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Abstract 

Random forest is a well-known machine-learning technique, which has been widely 

employed in machine-learning and computer-vision applications, including classification, 

clustering and regression, due to its strong generalization power and high efficiency on 

both its training and inference stages. A random-forest based model consists of an 

ensemble of binary trees, which build a forest. Every of the trees can make its own 

decision independently as an individual expert, and the final prediction is the result 

summarized from all the trees. Although the vanilla version of random forest has been 

largely used as a standard tool integrated in lots of software packages, random forest is 

still a research area where some aspects can be improved, such as the criterion in the split 

nodes, the clustering algorithm in the leaf nodes, and the feature engineering in the whole 

process. 

In this thesis, we address these problems and have proposed some novel ideas which 

make remarkable improvements on the random-forest-based models. Firstly, we propose 

a random-forest-based, cascaded regression model for face alignment, by designing a 

novel locally lightweight feature, namely intimacy definition feature (IDF), which can 

achieve high speed and stable accuracy for applications where hardware resources are 

limited, such as mobile devices. Secondly, we present a more accurate face alignment 

algorithm by combining IDF and the classic constrained local model (CLM) paradigm 

into a joint framework. After studying the impact of feature distribution in a random forest, 

we propose a novel random-forest scheme, namely Joint Maximum Purity Forest (JMPF), 

for classification, clustering, regression and image super-resolution, where the original 

feature space is transformed into a compactly pre-clustered feature space, via a trained 
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rotation matrix. Finally, we present a novel feature-augmented random forest (FARF) for 

image super-resolution, where we have studied feature engineering in the whole process 

of random forest and extended some work from JMPF. 

All the algorithms proposed in this thesis have been evaluated and compared to 

existing state-of-the-art methods. Experimental results and analyses show that our 

algorithms can achieve stable and promising performances. 
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Chapter 1. Introduction 

The objective of this chapter is to introduce the general research background of 

random forest techniques and its applications. Based on the development and some 

existing problems of the state-of-the-art methods, we discussed our research motivation 

and the original works proposed in this thesis, along with the outline of the thesis. 

1.1 Research Background 

The task of machine learning algorithms in computer vision is to learn a function 𝑓(. ) 

that maps the representation of the input data to a desired output, which totally depends 

on the specific task at hand. When we consider high-level computer vision tasks, like 

image classification or clustering, object detection and tracking, semantic image 

segmentation, or action recognition, machine learning techniques can be considered as 

one of its core building blocks to associate a given image with the desired output. 

These have been many machine learning techniques successfully employed in 

computer vision applications to tackle the classification, clustering and regression tasks 

based on Neural Network (NN), Boosting, Deep Learning, or Support Vector Machine 

(SVM), etc. In this thesis, however, we focus on Random Forest (RF), a highly flexible 

and effective learning algorithm that builds on decision trees and has been extensively 

used in the computer vision community. 

1.2 Motivation 

I chose random forest as my research topic mainly because random forest works as a 

traditional ensemble tool, which has the competitive power on big data applications 

nowadays. Firstly, the most important benefit that makes random forest as a popular 
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choice for the various applications in the machine-learning and computer-vision 

communities, is the efficiency on both the training and inference stages. The efficiency 

of random forest comes from its random sampling on tackling the splitting function for 

the high dimensional feature data and its independent training and evaluation of the trees. 

Therefore, random forests can be easily implemented with parallel technology on 

multiple CPU cores. Secondly, random forest works with a divide-and-conquer strategy, 

which enables it to tackle multi-class problems efficiently. This divide-and-conquer 

scheme separates the feature data by all the split nodes during training and learns 

prediction models locally in the leaf nodes. This scheme can effectively handle feature 

data with multinomial probability distributions. Moreover, random forest holds its good 

generalization property stemmed from its inherent random sampling and the multiple 

expert decision scheme, which can avoid the "over fitting" problem bothered in many 

machine algorithms. Finally, deep learning has been emerging as a hot research topic and 

has successfully been applied to many problems, random forest can be combined with 

deep networks, as cascaded frameworks, to further exploit the research areas. 

1.3 Statements of Originality 

The following contributions reported in this thesis are claimed to be original. 

a. A simple, effective and discriminative random forest generated feature is proposed. 

This intimacy definition feature (IDF) is computed by two members’ degree of 

intimacy (DoI) in a full binary tree, which can encode the path from the root to a leaf 

node as a floating-point number. With this proposed light feature, we explored the 

random-forest based cascaded regression model and designed an efficient and accurate 

face aligner.  
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b. A novel framework, which takes the advantages of both regression-based methods and 

constrained local model (CLM), has been proposed. In this joint framework, the 

conventional local-response maps, which are computed by using random-forest-based 

regressors, can be computed efficiently and cover a large area for predicting the 

landmark locations. On the other hand, this model can also be considered as a random- 

forest regression-based framework with a PDM shape constraint. We named this new 

model as an efficient likelihood Bayesian constrained local model (elBCLM).  

c. A novel random-forest scheme, namely Joint Maximum Purity Forest (JMPF), has 

been proposed, which can work for classification, clustering, and regression tasks 

with remarkable performance when compared to conventional random-forest models. 

In the JMPF scheme, the original feature space is transformed into a compactly pre-

clustered feature space, via a trained rotation matrix. The rotation matrix is obtained 

through an iterative quantization process, where the input data belonging to different 

classes are clustered to the respective vertices of the new feature space with 

maximum purity. We have also applied JMPF to image super-resolution, because the 

transformed, compact features are more discriminative to the clustering-regression 

scheme. 

d. A novel feature-augmented random forest (FARF) model has been presented for 

image super-resolution, in which the conventional gradient-based features are 

augmented with gradient magnitudes and different feature recipes are formulated at 

different stages in a random forest. There are new features in our method. Firstly, 

gradient magnitudes are employed to enhance the feature discriminative property. 

Secondly, generalized locality-sensitive hashing (LSH) is used to replace principal 
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component analysis (PCA) for feature dimensionality reduction. Finally, we presented 

a generalized weighted ridge regression (GWRR) model for the leaf-node' regressors.  

1.4 Outline of the Thesis 

This thesis is organized into seven chapters, which are outlined as follows. 

Chapter 2 gives an overview of machine learning, random forest, face alignment and 

image super-resolution techniques and their developments.  

Chapter 3 presents a cascaded face alignment model via intimacy definition feature 

(IDF) to localize the important facial feature points on human faces, which can provide 

crucial information about face structure and help with face alignment needed for 

applications like face recognition and face animation, etc.  

Chapter 4 introduces a novel constrained local model (CLM) framework, which is 

called efficient likelihood Bayesian constrained local model (elBCLM). This is the first 

model which connects two schools of face alignment into a single framework. 

Chapter 5 presents a joint maximum purity random forest model for classification, 

clustering and regression, and this is also applied to the image super-resolution task. 

Chapter 6 introduces a feature-augmented random forest model for the image super-

resolution task, where some are extension works of chapter 4. In the new model, also some 

new features, such as principal component analysis (PCA) is replaced by locality-sensitive 

hashing (LSH) and a generalized weighted ridge regression (GWRR) model is presented 

for regressors in the leaf-nodes. 

Finally, we give conclusions of our proposed work in Chapter 7, where some 

suggestions for further work are also provided.  

http://www.baidu.com/link?url=Gj-lkKN0bMeYK9Y5ZO7gsKrifLXDhnvCNVb8cYAgVyiplmHUZ4I33tCRiqG-BI6j8LPwdD6IslRDbJl53vQ6h2raf5WxJzAqeWIx1Bx_ra_1c0Se9hg1raEghHkKNpG7
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Chapter 2. Literature Review 

In this chapter, firstly we will review the various machine-learning algorithms, and 

their main categories. Then, the general concepts, techniques for random forest, face 

alignment, and image super-resolution are introduced. Finally, the main categories and 

development of face alignment and image super-resolution are reviewed. 

2.1 Machine Learning 

Machine Learning is a part of artificial intelligence (AI), which attempts to build up 

an intelligent system by training its parameters from input data. For example, a machine-

learning-based system has been trained to check whether a given E-Mail is a spam or not. 

In the training process, the system is fed with labelled spam E-Mails and non-spam E-

Mails. After training, the system can be used to distinguish spam and non-spam E-Mails 

for new E-Mails. As illustrated in this example, generalization is the core property of 

machine learning, which enables the machine-learning-based systems to perform well on 

unseen data instances. 

2.1.1 Supervised Learning 

Supervised learning is the machine learning task of inferring a function from labelled 

training data. A vivid example of supervised learning can be seen in Fig. 2-1, that all the 

pupils are learning lessons in a classroom which are supervised by a teacher. In supervised 

learning, the system is fed with labelled training data, i.e., each instance of the training 

data is consisted of a vector of features and a labelled expected output value. A supervised 

learning algorithm is designed to produce an inferred function, i.e., a classifier. The trained 

http://en.wikipedia.org/wiki/Machine_learning
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classifier can predict the labels for the unseen data since it has the powerful capability of 

generalization. Following are the most widely used supervised learning algorithms:  

❖ Support Vector Machine (SVM) [71] 

❖ Linear Regression [152] 

❖ Logistic regression [117] 

❖ Naive Bayes [153] 

❖ Linear discriminant analysis (LDA) [154] 

❖ Decision trees [155] 

❖ K-nearest neighbor (K-NN) [156] 

❖ Neural Networks (Multilayer perceptron) [125] 

 
 

Fig. 2-1: Pupils are learning lessons in a classroom supervised by their teacher. This image 

comes from internet of US Department of Education: 

https://www.flickr.com/photos/departmentofed/9599312337) 

 

https://www.flickr.com/photos/departmentofed/9599312337
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2.1.2 Unsupervised Learning 

Unsupervised learning is the machine learning task to train an inferred function which 

can  describe the structure from unlabelled given data, i.e., the data has not been classified 

or categorized. Since the given data has no labels (no error or reward signal), the accuracy 

of the structure cannot be evaluated in a straightforward way, which distinguishes 

unsupervised learning from supervised learning and reinforcement learning. In statistics 

domain, unsupervised learning is mainly employed to solve the problem of density 

estimation [127]. Moreover, unsupervised learning contains techniques that try to explore 

and analysis the key features of the data, which are widely used on data mining and data 

pre-process. The widely used unsupervised learning algorithms including: 

❖ Clustering  

➢ K-means, [129] 

➢ Gaussian Mixture Models (GMM) [151] 

➢ Hierarchical clustering [128] 

❖ Neural Networks  

➢ Autoencoders [144] 

➢ Deep Belief Nets [145] 

➢ Generative Adversarial Networks [43] 

❖ Approaches for learning latent variable models 

➢ Expectation–Maximization algorithm (EM) [146] 

➢ Method of moments [130, 131] 

➢ Blind signal separation techniques 

▪ Principal Component Analysis (PCA) [150] 

▪ Independent Component Analysis (ICA) [149] 

▪ Non-negative Matrix Factorization (NMF) [147] 

▪ Singular Value Decomposition (SVD) [148] 

https://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Data_mining
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2.1.3 Semi-Supervised Learning 

Semi-supervised learning problems are on the conditions that among a large amount 

of input data, only some of the data are labelled. These semi-supervised learning problems 

are sit in between supervised and unsupervised learning as discussed in above sections. A 

good example to these problems is a photo archive, in which only a small quantity of the 

images are labelled, and the majority are unlabelled. Since labelling sample data is time-

consuming, expensive, or required for domain experts, on the other hand, unlabelled data 

is easy and cheap to collect and store, semi-supervised learning algorithms are mainly 

employed on many real-world machine learning problems. In semi-supervised learning 

problems, unsupervised learning techniques can be used to explore the structure of the 

input data. And supervised learning techniques can be employed to make predictions on 

the unlabelled data, then the data is fed back into the supervised learning algorithm as 

training data and the fine-tuned model is used to make predictions on new unseen data. 

 

2.1.4 Reinforcement and Deep Learning 

2.1.4.1 Reinforcement Learning 

Reinforcement learning is an area of machine learning, inspired by behaviorist 

psychology, concerned with how software agents ought to take actions in an environment 

so as to maximize some notion of cumulative reward. Machine learning (ML) is based on 

probability theory and statistics [133] and optimization, is the basis for big data, data 

science [134], predictive modeling, data mining, information retrieval, and so on. 

Reinforcement learning (RL) is a methodology on machine learning which is widely used 

on kin to optimal control [135], and operations research. RL to train an agent to perform 
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a task within an environment as described in Fig. 2-2. The agent to perform a task within 

an environment. To accomplish a task, the agent will sequentially take an action based on 

the state of the environment and the current policy; Then, the agent will learn and update 

its policy based on the feedback from the environment in the form of a reward; Finally, 

the agent is able to learn an optimal policy after episodes of learning with a trial-and-error 

strategy [132]. 

As shown in Fig. 2-2, for each time step 𝑡, the agent observes a state 𝑠𝑡 ∈ 𝒮 which 

represents the environment, then takes an action 𝑎𝑡 ∈ 𝒜 based a policy 𝜋: 𝒮 → 𝒜. The 

agent later will receive a reward 𝑟𝑡+1 for taking action 𝑎𝑡 then arrive to the next state: 𝑠𝑡+1. 

Normally the environment is assumed as a Markov Decision Process (MDP), i.e. the 

probability of the arriving next state 𝑠𝑡+1  and receiving reward 𝑟𝑡+1  only depend on 

current state 𝑠𝑡 and action 𝑎𝑡, are unconcerned about any of the previous states or actions. 

 

Fig. 2-2:  In the reinforcement learning (RL) scheme, the agent takes the observed state as 

input, then takes an action based on current state and gets a reward from the environment as a 

feedback. The goal of the agent is to maximize the total reward after a series of actions. 

 

As a long-term perspective policy must take consider of not only the immediate reward 

but also the final target, so the RL tries to achieve an optimal final expected return via the 
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action-value function 𝑄𝜋(𝑠, 𝑎): (𝒮, 𝒜) → ℝ, which is the discounted expected return of 

rewards given the state, action, and policy, 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝑅𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ]                                (2.1) 

where 

𝑅𝑡+1 = 𝑟𝑡+1 + ∑ 𝛾𝑘𝑟𝑡+1+𝑘 , 0 < 𝛾 ≤ 1,𝑇−𝑡−1
𝑘=1                          (2.2) 

𝑇 is the maximum number of episodes and the expectation is 𝔼𝜋 is achieved by taking 

policy 𝜋 . The optimal action-value function, 𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋𝑄𝜋(𝑠, 𝑎)  satisfies the 

Bellman equation [138], 

𝑄∗(𝑠, 𝑎) = 𝔼𝜋∗ [𝑟𝑡+1 + 𝛾 max
𝑎′∈𝒜

𝑄∗(𝑠𝑡+1, 𝑎′) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ]               (2.3) 

which provides a natural update rule for learning. 

2.1.4.2 Deep Learning 

Deep learning (also known as deep structured learning) is a family of machine learning 

methods that contrasts with "shallow" learning, such as traditional neural network and 

other machine learning algorithms, e.g., support vector machine (SVM) [71] which 

contains only input layer and output layer and the input may be transformed with manual 

feature engineering before training. In deep learning, between input and output layers, one 

or more hidden layers can be configured. A feedforward deep neural network or multilayer 

perceptron (MLP) is to map a set of input values to output values with a mathematical 

function formed by composing many simpler functions at each layer. A convolutional 

neural network (CNN) [140] is a feedforward deep neural network, with convolutional 

layers, pooling layers and fully connected layers [142]. A recurrent neural network (RNN) 

[137] is often used to process sequential input data, with hidden units to store history of 

past elements. As it is hard for RNN to store information for very long time and the 



11 

 

gradient may vanish after long steps, long-short-term-memory networks (LSTM) [136] 

and gated recurrent unit (GRU) were proposed to address such issues, with gating 

mechanisms to manipulate information through recurrent cells. 

    The key advantage of deep learning is its power showing on combating the exponential 

challenges of the curse of dimensionality. The notion of end-to-end training refers to that 

a learning model uses raw inputs without manual feature engineering to generate outputs, 

e.g., CNN based Alex-Net [140] with raw pixels for image classification, Seq2Seq [141] 

with raw sentences for machine translation, and deep Q-network (DQN) [139] with raw 

pixels and score to play games. 

2.1.4.3 Deep Reinforcement Learning  

Recently, deep learning has seen exciting successes in solving reinforcement learning 

(RL) problems, such as the recent use of a deep Q-network (DQN) in Q-learning to solve 

Atari games [139], text games [143], and in particularly, the event that Google DeepMind's 

AlphaGo algorithm [116] beats world class Go players in the year 2016. For an RL system, 

there is less domain knowledge can be used, so deep learning is used to extract and track 

the hidden states from partially observable environments.  

In these works [139, 143], an RNN [137] (i.e., an LSTM [136] module) is used to 

represent a Q-function, 𝑄(𝑠, 𝑎; 𝜃), with parameters 𝜃. These models are called as RL-

RNN and RL-LSTM, respectively. The parameters 𝜃 of Q-learning can be updated based 

on the observed transitions (𝑠, 𝑎, 𝑟, 𝑠′) by follows: 

𝜃 ← 𝜃 + 𝜂(𝑟 + 𝛾 max 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))∇𝜃𝑄(𝑠, 𝑎)                              (2.4) 

where 𝑠′  is the new state and 𝑎′  is its corresponding action. 𝜂 , 𝑟  and 𝛾  are 

hyperparameters, and ∇𝜃 are the gradients (or Jacobi matrix) of parameters 𝜃.  
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2.1.3 Ensemble Learning 

As there is no machine learning based model that can consistently outperform other 

models in all problems, an intuitive idea is to combine lots of diverse models into a so-

called ensemble learning scheme to reduce the variability of models. A typic example like 

ensemble learning in real-world is the scene that a group of judges (experts) give scores 

independently in a sport game as shown in Fig. 2-3, and finally the gymnast's performance 

will be evaluated with the average score by all the judges. 

There are three classic ensembles algorithms in machine learning: bagging, boosting 

and stacking [118]. The bagging algorithm tries to create numerous diverse models by 

dividing the training dataset, either randomly selecting a subset from training samples or 

randomly selecting a subset of features as working candidate features, and make a final 

decision using majority voting by combining all the models. Random forest [14] is an 

example of bagging ensemble algorithms. Different to bagging where all the models are 

created independently, boosting uses another way to combine models. Boosting tries to 

add models into an existing set of models based on the new model can get better 

performance than the existing models on the training samples. Gradient boosting machines 

[119] and AdaBoost [126] are two classic examples of boosting algorithms. The variance 

and bias of a model [120] can be reduced through boosting algorithm, but it is susceptible 

to noise data [121].  
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Fig. 2-3: A group of judges are watching a gymnast in a sport game. Each judge will give a 

score independently based on the gymnast’s performance, and the gymnast normally will get a 

final average value based all the judges’ given scores. 

 

2.1.3.1 Gradient Boosting Machines 

Gradient boosting machines algorithm [119] is a boosting algorithm that desires for 

minimizing a loss function, which measures the difference between the observed and 

predicted values, by combining a sequence of base learner (weak learner) models (e.g., 

decision trees). Gradient decent is the common optimization method, which searches the 

minimum point by going down a gradient at each step. Gradient boosting machines 

sequentially add a new base learner into the ensemble sequence, so that the new model  

can get the negative of the loss function’s gradient calculated using the current ensemble 

sequence predictions. Gradient boosting machines have been successfully applied in a 

range of classification tasks but are also known to be sensitive to noise data.  
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2.1.3.2 AdaBoost 

AdaBoost is the most popular boosting algorithm, which is a supervised learning 

algorithm for binary classification task. Many works by Freund and Schapire can be 

considered to contribute to this popular algorithm [122, 124, 120]. A very recent and broad 

summary of boosting, including AdaBoost, can be found in [123]. Some of the most 

popular and recent works include the work of Viola & Jones [126] on AdaBoost for face 

detection. The Viola & Jones detector is one of the most elegant algorithms for face 

detection that has been quite popular over the recent years. This algorithm can achieve 

impressive detection rates at high speed.   

2.1.3.3 Random Forest 

Random forest is another ensemble learning technique which can be employed for 

working on either classification or regression. Conventional random forest algorithm [14] 

try to get an average prediction through multiple diverse decision tree. Formally, the 

training process of random forest involves learning a lot of diverse decision trees, and 

each tree works as an independent expert. Then the final prediction is come from the 

majority voting of all the decision trees. In the following section, random forest will be 

detailed.  

2.2 Random Forest 

A random forest is an ensemble of binary decision trees 𝒯𝑡(𝑥): 𝑉 → 𝑅𝑑, where 𝑡 =

1, ⋯ , 𝑇 is the index of the trees, 𝑥 is a sample from the m-d feature space: 𝑉 ∈ 𝑅𝑚, and 

𝑅𝑑 = [0, 1]𝑑 represents the space of class probability distributions over the label space 

𝑌 = {1, . . . , 𝑑}.  
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Fig. 2-4: Random forest for clustering data. 

 

As shown in Fig. 2-4, the vertical dotted line forms a hyperplane: 𝑥1=0, chosen at the 

first split node, i.e. the root node, to separate all the training samples, and the horizontal 

dotted line is the hyperplane: 𝑥2=0, for the second split node to cluster all the feature data 

assigned to this node. This results in separating the three data samples (quadrangle, 

pentagon and hexagon) into three leaf nodes. 

In the inference stage, each decision tree returns a class probability 𝑝𝑡(𝑦|𝒗) for a given 

test sample 𝒗 ∈ 𝑅𝑚, and the final class label 𝑦∗ is then obtained via averaging, as follows: 

𝑦∗ = arg max
𝑦

1

𝑇
∑ 𝑝𝑡(𝑦|𝒗).𝑇

𝑡=1                            (2.5) 

A splitting function 𝑠(𝒗; Θ) is typically parameterized by two values: (i) a feature 

dimensional index: Θ𝑖{1, . . . , 𝑚}, and (ii) a threshold Θ𝑡ℝ. The splitting function is 

defined as follows: 

𝑠(𝒗; Θ) = {
0,    if 𝒗(Θ𝑖) < Θ𝑡,

1, otherwise,   
                          (2.6) 
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where the outcome defines to which child node 𝒗 is routed, and 0 and 1 are the two labels 

belonging to the left and right child node, respectively. Each node chooses the best 

splitting function Θ∗  out of a randomly sampled set {Θ𝑖} , and the threshold Θ𝑡  is 

determined by optimizing the following function: 

𝐼 =
|𝐿|

|𝐿|+|𝑅|
𝐻(𝐿) +

|𝑅|

|𝐿|+|𝑅|
𝐻(𝑅),                            (2.7) 

where 𝐿 and 𝑅 are the sets of samples that are routed to the left and right child nodes, 

respectively, and |𝑆| represents the number of samples in the set 𝑆. During the training of 

an RF, the decision trees are provided with a random subset of the training data (i.e. 

bagging), and are trained independently. Training a single decision tree involves 

recursively splitting each node, such that the training data in the newly created child node 

is clustered conforming to class labels. Each tree is grown until a stopping criterion is 

reached (e.g. the number of samples in a node is less than a threshold or the tree depth 

reaches a maximum value) and the class-probability distributions are estimated in the leaf 

nodes. After fulfilling one of the stopping criteria, the density model 𝑝(𝑦) in each leaf 

node is estimated by using all the samples falling into the leaf node, which will be used as 

a prediction of class probabilities in the inference stage. A simple way to estimate the 

probability distribution function 𝑝(𝑦) is by averaging all the samples in the leaf node, and 

there are many variants, such as fitting a Gaussian distribution, kernel density estimation, 

etc. 

In (9), 𝐻(𝑆) is the local score for a set of samples in S (S is either L or R), which is 

usually calculated by entropy, as shown in Eqn. (2.8), and it can be replaced by variance 

[18, 51, 1] or by the Gini index [14]. 

𝐻(𝑆) = − ∑ [𝑝(𝑘|𝑆) ∗ log(𝑝(𝑘|𝑆))]
𝐾

𝑘=1
,                     (2.8) 
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where 𝐾  is the number of classes, and 𝑝(𝑘|𝑆) is the probability for class 𝑘 , which is 

estimated from the set 𝑆. For the regression problem, the differential entropy is used, and 

is defined as, 

𝐻(𝑞) = ∫ 𝑞(𝑦|𝑥) ∗ log (𝑞(𝑦|𝑥)
𝑦

)𝑑𝑦,                    (2.9) 

where 𝑞(𝑦|𝑥)  denotes the conditional probability of a target variable given an input 

sample. Assuming that 𝑞(. , . ) is of Gaussian distribution, and has only a set of finite 

samples, the differential entropy can be written as, 

𝐻𝐺𝑎𝑢𝑠𝑠(𝑆) =
𝐾

2
(1 − log(2π)) +

1

2
log(det(Σ𝑆)),                  (2.10) 

where det (Σ𝑆) is the determinant of the estimated covariance matrix of the target variables 

in 𝑆. 

RF-based approaches hold some properties, which make them powerful classifiers as 

SVM (support vector machine) [70] and AdaBoost (short for "Adaptive Boosting") [73]. 

