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Abstract

In this thesis, we consider four classes of optimization models. One class is LAD

Generalized Lasso models. We develop a descent algorithm for LAD-Lasso and a

new active zero set descent algorithm for LAD Generalized Lasso under nonsmooth

optimality conditions; The second class is constrained LAD Lasso models. We ex-

tend the descent algorithm to tackle the constraints as well. Application in Mean

Absolute Deviation Lasso portfolio selection is studied. The third class is selection

of penalty parameter for compressive sensing. We carry out tests using several cri-

teria for selection of the penalty parameter. The fourth class is optimization under

Asymmetric Laplace Distributions, namely robust mixture linear regression model

and portfolio selection.

We first consider LAD Generalized Lasso models. Under dynamic nonsmooth

optimality conditions, we develop a descent algorithm by selecting fastest descent

directions for LAD-Lasso regression. Then we derive a new active zero set descent

algorithm for LAD Generalized Lasso regression. The algorithm updates the zero

set and basis search directions recursively until optimality conditions are satisfied.

It is also shown that the proposed algorithm converges in finitely many steps.

We then consider Constrained LAD Lasso models. We develop a descent algorith-

m by updating descent directions selected from basis directional set for nonsmooth

optimization problems for MAD-Lasso portfolio selection strategy, extensive real da-

ta analysis are provided to evaluate the out-of-sample performances.
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We next consider selection of penalty parameter. For compressive sensing based

signal recovery model, we apply regularized Least Squares for sparse reconstruction

since it can reconstruct speech signal from a noisy observation, and proposed a two-

level optimization strategy to incorporate the quality design attributes in the sparse

solution in compressive speech enhancement by hyper-parameterizing the tuning pa-

rameter. The first level involves the compression of the big data and the second

level optimizes the tuning parameter by using different optimization criteria (such as

Gini index, the Akaike Information Criterion (AIC) and Bayesian Information Cri-

terion (BIC)). The set of solutions can then be measured against the desired design

attributes to achieve the best trade-off between suppression and distortion.

Finally, we study two models under Asymmetric Laplace Distributions. We first

present an efficient two-level latent EM algorithm for parameter estimation of mix-

ture linear regression models, with group label as the first level latent variable and

laplace intermediate variable as the second level latent variable. Explicit updating

formula of each iteration are derived and computational complexity can thus be re-

duced significantly. Then we consider robust portfolio selection model, and derived

the Expectation-Maximization (EM) algorithm for parameter estimation of Asym-

metric Laplace distribution, efficient frontier analysis is provided to evaluate the

performance.
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Chapter 1

Introduction

In this thesis, we study four related topics about regression and portfolio optimiza-

tion. The first one is LAD Generalized Lasso models, which arise in a wide range of

applications, such as image processing, econometrics, engineering and bioinformat-

ics. We study properties of this kind of models and we develop a descent method

for the simple LAD-Lasso problem. Similarly, we develop an active zero set descent

algorithm for the LAD Generalized Lasso problem.

The second one is Constrained LAD Lasso models. Under nonsmooth optimality

conditions, we derived a descent algorithm for Constrained LAD Lasso problem.

Then we investigate the MAD-Lasso strategy by combining MAD portfolio selection

model with Lasso penalty, and applied the proposed descent algorithm for finding

optimal portfolios. This model can induce sparsity and robustness for portfolio

selection, meanwhile the proposed algorithm speed up the calculation process.

The third one is the selection of penalty parameter, and we propose a two-level

optimization strategy to incorporate the affective design attributes in the sparse

solution in compressive speech enhancement by hyper-parameterizing the penalty

parameter. Also, we systematically analyze measures such as GINI, AIC and BIC

for finding optimal parameters.

Finally, we investigate two models under Asymmetric Laplace distributions which
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possess tail-heaviness, skewness and peakedness. Then we derive EM algorithms for

robust mixture linear regression models and portfolio selection models, complement-

ed with real data analysis to evaluate the performance of our models.

1.1 LAD Generalized Lasso models

At an era of information explosion, the extraction of useful information from massive

datasets becomes an important issue. The process often involves selecting a subset

of variables to explain certain observations and phenomena. It can be posed as

a regression problem. Since the number of variables are not known in advance, a

large dataset is often deployed in the selection process in order not to miss the key

variables. In this way, the regression problem becomes a sparse fitting problem.

Motivated by the non-negative garrote procedure of Breiman in [14], Tibshirani

added sparsity into regression problems in [109] and constructed the Least Absolute

Shrinkage and Selection Operator (Lasso) penalty. By adding a bound to the ab-

solute sum of coefficients, Lasso could shrink some coefficients to zeroes and retain

significant variables to maintain model interpretability. As a convex penalty, Lasso

is solvable and flexible. Hastie et al. systematically summarized a series of Lasso

problems in [46], and displayed that Lasso could be extended to generalized linear

models and multivariate analysis. The comprehensive advantages made Lasso pop-

ular and active in engineering, finance, marketing, bioinformatics and other related

fields.

In practical applications, cases with heavy-tailed errors contain outliers are ubiq-

uitous and would deteriorate estimation accuracy significantly. As an alternative to

ordinary least square regression, Least Absolute Deviation (LAD) regression main-

tains robustness against fat tailed errors or extreme outliers due to its connection

with L1 norm and double exponential distribution. There are several approaches
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combining LAD regression with certain penalty terms for variable selection problem-

s.

Recently, many researchers concerned about LAD regression with variable selec-

tion problem. For example, Zeebari united the LAD regression with ridge penalty,

and alleviated the multi-collinearity between variables in [130]. Wang et al. proposed

a consistent tuning parameter selection technique for LAD-Lasso, and extensively s-

tudied the relative asymptotic properties in [113]. In [39], Gao studied the high

dimensional LAD-Lasso problem systematically, and confirmed the corresponding

asymptotic properties. In [5], Arslan introduced the weighted LAD-Lasso by adap-

tively adding up a weighting process to mitigate the influence of outliers against both

explanatory variables and response variable. In [120], Xu introduced a two-stage

method for tuning parameter selection and obtained the oracle property. Various

LAD-Lasso related studies have been conducted and the corresponding theoretical

properties are well constructed.

Since LAD-Lasso is more robust and could be easily extended to other situation-

s, efficient solution to this problem become imperative and necessary. Generally,

LAD-Lasso could be transformed to classical linear programming problem so that

they could be computed easily. As an alternative to simplex method, Koender pro-

posed the interior point method with a preprocessing step in [93]. Watson and Yiu

[118] dealt with the error-in-variable l1 norm regression using Levenberg-Marquardt

method, and robust solutions are obtained accordingly. Yiu et al. [127] applied

l1-norm to beamforming design and proposed an algorithm with a set of adaptive

grids to speed up the calculation process. However, existing algorithms for solving

LAD-Lasso is restrictive and rely heavily on the linear programming solvers. We

study and propose a more efficient method by selecting a sequence of fastest descent

directions based on dynamic optimality condition.

Robust regression analysis with L1 norm is ubiquitous in many fields of math-
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ematics and engineering that finds a vast amount of applications in econometrics,

genetics, meteorology, engineering, and molecular biology, see for example, [10, 36,

51, 60, 90, 95, 122]. To allow sparse structure in the solution, a variety of penal-

ty functions are adopted in the literature, including Lasso [109], Adaptive Lasso

[136], Fused Lasso [110], MCP [131], and SCAD [33]. Lasso-type penalties are pop-

ular in practice for their flexibility and simplicity. Moreover, Lasso can be used

in the majorization step as approximation to the original penalty function in the

majorization-minimization procedure, see [53].

To allow sparsity in the solution, Tibshirani and Taylor [111] imposes structural

constraints on the coefficients in a linear regression and studies the following Gener-

alized Lasso problem,

arg min
θPRp

}Y ´Xθ}2 ` λ}Rθ}1, (1.1)

where X P Rnˆp is the design matrix, Y P Rn is the response variable, R P Rqˆp

is a specified penalty matrix, θ P Rp is the coefficient vector we are concerned.

Though there are various existing work on Generalized Lasso models using sum of

squares objective function. It is widely accepted that Least Absolute Deviation

(LAD) regression is robust and resistant to heavy tailed outliers in the response.

Combining LAD with Generalized Lasso gives LAD Generalized Lasso problem,

arg min
θPRp

}Y ´Xθ}1 ` λ}Rθ}1. (1.2)

When R “ Ip, (1.2) reduces to the traditional LAD-Lasso problem, see [39, 113, 116,

101] for details.

LAD Generalized Lasso has wide applications and encompasses LAD Fused Lasso

and robust change point detection problems as special cases. Gao and Huang [40]

employed LAD Fused Lasso to human genomic DNA copy number data with spatial

dependence and sparsity of CNV; Tang [108] investigated LAD Fused Lasso model
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with censored data. Change point problem has also received considerable amount of

attention in the literature, to name a few, Li and Sieling [75] proposed an algorithm

using multi-scale segmentation method based on FDR-control; Ng et al. [88] im-

plemented local quadratic approximation strategy with exploitation on the banded

structure of Hessian to simplify the computation; Li and Wang [76] investigated LAD

change point model based on LAD adaptive Lasso method.

LAD Generalized Lasso can be transformed to a linear programming problem eas-

ily. Sparsity of the solution depends on the number of active constraints in the equiv-

alent linear programming problem. Therefore, identification of sparsity is equivalent

to the identification of active constraints. It should be noted that the state-of-the-art

interior point algorithm can only approach the active constraints approximately by

iterative procedure. If only finitely-many iterations are done, closeness to the active

constraints must be determined by some user-chosen threshold value that is very

arbitrary. Interior point method is employed by Koenker [63] with a preprocessing

step for quantile regression. There are a number of alternatives to the interior point

method. Wang et al. [115] established an efficient algorithm for LAD-Lasso problem

that can solve the entire regularization path in one pass. Wang et al. [116] posed

augmented Lagrangian method for fused lasso under general convex loss. Shi et al.

[101] constructed a descent method by iteratively selecting fastest descent directions

for LAD-Lasso problems under nonsmooth optimality conditions. However, none of

these methods guarantees the convergence of the algorithm in finitely-many steps.

The main contribution is to propose a new active zero set descent algorithm that

can stop in finitely-many steps, where the stopping conditions do not involve any

user-chosen threshold value or tolerance level. The proposed algorithm check certain

dynamic nonsmooth optimality conditions in each iteration and updates the active

zero set and basis search directions. This makes our approach different from many

other numerical approximation methods such as interior point method that requires a
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user-chosen threshold value to determine if an absolute value in the objective function

is zero. On the contrary, the interior point method cannot be terminated in finitely-

many steps. This is because it approximates the original problem using nonlinear

“logarithmic barrier”. As a result, Newton-like iteration is required. Moreover, the

size logarithmic barrier needs to be decrease gradually in another iteration. This

entails a nested iteration that do Newton update in the inner loop and decrease

logarithmic barrier in the outer loop.

1.2 Constrained LAD Lasso models

The mean-variance framework of Markowitz [87] is the cornerstone for modern port-

folio selection theory. Under this framework, in order to balance the risk and return,

the portfolio variance is minimized at a given level expected return. This entails the

estimation of the mean vector µ and covariance matrix Σ. However, as shown in

[15, 27, 37, 58], if the sample mean and sample covariance are taken as the estimation

of µ ,Σ , the out-of-sample performance of the asset allocation is not satisfactory in

practice. In the context of regression analysis, it is well known that least absolute

deviance (LAD) is more robust and resistant to outliers in the response compared to

the usual least square (LS) regression, see [39, 113, 114]. The statistical properties of

the constrained Lasso estimates are studied in [38, 56]. As an analogy, it is natural

to believe that in the portfolio selection problem, the out-of-sample performance of a

portfolio can be improved if the portfolio variance is replaced by the mean absolute

value. Indeed, Konno [67] propose a mean absolute deviation (MAD) based robust

portfolio selection method without involving mean vector and covariance matrix ex-

plicitly.

Sparsity is also desirable in portfolio selection because it reduces the management

cost. However, this cannot be achieved by applying the method of [67] directly.
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Though the Lasso penalty of Tibshirani [109] is introduced in the context of variable

selection, it finds extensive applications in portfolio selection. For example, Brodie

[16] develops a sparse and stable portfolio selection strategy by incorporating the

idea of Lasso regularization. It is shown that the out-of-sample performance of the

Lasso regularized method is consistently better than naive equal-weight portfolio in

terms of Sharpe ratio. Further studies of regularized Markowitz’s theory include, to

name a few, [20, 34, 35, 123, 124]. However, all these methods are developed under

the traditional mean-variance framework. The purpose of this paper is to incorporate

Lasso penalty into MAD based portfolio selection method.

In this section, we illustrate that the proposed MAD-Lasso method can be re-

formulated as a constrained LAD problem with linearly equality constraints. In the

absence of constraints, Shi [101] develop a steepest descent algorithm for the LAD-

Lasso problem. In the present paper, we further generalize the ideas of “nonsmooth

optimality conditions” and “basis directional set” to allow equality constraints. In-

terior point method is a competitor of the proposed algorithm. Notice that the

constrained LAD problem can be transformed into a linear programming problem

and therefore can be solved by the interior point method provided in the Matlab

interface. However, interior point requires nested iteration that increase the tuning

parameter in the outer-loop and do optimization to an approximated problem in

the inner-loop. Since the solution is never exact if only finitely-many iterations are

done, one needs to specify a thresholding value to determine if a component in the

approximated solution equals zero. The choice of such thresholding value can be

very arbitrary. On the contrary, thresholding value is not required by the proposed

algorithm.
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1.3 Selection of penalty parameter

The ever growing demand for mobile electronic devices, e.g., smart phones, has made

voice interfaces ubiquitous. Given the mobility of these electronic devices, the input

speech signal will suffer from the various environmental noise. Clearly, delivering a

clean speech signal in the communication system is an important aspect of the prod-

uct requirement. The objective of speech enhancement is to estimate the desired

speech signal from the noisy observation, which consists of both speech and noise

signals. The two key performance measures for speech enhancement are usually

measured in terms of noise suppression and speech distortion [126, 82]. Interestingly,

these two measures can be viewed as engineering design and quality design require-

ments, respectively [57, 73, 24]. In terms of engineering design, the enhancement

must yield the highest signal to noise ratio (SNR) possible, which translates to noise

suppression capability. In order to satisfy its quality design, the enhancement process

must also maintain the perceptual features, i.e., minimizes speech quality degrada-

tion. Indeed, it is a challenge to optimize the overall noisy speech as the engineering

and quality requirements [57] are at times conflicting as maximizing SNR tend to

result in speech degradation [83], resulting in a natural trade-off.

Given its volume, speech signal is considered to be a big data. Additionally,

speech is highly non-stationarity across the time and frequency domains. The vary-

ing nature of speech adds to the challenge as the data is not just ’big’ but also

changing as a function of time and frequency. There is a wealth of literature exam-

ining the characteristics of speech to reveal its patterns and trends, which are useful

in applications such as speech recognition, speech enhancement and computational

auditory scene analysis. Of late, one important characteristics of speech is its sparsi-

ty. Speech sparsity has gained popularity as it may hold the key to making the ’big’

speech data, ’small’. Whilst speech is fairly compact and dense in the time domain,
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speech signals are in fact sparse in the time-frequency representations [91, 41]. This

is because speech is highly non-stationary and there will be lapses of time-frequency

periods where the speech power is negligible compared to the average power. On av-

erage, a speech signal consists of approximately ten to fifteen phonemes per second

and each of these phonemes has a varying spectral rate [43].

The notion of sparsity has led to sparse reconstruction methods such as com-

pressed sensing (CS) [29, 19]. CS theory states that sparse signals with a small

set of linear measurements can be reconstructed with an overwhelming probability

[17, 18]. Potentially, CS has the capability to compress big data such as speech

signal. In speech enhancement, CS exploits the sparsity of speech and non-sparse

nature of environmental noise in its reconstruction. Low et al. [84] demonstrated

the use of CS as a speech enhancer by relying upon the strength of CS to maintain

only the sparse components (speech) and its weakness in preserving the non-sparse

components (noise). Various CS based methods with favorable results have been

reported [84, 103, 119], demonstrating its efficacy for speech enhancement applica-

tions. A very popular technique for sparse signal reconstruction is the regularized

`1-norm least squares [61]. This is because `1 regularized least squares yields a spars-

er solution since the solution tends to have fewer nonzero coefficients compared to

the `2 based Tikhonov regularization [61]. One important parameter in solving the

regularized sparse solution is the tuning parameter or the penalty constant, λ. The

regularization parameter, λ holds significance as a heavier weighting would penalize

the Tikhonov regularization. In other words, the tuning parameter holds the key in

determining how sparse a solution is reconstructed.

Whilst a sparse solution indicates the existence of a sparse component such as

speech, there is no measure incorporated in the CS reconstruction to optimize on the

overall speech quality. The idea is to establish the relationships between sparsity and

quality. Since the tuning parameter has influence over the sparsity of the solution,
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then a quality measure should be factored in to link the two. This is akin to factor-

ing aspects of consumers perceive quality by using a quality measure in the overall

product design [81]. We proposes to formulate the solution in compressive speech

enhancement by hyper-parameterizing the tuning parameter. The tuning parame-

ter is then optimized by using different optimization criteria (such as Gini index,

the Akaike information criterion (AIC) and Bayesian information criterion (BIC)) to

achieve the sparsest set of solutions. The set of solutions is then evaluated against

the perceptual evaluation speech quality (PESQ) as a quality measure [96], which

can be used in a wide range of operating conditions depending on the requirements.

The development of such a process can then be used to describe a systematic ap-

proach to the analysis of consumer reactions to candidate designs, which ultimately

provides a definition of better products and increases the product appeal [9].

1.4 Two models under Asymmetric Laplace Dis-

tributions

In this section, we consider two models under Asymmetric Laplace Distribution (ALD).

The first model is mixture linear regression model with Asymmetric Laplace error,

the second model is portfolio selection model under Asymmetric Laplace Distribution

framework.

We first consider mixture linear regression models with error term follows mix-

ture Asymmetric Laplace distributions. Let X be a n ˆ p design matrix and Y be

a response variable. The relationship between Y and X is often modelled via lin-

ear regression. With the framework of mixture linear regression, we assume that

with probability πk, k “ 1, ¨ ¨ ¨ , K, pXi, Yiq comes from the k-th component if latent

variable W “ k:

Y “ Xᵀβk ` σkεk, k “ 1, ¨ ¨ ¨ , K, K ě 2, (1.3)
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where the mixing proportion π “ pπ1, ¨ ¨ ¨ , πKq
1 satisfies πk ą 0, and

řK
k“1 πk “ 1, βk

is the unknown pˆ1 vector of the 100τ% regression quantiles for the k-th component

with 0 ă τ ă 1, and σk ą 0 is the corresponding unknown scalars. The random error

terms εks are assumed to be independent of X, and it is commonly assumed that

the 100τ% quantile of εk is zero with variances one. When τ “ 1{2, it reduces to the

Least Absolute Derivation (LAD) regression.

For a given random sample tYi, Xiu
n
i“1 from model (1.3), when K “ 1, the τ -

th QR is defined as any vector β̂ P Rp minimizing the target function Qpβq “
řn
i“1 ρτ pYi´X

ᵀ
i βq, where ρτ ptq “ tpτ ´ Ipt ă 0qq is the so-called check function, and

Ip¨q is the usual indicator function [62, 63]. Many algorithms have been developed

in the literature to tackle the minimization problem β̂ “ arg min
β
Qpβq, such as the

interior point algorithm [65], the MM algorithm [52], and references therein. It is easy

to show that minimizing Qpβq is equivalent to maximizing the likelihood function

of a linear regression model with random errors following the Asymmetric Laplace

Distribution, see [42, 64, 128], among many others. Since ALD can be represented

as a normal-variance-mean mixture with an exponential mixing distribution, which

makes it easy to implement the EM algorithm for unknown parameter estimation, see

[133]. Wang and Xiang [117] proposed a two-layer EM algorithm for ALD mixture

regression models for composite quantile regression, which provide another form of

likelihood function for composite quantile regression. The objective function for

quantile regression of model (1.3) is generally

β̂ “ arg min
β
ρτ pYi ´X

ᵀ
i βq, (1.4)

the robustness property of the QR procedure, and the natural connection between QR

estimation and maximum likelihood estimation for the regression coefficients given

the asymmetric laplace distributed random error when K “ 1 as in [133], motivate

us to consider the possible extension of the algorithm to the mixture model setup as
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in (1.3). For model (1.3), Yao et al. [121] proposed a robust estimation procedure

for mixture linear regression models based on t distribution by extending [89]’s work,

while [102] investigated a robust estimation procedure for mixture linear regression

models based on Laplace distribution. The research deals with the same questions as

in [121] or [102], but with the QR technique, or the ALD, instead of the less commonly

used t-distribution or the special case of the standard Laplace distribution, used for

achieving robustness. That is, we propose a new robust mixture regression model

via ALD for (1.3), and investigate its estimates based on EM algorithm. The natural

connection between the QR procedure and the MLE based on ALD error made the

proposed procedures more appealing.

The MLE works well under Gaussian error case. However, MLE is sensitive to

outliers or heavy tailed errors. Yao et al. [121] conducted mixture t regression

models to overcome the heavy tail error cases; Song et al. [102] noticed the special

connection of Laplace distribution and quantile regression, a Laplace error based

linear regression is proposed to solve this problem. We consider mixture Laplace

errors for quantile regression with different skewness level, a robust EM procedure is

conducted to verify the robustness of our algorithm.

Then we focus on portfolio selection models under Asymmetric Laplace Distri-

bution (ALD) framework. Portfolio selection aims at either maximizing the return

or minimizing the risk. In 1952, Markowitz [87] suggests to select the portfolio by

minimizing the standard deviation at a given expected return under the assumption

that asset returns are normally distributed. This means that standard deviation is

chosen as the risk measure. Markowitz’s work laid down the cornerstone for modern

portfolio selection theory framework.

Risk measures and probability distributions are two important constituents of the

portfolio selection theory. Traditional Markowitz’s model [87] is established based

on normality assumption and standard deviation is chosen as the risk measure.
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One disadvantage of taking standard deviation (StD) as a risk measure is that the

loss in the extreme cases tends to be underestimated. To overcome such a difficulty,

the idea of Value at Risk (VaR) is also widely used in practice. Artzner et al. [6]

suggests that desirable risk measure should be “coherent”. However, VaR does not

fulfill the subadditivity condition as required by the definition of “coherence”. Yiu

[125] proposed an optimal portfolio selection under Value-at-Risk. On the other

hand, Expected Shortfall (ES) is coherent as a popular risk measure for portfolio

selection that aims at averaging the tail uncertainties.

It is well-known that financial data cannot be described satisfactorily by normal

distribution. The normality assumption is restrictive and is generally violated due

to financial market uncertainties and managers’ risk aversion. As Behr and Ptter

[11] pointed out, alternatives for multivariate normal distribution are necessary for

portfolio selection. A desirable alternative model should be able to explain tail

heaviness, skewness, and excess kurtosis. Various heavy tailed distributions have

been applied to portfolio selection problems. Among these, Mandelbrot [3] concluded

that the daily rate of return of stock price data exhibit heavy tailed distributions;

Hu and Kercheval [49] apply multivariate skewed t and student t distribution for

efficient frontier analysis; Generalized hyperbolic distribution is extensively studied

in [11, 30, 47, 48, 106, 107], with special cases including hyperbolic distribution

[13, 31], Variance Gamma distribution [100], Normal Inverse Gaussian distribution

[8], etc.

Recently, Asymmetric Laplace distribution has received various attention in the

literature, to name a few, [7, 66, 70, 71, 94]. Compared to Normal distribution, the

Asymmetric Laplace distribution describes asymmetry, steep peak, and tail heaviness

better. Portfolio selection models are extensively studied under Asymmetric Laplace

framework. Zhu [134], Kozubowski and Podgrski [71] apply Asymmetric Laplace

distribution to financial data. By assuming that the asset data is generated from
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autoregressive moving average (ARMA) time series models with Asymmetric Laplace

noise, Zhu [134] establish the asymptotic inference theory under very mild conditions

and present methods of computing conditional Value at Risk (CVaR). Zhao et al.

[132] further propose a so-called mean-CVaR-skewness portfolio selection strategy

under Asymmetric Laplace distribution, this model can be further transformed to

quadratic programming problem with explicit solutions.

In this subsection, we extended Hu [49]’s work to Asymmetric Laplace framework.

We first derived the equivalence of mean-VaR/ES/Std-skewness-kurtosis models, and

show that these models can be reduced to quadratic programming problem. S-

ince Zhao [132] utilized moment estimation for parameter estimation of Asymmetric

Laplace distribution which is less efficient compare to maximum likelihood estima-

tion. Taken into consideration of the normal mean-variance mixture of Asymmetric

Laplace distribution, followed by Expectation-Maximization algorithm for multivari-

ate Laplace distribution in Arslan [4], we derived the EM algorithm for Asymmetric

Laplace Distributions that outperforms moment estimation in [132]. The advantage

of the proposed EM algorithm is to alleviate the complicated calculation of Bessel

function. This improves many existing methods of estimating Asymmetric Laplace

distributions, for example, Hrlimann [55], Kollo and Srivastava [66], Visk [112]. Ex-

tensive simulation studies and efficient frontier analysis are complemented to confirm

that our algorithm performs better than moment estimation for parameter estima-

tion.

1.5 Contributions of the thesis

The contributions of this thesis can be divided into four parts:

1. LAD Generalized Lasso regression.

In Chapter 2, we first focus on LAD-Lasso regression, we derived the optimality
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condition for optimal solutions, and developed a descent algorithm such that

the nonsmooth optimization problem can be optimized directly. Then we con-

struct the active zero set descent algorithm for LAD Generalized Lasso. Under

dynamic nonsmooth optimality conditions, based on zero set and basis direc-

tional set, we update the descent directions and optimal step length recursively

without user-chosen threshold value. Simulation studies and real data analysis

are provided to confirm that our algorithms perform well.

2. Constrained LAD Lasso for portfolio optimization.

In Chapter 3, we established the MAD-Lasso portfolio selection strategy, refor-

mulated as Constrained LAD Lasso with linearly equality constraints. We de-

velop a descent algorithm by updating descent directions from basis directional

set and optimal step length iteratively for solutions of MAD-Lasso model.

3. Penalty parameter selection for compressive sensing.

In Chapter 4, we first propose a two-level optimization strategy to incorpo-

rate the affective design attributes in the sparse solution in compressive speech

enhancement by hyper-parameterizing the tuning parameter, and provide se-

lection criteria for tuning parameter selection.

4. Two models under Asymmetric Laplace Distributions.

In Chapter 5, we first propose a two-level latent EM algorithm for parameter

estimation of mixture linear regression models by assuming that the error term

follows mixture laplace distribution. Then we consider portfolio selection under

Asymmetric Laplace Distribution (ALD) framework, and derived the EM algo-

rithm for parameter estimation, we also prove that minimize VaR, ES and StD

under ALD framework can be simplified to quadratic programming with ex-

plicit solutions. Extensive simulation studies and real data analysis confirmed
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that our proposed methodology works well.

1.6 Organizations of the thesis

The thesis is structured as follows.

• In Chapter 1, we introduce existing background knowledge of four topics: LAD

Generalized Lasso models, Constrained LAD Lasso models, penalty parame-

ter selection for compressive sensing, two models under Asymmetric Laplace

Distribution. Then we summarized the main contributions of the thesis.

• In Chapter 2, we focus on LAD Generalized Lasso models. We first develop a

descent method by choosing the fastest decent direction for LAD-Lasso model,

then we present a new active zero set descent algorithm for LAD Generalized

Lasso by updating the descent directions and optimal step length recursively

based on zero set and basis directional set without user-chosen threshold value,

convergence analysis are conducted.

• In Chapter 3, we consider Constrained LAD Lasso models, and conduct a

descent algorithm by iteratively updating descent directions and optimal step

length, then we apply the algorithm to MAD-Lasso portfolio selection strategy.

• In Chapter 4, we derive a Two-Level tuning parameter selection strategy for

compressive sensing based signal processing model.

• In Chapter 5, we study two models under Asymmetric Laplace Distribution-

s. We first conduct mixture linear regression model and derived a two-level

Expectation-Maximization algorithm for model fitting, then we investigate ro-

bust portfolio selection models under Asymmetric Laplace framework.
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• In Chapter 6, we summarize our main results in this thesis and provide several

further possible research directions.
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Chapter 2

LAD Generalized Lasso Models

In this chapter, we focus on LAD Generalized Lasso models. Based on nonsmooth

optimality conditions and directional derivatives, we derive a descent method for

LAD-Lasso model and a new active zero set descent algorithm for LAD Generalized

Lasso model. Compared to interior point method, we verify that our algorithms are

much more time efficient than state-of-the-art linear programming solver: interior

point method.

2.1 A descent method for LAD-Lasso model

Consider linear regression problem

Y “ Xβ ` ε, (2.1)

where X is the n ˆ p design matrix with row vectors Xi P Rp, i “ 1, ¨ ¨ ¨ , n, and

Y “ py1, ¨ ¨ ¨ , ynq
ᵀ is the response vector, β “ pβ1, ¨ ¨ ¨ , βpq

ᵀ is the parameter vector

we are concerned.

Generally, the LAD-Lasso regression is to minimize the l1 norm loss function

min
β

n
ÿ

i“1

|yi ´Xiβ|
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subject to the constraint

p
ÿ

i“1

|βi| ă c,

where c is a positive constant.

This problem can be transformed into the following optimization problem:

min
β

n
ÿ

i“1

|yi ´Xiβ| ` γ
p
ÿ

j“1

|βj|,

or the matrix representation

min
β
}Y ´Xβ}1 ` γ}β}1. (2.2)

Note that the terms in (2.2) are nonsmooth. A typical way to tackle this problem is

to transform it into a linear programming problem. Denote

}Y ´Xβ}1 “ u1 ` v1 , }β}1 “ u2 ` v2, (2.3)

where u1, v1, u2, v2 ě 0 and u1, v1 P Rn, u2, v2 P Rp are defined as

u1 “ max
`

Y ´Xβ, 0
˘

,

v1 “ max
`

´ pY ´Xβ
˘

, 0q,

u2 “ maxpβ, 0q,

v2 “ maxp´β, 0q.

Hence

Y ´Xβ “ u1 ´ v1 , β “ u2 ´ v2,

and (2.2) is equivalent to the following minimization problem:

min 0 ¨ β ` u1 ` v1 ` γpu2 ` v2q

s.t. Xβ ` u1 ´ v1 “ Y,

β ´ u2 ` v2 “ 0p,

u1, v1 ě 0n, u2, v2 ě 0p.
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Denote

A “

ˆ

X I ´I 0n 0n
Ip 0pˆn 0pˆn ´Ip Ip

˙

, b “

ˆ

Y
0p

˙

,

the optimization problem becomes

min cᵀx

s.t. Ax “ b,

u1, v1 ě 0n, u2, v2 ě 0p,

(2.4)

where x “ pβᵀ, uᵀ1, v
ᵀ
1 , u

ᵀ
2, v

ᵀ
2q

ᵀ, c “ p0p, I, I, γI, γIq.

Thus, (2.4) is a canonical linear programming problem and interior point method

can be applied to solve it. This is currently the state-of-art technique for tackling the

LAD-Lasso problem. However, when n and p become large, the computational time

still grows significantly and becomes very expensive. Problem (2.2) can be written

as a canonical form by introducing the symbols as follows:

Y ˚ “

ˆ

Y
0p

˙

, X˚
“

ˆ

X
γ ¨ Ip

˙

,

where 0p is p ˆ 1 vector, Ip is p-dimensional identity matrix. Then, Problem (2.2)

becomes

min
β
}Y ˚ ´X˚β}1. (2.5)

For simplicity of notation, we omit the superscript ˚ and consider the canonical form

min
β
}Y ´Xβ}1. (2.6)

2.1.1 Computational methodology

Introducing the objective function fpβq, the optimization problem (2.6) is standard-

ized as

min
βPRp

fpβq “
n
ÿ

i“1

|Xiβ ´ yi| “
n
ÿ

i“1

fipβq, (2.7)
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where

fipβq “ |Xiβ ´ yi| “

$

&

%

Xiβ ´ yi, if Xiβ ´ yi ą 0,
´Xiβ ` yi, if Xiβ ´ yi ă 0,
0, if Xiβ ´ yi “ 0.

To develop an efficient method for solving Problem (2.6), the optimality conditions

are needed. The derivative of fi with respect to β is given by

Bfi
Bβ

“

"

Xi, if Xiβ ´ yi ą 0,
´Xi, if Xiβ ´ yi ă 0.

At the point when Xiβ ´ yi “ 0, it’s not differentiable. However, its directional

derivative exists. For a direction d P Rn, the directional derivative of fi along d is

defined as

∇d`fi “ lim
λÑ0`

|Xipβ ` λdq ´ yi| ´ |Xiβ ´ yi|

λ}d}
“
|Xid|

}d}
.

Similarly, for the direction ´d, directional derivative of fi along ´d is defined as

∇d´fi “ lim
λÑ0`

|Xipβ ´ λdq ´ yi| ´ |Xiβ ´ yi|

λ}d}
“
|Xid|

}d}
.

Hence, for the absolute linear function, we have

∇d´fi “ ∇d`fi.

Furthermore, if Xiβ ´ yi ‰ 0, then fi is smooth and we have

∇d´fi “ ´∇d`fi.

Denote Xiβ ´ yi “ ui, we rewrite the objective function as

fpβq “ Apβq ` Cpβq,

where Apβq relate to the smooth part of ∇dfpβq,

Apβq “
n
ÿ

i“1

χpui ą 0qpXiβ ´ yiq `
n
ÿ

i“1

χpui ă 0qp´Xiβ ` yiq fi aᵀβ ` b,
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in which

χpνq “

"

1, if ν is true,
0, otherwise,

aᵀ “
n
ÿ

i“1

χpui ą 0qXi ´

n
ÿ

i“1

χpui ă 0qXi,

b “ ´
n
ÿ

i“1

χpui ą 0qyi `
n
ÿ

i“1

χpui ă 0qyi,

and Cpβq relate to the nonsmooth part of ∇dfpβq.

Denote the zero set in each iteration by Ωk “ tk1, ¨ ¨ ¨ , kmu, which is the set of all

the indices i such that ui “ 0. Then

Cpβq “
n
ÿ

i“1

χpui “ 0q|Xiβ ´ yi| “
m
ÿ

i“1

|Xkiβ ´ yki | “
ÿ

iPΩk

|Xiβ ´ yi|.

Since fpβq is the sum of n convex functions, it is convex and its local minimizer

is also the global minimizer. The optimality condition of the minimizer is that any

directional derivatives are greater than or equal to zero. That is, β˚ is the optimal

solution of (2.7) if and only if

∇dfpβ
˚
q “ ∇dApβ

˚
q `∇dCpβ

˚
q ě 0 , @d P Rp. (2.8)

However, it is not easy to verify this condition during computation since d is arbitrary.

We should derive an equivalent condition such that it can be verified easily. Consider

the function Cpβq such that

Xkiβ “ yki , i “ 1, ¨ ¨ ¨ ,m.

Denote

Xa “

¨

˚

˝

Xk1
...

Xkm

˛

‹

‚

,
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and suppose that the rank of Xa is m, we can find its generalized inverse matrix as Va

such that XaVa “ Im, where Im is the mˆm identity matrix and Va “ pV1, ¨ ¨ ¨ , Vmq.

Consider the null space tV P Rp|XaV “ 0u. There exist p´m linear independent

vectors Vj, j “ m` 1, ¨ ¨ ¨ , p, which are the basis of the null space. Hence, we have

XaVj “ 0, @j “ m` 1, ¨ ¨ ¨ , p.

Therefore, tVi : i “ 1, ¨ ¨ ¨ , pu form a basis of Rp and the following orthonormality

holds:

XkiVj “

"

1, when i “ j;
0, when i ‰ j,

i “ 1, ¨ ¨ ¨ ,m , j “ 1, ¨ ¨ ¨ , p, (2.9)

Then we can obtain the directional derivatives of f along the vectors tVj : j “

1, ¨ ¨ ¨ , pu. If i P t1, ¨ ¨ ¨ ,mu, we have

∇V `i
Cpβq “

řm
j“1 |XkjVi|

}Vi}
“

1

}Vi}
, i “ 1, ¨ ¨ ¨ ,m,

∇V ´i
Cpβq “

řm
j“1 |Xkjp´Viq|

} ´ Vi}
“

1

}Vi}
, i “ 1, ¨ ¨ ¨ ,m.

