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ABSTRACT 

The flow conditions in practical open channel systems such as mountainous 

rivers can be very complex with uncertainties due to natural and artificial factors. 

Moreover, the increasing occurrence of extreme weather due to climate change and 

advanced human activities, leading to more uncertain events of rainfalls and 

droughts, which makes more difficulties in the predictions and analysis of flow 

process in such open channel systems. Numerous theoretical and experimental 

research works have been done in this field to study the physics of open channel 

flows (including theories, models and measurements), which were however focused 

usually on specific channel conditions rather than complex uncertainty situations. 

Therefore, it is necessary to further develop theory and model to capture such 

uncertainty characteristics and their influences in complex open channel flows. 

This research is conducted to better understand the stochastic features and 

uncertainty propagation in unsteady open channel flows, and to examine how the 

system parameters and flow conditions influence flow uncertainties in the open 

channel systems. To this end, a one-dimensional (1D) stochastic model is firstly 

developed in this research, consisting of zeroth-order base flow equations and first-

order covariance equations. This stochastic model is derived by applying the 

perturbation method to the 1D Saint-Venant equations with lateral flows, so as to 

express the uncertainty propagation of open channel flow responses induced by 

different random factors (including channel width, bed slope, roughness, boundary 

inflow and lateral inflow). Several assumptions are taken to conduct the model 

developing, including: (a) rectangular and wide channel, (b) mild and uniform bed 

slope, (c) hydrostatic water pressure, (d) same friction resistance for initial steady 
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flow, and (e) incompressible and homogeneous water with constant density and 

viscosity. Solution methods are illustrated in which the software EPA SWMM is 

employed for base flow computation and a combination of finite difference scheme 

and Gauss elimination for covariance computation.  

Based on this developed stochastic model, extensive numerical applications 

are then performed for systematic analysis of different factors affecting the 

uncertainty evolution in the open channel flow process. To demonstration, all the 

random factors are assumed to be exponentially correlated in both temporal and 

spatial domains. The results show that: (1) upstream inflow uncertainty has the most 

significant on flow variability and a linear positive relation is found; (2) the channel 

width uncertainty reduces the flow uncertainty growth but has little effect on the 

final flow uncertainty; (3) bed slope uncertainty slows down initially the flow 

uncertainty growth but increases greatly finally the uncertainty magnitude; (4) 

roughness uncertainty which is represented by the Manning’s n weakens the wave 

variability during initial stage but increases flow uncertainty finally; and (5) lateral 

inflow decreases the system uncertainty response since it increases the base flow 

discharge, which is also found to affect upstream flow properties in subcritical flow. 

Finally, the effect of the combination of all these uncertainty factors is investigated 

for their significance rankings of influence on the unsteady open channel flows.   
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LIST OF SYMBOLS 

 

There are too many variables in this thesis for it to be possible to give each 

one a unique notation. The main variable notations used in model derivation chapter 

and results presentation chapter are listed below while a few are duplicated and have 

different meanings in previous chapters. The duplicated variables are redefined 

within the text to avoid confusions with the global definitions herein. 

 

The following symbols are commonly used throughout the thesis: 

 

B channel top width 

Q discharge in the channel 

q lateral inflow along the channel side 

u lateral inflow velocity in the downstream direction 

Qu upstream boundary inflow 

A cross-section area 

R hydraulic radius 

h water depth 

v water velocity 

n Manning’s coefficient 

S0 channel slope 

x,χ representing location 

t,τ representing time 

a’ the perturbation of a 

<a> the expectation of a 

a(b) bth-order term of a 
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σa the standard deviation of a 

μa the mean of a 

λa the correlation length of a in exponential distribution 

Cab short for Cab(x,t;χ,τ), the covariance of a(x,t) and b(χ,τ) 

g  gravitational acceleration 
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CHAPTER 1 INTRODUCTION 

1.1 Research Background 

1.1.1 Significance and impact of open channel systems 

Open channel systems highly relate to human daily life and society 

civilization progress throughout the world. Thousands of years ago, people began to 

build canals in Egypt, Babylon, etc. (Figure 1.1(a)) for commercial and agriculture 

purposes and now artificial open channels are broadly designed and constructed for 

irrigation uses, urban drainage systems and waterway transportation. In this regard, 

people have fully taken advantages of open channel flows for transportation, 

agriculture, industries, and urban design, with their roles varying from irrigation 

systems, waterwheels, to hydro power stations (Figure 1.1(b)) (Chanson 2004). 

