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Abstract

In many engineering applications, such as ventilation systems and aircraft bodies,

flexible thin structures in contact with the unsteady flow are used. Acoustic radia-

tion will be generated if the structural vibration is excited by flow disturbances or

acoustic waves. It can propagate back and in turn modify the flow process or vi-

bration that generated it. Such kinds of problem involve a complex interaction be-

tween acoustics, flow and structural dynamics, known as aeroacoustic-structural

interaction, and it is a major consideration in engineering design. Therefore, ac-

curate prediction of the interaction is an important task. Motivated by the needs

for better understanding of the aeroacoustic-structural interaction in advance

silencer design, an effective yet accurate numerical methodology has been devel-

oped to study the interaction in both inviscid and viscous internal flows. Two

fluid-structure coupling approaches are presented and validated theoretically and

experimentally for different problems in this thesis.

The partitioned approach is used for the inviscid problem due to its satis-

factory accuracy and flexibility in development. The aeroacoustic model is gov-

erned by the two-dimensional compressible Euler equations together with equa-

tion of state and solved by a direct aeroacoustic simulation solver based on the

conservation element and solution element (CE/SE) method. The panel dynamic

model is governed by the nonlinear one-dimension plate equation and solved by

standard finite-difference procedure with an iterative coupling scheme to achieve
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the communication between two media. The numerical methodology is validated

with a theoretical study of a single frequency grazing incident acoustic excited

flexible panel vibration problem in a duct. The acoustic and structural responses

are discussed in detail. To study the effect of a mean flow, a uniform flow is

introduced to the duct. A subsonic flow results in the suppression of transmis-

sion loss significantly. Higher-order modes and oblique shock waves emerge in

the sonic and the supersonic flow. Besides, the bimodal pattern of panel response

is observed that incompressible theory is not able to predict. The phase speed

of both upstream and downstream travelling bending wave are changed by the

effect of fluid inertia. The subsonic and supersonic panel responses and nearfield

fluid response with broadband excitation are observed and discussed.

The monolithic approach is applied for the viscous problem because of the

failure of the partitioned one in a flow-induced structural instability problem. The

governing equations of both fluid (Navier-Stokes equations) and flexible panel are

combined and solved through the Newton iteration procedure. It shows higher

accuracy and better time efficiency than the partitioned approach. The numerical

methodology is validated with two experimental studies on a broadband grazing

incident acoustic excited flexible panel with a low subsonic flow problem and

a grazing flow-induced structural instability problem. Both aeroacoustic and

structural responses are captured correctly by the numerical methodology in these

two cases. The importance of including the viscous effect is demonstrated. The

effect of cavities is also discussed. In the acoustic-induced vibration problem,

it can amplify and attenuate the upstream and downstream travelling bending

waves and changes the effective silencing frequency range. In the flow-induced

vibration problem, it is independent of the occurrence of structural instability but

can modify the dominant vibration mode and the amount of energy radiation and

induce higher fluid inertia loading.
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w panel displacement

wx first-order spatial derivative of panel displacement

wxx second-order spatial derivative of panel displacement

wxxxx fourth-order spatial derivative of panel displacement

ẇ panel velocity

ẅ panel acceleration

∆TL difference between numerical and theoretical transmission losses

∆cB difference between two opposite flexural wave velocities

∆f frequency resolution

∆t time step size

∆x grid size in x direction

∆y grid size in y direction

γ specific heat ratio

δ size of the fluid volume in normal direction without panel deflection

ε panel strain



Nomenclature xxii

ε prescribed precision of convergence check

θ phase

κ thermal conductivity

λ wavelength

µ viscosity

ρ density of fluid

ρ0 reference density

ρp density of panel

τxx normal stress in in x direction

τxy shear stress

τyy normal stress in in y direction

φ phase shifts of the re-radiated wave relative to the incident wave

ω angular frequency

Subscripts

B boundary cell

G ghost cell

H homogeneous solution

a fluid element above panel

amp wave amplitude

b fluid element beneath panel

k iteration index

panel, a upper fluid-panel interface

panel, b lower fluid-panel interface

rms root mean square value



Nomenclature xxiii

Superscript

¯ time averaged value

ˆ dimensional quantity

′ fluctuation component

j index of time step

n index of panel mesh point



Chapter 1

Introduction

Flexible thin structures in contact with unsteady and moving fluid are commonly

found in many engineering or biological applications. They are easily excited

to vibrate by fluid disturbances or acoustic waves. The acoustic wave is also

generated when the geometry of the structures or flow unsteadiness are changed.

It will, in turn, propagates back to the source region and modifies the flow process

or vibration that generating it. The vibration and noise problems always are

major considerations in these applications because they may seriously reduce the

system performance or environmental friendliness.

For example, noise problem happens in heating, ventilating and other flow

ducting of domestic and industrial installations that internal noise generated by

flow moving machines can transmit through the duct wall to exterior (Cummings

2001). In these situations, the surfaces of the cabin or the duct wall are always

constructed by periodic stiffened thin metal panels, they are excited to vibrate

by the noise or unsteady flow from one side and re-radiate noise to another side.

Besides, undesired vibration and noise radiation also arise in piping and exhaust

systems in automotive applications (Herrmann et al. 2012). During their oper-

ations, pressure pulsation is generated that may excite the pipe shells, whose

vibration will then transmit to other car components and produces more noise.

1
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These noise and vibration problems annoy users and surrounding people and lead

to serious discomfort and even damage health. For the aircraft application, noise

problem also occurs when external noise generated by an aircraft engine that

transmitted through the airframe into the cabin and causing annoying to the

passengers (Frendi et al. 1995). Besides noise problem, strong structural and/or

acoustic loading will seriously endanger the safety of aerospace application. Sub-

jected to prolonged structure-borne or aeroacoustic excitation during the fight

operations or the launching of space vehicle or aircraft, fatigue of components in

the vehicle arises that may cause the flight mission failure (Djojodihardjo 2008,

2015). In the biological application, the interaction between acoustic wave, flow

and flexible structure also play a dominant role in many physiological phenomena

include pulse-wave propagation in the arteries, phonation and snoring (Cisonni

et al. 2017, Heil and Hazel 2011, Huang et al. 1995). The arteries are flexible

tubes carrying blood flow with pulse-wave. The mechanisms of phonation and

snoring are sound generation of flow and its induced vibration of flexible structure

include larynx, pharynx, soft palate and so on. All the aforementioned examples

involve complex interactions between the acoustics, flow, and structural dynam-

ics. Since such kind of interaction significantly affecting the engineering system

performance, safety, human health and comfortability, it is a critical consider-

ation in the various engineering fields. The understanding of the interaction is

a fundamental issue for further development of noise and vibration control at

sources.

On the positive side, the interaction can be used to facilitate many en-

gineering designs include energy harvesting, vibration, and noise controls. At

a sufficiently high flow velocity, dynamic instability of flexible plate is induced

which is known as flutter. During the flutter, energy is continuously transferred

from the flow to the plate. Making use of the flutter motion, some researchers in-
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troduced some innovative concepts for electrical power generation (Cisonni et al.

2017, Tang et al. 2009). On the other hand, flutter problem also occurs with air-

foil during a flight that may lead to the aircraft lose its control. However, active

control using acoustic excitations had been verified that can suppress such kind of

flow-induced vibration (Huang 1987, Nagai et al. 1996). Conversely, noise prob-

lem also can be reduced by making use of flexible panel vibration. A drum-like

silencer, which constructed by flexible panels backed by rigid cavities and flush-

mounted in a duct, is an effective low frequency noise control design (Huang

1999). When the noise in the duct passes through the silencer, the flexible pan-

els will be excited to vibrate and cause noise reflection to its source region. All

these concepts are the applications based on the understanding of the interaction

between acoustics, flow, and structural dynamics.

1.1 Literature survey

Researchers have attempted different approaches and angles to study the afore-

mentioned interaction between three dynamics: acoustics, flow and structural

dynamics. However many of them only consider either two dynamical processes

and treat the remaining one as a minor effect that without interaction or even

can be neglected. The following is going to briefly review those approaches.

1.1.1 Interaction of flow and structure

Some of the studies put the focus on flow-structure interaction over the acoustic

aspects. An early interest of the interaction between flow and flexible structure

arose from the interest in the boundary-layer stabilization concept inspired by

dolphins. Dolphins can achieve anomalously high swimming speeds that was at-

tributed to the flexibility of its skin that delaying the transition of a laminar



1.1. Literature survey 4

boundary layer to a turbulent one (Gaster 1987). Many research, e.g. Benjamin

(1960, 1963), Landahl (1962) and Carpenter and Garrad (1986), extensively stud-

ied the effect of infinitely long flexible structure surface with an elastic foundation

on hydrodynamic stability. They mainly focus on the travelling wave behaviour,

such as dispersion relation, at the surface of an incompressible and irrotational

fluid. Following the classification by Carpenter and Garrad (1986), two types

of instabilities can be summarized: Tollmien-Schlichting instabilities and flow-

induced surface instabilities. Tollmien-Schlichting instabilities exist only with

the viscous flow and could be stabilized by increasing the solid surface flexi-

bility or decreasing the structural damping. Flow-induced surface instabilities

could exist with the inviscid flow and could be stabilized by heavy damping. The

conditions of occurrence and long-time behaviour of absolute (temporal) and con-

vective (spatial) instabilities are addressed and analysed by Brazier-Smith and

Scott (1984), and Crighton and Oswell (1991). The flow-structural interaction in

internal, viscous and incompressible flow is studied by Huang (2001b), Luo and

Pedley (1998), Stewart et al. (2010), etc. Stewart et al. (2010) showed the viscous

effect can destabilize the system.

Aeroelasticity and hydroelasticity are another branches of research direc-

tions on flow-structure interaction which are structure-based studies (Arzouma-

nian 2011, Paidoussis 2004). They are sharing same theories and approaches

but applying on gas and liquid flow respectively. These studies mainly consider

the absolute instability, includes flutter (dynamic) and divergence (static), of a

flexible panel of finite extent immersed in inviscid flow. The structural vibration

is expressed as a modal expansion of equivalent in-vacuo modes by Galerkin’s

methods. The aero/hydroelastic forces are also expressed in terms of frequency

and wavenumber by Laplace and Fourier transforms. The complete aeroelasticity

theory was presented in the monograph of Dowell (1975). He also summarized
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four parameters playing the primary roles on the onset of the instability: flow

velocity, panel length to width ratio, dynamic pressure (as compared to the panel

stiffness) and fluid to panel mass ratio (Dowell 1970). Peake (2004) indicated that

the onset of instability is also related to the relationship between panel length

and bending wavelength in a long finite panel. Instability may occur if the panel

length is not an exact multiple of bending wavelength.

Numerical simulations were conducted by Lucey and his co-workers (Lucey

1998, Lucey et al. 1997, Lucey and Carpenter 1992) to study the responses of both

finite and infinite flexible panel excited by a point pressure pulse or subjected to

a boundary layer with an inviscid flow. The effects of structural damping and

inhomogeneity, such as stiffness change and end conditions, of the panel on insta-

bility were investigated. The results agreed with the traditional hydrodynamic

stability theory that the damping allows energy transfer from the flow to the

panel to destabilize it. However, the role of destabilizing is replaced by the edge

conditions in the finite panel and the damping is only to attenuate the surface

wave. Energy will be scattered by any strong local inhomogeneity. It was pos-

sible for the finite panel to respond at frequencies other than that of the driver

in the presence of uniform flow. They also pointed out that the flow nonlinear-

ity is important for the accurate calculation of surface instability. Pitman and

Lucey (2009) also found that the panel response in a uniform flow is dominated

by attenuating upstream- and amplifying downstream-traveling motions. On the

other hand, Davies and Carpenter (1997a,b) presented very detailed studies of the

instabilities on a finite panel induced by Tollmien-Schlichting waves in a channel

flow. The stabilization or occurrence of instability, such as travelling wave flutter

or divergence, are depended on combination of panel length, wavelength of panel

and Tollmien-Schlichting waves.

There are recent studies, e.g. Cisonni et al. (2017), Howell and Lucey
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(2012), and Huang and Zhang (2013), concerned with the instability of a can-

tilevered panel in open or confined flow. The stability is found sensitive to some

factors, such as the mounting at the leading edge, the mass at the trailing edge

and the distance of the confinement. The viscous effect on a cantilever in inter-

nal flow is studied by Cisonni et al. (2017). The viscosity stabilizes the system,

reduces the critical flow velocity and changes the first unstable structural mode.

More comprehensive reviews on the studies of stability problem are provided

by Abrahams and Wickham (2001), Arzoumanian (2011), Lucey et al. (1997),

Paidoussis (2004), Peake (2004), Shankar (2015), and Stewart et al. (2010).

Furthermore, some researches, e.g. Clark and Frampton (1997) and Tang

et al. (2007), calculated the acoustic radiation from the flow-structure interaction

in inviscid flow. Schäfer et al. (2010) built a model investigate the acoustics radi-

ated from vibration excited by a low Mach number turbulent flow. They showed

both structural and acoustic responses were reduced by higher flow velocity and

stronger isotropy of the turbulent fluctuations. In the problems of interest in

these studies, fluid is always unconfined so the feedback of acoustics radiated

from the vibration will be taken as an ignorable effect in the interaction.

1.1.2 Interaction of acoustics and structure

The field of study of the structural vibration, its response to sound and radia-

tion to the surrounding still fluid is known as vibroacoustic or structural acous-

tics (Fahy and Gardonio 2007), which is acoustics-based study. The acoustic

behavior in an inviscid, isotropic and compressible fluid is governed by the wave

equation. Similar to the approach applied in aeroelasticity, the wave equation

is transformed to a frequency domain by Laplace and Fourier transforms. The

motion of the structure is also considered as a simple harmonic wave, that may

be driven by acoustic incident or mechanical forces.
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The influences of heavy and light fluid loadings on the acoustic radiation

from an infinite flexible panel driven by localized forces are firstly addressed by

Maidanik and Kerwin (1966). The importance of the acoustic effect in the fluid-

structure interaction had been pointed out by Crighton (1984). He studied the

influence of fluid loading on periodically ribbed panels and divided it into two

types: subsonic surface wave and acoustic component. Since the panel segments

separated by the ribs, the fluid motion induced by the vibration provided the

only connection that allows structural waves transmission between two segments.

The subsonic surface wave provides a local coupling (between the neighboring

panel segments) under heavy fluid loading and the acoustic component provides a

long-range coupling (between the non-neighboring panel segments). The acoustic

radiation is strictly different subjected to subsonic and supersonic surface wave

speed. Ffowcs Williams and Hill (1987) indicated that the energy radiated by

a supersonic surface wave is much larger than subsonic one. The details of the

theory of fluid loading were presented in the work of Crighton (1989).

The acoustic-structural interaction in a confined fluid was studied by

Huang (1999, 2001a). By using Doak’s theory (Doak 1973), he considered the

vibration as a collection of harmonic point sources to calculate the pressure field

generated in a duct. He showed that large transmission loss of a grazing incident

acoustic wave can be achieved through the excitation of panel vibration and its

re-radiation. The effectiveness is dominated by the panel length to duct width

ratio and structural damping. Moreover, some other research, e.g. Maestrello

et al. (1992), and Aginsky and Gottlieb (2012, 2013), concern the structural sta-

bility subjected to an acoustic loading of normal incidence. Linear, nonlinear and

chaotic responses can be observed by increasing the sound pressure level of the

incidence.

In addition, the effect of mean flow on the interaction between acoustics
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and structure was also studied through the convected wave equation, e.g. Abra-

hams (1983), Choi and Kim (2002), and Ko (1994). Except for the properties

of the panel itself, the panel response was found dependent on the flow speed.

Sucheendran et al. (2014) investigated a similar problem in a duct by extended

Doak’s theory to account for uniform mean flow. They revealed the free vibrating

frequencies in the presence of flow will significantly deviate from the in vacuo nat-

ural frequencies. The flow also reduced the peak response of the panel. However

the effects of flow in these studies are calculated by linear and inviscid theories,

nonlinear interaction and the effect of viscosity cannot be accounted.

1.1.3 Aeroacoustic-structural interaction

So far there are a large number of studies worked on the fluid-structure inter-

action. They reveal that acoustics, flow, and structural dynamics are certainly

strong coupled together. Fluid provided additional mass to shift the natural fre-

quencies of vibration and damping to attenuate the vibration. The presence of

flow enhances the variability of the interaction. It may attenuate or amplify the

vibration and may induce instabilities no matter in viscous or inviscid. The acous-

tic effect also plays an important role in the fluid-structure coupling (Crighton

1984), especially for internal flow problem. Unlike in an open flow problem, the

sound radiated from a vibrating structure cannot propagate away but confined

near its source. The acoustic effect on the vibration created by itself could be

strong. The nonlinear and chaotic phenomenon can be induced if the acoustic ex-

citation is strong enough (Maestrello et al. 1992). Maestrello and Grosveld (1992)

carried out an experimental study on the effect of an acoustically excited flexible

surface on the transition of a boundary layer. They found both sound and vibra-

tion were involved in the destabilization of the boundary layer. It showed clear

evidence that three dynamic processes are inherently coupled, their responses are
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nonlinear and cannot be simulated if anyone is missed. Therefore three dynam-

ics have equivalent importance and their interaction should be analysed together

carefully by an appropriate coupling approach. To distinguish the interaction

problem involving all three dynamical processes together from the others, it is

appropriate to describe such kind of problem as an aeroacoustic-structural inter-

action.

It is nearly impossible to solve highly nonlinear problems analytically be-

cause of their complexity. Many of the aforementioned studies applied simplified

and linearized models together with analytical treatment, e.g. Crighton and Os-

well (1991), Huang (1999, 2001a) and Choi and Kim (2002). They provided

many significant fundamental understandings on the problem with simple geom-

etry. However, the linear fluid model cannot accurately predict the flow-structure

interaction with nonlinear oscillatory behaviour (Lucey et al. 1997). To further

improve our understanding and deal with more complex configurations, the com-

putational study is necessary (Korobkin et al. 2011). Computational method able

to resolve the nonlinear problems in a numerical way and handle a large number

of calculations.

Besides, the analytical study is always performed in the frequency domain

and assumed the solutions are time-harmonic. It provides the time integrated or

averaged results, and help people to understand the overall characteristics of the

problems or the systems. However, the details of any transient and time evolution

are missed. The time-harmonic assumption may also not effective to capture

some transient or weak dynamics because the solution always is a summation

of harmonic modes and the numbers of modes are limited which miss the high

order effect. Therefore, they are far from satisfactory for the predictions of more

practical and complex situations. For the understanding of the actual operation

of the interaction between different dynamics, the details of transient and time
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evolution must be captured. Therefore, the time-domain analysis will be a more

suitable for the present studies.

Rare attempts are completely accounting all effects of three dynamics to

each other. One of the complete numerical models on fluid-structure interaction

was developed by Visbal and Gordnier (2004). They employ the compressible

Navier-Stokes and von Karman plate equations for the fluid and structural do-

mains respectively. The fluid solutions, which involve both flow and acoustic re-

sponses, are discretized by a sixth-order finite-difference method and solved with

Newton-like sub-iterations to achieve second-order time accuracy. The structural

solutions are also solved by the finite-difference method with second-order accu-

racy. Two domains are then coupled by an iterative implicit scheme. However,

their study mainly focuses on the phenomena of instability rather than the acous-

tics. They revealed the flutter is independent of the type of panel ends conditions

in supersonic flow. The divergence and traveling-wave-flutter emerged for low and

high dynamic pressure respectively in high subsonic flow. Therefore, the current

state of efforts in resolving the coupled interactions is still far from satisfactory.

1.2 Fluid-structure coupling

The fluid and structural dynamics are normally modeled by respective equations

systems. A coupling must be constructed to achieve their connections and inter-

actions. Different coupling schemes have been developed in the past. The benefits

and drawback of different modelings and coupling schemes are reviewed by Dow-

ell and Hall (2001) and Kamakoti and Shyy (2004). The coupling schemes can be

generally classified into two categories: partitioned and monolithic approaches.
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1.2.1 Partitioned approach

In the partitioned approach, separate solvers are used for different physical do-

mains and an additional procedure is employed to handle the data transfer across

interfaces between the domains. A detailed summary of different solvers along

with interfacing methodologies was presented by Kamakoti and Shyy (2004).

The major benefit of this approach is its flexibility. Different discretization tech-

niques, solution algorithms, and independent modelings can be used for different

domains. The efficiency may be enhanced by optimizing the individual algorithms

and modelings. It is convenient if specialized solvers are readily available, only

coupling procedures for the interfaces is required to develop. The solvers and

the coupling procedures can be maintained, advanced and replaced separately

for further improvement (Felippa et al. 2001, Heil 2004). However, interpolation

and/or extrapolation must be employed if the solution points at the interfaces of

the models are not identical. This eventually increases the computational cost

and leads to substantial loss of the accuracy information, especially those at high

frequencies.

The most straightforward, simple and time effective coupling scheme are

staggered time-integration scheme, which also described as loose or weak cou-

pling. It solves each domain once and one by one in each time step. The major

drawback is the effects at the interface are always lag one time step in relation

to the internal effect. When the first domain is going to be updated, the in-

formation contained in other domains are not updated yet, so the effects from

the internal and external cannot be synchronized. The conservation properties of

the continuum of the systems may be lost. Thus small errors may be generated

and accumulated that lead to inaccurate solutions or poor stability. The solution

of the time lagging problem is to introduce iterative correction scheme (Felippa

et al. 2001, Heil 2004, Rugonyi and Bathe 2001), which also described as tight
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or strong coupling correspondingly. In the beginning of each single time step,

same procedure in the staggered scheme is carried out as an initial guess. It then

feeds the updated solutions back to the first solver and reprocess all domains to

correct the solutions. This feedback and reprocessing procedure will be repeated

until the solutions converge. However, it may still unstable if the structure has

low elasticity in relation to the compressibility of fluid. This can be overcome by

underrelaxation in the iteration (Greenshields and Weller 2005). Besides, sub-

cycling which multi time scales are used for different domains can be applied

to enhance efficiency. However, there is still no guarantee of computationally

efficient. The iterative method may tend to converge slowly. To achieve tight

coupling, a large number of iterations is then required that extremely demanding

on computational resources (Felippa et al. 2001, Greenshields and Weller 2005,

Heil 2004, Rugonyi and Bathe 2001).