Both SVM and AdaBoost work as to approximate the Bayes decision rule – known to be 

the optimal classifiers – via minimizing a margin-based global loss function.  

2.3 Face Alignment 

Face alignment is a classic computer vision task which aligns the facial components, 

e.g., eye, nose, mouth, and contour in a given face image. Face alignment is very 

important for lots of applications, such as face recognition, facial animation, emotion 

recognition, face hallucination, 3D face reconstruction, and so on. Face alignment 

assumes that a face bounding box is given, this can be done by any face-detection 

algorithm, such as the Viola-Jones [12] face detector, or by manual annotations. Facial 

landmarks that represent face shape can then be estimated by alignment methods. 

Traditional methods, such as the active shape model (ASM) [3] and active appearance 
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model (AAM) [4] are statistical models. ASM represents the shape of an object, while 

AAM represents both texture and shape. Constrained local models (CLM) [24, 25, 27, 

28, 31] attempt to model shape prior to integrate with local texture. It assumes face local 

appearance and global face-shape patterns lie in a linear subspace spanned by the bases 

learned from principal component analysis (PCA). In [26], a face-shape fitting process is 

formulated as a non-linear optimization problem by minimizing the misalignment error 

(i.e. the average distance of all the respective landmarks normalized by the inter-pupil 

distance) between the model instance and a given image. The model parameters that 

control the shape and appearance variations of faces are hence learned from that 

optimization. In [26], an extension to the inverse compositional image-alignment 

algorithm [29] was proposed, which decouples shape information from appearance. This 

method [29] forms a computationally efficient AAM framework. A CLM model is 

usually composed of three main parts: a point distribution model (PDM), patch experts 

which perform matching for local patches around landmarks of interest, and a final fitting 

process. Different fitting strategies have been used in CLM variants. Regularized 

landmark mean shift (RLMS) [28] is a popular strategy, which estimates the rigid and 

non-rigid parameters by minimizing the misalignment error of landmarks, regularized by 

overly complex or unlikely shapes. In [27], a local neural filed (LNF) patch expert was 

proposed, which learns the similarity and long-distance sparsity constraints to derive 

relationships between neighboring pixels and longer-distance pixels. This method [27] 

achieves state-of-the-art performance, compared to the traditional CLM based methods. 

In [32], the authors proposed an exemplar-based graph matching (EGM) framework for 

face alignment, in which the response mappings of all the facial landmarks are fitted by 

selecting from a pool of training exemplar poses. 
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However, these models have limited expressive power to capture all possible complex 

and subtle face features, due to variations in expression, illumination, pose, etc. 

Furthermore, due to the intensively computing  from the inverse of Hessian matrix and 

the Jacobian matrix [6, 27, 28, 29, 32], it is very hard to improve the speed of those CLM-

like algorithms exponentially. 

Recently, deep learning based models have been emerging as hot research topics and 

successfully applied to many computer vision tasks such as generic object detection and 

classification [33, 34, 35], handwritten digit recognition [38], RGB-D object recognition 

[39], image super-resolution [41, 42, 43], visual tracking [44], face alignment [36, 37, 40, 

46] and so on. In [40], the authors try to improve face landmark detection through multi-

task learning by designing a tasks-constrained deep model with task-wise early stopping 

criterion to increase the learning convergence rate. Authors in [37] exploit using deep 

neural network to learn feature-to-pose mapping functions by combining the cascaded 

framework for regressing pose-indexed features. To solve inefficiency issue appears in 

above mentioned works, paper [46] proposed an eight-learnable-layer deep convolutional 

neural network (DCNN) with rectified linear unit (ReLU) rather than tanh activation 

function, which achieves five times faster in training convergence without decreasing its 

accuracy. To better initialize facial poses, in [36], the authors present a global exemplar-

based deep auto-encoder network (GEDAN) to increase the capability of handling large 

pose variations by incorporating several exemplars at the top layer in a non-linear fashion. 

Although these brute-force-style deep learning approaches has achieved promising 

performance in terms of fitting accuracy, but their heavy computation is a big obstacle to 

real-world applications when there is less chance with graphics processing unit (GPU) 

for speed-up or somewhere the hardware resources are limited, such as mobile devices. 

http://www.baidu.com/link?url=LhjC1qErpFX0GpApXD8IqXg_A1SDgLmLhPLr_2g86A4v0TzsOqp_GgubfiFegJyNqGJsij7YS3_l64xgHP-N6mMDN2EELnmgrYK27mDfqEi
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Thus, an accurate, real-time and small size model based face alignment algorithm is eager 

called from real-world industries, such as smart mobile phone applications.    

2.4 Image Super-Resolution 

Image super-resolution (SR), which recovers a high-resolution (HR) image from one 

single image or a few low-resolution (LR) images, has been a research hotspot in the 

field of image processing for decades. SR is a well-known ill-posed problem, which 

needs elaborate techniques from mathematics and machine learning. Prior methods on 

SR are mainly based on edge preserving techniques, such as New Edge-directed 

Interpolation (NEDI) [60], Soft-decision Adaptive Interpolation (SAI) [59], Directional 

Filtering and Data-Fusion (DFDF) [58], Modified Edge-Directed Interpolation (MEDI) 

[57], etc.  

The neighbor-embedding (NE) methods [89, 90] set the milestone on the patch-

learning-based super-resolution approach. In this approach, each LR patch is 

approximated as a linear regression of its nearest LR neighbors in a collected dataset, 

while its HR counterpart can be reconstructed with the same coefficients of 

corresponding HR neighbors, based on the non-linear manifold structure. Although the 

NE method is simple and practical, it requires a huge dataset (millions of patches) to 

achieve good reconstruction quality and it is computationally intensive, because the k-

NN (k-nearest neighbour) algorithm [8, 19] is used in searching neighboring patches in 

the huge dataset. Instead of using the patches extracted directly from natural images, 

Yang et al. [88] employed sparse coding [72,88] to represent patch images, of large size, 

efficiently, which opens the era for sparse coding in the image inverse problems. 

http://www.baidu.com/link?url=NqstJ5lqYaH_sE2HwRQkpJ2fv7EvSdL_zqTsj0vEp9buQ2nh5AEPl9bKsT7lJg-DPbisPPi-ORu56V0FZgIMvQzkfQOhUVXIXluswDdeuiG


21 

 

The sparse-coding super-resolution (ScSR) approach is a framework that the HR 

counterpart of an LR patch can be reconstructed aided by two learned dictionaries, with 

the sparse constraint on the coefficients via the following formulations: 

    𝑦 ≈ D𝑙𝛼, 𝑥 ≈ Dℎ𝛼,      𝛼 ∈ ℝ𝑘 with ‖𝛼‖0 ≪ 𝑘.              (2.11) 

The compact LR and HR dictionaries can be jointly learned with a sparsity constraint, 

using the following sparse representation: 

 Dℎ, D𝑙 = argmin
Dℎ,D𝑙

‖𝑥 − Dℎ𝛼‖2
2 + ‖𝑦 − D𝑙𝛼‖2

2 + 𝜆‖𝛼‖0,               (2.12) 

where 𝑦 and 𝑥 are the LR patch and the corresponding HR patch, respectively; and D𝑙 and 

Dℎ are the LR and HR dictionaries learned from the LR and the corresponding HR patch 

samples, respectively. The value of 𝑘 in ‖𝛼‖𝑘 is the sparsity factor of the coefficients 𝛼. 

‖𝛼‖0 is 𝑙0-norm, which means the non-zero count of the coefficients in 𝛼. For each LR 

patch 𝑦 of an input LR image 𝑌, the problem of finding the sparse coefficients 𝛼 can be 

formulated as follows: 

 min‖𝛼‖0 s.t. ‖D𝑙𝛼 − 𝑦‖2
2 ≤ 𝜀                              (2.13) 

or  

 min‖𝛼‖0 s.t. ‖𝐹D𝑙𝛼 − 𝐹𝑦‖2
2 ≤ 𝜀,                          (2.14) 

where 𝐹 is a linear or non-linear feature-extraction operator on the LR patches, which 

makes the LR patches more discriminative from each other. Typically, 𝐹 can be chosen 

as a high-pass filter, and a simple high-pass filter can be obtained by subtracting the input 

from the output of a low-pass filter, as in an early work [75]. In [62, 64, 65, 68], first and 

second-order gradient operators are employed on up-sampled versions of low-resolution 

images, then four patches are extracted from these gradient maps at each location, and 
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concatenate them to become feature vectors. The four 1-D filters used to extract the 

derivatives are: 

    
𝐹1 = [−1, 0, 1], 𝐹2 = 𝐹1

𝑇

𝐹3 = [1, 0, −2, 0, 1], 𝐹4 = 𝐹3
𝑇}     

(2.15) 

The ideal regularization term for the sparse constraint on the coefficients α is the 𝑙0-

norm (non-convex), but, based on greedy matching, it leads to an NP-hard problem. 

Alternatively, Yang et al. [88] relaxed it to 𝑙1-norm, as shown in the following formulation: 

 min‖𝛼‖1 s.t. ‖𝐹D𝑙𝛼 − 𝐹y‖2
2 ≤ 𝜀.                           (2.16) 

The Lagrange multiplier provides an equivalent formulation as follows: 

 min
𝛼

‖𝐹D𝑙𝛼 − 𝐹y‖2
2 + 𝜆‖𝛼‖1,                               (2.17) 

where the parameter 𝜆  balances the sparsity of the solution and the fidelity of the 

approximation to 𝑦. However, the effectiveness of sparsity was challenged in [3, 65], as 

to whether real sparsity can help image classification and restoration, or locality property 

can achieve the same effect. Timofte et al. [62] proposed an anchored neighborhood 

regression (ANR) framework, which relaxes the sparse decomposition optimization (𝑙1-

norm) of [64, 88] to a ridge regression (𝑙2-norm) problem.  

An important step in the ANR model is the relaxation of the 𝑙1-norm in Eqn. (2.17) 

to the 𝑙2-norm least-squares minimization constraint, as follows: 

 min
𝛼

‖𝐹D𝑙𝛼 − 𝐹y‖2
2 + 𝜆‖𝛼‖2,            (2.18) 

where D𝑙 and Dℎ are the LR and HR patch-based dictionaries, respectively. This 𝑙2-norm 

constraint problem can be solved with a closed-form solution from the ridge regression 
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[76] theory. Based on the Tikhonov regularization/ridge-regression theory, the closed-

form solution of the coefficients is given: 

𝛼 = (𝐷𝑙
𝑇𝐷𝑙 + 𝜆𝐼)−1𝐷𝑙

𝑇𝐹𝑦.                            (2.19) 

We assume that the HR patches share the same coefficient α from their counterpart 

LR patches, i.e., 𝑥 = Dℎ𝛼. From Eqn. (2.19), we have: 

𝑥 = Dℎ(𝐷𝑙
𝑇𝐷𝑙 + 𝜆𝐼)−1𝐷𝑙

𝑇𝐹𝑦.                          (2.20) 

Therefore, the HR patches can be reconstructed by: 𝑥 = 𝑃𝐺𝐹y , where 𝑃𝐺  can be 

considered a projection matrix, which can be calculated offline, as follows: 

𝑃𝐺 = Dℎ(𝐷𝑙
𝑇𝐷𝑙 + 𝜆𝐼)−1𝐷𝑙

𝑇.                             (2.21) 

Ridge regression allows the coefficients 𝛼  to be calculated by multiplying the 

constant projection matrix 𝑃𝐺  with the new extracted feature 𝐹𝑦, as described in Eqn. 

(2.20) and Eqn. (2.21). More importantly, the projection matrix 𝑃𝐺 can be pre-computed, 

and this offline learning enables significant speed-up at the prediction stage. 

Timofte et al. [65] further extended the ANR approach to the A+ approach, which 

learns regressors from all the training samples, rather than from a small quantity of 

neighbors of the anchor atoms as ANR does. Later, there are numerous variants and 

extended approaches, based on ANR and A+ [3, 78, 82, 93, 95, 81, 69, 74]. By 

investigating the ANR model, Li et al. [3] found that the weights of the supporting atoms 

can be of different values to represent their similarities to the anchor atom. Based on this 

idea, the normal collaborative representation (CR) model in ANR is generalized to a 

weighted model, named as weighted collaborative representation (WCR) model, as 

follows:  

 min
𝛼

‖𝐹D𝑙𝛼 − 𝐹y‖2
2 + ‖𝜆𝑊𝐶𝑅𝛼‖2,                        (2.22) 
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where 𝜆𝑊𝐶𝑅 is a diagonal matrix. The weights on the diagonal atoms are proportional to 

their similarities to the anchor atom. Similarly, the new closed-form solution for the 

coefficients can be calculated offline, as follows: 

𝛼∗ = (𝐷𝑙
𝑇𝐷𝑙 + 𝜆𝑊𝐶𝑅)−1𝐷𝑙

𝑇𝐹y,                          (2.23) 

and the new projection matrix is given as follows: 

𝑃𝐺
∗ = Dℎ(𝐷𝑙

𝑇𝐷𝑙 + 𝜆𝑊𝐶𝑅)−1𝐷𝑙
𝑇.                           (2.24) 

The WCR model can further improve the ANR or A+ model in terms of image quality, 

but it is still a time-consuming problem to find the most similar anchor atoms in a 

dictionary, and this always hinders its applications where fast speed is greatly required. 

Schulter et al. [18] adopted the random forest as a classifier, and the regressors are 

learned from the patches in the leaf-nodes. With the same number of regressors, these 

random-forest-based methods [8, 41, 42, 43] can perform on a par with the A+ method in 

terms of accuracy. However, they achieve an increase in speed, because the sublinear 

search property of random forest can remarkably reduce the regressors’ search complexity. 

Recently, deep learning has become another research hotspot, which has been 

successfully applied to image super-resolution [18, 19, 77, 79] and achieved promising 

performance, particularly in terms of image quality. In [18, 19], a convolutional neural-

network-based image super-resolution (SRCNN) was proposed, in which an end-to-end 

mapping between LR and HR images is learned through a deep convolutional neural 

network (CNN). [42] presented a super-resolution approach with very deep networks with 

extremely high learning rates, and the deep network convergence rate is sped up by 

residual learning. Meanwhile, [43] presented a generative adversarial network (GAN)-

based deep residual network model for image super-resolution (SRGAN), in which 
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content loss and adversarial loss are combined as an image perceptual loss function. The 

proposed deep residual network in [43] can super-resolve photo-realistic textures from 4-

times down-sampled images, and an extensive mean-opinion-score (MOS) criterion is 

proposed to test the perceptual quality gained by using the SRGAN approach. Although 

deep-learning-based approaches can achieve superior performance compared to other SR 

methods, their heavy computation is always a big obstacle to their extensive applications 

with real-time requirements, where the graphics processing unit (GPU) may not be 

available, such as smart mobile phones. 

2.5 Conclusions 

This chapter serves as a review of machine learning, a survey of the principles and 

development of random forest, face alignment and image super-resolution techniques. 

Some well-known face alignment techniques and image super-resolution have also been 

reviewed, and the drawbacks of them are also discussed. In the following chapters, some 

proposed methods based on random forest on these two research topics will be presented.  
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Chapter 3. Cascaded Face Alignment via Intimacy 

Definition Feature 

Recent years have witnessed the emerging popularity of regression-based face 

aligners, which directly learn mappings between facial appearance and shape increment 

manifolds. In this chapter, we propose a random-forest based, cascaded regression model 

for face alignment by using a novel locally lightweight feature, namely intimacy 

definition feature (IDF). This feature is more discriminative than pose-indexed feature, 

more efficient than histogram of oriented gradients (HOG) feature and scale-invariant 

feature transform (SIFT) feature, and more compact than the local binary feature (LBF). 

Experimental validation of our algorithm shows our approach obtains state-of-the-art 

performance when testing on some challenging datasets. Compared with the LBF based 

algorithm, our method achieves about two times in speed, 20% improvement in terms of 

alignment accuracy and save an order of magnitude on memory requirement. 

3.1 Introduction 

Face alignment is a process to locate key-points and facial feature (like eyebrows, eye 

corners, and mouth corners, see Fig. 3-1) from a given face image. Face alignment is an 

active research topic in computer vision. It is often used as an early, but crucial, step to 

other important tasks for face analysis, such as emotion and expression recognition [9, 

47], face recognition [10], and face hallucination [11, 49, 50]. It is also used in many 

other applications, such as human-computer interaction (HCI), video conferencing, 

gaming and animation, etc., and has received intensive attention from the computer-

vision research community.  
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Fig. 3-1 Face alignment fitting results by proposed IDF method with 68 facial points  

(face images from the Helen dataset [21]). 

 

    In the past few years, a new family of face-alignment algorithms, which directly learns 

regressors from facial appearance to the shape increments, has been emerging [1, 5, 6, 8, 

13]. These regression-based methods are gaining popularity, due to their excellent 

performance and high efficiency in the face-alignment task. Pose-indexed feature [1, 8, 

13, 48], which index provides some clue about the hierarchical structure of the shape, is 

an explored paradigm to boost fitting efficiency due to its simple pixel-intensity 

comparison. In [6], the handcrafted scale-invariant feature transform (SIFT) feature is 

used for accurate fitting. Inspired by pioneers’ works [1, 5, 6, 8, 13, 48], in this chapter, 

we propose a novel, discriminative and efficient feature, which can be incorporated into 

regression based face-alignment frameworks to further boost their performance. 

3.2 Random Forests for Face Landmark Alignment 

The landmark localization algorithm is important for face recognition and other 

related applications which requires extraction of local descriptors at some specified 

feature points or landmarks in a face. For face alignment, numbers of points, e.g., 17 or 

68, are selected and searched from a face image. An example of the landmarks is shown 

in Fig. 3-1, in which 68 facial points are located around the eyes, nose, lips, and face 

contour. These feature points, which carry the most significant information about a face, 

are useful for discriminative and generative analysis. Based on these feature points, a 
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model can then be learned from numbers of landmark-labeled face images, used for 

facial-shape estimation for unseen face images. 

Recently, roughly three categories for face alignment are under researching. They are 

variants of active shape model (ASM) [3] and active appearance model (AAM) [4] with 

parametric models of appearance, deep learning based models [36, 37, 40, 46] and 

regression-based models which directly model a mapping from facial pixel appearance 

to shape increment [1, 5, 6, 8, 13].  

The regression-based face alignment approaches tackle face fitting problem by 

estimating mapping functions between the appearance and the shape increment manifolds. 

Random forests are employed on regression-based algorithm in order to reduce the 

regressors’ search complexity. In our algorithm, we adopt cascaded shape-regression 

paradigm that firstly proposed by Dollar et al. [8] and extend the work of LBF [1]. 

Different from other methods, this approach progressively refines the initial shape in 

several stages directly from appearance, without learning any parametric shape or 

appearance models. To illustrate our proposed methods clearly, we firstly give a brief 

review of the main principles of random forest and cascaded-shape regression in this 

section. 

3.2.1 Random Forest for Clustering 

Random forests [14] (RFs) have emerged recently as very useful in many computer 

vision tasks, including object detection [16], data clustering [17], image super-resolution 

[18, 19], etc. This method is relatively simple, and has many merits which include: (i) 

efficiency in both training and prediction stages, (ii) inherent unsupervised classification 

capability for multi-class problems, (iii) suitability for parallel processing for all the trees, 
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and (iv) good performance on high-dimensional data for classification, regression and 

clustering tasks. 

A random forest is an ensemble of 𝑇 binary decision trees 𝑇𝑡(𝑥): 𝑉 → ℝK, where 𝑡 

is the index of the trees, 𝑉ℝM is the M-dimensional feature space, and ℝK = [0, 1]K 

represents the space of class probability distributions over the label space 𝑌 = {1, . . . , K}, 

as shown in Fig. 3-2. 

 

Fig. 3-2 An overview of random-forest based clustering. 

 

In the inference stage, each decision tree returns a class probability 𝑝𝑡(𝑦|𝒗)  for a 

given enquiry sample 𝒗ℝM, and the final class label 𝑦∗ is then obtained via averaging: 

𝑦∗ = arg max
𝑦

1

𝑇
∑ 𝑝𝑡(𝑦|𝒗)𝑇

𝑡=1 .                                                     (3.1) 

A splitting function 𝑠(𝒗; Θ)  is typically parameterized by two values: (i) a feature 

dimension Θ1{1, . . . , M}, and (ii) a threshold Θ2ℝ. The splitting function is defined as 

follows: 

𝑠(𝒗; Θ) = {
0,    if 𝒗(Θ1) < Θ2,
1, otherwise,

                                                  (3.2) 
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where the outcome defines to which child node the sample 𝒗 is routed, and 0 and 1 are 

the two labels belonging to the left and right child nodes respectively. Each node chooses 

the best splitting function Θ∗  out of a randomly sampled set {Θ𝑖}  by optimizing the 

following function: 

𝐼 =
|𝐿|

|𝐿|+|𝑅|
𝐻(𝐿) +

|𝐿|

|𝐿|+|𝑅|
𝐻(𝑅),                                          (3.3) 

where 𝐿 and 𝑅 are the sets of samples that are routed to the left and the right child nodes 

respectively, and |𝑆| represents the number of samples in the set 𝑆. During the training 

of a random forest (RF), each decision tree is provided with a random subset of the 

training data (i.e. bagging), and is trained independently of other trees. Training a 

decision tree involves recursively splitting each node, such that the training data in the 

newly created child nodes are clustered conforming to class labels. Each tree is grown 

until a stopping criterion is reached (e.g. the number of samples in a node is less than a 

threshold or the tree depth reaches a maximum value), and the class probability 

distributions are estimated in the leaf-nodes. 𝐻(𝑆) is the local score for a set of samples 

(S is either L or R), which normally is calculated using entropy as in Eqn. (3.4), but it can 

be replaced by variance [1] or the Gini index [14]. 

𝐻(𝑆) = − ∑ [𝑝(𝑘|𝑆) ∗ log (𝑝(𝑘|𝑆))]
𝐾

𝑘=1
                                   (3.4) 

where 𝐾 is the number of classes, and 𝑝(𝑘|𝑆)  is the probability for class k, which is 

estimated from the clustered set 𝑆. 

3.2.2 Cascaded Regression-based Model 

Many face alignment methods work under a cascaded framework [1, 5, 6, 8], where 

an ensemble of N regressors operates in a stage-by-stage manner, which are referred to 
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as stage regressors. This approach was first explored in [8]. At the inference stage, the 

input to a regressor (𝑅𝑡) at stage t is a tuple (𝐼, 𝑆𝑡−1), where 𝐼 is an image and 𝑆𝑡−1 is the 

shape estimate from the previous stage (the initial shape 𝑆0
 is typically the mean shape 

of the training set). The regressor extracts features with respect to the current shape 

estimate, and regresses a vector of shape increment as follows: 

𝑆𝑡 = 𝑆𝑡−1 + 𝑅𝑡(𝜙𝑡(𝐼, 𝑆𝑡−1)),                                                  (3.5) 

where 𝜙𝑡(𝐼, 𝑆𝑡−1) is referred to the feature extraction function, such as the pose-indexed 

features, i.e. they depend on the current shape estimate. The cascade progressively infers 

the shape in a coarse-to-fine manner − the early regressors handle large variations in 

shape, while the later ones ensure small refinements. After each stage, the shape estimate 

resembles the true shape closer. 

In our algorithm, the feature extraction function 𝜙𝑡(𝐼, 𝑆𝑡−1) is the function to generate 

the local IDF values derived from the pose-indexed feature. There is an observation, 

proved by intensive experimental results, that the shape increments have close correlation 

with the local features of the landmarks which define the face shape. Thus, given the 

features and the target shape increments  {∆𝑆𝑡 = 𝑆 − 𝑆𝑡−1} , we can learn the linear 

projection matrix 𝑅𝑡. Most cascaded regression models [1, 5, 6, 8, 13] share the similar 

workflow, as shown in Fig. 3-5. 

3.3 Intimacy Definition Feature based Cascaded Regression 

Model 

In this section, we will first introduce a novel feature, which is efficient for local 

pattern representation and matching, based on measuring the degree of intimacy (DoI) 

value between two members (leaf-nodes) in a binary family tree. 
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3.3.1 Efficient Metric on Intimacy Definition Feature 

To explain the features, we use a family member structure to illustrate the binary tree 

in random forests scheme, as shown in Fig 3-3. In this structure, each leaf-node represent 

a family member, and their relationship are measured by DoI value which can be 

computed by their respective intimacy definition feature (IDF) values. In Fig. 3-3, the 

DoI value between David and Daniel should be stronger than that between David and 

Denis. This is because David and Daniel have the same father, while David and Denis do 

not have the same father but they share the same grandfather only. The way to let the 

computer learn the DoI value, between any two members in the same generation or level 

in the hierarchical family tree, is to digitize the DoI values by setting values to nodes and 

defining a distance metric between any two nodes. 

 

 

Fig. 3-3 A family tree with the degree of intimacy (DoI) values of family members in 4th 

generation. 