Figure 1.1 (a) Suez Canal, first build around 600 BC (Kirkpatrick 2015); (b) the 

Three Gorges Dam in China, world’s largest power station in terms of install 

capacity (IFS 2012) 

It is also well noticed by people that everything has its two sides – benefits 

and harms, including the open channel systems focused on herein. In other words, 

open channel flows can also be serious trouble to human society (Figure 1.2). So far, 

floods have led to more damages over the world than any other natural disasters, 

(a) (b) 
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which may induce severe economic, social and humanitarian losses (McAnally 

2016).  

Figure 1.2 (a) Flood rushing from the mountain (Salway 2009); (b) debris caused by 

mudslide (Bloom et al. 2017); (c) flood in urban area (BHA 2018) 

Continuous heavy rains lead to huge amounts of runoff on the ground, which 

has become more and more frequent and intensive due to the rapid urbanization and 

climate change (Chen et al. 2011, He et al. 2012). Within the developing urban area, 

constructions of houses and roads are unavoidable, which may affect greatly the 

infiltration efficiency of land surface and thus make it worse in urban drainage 

process. For example, about 2.3 billion people in most of Asian region have been 

influenced by such human behavior over the past 20 years. However, it is worthy of 

noting that the expenses on flood system operation and management is far less than 

the emergency response after encountering floods, which in fact helps not in 

flooding preventing and control. Similarly, in other regions over the world, floods 

(c) 

(b) (a) 
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lead to great losses in different aspects as well. In USA, it has been reported at least 

176 people in the 26 states were killed by the only flood disaster event in 2015. In 

Germany, flood-related damage costs about 500 million euros per year; and it is 

expected to multiply in the future with more extreme events occurring under the 

influence of climate change (Hattermann et al. 2015). This situation becomes even 

worse in under developed or developing areas in the world. For example, in India, 

over 100 million people every year are exposed to flooding disasters (Bhatia and 

Riley 2016).  

Due to climate change and geography conditions, about half of the cities in 

China are facing severe water shortage, while another half of the main cities are 

suffering the problems of flooding and waterlogging (Harris 2015). In July 2016, the 

flooding caused by an intense rainfall event has led to around 150 deaths in central 

and northern China. In recent years, the central government of China has launched 

“sponge cites” program to handle the adverse situation of urban flooding and 

pollution related disasters, with 16 cities selected as an attempt for implementing 

sustainable stormwater management and smart urban water supply (Leach 2016). By 

implementing this program, the government intends to achieve the purposes of 

decreasing urban flooding and solving urban water shortages. This program is also 

termed as Low-impact development (LID) in the US, which refers to systems and 

engineering practices approach that manage stormwater runoff to protect water 

quality as part of green infrastructure (EPA 2017). Various application practices in 

these schemes for urban water system management have demonstrated that design 

and analysis of open channel flows are one of key contents during this process, 

which is crucial to the implementation outcomes of such management policies. 
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Therefore, it is necessary and important to investigate the open channel systems for 

its flow conditions and hydraulic performance. 

In addition to the flooding issues, water quality (pollution) is another 

problem that is crucial to the urban development and human health (Schneider et al. 

1973). In urban area, especially under its rapid development stage, water 

environment is easily becoming serious for its water quality due to the discharge of 

domestic and industrial wastes. Furthermore, other inappropriate human activities 

including filling the lakes for farmland, deforestation and so on, may weaken the 

natural ability in adjusting the surface runoff and impoundment. Besides, as human 

activities affect environment more significantly, climate change has drawn many 

research interests. The strongest El Niño and La Niña events on record happened in 

last several decades, which disrupted normal weather patterns heavily, leading to 

extreme weather such as rainstorms and droughts all over the world. Open channel 

disasters including flooding, mudslide, and water shortage which are closely related 

to weather become more often and severe as well, with the fact that flooding 

accounts for 47% disasters related to weather (Nash 2017). In this regard, a 

reasonable design of artificial sewage channels, together with the advanced water 

quality analysis and treatment technologies applied to these open channels, may 

benefit very much for both water resource management and urban drainage quality. 

