authors that have collaborations.

— 2 —
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The above two graphs demonstrate the information in Table 1.1 incompletely

even if we consider both of them jointly. A natural way of remedying the informa-

tion absence is to illustrate the data by a hypergraph instead in Figure 1.3. Also, it

is shown that the pairwise similarity measure for separating points of two intersect-

ing circles is inadequacy (Govindu, 2005; Chen et al., 2017). Some other examples

in CVPR domain are given to show that hypergraphs are much more powerful than

normal graphs in representing connections of objects in real world (Bunke H., 2008;

Ducournau et al., 2012). Hypergraph as an important tool to extract valuable infor-

mation and analyze massive data in our social life, is applied in science and engineer-

ing, such as chemistry (Klamt et al., 2009; Konstantinova and Skorobogatov, 2001),

molecular chemistry (Konstantinova and Skorobogatov, 1995, 1998), computer sci-

ence (Gunopulos et al., 1997; Karypis et al., 1999; Pliakos and Kotropoulos, 2015),

image processing (Bretto and Gillibert, 2005; Chen et al., 2016b; Gao et al., 2012)

and scientific computing (Fischer et al., 2010; Kayaaslan et al., 2012).

Figure 1.3: Hypergraph representation of author-article relationship.

1.1.2 Hypergraph related tensors

Matrices, such as adjacency matrices, incidence matrices and Laplacian matrices

are commonly used to represent graphs, simplify the graph computation and study

— 3 —
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the graph properties (Bondy and Murty, 1976). Similarly, tensors are connected

with hypergraphs (Shashua et al., 2006; Lim, 2005). The adjacency tensor of a

uniform hypergraph is proposed in Friedman and Wigderson (1995); Lim (2008), and

Cooper and Dutle (2012) proved some basic results in spectral hypergraph theory

analogous to those in spectral graph theory via adjacency tensors. On account of

the discretization of higher order Laplace-Beltrami operator, the Laplacian tensor of

a uniform hypergraph is given in Hu and Qi (2012). Other definitions of Laplacian

tensors of hypergraph are introduced in Li et al. (2013); Xie and Chang (2013a,c)

soon afterwards. In formalism, all these Laplacian tensors are not as succinct as

Laplacian matrices. Therefore, Qi (2014) defined the Laplacian tensor and signless

Laplacian tensor of a uniform hypergraph as a natural extension of the Laplacian

matrix in specral graph theory.

The hypergraph related tensors play important roles in at least the following two

aspects of hypergraph study. First, the spectral hypergraph theory, which focuses

on eigenvalues of adjacency tensors, Laplacian tensors and signless Laplacian tensors

of hypergraphs, generalizes many classical conclusions from graph to hypergraph,

estimates or gives bounds for hypergraph invariants, and is used to explore prop-

erties of the relevant hypergraphs. Lu and Man (2014, 2016a) directly extended

the Smith’s theorem from graph to hypergraph. Bulo and Pelillo (2009) generalized

Motzkin-Straus Theorem to a class of hypergraphs, and linked the clique number

to spectral hypergraph theory. Xie and Qi (2015) gave bounds for the clique num-

ber and the independence number of a uniform hypergraph via H-eigenvalues of the

adjacency tensor, the Laplacian tensor, the signless Laplacian tensor of the relat-

ed hypergraph. Hu and Qi (2012) introduced the algebraic connectivity of an even

uniform hypergraph by Z-eigenvalues of its Laplacian tensor, and Li et al. (2017) p-

resented bounds on analytic connectivity later. In terms of the bipartite property of

a uniform hypergraph, Bu et al. (2016) showed that a connected even order uniform

— 4 —
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hypergraph is odd-bipartite if and only if the eigenvalues of its Laplacian and signless

Laplacian tensors are the same, while Hu and Qi (2014) showed that any even order

hypergraph is odd-bipartite if and only if zero is its signless Laplacian H-eigenvalue.

Furthermore, the structures of uniform hypergraphs are discussed based on largest

H` eigenvalue of Laplacian tenors and spectral radius of adjacency tensors in Hu

et al. (2015); Hu and Qi (2015); Fan et al. (2016a). Second, many problems related

to hypergraph in science and engineering can be reformulated and solved by tensors.

The Lagrangian of hypergraphs, as well as the p-spectral radii of hypergraphs in the

extremal hypergraph theory are related to the adjacency tensors of the corresponding

hypergraphs (Chang et al., 2018; Nikiforov, 2014). To solve the hypergraph match-

ing problem in computer vision, a similarity tensor is constructed in Nguyen et al.

(2015); Duchenne et al. (2011); Lee et al. (2011). The adjacency tensor of a hyper-

graph is involved to establish a spiked model for community detection in Kim et al.

(2017). Ghoshdastidar and Dukkipati (2017) utilized the adjacency tensor of the

corresponding hypergraph to tackle the uniform hypergraph partitioning problem,

which is often encountered in computer vision, while Chen et al. (2017) introduced

a Laplacian tensor spectral method to partition vertices of a hypergraph.

1.1.3 Computational problems of tensors arising from hy-
pergraph

Due to the significance of tensors arising from hypergraph, many achievements have

been made in this area (Qi and Luo, 2017). Most of the research emphasize on

the theoretical analysis, such as spectral properties of adjacency tensors, Laplacian

tensors, signless Laplacian tensors (Hu et al., 2015; Lin et al., 2016a,b; Yuan et al.,

2015), the bounds for clique number (Xie and Qi, 2015), analytic connectivity (Hu

and Qi, 2012; Li et al., 2017), the geometric or bipartite property of hypergraphs

(Fan et al., 2016c; Hu et al., 2013; Fan et al., 2015, 2016b; Qi et al., 2014) and so on.

— 5 —
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Although the computational problems, such as computing eigenvalues of adjacency

tensors, Laplacian tensors, signless Laplacian tensors, computing the hypergraph in-

variants, computing the tensor models in hypergraph applications, are of important,

few works have been done on these topics. Cui et al. (2016) proposed a feasible trust

region algorithm to compute the analytic connectivity for a uniform hypegraph, and

a quadratic penalty method for the tensor model in hypergraph matching was devel-

oped in Cui et al. (2018). Also, an optimization algorithm for the aforementioned

Laplacian tensor spectral method was given in Chen et al. (2017) to solve the hy-

pergraph partitioning problem. For other computational problems related to tensors

arising from hypergraph, they are still open to our knowledge. This motivates us to

work on the subject of hypergraph related tensor computation.

The tensor we study in this thesis refers to a hypermatrix or a tentrix (Gao,

2016).

1.2 Main results and outline of the thesis

In this subsection we briefly introduce the contributions of this thesis and give the

outline of the following parts. The results in the thesis are based on the works in

Chang et al. (2016) and Chang et al. (2018).

In Chapter 2, we give notations that will be used, and introduce results related

to our work in previous tensor and hypergraph research.

Hypergraphs generated from real life data are usually large scale, while on the

other hand the existing algorithms cannot solve problems of computing eigenvalues

of large scale adjacency tensors, Laplacian tensors and signless Laplacian tensors

completely. We deal with such problems arising from even uniform hypergraphs

by exploiting the uniform hypergraph structure, considering the tensor optimization

model on a unit sphere and introducing an efficient iterative algorithm called CEST.

— 6 —
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With the aid of  Lojasiewica inequality, the algorithm CEST is proved to be conver-

gent, and numerical experiments are given to demonstrate that our method is highly

efficient. Detailed introduction of this topic is shown in Chapter 3.

The p-spectral radii of uniform hypergraphs are significant in the extremal hy-

pergraph theory, which cover parameters such as Lagrangians and spectral radii of

hypergraphs. In Chang et al. (2018), we formulate a spherically constrained ten-

sor optimization problem, and generate an algorithm called CSRH to calculate the

p-spectral radii of uniform hypergraphs. The globally convergence property of the

approach CSRH is proved. Furthermore, the p-spectral model is first suggested to

be applied in network analysis. The numerical results provide examples of the C-

SRH algorithm ranking real-life data via p-spectral radii of uniform hypergraphs. We

describe the specific results on p-spectral radii of uniform hypergraphs in Chapter 4.

1.3 Notations

(1) R

(2) C

(3) Rn

(4) Cn

(5) T r,n

(6) Cr,n

(7) Rr,n

(8) Sr,n

(9) Ab B

(10) A ‚ B

(11) A ˝ B

(12) pxrr´1sqi

Set of real numbers;

Set of complex numbers;

Set of n-dimensional real vectors;

Set of n-dimensional complex vectors;

Set of rth order n-dimensional tensors;

Set of rth order n-dimensional complex tensors;

Set of rth order n-dimensional real tensors;

Set of rth order n-dimensional real symmetric tensors;

Tensor outer product;

Tensor inner product;

Tensor Hadamard product;

xr´1
i : the ith entry of the vector xrr´1s.

— 7 —



Chapter 2

Preliminaries

In this Chapter, we introduce the concepts of tensor, hypergraph, etc., and review

the relevant results in spectral hypergraph theory .

2.1 Tensor

2.1.1 Structured tensors and tensor multiplication

A tensor T is a multi array with its entry ti1¨¨¨ir P F, for ij “ 1, . . . , nj, and j “

1, . . . , r. When n1 “ n2 “ . . . “ nr “ n, we say T is rth order n-dimensional, and

denote it as T r,n. If F “ R, the set of rth order n-dimensional tensor is Rr,n.

Unit tensor: A unit tensor I is defined as

di1¨¨¨ir “

$

&

%

1 if i1 “ i2 “ ¨ ¨ ¨ “ ir “ i,

0 otherwise.

Reducible and irreducible tensor: The tensor C P Cr,n is reducible (Chang et al.,

2008) if there is a nonempty set I P t1, . . . , nu such that

ci1¨¨¨ir “ 0, @i1 P I and i2, . . . , ir R I.

Otherwise, it is an irreducible tensor.

8
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Nonnegative and M-tensor: If all entries of a tensor are nonnegative, then it is

an nonnegative tensor. As a natural extensional of M -matrix, a tensor A P T r,n is

an M -tensor (Zhang et al., 2014) if there have a nonnegative tensor B and a positive

real number η satisfying

A “ ηI ´ B.

Tensor outer product: The outer product of two tensors A “ pai1¨¨¨ir1 q P T
r1,n

and B “ pbj1¨¨¨jr2 q P T
r2,n is defined as

Ab B “ pai1¨¨¨ir1 bj1¨¨¨jr2 q P T
r1`r2,n.

Tensor inner product: The inner product of two tensors A “ pai1¨¨¨irq P T r,n and

B “ pbi1¨¨¨irq P T r,n is defined as

A ‚ B “
n
ÿ

i1¨¨¨ir“1

ai1¨¨¨irbi1¨¨¨ir .

Tensor Hadamard product: The Hadamard product of two tensorsA “ pai1¨¨¨irq P

T r,n and B “ pbi1¨¨¨irq P T r,n is defined as

A ˝ B “ ai1¨¨¨irbi1¨¨¨ir P T r,n.

k-mode product: The notations of several frequently used k-mode products be-

— 9 —
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tween a tensor A “ pai1¨¨¨irq P Rr,n and a vector xJ “ px1 ¨ ¨ ¨ xnq P Rn are as follows:

Axr´2
“

n
ÿ

i3¨¨¨ir“1

aiji3¨¨¨irxi3 ¨ ¨ ¨ xir P Rnˆn,

Axr´1
“

n
ÿ

i2¨¨¨ir“1

aii2¨¨¨irxi3 ¨ ¨ ¨ xir P Rn,

Axr “

n
ÿ

i1¨¨¨ir“1

ai1¨¨¨irxi1 ¨ ¨ ¨ xir P R.

2.1.2 Eigenvalues of tensors

The eigenvalues of tensors are crucial in the computational problems we studied. The

spectral hypergraph theory emphasises on eigenvalues of adjacency tensors, Laplacian

tensors and signless Laplacian tensors of the corresponding hypergraph. The p-

spectral radius of a hypergraph is related to eigenvalues of the adjacency tensor of

the corresponding hypergraph when p equals two or the order of this hypergraph.

Eigenvalues and eigenvectors: For A P T r,n, if we can find a number λ P C and

a vector x P Cn satisfying the following homogeneous polynomial equations

pAxr´1
qi “ λxr´1

i , @ i “ 1, . . . , n, (2.1)

the number λ and the vector x are eigenvalue and eigenvector, or so-called eigenpair

of A respectively. Moreover, denote a vector xrr´1s P Rn such that its ith entry being

xr´1
i for short. The equation in (2.1) can be written as pAxr´1qi “ xrr´1s. If λ and x

is an eigenpair of A and α is a real number, then pαλ,xq is also an eigenpair of A.

H-Eigenvalues and H-eigenvectors: If an eigenvalue λ of A associate with a

real eigenvector x, the eigenpair pλ,xq is called H-eigenvalue and H-eigenvector of

A. Since x is not zero, there exists at least one index i P t1, 2, . . . , nu such that
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xi is nonzero. Therefore eigenvalue λ “ pAxr´1qi

xr´1
i

is real. On the other hand, if the

eigenvalue λ is real, it may not be an H-eigenvalue, because its associated eigenvector

x may not be a real vector. Such counter examples are presented in Qi (2005a). The

H-eigenvalue set of A is called H-spectrum of A, and we abbreviate it as Hspec(A).

E-Eigenvalues and E-eigenvectors: Although eigenvalues and H-eigenvalues have

nice mathematical structures, they are not invariant under orthogonal transforma-

tion (Qi and Luo, 2017). In physics, some physical concepts are hoped to be in-

variant under orthogonal transformation in the laboratory coordinate system. The

E-eigenvalues and Z-eigenvalues are then introduced to fill this gap.

If a number λ P C and a vector x P Cn are solutions of the following equation

system

Axr´1
“ λx, (2.2)

xJx “ 1, (2.3)

then λ and x are E-eigenvalue and E-eigenvector of A respectively.

Z-Eigenvalues and Z-eigenvectors: If an E-eigenvalue of a tensor is associat-

ed with a real E-eigenvector, the E-eigenvalue and the E-eigenvector become Z-

eigenvalue and Z-eigenvector respectively. It can be deduced from (2.2) that λ “ Axr,

thus λ is real when its associated eigenvector is real. Conversely, the condition that

E-eigenvalue is real can not guarantee x being a real vector. If A P Sr,n, it always

has Z-eigenvalues. The Z-eigenvalue set of A is called Z-spectrum of A, Zspec(A)

for short.

B-Eigenvalues and B-eigenvectors of tensors: In Chang et al. (2009), a general-

ized eigenvalue of tensor was proposed. If both A and B are rth order n-dimensional

tensors on R, and pλ,xq P Cˆ pCnzt0uq satisfies the following equation:

pA´ λBqxr´1
“ 0,
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we call pλ,xq a B eigenpair of A. Denote I as an identity tensor, whose elements

are 0 except the diagonal elements being 1. If B “ I, then the B-eigenvalues of A

are the eigenvalues of A, and the real B-eigenvalues of A with real eigenvectors are

the H-eigenvalues of A. Let I2 be the nˆ n unit matrix. When the order m “ 2l is

even and B “ I l2, a real B-eigenvalue associated with a real eigenvector is in fact a

Z-eigenvalue.

2.2 Hypergraph

First, we introduce the concepts of hypergraph, uniform hypergraph, adjacency ten-

sor, Laplacian tensor, signless Laplacian of the corresponding hypergraph.

2.2.1 Hypergraph and structured hypergraphs

Hypergraph and uniform hypergraph: Hypergraph is an extension of ordinary

graph. Each edge of a graph has two vertices, while the edge of a hypergraph can

join any number of vertices. Let V “ t1, 2, . . . , nu be the vertex set, and E “

te1, e2, . . . , emu be the edge set for ep Ă V, p “ 1, . . . ,m. Define G “ pV,Eq as a

hypergraph. If a positive number speq is associated with each edge of the hyperpragh,

then this hypergraph is a weighted hypergraph with speq being the weight linked with

edge e. When the weight of each edge is 1, a weighted hypergraph is an ordinary

hypergraph. If the length of each edge in the hypergraph is the same, i.e.,|ep| “ r for

p “ 1, . . . ,m, then the hypergraph G is called a uniform hypergraph or an r-graph

for short. When r “ 2, a hypergraph is in fact an ordinary graph. For any vertex

i P V, the degree of i is

dpiq “ sumtspeq : i P e, e P Eu.

A 4-graph is given in Figure 2.1 as an example. The vertex set of the sunflower

hypergraph is V “ t1, ¨ ¨ ¨ , 10u, and the edge set is E “ te1 “ t1, 2, 3, 4u, e2 “
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t1, 5, 6, 7u, e3 “ t1, 8, 9, 10uu. The order of this hypergraph is 4. The degree di equals

1 for i “ 2, ¨ ¨ ¨ , 10 and d1 “ 3.

Figure 2.1: A 4-uniform hypergraph.

Connected hypergraph: If two vertices belong to the same edge, they are called

adjacent. Two vertices i and j are connected, if they are adjacent or there exist a

vertex subset ti, v1, . . . , vk, ju Ď V such that vertices i and v1, vk and j, vt and vt`1

for t “ 1, . . . , t´1 are adjacent. The hypergraph G is connected if all pair of vertices

are connected.

