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Abstract

The thesis is devoted to a few problems on spectral hypergraphs theory via the

adjacency tensor, Laplacian tensor and signless Laplacian tensor of a hypergraph.

These problems are analogy and generalization of problems usually concerned in

spectral graph theory. Three topics are included:

1. Characterization of uniform hypergraphs with largest spectral radii under cer-

tain conditions.

2. The property of symmetric spectrum for uniform hypergraphs with applica-

tions.

3. Properties on the spectra of non-uniform and general hypergrpahs.

For the first topic, two types of connected hypergraphs with fixed vertex num-

ber and cyclomatic number called unicyclic and bicyclic hypergraphs are studied.

By combining recent developed spectral techniques, the first five hypergraphs with

largest spectral radii among all unicyclic hypergraphs and the first three over all bi-

cyclic hypergraphs are determined, together with two orderings of the corresponding

hypergraphs.

For topic 2, we investigate the newly introduced odd-colorable hypergraphs and

employ their symmetric spectra to obtain conditions for a uniform hypergraph to

have equal Laplacian spectrum and signless Laplacian spectrum.
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For the last topic, some spectral bounds in terms of graph invariants are extended

from uniform case to general hypergraphs, and a new way is found to bound the spec-

tral radius from below for a special class of non-uniform hypergraphs. Moreover, the

property of symmetric spectrum for general hypergraphs is investigated. Equivalent

conditions are extened from uniform case to general case. Besides, the capability

of a non-uniform hypergraph to have symmetric (H-)spectrum, equal Laplacian (H-

)spectrum (spectral radius) and signless Lapalcian (H-)spectrum (spectral radius) is

discussed.
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Chapter 1

Introduction

1.1 Overview

Spectral graph theory is a well studied branch of graph theory and is highly ap-

plicable in combinatorics, computer sciences, chemistry and the social sciences. It

concentrates on the connection between properties of a graph and the eigenvalues or

singular values of matrices representing that graph [7]. Its major topics and methods

have been naturally extended to a generalization of graphs called hypergraphs [3, 4],

a subject with numerous application in mathematical sciences [23] and other applied

sciences [6, 25, 32, 52]. This trend gradually shapes a novel and active field named

spectral hypergraph theory around the last twenty years.

As a generalization of spectral graph theory, spectral hypergraph theory inherits

the intrinsic idea from spectra graph theory of using spectral methods to explore

hypergraph properties from various aspects. In details, hypergraphs are studied

via their representations of matrices/tensors (hypermatrices) by employing algebraic

tools and matrix/tensor theory.

The early trails on defining hypergraph spectrum were through matrices, where

some meaningful results had been achieved on the Laplacian matrices of hypergraphs

[13, 20, 22]. However, the limitation of matrix representation for hypergraphs lead

subsequent exploration to obstacles quickly. It was after the set up of tensor eigenval-
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ues and some basic theoretical developments that the study of spectral hypergraph

theory via tensors initiated.

In 2005, several generalizations of matrix eigenvalues were introduced for higher

order tensors in the independent works of Qi [46] and Lim [37], meanwhile a proposal

of using tensor eigenvalues to study hypergraphs were roughly mentioned [37]. In

2009, through utilizing the H-eigenvalues of tensors defined by Qi [46], Bulò and

Pelillo [10] employed the spectral radius of a hypergraph to characterize the clique

number, a well-known graphic invariant, which was acknowledged as the first paper

on spectral hypergraph theory via tensors. Another pioneer work was carried out by

Cooper and Dutle [16] in 2012, which is a systematic study on the adjacency tensor

of uniform hypergraphs with an outcome of many analogs of elemental results in

spectral graph theory. Since then, accompanying with a blossom in spectral theory

of tensors [11, 21, 27, 47, 49, 60], a vast and rapid development occurred to the

emerged spectral hypergraph theory via tensors [1, 19, 28, 39, 34, 38, 44, 48].

In this new branch of hypergraph theory, studies are mainly based upon three

types of tensor representations, the Laplacian tensor, the signless Laplacian tensor,

and the adjacency tensor mentioned above. During the lasts five years, fruitful

results have been obtained on a wide range of topics including: spectral properties

of the three tensors for uniform hypergraphs [18, 28, 65, 69], general hypergraphs

[1, 9, 66], directed hypergraphs [12, 58, 2], multi-hypergraphs [44, 45, 59], and random

hypergraphs [15]; the property of symmetric spectrum of uniform hypergraphs with

applications [42, 53, 54, 63]; spectral parameters such as spectral radius [19, 39, 34,

38, 31, 64, 43] and analytic connectivity [24, 36] of uniform hypergraphs, as well as

their connection with chromatic number [16], clique/independent number [57, 62],

isoperimetric number [36], and other graph invariants; applications of hypergraph

eigenvalue in image processing and multi-page rank.

Among various research directions on hypergraph spectra with respect to the
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three tensors, the spectral radius may be the index attracting the most scholarly

interest [16, 19, 34, 38, 39, 64], which may be attributed to its pleasant properties

reflected by the Perron-Frobenius theorem for nonnegative tensors [11, 21, 35, 60]

and the historical popularity of its analogs in the literature of spectral graph the-

ory [8, 14, 29, 41, 51]. On the other hand, the symmetric property of spectra for

graphs is a classic question concerned by many scholars. In the case of hypergraphs,

researches are constantly exploring possible conditions for hypergraphs to have sym-

metric spectra [17, 18, 42, 54].

This thesis is concerned with these two aspects of spectral hypergraph theory.

We investigate the spectral radii of uniform hypergraphs (Chapter 4) and general

hypergraphs (Chapter 6) and the spectral symmetry of a special class of uniform

hypergraphs (Chapter 5) and general hypergraphs (Chapter 6).

1.2 Outline

In addition to the present introduction chapter, this thesis has five other parts. This

section will briefly introduce the organization of the following Chapters 2-6.

These five chapters can be separate into two parts. Chapters 2 and 3 are the

preliminary knowledge of tensor eigenvalues and hypergraph spectra relevant to our

study, while our main work on spectral hypergraph theory is included in Chapters

4-6.

Chapter 2: This chapter is devoted to the basic knowledge of tensor and its eigen-

values with some elementary properties and theorems. Section 2.1 presents the defin-

tions of tensor eigenvalues and H-eigenvalues, spectrum, H-spectrum and spectral

radius of tensors, and some basic properties of tensors eigenvalues. Then in Section

2.2 is on nonnegative tensors which is a significant class of tensors and closely relevant

to spectral hypergraph theory. Some important concepts include irreducible tensor,

3



weakly irreducible tensor are introduced, following with the Perron-Frobenius the-

ory and Collatz-Wielandt minimax theorm for nonnegative tensors, as well as other

pleasant properties for (symmetric) nonnegative tensors.

Chapter 3: This chapter includes basic concepts of spectral hypergraph theory and

some properties on hypergraph spectra. Section 3.1 presents the three major types

of tensors associated with a (general) hypergraph with a brief literature review. In

Section 3.2, some basic properties for the three tensors are displayed, including dis-

tribution of eigenvalues, the weak irreducibility of adjacency, Laplacian and signless

Lapalcian tensors for connected hypergraphs together with properties on the spectral

radius yields from the theorems in Section 2.2. In Section 3.3, spectral methods to

deal with uniform and non-uniform hypergraphs are introduced, including moving

edge operations, the eigenvalue equation of power hypergraphs and the weighted

incidence matrix for hypergraphs.

For the next three chapters reporting our study on spectral hypergraph theory,

we briefly explain the main results instead.

Chapter 4: The study in this Chapter belongs to the area of extremal spectral hy-

pergraph theory, an intersection of extremal hypergraphs theory and spectral hyper-

graph theory, which is about finding extremal hypergraphs satisfying some spectral

property under certain conditions/restrictions. There are two main results.

The first result characterizes five unicyclic hypergraphs with spectral radius larger

than the remaining hypergraphs among all unicyclic hypergraphs. The second one

determined three bicyclic hypergraphs with spectral radius greater than the remain-

ing hypergraphs among all bicyclic hypergraphs.

Chapter 5: In this chapter, properties of symmetric spectra of an odd-colorable

k-graph is investigated. By the Perron-Frobenius theorem on nonnegative weakly

irreducible tensors together with the relation between the spectra of a hypergraph
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and that of its connected components, we obatained a result for the disconnected

uniform hypergraphs to have equivalent Lapalcian and signless Laplacian spectra in

Theorems 5.2 and 5.3. Based on the above outcomes, we obtain an affirmative answer

to Question 5.1 propsed in [54] about the relations between HSpec(L),HSpec(Q) and

Spec(L),Spec(Q) for the remaining unsolved case k 6≡ 0 (mod 4) in Theorem 5.4.

Chapter 6: In the last chapter, we obtained three types of upper bounds for the

spectral radius and the signless Laplacian spectral radius of general hypergraphs in

Theorems 6.1, 6.2 and 6.3 of Section 6.1. By the idea of characterizing the spectral

radius of general hypergraphs by uniform hypergraphs, we find a lower bound for

(non-uniform) generalized power hypergraph stated as in Theorem 6.4 of Section 6.2.

Finally, equivalent conditions of symmetric spectrum (i.e. Spec(A) = Spec(−A) for

the adjacency tensor A) is given in Proposition 6.1. It is verified in Proposition

6.2 and Corollary 6.3 that the spectrum of a non-uniform hypergraph will not be

symmetric and there will be a gap between the Laplacian spectral radius and signless

Laplacian spectral radius for a connected non-uniform hypergraph.

1.3 Basic concepts and notations

Let C and R be the fields of complex and real numbers respectively.

A tensor (also known as hypermatrix) T = (Ti1···ik) in a certain field F generally

refers to a multi-array with entries Ti1i2···ik ∈ F, where each index ij runs from 1 to

a natural number nj for j = 1, . . . , n. The above k and (n1, . . . , nk) are called the

order and the dimension of tensor T , respectively. Throughout this thesis, only real

tensors are considered which means F = R. Moreover, we are focusing on square

tensors with n1 = · · · = nk = n and T is called a k-order n-dimensional tensor in

this case, meanwhile k, n are assumed to be integers no less than 2. The set of all

k-order n-dimensional real tensors is denoted as Tk,n.
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For a tensor T ∈ Tk,n, the n entries Ti···i are called its diagonal entries, and others

are called off-diagonal entries. If T does not have non-zero off-diagonal entry, then

it is called a diagonal tensor. The identity tensor, denoted by I, is a diagonal tensor

with all diagonal entries being 1. Let a ∈ C, the notation aT represents the tensor

of same order and dimension as T such that (aT )i1···ik = aTi1···ik . Given A,B ∈ Tk,n,

A+ B, A− B are two tensors in Tk,n with (A± B)i1···ik = Ai1···ik ± Bi1···ik .

A tensor is called nonnegative if its entries are nonnegative. For a square tensor

T , if entries using indices permutated from a common number sequence are equal,

then T is called a symmetric tensor.

An elementary and significant part of tensor analysis is the theory on tensor

eigenvalues and eigenvectors. In the literature, various types of tensor eigenvalues

were proposed according to distinct ways of generalization from matrix counterpart.

In this thesis, we adopt the one introduced by Qi [46] as defined in Definition 2.1,

and apply the theory developed based on that to study hypergraphs.

The absolute main role of our study is hypergraph, which is a natural gener-

alization of graph in the Graph Theory. A hypergraph is in general expressed by

H := (V,E), where V is a nonempty set and E is a set consisting some nonempty

subsets of V . The terms vertex and edge refer to elements of V and E, respectively.

Denote V = [n] := {1, · · · , n} and E = {e1, · · · , em}. If every ei ∈ E is a simple set

where elements therein are mutually distinct, and ep ⊂ eq only if p = q, then H is

called a simple hypergraph, otherwise it is a multi-hypergraph. A loop in H is an

edge with a single vertex. In the scope of this thesis, unless otherwise stated, the

mentioned hypergraphs are simple and without loops.

If all edges of H has common cardinality k, i.e. each edge contains exactly k

vertices of H and k ≥ 2, then H is called a k-uniform hypergraph (or simply a

k-graph). Otherwise it is called non-uniform. To emphasis to possibility of being

non-uniform, a hypergraph not necessarily being uniform is also referred to as a
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general hypergraph.

Apart from the above settings, a very basic concept in graph and hypergraph

theory is connectivity. A hypergraph is connected if every two of its vertices are

connected through an edge chain. To strictly introduce this concept, we may review

the definition of paths.

A path is a graphic structure generally in terms of an alternative sequence of

distinct vertices and edges, say v1e1v2 · · · vsesvs+1, such that two consecutive vertices

vi, vi+1 are contained by the edge ei for each i ∈ [s]. In this case, we say that the

vertices v1 and vs+1 are connected by the path. A connected hypergraph is one with

all pairs of its vertices being connected.

The connectivity of a graph is linked with the irreducibility of its matrix represen-

tations which acts as a fundamental property during the analysis of graph spectrum.

In the scenario of hypergraphs and tensors, similar relationship has been obtained.

A classic way to study graphs and hypergraphs is to analyze the sub-structures,

namely subgraphs and connected components. Given H = (V,E), a subhypergraph

of H means a hypergraph consisting of subsets of V and E. A subhypergraph with

vertex set V ′ ⊂ V possessing all edges in E formed from V ′ is called a vertex-induced

subhypergraph, denoted by H[V ′]. If for a connected vertex-induced subhypergraph

H[V ′], H[V ′′] is disconnected for any V ′′ % V ′, then H[V ′] is called a connected

component of H. Let H1, . . . , Hs be all connected components of H, then we say

that H is the disjoint union of H1, . . . , Hs. We use the notation H = H1 ∪ · · · ∪Hs.

In the majority of cases, properties and spectra of disconnected hypergraphs are

investigated through their connected subhypergraphs/components, where advantages

of connectivity can be well employed. This has made it reasonable to focus our

attention on connected hypergraphs.

Another graphic structure relevant to our study is called cycle. A cycle is

expressed in a cyclic and alternative sequence of distinct vertices and edges, say
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v1e1v2 · · · vsesvs+1, with each ei ⊇ {vi, vi+1} and v1 = vs+1. A hypergraph that con-

tains no cycle is called acyclic. If it is furthermore connected, we call it a supertree.

A unicylic hypergraph refers to a connected hypergraph having exactly one cycle, i.e.

all cycles in it are expressed by sequences with a common collection of vertices and

edges. For k-uniform hypergraphs with at least two cycles, a further classification

uses a parameter extended from graph scenario called cyclomatic number, which is

defined in terms of vertex number n, edge number m and the number of connected

components s as m(k − 1) − n + s [19]. A hypergraph with cyclomatic number l is

simply called l-cyclic. A connected 2-cyclic hypergraph is also called bicyclic.

For uniform hypergraphs with fixed k and edge number, larger cyclomatic num-

ber implies less vertices and more intersection between edges which usually means

more complex structures. However, for some certain problems, we can start with

hypergraphs in small cyclomatic number and gradually find a framework suitable

for more general cases. The first part of our main work provides such a framework

toward ordering problems.
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Chapter 2

Tensor and its eigenvalues

2.1 Eigenvalues and H-eigenvalues

In 2005, Qi introduced the notions of eigenvalues and H-eigenvalues for symmetric

tensors in [46] which can also be used on all square real tensors. The same year,

Lim [37] indepently proposed the definition of eigenvalues for real tensors in real

field which is slightly different in the odd-order case. Here, we use the definition

from [46].

Let T ∈ Tk,n. Define a n-dimensional vector T xk−1 by

(T xk−1)i =
n∑

i2,...,ik=1

Tii2···ikxi2 · · ·xik , i ∈ [n],

and denote T xk = x>(T xk−1).

Definition 2.1. [46] Let T ∈ Tk,n. If there exist a number λ ∈ C and a nonzero

vector x ∈ Cn satisfying the following homogeneous polynomial equations:

λxk−1
i = (T xk−1)i, i = 1, . . . , n,

then λ is called an eigenvalue of T and x is an eigenvector of T associated with

(corresponding to) λ. The pair (λ,x) is called an eigenpair of T . If furthermore

an eigenvalue λ has a real eigenvector y ∈ Rn associated to it, then λ is called an

H-eigenvalue and y an H-eigenvector.
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The equations in the above that define eigenvalues and eigenvectors are also

referred as eigenequations. We see that an H-eigenvalue itself is a real eigenvalue. An

H-eigenvalue is further called H+-eigenvalue (H++-eigenvalue) if it has an associated

real non-negative (positive) eigenvector.