The approach proposed by Schäfer et al. (2010) is a good example. They

attempted to calculate the acoustic field generated from a turbulent flow and its

induced vibration of a thin flexible panel with in time-domain through a hybrid

approach. First, the flow and the panel responses are resolved from a finite-

volume incompressible large-eddy simulation solver and a finite-element struc-

tural solver. The unsteady flow and panel vibration solutions are then fed in a

finite-element acoustic solver to calculate their individual acoustic contributions

and were summed up to produce the total acoustic field. From this point of view,

acoustics, flow, and structural dynamics are solved in three separate solvers with

three pairwise channels. It inevitably involves many interpolation and/or extrap-

olation and a large number of iterations that consequently lead to computational

cost ineffective and degradation of accuracy.
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1.2.2 Monolithic approach

In the monolithic approach, the governing equations are reformulated by combin-

ing all different physical domains, then discretizes and solves all domains simulta-

neously. Newton-Raphson method or similar techniques with iteration procedures

are always applied for the implicit solutions in the governing equations. Normally,

this approach has faster convergence than the partitioned approach and uncon-

ditional stability because of the inherent coupling that guarantees the conser-

vations and time accurate solutions (Greenshields and Weller 2005, Ishihara and

Yoshimura 2005). However, it still has some drawbacks. If the rigidity and/or the

mass of the structure are too large compared to the fluid, ill-conditioned system

matrices may be obtained and lead to slow convergence or even divergence in the

iteration procedure. A solution of this drawback is to develop appropriate pre-

conditioners for the iterative solution (Ishihara and Yoshimura 2005, Rugonyi and

Bathe 2001). Besides, the approach may be costly in computational resources.

First, the main computational time cost may arise from the repeated assembly

of the Jacobian matrix for the Newton method (Heil 2004). Second, the number

of degrees of freedoms in the equations is increased since all physical domains be

solved simultaneously. The storage of the variables will require a large amount

of memory. This drawback can be overcome by a substructuring procedure to re-

duce the degrees of freedoms, such as expressing the structure variables in terms

of fluid variables (Ishihara and Yoshimura 2005).

An example of monolithic coupling scheme was presented by Rugonyi and

Bathe (2000, 2001). They aimed to study the flow-structural interaction in a

Newtonian incompressible fluid. The governing equations for fluid and structure

are discretized by the finite-element method and formed as a linearized coupled

equations in a matrix form. The nodes at the interface between flow and structure

domains are required coincident. Therefore the flow and structural responses can
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be resolved simultaneously by using the Newton-Raphson method.

1.3 Research scopes

The aim of the present work is to develop an effective yet accurate numerical

methodology that facilitates the better understanding of aeroacoustic-structural

interaction in internal flow for advancing silencing design.

Recently Lam et al. (2014a) developed a validated and accurate aeroa-

coustic solver by using conservation element and solution element method for

two-dimensional compressible Navier-Stokes equations and validated it with ana-

lytical solutions, experiments, and incompressible simulation results. This solver

is adopted for the fluid model. Therefore the numerical model for the flexible

panels and the coupling between two models are going to be developed in this

thesis. Because of the aeroacoustic solver is readily available, partitioned cou-

pling approach is the primary choice to take its advantage of simplicity. However,

both partitioned and monolithic approaches have specific benefits and drawbacks.

The monolithic approach may also be developed for different situations if neces-

sary. The methodologies will be validated theoretically and experimentally. The

theory on a duct silencer design introduced by Huang (1999) and the related

experiments (Choy and Huang 2005, Liu 2011) are selected as benchmarks cases

for validation. Based on the results in these cases, the aeroacoustic-structural

response in a duct is analysed in both inviscid and viscous grazing flow, with and

without grazing acoustic incidence, and with and without cavity backed flexible

panel. Since some ducts commonly used in real applications have a small height

to width ratio, an example is shown as Figure 1.1, the boundary effect in spanwise

direction is small for the duct centre. Therefore two-dimensional assumption is

adopted in the thesis.
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Figure 1.1: Ventilation ducts commonly found in Hong Kong.

1.4 Outline

The remainder of the thesis is organized as the following.

Chapter 2 introduces the physical models and the numerical methodology by

partitioned approach for solving the aeroacoustic-structural interaction in inviscid

flow. The detail of the aeroacoustic and panel dynamic models, and the staggered

and iterative coupling schemes are presented.

Chapter 3 presents the validation of the partitioned approach by compar-

ing with an inviscid theoretical solution, and the analysis of the aeroacoustic-

structural interaction of an acoustic-induced panel vibration in a duct. The ac-

curacies of staggered and iterative coupling schemes are also discussed. The

acoustic-structural responses with single frequency excitation, the effect of flow,
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and the aeroacoustic-structural responses with broadband excitation are studied

in detail.

Chapter 4 describes the derivation of the coupled governing equations and the

numerical treatment by monolithic approach for the viscous problem since the

partitioned one is found that cannot handle this problem. The accuracies and

efficiencies of two approaches are also compared.

Chapter 5 gives the validation of the capability in capturing the aeroacoustic-

structural interaction in a viscous flow of the monolithic approach by comparing

with two experimental studies, and the analysis on the interaction of broadband

acoustic- and flow-induced panel vibration in a duct. The aeroacoustic-structural

responses, the effect of viscosity and cavity are investigated.

Chapter 6 summarizes the achievements and knowledge obtained in this the-

sis and comments on the further improvement and study of the computational

aeroacoustic-structural interaction.



Chapter 2

Physical Models and Numerical

Methods

The partitioned approach is employed for the aeroacoustic-structural interaction

problem with inviscid fluid and sliding flexible panel because of its flexibility and

convenience for the numerical methodology development. The accuracy is also

satisfied as shown in the next chapter. It treats the fluid and the structure in

separate solvers, and then allows their communication by a coupling strategy.

Therefore to obtain an accurate aeroacoustic-structural response of a flexible

panel exposed to flow and acoustic wave in the time-domain, three key elements

are required in this methodology. They are (i) the modeling of aeroacoustics of

the fluid, (ii) the modeling of the dynamic response of the panel, and (iii) the

coupling strategy for correctly accomplish the interplay between aeroacoustics

and panel dynamics. All of these elements must be included in the formulations

of the numerical solvers and each one of them must be selected according to

the specific configuration considered. The formulations and the corresponding

numerical solvers are described in the following sections. In the present study,

the fluid domain is only considered in two-dimensions and so the panel domain

is considered in one-dimension. All the variables mentioned in the followings are

17
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normalized by a reference length L̂0, a reference density ρ̂0 and a reference acoustic

speed ĉ0. Reader are reminded that the hat (̂ ) denote dimensional variables.

2.1 Aeroacoustic model

In fact, the acoustic motion is simply a kind of unsteady flow motions supported

by a compressible fluid medium (Crighton 1981). It is logical to adopt a numerical

model for the medium that allows simultaneously calculate both the unsteady

flow and the acoustic field. Otherwise, the inherent nonlinear interaction of these

two fields cannot be accounted correctly in the calculation. This capability is

particularly important for resolving the aeroacoustic problem in internal flow. It

is because the acoustic fluctuations experience multiple reflections and scattering

inside the duct and may propagate back and change the unsteady flow dynamics

and the panel vibration that generating it. As such, we adopt an aeroacoustic

model based on direct aeroacoustic simulation (DAS) scheme (Lam et al. 2013,

2014a) in the present study.

The aeroacoustic problem is governed by the two-dimensional compressible

Navier-Stokes equations together with the ideal gas law for calorically perfect gas.

The strong conservation form of the normalized Navier-Stokes equations without

source can be written as,

∂U

∂t
+
∂ (F − F v)

∂x
+
∂ (G−Gv)

∂y
= 0, (2.1)

where

U =



ρ

ρu

ρv

ρE


, F =



ρu

ρu2 + p

ρuv

(ρE + p)u


, F v =

M

Re



0

τxx

τxy

τxxu+ τxyv − qx


,
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G =



ρv

ρuv

ρv2 + p

(ρE + p)v


, Gv =

M

Re



0

τxy

τyy

τxyu+ τyyv − qy


,

E =
p

ρ(γ − 1)
+

1

2
(u2 + v2), p =

ρT

γ
, (2.2)

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y

)
, τyy =

2

3
µ

(
2
∂v

∂y
− ∂u

∂x

)
, τxy = µ

(
∂u

∂y
+
∂v

∂x

)
,

qx = −κ∂T
∂x

, qy = −κ∂T
∂y

,

ρ = ρ̂/ρ̂0 is the density of fluid, u = û/ĉ0 and v = v̂/ĉ0 are the velocities in

x = x̂/L̂0 and y = ŷ/L̂0 direction respectively, t = t̂ĉ0/L̂0 is the time, p = p̂/(ρ̂0ĉ
2
0)

is the pressure, E = Ê/ĉ20 is the total energy, qx and qy are the heat fluxes, τxx,

τyy and τxy are normal and shear stresses, µ = µ̂/µ̂0 is the viscosity, the thermal

conductivity κ = µcp/Pr, the specific heat capacity cp = 1/(γ − 1), the specific

heat ratio γ = 1.4, Prandtl number Pr = ĉpµ̂0/k̂0 = 0.71, the Mach number

M = û0/ĉ0, the Reynolds number Re = ρ̂0û0L̂0/µ̂0, û0 is the mean flow velocity,

the acoustic speed ĉ0 =

√
γR̂T̂0 is also used as reference velocity, and the reference

temperature T̂0 = 288.2 K. The relationship between viscosity and temperature

is given by Sutherland’s Law,

µ = T
3
2

1 + Ŝsu/T̂0

T + Ŝsu/T̂0
, (2.3)

where Sutherland’s constant Ŝsu = 110.4 K. For inviscid fluid, the viscous terms

will be ignored, i.e. F v = Gv = 0, that the aforementioned equations become

Euler equations.
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2.1.1 The conservation element and solution element

method

Low dispersive and dissipative are the necessary requirements for DAS scheme be-

cause of the great disparity of the energy and length scale between acoustics and

flow dynamics (Lam et al. 2014a). That is why the high-order finite-difference

scheme is applied in the work of Visbal and Gordnier (2004). However, high-

order schemes are always highly demanding in the computational resources. The

major disadvantage of the finite difference method is that is only efficient with

uniform and regular meshes, so it is not suitable for complex geometries (Ham-

dan and Dowling 1995). On the other hand, the finite-element method may be

a better choice that provides a greater versatility in modelling complex geome-

tries. However, it is computationally expensive in terms of computer time and

storage requirements because it has to handle a huge matrix calculation. An

alternative is the space-time conservation element and solution element (CE/SE)

method (Chang 1995) that the accuracy up to second order although it is built

to first order in nature (Lam et al. 2014a), so it should be more efficient than

the high-order finite-difference scheme. It emphasises on the strict conservation

of physical laws and the unified treatment in both space and time, that is a com-

pletely different concept from finite-difference or finite-element schemes. Lam

et al. (2014a) showed that conservation element and solution element method is

capable of resolving the low Mach number interactions between the unsteady flow

and acoustic field accurately by calculating the benchmark aeroacoustic problems

with increasing complexity. Therefore, the CE/SE method based the DAS solver

is adopted as the aeroacoustic model in the present study. The full description

of the solver can be referred to the works of Lam (2011), the concept is briefly

described in the following.

Let the spacial coordinates x and y, and the time t be considered as the
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Figure 2.1: Triangulate grids in a computational domain. ◦ : A, C, E and G

are the centroids of the grids; B, D and F are the nodes; × : G∗ is

a solution point; and −−− is the boundary of a CE.

coordinates of a three-dimensional Euclidean space E3. The equation in the

strong conservation form, Equation 2.1, can be written as,

∇ ·K = 0, (2.4)

which ∇· is the divergence operator in E3 and K = [F− Fv, G−Gv, U]. By

using Gauss’s divergence theorem in E3, Equation 2.4 can be written as the

integral conservation law, ∮
S(V )

K · ds = 0, (2.5)

where ds = [∆x, ∆y, ∆t] and S(V ) is the surface of an arbitrary space-time

region V in E3. The computational domain is then decomposed into triangulate

grids as Figure 2.1. The figure shows a grid BDF and its centroid is G. A, C

and E are the centroids of adjacent grids. To construct a conservation element

(CE), the nodes of a grid and the adjacent centroids will be connected to form
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Figure 2.2: Geometrical definitions of CE(G∗, j). − − − is the boundary of

SE(G∗, j).

the boundary, i.e. ABCDEF. G∗ is the centroid of the hexagon ABCDEF, but

notice that the grids can be non-uniform, and G∗ and G may not be the same

point in this situation. G∗ is also taken as the solution point of the hexagon. The

hexagon is then extended in time axis to form a hexagonal prism, that defined

as a CE. Conservation of flux, Equation 2.5, is enforced in it. The CE shown in

Figure 2.2 is denoted as CE(G∗, j), where G∗ represents the spatial location and

n denotes the j-th time level.

Meanwhile, a solution element (SE) is formed by all the adjacent planes

of the corresponding solution point as Figure 2.3 for example. The flow variables

Ψ(X) = U(X), F (X), F v(X), G(X) or Gv(X) at any location X within the

SE(G∗, j) can be estimated by first order Taylor expansions from the solution

point G∗,

Ψ (X) = ΨG∗ + (x− xG∗) (Ψx)G∗ + (y − yG∗) (Ψy)G∗ + (t− tG∗) (Ψt)G∗ , (2.6)

where the terms with subscripts x, y, and t are the derivatives respect to x, y,

and t respectively. However, the viscous terms F v(X) and Gv(X) are assumed
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Figure 2.3: Geometrical definitions of SE(G∗, j).

as constant within the SE(G∗, j). Therefore the Navier-Stokes equations can be

expressed as

(U t)G∗ = − (F x)G∗ − (Gx)G∗ , (2.7)

and K(X) can also be approximated as

K (X)G∗ ≡ [F (X)G∗ − F v(X)G∗ , G(X)G∗ −Gv(X)G∗ , U(X)G∗ ] . (2.8)

As such all the fluxes through the planes in solution element and flow variables

can be approximated by the solution point G∗.

The time marching of the solution is carried out as the following. For

CE(G∗, j) in Figure 2.2, the fluxes through planes ABGF, ABB′A′ and FAA′F′

are approximated by SE(A∗, j−1/2); similarly, the fluxes through planes CDGB,

CDD′C′ and BCC′B′ are approximated by SE(C∗, j−1/2); and the fluxes through

planes EFGD, EFF′E′ and DEE′D′ are approximated by SE(E∗, j−1/2). The flux

Ut through the top plane A′B′C′D′E′F′ can be found because of the conservation
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of flux. The fluid variables U at G∗ at j-th time step can also be determined.

2.2 Panel dynamic model

The dynamic response of the flexible panel can be generally modelled with the

two-dimensional nonlinear Von Karman’s theory for an isotropic rectangular elas-

tic plate on Kelvin foundation (Rao 1999). The panel is assumed to be of uniform

small thickness hp = ĥp/L̂0 and initially flat. However, the nonlinear dynamic

response can be simplified to the one-dimension plate equation with simplest ap-

proximation (Dowell 1975). Using the same set of reference parameters adopted

in the aeroacoustic model, the normalized governing equation for panel displace-

ment w(x) = ŵ/L̂0 can be written as,

D
∂4w

∂x4
− (Tx +Nx)

∂2w

∂x2
+ ρphp

∂2w

∂t2
+ C

∂w

∂t
+Kpw = pex, (2.9)

where D = D̂/(ρ̂0ĉ
2
0L̂

3
0) is the bending stiffness, Tx = T̂x/(ρ̂0ĉ

2
0L̂0) is the external

tensile stress resultant per unit length in the tangential direction (i.e. x-direction),

Nx is the in-plane force in the tangential direction induced by stretching, Lp =

L̂p/L̂0 is the length of panel, ρp = ρ̂p/ρ̂0 is the density of panel, C = Ĉ/(ρ̂0ĉ0) is

the structural damping coefficient, pex = p̂ex/(ρ̂0ĉ
2
0) is the net pressure exerted on

the panel surface, and Kp = K̂pL̂0/(ρ̂0ĉ0) is the stiffness of foundation. Kp is set

equal to zero for all cases reported in the thesis. Four types of flexible panels can

be classified according to their ratio of thickness to length (hp/Lp) (Szilard 2004).

They are membranes (hp/Lp < 1/50), stiff plates (1/50 < hp/Lp < 1/10, “plate”

is understood to mean stiff plate in engineering practice), moderately thick plates

(1/10 < hp/Lp < 1/5) and thick plates (hp/Lp > 1/5). It is necessary to carry

out a full three-dimensional stress analysis to yields sufficiently accurate results

for the moderately thick plates and thick plates (hp/Lp > 1/10). Therefore, they

are not considered in the present study. For the stiff plates with hp/Lp � 1/50,



2.2. Panel dynamic model 25

x

y

∆x

w

∆w

∆s

Nx

Nx

Figure 2.4: Free-body diagram of a small deflected flexible panel segment.

the restoring force will be dominated by bending stiffness compared to the tensile

forces, so they are negligible, (Tx+Nx) = 0. In another situation, the tensile forces

will dominate the membranes motion, flexural resistance will be not appreciable,

D = 0. On the other hand, the in-plane shear stress can be ignored because the

sideways motion at every point on the membrane is negligible when the deflections

are small in comparison with the thickness (w/hp ≤ 0.2). The panel motion can

be assumed linear. Therefore, the nonlinearity term is then ignored, Nx = 0,

and the tensile force on the middle surface remains constant, which is the small-

deflection theory. For w/hp � 0.2, the panel motion is no longer linear. The

large-deflection theory should be employed. The nonliear tensile force will even

dominates if w/hp � 1 (Dowell 1975, Szilard 2004).

The large-deflection theory accounts for the in-plane force created by the

stretching of a deflected panel (Szilard 2004). The in-plane force can be obtained

by Hooke’s Law (Dowell 1975),

Nx = Ephpε, (2.10)

where ε is the strain and Ep = Êpĉ
2
0/(ρ̂0L̂

4
0) is the modulus of elasticity. When

a small panel segment in one dimension is elongated from ∆x to ∆s long after

deflection as shown in Figure 2.4, the strain of the segment is

ε′ =
∆s−∆x

∆x
=

∆s

∆x
− 1. (2.11)
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The Pythagorean theorem gives ∆s2 = ∆x2 + ∆w2, so

∆s

∆x
=

√
1 +

(
∆w

∆x

)2

. (2.12)

By considering the following expression and neglect the higher order term (∆w/∆x)4,[
1 +

1

2

(
∆w

∆x

)2
]2

= 1 +

(
∆w

∆x

)2

+
1

4

(
∆w

∆x

)4

≈ 1 +

(
∆w

∆x

)2

, (2.13)

Equation 2.12 can be approximated as

∆s

∆x
= 1 +

1

2

(
dw

dx

)2

. (2.14)

The strain (Equation 2.11) of the small segment can also be approximated as

ε′ =
1

2

(
dw

dx

)2

. (2.15)

The total strain of the entire panel is therefore obtained by integration,

ε =
1

Lp

∫ Lp

0

ε′dx =
1

2Lp

∫ Lp

0

(
dw

dx

)2

dx. (2.16)

Finally the nonlinear in-plane force can be obtained by substitute Equation 2.16

into Equation 2.10,

Nx =
Ephp
2Lp

∫ Lp

0

(
dw

dx

)2

dx. (2.17)

The panel dynamic equation is solved using the standard finite-difference

procedures. The panel is initially discretized into a series of meshes of constant

size ∆x. All spatial derivatives of the panel displacement are approximated using

second-order central differences (Hayek 2011) as follows,

∂wn,j

∂x
= wn,jx =

1

2∆x

(
wn+1,j − wn−1,j

)
, (2.18)

∂2wn,j

∂x2
= wn,jxx =

1

∆x2
(
wn+1,j − 2wn,j + wn−1,j

)
, (2.19)

∂4wn,j

∂x4
= wn,jxxxx =

1

∆x4
(
wn+2,j − 4wn+1,j + 6wn,j − 4wn−1,j + wn−2,j

)
, (2.20)
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where the superscripts j and n indicate the j-th time step and n-th panel mesh

point respectively. The time derivatives are calculated using the following ap-

proximations, with time step size ∆t,

∂wn,j

∂t
= ẇn,j =

1

2∆t

(
wn,j+1 − wn,j−1

)
, (2.21)

∂2wn,j

∂t2
= ẅn,j =

1

∆t2
(
wn,j+1 − 2wn,j + wn,j−1

)
, (2.22)

Substituting all these approximations to Equation 2.9, the panel displacement is

approximated as

wn,j+1 =
4ρphpw

n,j + (−2ρphp + C∆t)wn,j−1 + 2∆t2B

2ρphp + C∆t
, (2.23)

where B = pex + (Tx +Nx)w
n,j
xx − Dwn,jxxxx −Kpw

n,j. Therefore, after each time

step the dynamics of all panel mesh points W = [w, ẇ, ẅ]ᵀ are readily available.

2.3 Boundary conditions

2.3.1 Fluid domain

The boundary conditions for the fluid domain are prescribed as follows. Isother-

mal condition,

T = T0, (2.24)

is specified on all solid surfaces. Zero normal velocity v = 0 is applied for all rigid

surfaces. The details of the treatment of the sliding wall boundary conditions in

CE/SE method can be referred in the works of Lam et al. (2014a). For the fluid

boundary in contact with the vibrating panel are required to satisfy the tangency

condition (i.e. in y-direction),

v = ẇ + uwx, (2.25)
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and the normal pressure gradient condition,

−∂p
∂y

= ρ
∂v

∂t
+ ρu

∂v

∂x
, (2.26)

to ensure the continuity of velocity and momentum, respectively, at the fluid-

panel interface. However, the present study only focus on the effect of fluid

inertia so the convective terms are ignored. In fact, this is only valid for low

speed flow, i.e. when u is small. The inclusion of the convective terms will

induces huge difficulty in the computation so its effects are left to future studies.

The tangency and normal pressure gradient conditions become

v − ẇ = 0, (2.27)

−∂p
∂y

= ρẅ. (2.28)

The net pressure exerted on the panel surface can be found as,

pex = ppanel,b − ppanel,a, (2.29)

where the pressure exerted on the identical side of panel,

ppanel,a = pa + ρaẅ
n (δa − wn) , (2.30)

and the opposite side of panel,

ppanel,b = pb − ρbẅn (δb + wn) , (2.31)

where δ is the offset of solution point from the panel surface without deflection

as shown in Figure 2.5. If the fluid dynamics interact with the opposite side of

the panel is considered as stationary in the calculation, ppanel,b = p0.