Odd partite hypergraph: A hypergraph (Hu and Qi, 2014) G is odd bipartite if

there exist two nonempty subsets V1 and V2 such that

(1) V “ V1 Y V2,

(2) V1 X V2 “ ∅,

(3) each edge of G intersects V1 in an odd number of vertices.

Sunflower: Suppose an r-graph GS “ pV,Eq has ∆ edges and n “ pr ´ 1q∆ ` 1
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vertices. If the vertex set V can be decomposed as

V “ V0 Y V1 Y ¨ ¨ ¨ Y V∆, with |V0| “ 1, and |Vi| “ r ´ 1 for i “ 1, . . . ,∆,

and the edge set E can be represented as

E “ tV0 Y Vi | i “ 1, . . . ,∆u,

then GS is named a sunflower with its maximum degree being ∆. For instance,

the maximum degree of the sunflower shown in Figure 2.1 is ∆ “ 3. A sunflower is

also called a β-star. A class of 6-uniform β-stars are given in Figure 2.2 for reference.

Figure 2.2: A class of 6-uniform β-stars.

Loose path: (Chang et al., 2018) An r-graph with m edges is called a loose

path if its vertex set is

V “
 

ip1,1q, . . . , ip1,rq, ip2,2q, . . . , ip2,rq, . . . , ipm,2q, . . . , ipm,rq
(

and its edge set is

E “
 

tip1,1q, . . . , ip1,rqu, tip1,rq, ip2,2q, . . . , ip2,rqu, . . . , tipm´1,rq, ipm,2q, . . . , ipm,rqu
(

.
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Figure 2.3: A loose path.

An r-uniform loose path with m edges has mpr´ 1q ` 1 vertices. For instance, there

are 21 vertices in the 6 order loose path in Figure 2.3.

Complete hypergraph: If an r-graph with n vertices contains all possible edges,

then it is called a complete hypergraph and denoted as Cr
n. For example, the tetra-

hedron in Figure 2.4 can be regarded as a complete 3-graph with 4 vertices, i.e., C3
4 .

Figure 2.4: A 3-uniform complete hypergraph with 4 vertices: C3
4 .

2.2.2 Tensors arising from hypergraphs and p-spectral ra-
dius

Let G be an r-graph with n vertices. Next, we introduce the definitions of adjacency

tensor A, Laplacian tensor L, degree tensor D and signless Laplacian tensor Q of G.

Adjacency tensor: The adjacency tensorA “ pai1,¨¨¨ ,ırq is an rth order n-dimensional

symmetric tensor as follows (Bulo and Pelillo, 2009; Cooper and Dutle, 2012; Xie and
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Chang, 2013b)

ai1¨¨¨ir “

$

’

’

&

’

’

%

speq

pr ´ 1q!
if e “ ti1, . . . , iru P E,

0 otherwise.

Degree tensor: The degree tensor D of G is an rth order n-dimensional diagonal

tensor, whose entries are

di1¨¨¨ir “

$

&

%

dpiq if i1 “ i2 “ ¨ ¨ ¨ “ ir “ i,

0 otherwise.

Laplacian and signless Laplacian tensor: The notations of Laplacian and

signless Laplacian tensors based on sums of rth powers in Hu and Qi (2012); Li

et al. (2013); Xie and Chang (2013c) are not the natural extension from matrix

forms. Hence, Qi (2014) introduced a simple definition for the Laplacian and signless

Laplacian tensors of an r-graph according to the definition of Laplacian matrix.

The Laplacian tensor is given as L “ D ´ A, while the signless Laplacian tensor

is Q “ D ` A. The signless Laplacian tensor Q of G is symmetric nonnegative.

Moreover, the Laplacian tensor is the limit of symmetric M -tensors. In the rest of

this thesis, the symbols D, A, L, and Q are specially referred to the degree tensor,

adjacency tensor, Laplacian tensor and signless Laplacian tensor of a hypergraph

respectively.

p-spectral radius: (Kang et al., 2015; Keevash et al., 2014; Nikiforov, 2014) The

p-spectral radius of G is denoted as

λppqpGq “ r! max
pě1,}x}p“1

ÿ

e“ti1,...,iruPE

speqxi1 ¨ ¨ ¨ xir (2.4)
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where }x}p “ p
řn
k“1 |xk|

pq
1
p , and the vector x solving (2.4) is called a p-optimal

weighting of G (Caraceni, 2011).

Lagrangian of a hypergraph: The Lagrangian of a hyeprgraph is defined as

λLpGq “

$

’

’

&

’

’

%

max
ř

e“ti1,...,iruPE
speqxi1 ¨ ¨ ¨ xir

s.t.
r
ř

i“1

xi “ 1,

xi ě 0, for i “ 1, . . . , r.

(2.5)

From the definition of p-spectral radius in 2.4, we have λp1qpGq “ λLpGq.

2.2.3 Some useful results in spectral hypergraph theory

Define λHmaxpT pGqq and λHminpT pGqq as the largest and smallest H-eigenvalue of a ten-

sor T related to a hypergraph G respectively. Similarly, the notation λZmaxpT pGqq and

λZminpT pGqq are the largest and smallest Z-eigenvalue of T related to a hypergraph

G respectively.

Theorem 2.1. For a connected r-graph G, the following conclusions are equivalent

to each other

(1) G is an even uniform and odd bipartite hypergraph.

(2) λHmaxpLpGqq “ λHmaxpQpGqq (Hu et al., 2015).

(3) ZspecpLpGqq “ ZspecpQpGqq (Bu et al., 2016).

(4) HspecpLpGqq “ HspecpQpGqq (Shao et al., 2015).

(5) HspecpApGqq “ ´HspecpApGqq (Shao et al., 2015).

For a simple graph G, the generalized power of Gr,s for r ě 2s is given by replacing

each vertex of the simple graph by an s-subsect and adding r ´ 2s new vertices in

each edge.
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Theorem 2.2. If G is a simple graph, the 2r-graph G2r,r obtained from G is not odd

bipartite if and only if G is nonbipartite (Khan and Fan, 2015). Moreover, Khan

et al. (2016) proved that

λminpApGqq “ λminpApG2r,r
qq, λminpQpGqq “ λminpQpG2r,r

qq.

The largest H-eigenvalue of the Laplacian tensor of an even order sunflower is

proved to have a closed-form solution.

Theorem 2.3. (Theorems 3.2 and 3.4 in Hu et al. (2015)) Assume G is an r-graph

with the order r being an even number and greater than 4. Let λ˚H be the unique real

root of the equation p1´λqk´1pλ´∆q`∆ “ 0 lying in the interval p∆,∆` 1q. Then

we have

λHmaxpLq ě λ˚H .

The equality holds if and only if G is a sunflower.

The following theorem gives the answer to the largest H-eigenvalues of adjacency

tensors of loose paths with m “ 3 or m “ 4.

Theorem 2.4. (Yue et al., 2016; Chang et al., 2018) Assume G is an r-uniform

loose path with m edges. Then we have

(1) λHmaxpGq “
`

1`
?

5
2

˘
2
r for m “ 3,

(2) λHmaxpGq “ 3
1
r for m “ 4.

Although there is no algorithm or formula specially designed for the numerical or

analytical solution of p-spectral radius of a general hypergraph, some progress has

been made in obtaining the value of p-spectral radius of structured hypergraphs.

Theorem 2.5. (Nikiforov, 2014; Chang et al., 2018) Suppose the r-graph G is a

β-star with m edges.
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(1) If p ą r ´ 1, then λppqpGq “ r!r´
r
pmp1´ r´1

p
q.

(2) If p ă r ´ 1, then λppqpGq “ r!r´
r
p .

(3) If p “ r ´ 1, then λppqpGq “ pr ´ 1q!r´
1
r´1 .

Proposition 2.1. (Caraceni, 2011; Chang et al., 2018) Let G be a complete r-graph

with n vertices, then the Lagrangian of G is

λLpGq “

ˆ

n
r

˙

1

nr
. (2.6)
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Chapter 3

Computing eigenvalues of large

scale tensors arising from even

order uniform hypergraph

In this chapter, we consider problems of computing H- and Z-eigenvalues of the

adjacency tensor, the Laplacian tensor, and the signless Laplacian tensor associated

with a uniform hypergraph.

3.1 Introduction

Spectral hypergraph theory connects the geometry of a uniform hypergraph and

H- and Z-eigenvalues of its corresponding tensors. For instance, an even-uniform

connected hypergraph is odd-bipartite if and only if the largest H-eigenvalue of its

Laplacian is equivalent to the largest H-eigenvalue of its signless Laplacian tensor

(Hu et al., 2015). This result enables us to check the odd-bipartite property of a

connected even-uniform hypergraph.

Since the adjacency tensor and the signless Laplacian tensor are symmetric and

nonnegative, algorithms for eigenvalue problems of nonnegative symmetric tensors

are available for eigenvalue problems of adjacency tensors, as well as signless Lapla-

cian tensors. Therefore, an efficient algorithm called Ng-Qi-Zhou, for computing the
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largest eigenvalues of irreducible nonnegative tensors (Ng et al., 2009) is feasible for

calculating the largest H-eigenvalues and associated eigenvectors of adjacency ten-

sors and the signless Laplacian tensors. When apply the Ng-Qi-Zhou method to

a primitive nonnegative symmetric tensor, the sequence generated by Ng-Qi-Zhou

method is proved to be convergent (Chang et al., 2011). The convergence criteria

is relaxed to irreducible nonnegative symmetric tensor in Liu et al. (2010). Fur-

ther, the Ng-Qi-Zhou method is enhanced and it is demonstrated that this enhanced

method converges when a nonnegative symmetric tensor is irreducible (Liu et al.,

2010). In Friedland et al. (2013), the Ng-Qi-Zhou approach is shown to converge to

the largest H-eigenvalue problem of a weakly irreducible nonnegative symmetric ten-

sor R-linearly. Later, the Q-linear convergence property of the Ng-Qi-Zhou method

is proved (Zhou et al., 2013a,b). Furthermore, Zhou et al. (2013b) refined the Ng-Qi-

Zhou method, and showed that the refined one can acquire the largest H-eigenvalue

of nonnegative symmetric tensors. Besides, a local quadratic convergent algorithm

was proposed in Ni and Qi (2015).

Usually there are two kinds of approaches for eigenvalue problem of general sym-

metric tensors. One category can get all (real) eigenvalues of a small dimension

tensor. With the aid of resultant, a direct method was given in Qi et al. (2009).

Cui et al. (2014) established an SDP relaxation method coming from polynomial

optimization. Two homotopy continuation type algorithms were proposed in Chen

et al. (2016a). Also, subroutines “NSolve” and “solve” provided in softwares Math-

ematica and Maple can solve polynomial eigen-systems exactly. These methods cost

prohibitively long time when finding eigenvalues of a symmetric tensor which has

dozens of variables.

The other kind of methods focus on computing an (extreme) eigenvalue of a

symmetric tensor. The reason for computing only one eigenvalue of a tensor is that,

a general symmetric tensor has plenty of eigenvalues (Qi, 2005b), and it is NP-hard

— 21 —



CHAPTER 3. COMPUTATION OF EIGENVALUES OF HYPERGRAPH
RELATED TENSORS PhD Thesis

to calculate all the eigenvalues. (Hillar and Lim, 2013). A spherical optimization

model was proposed by Kolda and Mayo. They introduce shifted power approaches

for this model, which were proved to converge to an eigenvalue and its corresponding

eigenvector of a symmetric tensor based on fixed point theory (Kolda and Mayo,

2011, 2014). Hao et al. (2015) introduced a subspace projection approach to solve

the spherical optimization model. A quadratic penalty function of the spherical

optimization problem was constructed in Han (2013) to find eigenvalues of even

order symmetric tensors. Numerical experiments illustrated that these approaches

are able to calculate eigenvalues of symmetric tensors which have dozens of variables.

In terms of a Laplacian tensor corresponding to an even-uniform hypergraph

which has millions of vertices, how to calculate its (extreme) eigenvalue? Storing

and processing a large scale tensor directly are difficult.

For the purpose of computing eigenvalues and eigenectors of a large scale sparse

tensor, for instance the adjacency tensor, the Laplacian tensor, and the signless

Laplacian tensor, related to a uniform hypergraph, we propose a fast computational

method for products of these tensors and any vectors. In order to save a unifor-

m hypergraph, we construct a matrix, whose row elements are the vertices in each

edge of the hypergraph. Based on this matrix, our fast computational method avoid

producing and saving the large scale tensor explicitly when calculate the product

of a Laplacian tensor and a vector. The computational cost of the fast compu-

tational framework is linear in the size of edges and quadratic in the number of

vertices of an edge. Moreover, other tensors associated with uniform hypergraphs,

i.e., signless Laplacian tensors and adjacency tensors, can be treated in the same

way. Next we propose an effective first-order optimization method for calculating

H- and Z-eigenvalues of adjacency, Laplacian, and signless Laplacian tensors aris-

ing from the even-uniform hypergraph. By minimizing a smooth merit function on

a unit sphere, we get the first-order stationary point of this optimization model,
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whcih is an eigenvector associated with an eigenvalue. By using Cayley transform,

we develop a specific formula to deal with the spherical constraint. The spherical

optimization model is then transferred into an unconstrained problem. In view of

the large scale aspects of the problem, the L-BFGS method is explored to produce

a direction which is relevant to the gradient, and a backtracking search is employed

to guarantee that the sequence of iterates converges. Our algorithm (CEST) for

calculating eigenvalues of even-order symmetric tensors is established on the basis

of these techniques. Because the graph of the objective function is a semi-algebraic

set, the objective function satisfies the  Lojasiewicz inequality, which ensures that the

sequence of iterative points given by the CEST method converges to an eigenvector.

Furthermore, it is proved that if the CEST method is started from multiple initial

points sampled uniformly from a unit sphere, the result could achieve the largest

(smallest) eigenvalue with a probability close to one.

When compute eigenvalues of symmetric tensors corresponding to small hyper-

graphs, numerical tests demonstrate that our CEST method performs dozens of times

faster than the power method. In addition, the CEST algorithm is able to calculate

H- and Z-eigenvalues, as well as their associated eigenvectors of symmetric tensors

arising from an even order uniform hypergraph which has millions of vertices.

3.2 The CEST method

We give the CEST method based on the unified equation for H- and Z-eigenvalues

of symmetric tensors (Chang et al., 2009). Suppose I P Rrr,ns is an identity tensor.

Then, Ixr´1 “ xrr´1s. When r is even, let E P Rrr,ns be a symmetric tensor such that

Exr´1 “ pxJxq
r
2
´1x. Because Ixr “

řn
i“1 x

r
i and Exr “ }x}r are greater than zero

for any nonzero vector x, tensors I and E are positive definite. The systems (2.1)
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and (2.2) are combined into

T xr´1
“ λBxr´1, (3.1)

in which B equals I and E respectively. In the rest of this chapter, if λ P R and the

nonzero vector x P Rn satisfy (3.1), λ and x are called eigenvalue and its associated

eigenvector of T respectively. Next, we concentrate on calculating such λ and x

for large scale sparse tensors. Suppose r is even and the symmetric tensor T is

associated with an r-uniform hypergraph. Hence T is sparse and may be large scale.

We consider the spherical constraint optimization model

min fpxq “
T xr

Bxr
s.t. x P Sn´1, (3.2)

where Sn´1 ” tx P Rn : xJx “ 1.u Since fpxq is zero-order homogeneous, we limit

x on the unit sphere Sn´1 ” tx P Rn : xJx “ 1u without loss of generality. The

compactness of Sn´1 makes our algorithm CEST easy to obtain. Also, the spherical

constraint guarantee x P Sn´1 being away from the original point and the CEST

algorithm being convergent. The structure of the symmetric positive definite tensor

B is as simple as I and E . The gradient of fpxq Chen et al. (2016c) is

∇fpxq “ r

Bxr

ˆ

T xr´1
´
T xr

Bxr
Bxr´1

˙

. (3.3)

We reveal the connection between the optimization model (3.2) and the eigenvalue

problem (3.1) in the following theorem. Owing to the freedom of the positive definite

tensor B (3.1), the next theorem covers both the case of H-eigenvalue and the case

of Z-eigenvalue as B “ I and B “ E , respectively.

Theorem 3.1. Let B be a positive definite symmetric tensor with its order r being

even. Let x˚ P Sn´1. Hence, x˚ is a first-order stationary point, i.e., ∇fpx˚q “ 0,

if and only if there is a scalar λ˚ P R such that pλ˚,x˚q satisfies (3.1). Moreover,
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λ˚ “ fpx˚q is the Z-eigenvalue (resp. H-eigenvalue) with x˚ being the associated

Z-eigenvector (resp. H-eigenvector) if B “ E (resp. B “ I).

Proof. Because B is positive definite and Bxr is positive for any x in Sn´1, we have

fpx˚q is an eigenvalue and x˚ is its related eigenvector from (3.3) if x˚ P Sn´1 satisfies

∇fpx˚q “ 0. On the other hand, if x˚ P Sn´1 is an eigenvector associated with an

eigenvalue λ˚ :

T xr´1
˚ “ λ˚Bxr´1

˚ ,

we obtain T xr˚ “ λ˚Bxr˚ by multiplying x˚ on both sides of the above equation. Since

Bxr˚ ą 0, we have λ˚ “
T xr˚
Bxr˚

“ fpx˚q. Then, we get ∇fpx˚q “ 0 from (3.3).