If i P tm` 1, ¨ ¨ ¨ , pu, we have

∇ViCpβq “

řm
j“1 |XkjVi|

}Vi}
“ 0, i “ m` 1, ¨ ¨ ¨ , p.

Consequently, we have

∇V `i
fpβq “ ∇V `i

Apβq `
1

}Vi}
“ paᵀVi ` 1q{}Vi} , i “ 1, ¨ ¨ ¨ ,m.

∇V ´i
fpβq “ ∇V ´i

Apβq `
1

}Vi}
“ p´aᵀVi ` 1q{}Vi} , i “ 1, ¨ ¨ ¨ ,m. (2.10)

∇Vifpβq “ ∇ViApβq “ aᵀVi{}Vi} , i “ m` 1, ¨ ¨ ¨ , p.

An equivalent optimal condition of (2.8) is given by the following theorem.
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Theorem 2.1. β˚ is the optimal solution if and only if the directional derivatives

satisfy

∇V `i
fpβ˚q ě 0 , i “ 1, ¨ ¨ ¨ ,m.

∇V ´i
fpβ˚q ě 0 , i “ 1, ¨ ¨ ¨ ,m. (2.11)

∇Vifpβ
˚
q “ 0 , i “ m` 1, ¨ ¨ ¨ , p.

Proof. Note that (2.11) is a special case of (2.8), the necessary condition is obvious.

Therefore, we only prove the sufficient condition, that is, we prove that if (2.11) are

satisfied, then (2.8) holds.

For any direction d, since tVi : i “ 1, ¨ ¨ ¨ , pu is a basis of Rp, there exists a vector

λ, such that

d “
p
ÿ

i“1

λiVi. (2.12)

Without loss of generality, we can set λi ě 0, @i “ 1, ¨ ¨ ¨ , p, because if λi ă 0, we

have λiVi “ p´λiq ¨ V
´
i . Then V `i is replaced by V ´i , and λi is replaced by ´λi ą 0.

Hence, by adjusting the order adequately, (2.12) can be reorganized as

d “
m1
ÿ

i“1

λiV
`
i `

m
ÿ

i“m1`1

λiV
´
i `

p
ÿ

i“m`1

λiVi.

where λi ě 0, @i “ 1, ¨ ¨ ¨ , p. It follows from (2.10) that

∇dCpβ
˚
q “

řm
i“1 |Xkid|

}d}

“

řm
i“1

ˇ

ˇXki

`
řm1

j“1 λjV
`
j `

řm
j“m1`1 λjV

´
j `

řp
j“m`1 λjVj

˘
ˇ

ˇ

}d}

“

řm1

i“1

ˇ

ˇλiXkiV
`
i

ˇ

ˇ`
řm
i“m1`1

ˇ

ˇλiXkiV
´
i

ˇ

ˇ

}d}

“

řm
i“1 λi
}d}

.
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Hence, by (2.10), we have

∇dfpβ
˚
q “

˜

m1
ÿ

i“1

λia
ᵀV `i `

m
ÿ

i“m1`1

λia
ᵀV ´i `

p
ÿ

i“m`1

λia
ᵀVi `

m
ÿ

i“1

λi

¸

M

}d}

“

˜

m1
ÿ

i“1

λipa
ᵀV `i ` 1q `

m
ÿ

i“m1`1

λipa
ᵀV ´i ` 1q `

p
ÿ

i“m`1

λia
ᵀVi

¸

M

}d}

“

˜

m1
ÿ

i“1

∇V `i
fpβ˚q ¨ }Vi} `

m
ÿ

i“m1`1

∇V ´i
fpβ˚q ¨ }Vi}

¸

M

}d}

ě 0.

Thus for any direction d, the directional derivative is greater than or equals to zero.

Hence, (2.8) holds and β˚ is the optimal solution. l

Remark 2.1. If the rank of Xa is l, and l ă m, we can find l rows such that they

are rank l. Then, the generalized inverse matrix Va “ pV1, ¨ ¨ ¨ , Vlq can be computed.

Since Theorem 2.1 does not hold by replacing m by l, extend Theorem 2.1 to multi-

collinear cases need further exploration.

If the condition (2.11) is not satisfied, then there exists a direction d such that

the cost function value decreases along with this direction. If the i-th condition is

not satisfied, that is,

∇V `i
fpβq ě 0 and ∇V ´i

fpβq ě 0

can not be satisfied at the same time, then V `i or V ´i is the descent direction. For

an iterative point βpkq, denote the zero set by Ωk. The function can be rewritten as

fpβq “ apkqᵀβ `
ÿ

iPΩk

|Xiβ ´ yi| ` b
pkq. (2.13)

We need to find a descent direction such that (2.13) decreases along it whenever the

condition (2.11) is not satisfied.
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Lemma 2.1. Suppose that d1, ¨ ¨ ¨ , dm are the descent directions and are also linear

independent, then for any wi ě 0, and at least one i such that wi ą 0 ,
řm
i“1widi is

also the descent direction.

Proof. By the definition of directional derivative, the directional derivative of di and

widi pwi ą 0q are the same. Hence, widi is also the descent direction. Hence, we can

assume that
řm
i“1wi “ 1, wi ě 0.

Suppose that

∇difpβq “ lim
tÑ0`

fpβ ` tdiq ´ fpβq

}tdi}
“ αi ă 0.

Since f is linear along with di when t ą 0 is small, there exists εi ą 0 such that

fpβ ` tdiq « fpβq ` tαi}di}, t P r0, εis.

Let ε “ mintε1, ¨ ¨ ¨ , εmu. When t P p0, εs, we have

f
`

β ` t
řm
i“1widi

˘

´ fpβq

}t
řm
i“1widi}

“
f
`
řm
i“1wiβ ` t

řm
i“1widi

˘

´
řm
i“1wifpβq

}t
řm
i“1widi}

“
f
`
řm
i“1wipβ ` tdiq

˘

´
řm
i“1wifpβq

}t
řm
i“1widi}

ď

řm
i“1wi

`

fpβ ` tdiq ´ fpβq
˘

}t
řm
i“1widi}

“
t
řm
i“1wiαi}di}

}t
řm
i“1widi}

.

Hence,

∇řm
i“1 widi

fpβq “ lim
tÑ0`

fpβ ` t
řm
i“1widiq ´ fpβq

}t
řm
i“1widi}

ď lim
tÑ0`

t
řm
i“1 αiwi}di}

t}
řm
i“1widi}

“

řm
i“1 αiwi}di}

}
řm
i“1widi}

.
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Since d1, ¨ ¨ ¨ , dm are linear independent and twi|i “ 1, ¨ ¨ ¨ ,mu are not all zero,

}
řm
i“1widi} is not equal to zero. Note that αi ă 0, wi ą 0 and }di} ą 0, we have

řm
i“1 αiwi}di}

}
řm
i“1 widi}

ă 0 . Hence,
řm
i“1widi is a descent direction. l

Lemma 2.1 indicate that linear combination of descent directions is still a descent

direction, thus the following descent direction search is feasible.

Since there exists at least one i P t1, ¨ ¨ ¨ ,mu such that condition (2.11) is not

satisfied. Denote the set of all such indices ki by Ω1k, where (2.11) is not satisfied for

V `i or V ´i . Then, we can choose the descent direction d in the space spanned by

tVi : ki P Ω1ku Y tVi : i “ m` 1, ¨ ¨ ¨ , pu.

To speed up the search, we check the descent directional derivatives ∇V `i
f or ∇V ´i

f ,

and choose the indices where they descent most. That is, we choose a subset Λ1

of Ω1k, which is a proportional α of the indices in Ω1k such that the corresponding

descent directional derivatives ∇V `i
f or ∇V ´i

f is less than the other 1 ´ α of the

directional derivatives. Denote

Ω0k “ ΩkzΛ1,

we choose the descent direction d in the space spanned by

tVi : ki P Λ1u Y tVi : i “ m` 1, ¨ ¨ ¨ , pu

such that

d “
ÿ

kiPΛ1

λiVi `
p
ÿ

i“m`1

λiVi.

It can be verified that

Xid “ 0 , @i P Ω0k.
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Hence, the descent direction should keep the set Ω0k unchanged, we set the descent

direction dpkq as the optimal solution of

max
hPRp

´ apkqh

s.t. Xih “ 0, @i P Ω0k,

}h} “ 1.

(2.14)

It means that the solution h is chosen as the vector nearest to the deepest descent

direction ´apkq, and still keep the set Ω0k unchanged at the same time. The optimal

solution of Problem (2.14) is

d̃ “ ´apkq ´Xᵀ
0kpX0kX

ᵀ
0kq

´1X0k ¨ p´a
pkq
q, (2.15)

where Xᵀ
0kpX0kX

ᵀ
0kq

´1X0kp´a
pkqq is the projected direction of ´apkq in the subspace

th : Xih “ 0, i P Ω0ku, and

X0k “

¨

˚

˝

Xk1
...
Xkl

˛

‹

‚

, k1, ¨ ¨ ¨ , kl P Ω0k.

The sparsity indicate that m ! p and m ! n, thus computational complexity of d̃

is very low during iterations. Hence, the descent direction dpkq can be chosen as the

normalized vector of d̃

dpkq “ d̃{}d̃}, (2.16)

and the zero set is updated as Ωk “ Ω0k.

The cost function value will decrease along the descent direction dpkq, when the

step length is small. The next iteration point will be generated by

βpk`1q
“ βpkq ` λkd

pkq, λk ą 0,

29



where λk is the step length, which should be maximized such that the cost function

value is reduced in largest magnitude. For this, we define a new problem as

min
λě0

gpλq

where

gpλq “ fpβpk`1q
q “ fpβpkq ` λdpkqq, λ ě 0.

Since f is convex, gpλq is also convex, we can choose λk as the optimal solution of

the problem min
λ
gpλq. This problem is equivalent to the problem as follows:

max
λě0

λ

s.t. ∇dpkqfpβ
pkq
` λdpkqq ě 0 (2.17)

∇dpkq´fpβ
pkq
` λdpkqq ě 0.

For this problem, we have the following observation.

Theorem 2.2. There exists an optimal solution λpkq ą 0 and at least one i in

t1, ¨ ¨ ¨ , nu such that Xipβ
pkq ` λpkqdpkqq “ yi, that is, i is in the zero set at the point

βpkq ` λpkqdpkq.

Proof. If λ “ 0, dpkq is a descent direction at βpkq, that is,

∇dpkqfpβ
pkq
q ă 0.

Since gpλq is convex, Bgpλq
Bλ

is monotonically increasing.

Note that

Bgpλq

Bλ
“ lim

∆λÑ0

gpβpkq ` pλ`∆λqdpkqq ´ gpβpkq ` λdpkqq

∆λ

“ }dpkq}∇dpkqfpβ
pkq
` λdpkqq,
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then, the directional derivative

∇dpkqfpβ
pkq
` λdpkqq

is monotonically increasing with respect to λ.

Note that each term is absolute linear function, fpβpkq`λdpkqq is piecewise linear

and ∇dpkqfpβ
pkq ` λdpkqq is piecewise constant. For each point where ∇dpkqfpβ

pkq `

λdpkqq increases, there exists at least one index i such that ui changes from negative

to positive or from positive to negative. All these indices i is in t1, ¨ ¨ ¨ , nu, which is

finite. Suppose that

lim
λÑ`8

∇dpkqfpβ
pkq
` λdpkqq ă 0,

we have

lim
λÑ`8

∇dpkqfpβ
pkq
` λdpkqq “ ∇dpkqfpβ

pkq
` λ1dpkqq ă 0,

where λ1 is a sufficiently large value. Therefore,

fpβpkq ` λ1dpkqq ď fpβpkqq `∇dpkqfpβ
pkq
` λ1dpkqq Ñ ´8.

This contracts to the fact that f ě 0, which is impossible. Thus we must have

lim
λÑ`8

∇dpkqfpβ
pkq
` λdpkqq ě 0.

Since ∇dpkqfpβ
pkq ` λdpkqq is piecewise linear, we can find a point λ1 such that

∇dpkqfpβ
pkq ` λ1dpkqq becomes positive or zero in the first time. That is,

∇dpkqfpβ
pkq
` λdpkqq ă 0 , λ ă λ1,

∇dpkqfpβ
pkq
` λdpkqq ě 0 , λ ě λ1.

Hence, βpkq ` λ1dpkq is the minimum point of fpβpkq ` λdpkqq.

Note that ∇dpkqfpβ
pkq ` λdpkqq is discontinuous at λ1, there exists at least one

index i in t1, ¨ ¨ ¨ , nu such that

Xipβ
pkq
` λ1dpkqq “ 0.
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l

Hence, we can find the optimum step length in each iteration.

We denote λk as the optimum step length along the direction dpkq. By using the

step length λk, the cost function becomes

fpβpk`1q
q “ papk`1q

q
ᵀβpk`1q

`
ÿ

iPΩk`1

|Xiβ
pk`1q

| ` bpk`1q,

and the k-th iteration terminated and moved to the pk ` 1q-th iteration. For this

update, the indices in Λ1 have been removed from the zero set Ωk. It follows from

Theorem 2.2 that some indices move to the zero set. We denote all these indices by

Λ2, then a new zero set at pk ` 1q-th iteration is generated as

Ωk`1 “ Ωk Y Λ2.

Hence, we find a new iterate as βpk`1q “ βpkq`λkd
pkq, and the zero set is updated

as Ωk`1. We continue the iteration until the optimal conditions (2.11) are satisfied.

In summary, the algorithm is as follows:

Algorithm 1

Initialization: Choose an initial point βp0q, compute the corresponding set Ω0, and
compute the cost function fpβp0qq. Set k “ 0.
Step 1: (Terminate)
Generate the matrix V for the zero set Ωk. If conditions (2.11) is satisfied, then stop
and return the optimal solution and value. Otherwise, go to Step 2.
Step 2: (Descent Direction)
Find the α fastest descent directions as Λ1, where α denotes the percentage of selected
descent directions that decrease faster than the other 1 ´ α directions. Set Ω0k “

ΩkzΛ1, and compute the descent direction dpkq using (2.16).
Step 3: (Optimal Step Length) Find the best step length λk by (2.31).
Step 4: (Iteration) Update βpk`1q “ βpkq ` λkd

pkq. Find Λ2 and update the zero
set as Ωk`1 “ Ω0k YΛ2. Then we compute the cost function fpβpk`1qq, let k “ k ` 1
and go to Step 1.
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2.1.2 Simulation studies

In this section, Algorithm 1 is implemented to solve the LAD-Lasso problem, where

parameter α controls the percentage of directions selected from the descent direction

set. Experiments show that too small or too large α values may result in unsteadiness

or time inefficiency, e.g., α “ 0.01, 0.20. Here α is set as 0.05 to reach a balance

between stability and time consumption.

We compare our proposed method with Interior Point method and Gurobi based

on Matlab platform, where the default solver of function linprog is Interior Point

method.

To solve LAD-Lasso problem, a key consideration is the tuning parameter se-

lection. In [114], Wang focused on the high dimensional penalized least absolute

deviation problem, and a tuning parameter selection procedure is given. Denote xi

as the i-th column vector of design matrix X, we first scaled the dataset such that

}xi}
2 “ n, i “ 1, ¨ ¨ ¨ , p, and choose λ “

?
2n log p, which is rate consistent. Similar

to Gao and Huang [39], we consider four simulation examples with data generated

by

Y “ Xβ ` ε, ε „ Np0, 1q,

where design matrix X follows multivariate Gaussian distribution with zero mean

vector and covariance matrix Σ, the elements of Σ is given by pΣqij “ 0.5|i´j| such

that the correlation between xi and xj is 0.5|i´j|. For simplicity, the true coefficient

β is given by

β “ p2, 2, 2, 2, 2, 0, ¨ ¨ ¨ , 0q,

where the first five elements equal to 2 and the remaining p´ 5 elements are zeroes,

thus there are 5 nonzero components.

We consider four cases of p as 10 , 50 , 100 , 500, respectively. For each p, the value

of n increases from 500 (100 for p “ 10 case) to 10000 gradually. For each p and
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n, the data X and Y are simulated 100 times. Interior point method, the proposed

method and Gurobi are applied to these problems for comparison. The running time

of these methods are depicted in Figure 2.1. It can be seen that the proposed method

is more efficient than the other methods, especially when n increases. That is, the

larger n{p is, the more efficient the proposed method becomes. We choose β “ 0p as

the initial value, since there are 5 nonzero entries for each p, experiments show that

m ă 10 for all the iterations, thus the computational complexity is relatively small.

Several representative simulation results are listed in Table 2.1–2.4, where Run-

ning Time denotes the average time taken; MSE evaluates the average prediction

error; Degree of Freedom (Zou [137]) refers to the number of nonzero components

of the estimator; Correctly Fitted Ratio indicates accurate estimation of nonzero

component locations relative to the total simulation. Results show that MSE, De-

gree of Freedom and Correctly Fitted Ratio are same for all methods, which indicate

that they have converged to the same optimal solution. Thus, our proposed method

achieves both time efficiency and estimation accuracy.
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Figure 2.1: p=10,50,100,500 n–time plot
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TIME MSE
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

100 10 0.0456 0.0103 0.8684 0.0680 0.0680 0.0680
500 10 0.0928 0.0355 0.8877 0.0110 0.0110 0.0110
1000 10 0.1845 0.0722 0.9540 0.0055 0.0055 0.0055
2000 10 0.4740 0.1771 1.2126 0.0027 0.0027 0.0027
5000 10 2.2176 0.7675 1.7595 0.0010 0.0010 0.0010
10000 10 6.5670 2.3630 3.8824 0.0005 0.0005 0.0005

Degree of Freedom Correctly Fitted Ratio
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

100 10 5.19 5.19 5.19 0.83 0.83 0.83
500 10 5.29 5.29 5.29 0.77 0.77 0.77
1000 10 5.31 5.31 5.31 0.74 0.74 0.74
2000 10 5.23 5.23 5.23 0.79 0.79 0.79
5000 10 5.25 5.25 5.25 0.76 0.76 0.76
10000 10 5.18 5.18 5.18 0.83 0.83 0.83

Table 2.1: Simulation results of p “ 10.

TIME MSE
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

100 50 0.0990 0.0182 1.0301 0.1044 0.1044 0.1044
1000 50 0.7803 0.1039 1.0755 0.0065 0.0065 0.0065
2000 50 2.0035 0.2363 1.2457 0.0033 0.0033 0.0033
5000 50 6.7602 1.0177 2.3907 0.0014 0.0014 0.0014
10000 50 15.2296 3.2660 4.8684 0.0007 0.0007 0.0007

Degree of Freedom Correctly Fitted Ratio
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

100 50 5.21 5.21 5.21 0.80 0.80 0.80
1000 50 5.23 5.23 5.23 0.80 0.80 0.80
2000 50 5.35 5.35 5.35 0.69 0.69 0.69
5000 50 5.20 5.20 5.20 0.81 0.81 0.81
10000 50 5.25 5.25 5.25 0.81 0.81 0.81

Table 2.2: Simulation results of p “ 50.

TIME MSE
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

500 100 1.3169 0.0770 1.2476 0.0161 0.0161 0.0161
1000 100 2.5999 0.1487 1.4152 0.0081 0.0081 0.0081
2000 100 5.2977 0.3179 1.8193 0.0036 0.0036 0.0036
5000 100 12.5036 1.0418 2.8586 0.0015 0.0015 0.0015
10000 100 29.2864 3.1812 6.2155 0.0008 0.0008 0.0008

Degree of Freedom Correctly Fitted Ratio
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

500 100 5.33 5.33 5.33 0.75 0.75 0.75
1000 100 5.17 5.17 5.17 0.85 0.85 0.85
2000 100 5.29 5.29 5.29 0.74 0.74 0.74
5000 100 5.25 5.25 5.25 0.77 0.77 0.77
10000 100 5.39 5.39 5.39 0.67 0.67 0.67

Table 2.3: Simulation results of p “ 100.
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TIME MSE
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

1000 500 17.8460 0.5508 2.6924 0.0089 0.0089 0.0089
2000 500 32.9152 0.8235 3.4965 0.0047 0.0047 0.0047
5000 500 75.6648 1.8116 5.2965 0.0017 0.0017 0.0017
8000 500 118.5086 3.0154 8.4263 0.0011 0.0011 0.0011
10000 500 152.5622 4.3109 11.2252 0.0009 0.0009 0.0009

Degree of Freedom Correctly Fitted Ratio
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

1000 500 5.26 5.26 5.26 0.77 0.77 0.77
2000 500 5.22 5.22 5.22 0.82 0.82 0.82
5000 500 5.23 5.23 5.23 0.77 0.77 0.77
8000 500 5.24 5.24 5.24 0.78 0.78 0.78
10000 500 5.31 5.31 5.31 0.72 0.72 0.72

Table 2.4: Simulation results of p “ 500.

2.1.3 Real data analysis

Example 1: In the first example, we have selected 5 different real datasets for

numerical experiment. Again, we compare our method with the interior point method

and the Gurobi method. The datasets are as follows:

1. Prostate Cancer Data, which is studied by Stamey et al. [105] dealing with the

correlation of 9 predictors and prostate specific antigen (lpsa).

2. Boston Housing Data, which is derived from Harrison and Rubinfeld [45] fo-

cussing on the 14 predictors that affect medv (median value of owner-occupied

homes in $1000s).

3. Bardet Data, which is the simplified gene expression data presented by Scheetz

et al. [97], where design matrix X is a 120 ˆ 100 matrix expanded from the

expression levels of 20 filtered genes. The objective is to discover the correlation

between 100 predictors and the expression level of gene TRIM32 that causes

Bardet-Biedl syndrome.

4. Diabetes Data, which is studied by Efron [32] containing 442 patients with 10

clinical measures: age, sex, body mass index (bmi), average blood pressure

36



(map), and six blood serum measurements. The aim is to find the correlation

between response y and the above 10 predictors.

5. China Stock Data, which considered by Wang [113] exploring the relationship

of Return on Equity (ROEt`1) and other 9 predictors.

Since all three methods found the same result, we focus on the execution time. Table

2.5 shows the running results for the 5 datasets:

Name n p Interior Point Proposed Gurobi
Prostate Cancer 97 8 0.0243 0.0067 0.6855
Boston Housing 506 13 0.0878 0.0382 0.7414

Bardet 120 100 0.1304 0.0514 0.6988
Diabetes 442 10 0.5127 0.0113 0.6989

China Stock 1946 9 0.2632 0.1163 1.3954

Table 2.5: Time comparison for real datasets

For the 5 datasets, time comparison of Interior Point (IP) method, our proposed

method and Gurobi are summarized in Table 2.5, again our proposed method is

faster than other methods.

Example 2: In the second example, we apply the proposed methodology to China

stock market data of AH premium as follows. China stock market participants are

mostly retail investors with mental gambler, most of them have little experience, this

leads to misvaluation and detachment from intrinsic value of companies. Hence it is

attractive to look at stock prices of Shanghai Exchange (A share) and Hong Kong

Exchange (H share). AH Premium is a great demonstration of this irrationality and

education level of investors.

Chinese stock market is relatively young and come into the market since 1990,

with two main stock markets: the Shanghai Stock Exchange and Shenzhen Stock

Exchange. The Chinese stock market has boomed during the last several decades.
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From Hang Seng index, the China stock market (A Share) and Hong Kong stock

market (H share) listed 60 AH premium stock market in Table 2.2. Both connections

allow China investors get access to Hong Kong and Hong Kong investors buy stocks

listed in China.

Figure 2.2: Heng Seng AH premium index

The difference in close price tendency are illustrated in Figure 2.2. The index

takes value 100 yields equivalence between A share and H share, HSAHP above 100

indicate that A share is more expensive than H share and vice versa. There may

be several reasons for trading AH premium is specifically different. International

investors are deviate from the A share stocks, and made traditional convergence

trades impossible; Mainland investors and international investors may get different

information about China stock generally, and therefore they look at China stock

market with different viewpoints. Many mainland investors treat H share as a type

of western form of market since they can be traded freely with less control, whereas

the China stock market is strictly controlled by government; H share surged more
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heavily than A share trading in Hong Kong with modern investmental strategies and

techniques. On the other side, international investor doubted about Chinese firms

and the government control management.

The weight proportions of different industries are illustrated in Figure 2.3, it is

evident that the financial industries take up most percentage of the AH stock mar-

ket, around 68.01%. Other medium level significant industries including Energy,

Materials, Industrials, Consumer Goods, Consumer Services and Properties & Con-

struction, the summation occupy nearly 28.1% of the stock market. The rest low

level industries contain Telecommunications, Utilities, Information Technology and

Conglomerates, totally sum up to 2.09%. Hence there are 11 main industry types in

total.

Figure 2.3: Heng Seng AH Index performance

Figure 2.3 introduced the main industry weightings in HSAHP market in detail,

with the corresponding industry weighting proportions. Financial industries contain
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the most proportion of HSAHP, Energy, Material, Industrials, Consumer Goods,

Properties & Construction are prominent industries in AH Premium, which shown

in Figure 2.3 for detailed description. Table 2.7 displayed the complete 2017 AH

premium index list from Hang Seng Index. Table 2.7 contain all the AH Premium

stock index until 2017.

Similar to Wang [113], we consider Hang Seng 2017 AH premium Index for A

Share and H Share respectively. Forecasting and prediction performances are based

on the following response and predictor variables.

• Response: Return on Equity (ROEt`1) of year t` 1 as the response variable;

• Predictors: Return on Equity (ROEt), Asset Turnover Ratio (ATO), Prof-

it Margin (PM), Debt to Asset Ratio or leverage (LEV), Sales Growth rate

(GROWTH), Price-to-Book ratio (PB), Accounts Receivable/Revenues (AR-

R), Inventories (INV) and Logarithm of Total Assets (ASSET) of year t.

We collect data from Bloomberg during 1/1/2012–12/31/2015, with the following A

stock CH Equity and H stock HK Equity indexes in Table 2.6.

CH Equity Index

600871 601727 601866 600685 600188 603993 601898 601857 601800 600115
601992 600688 601919 600362 601766 600027 600029 600011 601899 002202
600332 601633 601186 601111 601333 601600 601607 000157 000063 600028
600196 000002 002594 601088 000898 000338 600660 600585

HK Equity Index

1033 2727 2866 1171 3993 1898 1800 2009 1919 1766
1071 1055 2899 2208 2333 1186 2600 2607 1157 2196
1211 1088 2338

Table 2.6: AH Stock Index
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No. Company Name A Stock H Stock Industry A/H Price Ratio
1 Sinopec SSC 600871 1033 Energy 308.90
2 SH Electric 601727 2727 Industrials 246.87
3 COSCO Ship Dev 601866 2866 Industrials 244.71
4 DFZQ 600958 3958 Financials 233.30
5 COMEC 600685 0317 Industrials 224.14
6 MCC Properties 601618 1618 Construction 221.80
7 Yanzhou Coal 600188 1171 Energy 215.25
8 CMOC 603993 3993 Materials 197.47
9 China Coal 601898 1898 Energy 190.36
10 PetroChina 601857 0857 Energy 187.62
11 China Comm Cons 601800 1800 Properties & Construction 183.81
12 China East Air 600115 0670 Consumer Services 182.33
13 BBMG Properties 601992 2009 Construction 179.72
14 Shanghai Pechem 600688 0338 Materials 178.56
15 COSCO SHIP Hold 601919 1919 Industrials 174.00
16 Jiangxi Copper 600362 0358 Materials 168.75
17 CMSC 600999 6099 Financials 168.47
18 CRRC 601766 1766 Industrials 167.63
19 EB Securities 601788 6178 Financials 167.44
20 China Railway 601390 0390 Properties & Construction 165.35
21 Huadian Power 600027 1071 Utilities 161.10
22 China South Air 600029 1055 Consumer Services 156.78
23 Huaneng Power 600011 0902 Utilities 154.63
24 Zijin Mining 601899 2899 Materials 152.99
25 Goldwind 002202 2208 Industrials 152.97
26 CITIC Bank 601998 0998 Financials 152.25
27 Baiyunshan Ph 600332 0874 Consumer Goods 152.03
28 GreatWall Motor 601633 2333 Consumer Goods 150.60
29 HTSC 601688 6886 Financials 147.13
30 China Rail Cons 601186 1186 Properties & Construction 147.01
31 Air China 601111 0753 Consumer Services 145.35
32 Guangshen Rail 601333 0525 Consumer Services 143.51
33 CHALCO 601600 2600 Materials 141.66
34 Sh Pharma 601607 2607 Consumer Goods 139.97
35 Zoomlion 000157 1157 Industrials 139.70
36 Haitong Sec 600837 6837 Financials 138.53
37 ZTE 000063 0763 Information Technology 132.54
38 NCI 601336 1336 Financials 132.21
39 GF Sec 000776 1776 Financials 130.74
40 CEB Bank 601818 6818 Financials 129.55
41 China Life 601628 2628 Financials 129.45
42 Bankcomm 601328 3328 Financials 128.31
43 Minsheng Bank 600016 1988 Financials 127.01
44 CITIC Sec 600030 6030 Financials 126.98
45 CCB 601939 0939 Financials 120.36
46 Sinopec Corp 600028 0386 Energy 119.60
47 Fosun Pharma 600196 2196 Consumer Goods 118.31
48 Bank of China 601988 3988 Financials 118.19
49 ABC 601288 1288 Financials 117.99
50 China Vanke 000002 2202 Properties & Construction 117.69
51 ICBC 601398 1398 Financials 116.93
52 BYD Company 002594 1211 Consumer Goods 116.79
53 CM Bank 600036 3968 Financials 115.49
54 China Shenhua 601088 1088 Energy 115.24
55 Angang Steel 000898 0347 Materials 114.98
56 CPIC 601601 2601 Financials 114.97
57 Weichai Power 000338 2338 Industrials 108.06
58 Ping An 601318 2318 Financials 104.20
59 Fuyao Glass 600660 3606 Consumer Goods 101.27
60 Conch Cement 600585 0914 Properties & Construction 97.48

Table 2.7: The details about AH Stock Index
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Following Wang [114], we consider regression models with tuning parameters

λ1 “
?

2n log p, λ2 “
?
n log p, λ3 “

?
n log p

2
, λ4 “

?
n log p

4
, and consider the following

regression models:

• LS (Least Square): arg min
β
}Y ´Xβ}2 with explicit solution β̂ “ pXᵀXq´1XᵀY .

• LAD (Least Absolute Deviation): arg min
β
}Y ´Xβ}1.

• LS-Lasso: β̂ “ arg min
β
}Y ´Xβ}2 ` λ}β}1.

• LAD-Lasso: β̂ “ arg min
β
}Y ´Xβ}1 ` λ}β}1.

The LAD-Lasso model can be reformulated as linear programming, existing solvers

include Interior Point method (IP), Dual Simplex (DS), and our proposed algorithm

(Section 2.1) with detailed description in Shi et al. [101].

We consider two datasets: (1) Training data as A-Stock close price of Year 2012;

Test Data as A-Stock close price of Year 2013; (2) Training data as H-Stock close

price of Year 2012; Test Data as H-Stock close price of Year 2013, then we compare

time consumption of Interior Point (IP) and the proposed descent algorithm, we

evaluate the prediction performance through the following measures:

• R2: R2
“ 1´

ř

ipyi´ŷiq
2

ř

ipyi´ȳq
2 ;

• Degree of Freedom (DF): DF “ number of nonzero elements of β; (see Zou

[137]);

• Mean Absolute Percentage Error (MAPE): MAPE “
řT
t“1

ˇ

ˇ

yt´ŷt
yt

ˇ

ˇ.

Consider dataset of A stock and H stock during 1/1/2012–12/31/2013. Model fitting

results are displayed in Table 2.8.
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Linear Regression LS-Lasso LAD-Lasso
LS LAD LS-aic LS-bic λ1 λ2 λ3 λ4

Train: A2012; Test: A2013
ROE 0.8167 0.7663 0.8167 0.8167 0.7423 0.7455 0.7861 0.7184
ATO 4.2406 6.8013 4.2406 4.2406 0.0000 0.0000 1.1567 2.1259
PM -0.0026 0.0896 -0.0026 -0.0026 -0.0000 -0.0000 -0.0000 0.0794
LEV 0.0229 -0.0400 0.0229 0.0229 0.0000 -0.0000 -0.0067 -0.0242
GRO -0.0695 -0.0638 -0.0695 -0.0695 0.0278 0.0270 -0.0147 -0.0120
PB 1.9227 0.8930 1.9227 1.9227 0.0000 0.0000 0.6817 1.0352

ARR -0.0001 -0.0001 -0.0001 -0.0001 -0.0000 -0.0000 -0.0000 -0.0001
INV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ASS -0.4858 -0.2763 -0.4858 -0.4858 0.0916 0.0962 0.0000 -0.0782
R2 0.8086 0.7825 0.8086 0.8086 0.7217 0.7229 0.7718 0.7820

TIME 0.0130 0.0417 0.0741 0.0258 0.0452 0.0432 0.0435 0.0433
DF 7 8 7 7 3 3 5 7

MAPE 2.2927 1.9268 2.2927 2.2927 1.8433 1.8616 2.0953 2.0126
Train: H2012; Test: H2013
ROE 0.7418 0.6732 0.8024 0.8024 0.8648 0.8879 0.8039 0.8034
ATO 4.1722 3.0442 0.0000 0.0000 0.0000 0.0000 0.0000 0.2281
PM -0.0467 -0.1664 -0.1649 -0.1649 -0.0161 -0.1087 -0.2603 -0.2529
LEV -0.1676 -0.2501 -0.2352 -0.2352 -0.0564 -0.0875 -0.2795 -0.2712
GRO -0.0910 -0.0408 -0.0685 -0.0685 -0.0538 -0.0401 -0.0629 -0.0634
PB 2.0473 2.8224 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ARR -0.0003 -0.0005 -0.0004 -0.0004 -0.0002 -0.0002 -0.0005 -0.0005
INV 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002
ASS 0.1180 0.3766 0.8336 0.8336 0.3585 0.4903 1.1061 1.0665
R2 0.9061 0.8922 0.8913 0.8913 0.8434 0.8492 0.8858 0.8862

TIME 0.0128 0.0365 0.0742 0.0278 0.0440 0.0426 0.0423 0.0420
DF 9 9 7 7 6 6 7 8

MAPE 1.8443 2.1205 2.9188 2.9188 2.7584 2.7312 2.9039 2.8491

Table 2.8: AH Stock 2012-2013

Table 2.8 indicate that with λ “ λ1 “
?