At each time step, the fluid domain should be deformed by the calculated

panel displacement. Usually, remeshing (e.g. in So et al. (2003) ) is applied to

the deformed fluid domain so as to eliminate any highly strained mesh where
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Figure 2.5: Meshes at fluid-panel interface. −·−·−, undeflected panel position;

�, solution points of boundary cells and ghost cells of CE/SE mesh;

©, panel mesh points.
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the solution is underresolved. Otherwise, the solution accuracy will be seriously

deteriorated. In the remeshing procedure, all mesh points in the fluid domain are

updated so heavy computational resources are required. However, recognizing

the characteristic feature in CE/SE method how the flow solution is calculated

at solution points (Lam 2011) and assuming that panel displacements are very

small compared to panel thickness, we can account for the effect of deformation

of fluid domain with a much simpler technique that is derived in the spirit of

immersed element boundary method (de’ Michieli Vitturi et al. 2007).

Referring to Figure 2.5, the solution points are not laid on the physical

fluid domain boundary in CE/SE method. The flow conditions at the boundary

there are manifested by placing a mirror ghost cell behind the boundary, i.e. AG.

Appropriate flow variables are then specified at the ghost cell such that the desired

flow conditions at the true panel position are implicitly given by interpolation with

the boundary and ghost cells. For the rigid duct boundaries, the ghost point is

set normal velocity vG = −vB and its normal gradient vx,G = −vx,B for enforcing

zero normal velocity condition, where the subscript G and B represent the ghost

and boundary cells respectively. It is also set tangential velocity uG = uB and its

tangential gradient uy,G = −uy,B for enforcing sliding boundary condition. For

the vibrating panel surfaces, the normal displacements of the panel can reach the

order of hp in the theory, but the tangential velocity can still be assumed to be

negligibly small. Its displacement is assumed that smaller than the offset δ of

solution point AB and its normal velocity vG can be approximated by the linear

extrapolation with Equation 2.27,

vG − ẇn

δ + wn
=
ẇn − vB
δ − wn

. (2.32)

The derivatives of vG and pG in the normal direction, i.e. vy,G and py,G, are

assumed same as the derivatives at the fluid-panel interface. Therefore, by Equa-
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tion 2.28

py,G = −ρBẅn, (2.33)

and by the first order finite difference approximation,

pG = pB − 2δpy,G, (2.34)

vy,G =
vB − vG

2δ
. (2.35)

The density is determined by Equations 2.2 and 2.24, and its derivative can be

approximated same as Equation 2.35. The setting of tangential velocity and its

normal gradient are assumed same as the setting for a rigid surface. All tangential

gradients are simply assumed Ux,G = Ux,B. The results in the forthcoming chap-

ters show this assumption is acceptable. Therefore, all the flow variables in the

ghost cell for isothermal, sliding flexible panel boundary is set by Equations 2.32

to 2.35, as

uG = uB, ux,G = ux,B, uy,G = −uy,B,

vG = ẇn +
δ + wn

δ − wn
(ẇn − vB) , vx,G = vx,B, vy,G =

vB − vG
2δ

,

pG = pB − 2δρBẅ
n, px,G = px,B, py,G = ρBẅ

2,

ρG =
γpGC1

T0
, ρx,G = ρx,B, ρy,G =

ρB − ρG
2δ

.

Certainly, the validity of the assumption had been checked during the

course of calculations. For a panel displacement larger than the offset of solution

point (i.e. w > δ), this extrapolation method is not physically valid. In the fluid

model, the CE/SE solver relies on applying the conservation law in each small

control volume (i.e. CE) and the calculation of the flux through the surface of

those control volume. The solution points at those volume surfaces are used to

provide information for flux calculation. If w > δ, that solution point does not

physically exist. The corresponding control volume will be destroyed and the
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∆x/2 ∆x/2 ∆x

Figure 2.6: Boundary segment of undeflected panel. ×, mesh nodes; ◦, solution

points; •, a ghost point; ——, the panel segment.

flux calculation cannot be completed. Therefore the solver will give wrong result

in this situation. Other more complex but proper technique, such as immersed

element boundary method or remeshing procedure, must be used. In all the cal-

culations reported in the next chapter, w/δ < 68% consistently. This observation

indicates that our proposed simplified technique works well for the present study.

2.3.2 Flexible panel

The panel and the fluid domain are sharing the same mesh, and all panel solution

points are located below the row of CE/SE solution points just next to boundary

of the fluid domain as Figure 2.5. Therefore, there no panel solution point is

directly located at the panel edge as shown as Figure 2.6. To approximate the

forth-order spatial derivative by second-order central differences, there must have

four adjacent points, which two at positive and two at negative sides, for each

solution point. However, there are not enough adjacent points for the boundaries

n = 1 and n′, where n′ is the total number of panel solution points. Therefore,

one ghost point is added to each panel end as Figure 2.6. Two ghost points are

denoted as n = −1 and n = n′+2; and two boundary nodes are denoted as n = 0

and n = n′ + 1.

Pinned or clamped conditions can be applied at the edges. For the pinned-

pinned ends, the displacement and bending moment should be set as zero at the
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boundary nodes,

w0,j = wn
′+1,j = w0,j

xx = wn
′+1,j
xx = 0. (2.36)

Hence,

w−1,j = −w1,j, wn
′+2,j = −wn′,j. (2.37)

If clamped-clamped ends are used, the displacement and slop should be set as

zero,

w0,j = wn
′+1,j = w0,j

x = wn
′+1,j
x = 0. (2.38)

Hence,

w−1,j = w1,j, wn
′+2,j = wn

′,j. (2.39)

By using the Taylor series, the second-order spatial derivatives are given by

w1,j
xx =

1

∆x2

(
−4w1,j +

4

3
w2,j

)
, wn

′,j
xx =

1

∆x2

(
−4wn

′,j +
4

3
wn
′−1,j

)
; (2.40)

and the forth-order spatial derivatives are given by

w1,j
xxxx =

1

∆x4

(
C ′w1,j − 8w2,j +

8

5
w3,j

)
, (2.41)

w2,j
xxxx =

1

∆x4

(
−8w1,j + 8w2,j − 24

5
w3,j +

8

7
w4,j

)
, (2.42)

wn
′,j
xxxx =

1

∆x4

(
C ′wn

′,j − 8wn
′−1,j +

8

5
wn
′−2,j

)
, (2.43)

wn
′−1,j
xxxx =

1

∆x4

(
−8wn

′,j + 8wn
′−1,j − 24

5
wn
′−2,j +

8

7
wn
′−3,j

)
, (2.44)

where C ′ = 16 for pinned-pinned ends, or C ′ = 32 for clamped-clamped ends.
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U j−1

W j−1

AAM

PDM

U j (ie)

W j (ie)

Figure 2.7: Calculation procedure of the staggered coupling scheme (or ini-

tial estimation procedure of the iterative coupling scheme). AAM,

aeroacoustical model; SDM, structural dynamic model.

2.4 Partitioned fluid-panel coupling scheme

When an unsteady flow and an acoustic wave are passing over the flexible panel,

the flow pressure fluctuations acting on the panel will force to vibrate. The vi-

brating panel then modifies the boundary condition of the aeroacoustic flow which

has to change as a consequence. The aeroacoustic field and the panel structural

response are coupled to each other through two key conditions: the tangency

boundary condition (Equation 2.27) which is the effect of structural response on

the unsteady flow, and the normal pressure gradient condition (Equation 2.28)

which is the effect of flow unsteadiness on the structural response. Therefore, a

coupling scheme that allows seamless coupling of both effects is necessary for the

accurate prediction of the flow-panel interaction involved. Generally, both the

staggered and iterative coupling schemes were selected by different researchers

depends on the accuracy requirement of their problems. Both schemes are de-

scribed in the following.

2.4.1 Staggered coupling scheme

The first scheme attempted is schematically illustrated in Figure 2.7. In this

scheme, the panel structural dynamic solution W j−1 available at the end of the
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(j − 1)-th time step is treated as the boundary condition of the fluid domain

in contact with the panel for the solver of aeroacoustic model for calculating

the new aeroacoustic solution at the j-th time step, i.e. U j. Then the new

panel structural response W j is evaluated by solving Equation 2.23 with its

forcing term, i.e. pex, constructed from the aeroacoustic solution U j (refer to

Equation 2.29). Both U j and W j available at the end of the j-th time step are

then used as the initial solutions for the (j + 1)-th time step and the solution of

the problem marches in time afterward. As such in each time step, the update

of the panel structural response appears to lag that of the aeroacoustic solution.

This feature leads to the enforcement of the tangency condition and the normal

pressure gradient condition in a staggered manner. Thus the communication

between the two solutions is literally one-way, so the scheme can be considered to

resolve the fluid-panel interaction in a loose coupling sense. The numerical error

arising from the delay between the updates of aeroacoustic and structural dynamic

solutions can be effectively suppressed with the reduced time step size (Jaiman

et al. 2011). Since a small time step size is always needed for the present explicit

CE/SE aeroacoustic solver (Lam et al. 2014a), especially in the case with a low

Mach number flow, the scheme appears to be a reasonable choice for solving the

present problem.

2.4.2 Iterative coupling scheme

This scheme follows the idea of Jadic et al. (1998) which emphasizes more on the

two-way coupling between the aeroacoustic and structural dynamic solutions. It

can be divided as two parts: initial estimation and predictor-corrector procedure.

In the calculation at the j-th time step, initial solution estimates, U ie and W ie are

firstly evaluated in the same way as described in the staggered coupling scheme

(Figure 2.7). The initial estimates are then put into the predictor-corrector pro-
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cedure, as Figure 2.8, in which the errors in the satisfaction of both tangency

and normal pressure gradient conditions are minimized in an iterative manner.

Essentially, an aeroacoustic solution estimate U k+1 is obtained with an predicted

boundary condition λWk+(1−λ)Wk−1, where λ is the relaxation factor (Ander-

son et al. 1984). Then the estimated W k+1 is obtained with an predicted forcing

from λU k+1 +(1−λ)U k. If the relative errors between the solutions at iterations

k and k + 1 at all panel mesh points is less than the prescribed precision ε, i.e.

|U k+1 −U k|
|U k+1|

< ε, (2.45)

|W k+1 −W k|
|W k+1|

< ε, (2.46)

then the final solutions U j = U k+1 and W j = W k+1 are marched forward to

next time step; otherwise the iteration continues until the precision requirement

is reached. Since the effects of aeroacoustics on the panel structural dynamics and

its vice versa are accounted for in the solution in equal footing, the procedure

described leads to a more tightly coupled scheme for resolving the fluid-panel

interaction. Nevertheless the computational resources incurred is heavier. In

all the calculations reported in the this thesis and computed by the procedure

described, λ is set equal to 0.5 whereas the precision requirement ε is prescribed

to 10−10, and the number of iterations in each time step is around 18. The

performance of the iteration procedure is discussed in Section 4.3 and Table 4.2.

2.5 Validation for in-vacuo and fluid loaded panel

vibration

Lam et al. (2014a) already validated that the aeroacoustic model is capable of

resolving the aeroacoustic interactions in low subsonic to supersonic Mach num-

bers accurately through comparisons with the existing results of the benchmark
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U k = U ie,

W k = W ie,

W k−1 = W k,

k = 1

Calculations of

AAM and PDM

Convergence

check

U k = U k+1,

W k = W k+1

k = k + 1

U j = U k+1,

W j = W k+1

(j+1)-th

time step

No

Yes

Figure 2.8: Predictor-corrector procedure of the iterative coupling scheme

where k is iteration index.
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U j−1

λW k + (1− λ)W k−1

λ(1− λ)U k+1 + U k

W j−1

AAM

PDM

U k+1

W k+1

Figure 2.9: Calculation procedures of the block marked with ”Calculations of

AAM and PDM” in Figure 2.8.

aeroacoustic problems with increasing complexity. Therefore, the forthcoming

validations focus on the panel vibration and the fluid-structure interaction. The

validations of the aforementioned solvers for the basic problems, i.e. in-vacuo

and fluid loaded panel vibration, are presented in this section. Comparison with

the theory of other more complicated problems, such as acoustics-structure in-

teraction, are discussed with other results in other chapters. The first step of

the validation is to assess the panel dynamic model. The theoretical solution

of a in-vacuo finite membrane with pinned-pinned ends is well established, the

eigenmode shape and frequency in one-dimension are known as (Blevins 1979),

w(x) = AN sinNπx, (2.47)

fvacuum,N =
N

2

√
Tx
ρphp

, (2.48)

where N is the mode number and AN is the modal amplitude. For comparison,

some eigenmode vibrations are tested numerically. In this case, the panel dy-

namic model is decoupled from the aeroacoustic model as the net pressure pex

is set as constant zero. An undamped (C = 0) finite membrane (D = 0) with

100 elements and pinned-pinned ends is applied. The material properties are
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Table 2.1: Comparisons between numerical and theoretical in-vacuo eigenmode

frequencies.

N fvacuum,N Df

1 0.05 0.05 %

2 0.1 0.25 %

3 0.15 0.39 %

7 0.35 0.52 %

10 0.5 0.74 %

set as Tx = 0.00128 and ρphp = 0.128, so fvacuum,N = 0.05N based on Equa-

tion 2.48. A certain eigenmode shape (Equation 2.47) is set as the initial condi-

tion of the membrane, and let it free vibrate as the prescribed eigenmode when

t > 0. Five eigenmodes are tested and the comparisons are shown in Table 2.1,

the relative difference between numerical and theoretical results is determined by

Df = |fN − fvacuum,N |/fvacuum,N . The maximum difference is only 0.74 %, so the

panel dynamic model strongly agrees with the theory.

Since the panel dynamic model is validated, the fluid loading should be

included in the next step. When the panel is moving, an oscillating fluid force is

induced that applied by the surrounding fluid to the panel. Because of the fluid

and the panel are in contact, the fluid surrounding the panel must accelerate as

well as the panel accelerates. The inertia generated by this fluid motion is called

added mass, that can be considered as an additional mass attach to and move

with the panel (Blevins 1979). The added mass, Madded of a finite panel with

pinned-pinned ends can be predicted from potential flow theory as (Dugundji

et al. 1963),

Madded =
ρ

Nπ
. (2.49)
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Table 2.2: Comparisons between numerical and theoretical fluid loaded eigen-

mode frequencies.

N ffluid,N
Df

Staggered coupling Iterative coupling

3 0.111 6.88 % 6.88 %

7 0.301 4.32 % 4.38 %

10 0.447 0.20 % 0.19 %

The added mass always decreases the eigenmode frequency as the effective mass of

the panel increase. Since the eigenmode frequency is inversely proportional to the

square root of the mass of the membrane, which can be refer to Equation 2.48, the

ratio of the frequency of the membrane in a vacuum to the membrane immersed

in a fluid can be found as (Blevins 1979),

ffluid,N
fvacuum,N

=

(
1 +

Madded

ρphp

)− 1
2

. (2.50)

Five eigenmodes with the same numerical setting and material properties for the

membrane like the in-vacuo tests are carried out. However, this time the coupling

between aeroacoustic and panel dynamic models is applied and Euler equations

are used because the fluid is assumed inviscid. The fluid loaded eigenmode fre-

quency can be determined by Equations 2.49 and 2.50, but the added mass is

halved because fluid loading is calculated for one side of the membrane in these

cases, another side is stationary. Both staggered and iterative coupling schemes

are tested and compared in Table 2.2. Two coupling schemes have similar results.

The maximum difference to the theory is 6.9%. However, Dugundji et al. (1963)

showed that the theoretical approximation also have maximum 6% error com-

pared to the experimental data. Therefore the numerical results have acceptable

agreement with the theory. Besides, the lower mode has larger difference. This
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may because the added mass of lower mode is lager. The error of the ratio of

added mass and panel mass should be larger in the theoretical approximation too.

Therefore the difference in frequency will be larger. Since two coupling schemes

have similar accuracy in this test, their comparison will be continued for other

cases in the next chapter.



Chapter 3

Aeroacoustic-Structural

Interaction in Duct Carrying

Inviscid Flow

To assess the accuracy of the numerical methodology, the work by Huang (1999)

is selected as our canonical problem to compare with his frequency-domain the-

oretical results with single frequency excitation. Besides, any physics that could

not be captured in the theory is further uncovered and discussed in the mean-

time. After the discussion on the aeroacoustic-structural response with a single

frequency excitation, the effect of excitation frequencies will be further discussed

by investigate the similar problem exposed to broadband excitation.

3.1 Single frequency excitation

3.1.1 Acoustic-structural interaction

Huang (1999) proposed to flush-mount a finite length tensioned flexible panel in

an infinite rigid flow duct, as shown as Figure 3.1, for controlling low-frequency

42



3.1. Single frequency excitation 43

Figure 3.1: Schematic configuration of a finite length tensioned flexible panel

flush-mounted in an infinite rigid flow duct (not-to-scale).

duct noise in his work. When a plane acoustic wave is propagating through the

duct, the panel responds to vibrate and the local distension in the vicinity of

the panel thus created renders a local wave propagation speed far less than its

isentropic value. The mismatch in the wave speed there leads to reflection and

scattering of the acoustic wave at the edges of the panel. The extent of reflec-

tion and scattering depends on the acoustic-structural interaction occurring with

the vibrating panel which eventually results in creates passbands and stopbands

for the acoustic transmission. Assuming harmonic fluctuations and quasi one-

dimensional variation along the duct for all dynamic quantities, Huang presented

a detailed linear analysis in frequency-domain of how various panel parameters

(e.g. length, stiffness, structural damping, etc.) influence the panel acoustic-

structural interaction and subsequently the transmission loss in the duct in case

there is no flow. His results of the analysis are complete and provide a set of good

reference for validating the numerical methodology.

In this regard a same set of problem parameters Huang (1999) studied is

taken, i.e. the duct width Ĥ = 100 mm, panel density ρ̂p = 1000 kg/m3, the
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panel thickness ĥp = 0.05 mm, the tension T̂x = 58.0601 N/m, the frequency of

incident wave f̂ = 340 Hz and the mean flow speed û0 = 0 m/s. L̂0 = panel

length L̂p, ambient acoustic velocity ĉ0 = 340 m/s, time t̂0 = L̂0/ĉ0, ambient

density ρ̂0 = 1.225 kg/m3, ambient pressure ρ̂0ĉ
2
0, and ambient temperature T̂0

are chosen for the normalization of all flow and panel variables. The frequency

of the incident wave f̂ used is fixed at 340 Hz which becomes f = 0.1Lp/H after

normalization. The computational domain is illustrated in Figure 3.1. The duct

sections upstream and downstream of the flexible panel are set equal to 36Lp so

as to ensure sufficient space for the generated acoustic waves to propagate. Euler

equations have been solved in this calculation because the flow in the problem is

assumed inviscid.

Before the actual calculations, the mesh and time step convergence need

to be established. Three mesh designs are established with different mesh density.

A summary of different mesh designs on the fluid domain and the panel is given

in Table 3.1. One should note that finer mesh sizes are adopted in the vicinity of

the panel in order to suppress the contamination of the truncation errors on the

fine details of calculated aeroacoustic-structural interaction as much as possible.

The coarser mesh sizes in the rigid duct sections are so selected that the acoustic

wave propagation with the fastest mean flow of interest (i.e. M = 1.2) can be

correctly calculated, yet it does not make the time for calculations prohibitively

long. By following the approach given in Lam et al. (2014b), the time step size

is set and the Courant-Friedrichs-Lewy number is fixed for all mesh designs. The

case Lp/H = 5 and M = 0 is selected for the mesh convergence check with

the time-stationary solution. Figure 3.2 shows the sensitivity of the resolved

temporal change of the total acoustic pressure and the panel vibration mobility,

Yx = (ẇ(x))rms/(p
′
inc)rms, under the acoustic-structural interaction. Evidently,

the variation decreases with the mesh size. The maximum deviations in the
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Table 3.1: Mesh designs. The mesh stretching function, Fi (∆xmin,∆xmax, Ni)

= 0.5 (∆xmax −∆xmin) {tanh {9 [(i− 1)/(Ni − 1)− 0.5]}+ 1} +

∆xmin where ∆xmin and ∆xmax are the minimum and maximum

mesh sizes, Ni is number of meshes required, and i = 1, 2, ..., Ni is

the mesh index.

For −0.5 ≤ x ≤ 0.5
For −0.6 ≤ x < −0.5

and 0.5 < x ≤ 0.6

Mesh I ∆x = 0.004 ∆xi = Fi(0.004, 0.02, 12)

Mesh II ∆x = 0.002 ∆xi = Fi(0.002, 0.01, 22)

Mesh III ∆x = 0.001 ∆xi = Fi(0.001, 0.005, 46)

For −1.3 ≤ x < −0.6

and 0.6 < x ≤ 1.3

For x < −1.3

and x > 1.3

Mesh I ∆xi = Fi(0.02, 0.1, 13) ∆x = 0.1

Mesh II ∆xi = Fi(0.01, 0.05, 24) ∆x = 0.05

Mesh III ∆xi = Fi(0.005, 0.025, 50) ∆x = 0.025

For all x

Mesh I ∆y = H/50 ∆t = 0.0005

Mesh II ∆y = H/50 ∆t = 0.00025

Mesh III ∆y = H/50 ∆t = 0.000125
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Figure 3.2: Sensitivity of numerical solutions to mesh size. (a) Time traces of

total acoustic pressure. (b) Panel mobility. − ·− ·−: Mesh I; ——:

Mesh II; – – –: Mesh III.

pressure and mobility obtained from switching from Mesh I to Mesh II are 2.3%

and 0.61% respectively. Upon switching from Mesh II to Mesh III the maximum

deviations further reduce to 0.055% and 0.25% respectively. Therefore, the Mesh

II is selected for all calculations discussed in forthcoming discussions.

3.1.1.1 Acoustic response

Huang (1999) showed that an excited vibrating panel in duct reflects and scat-

ters the incident acoustic wave p′inc in the absence of mean flow. He assumed the

total panel pressure, the force felt by the panel form the fluid, is the summation

of the simple harmonic temporal and spacial dependant incident wave and the

re-radiation p′rer generated by the excited panel itself. The pressure perturbation

induced by the panel oscillation was calculated by the theory of Doak (1973). The

panel oscillation was considered as a number of vibrating pistons flush-mounted

in the duct wall, and they vibrated at the same frequency. Each vibrating piston

is treated as a point acoustic source of simple harmonic temporal dependence.