From this perspective, researches on open channel flows have become of great 

significance to help human better understand the physical process in the channel, 

therefore can shed useful lights on the design and management of such hydraulic 

structures. 
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1.1.2 Understanding and description of open channel flows 

To understand the principle and physics of open channel flows, experimental 

tests and mathematical modeling are two common ways. Particularly, experimental 

observations are helpful to gain direct understanding of dynamic flow phenomena 

and processes in the open channels under specific system and flow conditions, while 

mathematical modeling may provide more general physical rules and principles to 

describe the results of open channel flows under any conditions. These two methods 

are useful to each other in terms of each method development. In this study, the 

model method is adopted for the investigation, since the aim of current research is to 

obtain an in-depth understanding and quantitative description of unsteady open 

channel flow evolution and process under various and general conditions.  

Mathematically, open channel flow process can be commonly described by a 

set of hyperbolic partial differential equations (PDEs), called Saint-Venant equations 

or shallow water equations in the literature, which governs the mass balance and 

momentum variations in the channel system. Although the different forms including 

one dimensional (1D), 2D and 3D have been developed in the literature, the 1D form 

is commonly used due to its simplicity of expression and convenience of program 

implementation, with its detailed expressions shown in the Chapters 2 and 3 later in 

this thesis. In the early years for studying open channel flows, the main efforts were 

paid to developing analytical solution to 1D Saint-Venant equations by imposing 

necessary simplifications and approximations. Afterwards, with the development of 

computer facility and technology, intensive computation work becomes possible, and 

therefore, numerical model solutions to these equations are available by applying 

relevant numerical techniques such as finite difference, finite element, boundary 

integral, and methods of characteristics. With the modeling, a satisfying 
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understanding of unsteady open channel flows has been obtained for many 

applications in engineering practice. At the same time, field studies and physical 

model experiments were also carried out, in order to obtain direct measurement data 

of unsteady open channel flows for analysis and mathematical model validation. 

Through experimental testes (laboratory or field), a limited number of spatial 

locations and time intervals of input data are available from the measurement (Willis 

et al. 1989), which are usually used as known conditions or benchmarks to the 

numerical modeling, so that the developed model and method can be validated and 

verified for its accuracy and validity. In spite of the progress and achievement of 

experimental tests and numerical modeling, these understanding and findings are 

mainly based on the different deterministic conditions (system and flow). That is, for 

each result obtained from test and model, it is usually not repeated  in the reality, 

such that what we observed from the practical open channel flows are commonly 

different (with more or less extents) from the  findings of previous tests and models. 

Such difference, or termed as error or bias, can actually be attributed to the 

uncertainties and randomness that are inevitable in realistic channel systems, 

including natural/inherent and artificial/external components. Therefore, 

understanding such uncertainty and randomness (i.e., stochastic characteristics) is an 

essential part of system and flow investigations by using the developed experimental 

test and modeling technologies.  

In fact, unsteady open channel flow is a complex process which might be 

influenced by various natural (inherent) and artificial (external) factors in the 

channel system and surrounding conditions such as bed roughness, flow area, wetted 

perimeter and friction slope which are random in nature (Guganesharajah et al. 2006). 

Moreover, flow processes themselves under such natural and practical factors are 
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stochastic processes, especially for mountainous rivers with great variety in slopes, 

roughness and random inflows. In mountainous rivers, the natural hydraulic 

characteristics are much more complicated in comparison with lowland rivers due to 

the special geography features, where different variabilities commonly exist 

including channel platform, channel gradient, grain size, and bed forms, sediment 

dynamics and aquatic and riparian biota (Wohl 2013). Many previous studies have 

indicated that mountainous rivers can adjust channel geometry sufficiently to 

produce systematic downstream scaling of channel geometry, hydraulics and 

sediment transport (Comiti et al. 2006, Golden and Springer 2006, Wohl et al. 2004). 

All of these studies have confirmed again the existence of inevitable uncertainties 

and their substantial influences in the open channel systems. 

Many previous researches in the literature have focused on the study of 

stochastic behavior of open channel flows, which demonstrates the importance and 

influence of system uncertainties from another point of view. For example, the 

numerical methods like the Monte Carlo simulation, the analytical methods like the 

first order reliability method (FORM), and the semi-analytical methods like 

perturbation methods, and so on (Tung et al. 2006). All these developed methods and 

obtained results have provided useful tools and insights for understanding the open 

channel flows. However, the limitations for each method and technology to the 

applications have confined our understanding and findings to limited ranges and 

under specific simplified conditions. In other words, it is necessary to further 

develop and extend the method and tool for better understanding the stochastic 

characteristics of open channel flows under more realistic system and flow 

conditions. This is the motivation and scope of current thesis research. 
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1.2 Scope, Objectives and Advancement of This Research Work 