In the following part of this subsection, we introduce a numerical method for

calculating a first order stationary point of the maximization model (3.2). The

limited memory BFGS (L-BFGS) method is explored to produce a descent direction.

Afterwards, we apply a curvilinear search skill to keep iterative points on the unit

sphere.

3.2.1 L-BFGS to produce a descent direction

The limited memory quasi-Newton approach is efficient in solving large scale non-

linear unconstrained optimization problems. If c is the current iteration, L-BFGS

generates an implicit matrix Hc to estimate the inverse of a Hessian of fpxq. In the

beginning, we review the primary BFGS method. The BFGS approach afresh the

estimation of the Hessian’s inverse iteratively. Suppose Hc is the current approxima-

tion,

yc “ ∇fpxc`1q ´∇fpxcq, sc “ xc`1 ´ xc, and Vc “ I ´ ρcycs
J
c , (3.4)
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in which I is an identity matrix,

ρc “

$

’

&

’

%

1

yJc sc
if yJc sc ě κε,

0 otherwise,

(3.5)

and κε P p0, 1q is a small positive parameter. The new estimation H`
c generated by

BFGS method (Nocedal and Wright, 2006; Sun and Yuan, 2006) is

H`
c “ V Jc HcVc ` ρcscs

J
c . (3.6)

In order to finding solution of large scale optimization models, the L-BFGS approach

was proposed (Nocedal, 1980), which implements the BFGS update economically.

Given any vector ∇f P Rn, the cost for the matrix-vector product ´Hc∇f is only

Opnq multiplications. For the current iteration is c, the initial approximation matrix

is as simple as

Hp0q
c “ γcI, (3.7)

where γc is a positive number determined by the Barzilai-Borwein method (Liu and

Nocedal, 1989; Barzilai and Borwein, 1988). Then H
p`q
c is updated by the BFGS

formula (3.6) recursively

HpL´``1q
c “ V Jc´`H

pL´`q
c Vc´` ` ρc´`sc´`s

J
c´`, for ` “ L,L´ 1, . . . , 1. (3.8)

The approximation of Hessian matrix in iterate c is

Hc “ HpLq
c . (3.9)

If ` ě c, the number ρc´` is set to zero and L-BFGS does nothing for that `. In

practice, the L-BFGS works well for a cheap two-loop recursion. The computational

cost is about 4Ln multiplications.
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Algorithm 1 L-BFGS.

1: q Ð ´∇fpxcq,
2: for i “ c´ 1, c´ 2, . . . , c´ L do
3: αi Ð ρis

J
i q,

4: q Ð q´ αiyi,
5: end for
6: p Ð γcq,
7: for i “ c´ L, c´ L` 1, . . . , c´ 1 do
8: β Ð ρiy

J
i p,

9: p Ð p` sipαi ´ βq,
10: end for
11: Stop with result p “ ´Hc∇fpxcq.

In terms of the parameter γc, we have three options. The first two are as follows

(Barzilai and Borwein, 1988)

γBB1
c “

yJc sc
}yc}2

and γBB2
c “

}sc}
2

yJc sc
. (3.10)

The third one is determined by the geometric mean of the above two canditates Dai

(2014)

γDai
c “

}sc}

}yc}
. (3.11)

We set γc “ 1 if yJc sc ă κε.

In order to show L-BFGS produces a descent direction pc “ ´Hc∇fpxcq, first

we consider the classical BFGS update (3.4)–(3.6) and establish the following two

lemmas.

Lemma 3.1. Suppose that H`
c is generated by BFGS (3.4)–(3.6). Then, we have

}H`
c } ď }Hc}

ˆ

1`
4M

κε

˙2

`
4

κε
. (3.12)

Proof. If yJc sc ă κε, we get ρc “ 0 and H`
c “ Hc. Hence, the inequality (3.12) holds.

Next, we consider the case yJc sc ě κε. Obviously, ρc ď
1
κε

. From Lemma 3.7 and

all iterates xc P Sn´1, we get

}sc} ď 2 and }yc} ď 2M. (3.13)
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Since

}Vc} ď 1` ρc}yc}}sc} ď 1`
4M

κε
and }ρcscs

J
c } ď ρc}sc}

2
ď

4

κε
,

we have

}H`
c } ď }Hc}}Vc}

2
` }ρcscs

J
c } ď }Hc}

ˆ

1`
4M

κε

˙2

`
4

κε
.

Hence, the inequality (3.12) is valid.

Lemma 3.2. Suppose that Hc is positive definite and H`
c is generated by BFGS

(3.4)–(3.6). Let µminpHq be the smallest eigenvalue of a symmetric matrix H. Then,

we get H`
c is positive definite and

µminpH
`
c q ě

κε
κε ` 4M2}Hc}

µminpHcq. (3.14)

Proof. For any unit vector z, we have

zJH`
c z “ pz´ ρcs

J
c zycq

JHcpz´ ρcs
J
c zycq ` ρcps

J
c zq2.

Let t ” sJc z and

φptq ” pz´ tρcycq
JHcpz´ tρcycq ` ρct

2.

Because Hc is positive definite, φptq is convex and attaches its minimum at t˚ “

ρcyJc Hcz
ρc`ρ2cy

J
c Hcyc

. Hence,

zJH`
c z ě φpt˚q

“ zJHcz´ t˚ρcy
J
c Hcz

“
ρcz

JHcz` ρ
2
cpy

J
c Hcycz

JHcz´ py
J
c Hczq

2q

ρc ` ρ2
cy
J
c Hcyc

ě
zJHcz

1` ρcyJc Hcyc
,
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where the last inequality holds because the Cauchy-Schwarz inequality is valid for

the positive definite matrix norm } ¨ }Hc , i.e., }yc}Hc}z}Hc ě yJc Hcz. Therefore, H`
c

is also positive definite. From (3.13), it is easy to verify that

1` ρcy
J
c Hcyc ď 1`

4M2}Hc}

κε
.

Therefore, we have zJH`
c z ě κε

κε`4M2}Hc}
µminpHcq. Hence, we get the validation of

(3.14).

Second, we turn to L-BFGS. Regardless of the parameter γc in (3.7) either from

(3.10) or (3.11), we get the following lemma.

Lemma 3.3. Suppose that γc takes Barzilai-Borwein steps (3.10) or its geometric

mean (3.11). Then, we have

κε
4M2

ď γc ď
4

κε
. (3.15)

Proof. If yJc sc ă κε, we get γc “ 1 which satisfies the bounds in (3.15) obviously.

Otherwise, we have κε ď yJc sc ď }yc}}sc}. Recalling (3.13), we get

κε
2
ď }yc} ď 2M and

κε
2M

ď }sc} ď 2.

Hence, we have

κε
4M2

ď
yJc sc
}yc}2

ď
}sc}}yc}

}yc}2
“
}sc}

}yc}
“

}sc}
2

}yc}}sc}
ď
}sc}

2

yJc sc
ď

4

κε
,

which means that three candidates γBB1
c , γBB2

c , and γDai
c satisfy the inequality (3.15).

Third, based on Lemmas 3.1, 3.2, and 3.3, we obtain two lemmas as follows.
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Lemma 3.4. Suppose that the approximation of a Hessian’s inverse Hc is generated

by L-BFGS (3.7)–(3.9). Then, there exists a positive constant CU ě 1 such that

}Hc} ď CU .

Proof. From Lemma 3.3 and (3.7), we have }H
p0q
c } ď

4
κε

. Then, by (3.9), (3.8) and

Lemma 3.1, we get

}Hc} “ }HpLq
c }

ď }HpL´1q
c }

ˆ

1`
4M

κε

˙2

`
4

κε

ď ¨ ¨ ¨

ď }Hp0q
c }

ˆ

1`
4M

κε

˙2L

`
4

κε

L´1
ÿ

`“0

ˆ

1`
4M

κε

˙2`

ď
4

κε

L
ÿ

`“0

ˆ

1`
4M

κε

˙2`

” CU .

The proof is complete.

Lemma 3.5. Suppose that the approximation of a Hessian’s inverse Hc is generated

by L-BFGS (3.7)–(3.9). Then, there exists a constant 0 ă CL ă 1 such that

µminpHcq ě CL.

Proof. From Lemma 3.3 and (3.7), we have µminpH
p0q
c q ě

κε
4M2 . Moreover, Lemma

3.4 means that }H
p`q
c } ď CU for all ` “ 1, . . . , L. Hence, Lemma 3.2 implies

µminpH
p``1q
c q ě

κε
κε ` 4M2CU

µminpH
p`q
c q.
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Then, from (3.9) and (3.8), we obtain

µminpHcq “ µminpH
pLq
c q

ě
κε

κε ` 4M2CU
µminpH

pL´1q
c q

ě ¨ ¨ ¨

ě

ˆ

κε
κε ` 4M2CU

˙L

µminpH
p0q
c q

ě
κε

4M2

ˆ

κε
κε ` 4M2CU

˙L

” CL.

We complete the proof.

Finally, we get the following theorem from Lemmas 3.4 and 3.5.

Theorem 3.2. Suppose that pc “ ´Hc∇fpxcq is generated by L-BFGS. Then, there

exist constants 0 ă CL ď 1 ď CU such that

pJc ∇fpxcq ď ´CL}∇fpxcq}2 and }pc} ď CU}∇fpxcq}. (3.16)

3.2.2 Cayley transform to satisfy orthogonal constraints

Cayley transform (Golub and Van Loan, 2013) provides an efficient way to create

orthogonal matrices, which is a useful tool for solving eigenvalue problem (Chen et al.,

2016c; Friedland et al., 1987) and optimization problem with orthogonal constraints

(Jiang and Dai, 2015; Wen and Yin, 2013). Suppose that W P Rnˆn is a skew-

symmetric matrix. Then pI `W q is invertible, and we get an orthogonal matrix Q

by the Cayley transform,

Q “ pI `W q´1
pI ´W q P Rnˆn. (3.17)

The eigenvalues of matrix Q do not contain ´1.
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Let xc P Sn´1 be the current iterate, pc P Rn be a descent direction produced by

Algorithm 1 and α be a damping factor. In order to keep the new iterative point on

the unit sphere, we want to find a suitable orthogonal matrix Q P Rnˆn and obtain

the next point via

xc`1 “ Qxc. (3.18)

Also, the iterate xc`1 should be a descent condition, i.e.,

∇fpxcqJpxc`1 ´ xcq ă 0.

It can be deduced from the Cayley transform (3.17) that pI `W qxc`1 “ pI ´W qxc

and xc`1 ´ xc “ ´W pxc`1 ` xcq. To keep the skew-symmetric matrix W simple, we

construct it by

W “ abJ ´ baJ, (3.19)

in which a and b are undetermined vectors. Further, we obtain

∇fpxcqJpxc`1 ´ xcq “ ´∇fpxcqJpabJ ´ baJqpxc`1 ` xcq.

Since the function fpxq in (3.2) is zero-order homogeneous, we have

xJ∇fpxq “ 0, @ x ‰ 0. (3.20)

Motivated by the equation above, we select a as xc. Further, we have

∇fpxcqJpxc`1 ´ xcq “ ∇fpxcqJbpxJc Qxc ` xJc xcq

from (3.18). Since the matrix Q is orthogonal and the number ´1 is not an eigenvalue

of Q, we get xJc Qxc`xJc xc ą 0 for any xc P Sn´1. When set b equals αpc, the desired

descent property ∇fpxcqJpxc`1 ´ xcq ă 0 is achieved from (3.16).

In actual calculation, we do not need to construct matrices W and Q explicitly.

The new point xc`1 can be directly created via a formula based on xc and pc with

the multiplications being about 4n.
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Lemma 3.6. Since the new iterate xc`1 is produced by (3.17), (3.18), and (3.19),

we can reformulate it as

xc`1pαq “
rp1´ αxJc pcq

2 ´ }αpc}
2sxc ` 2αpc

1` }αpc}2 ´ pαxJc pcq2
. (3.21)

Moreover we have

}xc`1pαq ´ xc} “ 2

ˆ

}αpc}
2 ´ pαxJc pcq

2

1` }αpc}2 ´ pαxJc pcq2

˙

1
2

. (3.22)

Proof. First we review the the Sherman-Morrison-Woodbury formula:

pA` UV Jq´1
“ A´1

´ A´1UpI ` V JA´1Uq´1V JA´1,

where the matrix A is invertible. Based on this formula we have

pI `W q´1xc “

ˆ

I `
“

xc ´αpc
‰

„

αpJc
xJc

˙´1

xc

“

˜

I ´
“

xc ´αpc
‰

ˆ„

1 0
0 1



`

„

αpJc
xJc



“

xc ´αpc
‰

˙´1 „
αpJc
xJc



¸

xc

“ xc ´
“

xc ´αpc
‰

„

1` αxJc pc ´}αpc}
2

1 1´ αxJc pc

´1 „
αxJc pc

1



“ xc ´
“

xc ´αpc
‰ 1

1` }αpc}2 ´ pαxJc pcq2

„

αxJc pcp1´ αxJc pcq ` }αpc}
2

1



“
p1´ αxJc pcqxc ` αpc

1` }αpc}2 ´ pαxJc pcq2
,

in which 1` }αpc}
2 ´ pαxJc pcq

2 ě 1 because |αxJc pc| ď }αpc} and xc P Sn´1. Then,

we have

xc`1 “ pI ´W q
p1´ αxJc pcqxc ` αpc

1` }αpc}2 ´ pαxJc pcq2
“
rp1´ αxJc pcq

2 ´ }αpc}
2sxc ` 2αpc

1` }αpc}2 ´ pαxJc pcq2
.
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The equation (3.21) is then obtained. Hence, we have

}xc`1pαq ´ xc}
2

“

›

›

›

›

r2αxJc pcpαxJc pc ´ 1q ´ 2}αpc}
2sxc ` 2αpc

1` }αpc}2 ´ pαxJc pcq2

›

›

›

›

2

“
r2αxJc pcpαxJc pc ´ 1q ´ 2}αpc}

2sr2αxJc pcpαxJc pc ` 1q ´ 2}αpc}
2s ` 4}αpc}

2

r1` }αpc}2 ´ pαxJc pcq2s2

“
p2αxJc pcq

2rpαxJc pcq
2 ´ 1s ´ 2}αpc}

2p2αxJc pcq
2 ` 4}αpc}

4 ` 4}αpc}
2

r1` }αpc}2 ´ pαxJc pcq2s2

“
p2αxJc pcq

2rpαxJc pcq
2 ´ 1´ }αpc}

2s ` 4}αpc}
2r´pαxJc pcq

2 ` }αpc}
2 ` 1s

r1` }αpc}2 ´ pαxJc pcq2s2

“
4}αpc}

2 ´ 4pαxJc pcq
2

1` }αpc}2 ´ pαxJc pcq2
.

Then the equality (3.22) holds.

A similar update scheme as (3.21) was given in Jiang and Dai (2015). The

projection of the descent direction pc onto the tangent space ty P Rn : yJxc “ 0u of

Sn´1 at xc is qc ” pI ´ xcx
J
c qpc. Based on qc we have

xc`1pαq “
p1´ α2}qc}

2qxc ` 2αqc
1` α2}qc}2

P Sn´1.

Therefore, we say that the update equation (3.21) is a retraction on the unit sphere

(Wen and Yin, 2013). In fact, the new iterate xc`1pαq is a geodesic rooted at xc

along the descent direction (Absil et al., 2008). In terms of the damping parameter

α, it is given via the following inexact line search.

Theorem 3.3. Assume that the gradient-related direction pc satisfies (3.16) and

xc`1pαq is given by (3.21). If η P p0, 1q and ∇fpxcq ‰ 0, then we can find a constant

α̃c ą 0 such that for all α P p0, α̃cs,

fpxc`1pαqq ď fpxcq ` ηαpJc ∇fpxcq. (3.23)
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Proof. By the formula (3.21), we get xc`1p0q “ xc and x1c`1p0q “ ´2xJc pcxc ` 2pc.

Then with the aid of (3.20) we obtain

dfpxc`1pαqq

dα

ˇ

ˇ

ˇ

ˇ

α“0

“ ∇fpxc`1p0qq
Jx1c`1p0q “ ∇fpxcqJp´2xJc pcxc`2pcq “ 2pJc ∇fpxcq.

Since pJc ∇fpxcq ď ´CL}∇fpxcq}2 and }pc} ď CU}∇fpxcq}, we have pJc ∇fpxcq ă 0

from ∇fpxcq ‰ 0. If α is sufficiently small, we have

fpxc`1pαqq “ fpxcq ` 2αpJc ∇fpxcq ` opα2
q

by Taylor’s theorem. Since η ă 2, then we could find a positive α̃c satisfying (3.23).