Therefore the pressure perturbation induced by panel oscillation can be deter-
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mined by the inhomogeneous wave equation, and the solution can be constructed

as a linear superposition of contributions from each of the characteristic duct

modes and the point sources. Since the total panel pressure was given, the panel

vibration can be determined by membrane equation with external pressure. The

equation was solved in frequency/axial mode domain, and sine transform was se-

lected to satisfy the panel boundary conditions which were the simply supported

ends. Under this theory, the total pressure perturbation, p′ = p− p̄, in the duct

can be imagined as the superposition of incident and re-radiation waves,

p′ = p′rer + p′inc. (3.1)

The re-radiated wave destructively interfere with the incident wave downstream

of the panel and results in a net reduction of transmitted acoustic energy as a

result of the acoustic-structural interaction. The energy reduction also depends on

whether the panel is structurally damped or not. Huang claimed such phenomena

can be utilized for the development of a new breed of the design of duct silencer

across which the flow pressure drop is very low. The performance of the silencer

design is described by the transmission loss TL defined as

TL = −20 log10

∣∣∣∣p′inc + p′rer
p′inc

∣∣∣∣ . (3.2)

The TL with different panel lengths Lp/H = 4.3, 6 and 8, and without

structural damping (C = 0) are calculated by using both staggered and iterative

coupling schemes. Since the panel length is chosen as the reference length, the

effects of Lp/H variation are calculated here through modifying the value of duct

width H. This is different from the notation adopted in the theory where H is

fixed but Lp varies. However this change of scaling does not affect the accuracy

of the numerical results. In general situation, any fluid variable contains the fluc-

tuations from the incident and re-radiated waves. The p′rer cannot be determined

directly from the numerical results with the flexible wall. Therefore, in addition
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Table 3.2: Comparisons between theoretical (Huang 1999) and numerical TL

by staggered and iterative coupling schemes at various Lp/H. The

values in brackets are ∆TL.

Lp/H 4.3 6 8

Theory 2.1 2.1 15.0

Staggered scheme 4.4 (2.3) 1.1 (−1.0) 14.2 (−0.8)

Iterative scheme 3.0 (0.9) 1.3 (−0.8) 14.7 (−0.3)

to each actual calculation, an additional one is calculated in a synchronized man-

ner on the propagation of p′inc only within a rigid duct of the same size. Then

the rigid duct results are subtracted from the results with flexible wall to obtain

the p′rer. The temporal evolutions of p′inc and p′ at locations 20Lp upstream and

downstream respectively of the panel are recorded over one incident wave cycle

for each calculation of TL. The locations are so selected that any higher-order

duct mode, if generated from the panel, decays completely and only plane waves

can be detected. This requirement is consistent with the quasi one-dimensional

propagation assumed in theory. Their root-mean-squared values are evaluated

and substituted into Equation 3.2 for the calculation of TL. A comparison of

the numerical TL with the corresponding theoretical values and their difference

∆TL = TLnumerical−TLtheoretical are given in Table 3.2. In general |∆TL| reduces

as Lp/H increases. The iterative coupling scheme appears to perform better than

the staggered coupling scheme for all cases attempted. The difference in the nu-

merical result is particularly pronounced for a short panel (Lp/H = 4.3) where

the ∆TL = 2.3 db for staggered coupling scheme but ∆TL = 0.9 db for the it-

erative coupling scheme. All these observations reveal that the iterative coupling

scheme is more superior in capturing the fluid-panel interaction. Furthermore, a
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Figure 3.3: Variation of transmission loss TL with panel length Lp/H. ——,

theoretical result (Huang 1999) with undamped panel; – – –, the-

oretical result with damped panel; ©, numerical result with un-

damped panel; ×, numerical result with damped panel.

careful check shows that additional time spent in iterative coupling scheme takes

approximately 30% of that used in the staggered coupling scheme. However, the

accuracy of the iterative scheme is much better than the staggered scheme so the

iterative scheme is employed for all subsequent calculations.

A more comprehensive assessment of the numerical methodology with the

iterative scheme is illustrated in Figure 3.3 with the corresponding theoretical

predictions (Huang 1999). The theoretical predictions of TL for an undamped

panel behaves more or less an approximate regular function with Lp/H with its

minimum values close to 0 db. For the damped panel, the general trend of TL

is increasing linearly with the panel length. The structural damping effectively

reinforces the TL for the long panel. In the frequency-domain analysis of Huang

(1999), he expanded the panel dynamics into the summation of N sinusoidal

in-vacuo panel velocity eigenmodes and calculated the temporal variations of
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Table 3.3: Deviation ∆TL of numerical results from theory (Huang 1999) in all

cases in Figure 3.3.

Lp/H ∆TL

C = 0 C = 0.0196

3.2 −0.1 0.5

3.4 −0.7 0.1

3.7 0.0 —

4 0.3 0.6

4.3 0.9 −0.1

5 −0.2 0.1

6 −0.5 —

8 −0.3 —

9.25 −0.2 0.8

9.48 0.6 —

the modal coefficients for the panel response. The m-th panel modal damping

coefficient can be estimated as

C = NC̄
√
Txρphp, (3.3)

where C̄ is a function of material property. For the present time domain analysis,

the same damping coefficient cannot be directly applied. Instead, the dominant

mode of undamped solution is determined first. Then the dominant mode number

N is substituted in Equation 3.3 to find the value of C. Huang chose C̄ = 0.2

which gives C = 0.0196 in the present study. A summary of the deviation ∆TL

of numerical results from theory in Table 3.3 shows that the largest deviation

observed is less than 1 db. It indicates that the present numerical methodology

is able to capture the acoustic-structural interaction accurately.
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Two extreme cases with different panel length in Figure 3.3 are chosen as

examples to study the temporal evolution of the acoustic pressure fluctuations

for the better understanding of the effect of the re-radiation of both undamped

(C = 0) and damped (C = 0.0196) panel. The first one is Lp/H = 3.2 which

is the highest TL; the another one is a low TL case, Lp/H = 3.4. These two

cases have been chosen because their TL are extremely different but panel length

is merely extended 6.2%. Figure 3.4 shows acoustic responses with undamped

and damped panel of Lp/H = 3.2. The temporal evolution of acoustic pressure

fluctuation along the duct centerline, that is p′(x, t)/(p′inc)amp at y = 0.15625,

with undamped panel within one incident wave period t1 = 1/f is shown in Fig-

ure 3.4(a). The record starts at the moment when a maximum p′inc/(p
′
inc)amp hits

the leading edge of the panel. Within two dash-lines is denoted as the area above

the panel, that is the acoustic-structural interaction happens in it. Therefore

the negative and positive sides outside the interaction area are regarded as up-

stream and downstream respectively. A standing wave, which nodes are located

at x = −1.79 and −3.34, appears in the upstream because the incident wave su-

perimposed with a strong reflection from the interaction area. In the meantime,

the wave in the downstream is very weak as hard to be noticed in the figure.

Upon exposure to the incident wave, the panel responds to vibrate and alter the

acoustic wave propagation in the duct. Figure 3.4(c) shows the re-radiated wave

p′rer(x, y, t)/(p
′
inc)amp at y = 0.15625, which is the effect of panel vibration to the

acoustics field. The re-radiation appears to start at around x = −0.3 which close

to the leading edge of the panel. The upstream p′rer is equal to the reflected wave,

and the amplitude is almost same as the incident p′inc. The two waves superim-

pose to form a complete standing wave in Figure 3.4(a). The downstream p′rer

has a weaker amplitude only 93% of the p′inc. It propagates the same direction

with the incident wave and causes a strong destructive interference, which results
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Figure 3.4: Acoustic response along the centerline of the duct with Lp/H = 3.2

within one incident wave period t1. (a) & (b), the total fluctuation

pressure p′/(p′inc)amp; (c) & (d), the re-radiated waves p′rer/(p
′
inc)amp;

(e) & (f), the phase shift of re-radiated wave relative to the incident

wave. – – –, panel edges.
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in a weak transmitted wave. The effectiveness of the interference is related to the

phase difference between two waves. The phase shifts φ of the re-radiated wave

relative to the incident wave of each location x along the duct center line is shown

in Figure 3.4(e). In the upstream, p′inc and p′rer propagate in different direction,

thus φ changes continuously with x. The φ is adjusted to the panel which even-

tually settles to a value close to −0.98π after passing x = 0.34 close to the panel

trailing edge. It gives rise to an effective destructive interference along the duct

and results in a high TL = 20.9 db. The p′(x, t)/(p′inc)amp, p
′
rer(x, t)/(p

′
inc)amp

and φ(x) with structural damping are also shown in Figures 3.4(b), (d) and (f).

Compare to the undamped case, the difference is not large. The amplitudes of

the upstream and downstream p′rer are reduced to 89% and 94% of the incident

wave. The energy loss should be dissipated by the structural damping. Although

the downstream p′rer is reduced, the φ is adjusted to −0.99π that promotes the

destructive interference. Two effect sum up enhance the TL to 24.1 db, that is

3.3 db increment of the undamped one. It indicated that the φ plays a more

important role in this situation.

The same analysis for low TL case, Lp/H = 3.4, is operated. Figure 3.5(a)

show the p′ has a partial standing wave forms in the upstream, which the nodes

are shifted towards the panel to x = −1.49 and −2.94. Stronger wave also ap-

pears in the downstream compared to the case with Lp/H = 3.2. These changes

are attributed to the p′rer. Figure 3.5(c) shows it has a strong preference towards

downstream. The amplitude of the upstream propagation is only 50% of the in-

cident. However, the downstream propagation is 138% of the incident and begins

approximately at x = 0.1 that is close to the center of the panel. The φ in down-

stream is also changed to a higher value, that is −0.8π shown in Figures 3.5(e).

These changes altogether destroy the destructive interference in the downstream

duct section effectively so the TL is reduced sharply to only 1.8 db (Figure 3.3).
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Figure 3.5: Acoustic response along the centerline of the duct with Lp/H = 3.4

within one incident wave period t1. (a) & (b), the total fluctuation

pressure p′/(p′inc)amp; (c) & (d), the re-radiated waves p′rer/(p
′
inc)amp;

(e) & (f), the phase shift of re-radiated wave relative to the incident

wave. – – –, panel edges.
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When the structural damping is included, p′rer propagation preference towards

downstream is reduced and the φ goes back to −0.97π as shown as Figures 3.5(d)

and (f). The amplitudes of upstream and downstream p′rer are 74% and 112%

of the incident. The φ that is close to π together with the strong downstream

p′rer promote the destructive interference and result a high TL = 15.8 db that is

14.2 db increment of the undamped one.

3.1.1.2 Structural response

In order to ascertain the capability of the present numerical methodology in cap-

turing the panel response under acoustic-structural interaction, the variation of

the panel velocity over one incident wave period is analysed. Figure 3.6 shows the

wavenumber spectrum of the panel mobility Yk = (ẇ(k))rms/(p
′
inc)rms, where k is

the wavenumber, and the distribution of the panel mobility Yx = (ẇ)rms/(p
′
inc)rms.

In the work of Huang (1999), an incident traveling wave of unit amplitude

(p′inc = 1) was used and the panel response was represented by the panel velocity.

For comparison, the numerical panel velocity is normalized by the incident acous-

tic pressure so the panel mobility selected to represent the panel response. To

determinate the Yk spectrum, the (ẇ(k))rms spectrum should be obtained first.

Since the pinned-pinned ends condition is applied, the eigenmode shapes can be

expressed as a sinusoidal function and the mode number N = k/2 can be con-

verted directly by wavenumber. The (ẇ(k))rms spectrum can then be obtained by

using standard spatial fast Fourier transform (FFT) procedure. In Figure 3.6(a),

the Yk of a panel with Lp/H = 5 without damping is compared with Huang’s the-

oretical data. The panel response dominates the spectrum within a narrowband

centered at k = 6 corresponding to the 12-th panel mode. Besides, the compari-

son of Yx along the panel with that derived from the theoretical results are shown

in Figure 3.6(b). The leading edge response is stronger than elsewhere. Both
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Figure 3.6: Panel responses. Left column, panel mobility spectra Yk; right

column, the distributions of panel mobility amplitude Yx. (a) &

(b), Lp/H = 5; ©, numerical panel mode number N ; ×, theoreti-

cal (Huang 1999) panel mode number; · · · · ·, theoretical undamped

Yk. (c) & (d), Lp/H = 3.2; (e) & (f), Lp/H = 3.4. (c) to (f), ——,

C = 0; – – –, C = 0.0196.
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comparisons show excellent agreement. The numerical panel responses are also

expanded by using the same set of eigenwave modes Huang adopted. The corre-

sponding modal mobilities Yk(N) are shown as circles in Figure 3.6(a). All the

numerical Yk(N) overlap with the theoretical values except the one at the peak.

The maximum deviation of numerical Yk and Yx amplitudes from the theoretical

values are 5.9% and 4.9% respectively. These differences may be attributed to the

stronger fluid inertia induced on the panel response due to the lack of inclusion of

the reaction force imposed on the fluid induced by the panel motion in the theory.

Generally, these two figures clearly indicate the present numerical methodology

is able to capture the panel responses accurately.

In Figure 3.6(b), the present numerical methodology captures all the 12

peaks since the 12-th panel mode is dominated. It is interesting to note that

the very weak first peak at x = −0.48 with Yx = 0.4, whose magnitude is less

than 10% of the others, is captured but not show up clearly in the theoretical

solution of Huang (1999). Except for the effect of fluid inertia, this observa-

tion may be attributed to a fundamental difference between Huang’s and present

works. Harmonic temporal and spatial dependence is assumed for all fluctuating

quantities in the theory. The capture of the relatively strong harmonic acoustic-

structural interaction solutions may be effective but not for transient or weak

dynamics, because the solutions may not be perfect harmonic temporal and spa-

tial dependence. On the contrary, there is no restriction in the time marching

in the present methodology. Therefore the weak first peak in Figure 3.6(b) can

still be captured. In fact, by using the staggered coupling scheme, the calcula-

tion of the same problem can also capture the same weak peak. That further

supports an assumed harmonic dependence is too restrictive for resolving the

acoustic-structural interaction problem completely.

Figure 3.6(c) and (d) show the Yk spectra and Yx distributions for the
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panel with Lp/H = 3.2 which induce high TL. The dominative panel response

is within a narrowband centered at k = 3.5 that is N = 7. The structural

damping reduces the amplitude by only 14%. The strongest response appears at

the leading edge which is similar to the panel with Lp/H = 5. Figures 3.6(e)

and 3.6(f) show the same quantities for Lp/H = 3.4 which induce low TL. The

panel response is dominated by a monotone k = 4 that is N = 8. The peak Yk

response appears to be 7 times stronger than that of the shorter panel but it can

be significantly suppressed with the structural damping. The strongest response

is still close to leading edge but its amplitude is higher than elsewhere mildly.

Generally, stronger panel response tends to re-radiate stronger acoustic wave to

duct downstream.

3.1.2 Aeroacoustic-structural interaction

The capability of the numerical methodology in capturing aeroacoustic-structural

interaction was established by comparing with an experimental study of Choy and

Huang (2005) on the drum-like silencer carrying a low Mach number flow. Since

the viscous effect, in this case, is going to be discussed, the detail is described

together with the viscous result in Section 5.1. The setting in Figure 3.1 is

used continuously to study the flexible panel interacts with the simultaneous flow

and acoustic excitations and its aeroacoustic-structural response in a flow duct,

instead of using the setting in the experimental study. The reason is the flexible

panels are backed by cavities in the experiment. The cavity effect will make

the problem more complicated, so this factor should be eliminated before get

a clear understanding of the simple flow duct with a flexible panel. This also

benefits for the comparison to the analysis of acoustic-structural interaction in

the aforementioned sections. In this case, the same incident acoustic wave is used

as Section 3.1.1. The simplest kind of the flow excitation, a uniform mean flow,
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is introduced. The uniform means flow with Mach number M is in the same

direction with the incident acoustic wave. An undamped panel with Lp/H = 3.2

is selected in this case because it has the most obvious response in Figure 3.3. Its

variation from low subsonic M to supersonic M = 1.2 is studied. The mean flow

creates an additional dimension to the incident wave for the excitation acting on

the flexible panel. It is enlightening to analyze and study the nonlinear impact

on the panel response upon a change from acoustic- to aeroacoustic-structural

interaction.

3.1.2.1 Aeroacoustic response

The effect of the aeroacoustic-structural interaction on the acoustic transmission

is shown in Figure 3.7. Figure 3.7(a) shows the amplitudes of the upstream

and downstream re-radiated wave at different M . The upstream p′rer seems to

be prominently affected by the convective effect of the flow. It grows with flow

velocity until M = 0.8. Afterwards, it reduces sharply down to the zero at M = 1

and maintains zero with the supersonic flow. On the other hand, the downstream

p′rer appears to be strongly influenced by the panel dynamics. The aeroacoustic-

structural interaction effects cause a nonlinear variation of the phase φ between

the downstream p′rer and p′inc shown in Figure 3.7(b). In the range 0.1 ≤M ≤ 0.5,

the downstream p′rer are leading p′inc. Otherwise in other M , the downstream p′rer

are leaded by p′inc. It may be the dominating factor to modifies the destructive

interference in duct downstream of the panel. For a more clear understanding

of the effectiveness of the destructive interference, the difference between φ and

π is illustrated in Figure 3.7(c). When the difference is large, the destructive

interference will be less effective. The overall trend of the difference is growing

with M . Summarized Figure 3.7(b) and 3.7(c), four regimes can be divided.

They are low subsonic M ≤ 0.05, middle subsonic 0.1 < M < 0.5, high subsonic
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0.5 < M < 1 and low supersonic 1 < M < 1.2. Their growing rates are 2, 0.15,

0.32 and −0.2 per unit of M respectively. Figure 3.7(a) shows the amplitudes

of upstream and downstream p′rer variation with M . The upstream p′rer grows

with mean flow velocity until M = 0.8. Afterwards, it reduces sharply down to

the zero at M = 1 and maintains zero with the supersonic flow. It seems to be

prominently affected by the convective effect of the flow. On the other hand, the

downstream p′rer show approximately stepwise increase within subsonic M and

eventually drops linearly with M when it close to sonic and becomes supersonic

(M > 0.9). Except M ≤ 0.05 and M = 1.2, all other downstream p′rer are larger

than the p′inc. Figure 3.7(d) shows TL variation with M . Four regimes are divided

in the following similar to the aforementioned discussion. TL drops rapidly with

the increasing M in low subsonic regime M < 0.1, the rate is ∼ 90 db per unit of

M . It drops continuously in the regimes of 0.1 < M < 0.5 and 0.5 < M < 1 with

rates of ∼ 10 db and ∼ 16 db respectively. Finally, it vanishes with a sonic mean

flow, M = 1, and rises up again to 2.6 db at M = 1.2 with a rate of ∼ 13 db.

The overall trend of the TL is suppressed by M increment until supersonic mean

flow. The TL is most sensitive to the change of mean flow velocity in the low

subsonic zone. The ratio between the changing rates of TL variation with M is

similar to the changing rates of φ. Therefore the TL variation is highly related

to the φ variation. Besides in sonic mean flow, there is no upstream p′rer and

TL. All the incident wave energy transmitted to downstream. The aeroacoustic-

structural interaction may only affect the phase of the incident wave propagation.

However, there are also no upstream p′rer but TL is not zero in the supersonic

mean flow. In this case, the incident acoustic energy loss may be transformed

into other forms, such as heat or flow, by the aeroacoustic-structural interaction.

The downstream re-radiation patterns with different M illustrated in Fig-

ure 3.8 provided more information to explain the emergence of the TL trend. As
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Figure 3.8: Re-radiation at different M (Lp/H = 3.2). Left column, p′rer along

the centerline of the duct. Right column, snapshots at selected t1.
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observed in Figure 3.8(a) the p′rer at M = 0.1 shows high resemblance to the

case without mean flow (Figure 3.4(c)). That means the aeroacoustic-structural

interaction induced in this case operates in a similar way as the pure acoustic-

structural interaction. Although the flow convection increases the deviation of φ

from π by a small amount (Figure 3.7(b)), it is sufficient to distort the stand-

ing wave pattern upstream of the panel and make the destructive interference

downstream less effective. As a matter of fact, perfect destructive interference

is never achieved under the aeroacoustic-structural interaction. So the TL drops

from 20.9 db at M = 0 to reach 11.9 db at M = 0.1, weakens further to 7.7 db

at M = 0.5 at which the flow convection effects enhances (Figure 3.8(c)), and

then practically vanishes at M = 1. It is worthwhile to note that, as long as

the mean flow is subsonic, the p′rer generation is confined in the proximity of the

excited panel and will propagate away as clean plane waves at the panel leading

and trailing edges (Figures 3.8(b) and 3.8(d)). When the flow becomes sonic, p′rer

is able to propagate only in downstream direction. Once generated the p′rer will

undergo multiple reflections between the upper duct wall and the vibrating panel

and form a partial standing wave across the duct width (Figure 3.8(e)). Part of

its energy propagates away as a plane wave mixed with contribution from the

excited first higher-order duct acoustic mode (Figure 3.8(f)). The higher-order

mode radiation decays rapidly and a clean plane wave emerges at x ∼ 1.3. Al-

though the eventual plane wave in p′rer is 27% stronger than the incident wave,

their resultant wave gives an amplitude identical to the incident wave with their

φ given in Figure 3.7(b) so TL = 0.

A new aeroacoustic-structural interaction phenomenon emerges at M =

1.2 (Figures 3.8(g) and 3.8(h)). In this case a shock forms and reflects after hitting

the upper duct wall at x ∼ −0.3. The multiple reflections of oblique shock waves

persists up to x ∼ 0.9. The occurrence of this phenomenon can be explained as
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follows. Under the action of aeroacoustic-structural interaction, the displacement

of the vibrating panel effectively produces a weak obstruction to the passage of

the mean flow. When the supersonic mean flow approaches the obstructing panel

vibration, it is forced to change its direction for satisfying the tangency boundary

condition (Section 2.3.2) and consequently creates a weak oblique shock at the

panel leading edge. Such flow features resemble that occur in a steady isentropic

supersonic flow passing over a wedge with a half-angle θwedge (John and Keith

2006) and the flow Mach number, determines the shock angle in response to flow

direction change. Assuming the effective θwedge in the present case is equal to

the rms value (= 0.052) of the panel deflection over one incident wave period,

the theory of gas dynamics predicts an effective shock angle of 56.54 at M = 1.2.

From the present numerical results, we determine the rms shock angle to be 57.28.