2n log p for Year 2012-2013 data, we can

make a balance between MAPE and R2. For A stock, ROE, GROWTH and ASSET

are significant variables; For H stock, ROE, PM, LEV, GROWTH, ARR and ASSET

are significant variables. Of all these estimation methods, our proposed method can

achieve more accurate estimation results. Table 2.9 show that the simulation results

are generally better than other methods.
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Linear Regression LS-Lasso LAD-Lasso
LS LAD LS-aic LS-bic λ1 λ2 λ3 λ4

Train: A2014; Test: A2015
ROE 0.6950 0.8795 0.6950 0.6677 0.9077 0.9187 0.8644 0.8702
ATO 4.1606 -0.6577 4.1606 0.0000 0.0000 0.0000 0.0000 -0.0000
PM 0.0141 -0.2379 0.0141 0.0000 -0.1703 -0.1704 -0.2064 -0.2211
LEV 0.0774 0.0782 0.0774 0.0484 0.0314 0.0278 0.0611 0.0869
GRO -0.0443 -0.0629 -0.0443 -0.0337 -0.0465 -0.0457 -0.0595 -0.0615
PB 1.1454 1.6788 1.1454 0.0000 0.0000 0.0000 1.2704 1.4356

ARR -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
INV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ASS -0.5575 -0.4004 -0.5575 0.0000 0.0000 -0.0000 -0.3107 -0.4160
R2 0.6629 0.5575 0.6629 0.5715 0.5405 0.5366 0.5817 0.5765

TIME 0.0137 0.0357 0.0706 0.0272 0.0455 0.0425 0.0426 0.0413
DF 7 7 7 3 4 4 6 6

MAPE 1.3236 1.5640 1.3236 1.8097 2.0931 2.0703 1.6854 1.5699
Train: H2014; Test: H2015
ROE 0.4640 0.4496 0.4737 0.4737 0.4106 0.4463 0.4632 0.4301
ATO 1.4082 3.0138 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PM -0.0237 -0.0270 -0.0527 -0.0527 -0.0000 -0.0625 -0.0657 -0.0503
LEV 0.0022 -0.0367 -0.0077 -0.0077 -0.0144 -0.0659 -0.0158 -0.0613
GRO 0.0428 0.0184 0.0472 0.0472 0.0347 0.0256 0.0278 0.0195
PB 3.0447 3.0404 3.0210 3.0210 0.0000 1.5327 1.9088 3.8030

ARR -0.0001 -0.0001 -0.0001 -0.0001 -0.0000 -0.0001 -0.0000 -0.0000
INV 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000
ASS -0.2658 -0.2096 -0.1514 -0.1514 0.1397 0.2482 0.0000 -0.0534
R2 0.8007 0.7845 0.7984 0.7984 0.6618 0.7617 0.7690 0.7741

TIME 0.0128 0.0398 0.0714 0.0296 0.0527 0.0492 0.0461 0.0422
DF 7 7 6 6 4 6 5 6

MAPE 0.8307 0.8128 0.8258 0.8258 0.7402 0.6967 0.7544 0.8306

Table 2.9: AH Stock 2012-2013

Table 2.9 report results of Year 2014-2015. For A stock, ROE, PM, LEV,

GROWTH are significant variables for LAD-Lasso; For H stock, ROE, PM, LEV,

GROWTH, PB and ASSET are significant variables for prediction of ROEt`1.

Table 2.8, 2.9 show that with proper tuning parameter, LAD-Lasso can achieve

a tradeoff between R2 and MAPE, and suggest that ROE, PM, LEV, GRO, PB,

ASSET are significant variables that affect prediction and forecasting.
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2.2 New active zero set descent algorithm for LAD

Generalized Lasso

Consider LAD Generalized Lasso problem,

arg min
θPRp

}Y ´Xθ}1 ` λ}Rθ}1, (2.18)

where X P Rnˆp is the design matrix with row vectors Xi, i “ 1, 2, ¨ ¨ ¨ , n , Y “

py1, ¨ ¨ ¨ , ynq
1 P Rn is the response vector, R P Rqˆp is the constraint matrix, θ P Rp

is the coefficient vector, and λ ą 0 is the tuning parameter.

Denote

Y ˚ “

ˆ

Y
0

˙

, X˚
“

ˆ

X
λR

˙

, n˚ “ n` q. (2.19)

Problem (2.18) becomes

arg min
θPRp

}Y ˚ ´X˚θ}1.

For convenience, the superscript ˚ in n,X, Y in (2.42) are dropped. Hopefully, there

is no confusion. Then, LAD Generalized Lasso problem becomes

arg min
θPRp

}Y ´Xθ}1 “ arg min
θPRp

n
ÿ

i“1

|Xiθ ´ yi|.

Denote ui “ Xiθ ´ yi .

Optimality conditions and directional derivatives

Consider optimization problem

min
θPRp

fpθq “ min
θPRp

n
ÿ

i“1

fipθq “ arg min
θPRp

n
ÿ

i“1

|Xiθ ´ yi|. (2.20)

Note that the absolute value function is convex, so does fpθq. Hence, the local

minimizer of fpθq is the global minimizer, too. The optimality condition is that all
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directional derivatives are greater than or equal to zero. For a function gpθq, the

directional derivative of g along a direction d is defined as

Ddgpθq “ lim
tÑ0`

gpθ ` tdq ´ gpθq

t}d}
. (2.21)

Below, we highlight the main difference between the directional derivatives of smooth

functions and non-smooth absolute value function. It is well-known that when g is

differentiable,

Ddgpθq “
Bg

Bθ
¨ d ,Dd´gpθq “

Bg

Bθ
¨ p´dq.

Hence, we have

Dd´gpθq “ ´Ddgpθq. (2.22)

However, this is not true when g is non-differentiable absolute value function. Con-

sider the special case of f with n “ 1 , that is, the absolute value function

f “ |bᵀθ ` c| .

Given a direction d and a point θ fulfilling bᵀθ ` c “ 0, we have

Ddfpθq “ lim
tÑ0`

|bᵀpθ ` tdq ` c| ´ |bᵀθ ` c|

t}d}

“ lim
tÑ0`

|tbᵀd|

t}d}
“
|bᵀd|

}d}
,

Dd´fpθq “ lim
tÑ0`

|bᵀpθ ´ tdq ` c| ´ |bᵀθ ` c|

t}d}

“ lim
tÑ0`

| ´ tbᵀd|

t}d}
“
|bᵀd|

}d}
.

Hence,

Dd´fpθq “ Ddfpθq. (2.23)
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In the general cases n ą 1 , the directional derivative of the cost function f can be

decomposed into two parts

Ddfpθq “ Apθ, dq ` Cpθ, dq,

where Apθ, dq and Cpθ, dq are the smooth and non-smooth part of the directional

derivative Ddfpθq respectively, that is,

Apθ, dq “
n
ÿ

i“1

δpui ą 0q ¨
Xid

}d}
`

n
ÿ

i“1

δpui ă 0q ¨
p´Xiqd

}d}
,

Cpθ, dq “
n
ÿ

i“1

δpui “ 0q ¨
Xid

}d}
,

where δp¨q is the indicator function

δpνq “

"

1, if ν is true,
0, otherwise.

The vector θ˚ is the optimal solution to (2.20) if and only if

Ddfpθ
˚
q “ Apθ˚, dq ` Cpθ˚, dq ě 0 , @d P Rp. (2.24)

Basis direction set and zero set

The optimality condition (2.24) involves infinitely many arbitrary directions d . To

overcome the difficulties related to the infinite dimension, an equivalent finite rep-

resentation of the optimality condition is derived based on the concepts of basis

direction set and zero set introduced in what follows. For a given point θ , define the

zero set Ω “ ti|ui “ 0, i “ 1, ¨ ¨ ¨ , nu “ tω1, ω2, ¨ ¨ ¨ , ωmu, where m is the cardinality

of Ω and ωi are the indexes in t1, ¨ ¨ ¨ , nu. Thus,

Xωiθ “ yωi , i “ 1, ¨ ¨ ¨ ,m. (2.25)

Consider the set of directions along which the zero set remains unchanged in the

proximity of θ . Basis direction set refers to the basis of such a direction set.
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The basis directions v1, v2, . . . , vp are constructed as follows. Let

Xa “

¨

˚

˝

Xω1

...
Xωm

˛

‹

‚

.

Without loss of generality, we assume that rank pXaq “ m. The generalized inverse of

Xa is Va with columns tvj, j “ 1, ¨ ¨ ¨ ,mu such that XaVa “ Im, where Im is the mˆm

identity matrix. The remaining p´m linear independent vectors vj, j “ m`1, ¨ ¨ ¨ , p

are defined as the basis of the null space tv P Rp|Xav “ 0u. Then, we have

Xavj “ 0 , @j “ m` 1, ¨ ¨ ¨ , p

and

Cpθ˚, vjq “ Cpθ˚, v´j q “ 0 , j “ m` 1, ¨ ¨ ¨ , p.

Therefore, fpθ˚q is smooth along with these directions tvj|j “ m` 1, ¨ ¨ ¨ , pu. More-

over, orthogonality holds,

Xωivj “

"

1, when i “ j,
0, when i ‰ j,

i “ 1, ¨ ¨ ¨ ,m ; j “ 1, ¨ ¨ ¨ , p. (2.26)

The following theorem gives an equivalent finite-dimensional representation of the

optimality condition (2.24).

Theorem 2.3. Suppose that rank pXaq “ m. Then, θ˚ is the optimal solution if and

only if the directional derivatives satisfy

Dvifpθ
˚
q “ Apθ˚, viq ` Cpθ

˚, viq ě 0 , i “ 1, ¨ ¨ ¨ ,m, (2.27)

Dv´i
fpθ˚q “ Apθ˚, v´i q ` Cpθ

˚, v´i q ě 0 , i “ 1, ¨ ¨ ¨ ,m, (2.28)

Dvifpθ
˚
q “ Apθ˚, viq “ 0 , i “ m` 1, ¨ ¨ ¨ , p. (2.29)

Remark 2.2. If rank pXaq ă m, it is natural to consider the maximal subset of linear

independent vectors and redefine the cost function by removing some redundant terms.
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However, in both simulation studies and real data analysis later on in sections 3 and

4, we never come across with such situations. Therefore, the non-full-rank cases are

not discussed in this paper. It can be an interesting future research topic to study the

non-full-rank cases.

Proof. Note that (2.27) and (2.28) are special cases of (2.24). From (2.22), if

Dvifpθ
˚q ě 0 , and Dv´i

fpθ˚q ě 0, we have Dvifpθ
˚q “ 0 . Hence, (2.29) is a special

case of (2.24). Thus, the necessary condition is obvious.

Next, we prove the sufficient condition. That means (2.24) holds if (2.27)-(2.29)

are satisfied. Take d “ vi , i “ 1, ¨ ¨ ¨ , p. By (2.26), we have

Dvifpθ
˚
q “ Apθ˚, viq “ 0 , i “ m` 1, ¨ ¨ ¨ , p,

Cpθ˚, viq “

řm
j“1 |Xkjvi|

}vi}
“

1

}vi}
, i “ 1, ¨ ¨ ¨ ,m,

Cpθ˚, v´i q “

řm
j“1 |Xkjp´viq|

} ´ vi}
“

1

}vi}
, i “ 1, ¨ ¨ ¨ ,m.

Then, (2.27)-(2.29) can be simplified as

Dvifpθ
˚
q “ Apθ˚, viq “

avi
}vi}

“ 0 , i “ m` 1, ¨ ¨ ¨ , p,

Dvifpθ
˚
q “ Apθ˚, viq ` Cpθ

˚, viq “
avi
}vi}

`
1

}vi}
ě 0 , i “ 1, ¨ ¨ ¨ ,m, (2.30)

Dv´i
fpθ˚q “ Apθ˚, v´i q ` Cpθ

˚, v´i q “
´avi
}vi}

`
1

}vi}
ě 0 , i “ 1, ¨ ¨ ¨ ,m.

Here,

a “
n
ÿ

i“1

δpui ą 0qXi ´

n
ÿ

i“1

δpui ă 0qXi .

For any direction d, since tvi|i “ 1, ¨ ¨ ¨ , pu is a basis of Rp, there exists a vector
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µ “ pµ1, ¨ ¨ ¨ , µpq such that

d “
p
ÿ

i“1

µivi. (2.31)

Without loss of generality, we can set µi ě 0 , @i “ 1, ¨ ¨ ¨ , p, because if µi ă 0 , we

have µivi “ p´µiq ¨ v
´
i . Then, vi can be replaced by v´i and µi can be replaced by

´µi ą 0 . Hence, by adjusting the order adequately, (2.31) can be rewritten as

d “
m1
ÿ

j“1

µjvj `
m
ÿ

j“m1`1

µjv
´
j `

p
ÿ

j“m`1

µjvj,

where µj ě 0 , @j “ 1, ¨ ¨ ¨ , p. It follows from (2.30) that

Cpθ˚, dq “

řm
i“1

ˇ

ˇXωkid
ˇ

ˇ

}d}

“

řm
i“1

ˇ

ˇXωki

`
řm1

j“1 µjvj `
řm
j“m1`1 µjv

´
j `

řp
j“m`1 µjvj

˘ˇ

ˇ

}d}

“

řm1

i“1 |µiXωkivi| `
řm
i“m1`1

ˇ

ˇµiXωkiv
´
i

ˇ

ˇ

}d}

“

řm
i“1 µi
}d}

.

Hence, by (2.30), we have

Ddfpθ
˚
q “ Apθ˚, dq ` Cpθ˚, dq

“

˜

m1
ÿ

i“1

µiavi `
m
ÿ

i“m1`1

µiav
´
i `

p
ÿ

i“m`1

µiavi `
m
ÿ

i“1

µi

¸

M

}d}

“

˜

m1
ÿ

i“1

µipavi ` 1q `
m
ÿ

i“m1`1

µipav
´
i ` 1q `

p
ÿ

i“m`1

µiavi

¸

M

}d}

“

˜

m1
ÿ

i“1

Dvifpθ
˚
q ¨ }vi} `

m
ÿ

i“m1`1

Dv´i
fpθ˚q ¨ }vi}

¸

M

}d}

ě 0 .
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Thus, for any direction d, the directional derivative is greater than or equals to zero.

Hence, (2.24) holds and θ˚ is the optimal solution. l

2.2.1 Computational method

Proposition 2.2.1. If conditions (2.27)-(2.29) are not all satisfied, there exists a

direction d such that the cost function value decreases along the direction d.

Proof. Clearly, if the i-th condition of (2.29) is violated, v´i is a descend direction.

Suppose that the i-th condition of (2.27) or (2.28) is not satisfied. Then,

Dvifpθq ě 0, and Dv´i
fpθq ě 0

can not be satisfied at the same time. Consider the following three cases.

θ

v´i
vi

(i)

θ

v´i

vi

(ii)

θ
v´i

vi

(iii)

Figure 2.4: Three cases of descent direction

(i) Dvifpθq ă 0 and Dv´i
fpθq ă 0.

If this case is true, then f is concave at the point θ along with the direction vi,

which contradicts the convexity of f .

(ii) Dvifpθq ă 0 and Dv´i
fpθq ě 0.

It can be seen that

Dv´i
fpθq ě ´Dvifpθq.

Otherwise f becomes concave, which is a contradiction. Then, vi is a descent

direction.
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(iii) Dvifpθq ě 0 and Dv´i
fpθq ă 0.

It can be seen that

Dvifpθq ě ´Dv´i
fpθq.

Otherwise f becomes concave, which is a contradiction. Then, v´i is a descent

direction.

Hence, the cost function value decreases along the directions either vi or v´i . l

Descent direction search

To find the optimal point, we propose an algorithm so that the iterative points

tθpkq, k “ 1, 2, 3, ¨ ¨ ¨ u converge to the optimal solution and the corresponding cost

function values are monotonic decreasing.

The algorithm is designed based on Theorem 2.3 and Proposition 2.2.1. If (2.27)

and (2.28) hold for all i “ 1, 2, . . . ,m and (2.29) holds for all i “ m ` 1, ¨ ¨ ¨ , p, the

optimal solution is found and the algorithm terminates. Otherwise, there are two

mutually exclusive situations as follows.

First phase (steepest phase) refers to the situation where m ă p and Condition

(2.29) is violated for some i P tm ` 1, ¨ ¨ ¨ , pu. In the steepest phase, choose a

descent direction so that all zeros in Ωk are kept while the smooth part is updated.

That means the descent direction is selected from the space spanned by tvi|i “

m` 1, ¨ ¨ ¨ , pu. In a neighborhood of θpkq , the cost function is

fpθpkqq “ apkqθpkq ` bpkq `
ÿ

ωkiPΩk

|Xωkiθ
pkq
´ yωki |,

where

apkq “
n
ÿ

i“1

δpui ą 0qXi ´

n
ÿ

i“1

δpui ă 0qXi , bpkq “
n
ÿ

i“1

δpui ą 0qyi ´
n
ÿ

i“1

δpui ă 0qyi,
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and Ωk is the zero set index set of θpkq that defined as Ωk “ tωki : uωki “ Xωkiθ
pkq ´

yωki “ 0u. The descent direction is chosen as the projection of ´apkq in tvi|i “

m` 1, ¨ ¨ ¨ , pu.

Second phase (decreasement phase) refers to the situation where (a) m “ p, or

(b) m ă p ,@i P tm ` 1, ¨ ¨ ¨ , pu, and Condition (2.29) is satisfied. Then, Conditions

(2.27) and (2.28) are violated for some i P t1, ¨ ¨ ¨ ,mu. Otherwise, the algorithm

has to be terminated. In the decreasement phase, some zeros in Ωk are set free to

avoid deadlock of the algorithm. Denote by Λ1 the zeros to be set free. Λ1 is chosen

to contain the indexes ωki corresponding to the fastest descending directions vi or

v´i . Similar to the steepest phase, the steepest descent direction is chosen as the

projection of ´apkq in tvi|i “ m` 1, ¨ ¨ ¨ , pu.

In the steepest phase, set Ω0k “ Ωk and in the decreasement phase, set Ω0k “

ΩkzΛ1. Then, Ω0k contains zeros in Ωk that we intend to keep. The projection h can

be obtained by solving

max
hPRp

´ apkqh

s.t. Xih “ 0, @i P Ω0k,

}h} “ 1.

(2.32)

It means that the solution h is chosen as the direction nearest to the deepest descent

direction ´apkq and along which the set Ω0k remains unchanged in a neighborhood

of θpkq. The optimal solution to Problem (2.32) can be obtained by normalizing

d̃ “ ´apkq ´Xᵀ
0kpX0kX

ᵀ
0kq

´1X0k ¨ p´a
pkq
q, (2.33)

where Xᵀ
0kpX0kX

ᵀ
0kq

´1X0kp´a
pkqq is the projected direction of ´apkq in the subspace

th|Xih “ 0, i P Ω0ku and

X0k “

¨

˚

˝

Xωk01
...

Xωk0m0

˛

‹

‚

, ωk01, ¨ ¨ ¨ , ωk0m0 P Ω0k.
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Then, the descent direction dpkq can be chosen as the normalized vector of d̃, that is,

dpkq “ d̃{}d̃} . (2.34)

Proposition 2.2.2. For any integers k “ 1, 2, . . . , if the k-th iteration is in the

first (steepest) phase, there exists ` ą k such that the `-th iteration is in the second

(decreasement) phase.

Proof. For any k-th iteration, m ă p and Apθpkq, viq ‰ 0 for at least one i in

tm ` 1, ¨ ¨ ¨ , pu. Then, the number of zero set increases, because the indices in Ωk

will not be removed in first phase. Hence, by repeating the first phase, we obtain

m “ p , or Apθpkq, viq “ 0 , @i “ tm ` 1, ¨ ¨ ¨ , pu , which will go to the second phase.

l

Optimal step length

This section describes the procedure of determining the optimal step length for the

descent direction in the previous section. It is shown that after moving, there is

always new zero in the new point. Throughout this paper, Λ2 refers to the set of

indexes corresponding to the new zeros and Ωk`1 refers to the updated zero set.

Without loss of generality, consider the following assumption.

Assumption 2.2.1. The design matrix X is of full rank, i.e., rank pXq “ p.

Lemma 2.2. For any θ, d P Rp , d ‰ 0 , lim
tÑ8

fpθ ` tdq “ 8 .

Proof. According to Assumption 2.2.1, for any d P Rp , there exists at least one

i P t1 , ¨ ¨ ¨ , nu such that

Xid ‰ 0 .

Otherwise, there exists one d P Rp such that Xid “ 0 , @i P t1, ¨ ¨ ¨ , nu. Then the

direction d is redundant for the space Rp. For this, at least one dimension related to

d can be reduced from the space Rp.
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Then, for any θ P Rp,

lim
tÑ8

fpθ ` tdq ě lim
tÑ8

|Xipθ ` tdq ´ yi|

ě lim
tÑ8

|tXid| ´ |Xiθ ´ yi|

“ 8.

l

Lemma 2.3. If m “ p , θpkq is unique.

Proof. Since m “ p , we have Xaθ
pkq “ Ya , where

Xa “

¨

˚

˝

X1
...
Xp

˛

‹

‚

, Ya “

¨

˚

˝

Y1
...
Yp

˛

‹

‚

.

By definition, Xa is the maximal subset of independent vector. Therefore, Xa is

invertible and θpkq “ X´1
a Ya . Hence, θpkq is unique. l

Lemma 2.4. If m ă p and A pθpkq, viq “ 0 , @i “ m ` 1, ¨ ¨ ¨ , p, then, fpθpkqq is

unique.

Proof. Denote

θpkq “
p
ÿ

i“1

µivi “ Vaµa ` Vbµb ,

where

Va “ pv1, ¨ ¨ ¨ , vmq , Vb “ pvm`1, ¨ ¨ ¨ , vpq , µa P Rm , µb P Rp´m .

If µb “ 0 , then µa “ XaVaµa “ Xaθ
pkq “ Ya and θpkq “ Vaµa “ VaYa “ Xᵀ

a pXaX
ᵀ
a q
´1Ya .

Note that Apθpkq, viq “ 0 , @i P tm`1, ¨ ¨ ¨ , pu, we have fpθpkq`t˚viq “ fpθpkqq , @t, @i “

m`1, ¨ ¨ ¨ , p. The cost function value will not changed along these directions. Hence,

fpθpkqq is unique and θpkq is in a subspace which contains the point Xᵀ
a pXaX

ᵀ
a q
´1Ya.

l
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Theorem 2.4. There exists an optimal solution for the line search problem of the

descent direction. Let t˚ ą 0 be the optimal step size. Then, there is at least one i in

t1, ¨ ¨ ¨ , nu such that Xipθ
pkq ` t˚dpkqq “ yi. That means i is a new zero after moving

to the point θpkq ` t˚dpkq.

Proof. For pk ` 1q-th iteration, the updating formula for θ is

θpk`1q
“ θpkq ` tdpkq.

If t “ 0 , dpkq is a descent direction at θpkq, that is,

Ddpkqfpθ
pkq
q ă 0 .

Denote gptq “ fpθpkq ` tdpkqq, since gptq is convex, Bgptq
Bt

is monotonically increasing.

Note that

Bgptq

Bt
“ lim

∆tÑ0

gpθpkq ` pt`∆tqdpkqq ´ gpθpkq ` tdpkqq

∆t
“ }dpkq}Ddpkqfpθ

pkq
` tdpkqq,

we have that

Ddpkqfpθ
pkq
` tdpkqq

is monotonically increasing.

From Lemma 2.2, if tÑ 8 , then

θpkq ` tdpkq Ñ 8, and fpθpkq ` tdpkqq Ñ 8.

Hence, we must have

Ddpkqfpθ
pkq
` tdpkqq ą 0 .

If t is sufficiently large, then there exists one t such that

Ddpkqfpθ
pkq
` tdpkqq ě 0 , Ddpkq´fpθ

pkq
` tdpkqq ě 0,

If

Ddpkqfpθ
pkq
` tdpkqq ‰ 0, or Ddpkq´fpθ

pkq
` tdpkqq ‰ 0,
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then the gradient does not exist at this point and there exists at least one i in

t1, ¨ ¨ ¨ , nu such that i is in the zero set, that is,

Xipθ
pkq
` tdpkqq “ 0 .

If

Ddpkqfpθ
pkq
` tdpkqq “ Ddpkq´fpθ

pkq
` tdpkqq,

it can be seen that

Ddpkqfpθ
pkq
` tdpkqq “ 0 .

Then, we move the point along with dpkq until we find one i in t1, ¨ ¨ ¨ , nu such that

Xipθ
pkq
` tdpkqq ´ yi “ 0

and tpkq can be chosen as t1 or t2 in Figure 2.5.

t1 “ tpkq t1 t1 t2

tpkq

Figure 2.5: plot of step length t

Since the gradient is zero, the cost function value does not change, and the

corresponding tpkq is still optimal. l

The line search problem in Theorem 2.4 can be solved as follows. Consider

min
tě0

gptq,

where

gptq “ fpθpk`1q
q “ fpθpkq ` tdpkqq , t ě 0 .
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tk

θpkq

dpkq

Figure 2.6: Plot of stepwise descent direction of dpkq.

Since f is convex, gptq is convex, too, as depicted in Figure 2.6. Therefore, the

line search problem is equivalent to

max
tě0

t

s.t. Ddpkqfpθ
pkq
` tdpkqq ě 0, (2.35)

Ddpkq´fpθ
pkq
´ tdpkqq ě 0.

It suffices to consider the points ti “ ´pXiθ
pkq ´ yiq{Xid

pkq for i “ 1, 2, . . . , n . Note

that Xipθ
pkq ` tid

pkqq ´ yi “ 0 . Sort the values ti fulfilling ti ą 0 but ti ‰ 8 in

the ascending order and denote the sorted series by 0 ă tk1 ď tk2 ď . . . and define

τk1, τk2, . . . as the indexes corresponding to 0 ă tk1 ď tk2 ď . . . . The optimal step

length is tks that fulfills the following optimality conditions,

Ddpkqfpθ
pkq
` tksd

pkq
q ě 0 , Ddpkqfpθ

pkq
` tk,s´1d

pkq
q ă 0 , (2.36)

where the direction derivatives can be obtained recursively via

Ddpkqfpθ
pkq
` tksd

pkq
q “ Ddpkqfpθ

pkq
` tk,s´1d

pkq
q ` 2|Xτksd

pkq
| , s “ 2, 3, ¨ ¨ ¨ ,

Ddpkqfpθ
pkq
` tk1d

pkq
q “ Ddpkqfpθ

pkq
q ` 2|Xτk1d

pkq
| . (2.37)

Denote the set of all such indexes τks by Λ2. Then, a updated zero set in the pk`1q-th

iteration is defined as

Ωk`1 “ Ω0k Y Λ2 .
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By moving with step length tks, the cost function becomes

fpθpk`1q
q “ papk`1q

qθpk`1q
`

ÿ

ωk`1,iPΩk`1

|Xωk`1,i
θpk`1q

| ` bpk`1q .

Theorem 2.5. Algorithm 1 below terminates in a finite number of steps.

Proof. For each step, the direction is a descent direction. Then, if the optimal

condition is not satisfied, we can find a descent direction dpkq and the cost function

value is reduced. Furthermore, the algorithm will stop in a point θpkq in each step,

where there exists at least one index i such that Xiθ
pkq ´ yi “ 0 , that is, i is in the

zero set. Hence, except the initial point, the zero set at any point stop in each step

is not empty.

Note that there are totally n terms, which is finite, hence the number of the zero

set in each step is finite. And the number of the zero set in Decreasement phase is

also finite. For each step in second phase, m “ p , or m ă p ,Apθpkq, viq “ 0 , @i “

m ` 1, ¨ ¨ ¨ , p . By Lemma 2.3 and Lemma 2.4, θpkq is unique corresponding to each

zero set. Note that fpθpkqq is monotonically decreasing which will not be repeated.

The zero set series will not be repeated. Since the zero set is finite, the algorithm

will stop in finite steps until the optimal conditions are satisfied. l
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Algorithm 2 Active Zero Set Descent Algorithm

Initialization: Choose an initial point θp0q. Compute the corresponding set Ω0 and
the cost function value fpθp0qq. Set k “ 0 .
Step 1: (Terminate)
Generate the matrix V for the zero set Ωk as described in subsection 2.2. If condition
(2.27)–(2.29) are satisfied, then stop and return the optimal solution and value.
Otherwise, if m ă p and there exists one i, Apθpkq, viq ‰ 0 , go to Step 2, else go to
Step 3.
Step 2: (Steepest phase) Set Ω0k “ Ωk . Set the descent direction as dpkq “
Projt´apkq|vi, i “ m` 1, ¨ ¨ ¨ , pu described in subsection 2.2.1. Go to Step 4.
Step 3: (Decreasement phase)
Find Λ1, set Ω0k “ ΩkzΛ1 , and compute the descent direction dpkq by using (2.33) ,
(2.34). Go to Step 4.
Step 4: Find the best step length t˚ by (2.35) and update θpk`1q “ θpkq ` t˚dpkq .
Find Λ2 using the method described in Subsection 2.2.1 and update the zero set as
Ωk`1 “ Ω0k Y Λ2 . Then, compute the cost function fpθpk`1qq and go to Step 1 for
the pk ` 1q-th iteration.

2.2.2 Numerical experiments

In this part, we conduct extensive simulation studies and real data analysis to e-

valuate the estimation performance of our new active zero set descent algorithm

compared to interior point method for LAD Fused Lasso model.

Simulation studies

Consider LAD Fused Lasso problem

β̂ “ arg min
βPRp

n̄
ÿ

i“1

|ȳi ´ X̄iβ| ` λ
p
ÿ

j“2

|βj ´ βj´1|. (2.38)

where X̄ P Rn̄ˆp is the design matrix with row vectors X̄i , ȳ “ pȳ1, ȳ2, ¨ ¨ ¨ , ȳn̄q
1 P Rn̄

is the response vector, λ ą 0 serves as the tuning parameter, and β P Rp is the

coefficient vector.

Problem (2.38) is a special case of the LAD Generalized Lasso problem (2.18)
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with penalty matrix

R “

¨

˚

˚

˚

˝

´1 1 0 ¨ ¨ ¨ 0 0
0 ´1 1 ¨ ¨ ¨ 0 0
...

...
...

...
... ¨ ¨ ¨

0 0 0 ¨ ¨ ¨ ´1 1

˛

‹

‹

‹

‚

.

Interior point method for LAD Fused Lasso

Consider LAD Fused Lasso problem (2.38) and reparameterize β as

θ1 “ β1, θ2 “ β2 ´ β1, ¨ ¨ ¨ , θp “ βp ´ βp´1,

where θ “ pθ1, θ2, ¨ ¨ ¨ , θpq
1 P Rp. The links between θ and β are given as

θ “ Wβ , β “Mθ,

where

W “

¨

˚

˚

˚

˝

1 0 0 ¨ ¨ ¨ 0 0
´1 1 0 ¨ ¨ ¨ 0 0
...

...
...

...
...

...
0 0 0 ¨ ¨ ¨ ´1 1

˛

‹

‹

‹

‚

,M “

¨

˚

˚

˚

˝

1 0 0 ¨ ¨ ¨ 0 0
1 1 0 ¨ ¨ ¨ 0 0
...

...
...

...
...

...
1 1 1 1 1 1

˛

‹

‹

‹

‚

. (2.39)

Then, Problem (2.38) becomes

θ̂ “ arg min
θPRp

n̄
ÿ

i“1

|ȳi ´ X̄iMθ| ` λ
p
ÿ

j“2

|θj|. (2.40)

This can be viewed as a LAD-Lasso problem. Denote H “ X̄M , with j-th column

as Hj. Following Wang et al. [116], we normalize the design matrix H such that

}Hj}
2
2 “ n, j “ 1, 2, ¨ ¨ ¨ , n, and choose λ “

?
2n log p. Let ε` , ε´ , θ` , and θ´ be

the positive parts and negative parts of ȳ ´Hθ and θ respectively. Then,

}ȳ ´Hθ}1 “ ε` ` ε´ , }θ}1 “ θ` ` θ´
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and

ȳ ´Hθ “ ε` ´ ε´ , θ “ θ` ´ θ´.

Problem (2.40) can therefore be rewritten as

arg min
θ

n̄
ÿ

i“1

ε`i `
n̄
ÿ

i“1

ε´i ` λp
p
ÿ

j“2

θ`j `
p
ÿ

j“2

θ´j q,

Hθ ` ε` ´ ε´ “ ȳ,

θ ´ θ` ` θ´ “ 0p, (2.41)

ε` , ε´ ě 0n̄ , θ
` , θ´ ě 0p.

The above problem can be solved using the state-of-the-art linear programming

solver, interior point method that is available in Matlab function linprog.

Alternatively, denote

Y “

ˆ

ȳ
0p´1

˙

fi

¨

˚

˚

˚

˝

y1

y2
...
yn

˛

‹

‹

‹

‚

, X “

ˆ

X̄
0 λIp´1

˙

fi

¨

˚

˚

˚

˝

X1

X2
...
Xn

˛

‹

‹

‹

‚

, n fi n̄` p´ 1. (2.42)

Problem (2.40) becomes

θ̂ “ arg min
θPRp

}Y ´Xθ}1, (2.43)

which is a LAD regression problem. The solution θ can be obtained using active

zero set descent algorithm (see Section 2.2.1). Then, β can be estimated by the

transformation β̂ “ Mθ̂ with M defined in (2.39). Equivalently, we can get β̂ back

as
¨

˚

˚

˚

˝

β̂1

β̂2
...

β̂p

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

θ̂1

θ̂1 ` θ̂2
...

θ̂1 ` θ̂2 ` ¨ ¨ ¨ ` θ̂p

˛

‹

‹

‹

‚

.

62



Then we examine the performance of active zero set descent algorithm (LAD-

AZSD, see Section 2.2) and interior point method (LAD-IP) for LAD Fused Lasso

problem under different regression models. The experiments are performed on an

Intel(R) Core(TM) i7-4790 CPU 3.60GHz processor and the algorithms are imple-

mented in Matlab. For each dataset, we choose λ “
?

2n log p as suggested in

[114, 116, 25].

Experiment 1. In this example, we study the effects of five factors, namely (i) the

correlation in the covariates X, (ii) time-varying pattern in the coefficient β , (iii)

variance of the error distribution, (iv) sample size n, and (v) the number of covariates

p. Consider a 3ˆ2ˆ2ˆ5ˆ2 experiment design. The covariates are generated from

Gaussian distribution Nppµ,Σq with correlation matrix Σ “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p.

Three levels of ρ are considered, ρ “ 0 , 0.1 , 0.5. The response vector is generated by

Y “ Xβ ` σε, (2.44)

where tεiu1ďiďn̄ are independent standard Normal random variables. Two levels of

σ are considered, σ “ 1 , 3. Consider two time-varying patterns of β , namely

Case 1 β˚ “ p5, ¨ ¨ ¨ , 5
looomooon

1´5

, 0, ¨ ¨ ¨ , 0
looomooon

6´10

, 2, ¨ ¨ ¨ , 2
looomooon

11´15

, 0, ¨ ¨ ¨ , 0
looomooon

16´p

q P Rp,

Case 2 β˚˚ “ p5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5
loooooooooooooooooomoooooooooooooooooon

1´10

, 0, ¨ ¨ ¨ , 0
looomooon

11´p

q P Rp,

Case 1 is sparse and blocky while Case 2 is sparse and smooth. Choose p and n,

with p “ 50 , 100, and n varying from 1000 to 5000. The above simulation settings

are similar to those in [109, 3]. For each combination of levels, the experiment is

repeated for 100 datasets.

The performances are measured in terms of the averaged run-time (TIME), aver-

aged number of nonzero entries (DF: see [137]), and averaged mean absolute deviation
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(MAD). The simulation results are summarized in Table 2.10-2.13. We have the fol-

lowing observations:

(i) For different n , p values, AZSD perform considerably faster than interior point

method for all cases. Under strong correlation settings, time superiority of

AZSD is slightly weakened. Figure 2.7,2.8 illustrate that both algorithms have

computation time approximately linear in n.