Broadly speaking, our new algorithm CEST is a modified version of the L-BFGS

method for orthogonal constrained optimization problem. The Cayley transform is

employed to keep the iterative points satisfying the spherical constraint. Then we

use an inexact line search to choose an appropriate damping factor. Theorem 3.3

ensures the availability of the inexact line search. Finally, We demonstrate our new

method CEST explicitly, which means computing eigenvalues of sparse tensors, in

Algorithm 2.

3.3 Convergence analysis

We demonstrate the convergent property of the CEST algorithm by three steps.

First, we show that the sequence of objective function values tfpxcqu is convergent

and any cluster point of the sequence txcu is a first-order stationary point of the

objective function. Second, we prove the convergence of iterate sequence txcu based

on the  Lojasiewicz inequality. Third, it is illustrated that our CEST method is able

to get the largest or smallest eigenvalue of a tensor with great possibility when it is

tested from a large number of initial points.
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Algorithm 2 Computing eigenvalues of sparse tensors(CEST).

1: For a given uniform hypergraph Gr, we compute the degree vector d.
2: Choose an initial unit iterate x1, a positive integer L, parameters η P p0, 1q,
β P p0, 1q, and cÐ 1.

3: while ∇fpxcq ‰ 0 do
4: Compute T xk´1

c and T xkc by using approaches proposed in Section 3.4, where
T P tA,L,Qu.

5: Calculate λc “ fpxcq and ∇fpxcq by (3.2) and (3.3) respectively.
6: Generate pc “ ´Hc∇fpxcq by Algorithm 1.
7: Choose the smallest nonnegative integer ` such that α “ β` satisfies (3.23).
8: Let αc “ β` and update the new iterate xc`1 “ xc`1pαcq by (3.21).
9: Compute sc,yc and ρc by (3.4) and (3.5) respectively.

10: cÐ c` 1.
11: end while
(Chang et al., 2016)

3.3.1 Convergence of sequences of function values and gra-
dients

If the CEST method terminates in finite number of iterations, there exists an integer c

satisfying∇fpxcq “ 0. Then from fpxcq Theorem 3.1, we know fpxcq is an eigenvalue

with xc being its associated eigenvector. Hence in our convergence analysis part, the

sequence txcu created by the CEST algorithm is supposed to be infinite. Due to the

positive definite property of tensor B, the merit function fpxq is twice continuously

differentiable. Because the spherical domain of fpxq is compactness, we get the

following result.

Lemma 3.7. For the objective function value fpxq, we can find a positive number

M ą 1 satisfying

|fpxq| ďM, }∇fpxq} ďM, and }∇2fpxq} ďM, @ x P Sn´1.

Further, since the sequence tfpxcqu decreases monotonically, it converges.

Theorem 3.4. Suppose the sequence of function values tfpxcqu produced by the

CEST algorithm is infinite. Then we have

lim
cÑ8

fpxcq “ λ˚,
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where λ˚ is a constant.

The next lemma shows that the damping factors αc are bounded.

Lemma 3.8. Suppose αc is generated by the inexact line search in the CEST algo-

rithm. Then we have

αmin ď αc ď 1, @ c,

where αmin ą 0 is a constant.

Proof. Assume 0 ă α ď α̂ ” p2´ηqCL
p2`ηqMC2

U
. Then, αCUM ď

p2´ηqCL
p2`ηqCU

ă 1. By inequalities

(3.16) and Lemma 3.7, we get

´αpJc ∇fpxcq ď α}pc}}∇fpxcq} ď αCU}∇fpxcq}2 ď αCUM
2
ăM

and

}αpc}
2
´ pαxJc pcq

2
ď α2

}pc}
2
ď α2C2

U}∇fpxcq}2.

Further we obtain

2αpJc ∇fpxcq ` 2Mp}αpc}
2
´ pαxJc pcq

2
q ´ ηαpJc ∇fpxcqp1` }αpc}

2
´ pαxJc pcq

2
q

“ p2´ ηqαpJc ∇fpxcq ` p2M ´ ηαpJc ∇fpxcqqp}αpc}
2
´ pαxJc pcq

2
q

ă p2´ ηqαpJc ∇fpxcq ` p2` ηqMα2C2
U}∇fpxcq}2

ď p2´ ηqαpJc ∇fpxcq ` p2´ ηqCLα}∇fpxcq}2

ď 0, (3.24)

in which the last inequality is deduced from (3.16). Based on Lemma 3.7, Lemma
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3.6, the equality (3.20), and the mean value theorem we have

fpxc`1pαqq ´ fpxcq ď ∇fpxcqJpxc`1pαq ´ xcq `
1

2
M}xc`1pαq ´ xc}

2

“
2αpJc ∇fpxcq ` 2Mp}αpc}

2 ´ pαxJc pcq
2q

1` }αpc}2 ´ pαxJc pcq2

ă
ηαpJc ∇fpxcqp1` }αpc}

2 ´ pαxJc pcq
2q

1` }αpc}2 ´ pαxJc pcq2

“ ηαpJc ∇fpxcq,

in which the last inequality is given by (3.24). Therefore, the inequalities 1 ě αc ě

βα̂ ” αmin hold according to the rule of the inexact search.

Next we show that each cluster point of the sequence txcu is the first-order sta-

tionary point.

Theorem 3.5. The infinite sequence of iterates txcu generated by the CEST algo-

rithm satisfies

lim
cÑ8

}∇fpxcq} “ 0.

Proof. By (3.23) and (3.16), we obtain

fpxcq ´ fpxc`1q ě ´ηαcp
J
c ∇fpxcq ě ηαcCL}∇fpxcq}2. (3.25)

Further, we have

2M ě fpx1q´λ˚ “
8
ÿ

c“1

rfpxcq´fpxc`1qs ě

8
ÿ

c“1

ηαcCL}∇fpxcq}2 ě
8
ÿ

c“1

ηαminCL}∇fpxcq}2.

from Lemma 3.7 and Lemma 3.8. Then

8
ÿ

c“1

}∇fpxcq}2 ď
2M

ηαminCL
ă `8,

and the reslut is acquired.
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3.3.2 Convergence of sequence of iterates

Lojasiewicz (1963) proposed the famous  Lojasiewicz inequality for real-analytic func-

tions. Further, Absil et al. (2005) showed that, if the objective function of an op-

timization model satisfies the  Lojasiewicz inequality, the iterates given by a signif-

icant class of approaches for this optimization problem converge to a unique limit

point without other hypothesis. The  Lojasiewicz inequality was extended from real-

analytic function to nonsmooth functions in Bolte et al. (2007) afterwards. Lately,

many scholars have used the the  Lojasiewicz inequality to study proximal algorithms

for nonconvex and nonsmooth optimization (Attouch et al., 2010; Xu and Yin, 2013).

The graph of a function fpxq is

Graph f :“ tpx, λq P Rn
ˆ R : fpxq “ λu.

Then the graph of the objective function fpxq “ T xr

Bxr is

Graphf “ tpx, λq P Rn
ˆ R : T xr ´ λBxr “ 0u.

It can be seen that the graph is a semialgebraic set. Then the merit function fpxq

enjoys the semialgebraic property, and satisfies the following  Lojasiewicz inequality

(Absil et al., 2005; Bolte et al., 2007).

Theorem 3.6 (The  Lojasiewicz inequality). Suppose fpxq is a real semialgebraic

function with a closed domain domf , and f |domf is continuous. Let x˚ P domf .

Then in some neighborhood U of x˚

|fpxq ´ fpx˚q|
θ
ď CK}∇fpxq}, (3.26)

where θ P r0, 1q and CK is a positive constant.

The next theorem shows that the sequence of txcu converges to a unique limit

point.
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Theorem 3.7. Let txcu be an infinite sequence of iterates generated by the CEST

algorithm. Then we have

lim
cÑ8

xc “ x˚,

where x˚ P Sn´1 is unique.

Proof. If fpxq in (3.2) satisfies the  Lojasiewicz inequality , the primary descent con-

dition, i.e.,

fpxcq ´ fpxc`1q ě CP }∇fpxcq}}xc ´ xc`1}, (3.27)

where CP is a positive constant and the complementary descent condition, i.e.,

rfpxc`1q “ fpxcqs ñ rxc`1 “ xcs, (3.28)

then the reslut holds from Theorem 3.2 in Absil et al. (2005). Since the  Lojasiewicz

inequality of fpxq is proved in Theorem 3.26 we only need to prove (3.27) and (3.28).

From (3.22) and (3.16), we obtain

}xc`1 ´ xc} ď 2
`

}αcpc}
2
´ pαcx

J
c pcq

2
˘

1
2 ď 2αc}pc} ď 2CUαc}∇fpxcq}.

Then we have

fpxcq ´ fpxc`1q ě ηCLαc}∇fpxcq}2 ě
ηCL
2CU

}∇fpxcq}}xc ´ xc`1}.

from (3.25). Therefore, when CP “
ηCL
2CU

the inequality (3.27) is obtained.

We prove the complementary descent condition (3.28) by contradiction. Suppose

xc`1 ‰ xc, then }∇fpxq} ‰ 0. Otherwise, the CEST algorithm terminates in a finite

number of iterations. Based on Lemma 3.8 and (3.25), we get

fpxcq ´ fpxc`1q ě ηCLαmin}∇fpxcq}2 ą 0.

Therefore fpxc`1q ‰ fpxcq.
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Hence, the iterative sequence txcu converges to a first-order stationary point x˚

from Theorem 3.5. In order to estimate convergence rate of the CEST method, we

first introduce the next result.

Lemma 3.9. For the iterative sequence txcu generated by the CEST method, we

have

}xc`1 ´ xc} ě Cm}∇fpxcq}, (3.29)

where Cm is a positive constant .

Proof. Denote xa,by

xa,by ” arccos
aJb

}a}}b}
P r0, πs.

as the angle between nonzero vectors a and b. Then, for any vector a ‰ 0,b ‰ 0,

and c ‰ 0, the following inequality

xa,by ď xa, cy ` xc,by (3.30)

holds, and x¨, ¨y is a metric in a unit sphere. Based on (3.30), we obtain

xxc,´∇fpxcqy ´ x´∇fpxcq,pcy ď xxc,pcy ď xxc,´∇fpxcqy ` x´∇fpxcq,pcy.

From (3.20) we get xxc,´∇fpxcqy “ π
2
. Hence, we have

π

2
´ x´∇fpxcq,pcy ď xxc,pcy ď

π

2
` x´∇fpxcq,pcy.

Then we deduce that

sinxxc,pcy ě sin
´π

2
´ x´∇fpxcq,pcy

¯

“ cosx´∇fpxcq,pcy “
´pJc ∇fpxcq
}pc}}∇fpxcq}

ě
CL
CU

,

in which the last inequality is given from (3.16). Since xc P Sn´1, we obtain

}xc`1 ´ xc} “ 2

ˆ

}αcpc}
2p1´ cos2xxc, αcpcyq

1` }αcpc}2p1´ cos2xxc, αcpcyq

˙
1
2

“
2αc}pc} sinxxc, αcpcy

a

1` α2
c}pc}

2 sin2xxc, αcpcy
.
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from (3.22). Based on the inequalities αmin ď αc ď 1 and }pc} ď CU}∇fpxcq} ď

CUM , we have

}xc`1 ´ xc} ě
2αminCLC

´1
U

a

1` C2
UM

2
}pc} ě

2αminCL
CUp1` CUMq

}pc}.

Then it can be deduced from (3.16) that

}pc}}∇fpxcq} ě ´pJc ∇fpxcq ě CL}∇fpxcq}2.

Therefore, }pc} ě CL}∇fpxcq} and the inequality (3.29) is acquired by setting Cm ”

2αminC
2
L

CU p1`CUMq
.

Then we have the following theorem based on Lemma 3.9. For the proof of this

theorem, please refer to Theorem 2 in Attouch and Bolte (2009) and Theorem 7 in

Chen et al. (2016c)

Theorem 3.8. Let x˚ be the stationary point of an infinite sequence of iterates txcu

produce by the CEST algorithm.

• If θ P p0, 1
2
s, we have

}xc ´ x˚} ď γ%c.

where γ ą 0 and % P p0, 1q are constants.

• If θ P p1
2
, 1q, we have

}xc ´ x˚} ď γc´
1´θ
2θ´1 .

where γ ą 0 is a constant.

If the level set of fpxq is convex and the second-order sufficient condition is

satisfied at x˚, the L-BFGS method is proved to be linearly convergent by Liu and

Nocedal (1989). In fact, without assumption of the level set being convex , when the

second-order sufficient condition holds, the exponent θ in the  Lojasiewicz inequality

(3.26) is equal to 1
2
, and the sequence txcu converges linearly from Theorem 3.8.
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3.3.3 Probability of getting the extreme eigenvalue

In order to obtain the smallest eigenvalue of a tensor related to a uniform hyper-

graph, we run the CEST algorithm from a number of random initial points, and take

the smallest objective function value as the smallest eigenvalue of the correspond-

ing tensor in practical experiments. The next theorem give the probability of this

strategy in getting the extreme eigenvalue.

Theorem 3.9. If we run the CEST algorithm N times from N initial points which

are sampled from Sn´1 uniformly and take the smallest cost function value as the

smallest eigenvalue, then the probability of getting the smallest eigenvalue is

1´ p1´ ϕqN , (3.31)

in which ϕ P p0, 1s is a constant. Hence, the smallest eigenvalue can be acquired with

a high probability when the number N is large enough,.

Proof. Let x˚ P Sn´1 be an eigenvector related to the smallest eigenvalue and U be

a neighborhood of x˚ as defined in Theorem 3.6. Then from the proof of Theorem

3.2 in Absil et al. (2005), we can find a constant ρ ą 0 such that the initial iterate

x1 belongs to the set V px˚q ” tx P Sn´1 : }x ´ x˚} ă ρu Ď U , and the iterative

sequence txcu converges to x˚. Given an initial point x1 which is sampled from Sn´1

uniformly, next we consider the probability of the event that x1 P V px˚q.

Suppose A and S are hypervolumes of pn´1q-dimensional solids V px˚q and Sn´1

respectively.1 Therefore, the “ area” of the surface of V px˚q Ď Sn´1 and Sn´1 in Rn

are A and S respectively, and 0 ă A ď S. For this geometric probability model, the

probability of x1 belonging to V px˚q is

ϕ ”
A

S
ą 0.

1 The hypervolume of the pn´ 1q-dimensional unit sphere is S “ 2πn{2

Γpn{2q , where Γp¨q is the Gamma

function.
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In fact, the smallest eigenvalue can be obtained once txcu X V px˚q ‰ H.

If we run the the CEST algorithm N times, the complementary event of the joint

event is that the CEST starts from N random initial points and does not touch the

the eigenvector x˚. The probability of this complementary event is p1 ´ ϕq. If the

complementary event does not occur, we obtain the eigenvector x˚ associated with

the smallest eigenvalue. Therefore, the probability of getting the smallest eigenvalue

is 1´ p1´ ϕqN .

In terms of the largest eigenvalue of a tensor T , what we need do is changing the

objective function fpxq in (3.2) into

pfpxq “ ´
T xk

Bxk
.

The results of computing largest eigenvalue by the CEST method can be deduced in

a similar way as the corresponding ones in the smallest eigenvalue occasion.

3.4 Fast computational methods for product of

vector and hypergraph related tensors

For computational problems related to adjacency, Laplacian and signless Laplacian

tensor, a popular operation is tensor and vector product, which is always time con-

suming. On the other hand, such kind of tensors are usually sparse. For example,

the adjacency tensor, Laplacian tensor, signless Laplacian tensor of the 4-uniform

hypergraph in Figure 2.1 are usually have only 0.72%, 0.76%, and 0.76% nonzero

elements respectively. Therefore, it is rational that we take advantage of the spar-

sity to propose a fast computational method for product of vector and hypergraph

related tensors (Chang et al., 2016).
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3.4.1 The way to store a uniform hypergraph economically

By saving the indices of vertices in each edge in a row of a matrix, we get an incidence

matrix Gr P Rmˆr to store the information of an r-graph G “ pV,Eq, which has m

edges. The order of an element in its corresponding row, as well as the location of a

row in the matrix is insignificant because we could permute the order of elements in

each row, or the location of a row in the matrix without changing the information of

the hypergraph. Take the 4-graph in Figure 2.1 as an example. Its incidence matrix

is:

Gi “

»

–

1
1
1

1
0
0

1
0
0

1
0
0

0
1
0

0
1
0

0
1
0

0
0
1

0
0
1

0
0
1

fi

fl

Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò

1 2 3 4 5 6 7 8 9 10 Ð (the indices of vertices).

In order to save storage space, we replace the sparse incidence matrix by a compact

one as follows

Gr “

»

–

1 2 3 4
1 5 6 7
1 8 9 10

fi

fl P R3ˆ4.

It can be seen that, the quantity of columns in Gr is greatly reduced when comparing

with Gi, due to the fact that the condition k ! n holds in most cases. We call the

matrix Gr memory matrix of G.

3.4.2 Computing products of a tensor and a vector

Given an r-graph hypergraph G, we first obtain the incidence matrix Gi and the

memory matrix Gr by the above mentioned approach. In practice, we only need to

compute the product of D and a vector, and the product of A and a vector, because

the Laplacian (Signless Laplacian) tensor equals D minus (plus) A.
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Figure 3.1: Matlab codes producing D and d.