 

As we can see in the family tree in Fig. 3-3, two persons, who share more recent 

predecessor, should be more intimate than those who share relatively distant predecessor, 
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as described in the previous example. However, how can a computer know this intimacy, 

based on this logic comparison operation? In this chapter, we propose a simple, yet 

efficient, method to compare the DoI values between two family members in the same 

generation, particularly in the leaf-nodes. We firstly assign two persons in the same 

generation (same level in the full binary tree) with two small values which indicate they 

are very close. For example, we set 1 and 2 as the respective path values to the two 

offspring nodes (e.g. David is the younger brother so his path_value is 1, while Daniel is 

the older brother so his path_value is 2) in the full binary family tree. Then, we assign a 

relatively larger value, e.g. 10, to the generation value k for each generation level. Each 

node (except the root node) can then be encoded by summing up all the corresponding 

level weights along the path from the root to the node of a member concerned, where a 

level weight of a node is computed by multiplying the value of the node and its 

corresponding generation value k. We name this as the intimacy definition feature (IDF) 

value of the node (family member), which can be calculated as follows: 

𝐼𝐷𝐹 = ∑ 𝑝𝑎𝑡ℎ_𝑣𝑎𝑙𝑢𝑒𝑙 ∗ 𝑘𝑙𝐿

𝑙=1
,                         (3.6) 

where L is the total number of levels in the family tree. Therefore, the IDF value of David 

can be encoded as: 111 (1×102+1×101+1×100), and Daniel with IDF value: 112 

(1×102+1×101+2×100). We can also encode Denis as IDF value: 121 

(1×102+2×101+1×100). The intimacy distance between David and Daniel is 1 (1 = 

abs(111−112)), and the distance between David and Denis is 10 (10 = abs(111−121)). 

The distances show that the intimacy between David and Daniel should be greater than 

that between David and Denis. Based on the proposed IDF, we can compute the DoI 

value between the IDF values of any two members in the family tree. Through the family 
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tree as constructed in Fig. 3-3, the family members (nodes) can be replaced by visual 

features, which are encoded by IDF values. Consequently, the similarity between two 

family members (nodes) can be measured by computing their DoI value. 

In our study, we found that this simple, yet efficient, feature computed by traveling a tree 

in random forests, which can achieve promising performance, in terms of both accuracy 

and speed, as shown in Section IV. When using the encoded feature values for linear 

regression on the leaf-nodes for prediction, for more reliable and better performance, the 

feature is normalized as follows: 

𝑛𝑜𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐼𝐷𝐹 =
(𝐼𝐷𝐹−𝐼𝐷𝐹𝑚𝑖𝑛)

(𝐼𝐷𝐹𝑚𝑎𝑥−𝐼𝐷𝐹𝑚𝑖𝑛)
,                                                (3.7) 

where 𝐼𝐷𝐹𝑚𝑖𝑛 and 𝐼𝐷𝐹𝑚𝑎𝑥 are the minimum and maximum IDF values respectively, in 

the same level under consideration. Using our example, the range of the IDF values in 

the binary tree is [100, 222], i.e., 𝐼𝐷𝐹𝑚𝑖𝑛 = 100 and 𝐼𝐷𝐹𝑚𝑎𝑥= 222. Therefore, based on 

Eqn. (3.7), the normalized IDF value for David (111) can be calculated as: 

(111−100)/(222−100) = 0.090164. 

3.3.2 Derive IDF Feature from Pose-indexed Feature in Random Forest 

A pose-indexed feature is the value of two pixels’ intensity difference. For every 

landmark point, those two pixels used to compute the pose-indexed value are chosen with 

two randomness in the random forest splitting rule, which means that they are randomly 

sampled from the candidate pixel set (e.g. 500) and the threshold is also randomly 

selected. The positions of the pixel pair and the threshold to be used are decided, based 

on maximizing the information gain obtained when splitting all the samples in a node 

into its left and right nodes. 

Same as the LBF [1] feature, we discard such learned local pose-indexed features 



36 

 

since they are not sufficiently discriminative, or do not encode the path of a sample along 

a tree explicitly. Instead, we encode the path of a sample along a tree ended at a leaf-node, 

using our proposed IDF values. As described in Fig. 3-3, each IDF value encoded in a 

leaf-node is one floating-point scalar, which can achieve highly dimensionality reduction 

compare to the sparse but high-dimensional binary LBF [1] vector features. 

For each stage, the whole feature vector:  𝜙𝑡(𝐼, 𝑆𝑡−1),  is a concatenation of a set of 

independent local-feature, which be used in the mapping functions: 𝑅𝑡(𝜙𝑡(𝐼, 𝑆𝑡−1)). All 

the IDF features are concatenated to form a global feature mapping function 𝛷𝑡  for 

learning a global linear projection, i.e. the regressor 𝑅𝑡, in the next step. All the pixel 

pairs are sampled from the neighborhood area which are centered at landmark points. 

The idea of pose-indexed feature is described in Fig. 3-4.  

 

Fig. 3-4 The process of IDF-based feature vector extraction 

 

In both training and inference stages, the neighborhood-size for each landmark can be 

reduced, when moving from one cascade to another cascade. Therefore, the cascaded 

shape regression can operate from coarse to fine progressively. 

3.3.3 IDF Feature with Regression-based Model 

Our proposed algorithm extends from the LBF-based method in [1], which improves 
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the supervised descent method (SDM) [6] used in linear regression. The insight of SDM 

directly learns shape increment from appearance changes can be viewed to estimate the 

conditional likelihood function 𝑝(𝑦|𝑥) , where 𝑦  and 𝑥  are shape increment and 

appearance respectively. From a theoretical perspective, the SDM can be regarded as an 

extension of the Lucas & Kanade (LK) algorithm [45]. The LK algorithm is worked as a 

classic optical flow algorithm in early years to tackle image and object alignment 

problems, which holds an assumption that a linear relationship can be estimated from 

pixel appearance to geometric displacement. 

In [1], random forests were used for training to minimize the alignment error for the 

respective landmarks with LBF, rather than the pose-indexed feature in the leaf-nodes. 

LBF is a local feature, which is coded as a sparse binary array, by placing the value ‘1’ 

for leaf-nodes, where samples fall into them eventually while traversing a tree in random 

forests, and the value ‘0’ otherwise. Each landmark is coded individually, and the local 

features are concatenated to form a global feature vector, which is then learned by using 

ridge regression (i.e., linear regression with L2 regularization).   Rather than using LBF, 

our proposed IDF is employed in the cascaded alignment framework, as depicted in Fig. 

3-5. The success of LBF [1] method is due to its feature-learning step, where features are 

explicitly learned for the given specific task. Due to the sparse nature of the feature vector 

of LBF, the inference phase can be reduced to traversing the forest, and performing 

simple table look-ups and additions. The authors in [1] claimed that LBF method can 

achieve an impressive speed of approximately 3,000 fps, (with tailored setting on some 

parameters), in its fast version. 
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Fig. 3-5 An overview of the workflow for IDF-based cascaded regression face alignment. 

 

However, LBF has a high dimensionality. Assume that the number of landmarks (or 

forests) for a face is l, the number of trees of a forest is t, and the depth of a tree is d. The 

dimensionality of LBF will then be lt2(d−1). For a normal setting of l = 68, t = 10, and d 

= 7, the feature dimension is 68102(7−1) = 43,520, which is relatively high. Usually, 

with more and deeper trees, the alignment errors will become smaller. However, the high 

dimensionality of LBF restricts it from using deeper trees. Although the feature is sparse, 

its high dimensionality imposes a high burden on the computation of linear regression 

and the storage requirement. An intuitive way to solve the problem is to employ PCA to 

reduce the dimensionality. But LBF is a binary, sparse feature, and carries labelling 

information, which makes PCA not acceptable for the feature. To avoid the computational 

complexity, the LBF-based approach should limit the tree depth to relative small value, 

e.g.: 5, which means that there are, at most, 16 leaf-nodes in each tree. Consequently, this 

heavily restricts its capability on classification and regression. 

Compared to the pixel pose-indexed feature [13], LBF is more discriminative because 
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it explicitly encodes the full path, from the root to the leaf-node of each sample. Although 

LBF is discriminative, it is hard to greatly improve its performance because of its high 

dimensionality when using deeper trees. To improve the performance, an intuitive way is 

to replace LBF with another more compact and efficient index feature, which also 

encodes the path of a sample along a tree. But the performance is very poor, because 

index values are similar to labels, which inclines the results to over-fitting. A simple 

analysis in Fig. 3-3 can help describe the problem of using an index feature. Suppose that 

we simply set the indices for David, Daniel, and Denis at 1, 2, and 3, respectively, as 

shown in Fig. 3-3. With these values, we can find that the DoI value between David and 

Daniel is the same as that between Daniel and Denis. However, from Fig. 3-3, intuitively 

we know the intimacy between David and Daniel should be closer than between Daniel 

and Denis. 

Our algorithm is based on extracting the IDF value at each facial landmark by rooting 

down a full family tree. With the IDF values, leaf-nodes can be compared based on their 

DoI values. The main contribution of this chapter is that the efficient IDF feature is 

proposed to replace LBF feature. This can greatly reduce the feature dimensionality, 

while a promising performance can still be achieved. More importantly, our algorithm 

runs much faster and requires less memory than that using LBF. For example, for setting 

with: l = 68, t = 10, and d = 7, the feature dimensionality of IDF is 68101 = 680, rather 

than 43,520 (=681064) for LBF. In other words, the dimensionality is reduced by 64 

times. 
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3.4 Validation Results and Comparison to LBF Feature 

To validate the effectiveness, efficiency, and less memory usage of our proposed IDF 

method on face alignment compare to LBF [1] feature, we did intensity experiments on 

the public datasets. 

 
Fig. 3-6 A comparison of the alignment errors of the IDF vs LBF algorithms on the LFPW 

dataset [20], with tree depth = 7,training: 500, testing: 300. 

 

To demonstrate the effectiveness of IDF for face alignment, we set tree depth, 

maximum number of stages, and number of landmarks at 7, and 68, respectively, and 

measure the respective alignment errors using LBF and IDF feature. Fig. 3-6 shows the 

alignment errors in the training and testing stages, based on the LFPW dataset [20], with 

different numbers of trees (same setting, 500 sample images are used for training and 300 

for testing). From the results, we can see that our proposed IDF algorithm can achieve, 

on average, an error of around 0.10, when the number of trees is more than 10, while the 

minimum error achieved by the LBF-based algorithm is 0.12. Therefore, our algorithm 

can achieve an improvement of about 20%, in terms of alignment error, when compared 
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to the LBF-based algorithm.  

Another factor we should consider is the number of trees required to achieve a 

specific alignment error. From Fig. 3-6, we can see that using about 10 trees for our 

algorithm can achieve even smaller errors than that of LBF using more than 70 trees. As 

shown in Table 1 and Table 2, although LBF performs better in the first 3 stages, IDF can 

always achieve better performance at later stages, since its alignment error converges 

steeper than LBF. In other words, IDF converges faster in the coarse-to-fine search since 

it is with a higher discriminative power. 

Table-3.1 Alignment errors at different stages, with different number of trees,  

based on the LBF algorithm. 
 Number of Trees 

stage 5 10 20 30 40 50 60 70 80 Avg. 

1 0.1765 0.1714 0.1630 0.1583 0.1583 0.1583 0.1533 0.1495 0.1485 0.1597 

2 0.1411 0.1341 0.1410 0.1315 0.1326 0.1315 0.1397 0.1387 0.1390 0.1352 

3 0.1386 0.1382 0.1390 0.1295 0.1293 0.1292 0.1252 0.1251 0.1276 0.1312 

4 0.1385 0.1381 0.1389 0.1287 0.1287 0.1287 0.1240 0.1226 0.1232 0.1301 

5 0.1384 0.1380 0.1388 0.1285 0.1285 0.1285 0.1235 0.1217 0.1209 0.1296 

6 0.1384 0.1380 0.1388 0.1284 0.1284 0.1284 0.1234 0.1212 0.1198 0.1294 

7 0.1384 0.1380 0.1388 0.1283 0.1283 0.1283 0.1233 0.1209 0.1193 0.1293 

 

Table-3.2 Alignment errors at different stages, with different number of trees, 

based on the IDF algorithm. 

 Number of Trees 

stage 5 10 20 30 40 50 60 70 80 Avg. 

1 0.1924 0.1915 0.1873 0.1937 0.1886 0.1914 0.1826 0.1810 0.1856 0.1882 

2 0.1636 0.1583 0.1472 0.1462 0.1412 0.1360 0.1312 0.1318 0.1326 0.1431 

3 0.1540 0.1412 0.1294 0.1283 0.1206 0.1266 0.1112 0.1129 0.1136 0.1254 

4 0.1445 0.1309 0.1188 0.1192 0.1119 0.1091 0.1041 0.1059 0.1073 0.1168 

5 0.1380 0.1249 0.1136 0.1142 0.1076 0.1057 0.1010 0.1032 0.1049 0.1126 

6 0.1334 0.1200 0.1114 0.1104 0.1051 0.1039 0.0990 0.1015 0.1034 0.1098 

7 0.1291 0.1180 0.1093 0.1089 0.1036 0.1024 0.0974 0.1005 0.1025 0.1080 

 

Fig. 3-7 (top) visualizes the alignment errors of the LBF and IDF methods, with 

different numbers of stages. We can see that the curve for IDF is much steeper than that 
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for LBF, which means the IDF feature is more discriminative than LBF and it enjoys 

bigger convergence rate at later stages. An explanation to this is that the IDF value is 

represented with floating-point number, which has a stronger representation than LBF 

binary, boolean-like, values. Fig. 3-7(bottom) shows the alignment errors of IDF with a 

larger number of stages, the less alignment error can achieve. To make a balance between 

computational complexity and fitting accuracy, using 7 stages is a compromise. Therefore, 

in the rest of this chapter, our algorithm uses 7 stages for experiments. 

 

Fig. 3-7 Alignment errors with different numbers of stages: (top) LBF vs IDF, up to 7 stages, 

and (bottom) IDF only, up to 15 stages (tree depth = 7, LFPW dataset [20]). 
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Having analyzed the LBF algorithm, we found that there are two costs: (1) feature cost, 

and (2) regression cost, in the inference stage. The feature extraction and linear regression 

take up about 20% and 80% of the total computation, respectively. Since our proposed 

IDF is derived from the pose-indexed feature as LBF does, which means IDF, same as 

LBF, takes same ratio on computation. As IDF has its dimensionality an order of 

magnitude lower than that of LBF, the computational complexity for linear regression 

(the LibLinear package is used for both IDF and LBF) is greatly reduced compare to LBF 

based algorithms. As shown in Fig. 3-8, the number of frames processed per second, 

based on IDF, is about 2 times faster than LBF, with the same setting. 

 

Fig. 3-8 The speed in terms of number of frames per second for the IDF vs LBF algorithms  

(tree depth = 7, Helen dataset). 

 

When the tree depth increases, the feature dimensionality of LBF increases 

exponentially, while the IDF algorithm increases linearly. In addition to computational 

efficiency, memory requirement is also an important issue for real applications. Such as 
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mobile devices, where memory bandwidth is limited, which will set a practical barrier to 

the algorithms with big-size models. Because of the lower dimensionality, IDF scheme 

enjoy less weights on the regression step. As experimental results shown in Fig. 3-9, 

obviously our proposed IDF feature can save an order of magnitude on memory 

requirement at the inference stage.   

 

Fig. 3-9 Memory requirements (MB) of IDF vs LBF with different numbers of trees (tree 

depth: 7, Helen dataset) at the inference stage. 

3.5 Training with Initial Shapes from Similar Samples Spanned 

Subspaces 

Sensitive to the initial shape is the limitation of regression-based models, which 

means using a mean face as the initial shape, they incline to unsatisfied results on images 

with unseen profile faces. In [5], a conditional regression forest was proposed for face 

alignment, in which annotated samples are used to train a classifier to detect the face pose 

with discriminative features inside and outside the face-bounding boxes. Based on the 
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annotated face poses, a few cascade regression forest models are trained, instead of a 

single model only. In the inference stage, once the face pose has been detected using the 

pose detector, the probability of the head pose is estimated from the query face image, 

and the corresponding trees are selected for later face alignment. In [5], a face dataset 

with different poses and with 10 landmark points was created. The dataset can be labelled 

manually, as it was in [5], so that the learning will be more precise. However, it is 

overlooked issue that the tedium of labeling pose faces will make the labeling results 

imprecise. For example, it is an ambiguous task for human eyes to decide a face with a 

pose with 45-degree angle from faces with 30-degree angle or 60-degree angle. 

In [2], a pose detector is employed for estimating initial shapes, based on the k nearest 

neighbors selected from training samples, which uses two efficient and effective features, 

namely the histogram of oriented gradients (HOG) [22] and local binary patterns (LBP) 

[23], for searching example face images with a similar pose and texture appearance to 

the query face. The local appearance of feature points can be accurately approximated 

with locality constraints. Therefore, with the searched training faces, which have similar 

poses and textures to a query face, more accurate initial shape model can be constructed 

in the inference stage. In [2], although k nearest neighbors to the query face are searched 

with locality constraints, a relatively narrow subspace may be produced, based on the k 

training samples. What’s more, this method will spoil the generalization capability of the 

learned model and add an additional detecting module for face alignment. 

    To further improve the performance, we refine the face initialization by using the k-

means clustering algorithm. Different from the two above-mentioned methods [2, 5], our 

algorithm does not use any pose detector to consider similar texture. In our training 

strategy, the initial faces are selected based on the target face to span a sample subspace. 
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As using random initial faces in the training phase can improve the generalization 

capability of the alignment method, this means that the trajectory of face alignment 

through all regression stages, can be learnt from training samples. Intuitively, for a face 

with a large pose, the shape trajectory of a left-pose face cannot be learnt from a right-

pose face. Therefore, initial shapes should be constraint in the subspace spanned by 

similar shapes, which can help to learn the pose information implicitly.  

In this section, we devised a more efficient scheme for the training process. We 

consider 68 landmark points in face images, and we evaluate our algorithm using some 

standard public datasets, such as the LFPW dataset [20] (811 training + 224 testing 

images taken under unconstrained conditions , i.e., in the wild, with large variations in 

the pose, expression, illumination and with partial occlusions) and Helen dataset [21] 

(2000 training + 330 testing, the images exhibit a large variety in appearance, such as 

pose, expression, ethnicity, age and gender, as well as the general imaging and 

environmental conditions). 

 

       
Fig. 3-10 Clustering 7 groups of different facial poses through k-means 

 

We use the k-means algorithm to cluster the training samples into numbers of groups, 

as shown in Fig. 3-10. Then, for training each target face image, instead of blind initial 

faces from the whole training dataset, we choose initial faces only from the cluster with 

a similar pose to the target face at training stage. Therefore, the model is learned with the 

pose information from the spanned pose space of selected neighbor examples, which will 

represent the target faces well.  
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Experimental results in Fig. 3-11 show that the “IDF + Clustering” training scheme 

further improves the alignment error, when compared to the non-clustering scheme. 

 
Fig. 3-11 Alignment errors of the IDF algorithm with clustering and/or PCA  

(tree depth: 7, stages: 5, Helen dataset [21]). 

 

Table-3.3 Feature dimensions of IDF and IDF after using PCA 

(PCA* means: IDF+PCA, keeping 97% of variance ). 
 Number of Trees 

 10 20 30 40 50 60 70 80 90 100 

IDF 680 1360 2040 2720 3400 4080 4760 5440 6120 6800 

PCA* N/A N/A N/A N/A 768 806 837 852 879 888 

 

The higher the feature dimension, the more the number of linear-regression weights 

for the regression model, which requires more computations and more memory on the 

inference stage as all the weights of the models for the cascaded stages need be loaded 

into memory. Another advantage of using IDF is, compared to LBF, it can apply PCA to 

reduce its feature dimensionality, because IDF is represented by floating-point numbers. 

From Table 3.3, we can see that, when the dimension becomes higher, retaining 

eigenvectors with 97% of variance can reduce the feature dimension by 80%~90%, and 

a comparable or even better performance can be achieved. Balancing the overhead cost 

of PCA computation and the relax on linear regression after dimension reduction, 
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theoretically a more optimal and faster solution can be found when the feature dimension 

of IDF growing up. However, it is hard to do PCA compression with LBF feature’s binary 

boolean-like values. Therefore, IDF with a higher dimensionality can be adopted to 

achieve both efficiency and accuracy, which is hard to LBF feature. Fig. 3-5 shows the 

whole workflow of proposed algorithm, and the training and fitting stages are described 

in Algorithm 3.1 and Algorithm 3.2, respectively. 

Algorithm 3.1 IDF Training Stage: 

Input: Training data (Ii, Si, 𝑆�̅� ) for i=1, …, N, where Ii represents a face image, Si is the 

corresponding shape, and N is the number of training samples. 

Output: Regressors:  𝑅 = (𝑅1, … , 𝑅𝑇), T: stage number. 

1: Using k-means to cluster shapes in S into K clusters 𝐶 = (𝐶1, … , 𝐶𝐾), randomly sample 

initial shapes for each target shape from its belonging cluster 𝑆�̅� ∈ 𝐶𝑖 as source shapes; 

2: for t=1 to T do 

3:     for all 𝑖 ∈ (1 … 𝑁) do  

4:       ∆𝑆𝑡
𝑖 = 𝑆𝑡

𝑖 − 𝑆�̅�
𝑖        ⇒ Calculate shape increment: ∆𝑆𝑡

𝑖 

5:       𝑓𝑡
𝑖 = 𝜙𝑡(𝐼𝑖 , 𝑆𝑡−1

𝑖 )      ⇒ IDF features derived from pose-indexed features 

6:     end for 

7:    𝑅𝑡 = arg min𝑅 ∑ |𝑅(𝑓𝑡
𝑖) − ∆𝑆𝑡

𝑖|𝑖   ⇒ train linear regressor 𝑅𝑡 

8:     for all 𝑖 ∈ (1 … 𝑁) do 

9:       𝑆�̅�
𝑖 = 𝑆�̅�

𝑖 + 𝑅(𝑓𝑡
𝑖)      ⇒ update current shape 

10:    end for 

11: end for 

 

Algorithm 3.2 IDF Fitting Stage: 

Input: Testing image I, initial (mean) shape S0, trained regressors: 𝑅 = (𝑅1, … , 𝑅𝑇), T: stages  

Output: Estimated pose ST 

1: for t=1 to T do 

2: 𝑓𝑡 = 𝜙𝑡(𝐼, 𝑆𝑡−1) ⇒ IDF features derived from operation: 𝜙𝑡(𝐼𝑖 , 𝑆𝑡−1
𝑖 ) 

3: ∆𝑆 = 𝑅𝑡(𝜙𝑡(𝐼, 𝑆𝑡−1)) ⇒ apply linear regressor 𝑅𝑡   

4: 𝑆𝑡 = 𝑆𝑡−1 + ∆𝑆 ⇒ update pose 

5: end for 
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3.6 Experimental Results and Parameter Settings 

We analyzed the encoding process of IDF, and found that the IDF value of each node 

in random forests is affected by two parameters: the difference value d between two 

brother nodes and the magnitude value k for each generation level. However, since the 

final encoded values of all the nodes are relative values, one of these two parameters can 

be fixed and another one used for fine-tuning. In our experiments, we fix the value of d 

to 1, and plot the alignment error curves for different values of k. 

 

Fig. 3-12 Alignment errors of different magnitude values of k. 

 

As shown in Fig. 3-12, the alignment errors become the lowest, when the magnitude 

value k is in the range from 10 to 30 (for the tree depth set at 7). This means when the 

magnitude value k is within this range, the encoded values keep the discriminative 

capability. Therefore, for our proposed IDF feature, the optimal setting is as follows: tree 

depth: 7, maximum number of stages: 7, number of trees in a forest: 11, number of 

initialization faces: 50, number of shape clusters: 7, and magnitude value k: 10. The 
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trained model, based on our proposed IDF feature and framework, can achieve a 

comparable alignment quality to state-of-the-art methods [1, 6, 13, 15]. Meanwhile, 

our algorithm can run at a speed of more than 1,000 frames per second (FPS) on a 

desktop computer (Intel Core i7 4790 CPU @3.6GHz, 16GB RAM) with C++ code 

after thread parallelization on 8-core CPUs.  

 

 

Fig. 3-13 Comparison of LBF [1], CLNF[27] and IDF, with performance on accuracy and 

InterOccular distance criterion on 10 facial landmark points in the Helen dataset. 

 

The performance of IDF method, LBF [1], and CLNF [27], in terms of accuracy 

and the Inter-Occular distance criterion, for different facial landmarks (with 10 facial 
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landmark points) are shown in Fig. 3-13, which demonstrates that our proposed method 

IDF is comparable to or, in many cases, outperformances recent state-of-the-art methods. 

The Fig. 3-13 also shows that, based on these two criteria, it is very clear all the methods 

are challenged by the facial landmark points in the mouth area, since the mouth facial 

landmark points represent significantly changed expression of human faces. For facial 

landmark points in the mouth area, our proposed method IDF has clearly improvement 

than same regression-based method LBF [1] method and can compare to the classic point 

distribution model (PDM) based method, CLNF [27] method. 