The spectrum of T is the set of all its eigenvalues (multiplicity counted), denoted

by Spec(T ). The H-spectrum of T , denoted HSpec(T ) is the collection of all H-

eigenvalues of T . The notation ρ(T ) represents the largest modulus (magnitude)

among elements in Spec(T ), which is called the spectral radius of T .

Note that unlike matrix case, the sum of any two distinct eigenvectors corre-

sponding to one eigenvalue λ of T may no longer be an eigenvector of T associated

to λ. Fortunately, we have the following multiplicity and additivity properties for

tensor eigenpairs.

Proposition 2.1. Let T ∈ Tk,n and a, b ∈ R. If (λ,x) is an eigenpair of T , then

(1) (λ, ax) is also an eigenpair of T for a 6= 0;

(2) (aλ+ b,x) is an eigenpair of aT + bI, where I is the identity tensor.

In more cases, one may have more interests on H-eigenvalues and their associated

real eigenvectors. Two major classes of tensors had been verified to possess at least

one H-eigenvalue which are even-order symmetric tensors and nonnegative tensors.

Besides, the above proposition indicates that tensors with off-diagonal entries either

all nonnegative or all nonpositive have H-eigenvalues.

Additionally for each nonnegative tensor, the spectral radius is its largest H-

eigenvalue with an associated nonnegative eigenvector. This result is a tensor version

of the Perron-Frobenius theorem which will be stated in detail in the next section.

Apart from the existence of H-eigenvalues, another fundamental and highly con-

cerned problem is the distribution of eigenvalues of a tensor in the complex plane.

Following is an analogue of the well-known Gershgorin circle theorem in matrix coun-
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terpart.

Proposition 2.2. [46] Let T ∈ Tk,n and λ ∈Spec(T ). Then there exists i ∈ [n] such

that

|λ− Ti···i| ≤
n∑

i2,...,ik=1

|Ti2···ik | − |Ti···i|.

In other words, the eigenvalues of T lie in the union of n disks in C and each of

these disks has a diagonal entry of T as its center and the sum of the absolute values

of off-diagonal entries of T as the radius.

We call the sum
∑n

i2···ik=1 Tii2···ik as the ith row sum of the tensor T and de-

note it by ri(T ). Then an observation of nonnegative tensors can be obtained from

Proposition 2.2.

Corollary 2.1. Let T ∈ Tk,n be a nonnegative tensor. Then

(1) λ ≤ max{ri(T ), 1 ≤ i ≤ n};

(2) if T has equal row sum, say r1 = · · · = rn = r, then r is the spectral radius of T

with associated eigenvector (1, . . . , 1)>.

This corollary yields a basic result on spectral radius and signless Laplacian

spectral radius of regular hypergraphs where each vertex is contained in the same

number of edges, which readers may refer to Chapter 3.

2.2 Nonnegative tensors

Similar to the status of nonnegative matrices in matrix theory, nonnegative tensors is

one of the most significant classes of tensors which have been extensively studied and

widely applied to relevant fields such as signal processing, higher order Markov chains

and our most concerned spectral hypergraph theory. Among numerous properties of
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nonnegative tensors having been found in the literature of tensor analysis, the Perron-

Frobenius theory, which characterizes the association properties of eigenvalues and

eigenvectors, is evidently one of the most critical and fundamental theoretical pieces.

While the Perron-Frobenius theory for matrices is based on irreducible nonneg-

ative matrices, for tensors, the theory has two main versions which are based upon

irreducible nonnegative tensors [11, 60] and weakly irreducible nonnegative tensors

[21], respectively. In this section, both two versions are introduced with an emphasis

to the later one. We will also present the well-known Collatz-Wielandt minimax

theorem in the tensor case and some other basic properties for nonnegative tensors.

It is known that the irreducibility of matrices has many equivalent definitions.

Two popular definitions in the literature, one based on index partition and the other

based on the associated directed graph, are naturally extended to higher order tensors

as bellow.

Definition 2.2. Let T ∈ Tk,n. If there exists a nonempty proper index subset J ⊂ [n]

satisfying Ti1···ik = 0 for any i1 ∈ J and i2, . . . , ik /∈ J , then T is called a reducible

tensor, otherwise it is called irreducible.

To introduce the second definition, we need to review concepts on strongly con-

nected directed graphs. A directed graph (or simply digraph) G = (V,A) consists of

a finite vertex set V and an arc set A whose elements are ordered pairs of V . The

digraph G is strongly connected if for each pair of vertices i, j, there are vertices

v0 = i, v1, . . . , vs = j such that (vl−1, vl) ∈ A for l ∈ [s].

For every T ∈ Tk,n, an associated directed graph is constructed as V = [n] and

(i, j) ∈ A if ∑
j∈{i2,...,ik}

|Tii2···ik | > 0.

Definition 2.3. A tensor T is weakly irreducible if its associated directed graph is
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strongly connected, otherwise it is called weakly irreducible.

It can be found that this two definitions are not equivalent for higher order

tensors, while they are equivalent in the definition of weakly irreducible matrices.

The weakly irreducibity tensors has a wider range than irreducible tensors. In the

following, we show a comprehensive statement of the Perron-Frobenius theorem for

nonnegative tensors.

Theorem 2.1 (The Perron-Frobenius theorem for tensors [11, 21, 60]). Let T ∈ Tk,n

be a nonnegative tensor. Then

(1) ρ(T ) is an H+-eigenvalue of T ;

(2) if T is weakly irreducible, then ρ(T ) > 0 is the unique H++-eigenvalue of T with

a unique positive eigenvector, up to a multiplicative constant;

(3) if furthermore T is irreducible, then ρ is the unique H+-eigenvalue of T as well.

Among various type of tensors, symmetric tensors is closely relevant to the study

of hypergraph spectra. We collect some special properties of symmetric nonnegative

tensors which have been extensively applied in spectral hypergraph theory.

Theorem 2.2. [47] Let T ∈ Tk,n be a symmetric nonnegative tensor, where k ≥

2, n ≥ 1. Then

(1) ρ(T ) = max{T xk : x ∈ Rn+,
∑n

i=1 x
k
i = 1};

(2) ρ(T ) ≥ max{r̄(T ), dmax(T )}, where r̄(T ) and dmax(T ) are the average row sum

and the maximum diagonal entries of T , respectively.

The well-know Collatz-Wielandt minimax theorem is another important result

in matrix theory. In the scenario of tensors, it was first generalized to irreducible

nonnegative tensors which helped the development of algorithms in the computation

of spectral radius. Then the irreducibility condition was then relaxed to the weak

irreducibility and further to the existence of a positive eigenvector [60]. In 2013,
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Zhou, Qi and Wu [67] obtained another version for symmetric nonnegative tensors

as stated below.

Theorem 2.3 (The Collatz-Wielandt minimax theorem for symmetric nonnegative

tensors). [67] Let T ∈ Tk,n be a symmetric nonnegative tensor with k ≥ 2, n ≥ 2.

Then

max
x≥0,x 6=0

min
xi 6=0

(T xk−1)i

xk−1
i

= ρ(T ) = min
x>0

max
i

(T xk−1)i

xk−1
i

.

Symmetry and nonnegativity of a tensor also enables the existence of index par-

tition satisfying the weak irreducibility of the yielded sub-tensors.

Given T ∈ Tk,n. Let J be a nonempty subset of [n]. We use the notation TJ to

denote the tensor in Tk,|J | with entries being Ti1···ik for i1, . . . , ik ∈ J . This tensor TJ

is called a principal sub-tensor of T .

Proposition 2.3. [21, 27] Let T ∈ Tk,n be a symmetric nonnegative tensor. Then

there is a partition (J1, . . . , Js) of [n] such that T (Jr) is weakly irreducible for r ∈ [s]

and Ti1···ik = 0 for all i ∈ Jr, i2, . . . , ik /∈ Jr, r ∈ [s]. Furthermore,

ρ(T ) = max
1≤r≤s

{ρ(T (Jr))}.

From this proposition, we see that the spectral radii of a symmetric nonnegative

tensor can be obtained from its weakly irreducible principal sub-tensors. When it

turns to hypergraph spectra, Proposition 2.3 leads to a critical result on the spectral

radius and signless Laplacian spectra radius of disconnected hypergraphs.

For any tensor in Tk,n, denote |T | as a tensor with entries (|T |)i1···ik = |Ti1···ik |

for ij ∈ [n] and j ∈ [k]. Apparently, |T | is a nonnegative tensor. The following

proposition show that we can bound the spectral radius of an arbitrary tensor from

above by computing the spectral radius of a nonnegative tensor.
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Proposition 2.4. [21] Let A,B ∈ Tk,n and B is a nonnegative tensor with k ≥

2, n ≥ 2. If |A| ≤ B, i.e |Ai1···ik | ≤ Bi1···ik , then ρ(A) ≤ ρ(B).

In the next chapter, the Laplacian tensor L and signless Laplacian tensor Q of a

hypergraph are such two tensors and |L| = Q.
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Chapter 3

Preliminaries of spectral

hypergraph theory

The purpose of this chapter is to introduce the primary part of spectral hypergraph

theory and some useful tools to analyse hypergraph spectrum. We begin with three

major tensor representations of hypergraphs, the Adjacency tensor, the Laplacian

tensor and the signless Laplacian tensor. Then we review some basic properties

of hypergraph spectra derived from the theory of nonnegative tensors, symmetric

tensors in Chapter 2. Finally, we introduce some major methods to study spectra of

hypergraphs, including edge operations, power hypergraph etc., with a majority of

which target on the spectra radius.

3.1 Tensors associated to a hypergraph

The idea of representing a hypergraph by matrix or tensor stems from spectral graph

theory. Using an array to represent a graph diminishes storage cost and facilitates

computation, enables researchers to deal with tricky combinatorial problems in graph

theory by the powerful matrix theory and algebraic methods. Initially, hypergraphs

were considered to be characterized also by matrices and various representations have

been proposed [13, 20] in the literature. However, they ran into obstacle quickly as

those matrices could just partially describe their corresponding hypergraphs but lost
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intrinsic information more or less as edges are specified by more than two vertices.

A more natural way is to generalize the representation from 2-array (matrix)

to multi-array (hypermatrix or tensor). It was until the year of 2008, after the

preliminary stage of developments in the theory of tensor eigenvalues, that the first

tensor representation called the adjacency tensor of hypergraphs was proposed by

Lim in his talk during a seminar in 2008. From then on, studying hypergraphs via

tensors jumped into researchers’ horizons and gradually attracted scholarly interests.

In 2012, Cooper and Dutle [16] published the first paper that systematically studied

the adjacency tensor of uniform hypergraphs. The definition therein is as follows.

Definition 3.1. [16] Let H = (V,E) be a k-graph with V = [n]. The adjacency

tensor A = A(H) of H is a k-order n-dimensional tensor with entries Ai1···ik such

that

Ai1···ik =

{
1

(k−1)!
if {i1 · · · ik} ∈ E,

0 otherwise,

It can be observed that A is a nonnegative and symmetric tensor.

The other two generally accepted representations are the Laplacian tensor and the

signless Laplacian tensor. It should be mentioned that the Laplacian tensors defined

in the literature were in relatively complicated forms based on the schemes of sum

of powers [33, 56], which deviate the brief formalization as the Laplacian matrix

has in graph counterpart. In 2014, Qi [48] introduced the following definition of

Laplacian and signless Laplacian tensors, which are constructed from the adjacency

tensor through adding the information of vertex degrees along its diagonal entries.

Since then, studied on the two Laplacian tensors are utilizing this definition.

Let Ei denote the set of edges in H that contain a vertex i. The parameter

di = |Ei| is called the degree of i in H. A hypergraph with all vertices having a

common degree r is called an r-regular hypergraph.
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Definition 3.2. [48] Let H = (V,E) be a k-graph with V = [n] and di be the degree

of vertex i. The degree tensor D = D(H) of H is a k-order n-dimensional tensor

with entries Di1···ik such that

Di1···ik =

{
di if i1 = · · · = ik = i, i ∈ [n],

0 otherwise,

The Lapalcian tensor L = L(H) and signless Laplacian tenosr Q = Q(H) are two

k-order n-dimensional tensors with entries Li1···ik = Di1···ik − Ai1···ik and Qi1···ik =

Di1···ik+Ai1···ik , respectively. They are simply expressed as L = D−A and Q = D+A

as well.

After half a decade of rather intense study on uniform hypergraphs, some re-

searchers turned their first steps to more general cases. Recently, two extended ver-

sions of the three tensors A,L,Q for general hypergraphs were proposed by Banerjee

et al [1] and Bu et al [9] respectively. In this thesis, we adopt the first version as it

keeps the property of symmetry and received wider acknowledgement from peers.

Definition 3.3. [1] Let H = (V,E) be a hypergraph with maximum edge cardinality

k ≥ 2 and V = [n]. The adjacency tensor of H is a k-order n-dimensional tensor

A = A(H) defined as

Ai1···ik =
|e|
βe
, where βe =

∑
α1,...,α|e|≥1
α1+···+α|e|=k

k!

α1! · · ·α|e|!

if the set of all distinct elements in {i1, . . . , ik} is an edge e ∈ E, and Ai1···ik = 0 for

other i1, . . . , ik ∈ [n]. The Laplacian tensor L and signless Laplacian tensor Q of H

are formulated as D − A and D + A respectively. Here, D is the degree tensor of

H with order k and dimension n whose ith diagonal entry being di for i ∈ [n] and

non-diagonal entries being zero.
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Figure 3.1: Two general hypergraphs

The maximum and minimum edge cardinality of a hypergraph will also be called

rank and co-rank of it for abbreviation.

Following is an example to show difference between the adjacency tensor of a

3-graph and a non-uniform hypergraph.

Example 3.1. Figure 3.1 depicts a 3-graph H and a non-uniform hypergraph F

with rank 3 and co-rank 2. According to Definitions 3.1 and 3.3, the entries of their

adjacency tensors A(H) and A(F ) are listed as below.

For the uniform hypergraph H we have A(H) = (ai1i2i3) :

a123 = a132 = a213 = a231 = a312 = a321 = a234 = a243 = a324 = a342 = a423 = a432 =

1
2
, and other ai1i2i3 = 0.

For the non-uniform hypergraph F we have A(F ) = (bi1i2i3) :

b123 = b132 = b213 = b231 = b312 = b321 = 1
2
,

b224 = b242 = b422 = b244 = b424 = b442 = 2
2× 3!

2!1!

= 1
3
,

and other ai1i2i3 = 0.

Recall from Definiton 2.1 that for each square tensor T , eigenvalues and eigenvec-

tors are defined through a homogeneous polynomial system and its spectrum Spec(T )
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is the collection of all eigenvalues with multiplicity. We call the eigenvalues (spec-

trum) of A as the eigenvalues (spectrum) of the hypergraph H, while eigenvalues

(spectrum) of L and Q are called the Laplaican and signless Laplacian eigenvalues

(spectrum) of H respectively. Besides, ρ(A), ρ(L), ρ(Q) are called the spectra ra-

dius, the Laplacian spectral radius and the signless Laplacian spectral radius of H

respectively.

It deserves remark that as the above tensor are symmetric, according to a propo-

sition for symmetric tensors [46], permuting some of the indices does not influence

the eigenvalues, which means the spectra of A, L, Q do not depend on the labeling

of vertices.

Apart from symmertry, A,Q are nonnegative which make the spectral theory

of nonnegative tensors applicable in our study of hypergraphs spectra. Hence the

elemental properties for symmetric and nonnegative tensors reviewed in the last

chapter can be applied.

3.2 Properties of the adjacency, Laplacian and sign-

less Laplacian tensors

Denote by ∆ and d the maximum and the average vertex degree (the average number

taken over all vertex degrees) of a hypergraph H = (V,E). From the definition and

structure of the three tensors, it is evident that the ith row sum of A and Q are the

vertex degree di and 2di respectively, and the Laplacian tensor L has equal row sum

zero.

According to Propositions 2.1, 2.2, Corollary 2.1 and Theorem 2.2 (2), we have

the following basic properties on the three types of spectra of a hypergraph.