The close agreement between the numerical and theoretical shock angle confirms

the obstruction effect of panel vibration. The deviation may attribute to the

phase difference of p′rer generation along the vibrating panel. One may argue that

the panel vibration can be viewed equivalently as a collection of acoustic point

sources for p′rer generation laid along an unexcited panel. The shock waves are just

the accumulation of upstream propagation p′rer due to the Doppler effect of the

supersonic mean flow. From this view we calculate the shock angle to be 56.44. Its

relatively larger deviation from the numerical results firmly establishes the panel

displacement really matters in the present problem and highlights its role in the

aeroacoustic-structural interaction at high flow velocity. From Figure 3.8(h) the

oblique shocks tend to strongly excite the first higher-order duct mode in p′rer

which decays completely beyond x = 20. It then also produces a p′rer plane wave

but its amplitude is weaker than in the M = 1 case.
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3.1.2.2 Structural response

A summary of the panel response from M = 0 to 1.2 is show in Figure 3.9.

For easier comparison, all spectra in the figure are expressed in terms of mode

number N only rather than shown with wavenumber k. The variation of the

modal mobilities Yk(N) with M is given in Figure 3.9(a). The dominant mode is

observed that bifurcates to two branches when the mean flow present. Then the

dominant modes are recorded and the variation with M is shown in Figure 3.9(b).

Since the results are discreted rather than continuous, the complete functions

of M cannot be determined. However, the variation is observed that can be

roughly divided into four distinct regimes same as the aeroacoustic response in

Section 3.1.2.1. The first regime is 0 ≤ M ≤ 0.1, the panel response essentially

dominates within a narrowband centered at N = 7 as in the no flow case. The

bandwidth increase with M but the peak amplitude reduces simultaneously. Two

peaks are found at N = 6 to 8 when M = 0.1, their modal amplitudes are

comparable. This change significantly indicated the dominant modes bifurcation

begins. When M = 0.3, the Yk distribution total transforms from a unimodal

to a bimodal pattern with a strong modal band at N = 4 and a weak one at

N = 10. The panel response changes substantially with M . The lower modal

band goes towards N = 0 and strengthens as M increases further. On the other

side, the higher modal band moves away from the lower one but gets weaker.

Such substantial changes are almost in a linear manner when M < 0.5. Thus

0.1 < M ≤ 0.5 is defined as the second regime. The lower band settles at

N = 1 until M = 0.8. Its bandwidth suddenly widens when M increases to

0.9, but reduces again when M = 1. At the same time, the higher modal band

continuously moves farther away and arrived N = 23 when M = 1. 0.5 < M < 1

is defined as the third regime. In the fourth regime M ≥ 1, the higher modal

band die away and only remains the lower modal band at N = 1.
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Figure 3.9: Panel responses. (a) Variation of Yk spectra with M . (b) Distri-

bution of dominant modal peaks. (c) Distribution of flexural wave

velocity cB. ——, the subsonic branch; − · − · −, the first mode of

supersonic branch; · · · · ·, cB = 1. (d) The difference between the

two opposite flexural wave velocities. In (b) & (c), ©, cB > 0; ×,

cB < 0.
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The bimodal pattern revealed suggests that two types of flexural waves

emerge in the panel response as a result of the nonlinear aeroacoustic-structural

interaction. Indeed they represent the flexural waves with different travelling di-

rections. For a better understanding of their characteristics, the two dimensional

Fourier transformation proposed in Lam et al. (2013) is applied to the panel re-

sponse in one incident wave period. The panel velocities in time and space domain

ẇ(t, x) are transformed to frequency and wavenumber domain ẇ(f, k) according

to

ẇ(f, k) =
1

2π

∞∫
−∞

∞∫
−∞

ẇ(t, x)e−2πi(kx+ft)dxdt. (3.4)

The frequency/wavenumber distribution of ẇ can be obtained and the phase

velocities cB of the flexural waves are readily determined since cB = f/k. The

variation of cB with M is shown in Figure 3.9(c), and different travelling directions

are marked as respective notations. Upstream cB < 0 and downstream cB > 0

travelling waves are represented by × and © respectively. Same notations are

also used in Figure 3.9(b) for easier comparison. It is found that whenever the

mean flow is subsonic, there are the two flexural waves travelling in opposite

directions on the panel. The flexural waves associated with lower modal bands

travel towards downstream and higher bands travel against the flow direction.

However, an extra flexural wave with N = 2 appears when M = 0.9. When

M ≥ 1, the downstream travelling flexural wave vanishes and only the upstream

waves exist.

The phase velocities cB are also compared with the linear theory. Choi

and Kim (2002) carried out a theoretical analysis for the same setup as in the

present problem. They derived a general equation for the flexural wave disper-

sion characteristics in an infinitely long panel with the effect of mean flow taken

into account. The characteristic equation is derived by the two-dimensional ho-

mogeneous wave equation and the membrane equation in the frequency domain.
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Both solutions of the equations, acoustic pressure and membrane displacement,

are assumed harmonic time dependence. Through the pressure equivalent and

wavenumber relation, the characteristic equation is derived and given below after

normalization,

ρphpω − iC − Txω/c2B = iZf (3.5)

where i2 = −1, ω = 2πf , the fluid impedance Zf = −iρω cot (ky) /ky when

cB > 1 (supersonic branch), and Zf = iρω coth (|ky|) / |ky| when cB < 1 (sub-

sonic branch), and ky = ω
√

(1−M/cB)2 − 1/c2B. Note that here the descriptions

supersonic, or subsonic, indicate when the flexural wave velocities faster or slower

than the ambient acoustic velocity in fluid domain. It is different from the defini-

tion of M which measures the mean flow velocity relative to the ambient acoustic

velocity. For the present panel of interest, Equation 3.5 is solved to determine

the eigenwave velocities at different M , and compare the results with the flexural

velocity resolved from the frequency/wavenumber distribution in Figure 3.9(c).

Only the first two theoretical eigenwave modes are shown in the figure. The four

regimes defined earlier are still evident in the variation of cB. When there is no

mean flow, two flexural waves simply have the same eigenwave velocities. In the

first regime, the effect of aeroacoustic-structural interaction is not strong because

the velocities shift to positive side little bit as M increases up till 0.1. However,

the velocity shift becomes evident in the second regime. The downstream travel-

ling wave velocity appears to grow significantly with M as it aligns with the mean

flow direction. Against with the flow, the upstream travelling wave slows down

slightly from the eigenwave velocity. Notwithstanding these velocity changes, the

mobility Yx still exhibits a regular pattern along the panel, which can be referred

to Figures 3.10(a) and 3.10(b) that show the distributions of Yx at M = 0.1 and

0.5. The velocity shifts increase continuously in the third regime. The down-

stream travelling wave finally becomes supersonic cB > 1 at M = 0.9. At the
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same time, an additional subsonic upstream travelling wave with cB = −0.27

emerges. When the mean flow becomes sonic, M = 1, the downstream travelling

wave stops and only two upstream travelling modes are possible. One of them

is close to the theoretical eigenwave velocity but another takes up a much higher

cB = −16 with mode shape N = 1, which is shown in Figures 3.9(a) but not in

Figure 3.9(c) because the scale is too large compared to the others. Its pattern of

Yx distribution is given in Figure 3.10(c), the first mode N = 1 is dominated. In

the last regime the cB slows down to −5.3, which is not shown in Figure 3.10(c)

again, when the mean flow takes a supersonic M = 1.2. The regularity of Yx

distribution is completely lost as shown as Figure 3.10(d). The modal vibration

is limited around panel leading edge because of the strong fluid-loading induced

by the shock waves within −0.5 ≤ x ≤ 0.1 as shown as Figure 3.8(h). The modal

vibration near the panel trailing edge gets stronger, due to weaker fluid-loading

induced by the shock waves within 0 ≤ x ≤ 0.45, and appears to contribute most

to the p′rer radiation far downstream.

The result only agrees well with the theory when M < 0.3, it shows the

bimodal flexural wave pattern that the theory cannot predict. It may be argued

that the reason and mechanism of the emergence of this pattern is the Doppler

effect. The acoustically induced excitation under the action of mean flow should

be accelerated in the flow direction and decelerated against the flow. Since the

flexural waves are driven by the acoustically induced excitation, the difference

between the two opposite flexural wave velocities ∆cB should bear a linear re-

lationship with M which is ∆cB = M . However, Figure 3.9(d) shows that the

emergence of bimodal flexural wave pattern is not only caused by the Doppler

effect. The supersonic flow case is not included in the figure because the panel

has only one wave there. The result shows ∆cB increases nonlinearly with M .

The difference is less than M for low subsonic flow M ≤ 0.8 and surpasses M
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with higher subsonic M like ∆cB = 1.04 at M = 0.9. Such trend clearly indi-

cates the nonlinearity by the aeroacoustic-structural interaction imposes on the

panel dynamics. In addition, the incompressible theory only includes fluid iner-

tia effect and ignores the fluid compressibility. Since M > 0.3, the non-negligible

density change shows up in the compressible flow (White 1998). Therefore the it

is only valid for low M . The assumption of fluid incompressibility is relaxed in

the present study comparing to their theories. The effect of fluid compressibility

may be the reason that triggers the bimodal pattern. It further supports that the

significant bimodal flexural wave pattern when M ≥ 0.3 shown in Figure 3.9(c) is

caused by the effect of fluid compressibility. Nevertheless, the underlying mech-

anism has not been clearly understood yet, so a further study is needed.

3.2 Broadband excitation

The aforementioned analysis is primarily focused on a single frequency excitation,

the effect of excitation frequencies is not considered. The broadband excitation

is so selected to explore these effect in the following. Li (2015) has studied the

silencing performance and aeroacoustic-structural responses of a flexible duct seg-

ment exposed to broadband excitation. The computational domain is illustrated

in Figure 3.11. In this cases, the panel length is 1000 mm so the panel length

to duct width ratio is Lp/H = 10. The broadband incident acoustic plane wave

cover a range from a low frequency 4.25 to the cut-off 1700 Hz with a frequency

resolution 4.25 Hz, so in dimensionless f = 0.0125 to 5 with ∆f = 0.0125. Fol-

lowing the method of Leung et al. (2007), the excitation functions are written

as,

p′inc = pA

400∑
n=1

sin(2πtfn + θn), (3.6)

u′inc = p′inc/ρ, (3.7)
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Figure 3.11: Schematic configuration of a finite length tensioned flexible duct

segment in an infinite rigid flow duct (not-to-scale).

where pA is pressure amplitude and constant to all fn, and θn is uniformly random

phase. Other settings are same as in Section 3.1.1.

Li’s results are briefly described in the following. He studied four cases

with different mean flow speed M = 0, 0.1, 0.5 and 0.9. As shown as Figure 3.12,

the silencing performance is reduced by the mean flow for low frequency (f < 1)

but the change with the mean flow in the higher frequency range (f > 1) is

not linear. In absence of flow, TL is shown in an increasing trend to f with

a converging fluctuation when the frequency f < 2.95. When f > 2.95, TL

suddenly drop and tend to zero. It indicates that f = 2.95 is the critical frequency

fcrit for the silencing effectiveness. At low subsonic M = 0.1, the general trend is

similar to M = 0 but keeps at lower level around TL ∼ 10 db. The fcrit also shift

to higher value 3.06 with TL = 14.9 db. When M = 0.5, although the average

value of TL further drops to ∼ 3.5 db when f < 1, the trend increase sharply

to the fcrit = 2.69 with TL = 58.5 db. The effective band of noise reduction

becomes narrow. When M = 0.9, the effective band of noise reduction become

narrower to around 2 < f < 3 and TL of the whole spectrum are suppressed to

very low. fcrit also cannot be determined. There are only two major peaks in
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Figure 3.12: The TL spectra of four different mean flow speeds (Li 2015). ——,

M = 0; – – –, M = 0.1; – · – · –, M = 0.5; · · · · · · , M = 0.9.

this range, they are TL = 10.9 db at f = 2.14 and TL = 6.9 db at f = 2.53.

On the other hand, two sets of flexural waves are discovered in the panel

responses. The variation of flexural wave velocities with mean flow speed is also

found nonlinear. However, the underlying mechanism related to the structural

and acoustic responses is still unclear yet. These results are worth to be further

analysed, so his data are used for more detailed analysis and discussion here. The

following discussions focus on the structural and near field fluid responses.

3.2.1 Dispersion characteristic of structural response

The phase velocities and the travelling directions of the flexural waves of all fre-

quencies can be found by transforming the result in the time-space domain to

frequency/wavenumber domain. The panels motions are found that are in vari-

cose so only the response of the lower panel is taken for analysis. There do not

have any constraints on the motion of the panels. Therefore the opposed sinuous
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motions are totally due to the symmetry of the set-up. The technique in Sec-

tion 3.1.2.2 is applied again, the panel mobility in a period of lowest frequency,

T = 80, are transformed to frequency/wavenumber domain by Equation 3.4 and

Yf,k(f, k) = ẇ(f, k)/p′inc. Figure 3.13 shows the panel responses with four differ-

ence mean flow speed and compared with the theoretical prediction by incom-

pressible theory. The theoretical solution can be found by solving Equation 3.5.

The negative and positive wavenumbers represent the travelling direction which

is upstream and downstream directions respectively. The dotted lines represent

the acoustic wave speed in fluid since the upstream and downstream travelling

speeds are M − 1 and M + 1 respectively. They divide the subsonic and super-

sonic zones which defined that the flexural wave speed comparing to the acoustic

wave speed in the fluid. In each sub-figure, any responses bounded by two dotted

lines are travelling with supersonic speed (cB > M + 1 or cB < M − 1). In con-

trast, other responses are travelling with subsonic speed (M + 1 > cB > M − 1).

When M = 0, two modes of response, subsonic and supersonic modes, are found.

The subsonic mode responses to all frequencies and the frequency/wavenumber

relation strongly agree with the theoretical prediction. The supersonic mode also

has a great agreement with the theory. It appears when f ≤ 2.98 which only

1.4% difference to the theory. When a low subsonic flow M = 0.1 presented,

the subsonic mode offsets a little bit from the theory. As the discussion in Sec-

tion 3.1.2.2, the difference should be resulted by the fluid compressibility effect.

In terms of travelling speed, the downstream travelling mode is faster than the

theoretical prediction, and the upstream one is in contrast. It shows the lack of

fluid compressibility effect causes underprediction of the influence of mean flow

on the subsonic panel response, but the supersonic mode is not obviously affected

in this case. When the mean flow speed increase to M = 0.5, the compressibility

effect is more obvious. The theoretical subsonic mode does not change too much
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Figure 3.13: Frequency-wavenumber spectra of Yk,f . (a), M = 0. (b), M = 0.1.

(c), M = 0.5. (d), M = 0.9. – – –, theoretical prediction with

incompressible flow; · · · · ·, acoustic wave speed in fluid.
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by the mean flow comparing with M = 0. However, the subsonic mode further

offsets away from the theory. On the other hand, the compressibility effect on su-

personic mode is noticeable. The lowest frequency of this mode is 2.79 but 9.5%

difference to the theory. The compressibility effect shifts the lowest frequency

of the supersonic mode higher. When M = 0.9, the offset from the theory of

subsonic mode is further increased. The lowest frequency of supersonic mode

is 1.97 and the difference to the theory is also increased to 44.9%. The second

supersonic mode predicted by the theory can be merely noticed at around f ≈ 5

and −26 < k < −20 but cannot be observed in the numerical result since it may

be out of the frequency range of calculation under the compressibility effect.

Because of the effect of fluid inertia, the mean flow accelerates waves with

the same travelling direction (downstream) but decelerates that with opposite

travelling direction (upstream) for both subsonic and supersonic modes. The

variation of the effect with frequency is nonlinear. When M = 0, the travelling

speeds of the subsonic mode are constant 0.092 for both direction. When M = 0.5

and 0.9 the downstream travelling speed is very close to the sonic speed in a low

frequency range that f < 0.8. However farther away from f = 0.8, the increment

is much smaller. The effect of flow to the decrement of upstream travelling speed

is also stronger in low frequency. In addition, the effect of flow shifts the lowest

frequency of the supersonic mode lower. The lowest frequencies of both M = 0

and 0.1 are 2.98. It is shifted to 2.79 and 1.97 when M = 0.5 and 0.9 respectively.

By comparing the lowest frequencies of the supersonic mode to the fcrit of acoustic

responses of M = 0, 0.1 and 0.5, their differences are less than 0.1. They should

be somehow related which the supersonic mode may cause the extremely low TL

at high f .

Referring to Figure 3.12, it can be noticed that the downstream travelling

speed of subsonic mode at M = 0.5 is very close to the sonic speed occur together
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with low TL when f < 1. For the panel response higher than the fcrit, the

subsonic mode is weakened and the response is dominated by the supersonic

mode. Its downstream travelling speed is close to the sonic speed too. The

similar observation also found when M = 0.9. The downstream travelling speeds

of subsonic mode when f < 2 and of supersonic mode when f > 2.7 are very close

to the sonic speed, and low TL also observed in these frequency ranges. It may

indicate that the panel wave with nearly sonic speed is beneficial the transmission

of the incident acoustic wave since the difference of their travelling speed is small.

3.2.2 Near field fluid response

To uncover the different effect of two kinds of flexural waves to the fluid, the

pressure fluctuation in the area above the flexible panel which can be defined

as near field response is discussed in the following. In order to identify any

wave travelling, the pressure field is also transformed to frequency/wavenumber

domain. The pressure fluctuations p′(x, t) in a period and −0.5 < x < 0.5 are

transformed as p′(f, k) according to

p′(f, k) =
1

2π

∞∫
−∞

∞∫
−∞

p′(x, t)e−2πi(kx+ft)dxdt. (3.8)

Figure 3.14 shows p′(f, k) in near field with four different mean flow speed. In

all four cases, there are no waves travelling exactly with speed of sound. Almost

only supersonic waves are observed except M = 0.9. In M = 0.9, subsonic waves

are observed that are only in downstream travelling direction and within around

1.5 < f < 2.5. By comparing to Figure 3.13, the frequency/wavenumber relation

of fluid responses overlap with the panel responses. The amplitudes are also

directly proportional to the panel responses. These may indicate that the near

field responses are totally controlled by and follow the panel responses.

In addition, the near field response is agreed with the theory presented by
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Figure 3.14: Frequency-wavenumber spectra of p′ at the duct centreline within

−0.5 < x < 0.5. (a), M = 0. (b), M = 0.1. (c), M = 0.5. (d),

M = 0.9. · · · · · · , acoustic wave speed in far field of fluid domain.
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Crighton (1989). The problem discussed by Crighton is the fluid loading effect

on vibration of an infinite thin elastic plate driving by a time-harmonic forcing

in absence of flow and the corresponding acoustic response. The fluid loading is

represented by time-harmonic pressure which satisfies the wave equation. In the

theory, when the surface wave speed slower than the acoustic wave speed, it is

called a subsonic surface wave. The surface wave represents the transverse wave

at the fluid-panel interface, which is equal to the panel responses in this problem.

The energy of subsonic surface wave will be transported without loss parallel to

the surface, and none is radiated normal to the surface. When the surface wave

is supersonic, it will radiate energy to the acoustic field and it is called a leaky

wave. Its amplitude decays exponentially in its travelling direction as energy loss

to the fluid continuously. The present study has the similar observation that only

supersonic waves are observed when M = 0 because there are no energy leaks

from the subsonic surface wave. However, Figure 3.14(d) indicates the subsonic

surface wave may also radiate energy to fluid at high subsonic mean flow. Besides,

there has a difference between the theoretical analysis and the present problem

that the theory is not considering inside a duct. The disturbances radiated by

the panel to the duct near field are reflected by the duct wall of the opposite

side and go back to the source again. Such interaction may results that the

waves in near field and the surface wave are engaged together, so they have same

frequency/wavenumber relation.

By the observation of the near field response, it can be deduced that none

of the incident waves can travel through the duct segment with flexible walls

directly with speed of sound. In this regards, the transmission loss may created

due to two possible reasons. When the incident acoustic waves arrive the flexible

panels, it should be transformed as the flexural wave. The input energy may be

transported by the wave to the panels trailing edge. A portion is transformed as
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acoustic waves again to the downstream by scattering when they hit the edge.

The rest is reflected and transported to the upstream by the same process. On

the other hand, the another possibility that a portion incident acoustic waves are

reflected directly at the panels leading edge because the duct cross-sectional area

is changing. However, it is difficult to determine how much is transformed as

surface waves or directly reflected because they are mixed together in the present

results. Nevertheless, the present numerical model appears able to solve the

complete fluid model and the interaction between acoustic, flow and structural

dynamics. Therefore all system behaviours can be captured.



Chapter 4

Formulation and Numerical

Methods for Viscous Problem

In real applications, viscous flow effect is an important factor that affects the

aeroacoustic-structural response. The result in the next chapter also demon-

strated that the viscous effect cannot be neglected in the flow-induced vibration

problem. Therefore, it is necessary to investigate the fluid-structure interaction

in viscous flow.

4.1 Problem of the partitioned approach

The partitioned approach is attempted to calculate the viscous problem first,

but the inability of this approach is discovered. For the purpose of indicating

the problem of the partitioned approach, the details of numerical setting are

not described in this section but can be referred to the coming sections and

chapter. For viscous fluid, the Navier-Stokes equations are used instead of Euler

equations. The boundary condition of the fluid domain for rigid wall and flexible

panel interfaces also have to be modified as no-slip instead of sliding condition.

For no-slip condition, the tangential velocity at the interfaces is zero. The detail

81
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Figure 4.1: Time history of the vibrating velocity at x = −0.41. ——, result by

the partitioned approach; – – –, result by the monolithic approach.

setting is same as that described in Section 4.2.3.

A flow-induced vibration problem studied experimentally by Liu (2011) is

selected as the benchmark case for validation. In this case, a segment of rigid

duct wall is replaced by a flexible panel and backed by a rigid cavity. The panel

was excited by a low subsonic flow (M = 0.103) in the duct, and the vibration

would be sustaining which shows the panel instability. The detail description

of the problem is shown in Section 5.2. However, the calculation failed after a

very short time from the beginning as shown as the time history of the vibrating

velocity in Figure 4.1. The maximum vibrating velocity occurs at x = −0.41

which is one-tenth of the panel from the leading edge before the calculation break

down. Therefore the time history at this location is chosen for demonstrates the

panel response. It shows that a sudden change occurred at around t = 15 and the

amplitude grew to infinite afterward. This cannot be agreed with the experiment.