 

     

     

     

     

Fig. 3-14 Fitting results, with 68 landmarks, based on different methods and the Helen dataset:  

Row 1: LBF [1], Row 2: One-Milli-Second [15], Row 3: CLNF[27], and Row 4: IDF. 
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Fig. 3-14 demonstrates some results of the IDF based approach, and shows that 

IDF can locate landmarks accurately on faces with different poses and expressions, 

with occlusion, as well as faces with accessories (glasses). Our proposed method 

achieves promising performance, compared to the state-of-the-art algorithms [1, 15, 

27].  For the linear regression setting, the LibLinear package [7] is used for both LBF 

and IDF, and the linear regression type is set as L2R_L2LOSS_SVR, i.e., L2-

regularized L2-loss support vector regression (primal), in which Newton method with 

trust region step control is employed [30].  

3.7 Conclusions 

In this chapter, we have proposed a novel, simple but effective and discriminative 

feature, and explored the random-forest based cascaded regression model. The core 

insight of our proposed intimacy definition feature (IDF) is we elaborately construct a 

full binary family tree for computing any two members’ degree of intimacy (DoI), which 

can encode the path from the root to a leaf-node as a floating-point number. 

The contributions of the method are threefold. Firstly, compared to local binary 

feature (LBF) which produces a sparse binary vector from each tree, IDF yields a scalar 

value. IDF helps the regression-based model achieve state-of-the-art performance, in 

terms of alignment accuracy and computational efficiency, and memory requirement. 

Secondly, we have addressed the fact that regression-based approaches are sensitive to 

shape initialization. Rather than using a few blind initializations, we choose initial shapes 

from their similar samples spanned subspaces at training stage. With this initialization 

strategy, the cascaded regression approach is capable of learning more accurate 

alignment trajectory and further improving the generalization capability of the trained 

http://www.baidu.com/link?url=3CPcIWrCBjkTLVGsRIqdS8XHey6-xOb8NAVFSBm-EXAyDMeSsvDyscZNbYG1XbkTAwWnpoDhSqpF4F70oBUitbuDpOHhKSNjK7WkZTJG-Ou
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forests. Finally, since IDF is a generic random-forest based feature which can be applied 

to other computer vision tasks, the IDF feature has enriched random-forest based research 

topics. 

Until now, real-time face alignment is still a challenging task. Although lots of 

researchers have put efforts into this research area and numerous algorithms have been 

proposed, a highly robust and efficient algorithm is still on the way. Limited by the 

capacity of pixel-based features, the derived IDF feature is susceptible to image noise, 

compared to manually crafted feature, e.g., the SIFT feature, so further investigation is 

necessary to tackle these problems for faces with noise, large poses and occlusion.  
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Chapter 4. Efficient Likelihood Bayesian Constrained 

Local Model 

The constrained local model (CLM) proposes a paradigm that the locations of a set 

of local landmark detectors are constrained to lie in a subspace, spanned by a shape point 

distribution model (PDM). Fitting the model to an object involves two steps. A response 

map, which represents the likelihood of locations for a landmark, is first computed for 

each landmark using local-texture detectors. Then, an optimal PDM is determined by 

jointly maximizing all the response maps simultaneously, with a global-shape constraint. 

This global optimization can be considered a Bayesian inference problem, where the 

posterior distribution of the shape parameters, as well as the pose parameters, can be 

inferred using maximum a posteriori (MAP). In this chapter, based on the CLM model, 

we present a novel CLM variant, which employs random-forest regressors to estimate 

the location of each landmark, as a likelihood term, efficiently. This novel CLM 

framework is called efficient likelihood Bayesian constrained local model (elBCLM). 

Furthermore, in each stage of the regressors, the PDM local non-rigid parameters, i.e. the 

shape parameters, of the previous stage can work as shape clues for training the regressors 

for the current stage. To further improve the efficiency, we also propose a feature-

switching scheme used in the cascaded framework. Experimental results on benchmark 

datasets show our approach achieves about 3 to 5 times speed-up, when compared with 

the existing CLM models, and improves by around 10% on fitting accuracy, when 

compared with the other regression-based models. 
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4.1 Introduction 

The main goal of face alignment is to locate the semantic structural facial landmarks, 

such as the eyebrows, eyes, nose, mouth, and face contour, accurately, as illustrated in 

Fig. 4-1. This information about facial landmarks is crucial for understanding and 

analyzing face-related research and applications, such as expression recognition [9], face 

recognition [10], and face hallucination [11]. 

The classic active appearance model (AAM) [4] and constrained local models (CLM) 

[28, 27] for face alignment, which are based on Newton’s gradient-descent methods, use 

facial-appearance information (i.e. the image pixel-intensity patterns in the area around 

the landmarks), and face-shape information (i.e. the face shape defined by the landmark 

coordinates) to locate facial landmarks. The shape model, used in active contour model 

(ASM) [3], AAM [4] and CLM, is usually described by finding the parameters of a 

statistical shape-distribution model, i.e., PDM. PDM is a linear model, where facial 

shapes are modeled as a linear combination of the eigen-shapes around the mean shape, 

which can be generalized to represent unseen facial shapes. 

 

   

Fig. 4-1. Facial landmarks fitting located by elBCLM (the Helen dataset [7]). 

 

Recently, a new family of face-alignment algorithms has emerged [1, 6, 51, 8, 13], 

which directly learns regressors from image-feature descriptors to the target shape 

increment. These regression-based methods are gaining popularity, due to their excellent 

performance and high efficiency on face alignment. The regression-based methods do 
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not explicitly learn any shape model, rather, they learn models directly from facial 

appearance or manually designed features, and then predict landmark locations based on 

trained models. 

In this chapter, we propose a novel framework, which takes the advantages of both 

regression-based methods and CLM models. In our framework, the conventional local-

response maps, which are computed by using random-forest-based regressors, can be 

computed efficiently and cover a large area for predicting the landmark locations. Our 

method can also be considered a regression-based framework, with a PDM shape 

constraint. Therefore, we devise this algorithm as an efficient likelihood Bayesian 

constrained local model (elBCLM). With the PDM constraint, regression-based methods 

[51] with same setting can achieve 5% improvement, in terms of accuracy on Helen 

dataset (2000 training+330 testing, exhibiting a large variety in appearance as well as 

general imaging and environment). Furthermore, for each stage of the regressors, the 

PDM local non-rigid parameters from the previous stage can be taken as a shape clue on 

training each regression model, which enables the elBCLM scheme get a further 5% 

improvement, i.e., totally 10% gain. 

The remainder of the chapter is organized as follows. In Section 2, an overview of 

existing, related methods for face alignment is given. In Section 3, CLM is presented, 

and our proposed model, elBCLM, is described in detail in Section 4. A feature-switching 

strategy to balance the computation and efficiency in a cascaded framework, is proposed 

in Section 5. Experiment results are given and discussed in Section 6, and a conclusion 

is given in Section 7. 
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4.2 Previous Works 

Recent face alignment approaches can be classified into two major categories, the 

classic Newton’s gradient-descent-based methods and the regression-based methods. The 

Newton’s gradient-descent-based methods are used in the active appearance model 

(AAM) [4], which learns the holistic model parameters by updating the Jacobian and 

Hessian matrices in the fitting stage, and the constrained local model (CLM) [52, 28, 27], 

which determines each landmark independently, by using local-appearance information 

and learning local-patch response maps. The CLM models also embed the face-shape 

model, i.e. the point distribution model (PDM) as the shape constraint. The PDM is a 

linear model with parameters to represent the shapes. It is used to estimate the likelihood 

of the landmark potential locations, which is important for model fitting, as it can act as 

a prior in the Bayesian framework. 

Recently, regression-based models [1, 6, 13, 15] have shown significantly better 

performances than the AAM and CLM frameworks. These models do not learn any shape 

model explicitly, but only learn models for predicting the landmarks directly from facial-

appearance feature patterns. The supervised descent method (SDM) [6] is the pioneer 

work on regression methods. SDM formulates the face-alignment task as a general 

optimization problem, which is approximately solved by learning successive mapping 

functions from local-appearance feature patterns, such as histogram of oriented gradients 

(HOG) or scale-invariant feature transform (SIFT) features, to the shape updates using 

linear-regression models. In [1], the authors presented highly efficient local binary 

features (LBF), which are derived from local pixel shape-indexed features, with a linear-

regression framework to achieve faster speed with comparable quality. In [51], a local 

http://www.thesaurus.com/browse/determine
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lightweight feature, namely intimacy definition feature (IDF), was proposed. This feature 

can achieve about twice the speed-up and more than 20% improvement in terms of 

alignment error, when compared to the LBF [1] method. 

The regression-based methods take advantage of shape information in a limited sense, 

such that all the points are updated jointly, i.e. each point is described by linear regression 

with features from all other points. Thus, the shape-pattern constraint is implicitly 

embedded in the model. Since the shape prior is not employed explicitly, current 

regression-based methods have the inherent limitation of ignorance or ineffective usage 

of the shape information, which is the main issue this chapter will tackle.  

4.3 Constrained Local Models 

4.3.1 The Shape Model - PDM Model 

Generally, the shape 𝑿 of a point distribution model (PDM) is represented by the 2D 

vertex locations of a mesh, with a 2n dimensional vector: 𝑿 = (𝑥1, 𝑦1, . . , 𝑥𝑛, 𝑦𝑛)𝑇 . 

Traditional way of building a PDM requires a set of shape-annotated images that have 

been aligned in scale, rotation, and translation by the Procrustes analysis. Applying 

principal component analysis (PCA) to a set of aligned training examples, the shape can 

be expressed by a linear parametric model, as follows: 

𝑿𝑖 = 𝑠𝐑(�̅�𝑖 + 𝚽𝑖𝐪) + 𝒕,                                           (4.1) 

where 𝑿𝑖 denotes the 2D landmark locations of the PDM’s 𝑖th landmark, and p = {s, R, 

t, q} denotes the PDM parameters, which consist of a global scaling s, a rotation R, a 

translation t, and a set of non-rigid parameters q. Here, �̅�𝒊 denotes the mean location of 

the 𝑖th PDM landmark in the reference frame (i.e. �̅�𝒊 = [�̅�𝑖 , �̅�𝑖] for a 2D model), and 𝚽 

is the shape-subspace matrix formed by the leading n eigenvectors (retaining a user-
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defined variance, e.g. 99%). Therefore, q can be regarded as a vector of shape parameters. 

From the probabilistic point of view, the non-rigid shape parameters q show a Gaussian 

distribution, leading to the following prior: 

𝑝(𝐪) ∝ 𝒩(𝐪; 𝟎, 𝚲), 𝚲 = diag{[𝜆1; 𝜆2; … ; 𝜆m]}                           (4.2) 

where 𝜆𝑖 denotes the eigenvalue of the 𝑖th mode of deformation. Λ is constructed from 

the training set, based on how much shape variation in the training is explained by the 

𝑖th parameter, with 𝜆𝑖 corresponding to the 𝐪𝑖 parameter.  

The CLM models have attracted some interest, as they solve many of the drawbacks 

of holistic approaches. A CLM model normally consists of two parts: a statistical shape 

model and patch experts (also called local detectors). Both the shape model and patch 

experts can be trained offline, and then used for online landmark detection, which is 

achieved by fitting the CLM to a given image. The deformable model is controlled by 

the parameters in p, and the instance of a model can be described by the locations of its 

feature points 𝑿𝑖 in an image I, as illustrated in Fig. 4-2. 

 

 

Fig. 4-2 Overview of the CLM fitting process. 
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4.3.2 CLM Model and Fitting Process 

The CLM fitting is generally composed of searching the PDM parameters p, which 

jointly minimizes misalignment error over all the landmarks, regularized properly, as 

follows: 

ℇ(𝐩) = 𝑅(𝐩) + ∑ 𝐷𝑖(𝑿𝑖; 𝐼)𝑛
𝑖=1 ,                                              (4.3) 

where 𝑅 penalizes the complex deformations (i.e. the regularization term) and Di denotes 

the measure of misalignment for the 𝑖th landmark 𝑿𝑖 in the image I (i.e. the data term). 

The form of regularization, which describes plausible object shapes, is related to the 

assumed distribution of the PDM parameters.  

Two steps of CLM fitting process in probability thinking: 

(1) an exhaustive local search for feature locations to generate the response maps: 

 {𝑝(𝑙𝑖 = 𝑎𝑙𝑖𝑔𝑛𝑒𝑑|𝑰, 𝑿)}𝑖=1
𝑛 ,                                                 (4.4) 

(2) an optimization strategy to maximize the responses of the PDM constrained 

landmarks. 

Most innovations made to the CLM model are to replace the distribution of landmark 

locations, obtained from each patch-based local detector, with a simpler and more 

accurate predictor. For the optimization step, once the response map for each landmark 

have been computed, by assuming conditional independence, optimization can proceed 

by maximizing the following function: 

𝑝({𝑙𝑖 = 𝑎𝑙𝑖𝑔𝑛𝑒𝑑}𝑖=1
𝑛 |𝑝) = ∏ 𝑝(𝑙𝑖 = 𝑎𝑙𝑖𝑔𝑛𝑒𝑑|𝑿𝑖)𝑛

𝑖=1                                 (4.5) 

with respect to the PDM parameters p, where 𝑿𝑖 is parameterized as in Eqn. (4.1), and 

dependence on the image I is dropped for succinctness. It should be noted that some 

forms of CLMs use Eqn. (4.4) as minimizing the total local energy responses. In Eqn. 

http://www.thesaurus.com/browse/properly


62 

 

(4.5), 𝑙𝑖  is a discrete random variable, denoting whether the 𝑖th landmark is correctly 

aligned or not. 

4.3.3 CLM in Bayesian Formulation 

The objective of Eqn. (4.5) can be interpreted as maximizing the likelihood of the 

model parameters, such that all its landmarks are aligned with the corresponding 

locations of the object in an image. The specific form of the objective implicitly assumes 

conditional independence between the detected landmarks. The probability of correct 

alignment can be expressed as follows:  

𝑝(𝐩|{𝑙𝑖 = 1}𝑖=1
𝑛 , 𝑰) ∝ 𝑝(𝐩) ∏ 𝑝(𝑙𝑖 = 1|𝑿𝑖 , 𝑰)𝑛

𝑖=1                              (4.6) 

i.e.  ln{𝑝(𝐩|{𝑙𝑖 = 1}𝑖=1
𝑛 , 𝑰)} ∝ ln{𝑝(𝐩)} + 

∑ 𝐥𝐧{𝑝(𝑙𝑖 = 1|𝑿𝑖 , 𝑰)}.𝑛
𝑖=1                                        (4.7) 

Based on Eqn. (4.2), we have 

ℇ(𝐩) = −ln {𝑝(𝐩)}                                              (4.8) 

𝐷𝑖(𝑿𝑖; 𝐼) = −𝐥𝐧{𝑝(𝑙𝑖 = 1|𝑿𝑖 , 𝑰).                                     (4.9) 

If a non-informative (uniform) prior over the PDM parameters is assumed, the 

formulation in Eqn. (4.6) leads to a maximum likelihood (ML) estimate, otherwise it 

leads to a maximum a posterior (MAP) estimate.  

The method first finds the location within each response map for which the maximum is 

attained, and the locations of the n landmarks are denoted as 𝛍 = [𝝁1, . . . , 𝝁𝑛]𝑇 . The 

objective of the optimization procedure is then to minimize the weighted least squares 

difference between the PDM and the coordinates of the peak responses in the map 

window, regularized appropriately as follows: 

ℇ(𝐩) = ||𝐪||
𝚲−𝟏
𝟐 + ∑ 𝑤𝑖||𝑿𝑖 − 𝝁𝑖||2𝑛

𝑖=1 ,                                    (4.10) 
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where the weights {𝑤𝑖}𝑖=1
𝑛  reflect the confidence on the landmark locations, making it 

more resistant towards partial occlusion, where occluded landmarks will be more weakly 

weighted. Eqn. (4.10) is iteratively minimized by taking the first order Taylor expansion 

of the PDM’s landmarks: 

  𝑿𝑖 ≈ 𝑋𝑖
𝑐 + 𝐉𝑖𝚫𝐩                                                           (4.11) 

and then the parameter update is solved as follows: 

 𝚫𝐩 = −𝐇−𝟏𝑿𝑖(𝚲−𝟏𝐩 + ∑ 𝑤𝑖𝐉𝑖(𝑋𝑖
𝑐 − 𝝁𝑖)𝑛

𝑖=1 ),                                     (4.12) 

which updates the current parameters: 𝐩 ← 𝐩 + 𝚫𝐩. Here, 𝚲 = 𝒅𝒊𝒂𝒈{[𝝀𝟏, 𝝀𝟐, … , 𝝀𝒎]}, 

𝐉 = [𝐉𝟏, 𝐉𝟐, … , 𝐉𝒏]  is the PDM’s Jacobian matrix, 𝑿𝒄 = [𝑋1
𝑐; 𝑋2

𝑐; … ; 𝑋𝑛
𝑐]  is the current 

shape estimate, and 

𝐇 = 𝚲−𝟏 + ∑ 𝑤𝑖𝐉𝒊
𝑻𝐉𝑖

𝑛
𝑖=1                                                       (4.13)  

is the Gauss-Newton Hessian matrix. The Jacobian matrix contains the partial derivatives 

of the n landmarks with respect to the PDM parameters. i.e. the 4 global rigid parameters 

(s, θ, 𝑡𝑥, 𝑡𝑦) and the m local non-rigid parameters in q, where θ is the angle of rotation 

matrix R. 

4.4 Proposed Model 

In recent years, random forests [14] have emerged as an effective approach to learning 

classifiers, for a large variety of computer-vision tasks. This method is relatively simple 

and has many merits that make it particularly interesting for computer-vision tasks [51]. 

4.4.1 Random-Forest-based Cascaded Shape Regression 

Many face-alignment methods work under a cascaded framework, where an 

ensemble of N regressors operates in a stage-by-stage manner, which are referred to as 

stage regressors. This approach was first explored in [8]. At the fitting stage, the input to 
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the regressor 𝑅𝑡, at stage t, is a tuple (𝑰, 𝑿𝑡−1), where 𝑰 is an image and 𝑿𝑡−1 is the shape 

estimated from the previous stage (the initial shape 𝑿0
 is typically the mean shape of the 

training set). The regressors work on features, i.e. information about the current shape 

estimate, or other features with respect to the current shape estimate, and predict a vector 

of shape increment as follows: 

𝑿𝑡 = 𝑿𝑡−1 + 𝑹𝑡(𝝓𝑡(𝐼, 𝑿𝑡−1)),                                                (4.14) 

where 𝝓𝑡(𝑰, 𝑿𝑡−1) can be referred to as the shape-indexed features, or features, which 

are derived from shape-indexed features, such as LBF [1] and IDF [51]. The cascade 

progressively infers the shape in a coarse-to-fine manner. The early regressors handle 

large variations in shape, while the later ones perform small refinements. After each stage, 

the shape estimate resembles the true shape closer and closer. 

In our proposed algorithm, the feature-mapping function 𝝓𝑡(𝑰, 𝑿𝑡−1) generates local 

IDF features, which are derived from the shape-indexed feature or HOG features at the 

estimated landmark positions at later stages. With the assumption, proved by intensive 

experimental results, that the shape increments have close correlation with the local 

features of the landmarks, which define the face shape, given the features and the target 

shape increments {∆𝑿𝑡 = 𝑿𝑡 − 𝑿𝑡−1}, a linear projection matrix 𝑹𝑡 can be learned. Most 

regression models [1, 6, 51, 8] share a similar framework. 

4.4.2 Motivation and Proposed Method 

If the weights are all the same and only one iteration is performed, then Eqn. (4.12) 

can be simplified as follows:  

Δ𝐩 = −𝐇−1𝐗(𝚲−1𝐩 + 𝐉𝒗),                                                   (4.15) 
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where v is the shape shift vector obtained by any response-map algorithm. Recently, 

researchers have worked for using different response maps [27]. Directly obtaining the 

shape shift vector v can overcome the limitation of local response-map filters based CLM 

algorithms, which can obtain the shift vector by setting 𝒗 = Δ𝐗, while the accuracy can 

be improved by iterations from the cascaded framework: 

Δ𝐩 = −𝐇−1𝐗(𝚲−1𝐩 + 𝐉Δ𝐗).                                                   (4.16) 

This equation interprets the main idea of our proposed method, in which random-forest-

based regressors are trained to obtain Δ𝐗  efficiently. Δ𝐩  is updated for refining the 

current fitted shape with the PDM model constraint. Since the response-map filters 

mainly work as a convolutional filter, the drawback of convolutional filters significantly 

hinders the CLM algorithm. If the size of a patch-based response-map window is set too 

small, the response-map filter cannot cover a sufficiently large area to handle large posed 

faces. On the other hand, if it is set too big, the computation requirement may greatly 

reduce algorithm’s efficiency. The PDM-based prior term, as in Eqn. (4.2), can be 

approximated as follows: 

𝑝(𝐪𝑘|𝐪𝑘−1) ∝ 𝒩(𝐪𝑘|µ𝑞 , 𝚺𝑞),                                          (4.17) 

where µ𝑞 = 𝐪𝑘−1 and 𝚺𝑞 = 𝚲. This form of prior assump-tion can be greatly improved 

in a cascaded framework. 

Inspired by this analysis, we propose a novel CLM variant, by replacing the response-

map filters with regressors to find the shift vector Δ𝐗. The refinement of the shift vector 

Δ𝐗  is implicitly realized in the cascade framework. For CLM, random-forest-based 

regressors replace the local response maps, so likelihood can be calculated efficiently 
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under the Bayesian framework. Because of these, we name our proposed algorithm as an 

efficient likelihood Bayesian constrained local model (elBCLM).  

 

Fig. 4-3: An overview of the workflow for elBCM cascaded regression face alignment 

 

Our proposed algorithm, using regressors to replace local response maps has the 

following advantages: (1) This method can circumvent the hypothesis that the local 

detectors are assumed conditionally independent, (2) Our method is able to avoid local 

optimal location, which may be caused by typical, local noise and ambiguities, since 

small image patches often contain limited structure, (3) This method is capable of 

extending the response-map with more efficient methods. The whole workflow of our 

elBCLM algorithm is described in Fig. 4-3, and the detail of random-forest-based 

regression may refer to [1, 51]. 

4.4.3 PDM as Prior for Regression Features 

The PDM is a linear model, which parametrizes a class of shapes. It can also be used 

to estimate the likelihood of landmark location, given a set of feature points. This is 

http://www.baidu.com/link?url=cgWYfMS0Eo7PP9OAsgHVO_upYuO0jlrYgd0wmTpcfBr0BYQQHtVagRWQx43A8LPhLdOpUAL_BcTq4Dx0mBNyAJyPEPZn7mwVUKGscy3ANSC
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important for model fitting, as it can act as a prior,which works as a guiding feature in 

the cascade framework. 

  
 

 
Fig. 4-4: Comparison of regression-based method IDF [5], elBCLM with PDM shape constraint 

only(elBCLM-), and elBCLM. 

 

As the local non-rigid parameters q in the PDM p = {s, R, t, q} have a closer 

relationship to the consecutive fitting shapes, so the previous local parameters q can work 

as a guiding feature for fitting the shape at each stage. In our experiments, for the 68 

facial landmarks in a face, the dimension of q is 136 (68×2), which can be reduced to 
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around a dimension of 32 by using PCA, with 99% of energy retained. Therefore, in our 

algorithm, the dimension of q is set at 32. As q is used in regression, this means that the 

features in 𝝓𝑡(𝑰, 𝑿𝑡−1), from Eqn. (4.14),  are refined.  

 

 
 

 

Fig. 4-5: Comparison of regression-based method IDF[51], elBCLM- (with PDM shape 

constraint only), and elBCLM, for 10 facial landmarks. 

 

Fig. 4-4 shows that, both the training and fitting stages, the regression algorithm with 

PDM shape constraint only (denoted as elBCLM- in Fig. 4-4) can reduce the alignment 
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error by more than 5%, when compared to IDF [51]. When the PDM’s local parameters 

q are also used as a guiding feature for training the linear-regression models in each stage, 

our algorithm, elBCLM, is able to achieve an additional 5% improvement in terms of 

alignment error in the fitting stage. The performances of IDF, elBCLM- (with PDM 

constraint only), and elBCLM, in terms of accuracy and the Inter-Occular distance 

criterion, for different facial landmarks are shown in Fig. 4-5, which demonstrates that 

the three methods have similar relative performances for different landmarks. 

4.5 Feature-Switching Scheme  

In the cascade framework, the performance of the regressors can be fine-tuned. For 

example, adaptive window size is used, where the window size decreases when moving 

along the stages to balance the computation [1, 6, 51]. In [54], to handle large variations, 

global regression is first employed, then part regression, and finally local regression. 