Let us first study the product of the degree tensor D and a vector. Tensor D is

diagonal with its ith diagonal entry being the degree of a vertex i, i.e., dpiq, for i P V .

We obtain the degree dpiq by summarizing the ith column of Gi. The MATLAB codes

in Figure 3.1 create a sparse matrix Gi, as well as the degree vector d ” rdpiqs P Rn.

Since the degree vector d is fixed for a given hypergraph, we save it from the start.

Denote “˚” as the component-wise Hadamard product. For a given vector x P Rn,

the computations of

Dxr´1
“ d ˚ pxrr´1s

q and Dxr “ dJpxrrsq

are straightforward.

Next, we deal with the product of adjacency tensor A and vector x. We combine

the hypergraph and the vector information by constructing a matrix Xmat “ rxpGrq`j s

which has the same size as Gr. If the pGrq`j equals i, then we set pXmatq`j as xi. The

product Axk is then rewritten as

Axr “ r
m
ÿ

`“1

r
ź

j“1

pXmatq`j. (3.32)

In order to compute the vector Axr´1, we represent the ith element of Axr´1 by

pAxr´1
qi “

r
ÿ

j“1

m
ÿ

`“1

¨

˚

˝

δpi, pGrq`jq

r
ź

s“1
s‰j

pXmatq`s

˛

‹

‚

,

where i “ 1, . . . , n. Using MATLAB codes in Figure 3.2, we construct a sparse

matrix Mj “ rδpi, pGrq`jqs P Rnˆm and a column vector yj “ r
ś

s‰jpXmatq`ss P Rm
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Figure 3.2: Matlab codes producing Mj and yj.

respectively for each j “ 1, . . . , r. Then, we can compute the vector

Axr´1
“

r
ÿ

j“1

Mjyj

via a simple loop.

It costs about mr2, mr2`nr, and mr2`nr multiplications to compute products of

tensors A , L, and Q with any vector x respectively. Since mr2 ă mr2`nr ď 2mr2,

it is cheap to employ our approach to compute products of A , L, or Q and a vector,

which are large scale sparse tensors arising from hypergraphs. Besides, the methods

given above can be employed by parallel computing easily.

3.5 Numerical results

The experiments are compiled by using Matlab, while parameters involved are set

as follows:

L “ 5, η “ 0.01, and β “ 0.5.

The termination criterion for the CEST algorithm is

}∇fpxcq}8 ă 10´6 (3.33)

or

}xc`1 ´ xc}8 ă 10´8 and
|fpxc`1q ´ fpxcq|

1` |fpxcq|
ă 10´16. (3.34)

When the number of iterations exceeds 5000, it is also stopped.

In this section, we compare the following four methods.
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Figure 3.3: Settings of fminunc.

• Two adaptive shifted power methods (Kolda and Mayo, 2011, 2014) (Power

M.), which can be obtained from Tensor Toolbox version 2.6 as eig sshopm

and eig geap for Z- and H-eigenvalues of symmetric tensors respectively.

• An unconstrained optimization method (Han’s UOA) (Han, 2013). The opti-

mization model is solved by fminunc in Matlab whose settings are shown in

Figure 3.3. Because this approach does not limit the iterative points on Sn´1,

its tolerance parameters are not the same as other methods.

• CESTde: An immature version of our CEST approach without using the fast

computational technique proposed in Section 3.4.

• CEST: The approach introduced in this chapter.

In terms of problems involved in our numerical experiments, we run the related

algorithms one hundred times from one hundred random initial points sampled from

a unit sphere Sn´1. By creating an n-dimensional vector with a standard Gaussian

distribution and normalizing this vector, we obtain an initial point on the unit sphere.

The one hundred initial points are generated in this way independently, which are

also uniformly distributed on the unit sphere. Hence, we get one hundred estimated

eigenvalues λ1, . . . , λ100. Suppose λ˚ is the exact extreme eigenvalue of the related

tensor, the accuracy rate of the method is counted by

Accu. ”

ˇ

ˇ

ˇ

ˇ

"

i :
|λi ´ λ

˚|

1` |λ˚|
ď 10´8

*
ˇ

ˇ

ˇ

ˇ

ˆ 1%. (3.35)

By employing the global tactics in Section 3.3.3, the largest (smallest) result among

the one hundred results is taken as the largest (smallest) eigenvalue computed by
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Figure 3.4: A 4-uniform squid: G4
S.

the corresponding method. The CPU time presented in the following experiments

are the summation of the one hundred runs in each case.

3.5.1 Eigenvalues of small-scale hypergraphs

In this subsection, we emphasis on computation of extreme eigenvalues of symmetric

tensors arising from small sacle uniform hypergraphs.

Squid. For an r-uniform hypergraph Gr
S “ pV,Eq, if it has pr2 ´ r ` 1q ver-

tices with edge set composed by legs ti1,1, . . . , i1,ru, . . . , tir´1,1, . . . , ir´1,ru and a head

ti1,1, . . . ,

ir´1,1, iru, we call it a squid. For example, the hypergraph illustrated in Figure 3.4 is

a 4-uniform squid G4
S. An even order squid Gr

S is connected and odd-bipartite. Then

the largest and smallest H-eigenvalue of the adjacency tensor of Gr
S satisfy

λHminpApGr
Sqq “ ´λ

H
maxpApGr

Sqq

from of Theorem 2.1(5). Due to the nonnegative and weakly irreducible property

of the adjacency tensor ApGr
Sq, we can obtain the largest H-eigenvalue λHmaxpApGr

Sqq

via the Ng-Qi-Zhou algorithm. In terms of the smallest H-eigenvalue of ApGr
Sq,

the following tests are implemented. The parameter L is suggested by Nocedal to lie

between 3 and 7 for the L-BFGS algorithm to get a good performance. Therefore, we
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Figure 3.5: CPU time for computing smallest H-eigenvalue of ApGk
Sq by L-BFGS.

Table 3.1: Results for computing λHminpApG4
Sqq.

Algorithms λHminpApG4
Sqq Time(s) Accu.

Power M. ´1.3320 97.20 100%
Han’s UOA ´1.3320 21.20 100%
CESTde ´1.3320 35.72 100%
CEST ´1.3320 2.43 100%

compare L-BFGS for L being 0, 3, 5, 7. In fact, when L “ 0 it becomes the Barzilai-

Borwein method. For the parameter γc, we use γBB1
c , γBB2

c , and γDaic randomly.

We calculate the smallest H-eigenvalues of the adjacency tensors of r-uniform squids

with r being 4, 6, 8. In Figure 3.5, we show the CPU time for one hundred runs. It

can be seen that the L-BFGS method is approximately five times faster than the

Barzilai-Borwein method. In our CEST method, the parameter L is set to be 5

according to Nocedal’s setting2.

Next, we compute the smallest H-eignvalues of adjacency tensors of the G4
S. See

Figure 3.4. We obtain λHmaxpApGr
Sqq “ 1.3320 by the Ng-Qi-Zhou algorithm as a

reference. The results of four algorithms: Power M., Han’s UOA, CESTde, and

2 See http://users.iems.northwestern.edu/ nocedal/lbfgs.html.
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CEST are presented in Table 3.1. It can be seen that, all algorithms get the smallest

H-eigenvalue of ApG4
Sq with probability 1. The CESTde method cost 22% and 37%

CPU time of Power M.’s and Han’s UOA’s CPU time respectively. Further, when

the fast computational skill is explored, the CEST algorithm is forty times faster

than the power method. Due to limitation of laptop’s memory, a dense adjacency

tensor for 6- and 8-uniform squid are unable to be stored. Therefore, we only report

computational results of the the CEST method in Table 3.2.

Table 3.2: Performance of CEST computing the smallest H-eigenvalue of an adja-
cency tensor ApGr

Sq.

r n λHmaxpApGr
Sqq λHminpApGr

Sqq Iter. time(s) True Est.
2 3 1.4142135624 ´1.4142135624 844 0.66 100%
4 13 1.3320029867 ´1.3320029867 5291 2.43 100%
6 31 1.2640653288 ´1.2640653288 26443 15.10 78%
8 57 1.2202288301 ´1.2202288301 45993 37.19 9%

Blowing up the Petersen graph. An ordinary graph GP called the Petersen

graph is demonstrated in Figure 3.6. The Petersen graph is non-bipartite. The s-

mallest eigenvalue of its signless Laplacian matrix being one. By blowing up each

vertex of GP into an r-set, we get a 2r-uniform hypergraph G2r,r
P , which contains

10r vertices and 15 edges. From Theorem 2.2, the smallest H-eigenvalue of the sign-

less Laplacian tensor QpG2r,r
P q is the same as the smallest eigenvalue of the signless

Laplacian matrix QpGP q, i.e., λHminpQpG
2r,r
P qq “ λHminpQpGP qq “ 1.

The performances of four algorithms for computing the smallest H-eigenvalue of

QpG4,2
P q are reported in Table 3.3, where the method Han’s UOA misses the smallest

H-eigenvalue of QpG4,2
P q

3 and the other three methods touch the exact solution with

a high probability. The CESTde method uses as much as 88% CPU time less than

Power M. method. When the sparse structure of QpG4,2
P q is explored, the CEST

algorithm costs no more than 1% CPU time of CESTde. In Table 3.4, we show

3 (*) means a failure.
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Figure 3.6: The Petersen graph GP .

Table 3.3: Results for computing λHminpQpG
4,2
P qq.

Algorithms λHminpQpG
4,2
P qq Time(s) Accu.

Power M. 1.0000 657.44 95%
Han’s UOA 1.1877p˚q 93.09
CESTde 1.0000 70.43 100%
CEST 1.0000 3.82 100%

Table 3.4: Accuracy rate of calculating λHminpQpG
2k,k
P qq by CEST.

2r 2 4 6 8 10 12 14 16 18 20
Accu. (%) 100 100 100 100 99 98 86 57 20 4

the accuracy rates of the CEST method for finding the smallest H-eigenvalues of

the signless Laplacian tensors of 2r-uniform hypergraphs G2r,r
P with r “ 1, . . . , 10

respectively. The accuracy rate reduces along with the increase of the order r of the

hypergraph.

Grid. Given a square, we regard it as a 4-graph with 4 vertices and 1 edge. By

subdividing a square s times for s ě 0, we get a grid, which is denoted as a 4-graph

Gs
G with p2s ` 1q2 vertices and 4s edges. When the subdividing order s is zero, the
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(a) s “ 1 (b) s “ 2 (c) s “ 3 (d) s “ 4

Figure 3.7: Some 4-uniform grid hypergraphs.

Table 3.5: Results of computing λHmaxpLpG2
Gqq.

Algorithms λHmaxpLpG2
Gqq Time(s) Accu.

Power M. 6.5754 142.51 100%
Han’s UOA 6.5754 35.07 100%
CESTde 6.5754 43.35 100%
CEST 6.5754 2.43 100%

grid G0
G is in fact a square. We can also obtain Gs

G by subdividing each edge of Gs´1
G

into four edges. For the s “ 1, 2, 3, 4 order subdivision, please refer to the pictures

presented in Figure 3.7. Since the hypergraph G2
G is connected and odd-bipartite,

from Theorem 2.1(2) we have λHmaxpLpG2
Gqq “ λHmaxpQpG2

Gqq. As a reference we give

the solution λHmaxpQpG2
Gqq “ 6.5754 obtained from the Ng-Qi-Zhou method. The

results of computing λHmaxpLpG2
Gqq by four methods: Power M., Han’s UOA, CESTde,

and CEST, are presented in Table 3.5. Each algorithm acquires λHmaxpLpG2
Gqq with

probability 100%. The Han’s UOA and CESTde methods consume about 25% and

30% the CPU time of the Power M. method respectively, while the CEST method

saves about 95% the CPU time of the Power Method. Furthermore, we employ the

CEST method to compute λHmax of the grids in Figure 3.7. The results are shown in

Table 3.6.
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Table 3.6: Results of computing λHmaxpLpGs
Gqq.

s n m λHmaxpLpGs
Gqq Iter. Time(s) Accu.

1 9 4 4.6344 2444 1.39 100%
2 25 16 6.5754 4738 2.43 100%
3 81 64 7.5293 12624 6.44 98%
4 289 256 7.8648 34558 26.08 65%

3.5.2 Eigenvalues of large-scale hypergraphs

In this subsection, we list examples of the CEST method computing eigenvalues

arising from large scale even-uniform hypergraphs. With respect to the large scale

of the problems, it is rational that we slightly enlarge the the tolerance parameters

and multiply the constants in (3.33) and (3.34) by
?
n .

Sunflower. We employ the CEST method to compute λHmax of Laplacian tensors

of even-uniform sunflowers. The relative error between our numerical result and the

exact solution is computed by

RE “
|λHmaxpLpGSqq ´ λ

˚
H |

λ˚H
,

in which λ˚H is given in Theorem 2.3. We present the detailed numerical results in

Table 3.7. It can be seen that the CEST method find the largest H-eigenvalues of

Laplacian tensors with high accuracy, and all relative errors are of magnitude less

than Op10´10q. The total CPU time of one hundred runs in each test is at most 78

minutes.

Icosahedron. An icosahedron has twelve vertices and twenty faces. As shown

in Figure 3.8, we can approximate a unit sphere by subdividing an icosahedron as

many times as possible. If we consider the three vertices of the triangle together with

its center as an edge of a hypergraph, the s-order subdivision of an icosahedron is a

4-graph, named Gs
I , containing 20ˆ 4s edges.
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Table 3.7: Results of computing λHmaxpLpGSqq by CEST.

k n λHmaxpLpGSqq RE Iter. Time(s) Accu.
4 31 10.0137 5.3218ˆ 10´16 4284 2.39 100%

301 100.0001 7.3186ˆ 10´14 4413 3.73 42%
3,001 1,000.0000 1.2917ˆ 10´10 1291 4.84 100%

30,001 10,000.0000 5.9652ˆ 10´12 1280 38.14 100%
300,001 100,000.0000 9.6043ˆ 10´15 1254 512.04 100%

3,000,001 1,000,000.0000 0 1054 4612.28 100%
6 51 10.0002 2.4831ˆ 10´12 4768 3.34 8%

501 100.0000 2.4076ˆ 10´10 1109 1.47 98%
5,001 1,000.0000 3.2185ˆ 10´13 1020 5.85 100%

50,001 10,000.0000 5.7667ˆ 10´12 927 44.62 100%
500,001 100,000.0000 1.1583ˆ 10´13 778 479.52 100%

5,000,001 1,000,000.0000 2.3283ˆ 10´16 709 4679.30 100%

Icosahedron (s “ 0) s “ 1 s “ 2

s “ 3 s “ 4

Figure 3.8: 4-uniform hypergraphs: subdivision of an icosahedron.
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Table 3.8: Computing λZmaxpLpGs
Iqq and λZmaxpQpGs

Iqq by CEST.

LpGs
Iq QpGs

Iq

s n m λZmax Iter. time(s) λZmax Iter. time(s)
0 32 20 5 1102 0.89 5 1092 0.75
1 122 80 6 1090 1.09 6 1050 0.75
2 482 320 6 1130 1.39 6 1170 1.23
3 1,922 1,280 6 1226 3.15 6 1194 2.95
4 7,682 5,120 6 1270 10.11 6 1244 10.06
5 30,722 20,480 6 1249 36.89 6 1282 35.93
6 122,882 81,920 6 1273 166.05 6 1289 161.02
7 491,522 327,680 6 1300 744.08 6 1327 739.01
8 1,966,082 1,310,720 6 574 1251.36 6 558 1225.87

The performance of the CEST method for computing the largest Z-eigenvalues

of both Laplacian tensors and signless Laplacian tensors of the hypergraph Gs
I is

shown in Table 3.8. It can be seen that the CEST method costs at most twenty-

one minutes for the one hundred runs in each test, even if dimensions reaches to

almost two millions. Since the 4-graph Gs
I is connected and odd bipartite, we have

λZmaxpLpGs
Iqq “ λZmaxpQpGs

Iqq from the conclusion in Theorem 2.1(3), which is consis-

tent with our numerical results. Besides, Bu et al. (2016) proved that

λZmaxpLpGs
Iqq “ λZmaxpQpGs

Iqq “ ∆ (3.36)

for r-uniform sunflowers when 3 ď r ď 2∆. The results in our numerical experiments

imply that the equation in (3.36) also holds for 4-graphs Gs
I . Moreover, whether the

equality (3.36) is suitable for any connected odd-bipartite uniform hypergraph is still

open.

3.6 Conclusion

In this section, we introduce an effective first-order optimization algorithm CEST

to calculate the largest or smallest H- and Z-eigenvalues of sparse tensors corre-
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sponding to large scale uniform hypergraphs. Based on the algebraic nature of these

tensors, the  Lojasiewicz inequality is employed to prove the convergent property of

the sequence of iterative points produced by the CEST method. Furthermore, we

show that our method is able to obtain the the extreme eigenvalue of a symmetric

tensor with a high probability, and compute the eigenvalues of tensors involved in

hypergraphs with millions of vertices

By exploring the sparsity of tensors arising from a uniform hypergraph, a useful

fast computational framework for products of a vector and these tensors is con-

structed. With the aid of this technique, we can store a large scale hypergraph

economically, and improve the efficiency of a related algorithm greatly.
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Computing p-spectral radius of a

uniform hypergraph with

applications

In this section we introduce a first-order conjugate gradient based method (CSRH) to

calculate the p-spectral radii of uniform hypergraphs. We also analyse the convergent

property of the CSRH algorithm, and give the probability of the CSRH method

getting the global optimization solution. Finally, we apply the p-spectral radius

model, as well as the CSRH method in network analysis.