The problem of partitioned approach may be caused by the incorrect infor-
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mation transfer. In the fluid-panel coupling procedure, the panel response exerts

on the fluid is only through the setting of ghost element. The ghost element in

CE/SE method can be considered as an artificially added fluid element that does

not physically exist. The concept is assuming the panel motion is equivalent and

can be replaced by a fluid motion with the same velocity, acceleration, and static

pressure. However, the influence from panel to fluid is not totally same as fluid

to fluid, especially in viscous flow. Except static pressure p and dynamic pres-

sure (ρv2)/2, the flux in fluid is also contributed by the viscous stresses τyy and

τxy. For the inviscid problem, viscous stresses vanish so this approach is workable.

However, in viscous flow, the ghost element provides additional viscous stresses to

the fluid which is incorrect. Through the coupling procedure, the error may accu-

mulate and cause terrible consequence as the case aforementioned. Therefore the

partitioned approach is not suitable in CE/SE method for fluid-panel interaction

in viscous flow. The monolithic approach, which introduced in the Section 4.2,

does not have such problem because the panel and fluid are interacting directly,

ghost element is not involved in the coupling. Its result is also put on Figure 4.1

as a reference. This is because the result of the monolithic approach agreed well

with the experimental data which is discussed in Section 5.2.2. That validated

the monolithic approach provided a proper result for comparison. The reference

shows the amplitude is growing but relatively much stable. It further confirms the

problem of the partitioned approach. Therefore the monolithic approach must

be introduced for the study in the viscous problem.

4.2 Monolithic approach

The monolithic approach solves the fluid and structure dynamics simultaneously

in a common system. Therefore the system only contains one set of governing

equations which describing both physical behaviors.
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Figure 4.2: Free-body diagram of small control volumes of fluid elements in

contact with a flexible panel segment.

4.2.1 Coupled fluid-panel equation

Consider the stresses exerted on two small control volumes of fluid above and be-

low a flexible panel segment, a free-body diagram is drawn as Figure 4.2. There

only consider the stresses along y-direction because the vertical vibration of the

panel is the primary interest. The viscous perturbation stresses applied in tangen-

tial direction along the panel cannot be modelled because only a one-degree-of

freedom flexible wall model is used for simplification. The subscript “panel”

indicates the variables on the fluid-panel interface. The subscripts “a” and “b”

indicate the variables above or below the panel respectively. δ is the initial height

of the control volume without panel deflection and l(t) = δ−w(t) is the height of

the control volume which varies with time because the panel displacement w(t)
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compresses or stretches the volume during vibration. Since the primary focus

of the present study is on the weak vibration problem where w < δ, la + lb can

be kept as constant along the entire panel. p is the pressure acting from the

surrounding on the surface of the fluid volume. The viscosity-induced normal

stress (Anderson 2011) may be expressed as

τyy =
2

3
µ

(
2
∂v

∂y
− ∂u

∂x

)
. (4.1)

However, the no-slip panel surface gives ∂u/∂x = 0, so the viscosity-induced

normal stress can be written as

τyy =
4

3
µ
∂v

∂y
. (4.2)

When the fluid is driven by the panel, the additional stress exerted on the fluid

element by the panel through its surface in contact is the difference in total

stresses, σ = (M/Re)τyy − p,

∂σ

∂y
=
M

Re

∂τyy
∂y
− ∂p

∂y
≈ −∂p

∂y
, (4.3)

where the change of viscous stress ∂τyy/∂y = (4/3)µ(∂2v/∂y2) is neglected be-

cause it is higher order and much smaller than the change of pressure ∂p/∂y. The

corresponding mechanical power per unit length (Anderson 2011) is

v
∂σ

∂y
≈ −v∂p

∂y
. (4.4)

This stress σ arising from the vibrating fluid-panel interface modifies the

fluid momentum in its normal direction. Therefore, it is better to resolve their

effects by expressing them as a source term Q in the homogeneous Equation 2.1

originally for fixed domain boundary. The inhomogeneous form of the governing

equations is obtained as,

∂U

∂t
+
∂ (F − F v)

∂x
+
∂ (G−Gv)

∂y
= Q, (4.5)
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where

Q =


[Q1, Q2, Q3, Q4]

ᵀ = −∂p
∂y

[0, 0, 1, v]ᵀ , along fluid-panel interface,

0, elsewhere.

(4.6)

and it is dependent on the panel dynamics.

On the other hand, the net external force applied to the panel is

pex = σpanel,b − σpanel,a =

(
ppanel,b −

M

Re
τyy,b

)
−
(
ppanel,a −

M

Re
τyy,a

)
. (4.7)

The panel dynamics equation (Equation 2.9) is therefore re-written as,

D
∂4w

∂x4
− (Tx +Nx)

∂2w

∂x2
+ ρphpẅ + Cẇ +Kpw

=

(
ppanel,b −

M

Re
τyy,b

)
−
(
ppanel,a −

M

Re
τyy,a

)
. (4.8)

To satisfy the tangency condition for no-slip wall, velocities of the fluid at the

interface and the panel are equivalent (Rugonyi and Bathe 2001), v = ẇ. From

the momentum equation in Equation 2.1, the normal pressure gradient can be

obtained as

−∂p
∂y

=
∂ρv

∂t
+
∂ρuv

∂x
+
∂ρv2

∂y
+
M

Re

(
∂τxy
∂x

+
∂τyy
∂y

)
. (4.9)

When no-slip condition is applied, i.e. u = ∂u/∂x = 0,

∂ (ρuv)

∂x
= 0. (4.10)

For the physical problems of interest that presented in Sections 5.1 and 5.2 in the

next chapter, the vibrating frequency is lower than 1700 Hz which is the cut-off

frequency of the duct and the displacement will not larger than 2 mm. Therefore

the vibrating velocity will not larger than 3.4 m/s (M = 0.01). When the fluid

velocity on the wall is small that Mwall = v/c0 < 0.3, the local viscous effect and

compressibility could be ignored White (1998). Therefore

M

Re

(
∂τxy
∂x

+
∂τyy
∂y

)
≈ 0, (4.11)
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and ∂ρ/∂y = ∂v/∂y = 0 so

∂ρv2

∂y
≈ 0. (4.12)

The normal pressure gradient is therefore simply written as

∂p

∂y
≈ −ρ∂v

∂t
= −ρẅ. (4.13)

Through the relationship between the normal pressure gradient of fluid, the pres-

sure applied on the panel and the panel acceleration, the fluid (Equation 4.5) and

the panel dynamics (Equations 4.8) can be coupled.

4.2.2 Solution strategy for the inhomogeneous equation

and discretization

Since the source term is a function of the solution vector U , the fluid-panel

coupled equations, Equation 4.5, cannot be solved directly. Therefore Newton’s

method with an iterative procedure is employed to solve U (Loh 2005). First,

∂U/∂t can be expressed from Equation 4.5 as,

∂U

∂t
= Q−H ′, (4.14)

where

H ′ =
∂ (F − F v)

∂x
+
∂ (G−Gv)

∂y
.

At j-th time step of solution time marching, the solution vector is estimated by

approximating ∂U/∂t = ∆U/∆t,

U j = ∆t (Q (U j)−H ′) + U j−1. (4.15)

To eliminate H ′, the local homogeneous solution UH when Q = 0 is introduced,

U j,H = U j−1 −∆tH ′. (4.16)
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Eliminating H ′ from Equations 4.15 and 4.16 results in the equation

Φ (U j) = U j −∆tQ (U j)−U j,H = 0, (4.17)

Equation 4.17 is implicit in nature and its solution U j can be solved with New-

ton’s method through iterating the following equation, where k is the iteration

index,

U j,k+1 = U j,k −
(
∂Φ

∂U

)−1
Φ (U j,k) . (4.18)

Jacobian matrix ∂Φ/∂U is given by

∂Φ

∂U
= I −∆t

∂Q

∂U
. (4.19)

To determinate U j from Equation 4.18, the iterative procedure is shown

as Figure 4.3 is employed. At the beginning of each time step, the homoge-

neous solution U j,H is determined by the aeroacoustic model and substituted

into Equation 4.18 as initial estimate U j,k=1 to start the iteration. The iteration

will terminate when the relative errors between the solutions at iterations k and

k + 1 at all mesh points is less than the prescribed precision ε, i.e.

|U k+1 −U k|
|U k+1|

< ε, (4.20)

then the final solutions U j = U k+1 is marched forward to next time step; oth-

erwise the iteration continues until the precision requirement is reached. The

precision requirement ε = 10−10 which is same as that in the iterative parti-

tioned method in Chapter 2, and the number of iterations is around 4 in all the

calculations reported by using the monolithic approach.

In order to determines Q and ∂Q/∂U in Equations 4.17 and 4.19, ppanel,a

and ppanel,b have to be estimated from the panel dynamics for determining the

normal pressure gradients ∂p/∂y, and which must be expressed as in terms of U .
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Figure 4.3: Iterative procedure for Newton’s method.
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Referring to Figure 4.2, the normal pressure gradient (Equation 4.13) above and

below the panel, and panel acceleration are approximated as(
∂p

∂y

)
a

=
pa − ppanel,a

la
,

(
∂p

∂y

)
b

=
ppanel,b − pb

lb
, (4.21)

ẅ =
1

ρa

(
ppanel,a − pa

la

)
=

1

ρb

(
pb − ppanel,b

lb

)
. (4.22)

The relationship between ppanel,a and ppanel,b are than given by Equation 4.22,

ppanel,b =
lbρb
laρa

(pa − ppanel,a) + pb. (4.23)

On the other hand, the velocity gradient can be approximated by the equivalent

of velocity as (
∂v

∂y

)
a

=
va − ẇ
la

,

(
∂v

∂y

)
b

=
ẇ − vb
lb

. (4.24)

Therefore the normal stresses in Equation 4.2 can be approximated as

τyy,a =
4

3
µ
va − ẇ
la

, τyy,b =
4

3
µ
ẇ − vb
lb

. (4.25)

By substitute ppanel,b, τyy,a and τyy,b into Equation 4.8, it can be re-written as,

D
∂4w

∂x4
− (Tx +Nx)

∂2w

∂x2
+ ρphpẅ +

[
C +

4

3

M

Re

(
µa
la

+
µb
lb

)]
ẇ +Kpw

=
lbρb
laρa

(pa − ppanel,a) + pb − ppanel,a +
4

3

M

Re
µ

(
vb
lb

+
va
la

)
, (4.26)

At j-th time step, the vibrating velocity ẇ can be approximated by integrating

ẅ and using backward finite difference procedure,

ẇj =

∫ j

j−1
ẅdt+ ẇj−1 =

∆t

2

(
ẅj + ẅj−1

)
+ ẇj−1

=
∆t

2

1

laρa
(ppanel,a − pa) +

∆t

2
ẅj−1 + ẇj−1. (4.27)

Similarly the panel displacement w can be also approximated as

wj =

∫ j

j−1
ẇdt+ wj−1 =

∆t

2

(
ẇj + ẇj−1

)
+ wj−1

=
∆t2

4

1

laρa
(ppanel,a − pa) +

∆t2

4
ẅj−1 + ∆tẇj−1 + wj−1. (4.28)
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Since ẅ, ẇ, and w are written as functions of ppanel,a, ppanel,a can be than obtained

explicitly from Equation 4.26 and expressed in terms of U ,

ppanel,a =
1

1 +B′
(B′pa + pb +B′0) , (4.29)

where

B′ =
1

laU1,a

{
lbU1,b + ρphp +

∆t

2

[
C +

4

3

M

Re

(
µa
la

+
µb
lb

)]
+

∆t2

4
Kp

}
,

B′0 =
4

3

M

Re

(
µa
la

U3,a

U1,a

+
µb
lb

U3,b

U1,b

)
−
[
C +

4

3

M

Re

(
µa
la

+
µb
lb

)](
∆t

2
ẅj−1 + ẇj−1

)
−Kp

(
∆t2

4
ẅj−1 + ∆tẇj−1 + wj−1

)
−D∂

4w

∂x4
+ (Tx +Nx)

∂2w

∂x2
,

pa = (γ − 1)

[
U4,a −

1

2U1,a

(
U2
2,a + U2

3,a

)]
,

pb = (γ − 1)

[
U4,b −

1

2U1,b

(
U2
2,b + U2

3,b

)]
.

By substitute Equations 4.23 and 4.29 into Equation 4.21, the normal pressure

gradients are re-written as(
∂p

∂y

)
a

= − 1

la

[
1

1 +B′
(−pa + pb +B′0)

]
,

(
∂p

∂y

)
b

=
U1,a

U1,b

(
∂p

∂y

)
a

. (4.30)

By substitute the normal pressure gradients into the source term Q, Equa-

tion 4.6, the complete coupled fluid-panel equation can be obtained. Since the

fluid on both sides of the panel is considered, they are affecting each other simul-

taneously through the panel motion and their variables are dependent. Therefore

two fluid elements have to be solved together with the panel. The solutions vector

and the source term, for solving Equations 4.17 to 4.19, are combined as

U = [U1,a, U2,a, U3,a, U4,a, U1,b, U2,b, U3,b, U4,b]
ᵀ , (4.31)

Q = [Q1,a, Q2,a, Q3,a, Q4,a, Q1,b, Q2,b, Q3,b, Q4,b]
ᵀ . (4.32)
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The Jacobian matrix of the source term is found as

∂Q

∂U
=

[
∂Q

∂U1,a

∂Q

∂U2,a

∂Q

∂U3,a

∂Q

∂U4,a

∂Q

∂U1,b

∂Q

∂U2,b

∂Q

∂U3,b

∂Q

∂U4,b

]
, (4.33)

where

∂Q

∂U1,a

=



0

0

∂Q′a
∂U1,a

U3,a

U1,a

∂Q′a
∂U1,a

− U3,a

U1,a
2Q
′
a

0

0

∂Q′b
∂U1,a

U3,b

U1,b

∂Q′b
∂U1,a



,
∂Q

∂U2,a

=



0

0

∂Q′a
∂U2,a

U3,a

U1,a

∂Q′a
∂U2,a

0

0

∂Q′b
∂U2,a

U3,b

U1,b

∂Q′b
∂U2,a



,

∂Q

∂U3,a

=



0

0

∂Q′a
∂U3,a

U3,a

U1,a

∂Q′a
∂U3,a

+
1

U1,a

Q′a

0

0

∂Q′b
∂U3,a

U3,b

U1,b

∂Q′b
∂U3,a



,
∂Q

∂U4,a

=



0

0

∂Q′a
∂U4,a

U3,a

U1,a

∂Q′a
∂U4,a

0

0

∂Q′b
∂U4,a

U3,b

U1,b

∂Q′b
∂U4,a



,
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∂Q

∂U1,b

=



0

0

∂Q′a
∂U1,b

U3,a

U1,a

∂Q′a
∂U1,b

0

0

∂Q′b
∂U1,b

U3,b

U1,b

∂Q′b
∂U1,b

− U3,b

U1,b
2Q
′
b



,
∂Q

∂U2,b

=



0

0

∂Q′a
∂U2,b

U3,a

U1,a

∂Q′a
∂U2,b

0

0

∂Q′b
∂U2,b

U3,b

U1,b

∂Q′b
∂U2,b



,

∂Q

∂U3,b

=



0

0

∂Q′a
∂U3,b

U3,a

U1,a

∂Q′a
∂U3,b

0

0

∂Q′b
∂U3,b

U3,b

U1,b

∂Q′b
∂U3,b

+
1

U1,b

Q′b



,
∂Q

∂U4,b

=



0

0

∂Q′a
∂U4,b

U3,a

U1,a

∂Q′a
∂U4,b

0

0

∂Q′b
∂U4,b

U3,b

U1,b

∂Q′b
∂U4,b



,

Q′a = −
(
∂p

∂y

)
a

, Q′b = −
(
∂p

∂y

)
b

∂Q′a
∂U1,a

=
1

la (1 +B′)

(
laB

′Q′a
U1,a

− ∂pa
∂U1,a

)
,

∂Q′b
∂U1,a

=
1

U1,a

[
−Q′b +

1

la (1 +B′)

(
laB

′Q′b − U1,b
∂pa
∂U1,a

)]
,

∂Q′a
∂U2,a

= − 1

la (1 +B′)

∂pa
∂U2,a

,
∂Q′b
∂U2,a

= − U1,b

la (1 +B′)U1,a

∂pa
∂U2,a

,



4.2. Monolithic approach 94

∂Q′a
∂U3,a

= − 1

la (1 +B′)

∂pa
∂U3,a

,
∂Q′b
∂U3,a

= − U1,b

la (1 +B′)U1,a

∂pa
∂U3,a

,

∂Q′a
∂U4,a

= − 1

la (1 +B′)

∂pa
∂U4,a

,
∂Q′b
∂U4,a

= − U1,b

la (1 +B′)U1,a

∂pa
∂U4,a

,

∂Q′a
∂U1,b

= − 1

la (1 +B′)

(
lbQ
′
a

U1,a

− ∂pb
∂U1,b

)
,

∂Q′b
∂U1,b

=
Q′b
U1,b

− 1

la (1 +B′)U1,a

(
lbQ
′
b − U1,b

∂pb
∂U1,b

)
,

∂Q′a
∂U2,b

=
1

la (1 +B′′)

∂pb
∂U2,b

,
∂Q′b
∂U2,b

=
U1,b

la (1 +B′′)U1,a

∂pb
∂U2,b

,

∂Q′a
∂U3,b

=
1

la (1 +B′)

∂pb
∂U3,b

,
∂Q′b
∂U3,b

=
U1,b

la (1 +B′)U1,a

∂pb
∂U3,b

,

∂Q′a
∂U4,b

=
1

la (1 +B′)

∂pb
∂U4,b

,
∂Q′b
∂U4,b

=
U1,b

la (1 +B′)U1,a

∂pb
∂U4,b

,

∂pa
∂U1,a

=
γ − 1

2U1,a
2

(
U2,a

2 + U3,a
2
)
,

∂pb
∂U1,b

=
γ − 1

2U1,b
2

(
U2,b

2 + U3,b
2
)
,

∂pa
∂U2,a

= − (γ − 1)
U2,a

U1,a

,
∂pb
∂U2,b

= − (γ − 1)
U2,b

U1,b

,

∂pa
∂U3,a

= − (γ − 1)
U3,a

U1,a

,
∂pb
∂U3,b

= − (γ − 1)
U3,b

U1,b

,

∂pa
∂U4,a

=
∂pb
∂U4,b

= γ − 1.

In the case of the fluid below the panel is stationary that gives ppanel,b = p0

and τyy,b = 0, only the fluid above the panel is requested to calculate and the

normal pressure gradient can be simplified as(
∂p

∂y

)
a

= − U1,a

laU1,a −B′′
(−pa +B′′0 ) , (4.34)
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where

B′′ = ρphp +
∆t

2

(
C +

4

3

M

Re

µa
la

)
+

∆t2

4
Kp,

B′′0 =
4

3

M

Re

µa
la

U3,a

U1,a

−
(
C +

4

3

M

Re

µa
la

)(
∆t

2
ẅj−1 + ẇj−1

)
−Kp

(
∆t2

4
ẅj−1 + ∆tẇj−1 + wj−1

)
−D∂

4w

∂x4
+ (Tx +Nx)

∂2w

∂x2
+ p0.

The solutions vector and the source term are remained as U = [U1, U2, U3, U4]
ᵀ

and Q = [Q1, Q2, Q3, Q4]
ᵀ respectively, and the Jacobian matrix of the source

term is

∂Q

∂U
=



0 0 0 0

0 0 0 0

∂Q′

∂U1

∂Q′

∂U2

∂Q′

∂U3

∂Q′

∂U4
U3

U1

∂Q′

∂U1

− U3

U1
2Q
′ U3

U1

∂Q′

∂U2

U3

U1

∂Q′

∂U3

+
1

U1

Q′
U3

U1

∂Q′

∂U4


, (4.35)

where

Q′ = −
(
∂p

∂y

)
a

,

∂Q′

∂U1

=
1

laU1 −B′′

[
−B′′Q′

U1

+ U1

(
− ∂p

∂U1

+
4

3

µ

la

∂v

∂U1

)]
,

∂Q′

∂U2

=
U1

laU1 −B′′

(
− ∂p

∂U2

+
4

3

µ

la

∂v

∂U2

)
,

∂Q′

∂U3

=
U1

laU1 −B′′

(
− ∂p

∂U3

+
4

3

µ

la

∂v

∂U3

)
,

∂Q′

∂U4

= − U1

laU1 −B′
∂p

∂U4

,

∂p

∂U1

=
γ − 1

2U1
2

(
U2

2 + U3
2
)
,

∂p

∂U2

= − (γ − 1)
U2

U1

,

∂p

∂U3

= − (γ − 1)
U3

U1

,
∂p

∂U4

= γ − 1.
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4.2.3 Boundary conditions

The fluid motion is stopped by no-slip rigid surfaces when they are in contact,

so that gives zero normal and tangential velocities u = v = 0. Other settings are

same as the sliding boundary surfaces described in Section 2.3.1, i.e. isothermal

condition T = T0 for all solid surfaces. All solid surfaces also obey the tangency

condition and the normal pressure gradient condition.

The near wall approach (Lam et al. 2014a) is applied to determine the

ghost point setting, which assumed the fluid-panel interface is located at the

ghost point. Therefore the normal velocities and pressure at the ghost point are

set as same as that at the fluid-panel interface, so

uG = 0, vG = ẇ, pG = ppanel. (4.36)

The density can also be determined by isothermal condition,

ρG =
γpG
T0

. (4.37)

All tangential gradients are simply assumed same as in the corresponding bound-

ary point, (
∂U

∂x

)
G

=
∂U

∂x
, (4.38)

and all normal gradients are approximated as,(
∂U

∂y

)
G

=
U −UG

2δ
. (4.39)

In summary, no-slip flexible panel boundary condition is set as,

uG = 0,

(
∂u

∂x

)
G

=
∂u

∂x
,

(
∂u

∂y

)
G

=
u

2δ
,

vG = ẇ,

(
∂v

∂x

)
G

=
∂v

∂x
,

(
∂v

∂y

)
G

=
v − ẇ

2δ
,

pG = ppanel,

(
∂p

∂x

)
G

=
∂p

∂x
,

(
∂p

∂y

)
G

=
p− pG

2δ
,

ρG =
γpG
T0

,

(
∂ρ

∂x

)
G

=
∂ρ

∂x
,

(
∂ρ

∂y

)
G

=
ρ− ρG

2δ
.