This research aims to study the stochastic characteristics of unsteady open 

channel flows under the conditions of different uncertainties. To this end, an 

extended stochastic analysis model based on the perturbation method is established 

in this study, which can be used to express the propagation of different uncertainty 

factors and their impacts on the system responses. The common uncertainty factors 

(as random variables in the model) including the random inflow (upstream and 

lateral inflows), random bottom roughness, random base flow and random cross-

section area are considered in this study for the investigation of the stochastic 

characteristics of the unsteady open channel flows. The main objectives of this 

research are: 

(a) To establish 1D stochastic open channel flow models, through the 

multiple-scale perturbation based analytical analysis; 

(b) Based on the developed stochastic model, to conduct the uncertainty and 

sensitivity analysis of unsteady open channel flows for the different 

random inputs and parameters as well as system conditions (including 

upstream inflows, lateral flows, bottom roughness, complexities of river 

networks, hydrologic condition, etc.), and their correlations; 

(c) To examine the influence range and relative importance of different 

uncertainty factors in (b) to the open channel flow responses (water depth 

and flowrate variation), under different system configurations and flow 

conditions, in order to understand statistically the stochastic 

characteristics of the unsteady open channel flows; 

(d) With the understanding and findings of the stochastic analysis above, 

relevant discussions and recommendations on the risk analysis and 
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reliability design of open channel systems are provided, with perspective 

to better design and management of practical hydraulic engineering 

projects. 

It is noted that the developed model and proposed method in this research is 

able to conduct uncertainty prediction for complex open channel flows by 

considering the spatial and temporal random variables with certain correlations in the 

flow process. Specifically, the stochastic moment equations are solved through 

implicit finite difference technique, so as to obtain the uncertainty of water depth and 

flowrate at any location and time. Furthermore, the developed model and method is 

extendable and flexible to any other conditions and systems where more uncertainty 

factors and general flow process can be considered and included. Finally, the results 

and analysis in this research is useful and applicable to general open channel flow 

process, since the normalized and dimensionless forms of the model and results are 

presented in the thesis. 

 

1.3 Structure of the Thesis 

This thesis consists of five chapters in total. Following this introduction 

Chapter 1, the literature relating to this research topic is briefly reviewed in Chapter 

2. Specifically, the model development and progress of unsteady open channel flows 

are summarized, and the main stochastic analysis methods applied to open channel 

flows are also presented. Chapter 3 presents the research methodology and the key 

developed results of stochastic models that are used to uncertainty analysis later in 

this study. The governing equations used for analysis, the key assumptions imposed 

for the analytical derivations, the numerical scheme and implementation procedures, 



10 

 

as well as the stochastic analysis process are elaborated in this chapter. Based on the 

developed stochastic model, extensive cases are applied in Chapter 4 for the 

systematical stochastic analysis. The developed model in this study is firstly 

validated by well-established data from the literature (analytical and numerical data) 

to confirm its validity and accuracy.  Afterwards, various cases with typical ranges 

of parameters and uncertainties are studied by the validated model, and the obtained 

results are used for the stochastic analysis of the unsteady open channel flows. 

Finally, the results are systematically analyzed and discussed for the stochastic 

features of complex unsteady open channel flows, especially for the influence and 

importance of different uncertainty factors on system responses. With the obtained 

results and analysis from the Chapter 4, key findings and conclusions are provided in 

the Chapter 5. Meanwhile, useful recommendations are also provided for the design 

and management of open channel systems form perspective of stochastic analysis in 

the end of the Chapter 5.  

For clarity and convenience, the key content of each chapter and connections 

of different chapters are shown in the following flowchart (Figure 1.3). 
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Figure 1.3 Framework of this thesis work 

  

CHPTER 1 INTRODUCTION 

Background information of this research 

CHPTER 2 LITERATURE REVIEW 

A review on the development of open  

channel model and stochastic analysis 

methods 

CHPTER 3 METHOD DEVELOPMENT 

The development of the 1D stochastic model 

and solution methods, and primary verification 

CHPTER 4 MODEL APPLICATIONS 

AND RESULTS DISCUSSION 

The investigation of factors effects based 

on the developed model and results analysis 

CHPTER 5 SUMMARY AND CONCLUSIONS 

A summary of this thesis, conclusion discussion and 

Suggestions for future research 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Modeling and Analysis for Open Channel Flows 