(ii) The results of MAD and DF suggest that the new algorithm does not lose accuracy

comparing to the interior point algorithm. Both algorithms gives estimated β

that are close to their true values. Also, estimation accuracy increased as n

increases, suggesting estimation consistency.
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TIME MAD(sd) DF

n LAD-IP LAD-AZSD LAD-IP LAD-AZSD LAD-IP LAD-AZSD
p “ 50

Case 1: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.
1000 0.2308 0.1266 0.0223(0.0024) 0.0223(0.0025) 10.2 10.2
2000 0.5205 0.2949 0.0151(0.0017) 0.0151(0.0017) 10.3 10.2
3000 0.8463 0.5170 0.0120(0.0013) 0.0121(0.0013) 10.1 10.1
4000 1.2325 0.7968 0.0104(0.0012) 0.0104(0.0012) 10.1 10.1
5000 1.7181 1.0690 0.0094(0.0012) 0.0094(0.0012) 10.2 10.2

Case 2: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.1.
1000 0.2260 0.1289 0.0193(0.0026) 0.0193(0.0026) 10.2 10.2
2000 0.5074 0.2942 0.0127(0.0014) 0.0127(0.0015) 10.2 10.2
3000 0.8633 0.5257 0.0106(0.0014) 0.0106(0.0014) 10.2 10.2
4000 1.3677 0.8603 0.0089(0.0010) 0.0089(0.0010) 10.1 10.1
5000 1.9654 1.2667 0.0083(0.0010) 0.0083(0.0010) 10.3 10.3

Case 3: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.5.
1000 0.2552 0.1912 0.0137(0.0025) 0.0137(0.0025) 10.4 10.4
2000 0.6253 0.4143 0.0101(0.0018) 0.0101(0.0018) 10.4 10.5
3000 0.9820 0.7119 0.0079(0.0014) 0.0079(0.0014) 10.4 10.4
4000 1.4284 1.0524 0.0067(0.0011) 0.0067(0.0011) 10.2 10.2
5000 1.9240 1.4807 0.0061(0.0010) 0.0061(0.0010) 10.3 10.3

p “ 100

Case 1: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.1.
1000 0.4914 0.1616 0.0119(0.0015) 0.0119(0.0015) 10.2 10.2
2000 1.3266 0.5097 0.0083(0.0009) 0.0083(0.0009) 10.1 10.2
3000 2.1535 0.8775 0.0067(0.0008) 0.0067(0.0008) 10.2 10.9
4000 3.0055 1.2941 0.0057(0.0006) 0.0057(0.0006) 10.1 10.2
5000 3.8056 1.7229 0.0050(0.0006) 0.0050(0.0006) 10.2 10.2

Case 2: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.1.
1000 0.5561 0.2103 0.0103(0.0014) 0.0103(0.0014) 10.3 10.3
2000 1.2715 0.4997 0.0071(0.0009) 0.0071(0.0009) 10.2 10.2
3000 2.0313 0.8822 0.0057(0.0006) 0.0057(0.0006) 10.2 10.2
4000 2.8906 1.2687 0.0049(0.0005) 0.0049(0.0005) 10.2 10.1
5000 3.8144 1.8367 0.0043(0.0005) 0.0044(0.0005) 10.2 10.4

Case 3: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.5.
1000 0.5383 0.2377 0.0073(0.0014) 0.0073(0.0014) 10.4 10.4
2000 1.3066 0.5901 0.0051(0.0008) 0.0052(0.0009) 10.3 10.3
3000 1.9853 1.0170 0.0042(0.0007) 0.0042(0.0007) 10.3 10.3
4000 2.9280 1.5267 0.0036(0.0006) 0.0036(0.0006) 10.3 10.3
5000 3.9526 1.9660 0.0033(0.0005) 0.0033(0.0005) 10.4 10.4

Table 2.10: Estimation results of β˚, σ “ 1
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TIME MAD(sd) DF

n LAD-IP LAD-AZSD LAD-IP LAD-AZSD LAD-IP LAD-AZSD
p “ 50

Case 1: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.
1000 0.2596 0.1362 0.0675(0.0097) 0.0675(0.0097) 10.2 10.3
2000 0.5836 0.2912 0.0451(0.0052) 0.0450(0.0052) 10.3 10.3
3000 1.0197 0.5289 0.0366(0.0045) 0.0366(0.0045) 10.2 10.2
4000 1.5034 0.7327 0.0318(0.0038) 0.0318(0.0038) 10.2 10.1
5000 2.0822 1.0256 0.0285(0.0031) 0.0285(0.0031) 10.2 10.2

Case 2: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.1.
1000 0.2533 0.1356 0.0581(0.0075) 0.0581(0.0076) 10.2 10.2
2000 0.5829 0.3051 0.0398(0.0047) 0.0398(0.0048) 10.2 10.2
3000 1.0102 0.5445 0.0320(0.0038) 0.0320(0.0038) 10.2 10.2
4000 1.3586 0.6926 0.0273(0.0036) 0.0273(0.0036) 10.2 10.2
5000 1.7779 0.9191 0.0242(0.0033) 0.0242(0.0033) 10.1 10.1

Case 3: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.5.
1000 0.2260 0.1247 0.0416(0.0064) 0.0417(0.0065) 10.4 10.4
2000 0.5194 0.2905 0.0290(0.0047) 0.0291(0.0047) 10.3 10.3
3000 0.8290 0.5156 0.0245(0.0045) 0.0245(0.0045) 10.4 10.4
4000 1.2174 0.7667 0.0202(0.0033) 0.0202(0.0033) 10.3 10.3
5000 1.6814 1.0587 0.0184(0.0033) 0.0184(0.0034) 10.4 10.4

p “ 100

Case 1: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.
1000 0.6197 0.1790 0.0360(0.0045) 0.0360(0.0045) 10.2 10.2
2000 1.3610 0.4161 0.0247(0.0028) 0.0247(0.0028) 10.1 10.1
3000 2.1097 0.7272 0.0198(0.0020) 0.0198(0.0020) 10.2 10.2
4000 3.0466 1.0314 0.0168(0.0022) 0.0168(0.0022) 10.2 10.2
5000 3.9469 1.3925 0.0151(0.0017) 0.0151(0.0017) 10.2 10.2

Case 2: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.1.
1000 0.5697 0.1655 0.0317(0.0038) 0.0317(0.0039) 10.2 10.2
2000 1.2843 0.4101 0.0215(0.0026) 0.0215(0.0026) 10.2 10.2
3000 2.0810 0.7351 0.0170(0.0019) 0.0170(0.0019) 10.2 10.2
4000 2.9373 1.0792 0.0148(0.0019) 0.0148(0.0019) 10.2 10.2
5000 3.8968 1.3963 0.0132(0.0015) 0.0132(0.0015) 10.2 10.2

Case 3: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.5.
1000 0.5525 0.2105 0.0229(0.0035) 0.0228(0.0035) 10.4 10.3
2000 1.2764 0.4977 0.0149(0.0024) 0.0148(0.0024) 10.3 10.4
3000 1.9854 0.8489 0.0124(0.0020) 0.0125(0.0020) 10.4 10.4
4000 2.9019 1.3003 0.0108(0.0018) 0.0108(0.0018) 10.2 10.2
5000 4.0582 1.6930 0.0095(0.0015) 0.0095(0.0015) 10.3 10.3

Table 2.11: Estimation results of β˚, σ “ 3
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TIME MAD(sd) DF

n LAD-IP LAD-AZSD LAD-IP LAD-AZSD LAD-IP LAD-AZSD
p “ 50

Case 1: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.
1000 0.2464 0.1387 0.0215(0.0026) 0.0215(0.0026) 10.2 10.2
2000 0.6002 0.3547 0.0151(0.0020) 0.0152(0.0019) 10.2 10.2
3000 1.0313 0.6238 0.0121(0.0014) 0.0121(0.0014) 10.2 10.2
4000 1.5504 0.9044 0.0106(0.0013) 0.0106(0.0013) 10.1 10.2
5000 2.0347 1.2557 0.0094(0.0012) 0.0094(0.0012) 10.3 10.3

Case 2: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.1.
1000 0.2617 0.1587 0.0183(0.0026) 0.0183(0.0026) 10.1 10.1
2000 0.5872 0.3613 0.0125(0.0014) 0.0126(0.0014) 10.2 10.2
3000 1.0263 0.6434 0.0103(0.0014) 0.0103(0.0014) 10.1 10.1
4000 1.5150 0.9267 0.0087(0.0011) 0.0087(0.0011) 10.2 10.2
5000 2.0175 1.2463 0.0080(0.0010) 0.0080(0.0010) 10.2 10.2

Case 3: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.5.
1000 0.2661 0.1770 0.0129(0.0026) 0.0130(0.0026) 10.3 10.3
2000 0.5917 0.3970 0.0091(0.0017) 0.0091(0.0017) 10.3 10.3
3000 0.9556 0.7156 0.0072(0.0012) 0.0072(0.0012) 10.2 10.2
4000 1.4386 1.0317 0.0064(0.0011) 0.0064(0.0011) 10.3 10.3
5000 1.8109 1.3429 0.0055(0.0010) 0.0055(0.0010) 10.2 10.3

p “ 100

Case 1: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.
1000 0.4683 0.1578 0.0100(0.0012) 0.0100(0.0012) 10.2 10.2
2000 0.9979 0.3764 0.0069(0.0008) 0.0069(0.0009) 10.2 10.2
3000 1.6729 0.6897 0.0056(0.0007) 0.0056(0.0007) 10.3 10.3
4000 2.3985 1.0404 0.0049(0.0005) 0.0049(0.0005) 10.2 10.2
5000 3.0926 1.3766 0.0043(0.0005) 0.0043(0.0005) 10.2 10.2

Case 2: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.1.
1000 0.4356 0.1765 0.0070(0.0012) 0.0070(0.0012) 10.3 10.3
2000 0.9918 0.4366 0.0046(0.0008) 0.0046(0.0008) 10.3 10.3
3000 1.7206 0.8164 0.0038(0.0007) 0.0038(0.0007) 10.2 10.9
4000 2.6736 1.2287 0.0033(0.0006) 0.0033(0.0006) 10.3 10.3
5000 3.3316 1.6629 0.0029(0.0005) 0.0029(0.0005) 10.2 10.2

Case 3: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.5.
1000 0.5259 0.2441 0.0200(0.0032) 0.0203(0.0034) 10.6 10.5
2000 1.0344 0.6109 0.0145(0.0023) 0.0147(0.0024) 10.4 10.2
3000 1.7057 1.0219 0.0113(0.0019) 0.0115(0.0019) 10.5 10.8
4000 2.3733 1.7914 0.0100(0.0017) 0.0104(0.0018) 10.6 10.2
5000 3.1115 2.2958 0.0085(0.0014) 0.0088(0.0015) 10.6 10.3

Table 2.12: Estimation results of β˚˚, σ “ 1
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TIME MAD(sd) DF

n LAD-IP LAD-AZSD LAD-IP LAD-AZSD LAD-IP LAD-AZSD
p “ 50

Case 1: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.
1000 0.2730 0.1186 0.0665(0.0078) 0.0666(0.0079) 9.9 9.9
2000 0.6129 0.2765 0.0449(0.0061) 0.0450(0.0062) 10.2 10.2
3000 1.0860 0.4766 0.0373(0.0047) 0.0373(0.0047) 10.2 10.2
4000 1.6264 0.7094 0.0311(0.0036) 0.0311(0.0036) 10.2 10.2
5000 2.1503 0.9311 0.0279(0.0034) 0.0279(0.0034) 10.2 10.2

Case 2: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.1.
1000 0.2619 0.1215 0.0561(0.0083) 0.0562(0.0083) 10.1 10.0
2000 0.5834 0.2749 0.0382(0.0051) 0.0382(0.0051) 10.3 10.3
3000 1.0356 0.4769 0.0308(0.0037) 0.0308(0.0037) 10.2 10.2
4000 1.5174 0.7225 0.0266(0.0033) 0.0266(0.0033) 10.3 10.3
5000 2.1174 0.9541 0.0240(0.0026) 0.0240(0.0026) 10.2 10.2

Case 3: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.5.
1000 0.2577 0.1475 0.0381(0.0068) 0.0380(0.0067) 10.3 10.3
2000 0.5659 0.3275 0.0266(0.0053) 0.0266(0.0053) 10.2 10.2
3000 0.9814 0.5521 0.0216(0.0041) 0.0216(0.0041) 10.3 10.3
4000 1.4555 0.8231 0.0192(0.0035) 0.0192(0.0035) 10.2 10.2
5000 1.9990 1.0890 0.0167(0.0029) 0.0167(0.0029) 10.2 10.2

p “ 100

Case 1: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.
1000 0.5029 0.1311 0.0304(0.0038) 0.0304(0.0038) 10.1 10.2
2000 1.1100 0.3034 0.0209(0.0023) 0.0209(0.0023) 10.2 10.2
3000 1.8231 0.5500 0.0167(0.0020) 0.0167(0.0020) 10.3 10.3
4000 2.6039 0.8175 0.0145(0.0016) 0.0145(0.0016) 10.3 10.3
5000 3.4149 1.0947 0.0128(0.0016) 0.0128(0.0016) 10.3 10.2

Case 2: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.1.
1000 0.4609 0.1432 0.0210(0.0036) 0.0210(0.0037) 10.3 10.3
2000 1.0352 0.3652 0.0141(0.0023) 0.0141(0.0023) 10.3 10.7
3000 1.7127 0.6214 0.0113(0.0020) 0.0113(0.0020) 10.2 10.7
4000 2.4797 0.9357 0.0096(0.0017) 0.0096(0.0017) 10.2 10.2
5000 3.1546 1.2587 0.0089(0.0016) 0.0089(0.0016) 10.3 10.3

Case 3: Σi,j “ ρ|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p ; ρ “ 0.5.
1000 0.4978 0.1562 0.0605(0.0099) 0.0611(0.0101) 10.4 10.2
2000 1.0346 0.4578 0.0427(0.0066) 0.0433(0.0067) 10.4 10.4
3000 1.6837 0.8665 0.0346(0.0054) 0.0354(0.0056) 10.7 10.8
4000 2.3693 1.1189 0.0296(0.0049) 0.0301(0.0048) 10.5 10.6
5000 3.0494 1.6296 0.0266(0.0039) 0.0270(0.0039) 10.5 10.8

Table 2.13: Estimation results of β˚˚, σ “ 3

Experiment 2. This example focuses on the effect of the error distribution. Consid-

er four error models ε „ Np0, 1q ,Dbexp p0, 1q, t p3q ,Cauchy p0, 1q. The robustness

of LAD Fused Lasso (AZSD, IP) and Least Square fused Lasso (LS-fuse, see [77])

are compared. For each p “ 50 , 100, and n “ 5000, we generate 100 datasets from

Model (2.44) with σ “ 1 , X P Npp0,Σq ,Σi,j “ 0.5|i´j| , i, j “ 1, 2, ¨ ¨ ¨ , p, and

β “ p1, ¨ ¨ ¨ , 1
looomooon

1´5

, 0, ¨ ¨ ¨ , 0
looomooon

6´15

, 2, ¨ ¨ ¨ , 2
looomooon

16´20

, 0, 0, 0, 0
looomooon

21´24

, 3
loomoon

25

, 0, ¨ ¨ ¨ , 0
looomooon

26´40

, 1, ¨ ¨ ¨ , 1
looomooon

41´45

, 0, ¨ ¨ ¨ , 0
looomooon

46´p

q.

For each case, TIME, DF (the same as Experiment 1) and average mean absolute

68



1000 2000 3000 4000 5000
0

0.5

1

1.5

2

be
ta

p=50,rho=0,sigma=1

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

0.5

1

1.5

2

be
ta

p=50,rho=0.1,sigma=1

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

0.5

1

1.5

2

be
ta

p=50,rho=0.5,sigma=1

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

be
ta

p=50,rho=0,sigma=3

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

0.5

1

1.5

2

be
ta

p=50,rho=0.1,sigma=3

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

0.5

1

1.5

2

be
ta

p=50,rho=0.5,sigma=3

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

1

2

3

4

be
ta

p=100,rho=0,sigma=1

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

1

2

3

4

be
ta

p=100,rho=0.1,sigma=1

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

1

2

3

4

be
ta

p=100,rho=0.5,sigma=1

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

1

2

3

4

be
ta

p=100,rho=0,sigma=3

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

1

2

3

4

be
ta

p=100,rho=0.1,sigma=3

LAD-IP
LAD-AZSD

1000 2000 3000 4000 5000
0

1

2

3

4

5

be
ta

p=100,rho=0.5,sigma=3

LAD-IP
LAD-AZSD

Figure 2.7: Running time tendency of β˚ estimation with p “ 50, 100 , σ “ 1, 3 , ρ “
0, 0.1, 0.5.
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Figure 2.8: Running time tendency of β˚˚ estimation with p “ 50, 100 , σ “ 1, 3 , ρ “
0, 0.1, 0.5.

70



deviation (MAD)
ř100
i“1pβ̂i´βiq

2 are reported in Table 2.14, Figure 2.9, and 2.10. It can

be seen that under the heavy-tailed case Cauchy (0,1), LAD Fused Lasso outperforms

LS Fused Lasso in terms of MAD.

p “ 50 p “ 100
ε Distr. Type LAD-IP LAD-AZSD LS-fuse LAD-IP LAD-AZSD LS-fuse

TIME

N(0,1) 0.2261 0.1565 0.0011 0.4939 0.2129 0.0015
Dexp(0,1) 0.2450 0.1821 0.0010 0.5854 0.2412 0.0016

tp3q 0.2219 0.1533 0.0010 0.5003 0.2831 0.0016
Cauchy(0,1) 0.3490 0.1548 0.0012 0.6769 0.2191 0.0025

MAD

N(0,1) 1.2791 1.2772 1.1291 1.7249 1.7206 2.7586
Dexp(0,1) 1.4911 1.4918 2.2297 1.6815 1.6911 3.4561

tp3q 1.6499 1.6484 2.3727 2.3149 2.3125 6.2918
Cauchy(0,1) 2.2881 2.2840 58.0899 2.2811 2.2677 147.0171

DF

N(0,1) 16.0 16.0 50.0 16.0 16.0 100.0
Dexp(0,1) 17.0 17.0 50.0 17.0 17.0 100.0

tp3q 16.0 16.0 50.0 16.0 16.0 100.0
Cauchy(0,1) 16.0 16.0 50.0 16.0 16.0 100.0

Table 2.14: Estimation results under heavy tailed distributions for p “ 50, 100.

Figure 2.9: p “ 50 , n “ 5000 estimation results of interior point method, proposed
method and LS-fuse.
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Figure 2.10: p “ 100 , n “ 5000 estimation results of interior point method, proposed
method and LS-fuse.

Real data analysis

In this section, we apply LAD Fused Lasso to soybean data in Davidian and Giltinan

[26] (1995, §1.1.3, p.7), that is available in R package MEMSS. The experiment was car-

ried out in three years, 1988, 1989, 1990. The average leaf weight (in grams) randomly

chosen from 6 plants was measured at days after planting as A “ pA1, A2, . . . , A25q “

p14, 15, 20, 21, 23, 27, 28, 30, 34, 35, 37, 41, 42, 43, 49, 51, 55, 56, 63, 64, 69, 70, 77, 79, 84q .

Eight plants were planted with each genotype in each planting year, giving a total

of 48 plots in the study. Each plot is observed at only 8 to 10 days among the

above-mentioned 25 days. Detailed information is illustrated in Figure 2.11.
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Figure 2.11: Plot of soybean data.

Let Yij be the differences between consecutive measurements of plot i at time

Tj`1´Tj. Define the covariates Xijk “ pAk`1´AkqIrpAk,Ak`1qĂpTj ,Tj`1qs , where Ip¨q is

the indicator function. Consider the model Y “ Xβ ` σε . Here, the coefficients βk ,

k “ 1, 2, . . . , 25 can be interpreted as the average growth rates between time Ak´1

and Ak . For convenience, A0 “ 0 is defined. The changes in the growth rate can be

detected using LAD Fused Lasso. Here, the tuning parameter is set as λ “
?

2n log p

(see [114]).
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Figure 2.12: Plot of estimation results of soybean data with LAD-IP, LAD-AZSD
and LS-fuse.

The estimated regression coefficients β under LAD-IP, LAD-AZSD, and LS-fuse

as plotted in Figure 2.12. If least square is used, it is difficult to tell if there are

changes in the growth rate. On the contrary, LAD is more robust to heavy-tailed

cases and it allows us to see clearly that between A15 and A20 is a fast growing

period. The estimated β of LAD-AZSD and LAD-IP models are more blocky and

smoothly varying comparing to LS-fuse. The estimations from LAD-AZSD and LAD-

IP are close to each other but significantly differ from that obtained by LS-fuse. To

LAD-AZSD LAD-IP LS-fuse
TIME 0.9674 0.1533 0.0763
DF 23 23 24

Dimension pn, pq “ p364, 24q
Table 2.15: Quantitative comparison of soybean data of 3 methods: LAD-IP, LAD-
AZSD and LS-fuse models.

evaluate the performances of our algorithm, consider TIME and DF as described in

Section 2.2.2). Table 2.15 shows that LAD-AZSD is considerably faster than LAD-

IP. Table 2.16 indicates that both LAD-AZSD and LAD-IP give smooth and blocky

estimators, whereas LS-fuse estimator is noisy.
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Xij1 Xij2 Xij3 Xij4 Xij5 Xij6 Xij7 Xij8

lAD-IP 0.0000 0.0319 0.0319 0.0602 0.0602 0.1217 0.1217 0.1363
LAD-AZSD 0.0000 0.0319 0.0319 0.0602 0.0602 0.1217 0.1217 0.1412

LS-fuse -0.1080 0.0465 0.0656 0.0669 0.0238 0.2967 0.1904 0.0185

Xij9 Xij10 Xij11 Xij12 Xij13 Xij14 Xij15 Xij16

LAD-IP 0.2279 0.2279 0.2279 0.2279 0.2279 0.3432 0.4576 0.4741
LAD-AZSD 0.2279 0.2279 0.2279 0.2279 0.2279 0.3487 0.3947 0.4741

LS-fuse 0.5221 0.5956 -0.1000 1.0840 0.7852 0.3347 0.5377 0.0086

Xij17 Xij18 Xij19 Xij20 Xij21 Xij22 Xij23 Xij24

LAD-IP 0.4741 0.4741 0.4741 0.3314 0.1772 0.1772 0.1772 0.1772
LAD-AZSD 0.4741 0.4741 0.4741 0.3435 0.1772 0.1772 0.1772 0.1772

LS-fuse 2.6922 0.7504 -0.8007 -0.1946 3.8369 0.4601 -1.3747 -0.6476

Table 2.16: Parameter estimation results of soybean data with LAD-IP, LAD-AZSD,
LS-fuse.

75



76



Chapter 3

Constrained LAD Lasso models

In this chapter, we focus on Constrained LAD Lasso models with linear equality con-

straints, and extend the algorithm in Section 2.1 to linearly equality constraint case.

Then we applied the algorithm to regularized Mean Absolute Deviation portfolio

selection (MAD-Lasso) strategy.

3.1 MAD-Lasso model

Suppose that there are n securities pS1, ¨ ¨ ¨ ,Snq and their rate of returns are repre-

sented by the random vector R “ pR1 , R2 , ¨ ¨ ¨ , Rnq. The rate of returns at time

t are rt “ prt1, rt2, ¨ ¨ ¨ , rtnq , t “ 1, 2, ¨ ¨ ¨ , T , with mean r “ pr1, r2, ¨ ¨ ¨ , rnq
1 and co-

variance matrix E
`

prt ´ rq
1prt ´ rq

˘

“ Σ. The portfolio allocation weight vector

x “ px1, x2, ¨ ¨ ¨ , xnq
1 satisfies

řn
i“1 xi “ 1. Konno [67] proposed the Mean Absolute

Deviation (MAD) risk measure, defined as

MADpxq “
ˇ

ˇ

n
ÿ

i“1

xiRi ´ E
n
ÿ

i“1

xiRi

ˇ

ˇ “
1

T

T
ÿ

t“1

ˇ

ˇ

n
ÿ

i“1

prti ´ riqxi
ˇ

ˇ.
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The MAD-Lasso problem is formulated as

min
x

1

T

T
ÿ

t“1

ˇ

ˇ

n
ÿ

i“1

prti ´ riqxi
ˇ

ˇ`

n
ÿ

i“1

λ|xi|

s.t. x1r “ r0, (3.1)

x11 “ 1.

Here, λ is the tuning parameter controlling the size of penalty. Brodie [16] penalizes

Markowitz’s model [87] with Lasso penalty. The Markowitz-Lasso problem can be

described as

arg min
x

E
“

|r01T ´ x
1rt|

2
‰

` λ}x}1

s.t. x1r “ r0, (3.2)

x11 “ 1.

The MAD-Lasso based method (3.1) has the following advantages:

1. It encourages sparsity. With appropriately chosen tuning parameter λ, some

components in the portfolio weight vector x shrink towards zero, resulting in

sparse portfolio selection strategies.

2. It controls the shorting level of portfolio selection model. The equivalent for-

mulation is to minimize

}r01T ´ r
1x}1 ` 2λ

ÿ

i:xiď0

|xi| ` λ,

where
ř

i:xiď0

|xi| controls the shorting level. The last term does not affect the

optimization problem.

3. It robustify the portfolio selection problem. The `1 norm penalty mitigate the

computational difficulties related to the possible collinearity in the rates of
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returns of different assets. Moreover, it ameliorates the influence of financial

violations and extreme cases.

Proposition 3.1.1. We have the followings.

(1) For any two tuning parameters λ1 ă λ2, let xpλ1q,xpλ2q be the corresponding

weight vectors. Then, we have

pλ1 ´ λ2q
`

}xpλ2q}1 ´ }x
pλ1q}1

˘

ě 0.

This indicates that the greater is the penalty λ , the greater is the sparsity.

(2) Suppose that there exists λ0 such that all entries in xpλ0q are non-negative.

Then, for any λ ě λ0 , all entries in the solution xpλq are non-negative too.

Proof. (1) Suppose there are two portfolio allocation vectors xpλ1q,xpλ2q correspond-

ing to the tuning parameter λ1, λ2 respectively in the MAD-Lasso problem (3.1). We

have

}r01T ´ r
1xpλ1q}1 ` λ1}x

pλ1q}1

ď }r01T ´ r
1xpλ2q}1 ` λ1}x

pλ2q}1

“ }r01T ´ r
1xpλ2q}1 ` λ2}x

pλ2q}1 ` pλ1 ´ λ2q}x
pλ2q}1

ď }r01T ´ r
1xpλ1q}1 ` λ2}x

pλ1q}1 ` pλ1 ´ λ2q}x
pλ2q}1

“ }r01T ´ r
1xpλ1q}1 ` λ1}x

pλ1q}1 ` pλ1 ´ λ2q
`

}xpλ2q}1 ´ }x
pλ1q}1

˘

.

This yields that

pλ1 ´ λ2q
`

}xpλ2q}1 ´ }x
pλ1q}1

˘

ě 0. (3.3)

(2) If all the entries of xpλ0q are nonnegative and some entries of xpλq are neg-

ative, we have }xpλq} ě
řn
i“1 |x

pλq
i | “ |

řn
i“1 x

pλ0q
i | “

řn
i“1 |x

pλ0q
i | “ 1. This yields

that }xpλq} ě }xpλ0q}. From (3.3), we have λ0 ě λ. This indicates that the all-

nonnegative-entry case λ0 corresponds to the sparest solution. The particular solu-

tion corresponding to λ0 is the optimal solution among all solutions corresponding

to λ ě λ0.
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3.2 Constrained LAD Lasso model

To solve the MAD-Lasso portfolio selection problem, we generalize the descent algo-

rithm of Shi et al. [101] to allow linearly equality constraints.

Problem definition

Problem (3.1) can be reformulated as the following Constrained LAD Lasso problem:

min
x

}y ´ Ax}1 ` λ}x}1

s.t. Cx “ b. (3.4)

Here,

A “

¨

˚

˚

˚

˝

r11 ´ r1 r12 ´ r2 ¨ ¨ ¨ r1n ´ rn
r21 ´ r1 r22 ´ r2 ¨ ¨ ¨ r2n ´ rn

...
...

...
...

rT1 ´ r1 rT2 ´ r2 ¨ ¨ ¨ rTn ´ rn

˛

‹

‹

‹

‚

, y “

¨

˚

˚

˚

˝

0
0
...
0

˛

‹

‹

‹

‚

,

C “

ˆ

r1 r2 ¨ ¨ ¨ rn
1 1 ¨ ¨ ¨ 1

˙

, b “

ˆ

r0

1

˙

.

Here, y “ py1, ¨ ¨ ¨ , yT q
1 P RT , A P RTˆn, C P Rqˆn , b “ pb1, ¨ ¨ ¨ , bqq

1 P Rq , and

x “ px1, ¨ ¨ ¨ , xnq
1 P Rn. Denote the i-th row of A by Ai and the i-th element

of y by yi . Without loss of generality, we assume that C is full rank matrix, i.e.,

rank pCq “ q “ 2 .

Remark 3.1. An intuitive solution of Problem (3.4) is to be transformed to the

following unconstrained optimization problem:

min
x
}y ´ Ax}1 ` λ1}x}1 ` λ2}Cx´ b}1,

where we need two penalty parameters, λ1 and λ2, the computational complexity

increases significantly. Hence we focus on Problem (3.4).
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Optimality conditions for feasible direction

Note that an arbitrary point x can be transformed to a feasible point as shown below.

Suppose that Cx´ b “ c0 ‰ 0 . Setting x0 “ x´ C
ᵀpCCᵀq´1c0, then,

Cx0 ´ b “ Cx´ b´ CCᵀ
pCCᵀ

q
´1c0 “ c0 ´ c0 “ 0.

The transformed point x0 is said to be the feasible point generated by x. Thus, the

initial point for the algorithm can be chosen as a feasible point. If x is a feasible

point, we choose a direction h such that the cost function value decreases along this

direction. The choice of the direction can not be arbitrary because the constraints

must be satisfied along this direction. That is, it is required that

Cpx` hq ´ b “ Cx´ b` Ch “ Ch “ 0. (3.5)

Definition 3.1. The direction h fulfilling (3.5) is called a feasible direction. If h is

a feasible direction, the corresponding directional derivative is a feasible directional

derivative.

First, we have the following assumptions.

Assumption 3.2.1. For any x and h P Rn, lim
λÑ8

fpx` λhq “ 8.

Assumption 3.2.2. For any n indices i1, ¨ ¨ ¨ , in in t1, ¨ ¨ ¨ , T u, tAi1 , ¨ ¨ ¨ , Ainu are

linearly independent.

Denote Aix ´ yi “ ui and Ω “ to1, ¨ ¨ ¨ , omu “ toi : uoi “ 0, i “ 1, 2, ¨ ¨ ¨ ,mu as the

zero set. Then, the objective function can be rewritten as summation of smooth and
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nonsmooth part of fpxq:

fpxq “ Spxq `Npxq,

Spxq fi
T
ÿ

i“1

I pui ą 0q pAix´ yiq `
T
ÿ

i“1

I pui ă 0q p´Aix` yiq fi cx` z,

Npxq fi
T
ÿ

i“1

I pui “ 0q |Aix´ yi| “
m
ÿ

i“1

|Aoix´ yoi |,

where I p¨q as the indicator function and

c fi
T
ÿ

i“1

I pui ą 0qAi ´
T
ÿ

i“1

I pui ă 0qAi , z “ ´
T
ÿ

i“1

I pui ą 0qyi `
T
ÿ

i“1

I pui ă 0qyi.

Since fpxq is convex, its local minimizer must be the global minimizer. The optimal-

ity condition of the minimizer is that any feasible directional derivatives are greater

than or equal to zero. That is, x˚ is the optimal solution of (3.4) if and only if

∇hfpx
˚
q “ ∇hSpx

˚
q `∇hNpx

˚
q ě 0, @h P th | h P Rn, Ch “ 0u. (3.6)

However, it is not easy to verify the optimality condition (3.6) because there are

infinitely-many feasible directions h. To obtain a finite representation of the opti-

mality condition, consider the nonsmooth part Npxq with

Aoix “ yoi , i “ 1, ¨ ¨ ¨ ,m.

If tAoi : i “ 1, ¨ ¨ ¨ ,mu are independent, then m ď n ´ q . If m ą n ´ q , then the

equations above are overdetermined. Without loss of generality, we assume that

m ď n´ q and tAoi : i “ 1, ¨ ¨ ¨ ,muY tC1, C2, ¨ ¨ ¨ , Cqu are linearly independent. Let

D “

¨

˚

˚

˚

˚

˚

˚

˚

˝

C1
...
Cq
Ao1

...
Aom

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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Generalized inverse matrix VD can be obtained such that DVD “ Im`q , where Im`q

is the pm ` qq ˆ pm ` qq identity matrix and VD “ pV1, ¨ ¨ ¨ , Vm`qq. Consider the

null space tV P Rn|DV “ 0u. There exist n ´ m ´ q linearly independent vectors

Vj , j “ m ` q ` 1, ¨ ¨ ¨ , n that form the basis of the null space. Hence, we have

DVj “ 0 , @j “ m ` q ` 1, ¨ ¨ ¨ , n. Then, an equivalent finite-representation of the

optimality condition (3.6) is given by the following theorem.

Theorem 3.1. Suppose rank pDq “ m ` q, then x˚ is the optimal solution if and

only if the feasible directional derivatives satisfy

∇Vifpx
˚
q “ ∇ViSpx

˚
q `∇ViNpx

˚
q ě 0, i “ q ` 1, ¨ ¨ ¨ , q `m,

∇V ´i
fpx˚q “ ∇V ´i

Spx˚q `∇V ´i
Npx˚q ě 0, i “ q ` 1, ¨ ¨ ¨ , q `m, (3.7)

∇Vifpx
˚
q “ ∇ViSpx

˚
q “ 0, i “ m` q ` 1, ¨ ¨ ¨ , n.

Proof. Note that the space of all feasible directions is spanned by tVi , i “ q `

1, ¨ ¨ ¨ , nu, condition (3.7) is a special case of (3.6) and the necessary condition is

obvious. Next, we establish the sufficient condition, this means that if (3.7) are

satisfied, (3.6) holds. If x˚ is optimal, then we have

∇Vifpx
˚
q ě 0 ,∇V ´i

fpx˚q ě 0, i “ q ` 1, ¨ ¨ ¨ , q `m,

∇Vifpx
˚
q “ 0, i “ q `m` 1, ¨ ¨ ¨ , n.

By orthonormality of tV1, V2, ¨ ¨ ¨ , Vnu, (3.7) can be simplified as

∇Vifpx
˚
q “ ∇ViSpx

˚
q “

cVi
}Vi}

“ 0, i “ m` q ` 1, ¨ ¨ ¨ , n,

∇Vifpx
˚
q “ ∇ViSpx

˚
q `∇ViNpx

˚
q “

cVi
}Vi}

`
1

}Vi}
ě 0, i “ q ` 1, ¨ ¨ ¨ ,m` q,

∇V ´i
fpx˚q “ ∇V ´i

Spx˚q `∇V ´i
Npx˚q “

´cVi
}Vi}

`
1

}Vi}
ě 0, i “ q ` 1, ¨ ¨ ¨ ,m` q.
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For any feasible direction h, there exists a weight vector w “ pwq`1, wq`2, ¨ ¨ ¨ , wnq
1

such that

h “
n1
ÿ

i“q`1

wiVi `
n
ÿ

i“n1`1

wip´Viq.

Without loss of generality, we can set wi ě 0, @i “ 1, ¨ ¨ ¨ , n. This is because when

wi ă 0, we have wiVi “ p´wiq ¨ p´Viq. Then, replacing Vi by ´Vi and wi by ´wi ą 0

yield that

∇hNpx
˚
q “

řm
i“1 |Aoih|

}h}
“

řm
i“1

ˇ

ˇ

ˇ
Aoi

`
řn1

j“q`1wjVj `
řn
j“n1`1wjp´Vjq

˘

ˇ

ˇ

ˇ

}h}

“

řm
i“1

ˇ

ˇwiAoiVi`n
ˇ

ˇ

}h}
“

řm
i“1wi
}h}

.

We have

∇hfpx
˚
q “

řn
i“q`1wicVi

}h}
`

řm
i“1wi
}h}

“
1

}h}

´

m
ÿ

i“1

ti`qpcVi`q ` 1q `
n
ÿ

i“m`q`1

wicVi

¯

“
1

}h}

m
ÿ

i“1

wi`q∇Vi`qfpx
˚
q ¨ }Vi`q} `

1

}h}

n
ÿ

i“m`q`1

wi∇Vifpx
˚
q}Vi} ě 0.

Then, for any feasible direction h, the feasible directional derivative is greater than

or equals to zero. Hence, (3.6) holds and x˚ is the optimal solution. l

Descent feasible directions

The design of the algorithm is as follows. Let xpkq be the approximation at the k-th

iteration. If the optimality condition (3.7) is satisfied, then xpkq is the optimal solu-

tion, otherwise, there exists at least a feasible direction h such that the cost function

decreases along this direction. These steps are repeated until (3.7) is satisfied.