Theorem 3.1. Let H = (V,E) be a hypergraph with n ≥ 2 vertices, A,L and Q are

the adjacency tensor, the Laplacian tensor and the signless Laplacian tensor of H
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respectively. Then

(1) |λ| ≤ ∆ for λ ∈ Spec(A), |µ−∆| ≤ ∆ for µ ∈ Spec(L) ∪ Spec(Q);

(2) d ≤ ρ(A) ≤ ∆ and 2d ≤ ρ(Q) ≤ ρ(A) + ∆;

(3) ρ( L) ≤ ρ(Q) ≤ 2∆;

(4) 0 is an H-eigenvalue of L with H-eigenvector (1, . . . , 1)>;

(5) if furthermore H is r-regular, then ρ(A) = r and ρ(Q) = 2r.

We now discuss the irreducibility and weak irreducibility of the ajacency tensor,

the Lapalcian tensor and the signless Laplacian tensor of a hypergraph.

Suppose that H = (V,E) is a hypergraph with V = [n], rank k and co-rank

at least 3. Then by setting J = {1, . . . , n − 1}, we have that for any i1 ∈ J and

i2, . . . , ik /∈ J , Ai1···ik ≡ Ai1n···n = 0. Thus the adjacency tensor A is irreducible.

The reducibility of L,Q can be similarly proved. However, the weak irreducibility

of the adjacency tensor and the two Laplacian tensors were verified respectively in

[44] and [48] for uniform hypergraphs. Recently, the results were extended to general

hypergraphs as well [66].

Theorem 3.2. Let H = (V,E) be a hypergraph with n ≥ 2 vertices, A,L and Q are

the adjacency tensor, the Laplacian tensor and the signless Laplacian tensor of H

respectively. Then A,L and Q are weakly irreducible if and only if H is connected.

The above results establishes a link between the weak irreducibility of tensors and

the connectivity of hypergraphs which enables us to employ the pleasant properties

of weakly irreducible tensors in the study of hypergraphs. Then by Theorem 2.1, the

property for ρ(A), ρ(Q) from the Perron-Frobenius theorem is stated as below.

Theorem 3.3. Let H = (V,E) be a hypergraph with n ≥ 2 vertices. Then ρ(A) >

0 is the unique H++-eigenvalue of A with a unique positive eigenvector, up to a

multiplicative constant. Similar conclusions hold for Q.
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As the adjacency tensor and the signless Laplacian tensor are symmetric and

nonnegative, we obtain the following from Theorems 2.2, 2.3 and Propostion 2.3.

Theorem 3.4. Let H = (V,E) be a hypergraph with n ≥ 2 vertices. Then

(1) ρ(A) = max{Axk : x ∈ Rn+,
∑n

i=1 x
k
i = 1};

(2) maxx≥0,x 6=0 minxi 6=0
(Axk−1)i
xk−1
i

= ρ(A) = minx>0 maxi
(Axk−1)i
xk−1
i

;

(3) If H has s connected components G1, . . . , Gs and A(Gr) is the adjacency tensor

of Gr for r ∈ [s], then ρ(A) = max{ρ(A(Gr)), r ∈ [s]}.

For simplicity, we writeAi1···ik asAe if the distinct elements of {i1, . . . , ik} consists

an edge e ∈ E. Then the eigenequations in Definition 2.1 at vertex i for A,L and Q

of a hypergraph can be rewritten as

λxk−1
i =

∑
e∈Ei

Aexe\i,

(di − µ)yk−1
i =

∑
e∈Ei

Aeye\i,

(ν − di)zk−1
i =

∑
e∈Ei

Aeze\i,

where (λ,x), (µ,y) and (ν, z) are corresponding eigenpairs.

Denote by 1j the unit vector with a unique nonzero entry 1 as the ith entry. Note

that for a k-graph, any off-diagonal entry of A,L,Q is zero if a number repeats in

the indices. Due to this special structure, we have the following proposition.

Proposition 3.1. Let H = (V,E) be a k-graph with n ≥ 2 vertices. Then the n unit

vectors 1j for i ∈ [n] are eigenvectors of A,L,Q associated with the eigenvalue 0 for

A and eigenvalues dj for L,Q, respectively.
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3.3 Some relevant spectral methods

This section may contain three main ingredients: edge operations, power hypergraphs

and the weighted incidence matrices.

We begin with the edge operations introduced in [34] and [64] for k-graphs which

are helpful in comparing spectral radius between different hypergraphs.

Two vertices appeared in one edge are called adjacent and said to be connected by

this edge. If an edge contains a vertex v, then it is an incident edge of v. A vertex has

a unique incident edge is called a pendent vertex, otherwise we call it non-pendent.

In a k-graph, a pendent edge refers to an edge containing k − 1 pendent vertices.

The first edge operation may be refered to as edge grafting as it grafts edge(s)

from a bunch of vertices to aother vertex.

Definition 3.4. [34] Let H = (V,E) be a k-graph. Suppose there exists u ∈ V ,

e1, · · · , er ∈ E for r ≥ 1 such that u /∈ ∪ri=1ei. Let vi ∈ ei and write e′i = (ei\{vi}) ∪

{u} for i ∈ [r]. Denote H ′ = (V,E ′) as the hypergraph with E ′ = (E\{ei : i ∈

[r]}) ∪ {e′i : i ∈ [r]}. Then H ′ is said to be obtained from H by moving edges

(e1, · · · , er) from (v1, · · · , vr) to u.

It was proved that this operation, if it generates no multiple edges (two edges

containing exactly the same vertices), then the spectral radius increases as long as a

requirement of the associated eigenvector (Perron vector)is satisfied.

Lemma 3.1. [34] Let H be a connected k-graph. Let H ′ be the k-graph obtained

from H by moving edges (e1, · · · , er) from (v1, · · · , vr) to u where r ≥ 1. Suppose

that H ′ does not contain multiple edges. If x is a Perron vector of A(H) and xu ≥

max1≤i≤r xvi, then ρ(A(H ′)) > ρ(A(H)).

The second edge operation is a special case of edge grafting. Through adding re-

striction on the relevant vertices and edges, an increase of spectral radius is obtained
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without the condition on Perron vector.

Lemma 3.2. [64] Let H be a connected k-graph with n vertices and k ≥ 3. Suppose

that H has two edges e and f satisfying |e ∩ f | = k − r (2 ≤ r ≤ k − 1). Let

V1 = e ∩ f , e\V1 = {u1, · · · , ur} and f\V1 = {v1, · · · , vr}, where r ≥ 2, u1, v1 are

non-pendent vertices while u2, · · · , ur and v2, · · · , vr are pendent vertices. Denote by

He,f the hypergraph obtained from H through moving all the edges incident with v1

except f from v1 to u2. Then ρ(A(He,f )) > ρ(A(H)).

Besides, we may present another statement of Lemma 3.1 as below which fits our

proof better in the next chapter.

Lemma 3.3. Let H be a connected k-graph. Let r ≥ 2 and v1, · · · , vr be some

vertices of H. If Hi is a simple hypergraph obtained from H through moving at least

one edge from vertices {vj : j ∈ [r], j 6= i} to vi, then

max{ρ(A(Hi)) : i ∈ [r]} > ρ(A(H)).

From this restatement, we derive an corollary for a special case.

Corollary 3.1. Let H be a connected k-graph and u1, u2 are two adjacent vertices in

H. Denote by H ′ the k-graph obtained from H through moving all edges containing

u2 except edges containing both u1, u2 from u2 to u1. If H ′ � H, then

ρ(A(H)) < ρ(A(H ′)).

Proof. If u1 or u2 is only contained by their common edges, then H ∼= H ′. Thus the

assumption H ′ � H means both u1, u2 have incident edges other than their common

edges. Denote by H ′′ the hypergraph obtained from H through moving each incident

edge of u1 except common edges of u1, u2 from u1 to u2. Observe that H ′ and H ′′ have

no multiple edges as each common edge of u1, u2 remains unchanged. In addition,

H ′′ ∼= H ′. By Lemma 3.3, ρ(A(H)) < max{ρ(A(H ′)), ρ(A(H ′′))} = ρ(A(H ′)).
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Before the introduction of power hypergraphs, we may review a spectral technique

on graphs which will be used in the preliminary work of next chapter. Recall that

for a multi-graph [5] with n vertices and no loops, its the adjacency matrix is an n

by n matrix with the (ij)-entry being the number of parallel edges containing i and

j if i 6= j and zero elsewhere.

The characteristic polynomial of a graph G is denoted as φG(x) = det(xI −

A(G)), where A(G) denotes the adjacency matrix of G and I is the identity matrix.

Suppose that the graph G can be obtained from two disjoint graphs K and F through

amalgamating a vertex v of F and w of K, then the following relation are showed in

[50, Remark 1.6]:

φG(x) = φK(x)φF−v(x) + φK−w(x)φF (x)− xφF−v(x)φK−w(x), (∗)

where F−v and K−w are the graphs obtained from F and K through an elimination

of v and w and all edges incident with them respectively.

Now we move on to power hyeprgraphs and generalized power hypergraphs.

The definition of power hypergraph was first proposed in [28] based on a simple

graph. Actually, a power hypergraph can also be constructed with graphs without

loops but having multiple edges, i.e. edges with the same two ends.

Let G be a graph containing no loops. For an integer k ≥ 3, the kth power of G

is a k-graph obtained from G through blowing up each edge to hyperedge by adding

k − 2 new vertices, and denoted as Gk. If a hypergraph is a power of some graph

without loops, then we call it a power hypergraph [28]. The following figure depicts

a star and its 3rd power.

Later, for the investigation of the non-odd-bipartiteness of even uniform hyper-

graphs, the generalized power hypergraph of a 2-graph was introduced and studied

in [31, 30]. Given a 2-graph without loops, a generalized power hypergraph Gk,s with

s ≤ k
2

is obtained from G through blowing up each vertex into an s-set, and every
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Figure 3.2: The 3rd power of a star

edge into a (k2s)-set. It is clear that when s = 1, Gk,s is the power hypergraph of G.

This concept was further generalized to the case when the generating hypergraph G

is a uniform hypergraph in [30].

The definition of [30] is now extended such that the resulting hypergraph can be

a non-uniform hypergraph.

Definition 3.5. Let G = (V,E) be a simple r-uniform hypergraph with r ≥ 2. For

some k ≥ r and 1 ≤ s ≤ bk
r
c, a generalized power H = (V ′, E ′) of G is obtained

by constructing new mutually disjoint vertex sets Vi (of size s) and Ve (of maximum

size k − rs) for all i ∈ V, e ∈ E such that

(1) V ′ = (∪i∈V Vi) ∪ (∪e∈EVe);

(2) for each e′ ∈ E ′, there exists e ∈ E satisfying e′ = (∪i∈eVi) ∪ Ve.

The set of all generalized power hypergraph obtained from G with rank k and fixed s

is denoted as Gk,s, and G is called a base of H ∈ Gk,s.

One of the most useful result on this class of hypergraphs is the relation between

spectral radius of power hypergraph and that of its base, which was first proposed in

[69] and then extended to generalized power hypergraphs of an r-graph in [30]. We

now state them in one theorem.

Theorem 3.5. Let H ∈ Gk,s be a generalized power hypergraph as in Definition 3.5
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of an r-graph G = (V,E), k ≥ max{r, 3}. Then

ρ(AH) = [ρ(AG)]
rs
k .

This equation in the above theorem acts as one of the main tools in the next

chapter and inspires us to consider the parallel situation for non-uniform case in

Chapter 6.

Finally, we shall introduce another significant tool called the weighted incidence

matrix for hypergraphs introduced by Lu and Man [39].

Definition 3.6. [39] LetH = (V,E) be a k-graph. A weighted incidence matrix B of

H is a |V | × |E| matrix satisfies that any v ∈ V and e ∈ E, if v ∈ e, then the entry

B(v, e) > 0, and B(v, e) = 0 if v /∈ e.

Through a series of results derived in [39], we can characterize the spectral radius

by a particular value α through a construction of consistent α-normal, α-subnormal

or α-supernormal weighted incidence matrix for the corresponding hypergraph. The

part on α-subnormal case are presented as below.

Definition 3.7. [39] A hypergraph H is called α-subnormal if we can find a weighted

incidence matrix B such that

(1)
∑

e:v∈eB(v, e) ≤ 1, for each v ∈ V (H);

(2)
∏

v∈eB(v, e) ≥ α, for each e ∈ E(H).

If no strict inequality appears in (1) and (2), then H is called α-normal. Otherwise,

H is strictly α-subnormal. If furthermore,

l∏
i=1

B(vi, ei)

B(vi−1, ei)
= 1

for each cycle v0e1v1e2 · · · elv0 (l ≥ 1) of H, then B is consistent. In this case, we

say that H is strictly and consistently α-subnormal.
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Lemma 3.4. [39] Let H be a k-graph. Then

(1) ρ(A(H)) = α−
1
k if and only if H is consistently α-normal;

(2) if H is strictly and consistently α-subnormal, then

ρ(A(H)) < α−
1
k .

It should be remarked here that the spectral radius of the original paper [39] , say

ρ∗(A(H)), is multiplied by (k − 1)!, i.e. ρ∗(A(H)) = (k − 1)!ρ(A(H)). The formula

therein ρ∗(A(H)) < (k − 1)!α−
1
k has been adjusted to the above one in [43].
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Chapter 4

Spectral radius of unicyclic and

bicyclic hypergraphs

Recall from Section 1.2 that a connected k-graph with n vertices and m edges is

called r-cyclic if n = m(k−1)−r+1. Particularly when r takes the value 1 or 2, the

k-graph is called unicyclic or bicyclic. This chapter is devoted to our investigation on

k-graphs with largest spectral radii among the set of all simple connected unicyclic

and bicyclic k-graphs.

With a initial work on the adjacency tensor by Cooper and Dutle [16], Li, Shao

and Qi [34] took the first step on extremal problems on hypergraph spectra and

determined the maximum spectral radius among all supertrees. In the following

year, Yuan, Shao and Shan [64] proceeded with the study on uniform supertrees

and obtained a detailed order of the supertrees attaining largest spectral radii by

using edge operations generalized to hypergraphs and the spectral property of power

hypergraphs [69].

The first study of extremal problems for uncyclic and bicyclic hypergraphs was

carried out by Fan, Tan, Peng and Liu [19] three years ago. In this paper, they re-

vealed a necessary condition for hypergraphs with maximum spectral radius among a

certain group, based on which the unique hypergraph attaining the maximum spec-

tral radii over all unicyclic k-graphs was determined. Besides, they found the linear
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hypergraph with maximum spectral radius over all linear unicyclic k-graphs and

proposed several candidates for the bicyclic case. Later, based on that nomination,

Kang et al. [30] determined the hypergraph maximizing the spectral radius among

all linear bicyclic k-graphs.

However, the above preceding work do not cover non-linear bicyclic hypergraphs,

which are actually the major part of bicyclic hypergraphs. On the other hand,

there is also a blank about uncyclic hypergraphs with spectral radius between the

maximum spectral radius among all unicyclic hypergraphs and that over all linear

unicyclic hypergraphs.

With a motivation to make up the deficiency and do some contributions to the

undeveloped extremal spectral hypergraph theory, we conduct a study on the entire

groups of uncyclic and bicyclic hypergraphs. By modifying edge operations intro-

duced in [34, 64], utilizing the spectral property of power hypergraphs, the weighted

incidence matrix and a previous result on linear unicyclic hypergraphs, we find out

the first five k-graphs attaining largest spectral radius over all unicyclic hypergraphs

and the first three among all bicyclic hypergraphs.

4.1 Structures of unicyclic and bicyclic k-graphs

Let Um and Bm be the set of all connected unicyclic and bicyclic hypergraphs of m

edges respectively with m ≥ 2. In this section, some basic structural properties of

unicyclic and bicyclic hypergraphs will be presented.

Recall from Section 1.2 that a cycle in H can be formed from a path and an edge

containing the two end vertices of that path. The length of a cycle refers to the edge

number of this cycle. We call an edge appeared in a cycle as a cycle edge.

A k-graph of is called r-cyclic if m(k − 1) − n + l = r, where n,m, l are the

numbers of its vertices, edges and connected components [19], respectivly. Observe
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that r ≥ 0, thus for every simple k-graph there is n ≤ m(k − 1) + l. Additionally, it

was verified in the Proposition 4 of [3] that r = 0 if and only if the k-graph is acyclic,

i.e. it does not have cycles.