From experiment results, we can find all features share similar trend, which means 

convergence curve decrease relatively faster in the earlier stages while slower in the later 

stages, as can be seen in Fig. 4-6. After the earlier stages, the convergence is insensitive 

to the features being used. Therefore, to balance speed and accuracy, a simple feature is 

first used, then after a certain number of stages, it is switched to a more complex, 

discriminative feature in later stages. We call this a feature-switching scheme. In Fig. 4-

6, we show the performance of the feature-switching scheme with 6 stages. In the first 4 

stages, the IDF feature is used to achieve a faster speed, and it is switched to the HOG 

feature 2 stages to achieve higher accuracy. The computation requirement of one HOG 

stage is higher than four IDF stages.  
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Fig. 4-6: Comparison: IDF, HOG and feature-switching(Helen dataset [21]). 

4.6 Workflow and Experimental Results 

4.6.1 Algorithm Workflow 

The two stages of elBCLM are described in Algorithm 4.1 and 4.2, respectively. 

Algorithm 4.1: elBCLM Training Stage: 

Input: PDM (𝑿, 𝚽) model, training data(𝑰𝑖 , 𝑿𝑖 , �̅�𝑖), for i=1, …, N, where I are face images, 

and X are shapes; N is the number of samples. 

Output: regressors:  𝑹 = (𝑅1, … , 𝑅𝑇), T: stage count. 

1: for t=1 to T do 

2:     for all 𝑖 ∈ (1 … 𝑁) do 

3:       ∆𝑿𝑡
𝑖 = 𝑿𝑡

𝑖 − �̅�𝑡
𝑖                     ⇒ calculate ∆𝑿𝑡

𝑖  

4:       𝑓𝑡
𝑖 = 𝜙𝑡(𝑰𝑖 , 𝑆𝑡−1

𝑖 )                 ⇒ IDF features + PMD’s q 

5:     end for 

6:       𝑅𝑡 = arg 𝑚𝑖𝑛𝑅 ∑ |𝑅(𝑓𝑡
𝑖) − ∆𝑿𝑡

𝑖 |𝑖  

7:    for all 𝑖 ∈ (1 … 𝑁) do 

8:       �̅�𝑡
𝑖 = �̅�𝑡

𝑖 + 𝑅(𝑓𝑡
𝑖)                 ⇒ update shape {Eqn. (4.14)} 

9:       update Δp with ∆𝑆𝑡
𝑖              ⇒ {Eqn. (4.16)} 

10:      �̅�𝑡
𝑖 ≈  �̅�𝑡

𝑖 + 𝐉𝑡Δ𝐩                 ⇒ update shape w.r.t: Eqn. (4.10) 

11:   end for  

12: end for 
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4.6.2 Experimental Results 

Experiments on the Helen dataset [21] show that elBCLM achieves an alignment 

error of 5.88, at 150 FPS on 68 facial landmarks. Table-4.1 tabulates the fitting accuracy, 

as well as other state-of-the-art algorithms. We can see that elBCLM outperforms the 

state-of-the-art algorithms. Fig. 4-7 illustrates fitting results based on elBCLM, LBF [1], 

and CLM [27], which show elBCLM can locate landmarks more accurately. 

 

Method Error (68 landmarks) 

Zhu et. al [53] 8.16* 

DRMF [31] 6.70* 

RCPR [52] 5.93* 

Tadas et. al [27] 6.75 

elBCLM 5.88 

Table-4.1: Alignment comparision, results from original papers with "*".  

 

Algorithm 4.2: elBCLM Fitting Stage: 

Input: PDM (𝑿, 𝚽) model, testing image I, initial (mean) shape 𝑿0, trained 

regressors:𝑹 = (𝑹1, … , 𝑹𝑇) 

Output: Estimated pose  𝑿𝑇 

1: for t=1 to T do 

2:   𝑓𝑡 = 𝜙𝑡(𝑰, 𝑿𝑡−1)                    ⇒ IDF features + PMD’s q 

3:    ∆𝑋 = 𝑅𝑡(𝝓𝑡(𝐼, 𝑿𝑡−1))          ⇒ apply regressor 𝑹𝑡 

4:    𝑿𝑡 = 𝑿𝑡 + ∆𝑿                       ⇒ update shape {Eqn. (4.14)} 

5:    update Δ𝐩 with ∆𝑿                ⇒ {Eqn. (4.16)} 

6:    𝑿𝑡 ≈ 𝑿𝑡 + 𝐉𝑡Δ𝐩                    ⇒ update shape w.r.t: Eqn. (4.10) 

7: end for 
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Fig. 4-7: Fitting results comparison (68 points, Helen dataset [21]), Row-1:LBF[1]: Row-

2:CLM[27], Row-3: elBCLM 

 

4.7 Conclusions 

In this chapter, we propose a more accurate and efficient face alignment algorithm. 

There are two main contributions in our algorithm. The first one is that we connect two 

schools of face alignments into a single framework. The second one is that the PDM non-

rigid local parameters are used as a guiding, discriminative feature for the cascade 

alignment framework. To further improve the efficiency, we also propose a feature-

switching scheme used in the cascaded framework. Experiment results show that our 

proposed algorithm outperforms the state-of-the-art algorithms in terms of accuracy and 

efficiency. 
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Chapter 5. Joint Maximum Purity Forest with 

Application to Image Super-Resolution 

In this chapter, we propose a novel random-forest scheme, namely Joint Maximum 

Purity Forest (JMPF), for classification, clustering, and regression tasks. In the JMPF 

scheme, the original feature space is transformed into a compactly pre-clustered feature 

space, via a trained rotation matrix. The rotation matrix is obtained through an iterative 

quantization process, where the input data inclined to different classes are clustered to 

the respective vertices of the new feature space with maximum purity. In the new feature 

space, orthogonal hyperplanes, which are employed at the split-nodes of decision trees 

in random forests, can tackle the clustering problems effectively. We evaluated our 

proposed method on public benchmark datasets for regression and classification tasks, 

and experiments showed that JMPF remarkably outperforms other state-of-the-art 

random-forest-based approaches. Furthermore, we applied JMPF to image super-

resolution specifically, because the transformed, compact features are more 

discriminative to the clustering-regression scheme. Experiment results on several public 

benchmark datasets also showed that the JMPF-based image super-resolution scheme is 

consistently superior to recent state-of-the-art image super-resolution algorithms. 

5.1 Introduction 

Recently, random forest [14, 63] has been employed as an efficient classification or 

regression tool on a large variety of computer-vision applications, such as object 

classification [110], recognition [87], face alignment [1, 15, 51], data clustering [17], 

image super-resolution [8, 19], and so on. This method is attractive on computer-vision 

problems, not only for its simple implementation, but also for its merits: (1) it can work 



74 

 

efficiently on both training and inference stages, (2) it is feasible for it to be sped up with 

parallel processing technology, (3) it has an inherent property to handle high-dimensional 

input features, and (4) it works with divide-and-conquer strategy, which has stable 

performance on classification and regression tasks as an ensemble machine-learning tool. 

Random forest is a machine-learning method using an ensemble of randomized decision 

trees, and each tree consists of split-nodes and leaf-nodes, which can be trained 

recursively. During the training process, at each split-node in a decision tree, a 

hyperplane is learned to separate data into two groups. Although each decision tree 

attempts to achieve maximum purity, i.e., maximizes inter-class variance and minimizes 

intra-class variance, for the two data groups clustered at each split-node independently 

during training a random forest, there is no guarantee that the original feature space can 

meet the expectation of global maximum purity for all the clustered groups. As the 

hyperplanes in a random forest have the orthogonal constraint, as shown in Fig. 5-1(b), 

which hinders us from achieving the optimal hyperplanes as SVM (support vector 

machine) [68, 70] does in some original feature space, as shown in Fig. 5-1(a). In this 

chapter, we aim to solve this orthogonal-constraint limitation. With the fixed orthogonal 

hyperplanes, we propose to rotate the feature space, this is equivalent to rotating the 

hyperplanes, in such a way that global maximum purity on the clustered data can be 

achieved, as illustrated in Fig. 5-2. This strategy can achieve a joint maximum purity for 

all the split-nodes when training a random forest. Summarily, we propose a feature 

preprocessing, where the original features are transformed into a new feature space via a 

constructed rotation matrix, then the performance of constructed random forest can be 

enhanced in the new feature space. Similar idea can be found in the Rotation Forests 

[110], but the construction processes on the rotation matrices are different. Moreover, 
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Rotation Forests [110] essentially has restricted itself to classification task, while JMPF 

keeps the original capability of random forest. 

Image super-resolution can be performed based on clustering/classification, 

according to the recent emerging clustering-regression stream [2, 5, 8], and JMPF scheme 

can achieve remarkable performance on both the classification and regression tasks. 

Therefore, JMPF is applied to single-image super-resolution in this chapter. In our 

algorithm, principal component analysis (PCA) is applied to the features for 

dimensionality reduction. The projected feature space is then rotated to a compact, pre-

clustered feature space via a learned rotation matrix. Finally, for all the split-nodes 

trained for a random forest, their thresholds are directly set to the inherent zero-center 

orthogonal hyperplanes in the rotated feature space to meet the maximum-purity criterion. 

Experiment results show that JMPF can achieve more accurate clustering performance, 

and applying JMPF to image super-resolution can achieve superior quality, compared to 

state-of-the-art methods. 

Having introduced the main idea of our proposed algorithm, the remainder of this 

chapter is organized as follows. In Section 2, we will describe our proposed scheme, the 

JMPF scheme, and present in detail how to compute the rotation matrix via clustering 

data into the feature-space vertices. Section 3 will evaluate our proposed method and 

compare its performance with recent state-of-the-art random-forest-based approaches on 

regression and classification tasks. In Section 4, we will validate the performance of 

JMPF scheme on single-image super-resolution. Conclusions are given in Section 5. 

  

http://www.baidu.com/link?url=QO8S6YYmvsthB22vp1g4rvZcPsY-cPogd7eEDAmE747d-3hnxmzpdvhM3PLcaFwpD7MjT8rO0EeLzVGd3h6-OQz0DluxEeMz6WJXcXdtBDW
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5.2 Joint Maximum Purity Forest Scheme 

5.2.1 Random Forest and Our Insights 

In mathematical expression, a random forest is an ensemble of 𝑇 binary decision trees 

𝒯𝑡(𝑥): 𝑋 → ℝ𝑑 , where 𝑡 (= 1, 2, … , 𝑇)  is the index of the trees, 𝑋 ∈ ℝ𝑚  is the m-

dimension feature space, and ℝ𝑑 = [0, 1]𝑑  represents the space of class probability 

distributions over the label space 𝑌 = {1, . . . , 𝑑}. As shown in Fig. 5-1(b), the vertical 

dotted line forms a hyperplane, 𝑋1=0, chosen in the first split-node for separating training 

samples, and the horizontal dotted line is the hyperplane, 𝑋2=0, for the second split-node 

to cluster all the feature data assigned to this node. This results in separating the three 

data samples (Red, Green and Blue) into three leaf-nodes. 

 
(a) (b) 

Fig.  5-1: (a) Three classes of samples in a feature space, which are hard to be clustered with 

orthogonal hyperplanes; and (b) the samples are rotated, and a decision tree of a random forest 

is used to cluster the data in the new, rotated feature space. 

 

It can be seen from Fig. 5-1(b) that, for each split-node, the optimal hyperplane with 

more generalization capability is the one which can achieve maximum purity in 

clustering samples into two groups. For example, the vertical dotted line is the first 

optimal hyperplane because it clusters all the red training samples into the right node, 

while all the blue and green samples are clustered into the left node, where the left margin 

𝐺𝑙 and the right margin 𝐺𝑟 are equal.  
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The training of a whole random forest is to train all of its decision trees, by choosing 

the candidate features and thresholds for each of the split-nodes, where the feature 

dimensions and thresholds are determined using a random bagging strategy. In the 

prediction stage, each decision tree returns a class probability 𝑝𝑡(𝑦|𝑥) for a given query 

sample 𝑥 ∈ ℝ𝑚, and the final class label y∗ is then obtained via averaging, as follows: 

𝑦∗ = arg max
𝑦

1

𝑇
∑ 𝑝𝑡(𝑦|𝑥)𝑇

𝑡=1 .                             (5.1) 

The splitting function for a split-node is denoted as 𝑠(𝑣; Θ), where 𝑣 is a sample and Θ 

is typically parameterized by two values: (i) a feature dimension Θ𝑖{1, . . . , 𝑚}, and (ii) 

a threshold Θ𝑡ℝ. The splitting function is defined as follows: 

𝑠(𝑣; Θ) = {
0,    if 𝑣(Θ𝑖) < Θ𝑡,

1, otherwise,
                           (5.2) 

where the outcome defines to which child node the sample 𝑣 is routed, and 0 and 1 are 

the two labels for the left and right child nodes, respectively. Each node chooses the best 

splitting function Θ∗ out of a randomly sampled set {Θ𝑡} by minimizing the following 

function: 

𝐼 =
|𝐿|

|𝐿|+|𝑅|
𝐻(𝐿) +

|𝑅|

|𝐿|+|𝑅|
𝐻(𝑅),                            (5.3) 

where 𝐿 and 𝑅 are the sets of samples that are routed to the left and the right child nodes, 

and |𝑆| represents the number of samples in the set 𝑆. The most important part in Eqn. 

(5.3) is 𝐻(𝑆), which is a criterion to describe the data information in the sample set 𝑆. 

Mathematically, 𝐻(𝑆) is the local score for a set of samples (𝑆 is either 𝐿 or 𝑅), which 
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normally is calculated using entropy as in Eqn. (5.4), but it can be replaced by variance 

[1, 18, 51] or the Gini index [14]. 

𝐻(𝑆) = − ∑ [𝑝(𝑘|𝑆) ∗ log(𝑝(𝑘|𝑆))]
𝐾

𝑘=1
,                      (5.4) 

where 𝐾 is the number of classes, and 𝑝(𝑘|𝑆) is the probability for class 𝑘, given the set 

𝑆. For the regression problem, the differential entropy: 

𝐻(𝑞) = ∫ 𝑞(𝑦|𝑥) ∗ log (𝑞(𝑦|𝑥)
𝑦

)𝑑𝑦                         (5.5) 

over continuous outputs can be employed, where 𝑞(𝑦|𝑥)  denotes the conditional 

probability of a target variable given the input sample. Assuming 𝑞(. , . ) to be a Gaussian 

distribution and having only a finite set 𝑆 of samples, the differential entropy can be 

written in closed form as 

𝐻Gauss(𝑆) =
𝐾

2
(1 − log(2π)) +

1

2
log(det(Σ𝑆)),                   (5.6) 

where det (Σ𝑆)  is the determinant of the estimated covariance matrix of the target 

variables in 𝑆. For training each decision tree in a random forest, the goal on each split-

node is to maximize the information gain (IG) by reducing the entropy after splitting. IG 

is defined as follows: 

IG =  entropy(parent) – [average entropy(children)].                 (5.7) 

Since each decision tree is a binary tree and each step is to split a current node (a parent 

set 𝑆) into two children nodes (𝐿 and 𝑅 sets), IG can be described as follows: 

arg max
ℋ

𝐼𝐺 = arg max
𝐿,𝑅

𝐻(S) −
|𝐿|

|𝐿|+|𝑅|
𝐻(𝐿) −

|𝑅|

|𝐿|+|𝑅|
𝐻(𝑅),                (5.8) 
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where ℋ is the optimal hyperplane of the split-node, and Eqn. (5.8) is the target function 

of each split-node when training each decision tree of a random forest. As we can see 

from Fig. 5-1(b), all the optimal hyperplanes from split-nodes are achieved independently 

and locally. 

Since each optimal hyperplane is obtained from a subset of feature-dimension 

candidates with the randomly bagging strategy, there is no guarantee of obtaining a global 

optimum with respect to all the hyperplanes in all the split-nodes. An intuitive thinking, 

which was inspired by the data distribution in Fig. 5-1(b), is to achieve a global optimum 

by jointly considering all the hyperplanes of all the split-nodes, in the form as follows 

with an intuitively descriptive formula, which can be solved through a greedy approach: 

max
ℋ𝑘

𝐼𝐺global = arg max
ℋ𝑘

∏ 𝐼𝐺𝑘
𝒦
𝑘=1 ,                           (5.9) 

where 𝒦 is the total number of split-nodes that a training sample has routed through a 

decision tree. As there is no mathematical solution to the problem described in Eqn. (5.9), 

an alternative way (i.e., an approximate method) to numerically solving Eqn. (5.9) is to 

jointly maximize the purity of the clustered data groups at each of the split-nodes. This 

also means that all the data is clustered into the corners (feature-space vertices) of the 

feature space, as shown in Fig. 5-2. 

5.2.2 The Joint Maximum Purity Forest Scheme 

By studying the mechanism of a random forest, we can see that the random-forest 

approach has some critical properties, as do other powerful classifiers, such as SVM 

(support vector machine) [68, 70] and AdaBoost (short for "Adaptive Boosting") [73]. 

Both SVM and AdaBoost work as to approximate Bayes decision rule – known to be the 
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optimal classifiers – via minimizing a margin-based global loss function. Each threshold 

in a decision tree of a random forest works as a hyperplane, and each single decision tree, 

similar to AdaBoost, attempts to minimize its global loss greedily and recursively on 

working through from the root-node down to leaf-nodes in the binary tree.  

To calculate the threshold for each split-node in each decision tree when training a 

random forest, we are attempting to determine an orthogonal hyperplane for a three-

category classification problem, as shown in Fig. 5-1. Since the hyperplanes for the split-

nodes of a decision tree are required to be orthogonal to each other, seeking an optimal 

orthogonal hyperplane locally cannot guarantee obtaining maximum purity for the whole 

tree globally. To achieve an optimal classification performance for the whole decision 

tree, all the split-nodes should be considered globally or simultaneously. 

As shown in Fig. 5-2, a number of split-nodes, which have their hyperplanes 

orthogonal to each other, are required to separate the samples into different nodes. 

However, if we can transform the samples (zero-centered feature data) to locate them at 

the respective corners of the feature space, i.e. {−1,1}𝑚 for m-dimensional features, the 

feature data can be easily and accurately separated by the orthogonal (either vertical or 

horizontal) hyperplanes, which contain the space center {0}𝑚, as illustrated in Fig. 5-1(b). 

The insight behind this is that the data is clustered into the feature-space vertices (the 

corners in a 2-D feature space means that the data points belong to {−1,1}2  as the 

coordinate range is set to [−1, 1]). 

To tackle the original feature data 𝑋, which is not ideally clustered in the vertices or 

corners of the feature space or close to them, as shown in Fig. 5-1(a), an intuitive idea is 

to rotate the feature space (this is equivalent to rotating the hyperplanes). This 

http://www.baidu.com/link?url=E90xuCF3PzbYI5B8e0T8aZOr_Kjyb2ilfEeNCjpQ0ZFIyD3ZMXXVi4vW1-4WYdMjhylJiaak2NZAS0Rh-3XkI2iKbWAJlV5-WD-jKrHVEWdHXOO_EwruvPlmLVoegrcM
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transformation clusters the feature data compactly into 𝑚 feature-space vertices {−1,1}𝑚 

with a total of 2𝑚 vertices. Therefore, a possible solution to the problem described in 

Eqn. (5.10) is to rotate the data features by a rotation matrix ℛ𝑚×𝑚, as shown in Fig. 5-

2, through which the original feature space 𝑋  is transformed into a more compact 

clustered feature space, where all the feature data is clustered close to their inclined 

feature-space vertices 𝐵. This solution can be mathematically defined as follows:   

min‖𝐵 − 𝑋ℛ‖𝐹
2 , s.t. 𝐵 ∈ {−1,1}𝑛×𝑚, ℛ𝑇ℛ = 𝐼              (5.10) 

where 𝑋 ∈ ℝ𝑛×𝑚 contains n samples, each of which is a 𝑚-dimensional feature vector 

arranged in a row, and is zero-centered, i.e. all the feature vectors are demeaned by 

subtracting the mean vector from each feature vector. 

This idea of clustering data into the feature-space vertices can also be found in 

locality-sensitive hashing (LSH) [61] and image representation [67]. In [61], a simple 

and efficient alternating minimization scheme was proposed to find a rotation matrix for 

zero-centered feature data, which minimizes the quantization errors by mapping the 

feature data to the vertices of a zero-centered binary hypercube. The method is termed as 

iterative quantization (ITQ), which can work on multi-class spectral clustering and 

orthogonal Procrustes problem. Yu et al. [55] proposed using a circulant matrix to speed 

up the computation, because the circulant structure enables the use of Fast Fourier 

Transformation (FFT). As the computation of the rotation matrix in the training and 

testing stage is ignorable, we choose a similar scheme to ITQ [61] to determine the 

rotation matrix ℛ  (we throw away the final quantization matrix 𝐵  described in Eqn. 

(5.10), which is used for hashing in [61]), through which the original feature space 𝑋 can 

be transformed into a new compact clustered feature space: �̃� = 𝑋ℛ, where the data is 
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located at the respective vertices in the new feature space. After this transformation, a 

random forest with globally joint maximum purity of all the clustered data can be trained, 

through all the hyperplanes in the split-nodes of each decision tree. Based on this idea, 

our proposed scheme is called joint maximum purity forest (JMPF). 

5.2.3 Rotation Matrix via Clustering Data into Feature-Space Vertices 

Assuming that 𝑥 ∈ ℝ𝑚  is one point in the 𝑚 -dimensional feature space 𝑋 (zero-

centered data), the respective vertices in the zero-centered binary hypercube space can 

be denoted as sgn(𝑥) ∈ {−1,1}𝑚 , and there is a total of 2𝑚  vertices in the 𝑚 -

dimensional feature space. It is easy to see from Fig. 5-2 that sgn(𝑥) is the vertex in the 

feature space, such that it is the closest to 𝑥 in terms of Euclidean distance. We denote a 

binary code matrix 𝐵 ∈ {−1,1}𝑛×𝑚 , whose rows 𝑏 = sgn(𝑥) ∈ 𝐵 . For a matrix or a 

vector, sgn(. ) applies the sign operation to it element-wise.  

Our objective is to minimize the error between the feature 𝑋 and the feature-space 

vertices 𝐵, i.e., min‖𝐵 − 𝑋‖2 . As we can see in Fig. 5-2, when the feature space is 

rotated, the feature points will be more concentrated around their nearest vertices, which 

means that the quantization error will become smaller. Therefore, the minimization 

problem of min‖𝐵 − 𝑋‖2 is equivalent to minimizing the error of the zero-centered data 

with respect to the Frobenius norm, as in the following formulation: 

 𝑄(𝐵, ℛ) = ‖𝐵 − 𝑋ℛ‖𝐹
2 , s.t. 𝐵 ∈ {−1,1}𝑛×𝑚, ℛ𝑇ℛ = 𝐼.              (5.11) 
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 (a) (b)    

Fig.  5-2: Two toy examples of rotating a feature space into a more compact clustered feature 

space: (a) 2-dimensional features and (b) 3-dimensional features. The data is clustered into the 

vertices of a new feature space, by jointly maximizing the purity of all the clustered data. 

 

Therefore, the task of this minimization problem is to determine an optimal rotation 

matrix ℛ  to satisfy Eqn. (5.11). Since there are two variables in Eqn. (5.11), the 

expectation–maximization (E-M) algorithm is applied to cluster data into the feature-

space vertices, such that a local minimum of the binary code matrix 𝐵 and the rotation 

matrix ℛ are computed simultaneously. 

The idea of rotating feature data to minimize the error between the transformed data 

and the feature-space vertices 𝐵 can also be found in [67], which showed that the rotation 

matrix ℛ  can be initialized randomly, and then iterated to converge to the required 

rotation matrix. Two iteration steps will be performed: in every iteration, each feature 

vector in the feature space is firstly quantized to the nearest vertex of the binary 

hypercube, i.e. to a vertex in 𝐵, and then the rotation matrix ℛ is updated to minimize 

the quantization error by fixing 𝐵. These two alternating steps are described in detail 

below: 

(1) Fix ℛ and update 𝐵: 

𝑄(𝐵, ℛ) = ‖𝐵 − 𝑋ℛ‖𝐹
2   
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= ‖𝐵‖𝐹
2 + ‖𝑋‖𝐹

2 − 2𝑡𝑟(𝐵ℛ𝑇𝑋𝑇)                                 

                     = 𝑛 × 𝑚 + ‖𝑋‖𝐹
2 − 2𝑡𝑟(𝐵ℛ𝑇𝑋𝑇)                     (5.12) 

Because the zero-centered data matrix 𝑋  is fixed, minimizing Eqn. (5.12) is 

equivalent to maximizing the following term: 

𝑡𝑟(𝐵ℛ𝑇𝑋𝑇) = ∑𝑖=1
𝑛 ∑𝑗=1

𝑚 𝐵𝑖𝑗�̃�𝑖𝑗                          (5.13) 

where �̃�𝑖𝑗 is an element of �̃� = 𝑋ℛ. To maximize Eqn. (5.13) with respect to 𝐵, 𝐵𝑖𝑗 = 1 

whenever �̃�𝑖𝑗 ≥ 0 and 𝐵𝑖𝑗 = −1 otherwise, i.e. 𝐵 = sgn(𝑋ℛ) ∈ {−1,1}𝑚. 