Suppose that the i-th condition of (3.7) is not satisfied. Then, the following two

statements

∇Vifpxq ě 0 and ∇V ´i
fpxq ě 0
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can not be satisfied at the same time and consequently at least one of Vi and V ´i

is the descent direction. For an iterative point xpkq, denote the zero set by Ωk “

tok1, ok2, ¨ ¨ ¨ , okkmu “ toki : uki “ Akix ´ yki “ 0 , i “ 1, 2, ¨ ¨ ¨ , kmu. The cost

function can be rewritten as

fpxpkqq “ cpkqxpkq `
ÿ

okiPΩk

|Aokix
pkq
´ yoki | ` z

pkq. (3.8)

Denote by Ω1k the set of all the indexes ki so that (3.7) is not satisfied for Vi or V ´i . To

speed up the search, consider the indexes i so that the descent directional derivatives

∇Vif or ∇V ´i
f are the greatest. Suppose that Λ1 Ă Ω1k contains a proportion α of

the indexes in Ω1k with slowest corresponding descent directional derivatives ∇Vif or

∇V ´i
f . Denote

Ω0
k “ ΩkzΛ

k
1.

This means that the indexes in Λk
1 are removed from the zero set. Choose the descent

direction h in the space spanned by

tVoki : oki P Λk
1u Y tVi : i “ km ` 1, ¨ ¨ ¨ , nu

such that

h “
ÿ

okiPΛ
k
1

tokiVoki `
n
ÿ

i“km`1

tiVi.

It can be verified that

Aokih “ 0, @oki P Ω0
k.

Such a choice guarantees that the descent direction keep the set Ω0
k unchanged. Set

the descent direction hpkq as the optimal solution to

max
vPRp

´ cpkqv

s.t. Aokiv “ 0, @oki P Ω0
k.

(3.9)
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It means that the solution h is chosen as the vector nearest to the deepest descent

direction ´cpkq. The optimal solution to Problem (3.9) is

h̃ “ ´cpkq ´ Aᵀ
0kpA0kA

ᵀ
0kq

´1A0k ¨ p´c
pkq
q, (3.10)

where Aᵀ
0kpA0kA

ᵀ
0kq

´1A0kp´c
pkqq is the projected direction of ´cpkq in the subspace

th : Aokih “ 0, oki P Ω0
ku. Equivalently, Aᵀ

0kpA0kA
ᵀ
0kq

´1A0kp´c
pkqq “ Projt´cpkq

ˇ

ˇh :

Aokih “ 0, oki P Ω0
ku. Without loss of generality, assume that ok1, ok2, ¨ ¨ ¨ , okl P Ωk

0

and

A0k “

¨

˚

˝

Aok1
...

Aokl

˛

‹

‚

, ok1, ¨ ¨ ¨ , okl P Ω0
k.

Then, the descent direction hpkq can be chosen as the normalized vector of h̃ with

hpkq “ h̃{}h̃}. (3.11)

Optimal step length

The cost function decreases along the descent direction hpkq. The next iteration point

is generated by

xpk`1q
“ xpkq ` γpkqhpkq , γpkq ą 0,

where γpkq is the step length that is determined via the following optimization prob-

lem,

min
λě0

gpγq

where

gpγq “ fpxpk`1q
q “ fpxpkq ` γhpkqq, γ ě 0.
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Since f is convex, gpγq is also convex. Then, we can choose γpkq as the optimal

solution of the problem min
γ
gpγq. This problem is equivalent to the following problem

max
γě0

γ

s.t. ∇hpkqfpx
pkq
` γhpkqq ě 0, (3.12)

∇hpkq´fpx
pkq
` γhpkqq ě 0.

For this problem, we have the following observation (see Shi et al. [101]).

Lemma 3.1. There exists an optimal solution γpkq ą 0 and at least one i in t1, ¨ ¨ ¨ , nu

such that Aipx
pkq`γpkqhpkqq “ yi, that is, i is in the zero set at the point xpkq`γpkqhpkq

during the k-th iteration.

Algorithm

Denote by γpkq the optimum step length along the direction hpkq as described in

section 3.4. The cost function is updated as

fpxpk`1q
q “ cpk`1qxpk`1q

`
ÿ

opk`1qiPΩk`1

|Aopk`1qi
xpk`1q

| ` zpk`1q.

Remove the indexes in Λk
1 from the zero set Ωk and denote Ω0

k “ ΩkzΛ
k
1. Let Λk

2 “

toki|uoki “ 0u. Lemma 3.1 guarantees that Λk
2 is non-empty. In the pk ` 1q-th

iteration, set

Ωk`1 “ Ω0
k Y Λk

2,

and xpk`1q “ xpkq ` γpkqhpkq. Continue the above process until the optimal condition

(3.7) is satisfied. To summarize, the algorithm is as follows:
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Algorithm 3 Descent Algorithm for MAD-Lasso model

Initialization: Choose an initial point xp0q, compute the corresponding set Ω0, and
compute the cost function fpxp0qq. Set k “ 0.
Step 1: (Terminate)
Generate the matrix V for the zero set Ωk. If the condition (3.7) is satisfied, then
stop and return the optimal solution and value. Otherwise, go to Step 2.
Step 2: (Descent Direction)
Find the α fastest descent directions as Λk

1, where α denotes the percentage of selected
descent directions that decrease faster than the other 1 ´ α directions. Set Ω0

k “

ΩkzΛ
k
1, and compute the descent direction hpkq using (3.10), (3.11).

Step 3: (Optimal Step Length) Find the best step length γpkq by (3.12).
Step 4: (Iteration) Update xpk`1q “ xpkq ` γpkqhpkq. Find Λk

2 and update the zero
set as Ωk`1 “ Ω0

k Y Λk
2. Then we compute the cost function fpxpk`1qq at pk ` 1q-th

iteration, and then we go to Step 1.

3.3 Numerical experiments

In this section, simulation studies and real data analysis are carried out to compare

(1) MAD, (2) MAD-Lasso with the proposed algorithm, and (3) MAD-Lasso with

interior point method. The comparison is based on computational efficiency and the

performance of the portfolio selection under the following risk measures:

(1) Expected Return (Mean): Mean “ w1µ.

(2) Sharpe Ratio: Sharpe “ w1µ{
?
w1Σw.

(3) Sparsity: number of nonzero entries of w (see [137]).

(4) Time: time consumption.

(5) Standard Deviation (StD): σ “
?
w1Σw.

(6) Mean Absolute Deviation (MAD): 1
T

řT
t“1

ˇ

ˇ

řn
i“1prti ´ riqwi

ˇ

ˇ.

(7) Value at Risk (VaR): VaRα “ µ` σΦ´1p1´ αq.

(8) Expected Shortfall (ES): ESα “ µ` σψpΦ
´1p1´αqq
α

.

Simulation studies

To investigate the performance of different portfolio selection method, consider t-

wo cases where the data are generated from the multivariate Gaussian distribution
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Gaussian Data

Model Time Sparsity Mean StD MAD VaR ES

MAD-Model 0.0576 10 0.3501 0.0663 0.0529 0.5042 0.5267
MAD-Lasso (IP) 0.1309 8 0.3501 0.0591 0.0470 0.4876 0.5076
MAD-Lasso (NEW) 0.0248 7 0.3501 0.0591 0.0470 0.4876 0.5076

Asymmetric Laplace Data

Model Time Sparsity Mean StD MAD VaR ES

MAD-Model 0.0990 10 0.3497 0.3630 0.2730 1.1941 1.3171
MAD-Lasso (IP) 0.1277 6 0.3497 0.3540 0.2602 1.1733 1.2933
MAD-Lasso (NEW) 0.0138 6 0.3497 0.3540 0.2602 1.1733 1.2933

Table 3.1: Portfolio selection results of simulated datasets.

and multivariate Asymmetric Laplace distribution respectively, with the following

parameter settings:

µ “ p0.0001 , 0.0002 , 0.0003 , 0.0004 , 0.0005 , 0.50 , 0.60 , 0.70 , 0.80 , 0.90q.

Σ “ diag pµ{10q.

In both cases, (1) MAD, (2) MAD-Lasso with interior point method (IP), and (3)

MAD-Lasso with the proposed method (NEW) as described in Section 3.2 are used

for portfolio selection. The tuning parameter λ is chosen as λ “
?

2T log n , as sug-

gested in [114]. In both Gaussian case and asymmetric Laplace cases, 1000 replicates

are performed in Matlab with an Intel (R) Core (TM) i7-4790 3.60 GHz Processor

and 3.60 GHz memory. The interior point method is implemented using linprog

provided in the MATLAB interface and the proposed method is programmed in

MATLAB.

The results are shown in Table 3.1. MAD-Lasso outperforms MAD in terms of

Sharpe Ratio, Sparsity and risk measures (StD, MAD, VaR0.01, ES0.01). Under the

above-mentioned indicators, the performance of MAD-Lasso is similar for interior

point method and the proposed descent algorithm. However, in terms of compu-

tational time, the proposed descent algorithm significantly outperforms the interior
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method. Figure 3.1-3.2 further display the boxplots of the computation results.

Figure 3.1: Portfolio selection results of Gaussian data A. MAD model; B. MAD-
Lasso with interior point method (IP); C. MAD-Lasso with proposed method (NEW).

Figure 3.2: Portfolio selection results of Asymmetric Laplace data: A. MAD mod-
el; B. MAD-Lasso with interior point method (IP); C. MAD-Lasso with proposed
method (NEW).
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Real data analysis

Consider the datasets complied by Fama and French. Portfolios involving 48 indus-

try sectors are obtained from both daily and monthly data (abbreviated to FF48d,

FF48m) from June 1976 to June 2006. In both FF48d and FF48m datasets, the

portfolios are constructed at the end of each June. Denote by ri,t the annualized

return in time t of i-th industry, i “ 1, 2, ¨ ¨ ¨ , 48.

Example 1. In this example, we compare the out-of-sample performances of MAD

Model, Naive Evenly Model, and MAD-Lasso Models (IP, NEW).

For such a purpose, all portfolios are constructed by fixing the expected re-

turn at r0 “ r̄, where the target return r0 as the average return achieved by

the naive, evenly-weighted portfolio, computed from either the entire daily data

or the entire monthly data. Consider the sequence of increasing tuning parameters

λ “ 2´5:1:6
?

2T log n with λ1 “ 2´5
?

2T log n “ 1
32

?
2T log n , λ2 “ 2´4

?
2T log n “

1
16

?
2T log n , ¨ ¨ ¨ , λ12 “ 26

?
2T log n “ 64

?
2T log n.

For both FF48d and FF48m datasets, we compare MAD Model (mad), Naive

evenly-weighted model (naive), and MAD-Lasso (IP, NEW). The comparisons are

based on computational time, Sparsity, Sharpe, MAD, VaR0.01 and ES0.01. Esti-

mation results are reported in Table 3.2, 3.3. Results show that with increasing

tuning parameter λ, we can achieve higher level of Sparsity and smaller Sharpe Ra-

tio. Moreover, the values of MAD, VaR0.01, ES0.01 increase accordingly. For both

datasets, MAD model outperforms Naive model in terms of Sharpe Ratio and risk.

MAD-Lasso with smaller tuning parameters can achieve better performance than

MAD Model. For MAD-Lasso models, results show that our proposed algorithm

(NEW) is much more time efficient than interior point method (IP) with increasing

tuning parameter λ. With properly chosen tuning parameters, MAD-Lasso models

can achieve higher Sharpe Ratio and smaller risk than MAD model and Naive mod-
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el. On the other hand, with increasing tuning parameter λ, MAD-Lasso models can

achieve better performance than MAD Model by sacrificing a little bit Sharpe Ratio

and risk.

MAD and NAIVE Portfolio Selection Models

Time Sharpe Sparsity

mad naive mad naive mad naive

– 3.8550 0.0064 0.0841 0.0632 47 48

MAD-Lasso Portfolio Selection Models

Time Sharpe Sparsity

IP NEW IP NEW IP NEW

λ1 2.9822 2.3658 0.0852 0.0852 47 47
λ2 3.4228 2.0967 0.0852 0.0852 47 47
λ3 3.3466 2.0494 0.0851 0.0851 45 45
λ4 3.4036 2.1634 0.0848 0.0848 36 36
λ5 3.3688 2.4207 0.0843 0.0843 32 32
λ6 3.6359 1.8651 0.0830 0.0830 25 24
λ7 3.9089 2.8070 0.0811 0.0811 18 18
λ8 4.2888 2.8444 0.0801 0.0801 13 13
λ9 4.1552 2.8232 0.0801 0.0801 13 13
λ10 4.6611 2.8770 0.0801 0.0801 13 13
λ11 5.2082 2.2390 0.0801 0.0801 13 13
λ12 4.7706 2.1307 0.0801 0.0801 13 11

MAD and NAIVE Portfolio Selection Models

MAD VaR0.01 ES0.01

mad naive mad naive mad naive

– 0.4617 0.6069 1.5746 2.0784 1.7960 2.3732
MAD-Lasso Portfolio Selection Models

MAD VaR0.01 ES0.01

IP NEW IP NEW IP NEW

λ1 0.4457 0.4457 1.5556 1.5556 1.7742 1.7742
λ2 0.4458 0.4458 1.5559 1.5559 1.7745 1.7745
λ3 0.4461 0.4460 1.5576 1.5576 1.7765 1.7765
λ4 0.4471 0.4471 1.5620 1.5620 1.7815 1.7815
λ5 0.4501 0.4501 1.5716 1.5716 1.7925 1.7925
λ6 0.4576 0.4576 1.5948 1.5948 1.8191 1.8191
λ7 0.4696 0.4696 1.6313 1.6313 1.8609 1.8609
λ8 0.4770 0.4770 1.6517 1.6517 1.8843 1.8843
λ9 0.4770 0.4770 1.6517 1.6517 1.8843 1.8843
λ10 0.4770 0.4770 1.6517 1.6517 1.8843 1.8843
λ11 0.4770 0.4770 1.6517 1.6517 1.8843 1.8843
λ12 0.4770 0.4771 1.6517 1.6513 1.8843 1.8839

Table 3.2: Portfolio selection results of FF48d Data:pT, nq “ p7573, 48q; ExpRet:
r0 “ 0.0550.
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MAD and NAIVE Portfolio Selection Models

Time Sharpe Sparsity

mad naive mad naive mad naive

– 0.9094 0.0001 0.4332 0.2450 48 48

MAD-Lasso Portfolio Selection Models

Time Sharpe Sparsity

IP NEW IP NEW IP NEW
λ1 0.3121 0.2698 0.4311 0.4324 48 48
λ2 0.2449 0.1782 0.4317 0.4304 47 48
λ3 0.2245 0.1363 0.4314 0.4316 47 48
λ4 0.2763 0.1646 0.4308 0.4308 42 44
λ5 0.2742 0.1154 0.4260 0.4265 40 39
λ6 0.2485 0.0977 0.4189 0.4177 29 27
λ7 0.2599 0.1042 0.3986 0.3985 19 19
λ8 0.2856 0.1217 0.3734 0.3734 15 15
λ9 0.2343 0.0932 0.3473 0.3473 10 10
λ10 0.2590 0.0945 0.3473 0.3481 10 10
λ11 0.3257 0.0867 0.3473 0.3481 10 10
λ12 0.2760 0.0837 0.3473 0.3476 10 10

MAD and NAIVE Portfolio Selection Models

MAD VaR0.01 ES0.01

mad naive mad naive mad naive

– 2.1255 3.7957 8.0304 13.2301 9.0166 14.9736

MAD-Lasso Portfolio Selection Models

MAD VaR0.01 ES0.01

IP NEW IP NEW IP NEW

λ1 2.0243 2.0247 8.0625 8.0419 9.0533 9.0298
λ2 2.0251 2.0261 8.0542 8.0738 9.0438 9.0662
λ3 2.0262 2.0281 8.0583 8.0557 9.0485 9.0455
λ4 2.0341 2.0347 8.0675 8.0686 9.0590 9.0603
λ5 2.0604 2.0600 8.1440 8.1359 9.1467 9.1374
λ6 2.1144 2.1236 8.2615 8.2806 9.2813 9.3032
λ7 2.2383 2.2389 8.6172 8.6197 9.6888 9.6916
λ8 2.4150 2.4150 9.1145 9.1146 10.2586 10.2586
λ9 2.6162 2.6162 9.7053 9.7053 10.9354 10.9354
λ10 2.6162 2.6169 9.7053 9.6843 10.9354 10.9113
λ11 2.6162 2.6169 9.7053 9.6843 10.9354 10.9113
λ12 2.6162 2.6163 9.7053 9.6966 10.9354 10.9254

Table 3.3: Portfolio selection results of FF48m data: pT, nq “ p361, 48q; ExpRet:
r0 “ 1.2606.

Example 2. In this example, MAD-Lasso with interior point method (IP) and

our proposed method (NEW) are compared. For FF48d Dataset (r0.05 : 0.05 :

8s
?

2T log n), the tuning parameter is chosen from 0.05
?

2T log n to 4
?

2T log n. For

FF48m Dataset (r0.05 : 0.05 : 8s
?

2T log n), the tuning parameter is chosen from

0.05
?

2T log n to 8
?

2T log n. The interval length is chosen as ∆ “ 0.05
?

2T log n.
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The results of the MAD-Lasso methods are displayed in Figure 3.3-3.4. Results

show that the sparsity measure increases with larger tuning parameter λ and our

proposed method is much more time efficient than the interior point method. More-

over, after some point when λ is large, the curves of Sharpe ratio, StD, VaRα and

CVaRα with respect to λ behave like horizontal lines.

Figure 3.3: Portfolio selection tendency of FF48d data with increasing tuning pa-
rameter.

Figure 3.4: Portfolio selection tendency of FF48m data with increasing tuning pa-
rameter.
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Chapter 4

Signal Processing

In this chapter, we derived the two-level optimization of penalty parameter selection

for compressive sensing in signal processing problems.

4.1 Signal model background

Let the noisy signal be

xpnq “ spnq ` vpnq, (4.1)

where spnq and vpnq are the speech and noise signals, respectively. Its corresponding

L-point STFT is given as

Xpω, kq “
L´1
ÿ

n“0

xpnqwpn´ kRqe´jωn “ Spω, kq ` V pω, kq, (4.2)

where wpn´ kRq is a time-limited window function with a hop size of R and length

L, ω P ω0, ¨ ¨ ¨ , ωL´1 and k is the time index. The k-th instant data envelope of (4.2)

is |Xpω, kq|, where | ¨ | denotes the absolute value operator.

Consider a N ˆ N matrix Ψ whose columns form an orthonormal basis. The

K-sparse signal, xpω, kq P RN can then be given as

xpω, kq “ Ψpωqθpω, kq, (4.3)
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where the N -length envelope vector xpω, kq “ r|Xpω, kq|, |Xpω, k´1q|, ¨ ¨ ¨ , |Xpω, k´

N`2q|, |Xpω, k´N`1q| sᵀ, the symbol r¨sᵀ is the transposition operator and θpω, kq P

RN has K non-zero entries. The compressed measurement vector is given as

ypω, kq “ Φpωqxpω, kq, (4.4)

where Φpωq is a M ˆN sensing matrix/linear mapping matrix. In this instant, the

sensing matrix compresses the signal’s envelope for each frequency ω. Since M ! N ,

this means that the dimension of ypω, kq is considerably smaller than xpω, kq, hence

the term “compressed”. Equation (4.4) represents an alternative sampling procedure,

which samples sparse signals close to their intrinsic information rate rather than

their Nyquist rate. It has been shown that the tractable recovery of K-sparse signal,

xpω, kq from the measurements, ypω, kq requires the sensing matrix, Φpωq to obey

the restricted isometry property (RIP) [18]. Here, a sensing matrix, Φpωq is said

to satisfy RIP of order K for all K-sparse signal, xpω, kq, if there exists a constant,

δK P p0, 1q such that

p1´ δKq ‖ xpω, kq ‖2
ď ||Φpωqxpω, kq||2 ď p1´ δKq ‖ xpω, kq ‖2, (4.5)

CS recovery

One solution to ensure sparse recovery is to solve the following:

x̂pω, kq “ arg min
xpω,kq

}xpω, kq}0 s.t. ypω, kq “ Φpωqxpω, kq, (4.6)

where }xpω, kq}0 is the number of non-zero components of xpω, kq. However, solv-

ing (4.6) requires a combinatorial search, which is NP-hard [44]. A computational

tractable solution to (4.6) is the widely known basis pursuit method as follows

x̂pω, kq “ arg min
xpω,kq

}xpω, kq}1 s.t. ypω, kq “ Φpωqxpω, kq, (4.7)

96



where }¨}1 is the `1 norm. Whilst the basis pursuit is a weaker formulation compared

to (4.6), it allows efficient solution via linear programming techniques [44, 61]. A

more flexible formulation, which allows for a trade-off between the exact congruence

of ypω, kq “ Φpωqxpω, kq and a sparser xpω, kq is the popular basis pursuit denoising

[61] given as

x̂pω, kq “ arg min
xpω,kq

}ypω, kq ´Φpωqxpω, kq}2 ` λpωq}xpω, kq}1, (4.8)

where }¨}2 is the L2-norm and λpωq is the regularization parameter. The formulation

in (4.6) is a simple least-squares minimization process with a L1-norm penalizer

and the dictionary matrix Φpωq. It is worth noting that since L1-norm is non-

differentiable, the optimization then leads to a decomposition which is sparser [21].

Simply, the first term in Eqn. (4.8) is to reduce the mean square area whilst the

regulator seeks a sparser solution.

Note that the optimal solution tends to trivial as λpωq Ñ 8 [61]. A higher

value of λpωq would generally result in a sparser solution since the `1-norm is being

penalized more heavily. This means that the regularizer, λpωq, penalizes the sum

of the observed signal. In other words, the solution to (4.8) is indeed a function

of λpωq, i.e., fixing λpωq is equivalent to setting it to a particular subset of sparse

solution for the least squares to be performed on [109]. Simply, the optimization

problem is a trade-off between a quadratic misfit error (mean square error) against

the sparsity of the data, i.e., `1-norm [22]. Clearly, if the incoming signal is already

sparse, then λpωq can be relaxed and vice versa. Since the sparsity of the signal

varies as a function of frequency, the regularizer should ideally vary according to the

signal’s profile.

A good choice of λpωq should provide a reasonable trade-off between the smooth-

ness of the reconstructed signal and similarity to the original signal [84]. Nevertheless,

it remains not so straightforward to set the regularization parameter λpωq and thus
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far, λpωq has been empirically determined. In practice, λpωq, should be set according

to the sparsity of the actual signal as λpωq controls the amount of regularization that

can be imposed. It is precisely this quality control that this paper seeks to estab-

lish, i.e., by linking sparsity to quality. Since a larger value of λpωq yields a sparser

solution, then more noise would be suppressed. However, how much can λpωq be set

before the signal quality is compromised.

Quality measures

In a big data setting such as speech signals, this paper seeks to subsume the affective

design by hyper-parameterizing λ via the Gini index and the model selectors, Akaike

information criterion (AIC) and Bayesian information criterion (BIC). The set of

solutions is then evaluated with respect to PESQ. In particular, λ is to be optimized

in such a way that the sparsest solution yields the one with the best quality in terms

of noise suppression and target distortion. In this case, the noise suppression and

speech distortion can be viewed as the engineering requirement and the affective

design attribute, respectively. The idea is to incorporate affective design via the

influence of the key design parameter on the aforementioned PESQ measure. By

doing so, the parameter can be translated to consumer reactions (via the PESQ

measure).

We propose a two-level optimization strategy to optimize λpωq to affective mea-

sure. In the inner level, the big data is first compressed via the sensing matrix,

Φpωq. In the outer level or the sparse reconstruction stage, the hyperparameter is

optimally chosen to incorporate the overall signal quality. Quality measures such as

the AIC, BIC and Gini index are used to optimize the value of the hyperparameter.

These measures are explicitly used to determine the relationship between key design

parameters with the consumer reactions from the processed signal. The following

sections explain each of the chosen optimization criteria, namely Gini index, the
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AIC and BIC model selection methods.

Gini index

As mentioned, the actual sparsity of the signal affects the performance sparse recov-

ery. As an effective measure of sparsity, Zonoobi [135] concluded that the Gini index

can induce a significantly improved performance in reconstruction from compressive

samples. A signal is considered most sparse if a signal can be represented by only

one non-zero coefficient with the rest being zero [54]. Similarly, if a signal has only

one high value non-zero coefficient amidst a low non-zero coefficients, then the signal

can be said to be most sparse. In essence, sparsity is a measure of disparity, i.e., the

relative distribution of the coefficients of a signal is. A non-sparse signal on the other

hand is described as having a uniform non-zero coefficients throughout. Of the many

sparsity measures, it has been shown that Gini index remains the most consistent

and fulfil all of the desirable sparsity criteria [54, 135].

Consider a M long ordered vector, w “ rw1, ¨ ¨ ¨ , wM s such that wM ě wM´1, ¨ ¨ ¨ ,

w2 ě w1, then the Gini coefficient is defined as

GIpwq “ 1´ 2
M
ÿ

m“1

wm
}w}1

ˆ

M ´m` 0.5

M

˙

. (4.9)

A zero-valued Gini represents perfect equality whilst a close to unity value shows

the opposite. In sparsity terms, a larger Gini coefficient shows a sparser signal.

As such, Gini coefficient can be used as a measure to ascertain if a signal is sparse.

Table 4.1 tabulates the Gini coefficients for three types of noise, speech and the noisy

speech at different SNR levels. The coefficients show speech indeed is the sparsest

signal in comparison with the other noise signals. Note that, of all the noise signals,

babble noise has the highest Gini coefficient, owing to its speech-like nature. For

the case of noisy speech signals, it can be seen that as the SNR increases, the Gini
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Figure 4.1: The Gini coefficients for different frequency bins.

coefficient approaches unity. As the SNR decreases, the value of the Gini coefficient

drops accordingly. This simple example demonstrates that a sparser signal tends to

have a higher SNR and as the signal becomes more noisy, sparsity reduces. Figure

4.1 shows that the sparsity of a speech signal varies as a function of frequency. It

can be seen that the mid to high frequency range of a speech signal tend to be

sparser compared to the low frequency components. Thus, by properly optimizing

λpωq based on the Gini coefficient, the sparse reconstruction could potentially lead to

better SNR improvement, as appropriate tuning parameter can be set according to

the sparsity of the signal in question. As speech is highly non-stationary across time

and frequency, its sparsity level would also vary accordingly. From Figure 4.1 the

Gini index for the three noisy speech varies as a function of speakers and frequency,

thus the λ will need to be re-estimated every N samples.
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Signal Gini coefficient SNR Speech + Babble Speech + White Speech + Destroyerops
Speech 0.9266 0 0.7522 0.7382 0.7372
Babble 0.6634 5 0.8302 0.8234 0.8239
White 0.6352 10 0.8848 0.8823 0.8828

Destroyerops 0.6243 15 0.9108 0.9099 0.9104

Table 4.1: The Gini coefficients for speech and different types of noise and at different
SNRs.

Selection of λpωq based on Gini

Consider an N -length signal, xpω, kq, then from Eqn. (4.8), its sparse reconstruction

is given as

x̂pω, kq “ arg min
xpω,kq

}ypω, kq ´Φpωqxpω, kq}2 ` λpωq}xpω, kq}1. (4.10)

For each given value of λpωq value, an estimation of x̂pω, kq is denoted as x̂λpωqpω, kq.

The Gini coefficient of x̂λpωqpω, kq is then defined as

GIpx̂λpω, kqq “ 1´ 2
N
ÿ

n“1

x̂λpωqpω, k, nq

}x̂λpωqpω, kq}1

ˆ

N ´ n` 0.5

N

˙

, (4.11)

where x̂λpωqpω, k, nq is the n-th ordered value of vector x̂λpωqpω, kq in a descending

order. The corresponding optimization problem of maximizing the GI coefficients can

be written as

λmaxGinipωq “ arg max
λpωq

GIpx̂λpωqpω, kqq, (4.12)

where GIpx̂λpωqpω, kqq is given in Eqn. (4.11). Equivalently, the optimization formu-

lation for finding λpωq for the minimum Gini index is

λminGinipωq “ arg min
λpωq

GIpx̂λpωqpω, kqq. (4.13)

Eqns. (4.12) and (4.13) can be viewed as the extreme ends of compressive speech

enhancement, as Eqn. (4.12) recovers the sparsest signal it could possibly tuned and

vice versa for Eqn. (4.13). In the numerical experiments to follow, we will show that
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both the optimization above behaves very differently for the PESQ and segmental

SNR measures, with Eqn. (4.12) leaning towards noise suppression and Eqn. (4.13)

acting towards more on speech preservation.

Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC)

Whilst the tuning parameter selection based on Gini criterion is intuitive, it is by

no means the only approach. For any regularization method, finding the best regu-

larization parameter is essential. As explained by Dicker et al. [28], the estimators

are typically found to correspond to a range of tuning parameter values, which is re-

ferred to as a solution path. Subsequently, the preferred estimator is identified along

the solution path as the estimator, which fits the optimization criteria. In the same

vein, this paper considers the Akaike Information Criterion (AIC) and Bayesian In-

formation Criterion (BIC) based approach for the selection of the tuning parameter,

λpωq [99]. It is well known that AIC and BIC are popular model selection criteria.

As shown in Zou [137], AIC and BIC possess different asymptotic optimality. AIC

converges at the minimax optimal rate to the true regression mode, whereas BIC is

consistent in selecting the true model. In this case, we ascertain the heuristics useful-

ness of both the AIC and BIC in tuning λpωq, for compressive speech enhancement.

The major difference between AIC and BIC is that they possess different asymptotic

optimality [137]. For AIC ([2]), it seeks the model with the least average squared er-

ror irrespective of whether the true model is in the candidate list. BIC, on the other

hand, guarantees in selecting the true model, should the true model be selectable.

Readers may refer to [28, 137, 86] for in-depth view of the two approaches.

Let us define the residual sum of squares (RSS) as

RSS “ }ypω, kq ´Φpωqxpω, kq}2 . (4.14)

From [137], given an estimator x̂, the number of nonzero entries of an estimator x̂
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is an unbiased estimate of the degree of freedom (df), that is

df “ number of nonzero entries of x̂pω, kq. (4.15)

AIC and BIC are usually used to make model selection and predict models, both

of them could be represented as a combination of a likelihood term and a penalty

term. Thus from Eqn. (4.14) and (4.15), the corresponding AIC and BIC can be

formulated as

AIC “ ` logpRSS{`q ` 2df, (4.16)

BIC “ ` logpRSS{`q ` df ¨ logp`q, (4.17)

where ` is the length of estimator x̂. The tuning parameter selection procedure can

be reduced to the minimization of AIC or BIC, and as discussed previously, AIC is

comparatively more conservative in its variable selection. Inserting Eqn. (4.14) into

(4.16) and (4.17), respectively, yields the λpωq selection as follows:

λAICpωq “ arg min
λpωq

n logp}ypω, kq ´Φpωqx̂λpω, kq}
2
{nq ` 2df, (4.18)

λBICpωq “ arg min
λpωq

n logp}ypω, kq ´Φpωqx̂λpω, kq}
2
{nq ` df logpnq. (4.19)

Perceptual Evaluation of Speech Quality

Broadly, the assessment of speech quality can be classified as subjective and objective

evaluation. As the name implies, subjective evaluation involves subjective listening

test by some listeners. Objective evaluation on the hand, measures the numerical

distance between the reference signal and the processed signals [79]. One established

method of evaluating how good the enhancement process is via the use perceptual

evaluation of speech quality (PESQ). PESQ is an automated computation algorithm

developed by the International Telecommunications Union (ITU) to replace human

subjects in the evaluation of the mean opinion score (MOS). The PESQ model con-

siders how human perceive speech and it has been used widely in the evaluation of
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speech quality [12]. PESQ is defined mathematically as [80]

PESQ “ a0 ` a1dsym ` a2dasym, (4.20)

where a0 “ 4.5, a1 “ ´0.1 and a2 “ ´0.0309. The variables dsym and dasym are the

average disturbance values for the symmetrical and asymmetrical components. The

former measures the distortion due to noise and the latter describes the omission of

the actual speech.

PESQ bypasses the need for human subjects to take part in the evaluation process

and can be used as part of the affective design process. Numerous studies have shown

that PESQ consistently rated to be the most reliable objective measure for speech

quality assessment [78, 50]. In fact, PESQ has also been shown to be consistent

in measuring speech intelligibility [85]. As PESQ gives the overall speech quality

score, consequently, it is regarded as an affective indicator as to how ”pleased” the

consumers are with the processed speech.

4.2 Proposed two-level optimization process

This section details the proposed two-level optimization strategy to optimize λpωq

with respect to the quality measures. In the first level optimization, the big data

is first compressed via the sensing matrix, Φpωq. The second level then optimizes

the hyperparameter through the quality measures, which then improves the overall

signal affective’s quality.

First level optimization: compressive sensing

The first step entails the compressive sensing matrix selection. The data compression

from Equation (4.4) is reproduced here for convenience

ypω, kq “ Φpωqxpω, kq, (4.21)
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where ypω, kq P RM ,xpω, kq P RN , and Φpωq P RMˆN is the compressive sensing

matrix, which compresses the signal dimension by projecting the signal from RN

into RM , where M ! N . The sensing matrix is typically generated by using a

random Gaussian matrix or a partial DCT matrix [84].

Under the Restricted Isometry Property condition (4.5), the solution to (4.21)

can be solved by using the popular basis pursuit as follows ([61]):

x̂pω, kq “ arg min
xpω,kq

}xpω, kq}1 s.t. ypω, kq “ Φpωqxpω, kq. (4.22)

Alternatively, Equation (4.22) can be viewed as a linear regression

ypω, kq “ Φpωqxpω, kq ` ε, s.t. }xpω, kq}1 ď ν, (4.23)

where ν is a constant relating to the sparsity constraint and ε P RM is the intercept

or error. Thus Equation (4.22) can be reposed as the following

min
xpω,kq

}ypω, kq ´Φpωqxpω, kq}2 ` λpωq}xpω, kq}1, (4.24)

where λpωq is the tuning hyperparameter. The solution to Equation (4.24) is the

key to finding the best affective solution to the problem in question. Here, the λpωq

plays a key role in mapping the solution to the affective measures. The following

section explains how the solution to (4.24) is optimized with respect to the affective

measures as discussed in the previous section.

Second level optimization: hyperparameter selection

To solve model (4.24), we implement the interior point method for large-scale l1

regularized least squares algorithm in [61] with the following properties:

(i) When λpωq Ñ 0, the estimator has the limiting behavior with (4.24), satisfying

ΦpωqᵀrΦpωqxpω, kq ´ ypω, kqs “ 0.

105



(ii) As λpωq Ñ 8, the estimator shrinks to the zero vector, 0. The convergence

occurs for a finite value of λpωq, i.e., λpωq ě λmaxpωq “ }2Φpωqᵀypω, kq}8,

where }x}8 “ maxi |xi| is the l8 norm of vector x. However, for λpωq ą

λmaxpωq, the optimal solution of (4.24) is trivial, i.e., 0.

(iii) As λ varies across p0,8q, the solution path of x is piecewise linear. That is, with

tuning parameters satisfy 0 “ λ1 ď λ2 ď ¨ ¨ ¨ ď λk “ λmax, the regularization

path of x is a piecewise linear curve on RN :

x “
λi`1 ´ λ

λi`1 ´ λi
xpiq `

λ´ λi
λi`1 ´ λi

xpiq, λi ď λ ď λi`1, i “ 1, 2, ¨ ¨ ¨ , k ´ 1.

(iv) Clearly as a general rule, with properly chosen λpωq, Equation (4.24) will result

in a sparse solution.

(v) The computational complexity of this algorithm is determined by the product

of the total number of Preconditioned Conjugate Gradient (PCG) steps during

all iterations and the cost of a PCG step. As noted in [61], extensive testing

suggest that the total number of PCG steps vary from a few tens to several

hundreds to compute a solution. The computational complexity of a PCG step

is OpNMq, where M,N are the dimensions of sensing matrix Φpωq. Then the

total computational complexity is at most OpcNMq, where c is the number of

iterations in the order of hundreds.