4.1 Introduction

Keevash et al. (2014) proposed the concept of p-spectral radius, which has impor-

tant application in the extremal hypergraph theory. In 1941, Turán (1941) gave

the famous Turán graph and Turán theorem, and it was regarded as the start of the

extremal graph theory. In the extremal graph theory, people study the extremal prob-

lems about graph parameters such as order, size and girth. These problems attract a

lot of attention and are widely studied in combinatorics. The Turán-type problems

were generalized from graph to hypergraph that is to find the largest number of
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edges in a hypergraph which is F -free1(Turán, 1961). In spite of the adequate study

of Turán-type problems in graph field, it becomes much more difficult to deal with

the Turán-type problems related to hypergraphs. A spectral Turán-type inequali-

ty was introduced, and extended the Turán theorem in Nikiforov (2007). Keevash

et al. (2014) proposed the p-spectral format of Nikiforov’s inequality, which is useful

in resolving ‘degenerate’ Turán-type problems. Moreover, Nikiforov (2013) showed

that the edge extremal problems asymptotically equals the extremal p-spectral radius

problems.

The p-spectral radius of a hypergraph contains other concepts, for example, La-

grangian, and the spectral radius of a hypergraph (Lu and Man, 2016b). Moreover,

the number of edges in the extremal problems is relevant to the p-spectral radii of hy-

pergraphs. If the parameter p equals one, the p-spectral radii of hypergraphs are, in

fact, the Lagrangians of the corresponding hypergraphs. Motzkin and Straus (1965)

introduced the Lagrangians of graph and hypergraph, which can be employed to give

proof of Turán’s theorem for a graph. The Lagrangian of a hypergraph was applied

to disproving a conjecture in Erdös and Stone (1946); Frankl and Rödl (1984), and

also to determine the non-jumping numbers for hypergraphs (Frankl et al., 2007;

Peng, 2008; Peng and Zhao, 2008). Also, the Lagrangian of a hypergraph is help-

ful in determining Turán densities of hypergraphs (Brown and Simonovits, 1984;

Keevash, 2011; Mubayi, 2006; Sidorenko, 1987), which is an asymptotic solution of

the (non-degenerate) Turán problem. If the parameter p is two, the p-spectral radius

of a uniform hypergraph is related to the largest Z-eigenvalue (Qi, 2005a) of the

adjacency tensor. If the parameter p is even and equals the order of a hypergraph,

the p-spectral radius is connected with the largest H-eigenvalue of the adjacency

tensor. Hence, the p-spectral radii of hypergraphs are linked with the spectral radii

1 A uniform hypergraph that does not have a subgraph isomorphic to the uniform hypergraph F
is said to be F -free.
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of hypergrahs (Hu and Qi, 2015; Li et al., 2016; Lu and Man, 2016b). More theo-

retical results about p-spectral radii of hypergraphs are given in Kang et al. (2015);

Nikiforov (2014).

In addition to the application in the extremal hypergraph theory, p-spectral radii

could also evaluate the significance of items in networks. Quantifying the impor-

tance and rifeness of items is a hot topic in data mining, which is applied to rank

web pages (Page, 1999; Kolda et al., 2005; Ding et al., 2003), estimate customer be-

haviours (Krohn-Grimberghe et al., 2012), and retrieve images (Huang et al., 2010),

etc. We call elements of the vector related to the p-spectral radius of a hypergraph

the p-optimal weighting, which reflect the importance of vertices. The sorted re-

sults of objects change over the parameter p. In the numerical experiment part of

this chapter, we will give explanation on different ranking results. Moreover, we

demonstrate consequences of ranking large amount of real-life data via the method

proposed in this chapter.

Considering the computation of the p-spectral radius of a hypergraph, the meth-

ods for computing tensor eigenvalues, such as the shifted symmetric higher-order

power method (Power M.) (Kolda and Mayo, 2011), the generalized eigenproblem

adaptive power (GEAP) method (Kolda and Mayo, 2014), the Ng-Qi-Zhou method

(Ng et al., 2009), and the CEST method can be utilized when p “ 2 or p is the

order of an even uniform hypergraph, in which case the p-spectral radius is the Z-

or H-eigenvalue of the adjacency tensor. With respect to positive p, when p is an

odd number or a fraction, the problem of computing p-spectral radii of a uniform

hypergraph is still open to the best of our knowledge.

We translate the the original p-spectral radius problem into a spherically con-

strained optimization model. By employing a conjugate gradient method, we get an

ascent direction based on the current iteration. In order to keep the unit length of

each iterative point, the Cayley transform is applied to projecting the ascent direc-
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tion onto the unit sphere. In addition, we illustrate that a positive constant can be

found to satisfy Wolfe conditions in the line search. By using these strategies, an

algorithm for Computing p-Spectral Radii of Hypergraphs (CSRH) with p ą 1 is

obtained. Under situation of p “ 1, the CSRH method can estimate the Lagrangian-

s (1-spectral radii) of hypergraphs. Moreover, the CSRH algorithm is proved to

be convergent, and can find the global optimization solution with high probability.

For calculating Z-eigenvalues and H-eigenvalues of adjacency tensors, the numerical

tests indicate that the CSRH method is predominant when compared to existing

approaches. Even if the dimensions of the hypergraph reaches to two millions, the

CSRH method performs well in experiments. Besides, we discover the relations be-

tween the importance of hypergraph vertices and the sequence of entries of p-optimal

weighting. By constructing a hypergraph model and sorting the vertices of the hy-

pergraph, the CSRH method is further employed in network analysis. Given a small

scale weighted hypergraph, the CSRH method calculates orders of the vertices from

different point of view. According to the publication information of 10305 authors in

real world, we construct the corresponding hypergraph model, and rank the authors

from individual and corporate angle respectively. We give reasonable explanations

for the ranking results, which are also consistent with the results in Ng et al. (2011).

If the elements in a set is repetitive, then this set is called a multiset. If a

hypergraph contains at least one edge which is a multiset, this hypergraph is called

a multi-hypergraph (Pearson and Zhang, 2014). The p-spectral radii problem can

be generalized from hypergraph to muli-hypergraph. As a matter of convenience, we

solve the p-spectral radii problems based on hypergraphs with no edge being multiset.

However, all computational skills, as well as theoretical results, in the following part

of this chapter is appropriate for p-spectral radii of multi-hypergraphs.
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4.2 The CSRH method

For the p-spectral radius problem in (2.4), we reformulate it to a maximization

problem with orthogonal constraint, and introduce an iterative algorithm to solve it.

4.2.1 A model with spherical constraint

By using the adjacency tensor of G, λppqpGq in (2.4) can be expressed as

λppqpGq “ max
}x}p“1

pr ´ 1q!Axr, (4.1)

which equals the unconstrained format

λppqpGq “ max
x‰0

pr ´ 1q!
Axr

}x}rp
. (4.2)

Then the p-spectral radius of G in (2.4) is finally reformulated as

λppqpGq “

$

’

’

&

’

’

%

max fpxq “ pr ´ 1q!
Axr

}x}rp

s.t. }x}2 “ 1.

(4.3)

If the parameter p is greater than one and the vector x is nonzero, the merit function

fpxq is differentiable with its gradient being

∇fpxq “ r!

}x}rp

`

Axr´1
´Axr}x}´pp xxp´1y

˘

, (4.4)

in which the vector xxp´1y is defined as

pxxp´1y
qi “ |xi|

p´1sgnpxiq, for i “ 1, . . . , n.

Further, due to the zero-order homogeneous property of fpxq, we obtain

xJ∇fpxq “ 0, @ 0 ‰ x P Rn. (4.5)
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If we consider λppqpGq as a function of p, the next proposition shows that λppqpGq is

continuous in the variable p. Therefore, it enables us to estimate the p-spectral radius

of a hypergraph, especially the Lagrangian (1-spectral radius) of a hypergraph, when

we can not calculate it directly.

Proposition 4.1. Assume tpϑu is an infinite sequence satisfying

lim
ϑÑ8

pϑ “ p˚, (4.6)

where pϑ ą 1. Then we get

lim
ϑÑ8

λppϑqpGq “ λpp˚qpGq. (4.7)

Proof. Let f̂px, pq be a function of both x P Sn´1 and p ą 1 as follows

f̂px, pq “ pr ´ 1q!
Axr

}x}rp
px, pq P Sn´1

ˆ p1,`8q.

Then f̂px, pq is continuous in x and p. For any pϑ P tpϑu, there exists at least an x˚ϑ

such that

λppϑqpGq “ f̂px˚ϑ, pϑq. (4.8)

Since tpϑu is infinite and tx˚ϑu is bounded, we have

lim
ϑÑ8

x˚ϑ “ x˚0 (4.9)

without loss of generality. From (4.3), we have

f̂px̃, pϑq ď f̂px˚ϑ, pϑq, @ x̃ P Sn´1. (4.10)

Further we obtain

lim
ϑÑ8

f̂px̃, pϑq ď lim
ϑÑ8

f̂px˚ϑ, pϑq @ x̃ P Sn´1.
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Figure 4.1: Process of searching a new point on the unit sphere.

Since f̂px, pq is continuous, we get

f̂px̃, p˚q ď f̂px˚0 , p˚q @ x̃ P Sn´1, (4.11)

which means

f̂px˚0 , p˚q “ max
xPSn´1

f̂px, p˚q “ λpp˚qpGq. (4.12)

On the other hand, from (4.8) we obtain

lim
ϑÑ8

λppϑqpGq “ lim
ϑÑ8

f̂px˚ϑ, pϑq “ f̂px˚0 , p˚q. (4.13)

Based on (4.12) and (4.13), the equation (4.7) is available.

4.2.2 An algorithm for solving the model

In this subsection, we aim to design an iterative algorithm for the maximization

problem (4.3). Let xc be the current iterate. Then we want to seek a new feasible

iterate xc`1 such that

1. xc`1 is a unit vector;

2. dc “ xc`1 ´ xc is an ascent direction, i.e.,

dJc ∇fpxcq ą 0. (4.14)
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Consider the iteration on the unit sphere in Figure 4.1.

First, based on a given unit vector xc, the vector xc`1 is still on the unit sphere

if and only if the vector xc`1 ` xc is perpendicular to the vector dc “ xc`1 ´ xc, i.e.

pxc`1 ` xcq
Jdc “ 0. (4.15)

Given a skew-symmetric matrix Wc “ ´W
J
c , we have

pxc ` xc`1q
JWcpxc`1 ` xcq “ ´pxc`1 ` xcq

JWcpxc`1 ` xcq “ 0,

which implies that when

dc “ Wcpxc ` xc`1q, (4.16)

equation (4.15) and the first condition of xc`1 are satisfied. Next, to meet the

second requirement, with the aid of optimization techniques we first construct an

ascent direction pc such that

pJc ∇fpxcq ą 0. (4.17)

Since from (4.5) we have xJc ∇fpxcq “ 0, then we set the direction dc as a linear

combination of xc and pc :

dc “ axc ` bpc, (4.18)

and get

dJc ∇fpxcq “ axJc ∇fpxcq ` bpJc ∇fpxcq “ bpJc ∇fpxcq. (4.19)

Once the constant b in (4.18) is positive, dc remains an ascent direction from (4.17)

and (4.19).

In brief, if dc satisfies (4.16) and (4.18) with b ą 0 the two criterions for the

new iterative point are achieved. Then by (4.16) and (4.18), we generate the skew-

symmetric matrix as

Wc “
1

2
αppcx

J
c ´ xcp

J
c q P Rnˆn, (4.20)
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in which α is a positive number. The equality (4.16) and (4.20) indicates that in

(4.18)

b “
1

2
αxJc pxc ` xc`1q “

1

2
αp1` xTc xc`1q ě 0.

Here we claims that the constant b is positive. Because if b “ 0, we have xc`1 “ ´xc.

By substituting xc`1 for ´xc in (4.16) and from the equation

dc “ xc`1 ´ xc,

we obtain dc “ 0 and dc “ ´2xc which contradicts the fact xJc xc “ 1. Therefore,

when the skew symmetric matrix follows the form in (4.20) and pc is an ascent

direction, the equations (4.16) and (4.18) hold with b ą 0, which means xc`1 is a

feasible point and dc is an ascent direction.

Lemma 4.1. By (4.16) and (4.20), the new iterate xc`1 is reformulated as

xc`1pαq “
rp2´ αxJc pcq

2 ´ }αpc}
2sxc ` 4αpc

4` }αpc}2 ´ pαxJc pcq2
, (4.21)

Moreover, we get

}xc`1pαq ´ xc} “ 2

ˆ

}αpc}
2 ´ pαxJk pcq

2

4` }αpc}2 ´ pαxJc pcq2

˙

1
2

. (4.22)

Proof. From (4.16), we obtain

xc`1 “ pI ´Wcq
´1
pI `Wcqxc.

Then the orthogonal transformation is in fact based on a Cayley transform to the

skew-symmetric matric W . We omit the proof since it is similar to Lemma 3.6.

To find the new feasible point xc`1 in (4.21), an important step to be dealt with is

generating a direction pc, which is expected to be an ascent direction, i.e., satisfying
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(4.17). A hypergraph or a tensor probably is large scale and it is usually time-

consuming if we compute a problem involving a hypergraph or a tensor in practice.

On the other hand, the nonlinear conjugate gradient approach is devised for solving

large problems. Therefore, we adopt the nonlinear conjugate gradient approach to

get an appropriate pc. Suppose the current iterate is xc, a new direction pc based

on xc and the vector dc´1 “ xc ´ xc´1 under a conjugate gradient framework is

computed by

pc “ ∇fpxcq ` βc´1dc´1. (4.23)

An effective nonlinear conjugate gradient method called CG DESCENT was pro-

posed and proved to have a good descent property in Hager and Zhang (2005, 2006).

With the aid of the formula of parameter βc in CG DESCENT, we update the pa-

rameter βc´1 by βc´1 “ maxp0, β̃c´1q, where

β̃c´1 “

$

’

’

&

’

’

%

ˆ

τdc´1

}yc´1}
2

dJc´1yc´1

´ yc´1

˙J ∇fpxcq
dJc´1yc´1

if |dJc´1yc´1| ě ε}dc´1}}yc´1}

0 otherwise,

(4.24)

yc´1 “ ∇fpxcq ´∇fpxc´1q, τ ą 1{4 and ε ą 0. We choose the gradient direction as

the initial direction, i.e., p0 “ ∇fpx0q. The following lemma shows that the direction

pc generated via (4.23) and (4.24) satisfies the sufficient ascent condition.

Lemma 4.2. If pc is a search direction given by (4.23) and (4.24), then we have

pJc ∇fpxcq ě
ˆ

1´
1

4τ

˙

}∇fpxcq}2. (4.25)

Further, there exists a number M0 ą 1 such that

}pc} ďM0}∇fpxcq}. (4.26)
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Proof. For the trivial case of βc´1 “ 0, the two inequalities hold immediately. Next

we consider the condition of βc´1 ‰ 0. From (4.23) and (4.24) we obtain

pJc ∇fpxcq “ }∇fpxcq}2 ` τ
dJc´1∇fpxcq

dJc´1yc´1

}yc´1}
2

dJc´1yc´1

dJc´1∇fpxcq ´
yJc´1∇fpxcq
dJc´1yc´1

dJc´1∇fpxcq

“
1

4τ
}∇fpxcq}2 ´

dJc´1∇fpxcq
dJc´1yc´1

yJc´1∇fpxcq ` τ
pdJc´1∇fpxcqq2

pdJc´1yc´1q
2
}yc´1}

2

`

ˆ

1´
1

4τ

˙

}∇fpxcq}2

ě

ˆ

1´
1

4τ

˙

}∇fpxcq}2.

It is derived from

}dc´1 ¨ y
J
c´1} “ }dc´1} ¨ }yc´1} and }dc´1 ¨ d

J
c´1} “ }dc´1}

2,

that

}βc´1dc´1} ď

›

›

›

›

τ}yc´1}
2 ¨ dc´1 ¨ d

J
c´1 ´ dJc´1yc´1 ¨ dc´1 ¨ y

J
c´1

pdJc´1yc´1q
2

›

›

›

›

¨ }∇fpxcq}

ď

„

}dc´1}}yc´1}

|dJc´1yc´1|
`
τ}yc´1}

2}dc´1}
2

pdJc´1yc´1q
2



¨ }∇fpxcq}

ď

„

1

ε
`
τ

ε2



}∇fpxcq}.

Then we get

}pc} ď }∇fpxcq} ` }βc´1dc´1} ď

„

1`
1

ε
`
τ

ε2



}∇fpxcq}.

By taking M0 “ 1` 1
ε
` τ

ε2
, the inequality (4.26) is obtained.