Open channel flows have been widely studied through theoretical analysis, 

modeling and experimental tests for their importance and impacts to the society 

nowadays. In early stage of these studies in this field, experiments are the main 

research method for a direct understanding and observation analysis of the 

phenomena and processes of open channel flow evolutions. Various scientists and 

engineers have conducted many classic experiments through laboratory, pilot or field 

tests, with aim to simulating the natural open channel flows so as to learn the 

characteristics of the flow process. With these efforts, many important theories or 

empirical formulas such as Manning’s equation that was developed for estimating 

average velocity in an open channel flow have been obtained in this field, which 

formed as the important basis on the development and progress of the study. Later, 

more experimental studies on open channel flows have mainly focused on boundary 

shear stress distribution, momentum transfer, energy loss, and resistance in channels 

with complex topography (e.g., compound channels, various slope), although some 

of them were difficult to be described in mathematical forms, which provided 

fundamental understanding and scientific perspective of the physics and mechanisms 

during open channel flow process (Knight and Demetriou 1983, Lin and Soong 1979, 

Myers 1978, Myers and Brennan 1990). Till now in this field, the experimental test 

method is still important and necessary to the further and specific study of open 

channel flows. 

Different from experimental studies, modeling analysis is another important 

but more general way to understand the open channel flow behaviors. As the 
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computation technology has greatly developed during past several decades, and the 

widespread of high-performance computers, modeling analysis based on extensive 

numerical simulations has played, and will continue to play, a more and more 

important role in open channel flow research. In the early stage of modeling analysis, 

when the computational facilities were not well developed, many researchers in this 

field have taken their great efforts to propose, improve and implement mathematical 

models to solve some relatively simple open channel flow problems. For example, 

Yen (1971) re-examined the compatibility of the open channel flow equations for 

unsteady spatially varied flow problems to suit new numerical techniques and higher 

computer performance. The mass, momentum and energy equations for unsteady 

non-uniform flows with incompressible viscous nonhomogeneous fluid with lateral 

flow in cross-section of any shape were derived. By integrating the 3D equations in 

vertical and cross channel direction (assuming no vertical acceleration and small bed 

slope) and replacing viscous terms with friction slope, these equations are reduced to 

1D form (Liggett 1993), which is the well-known Saint-Venant equations (also 

known as 1D shallow water equations), as follows: 

𝜕𝑄

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
− 𝑞 = 0 [2.1] 

𝜕𝑄

𝜕𝑡
+

𝜕(𝑄2 𝐴⁄ )

𝜕𝑥
+ 𝑔𝐴

𝜕ℎ

𝜕𝑥
− 𝑔(𝑆0 − 𝑆𝑓) − 𝑞𝑢 = 0 [2.2] 

where Q is flowrate in the channel, x is distance along flow direction, A is cross-

section area, t is time, q is the flowrate of side inflow, u is the side inflow velocity in 

main flow direction, g is gravity acceleration, h is water depth, S0 is channel bed 

slope and Sf  represents the friction slope. 
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For practical problem applications, equations for special cases were 

formulated by deducing the general equations (kinematic and diffusion wave models 

for flood routing), and hence computation effort can be saved. On this point, Heggen 

(1991) studied several definitions of critical depth and their applicability for different 

channel shapes and velocity profiles. Meanwhile, research focuses were also given to 

the resistance terms in the channel due to cross-section shape, boundary 

nonuniformity, flow unsteadiness, and compound channel resistances (Rouse 1965, 

Yen 2002). Further research on flow resistance estimation and formulating is 

conducted for more precise representation and large-scale roughness (Cheng 2014, 

Cheng et al. 2010). Thereafter, Alias et al. (2011) presented a Godunov-type 

alternative for solving the 1D inhomogeneous shallow water equations with complex 

source terms which has the capability of dealing with highly dynamic and complex 

flood flow. The 1D equations were also developed for storage cell inundation models 

which cost very low computation effort compare to full 2D models (Bates et al. 

2010). Recently, Vila et al. (2017) conducted a 1D width averaged model from 2D 

shallow water equations for constrained flow. These 1D models have showed good 

capability to be coupled with 2D models for hydrodynamic investigation. To 

examine and improve this capability, (Bates and De Roo 2000) combined 2D 

diffusion wave of floodplain flow with 1D kinematic wave for channel flow to 

model floodplain inundation in low land rivers. Furthermore, (Liu et al. 2015a) 

presented a model linking the channel and flood detention basin with complex 

topography and irregular boundary, applying 1D Saint-Venant equations governing 

channel flow and 2D shallow equations simulating floods in flood detention basin. 