We propose a grid search tuning parameter selection based on minimizing/maximizing

the AIC, the BIC and the Gini index. Here, a set of λpωq is set as in interval

length of 0.01 as λpωq “ tλ1pωq, λ2pωq, ¨ ¨ ¨ , λ100pωqu where λ1pωq “ 0.01, λ2pωq “

0.02, ¨ ¨ ¨ , λ100pωq “ 1. For each fixed λipωq, we can obtain x̂λipωq by optimizing

(4.24). Note that for a high-dimensional least squares Lasso problem, it is compu-

tationally expensive to implement through the Newton system. In order to balance
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between computation and convergence rate we propose to use the iterative method

to solve the Newton system by using the truncated Newton method combined with

interior point method [61]. From Eqn. (4.11), (4.18) and (4.19), we have

AICpλipωqq “ ` logp}ypω, kq ´Φpωqx̂λipωqpω, kq}
2
{`q ` 2df, (4.25)

BICpλipωqq “ ` logp}ypω, kq ´Φpωqx̂λipωqpω, kq}
2
{`q ` df ¨ logp`q, (4.26)

GIpλipωqq “ 1´ 2
N
ÿ

n“1

x̂λipωqpω, k, nq

}x̂λipωqpω, kq}1

ˆ

N ´ n` 0.5

N

˙

. (4.27)

From the above, each optimized parameter can be found as λipωq P λpωq as follows

λMinAIC “ arg min
λpωq

AICtλpωqu, (4.28)

λMinBIC “ arg min
λpωq

BICtλpωqu, (4.29)

λMinGI “ arg min
λpωq

GItλpωqu, (4.30)

λMaxGI “ arg max
λpωq

GItλpωqu. (4.31)

Finally, the corresponding optimal estimators are obtained as

x̂pλpωqMinAICq, x̂pλpωqMinBICq, x̂pλpωqMinGIq, x̂pλpωqMaxGIq. (4.32)

Each optimal estimator is then evaluated against the affective measures, i.e., PESQ

and segSNR. As mentioned the proposed approach is a grid based ratio selection

method to optimize λpωq. Here, the optimized λpωq is chosen based on the opti-

mization of either on the Gini index, AIC and BIC criterion as shown above. In the

following numerical study, we investigate the influence of hyperparameterizing λpωq

on the results of compressive speech enhancement in terms of perceptual evaluation of

speech quality (PESQ) and the segmental SNR (segSNR). Generally speaking, PESQ

measures the overall improvement in the perceptibility of the speech signal, whereas

segmental SNR rests more heavily on the suppression of noise in the observation.
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4.3 Numerical experiments

Experiment settings: Four different types of noise sources from the NOISEX

database, namely, babble, subway, destroyer and car noise were tested over a wide

range of SNR, from 0dB to 20 dB, with similar SNR setting as in [84]. The noise types

were chosen to represent the different degree of non-stationarity noise encountered

in the real world. Five female and five male speech signals from the TIMIT database

were used as stimuli. The performance was evaluated by using the segmental SNR

and the PESQ measure with a total of five female and five male speech signals

from the TIMIT database. As mentioned in the introduction, PESQ measure is an

automated evaluation process, which in this case a key measure for the inclusion of

affective design. The PESQ score reveals how good or bad the perceptual quality of

the audio signal to a human listener. This paper also includes the objective measure

segmental SNR as a comparison. The number of frequency points was fixed at 256

with 50% oversampling and the compressive ratio, M{N was set to 0.9.

Hyperparameterizing λ based on Gini, AIC and BIC criterion

Four criteria based on Equations (4.12), (4.13), (4.18) and (4.19) were used to exam-

ine the influence of λpωq on compressive speech enhancement for a range of SNRs.

In this case, each of the criteria is evaluated in each frequency band via grid search.

We take fixed λpωq “ 0.1 for comparison purposes as the same implementation in

[84]. Figures 4.2, 4.3, 4.4 and 4.5 show the PESQ and segmental SNR performance

of the four model selection criterion for babble noise, car noise, subway noise and

destroyer noise, respectively. Evidently, the role of λpωq is crucial as its variation

results in a very different performance across the SNRs.

In terms of PESQ, the minimization of the Gini and AIC criterion provide a

consistent performance across the SNR range for the different types of noise. Both
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the criterion achieves higher PESQ values over the performance of having a fixed

value of λpωq e.g., λpωq “ 0.1 (see [84]) and the unprocessed observation. Note that

minimization of the Gini index results in the most non-sparse solution in the set of

sparse solution. This means that the recovery process emphasizes on maintaining

the speech signal as opposed to the reduction of noise (via a sparser solution). In-

terestingly, the minimization of BIC does not provide much improvement when the

SNRą 10dB. Also, when compared to the AIC criterion, BIC obtains lower PESQ

improvement but a higher segmental SNR improvement. This corroborates with the

fact that in general, BIC tends to choose a parsimonious model compared to AIC.

Hence for compressive speech enhancement, AIC is more inclined to select a model

with less sparsity. This explains why AIC criterion results in a higher PESQ score

but a lower segmental SNR compared to the BIC criterion.

In terms of segmental SNR improvement, the maximization of the Gini index

gains the highest improvement with an approximately 4dB gain over the range of

SNRs and the different types of noise. This is because the maximization of the Gini

index results in the sparsest representation, which as shown in Section 4.1 is often

the ones with the highest SNR. However, having an SNR improvement does not

necessarily translate to overall speech intelligibility improvement. This is shown by

the corresponding results in terms of the PESQ, where the maximization of Gini index

attains the lowest PESQ improvement. This indicates that maxGINI maximally

suppresses noise at the expense of the perceptual aspects of the output. This may

be suitable for applications such as speech recognition where noise is the main issue.

However, for hearing instruments such as assistive listening devices, SNR may not

be the primary factor as improving SNR does not necessarily improve the perceptual

part of speech as measured by PESQ. The proposed method allows such tuning by

choosing the different criterion for the application in question. In a way it effectively

parameterizes the sparse reconstruction through λpωq to allow for an engineering
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trade-off between noise suppression and perceptual preservation. Informal listening

test confirms the improvement with respect to the different criteria used.
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Figure 4.2: The (a) PESQ and (b) segmental SNR of the different hyperparameter
optimization methods as a function of SNRs for babble noise.
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Figure 4.3: The (a) PESQ and (b) segmental SNR of the different hyperparameter
optimization methods as a function of SNRs for car noise.
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Figure 4.4: The (a) PESQ and (b) segmental SNR of the different hyperparameter
optimization methods as a function of SNRs for subway noise.
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Figure 4.5: The (a) PESQ and (b) segmental SNR of the different hyperparameter
optimization methods as a function of SNRs for destroyer noise.
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Chapter 5

Two Models under Asymmetric

Laplace Distributions

In this chapter, we focus on two models under Asymmetric Laplace Distributions.

These two models are: mixture linear regression model and robust portfolio selection

model.

5.1 Mixture linear regression under ALDs

The Quantile Regression estimator is equivalent to maximizing the likelihood func-

tion of a linear regression model with random errors following the ALD (see [129]):

fpt;µ, σ, τq “
τp1´ τq

σ
exp

!

´ ρτ

´t´ µ

σ

¯)

, (5.1)

where ρτ ptq “ tpτ´Ipt ă 0qq is the check function with Ip¨q as the indicator function,

´8 ă µ ă 8 is the location parameter, σ ą 0 is the scalar parameter, 0 ă τ ă 1

is the asymmetric (skewness) parameter. Hereafter, we refer to this distribution as

ALD pµ, σ, τq. From Eqn. (5.1), it is easy to calculate that its cumulative distribution

function (CDF) is

F pt;µ, σ, τq “

$

&

%

τ exp
!

ρτ

´

t´µ
σ

¯)

, t ă µ,

1´ p1´ τq exp
!

ρτ

´

t´µ
σ

¯)

, t ě µ.
(5.2)
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Obviously, the τth quantile of ALD pµ, σ, τq is µ, and ALD pµ, σ, τq reduces to the

standard Laplace distribution or double-exponential distribution when τ “ 1{2. This

important property of ALD pµ, σ, τq makes it more popular than ALDs, as it can be

generally applied to quantile regression. Another property of ALD pµ, σ, τq is that

the ALD pµ, σ, τq can be represented as a normal-variance-mean mixture with an

exponential mixing distribution as follows [72].

Lemma 1. If a random variable X follows the ALD pµ, σ, τq, then it holds that

X|Z „ Npµ` κZ, ν2σZq, and Z „ Exppσ´1
q, (5.3)

where κ “ 1´2τ
τp1´τq

and ν2 “ 2
τp1´τq

, Exppσ´1q is the exponential distribution with

mean σ.

Remark 1. Random numbers from ALD p0, 1, τq can be generated via the simple

linear combination U1

τ
´ U2

1´τ
of two independent exponential random variables U1 and

U2 each with mean 1 [128]. By location-scale transformation, we can generate random

variables from ALD pµ, σ, τq. The expectation and variance of X is EpXq “ µ` κσ,

and VarpXq “ ψ2σ2 with ψ2 “ κ2 ` ν2.

5.1.1 Methodology

Given the mixture structure and the objective function in (1.4), the special link

between quantile regression and Asymmetric Laplace distribution motivate us to link

the error distribution with mixture ALDs. Thus we seek to conduct a regression with

linear regression based on mixture Laplace distribution, and advocate EM algorithm

for solutions.

The model

For linear regression model with mixture Laplace error, we assume that for each

component k, k “ 1, ¨ ¨ ¨ , K, εk follows an Asymmetric Laplace distribution with
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location 0, scale ψ´1, which results in the variance of εk being 1, and the asymmetric

parameter τ , i.e., εk „ ALD p0, ψ´1, τq. With sample observation pXi, Yiq, our model

becomes

Yi “ Xᵀ
i β ` εi, εi „

K
ÿ

k“1

πkALDpµ, σk{φ, τq, (5.4)

where πk ą 0,
řK
k“1 πk “ 1, the scale φ satisfy φ2 “ κ2 ` ν2, with κ “ 1´2τ

τp1´τq
, ν2 “

2
τp1´τq

. When k “ 1, this reduces to the usual quantile regression.

Under model (5.4), the conditional distribution of Yi|Xi can be written as

Yi|Xi „

K
ÿ

k“1

πkfpYi ´X
ᵀ
i β, 0, σk{φ, τq,

where fpYi ´X
ᵀ
i β, 0, σk{φ, τq is the density function of ALD px;µ, σ, τq evaluated at

Yi ´X
ᵀ
i β.

Then it is easily seen that for a sample O “ tXi, Yiu
n
i“1 form model (1.3), the log-

likelihood function of θ “ pπᵀ,βᵀ, σᵀqᵀ with π “ pπ1, ¨ ¨ ¨ , πKq
ᵀ, β “ pβᵀ

1 , ¨ ¨ ¨ , β
ᵀ
Kq

ᵀ,

and σ “ pσ1, ¨ ¨ ¨ , σKq
ᵀ, can be written as

lobspθ;Oq “
n
ÿ

i“1

log
”

K
ÿ

k“1

πk
ψτp1´ τq

σk
exp

!

´ ρτ

´ψpYi ´X
ᵀ
i βkq

σk

¯)ı

. (5.5)

Usually no explicit MLE is available. In the following, two missing component will

be incorporated into the log-likelihood function (5.5), so that the maximizer can be

obtained via a standard use of EM algorithm.

We try to estimate parameter βk, πk, k P t1, 2, ¨ ¨ ¨ , Ku using EM algorithm, with

two level latent variables taken into consideration.
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First level latent variable

Denote the unobservable information Gik with

Gik “

"

1, if i´th observation is generated from the k´th component
0, otherwise

where i “ 1, ¨ ¨ ¨ , n and k “ 1, ¨ ¨ ¨ , K, and denote the K-dimensional vector Gi “

pGi1, ¨ ¨ ¨ , GiKq
ᵀ as the component of origin of pYi, Xiq, respectively. Then the com-

plete log-likelihood function lcpθ;O, Gq of model (1.3) can be easily obtained as

lcpθ;O, Gq “

n
ÿ

i“1

K
ÿ

k“1

Gik log πk `
n
ÿ

i“1

K
ÿ

k“1

Gik log fpYi ´X
ᵀ
i βk; 0, σk{φ, τq

:“
n
ÿ

i“1

K
ÿ

k“1

Gik log πk `
n
ÿ

i“1

K
ÿ

k“1

Gik log
”ψτp1´ τq

σk
exp

!

´ ρτ

´ψpYi ´X
ᵀ
i βkq

σk

¯)ı

:“ lc1pπ;Gq ` lc2pβ, σ;O, Gq, (5.6)

where G “ pG1, ¨ ¨ ¨ , Gnq are the first missing variables.

Second level latent variable

According to the normal-variance-mean mixture representation of ALD given in Eqn.

(5.3), denote zi, coupled with pYi, Xiq, as the second latent scalar variable, i “

1, ¨ ¨ ¨ , n, then the complete log-likelihood function of θ, based on D “ tO, G, zu
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with z “ pzi, i “ 1, ¨ ¨ ¨ , nq has the form

lcpθ;Dq “
n
ÿ

i“1

K
ÿ

k“1

Gik

”

log πk ` (5.7)

log
!

p2πν2ziσ
2
kψ

´1
q
´1{2 exp

!

´
pYi ´X

ᵀ
i βk ´ κσkziq

2

2ν2ziσ2
kψ

´1

)

ψ exp
´

´ ψzi

¯)ı

“

n
ÿ

i“1

K
ÿ

k“1

Gik log πk ´
n
ÿ

i“1

K
ÿ

k“1

Gik
ψpYi ´X

ᵀ
i βk ´ κσkziq

2

2ν2ziσ2
k

´

n
ÿ

i“1

K
ÿ

k“1

Gik log σk

´
1

2

n
ÿ

i“1

K
ÿ

k“1

Gik log
´

2πν2zi

¯

´ ψ
n
ÿ

i“1

K
ÿ

k“1

Gikzi `
3n

2
logψ

“

n
ÿ

i“1

K
ÿ

k“1

Gik log πk ´ ψ
n
ÿ

i“1

K
ÿ

k“1

Gik
pYi ´X

ᵀ
i βkq

2

2ν2σ2
k

z´1
i ` ψ

n
ÿ

i“1

K
ÿ

k“1

Gik
κ

ν2σk

´

Yi ´X
ᵀ
i βk

¯

´ψ
n
ÿ

i“1

κ2

2ν2
zi ´

1

2

n
ÿ

i“1

log
´

2πν2zi

¯

´ ψ
n
ÿ

i“1

zi `
3n

2
logψ (5.8)

9

n
ÿ

i“1

K
ÿ

k“1

Gik log πk ´ ψ
n
ÿ

i“1

K
ÿ

k“1

Gik
pYi ´X

ᵀ
i βkq

2

2ν2σ2
k

z´1
i `

ψ
n
ÿ

i“1

K
ÿ

k“1

Gik
κ

ν2σk

´

Yi ´X
ᵀ
i βk

¯

(5.9)

:“ lc1pπ;Gq ` lc2pβ, σ;O, zq. (5.10)

By noticing that the last three terms (5.8) do not involve the unknown parameters,

we can simply drop them from the analysis, and obtain Eq. (5.9). And notations in
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Eqn. (5.10) are

lc1pπ;Gq “
n
ÿ

i“1

K
ÿ

k“1

Gik log πk, (5.11)

lc2pβ, σ;O, zq “ ´ψ
n
ÿ

i“1

K
ÿ

k“1

Gik
pYi ´X

ᵀ
i βkq

2

2ν2σ2
k

z´1
i ` ψ

n
ÿ

i“1

K
ÿ

k“1

Gik
κ

ν2σk

´

Yi ´X
ᵀ
i βk

¯

.

(5.12)

Remark 2. Eqn. (5.9) can be obtained as follows According to the normal-variance-

mean mixture representation of ALD given in Eqn. (5.3), model (1.3) can be rewrit-

ten as

Yi “ Xᵀ
i βk ` σkpκzi ` νψ

´1{2uiq, (5.13)

where zis be the latent variable with independently and identically distributed Exp pψq,

and uis are independently distributed as Np0, ziq given zis. Thus, Given Gik “ 1,

the i-th complete log-likelihood function based on pOi, ziq is

log
”

p2πν2σ2
kψ

´1ziq
´1{2 exp

!

´
pYi ´X

ᵀ
i βk ´ κσkziq

2

2ν2σ2
kψ

´1zi

)

ψ exp
´

´ ψzi

¯ı

,

thus the complete log-likelihood function of θ, based on D “ tO, G, zu with z “

pzi, i “ 1, ¨ ¨ ¨ , nq has the form as lcpθ;Dq in Eqn. (5.9) after omitting terms that are

not dependent on θ.

E-Step

Based on the EM algorithm principle, in the E-step, we have to calculate the con-

ditional expectation Eplcpθ, b;Dq|O, θpmqq. Since the last three terms (5.8) do not

involve the unknown parameters, we can simply drop them from the analysis, and

obtain the conditional expectation for Eqn. (5.9) under the observation O and the
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current estimate θpmq. Thus, we only have to calculate the following two terms

δ
pmq
ik “ E

´

Gik|O; θpmq
¯

“
π
pmq
k fpYi ´X

ᵀ
i β
pmq
k ; 0, σ

pmq
k {ψ, τq

řK
k“1 π

pmq
k fpYi ´X

ᵀ
i β
pmq
k ; 0, σ

pmq
k {ψ, τq

, (5.14)

ω
pmq
ik “ E

´

z´1
i |O, Gik “ 1; θpmq

¯

“
σ
pmq
k

τp1´ τq|Yi ´X
ᵀ
i β
pmq
k |

, (5.15)

where fpYi ´ Xᵀ
i β
pmq
k ; 0, σ

pmq
k {ψ, τq is the pdf of the distribution ALD p0, σ

pmq
k {ψ, τq

evaluated at Yi´X
ᵀ
i β
pmq
k as in Eqn. (5.1). For expectation in Eqn. (5.15), see detail

in the end of this section. With these expectations in Eqn.(5.14), (5.15), it follows

that

l̃c1pπq “
n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik log πk, (5.16)

l̃c2pβ, σq “ ´ψ
n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik ω

pmq
ik

pYi ´X
ᵀ
i βkq

2

2ν2σ2
k

` ψ
n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik

κ

ν2σk

´

Yi ´X
ᵀ
i βk

¯

“
ψ

2

”

´

n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik ω̆

pmq
ik

pYi ´X
ᵀ
i βkq

2

2σ2
k

`

n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik

1´ 2τ

σk

´

Yi ´X
ᵀ
i βk

¯ı

, (5.17)

where the second equality in Eqn. (5.17) holds due to the fact that ν2, κ and ωik all

contains the same term τp1´ τq, and define ω̆
pmq
ik “

2ωik
ν2
“ σpmq|Yi ´X

ᵀ
i β
pmq
k |´1.

M-Step

At the M-step, π
pm`1q
k “ 1

n

řn
i“1 δ

pmq
ik . And update β

pm`1q
k and σ

pm`1q
k via maximizing

the following equations

´

n
ÿ

i“1

δ
pmq
ik ω̆

pmq
ik

pYi ´X
ᵀ
i βkq

2

2σ2
k

`

n
ÿ

i“1

δ
pmq
ik

1´ 2τ

σk

´

Yi ´X
ᵀ
i βk

¯

. (5.18)
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With σk fixed at σ
pmq
k in Eqn. (5.18), and on differentiation with respect to βk, it

holds that
n
ÿ

i“1

δ
pmq
ik ω̃ikXipYi ´X

ᵀ
i βkq ´

n
ÿ

i“1

δ
pmq
ik p1´ 2τqXi “ 0,

where ω̃
pmq
ik “ |Yi ´X

ᵀ
i β
pmq
k |´1, and the updating formulae for βk is

β
pm`1q
k “

´

n
ÿ

i“1

δ
pmq
ik ω̃

pmq
ik XiX

ᵀ
i

¯´1! n
ÿ

i“1

δ
pmq
ik

´

ω̃
pmq
ik Yi ´ p1´ 2τq

¯

Xi

)

, k “ 1, ¨ ¨ ¨ , K.

(5.19)

Denote Y “ pY1, ¨ ¨ ¨ , Ynq
ᵀ, X “ pX1, ¨ ¨ ¨ , Xnq

ᵀ, W
pmq
k “ diagtδ

pmq
1k ω̃

pmq
1k , ¨ ¨ ¨ , δ

pmq
nk ω̃

pmq
nk u,

and ∆
pmq
k “ pδ

pmq
1k , ¨ ¨ ¨ , δ

pmq
nk q

ᵀ, then the updating formulae for βk in Eqn.(5.19) can

be rewritten as

β
pm`1q
k “

´

XᵀW
pmq
k X

¯´1

Xᵀ
´

W
pmq
k Y´ p1´ 2τq∆

pmq
k

¯

. (5.20)

The estimation of βpm`1q can be viewed as reweighted least squared procedure, as

shown in Schlossmacher [98] for one group situation.

After obtaining the updated estimates β
pm`1q
k , k “ 1, ¨ ¨ ¨ , K, we can update

σ
pm`1q
k as follows. For the second term in Eqn. (5.6), take expectation with respect

to Gik based on O and the current estimate, it follows that

l̃c2pβ, σq “
n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik log

”ψτp1´ τq

σk
exp

!

´ ρτ

´ψpYi ´X
ᵀ
i βkq

σk

¯)ı

. (5.21)

With βk fixed at βpm`1q in Eqn. (5.21), and on differentiation l̃c2pβ
pm`1q, σq with

respect to σk, it follows that

σ
pm`1q
k “

ψ
řn
i“1 δ

pmq
ik ρτ

´

Yi ´X
ᵀ
i β
pm`1q
k

¯

řn
i“1 δ

pmq
ik

, k “ 1, ¨ ¨ ¨ , K. (5.22)
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If we further assume that all σk’s are equal, i.e., σ, then a common updated value

for σ should be used in Eqn. (5.22) as follows

σpm`1q
“

ψ
řn
i“1

řK
k“1 δ

pmq
ik ρτ

´

Yi ´X
ᵀ
i β
pm`1q
k

¯

n
. (5.23)

These updated estimate θpm`1q can be substituted into Eqns. (5.14) and (5.15) for

the implementation of the next E-step, until convergence is obtained.

Remark 3. We can explain the updated estimates for βpm`1q in Eqn. (5.19) and

σ
pm`1q
k in Eqn. (5.22) from another viewpoint as follows. Given Gik “ 1, model (1.3)

can be rewritten as

Yi “ Xᵀ
i βk ` κzik ` νσ

1{2
k ψ´1{2uik, (5.24)

where ziks be the latent variable with independently and identically distributed

Exppψ{σkq, and uiks are independently distributed as Np0, zikq given ziks. Thus,

Given Gik “ 1, the ith complete log-likelihood function is

lcikpβk, σk;Oi, zik, Gik “ 1q

“ log
”

p2πν2σkψ
´1zikq

´1{2 exp
!

´
pYi ´X

ᵀ
i βk ´ κzikq

2

2ν2σkψ´1zik

) ψ

σk
exp

´

´
ψzik
σk

¯ı

,

thus after omitting terms that are not dependent on θ, the complete log-likelihood

function of θ, based on D “ tO, G, z̃u with z̃ “ pzik, i “ 1, ¨ ¨ ¨ , n, k “ 1, ¨ ¨ ¨ , Kq has

the form as

lcpθ;Dq “

n
ÿ

i“1

K
ÿ

k“1

Gik log πk `
n
ÿ

i“1

K
ÿ

k“1

Giklcikpβk, σk;Oi, zik, Gik “ 1q

“

n
ÿ

i“1

K
ÿ

k“1

Gik log πk ´
3

2

n
ÿ

i“1

K
ÿ

k“1

Gik log σk ´ ψ
n
ÿ

i“1

K
ÿ

k“1

Gik
pYi ´X

ᵀ
i βkq

2

2ν2σk
z´1
ik

`ψ
n
ÿ

i“1

K
ÿ

k“1

Gik
κ

ν2σk
pYi ´X

ᵀ
i βkq ´ ψ

n
ÿ

i“1

K
ÿ

k“1

Gik
κ2

2ν2σk
zik ´

n
ÿ

i“1

K
ÿ

k“1

Gik
ψzik
σk

:“ lc1pπ;Gq ` lc2pβ, σ;Dq ` lc3pσ;G, z̃q, (5.25)
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where

lc1pπ;Gq “
n
ÿ

i“1

K
ÿ

k“1

Gik log πk, (5.26)

lc2pβ, b, σ;Dq “ ψ
”

´

n
ÿ

i“1

K
ÿ

k“1

Gik
pYi ´X

ᵀ
i βkq

2

2ν2σk
z´1
ik `

n
ÿ

i“1

K
ÿ

k“1

Gik
κ

ν2σk
pYi ´X

ᵀ
i βkq

ı

,

(5.27)

lc3pσ;G, zq “ ´
3

2

n
ÿ

i“1

K
ÿ

k“1

Gik log σk ´ ψ
n
ÿ

i“1

K
ÿ

k“1

Gik
κ2

2ν2σk
zik ´

n
ÿ

i“1

K
ÿ

k“1

Gik
ψzik
σk

.(5.28)

Based on the EM algorithm principle, in the E-step, we have to calculate the con-

ditional expectation Eplcpθ;Dq|O, θpmqq. Since the third term lc3pσ;G, z̃q in Eqn.

(5.25) do not involve the unknown regression parameters βk, k “ 1, ¨ ¨ ¨ , K, we can

simply drop them from the following analysis. Thus, to find Eplcpθ;Dq|O, θpmqq, we

only have to calculate the following two terms

δ
pmq
ik “ E

´

Gik|O; θpmq
¯

“
π
pmq
k fpYi ´X

ᵀ
i β
pmq
k ; 0, σ

pmq
k {ψ, τq

řK
k“1 π

pmq
k fpYi ´X

ᵀ
i β
pmq
k ; 0, σ

pmq
k {ψ, τq

, (5.29)

ω̆
pmq
ik “ E

´

z´1
ik |O, Gik “ 1; θpmq

¯

“
1

τp1´ τq|Yi ´X
ᵀ
i β
pmq
k |

, (5.30)

where fpYi ´ Xᵀ
i β
pmq
k ; 0, σ

pmq
k {ψ, τq is the pdf of the distribution ALD p0, σ

pmq
k {ψ, τq

evaluated at Yi ´ Xᵀ
i β
pmq
k as in Eqn. (5.1). Note that the conditional expectation

ω̆
pmq
ik can be obtained similar to the calculation of ωik in Eqn. (5.15). With these

124



expectations in Eqn.(5.29) and (5.30), it follows that

ľc1pπq “
n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik log πk, (5.31)

ľc2pβ, σq “ ψ
”

´

n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik ω̆

pmq
ik

pYi ´X
ᵀ
i βkq

2

2ν2σk
`

n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik

κ

ν2

´

Yi ´X
ᵀ
i βk

¯ı

“
ψ

2

”

´

n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik ω̃

pmq
ik

pYi ´X
ᵀ
i βkq

2

2σk
`

n
ÿ

i“1

K
ÿ

k“1

δ
pmq
ik p1´ 2τq

´

Yi ´X
ᵀ
i βk

¯ı

.(5.32)

At the M-step, π
pm`1q
k “ 1

n

řn
i“1 δ

pmq
ik . By solving

Bľc2pβ, σq

Bβk
“

ψ

2σk

n
ÿ

i“1

δ
pmq
ik Xi

!

ω̃
pmq
ik

´

Yi ´X
ᵀ
i βk

¯

´ p1´ 2τq
)

“ 0, k “ 1, ¨ ¨ ¨ , K,

we obtain the following updating formulae for βk, k “ 1, ¨ ¨ ¨ , K as

β
pm`1q
k “

´

n
ÿ

i“1

δ
pmq
ik ω̃

pmq
ik XiX

ᵀ
i

¯´1! n
ÿ

i“1

δ
pmq
ik

´

ω̃
pmq
ik Yi ´ p1´ 2τq

¯

Xi

)

, (5.33)

which coincides with Eqn. (5.19) with σ fixed at σ
pmq
k in Eqn. (5.18). From Eqn.

(5.33), we can see that the updating formulae of βk is independent of the updating

value of σk, thus, after the updating value of βk is obtained, the updating value of

σk can then be got by maximizing Eqn. (5.21) with βk fixed at β
pmq
k , which produces

σ
pm`1q
k “

ψ
řn
i“1 δ

pmq
ik ρτ

´

Yi ´X
ᵀ
i β
pm`1q
k

¯

řn
i“1 δ

pmq
ik

, k “ 1, ¨ ¨ ¨ , K, (5.34)

which coincides with Eqn. (5.22).

If we further assume that all σk’s are equal, i.e., σ, then in the above EM algo-

rithm, a common value for σ should be used, and it can be updated in the M-step

via

σpm`1q
“

ψ
řn
i“1

řK
k“1 δ

pmq
ik ρτ

´

Yi ´X
ᵀ
i β
pm`1q
k

¯

n
, (5.35)
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the robustness of the above EM procedure follows from the adoption of composite QR

regression. It is also obvious from the formulas of the updated βk in each iteration.

Note that the factor ω̃
pmq
ik is reciprocally related to the term |Yi ´X

ᵀ
i β
pmq
k |, implying

that the larger residuals gives smaller values of ω̃
pmq
ik , and hence impose less weight of

the corresponding observations on the updating estimates. Moreover, the above EM

algorithm for updating βk is an iterated re-weighted least square (IRLS) procedure,

as the one proposed in [98].

Extra attention should be paid when programming the above EM algorithm. On

one hand, the regression quantile satisfies that |Yi ´ Xᵀ
i β
pmq
k | is equal to zero for a

subset of observations [62, 63] if a perfect QR fits occurs, as a result, ω̃
pmq
ik will be

very large, and numerical instability would occur. To overcome this problem, Similar

to [92], one can apply the following modified weighting strategy: one can choose a

small ε ą 0, and if |Yi´X
ᵀ
i β
pmq
k | ě ε for all observations, set ω̃

pmq
ik “ |Yi´X

ᵀ
i β
pmq
k |´1;

otherwise, set ω̃
pmq
ik “ 1 for |Yi ´ Xᵀ

i β
pmq
k | ă ε, and ω̃

pmq
ik “ ε

|Yi´X
ᵀ
i β
pmq
k |

for all other

cases. These adjusted weights are still consistent with the original ones in the sense

that those cases with more smaller residuals should be weighted more heavily. Here,

another adjusted weighting strategy is applied, similar as [133], and simplifies the

above adjusted weights. For the pre-assigned ε ą 0, a rather small but not too small

positive value, set ω̃
pmq
ik “ t|Yi´X

ᵀ
i β
pmq
k |`εu´1, and we set ε “ 10´6 in our simulation.

On another hand, numerical instability could also occur if the weights δ
pmq
ik are

very small. A common way to deal with this issue is to impose a hard threshold on

δ
pmq
ik in Eqn. (5.14). That is, For the pre-assigned ε̃ ą 0, a rather small but not too

small positive value, set δ̃
pmq
ik “ ε̃ if δ

pmq
ik ă ε, and δ̃

pmq
ik “ δ

pmq
ik , otherwise. And replace

δ
pmq
ik in Eqn. (5.14) with δ̃

pmq
ik for the iteration, which is similar as [121] and [102]. In

our simulations, ε̃ “ 10´6 is adopted.

In the end, we simply show the calculation for ω
pmq
ik in Eqn. (5.15). In fact, it is
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easy to calculate from (5.13) that the conditional distribution of zi is proportional

to

z
´1{2
i exp

”

´
1

2

!

ς2
ikz

´1
i ` γ2zi

)ı

, (5.36)

where ς2
ik “ ψpYi ´Xᵀ

i βkq
2{pν2σ2

kq and γ2 “ ψp2 ` κ2{ν2q. Note that Eqn. (5.36) is

the kernel of a generalized inverse Gaussian (GIG) distribution, thus

”

zi|Oi, Gik “ 1, βk, σk

ı

„ GIG
´1

2
, ςik, γ

¯

.

For the general GIGpu; υ, ς, γq with u ą 0,´8 ă υ ă 8, ς ą 0, and γ ą 0, [59]

showed that the moments around the original of the GIG pu; υ, ς, γq distribution are

given by

E
´

zr
¯

“

´ ς

γ

¯rKυ`rpςγq

Kυpςγq
,

where Kυp¨q is a modified Bassel function of the third kind (See detail in [59, 72]).

For υ “ 1{2 in our setting, it holds that

Epz´1
q “

´ ς

γ

¯´1K´1{2pςγq

K1{2pςγq
“
γ

ς
, (5.37)

where the last equality holds due to property of Kυp¨q, i.e., Kυp¨q “ K´υp¨q (see [1]).

Substitute κ “ 1´2τ
τp1´τq

, ν2 “ 2
τp1´τq

, ςik “ ψ1{2|Yi ´ Xᵀ
i βk|{pνσkq and γ “ ψ1{2p2 `

κ2{ν2q1{2 into Eqn. (5.37), it follows that

E
´

z´1
i |O, Gik “ 1; θpmq

¯

“
σ
pmq
k

τp1´ τq|Yi ´X
ᵀ
i β
pmq
k |

,

as shown in Eqn. (5.15). In the same way, we can calculate the expectation ω̆
pmq
ik in

Eqn. (5.30). Readjust the iteration formula, we have the EM algorithm as follows:
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Algorithm 4 EM Algorithm for Mixture Laplace Distribution

1. Choose an initial value for θp0q “ pπp0qᵀ, βp0qᵀ, σp0qqᵀ;

2. E-Step: at the pm` 1q-th iteration, calculate δ
pmq
ik from Eqs. (5.14), and

δ̃
pmq
ik “ maxtδ

pmq
ik , 10´6

u;

ω̃
pmq
ik “ t|Yi ´X

ᵀ
i β
pmq
k | ` 10´6

u
´1.

3. M-Step: at the pm` 1q-th iteration, using the following formulas to calculate
the updated estimates of θ. For k “ 1, ¨ ¨ ¨ , K,

π
pm`1q
k “

1

n

n
ÿ

i“1

δ̃
pmq
ik ,

β
pm`1q
k “

´

n
ÿ

i“1

δ̃
pmq
ik ω̃

pmq
ik XiX

ᵀ
i

¯´1! n
ÿ

i“1

δ̃
pmq
ik

´

ω̃
pmq
ik Yi ´ p1´ 2τq

¯

Xi

)

,

“

´

XᵀW
pmq
k X

¯´1

Xᵀ
´

W
pmq
k Y´ p1´ 2τq∆k

¯

,

where W
pmq
k “ diagtδ̃

pmq
1k ω̃

pmq
1k , ¨ ¨ ¨ , δ̃

pmq
nk ω̃

pmq
nk u,∆

pmq
k “ pδ̃

pmq
1k , ¨ ¨ ¨ , δ̃

pmq
nk q

ᵀ, and

$

’

’

’

&

’

’

’

%

σ
pm`1q
k “

ψ
řn
i“1 δ̃

pmq
ik ρτ

´

Yi´X
ᵀ
i β
pm`1q
k

¯

řn
i“1 δ̃

pmq
ik

., if σk are unequal;

σpm`1q “
ψ
řn
i“1

řK
k“1 δ̃

pmq
ik ρτ

´

Yi´X
ᵀ
i β
pm`1q
k

¯

n
, if σk are equal.

4. Repeat E-Step and M-Step until convergence is obtained.

5.1.2 Numerical experiments

In this simulation study, we carry out several numerical experiments to assess the

estimation performance of the proposed approaches described above. Simulated data

sample pXi, yiq
n
i“1 are generated from the following two-component mixture regression

models with mixing proportion π1 “ π2 “ 0.5,

Y “

"

0` 2X1 ` 2X2 ` ε1pτq, if G “ 1;
0´ 2X1 ´ 2X2 ` ε2pτq, if G “ 2.
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Here, G is the group indicator, the true values for the regression coefficients of two

components β1 “ p0, 2, 2q
1 and β2 “ p0,´2,´2q1. The predictors X “ p1, X1, X2q

ᵀ

with X1 and X2 being simulated independently from uniform distribution Up0, 1q,

the noised level s “ 0.2, 0.4 corresponds to SNR ratio as SNR=4:1 and SNR=2:1.