4.2.3 An inexact curvilinear search

In this subsection, it is illustrated that we can find a proper αc for the inexact

curvilinear search such that the analogous Wolfe conditions hold.
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Lemma 4.3. Suppose f 1pαq is the derivative of fpxc`1pαqq at point α. Then we get

αf 1pαq “ ´∇fpxc`1pαqq
Jxc. (4.27)

Proof. From (4.21) we have

r4` α2
}pc}

2
´ α2

pxJc pcq
2
sxc`1pαq “ rp2´ αxJc pcq

2
´ α2

}pc}
2
sxc ` 4αpc.

By taking derivative with respect to α, we obtain

2αp}pc}
2
´ pxJc pcq

2
qxc`1pαq ` r4` α

2
}pc}

2
´ α2

pxJc pcq
2
sx1c`1pαq

“r´4xJc pc ` 2αpxJc pcq
2
´ 2α}pc}

2
sxc ` 4pc.

(4.28)

It is derived from multiplying both sides of (4.28) by α and analyzing the result

based on (4.21) that

αx1c`1pαq “
´2α2p}pc}

2 ´ pxJc pcq
2q

4` α2}pc}2 ´ α2pxJc pcq2
xc`1pαq ` xc`1pαq ´ xc. (4.29)

Combing (4.29) with the equation ∇fpxc`1pαqq
Jxc`1pαq “ 0, we obtain

αf 1pαq “ α∇fpxc`1pαqq
Jx1c`1pαq “ ´∇fpxc`1pαqq

Jxc.

Due to the fact fpxq is twice continuously differentiable in the compact set Sn´1,

there exists a positive number M such that

|fpxq| ďM, }∇fpxq} ďM, and }∇2fpxq} ďM. (4.30)

If an optimization method enjoys a good ascent or descent property, Nocedal and

Wright (2006)[Lemma 3.1] showed that we can find an interval of step lengths sat-

isfying the Wolfe conditions. In the following theorem we prove that, an analogue

Wolfe conditions are feasible for the curvilinear line search in (4.21).
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Theorem 4.1. Suppose the parameters c1 and c2 satisfy 0 ă c1 ă c2 ă 1. Then there

exists a positive number αc such that

f
`

xc`1pαcq
˘

ě fpxcq ` c1αc∇fpxcqJpc, (4.31)

∇fpxpαcqqJpc ď c2∇fpxcqJpc. (4.32)

Proof. Let xpαq “ xc`1pαq and fpαq “ fpxc`1pαqq. Based on (4.21), we obtain

x1c`1p0q “ ´xJc pcxc ` pc, and

f 1p0q “
dfpxc`1pαqq

dα

ˇ

ˇ

ˇ

ˇ

α“0

“ ∇fpxc`1p0qq
Jx1c`1p0q

“ ∇fpxcqJp´xJc pcxc ` pcq “ ∇fpxcqJpc.

Define lpαq as a linear function lpαq “ fpxcq ` c1α∇fpxcqJpc. From 0 ă c1 ă 1

and ∇fpxcqJpc ą 0 in (4.25), we have fp0q “ lp0q “ fpxcq and f 1p0q ą l1p0q ą 0.

Because fpαq is bounded above, there is at least one intersection point of the line

lpαq and fpαq when α ą 0. Let ᾱ be the smallest intersection point. Hence we get

fpxc`1pᾱqq “ fpxcq ` c1ᾱ∇fpxcqJpc. (4.33)

By the mean value theorem, there exists a constant ρ P p0, ᾱq such that

fpxc`1pᾱqq ´ fpxcq “ ᾱf 1pρq

rBy (4.27)s “ ´
ᾱ

ρ
∇fpxc`1pρqq

Jxc.
(4.34)

From (4.5) and (4.21) we obtain

∇fpxc`1pρqq
Jxc`1pρq “

rp2´ ρxJc pcq
2 ´ }ρpc}

2s∇fpxc`1pρqq
Jxc

4` }ρpc}2 ´ pρxJc pcq2

`
4ρ∇fpxc`1pρqq

Jpc
4` }ρpc}2 ´ pρxJc pcq2

“ 0,
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which means

´ rp2´ ρxJc pcq
2
´ }ρpc}

2
s∇fpxc`1pρqq

Jxc “ 4ρ∇fpxc`1pρqq
Jpc. (4.35)

By combining(4.34) and (4.35), we get

rp2´ ρxJc pcq
2
´ }ρpc}

2
srfpxc`1pᾱqq ´ fpxcqs “ 4ᾱ∇fpxc`1pρqq

Jpc. (4.36)

Further, it can be deduced from (4.33) that

rp2´ ρxJc pcq
2
´ }ρpc}

2
srfpxc`1pᾱqq ´ fpxcqs

“rp2´ ρxJc pcq
2
´ }ρpc}

2
sc1ᾱ∇fpxcqJpc.

(4.37)

From (4.36) and (4.37), we obtain

4∇fpxc`1pρqq
Jpc “ rp2´ ρx

J
c pcq

2
´ }ρpc}

2
sc1∇fpxcqJpc

Since

xJc pc “ xJc p∇fpxcq ` βc´1dc´1q

“ βc´1x
J
c pxc ´ xc´1q

“ βc´1p1´ xJc xc´1q

ě 0

and |xJc pc| ď }pc}, we have

p2´ ρxJc pcq
2
´ }ρpc}

2
“ 4´ 4ρxJc pc ` pρx

J
c pcq

2
´ }ρpc}

2

ď 4´ 4ρxJc pc

ď 4.

Based on ∇fpxcqJpc ě 0, we obtain

∇fpxc`1pρqq
Jpc ď c1∇fpxcqJpc. (4.38)

By setting the parameter αc “ ρ, the inequality (4.32) holds for c2 ą c1. Since

ρ P p0, ᾱq, we have fpαcq ą lpαcq. Hence (4.31) is valid.
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Algorithm 3 Computing p-spectral radius of a hypergraph(CSRH).

1: For a uniform hypergraph G, p ą 1, choose parameters 0 ă c1 ă c2 ă 1, τ ą 1{4,
ε ą 0, an initial unit point x0, and k Ð 0. Calculate p0 “ ∇fpx0q.

2: while the sequence of iterates does not converge do
3: Use interpolation method to find αc such that (4.31) and(4.32) hold.
4: Update the new iterate xc`1 “ xc`1pαcq by (4.21).
5: Compute dc, ∇fpxc`1q , βc, and pc`1 by (4.23) .
6: cÐ c` 1.
7: end while

(Chang et al., 2018)

We present the CSRH method for computing the p-spectral radius of a hyper-

graph in algorithm 3. First, we rewrite the original problem of λppqpGq as an equiv-

alent spherical constrained maximization model (4.3). Then we generate an ascent

direction pc via (4.4), (4.24) and (4.23). Finally, by choosing a suitable αc in the

curvilinear search (4.21), the new iterate xc`1 is projected on the unit sphere and

the analogue Wolfe conditions (4.31) and (4.32) are valid. The fast computational

technique for products Axr and Axr´1 in Section 3.4 is employed in the process of

the CSRH method.

4.3 Convergence analysis

In this section we prove that the sequence of gradient norms approaches zero and the

sequence of iterates converges to a stationary point of fpxq. In addition, we point out

that our method is able to get the exact p-spectral radius with a high probability.

For brevity, suppose the sequence txcu generated by the CSRH method is infinite

without loss generality.

4.3.1 Primary convergence results

Since fpxq is bounded above from (4.30) and increase monotonically from (4.14), we

have the following result.

Lemma 4.4. The sequence tfpxcqu generated by the CSRH method converges.
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The convergence property of t∇fpxcqu is given in the following theorem.

Theorem 4.2. The sequence t}∇fpxcq}u generated by the algorithm CSRH from any

x0 P Sn converges to zero, i.e.

lim
cÑ8

}∇fpxcq} “ 0.

Proof. The result is achieved by two steps. First, we prove the Zoutendijk condition

holds, i.e.,

8
ÿ

c“0

cos2 ϕc}∇fpxcq}2 ă 8. (4.39)

Here ϕc is the angle between ∇fpxcq and pc as follows:

ϕc ” arccos
∇fpxcqJpc
}∇fpxcq}}pc}

.

Since ∇2fpxq is bounded (4.30), the gradient function ∇fpxq is Lipschitz continuous

on Sn´1, i.e.,

}∇fpx1q ´∇fpx2q} ď L}x1 ´ x2} @x1,x2 P Sn´1, (4.40)

where L is a positive constant. From (4.20), we have

}W } “ }
αc
2
pxcp

J
c ´ pcx

J
c q} ď

αc
2
p}xcp

J
c } ` }pcx

J
c }q ď αc}pc}.

Hence by (4.16) we obtain

}xc`1 ´ xc} ď }Wc}p}xc`1} ` }xc}q ď 2αc}pc}. (4.41)

It can be deduce from (4.40) and (4.41) that

p∇fpxcq ´∇fpxc`1qq
Jpc ď L}xc`1 ´ xc}}pc} ď 2Lαc}pc}

2.
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From (4.32), we get

p∇fpxc`1q ´∇fpxcqqJpc ď pc2 ´ 1q∇fpxcqJpc. (4.42)

By using the above two relations, we have

p1´ c2q∇fpxcqJpc ď 2Lαc}pc}
2,

which implies

αc ě
1´ c2

2L

∇fpxcqJpc
}pc}2

. (4.43)

Then based on (4.31), we obtain

fpxc`1q ´ fpxcq ě
c1p1´ c2q

2L

p∇fpxcqJpcq
2

}pc}2
“
c1p1´ c2q

2L
cos2 ϕc}∇fpxcq}2,

which deduces the following inequality

fpxc`1q ´ fpx0q “

c
ÿ

i“0

fpxi`1q ´ fpxiq ě
c1p1´ c2q

2L

c
ÿ

i“0

cos2 ϕi}∇fpxiq}2.

From (4.30), the inequality (4.39) holds.

Next, we show that the angle ϕc is bounded away from π
2
. By combining (4.25)

and (4.26), we get

∇fpxcqJpc
}∇fpxcq}}pc}

ě p1´
1

4τ
q
}∇fpxcq}
}pc}

ě
1

M0

p1´
1

4τ
q ” C0. (4.44)

The above inequalities mean that

cosϕk ě C0 ą 0.

Hence from (4.39) the result:

lim
cÑ8

}∇fpxcq} “ 0,

is obtained.
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4.3.2 Further results when p is even

In this subsection, we study the convergence property in the case p is even. The

graph of the function fpxq involved in (4.3) is

Graph f “ tpx, λq P Rn
ˆ R : rpr ´ 1q!Axrsp “ λpp

ÿ

i

|xi|
p
q
r
u.

Since Graph f is a semialgebraic set, fpxq is a semialgebraic function and satisfies

the  Lojasiewicz inequality in (3.26) (Absil et al., 2005; Bolte et al., 2007). The next

theorem shows the sequence txcu converges to a first-order stationary point when p

is even.

Theorem 4.3. Let txcu be a sequence produced by the CSRH method. Then we have

lim
cÑ8

xc “ x˚,

with x˚ being a first-order stationary point.

Proof. Based on (4.43), (4.25) and (4.26) we get

αc ě
1´ c2

2L
p1´

1

4τ
q
}∇fpxcq}2

}pc}2

ě
1´ c2

2LM2
0

p1´
1

4τ
q

” αmin ą 0.

By combining (4.31) and (4.25) we have

fpxc`1q ´ fpxcq ě c1αc∇fpxcqJpc

ě c1αminp1´
1

4τ
q}∇fpxcq}2

ą 0, (4.45)
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which indicates that

rfpxc`1q “ fpxcqs ñ rxc`1 “ xcs. (4.46)

Therefore from (4.26), (4.31) and (4.41) we have

fpxc`1q ´ fpxcq ě c1αcp1´
1

4τ
q
}∇fpxcq}}pc}

M0

ě p1´
1

4τ
q
c1

2M0

}∇fpxcq}}xc`1 ´ xc}. (4.47)

From (4.46) and (4.47), as well as the  Lojasiewicz inequality (3.26), the results are

obtained based on Theorem 3.2 in Absil et al. (2005).

In order to study the probability of the event that the CSRH approach get an

exact p-spectral radius, we introduce the next Lemma.

Lemma 4.5. Assume x˚ is a stationary point of fpxq and Bpx˚, ρq “ tx P Sn´1 : }x´

x˚} ď ρu Ď U , in which U is a neighborhood of x˚ defined in (3.26). Let

C ”
2M0CK

c1p1´ θqp1´
1
4τ
q
,

and x0 be the initial point such that

ρ ą ρpx0q ” C|fpx0q ´ fpx˚q|
1´θ
` }x0 ´ x˚}. (4.48)

Then we have

xc P Bpx˚, ρq, c “ 0, 1, 2, . . . , (4.49)

and

8
ÿ

c“0

}xc`1 ´ xc} ď C|fpx0q ´ fpx˚q|
1´θ. (4.50)
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Proof. Let φptq ” CK
1´θ
|fpx˚q ´ t|1´θ. Then it is easy to verify that φptq is a concave

function for fpx˚q ą t. For i “ 0, 1, . . . , c, we have

φpfpxiqq ´ φpfpxi`1qq ě φ1pfpxiqqpfpxiq ´ fpxi`1qq

“ CK |fpx˚q ´ fpxiq|
´θ
pfpxi`1q ´ fpxiqq

[The  Lojasiewicz inequality] ě }∇fpxiq}´1
pfpxi`1q ´ fpxiqq

[For (4.31) and (4.25)] ě c1αip1´
1

4τ
q}∇fpxiq}

For [(4.26) ] ě c1αip1´
1

4τ
q

1

M0

}pi}

For [(4.41) ] ě
1

2
c1p1´

1

4τ
q

1

M0

}xi`1 ´ xi}.

Then we obtain

}xc`1 ´ x˚} ď

c
ÿ

i“0

}xi`1 ´ xi} ` }x0 ´ x˚}

ď
2M0

c1p1´
1
4τ
q

c
ÿ

i“0

rφpfpxiqq ´ φpfpxi`1qqs ` }x0 ´ x˚}

ď
2M0

c1p1´
1
4τ
q
φpfpx0qq ` }x0 ´ x˚}

ă ρ.

Hence, we get xc`1 P Bpx˚, ρq and (4.49) holds. Moreover,

8
ÿ

c“0

}xc`1 ´ xc} ď
2M0

c1p1´
1
4τ
q

8
ÿ

k“0

rφpfpxcqq ´ φpfpxc`1qqs ď
2M0

c1p1´
1
4τ
q
φpfpx0qq.

The inequality (4.50) is valid.

Theorem 4.4. If we start the CSRH algorithm from N uniformly distributed initial

points on Sn´1, and choose the largest one among the results of these trails as the
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p-spectral radius of its corresponding problem, then the probability of getting a true

p-spectral radius is

1´ p1´ ςqN ,

in which the parameter ς satisfies ς P p0, 1s. When N is large enough, the probability

is close to 1.

Proof. With the aid of Lemma 4.5, we can prove the result similarly according to

Theorem 3.9.

4.4 Numerical results

In this section, we represent the numerical performances of the CSRH method for

computing the p-spectral radius when p ą 1 and estimating the Lagrangian (p “ 1) of

a hypergraph. For eigenvalue problems of adjacency tensors (p “ 2 or r), we compare

the CSRH method with several other algorithms. Further, we assign other different

values to p, and calculate the p-spectral radii of β-stars. In Subsection 4.4.2, the

CSRH method is applied to approximating the Lagrangian of a hypaergraph. We

carry out the tests by MATLAB. Experiments in Subsection 4.4.1 are terminated

when

}∇fpxq}2 ď 10´8 or }λppq ´ λppq˚ pGq} ď 10´12,

in which λppq is the numerical result given by the CSRH method and λ
ppq
˚ pGq is the

analytical solution from relevant theorems or conclusions. For the tests in Subsection

4.4.2 and Section 4.5, the termination criterion is

}∇fpxq}2 ď 10´6.

In addition, all experiments, except those in Tensor Toolbox, are terminated when

the maximum number of iterations reaches 1000. As the experiments in Section 3.5,

for each test we run the CSRH method one hundred times from one hundred initial
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points which are uniformly distributed on the unit sphere Sn´1, and get one hundred

approximated solutions λ
ppq
1 , . . . , λ

ppq
100. The largest one is taken to be the numerical

result of the p-spectral radius. Based on this data, we denote the accuracy rate of a

method as

Accu. ”

ˇ

ˇ

ˇ

ˇ

"

i :
|λ
ppq
i ´ λ

ppq
˚ pGq|

|λ
ppq
˚ pGq|

ď 10´8

*
ˇ

ˇ

ˇ

ˇ

ˆ 1%. (4.51)

We report the number of iterations (Iter.), the total computational time (Time) for

all one hundred runs, the accuracy rate (Accu.), and the relative error (Err.) between

a computational value and a real solution.

4.4.1 Calculation of p-spectral radii of hypergraphs

When p equals two, the 2-spectral radius of an r-graph is pr ´ 1q! times the Z-

eigenvalue of its adjacency tensor. When p is even and equivalent to r, the r-spectral

radius of the r-graph is pr ´ 1q! times the H-eigenvalue of its adjacency tensor. For

the Z-eigenvalue problems of adjacency tensors, we compare the CSRH method with

the adaptive shifted power method (Power M.).