In the following, we prove that an r-cyclic k-graph can not have an (r+ 1)-cyclic

subgraph.

Lemma 4.1. Let H = (V,E) be a simple connected r-cyclic k-graph of n vertices

and m edges. Suppose H1 = (V1, E1) is a connected subgraph of H. If H1 is r1-cyclic,

then r1 ≤ r.

Proof. Denote E2 = E\E1 and V2 = ∪e∈E2e. Then H2 = (V2, E2) is a k-uniform

subgraph of H. Let |Vi| = ni and |Ei| = mi for i = 1, 2. Then we have

n1 = m1(k − 1)− r1 + 1,

as H1 is connected and r-cyclic. Let l be the number of connected components of H2.

Then n2 ≤ m2(k − 1) + l. Due to the connectivity of H, each connected component

of H2 intersects with H1 at some vertices. Thus n1 + n2 ≥ n+ l. Then we have

n ≤ n1 + n2 − l ≤ m1(k − 1)− r1 + 1 +m2(k − 1) + l − l = m(k − 1)− r1 + 1.

Therefore r1 ≤ m(k − 1)− n+ 1 = r.

According to the property of Lemma 4.1, we derive the following restrictions on

edge intersection for unicyclic and bicyclic k-graphs.

Proposition 4.1. Let F ∈ Um and K ∈ Bm. Then

(1) each pair of vertices in F have at most two common edges;

(2) each triple of vertices in F share at most one common edge;

(3) each pair of vertices in K have at most three common edges;

(4) each triple of vertices in K share at most two common edges;
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Proof. If there are a pair of vertices in F with three common edges, or there are

a triple of vertices with two common edges, then there is a bicyclic subgraph in H

containing those common edges, which is yields a contradiction to Lemma 4.1.

If K has two vertices with four common edges, then those common edges yields a

3-cyclic subgraph in K, which is a contradiction to Lemma 4.1. If there are a triple

of vertices in K with three common edges, then the three edges yields a 4-cyclic

subgraph, which contradicts Lemma 4.1.

The Lemma 2 of [19] shows that if there is merely one cycle in H, then H is

unicyclic (r = 1). Following is a proof of the inverse.

Lemma 4.2. Let H be a simple connected k-graph. Then H is unicyclic if and only

if it contains exactly one cycle.

Proof. It is sufficent to prove the necessity. Suppose H = (V,E) with |V | = n,

|E| = m.

Let e1 be an edge appeared in an cycle C = v1e1v2 · · · vsesv1. Let u be a new

vertex and f = (e1\{v1}) ∪ {u}. Then the k-graph H ′ = (V ∪ {u}, (E\{e1}) ∪ {f})

is connected and with n+ 1 vertices and m edges.

Note that n = m(k−1) as H is unicyclic. Therefore, we have n+1 = m(k−1)+1

implying H ′ is acyclic. Thus e1 is contained by every cycle in H. Due to the

arbitrariness of e1, we can concluded that every cycle edge of H appears in each

cycle of H, i.e., all cycles of H have a common edge set with a common length s.

Suppose that s = 2, then from Proposition 4.1 (ii), we know that the two cycle

edges intersect at exactly two vertices. Therefore H has only one cycle.

If s ≥ 3. Let K be the subgraph consisting of all cycle edges in H with n′

vertices. Since we can arrange all edges of K in a cyclic sequence such that any two

consecutive edges have at least one common vertices. If we can find two consecutive
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Figure 4.1: Some unicyclic and bicyclic graphs

edges in K with an intersection of two vertices, then

n′ ≤ s+ 1 + s(k − 2)− 2.

Therefore r′ = s(k − 1)− n′ + 1 is at least 2, which indicates that K is r′-cyclic and

r′ ≥ 2. Now we obtain a contradiction to Lemma 4.1. Thus, each two consecutive

edges in K intersects at merely one vertex, implying that H has exactly one cycle.

A different statement to verify the above lemma can be found in the Propsition

4.57 of [49].

4.2 Comparison of spectral radius

Previous to the proof of main results, we list some comparison of spectral radius be-

tween graphs and hypergraphs that are necessary to the next two sections. Through-

out this section, the spectral methods introduced in the last chapter are well em-

polyed.

We may begin with the comparison between graphs. Denote by G(a, b) a multi-

graph obtained from a cycle of length 2 through attaching a and b pendent edges

at its two vertices u and v respectively. Let M(a, b) be the multi-graph obtained

from G(a, b) through adding an extra edge connecting the vertices u and v (See

Figure 4.1).
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Lemma 4.3. Let G1, G2, G3 and G(a, b) be the graphs shown in Figure 4.1 with m

edges. Then we have for m ≥ 8 that

ρ(A(G(m− 2, 0))) > ρ(A(G3)) ≥ ρ(a(G(m− 4, 2))) > max{ρ(A(G1)), ρ(A(G2))},

where the second equality holds if and only if m = 8.

Proof. Note that G1 can be obtained from a triangle C3 and a star K1,m−3 through

amalgamating a vertex in C3 and the unique non-pendent vertex in K1,m−3. Utilizing

the formula (∗) in Section 3.3, we have

φG1(x) = xm−3 · φC3(x) + φP2(x) · φK1,m−3(x)− x · xm−3 · φP2(x)

= xm−4(x+ 1)[x3 − x2 − (m− 1)x+m− 3],

where P2 denotes a path with one edge. Similarly, we obtain the characteristic

polynomials for G(a, b), G2 and G3 as follows.

φG(a,b)(x) = xm−4[x4 − (m+ 2)x2 + ab],

φG2(x) = xm−4[x4 − (m+ 2)x2 + 4(m− 3)],

φG3(x) = xm−4[x4 − (m+ 2)x2 +m].

Thus

ρ(A(G(m− 2, 0)))2 = m+ 2, ρ(A(G(m− 4, 2)))2 =
1

2

(
m+ 2 +

√
m2 − 4m+ 36

)
,

ρ(A(G2))2 =
1

2

(
m+ 2 +

√
m2 − 12m+ 52

)
, ρ(A(G3))2 =

1

2

(
m+ 2 +

√
m2 + 4

)
.

If m ≥ 8, then

ρ(A(G(m− 2, 0)))2 > ρ(A(G3))2 ≥ ρ(A(G(m− 4, 2)))2 > ρ(A(G2))2,

equality holds only if m = 8. Note that the above inequalities holds for the spectral

radii as well.
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Figure 4.2: Some unicyclic k-graphs

Now we compare ρ(A(G(m− 4, 2))) and ρ(A(G1)).

Let ρ = ρ(A(G1)) for simplicity. By the characteristic polynomial φG1(x), we

have ρ3 = ρ2 + (m− 1)ρ−m+ 3. Define h(x) = x4 − (m+ 2)x2 + 2(m− 4). Then

h(ρ) = ρ4 − (m+ 2)ρ2 + 2(m− 4)

= ρ[ρ2 + (m− 1)ρ−m+ 3]− (m+ 2)ρ2 + 2(m− 4)

= ρ3 − 3ρ2 − (m− 3)ρ+ 2(m− 4)

= ρ2 + (m− 1)ρ−m+ 3− 3ρ2 − (m− 3)ρ+ 2(m− 4)

= −2

(
ρ− 1

2

)2

+m− 9

2
.

Since ρ > ρ(A(K1,m−1)) =
√
m− 1, we obtain for m ≥ 6 that

h(ρ) < m− 9

2
− 2

(√
m− 1− 1

2

)2

< 2
√
m− 1−m < 0.

By the characteristic polynomial φG(a,b)(x), ρ(A(G(m − 4, 2))) is the largest zero

point of h(x), hence it is strictly larger than ρ = ρ(A(G1)), which completes the

proof.

Now we present some spectral radii comparison between uncyclic hypergraphs

using the weighted incidence matrices.
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Let U2(a, b) be the kth power of G(a, b). Let U1
3 (a, b; c) be the k-graph obtained

from U2(a, b) through attaching c pendent edges at an arbitrary pendent vertex w in

a cycle edge. Denote by U2
3 (a, b; c) the k-graph obtained from U2(a + 1, b) through

attaching c pendent edges at a pendent vertex w adjacent to u outside the cycle.

The k-graphs U1
3 (a, b; c) and U2

3 (a, b; c) are presented in Figure 4.2, with each

edge representing by a closed curve and all non-pendent vertices in distinct color.

By setting α as an expression of the spectral radius of a certain hypergraph

and constructing specific weighted incidence matrices, the following lemma builds a

connection of spectral radii between two subclasses of unicyclic hypergraphs.

Lemma 4.4. Let m ≥ 8. Then for a ≤ 1,

ρ(A(U1
3 (a, 0;m− 2− a))) < ρ(A(U2(m− 4, 2))).

Proof. Set α = ρ(G(m−4, 2))−2. As the hypergraph U2(m−4, 2) is the kth power of

the graph G(m−4, 2), according to Lemma 2 we obtain α−
1
k = ρ(A(G(m−4, 2)))

2
k =

ρ(A(U2(m− 4, 2))).

We claim that for m ≥ 8 and a ≤ 1, U1
3 (a, 0;m−2−a) is strictly and consistently

α-subnormal.

We now construct a weighted incidence matrix B for U1
3 (a, 0;m − 2 − a). Set

B(p, e) = 1 for every pendent vertex p ∈ e. For non-pendent vertex q contained in a

pendent edge f , set B(q, f) = α.

Denote by e1 and e2 the two non-pendent edges of U1
3 (a, 0;m−2−a) and suppose

w ∈ e2. Let xi = B(u, ei), yi = B(v, ei) for i = 1, 2 and let z = B(w, e2). Set

x1 + x2 = 1− aα, y1 + y2 = 1, z = 1− (m− 2− a)α, x1y2 = x2y1, x1y1 = α.

Since x1y2 = x2y1 for the unique cycle ue1ve2u, we know that B is consistent by Def-

inition 3.7. It can be verified that all equalities hold for (1) and (2) of Definition 3.7

except on e2.
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Now we compare x2y2z with α. Let A = x2
x1

= y2
y1
> 0. Then

1− aα = (x1 + x2)(y1 + y2) = (1 + A)2x1y1 = (1 + A)2α.

Thus A =
√

1
α
− a− 1 ≥

√
1
α
− 1− 1. Since

1

α
= ρ(A(G(m− 4, 2)))2 =

1

2

(
m+ 2 +

√
m2 − 4m+ 36

)
> m,

when m ≥ 15 we have that

x2y2z

α
= [1− (m− 2− a)α]A2

≥
[

1

α
− (m− 2)

] (√
1− α−

√
α
)2

> 2

(√
1− 1

m
−
√

1

m

)2

≥ 2

(√
14

15
−
√

1

15

)2

> 1.

It is shown by direct computation that the value of
[

1
α
− (m− 2)

]
(
√

1− α−
√
α)2

lies in the interval (1.1, 1.4) in the case 8 ≤ m ≤ 14. Thus
∏

t∈e2 B(t, e2) = x2y2z > α

for m ≥ 8. Hence by Definition 3.7, U1
3 (a, 0;m − 2 − a) is strictly α-subnormal.

According to Lemma 3.4 (ii),

ρ(A(U1
3 (a, 0;m− 2− a))) < α−

1
k = ρ(A(U2(m− 4, 2))).

Finally, we have some results for bicyclic case.

Denote by B2(a, b) the kth power of M(a, b) as shown in Figure 4.1. Let B1
3(a, b, c)

be the k-graph with exactly two non-pendent edges with intersection of three vertices
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Figure 4.3: Some bicyclic k-graphs

u, v, w, and a, b, c be the number of pendent edges attached at u, v, w respectively.

Denote by B2
3(a, b, c) (B3

3(a, b, c), resp.) the hypergraph obtained from U1
3 (a, b; c)

through adding a new edge containing u, v (v, w resp.) and k − 2 new pendent

vertices. Denote by B4
3(a, b, c) (B5

3(a, b, c) and B6
3(a, b, c) resp.) the hypergraph

obtained from U2
3 (a, b; c) through adding a new edge containing u, v (u,w and v, w

resp.) and k − 2 new pendent vertices. Denote by B4 the bicyclic hypergraph

obtained from B1
3(0, 0, 0) through attaching m − 2 pendent edges at an arbitrary

pendent vertex t in a cycle edge.

Lemma 4.5. Let m ≥ 5. Then

(i) ρ(A(B1
3(m− 2, 0, 0))) = ρ(A(B2(m− 3, 0)));

(ii) max{ρ(A(B1
3(m−3, 1, 0))), ρ(A(B3

3(0,m−3, 0))), ρ(A(B4))} < ρ(A(B2(m−4, 1))).

Proof. Employing the amalgamating operation introduced in Section 3.3 and the
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formula (∗), we obtain the characteristic polynomial of M(a, b) as below:

φM(a,b)(x) = xm−5[x4 − (m+ 6)x2 + ab],

where a+ b+ 3 = m. Hence

ρ(A(M(m− 3, 0)))2 = m+ 6, ρ(A(M(m− 4, 1)))2 =
1

2

(
m+ 6 +

√
m2 + 8m+ 52

)
.

Let

α = ρ(A(M(m− 3, 0)))−2 =
1

m+ 6
, β = ρ(A(M(m− 4, 1)))−2.

Claim 1. B1
3(m− 2, 0, 0) is consistently α-normal.

We should construct a weighted incidence matrix B for B1
3(m − 2, 0, 0). Set

B(p, e) = 1 for each pendent vertex p ∈ e and set B(q, f) = α for every non-pendent

vertex q in a pendent edge f . Let e1 and e2 be the two edges intersecting at u, v, w.

Set B(u, ei) = 1−(m−2)α
2

and B(v, ei) = B(w, ei) = 1
2

for i = 1, 2.

Observe that
∑

e:t∈eB(t, e) = 1 for each vertex t and
∏

t∈eB(t, e) = α for each

edge e in B1
3(m − 2, 0, 0). Besides, B is consistent for both three cycles in B1

3(m −

2, 0, 0). Hence by Definition 3.7, B1
3(m− 2, 0, 0) is consistently α-normal.

Therefore by Lemma 2 and Lemma 3.4 (1),

ρ(A(B1
3(m− 2, 0, 0))) = α−

1
k = ρ(A(M2(m− 3, 0)))

2
k = ρ(A(B2(m− 3, 0))).

Claim 2. B1
3(m− 3, 1, 0) is strictly and consistently β-subnormal.

We may construct a weighted incidence matrix B for B1
3(m − 3, 1, 0) first. Set

B(p, e) = 1 for every pendent vertex p ∈ e and set B(q, f) = β for every non-pendent

vertex q contained in a pendent edge f . Denote by e1 and e2 the two non-pendent

edges.

Set xi = B(u, ei), yi = B(v, ei) and zi = B(w, ei) for i = 1, 2. Let

x1 + x2 = 1− (m− 3)β, y1 + y2 = 1− β, z1 + z2 = 1, x2y2z2 = β,

41



and let A = x1
x2

= y1
y2

= z1
z2
> 0.

Since x1y2 = x2y1, x1z2 = x2z1 and y1z2 = y2z1 for both of the three cycles, B

is consistent by Definition 3.7. Obeserve that all equalities hold for (1) and (2) of

Definition 3.7 except on e1.

Compare x1y1z1 with β. Observe that

(1− β)[1− (m− 3)β] = (x1 + x2)(y1 + y2)(z1 + z2) = (1 + A)3x2y2z2 = (1 + A)3β.

Since β−
1
2 = ρ(A(M(m − 4, 1))) is the largest root of x4 − (m + 6)x2 + m − 4 = 0,

there is β−2 − (m− 2)β−1 + (m− 3) = 8β−1 + 1. Hence

(1 + A)3 = (1− β)[1− (m− 3)β]β−1

= [β−2 − (m− 2)β−1 + (m− 3)]β

= (8β−1 + 1)β > 8.

Thus A > 1 and we have∏
t∈e2

B(t, e2) = x1y1z1 = A3x2y2z2 = A3β > β.

Therefore, B1
3(m− 3, 1, 0) is strictly and consistently β-subnormal.

Claim 3. B3
3(0,m− 3, 0) is strictly and consistently β-subnormal.