We set the sample size n “ 200 and 400, and for each sample size, we generate 500

data sets. Once the simulated data were generated, we fit the proposed model with

τ “ 0.1, 0.25, 0.5, 0.75, 0.9 for the QR methods. Here, we consider equal variance

for these two components, and the random error ε1pτq and ε2pτq are independent

and have the same distribution as εpτq, where εpτq “ ε ´ F´1pτq with F being the

common CDF of ε, thus F´1pτq is subtracted from ε to make the τ -th quantile of

εpτq zero for identifiability purpose. Generally, the τ -th quantile for each case is

fasten to zero. We consider five cases for generating ε:

Case 1 (Normal distribution). The error term ε „ N p0, 1q;

Case 2 (Chisquare distribution with 2 degrees of freedom). The error term is

chi-square distribution with two degrees of freedom;

Case 3 (T-distribution with 3 degrees of freedom). The error distribution is

student t-distribution with three degrees of freedom;

Case 4 (Heteroscedastic Normal distribution). The error term ε „ p1`XqNp0, 1q,

X „ Up0, 1q.

Case 5 (Asymmetric Laplace distribution). The error term ε „ ALD p0, 1{φ, τq.

We display the Bias (MSE) of each estimated parameters together with the total

Bias (MSE) in Table 5.1-5.4.

We tuned the error term with τ -quantile quantity to guarantee zero location

condition. EM algorithm based on mixture of Asymmetric Laplace Distribution is
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considered. In all the simulation studies, the iteration terminated when change in

log likelihood is less than 1e´6, and the maximal iteration step is 10000. Of all the

error cases, our proposed method performs well.

Simulation results are presented in Table 5.1-5.2. For estimation consistency,

Table 5.1, 5.3 and Table 5.2, 5.4 show that the estimation error of n “ 400 is

overall smaller than n “ 200 case; In terms of SNR, it is obvious that Table 5.2 ,5.4

perform worse than Table 5.1 ,5.3, respectively. Simulation results trade off between

estimation efficiency and accuracy, and that our proposed method perform well for

skewed error cases with SNR ratio less or equal to 2:1.
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TRUE τ “ 0.1 τ “ 0.25 τ “ 0.5 τ “ 0.75 τ “ 0.9
Case I: ε „ Np0, 1q ´Npτ, 0, 1q
β10:0 0.0873(0.1067) 0.0695(0.0942) 0.0909(0.0291) 0.0291(0.6073) 0.0329(0.0407)
β11:2 0.0369(0.0450) 0.0404(0.0320) 0.0320(0.2974) 0.1521(0.1536) 0.1299(0.1751)
β12:2 0.1901(0.0357) 0.0357(1.0444) 0.1172(0.1199) 0.0981(0.1347) 0.1405(0.0306)
β20:0 0.0306(0.8111) 0.0205(0.0172) 0.0198(0.0150) 0.0129(0.0308) 0.0308(0.1629)
β21:-2 0.0117(0.0174) 0.0075(0.0145) 0.0128(0.0013) 0.0013(0.0823) 0.0016(0.0026)
β22:-2 0.0026(0.0034) 0.0028(0.0016) 0.0016(0.0184) 0.0314(0.0361) 0.0257(0.0541)

pr 0.0523(0.0019) 0.0019(0.2512) 0.0198(0.0218) 0.0185(0.0287) 0.0323(0.0015)
Case II: ε „ χp2q ´ χpτ, 2q
β10:0 0.0643(0.0744) 0.0609(0.0677) 0.0828(0.0282) 0.0282(0.4808) 0.0583(0.0704)
β11:2 0.0513(0.0595) 0.0713(0.0307) 0.0307(0.4405) 0.0698(0.0931) 0.0694(0.0955)
β12:2 0.0915(0.0243) 0.0243(0.5661) 0.0987(0.1203) 0.0885(0.1135) 0.1115(0.0268)
β20:0 0.0268(0.7025) 0.0152(0.0151) 0.0164(0.0145) 0.0161(0.0295) 0.0295(0.1514)
β21:-2 0.0066(0.0088) 0.0060(0.0078) 0.0103(0.0012) 0.0012(0.0508) 0.0055(0.0085)
β22:-2 0.0042(0.0056) 0.0075(0.0014) 0.0014(0.0414) 0.0077(0.0132) 0.0088(0.0148)

pr 0.0146(0.0010) 0.0010(0.0762) 0.0147(0.0210) 0.0115(0.0193) 0.0199(0.0011)
Case III: ε „ tp3q ´ tpτ, 3q
β10:0 0.0559(0.0681) 0.0566(0.0730) 0.0701(0.0245) 0.0245(0.4411) 0.0771(0.0975)
β11:2 0.0885(0.1164) 0.1070(0.0317) 0.0317(0.6614) 0.0614(0.0707) 0.0708(0.0756)
β12:2 0.0848(0.0279) 0.0279(0.5027) 0.0825(0.1113) 0.0925(0.0984) 0.1145(0.0298)
β20:0 0.0298(0.6596) 0.0207(0.0232) 0.0172(0.0248) 0.0205(0.0316) 0.0316(0.1943)
β21:-2 0.0052(0.0077) 0.0047(0.0082) 0.0070(0.0009) 0.0009(0.0419) 0.0093(0.0151)
β22:-2 0.0119(0.0210) 0.0184(0.0015) 0.0015(0.0980) 0.0056(0.0081) 0.0082(0.0096)

pr 0.0124(0.0012) 0.0012(0.0574) 0.0106(0.0199) 0.0133(0.0154) 0.0208(0.0013)
Case IV: ε „ p1`XqpNp0, 1q ´Npτ, 0, 1qq, X „ Up0, 1q
β10:0 0.0522(0.0680) 0.0544(0.0776) 0.0819(0.0260) 0.0260(0.4626) 0.1569(0.1789)
β11:2 0.1973(0.2150) 0.2215(0.0472) 0.0472(1.2521) 0.0833(0.1010) 0.0831(0.1072)
β12:2 0.1013(0.0289) 0.0289(0.6366) 0.0924(0.1273) 0.0895(0.1086) 0.1162(0.0296)
β20:0 0.0296(0.7085) 0.0175(0.0184) 0.0152(0.0155) 0.0141(0.0255) 0.0255(0.1490)
β21:-2 0.0044(0.0077) 0.0046(0.0101) 0.0102(0.0011) 0.0011(0.0479) 0.0378(0.0562)
β22:-2 0.0535(0.0705) 0.0660(0.0034) 0.0034(0.3446) 0.0106(0.0164) 0.0114(0.0183)

pr 0.0170(0.0013) 0.0013(0.0935) 0.0135(0.0246) 0.0152(0.0197) 0.0227(0.0013)
Case V: ε „ ALDp0, 1{φ, τq
β10:0 0.0726(0.1054) 0.0892(0.1049) 0.1092(0.0281) 0.0281(0.6385) 0.2855(0.3602)
β11:2 0.3200(0.3193) 0.3400(0.0599) 0.0599(2.0531) 0.1314(0.1495) 0.1459(0.1412)
β12:2 0.1545(0.0401) 0.0401(0.9797) 0.1218(0.1395) 0.1318(0.1355) 0.1524(0.0326)
β20:0 0.0326(0.8871) 0.0194(0.0166) 0.0197(0.0153) 0.0165(0.0301) 0.0301(0.1625)
β21:-2 0.0079(0.0169) 0.0118(0.0157) 0.0177(0.0012) 0.0012(0.0892) 0.1211(0.2030)
β22:-2 0.1746(0.1724) 0.2141(0.0046) 0.0046(1.0470) 0.0278(0.0358) 0.0337(0.0388)

pr 0.0377(0.0023) 0.0023(0.2312) 0.0260(0.0333) 0.0277(0.0305) 0.0384(0.0017)

Table 5.1: Simulation results of n “ 200, s “ 0.2, SNR=4:1
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TRUE τ “ 0.1 τ “ 0.25 τ “ 0.5 τ “ 0.75 τ “ 0.9
Case I: ε „ Np0, 1q ´Npτ, 0, 1q
β10:0 0.1930(0.2269) 0.1443(0.1951) 0.1812(0.0356) 0.0356(1.2149) 0.0717(0.0845)
β11:2 0.0564(0.0786) 0.0613(0.0320) 0.0320(0.4872) 0.2769(0.2970) 0.2600(0.2807)
β12:2 0.3248(0.0673) 0.0673(1.8450) 0.3093(0.3085) 0.2000(0.2426) 0.2680(0.0493)
β20:0 0.0493(1.7768) 0.0395(0.0360) 0.0431(0.0297) 0.0361(0.0284) 0.0284(0.2758)
β21:-2 0.0587(0.0815) 0.0332(0.0605) 0.0528(0.0019) 0.0019(0.3551) 0.0078(0.0115)
β22:-2 0.0055(0.0107) 0.0069(0.0016) 0.0016(0.0548) 0.1136(0.1289) 0.0976(0.1382)

pr 0.1584(0.0062) 0.0062(0.7794) 0.1486(0.1530) 0.0707(0.0977) 0.1147(0.0036)
Case II: ε „ χp2q ´ χpτ, 2q
β10:0 0.1361(0.1586) 0.1256(0.1409) 0.1561(0.0295) 0.0295(0.9436) 0.1234(0.1563)
β11:2 0.0966(0.1227) 0.1242(0.0322) 0.0322(0.8268) 0.1957(0.2181) 0.1680(0.2062)
β12:2 0.2079(0.0473) 0.0473(1.2785) 0.2270(0.2190) 0.1610(0.2219) 0.1815(0.0390)
β20:0 0.0390(1.3543) 0.0307(0.0359) 0.0297(0.0379) 0.0315(0.0289) 0.0289(0.2579)
β21:-2 0.0303(0.0396) 0.0252(0.0322) 0.0382(0.0014) 0.0014(0.2073) 0.0220(0.0402)
β22:-2 0.0146(0.0242) 0.0258(0.0016) 0.0016(0.1600) 0.0557(0.0750) 0.0461(0.0690)

pr 0.0650(0.0036) 0.0036(0.3774) 0.0730(0.0720) 0.0449(0.0740) 0.0641(0.0025)
Case III: ε „ tp3q ´ tpτ, 3q
β10:0 0.1455(0.1664) 0.1290(0.1508) 0.1516(0.0300) 0.0300(0.9806) 0.1706(0.2156)
β11:2 0.2193(0.2064) 0.2617(0.0516) 0.0516(1.3796) 0.1176(0.1631) 0.1359(0.1574)
β12:2 0.1708(0.0282) 0.0282(0.9525) 0.1776(0.2022) 0.1518(0.2101) 0.1977(0.0298)
β20:0 0.0298(1.1853) 0.0386(0.0489) 0.0389(0.0530) 0.0608(0.0267) 0.0267(0.3428)
β21:-2 0.0330(0.0470) 0.0254(0.0353) 0.0341(0.0015) 0.0015(0.2273) 0.0427(0.0690)
β22:-2 0.0714(0.0653) 0.1071(0.0039) 0.0039(0.4340) 0.0220(0.0454) 0.0309(0.0402)

pr 0.0463(0.0013) 0.0013(0.2230) 0.0506(0.0644) 0.0376(0.0685) 0.0578(0.0014)
Case IV: ε „ p1`XqpNp0, 1q ´Npτ, 0, 1qq, X „ Up0, 1q
β10:0 0.1101(0.1382) 0.1239(0.1610) 0.1592(0.0314) 0.0314(0.8857) 0.2770(0.4008)
β11:2 0.5102(0.3540) 0.4008(0.1205) 0.1205(2.5294) 0.1605(0.2055) 0.1873(0.1865)
β12:2 0.2088(0.0415) 0.0415(1.2149) 0.2096(0.2584) 0.2279(0.2538) 0.2615(0.0356)
β20:0 0.0356(1.5122) 0.0327(0.0334) 0.0313(0.0346) 0.0336(0.0317) 0.0317(0.2620)
β21:-2 0.0184(0.0316) 0.0264(0.0415) 0.0441(0.0015) 0.0015(0.1936) 0.1232(0.2481)
β22:-2 0.3480(0.1925) 0.2962(0.0162) 0.0162(1.4464) 0.0333(0.0614) 0.0511(0.0651)

pr 0.0654(0.0026) 0.0026(0.3290) 0.0690(0.1006) 0.0780(0.0980) 0.1119(0.0021)
Case V: ε „ ALDp0, 1{φ, τq
β10:0 0.1428(0.2196) 0.1770(0.1921) 0.2107(0.0341) 0.0341(1.1728) 0.5189(0.6733)
β11:2 0.6361(0.7884) 0.9530(0.1281) 0.1281(4.3967) 0.2525(0.3038) 0.2854(0.2830)
β12:2 0.3197(0.0641) 0.0641(1.8996) 0.2166(0.2697) 0.2782(0.2921) 0.3246(0.0510)
β20:0 0.0510(1.7365) 0.0406(0.0303) 0.0381(0.0296) 0.0286(0.0297) 0.0297(0.2610)
β21:-2 0.0306(0.0694) 0.0465(0.0547) 0.0725(0.0018) 0.0018(0.3210) 0.4093(0.6971)
β22:-2 0.5444(1.3672) 2.2585(0.0195) 0.0195(5.8243) 0.0996(0.1473) 0.1218(0.1294)

pr 0.1617(0.0054) 0.0054(0.8356) 0.0728(0.1185) 0.1146(0.1304) 0.1607(0.0038)

Table 5.2: Simulation results of n “ 200, s “ 0.4, SNR=2:1
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TRUE τ “ 0.1 τ “ 0.25 τ “ 0.5 τ “ 0.75 τ “ 0.9
Case I: ε „ Np0, 1q ´Npτ, 0, 1q
β10:0 0.0643(0.0718) 0.0485(0.0621) 0.0660(0.0213) 0.0213(0.4274) 0.0239(0.0231)
β11:2 0.0184(0.0273) 0.0267(0.0243) 0.0243(0.1965) 0.1300(0.1209) 0.0777(0.1076)
β12:2 0.1023(0.0336) 0.0336(0.7014) 0.1001(0.1119) 0.0684(0.0990) 0.0942(0.0257)
β20:0 0.0257(0.6331) 0.0169(0.0100) 0.0182(0.0108) 0.0115(0.0210) 0.0210(0.1214)
β21:-2 0.0067(0.0084) 0.0037(0.0066) 0.0064(0.0007) 0.0007(0.0416) 0.0008(0.0009)
β22:-2 0.0006(0.0011) 0.0011(0.0009) 0.0009(0.0076) 0.0234(0.0218) 0.0096(0.0199)

pr 0.0178(0.0016) 0.0016(0.1123) 0.0152(0.0193) 0.0070(0.0145) 0.0135(0.0009)
Case II: ε „ χp2q ´ χpτ, 2q
β10:0 0.0423(0.0520) 0.0438(0.0554) 0.0588(0.0218) 0.0218(0.3449) 0.0363(0.0435)
β11:2 0.0384(0.0469) 0.0421(0.0195) 0.0195(0.2927) 0.0584(0.0633) 0.0592(0.0736)
β12:2 0.0725(0.0231) 0.0231(0.4392) 0.0638(0.0803) 0.0583(0.0700) 0.0852(0.0174)
β20:0 0.0174(0.4724) 0.0126(0.0105) 0.0132(0.0132) 0.0134(0.0226) 0.0226(0.1187)
β21:-2 0.0030(0.0044) 0.0028(0.0050) 0.0053(0.0007) 0.0007(0.0259) 0.0020(0.0029)
β22:-2 0.0024(0.0035) 0.0030(0.0006) 0.0006(0.0184) 0.0053(0.0075) 0.0056(0.0079)

pr 0.0078(0.0009) 0.0009(0.0429) 0.0066(0.0100) 0.0056(0.0084) 0.0110(0.0005)
Case III: ε „ tp3q ´ tpτ, 3q
β10:0 0.0410(0.0529) 0.0407(0.0482) 0.0544(0.0207) 0.0207(0.3302) 0.0699(0.0817)
β11:2 0.0657(0.0868) 0.0737(0.0229) 0.0229(0.5029) 0.0434(0.0552) 0.0464(0.0568)
β12:2 0.0599(0.0203) 0.0203(0.3554) 0.0584(0.0662) 0.0570(0.0748) 0.0762(0.0190)
β20:0 0.0190(0.4514) 0.0126(0.0151) 0.0098(0.0153) 0.0124(0.0196) 0.0196(0.1213)
β21:-2 0.0026(0.0044) 0.0028(0.0042) 0.0047(0.0007) 0.0007(0.0240) 0.0069(0.0097)
β22:-2 0.0064(0.0117) 0.0094(0.0008) 0.0008(0.0563) 0.0029(0.0047) 0.0032(0.0048)

pr 0.0054(0.0006) 0.0006(0.0266) 0.0060(0.0071) 0.0050(0.0085) 0.0082(0.0005)
Case IV: ε „ p1`XqpNp0, 1q ´Npτ, 0, 1qq, X „ Up0, 1q
β10:0 0.0452(0.0613) 0.0424(0.0567) 0.0590(0.0176) 0.0176(0.3543) 0.1123(0.1392)
β11:2 0.1774(0.1617) 0.1432(0.0431) 0.0431(0.9505) 0.0506(0.0691) 0.0519(0.0617)
β12:2 0.0611(0.0199) 0.0199(0.3945) 0.0623(0.0846) 0.0667(0.0876) 0.0672(0.0229)
β20:0 0.0229(0.4918) 0.0130(0.0117) 0.0114(0.0114) 0.0116(0.0207) 0.0207(0.1111)
β21:-2 0.0030(0.0055) 0.0029(0.0051) 0.0053(0.0005) 0.0005(0.0273) 0.0181(0.0311)
β22:-2 0.0434(0.0389) 0.0341(0.0024) 0.0024(0.1965) 0.0039(0.0074) 0.0041(0.0059)

pr 0.0061(0.0006) 0.0006(0.0344) 0.0065(0.0110) 0.0067(0.0121) 0.0077(0.0008)
Case V: ε „ ALDp0, 1{φ, τq
β10:0 0.0572(0.0786) 0.0557(0.0758) 0.0617(0.0207) 0.0207(0.4343) 0.1726(0.2244)
β11:2 0.3488(0.1987) 0.2221(0.0810) 0.0810(1.5519) 0.0854(0.1040) 0.1274(0.1148)
β12:2 0.1207(0.0342) 0.0342(0.7247) 0.0831(0.1170) 0.0915(0.0921) 0.1005(0.0240)
β20:0 0.0240(0.6255) 0.0198(0.0113) 0.0184(0.0106) 0.0108(0.0204) 0.0204(0.1221)
β21:-2 0.0050(0.0098) 0.0051(0.0089) 0.0056(0.0006) 0.0006(0.0421) 0.0485(0.0873)
β22:-2 0.1589(0.0630) 0.0779(0.0076) 0.0076(0.5321) 0.0109(0.0175) 0.0228(0.0205)

pr 0.0226(0.0016) 0.0016(0.1158) 0.0102(0.0199) 0.0123(0.0138) 0.0155(0.0008)

Table 5.3: Simulation results of n “ 400, s “ 0.2, SNR=4:1
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TRUE τ “ 0.1 τ “ 0.25 τ “ 0.5 τ “ 0.75 τ “ 0.9
Case I: ε „ Np0, 1q ´Npτ, 0, 1q
β10:0 0.1450(0.1498) 0.1140(0.1544) 0.1247(0.0299) 0.0299(0.8916) 0.0442(0.0499)
β11:2 0.0411(0.0537) 0.0548(0.0214) 0.0214(0.3406) 0.2564(0.2018) 0.1933(0.2392)
β12:2 0.2147(0.0805) 0.0805(1.4656) 0.2356(0.2511) 0.1750(0.2280) 0.1895(0.0568)
β20:0 0.0568(1.4148) 0.0399(0.0244) 0.0411(0.0234) 0.0228(0.0176) 0.0176(0.2084)
β21:-2 0.0334(0.0337) 0.0209(0.0379) 0.0264(0.0013) 0.0013(0.1901) 0.0030(0.0040)
β22:-2 0.0024(0.0042) 0.0045(0.0007) 0.0007(0.0246) 0.0923(0.0616) 0.0648(0.0915)

pr 0.0812(0.0073) 0.0073(0.4755) 0.0894(0.0958) 0.0460(0.0813) 0.0597(0.0041)
Case II: ε „ χp2q ´ χpτ, 2q
β10:0 0.1068(0.1211) 0.0726(0.1067) 0.1071(0.0226) 0.0226(0.6852) 0.0853(0.0974)
β11:2 0.0759(0.0969) 0.0911(0.0268) 0.0268(0.5914) 0.1571(0.1441) 0.1142(0.1397)
β12:2 0.1428(0.0393) 0.0393(0.9278) 0.1452(0.1709) 0.1263(0.1573) 0.1757(0.0320)
β20:0 0.0320(1.0031) 0.0258(0.0210) 0.0243(0.0231) 0.0221(0.0206) 0.0206(0.1814)
β21:-2 0.0166(0.0237) 0.0093(0.0179) 0.0189(0.0008) 0.0008(0.1126) 0.0108(0.0151)
β22:-2 0.0088(0.0144) 0.0135(0.0010) 0.0010(0.0781) 0.0338(0.0326) 0.0221(0.0310)

pr 0.0317(0.0022) 0.0022(0.1911) 0.0340(0.0469) 0.0264(0.0370) 0.0507(0.0016)
Case III: ε „ tp3q ´ tpτ, 3q
β10:0 0.0914(0.1025) 0.0843(0.1010) 0.1118(0.0193) 0.0193(0.6301) 0.1338(0.1682)
β11:2 0.1627(0.1545) 0.1640(0.0519) 0.0519(1.0447) 0.0960(0.0921) 0.0877(0.1134)
β12:2 0.1180(0.0250) 0.0250(0.6907) 0.1141(0.1379) 0.1324(0.1561) 0.1506(0.0202)
β20:0 0.0202(0.8550) 0.0193(0.0314) 0.0228(0.0303) 0.0292(0.0184) 0.0184(0.1974)
β21:-2 0.0127(0.0189) 0.0114(0.0156) 0.0207(0.0006) 0.0006(0.0960) 0.0266(0.0448)
β22:-2 0.0360(0.0360) 0.0422(0.0033) 0.0033(0.2301) 0.0141(0.0132) 0.0122(0.0206)

pr 0.0210(0.0009) 0.0009(0.1086) 0.0204(0.0330) 0.0273(0.0354) 0.0364(0.0007)
Case IV: ε „ p1`XqpNp0, 1q ´Npτ, 0, 1qq, X „ Up0, 1q
β10:0 0.0805(0.1102) 0.0948(0.1096) 0.1038(0.0249) 0.0249(0.6425) 0.2198(0.2437)
β11:2 0.4583(0.2738) 0.2799(0.1308) 0.1308(2.0025) 0.1105(0.1427) 0.1502(0.1406)
β12:2 0.1399(0.0374) 0.0374(0.8964) 0.1209(0.1651) 0.1795(0.1879) 0.1733(0.0274)
β20:0 0.0274(1.0163) 0.0252(0.0215) 0.0257(0.0208) 0.0229(0.0192) 0.0192(0.1758)
β21:-2 0.0100(0.0191) 0.0128(0.0186) 0.0169(0.0009) 0.0009(0.0935) 0.0737(0.0952)
β22:-2 0.2769(0.1055) 0.1457(0.0183) 0.0183(0.8467) 0.0177(0.0314) 0.0331(0.0304)

pr 0.0308(0.0020) 0.0020(0.1752) 0.0238(0.0400) 0.0501(0.0525) 0.0479(0.0012)
Case V: ε „ ALDp0, 1{φ, τq
β10:0 0.1108(0.1381) 0.1692(0.1728) 0.1635(0.0292) 0.0292(0.9299) 0.3488(0.4261)
β11:2 0.5099(0.5776) 0.5798(0.1352) 0.1352(3.1584) 0.1646(0.2170) 0.2596(0.1986)
β12:2 0.2246(0.0782) 0.0782(1.4152) 0.1448(0.2125) 0.2186(0.2081) 0.2421(0.0518)
β20:0 0.0518(1.3349) 0.0354(0.0243) 0.0339(0.0222) 0.0216(0.0190) 0.0190(0.1998)
β21:-2 0.0209(0.0305) 0.0481(0.0455) 0.0453(0.0013) 0.0013(0.2164) 0.1862(0.2941)
β22:-2 0.3851(0.5004) 0.5422(0.0190) 0.0190(2.2423) 0.0431(0.0763) 0.0939(0.0686)

pr 0.0730(0.0069) 0.0069(0.4248) 0.0325(0.0684) 0.0706(0.0678) 0.0947(0.0035)

Table 5.4: Simulation results of n “ 400, s “ 0.4, SNR=2:1
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Tone perception data

A typical example for mixture regression is the tune perception data collected by

Cohen [23]. In the experiment, we implement the proposed method to tone percep-

tion data. The experiment record 150 trails with the same musician. The overtones

were determined by a stretching ratio.

Figure 5.1: (a) scatter plot of tonedata; (b) histogram of perceived tune ratio.

The data is displayed in Figure 5.1. Figure 5.1 (a) indicate that the tone data

can be modelled by two linear regression lines; Figure 5.1 (b) display clear non-

normality and tail heaviness of the data, we fit the data according to Mixture of

Normal distribution (MixN), Mixture of t distribution (MixT) and Mixture of Laplace

distribution (MixLa), as shown in Figure 5.2. To better illustrate the robustness of

the proposed estimation procedure, we conduct several outlier settings to evaluate

the estimation performance.

We contaminate the datasets with extreme outlier cases: (a). 5 similar outliers

p1, 3q; (b) 5 outliers p3, 1q; (c) 4 outliers (1,3), 4 outliers (3,1). As shown in Fig-

ure 5.2, we fit the data using Mixture normal distribution, Mixture t distribution
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and Mixture Laplace distribution with τ “ 0.5. Results show that for all these

cases, MixN model perform worst, while MixT and MixLa are comparable in fit-

ting performance. Figure 5.2 (a) show that when outliers deviate significantly from

the population, MixLa method perform better as well; Figure 5.2 (b) show that

when outliers deviate slightly from the population, MixLa and MixT all perform

well whereas MixNormal fails; Figure 5.2 (c) indicate that with higher level outliers,

MixN and MixT fail while MixLa still performs well.

Figure 5.2: Outlier cases of tone perception data
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5.2 Portfolio selection under ALD framework

Asymmetric Laplace Distribution

Kotz [68] proposed the Asymmetric Laplace Distribution with density function

fpxq “
2ex

1Σ´1µ

p2πqn{2|Σ|1{2
` x1Σ´1x

2` µ1Σ´1µ

˘v{2
Kv

`

a

p2` µ1Σ´1µqpx1Σ´1xq
˘

, (5.38)

denoted as X „ ALnpµ,Σq. Here, n is the dimension of random vector X, v “

p2 ´ nq{2 and Kvpuq is the modified Bessel function of the third kind with the

following two popular representations:

Kvpuq “
1

2

`u

2

˘v
ż 8

0

t´v´1 exp
!

´ t´
u2

4t

)

dt, u ą 0, (5.39)

Kvpuq “
pu{2qvΓp1{2q

Γpv ` 1{2q

ż 8

1

e´utpt2 ´ 1qv´1{2dt, u ą 0, v ě ´1{2. (5.40)

When µ “ 0n, we can obtain Symmetric Laplace distribution SL pΣq with density

fpxq “ 2p2πq´n{2|Σ|´1{2
´

x1Σ´1x{2
¯ν{2

Kν

´?
2x1Σ´1x

¯

.

When n “ 1, we have Σ “ σ11 “ σ . In such cases, (5.38) becomes the univariate

Laplace distribution AL1pµ, σq distribution with parameters µ and σ. The corre-

sponding density function is

fpxq “
1

γ
exp

!

´
|x|

σ2

“

γ ´ µ ¨ signpxq
‰

)

with γ “
a

µ2 ` 2σ2. (5.41)

The symmetric case (µ “ 0) leads to the univariate Laplace distribution SL1 p0, σq.
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Figure 5.3: Univariate densities

Figure 5.3 displays plot of symmetric densities and AL densities. Symmetric den-

sities including standard normal distribution, student t distribution with 2 degrees

of freedom, and univariate symmetric Laplace distribution, denoted as N p0, 1q, t p2q,

SL1 p0, 1q. The student t distribution possesses heavier tail than normal distribution,

whereas SL1 p0, 1q distribution imposes greater peakedness and heavier tail than nor-

mal case. As for plots of AL densities, when µ ą 0, the density skews to the right.

On the other hand, when µ ă 0, the density skews to the left.

Important results of univariate and multivariate asymptotic Laplace distributions

that will be used later on are presented below.

Proposition 5.2.1. (See Kotz [68])

(1). If X “ pX1, ¨ ¨ ¨ , Xnq follows multivariate Asymmetric Laplace distribution,

i.e., X „ ALn pµ,Σq, n is the number of securities. The linear combination

w1X “ w1X1`¨ ¨ ¨`wnXn follows univariate Asymmetric Laplace distribution,

i.e. w1X „ AL1 pµ, σq, with µ “ w1µ , σ “
?
w1Σw ,w “ pw1, ¨ ¨ ¨ , wnq

1.

(2). Assume that univariate random variable Y „ AL1 pµ, σq. To measure the asym-

metry and peakedness of the distribution, define the skewness ( Skew[Y]) and
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kurtosis ( Kurt[Y]) as the third and fourth standardized moment of a random

variable Y . Then,

Skew[Y] “
EpY ´ EY q3

“

EpY ´ EY q2
‰3{2

“
2µ3 ` 3µσ2

pµ2 ` σ2q3{2
,

Kurt[Y] “
EpY ´ EY q4
“

VarpY q
‰2 “

9µ4 ` 6σ4 ` 18µ2σ2

pµ2 ` σ2q2
.

(3). Let X “ pX1, X2, ¨ ¨ ¨ , Xnq „ ALn pµ,Σq. Then the first and second order

moments of X are

EpXq “ µ and Cov pXq “ Σ` µ1µ.

(4). The Asymmetric Laplace distribution can be represented as a mixture of nor-

mal vector and a standard exponential variable, i.e., X „ ALn pµ,Σq can be

represented as

X “ µZ ` Z1{2Y ,

where Y „ Nnp0,Σq , Z „ Expp1q. This indicate that we can simulate multi-

variate Asymmetric Laplace random vector X „ ALnpµ,Σq as follows:

1. Generate a multivariate normal variable Y „ Nn p0,Σq;

2. Generate a standard exponential variable Z „ Exp p1q;

3. Construct Asymmetric Laplace random vector as X “ µZ ` Z1{2Y .

Figure 5.4 displays several realizations of bivariate Asymmetric Laplace distribu-

tion with different level of asymmetry and peakedness.

Risk measures

Since mean and covariance matrix cannot be used to characterize non-Gaussian dis-

tribution, alternative risk measures are necessary for portfolio selection problems.
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Figure 5.4: Bivariate Asymmetric Laplace data with µ cases: (a1, a2, a3): µ “ p0, 0q;
(b1, b2, b3): µ “ p1, 1q; (c1, c2, c3): µ “ p´1,´1q. Covariance matrix Σ cases. (a1,
b1, c1): σ11 “ σ22 “ 1, σ12 “ σ21 “ 0; (a2, b2, c2): σ11 “ σ22 “ 1 , σ12 “ σ21 “ 0.8;
(a3, b3, c3): σ11 “ σ22 “ 1 , σ12 “ σ21 “ ´0.8.

Artzner et al. [6] suggests that a desirable risk measure should be defined fulfilling

certain properties and such a risk measure is said to be coherent.

A risk measure φ that maps a random variable to a real number is coherent if it

satisfies the following conditions:

1). Translation invariance: φpl ` hq “ φplq ` h, for all random losses l and all
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h P R;

2). Subadditivity: φpl ` hq ď φplq ` φphq, for all random losses l, h;

3). Positive homogeneity: φpλlq “ λφplq for all random losses l and all λ ą 0;

4). Monotonicity: φpl1q ď φpl2q for all random losses l1 , l2 with l1 ď l2 almost

surely.

Standard deviation is not coherent in general excepting the Gaussian cases. VaR is

coherent when the underlying distribution is elliptically distributed. Expected Short-

fall, or the so-called conditional value at risk (CVaR) is a coherent risk measure since

it always satisfies subadditivity, monotonicity, positive homogeneity, and convexity.

For any fixed α P p0, 1q, α-VaR is the α-quantile loss while α-ES is the average of

all β-VaR for β P pα, 1q. Both VaR and CVaR measure the potential maximal loss.

VaR and ES can be written as

VaRα “ F´1
pαq and ESα “ ErL|L ď -VaRαs “ ´

1

α

ż ´VaRα

´8

VaRβdβ,

where F p¨q is the cumulative distribution function of loss L and ESα is the expected

loss above VaRα. Thus, the estimation process are

ż ´VaRα

´8

fXpxqdx “ α and ESα “ ´
1

α

ż ´VaRα

´8

xfpxqdx. (5.42)

Under normality assumption, VaRα and ESα are

VaRα “ µ` σΦ´1
p1´ αq,

ESα “ µ` σ
ψpΦ´1p1´ αqq

α
,

where ψp¨q as the normal density distribution, and Φ´1p¨q is the quantile distribution.

As shown in Hu et al. [49], portfolio selected by minimizing standard deviation,

VaRα, and ESα are the equivalent under elliptical distribution assumption.
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It is well-documented that asset securities are not normally distributed. As an

alternative to Gaussian distribution, Asymmetric Laplace distribution exhibits tail-

heaviness, skewness, and peakedness.

5.2.1 Portfolio selection under ALD framework

Let X “ pX1, X2, ¨ ¨ ¨ , Xnq „ ALnpµP ,ΣPq be the return vectors of n securities, and

w “ pw1, w2, ¨ ¨ ¨ , wnq
1 is the allocation weight vector. Then, the portfolio is

P pwq “ w1X “

n
ÿ

i“1

wiXi.

According to Proposition 5.2.1 (2), P pwq „ AL1 pµ, σq with µ “ w1µ , σ “
?
w1Σw.

From Theorem 5.1–5.2 below, in order to select a portfolio under Asymmetric

Laplace distribution, it suffices to obtain the unknown parameters µP and ΣP . Thus

portfolio selection models under Asymmetric Laplace distribution lead to parameter

estimation for ALnpµP ,ΣPq. Zhao [132] proposed the multi-objective portfolio selec-

tion model under Asymmetric Laplace framework and derived the simplified model

that can be reformulated as quadratic programming problem. However, to estimate

the unknown parameters, the authors adopt a moment estimation method that is

less efficient compared to maximum likelihood method. Since Asymmetric Laplace

distribution can be represented as a mixture of exponential distribution and mul-

tivariate normal distribution, we derived the Expectation-Maximization algorithm

for parameter estimation of Asymmetric Laplace distribution. The algorithm for

estimating these unknown parameters is discussed in Section 5.2.1.

Portfolio selection theorems

Theorem 5.1. Let X “ pX1, ¨ ¨ ¨ , Xnq „ ALnpµP ,ΣPq be a n-dimensional ran-

dom vector that follow multivariate Asymmetric Laplace distribution, each element

(Xi, i “ 1, 2, ¨ ¨ ¨ , n) represent a stock. Let w be the weight vector and Ppwq “
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w1X “
řn
i“1wiXi be the portfolio. Then, under Asymmetric Laplace framework,

risk measures of StD, VaRα, and ESα at α P p0, 1q level formulated as

Standard Deviation: StD
`

Ppwq
˘

“
σ
?

2
;

Value at Risk: VaRα

`

Ppwq
˘

“ ´
σ2

γ ` µ
ln
αγpγ ` µq

σ2
;

Expected Shortfall: ESα
`

Ppwq
˘

“
σ2

γ ` µ
´

σ2

γ ` µ
ln
αγpγ ` µq

σ2
.

Here, µ “ w1µP “ mean
`

Ppwq
˘

, σ “
?
w1ΣPw “ std

`

Ppwq
˘

and γ “
a

µ2 ` 2σ2.

Proof. Let µP “ pµ1, ¨ ¨ ¨ , µnq be the mean return vector of the securities pX1, ¨ ¨ ¨ , Xnq

and ΣP “
`

σP
˘p

i,j“1
be the scale matrix of pX1, ¨ ¨ ¨ , Xnq. Denote the allocation vec-

tor by w “ pw1, ¨ ¨ ¨ , wnq
1. Then, the portfolio Ppwq “

řn
i“1wiXi follows univariate

Asymmetric Laplace distribution with

Ppwq “
n
ÿ

i“1

wiXi „ AL1pµ, σq with µ “
n
ÿ

i“1

µiwi , σ “
´

n
ÿ

i“1

n
ÿ

j“1

σPijwiwj

¯1{2

.