Eigenvalues of adjacency tensors. Given a 3-graph G1 with its vertex set

V being V “ t1, 2, 3, 4u and edge set E being E “ t123, 234u, the exact largest

Z-eigenvalue of its adjacency tensor is provided in Xie and Chang (2013b). For the

two loose paths G2 with V “ t1, 2, 3, 4, 5, 6, 7u and E “ t123, 345, 567u, G3 with

V “ t1, 2, 3, 4, 5u and E “ t123, 345u, as well as the 4-vertex 3-uniform completed

hypergraph in Figure 2.4, Pearson and Zhang (2014) gave the the exact largest Z-

eigenvalues of their adjacency tensors. Here we renamed the hypergraph in Figure

2.4 as G4. The results of CSRH method and Power M. method for finding the largest

Z-eigenvalues of adjacency tensors of G1, G2, G3, and G4 are shown in Table 4.1.

The relative errors in the Err. column are given based on the the exact largest Z-

eigenvalue of the corresponding adjacency tensors in Xie and Chang (2013b); Pearson
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and Zhang (2014). In terms of the computing time, the CSRH method seems more

stable and efficient than the Power M. method.

Table 4.1: Computing λZmaxpAq of small scale hypergraphs.

Hypergraph
CSRH Power M.

Iter. Time(s) Accu. Err. Iter. Time(s) Accu. Err.
G1 13593 3.35 1.00 5.44ˆ 10´16 2668 4.89 1.00 5.44ˆ 10´16

G2 1257 0.78 1.00 3.85ˆ 10´16 18610 32.58 0.94 3.85ˆ 10´16

G3 674 0.42 1.00 3.85ˆ 10´16 731 1.61 1.00 7.69ˆ 10´16

G4 8901 2.23 0.18 1.48ˆ 10´16 2317 4.38 0.22 2.96ˆ 10´16

The main goal of the next experiment is to verify that the probability of the event

that the CSRH approach find an exact p-spectral radius increases along with the trail

number. By randomly choosing the initial points from uniformly distributed points,

we apply the CSRH method to computing λZmaxpAq of the hypergraph G4. When the

relative error of our computational largest Z-eigenvalue is equivalent to or less than

10´8, we terminate the trail and write down the number of run times. The test is

run one thousand times repeatly. Denote σpiq as the occurrence of tests whose trail

time is the integer i, and νi as the frequency of touching the exact Z-eigenvalue when

running i times as follows:

νi “

ř

jďi σpjq

1000
. (4.52)

The frequencies of different running times are displayed in Figure 4.2. It illustrates

the connection between trail times and success probability. We can see that the

frequencies increase with the trail times i. This phenomenon is consistent with the

result in Proposition 4.4.

Large scale examples with various p. Since the p-spectral radii of β-stars can

be attained from Theorem 2.5, we report the numerical performance of the CSRH

method for calculating the p-spectral radii of β-stars.

We compute the p-spectral radii of β-stars with different number of orders and

edges. Table 4.2 describes the numerical results of 3-spectral radius of 3-uniform
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Figure 4.2: Probability of finding λZmaxpApG4qq.

Table 4.2: Computing three-spectral radii of three-uniform β-stars.

n
p “ 3, r “ 3 pp ą r ´ 1q

Iter. Time(s) Accu. Err.
21 1835 0.34 1.00 5.38ˆ 10´16

201 2609 0.60 1.00 3.55ˆ 10´15

2,001 3539 1.87 1.00 4.33ˆ 10´14

20,001 4475 12.93 1.00 6.39ˆ 10´14

200,001 6038 263.39 0.98 1.93ˆ 10´11

2,000,001 20018 15437.99 1.00 1.22ˆ 10´10

β-stars, while Table 4.2 displays the consequences of 4-spectral radius of 6-uniform

β-stars. The relative errors listed in the Err. column is provided via the exact

solution of the corresponding problem obtained from Theorem 2.5. We show that

the CSRH method is able to compute the 3- and 4-spectral radii of β-stars with

millions of vertices with high probability and efficiency.

4.4.2 Approximation of the Lagrangian of a hypergraph

The Lagrangian of a hypergraph G denoted in (2.5) is actually its 1-spectral ra-

dius. As fpxq is nonsmooth at the point x which has zero elements, we prefer to
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Table 4.3: Computing four-spectral radii of four-uniform β-stars.

n
p “ 4, r “ 6 pp ă r ´ 1q

Iter. Time(s) Accu. Err.
51 14747 4.79 0.99 1.59ˆ 10´11

501 26019 14.52 0.98 9.56ˆ 10´12

5,001 30108 57.82 0.99 2.01ˆ 10´11

50,001 32387 426.60 0.95 1.08ˆ 10´11

500,001 30070 6309.58 0.99 4.49ˆ 10´11

5,000,001 51609 125869.02 0.97 2.40ˆ 10´10

approximate λp1qpGq by λppϑqpGq, where pϑ is defined as

pϑ “ 1`
1

2ϑ` 1
, for ϑ “ 1, 2, . . . . (4.53)

Since limϑÑ8 pϑ “ 1, then we get

lim
ϑÑ8

λppϑqpGq “ λp1qpGq,

by the result in Proposition 4.1. Therefore, it is rational that we estimate the La-

grangian of G by the pϑ-spectral radius of G. Moreover, due to continuous and

differentiable probability of the function fpϑpxq, the CSRH method is suitable for

the pϑ-spectral radius problem. If we denote a vector w as

wi “ x
1

2ϑ`1

i , for i “ 1, . . . , n,

and substitute the variable x by wr2ϑ`1s, the function fpϑpxq “ fpϑpw
r2ϑ`1sq is a

semialgebraic function and satisfies the  Lojasiewicz inequality in (3.26). Hence, the

convergence results in Section 4.3 also apply to the pϑ-spectral radius problem in

this subsection.

We illustrate the feasibility of the CSRH method estimating Lagrangian of a

hypergraph by two steps. At first, examples of the CSRH method computing the

pϑ-spectral radius of a uniform hypergraph are given. Second, we demonstrate the
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Table 4.4: Computing pϑ-spectral radii.

pϑ Iter. Time(s) Accu. Err.
pϑ “

12
7 3037 0.99 1.00 0.00

pϑ “
14
9 13271 17.88 1.00 3.08ˆ 10´16

pϑ “
10
7 51018 110.53 1.00 1.85ˆ 10´16

pϑ “
4
3 84848 88.85 1.00 3.07ˆ 10´14

numerical performance of the CSRH method for approximating the Lagrangians of

complete hypergraphs via pϑ-spectral radius.

The results of the CSRH method calculating the pϑ-spectral radius of a 3-uniform

β-star with 10 edges are reported in Table 4.4. The accurate values of pϑ-spectral

radii is attained from Theorem 2.5. We can see that all tests get the exact pϑ-spectral

radius with accuracy rate being 100%, and the relative errors of all computational

results are not greater than 3.07ˆ 10´14.

Figure 4.3: Approximating the 1-spectral radii of complete hypergraphs.
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Since the exact Lagrangian of a completed hypergraph could be attained via

Proposition 2.1, then we use λpϑ to estimate the Lagrangian of 3 completed hyper-

graphs C3
4 , C3

10 and C3
20, and show the absolute errors of our approximated solutions

in Figure 4.3. The horizontal line means the difference between pϑ and 1, while the

vertical line represents the difference between the numerical result λpϑ and the actual

Lagrangian of the corresponding completed hypergraph. The tests indicate that the

pϑ-spectral radii can estimate the Lagrangians of hypergraphs well when pϑ is close

to 1.

4.5 Application in network analysis

Given a hypergraph, both the optimal value of fpxq in (4.3), i.e., the p-spectral

radius, and the optimal point x, reflect its structure. Recall that an optimal point is

also called a p-optimal weighting in (2.4). The ranking of elements of the p-optimal

weighting implies the significance of the relative vertices in the hypergraph. Hence,

we regard the jth entry of the p-optimal weighting as the impact factor of the jth

vertex. The ranking results vary with the value of p. When p is comparatively

large, the p-optimal weighting show the importance of vertices individually. When

p is comparatively small, the ranking result tends to give the importance of groups

in the vertex set. In this section, we compile the CSRH method 10 times for each

problem, and the p-optimal weighting is determined by the vector associated with

the largest computational result.

4.5.1 A toy example

The p-spectral radius model is first applied to a toy problem to demonstrate the

influence of p on the ranking results. In Figure 4.4, a 6-graph is created with the

weight of its each edge being 1, except the last edge which is assigned a weight of

3
2
. It can be seen that the vertices numbered 1, 31, and 26 are different from other
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Figure 4.4: A 6-uniform hypergraph.

Table 4.5: Top ten vertices in Figure 4.4.

Ranking
p “ 4

3 p “ 5 p “ 16
Num. Val. Num. Val. Num. Val.

1 39 0.4082483175 41 0.4081204985 1 0.1709715830
2 38 0.4082482858 39 0.4081204985 31 0.1678396311
3 31 0.4082482855 31 0.4081204983 26 0.1618288319
4 41 0.4082482854 38 0.4081204982 39 0.1600192388
5 40 0.4082482849 40 0.4081204973 38 0.1600192387
6 37 0.4082482834 37 0.4081204958 41 0.1600192387
7 24 0.0000000000 28 0.0073198868 40 0.1600192386
8 34 0.0000000000 30 0.0073192175 37 0.1600192385
9 23 0.0000000000 26 0.0073061265 23 0.1550865094
10 3 0.0000000000 29 0.0071906282 22 0.1550865094

vertices in terms of degree, and the edge t31, 37, 38, 39, 40, 41u is distinct because

of its weight. With the aid of different p-optimal weightings, the ranking results

of vertices are given in Table 4.5. The numbers of the vertices are listed in the

Num. columns, while the values of impact factors of the corresponding vertices are

displayed in the Val. columns.

When p “ 4
3
, the top 6 vertices come from the edge with largest weight, and the

impact factor of the top 6 vertices are far more greater than the impact factor of

others. All the elements of the 4
3
-optimal weighting, except those associated with the

top 6 vertices , are less than 5ˆ10´10. Due to the predominance of the impact factors

related to the dominant vertices from the largest weighted edge, the influence of all
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the other vertices can be ignored. In other words, in this case the ranking results

provide the most influential group among the vertices of this weighted hypergraph.

When p “ 5, although the top 6 vertices remain top 6, the gaps among the impact

factors dramatically reduce and the 26th vertex enters top 10. When p “ 16, results

are clearly changed with the top 3 vertices being 1, 31 and 26. The impact factor of

a vertex are more relevant to its own degree rather than to the influence of its group.

Thus, we argue that the 16-spectral radius reveals the individual importance of all

vertices.

4.5.2 Author ranking

In this subsection, we generate the rank of a number of authors in accordance with

their collaborations in the publication information which can be downloaded from

DBLP2. By using the same data set, Ng et al. have given different ranking results

according citations of authors, category concepts, collaborations, and papers sepa-

rately. We will compare our sorting results with theirs.

We store the cooperation information in a weighted 3-uniform multi-hypergraph

GA, whose vertex set is composed of 10305 authors. If any three authors have

cooperations under a topic, then they are in the same edge. The weight of an edge

is determined by the total collaboration times among the three authors in this edge.

In this way, GA becomes a 3-graph with 1, 243, 443 edges, and its adjacency tensor

has 1.17% nonzero elements.

It can be seen from the example in Subsection 4.5.1 that by calculating different

p-optimal weighting, we get different ranking results of the vertices in a hypergraph.

First, we demonstrate the consequence of author group ranking via 2-optimal weight-

ing in Figure 4.5. The stars show the 2-optimal impact factors of the corresponding

authors. The majority components of the 2-optimal weighting approach zero, while

2 http://www.informatik.uni-trier.de/ ley/db/
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Figure 4.5: 2-optimal points.

only dozens of stars are above the horizontal line y “ 0.1. Considering the value of

the 2-optimal impactor factors , 97.2% of them are less than 10´3, while only 18%

are greater than 0.1. As shown in the picture, several uppermost stars are at the top

and the value of the largest impact factor is 0.4481. It implies that a tiny fraction

of the elements of the 2-optimal weighting plays a leading role, and we treat the

corresponding dominant vertices in the hypergraph as a group. We also display the

top ten authors in the light of the 2-optimal impact factors in the second column of

Table 4.6. Among these top ten authors, each two authors collaborate 8.533 times

on average, while among the whole 10305 authors each two authors collaborate only

9.76 ˆ 10´4 times. Due to the intimate cooperation of the top ten authors, we re-

gard the authors listed in the second column as not only a group but also the most

powerful group.

The 12-optimal impact factors of vertices, which represent the 10305 authors,

are shown in Figure 4.6. It has an entirely different distribution from the 2-optimal

impact factors in Figure 4.5. Stars in Figure 4.6 spread evenly over the internal
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Figure 4.6: 12-optimal points.

between 0.006 and 0.014. In reality, the times of collaboration between different

cooperators are mainly one or two. Thus the balance and concentration of the impact

factors is consistent with the cooperation information. The top ten authors produced

according to the 12-optimal weighting are shown in the third column of Table 4.6. In

accordance with the collaboration and category information, Ng et al. also provide

the top ten authors based on the same data set as ours, which are presented in the

MultiRank column. 6 authors among 10 in MultiRank column appear in the top ten

list of our 12-optimal rank.

4.6 Conclusion

For the p-spectral radius optimization problem, we transform its constraint from p-

norm into a spherical one, and introduce an iterative method, called CSRH, to solve

it. Also, we prove that in the curvilinear search, a suitable step length satisfying the

analogue Wolfe conditions exists. In terms of the convergence property, it is shown

that the sequence of the gradients converges to zero. Further convergence results
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Table 4.6: Top 10 authors.

Ranking
Author Name

p “ 2 p “ 12 MultiRank
1 Zheng Chen Wei-Ying Ma C. Lee Giles
2 Wei-Ying Ma Zheng Chen Philip S. Yu
3 Qiang Yang Jiawei Han Wei-Ying Ma
4 Jun Yan Philip S. Yu Zheng Chen
5 Benyu Zhang C. Lee Giles Jiawei Han
6 Hua-Jun Zeng Jian Pei Christos Faloutsos
7 Weiguo Fan Christos Faloutsos Bing Liu
8 Wensi Xi Yong Yu Johannes Gehrke
9 Dou Shen Qiang Yang Gerhard Weikum
10 Shuicheng Yan Ravi Kumar Elke A. Rundensteiner

are given under the condition that p is even. The CSRH method performs well in

solving the p-spectral radius problems in the numerical experiments. Finally, the

CSRH method successfully provide the rank of 10305 authors from real world data

set by calculating the p-optimal weighting of a weighted hypergraph with millions of

edges.
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Chapter 5

Conclusions and future work

For the computational problems related to tensors arising from hypergraphs, we in-

vestigated the eigenvalues of such tensors and the p-spectral radius of hypergraphs

via adjacency tensors. The CEST method proposed for computing eigenvalues of

adjacency tensor, Laplacian tensor and signless Laplacian tensor of a uniform hy-

pergraph is well designed. The sequence of the function value and iterative points

generated by the CEST method converge to an eigenvalue and its associated eigen-

vector respectively. Numerical experiments show that the CEST method is efficient.

The p-spectral radius of a hypergraph is expressed as an adjacency tensor related

maximization problem. The CSRH method is proved to be convergent and it can

calculate p-spectral radius for different numbers assigned to p, which are greater than

one, effectively. Further, the CSRH method is able to approximate the Lagrangian

of a hypergraph accurately. In our numerical experiment, both the CSRH and the

CEST method can deal with hypergraphs with millions of vertices.

Just as we have mentioned in the introduction part, tensor is a useful tool in the

study of hypergraph field. Not only the eigenvalue problems and p-spectral radius

problem, but also many other problems in hypergraph theory and application can

be formulated and tackled by tensors. Such kind of unsolved problems, as well as

the development in tensor theory, motivate us to further solve computing problems
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in hypergprah area with the aid of tensors. For example, the k-way hypergraph

partitioning problems (Papa and Markov, 2007), which are widely studied in machine

learning, computer vision, and very large scale integration (VLSI) design. We restate

the problem as follows.

Definition 5.1 (k-way hypergraph partitioning problem). Given a hypergraph, group

all vertices of this hypergraph into k disjoint sets, such that a certain cost function

is minimized.

In Chen et al. (2017), the hypergraph bi-partitioning problem is studied by eigen-

values of Laplacian tensor of the corresponding hypergraph. The general k-way hy-

pergraph partitioning problem can be divided into two subproblems. First is to

construct the minimization model, specifically the cost function, while the second is

to solve this model effectively. Based on spectral clustering knowledge, a popular

method for k-way hypergraph partitioning is given in Zhou et al. (2007). In this

method, matrix plays a central role in storing the hypergraph information and gen-

erating the cost function. Since usually a tensor can represent a hypergraph better

than a matrix do, it is natural that we construct a tensor related model to solve the

k-way hypergraph partitioning problem. Actually, this is our ongoing work.
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