Now a weighted incidence matrix B may be constructed for B3
3(0,m− 3, 0). Let

e1, e2, e3 be the non-pendent edges with {u, v} ⊂ e2, {v, w} ⊂ e3, and all of u, v, w

are contained in e1.

Let x1 = B(u, e1), x2 = B(u, e2), z1 = B(w, e1), z3 = B(w, e3) and yi = B(v, ei)

for i = 1, 2, 3. Let A = x1
x2

= y1
y2

= y1
y3

= z1
z3
> 0,

x2 = z3 =
1

A+ 1
, y2 = y3 =

1− (m− 3)β

A+ 2
, x2y2 = z3y3 = β.

Assign 1 to B(p, e) for each pendent vertex p ∈ e and β to B(q, f) for every

non-pendent vertex q in a pendent edge f .
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By the above settings, B is consistent for the three cycles ue1ve2u, ve1we3v and

ue1we3ve2u. Additionally, all equalities hold for (1) and (2) of Definition 3.7 except

on e1.

Since 1
β

= ρ(A(M(m− 4, 1)))2 > m+ 5, there is

(A+ 2)(A+ 1) =
1− β(m− 3)

x2y2

=
1− β(m− 3)

β
> 8.

Hence A >
√

33−3
2

> 1.37. Thus,

x1y1z1

β
=
A3x2y2z3

β
=

A3

A+ 1
=

1

A−2 + A−3
> 1.

Since
∏

t∈e1 B(t, e1) = x1y1z1 > β, B3
3(0,m − 3, 0) is strictly and consistently

β-subnormal.

Claim 4. B4 is strictly and consistently β-subnormal.

A weighted incidence matrix B will be constructed for B4. Denote by e1, e2 the

two non-pendent edges in B4 and t ∈ e2. Assign 1 to B(p, e) for each pendent vertex

p ∈ e and β to B(q, f) for every non-pendent vertex q in a pendent edge f . Set

B(u, e2)

B(u, e1)
=
B(v, e2)

B(v, e1)
=
B(w, e2)

B(w, e1)
= A, B(t, e2) = 1− β(m− 2),

B(u, e1) = B(v, e1) = B(w, e1) =
1

1 + A
= β

1
3 .

Observe that B is consistent and all equalities hold for (1) and (2) of Definition 3.7

except on e2. As A = 3

√
1
β
− 1 > 1 and

1

β
= ρ(A(M(m− 4, 1)))2 > m+ 5 ≥ 10
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in the case m ≥ 5, it follows that

1

β

∏
s∈e2

B(s, e2) = A3[1− (m− 2)β]

= (1− 3
√
β)3

(
1

β
− (m− 2)

)

> 7

(
1− 3

√
1

10

)3

> 1.

Therefore, B4 is strictly and consistently β-subnormal.

According to Claims 2, 3, 4, Lemma 3.5 and Lemma 3.4 (ii), we have

ρ(A(H)) < β−
1
k = ρ(A(M(m− 4, 1)))

2
k = ρ(A(B2(m− 4, 1)))

if H ∈ {B1
3(m− 3, 1, 0), B3

3(0,m− 3, 0), B4}.

4.3 Unicyclic hypergraphs with largest spectral

radii

To derive the desired results, we will discuss hypergraphs in Um via the number of

non-pendent vertices. Let Umi be the set of hypergraphs in Um containing exactly i

non-pendent vertices. As a cycle in a simple hypergraph is of length at least 2, we

have i ≥ 2.

Observe that the kth power of G1 depicted in Figure 4.1 belongs to Um3 . In

[19], Gk
1 was proved to uniquely obtain the largest spectral radius among all linear

k-graphs in Um. Thus our work is focused on non-linear k-graphs.

Suppose HUmi is a non-linear. Then there are a pair of vertices sharing two

common edges, which forms the unique cycle of H according to Lemma 4.2. Denote

by ue1ve2u the unique cycle in H.
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If H ∈ Um2 , then by Proposition 4.1 (1), there are merely two non-pendent edges

e1, e2 containing u and v. Thus H ∼= U2(a, b) for some nonnegative a and b. We can

say that k-graphs in Um2 are in the form of U2(a, b) where a, b ∈ N.

Lemma 4.6. Let a ≥ b ≥ 1 and a+ b+ 2 = m. Then

ρ(A(U2(a, b))) < ρ(A(U2(a+ 1, b− 1))) ≤ ρ(A(U2(m− 2, 0))).

Proof. Observe that U2(a + 1, b− 1) can be obtained from U2(a, b) through moving

one pendent edge from v to u, or through moving a − b + 1 pendent edges from u

to v, it follows from Lemma 3.3 that ρ(A(U2(a, b))) < ρ(A(U2(a + 1, b − 1))). By

induction, ρ(A(U2(a+ 1, b− 1))) ≤ ρ(A(U2(m− 2, 0))), equality holds if and only if

b = 1.

Now we discuss H ∈ Um3 . Let w be the third non-pendent vertex of H. If w

is contained by a cycle edge e1, then by Proposition 4.1 (2), w /∈ e2. Therefore

H ∼= U1
3 (a, b; c) for some a, b and c ≥ 1. If w does not appear on the cycle, then

it is contained by an edge outside the cycle together with one of u, v, say u. Henve

H ∼= U2
3 (a, b; c) for some a, b and c ≥ 1. Therefore, we can express non-linear k-

graphs in Um3 either by U1
3 (a, b; c), or by U2

3 (a, b; c) with c ≥ 1.

Lemma 4.7. Suppose that H is a non-linear k-graph in Um3 \{U1
3 (m−3, 0; 1), U2

3 (m−

4, 0; 1)}. If m ≥ 8, then

ρ(A(H)) < ρ(A(U2(m− 4, 2))) ≤ ρ(A(U2
3 (m− 4, 0; 1))) < ρ(A(U1

3 (m− 3, 0; 1))),

where the second equality holds if and only if m = 8.

Proof. Two cases are considered.

Case 1. H ∼= U1
3 (a, b; c).

Assume that a ≥ b. Since H � U1
3 (m− 3, 0; 1), we have b ≥ 1 or c ≥ 2.

45



If a ≥ 2, then by Corollary 3.1, set u1 = v and u2 = w, it follows

ρ(A(H)) < ρ(A(U2(a, b+ c))) ≤ ρ(A(U2(m− 4, 2))).

The second inequality follows from Lemma 4.6 for a ≥ 2 and b+ c ≥ 2.

If a = b = 1, by Corollary 3.1 and set u1 = u, u2 = v, it follows ρ(A(H)) <

ρ(A(U1
3 (2, 0; c))) with c = m− 4 > 2, which is ascribed to the case a ≥ 2.

If a ≤ 1, b = 0, then by Lemma 4.4, ρ(A(H)) < ρ(A(U2(m− 4, 2))).

Case 2. H ∼= U2
3 (a, b; c).

Since H � U2
3 (m− 4, 0; 1), b ≥ 1 or c ≥ 2. We can obtain U1

3 (a+ 1, b; c) from H

through moving c pendent edges from w to an arbitrary pendent vertex in a cycle

edge, which coincides with the operation of Lemma 3.2. Therefore for b ≥ 1 or c ≥ 2,

ρ(A(H)) < ρ(A(U1
3 (a+ 1, b; c))) < ρ(A(U2(m− 4, 2))),

and the second inequality follows by Case 1.

Since U2(m− 4, 2) and U2
3 (m− 4, 0; 1) are the kth powers of G(m− 4, 2) and G3

respectively (See Figure 4.1), according to Lemma 3.5 and Lemma 4.3,

ρ(A(U2(m− 4, 2))) = ρ(A(G(m− 4, 2)))
2
k ≤ ρ(A(G3))

2
k = ρ(A(U2

3 (m− 4, 0; 1))),

equality holds only if m = 8.

Next we prove the last inequality. Note that U1
3 (m − 3, 0; 1) can be obtained

from U2
3 (m− 4, 0; 1) through moving the pendent edge attached at w from w to an

arbitrary pendent vertex in a cycle edge. By Lemma 3.2,

ρ(A(U2
3 (m− 4, 0; 1))) < ρ(A(U1

3 (m− 3, 0; 1))),

which completes the proof.

Next is H ∈ Um4 .
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Lemma 4.8. Let H be a non-linear k-graph in Um4 with m ≥ 8. Then

ρ(A(H)) < ρ(A(U2(m− 4, 2))).

Proof. If H is non-linear, then the unique cycle is denoted by ue1ve2u with length

2. Let w and t be the third and fourth non-pendent vertices of H and a, b, c, d be

the number of pendent edges attached at u, v, w, t, respectively.

We discuss with four cases by locations of w, t.

Case 1. Both w, t appear on the cycle. By Lemma 4.2, each of w, t is contained

in exactly one non-pendent edge. Hence c ≥ 1, d ≥ 1. Through moving all pendent

edges from w to t or from t to w, we can obtain U1
3 (a, b; c + d) with c + d ≥ 2. By

Lemma 3.3 and Lemma 4.7, ρ(A(H)) < ρ(A(U1
3 (a, b; c+ d))) < ρ(A(U2(m− 4, 2))).

Case 2. Merely one of w, t appears on the cycle, say w. Then d ≥ 1, otherwise

either t is a pendent vertex, or H is not unicyclic.

Subcase 2.1. w and t are contained in an edge f . Set u1 = w and u2 = t,

by Corollary 3.1 and Lemma 4.7 it follows ρ(A(H)) < ρ(A(U1
3 (a, b; c + d + 1))) <

ρ(A(U2(m− 4, 2))) for c+ d ≥ 1.

Subcase 2.2. w, t are not adjacent. Then t is adjacent to u or v. Let w ∈ e1\e2.

Moving d pendent edges from t to an arbitrary pendent vertex in e2, we obtain a

hypergraph H ′ of Case 1 with larger spectral radius by Lemma 3.2. Thus ρ(A(H)) <

ρ(A(H ′)) < ρ(A(U2(m− 4, 2))).

Case 3. Both w and t are not on the cycle. Then at least one of w, t, say w, is

adjacent to a vertex on the cycle, say u. Suppose that u,w are connected by an edge

g not on the cycle. Moving all edges incident with w expect g from w to an arbitrary

pendent vertex on the cycle, we obtain a hypergraph H ′′ of Case 2. According to

Lemma 3.2 and the discussion in Case 2, ρ(A(H)) < ρ(A(H ′′)) < ρ(A(U2(m−4, 2))).

This completes the proof.
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Lemma 4.9. Let H be a k-graph in Umi for i ≥ 3. Then

ρ(A(H)) < max{ρ(A(F )) : F is a k-graph in Umi−1}.

Proof. If all non-pendent vertices of H are contained by an edge f , then there is a

non-pendent vertex w whose incident edges are pendent edges except f . Otherwise,

every non-pendent vertex is incident with more than one non-pendent edge and there

will be two distinct cycles of length 2 in the case i ≥ 3, which contradicts Lemma 4.2.

By moving all pendent edges from w to another non-pendent vertex t in f , we may

obtain a k-graph in Umi−1, denoted H ′. By Corollary 3.1, set u1 = t and u2 = w, it

follows ρ(A(H)) < ρ(A(H ′)).

Suppose H have two non-pendent vertices u, v without any common edge. Let

P = ue1 · · · esv be a shortest path connecting u and v in H, s ≥ 2. Denote by H1

the k-graph obtained from H through moving all edges incident with u except e1

from u to v. Denote by H2 the k-graph obtained from H through moving all edges

incident with v except es from v to u. Observe that both H1 and H2 are in Umi−1. By

Lemma 3.3, ρ(A(H)) < max{ρ(A(H1)), ρ(A(H2))}.

In both cases, ρ(A(H)) is bounded up by the spectral radius of a k-graph in Umi−1,

which completes the proof.

According to Lemma 4.8 and Lemma 4.9, we have the following result.

Lemma 4.10. Let H be a non-linear k-graph in Umi with i ≥ 4 and m ≥ 8. Then

ρ(A(H)) < ρ(A(U2(m− 4, 2))).

Now the first main result of this chapter is ready to serve.

Theorem 4.1. Let H be a k-graph in Um with m ≥ 8. Then

(1) ρ(A(U2(m− 4, 2))) ≤ ρ(A(U2
3 (m− 4, 0; 1))) < ρ(A(U1

3 (m− 3, 0; 1)))

< ρ(A(U2(m− 3, 1))) < ρ(A(U2(m− 2, 0))),
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Figure 4.4: The first five unicyclic hypergraphs

where the first equality holds if and only if m = 8.

(2) If H /∈ {U2(m−2, 0), U2(m−3, 1), U2(m−4, 2), U1
3 (m−3, 0; 1), U2

3 (m−4, 0; 1)},

then

ρ(A(H)) < ρ(A(U2(m− 4, 2))).

Proof. Firstly we prove the relationships in (1).

The first two inequalities follow directly from Lemma 4.7 and the fourth inequality

results from Lemma 4.6.

For the k-graph U1
3 (m− 3, 0; 1), by the Corollary 3.1 and set u1 = v, u2 = w, we

have the third inequality ρ(A(U1
3 (m− 3, 0; 1))) < ρ(A(U2(m− 3, 1))).

In the case of H being non-linear, the inequality of (2) can be obtained by

Lemma 4.6, Lemma 4.7 and Lemma 4.10 through specifying the number of non-

pendent vertices. If H is linear, then by Corollary 3.7 of [19], Lemma 2 and Lemma

4.3, it follows that

ρ(A(H)) ≤ ρ(A(Gk
1)) < ρ(A(Gk(m− 4, 2))) = ρ(A(U2(m− 4, 2))).

Now we complete the proof.

In Figure 4.4, we present the unicyclic hypergraphs in Theorem 4.1 (1), which are

the first five with respect to a descending order of spectral radius over all unicyclic

hypergraphs.
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4.4 Bicyclic hypergraphs with largest spectral radii

Let Bmi be the set of hypergraphs in Bm with exactly i non-pendent vertices with

i ≥ 2. We discuss the k-graph H in Bmi with the three cases i = 2, 3 and i ≥ 4.

First we suppose that H ∈ Bm2 . Denote by u, v the non-pendent vertices of H.

As H is bicyclic, u, v have more than two common edges, otherwise H is acyclic or

unicyclic. By Proposition 4.1 (4), exactly three edges contain both of u, v and the

remaining edges are pendent edges. Therefore, H ∼= B2(a, b) for some a, b and each

k-graph in Bm2 can be expressed as B2(a, b) with a, b ∈ N.

Lemma 4.11. Let a ≥ b ≥ 1 and a+ b+ 3 = m. Then

ρ(A(B2(a, b))) < ρ(A(B2(a+ 1, b− 1))) ≤ ρ(A(B2(m− 3, 0))).

Proof. Observe that B2(a+ 1, b− 1) can be obtained from B2(a, b) through moving

one pendent edge from v to u, or moving a − b + 1 pendent edges from u to v.

According to Lemma 3.3, ρ(A(B2(a, b))) < ρ(A(B2(a + 1, b − 1))). By induction,

ρ(A(B2(a+ 1, b− 1))) ≤ ρ(A(B2(m− 3, 0))), equality holds if and only if b = 1.

Now suppose H ∈ Bm3 . Denote by u, v, w the three non-pendent vertices of H.

We may discuss by the number of edges containing all of u, v, w. According to

Proposition 4.1 (3), u, v, w have no more than two common edges.

If u, v, w have two common edges, then any two of them can not share another

edge, otherwise a 3-cyclic subgraph formed by the three non-pendent edges appears

in H, a contradiction to Lemma 4.1. Thus the remaining edges are pendent edges

attached at u, v or w. Therefore, H ∼= B1
3(a, b, c) for some a, b, c.

If u, v, w have merely one common edge e1, then there are at least two other edges

that each contains two non-pendent vertices. Otherwise H is acyclic or unicyclic.

Actually, there can not be three non-pendent edges other than e1, as in that case,

the four non-pendent edges in H will form a 3-cyclic subgraph, which contradicts
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Lemma 4.1. Denote by e2, e3 the other two non-pendent edges of H. If |e2 ∩ e3| = 2,

then H ∼= B2
3(a, b, c). Otherwise |e2 ∩ e3| = 1 and then H ∼= B3

3(a, b, c).

If u, v, w have no common edge, then the connectivity of H indicates that there

is a path connecting u, v, w, say ve1ue2w. Since H is bicyclic, there are exactly

two other non-pendent edges e3 and e4, with each of them contains two of u, v, w.