If µ “ 0n, the univariate symmetric Asymmetric Laplace distribution becomes

AL1p0, σq with density

gpxq “
1

γ
exp

!

´
|x|

σ2
γ
)

with γ “
?

2σ.

Thus, standard deviation (StD) of portfolio Ppwq “ w1X is

StD pPpwqq “
ż `8

´8

1

γ
|x| exp

!

´
γ

σ2
|x|

)

dx “ 2

ż `8

0

x

γ
exp

!

´
γ

σ2
x
)

dx “
2σ4

γ3
“

σ
?

2
.

According to the definition of VaRα and ESα as defined in (5.42) and univariate
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Asymmetric Laplace density (5.41), we have

´

ż ´VaRα

´8

1

γ
exp

!

´
|x|

σ2

“

γ ´ µ ¨ sgnpxq
‰

)

dx “ α,

σ2

γpγ ` µq
exp

!

´
γ ` µ

σ2
VaRα

)

“ α.

Thus, VaRα and ESα are

VaRα

`

Ppwq
˘

“ ´
σ2

a

µ2 ` 2σ2 ` µ
ln
αpµ2 ` 2σ2 ` µ

a

µ2 ` 2σ2q

σ2

“ ´
σ2

γ ` µ
ln
αγpγ ` µq

σ2
;

ESα
`

Ppwq
˘

“ ´
1

α

ż ´VaRα

´8

xfXpxqdx

“ ´
1

α

ż ´VaRα

´8

x
1

γ
exp

!

´
|x|

σ2

“

γ ´ µ ¨ sgnpxq
‰

)

dx

“
σ2

µ`
a

µ2 ` 2σ2
´

σ2

µ`
a

µ2 ` 2σ2
ln
!

2α `
αpµ2 ` µ

a

µ2 ` 2σ2q

σ2

)

“
σ2

γ ` µ
´

σ2

γ ` µ
ln
αγpγ ` µq

σ2
.

l

Then we have the following theorem.

Theorem 5.2. Let X „ ALnpµP ,ΣPq. Then, portfolio Ppwq “ w1X with following
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models based on ESα , V aRα , and StD (as defined in Theorem 5.1)

min
w

ESα
`

Ppwq
˘

or min
w

VaRα

`

Ppwq
˘

or min
w

StD
`

Ppwq
˘

max
w

Skew[Ppwq] “ 2µ3 ` 3µσ2

pµ2 ` σ2q3{2

max
w

Kurt[Ppwq] “ 9µ4 ` 6σ4 ` 18µ2σ2

pµ2 ` σ2q2

s.t. w1µ “ r0 ,w
11 “ 1,

are equivalent. Here, µ “ w1µP “ mean
“

Ppwq
‰

, σ “
?
w1ΣPw “ std

“

Ppwq
‰

,w “

pw1, w2, ¨ ¨ ¨ , wnq
1.

Proof. Let gpµ, σq “ σ2

µ`
?
µ2`2σ2

. Then, ESα[Ppwq] and VaRα[Ppwq] are

VaRαrPpwqs “ ´gpµ, σq ln
`

2α `
αµ

gpµ, σq

˘

“ ´gpµ, σq
“

lnα ` ln
`

2`
µ

gpµ, σq

˘‰

,

ESαrPpwqs “ gpµ, σq ´ gpµ, σq ln
`

2α `
αµ

gpµ, σq

˘

“ p1´ lnαqgpµ, σq ´ gpµ, σq lnp2`
µ

gpµ, σq
q.

Differentiating the above expressions with respect to σ, we have

BVaRαrPpwqs
Bσ

“
Bgpµ, σq

Bσ

«

´ lnα ´ ln
`

2`
µ

gpµ, σq

˘

`

µ
gpµ,σq

2` µ
gpµ,σq

ff

ą 0,

BESαrPpwqs
Bσ

“
Bgpµ, σq

Bσ

«

1´ lnα ´ ln
`

2`
µ

gpµ, σq

˘

`

µ
gpµ,σq

2` µ
2`gpµ,σq

ff

ą 0,

where

Bgpµ, σq

Bσ
“

B

”

σ2

µ`
?
µ2`2σ2

ı

Bσ
“ 2σ

µ` µ2`σ2
?
µ2`2σ2

pµ2 `
a

µ2 ` 2σ2q2
ą 0.
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The derivative of skewness measure with respect to σ is

BSkew[Ppwq]
Bσ

“

B

”

2µ3`3µσ2

pµ2`σ2q3{2

‰

Bσ
“

´3µσ3

pµ2 ` σ2q5{2
ă 0.

The derivative of kurtosis measure with respect to σ is

BKurt[Ppwq]
Bσ

“

9µ4`6σ4`18µ2σ2

pµ2`σ2q2

Bσ
“
´12µ4σ3 ´ 12µ2σ5

pµ2 ` σ2q4
ă 0.

The monotonicity of VaRα[Ppwq], ESα[Ppwq], Skew[Ppwq], and Kurt[Ppwq] with re-

spect to σ indicate that the portfolio selection problems based on these risk measures

are equivalent. This means that minimizing VaRα[Ppwq], ESα[Ppwq], StD[Ppwq] are

equivalent to minimizing w1ΣPw. l

Parameter estimation of Asymmetric Laplace Distribution

Assume X “ pX1, X2, ¨ ¨ ¨ , Xnq „ ALnpµ,Σq. Let x1 ,x2 , ¨ ¨ ¨ ,xT P Rn be the

T observations. We aim at fitting a multivariate Asymmetric Laplace distribution

ALnpµ,Σq with unknown parameters µ,Σ.

Hrlimann [55], Kollo and Srivastava [66], Visk [112] consider moment matching

methods that is less efficient than maximum likelihood estimation. Kotz [69] and

Kotz [68] presented the maximum likelihood estimators for parameter estimation

of Asymmetric Laplace distributions. However, maximum likelihood estimation re-

quire computation of complicated Bessel function. Thus we derived the expectation-

maximization algorithm for parameter estimation of Asymmetric Laplace distribu-

tion.

Moment estimation

As Zhao [132] pointed out, according to Proposition 5.2.1 (3), Asymmetric Laplace

distribution can be estimated via moment method (Moment-AL) with

µ̂ “ x̄ and Σ̂ “ covpXq ´ µ̂1µ̂,
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where x̄ “ 1
n

řn
i“1 xi ,CovpXq “

řn
i“1pxi ´ x̄q

1pxi ´ x̄q.

Maximum likelihood estimation

Consider sample points x1,x2, ¨ ¨ ¨ ,xn and density function of Asymmetric Laplace

distribution as defined in (5.38). Taken logarithm with respect to likelihood function,

the log-likelihood is

`pµ,Σq “ lnLpµ,Σq “
T
ÿ

t“1

ln fpxt;µ,Σq

“

T
ÿ

t“1

x1tΣ
´1µ` T ln 2´

Tn

2
lnp2πq ´

T

2
ln
`

|Σ|
˘

`
ν

2

T
ÿ

t“1

ln
`

x1tΣ
´1xt

˘

´

νT

2
ln
`

2` µ1Σ´1µ
˘

`

T
ÿ

t“1

lnKv

!

a

p2` µ1Σ´1µqpx1tΣ
´1xtq

)

.

Generally, we can directly maximize the log-likelihood function `pµ,Σq with respect

to parameters µ,Σ and thus obtain the maximum likelihood estimator. Unfortu-

nately, the density function involves modified Bessel function of the third kind with

density (5.39) , (5.40) that are too complex and complicated for numerical maxi-

mization. However, Gaussian-Exponential mixture representation of the Asymmet-

ric Laplace distribution allows us to employ the expectation-maximization algorithm

without involving modified Bessel functions.

Expectation-Maximization algorithm

Then we derive the Expectation-Maximization algorithm for parameter estimation of

multivariate Asymmetric Laplace Distribution (mALD), we follow the EM derivation

for Multivariate Skew Laplace distribution in [4].

Let X “ pX1, X2, ¨ ¨ ¨ , Xnq be Asymmetric Laplace distributed random vector.

Proposition 5.2.1 suggests that X can be generated from a latent random variable
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Z “ z through multivariate Gaussian distribution with zµ, zΣ, i.e. X|Z “ z „

Nn pzµ, zΣq , Z „ Exp p1q with density

fX|Zpx, zq “
1

p2πqn{2|zΣ|1{2
exp

!

´
1

2
px´ zµq1pzΣq´1

px´ zµq
)

,

fZpzq “ e´z1tzě0u.

Thus the joint density function of X and Z is

fX,Zpx, zq “ fX|Zpx, zqfZpzq

“
1

p2πq
n
2 z

n
2 |Σ|

1
2

exp
!

´
1

2z
x1Σ´1x` x1Σ´1µ´

z

2
µ1Σ´1µ´ z1tzě0u

)

.

Suppose that there are T observationsX1, . . . ,XT generated from the latent random

variables z1, z2, ¨ ¨ ¨ , zT respectively. The complete data is defined as tpxt, ztqu , t “

1, 2, ¨ ¨ ¨ , T . In the EM algorithm, xt and zt are the observed and missing data

respectively. The log-likelihood up to an additive constant can be written as

L̃pµ,Σq “
T
ÿ

t“1

ln fX,Zpxt, ztq

“ ´
T

2
ln |Σ| ´

1

2

T
ÿ

t“1

1

zt
x1tΣ

´1xt `
T
ÿ

t“1

x1tΣ
´1µ´

1

2
µ1Σ´1µ

T
ÿ

t“1

zt ´
T
ÿ

t“1

zt1tztě0u.

Note that the last term of the above equation does not contain any unknown param-

eters and thus is negligible. Then, the E-step becomes

E
´

L̃pµ,Σq|xt, µ̂, Σ̂
¯

9

1

2

T
ÿ

t“1

Epz´1
t |xt, µ̂, Σ̂qx

1
tΣ

´1xt ´
1

2
µ1Σ´1µ

T
ÿ

t“1

Epzt|xt, µ̂, Σ̂q.

where Epzt|x, µ̂, Σ̂q and Epz´1
t |x, µ̂, Σ̂q are the conditional expectations of zt and

z´1
t given xt and the current estimates µ̂, Σ̂.
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To evaluate conditional expectations Epz´1
t |xt, µ̂, Σ̂q and Epzt|xt, µ̂, Σ̂q, we need

the conditional density of Z given X, fZ|X . After some straightforward algebra,

the conditional distribution of Z given X is an inverse Gaussian distribution with

density function

fZ|Xpz|x,µ,Σq “
fX,Zpx, zq

fXpxq
(5.43)

“

1

p2πq
n
2 z

n
2 |Σ|

1
2

exp
 

´ 1
2z
x1Σ´1x` x1Σ´1µ´ z

2
µ1Σ´1µ´ z1tzě0u

(

2ex1Σ´1µ

p2πqn{2|Σ|1{2

`

x1Σ´1x
2`µ1Σ´1µ

˘v{2
Kv

`
a

p2` µ1Σ´1µqpx1Σ´1xq
˘

“

´2` µ1Σ´1µ

x1Σ´1x

¯v{2

z´n{2
exp

 

´ 1
2

“

z´1x1Σ´1x` zpµ1Σ´1µ` z1tzě0uq
‰(

2Kv

`
a

p2` µ1Σ´1µqpx1Σ´1xq
˘ .

Lemma 5.1. (GIG [104]) A random variable X follows Generalized Inverse Gaus-

sian distribution(denoted as X „ N´pλ, χ, ψq) if its density function could be repre-

sented as

fpxq “
χ´λp

?
χψqλ

2Kλp
?
χψq

xλ´1 exp
!

´
1

2
pχx´1

` ψxq
)

, x ą 0.

where Kλ denotes the third kind modified Bessel function, and the parameters satisfy

$

&

%

χ ą 0, ψ ě 0, if λ ă 0;
χ ą 0, ψ ą 0, if λ “ 0;
χ ě 0, ψ ą 0, if λ ą 0.

After some algebraic manipulations, it is easy to show that Z|X follows Gener-

alized Inverse Gaussian distribution:

Z|X „ N´
´2´ n

2
,x1Σ´1x , 2` µ1Σ´1µ

¯

.

If χ ą 0, ψ ą 0, the moments could be calculated through the following formulas:

EpXα
q “

´χ

ψ

¯α{2Kλ`αp
?
χψq

Kλp
?
χψq

, α P R,

EplnXq “
dEpXαq

dα

ˇ

ˇ

ˇ

α“0
.
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Denote χ “ x1Σ´1x, ψ “ 2 ` µ1Σ´1µ. Then, Z|X „ N´p2´n
2
, χ, ψq. From the

conditional density function of (5.43), we can obtain the conditional expectations

with the following moment properties:

at “ Epzt|xt, µ̂, Σ̂q “

c

χt
ψ

Kn
2
´2p
?
χtψq

Kn
2
´1p
?
χtψq

, t “ 1, 2, ¨ ¨ ¨ , T,

bt “ Epz´1
t |xt, µ̂, Σ̂q “

d

ψ

χt

Kn
2
p
?
χtψq

Kn
2
´1p
?
χtψq

, t “ 1, 2, ¨ ¨ ¨ , T,

where χt “ x
1
tΣ
´1xt, Rpλq “

Kλ`1pxq

Kλpxq
is strictly decreasing in x with limxÑ8Rλpxq “

1 and limxÑ0` Rλpxq “ 8. Thus, at ą 0, bt ą 0 , t “ 1, 2, ¨ ¨ ¨ , T .

Finally, if the conditional expectation Epzt|xt, µ̂, Σ̂q and Epz´1
t |xt, µ̂, Σ̂q are re-

placed by at and bt respectively, the objective function becomes

Qpµ,Σ|xt, µ̂, Σ̂q “ ´
T

2
ln |Σ| `

T
ÿ

t“1

x1tΣ
´1µ´

1

2

T
ÿ

t“1

btx
1
tΣ

´1xt ´
1

2
µ1Σ´1µ

T
ÿ

t“1

at.

(5.44)

Denote S “ Σ´1. The objective function (5.44) becomes

Qpµ,Σ|xt, µ̂, Ŝq “
T

2
ln |S| `

T
ÿ

t“1

x1tSµ´
1

2

T
ÿ

t“1

btx
1
tSxt ´

1

2
µ1Sµ

T
ÿ

t“1

at. (5.45)

Taking derivative of objective function (5.45) with respect to µ,S, we obtain

BQ

Bµ
“

T
ÿ

t“1

x1tS ´
T
ÿ

t“1

atµ
1S “ 0,

BQ

BS
“

T

2
S´1

´
1

2

T
ÿ

t“1

btx
1
txt `

T
ÿ

t“1

x1tµ´
1

2

T
ÿ

t“1

atµ
1µ “ 0.
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Substituting S by Σ and setting these derivatives to zero yield

T
ÿ

t“1

x1tΣ
´1
´

T
ÿ

t“1

atµ
1Σ´1

“ 0,

T

2
Σ´

1

2

T
ÿ

t“1

btx
1
txt `

T
ÿ

t“1

x1tµ´
1

2

T
ÿ

t“1

atµ
1µ “ 0.

Thus, maximization of the objective function Qpµ,Σ|xt, µ̂, Σ̂q can be achieved by

the following iterative updating formulas:

µ̂ “
x̄

ā
; Σ̂ “ btx1txt ´

x̄1x̄

ā
.

where ā, b̄ stand for the average of tatu
T
t“1 and tbtu

T
t“1 respectively and x̄ is the

average of txtu
T
t“1. In what follows, we present the iterative reweighted Expectation-

Maximization algorithm for parameter estimation of Asymmetric Laplace distribu-

tion.

5.2.2 Numerical experiments

To evaluate the performance of portfolio selection models and parameter estima-

tion methods in Section 5.2.1, we generate 100 datasets from Gaussian distribu-

tion and Asymmetric Laplace distribution respectively. Each dataset consists of

T “ 200 observations with the following parameter settings: Case (1): n “ 3 ,µ “

p0.03 , 0.06 , 0.09q; Case (2): n “ 5 ,µ “ p0.01 , 0.02 , 0.06 , 0.08 , 0.09q; Case (3):

n “ 10 ,µ “ p0.01 , 0.02 , 0.03 , ¨ ¨ ¨ , 0.10q. For each case, we set Σ “ diag pµ{10q.

All the simulation studies are carried out on a PC with Intel Core i7 3.6 GHz pro-

cessor under R platform.

Each dataset are estimated under both multivariate Gaussian and Asymmetric

Laplace distribution. ALD (EM-AL) is estimated using the EM algorithm described

in Section 5.2.1. We evaluate the estimation performance using Bias measure, defined
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Algorithm 5 Iterative reweighting algorithm

1. Set iteration number k “ 1 and select initial estimates for parameters µp0q,Σp0q.

2. (E-Step) At k-th iteration with current estimates µpkq,Σpkq, define the corre-
sponding log-likelihood as

lpkq “ log
T
ÿ

t“1

fpxt|µ
pkq,Σpkq

q, k “ 1, 2, ¨ ¨ ¨ .

With notations χt “ x
1
tΣ

´1xt, ψ “ 2`µ1Σ´1µ, we can obtain iterative weights

at “ Epzt|xt, µ̂, Σ̂q “

c

χt
ψ

K2´n
2
p
?
χtψq

K1´n
2
p
?
χtψq

, t “ 1, 2, ¨ ¨ ¨ , T ;

bt “ Epz´1
t |xt, µ̂, Σ̂q “

d

ψ

χt

K´n
2
p
?
χtψq

K1´n
2
p
?
χtψq

, t “ 1, 2, ¨ ¨ ¨ , T.

3. (M-Step) Employ the following iteration formulas to calculate the new esti-
mates µpk`1q,Σpk`1q at pk ` 1q-th iteration:

µpk`1q
“
x̄

ā
, Σpk`1q

“ btx1txt ´
x̄1x̄

ā
. (5.46)

The log-likelihood at pk ` 1q-th iteration becomes

lpk`1q
“ log

T
ÿ

t“1

fpxt|µ
pk`1q,Σpk`1q

q.

4. Repeat these iteration steps until convergence with criterion lpk`1q ´ lpkq ă ε,
where ε ą 0 is a small number that control the convergence precision, for
convenience, we take ε “ 1e´16.

as Bias “ }µ̂ ´ µ}1 ` }Σ̂ ´ Σ}1. The mean log-likelihood and mean bias of the

simulated 200 datasets are reported in Table 5.5.

Table 5.5 indicate that if the model is correctly specified, the estimation perfor-

mance is always the best in terms of bias. If the data is generated from Gaussian

distribution, the estimation from Gaussian model is the best, so does Asymmet-

ric Laplace distribution. If data is generated from Gaussian distribution, then the
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estimation log-likelihood of Gaussian model is larger than Asymmetric Laplace dis-

tribution, this is true for Asymmetric Laplace data as well.

Gaussian Data
Log-Likelihood Bias

Gauss EM-AL Gauss Moment-AL EM-AL
Case (1) 709.6159 641.2472 0.0153 0.0451 0.0183
Case (2) 1363.0231 1260.3676 0.0280 0.0886 0.0319
Case (3) 2593.1151 2432.2192 0.0672 0.3309 0.0766

Asymmetric Laplace Data
Log-Likelihood Bias

Gauss EM-AL Gauss Moment-AL EM-AL
Case (1) 619.1798 735.0847 0.0542 0.0252 0.0226
Case (2) 1250.7110 1463.9149 0.0870 0.0376 0.0302
Case (3) 2432.3401 2919.9878 0.3750 0.1304 0.0832

Table 5.5: Model fitting results of Gaussian data and Asymmetric Laplace data using
Gauss model and EM-AL model.

Figure 5.5: Efficient frontiers of simulated Gaussian data of case (1)-(3) using Gaus-
sian and EM-AL model.
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Figure 5.6: Efficient frontiers of simulated Asymmetric Laplace data of case (1)-(3)
using Gaussian and EM-AL model.

Figure 5.5 show that for Gaussian data, since Gaussian data fit the model better,

efficient frontiers under Gaussian data are more close to Gaussian models; Figure

5.6 indicate that for generated Asymmetric Laplace data, efficient frontiers nearly

equivalent to true Asymmetric Laplace data. Figure 5.5-5.6 suggest that we can first

modeling data using Gaussian and Asymmetric Laplace distribution, and use the

fitted log-likelihood to determine the distribution, then we evaluate the performance

with the corresponding efficient frontier analysis.

Real data analysis

Then we apply our proposed methodology to two real financial datasets, Hang Seng

Index and Nasdaq Index, both datasets are downloaded from Bloomberg, with daily

data range from January 4, 2011, to December 29, 2017. The variable of interest is
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the rate of returns multiplied by the annualized ratio
?

252, formulated as

LogRet ptq “
?

252
!

log
`

pricert` 1s
˘

´ log
`

pricerts
˘

)

, t “ 1, 2, ¨ ¨ ¨ , 1721.

These two datasets are analyzed through efficient frontier analysis under ALD frame-

work on R platform. Theorem 5.1-5.2 indicate that portfolio selection models under

ALD framework can be reduced to the following quadratic programming problem:

min
w

σ2
“ w1Σw s.t. w1µ “ r0 ,w

11 “ 1.

The explicit solution (see [74]) is as follows:

ŵ “
D ´ r0B

AD ´B2
Σ´11`

r0A´B

AD ´B2
Σ´1µ. (5.47)

Here, A “ 11Σ´11, B “ 11Σ´1µ and D “ µ1Σ´1µ.

Example 1: Hang Seng Index

In the first example, we construct a portfolio consisting of 8 Hang Seng indexes: HK1,

HK175, HK2007, HK2318, HK4, HK6, HK66. The summary descriptive statistics are

reported in Table 5.6. It is clear that the all stock returns exhibit larger skewness

and kurtosis. The median of these stocks are close to zero, the log-likelihood of

Asymmetric Laplace distribution is larger than gaussian distribution, indicating that

Asymmetric Laplace distribution would be a good fit than gaussian distribution.

Then we fit the data to Asymmetric Laplace distribution through EM algorithm as

described in Section 5.2.1. Parameter estimation results are displayed in Table 5.6,

we construct portfolios under Asymmetric Laplace framework at different levels of

expected return. Consider increasing target expected return values

r0 “ 0.040 , 0.0745 , 0.1081 , 0.1417 , 0.1753 , 0.2088 , 0.2424 , 0.2760 , 0.3096 , 0.3431 .

Portfolio selection results are summarized in Table 5.7, with kurtosis, skewness,

sharpe ratio, VaR and ES results at α “ 0.01, 0.05, 0.10 levels.
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Descriptive Statistics
StD Mean Median Skewness Kurtosis Jarq.Test Jarq.Prob

HK1 19.7819 0.2370 0.0000 3.9601 71.8163 375244.7434 0.0000
HK175 3.7101 0.2183 0.0000 1.1510 28.6192 59264.8528 0.0000
HK2007 2.1968 0.1115 0.0000 0.5928 16.5623 19825.4392 0.0000
HK2318 12.6007 0.3431 0.0000 0.6174 6.2371 2908.6947 0.0000

HK4 5.8690 0.0409 0.0000 0.4894 7.6362 4263.7750 0.0000
HK6 13.0712 0.1517 0.0000 -1.1430 20.3112 30037.3385 0.0000
HK66 5.8708 0.1545 0.0000 -1.7941 19.9392 29510.3684 0.0000

Gaussian EM-AL
Log-likelihood -39707.45 -37865.83

Parameter Estimation
HK1 HK175 HK2007 HK2318 HK4 HK6 HK66

µ 0.2370 0.2183 0.1115 0.3431 0.0409 0.1517 0.1545
Σ HK1 HK175 HK2007 HK2318 HK4 HK6 HK66

HK1 406.4426 12.8089 11.4547 130.0934 68.3857 94.4069 60.3087
HK175 12.8089 7.3656 1.6330 12.0356 4.7467 4.8725 3.6070
HK2007 11.4547 1.6330 3.8506 9.9261 4.6830 3.9055 2.4395
HK2318 130.0934 12.0356 9.9261 174.0423 42.1879 48.2877 35.0499

HK4 68.3857 4.7467 4.6830 42.1879 44.6336 26.5314 17.6232
HK6 94.4069 4.8725 3.9055 48.2877 26.5314 205.1471 32.5570
HK66 60.3087 3.6070 2.4395 35.0499 17.6232 32.5570 41.6153

Table 5.6: Hang Seng data statistics

r0 µ σ Skew Kurt Sharpe
1 0.0409 0.0409 2.5461 0.0482 6.0016 0.0161
2 0.0745 0.0745 2.0565 0.1086 6.0079 0.0362
3 0.1081 0.1081 1.7299 0.1869 6.0233 0.0625
4 0.1417 0.1417 1.6650 0.2537 6.0430 0.0851
5 0.1753 0.1753 1.8891 0.2763 6.0510 0.0928
6 0.2088 0.2088 2.3199 0.2682 6.0480 0.0900
7 0.2424 0.2424 2.8656 0.2523 6.0425 0.0846
8 0.2760 0.2760 3.4724 0.2372 6.0375 0.0795
9 0.3096 0.3096 4.1134 0.2247 6.0337 0.0753
10 0.3431 0.3431 4.7749 0.2147 6.0307 0.0719

VaR0.01 ES0.01 VaR0.05 ES0.05 VaR0.10 ES0.10

1 6.9429 8.7229 4.0782 5.8582 2.8444 4.6244
2 5.5080 6.9254 3.2268 4.6442 2.2444 3.6618
3 4.5256 5.6960 2.6420 3.8124 1.8308 3.0011
4 4.2684 5.3771 2.4841 3.5928 1.7156 2.8243
5 4.8095 6.0606 2.7960 4.0471 1.9288 3.1799
6 5.9208 7.4601 3.4434 4.9827 2.3764 3.9157
7 7.3493 9.2579 4.2774 6.1861 2.9544 4.8631
8 8.9467 11.2679 5.2108 7.5321 3.6018 5.9231
9 10.6386 13.3966 6.1999 8.9578 4.2882 7.0462
10 12.3871 15.5962 7.2222 10.4313 4.9978 8.2069

Table 5.7: Efficient frontier results of Hang Seng data
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Figure 5.7: ALD efficient frontier of Hang Seng data

Figure 5.8: Skewness, Kurtosis and Sharpe ratio tendency of Hang Seng data

The efficient frontier tendencies are displayed in Figure 5.7. It is suggested that

aggressive investors should impose higher confidence levels and conservative investors

may choose smaller confidence levels. Figure 5.8 depicts the kurtosis, skewness, and

sharpe ratio tendency of portfolio selection models. Results show that Sharpe Ratio,

Skewness and Kurtosis increase fast and decreases slowly down as the target expected

returns increases.
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Example 2: Nasdaq Index

In the second example, we consider Nasdaq index, including CTRP, MNST, NFLX,

NTES, NVDA, TTWO, and report the descriptive statistics in Table 5.8. All the

indexes exhibit significant skewness and kurtosis. Jarq.Test results indicate that

this dataset deviates from normality significantly. We fit the log returns data to

Gaussian and Asymmetric Laplace distributions. Since Asymmetric Laplace model

achieve higher log-likelihood results compared to Gaussian model, we choose EM-AL

model for data fitting. Parameter estimation results are displayed in Table 5.8.

Descriptive Statistics
StD Mean Median Skewness Kurtosis Jarq.Test Jarq.Prob

CTRP 12.5853 0.2100 0.0000 1.5907 16.5100 20786.4126 0.0000
MNST 10.0679 0.4904 0.1587 1.9632 25.7988 50065.6119 0.0000
NFLX 32.9311 1.5015 -0.0079 1.0314 20.0251 29796.6074 0.0000
NTES 58.0910 2.7817 1.2700 1.2457 26.0418 50315.0307 0.0000
NVDA 25.2360 1.6024 0.3175 1.7413 40.3981 120864.0386 0.0000
TTWO 12.2826 0.8786 0.1587 2.1392 52.3926 203127.9368 0.0000

Gaussian EM-AL
Log-Likelihood -46400.25 -42798.03

Parameter Estimation
CTRP MNST NFLX NTES NVDA TTWO

µ 0.2100 0.4904 1.5015 2.7817 1.6024 0.8786
Σ CTRP MNST NFLX NTES NVDA TTWO

CTRP 187.1236 25.4281 129.9104 246.6268 46.1539 40.0369
MNST 25.4281 116.7107 51.2572 82.0634 26.2438 23.5405
NFLX 129.9104 51.2572 900.1261 327.6980 122.5361 83.8650
NTES 246.6268 82.0634 327.6980 2380.8894 213.1414 121.1493
NVDA 46.1539 26.2438 122.5361 213.1414 259.7019 53.8530
TTWO 40.0369 23.5405 83.8650 121.1493 53.8530 111.0020

Table 5.8: Nasdaq data statistics

Then we consider increasing target expected returns

r0 “ 0.2100, 0.4958, 0.7815, 1.0673, 1.3530, 1.6388, 1.9245, 2.2102, 2.4960, 2.7817.

Results of skewness, kurtosis, sharpe ratio and VaR, ES results are summarized

in Table 5.9. Figure 5.9 displays the efficient frontiers at confidence level α “
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0.01, 0.05, 0.10. These results show that the portfolio capture higher risk at high-

er α levels. Figure 5.10 displays the skewness, kurtosis, and Sharpe ratio tendency.

The optimal portfolios can be obtained from Eqn. (5.47) with the corresponding

VaR, ES, skewness, kurtosis and Sharpe ratio.

Table 5.9 and Figure 5.9 suggests that as r0 increases, all ES (ES0.01, ES0.05,

ES0.10) increases, indicating that higher return is derived from higher risk. It is

interesting that under the ALD assumption, as r0 increases, Sharpe ratio and skew-

ness first decreases then increases accordingly. As α increases, VaR and ES measures

decreases. Thus, conservative investors can choose larger α levels and aggressive

investors would select smaller α levels.

r µ σ Skew Kurt Sharpe
1 0.2100 0.2100 8.5237 0.0739 6.0036 0.0246
2 0.4958 0.4958 7.5957 0.1951 6.0254 0.0653
3 0.7815 0.7815 7.8219 0.2973 6.0590 0.0999
4 1.0673 1.0673 9.1167 0.3472 6.0806 0.1171
5 1.3530 1.3530 11.1127 0.3608 6.0870 0.1218
6 1.6388 1.6388 13.5025 0.3597 6.0865 0.1214
7 1.9245 1.9245 16.1117 0.3541 6.0838 0.1194
8 2.2102 2.2102 18.8494 0.3478 6.0808 0.1173
9 2.4960 2.4960 21.6671 0.3418 6.0781 0.1152
10 2.7817 2.7817 24.5371 0.3365 6.0757 0.1134

VaR0.01 ES0.01 VaR0.05 ES0.05 VaR0.10 ES0.10

1 23.0672 28.9903 13.5344 19.4575 9.4288 15.3519
2 19.8220 24.9509 11.5675 16.6963 8.0125 13.1413
3 19.7857 24.9397 11.4907 16.6447 7.9183 13.0723
4 22.7065 28.6414 13.1547 19.0896 9.0409 14.9758
5 27.5608 34.7713 15.9560 23.1665 10.9581 18.1686
6 33.4993 42.2627 19.3952 28.1586 13.3208 22.0843
7 40.0422 50.5132 23.1898 33.6608 15.9318 26.4028
8 46.9392 59.2083 27.1927 39.4619 18.6883 30.9575
9 54.0563 68.1800 31.3251 45.4488 21.5353 35.6590
10 61.3178 77.3329 35.5424 51.5576 24.4416 40.4567

Table 5.9: Efficient frontier analysis of Nasdaq data
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Figure 5.9: ALD efficient frontier of Hang Seng data

Figure 5.10: Skewness, Kurtosis and Sharpe ratio tendency of Nasdaq data
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Chapter 6

Concluding Remarks

In this chapter, we summarize the main results in this thesis and provide some

possible directions for further research.

6.1 Summary

This thesis consider LAD Generalized Lasso models, Constrained LAD Lasso mod-

els, selection of penalty parameter for compressive sensing and two models under

Asymmetric Laplace Distributions.

We first studied the LAD-Lasso problem, and derived the optimality condition

and a descent algorithm such that the nonsmooth optimization problem can be op-

timized directly. Numerical experiments with both simulated and real data have

been employed to demonstrate that our proposed method is more efficient than the

traditional interior point method and the state-of-the-art LP solver Gurobi. We

also proposed a new Active Zero Set Descent (AZSD) algorithm for LAD General-

ized Lasso problem. The main advantage of this algorithm is that the zero set can

be obtained without any user-chosen threshold values. Moreover, the algorithm is

proved to be convergent in finite steps where the stopping condition can be described

through infinitely many basis directional set explicitly. Nested iteration as in the in-

terior point algorithm is not needed. The estimation performances of the proposed
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method are investigated based on simulation studies.

Then we proposed the MAD-Lasso portfolio selection strategy that can be re-

formulated as Constrained LAD Lasso with linearly equality constraints. Based

on nonsmooth optimality conditions, we derived a descent algorithm by updating

descent directions from basis directional set and optimal step length iteratively, ex-

tensive simulation studies and real data analysis show that our methodology is much

more time efficient than interior point method. For portfolio selection results, the

MAD-Lasso model can robustify portfolio selection models and encourages sparsity.

Next we present a two-level optimization approach to incorporate quality mea-

sures in a speech application such as compressive speech enhancement. The results

show that quality measures can be factored in the solutions by hyperparameterizing

the tuning parameter in the sparse reconstruction. By doing so, the solutions are

effectively tailored to the desired design attributes by a single parameter. The two-

level approach first compresses the big data and subsequently optimizes the sparse

the solution via the AIC, BIC model selection and the Gini performance index. The

set of solutions is then measured against the quality measures for the desired solution.

Comprehensive numerical experiments in a range of real-world noise with varying S-

NRs show that proper tuning of the hyperparameter can effectively trade-off between

speech distortion and noise suppression.

Finally, we consider two models under Asymmetric Laplace Distributions. We

first conduct a new robust procedure for mixture of regression with the assump-

tion of mixture asymmetric Laplace outliers under different skewness levels. An

EM algorithm is derived to estimate parameter upon the fact that the Asymmetric

Laplace distribution is a mixture of exponential and normal distribution. Extensive

simulations and real data analysis confirmed the efficiency of our algorithm. Then

we derive several equivalent portfolio selection methods under Asymmetric Laplace

Distribution framework that can be transformed to quadratic programming problem
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with explicit solutions. The Expectation-Maximization algorithm for parameter es-

timation of Asymmetric Laplace distribution is obtained and outperforms moment

estimation. There are several advantages of ALD models. First, the equivalence

of risk measures such as VaR, ES and StD faciliate the portfolio selection process

significantly. Second, the confidence levels of these models offer investors various

portfolio selection choices.

6.2 Further research

The investigation of LAD Generalized Lasso models, Constrained LAD Lasso mod-

els, selection of penalty parameter for compressive sensing and two models under

Asymmetric Laplace distributions in this thesis is a start for exploration of Lasso

regression and Asymmetric Laplace distributions. These topics are promising and

inspiring, some possible future works are as follows.

• LAD Generalized Lasso models.

The descent algorithm for LAD Generalized Lasso Models performs well under

nonsmooth optimization conditions. It is interesting to study the non-full-rank

cases in the future so that even p " n cases can be handled. Another possi-

ble research direction is to develop new algorithm for change-point detection

problem.

• Constrained LAD Lasso models.

We derive a descent algorithm for Constrained LAD Lasso with linearly equality

constraints, with applications in MAD-Lasso models. Further possible direc-

tions include partial index tracking, portfolio hedging and portfolio adjustment

under MAD-Lasso framework.

• Selection of penalty parameter for compressive sensing.
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Speech enhancement with compressive sensing is promising and intriging, we

may further investigate other signal performance measures, such as intelligibil-

ity.

• Two models under Asymmetric Laplace Distributions.

For mixture linear regression models, it is promising to extend the model to

high dimensional case; For portfolio selection under Asymmetric Laplace dis-

tribution, we can further consider Bayesian models.
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