To solve these developed 1D or 2D or coupled 1D-2D models, many numerical 

solutions have been proposed and improved during the development process of these 
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models. Among these numerical methods, the finite-difference scheme is one of the 

commonly used and mostly employed for practical applications due to their 

convenience of implementations in the program codes. In this regard, the 

discretization schemes of governing equations can be rather explicit or implicit 

depending on how the terms in these models are evaluated for their influence on the 

modeling results. Another common method is the method of characteristics (MOC), 

in which the partial differential equations (PDEs) of the developed models (1D or 2D) 

are transformed to ordinary differential equations (ODEs) along the characteristic 

curves and thus the solutions are obtained easily from the ODEs. Among these 

methods, the implicit method presents unconditional stability with no limitation on 

computation timestep for variable spatial steps, therefore, it has become very popular 

in 1D model computation (Sturm 2010). Finite element methods and finite volume 

methods are also available for 1D shallow water equations solutions, which are 

commonly adopted for complex systems where the boundary conditions are 

complicated and/or dynamic and thus are usually influential to the flows (Hicks and 

Steffler 1995, Ying et al. 2004). 

Since the wide existence of compound channels for their practicality of flow 

conveyance function, 2D models have become essential for such applications on 

flood inundation researches and appeal the most research interest in past decades for 

its capability to represent 2D flood plain flows. In 2D models, the water depth is 

assumed to be shallow as well, and the equations are depth-averaged. For instance, 

(Keller and Rodi 1988) exploited a depth-averaged form of the k-ε turbulence model 

and conducted a 2D model for compound channel cross-section flow characteristic 

calculation. Limitations of the 2D surface flow equations for overland flows with 

irregular topography and rapidly varying surface were investigated by Tayfur et al. 
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(1993). Afterwards, Liang (2010) developed a second-order accurate 2D model 

extended from 1D shallow water model for flood simulations, which is capable of 

simulating slow-varying inundations to extreme rapid floods in complex domains 

both for natural terrains and urban areas. The differences in capability of 1D and 2D 

models for flood simulation were tested, and the different responses to friction 

parameterizations were captured (Horritt and Bates 2002). Discontinuities in open 

channel were also under investigation by a well-balanced 2D model based on 

shallow water equations (Amiri et al. 2013). For 2D models, finite difference, finite 

volume, and finite element methods have been commonly employed for numerical 

discretizations. Different from 1D numerical technics, finite volume and finite 

element methods are more popular in solving 2D shallow water equations due to the 

complex boundary conditions encountered commonly in 2D geometric systems 

(Alcrudo and Garcia‐Navarro 1993, Anastasiou and Chan 1997, Bermúdez et al. 

1991, Bradford and Sanders 2002, Liu et al. 2015b, Pironneau 1989). For Riemann 

problems arose in the finite volume scheme based applications, the Godunov-type 

scheme has been widely used, which is first-order accurate in both space and time 

and developable for higher-order methods (Fujihara and Borthwick 2000, Liu 2014). 

Apart from the Godunov’s scheme, other approximate Riemann solvers were also 

commonly developed and employed such as Roe’s solver (Roe 1981), HLL solver 

(Harten et al. 1983) for the two-dimensional model solutions. Particularly, for open 

channel equations where Riemann problems are difficult to solve, Benkhaldoun and 

Seaïd (2010) developed a new finite volume method avoiding Riemann solution 

during the time integration process. 

Usually, a 3D model is required if it is necessary to capture the flow 

properties in vertical direction. Fischer-Antze et al. (2001) conducted a 3D model for 
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vegetation covered channel which is able to consider vegetation over the whole 

water depth rather than just apply large roughness to the model. However, 3D 

models usually demand higher computation effort and therefore become more time 

consuming and lower efficiency in practical applications, and as a result, they are 

usually adopted for theoretical research purposes so far. To put forward with the 

progress of 3D modeling for open channel flows, Audusse (2005) introduced a new 

approximation of the Navier-Stokes equations consisting of a set of coupled Saint-

Venant system, which describes vertical profile of the horizontal velocity precisely 

and preserves the efficiency of 1D models. Many commercial or open source 

software/models are currently available and widely used in engineering practice for 

3D open channel computation, such as Fluent, Pheonics (commercial), and 

OpenFOAM, Delft3D (open source) (Teng et al. 2017). These software/models are 

well developed and also validated substantially for complex open channel with 

relatively good computation efficiency for their used advanced programming 

techniques and thus can offer various applications for research works and small-scale 

practical systems. 