Otherwise H is acyclic, unicyclic or has a 3-cyclic subgraph formed by five non-

pendent edges. Observe that |e3 ∩ e4| < 3. If e3 ∩ e4 is either {u, v} or {u,w}, then

H ∼= B4
3(a, b, c) for some a, b, c. If e3 ∩ e4 = {u}, then H ∼= B5

3(a, b, c). Otherwise

e3 ∩ e4 is {v, w}, {v} or {w}, then H ∼= B6
3(a, b, c) for some a, b, c.

Therefore, there are in total six forms Bj
3(a, b, c), j = 1, · · · , 6 of k-graphs in Bm3 ,

where a, b, c ∈ N with c ≥ 1 for j = 2, 4.

Lemma 4.12. Let H be a k-graph in Bm3 \{B1
3(m− 2, 0, 0)}. If m ≥ 5, then

ρ(A(H)) < ρ(A(B2(m− 4, 1))) < ρ(A(B1
3(m− 2, 0, 0))).

Proof. The first inequality will be proved through the six possible forms of H.

Case 1. H ∼= B1
3(a, b, c). As H � B1

3(m − 2, 0, 0), at least two of a, b, c are

positive, say a, b.

If c = 0, then through moving b − 1 pendent edges from v to u, or moving

a − 1 pendent edges from u to v, the k-graph B1
3(m − 3, 1, 0) can be obtained. By

Lemma 3.3 and Lemma 4.5,

ρ(A(H)) ≤ ρ(A(B1
3(m− 3, 1, 0))) < ρ(A(B2(m− 4, 1))).

If c ≥ 1, then from Corollary 3.1 and set u1 = v, u2 = w, it follows

ρ(A(H)) < ρ(A(B1
3(a, b+ c, 0))) ≤ ρ(A(B1

3(m− 3, 1, 0))) < ρ(A(B2(m− 4, 1))).

Case 2. H ∼= B3
3(a, b, c).
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Set a ≥ c throughout this case. If a = c = 0, then Lemma 4.5 implies ρ(A(H)) =

ρ(A(B3
3(0,m − 3, 0))) < ρ(A(B2(m − 4, 1))). If a ≥ 1, then Corollary 3.1 indicated

that

ρ(A(H)) < ρ(A(B3
3(0, a+ b, c))) ≤ ρ(A(B3

3(0, a+ b+ c, 0))) < ρ(A(B2(m− 4, 1))).

Case 3. H ∼= B2
3(a, b, c) with c ≥ 1.

Let a ≥ b in this case. If a ≥ 1, then according to Corollary 3.1 and set u1 =

v, u2 = w, for b+ c ≥ 1 we have that

ρ(A(H)) < ρ(A(B2(a, b+ c))) ≤ ρ(A(B2(m− 4, 1))).

If a = b = 0 (Figure 4.3), then removing one pendent edge from w to u will

generate B2
3(1, 0,m−4). In addition, through removing a non-pendent edge without

w from u to w, we have B3
3(0, 0,m − 3). Then according to Lemma 3.3 and the

discussion of Case 2, 3,

ρ(A(H)) < max{ρ(A(B2
3(1, 0,m−4))), ρ(A(B3

3(0, 0,m−3)))} < ρ(A(B2(m−4, 1))).

Case 4. H ∼= Bj
3(a, b, c) for j = 4, 5, 6.

If H ∼= B4
3(a, b, c) and c ≥ 1, then we can obtain B2

3(a+ 1, b, c) through moving c

pendent edges of w to an arbitrary pendent vertex in an edge containing both u, v.

According to Lemma 3.2 and the discussion in Case 3, it follows for c ≥ 1 that

ρ(A(H)) < ρ(A(B2
3(a+ 1, b, c))) < ρ(A(B2(m− 4, 1))).

If H ∼= B5
3(a, b, c) , then through moving c pendent edges and one edge incident

with u,w from w to an arbitrary pendent vertex in an edge containing u, v, the k-

graph B3
3(b, a + 1, c) can be obtained. According to Lemma 3.2 and the discussion

in Case 2,

ρ(A(H)) < ρ(A(B3
3(b, a+ 1, c))) < ρ(A(B2(m− 4, 1))).
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If H ∼= B6
3(a, b, c), then through moving c pendent edges and the edge incident

with v, w from w to an arbitrary pendent vertex in an edge containing u, v, B3
3(a +

1, b, c) can be obtained. According to Lemma 3.2 and the discussion in Case 2,

ρ(A(H)) < ρ(A(B3
3(a+ 1, b, c))) < ρ(A(B2(m− 4, 1))).

The second inequality of this lemma results from Lemma 4.5 and Lemma4.11.

Lemma 4.13. Let H be a k-graph in Bmi with i ≥ 4. Then

ρ(A(H)) < max{ρ(A(F )) : F is a k-graph in Bmi−1}.

Proof. If all non-pendent vertices of H are contained by an edge f , then there exists

a pair of non-pendent vertices v1, v2 without other common edge. Otherwise each

pair of non-pendent vertices have exactly two common edges, which will result in a

3-cyclic subgraph in H, a contradiction. Let H ′ be the k-graph obtained from H

through moving all edges containing v2 but f from v2 to v1. Observe that H ′ is in

Bmi−1. Then according to Corollary 3.1, ρ(A(H)) < ρ(A(H ′)).

Suppose there is a pair of non-pendent vertices v1, v2 in H without any common

edge. Denote by P = v1e1 · · · esv2 a shortest path connecting v1, v2 and s ≥ 2.

Denote by H1 the k-graph obtained from H through moving all edges containing v1

except e1 from v1 to v2. Denote by H2 the k-graph obtained from H through moving

all edges containing v2 except es from v2 to v1. Note that both H1, H2 are in Bmi−1.

According to Lemma 3.3, ρ(A(H)) < max{ρ(A(H1)), ρ(A(H2))}.

Hence ρ(A(H)) is strictly smaller than the maximum spectral radius over k-

graphs in Bmi−1 for i ≥ 4.

Finally we consider H ∈ Bm4 .

Lemma 4.14. Let H be a k-graph in Bm4 with m ≥ 5. Then

ρ(A(H)) < ρ(A(B2(m− 4, 1))).
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Proof. Case 1. H has exactly two non-pendent edges, say e, f .

Since H is bicyclic, |e ∩ f | = 3. Then we can obtain H from B1
3(a, b, c) through

attaching d ≥ 1 pendent edges at any pendent vertex t contained by a non-pendent

edge.

Set a ≥ b ≥ c. If a ≥ 1, then it follows from Corollary 3.1 and Lemma 4.12 that

ρ(A(H)) < ρ(A(B1
3(a, b+d, c))) < ρ(A(B2(m−4, 1))) for b+d ≥ 1. If a = b = c = 0,

then H ∼= B4. By Lemma 4.5, ρ(A(H)) = ρ(A(B4)) < ρ(A(B2(m− 4, 1))).

Case 2. H contains at least three non-pendent edges.

Subcase 2.1 All non-pendent vertices of H are in one edge, say f . According to

the proof of Lemma 4.13, there exists a pair of non-pendent vertices v1, v2 without

common edge other than f . Then we can obtain a k-graph H ′ ∈ Bmi−1 from H

through moving all incident edges of v2 except f to v1, which has as much non-

pendent edges as H does. Then there are more than two non-pendent edges in H ′

and hence H ′ � B1
3(m− 2, 0, 0). It follows from Corollary 3.1 and Lemma 4.12 that

ρ(A(H)) < ρ(A(H ′)) < ρ(A(B2(m− 4, 1))).

Subcase 2.2 There is a pair of non-pendent vertices v1, v2 in H without any

common edges.

Denote by P = v1e1 · · · esv2 a shortest path connecting v1 and v2 with s ≥ 2. Let

H1 be the k-graph obtained from H through moving all incident edges of v1 except

e1 to v2. Let H2 be the k-graph obtained from H through moving all incident edges

of v2 except es to v1. Apparently H1, H2 belong to Bm3 . We may prove that neither

of them are B1
3(m− 2, 0, 0).

If there exists a pendent edge containing v1 or v2 in H, then in H1, the shortest

path connecting v1 and any pendent vertex in a pendent edge attached at v2 has

length at least 3. This fact indicates that H1 � B1
3(m − 2, 0, 0), since all paths in

B1
3(m− 2, 0, 0) are of length at most 2. With a similar reason, H2 � B1

3(m− 2, 0, 0).

Assume that v1, v2 are not in any pendent edge. Then each of v1, v2 is contained
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by a non-pendent edge other than e1 and es, say f1 and f2 respectively. Hence

there are three non-pendent edges (f1\{v1}) ∪ {v2}, f2 and es in H1 implying that

H1 � B1
3(m− 2, 0, 0). Similarly H2 � B1

3(m− 2, 0, 0).

Therefore, it follows from Lemma 3.3 and Lemma 4.12 that

ρ(A(H)) < max{ρ(A(H1)), ρ(A(H2))} < ρ(A(B2(m− 4, 1))).

Now we complete the proof.

Combining Lemma 4.13 and Lemma 4.14, we have the following result.

Lemma 4.15. Let H be a k-graph in Bmi with i ≥ 4, m ≥ 5. Then

ρ(A(H)) < ρ(A(B2(m− 4, 1))).

The above discussion based upon the number of non-pendent vertices directly

lead to the second main result of this chapter.

Theorem 4.2. Let H be a k-graph in Bm with m ≥ 5. Then

(1) ρ(A(B2(m− 4, 1))) < ρ(A(B2(m− 3, 0))) = ρ(A(B1
3(m− 2, 0, 0)));

(2) if H /∈ {B2(m− 4, 1), B2(m− 3, 0), B1
3(m− 2, 0, 0)}, then

ρ(A(H)) < ρ(A(B2(m− 4, 1))).

Proof. The relation in (1) results directly by Lemma 4.5 and Lemma 4.11.

The inequality of (2) follows from Lemma 4.11, Lemma 4.12 and Lemma 4.15 by

specifying the number of non-pendent vertices in H.

In Figure 4.5, we present the bicyclic hypergraphs in Theorem 4.2 (1), which are

the first three with respect to a descending order of spectral radius over all bicyclic

hypergraphs.
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Figure 4.5: The first three bicyclic hypergraphs

4.5 Conclusions

In this chapter, we report our works on ordering uncyclic and bicyclic hypergraphs

with respect to the spectra radius of the adjacency tensor, which has made some

progress in the developing area of extremal spectral hypergraph theory.

The results of Theorems 4.1 and 4.2 not only provide characterization of hyper-

graphs with largest spectra radii, but also contains other information. It is easily

observed that for supertrees and the unicyclic hypergraphs, the hypergraph maxi-

mizing spectral radius among each group are both unique. However, we find two

extremal hypergraphs shareing the largest spectral radius in the bicyclic case, which

refutes the uniqueness of extremal hypergraphs. Thus it may be reasonable to con-

jecture that there can be three or even more extremal hypergraphs appeared in cases

of larger cyclomatic number.

On the other hand, the methods and the basic framework here are used to deal

with unicyclic and bicyclic hypergraphs, they can possibly be applied to study more

complicated cases such as hypergraphs with higher cyclomatic numbers.
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Chapter 5

Spectral symmetry of

odd-colorable hypergrpahs

In this chapter, we investigate another aspect on the spectra of uniform hypergraphs.

In details, the property of symmetric spectrum and conditions for equivalent Lapla-

cian spectrum and signless Laplacian spectrum of a k-graph are concerned.

The discussion is based on a newly introduced hypergraph class called odd-

colorable hypergraphs.

In 2016, Nikiforov [42] introduced the definition of odd-coloring for tensors (they

are called r-matrices therein), here we just restate it for k-graph as follows.

Definition 5.1. Let k ≥ 2 and k be even. A k-graph H with V = [n] is called odd-

colorable if there exists a map ϕ : [n]→ [k] such that for any edge {j1, j2, · · · , jk} of

H, we have

ϕ(j1) + · · ·+ ϕ(jk) ≡ k/2(mod k).

The function ϕ is called an odd-coloring of H.

In the same paper where it was first defined, the odd-colorable hypergraphs were

linked with the well-know odd-bipartite hypergraphs. It was proved that an odd-

bipartite graph is always odd-colorable (see Proposition 11 in [42]), and furthermore

when k ≡ 2(mod 4), being odd-colorable is equivalent with being odd-bipartite (see
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Proposition 12 in [42]).

The spectrum of a tensor T is called symmetric, if T and −T have the same

spectrum (i.e., Spec(T ) is symmetric about the origin) [63]. As the odd-bipartiteness

of a connected k-graph are closely relevant to the symmetry of its spectrum, odd-

colorable hypergraphs are connected with the existence of a symmetric spectrum as

well.

In [42], Nikiforov proved that for a k-graph H, Spec(A) = −Spec(A) if and only

if k is even and H is odd-colorable.

This chapter presents some applications and consequences of spectral symmetry

of the odd-colorable k-graphs obtained in [42]. In particular, we obtain some fur-

ther properties obtained from the symmetric spectra of an odd-colorable k-graph.

By employing the Perron-Frobenius theorem on nonnegative weakly irreducible ten-

sors together with the relation between the spectra of a hypergraph and that of

its connected components, the paralell results for the disconnected case are proved.

Moreover, based on the above outcomes, we discuss the Question 5.1 proposed in

[54] about the relations between HSpec(L),HSpec(Q) and Spec(L),Spec(Q), and

obtain an affirmative answer to this Question 5.1 for the remaining unsolved case

k ≡ 2 (mod 4) in Theorem 5.4.

5.1 Previous results on symmetric spectra of con-

nected k-graphs

Recall that in Theorem 3.2 of [18], Fan et al. proved the following Lemma 5.1 for

non-odd-bipartite connected r-graphs. Combining this with the Theorems 2.2 and

2.3 in [54] for the odd-bipartite connected case, we have the following statement.

Lemma 5.1. Let H be a connected k-graph. Then Spec(A) = −Spec(A) if and only

if Spec(L) = Spec(Q).
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Theorem 5.1. [42] Let G be a k-graph. Then Spec(A(G)) = −Spec(A(G)) if and

only if k is even and G is odd-colorable.

The above result solves a problem in [44] about k-graphs with symmetric spec-

trum and disproves a conjecture in [69].

Combining Theorem 5.1 and Lemma 5.1, we can see that for a connected k-graph

G, its Laplacian spectrum and signless Laplacian spectrum are equal if and only if

k is even and G is odd-colorable. To extend this result to the disconnected case, we

need the following lemma which is a consequence of Corollary 4.2 in [55].

5.2 Applications of symmetric spectra for odd-

colorable hypergraphs

The first result derived from the symmetric spectra is Therorem 5.2 in the following.

Before we can prove that, a lemma on the spectra of a hypergraph and that of its

connected components is needed, which is a consequence of Corollary 4.2 in [55].

Lemma 5.2. [55] Let G be a k-graph of order n, G1, G2, · · ·, Gr be the connected

components of G of orders n1, · · · , nk, respectively. Then

Spec(A(G)) =
r⋃
i=1

Spec(A(Gi))
(k−1)n−ni ,

Spec(L(G)) =
r⋃
i=1

Spec(L(Gi))
(k−1)n−ni ,

Spec(Q(G)) =
r⋃
i=1

Spec(Q(Gi))
(k−1)n−ni ,

where the notation St means the repetition of t times of the multi-set S.

Some other preliminaries are also needed to study the disconnected case of spec-

tral equivalence between the Laplacian and signless Laplacian tensors of odd-colorable

k-graphs.
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Lemma 5.3. [54] Let G be a connected k-graph. Then ρ(L(G)) = ρ(Q(G)) if and

only if Spec(L(G)) = Spec(Q(G)).

Theorem 5.2. Let G be a k-graph. Then Spec(L(G)) = Spec(Q(G)) if and only if

k is even and G is odd-colorable.

Proof. Suppose that G is connected. Then by Theorem 5.1 and Lemma 5.1 we have

Spec(L(G)) = Spec(Q(G))⇐⇒ Spec(A(G)) = −Spec(A(G))

⇐⇒ G is odd-colorable and k is even.

Now we consider that G is disconnected. Let G1, G2, · · ·, Gt be all the connected

components of G, and the number of vertices of G1 be n1. We prove the sufficiency

first.