4.3. Comparisons of partitioned and monolithic approaches 97

Table 4.1: Comparison of two approaches for third eigenmode vibration.

f Df

Theory 1.4921

Partitioned approach 1.4975 0.36 %

Monolithic approach 1.4916 0.03 %

To avoid error generated by any discontinuities, the rigid surfaces should be set by

the same method by setting zero wall velocity ẇ = 0 and zero pressure difference

p− pG = 0. In addition, this ghost point setting method can also be applied for

sliding boundary surface by setting uG = u and (∂u/∂y)G = 0.

4.3 Comparisons of partitioned and monolithic

approaches

The accuracy and computational time of both partitioned and monolithic ap-

proaches are tested and compared in this section. Three cases are selected and

computed by both approaches for comparisons: a fluid loaded panel vibration

case, and two acoustic-structural interaction cases with high and low transmis-

sion loss TL respectively. The most basic problem is the fluid loaded panel

vibration that can test the ability for capturing structural response. The related

theory can be referred in Section 2.5. Here the third eigenmode is selected for

testing, the eigenmode frequencies f and the absolute differences to the theory

Df are shown and compared in Table 4.1. The result of monolithic approach is

more accurate than the partitioned approach for the structural response.

Another two tests are the acoustic-structural interaction problems in a

duct with membrane length Lp/H = 5 and 3.4, that can test the ability of
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Table 4.2: Comparison of two approaches for acoustic-structural interaction in

duct.

Lp/H 5

TL ∆TL Tcomp Niter

Theory 15

Partitioned scheme 14.8 0.2 0.03415 s 18

Monolithic scheme 14.7 0.3 0.01695 s 4

Lp/H 3.4

TL ∆TL Tcomp Niter

Theory 2.5

Partitioned scheme 1.8 0.7 0.03810 s 18

Monolithic scheme 2.7 0.2 0.01710 s 3

capturing acoustic response. The details of the cases setting and the result dis-

cussion can be referred to Section 3.1.1. The TL and its absolute differences

∆TL = |TLnumerical − TLtheoretical| of both cases are shown in Tables 4.2. The

results show both approaches have similar accuracy for capturing high TL re-

sponse. However, the monolithic approach has higher accuracy for capturing

low TL response. These test cases concluded that the monolithic approach has

higher accuracy for capturing both structural and acoustic responses in general.

In addition, the time efficiency is also compared. For a fair comparison, only the

computational time consumed for panel dynamic solver and coupling procedure

in partitioned approach, and for the procedure of resolving fluid-panel coupled

equation in monolithic approach are accounted. The computational time per

time step Tcomp, number of iteration steps per time step Niter of two approaches

are shown in Table 4.2. The number of iteration steps by monolithic approach
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is much lesser. The time consumed is also only 50 % of that by the partitioned

approach. The monolithic approach has double time efficiency compare to the

partitioned approach. In summary, the monolithic approach is definitely superior

to the partitioned approach in both accuracy and time efficiency.



Chapter 5

Aeroacoustic-Structural

Interaction in Duct Carrying

Viscous Flow

The capability of the numerical methodology is going to be assessed by compar-

ing the results with the data of two experiments. The experimental study on

aeroacoustic-structural interaction with acoustic excitation by Choy and Huang

(2005) and study on flow-induced vibration by Liu (2011) are selected as canon-

ical problems. The viscous effect and any responses cannot measure from the

experiments are further discussed in detail.

5.1 Aeroacoustic-structural interaction

The numerical methodology is firstly validated its capability in capturing the

acoustic and panel responses in the aeroacoustic-structural interaction. The ex-

perimental study of Choy and Huang (2005) on the drum-like silencer carrying

a low Mach number flow is selected as the benchmark for the validation. They

measured the transmission loss and the distribution of vibrating velocities that

100
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can be used to validate the acoustic and panel responses. The drum-like silencer

is a kind of duct silencer that developed based on the theoretical study of Huang

(1999). Flexible duct segment constructed by membranes is utilized to reflect

noise in the flow duct. There are two opposing side-branch cavities covered with

flexible panels in the silencer design to improve the silencer performance and

block the noise radiation to the duct exterior. This configuration is more com-

plex than that in Figure 3.1 in Chapter 3, and presents a more stringent case for

the validation of coupled aeroacoustic-structural interaction. The experiment is

summarized in the following.

5.1.1 Summary of the experiment

The aim of the experiment was to measure the transmission loss resulted by

the drum-like silencer. The setup of the experiment is illustrated in Figure 5.1

(from Choy and Huang 2005). The experiment was conducted in a closed-loop

wind tunnel with acoustic linings to absorbed the noise generated by the fan. A

500 mm long drum-like silencer was installed in a straight duct that the length

from the inlet (connected to the nozzle) to the outlet (connected to the diffuser)

was 2370 mm and the cross-section was 100 mm by 100 mm. In the drum-like

silencer, two membranes were flush-mounted in the duct the backed with 100 mm

height cavities. A loudspeaker was flush-mounted at the silencer’s upstream and

produces pure tone sound from 20 to 1000 Hz with a frequency interval of 10 Hz.

Four microphones, one pair in upstream and one pair in downstream, were used

to measure the sound level and distinguish its travelling directions so to find

the transmission loss. The tension of the membrane was measured by a strain

gauge glued to its surface. A laser vibrometer was used to measure the mem-

brane vibration through the transparent cavity walls. The vibration velocity was

captured point by point in streamwise direction with an interval of 20 mm. The
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Figure 5.1: The schematic setup of the testing rig from Choy and Huang (2005).

The upper right corner is the overview of the wind tunnel. The unit

of the dimensions shown in the figure is mm.

distribution of the vibration velocity was than reconstructed by corrected phase.

The turbulence grids in upstream and the loudspeaker at downstream were used

for the other measurements that will not adopted in the following discussion, so

they are not explained here.

5.1.2 Validation of the methodology

The same set of experiment parameters are taken for the calculation, i.e. the panel

and cavity length L̂p = 500 mm, the duct width and cavity height Ĥ = 100 mm,

the upstream and downstream length are 1000 and 870 mm respectively and the
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û0

p̂0, ρ̂0, T̂0, ĉ0

L̂p2L̂p 1.74L̂p

Ĥ

Ĥ

Ĥ

Figure 5.2: Schematic configuration of the drum-like silencer (not-to-scale).

panel mass per unit area ρ̂pĥp = 0.17 kg/m2. The range of testing frequencies

is from 20 to 1000 Hz with an interval of 10 Hz. The panel tension and mean

flow speed are case dependence, they will be mentioned with the results. L̂0 =

panel length L̂p, ambient acoustic velocity ĉ0 = 340 m/s, time t̂0 = L̂0/ĉ0,

ambient density ρ̂0 = 1.225 kg/m3, pressure ρ̂0ĉ
2
0, and ambient temperature T̂0 are

chosen for the normalization of all flow and panel variables. The two-dimensional

computational domain of the silencer geometry is shown in Figure 5.2. The

ambient density, pressure, and temperature are fixed at the outlet. The no-

slip condition is applied to all wall and flexible panel surfaces. A broadband

incident acoustic plane wave covering 0.0294 to 1.4706 with a frequency resolution

∆f = 0.0147 was introduced into the computational domain. The excitation
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functions are written as,

p′inc = pA

99∑
n=1

sin(2πtfn + θn), (5.1)

u′inc = p′inc/ρ, (5.2)

where pA = 4.5e−4 (110 dB), which is constant to all fn, and θn is uniformly

random phase. A uniform flow profile is applied at the inlet to let the boundary

layer freely develop. A full rigid duct case is first calculated to develop the proper

flow profile in the whole flow field. The steady solution is then used as the initial

condition for the calculation with the flexible panels. The pressure in the duct is

spatially decreasing along the duct. Since the cavities are located below/above

the panels, the initial pressure in the cavities is set as the same as the pressure

in the duct at the centre of the panels (x = 0). Therefore the pressure difference

(pex = 0 at the centre of the panels) across the panels can be minimized initially.

This is to simulate the experimental set-up and avoid large deflection of the panel

by the static pressure that affects the later excited panel response. Zero mean

flow velocity is also set in the cavities. In the mesh, uniform grid distribution is

used for both x and y directions with ∆x = 0.02 and ∆y = 0.0033.

The instantaneous distribution of vibrating velocities of a tensioned panel

with T = 0.108 (8213.38 N) excited by acoustic wave under flow M = 0.026

(û0 = 9 m/s) are measured in the experiment. Figure 5.3 shows the comparisons

of numerical result with excitation frequencies f = 0.294 (200 Hz) and 0.618

(420 Hz) and the experimental data. The numerical results have good agreement

with the experimental data at both frequencies. The maximum differences are

5.2% and 10.8% in the results of f = 0.294 and 0.618 respectively.

On the other hand, four comparisons of the calculated transmission loss TL

and the experimental data with are illustrated in the following. First, Figure 5.4

shows the case with Tx = 0.116 (8821.78 N) and M = 0.045 (û0 = 15 m/s). An
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Figure 5.3: Comparison of instantaneous distribution of vibrating velocities

with T = 0.108 and M = 0.026. (a), f = 0.294 (200 Hz). (b),
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Figure 5.4: Comparison of the TL spectrum of numerical result to experimental

data with T = 0.116 and M = 0.045. ——, numerical result with

viscous flow; · · · · · · , numerical result with inviscid flow; ©, exper-

imental data (Choy and Huang 2005). – – –, duct mode frequency

f2,0,0.
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excellent agreement between the numerical results and the experimental data is

found except the peak at f = 0.36. The numerical result is around 5 db lower.

However the difference at this peak is found that may caused by a wind tunnel

duct mode in a section with 2.74 (1.37 m) long that counted from the flexible

panel leading edge to the duct outlet. In the experiment, the test section outlet

is connected to a diffuser and acoustic reflection may be caused by the change

of cross-section area. On the other hand, reflection may also be caused by the

panel vibration at the leading edge. Therefore duct mode may occur within this

section. The frequency of a duct mode can be found by the following equation,

fn1,n2,n3 =
c0
2

(
n1

2

(l1 + 2l′′)2
+
n2

2

l2
2 +

n3
2

l3
2

) 1
2

, (5.3)

where, c0 is speed of sound, l1, l2 and l3 are the lengths, hight and width of

the duct respectively, n1, n2 and n3 are the mode numbers of each directions

respectively, and l′′ is the end correction. When resonance occurs in a closed

ends duct, the pressure is constant at its ends and the wavelength will be a factor

of the physical length of the duct. However in an open ends duct, the air at the

ends is oscillating and the pressure cannot be constant, so the effective length

of the duct will be a bit longer than its physical length (Beranek 1993, Dowling

and Ffowcs Williams 1983). Therefore the end correction is necessary for each

ends to estimate the effective length. The end correction can be approximately

determined as (Beranek 1993),

l̂′′ = 0.613â if k̂â < 0.5, (5.4)

where, â =

√
Ŝ/π is the characteristic dimension of the cross section of the duct

with the cross-sectional area Ŝ, and k̂ = 2π/λ̂. In the experiment, the cross-

sectional area of duct Ŝ = 0.01 m2 and â = 0.0564 m. Hence the end correction

is l̂′′ = 0.0346 m. When n1 = 2, the wavelength λ̂ = 1.40 m and k̂â = 0.252 < 0.5

that meets the condition. By Equation 5.3, the frequency of the second mode
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Figure 5.5: Illustration of the occurrence of second duct mode pressure distri-

bution in the experiment.

f̂2,0,0 = 242 Hz, i.e. f2,0,0 = 0.36. If the second mode occur in this section of the

wind tunnel, the nodal point of this mode will be located at 15 mm away from

the microphone at the downstream as shown as Figure 5.5. When the microphone

is such close to the nodal point, the acoustic signal received will be much lesser

then the actual acoustic wave transmitted to the downstream. The TL measured

will also higher than the actual one. However, in the computational domain, the

outlet is connected to a high numerical dissipative section that ensure there is

no acoustic reflection, so no duct mode will be formed. Therefore the numerical

result is not affected by this duct mode problem. Since f2,0,0 is exactly agrees

with the peak of the TL spectrum as shown as Figure 5.4, this may be a possible

reason that the TL level at f = 0.36 measured in the experiment is higher than

the numerical result.

Figure 5.6 shows the TL spectra of the cases with Tx = 0.108 (8213.38 N)

and M = 0, 0.03 (û0 = 10 m/s) and 0.045 (û0 = 15 m/s). They also show

very good agreement between the numerical results and the experimental data.

Similar to the aforementioned case, some peaks (or dips) are not captured by the

calculations but they are probably caused by wind tunnel duct modes. The peak

at around f2,0,0 is measured in all three cases but not found in the calculations



5.1. Aeroacoustic-structural interaction 108

40

30

20

10

0

T
L

30

20

10

0

T
L

30

20

10

0

T
L

0.90.80.70.60.50.40.30.25
f

Figure 5.6: Comparisons of the TL spectra of numerical result to experimental

data with T = 0.108. (a), M = 0; – – –, duct mode frequency

f2,0,0 and f3,0,0. (b), M = 0.03; – – –, duct mode frequency f2,0,0.

(c), M = 0.045; – – –, duct mode frequency f2,0,0 and f4,0,0. ——

, numerical result with viscous flow; · · · · · · , numerical result with

inviscid flow; ©, experimental data (Choy and Huang 2005).
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which may be caused by the mode of duct section counted from the flexible panel

leading edge to the duct outlet. For M = 0, the dip at f = 0.53 is also match with

the third duct mode f3,0,0 of the same duct section. The anti-nodal point of this

third mode is located at 15 mm away from the microphone at the downstream.

Contrary to the second mode, the acoustic signal received will be much larger

than the actual transmitted. Therefore the TL measured will be lower and a

dip is found at f3,0,0 in the experimental TL spectrum. For M = 0.045, the

experimental data are 4.5 db higher than the numerical result at f = 0.41. It

is match with the fourth mode of another section with 4.74 (2.37 m) long that

counted from the duct inlet to outlet. With the length of 4.74, the frequency of

forth mode f ′4,0,0 = 0.41. It’s last nodal point is located at 2.5 mm away from the

microphone at the downstream. Similar to the mode at f2,0,0, the TL measured

is, therefore, higher than the numerical result.

Except for the influence of the duct modes, the other difference in the TL

levels might be attributed to two reasons. One is due to the fact that the present

two-dimensional calculation might not approximate fully the three-dimensionality

of the experiment. Some three-dimensional panel vibration and duct acoustic

modal behaviors might not be properly included. Another is that the mesh is not

fine enough to capture the turbulence, any acoustic reactive response caused by

the panel vibration driven by flow instability in the experiment might be excluded.

In general, the numerical results are agreed with the experimental data very

well. These excellent agreement in the spectral variation of TL firmly establishes

the capability of the present numerical methodology in capturing aeroacoustic-

structural interaction correctly.

To study the viscous effect, the same setting but with inviscid flow is

calculated. Euler equation and sliding wall condition for all walls and panels

are employed. Figures 5.4 and 5.6 show the comparison of acoustic response of
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viscous and inviscid solutions and also the experimental data. When the flow is

absent M = 0 (Figure 5.6 (a)), two solutions almost overlap which shows the

viscous effect is not strong. When the flow is presented to M = 0.03 (Figure 5.6

(b)), their overall trend is similar but the inviscid solution have obvious over

prediction at around f = 0.5 to 0.6 and the peak at f = 0.32. This problem is

worse in higher flow velocity M = 0.045 (Figures 5.4 and 5.6 (c)). Especially at

the peak, for example in Figure 5.4, the difference between the inviscid solution

and the experimental data is 5.7 db that is much larger than that of viscous

solution which is 0.5 db only. The better agreement with the experiment shows

that including the viscous effect can provide a more accurate solution for the

aeroacoustic-structural interaction.

5.1.3 Aeroacoustic-structural response

Since the aeroacoustic-structural interaction with the acoustic excitation is dis-

cussed deeply in Chapter 3, this section will focus on the effect of cavities on

the interaction. An additional case without cavities is calculated for reference.

The duct external pressure distribution is set as identical to the internal pres-

sure in the steady state with a fully rigid duct. This assumption is to avoid the

panels deflection by the static pressure difference and causing any effect to the

aeroacoustic-structural response.

An overview of panel response is shown in Figure 5.7 for both cases with

and without cavities. Figures 5.7(a) and (b) show the panel response is domi-

nated by the first five in-vacuo modes. The effect of cavities mainly suppresses

the response of first three modes, the differences of other modes are not large

relatively. In the frequency spectrum as shown as Figure 5.7(c), the response

without cavity is dominated at a narrow band around f = 1. Two close peaks

f = 1.016 and 1.059 are found. When the panels are backed by cavities, the
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Figure 5.7: Panel responses with T = 0.116 and M = 0.045. (a), the modal

spectrum of panel mobility Yk. (b), the distributions of panel mo-

bility amplitude Yx. (c), the averaged frequency spectrum of panel

mobility Yf on the whole panel. © and ——, with cavities; × and

– – –, without cavities.
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strongest response is shifted to f = 1.176 and only a small peak is found at

f = 0.985. The relationship between the wavenumber and frequency for both

cases are shown in the Figure 5.8. Both subsonic and supersonic responses are

found in both cases. For the case that with cavities, the subsonic response almost

covers all excitation frequency (f = 0.0294 to 1.4706). However, the supersonic

response mainly appears when f > 0.9. By compare Figures 5.8(a) and 5.7(c),

the response at f = 1.18 is mainly contributed by the supersonic response. The

wavenumber of this strongest peak is around k = 0.2, the phase speed of the panel

wave is cB = 5.9. Since the wavenumber is very close to zero, the panel is almost

vibrating with a flat shape. For the subsonic upstream and downstream travelling

waves, the strongest responses are at f = 1.19 and 1.22 respectively. In addi-

tion, the response level of the downstream travelling wave is generally larger than

the upstream. This may be because of the directions of flow and the upstream

travelling wave are in the opposite. The force applied by the flow was resisting

the upstream travelling wave, in contrast, the downstream travelling wave was

enhanced. For the case without cavities, the supersonic response mainly appears

when f > 0.77. Both wavenumbers of two strongest responses at f = 1.016

and 1.059 are k ≈ 0, they are vibrating with flat shapes. For f < 0.77, the

downstream travelling wave is dominated. By compare Figures 5.8(a) and 5.8(b),

some effects of cavities are observed. First, it amplified the upstream travelling

wave but attenuated the downstream travelling wave at low frequency. Second,

it makes the subsonic response in high frequency dominated in the narrow band

around f = 1.2. Besides, the dominant frequency of supersonic response also

shifted to around f = 1.2.

The acoustic responses with and without cavities are shown in Figure 5.9.

The result shows that the most effective silencing frequency range is around 1 <

f < 1.4 when cavities were removed. However, when the panel is backed by the
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Figure 5.9: Spectral variation of TL. ——, with cavities; – – –, without cavities.

cavities, the effective silencing frequency range is found at around 0.3 < f < 0.7

and f > 1.2. The cavities definitely enhanced the TL at low frequency and change

the effective silencing frequency range. However, there is no strong relationship

between the acoustic and structural responses is found.

5.2 Flow-induced structural instability

In the case of Section 5.1, the panel vibration is mainly driven by the acoustic

wave. To rigorously validate the interaction between flow and panel, the experi-

mental study by Liu (2011) on the instability of flexible panel in drum-like silencer

carrying a low Mach number flow is selected as the benchmark for the validation.

It is a further study based on the drum-like silencer of Choy and Huang (2005).

5.2.1 Summary of the experiment

The target of the experiment was to investigate the occurrence of the instability

of the membrane in drum-like silencer induced by flow. The same closed-loop
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Figure 5.10: Schematic configuration of the experimental setting of Liu (2011)

(not-to-scale).

wind tunnel illustrated in Figure 5.1 was used in this experiment. However, two

openings, each with dimension 50 mm by 50 mm, were made at the upstream

and downstream of the test section so as to simulate a mean pressure drop along

the duct similar to those commonly observed in practical ventilating systems.

The drum-like silencer here was 300 mm long with only one membrane made of

stainless steel and backed by a cavity. The occurrence of the instability was first

found by recording the growth of the vibration velocity at the center point of the

membrane with flow speed. Then the spectrum of the vibration velocity of the

whole membrane during instability was scanned by a vibrometer.

5.2.2 Validation of the methodology

A case with the presence of structural instability is selected for the computation.

The computational domain is shown in Figure 5.10. The same set of experiment

parameters are taken for the calculation, i.e. the panel and cavity length L̂p =
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300 mm, the duct width and cavity height Ĥ = 100 mm, the upstream and

downstream length are 1250 and 750 mm respectively, the panel density ρ̂p =

7800 kg/m3, the panel thickness ĥp = 0.025 mm, the Young’s modulus Êp =

193 GPa, the bending stiffness D̂ = 0.0002762 Nm, the panel tension T̂x = 40 N

and the mean flow speed û0 = 35 m/s. There had not any excitation applied

on the flexible panel such as acoustic wave, so the vibration was only induced

by the flow. The normalization and other setting are same as the last case in

Section 5.1. Uniform mesh is used for both x and y directions with ∆x = 0.02

and ∆y = 0.0067. The nonlinearity term Nx in the panel dynamic equation is

included in this calculation because the structural instability must induce large

deflection. The result in the following sections confirmed that the maximum

displacement to thickness ratio w/hp = 28 � 0.2 that is over the limit of the

small-deflection theory, so Nx cannot be ignored.

It is important to confirm the accuracy of the aeroacoustic model for cap-

turing the background mean velocity profile of the duct flow because the panel

vibration is highly affected by the wall normal stress which related to the velocity

profile under the action of fluid viscosity. Since Liu (2011) did not provide the

data of velocity mean profile at û = 35 m/s, the experimental data with the

closest mean flow speed û = 30 m/s is selected for comparison. An additional

case with û = 30 m/s have be calculated and compared with the experimen-

tal data as shown as Figure 5.11. The Reynolds numbers of the experiment are

ReH = 2.4 × 105 and Reδ = 2.3 × 104 based on duct width and the boundary

layer thickness as reference length respectively. The entrance length to become

fully developed is 3.4 m (White 1998) which is much longer than the whole test

section (2.3 m). Therefore the turbulent flow had not developed in the test sec-

tion and the boundary layer is laminar. The figure shows the numerical velocity

profile agree favorably well with experimental data. The velocity boundary layer
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Figure 5.11: Velocity mean profile at the inlet. ——, numerical result. – – –,

experimental data (Liu 2011).

thickness in the experiment reported is 11 mm, that is 0.037 in normalized value.

The numerical result is 0.039 which is 5% different from the experimental data

only. Two profiles also overlap fully in the very close proximity to duct wall,

y/H ≤ 0.02. This comparison provides further support that the aeroacoustic

model is able to generate correct mean velocity profile for initiating the correct

panel response.