(2) Fix 𝐵 and update ℛ: 

The problem of fixing 𝐵 to obtain a rotation matrix based on the objective function 

Eqn. (5.11) is relative to the classic orthogonal Procrustes problem [66, 94, 96], in which 

a rotation matrix is determined to align one point set with another. 

In our algorithm, these two point sets are the zero-centered data set 𝑋 and the quantized 

matrix 𝐵. Therefore, a closed-form solution for ℛ is available, by applying SVD [148] 

on the 𝑚 × 𝑚 matrix 𝑋𝐵𝑇 to obtain 𝑈Ω𝑉𝑇 (Ω is a diagonal matrix), then set ℛ = 𝑈𝑉𝑇 

to update ℛ. 

II.4 Proof of the Orthogonal Procrustes Problem: 

For completeness, we prove the orthogonal Procrustes problem, for which the 

solution can be found in [66, 94, 96]. The orthogonal Procrustes problem is a matrix 

approximation problem. In its classical form, one is given two matrices 𝐵 and 𝑋 and 

asked to find a rotation matrix ℛ (subject to ℛ𝑇ℛ = 𝐼) which most closely maps 𝑋ℛ to 

𝐵 as formulated in following, 

Problem definition:          min
ℛ

‖𝐵 − 𝑋ℛ‖𝐹
2              s. t. :    ℛ𝑇ℛ = 𝐼 .          (5.14) 

Proof:                 ‖𝐵 − 𝑋ℛ‖𝐹
2                                                 (5.15) 
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= 𝑡𝑟(𝐵 − 𝑋ℛ)(𝐵𝑇 − ℛ𝑇𝑋𝑇)                                                     

 = 𝑡𝑟(𝐵𝐵𝑇) − 2𝑡𝑟(𝐵𝑋𝑇ℛ𝑇) + 𝑡𝑟(ℛ𝑋𝑋𝑇ℛ𝑇)                            

Thus, min
ℛ

‖𝐵 − ℛ𝑋‖𝐹
2  equals to maximizing: 

𝑡𝑟(𝐵𝑋𝑇ℛ𝑇)                                                                   (5.16) 

= 𝑡𝑟(𝑈Ω𝑉𝑇ℛ𝑇)        (SVD  on 𝐵𝑋𝑇: [𝑈, Ω, 𝑉] = svd(𝐵𝑋𝑇))    

 = 𝑡𝑟(Ω𝑉𝑇ℛ𝑇𝑈)         (𝑑𝑒𝑛𝑜𝑡𝑒: 𝑍 = 𝑉𝑇ℛ𝑇𝑈)                            

= 𝑡𝑟(Ω𝑍)                                                                                    

= 𝑡𝑟 ∑ Z𝑖,𝑖Ω𝑖,𝑖 𝑖                                                                             

≤ ∑ Ω𝑖,𝑖𝑖                                                                                       

The last inequality holds because Z is also an orthonormal matrix, and ∑ 𝑍𝑖,𝑗
2

𝑗 =

1, 𝑍𝑖,𝑖 ≤ 1. The objective function can be maximized if Z = 𝐼, i.e. 

ℛ = 𝑈𝑉𝑇                                                                           ∎ 

5.3 Joint Maximum Purity Forest for Regression and 

Classification 

5.3.1 The Workflow of Joint Maximum Purity Forest  

Most random-forest-based models [1, 18, 83, 84] share the similar workflow, as 

shown in Fig. 5-3, in which the main task on training a tree in a random forest is to decide 

thresholds in the split-nodes and learn the regressors or classes in the leaf-nodes. Rigid 

regression or linear regression is often employed in the leaf-nodes for the prediction task, 

because rigid regression has a closed-form solution, while linear regression is an efficient 

optimization tool, and the LibLinear package [56] can be used to fine-tune its 

configurations. 
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Fig. 5-3: An overview of the workflow of the JMPF-based random forest. 

 

Compared to conventional random forests, our JMPF scheme has one more step, as 

shown in the left of Fig. 5-3, the rotation matrix. The JMPF scheme transforms the 

original feature space by rotating it into a more compact, pre-clustered feature space, 

using a trained rotation matrix learned through clustering feature vectors iteratively into 

the vertices of a new feature space. The whole workflow of our proposed algorithm, the 

JMPF scheme, is outlined in Fig. 5-3.  

 

5.3.2 The Inherent Zero-center Hyperplanes as Thresholds for Split-

nodes 

In training a random forest, the two main operations for training (splitting) each split-

node are to choose splitting feature(s), and to determine the threshold, using a random 

bagging strategy, which can avoid over-fitting in training classifiers. In the rotated 

compact pre-clustered feature space, the inherent zero-center hyperplanes are inherently 

the optimal thresholds (to meet the max-purity criterion on two clustered data groups) 

after training the rotation matrix. Therefore, these inherent zero-center hyperplanes can 

directly be set as the thresholds to achieve optimal classification performance on training 

a random forest. Compared to conventional random forests, our proposed JMPF only 

needs to choose splitting feature(s) to split data at split-nodes. These inherent zero-center 

a 
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hyperplanes can speed up the training process for a random forest, and experimental 

results in the next subsection will validate their performance. 

5.3.3 Experimental Results on JMPF Regression and Classification 

To evaluate the performances of the proposed JMPF, we test it with 15 standard 

machine-learning tasks, 7 for classification and 8 for regression. The datasets used in the 

experiments are summarized in Table-5.1. We use standard performance evaluation 

metrics: error rate for classification and root mean squared error (RMSE) for regression, 

unless otherwise specified. 

Dataset #Train #Test #Feature #Classes or TargetDim 

(c)char74k 66707 7400 64 62 

(c)gas sensor 11128 2782 128 6 

(c)isolet 6238 1558 617 26 

(c)letterorig 16000 4000 16 26 

(c)pendigits 7494 3498 16 10 

(c)sensorless 46800 11700 48 11 

(c)usps 7291 2007 256 10 

(r)delta ailerons 7129*3/4 7129/4 5 1 

(r)delta elevators 5720 3807 6 1 

(r)elevators  8752 7847 18 1 

(r)kin8nm 8192*3/4 8192/4 8 1 

(r)price 159*3/4 159/4 15 1 

(r)pyrim 74*3/4 74/4 27 1 

(r)stock 950*3/4 950/4 10 1 

(r)WiscoinBreastCancer 194*3/4 194/4 32 1 

Table-5.1: The properties of the standard machine-learning datasets used for classification and 

regression. The top 7 are used for classification (c) and the bottom 8 for regression (r). (3/4 

means 75% training and 25% testing) 

 

We firstly evaluate the proposed approach on two real applications, one for 

classification (Table-5.2) and one for regression (Table-5.3). Our proposed JMPF is 

compared with the original random forest before refinement (denoted as RF), and two 

state-of-the-art variants: alternating decision forests (ADF) [83] and alternating 

regression forests (ARF) [84], for classification and regression, respectively.    
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Furthermore, we compare with JMPF+ADF/ARF, for demonstrating that our algorithm 

can be combined with other methods. We follow the experiment settings in [83, 84]. We 

set the maximum tree depth at 15, and the minimum sample number in a splitting node 

is set at 5. The experiments were repeated five times, and the average error and standard 

deviation were measured. 

dataset #ℋ RF ADF JMPF JMPF+ADF 𝜆 

 

char74k 

ch 

1 2.261±0.021 2.173±0.014 2.147±0.021 (05%) 2.114±0.016 (07%)  

10-1 3 2.449±0.029 2.236±0.015 2.206±0.027 (10%) 2.143±0.024 (12%) 

5 2.452±0.016 2.232±0.021 2.209±0.019 (10%) 2.138±0.017 (13%) 

 

gas sensor 

1 5.656±0.534 5.238±0.539 4.211±0.252 (26%) 3.958±0.508 (30%)  

10-3 3 6.264±0.042 5.952±0.323 4.622±0.299 (26%) 4.416±0.370 (30%) 

5 6.470±0.332 5.751±0.792 4.775±0.459 (26%) 4.159±0.324 (36%)  

 

isolet 

1 6.932±0.281 6.208±0.338 6.153±0.381 (11%) 5.868±0.239 (15%)  

10-2 3 6.501±0.199 6.308±0.330 6.272±0.332 (04%) 5.932±0.177 (09%) 

5 7.005±0.362 6.528±0.261 6.381±0.254 (09%) 5.969±0.205 (15%) 

 

letterorig 

1 6.371±0.099 4.418±0.082 4.114±0.087 (35%) 3.535±0.111 (45%)  

10-2 3 6.889±0.199 5.196±0.127 4.864±0.267 (29%) 4.146±0.192 (40%) 

5 6.739±0.263 5.082±0.097 4.625±0.257 (31%) 4.032±0.131 (40%) 

 

pendigits 

1 3.528±0.124 3.234±0.106 2.912±0.069 (17%) 2.850±0.136 (19%)  

10-2 3 3.418±0.171 3.377±0.164 2.969±0.120 (13%) 2.915±0.100 (15%) 

5 3.499±0.184 3.283±0.184 3.054±0.081 (13%) 3.002±0.086 (14%) 

 

sensorless 

1 1.824±0.018 0.972±0.028 0.324±0.005 (82%) 0.253±0.009 (86%)  

10-1 3 1.026±0.158 0.391±0.007 0.293±0.004 (71%) 0.281±0.003 (73%) 

5 0.903±0.150 0.512±0.223 0.268±0.054 (70%) 0.244±0.029 (73%) 

 

usps 

1 6.128±0.181 6.149±0.208 6.085±0.216 (01%) 5.964±0.206 (03%)  

10-2 3 6.527±0.203 6.520±0.188 6.285±0.101 (04%) 6.206±0.245 (05%) 

5 6.548±0.225 6.441±0.195 6.391±0.063 (02%) 6.213±0.112 (05%) 

Table-5.2: Comparison of classification performances on seven datasets, which can be found at 

UCI machine-learning repository: https://archive.ics.uci.edu/ml/datasets.html. RF: standard 

random forest, ADF: alternating decision forests [83], JMPF: proposed algorithm, JMPF+ADF: 

our proposed algorithm embedded into ADF. #ℋis the number of randomly chosen 

hyperplane(s) on training a random forest. 𝜆 is the error scale. The percentages in brackets for 

JMPF and JMPF+ADF are the reduction rates in RMSE (root mean squared error) compared 

with the RF algorithm. 

 

     The results are presented in Table-5.2 and Table-5.3, for the classification and 

regression tasks, respectively. In terms of accuracy, our proposed JMPF significantly 

outperforms the standard random forest on all classification and regression tasks. 

https://archive.ics.uci.edu/ml/datasets.html
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Compared to RF, JMPF achieves an average of 23.57% improvement on the 

classification tasks, and an average of 23.13% improvement on the regression tasks. Our 

method also consistently outperforms the state-of-the-art variants: ADF/ARF. Moreover, 

the performance of our JMPF algorithm can be further improved by integrating with ADF 

and ARF, denoted as JMPF + ADF/ARF. As shown in Table-5.2 and Table-5.3, 

JMPF+ADF achieves an average 27.86% improvement on the classification tasks, while 

JMPF+ARF achieves an average 26.88% improvement on the regression tasks. These 

results on diverse tasks clearly demonstrate the effectiveness of our proposed approach. 

 

dataset RF ARF JMPF JMPF+ARF 𝜆 

delta ailerons 2.970±0.001 2.967±0.006 1.952±0.003 (34%) 1.946±0.002 (34%) 10-

4 

delta elevators 2.360±0.002 2.338±0.008 1.635±0.001 (30%) 1.610±0.006 (32%) 10-

3 

elevators  0.638±0.001 0.635±0.001 0.619±0.001 (03%) 0.606±0.001 (05%) 10-

2 

kin8nm 2.622±0.002 2.545±0.003 1.962±0.003 (25%) 1.667±0.005 (36%) 10-

1 

price 7.281±0.755 6.663±0.794 5.460±0.627 (25%) 5.234±0.666 (28%) 101 

pyrim 1.440±0.008 1.042±0.347 1.031±0.017 (28%) 0.631±0.018 (56%) 10-

1 

stock 2.878±0.022 2.823±0.038 2.744±0.019 (05%) 2.678±0.021 (07%) 100 

Wiscoin breast cancer 3.669±0.041 3.130±0.044 3.081±0.008 (16%) 3.036±0.023 (17%) 101 

Table-5.3: Comparison of regression performances on eight datasets, which can be found at 

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html. RF: standard random forest, ARF: 

alternating regression forests [84], JMPF: proposed algorithm, JMPF+ARF: our proposed 

algorithm embedded into ARF. 𝜆 is the error scale. The number of randomly chosen 

hyperplanes #ℋ is 3. The percentages in brackets for JMPF and JMPF+ARF are the reduction 

rates in RMSE compared with the RF algorithm. 

 

5.3.4 Discussions on Experimental Results 

The computational complexity of JMPF is similar to that of the standard random 

forest. As illustrated in the workflow of JMPF in Fig. 3, only one additional step, which 

computes the rotation matrix, is required, when compared to the standard random forest. 

For a small dataset (e.g., feature dimension size less than 500 and data size less than 

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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10,000), the computation required to compute the rotation matrix for clustering data into 

the feature-space vertices is acceptable in the training stage (around 10 seconds by using 

MatLab) and negligible in the testing stage. When the dimension size becomes larger, 

PCA dimensionality reduction can be employed. If the size of the dataset increases, such 

that using PCA still involves heavy computation, bagging can be used to achieve 

comparable accuracy and the whole extra computation will be insignificant. 

 
 (a) (b) 

Fig.  5-4: Performance with different numbers of trees for (a) classification and (b) regression 

(dataset for classification is letterorig and dataset for regression is kin8nm, error scale: 10-2, the 

number hyperplane(s) #ℋ on training random forest is 3). 

 

To study the stability of JMPF, we choose the letterorig dataset for classification and 

the kin8nm dataset for regression, and the respective results are shown in Fig. 5-4(a) and 

Fig. 5-4(b), respectively. In the experiments, the number of trees, i.e., the number of weak 

classifiers in the random forest, varies from 10 to 200, and we have three observations. 

Firstly, as shown in Fig. 5-4, when the number of trees increases, the performance of all 

the algorithms improves. For classification, as shown in Fig. 5-4(a), when the number of 

trees is larger than 100, the errors are converged to become steady. On the contrary, for 

the regression task as shown in Fig. 5-4(b), the errors are almost stable, ranged from 10 
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to 200. Secondly, the results show that JMPF consistently outperforms ADF and RF, 

irrespective of the number of trees used. Finally, Fig. 5-4 clearly shows that JMPF can 

integrate with ADF or ARF to further improve its performance. 

5.4 Image Super-Resolution via Joint Maximum Purity 

Forest 

 

5.4.1 JMPF-based Image Super-Resolution 

The recent emerging stream [65, 91] on single-image SR is to formulate the problem 

as a clustering-regression problem, which can be solved with machine-learning tools. 

These approaches are learning-based methods, which attempt to reconstruct an HR image 

from patches with the help of an external database. These methods first decompose an 

image into patches, then classify them into clusters. Regressors are then trained for each 

of the clusters, which generate mappings from an input LR patch’s feature to its 

corresponding HR patch (see Fig. 5-5). In the testing stage, an LR query image follows 

the same procedures to cut into patches and to extract features, which are then assigned 

to their corresponding clusters using the k-NN algorithm [8, 19] or random forest [62, 65, 

67]. The respective HR patches are constructed through regressors learned for the clusters 

(see Fig. 5-6). This kind of clustering-regression algorithms, based on random forest [62, 

65, 67], has achieved state-of-the-art performance in single image super-resolution, both 

in terms of accuracy and efficiency, because of the use of ensemble learning and sublinear 

search. As JMPF achieves promising results on both classification and regression tasks, 

it can be employed for image super-resolution for better performances. 
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Fig.  5-5: An overview of the training process of the JMPF-based image super-resolution.  

 

 
Fig.  5-6: An overview of the testing process of the JMPF-based image super-resolution 

 

An overview of the training and testing processes of the proposed JMPF-based image 

SR method is illustrated in Fig. 5-5 and Fig. 5-6, respectively. In our method, the first 

and second-order gradients are extracted as features from each patch, followed by PCA 

for dimensionality reduction. These features are then rotated into a more compact, pre-

clustered feature space. Finally, all the thresholds are directly set to the inherent zero-
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center hyperplanes when training the random forest, and similar to other algorithms, the 

regressors at the leaf-nodes are computed using the rigid regression algorithms. This 

approach is named as JMPF-based image super-resolution method. 

 

5.4.2 The Working Processes of JMPF-based Image Super-Resolution 

JMPF has been shown to achieve a better performance for clustering and 

classification than other random forest methods. Since image super-resolution can be 

considered as a clustering/classification problem, using JMPF is likely to result in better 

performance. This is mainly due to the features transformed to the vertices in the new 

feature space, so the features become more discriminative. The image super-resolution 

training and testing processes of our proposed JMPF-based method are described in 

Algorithm 5.1 and Algorithm 5.2, respectively. 

 

Algorithm 5.1: JMPF-based Image Super-Resolution Training Process: 

Input: {𝑥𝑖
𝑙 , 𝑥𝑖

ℎ}𝑖=1
𝑁 : training LR-HR patch pairs, N is the number of training samples. 

Output: the random forest and ridge regression projection matrices: ℘ =

(𝑃1, … , 𝑃𝑇), in leaf- nodes, where 𝑇 is the number of regressors; the PCA projection 

matrix ℳ and the rotation matrix ℛ. 

1: Discriminative features calculated from patch images based on first and second-

order (horizontal and vertical) gradients;                                         ⇒ {Eqn. (2.15)}  

2: Apply PCA on features to compute the PCA projection matrix ℳ; 

3: Train a JMPF-based random forest by clustering PCA projected feature data into 

feature-space vertices, which can rotate the feature space into a compact pre-

clustered feature space, as well obtain the rotation matrix ℛ;          ⇒ {Eqn. (5.11)} 

4: Train ridge regression projection matrices: ℘ = (𝑃1, … , 𝑃𝑇), from LR-HR patch 

pairs in all the leaf-nodes.                                                                 ⇒ {Eqn. (2.21)} 
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Algorithm 5.2: JMPF-based Image Super-Resolution Testing Stage: 

Input: testing LR image 𝐼𝑙, the trained JMPF-based random forest and ridge 

regression projection matrices: ℘ = (𝑃1, … , 𝑃𝑇) in leaf-nodes; the trained PCA 

projection matrix ℳ and the trained rotation matrix ℛ. 

Output: super-resolved image 𝐼ℎ. 

1: Extract discriminative features for all the patches of image 𝐼𝑙;      ⇒ {Eqn. (2.15)}         

2: Do feature dimension reduction via the PCA projection matrix ℳ; 

3: Rotate feature space into a compact pre-clustered feature space via the rotation 

matrix ℛ; 

4: For LR patches from image 𝐼𝑙 , based on their features, searching their 

corresponding regressors from leaf-nodes in the trained random-forest; 

5: Produce 𝐼ℎ through all the image patches from image 𝐼𝑙 by ridge regression with 

the trained projection matrices: ℘ = (𝑃1, … , 𝑃𝑇).                               ⇒ {Eqn. (2.20)} 

 

5.4.3 Experimental Results on JMPF-based Image Super-Resolution 

In this section, we evaluate our image SR algorithm on some standard image super-

resolution datasets, including Set 5, Set14, and B100 [80], and compare it with a number 

of classical or state-of-the-art methods. These include conventional bicubic interpolation, 

sparse representation SR (Zeyde) [64], anchored neighborhood regression (ANR) [62], 

A+ [65], standard random forest (RF) [18], and alternating regression forests (ARF) [18]. 

We set the same parameters for all the random-forest-based algorithms: the number of 

trees in the random forest is 10, and the maximum depth of each tree is 15. 

 

Dataset scale bicubic Zeyde ANR A+ RF ARF JMPF- JMPF JMPF+ 
 

 

Set5 
×2 33.66 35.78 35.83 36.55 36.52 36.65 36.53 36.59  36.70 

×3 30.39 31.92 31.93 32.59 32.44 32.53 32.51 32.59 32.67 

×4 28.42 29.74 29.74 30.28 30.10 30.17 30.14 30.17 30.24 
 

 

Set14 

×2 30.23 31.81 31.80 32.28 32.26 32.33 32.27 32.32 32.42 

× 3 27.54 28.68 28.66 29.13 29.04 29.10 29.12 29.13 29.24 

×4 26.00 26.88 26.85 27.33 27.22 27.28 27.29 27.30 27.37 
 

B100 

×2 29.32 30.40 30.44 30.78 31.13 31.21 31.16 31.23 31.31 

×3 27.15 27.87 27.89 28.18 28.21 28.26 28.26 28.30 28.37 

×4 25.92 26.51 26.51 26.77 26.74 26.77 26.78 26.81 26.87 

Table-4: Results of the proposed method, compared with state-of-the-art methods on 3 datasets, 

in terms of PSNR (dB), with three different magnification factors (×2, ×3, ×4). 
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Experiment results are tabulated in Tables-5.4 and Tables-5.5, where JMPF is our 

proposed JMPF-based image super-resolution method, and JMPF− is a trimmed version, 

such that the thresholds for the split-nodes are not the inherent zero-center hyperplanes, 

but set by the standard random-forest bagging strategy. We use the same training images 

(91 images) for all the algorithms as previous works [62, 64, 65, 18] do. However, for 

JMPF+, 100 more images from the General-100 dataset [82] are used, so as to check 

whether or not more training samples can further improve our proposed algorithm. 

Set5(×2) bicubic Zeyde ANR A+ RF ARF JMPF- JMPF JMPF+ 
 

baby 37.05 38.22 38.42 38.52 38.47 38.48 38.40 38.45 38.45 

bird 36.82 39.91 40.03 41.06 40.98 41.15 40.82 40.99 41.11 

butterfly 27.43 30.64 30.54 32.02 32.27 32.66 32.58 32.50 32.79 

head 34.85 35.62 35.72 35.82 35.69 35.73 35.68 35.73 35.78 

woman 32.14 34.53 34.53 35.31 35.19 35.24 35.15 35.28 35.38 

average 33.66 35.78 35.85 36.55 36.52 36.65 36.53 36.59 36.70 

 

Set5(×3) bicubic Zeyde ANR A+ RF ARF JMPF- JMPF JMPF+ 
 

baby 33.91 35.13 35.13 35.23 35.25 35.15 35.11 35.16 35.14 

bird 32.58 34.62 34.63 35.53 35.23 35.31 35.25 35.46 35.49 

butterfly 24.04 25.93 25.92 27.13 27.00 27.39 27.46 27.48 27.73 

head 32.88 33.61 33.64 33.82 33.73 33.73 33.72 33.79 33.76 

woman 28.56 30.32 30.31 31.24 30.98 31.08 31.03 31.06 31.24 

average 30.39 31.92 31.93 32.59 32.44 32.53 32.51 32.59 32.67 

Set5(×4) bicubic Zeyde ANR A+ RF ARF JMPF- JMPF JMPF+ 
 

baby 31.78 33.13 33.07 33.3 33.26 33.16 33.09 33.12 33.12 

bird 30.18 31.75 31.82 32.5 32.21 32.26 32.27 32.33 32.47 

butterfly 22.10 23.67 23.58 24.4 24.32 24.56 24.55 24.44 24.63 

head 31.59 32.23 32.34 32.5 32.35 32.37 32.35 32.45 32.47 

woman 26.46 27.94 27.88 28.6 28.38 28.48 28.44 28.50 28.53 

average 28.42 29.74 29.74 30.28 30.10 30.17 30.14 30.17 30.24 

Table-5.5: Detailed results of the proposed method, compared with state-of-the-art methods on 

the dataset Set5, in terms of PSNR (dB) using three different magnification factors (×2, ×3, ×4). 

 

Table-5.4 tabulates the performances, in terms of the average peak signal to noise 

ratio (PSNR) scores, of our proposed algorithm and other image SR methods, on the 3 

datasets with different magnification factors. For the Set5 and Set14 datasets, with 

different magnification factors, our proposed JMPF-based algorithm can achieve a 

comparable performance to other recent state-of-the-art methods, such as A+ and ARF. 

http://www.baidu.com/link?url=QO8S6YYmvsthB22vp1g4rvZcPsY-cPogd7eEDAmE747d-3hnxmzpdvhM3PLcaFwpD7MjT8rO0EeLzVGd3h6-OQz0DluxEeMz6WJXcXdtBDW
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As those random-forest-based algorithms may not be stable on small datasets, when 

evaluation works on extensive datasets, such as B100, our proposed algorithm JMPF can 

stably outperform A+ and ARF for all magnification factors (×2, ×3, ×4). Moreover, the 

objective quality metrics on PSNR also show that the JMPF algorithm can achieve a 

better performance when more samples are used for training, as shown from JMPF+ in 

Table-5.4. Table-5.5 provides more details of the performances in datasets Set5. 