G is odd-colorable =⇒ Every Gi is odd-colorable (∀i = 1, · · · , t)

=⇒ Spec(L(Gi)) = Spec(Q(Gi)) (∀i = 1, · · · , t)

(by the proof of connected case)

=⇒ Spec(L(G)) = Spec(Q(G)) (by Lemma 5.2)

The necessity of the disconnected case is proved by induction on t, the number of

connected components of G. Set ρ := ρ(Q(G)) = ρ(L(G)). Then ρ is equal to some

ρ(L(Gj)), say ρ= ρ(L(G1)). Since |L(G1)| = Q(G1) andQ(G1) is nonnegative weakly

irreducible, by Proposition 2.4 we have ρ = ρ(Q(G)) ≥ ρ(Q(G1)) ≥ρ(L(G1)) = ρ.

Thus ρ = ρ(Q(G1)). Hence for the connected k-graph G1, ρ(L(G1)) =ρ(Q(G1)).

Then by Lemma 5.3, we have Spec(L(G1)) = Spec(Q(G1)), which implies G1 is odd-

colorable by the above arguments for the connected case. Now consider the r-graph

G′ = G2 ∪ · · · ∪Gt. Since G = G1 ∪G′, by Lemma 5.2 we have

Spec(L(G)) = Spec(L(G1))(k−1)n−n1
⋃

Spec(L(G′))(k−1)n1 ,
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Spec(Q(G)) = Spec(Q(G1))(k−1)n−n1
⋃

Spec(Q(G′))(k−1)n1 ,

Therefore, Spec(L(G)) = Spec(Q(G)) together with Spec(L(G1)) = Spec(Q(G1))

imply that Spec(L(G′)) = Spec(Q(G′)). By induction on t we obtain that G′ is also

odd-colorable. Since G = G1∪G′ and both G1 and G′ are odd-colorable, we conclude

that G is odd-colorable.

As the applications of the above theorem, we can further deduce the following

two results.

Theorem 5.3. Let G be a k-graph with k being even, and G1, · · · , Gr be all the con-

nected components of G. Then Spec(L(G)) = Spec(Q(G)) if and only if Spec(L(Gi)) =

Spec(Q(Gi)) for every connected component Gi (i = 1, · · · , r) of G.

Proof. The sufficiency follows from Lemma 5.2. It remains to prove the neces-

sity. Since Spec(L(G)) = Spec(Q(G)), it results from Theorem 5.2 that G is odd-

colorable. Thus Gi is also odd-colorable, and then by Theorem 5.2 again we have

Spec(L(Gi)) = Spec(Q(Gi)) (i = 1, · · · , r).

Recall that an eigenvalue of a tensor T is called an H-eigenvalue, if there exists

a real eigenvector associated with it. The H-spectrum of a tensor T , denoted by

Hspec(T ), is the set of H-eigenvalues of T .

In the Theorem 2.2 of [54], it was proved that if k is even and the k-graph G is

connected, then

Hspec(L(G)) = Hspec(Q(G)) =⇒ Spec(L(G)) = Spec(Q(G)) (5.1)

In the same paper, the following question was proposed:

Question 5.1. Is the reverse implication of (5.1) true or not?
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In [18], Fan et al. showed that the reverse of (5.1) is false in the case k ≡ 0 (mod 4)

by inducing the generalized power hypergraphs Gk,k/2 of a non-bipartite ordinary

graph G as counterexamples.

Now by using Theorem 5.2, we can show in the following theorem that the reverse

implication of (5.1) is true in the case k 6≡ 0 (mod 4), even when G is not connected,

thus provide an affirmative answer to Question 5.1 for the remaining unsolved case.

Theorem 5.4. Let G be an k-graph with k 6≡ 0 (mod 4), and Spec(L(G)) =

Spec(Q(G)). Then we have Hspec(L(G)) = Hspec(Q(G))).

Proof. Let G1, · · · , Gr be all the connected components of G. Since Spec(L(G)) =

Spec(Q(G)), we obtain by Theorem 5.2 that G is odd-colorable. Thus we have

k ≡ 2 (mod 4) by the assumption k 6≡ 0 (mod 4). By Proposition 12 of [42] we deduce

that G is odd-bipartite since k ≡ 2 (mod 4). Thus every connected component Gi

of G is also odd-bipartite. Now by Theorem 2.2 of [54], we obtain that L(Gi) and

Q(Gi) have the same H-spectrum for all connected components Gi (i = 1, · · · , r) of

G. Therefore we conclude that L(G) and Q(G) have the same H-spectrum.

Combining Theorem 5.2 together with Lemma 5.3, we obtain the following corol-

lary.

Corollary 5.1. Let G be a connected k-graph. Then ρ(L(G)) = ρ(Q(G)) if and only

if k is even and G is odd-colorable.

5.3 Conclusions

We investigate in this chapter the property of symmetric spectra for odd-colorable

hypergraphs. Utilizing this property, we deduce new conditions for connected and

disconnected uniform hypergraph to have equal Laplacian and signless Laplacian

spectra, H-spectra and spectral radius.
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Chapter 6

Spectral bounds and properties of

general hypergraphs

This chapter reports our recent attempt on general hypergraphs. Unlike the extensive

research having been done on spectra of uniform hypergraphs, the spectra theory of

general hypergraphs are still in the very initial stage, with less than a handful of

references at present. In the late 2016 and the early 2017, two papers appeared in

the very first exploration on spectra of general hypergraphs [1, 9]. Later on, Zhang et

al [66] investigated the nearly uniform supertrees and adapted many spectral methods

of uniform hypergraphs to non-uniform case. Hou, Chang and Zhang [26] studied

the clique number of general hypergraphs and provided some spectral bounds.

In this chapter, we obtained some bounds for spectral radius and signless Lapla-

cian spectral radius of general hypergraphs in term of vertex degrees, diameters and

an lower bound for (non-uniform) generalized power hypergraphs. Bounds of the

signless Laplacian spectral radius are extended to the Lapalcian spectral radius as

well. At last, we study the spectral symmetry of general hypergraphs and the condi-

tion for a hypergraph to possess equal Laplacian (H-)spectrum (spectral radius) and

signless Laplacian (H-)spectrum (spectral radius).
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6.1 Upper bounds of spectral radius and signless

Laplacian spectral radius

We should first introduce some existing upper bounds on spectral radius of a hyper-

graph. Let ∆ = d1, d2, . . . , dn be the nonincreasing sequence of vertex degrees for a

hypergraph H.

• According to the distribution of tensor eigenvalues (Proposition 2.2, Theorem

3.1 (2)):

ρ(A(H)) ≤ ∆, ρ(Q(H)) ≤ 2∆

both of the equalities hold if H is regular.

• Yuan, Zhang & Lu [65]:

ρ(A(H)) ≤ min

{
max
i∼j

√
didj,

k

√
∆dk−1

2

}

ρ(Q(H)) ≤ min

{
max
i∼j

di + dj, ∆ +
k

√
∆dk−1

2

}

• Li, Zhou & Bu [35]: H is not regular (∃di 6= dj), then

ρ(A(H)) < ∆− n∆2 − km∆

2m(k − 1)D(n∆− km) + n∆
,

where D is the diameter of H and m is the edge number of H.

In this subsection, we extend those bounds to general hypergraphs.

Theorem 6.1. Let H = (V,E) be a hypergraph. Then

ρ(A(H)) ≤ max
{i,j}⊂e∈E

√
didj, ρ(Q(H)) ≤ max

{i,j}⊂e∈E
di + dj.
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Proof. Let x be a nonnegative eigenvector of H corresponding to ρ = ρ(A(H)), H

is of rank k. Without lost of generality, we may assume that

xu = max
l∈[n]

xl = 1, xv = max
{l,u}⊂e∈E

xl.

Multiplying eigenequations at u and v, we have

ρ2xk−1
v = (

∑
e∈Eu

Aexe\u)(
∑
e∈Ev

Aexe\v)

≤ (
∑
e∈Eu

Ae
xk−1
v

Ae
)(
∑
e∈Ev

Ae
1

Ae
)

= dux
k−1
v dv.

Thus ρ ≤
√
dudv ≤ max{i,j}⊂e∈E

√
didj.

Following the same schedule, similar inequality for ρ(Q(H)) and the correspond-

ing nonnegative eigenvector y ∈ Rn are obtained:

(ρ(Q(H))− di)(ρ(Q(H))− dj)yk−1
j ≤ diy

k−1
j dj for some i, j,

and hence ρ(Q(H)) ≤ max{i,j}⊂e∈E di + dj.

Theorem 6.2. Let H = (V,E) be a hypergraph of rank k. Then

ρ(A(H)) ≤ max
s{i1,...,ik}∈E

k
√
di1 · · · dik ,

ρ(Q(H)) ≤ ∆ + max
s{i1,...,ik}∈E

k
√
di1 · · · dik .

Proof. Let x a nonnegative eigenvector corresponding to ρ = ρ(A(G)) with

xi1 · · · xik = max
s{j1,...,jk}∈E

xj1 · · ·xjk .

The eigenequation at il is
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ρxk−1
il

=
∑
e∈Eil

Aexe\il , l ∈ [k].

Note that for each e ∈ E, the number of ordered sets (j1, . . . , jk) generated by e

with each vertex appearing at least once is

∑
α1,...,α|e|≥1
α1+···+α|e|=k

k!

α1! · · ·α|e|!
=
|e|
Ae
.

By symmetry, the number of these sets with one vertex j fixed in first order is con-

stant for each j ∈ e, thus it equals 1/Ae. Recall that xe\j =
∑

s{j,j2,...,jk}=e xj2 · · ·xjk ,

thus there are 1/Ae summing items in xe\j for each j ∈ e.

Then we have

Aexjxe\j = Ae
∑

s{j,j2,...,jk}=e

xjxj2 · · ·xjk

≤ Ae
∑

s{j,j2,...,jk}=e

xi1 · · ·xik

= xi1 · · ·xik .

Hence for l ∈ [k],

ρxkil =
∑
e∈Eil

Aexilxe\il ≤
∑
e∈Eil

xi1 · · ·xik = dilxi1 · · ·xik .

Multiplying all k inequalities we obtain

ρk
k∏
l=1

xkil ≤ di1 · · · dikxki1 · · ·x
k
ik
.

Thus ρ ≤ k
√
di1 · · · dik .

The results for ρ(Q(H)) can be obtained similarly by employing its eigen-equation

and ρ(Q(H))−∆ ≤ ρ(Q(H))− dil for each l.

66



Figure 6.1: Hypergraphs H1, H2, H3, H4 in Table 6.1

Upper bounds H1 H2 H3 H4

a = maxi∼j
√
didj 1.7321 1.7321 2.4495 2.4495

b = max k
√
di1 · · · dik 1.4422 2.0801 1.8171 2.0801

k
√

∆k−t+1dt−1
2 1.4422 2.0801 2.6207 2.2894

ρ 1.4422 1.5269 1.7100 1.8048
0 36% 6% 15%

Table 6.1: Comparison of upper bounds

By Definition 1.1, we have the following corollary.

Corollary 6.1. Let H = (V,E) be a connected hypergraph of rank k and co-rank t,

with vertex degrees d1 = ∆ ≥ d2 ≥ · · · ≥ dn. Then

ρ(A(H)) ≤ k

√
∆k−t+1dt−1

2 ,

ρ(Q(H)) ≤ ∆ + k

√
∆k−t+1dt−1

2 .

When k = t, H is a uniform hypergraph, Corollary 6.1 coincides with results in

[65]. A well known case when equalities hold in the above is that the hypergraph is

regular, i.e. all vertices share a common degree.

We test the performance of bounds in Theorems 6.1 and 6.2 in the four hyper-

graphs depicted in Figure 6.1, respectively. The fourth row are the spectra radii

computed from the NQZ algorithm for nonnegative tensors [40]. The last row of the

table shows the distance of the bounds to the numerical results.

For simplicity, denote the bounds maxi∼j
√
didj of Theorem 6.1 and max k

√
di1 · · · dik

in Theorem 6.2 by a and b, respectively. It is found that bound b may be better than
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a when the sequence ∆, d2, d3, . . . has bigger variance (see results for H3 in Table

6.1). Moreover, a = ∆ ≥ b if there exists a pair of adjacent vertices i, j (i, j are

contained in one edge) such that di = dj = ∆. However, if any pair of vertices of

degree ∆ is not adjacent, and one of them is contained in an edge with very few

vertices, then b may be much larger than a (see results for H2 in Table 6.1). More

importantly, if there exists e ∈ E, di = ∆ for each i ∈ e, then a = b = ∆, which is

not sharp when H is connected yet not regular.

Therefore, a bound for non-regular hypergraphs is provided in the next. Before

that, we present some lemmas being used.

Lemma 6.1. [68] Let a1, . . . , an be nonnegative real numbers. Then

n∑
i=1

ai − n n
√
a1 · · · an ≥

1

n− 1

∑
1≤i<j≤n

(
√
ai −

√
aj)

2.

Lemma 6.2. [68] Let a, b, x1, x2 be positive numbers. Then a(x1−x2)2+bx2
2 ≥ ab

a+b
x2

1.

Note that
∑

i di =
∑

e∈E |e| := p. Let d be the average degree of H, then p = nd.

According to the eigenequation of (ρ(A),x) at vertex i,

ρ(A)xki = xi
∑
e∈E

Aexe\{i} ≤
∑
e∈E

xiAe
xk−1

max

Ae
≤ dix

k
max.

Summing from i = 1 to n we obtain ρ(A) ≤
∑

i dix
k
max = pxkmax, and thus

xmax ≥
ρ(A)

p
.

Theorem 6.3. Let H = (V,E) be a non-regular connected hypergraph of rank k,

co-rank t and maximum degree ∆. Then

∆− ρ(A) >
t(n∆− p)∆

2pD(k − 1)(n∆− p) + tn∆
,
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2∆− ρ(Q) >
4t(n∆− p)∆

[4pD(k − 1) + t] (n∆− p) + tn∆
,

where p =
∑

i di =
∑

e∈E |e|.

Proof. Let x be the Perron vector of A with
∑n

i=1 x
k
i = 1. Let xu = maxi xi and

xv = mini xi. Since H is connected and non-regular, xu >
k

√
1
n
> xv > 0. Note that

for e = {j1, . . . , jr},

xe =
∑

c{i1,...,ik}=e

xi1 · · ·xik ≤
r

Ae
xj1 · · · xjr .

By Lemma 6.1, together with
∑n

i=1 di < k|E| we have

∆− ρ(A) = ∆
n∑
i=1

xki −
∑
e∈E

Aexe

=
n∑
i=1

(∆− di)xki +
n∑
i=1

dix
k
i −

∑
e∈E

Aexe

=
n∑
i=1

(∆− di)xki +
∑

e={j1,...,jr}∈E

(xkj1 + · · ·+ xkjr −Aex
e)

>
n∑
i=1

(∆− di)xki +
∑

e={j1,...,jr}∈E

(xkj1 + · · ·+ xkjr − rxj1 · · ·xjr)

≥ (n∆− p)xkv +
1

k − 1

∑
{i,j}⊂e∈E

i<j

(x
k
2
i − x

k
2
j )2

Since H is connected, there is a path P = (u =)u0e1u1 · · ·ur−1erur(= v) connect-

ing u and v, where each ei contains ui−1 and ui. Now

∑
{i,j}⊂e∈E(P )

i<j

(x
k
2
i −x

k
2
j )2 ≥

r−1∑
i=0

(x
k
2
ui−x

k
2
ui+1)

2+
∑

vi∈ei\{ui−1,ui}

r−1∑
i=0

[(x
k
2
ui−x

k
2
vi+1)

2+(x
k
2
vi+1−x

k
2
ui)

2].
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It results from the Cauchy-Schwartz inequality that

∑
{i,j}⊂e∈E(P )

i<j

(x
k
2
i − x

k
2
j )2 ≥ 1

r

[
r−1∑
i=0

(x
k
2
ui − x

k
2
ui+1)

]2

+
∑

vi∈ei\{ui−1,ui}

1

2r

[
r−1∑
i=0

(x
k
2
ui − x

k
2
ui+1)

]2

≥ 1

r
(x

k
2
u − x

k
2
v )2 +

t− 2

2r
(x

k
2
u − x

k
2
v )2

=
t

2r
(x

k
2
u − x

k
2
v )2 ≥ t

2D
(x

k
2
u − x

k
2
v )2.