Dynamic instability, known as flutter (Dowell 1975), was observed in the

experiment and the frequency spectrum of vibration velocity is reported by Liu

(2011). When the panel deformation is large enough, the post-flutter oscillation,

that also called limit cycle oscillation, will occur (Dowell 1975). That is because

the nonlinear tension will increase with the panel deformation, and that increases

the effective panel stiffness. When it balances the fluid forces that excite the

panel, the oscillation will keep at a constant level. The time traces of strain ε,

kinetic energy KE = (1/2)ρphp
∫ 0.5

−0.5 ẇ
2dx, and vibrating velocity at two locations

in the numerical result, one third (x = −0.17) and center (x = 0) of the panel, are

selected as references and shown in Figure 5.12 to illustrate the development of

the structural instability. The vibration was excited by the flow at the beginning
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Figure 5.13: Averaged frequency spectrum of the vibration velocity on the

whole panel. ——, numerical result; – – –, experimental data (Liu

2011). − · − · −, duct mode frequencies.

and the amplitude increases continuously until t ≈ 200. Then the amplitude

started to decrease and tends to keep at a certain level. At last, it enters the time

stationary state after t ≈ 800, and the limit cycle oscillation occurs. Therefore,

the following analysis is based on the result in the time stationary state.

The averaged frequency spectrum of the vibration velocity on the whole

panel is then compared with the experimental data in Figure 5.13. It shows

the favorable agreement of numerical result with the experimental data. The

first peak of the numerical result at frequency f0 = 0.07 have −13.5% frequency

shift compare to the experiment. The difference may be attributed to the three-

dimensionality of the experiment might not be completely approximated by the

present two-dimensional calculation. The missing the tension of spanwise direc-

tion will reduce the frequencies, that cause the frequency shifted to a lower value.

The amplitude in spanwise direction may not be equally distributed that cause

the difference in amplitude. Besides, another two peaks of the numerical result

are the first and second harmonics of the first peak, where f = 2f0 and 3f0. On

the other hand, there are another two peaks measured in the experiment but
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they are not found in the calculation. However, they may be induced by two

different wind tunnel duct modes. If the acoustic wave accumulated and from

a duct mode, that may excite the panel to vibrate with the corresponding fre-

quency. First, the length of the duct from the nozzle to the diffuser is 7.67. By

Equations 5.3 and 5.4, the frequency of the second mode is found as f2,0,0 = 0.13

that exactly matches with the second peak in the experimental data. In the nu-

merical calculation, both inlet and outlet are connected to no acoustic reflection

section, so no duct mode will be formed. Second, there are two small holes, that

the dimensions are 50 mm× 50 mm, located at both upstream and downstream

of the flexible panel in the test section in the experiment. Liu (2011) claim they

are to simulate the open inlet and discharge condition in a realistic ventilation

system. However, they may introduce acoustic reflection and duct mode. The

length of the test section is 6 so the length between two holes is approximately

around 5.56. The frequency of the second mode is found as f2,0,0 = 0.18 that

exactly matches with the third peak in the experimental data. In the numerical

calculation, these holes are neglected in order to maintain the two-dimensional

assumption and to identify the pure panel response induced by the flow. Since

the width of holes is only half of the duct width, the effect of the holes must

be three-dimensional. It is difficult to account this effect in the two-dimensional

calculation. In addition, the focus of the present study is the vibration purely

induced by the flow, so the effect of holes should be eliminated in the calculation.

Because of the aforementioned two possible reasons, the last two peaks measured

in the experiment not found in the calculation.

The viscous effect is also highlighted in this case. Figure 5.14 shows the

comparison of panel response of viscous and inviscid solutions. The inviscid

solution obviously has a worse agreement with the experiment. The first peak

f = 0.065 is −19.8% difference to the experimental data that is much larger
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Figure 5.14: Comparison of frequency spectrum of the vibration velocity with

viscous and inviscid flow. ——, numerical result with viscous flow;

· · · · · · , numerical result with inviscid flow; – – –, experimental

data (Liu 2011). − · − · −, duct mode frequencies.

than the viscous solution. Besides, some unrealistic peaks are found in higher

frequency in the inviscid solution, which cannot be agreed with the experimental

data. The uniform profile in the inviscid calculation provided an approximation

that seems close to the real velocity profile in the experiment, but the sharp

change of velocity in the boundary layer cannot be captured. Since the fluid

volume atop the panel will be deformed by the panel deflection, the viscous force

in normal direction within the fluid should provides a counter force to the panel.

This is a kind of fluid damping effect because the energy should be diffused by

the viscosity. However, this force is absent in the inviscid flow solution. These

viscous effects may play an important role in the flow-induced vibration problem

that cannot be neglected.
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Figure 5.15: Panel spatial response. (a), the modal spectrum of panel veloc-

ity. (b), the distributions of panel velocity amplitude. (c), the

wavenumber spectrum of panel velocity at f = 0.07.

5.2.3 Aeroacoustic-structural response

By the axial mode analysis, the modal spectrum of vibrating velocity and its

spatial distribution is shown as Figure 5.15(a) and (b). It is found that the

panel response is dominated by the second in-vacuo mode. The wavenumber

spectrum of panel velocity at the dominate frequency f = 0.07 is also shown in

Figure 5.15(c) to illustrate the upstream and downstream travelling panel waves.

The wavenumbers of the upstream and downstream travelling waves are around

−0.9 and 0.8 respectively, and the corresponding wave speeds are around −0.078

and 0.088 respectively. Besides, the amplitude of the upstream travelling wave is
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of the dominate vibrating frequency, t1 = 1/f0.

150% of the downstream travelling wave.

The panel vibration then also re-radiates acoustic waves to upstream and

downstream. The pressure fluctuation along the duct centreline within one period

of the dominate vibrating frequency, t1 = 1/f0 = 14.3, is shown in Figure 5.16.

The upstream radiation is a simple plane wave and it is much stronger than

the downstream radiation. In the downstream, there are not pure acoustic wave

propagation. Since the fluid on the flexible panel has to move up and down

periodically together with the panel vibration, this motion of the fluid has the

same frequency with the vibration and travels with the flow to the downstream.

When the fluid impinge the lower wall and is forced to turn its direction from

negative to positive y, for example at x ≈ 1.3 in Figure 5.17(a), an high pressure

zone is created as shown as same location in Figure 5.17(b). In opposite, a low

pressure zone is created on the wall following the fluid motion of toward the

wall, for example at x ≈ 1. This pressure distribution together with the fluid

motion is propagating with speed of flow. Combining with the acoustic wave,

which propagates with speed of sound, the staggered pattern in the downstream
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Figure 5.17: Snapshot at t/t1 = 0.2. (a), velocity fluctuation in y-direction.

(b), pressure fluctuation.

in Figure 5.16 is produced.

The power radiated by the panel can be determined as the acoustic inten-

sity in x-direction (Rienstra and Hirchberg 2015),

I ′ =
1

H

∫ H

0

(
ρ̄u′ +

p′ū

c20

)(
p′

ρ̄
+ ūu′ + v̄v′

)
dy, (5.5)

where ρ̄, ū and v̄ are the mean values of density and velocities in x- and y-

directions respectively, p′, u′ and v′ are the fluctuation of pressure and velocities

in x- and y-directions respectively. The average acoustic intensities over a period

t1 in upstream and downstream are −4.4×10−9 (at x = −2.5) and 1.1×10−9 (at

x = 2.5) respectively. The energy radiated to upstream is 5.9 db larger than the

downstream. Total acoustic intensity radiated is 5.5× 10−9. The total intensity

of the flow can be determined as (Rienstra and Hirchberg 2015)

I =
1

H

∫ H

0

u (ρE + p) dy. (5.6)
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Figure 5.18: Distribution of average intensity of the panel over a period t1 =

1/f0.

and I = 0.086 in a fully rigid duct. Therefore 6.4× 10−6% of flow energy is con-

verted to acoustic energy through the aeroacoustic-structural interaction. The

distribution of average intensity of the panel over a period t1 is shown in Fig-

ure 5.18, where the intensity of the panel Ipanel = −pexẇ. Over a period, the

energy is radiated from the first half of the panel to the fluid since Ipanel shows

positive. On the contrary, another half of the panel is mainly absorbing energy

from the fluid since Ipanel shows negative. That may be the reason why the

upstream radiation is much larger than the downstream.

When the cavity is removed, the aeroacoustic-structural response becomes

another story. Figure 5.19 and 5.21 show the overviews of the panel response

without cavity backed. Compared to the result with cavity in Figure 5.12, the

growth of vibration amplitude is much slower as shown as Figure 5.19. It is

because the initial pressure distribution is uniform in the cavity but non-uniform

in the duct, there has an initial pressure difference that excites the panel with the
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ẇ

10
00

80
0

60
0

40
0

20
0

0
t

(c
)

F
ig

u
re

5
.1

9
:

T
im

e
tr

ac
es

of
p
an

el
re

sp
on

se
w

it
h
ou

t
ca

v
it

y
b
ac

ke
d
.

(a
),

st
ra

in
.

(b
),

k
in

et
ic

en
er

gy
.

(c
),

v
ib

ra
ti

n
g

ve
lo

ci
ty

at

x
=

0.



5.2. Flow-induced structural instability 127

10−3

10−4

10−5

10−6

ẇ
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Figure 5.20: Averaged frequency spectrum of the vibration velocity. ——, with-

out cavity backed. – – –, with cavity backed.

cavity at t = 0. On the other hand, there is no initial pressure difference in the

case without cavity, so vibration is not strongly excited at t = 0. Nevertheless,

both cases take more or less same duration of growth to time stationary state and

become limit cycle oscillation. This represents the panel instability is independent

of the cavity, and the growth of instability may also independent of the cavity

or the initial pressure difference. The frequency spectra with and without cavity

are compared in Figure 5.20. When there is no cavity, the response is dominated

at f = 0.105. The dominant frequency is shifted 33% lower to f0 = 0.07 that the

panel is backed by the cavity. This shifting is related to the change of vibration

modes. As Figure 5.21(a) and (b) show the panel vibration without cavity is

dominated by the third in-vacuo mode. The dominant mode is reduced to the

second mode when the cavity is used, that is directly proportional to the change of

the dominant frequency. This change of mode is caused by the higher fluid inertia

loading induced by the bounded fluid in the cavity. The volume of the cavity will

be constant for even in-vacuo modes shape because half of the cavity is compressed

by the deformed panel but half of it is expanded at the same time. However,

it is either compressed or expanded for odd in-vacuo modes shape that induces
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ẇ
r
m
s

0 1 2 3 4 5
k

(a)
×10−4

5

4

3

2

1

0
ẇ
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trum of panel velocity. (b), the distributions of panel velocity
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pressure change and resistance to the panel motion. Even though spatial variation

of modal amplitude is permitted, odd modes without a change of cavity volume

should still not be accommodated. A mode with spatial variation of amplitudes

is actually the superposition of more than one in-vacuo modes. For example,

superposition of first and third in-vacuo modes may produce the amplitude of the

centre is larger than the other two anti-nodes. Therefore the cavity volume can be

unchanged if this mode sharp is maintained. However, different in-vacuo modes

should vibrate with different frequencies based on the characteristic of the panel.

The mode sharp cannot be maintained. Therefore the panel is hard to vibrate in

odd modes and prefers in even modes when it is backed by the cavity. This is the

reason why the vibration mode shifted from third to second. The upstream and

downstream travelling panel waves at the dominate frequency f0 = 0.105 are also

illustrated in Figure 5.21(c). The wavenumbers of the upstream and downstream

travelling waves are around −1.5 and 1.1 respectively, and the corresponding wave

speeds are around −0.07 and 0.096 respectively. The upstream and downstream

wave speeds are enhanced 11.4% and slowed down 8.3% respectively when the

cavity is used. The effect of the cavity on the panel wave speed is opposite to the

effect of flow which accelerates the downstream wave but decelerates the upstream

wave. It is because the fluid in the cavity generates higher fluid inertia loading

to the panel than the flowing fluid in the main duct. Therefore the effect of fluid

inertia is changed. In addition, the amplitude of the upstream travelling wave is

82% of the downstream travelling wave which is totally unlike the behavior that

with the cavity.

The aeroacoustic response is described in Figure 5.22, where the period

t1 = 1/f0 = 9.5. The amplitudes of the waves in both directions are very close.

Except this, the overall behaviour is similar to the case with the cavity. The

acoustic intensities in upstream and downstream are −7.2×10−10 and 6.9×10−10
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of the dominate vibrating frequency, t1 = 1/f0.

respectively. The difference is much smaller than that with cavity, the energy

radiated to upstream is only 0.18 db larger than the downstream. The total

acoustic intensity is 1.4 × 10−9 that is 1.6 × 10−6% of total flow intensity. It

is 5.9 db less than that with cavity. The cavity enhanced the energy conversion

from flow to acoustic and also prefers the upstream radiation. On the other hand,

the distribution of average intensity of the panel over a period is also shown in

Figure 5.23. Three peaks of radiation and two peaks of absorption are found.

Both peaks of radiation and absorption near the trailing are larger than the others.

The major difference to that with cavity is both leading and trailing edges are

mainly radiating energy to fluid. Although the radiation near the trailing edge

is lager than the leading edge, the absorption is also lager. Therefore it balanced

the energy radiation to upstream and downstream and results in same level of

intensity in two directions.
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Chapter 6

Conclusions

For the better understanding of aeroacoustic-structural interaction in the inter-

nal flow, the interaction with the inviscid and the viscous flow are investigated

numerically. The numerical methodology by using partitioned approach is first

introduced in Chapter 2. The aeroacoustics of the fluid and the dynamic response

of the panel are modeled separately, and they communicate through a coupling

strategy. The aeroacoustic model is governed by the two-dimensional compress-

ible Navier-Stokes equations together with the ideal gas law. It is solved by the

direct aeroacoustic simulation solver based on the conservation element and solu-

tion element method. On the other hand, the panel dynamic model is governed

by the nonlinear one-dimension plate equation and solved by the standard finite-

difference procedures. Two common coupling strategies, staggered and iterative

coupling schemes, are tested and compared. In the staggered coupling scheme,

aeroacoustics and panel dynamics are solved once and one by one in each time

step in the time marching. The iterative coupling scheme solves the dynamics

repeatedly in a time step to correct the error caused by the lagging of information

from one solver to another. For the fluid loaded eigenmode vibration, two cou-

pling schemes have similar results and agree well with the theory for zero mean

flow.

132
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In Chapter 3, the capabilities in capturing acoustic and structural re-

sponses of acoustic-induced structure vibration and their interaction are validated

for both coupling schemes. By comparing with the theoretical solution of a duct

silencer with damped and undamped flexible panel excited by single frequency

incident acoustic wave, the iterative scheme has better agreement with the theory.

Therefore the iterative scheme is employed for all subsequent inviscid fluid cal-

culations. The results indicated the methodology is able to capture acoustic and

structural responses accurately. The effect of flow and the aeroacoustic-structural

responses are studied by introducing a uniform mean flow in the duct. The trans-

mission loss TL is suppressed by the mean flow velocity M that TL is reverse

proportional to M until sonic mean flow M = 1. Higher-order acoustic mode and

multiple reflections of oblique shock waves emerge in supersonic flow. Besides, the

bimodal pattern of panel response is observed and it indicates the panel response

is combined by two types of bending waves, upstream and downstream travelling

waves. The downstream travelling velocity and the amplitude of mobility appear

to grow significantly with M as it aligns with the mean flow direction. Meanwhile,

the upstream travelling wave slows down and weaken slightly with M . The result

indicates that the linear theory cannot predict the bimodal bending wave pattern

correctly when M > 0.3. The effect of fluid compressibility is a significant factor

that triggers the bimodal pattern.

The structural and near field fluid responses with broadband excitation are

also discussed. Subsonic and supersonic bending waves are observed in the struc-

tural response, but the supersonic mode emerges at high frequency only. The

effect of mean flow increases the downstream travelling speed but reduces the

upstream one to both subsonic and supersonic modes, and their variation with

frequency is not linear. In addition, low TL are accompanied with the bend-

ing waves that travelling in near sonic speed, whether subsonic or supersonic
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modes. It implies that near sonic bending waves is beneficial the transmission

of the incident acoustic wave since the difference of their phase speeds is small.

In the duct section above the flexible panel, almost only supersonic wave can

be observed. The characteristics of near field response is consistent with the

structural response. It can be deduced that none of incident waves can trans-

mit to the downstream directly with acoustic speed in free field. The acoustic

waves are transformed as the subsonic surface waves and the leaky waves though

the aeroacoustic-structural interaction, and redistributed to upstream and down-

stream. In addition, another possibility is a portion of incident acoustic waves

are reflected directly at the panels leading edge.

The effect of fluid viscosity on the aeroacoustic-structural interaction is

further studied. However, the partitioned approach is powerless to handle the

problem with viscous flow. It is because of the incorrect estimation of the viscous

effect during the communication between the aeroacoustics and structural dynam-

ics. Therefore another methodology based on monolithic approach is introduced

in Chapter 4. The governing equations describing both aeroacoustics, struc-

tural dynamics and their interaction is derived and solved by Newton’s method.

This approach allows complete information interchange between aeroacoustics

and structural dynamics since they are inherently coupled in the governing equa-

tions. It is compared with the partitioned approach in the benchmarks cases

reported in Chapter 3. The monolithic approach has higher accuracy and double

time efficiency than the partitioned approach.

The numerical methodology by monolithic approach is also validated its

capability in capturing the aeroacoustic-structural interaction in viscous flow by

studying two problems based on experimental studies in Chapter 5. The capabil-

ity of capturing aeroacoustic and panel responses induced by acoustic excitation

is firstly validated with the experiment of a drum-like silencer carrying a low
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Mach number flow. The result has an excellent agreement with the experimental

data which firmly confirm the capability of the methodology. The result also

indicates that the inclusion of the viscous effect can provide a more accurate

solution for the aeroacoustic-structural response. The effect of cavities which

backing the flexible panel is further investigated. For the structural response, the

cavities amplify the upstream travelling wave but attenuate the downstream one

at low frequency. For the acoustic response, the cavities enhance the TL at low

frequency and change the effective silencing frequency range.

In the second problem, the capability of the methodology in capturing the

instability of flexible panel induced by flow is examined. Favourable agreement

with the experimental data is obtained, that validate the nonlinear interaction

between flow and panel can be truly resolved by the methodology. The result in-

dicates that the viscous effect is significantly important in this case, the inviscid

assumption is totally invalid. That is consistent with the result in the previ-

ous problem. In addition, the result shows the occurrence of panel instability

is independent of the cavity. The role of the cavity is to reduce the vibration

frequency due to higher fluid inertia loading and change the vibration mode from

third to second in-vacuo mode. This change also enhances the energy conversion

from flow to acoustics and causes the acoustic wave is re-radiated to upstream

mainly. Both viscous problems show the importance of involving the fluid viscos-

ity which provides more accurate results, and the backing cavity directly impacts

the aeroacoustic-structural response.

6.1 Limitations and future works

The thesis introduced the numerical methodologies that validated can accurately

resolve the aeroacoustic-structural interaction problem. However, they still have

some limitations have to improve or extend. First of all, the convective terms for
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the sliding flexible wall condition are ignored that make the model only able to

fully resolve the interaction with low flow speed. The effect of flow curvature on

the wall dynamics are effectively absent. When the flow speed is high, such effect

can be strong and transfer mean-flow kinetic energy to the flexible panel to create

instability, such as divergence and Kelvin-Helmholtz instability (Carpenter and

Garrad 1986). In the further study of the inviscid flow problem, the convective

terms must be included in the boundary condition to capture the complete picture

of the fluid-structure interaction.

Another limitation is the flexible panel deformation cannot larger than

the distance between the undeformed panel surface and the layer of the nearest

solution points in the fluid domain. This is because the fluid and the panel is

deformed simultaneously, but we do not apply a proper approach to account

large deformation of the fluid, such as mesh deformation. Based on the present

approach, the aeroacoustic-structural interaction is directly solved at the solution

points on the fluid-panel interface. The effect of the panel displacement is weakly

accounted which reflected on the calculation of spatial gradient which is based on

the distance between a solution point to the interface. If the deformation is larger

than the limitation, the fluid solution point should not physically exist at this

moment. Its role will become a virtual solution point that applies the effect of the

aeroacoustic-structural interaction to the fluid domain through linear projection.

However the effect of large deformation is definitely nonlinear, so the present

method will induce significant error and produce an incorrect result. Therefore we

have to develop a proper approach to account the fluid deformation for any further

study on the aeroacoustic-structural interaction problem with large deformation.

In addition, the two-dimensional assumption also is a limitation. For

some real applications, the three-dimensional effect may be strong such as in

turbulent flow. Besides in a duct with narrow spanwise spacing, the boundary



6.1. Limitations and future works 137

effect in spanwise direction will be large so the two-dimensional assumption is

not applicable in this situation. Therefore the development of three-dimensional

calculation is necessary for better understanding of the aeroacoustic-structural

interaction in these situations.

On the other hand, some phenomenon and mechanisms of aeroacoustic-

structural interaction of flexible panels in internal flow are not completely un-

derstood yet. Further studies on different aspects have to be carried on. First,

the character of near field fluid response is found that consistent with the panel

response which travelling with speed different to the speed of sound in far field.

Nevertheless, the mechanism of transformation from these responses, involve sur-

face wave and leaky wave, to acoustic wave is still a question. Second, the study

on the aeroacoustic-structural response with acoustic excitation is based on fixed

panel material properties or size of the cavity. The effect of these parameters is

not cleared yet. On the analysis of the flow-induced structural instability, the

effect of panel material properties and the duct width on the onset of flutter

and it aeroacoustic response are not studied. For a complete understanding, the

parametric studies on panel material properties, sizes of duct and cavity should

be carried out in future. Finally, all the reported cases focus on a single panel

or one flexible duct segment. However, the structure constructed by a series of

flexible panel is often found in real applications. The study of the effect from one

to a neighboring panel is also a possible extension of the present study.

There are many research extensions can be performed for many practi-

cal engineering problems. Pinned and clamped end conditions for the flexible

panel are presented in the thesis. However, the free end condition can be fur-

ther developed for studying the cantilever structures such as for snoring problem,

vibration of wings or blades, and energy harvesting application. Besides, an

elastic structure model for thick structure can be developed. More problems,
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such as vibration of bridge in civil engineering, can be resolved by the present

fluid-structure coupling methodology.
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