To compare the visual quality of our proposed JMPF-based SR algorithm to other 

methods, Fig. 5-7, shows the reconstructed HR images using different methods. Some 

regions in the reconstructed images are also enlarged, so as to show the details in the 

images. In general, our proposed method can produce better quality images, particularly 

in areas with rich texture, which verifies the feature discrimination of the proposed JMPF 

scheme. 

 

5.5 Conclusions 

In this section, we have proposed a novel random-forest scheme, namely the Joint 

Maximum Purity Forest (JMPF) scheme, which rotates the feature space into a compact, 

clustered feature space, by jointly maximizing the purity of all the feature-space vertices. 

In the new pre-clustered feature space, orthogonal hyperplanes can be effectively used in 

the split-nodes of a decision tree, which can improve the performance of the trained 

random forest. Compared to the standard random forests and the recent state-of-the-art 

variants, such as alternating decision forests (ADF) [83] and alternating regression forests 

(ARF) [84], our proposed random-forest method inherits the merits of random forests 

(fast training and testing, multi-class capability, etc.), and also yields promising results 
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on both classification and regression tasks. Experiments have shown that our method 

achieves an average improvement of about 20% for classification and regression on 

publicly benchmarked datasets. Furthermore, our proposed scheme can integrate with 

other methods, such as ADF and ARF, to further improve the performance. The source 

code of our algorithm is available to download at: https://github.com/HarleyHK/JMPF. 

 

 
(a) (b) (c)  (d) (e) (f) 

Fig. 5-7: Super-resolved (×3) images from Set5: (a) bicubic, (b) ANR[62], (c) A+[65], (d) 

ARF[18], (e) proposed algorithm JMPF, and (f) ground truth. The results show that our JMPF-

based algorithm can produce more details. 

https://github.com/HarleyHK/JMPF
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We have also applied JMPF to single-image super-resolution specifically. We tackle 

image super-resolution as a clustering-regression problem, and focus on the clustering 

stage, which happens at the split-nodes of each decision tree. By employing the JMPF 

strategy, we rotate the feature space into a pre-clustered feature space, which can cluster 

samples into different sub-spaces more compactly in an unsupervised problem. The 

compact pre-clustered feature space can provide the optimal thresholds for split-nodes in 

decision trees, which are the zero-centered orthogonal hyperplanes. Our experiment 

results on intensive image benchmark datasets, such as B100, show that the proposed 

JMPF-based image super-resolution approach can consistently outperform recent state-

of-the-art algorithms, in terms of PSNR and visual quality. Our method also inherits the 

advantages of random forests, which have fast speed on both the training and inference 

processes.  

http://www.baidu.com/link?url=QO8S6YYmvsthB22vp1g4rvZcPsY-cPogd7eEDAmE747d-3hnxmzpdvhM3PLcaFwpD7MjT8rO0EeLzVGd3h6-OQz0DluxEeMz6WJXcXdtBDW
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Chapter 6. Image Super-Resolution via Feature-

Augmented Random Forest 

Recent random-forest (RF)-based image super-resolution approaches inherit some 

properties from dictionary-learning-based algorithms, but the effectiveness of the 

features working in RF is overlooked in the literature. In this section, we present a novel 

feature-augmented random forest (FARF) method for image super-resolution, where the 

conventional gradient-based features are proposed to augment the features used in RF, 

and different feature recipes are formulated on different processing stages in an RF. The 

advantages of our method are that, firstly, the dictionary-learning-based features are 

enhanced by adding gradient magnitudes, based on the observation that the non-linear 

gradient magnitudes are highly discriminative. Secondly, generalized locality-sensitive 

hashing (LSH) is used to replace principal component analysis (PCA) for feature 

dimensionality reduction in constructing the trees, but the original high-dimensional 

features are employed, instead of the compressed LSH features, for the leaf-nodes' 

regressors. With the use of the original higher dimensional features, the regressors can 

achieve better learning performances. Finally, we present a generalized weighted ridge 

regression (GWRR) model for the leaf-nodes' regressors. Experiment results on several 

public benchmark datasets show that our FARF method can achieve an average gain of 

about 0.3 dB, compared to traditional RF-based methods. Furthermore, a fine-tuned 

FARF model can compare to, or (in many cases) outperform, some recent state-of-the-

art deep-learning-based algorithms. 
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6.1 Introduction  

In the past few years, random forest (RF) [63, 14], a machine-learning tool, working 

via an ensemble of multiple decision trees, has been employed for efficient classification 

and regression problems, and applied to a large variety of computer-vision applications, 

such as object recognition [87], face alignment [15, 51, 1], data clustering [17], single 

image super-resolution (SISR) [18, 19], and so on.  

In the past few years, random forest (RF) [63, 14], a machine-learning tool, working 

via an ensemble of decision trees, has been employed for efficient classification and 

regression problems, and applied to a large variety of computer-vision applications, such 

as object recognition [87], face alignment [15, 51, 1], data clustering [17], single image 

super-resolution (SISR) [18, 19], and so on. The RF-based SISR approach can be 

considered as a clustering/classification-based method, as shown in Fig. 6-1. However, 

the clustering and regression problems in RF require different discriminative features, 

which have not been systematically studied in the literature. 

Feature engineering is a research hotspot on the image-restoration problems. Pioneer 

work in [75] used a simple high-pass filter, which is simply subtracting the output of a 

low-pass filter from the input image. Meanwhile, most algorithms [62, 97, 64, 65, 8] 

follow the approach in [88], which concatenates the first and second-order gradients to 

form the features, as an inexpensive solution to approximating high-pass filtering. Since 

RF can be used as a dictionary-learning-based tool, it inherits many properties from 

conventional dictionary-learning-based algorithms for feature extraction. However, the 

discriminative ability of those gradient-based features for random forest has been 

overlooked in the literature. We found, from experiments, that augmented features based 
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on two gradient-magnitude filters can achieve more than 0.1dB quality improvement in 

RF-based SISR, with the same parameter setting. 

 

Fig. 6-1:  An overview of the proposed FARF framework for image super-resolution. In the 

FARF-based image SR scheme, firstly, the initial coarse estimation is generated by using iterative 

back projection (IBP) instead of bicubic interpolation. More discriminative features are extracted 

by using the first and second-order gradients, as well as their magnitudes. Then, the conventional 

PCA is replaced by the generalized LSH for dimensionality reduction, and the compressed features 

are used for clustering at the split nodes in an RF. Finally, the respective regressors at the leaf-

nodes are learned, by using the original high dimensional features with the GWRR models. 

 

In most dictionary-learning-based algorithms, principal component analysis (PCA) is 

used for dimensionality reduction before classification and regression. The impact of 

using PCA has also been paid less attention in the literature. PCA projection may damage 

the structure of features, which are originally discriminative for clustering at the split 

nodes and regression at the leaf nodes. Motivated by the content-based image retrieval 

(CBIR) techniques in [101, 100], where the coarse-level search uses compressed features, 
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while the fine-level search uses augmented features, we propose a similar approach for 

building more efficient trees, with their leaf nodes having better regression performances. 

To achieve this, our method uses the original features, rather than the compressed features 

generated by PCA as worked in [97, 62, 64, 65, 18, 88], so that more accurate regression 

and higher image quality improvement can be achieved. Moreover, unsupervised locality-

sensitive hashing (LSH), instead of PCA, is employed for feature dimensionality reduction, 

which can reduce the damage on the feature structure after compression. The compressed 

features are used for clustering at the split nodes. Therefore, the resulting forest can 

improve the quality of reconstructed images. For the regression problems at the leaf nodes, 

in addition to using the augmented features without compression, we propose a 

generalized weighted ridge regression (GWRR) model as an extension of the work in [97]. 

The GWRR models are generated based on data distributions at the leaf nodes. 

The main contribution of our method is on feature augmentation, so we call our 

method feature-augmented random forest (FARF). The pipeline of our FARF method, 

which includes feature extraction, the training stage, and inference stages for SISR, is 

shown in Fig. 6-1.  

Having introduced the main idea of this chapter, the remainder of this chapter is 

organized as follows. In Section 2, we review the related works on SISR, particularly the 

RF-based approaches and our insights. In Section 3, we introduce the proposed FARF 

method, including the discriminative feature augmented by the gradient-magnitude filters, 

the generalized weighted ridge regression (GWRR) model, and the fine-tuned FARF. In 

Section 4, we evaluate our FARF scheme on public datasets, and conclusions are given in 

Section 5. 
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6.2 Image Super-Resolution via Random Forest 

6.2.1 Conventional Patch-based Image Super-Resolution 

Image SR attempts to achieve an impressive HR quality image from one or a set of LR 

images via artistic skills, which has been an active research topic for decades in the image 

restoration area. Generalized SR includes interpolation algorithms, such as the classic 

bicubic interpolation, and other edge-preserving algorithms [99, 60, 59, 58, 57]. 

The traditional super-resolution algorithms are based on pixel operations. Intuitively, 

operating on a "big pixel", i.e. a patch [105], is more effective. Since patch-based 

algorithms can preserve the local texture structure of an image, various methods based on 

image patches, such as non-local means [99], self-similarity [91], manifold learning [89], 

block-matching and 3D filtering (BM3D) [106], sparse representation [88], etc. have been 

proposed. 

The neighbor-embedding (NE) methods [89, 90] are the milestone for patch-based 

dictionary learning methods. NE learns the mapping between low and high-resolution 

patches, with the use of manifold learning. Based on locally linear embedding (LLE), an 

LR patch can be represented as a linear combination of its nearest neighbors in a learned 

dictionary, and its HR counterpart can be approximated as a linear combination of the 

corresponding HR patches of its LR neighbors, with the same coefficients. Although the 

NE method is simple and sounds practical, a problem with the method is how to build an 

effective patch dictionary. 

An approach to reducing the dictionary size is to learn a relatively smaller dictionary 

with discrete cosine transform (DCT) or wavelet fixed basis. However, the adaptiveness 

to data is sacrificed. In 2010, Yang et al. [88] proposed a sparse prior for dictionary 

http://www.baidu.com/link?url=a2H0pAbUETOEaxZesw8U5RhJyX4t3vNLTFWellFsNvGTvvDtpw3nqxc6cb8EgUO_Ar5xMGNKsCJfvX2-0sk9b3Gb6CnjZhA6uX-rrOsyexO


104 

 

learning. Using sparse coding, image representation can work with a relatively smaller 

dictionary, while keep the adaptiveness by learning the basis from data directly. This 

approach opens the era for sparse coding in the image inverse problems.  Although the 𝑙0-

norm of α (the sparse coefficients) is an ideal regularization term for the sparse constraint, 

this strong constraint leads to an NP-hard problem in solving the coefficients α. Yang et 

al. [88] relaxed the 𝑙0-norm to 𝑙1-norm, so as to achieve a feasible solution.  

Meanwhile, the effectiveness of sparsity is challenged [62, 5] by researchers, as to 

whether sparsity or collaborative representation really helps in image classification and 

restoration. As a natural solution to that, Timofte et al. proposed an anchored 

neighborhood regression (ANR) [62] framework, where there is no sparse constraint in 

the model. ANR replaces the sparse-decomposition optimization (𝑙1-norm) with a ridge 

regression (i.e. 𝑙2 -norm), where the coefficients can be computed offline and each 

coefficient can be stored as an atom (anchor)’s projection matrix in the dictionary. The 

offline learning is computationally intensive, but the online or prediction stage is very 

efficient. This approach has subsequently led to several variants. Timofte et al. later 

extended the ANR approach to the A+ [65]. In A+ [65], the coupled dictionaries are 

trained from a large pool of training samples (in the order of millions) rather than only 

from the anchoring atoms, which greatly improves the image quality. After that, more 

extensions based on ANR and A+ have emerged [97, 93, 95, 81]. 

6.2.2 Random-Forest-based Image Super-Resolution 

Previously, in the above-mentioned dictionary-learning methods, the complexity of 

finding those similar patches by comparing an input patch with all the dictionary items 

has been overlooked. Recently, algorithms using random forest [62, 65, 8] have achieved 

http://www.baidu.com/link?url=NqstJ5lqYaH_sE2HwRQkpJ2fv7EvSdL_zqTsj0vEp9buQ2nh5AEPl9bKsT7lJg-DPbisPPi-ORu56V0FZgIMvQzkfQOhUVXIXluswDdeuiG
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state-of-the-art performances, in terms of both accuracy and efficiency for classification 

and regression tasks. This is mainly due to the use of ensemble learning and sublinear 

search based on binary decision trees. Schulter et al. [18] adopted random forest and the 

clustering-regression scheme to learn regressors from the patches in leaf nodes for SISR. 

With the same number of regressors, the RF-based algorithm can outperform or achieve 

comparable performance with A+ and its variants, in terms of accuracy but with less 

computational complexity. 

RF-based image super-resolution, following a recent emerging stream [65, 91] on 

single-image SR, formulates the SR problem as a clustering-regression problem. These 

emerging approaches attempt to reconstruct an HR image from patches with the aid of 

an external database. These methods first decompose an image into patches, then classify 

the patches into different clusters, and later regressors are trained for all the respective 

clusters, which generate mappings from the features of an input LR patch to those of the 

corresponding HR patch. In the inference stage, an LR image follows the same 

procedures, such that it is divided into patches and features are extracted from each patch. 

Then, the patches are classified into different clusters using K-NN [18, 19] or RF [62, 65, 

8], and their super-resolved HR patches are computed through regression in the leaf 

nodes (see Fig. 6-1). This kind of clustering-regression-based random forest [62, 65, 8] 

methods has achieved state-of-the-art performance in SISR, both in terms of accuracy 

and efficiency. 

6.2.3 Deep Learning based Image Super-Resolution 

In recent years, deep learning has achieved promising performances on image super-

resolution [41, 98, 42, 43]. In [41, 98], milestone works on image super-resolution based 
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on deep learning were presented, where a convolutional neural network (SRCNN) was 

proposed to learn an end-to-end mapping between LR and HR images for image super-

resolution. Wang et al. [157] extended the SRCNN network to a sparse coding-based 

network by combining the domain knowledge. Later, a scheme with very deep networks 

for SISR was proposed in [42], where the convergence rate of the deep network is 

improved by using residual learning and extremely high learning rates. In addition, Ledig 

et al. [43] introduced a generative adversarial network (GAN)-based image super-

resolution model (SRGAN), where the image perceptual loss function is reformulated as 

the combination of content loss and adversarial loss. Although deep-learning-based 

approaches have achieved promising progress on SISR, the heavy computational 

requirement is still a large burden even though the implementation is accelerated by GPU. 

This may limit them from those applications without powerful GPUs, such as smart 

mobile terminals. 

6.3 Feature-Augmented Random Forest 

Classification and regression can be regarded as probability problems from the 

statistical theory. Historical frequentist probability is the probability obtained from the 

relative frequency in a large number of trials. In contrast, the Bayesian probability is an 

interpretation of the concept of probability, in which probability is interpreted as an 

expectation taking the knowledge and personal belief into account. From the Bayesian 

theory, the posterior probability of a random event is a conditional probability, which can 

be calculated if the relevant evidence or context is considered. Therefore, the posterior 

probability is the probability 𝑝(𝜃|𝑥) of the parameters 𝜃 given the evidence 𝑥. We denote 

the probability distribution function of the prior for parameters 𝜃  as 𝑝(𝜃) , and the 

https://en.wikipedia.org/wiki/Frequentist_probability
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Probability_interpretations
https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Random_event
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Scientific_evidence
https://en.wikipedia.org/wiki/Probability_distribution_function
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likelihood as 𝑝(𝑥|𝜃), which is the probability of 𝑥 given 𝜃. Then, based on the Bayesian 

rule, the posterior probability can be defined as follows: 

𝑝(𝜃|𝑥) =
𝑝(𝑥|𝜃)𝑝(𝜃)

𝑝(𝑥)
.                              (6.1) 

The posterior probability can be written in a memorable form as: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×  𝑃𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 

Based on the Bayesian framework, the likelihood term and the prior term are both required 

to be determined in order to solve the inverse problems, and the extracted features are 

normally worked as a prior or a likelihood, particularly on some image-restoration 

problems. From this point of view, most research works, from classic feature extractors to 

deep-learning neural networks, are essentially done under the Bayesian inference 

framework. 

Since SISR is a well-known ill-posed problem, researchers have put their efforts into 

the priors of the problem with skills from mathematics, computer vision and machine 

learning. One of the obvious and most studied priors is the edge prior, which can be found 

in many pioneering works: new edge-directed interpolation (NEDI) [60], soft-decision 

adaptive interpolation (SAI) [59], directional filtering and data-fusion (DFDF) [58], 

modified edge-directed interpolation (MEDI) [57], and so on. The edge prior is effective 

on image processing, and the first and second-order gradients were studied and employed 

by Yang et al. [88] in a pioneering dictionary-learning-based algorithm. However, the 

effect of edge-based features has not been investigated in depth. 
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6.3.1 Augmented Features via Gradient Magnitude Filters 

 
 

Fig. 6-2: Features extracted from an LR image through the first and second-order gradient filters 

in horizontal and vertical directions (the upper four), as well as the gradient magnitude filters (the 

below two), are concatenated to form augmented features with more discriminative properties. 

 

For the clustering and classification problems, feature engineering is a critical research 

point, and in some cases, the chosen features may dominate the performance. A feature 

filter 𝐹, whose coefficients are computed to fit the most relevant parts in the LR image 

patches, is employed, and the generated features can achieve more accurate predictions 

for reconstructing their corresponding HR image patches, as shown in Fig. 6-2. 

Normally, it is unstable to directly use pixel intensities as features, which are 

susceptible to the environmental lighting variations and camera noise. Instead, the 

differences between the neighboring pixels’ intensity values, which are computationally 

efficient, and are immune to lighting changes and noise, are examined. This type of feature 

can be implemented efficiently through convolutional filters. Typically, the feature filter 

𝐹 can be chosen as a high-pass filter, while in [62, 64, 65, 88], the first and second-order 

gradient operators are used to generate an up-sampled version from a low-resolution 

image, then four patches are extracted from the gradient maps at same location, and finally 

the patches are concatenated to form feature vectors. The four 1-D filters used to extract 
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the gradients are described in Eqn. (6.2), 

   
𝐹1 = [−1, 0, 1],           𝐹2 = 𝐹1

𝑇

𝐹3 = [1, 0, −2, 0, 1], 𝐹4 = 𝐹3
𝑇 },      (6.2) 

where 𝐹1 and 𝐹2 are first-order gradient filters, while 𝐹3 and 𝐹4 are second-order gradient 

filters. 

These features can work well on dictionary-learning-based methods, because when 

searching a matched patch in a dictionary, the distance is calculated based on the whole 

feature vectors with the Euclidean distance. However, when training a split node in a 

decision tree of an RF, only one or a few of the features are chosen as candidate features 

for comparison. Therefore, more discriminative features are required for RF, when 

compared with dictionary-learning-based methods. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 6-3: Visualization of the features from a natural image: (a) original color image, (b) image 

gradient orientation, (c) image gradient magnitude; (d) horizontal gradient 𝜕𝐼/𝜕𝑥, (e) vertical 

gradient 𝜕𝐼/𝜕𝑦, (f) the sum: (𝜕𝐼/𝜕𝑥 + 𝜕𝐼/𝜕𝑦). 

 

The first and second-order gradients of an image can provide the directions of edges 

in a perceptual manner, as shown in Fig. 6-3, which can be calculated as follows: 
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∇𝐼 = [
𝜕𝐼

𝜕𝑥
,

𝜕𝐼

𝜕𝑦
]

𝑇
,       (6.3) 

where 𝜕𝐼/𝜕𝑥 and 𝜕𝐼/𝜕𝑦 are the gradients in the x-axis and y-axis directions, respectively, 

at a given pixel. Meanwhile, the gradient magnitude image can provide the edge strength, 

as described in Eqn. (6.4).  

‖∇𝐼‖ = √(
𝜕𝐼

𝜕𝑥
)2 + (

𝜕𝐼

𝜕𝑦
)2.        (6.4) 

With the natural image shown in Fig. 6-3, it can be observed that the gradient 

magnitude image has more detailed textures than the gradient images (𝜕𝐼/𝜕𝑥 and 𝜕𝐼/𝜕𝑦), 

as well as the sum of the horizontal gradient and vertical gradient image, i.e. 𝜕𝐼/𝜕𝑥 +

𝜕𝐼/𝜕𝑦, perceptually. An explanation for this phenomenon is that non-linear features are 

usually more discriminative. Thus, in our work, all the first and second-order gradients, 

and gradient magnitude are employed, and are concatenated to form more discriminative, 

augmented features. 

On the other hand, the image orientation (gradient angle) is defined by the following 

formulation, 

∠∇𝐼 = tan−1(𝜕𝑦/𝜕𝑥)  ,                                   (6.5) 

where tan−1(. ) is the gradient orientation, with a value between -90 and 90. As shown 

in Eqn. (6.5), when the value of 𝜕𝑥 is equal to 0 or close to 0, the value of ∠∇ becomes 

infinitely large and unstable, i.e., different 𝜕𝑦 will result in approximately same ∠∇ value.  

Based on this analysis, we only use the two gradient magnitude filters derived from 

the four gradient filters [88], shown in (2), to generate the augmented features. 

Experiments validate that the use of the augmented features can improve the conventional 
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RF algorithm [18] to achieve a performance gain of more than 0.1dB, which is a 

remarkable improvement, with the same setting and parameters. 

6.3.2 Fine-grained Features for Regression 

The inference stage of the RF-based image super-resolution process is similar to the 

content-based image retrieval (CBIR) framework, as shown in Fig. 6-4. The general 

approximated nearest neighbor (ANN) search framework [101, 100] is an efficient 

strategy for large-scale image retrieval, which mainly consists of 4 parts: (1) extracting 

compact features (e.g., the locality-sensitive Hashing (LSH) [102] features) for a query 

image; (2) coarse-level search using Hamming distance to measure the similarity between 

binary compact Hash features, then narrow the search scope into a smaller candidate group; 

(3) fine-level search by using Euclidean distance to measure the similarity between their 

corresponding feature vectors; and (4) finding the object in the smaller candidate group 

that is the nearest one to the query image. 

Locality sensitive hashing (LSH) [158, 159] is a series of algorithms which are used for 

handling largescale data processing with high dimensionality. The main idea behind LSH 

is to formulate a family of functions which can map (hash) high dimensional features into 

buckets so that similar features can fall into the same bucket with a high probability.  

In the inference stage of conventional RF-based SISR, PCA projection is worked as a 

hash-like function to reduce the feature dimension for decreasing the search range, which 

can speed up the searching as the coarse-level search in a CBIR framework. However, the 

impact of using PCA on feature dimensionality reduction has been overlooked in previous 

works [97, 62, 64, 65, 18, 88]. In our algorithm, the LSH based scheme from [108] is 

employed to further improve feature discrimination. This LSH based scheme [108] 
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transforms the original feature space into a compactly pre-clustered feature space, via a 

trained rotation matrix. The additional load of the rotation in the inference stage is 

ignorable, and the feature dimension will keep the same as PCA does [97, 62, 64, 65, 18, 

88], i.e., for an enlargement with scale factor 3, the original dimension is 486 (for the 9×9 

size image patch with 6 filters), and the final dimension is about 50 after 90% 

dimensionality reduction with PCA or LSH. 

Inspired by the fine-level search using augmented features in CBIR frameworks, the 

high-dimensional features used in the leaf nodes of an RF can further improve the 

prediction accuracy in the regression step, which has not been studied previously. 

Consequently, we use the original features, rather than the PCA or LSH compressed 

features, to perform ridge regression in the leaf nodes. Experimental results show that this 

new RF scheme, by using this augmented feature, can greatly improve the quality of super-

resolved images. Another explanation for this is that the regression problems can benefit 

more from the higher dimensional features than classification problems. 

Based on the observation that the original edge-like features are used for the final 

regressors in the leaf nodes and the compressed features (either produced by PCA or LSH) 

are used for clustering in the split nodes, a new clustering-regression-based SISR approach 

can be designed as shown in Fig. 6-4. In this new scheme, the original-compressed coupled 

feature sets are worked for different purposes at different stages, i.e., the original edge 

features are used for regression in the leaf nodes, and the compressed features derived 

from the LSH-like functions are employed for node splitting (clustering) in the training 

stage, and node searching in the inference stage in the split nodes. On training the split 

nodes, the entropy is replaced by variance as the works in [18, 108]. 
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Fig. 6-4: Augmented features for regressors and the LSH compressed features for searching in 

the trees of a random forest. 

 

In the new scheme, we unify the research of LSH-based SISR and image retrieval 

(CBIR) [100, 101]. In brief, the new achievement on unsupervised LSH can be evaluated 

not only in CBIR systems, but also in the clustering-regression RF-based SISR methods. 

Moreover, as evidence from [108], using proper unsupervised LSH models, e.g., iterative 

quantization (ITQ) [61], for feature-dimension reduction, instead of PCA, can reduce the 

damage on the image structure. This can further improve the super-resolved image quality. 

Different from [108] using an ITQ-like algorithm to rotate the original features into a 

new feature space, with the use of the proposed original-compressed coupled feature sets, 

any unsupervised LSH generated features can directly be employed. 