Thus by Lemma 6.2 and xku ≥
ρ(A)
p

,

∆− ρ(A) > (n∆− p)xkv +
t

2D(k − 1)
(x

k
2
u − x

k
2
v )2

>
t(n∆− p)

2D(k − 1)(n∆− p) + t
xku

>
t(n∆− p)[∆− (∆− ρ(A))]

[2D(k − 1)(n∆− p) + t] p
.

Finally we obtain

∆− ρ(A) >
t(n∆− p)∆

2pD(k − 1)(n∆− p) + tn∆
.

Following the above schedule, we may deduce a similar bound for 2∆− ρ(Q) as

below:

2∆− ρ(Q) = 2∆
n∑
i=1

xki −

(
n∑
i=1

dix
k
i +

∑
e∈E

Aexe
)

= 2
n∑
i=1

(∆− di)xki +
n∑
i=1

dix
k
i −

∑
e∈E

Aexe

> 2(n∆− p)xkv +
t

2D(k − 1)
(x

k
2
u − x

k
2
v )2

>
2t(n∆− p)[2∆− (2∆− ρ(Q))]

[4D(k − 1)(n∆− p) + t] p
.
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Then 2∆− ρ(Q) > 4t(n∆−p)∆
[4D(k−1)p+t](n∆−p)+tn∆

.

Note that when t = k, p = k|E|, then the first bound coincides the bound in [68].

Let I be the identity tensor. Since Q ≤ A + ∆I, by properties of symmetric

tensors in [47], ρ(Q) ≤ ρ(A) + ∆, which implies the first inequality of this theorem.

Remark. Furthermore if H is f -edge connected, then there are f mutually edge-

disjoint paths connecting u and v. Thus

∆− ρ(A) > (n∆− p)xkv +
ft

2D(k − 1)
(x

k
2
u − x

k
2
v )2.

Then by Lemma 6.2, we obtain

∆− ρ(A) >
ft(n∆− p)∆

2pD(k − 1)(n∆− p) + ftn∆
.

6.2 Spectral bounds for generalized power hyper-

graphs

As is mentioned in Section 3.3, relationship has been found between the spectral

radius of a generalized power hypergraph and that of its base. This fact leads us

to an idea of characterizing the spectral radius of a non-uniform generalized power

hypergraph by its bases.

We will apply the minimax theorem for nonnegative tensors in Section 2.2 to

deduce the following result. In the following, the adjacency tensor A(H) of a hyper-

graph H is also denoted as AH for convenience.

Theorem 6.4. Let H ∈ Gk,s be a generalized power hypergraph as in Definition 3.5

of an r-graph G = (V,E), k ≥ max{r, 3}. Then

ρ(AH) ≥ [ρ(AG)]
rs
k .
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equality holds if H is k-uniform.

Proof. We can suppose that k ≥ rs + 1. Otherwise if k = rs, then H is uniform

and equality holds according to [30]. Let x be an eigenvector of AG corresponding

to ρ = ρ(A(G)). Define a vector y with |V (H)| components as below:

yl =

{
(xi)

r
k if l ∈ Vi for i ∈ V ,

(ρ−1
∏

j∈e xj)
1
k if l ∈ Ve for e ∈ E.

Let e ∈ E and e′ ∈ E ′ with e′ = (∪j∈eVj) ∪ Ve. For i ∈ e and i′ ∈ Vi, consider

an arbitrary summing item yi2 · · · yik of ye
′\{i′}. Assume that for j ∈ e, vertices in Vj

appear βj times in total in the sequence i2, . . . , ik, then

yi2 · · · yik =
∏
j∈e

x
r
k
βj

j (ρ−1
∏
j∈e

xj)
k−1−

∑
l∈e βl

k

=

ρ−k+
∑
l∈e(βl−s)+1+rsx

k−r+(r−1)(βi−s+1)
i

∏
j∈e\{i} x

k+(r−1)(βj−s)
j

x
∑
l∈e\{i}(βl−s)

i

∏
j∈e\{i} x

∑
l∈e\{j}(βl−s)+1

j

 1
k

.

By using eigenequations of (ρ,x) at j ∈ e, we have

ρxr−1
j =

∑
f∈Ej

∏
l∈f\{j}

xl ≥
∏

l∈e\{j}

xl.

Thus

ρ[
∑
l∈e(βl−s)+1]x

(r−1)(βi−s+1)
i

∏
j∈e\{i}

x
(r−1)(βj−s)
j

= ρβi−s+1x
(r−1)(βi−s+1)
i ·

∏
j∈e\{i}

[ρβj−sx
(r−1)(βj−s)
j ]

≥
∏

l∈e\{i}

xβi−s+1
l ·

∏
j∈e\{i}

( ∏
l∈e\{j}

x
βj−s
l

)

= x
∑
l∈e\{i} βl−s

i

∏
j∈e\{i}

x
∑
l∈e\{j}(βl−s)+1

j .
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Accordingly,

yi2 · · · yik ≥ ρ
ts
k
−1x

k−r
k

i

∏
j∈e\{i}

xj.

Therefore, for any of i′ ∈ Vi,

(AHyk−1)i′

yk−1
i′

=

∑
e′∈E′i

AHe′ye
′\i′

yk−1
i′

≥
ρ
rs
k
−1x

k−t
k
i

∑
e∈Ei

∏
j∈e\{i} xj

x
r(k−1)
k

i

=
ρ
rs
k
−1x

k−r
k

i · ρxr−1
i

x
r(k−1)
k

i

= ρ
rs
k .

Next we consider l ∈ Ve ⊂ e′, yl = (ρ−1
∏

j∈e xj)
1
k . Similarly by eigenequations

at j ∈ e, we can prove that for each item yl2···lk of ye
′\l,

yl2···lk =
∏
j∈e

x
r
k
βj

j (ρ−1
∏
j∈e

xj)
k−1−

∑
l∈e βl

k

= ρ
rs−k+1

k

∏
j∈e

x
k−1
k

j ·

 ∏j∈e ρx
(r−1)(βj−s)
j∏

j∈e x
∑
l∈e\{j}(βj−s)

j

 1
k

≥ ρ
rs−k+1

k

∏
j∈e

x
k−1
k

j .

Hence,

(AHyk−1)l

yk−1
l

=
AHe′ye

′\l

yk−1
l

≥
ρ
rs−k+1

k

∏
j∈e x

k−1
k

j

(ρ−1
∏

j∈e xj)
k−1
k

= ρ
rs
k .

By Theorem 3.4 (2) and the arbitrariness of e and e′, we have that

ρ(AH) ≥ min
i∈V ′

(AHyk−1)i

yk−1
i

≥ ρ
rs
k .
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P1

P2

Figure 6.2: Two type of generalized loose paths with rank 6 and three edges

To further understand the performance of this bound, we compare the spectral

radii (compute by the NQZ algorithm) with the obtained bound for two types of

generalized loose paths. The first type, denoted as P1, is obtained from a generalized

power P k−1,s of a path P with s = 2 by adding a new vertex to its first edge. The

second type, denoted as P2, is obtained from a generalized power P k,s of a path P

with s = 2 by deleting a core/pendent vertex from its last edge. Figure 6.2 depicts

these two hypergraphs in the case of three edges with k = 6.

We first compute P1, P2 for k = 6 from 2 edges to 8 edges and results are shown

in Figure 6.3, where the blue line and green line represent spectral radii of P1, P2

respectively while the doted pink line corresponds to the bound in Theorem 6.4. For

example, the path P with m edges has spectral radius 2 cos( π
m+2

), then the bound is

[2 cos( π
m+2

)]
2
3 (which is actually ρ(P 6,2)). Besides, the dotted blue line corresponds

to the spectral radius of the uniform generalized power P 5,2 of P , which differs from

P1 by one less vertex in the first edge.

It can be observed that as edge number increases, ρ(P2) approaches the lower

bound which is actually the spectral radius of ρ(P 6,2), while ρ(P1) is approaching

the spectral radius of ρ(P5,2) at present. Due to storage limitation of this algorithm,

we do not proceed the computation after 8 edges. To further observe the trend, we

consider the case of k = 5 with edge numbers being 3, 5, 7, . . . , 15 and similar shapes

are obtained as shown in Figure 6.4.
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Figure 6.3: Experiment results k = 6

We may conjecture that the spectral radius of a generalized power hypergraph

in Gk,s can be bound up by Gk−1,s. Besides, it may be noted from our experiments

that the more a non-uniform hypergraph approaches a uniform one in structure, the

less difference exists between their spectral radii.

6.3 Symmetric spectra and spectral equivalence

of general hypergraphs

In this section, properties relevant to the spectral radius of L,Q and the spectral

symmetry of A are discussed.

Recall from Chapter 3 that ρ(L) ≤ ρ(Q) for each hypergraph. Thus we have the

following bounds for the Laplacian spectral radius of a general hypergraph deduced

from results in Section 6.1.
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Figure 6.4: Experiment results k = 5

Corollary 6.2. Let H be a hypergraph with rank k ≥ 3. Then

ρ(L) ≤ min{max
i∼j
{di + dj}, ∆ + max k

√
di1 · · · dik}.

Note that the equality in Corollary 6.2 can be obtained when H itself is a uni-

form, regular and odd-bipartite hypergraph (such as the one in Figure 6.5), or the

connected component attaining the largest spectral radius among all components of

H is such a hypergraph.

In the next, we investigate when will a general hypergraph possess symmetric

spectrum or equal Laplacian and signless Lapalacian spectra. Before that, the con-

cept of diagonal similar tensors is to be introduced.

Definition 6.1. [53, 61] Let M,N ∈ Tk,n. If there exists a nonsingular diagonal

matrix U of order n such that N = U−(k−1)MU , where

(U−(k−1)MU)i1···ik = U
−(k−1)
i1i1

Mi1···ikUi2i2 · · ·Uikik ,

then M and N are called diagonal similar.
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Figure 6.5: A regular and odd-biparitite 4-graph

Lemma 6.3. [53] If two tensors are diagonal similar, then they have the same spec-

tra.

In addition, we need the following property for weakly irreducible tensors.

Lemma 6.4. [61] Let M,N ∈ Tk,n with |M| ≤ N . If N is weakly irreducible and

ρ(M) = ρ(N ), where λ = ρ(N )eiθ and y ∈ Cn is an eigenpair of M, then

(1) no component of y is zero;

(2) then M = eiθU−(k−1)NU , where U is defined by U = diag(y1/|y1|, . . . , yn/yn).

To begin with, equivalence between Spec(A) = Spec(−A) and Spec(L) = Spec(Q)

are verified for connected general hypergraphs by employing Lemma 6.4. The proof

is very similar with that for uniform hypergraphs [18, 54].

Proposition 6.1. Let H be a connected hypergraph with adjacency tensor A, Lapla-

cian tensor L and signless Laplacian tensor Q. Then the following conditions are

equivalent.

(1) −ρ(A) ∈ Spec(A);

(2) Spec(A) = Spec(−A);

(3) ρ(L) = ρ(Q);

(4) Spec(L) = Spec(Q).
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Proof. It is apparent that (2) ⇒ (1) and (4) ⇒ (3). Now we prove (1) ⇒ (4) and

(3)⇒ (2).

If −ρ(A) ∈ Spec(A), then by Lemma 6.4, there is a nonsingular diagonal matrix

U such that A = eiθU−(k−1)AU .

Since −ρ(A) ∈ Spec(A), we have eiθ = −1, which means A = −U−(k−1)AU .

Note that for the degree diagonal tensor D, U−(k−1)DU = D.

Hence we have

L = D −A = D + U−(k−1)AU = U−(k−1)(D +A)U = U−(k−1)QU.

Thus L and Q are diagonal similar, and by Lemma 6.3, Spec(L) = Spec(Q).

On the other hand, if ρ(L) = ρ(Q), then from Lemma 6.1 we have L = eiθU−(k−1)QU .

Comparison of diagonal entries between L and Q implies that eiθ = 1. Thus

D −A = U−(k−1)(D +A)U = D + U−(k−1)AU,

and then −A = U−(k−1)AU . As A and −A are diagonal similar, we have Spec(A) =

Spec(−A).

Now (1)⇒ (4)⇒ (3)⇒ (2)⇒ (1) means that the four conditions are equivalent.

It deserves remarking that the above equivalence are restricted in connected hy-

pergraphs. If H has at least two connected components, then it is possible that

ρ(L) = ρ(Q) and Spec(L) 6= Spec(Q) (for example, the connected component Hi

with ρ(Q(Hi)) = ρ(Q) is an odd-colorable uniform hypergraph while another com-

ponent is non-uniform).

Next we derive some facts about non-uniform hypergraphs utilizing odd-coloring

of tensors.

Note that the definition of odd-colorable uniform hypergraphs mentioned in the

last chapter is a specialized version of odd-colorable r-matrices introduced in [42].
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The r-matrix therein refers to a square tensor of order r in this thesis. We restate

the original definition as following.

Definition 6.2. Let T ∈ Tk,n for an even k. Then T is called odd-colorable if there

is a map φ : [n]→ [k] satisfying

φ(i1) + · · ·φ(ik) ≡
k

2
(mod k), ∀ Ti1···ik 6= 0.

Moreover, it was shown in the Theorem 20 of [42] that being odd-colorable is a

necessary condition for a symmetric nonnegative tensor to have symmetric spectrum.

Lemma 6.5. [42] Let T ∈ Tk,n be symmetric and nonnegative. If Spec(T ) =

Spec(−T ), then k is even and T is odd-colorable.

Considering the structure of the adjacency tensor for a non-uniform hypergraph,

we can deduce the following from Lemma 6.5.

Proposition 6.2. If H is a non-uniform hypergraph, then the spectrum of its adja-

cency tensor is not symmetric.

Proof. Suppose that H is a hypergraph with rank k and co-rank t, k > t. If A is

odd-colorable, let φ be the map satisfying Definition 6.2. For an edge e of H with

cardinality t < k, say e = {j1, . . . , jt}, the entries of A corresponding to this edge e

are nonzero. Let Ai1···ik be such an entry. Then

φ(i1) + · · ·+ φ(ik) ≡
k

2
(mod k).

Note that by replacing i1 (or other il) with any one of j1, . . . , jt, the new indices

always satisfy the above equation as far as each jl appears in it at least once. Thus

we can conclude that φ(j1) = · · · = φ(jt) and the equation implies kφ(j) = k
2

+ ks

for j ∈ e and some fixed integer s, which further yields φ(j) = 1
2

+ s, a contradiction
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with the definition of the map φ. Therefore, A is not odd-colorable for a non-uniform

hypergraph. By Lemma 6.5, A can not have a symmetric spectrum.

Combining this fact and Proposition 6.1, the following statements can be con-

cluded.

Corollary 6.3. If H is a connected hypergraph with distinct rank and co-rank. Then

(1) max{λ : λ ∈ HSpec(L)} ≤ ρ(L) < ρ(Q);

(2) min{λ : λ ∈ HSpec(A)} > −ρ(A).

The corollary also indicates that if a hypergraph has symmetric H-spectrum or

equal Laplacian H-spectrum and signless Laplacian H-spectrum, then it is uniform

(and odd-bipartite [54, Theorems 2.2, 2.3]).

6.4 Conclusions

In our study of general hypergraphs, we obtained three types of upper bounds for the

spectral radius ρ(A) and the signless Lapalcian spectral radius ρ(Q), each of them

has advance under different situations. Additionally, the upper bounds for ρ(Q) also

suits the Laplacian spectral radius ρ(L).

Based on the idea of characterizing the spectral radius of general hypergraphs by

uniform hypergraphs, we proved a lower bound for (non-uniform) generalized power

hypergraph. Experiments show that the actual spectral radius may be approaching to

the bound when the non-uniform hypergraph lacks only a few core/pendent vertices

from being uniform.

Finally, we extend the equivalent conditions of symmetric spectrum (i.e. Spec(A) =

Spec(−A)) for connected uniform hypergraphs to connected general hypergraphs.

Moreover, through the odd-coloring of the adjacency tensor, we refute the possibility

for a non-uniform hypergraph to have symmetric (H-)spectrum, or some equivalent
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conditions. Nevertheless, under some conditions, a disconnected non-uniform hyper-

graph has −ρ(A) as its eigenvalue, or equal Laplacian spectral radius and signless

Laplacian spectral radius.
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