6.3.3 Generalized Weighted Ridge Regression Model 

In this sub-section, we further analyze the ridge regression employed in the RF leaf 

nodes. The anchored neighborhood regression (ANR) [62] model relaxes the 𝑙1-norm to 

the 𝑙2-norm, with least-squares minimization as the following equation, 

 min
𝛼

‖𝐹D𝑙𝛼 − 𝐹𝑦‖2
2 + 𝜆‖𝛼‖2,             (6.6) 

where 𝛼  is the coefficients, and 𝐹  is a feature-extraction operator on the LR patches, 

which aims to extract discriminative features from LR patches, rather than using the raw 
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pixel intensity. In our formulation, D𝑙  and Dℎ  represent the low and high-resolution 

coupled dictionaries trained jointly from LR and HR patch samples, respectively. Based 

on the ridge regression [76] theory, this 𝑙2 -norm constrained least square regression 

regularized problem has a closed-form solution, according to the Tikhonov regularization 

theory, as follows: 

𝛼 = (𝐷𝑙
𝑇𝐷𝑙 + 𝜆𝐼)−1𝐷𝑙

𝑇𝐹𝑦.                             (6.7) 

With the assumption in [88], where HR patches and their counterpart LR patches 

share the same reconstructed coefficient α, i.e. 𝑥 = Dℎ𝛼, from Eqn. (6.7) we have  

𝑥 = Dℎ(𝐷𝑙
𝑇𝐷𝑙 + 𝜆𝐼)−1𝐷𝑙

𝑇𝐹𝑦.                           (6.8) 

If we define 𝑃𝐺 as a pre-calculated projection matrix, as follows, 

𝑃𝐺 = Dℎ(𝐷𝑙
𝑇𝐷𝑙 + 𝜆𝐼)−1𝐷𝑙

𝑇,                           (6.9) 

then the HR patches can be reconstructed with 𝑥 = 𝑃𝐺𝐹𝑦. 

Having studied the model in Eqn. (6.8), the authors in [97] argued that different weights 

should be given to different atoms when reconstructing an HR patch so as to emphasize 

the similarity to the anchor atom. Based on this idea, authors in [97] proposed a weighted 

collaborative representation (WCR) model by generalizing the normal collaborative 

representation (CR) model in ANR, as follows: 

 min
𝛼

‖𝐹D𝑙𝛼 − 𝐹𝑦‖2
2 + ‖𝜆𝑊𝐶𝑅𝛼‖2,                         (6.10) 

where 𝜆𝑊𝐶𝑅 is a diagonal weight matrix, whose non-zero diagonal entries are proportional 

to the similarities between the atoms and the anchor atom. 

Same as the ANR model, a new closed-form solution can be computed offline through 

the following equation,  
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𝛼∗ = (𝐷𝑙
𝑇𝐷𝑙 + 𝜆𝑊𝐶𝑅)−1𝐷𝑙

𝑇𝐹𝑦,                          (6.11) 

and the new projection matrix can be derived as  

𝑃𝐺
∗ = Dℎ(𝐷𝑙

𝑇𝐷𝑙 + 𝜆𝑊𝐶𝑅)−1𝐷𝑙
𝑇 .                          (6.12) 

The WCR model further improves the ANR/A+ model in terms of image quality, while 

keeping the same level of computation. In [82], the local geometry prior of the data sub-

space is used. However, all the weighted ridge regression models [97, 82] are constructed 

based on an existing dictionary, e.g., Zeyde et al. [64] used K-SVD to train a sparse-

coding-based dictionary with 1,024 items.  

 

 

Fig. 6-5: Gaussian mixture model (GMM) is used to generate the weights for weighted ridge 

regression, and the weight of each entry lies on its belonging cluster’s size and its centrality in 

the belonging cluster. 

 

When training the regressors in an RF, there is no existing anchor point in the clustered 

groups of the leaf nodes, similar to the previous models [97, 82]. A solution to the 

mentioned problem is inspired by the work on image classification using locality-

constrained linear coding (LLC) [103], where the Gaussian mixture model (GMM) is used 

to describe the locality-constrained affine subspace coding (LASC) [104]. We employ 

GMM to construct the data distribution in the sub-space for each leaf node, which derives 
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the weights of all the entries in the ridge regression models. Through the derived weights, 

we can obtain a generalized weighted ridge regression (GWRR) model for ridge 

regression. The new projection matrix is given as follows: 

 𝑃𝐺
∗ = Dℎ(𝐷𝑙

𝑇𝐷𝑙 + 𝜆𝐺𝑊𝑅𝑅)−1𝐷𝑙
𝑇 ,                           (6.13) 

where 𝜆𝐺𝑊𝑅𝑅 is a diagonal weight matrix, and diagonal entries are the weights of samples 

in the leaf-node. Each sample’s weight is related to its belonging cluster’s size and its 

local centrality in its belonging cluster, as illustrated on the right of Fig. 6-5. In other 

words, the cluster’s weight is proportional to its sample amount, and the local weight of a 

sample is depending on how close it is to the cluster center. Obviously, a query input, 

falling into a bigger cluster and closer to the center of the belonging cluster, achieves a 

larger weight. In a rough form, the diagonal weight matrix 𝜆𝐺𝑊𝑅𝑅 is given as follows: 

          (6.14) 

where 𝑤𝑖 is the weight of the 𝑖th entry, 𝑚 is the number of samples in the leaf nodes, 𝐶𝑖
𝑘 

is the 𝑘th cluster’s weight for the 𝑖th entry, 𝑑𝑖
𝑘 is the 𝑖th entry’s local weight in the 𝑘th 

cluster, which is approximated as the inverse of the distance to the center of the belonging 

cluster, and 𝐾 is the number of clusters generated by the GMM model for a leaf node. 

Experimental results in Table-6.1 show that the proposed GWRR model can achieve 

the same level of performance as WCR [97] and obtain 0.2dB gain than the ANR [62] 

model. Note that when the number of samples in a leaf node becomes bigger, the 

performance of the GWRR model will achieve less advantages than the normal regression 

model, because the higher weights will be averaged by a large number of other samples. 

Theoretically, the regression of a leaf node can benefit from the GWRR model, 

particularly when there are a few samples falling into the leaf nodes.  
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Images baboon baby bird butterfly foreman head lenna woman Average 
 

ANR 23.52 35.06 34.44 25.74 32.92 33.54 32.92 30.17 31.04 

WCR 23.55 35.09 34.75 26.18 33.51 33.61 33.16 30.42 31.28 

GWRR 23.54 35.09 34.74 26.13 33.46 33.58 33.12 30.38 31.25 

Table-6.1: Performances of ANR [62], WCR [97], and the proposed GWRR, in terms of 

PSNR (dB) with an upscale factor (×3) on some public standard test images. 

6.3.4 Iterative Back Projection for Initial Coarse Estimation 

In a broad sense, SISR is a low-level computer vision task, which attempts to restore 

an HR image 𝒳  from a single input LR image 𝒴 . A mathematical model for image 

degradation can be formulated as follows: 

𝒴 = (𝒳 ∗ ℬ) ↓ 𝑠,                          (6.15) 

where ℬ  is a low-pass (blur) filter and 𝑠  denotes the down-sampling operator with a 

factor of 𝑠. Based on a given LR image 𝒴, how to achieve an approximated HR image �̂� 

is a classic inverse problem, which requires priors based on the Bayesian theory. 

Irani and Peleg [107] firstly proposed an iterative back projection (IBP) method for SR 

reconstruction. IBP is an effective way to obtain an HR image when comparing it with 

other SR methods. In the IBP method, the reconstruction error of an estimated LR image 

�̂� is the difference between the input LR 𝒴 and the synthesized image �̂� generated from 

the estimated HR image �̂� as follows: 

𝑒(�̂�) = 𝒴 − �̂� = 𝒴 − (�̂� ∗ ℬ) ↓ 𝑠.                    (6.16) 

IBP can efficiently obtain the HR image by minimizing the reconstruction error defined 

in Eqn. (6.16). For the IBP approach on SISR, the updating procedure can be summarized 

as the following two steps, performed iteratively: 

 Compute the reconstruction error 𝑒(�̂�) with the following equation: 

𝑒(�̂�) = 𝑒(�̂�) ↑ s ∗ 𝑝,                           (6.17) 

•
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where ↑  is the up-sampling operator and 𝑝  is a constant back-projection kernel to 

approximate the inverse operation of the low-pass filter ℬ. 

 Update the estimated HR image �̂� by back-projecting errors as follows: 

�̂�𝑡+1 = �̂�𝑡 + 𝑒(�̂�𝑡),        (6.18) 

where �̂�𝑡 is the estimated HR image at the 𝑡-th iteration. 

Most learning-based algorithms [97, 62, 64, 5] follow the milestone work in [88], 

which uses the coarse estimation firstly obtained via bicubic interpolation. As we know, 

the classic IBP algorithm is an efficient way to obtain high-quality up-scaled images, but 

it will inevitably produce artifacts (such as ringing, jaggy effects, and noise) at the output, 

because the kernel operator 𝑝 in Eqn. (6.17) is hard to estimate accurately. That is the 

reason why algorithms with IBP need an additional denoising process [109, 23, 107]. 

However, the sparse-constraint-based approach [88] does not have this denoising 

capability. 

As the 𝑙2-norm constraint-based ridge regression has the denoising effect, due to its 

averaging-like process, this means that the ridge regression-based RF scheme has the 

denoise capability intrinsically. Based on this observation, we obtain the coarse estimation 

of an HR image �̂� by applying IBP to the corresponding input LR image 𝒴. Experimental 

results in Table-6.2 and Table-6.3 validate that using IBP, instead of bicubic, to obtain the 

initial coarse estimation can help the RF-based SR method obtain a remarkable 

improvement. 

  

•



119 

 

6.3.5 Fine-Tuning with Proper Trees in Random Forest 

  

Fig. 6-6: The image super-resolution quality, in terms of PSNR, with different numbers of trees 

in a random forest for super-resolution (3x) experiments on Set14. The number of trees = 45 

gives a better trade-off between efficiency and complexity. 

 

As the number of trees is an important parameter in RF-based approaches, we plot the 

performance with respect to the number of trees. As shown in Fig. 6-6, the performance 

of the RF-based image super-resolution method increases as expected, but the increment 

becomes relatively smaller after a certain number of trees are used. The experimental 

results in Fig. 6-6 were obtained on the Set14 dataset, and 2 million samples from the 

dataset were used for all training stages. It shows that using 45 trees is an optimal number, 

as a tradeoff between performance and computational cost. Therefore, we set the number 

of trees for the proposed FARF method at 45, and our method with this number is denoted 

as FARF*. The performances of our methods, and other methods, are tabulated in Table-

6.2 and Table-6.3. We also compare our methods with a recently proposed deep-learning-

based algorithm, SRCNN algorithm [41, 98] and SCN algorithm [157], and our methods 

outperform them in some cases. 
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6.3.6 Algorithm Workflow 

The training and inference stages of the proposed FARF algorithm are described in 

Algorithm 6.1 and Algorithm 6.2, respectively. To help the readers understand this 

chapter, the source code of our algorithm will be available at: 

https://github.com/HarleyHK/FARF, for reference. 

Algorithm 6.1: Training Stage of FARF-based Image Super-Resolution: 

Input: {𝓎𝑖 , 𝓍𝑖}𝑖=1
𝑁 : training LR-HR patch pairs; 

Output: the trained random forest 𝒯 with regressors ℛ = (ℛ1, … ), the LSH model: ℳ𝐿𝑆𝐻;  

1: Upscale LR patch images as initial coarse estimations using IBP;               ⇒ {Eqns. (6.17, 6.18)} 

2: Obtain the features calculated from LR image by using the first and second-order gradient filters, 

and the gradient magnitudes on the up-scaled coarse versions;                   ⇒ {Eqns. (6.3, 6.4)} 

3: Conduct LSH on the raw features to obtain compressed features, at the same time obtain the 

trained LSH projection model ℳ𝐿𝑆𝐻; 

4: Train a random forest with the compressed features via the LSH model ℳ𝐿𝑆𝐻; 

5: Train the weighted ridge regressors ℛ by the GWRR models in leaf nodes; ⇒ {Eqn. (6.13)} 

6: Save the random forest 𝒯 with ridge regressors ℛ , and the trained LSH model ℳ𝐿𝑆𝐻. 

 

 

Algorithm 6.2: Inference Stage of FARF-based Image Super-Resolution: 

Input: testing LR image 𝒴, the trained random forest 𝒯 with ridge regressors ℛ = (ℛ1, … ), the 

trained LSH model ℳ𝐿𝑆𝐻; 

Output: super-solved image �̂�; 

1: Upscale patches from LR 𝒴 to form an initial coarse estimation by IBP;  ⇒ {Eqn. (6.17, 6.18)} 

2: Compute the discriminative features for all the patches;                            ⇒ {Eqns. (6.3, 6.4)} 

3: Compute the compressed feature with the LSH model ℳ𝐿𝑆𝐻;  

4: For each patch, using the compressed feature to search in the leaf nodes to obtain its 

corresponding regressor from the trained random forest 𝒯; 

5: Compute the super-resolved image �̂� through all the super-solved patches by weighted ridge 

regressors ℛ in leaf nodes.                                                                          ⇒ {Eqn. (6.10)} 

 

https://github.com/HarleyHK/FARF
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6.4 Experiments 

In this sub-section, we evaluate our algorithm on standard super-resolution 

benchmarks Set 5, Set14 and B100 [80], and compare it with some state-of-the-art 

methods. They are bicubic interpolation, adjusted anchored neighborhood regression (A+) 

[65], standard RF [18], alternating regression forests (ARF) [18], the convolutional neural-

network-based image super-resolution (SRCNN) [41, 98], the naive Bayes super-

resolution forest (NBSRF) [19] and the sparse coding based network (SCN) [157], as 

listed in Table-6.2 and Table-6.3. We set the same parameters for all the RF-based 

algorithms, i.e., the number of trees in an RF is 10, and the maximum depth of each tree 

is 15. We use the same set of training images (91 images) for all the algorithms, as previous 

works [62, 64, 65, 8] do. RF+ means a normal RF-based algorithm added with the two 

gradient magnitudes augmented features, and RF# is the normal RF-based algorithm, 

where the original raw features, instead of using the PCA compressed features, are used 

to learn the regressors in leaf nodes. FARF- denotes trimmed version of our proposed 

feature-augmented RF scheme, which combines RF+ and RF# by adding the gradient 

magnitude features and using the original raw features for regression. FARF means the 

normal version or our proposed algorithm, which is based on FARF-, the superior, 

unsupervised LSH projection [108], instead of PCA, is employed for dimensionality 

reduction, and the generalized weighted ridge regression (GWRR) model is used for the 

leaf-nodes' regressors. FARF* is a further refined version of FARF, by performing further 

fine-tuning: (1) employing IBP, instead of the traditional bicubic interpolation algorithm, 

to obtain the initial coarse estimation in the inference stage, and (2) setting the proper 

number of trees (e.g., 45) for training an RF. 

 



122 

 

dataset #  bicubic A+ RF ARF RF+ RF# 
 

 

Set5 
×2 33.66/0.00 36.55/0.51 36.52/0.03 36.65/0.82 36.67/0.04 36.63/0.05 

×3 30.39/0.00 32.59/0.33 32.44/0.04 32.53/0.62 32.56/0.05 32.53/0.05 

×4 28.42/0.00 30.29/0.23 30.10/0.05 30.17/0.71 30.18/0.06 30.22/0.06 
 

 

Set14 
×2 30.23/0.00 32.28/1.11 32.26/0.05 32.33/1.43 32.37/0.06 32.32/0.07 

×3 27.54/0.00 29.13/0.66 29.04/0.07 29.10/1.12 29.17/0.08 29.11/0.09 

×4 26.00/0.00 27.33/0.47 27.22/0.08 27.28/0.91 27.31/0.09 27.29/0.09 
 

 

B100 
×2 29.32/0.00 30.78/0.00 31.13/0.06 31.21/1.52 31.22/0.07 31.23/0.07 

×3 27.15/0.00 28.18/0.00 28.21/0.07 28.26/1.23 28.27/0.08 28.26/0.08 

×4 25.92/0.00 26.77/0.00 26.74/0.07 26.77/1.02 26.78/0.09 26.79/0.09 

 

dataset #  FARF- FARF FARF* SRCNN NBSRF SCN 
 

 

Set5 

×2 36.68/0.06 36.78/1.03 36.81/3.02 36.66/3.21 36.76/0.04 36.58/5.12 

×3 32.62/0.06 32.73/1.12 32.78/3.13 32.75/3.36 32.75/0.05 32.68/5.31 

×4 30.27/0.07 30.39/1.20 30.45/3.18 30.48/3.11 30.44/0.06 30.41/5.36 
 

 

Set14 
×2 32.37/0.08 32.41/1.15 32.45/3.23 32.42/6.52 32.45/0.06 32.35/6.02 

×3 29.17/1.02 29.23/1.24 29.29/3.27 29.28/6.41 29.25/0.08 29.16/6.13 

×4 27.36/1.10 27.45/1.31 27.48/3.35 27.49/6.38 27.42/0.09 27.39/6.21 
 

 

B100 
×2 31.34/0.92 31.35/1.22 31.38/3.28 31.36/8.24 31.36/0.09 31.38/6.16 

×3 28.30/1.05 28.35/1.25 28.38/3.32 28.41/8.37 28.39/1.02 28.33/6.30 

×4 26.83/1.20 26.88/1.41 26.91/3.46 26.90/8.42 26.89/1.13 26.88/6.51 

Table-6.2: Results of proposed method compared with state-of-the-art works on 3 datasets in 

terms of PSNR (dB) and runtime (seconds) using three magnification factors (#) (×2, ×3, ×4). 

 

Table-6.2 summarizes the performances of our proposed algorithms on the 3 datasets, 

in terms of the average peak signal to noise ratio (PSNR) scores and runtime (seconds), 

with different magnification factors (× 2, × 3, × 4). Table-6.3 gives more details of the 

results on some images from the Set5 dataset, with magnification factor ×3. As the results 

have shown based on the 3 datasets, our proposed algorithm FARF outperforms A+ and 

ARF for all the magnification factors. 

 
Set5(×3) bicubic Zeyde A+ RF ARF FARF- FARF  FARF* SRCNN NBSRF SCN 

 

baby 33.91 35.13 35.23 35.25 35.15 35.20 35.34 35.37 35.25 35.28 35.25 

bird 32.58 34.62 35.53 35.23 35.31 35.39 35.53 35.54 35.47 35.49 35.42 

butterfly 24.04 25.93 27.13 27.00 27.39 27.65 27.68 27.82 27.95 27.87 27.78 

head 32.88 33.61 33.82 33.73 33.73 33.75 33.84 33.85 33.71 33.78 33.65 

woman 28.56 30.32 31.24 30.98 31.08 31.11 31.27 31.34 31.37 31.33 31.28 

average 30.39 31.92 32.59 32.44 32.53 32.62 32.73 32.78 32.75 32.75 32.68 

Table-6.3: Results of the proposed method compared with state-of-the-arts methods on 3 

datasets in terms of PSNR (dB) with magnification factors (×3) on dataset Set5. 

 

The objective quality metric, PSNR, in Table-6.2 also shows that the fine-tuned FARF, 

i.e. FARF*, can further improve the image quality, which is comparable to recently 
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proposed state-of-the-art deep-learning-based algorithms, such as SRCNN [41, 98] and 

SCN [157]. Comparing our proposed FARF algorithm to other methods, the improved 

visual quality of our results is obvious, as shown in Fig. 6-7. This shows that our method 

can produce more details, particularly on some texture-rich regions. 

6.5 Conclusions 

This chapter presents a feature-augmented random forest (FARF) scheme for the 

single-image super-resolution (SISR) task by augmenting features and redesigning the 

inner structure of a random forest (RF), with different feature recipes used at different 

stages, where the compressed features are used for clustering in the split nodes and the 

original features are used for regression in the leaf nodes. The contributions of this 

chapter are threefold: (1) the more discriminative gradient magnitude-based augmented 

features are proposed for clustering in split nodes and regression in leaf nodes; (2) By 

replacing principal component analysis (PCA) with a generalized unsupervised locality-

sensitive hashing (LSH) model for dimensionality reduction, we lay out an original-

compressed coupled feature set for tackling the clustering-regression tasks, and unify 

SISR and content-based image retrieval for LSH performance evaluation; and (3) we 

have extended the weighted collaborative representation model to a generalized weighted 

ridge regression model for ridge regression. The proposed FARF scheme can achieve 

highly competitive quality results, e.g., obtaining about a 0.3dB gain in PSNR, on 

average, when compared to the conventional RF-based super-resolution approaches. 

Furthermore, a fine-tuned version of our proposed FARF approach is provided, whose 

performance is comparable to recent state-of-the-art deep-learning-based algorithms. 
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Fig. 6-8: Super-resolved (×3) images from B100, bicubic, A+ (ACCV-2014) [65], ARF 

(CVPR-2015) [18], SRCNN (PAMI-2016) [98], our proposed FARF algorithm, and ground 

truth. The results show that our FARF algorithm can produce more details and its performance 

is comparable to a recent state-of-the-art deep-learning method [98]. 
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Chapter 7. Conclusions and Future work 

7.1 Summary and Conclusions 

In this thesis, we first introduced the concept and development of random-forest 

technologies, as well as random-forest-based applications. Some of the existing 

challenges, which serve as the motivation for this research work, are discussed in detail. 

Then, we give literature reviews on three main topics: random forest, face alignment and 

image super-resolution in Chapter 2. We have presented a novel and efficient shape-

index-derived feature, which can work with random-forest-based regressors for face 

alignment in Chapter 3. We have further designed a new scheme, which can combine 

two schools of face-alignment approaches for face alignment in Chapter 4. In Chapter 5, 

we designed a scheme to rotate the feature space into a more compact feature space, 

which can help the random forest on the classification and regression tasks, and the 

variant random-forest model can also be employed on image super-resolution. In Chapter 

6, we presented a feature-augmented random-forest (FARF) scheme for single image 

super-resolution, through the work on feature engineering in random forest. In this final 

chapter, in addition to summarizing the main contributions of this research, we also 

discuss some possible directions for future work.  

7.2 Future Research Work 

This thesis, which has presented a few new ideas and methods, is just a snapshot of 

our ongoing research, undertaken in the field of random-forest-based computer-vision 

applications. In this section, some possible directions for our future research will be 

discussed. This future research may be carried out in the following fields: 
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(a). The high-dimension problem: As the random forest has the capability of handling 

high-dimension data, researchers have often used it for high-dimensional data analysis. 

However, when the data dimension becomes higher, the computation and accuracy of 

classification and regression will be challenged. Principal component analysis (PCA) is 

a conventional method for data-dimensional reduction, but PCA may destroy the data 

structure. Although this thesis has proposed using locality-sensitive hashing (LSH) to 

replace PCA for feature-dimensionality reduction, an algorithm, which can help random 

forest to reduce data dimension with promising performance, is still an open research 

topic. 

(b). The parallel speed-up problem: The more trees there are in a random forest, the 

better the performance of a random forest will be. To speed up a random-forest-based 

model on CPU or GPU instructions, in parallel, will be a significant work for random-

forest applications.  

(c). The collaboration problem: Currently, each tree in a random forest works 

independently as an individual expert, which means that there is no collaboration 

between them. To let the trees in a forest work as a team, with collaboration between 

them, for better prediction performance, would be an interesting research topic. 

(d). The parameter-setting problem: Currently, the main parameters in a random 

forest, such as the depth of a tree and the maximum sample number in a leaf node, are 

set by experimental results, therefore optimal parameters derived by theory would be a 

research topic that would enhance random-forest performance. 

(e). The integration with deep learning problem: These days, deep learning has shown 

its strength in a lot of computer-vision applications because of its strong learning 

capability. As random forest is a classic ensemble tool, combining random forest with 
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deep learning would be an interesting research topic in this area. This integration can 

bring some new variants of random forest, e.g., the deep forest [111] or the deep neural 

decision forest [112]. In [111], the authors proposed a novel approach to enhance the 

classification capability of the trees in a random forest by the representation learning 

ability of deep (neural) networks, and this scheme can work in an end-to-end trainable 

architecture. Again in [112], the authors presented the gcForest model, which is a 

decision-tree ensemble scheme, which is highly competitive, compared to current deep 

neural networks. Also, the deep reinforcement learning has emerged as a hot research 

topic after Google’s AlphaGo [116] defeated Go masters, in a win for artificial 

intelligence (AI). Recent years have shown the achievements of deep reinforcement 

learning (DRL) techniques on tasks with visual observations, such as Atari games [114] 

and path planning [115], and in particular, when Google DeepMind's AlphaGo algorithm 

[116] beat world class Go players in 2016. In those DRL-based game algorithms, 

including the AlphaGo algorithm, the classic Monte-Carlo Tree Search (MCTS) 

algorithm [113] has been widely employed in computer games. As the MCTS algorithm 

employs decision trees to estimate the expected result and the reinforcement learning 

takes a "trial and error" learning process to learn the strategies from states to actions, 

which can benefit the random decisions in random forests.  
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