Through various applications, these relatively well-developed models and 

solution methods in previous researches still have different limitations and 

disadvantages. For example, they are usually theoretically formulated and developed 

within the assumed computation domain with essential simplifications and 

hypothesizes, which however might become inaccurate/invalid to other practical 

systems, which has been evidenced by the profound discrepancies (or termed as 

errors) between model results and experimental data. It has been known that the 

incapability of numerical schemes might be one of the reasons, while the model and 

data errors can be more significant to such incapability in practical applications, 
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since uncertainty and randomness are always unavoidable in our real-world open 

channel systems (including both natural and artificial systems), especially when the 

knowledge about the studied open channel system is limited (Merz and Thieken 

2005) (see more elaborations in the next section).  Herein, the study focused on 

uncertainty and stochastic characteristics of the open channel flows is of strong 

significance in hydraulic research and engineering. Moreover, it would be helpful in 

better modeling and interpret real-world observations to understand and quantify 

stochastic characteristics of open channel flows, which is then also useful to 

facilitate the theory and practice of open channel flows under complex uncertainty 

conditions. Consequently, this becomes the motivation and purpose of current thesis 

research. 

 

2.2 Uncertainty Studies for Open Channel Flows  

Uncertainty in unsteady open channel flows has been studied for decades, 

with the effects of spatially varying friction resistance, cross-section area and other 

dependent variables on the flow processes investigated widely in the literature. The 

uncertainty factors in hydraulic engineering systems may include: (1) nature 

variability associated with the inherent randomness of natural geophysical processes; 

(2) model formulation uncertainty reflects the inability of the model to precisely 

describe the process in the system; (3) parameter uncertainty from the inability to 

accurately quantify model inputs; (4) data uncertainty; (5) operational uncertainty 

include those associated with construction, manufacture, and other human activities 

(Tung et al. 2006).  
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 The studies emphasizing on the uncertainties of open channels have 

benefited greatly the design and maintenance of hydraulic structures since hydraulic 

structures are inherently subject to potential risks in design and operation associated 

with not only hydrologic events but also many other natural and artificial factors 

(Yen and Tung 1993). Researches on flooding risk analysis, flood management have 

been conducted for the design of hydraulic structures such as flood levees and 

sewers, with models systematically analyzing the various types of uncertainties in 

the hydrologic aspect and hydraulic aspect as well of design, and analysis defining 

the risk and reliability of overtopping. In these studies, the levees were regarded as 

random variable with a particular distribution to obtain the probability (or risk) of 

failure and the expected flood benefits due to the uncertainty of flood levees (Tung 

and Mays 1981, Wood 1977). Thereafter, Chau and Yang (1992) built an expert 

system on hydrodynamics for assisting engineering in unsteady open channel flow 

for river networks. Recently, the artificial intelligence (AI) technology based hybrid 

models have also been popular and used for flood forecasting (Chau et al. 2005). 

In addition to these researches focused on the effects of uncertainties on 

hydraulic structures in open channel, the uncertainties models of open channel have 

also been further examined and widely investigated with stochastic processes. For 

example, Wood and Rodríguez-Iturbe (1975) proposed a Bayesian probability model 

accounts for all sources of statistical uncertainty including parameter and model 

uncertainty to analyze the uncertainty among flood frequency models. Gates and Al-

Zahrani (1996) presented the Saint-Venant model as a set of stochastic PDEs with 

parameters of spatiotemporal random fields, and alternative solution methods are 

discussed and compared based on the consideration of the stochastic governing 

equations and the parameters statistical characteristics. Afterwards, Numerical 
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simulations were conducted by Di Liberto and Ciofalo (2011) which has shown the 

effects of periodic unsteadiness on the structure of main flow and turbulence. At the 

same time, it is worthy of noting that the vegetation effects under random waves of 

flows in the channel systems were also investigated by many researchers where the 

uncertainties were proved to pose substantial influences on the system flows and 

hydraulic performance (Li and Zeng 2009, Li and Zhang 2010). 

Despite of these various studies with regard to uncertainties in open channel 

flows, there has so far not yet a systematical study on the comprehensive 

understanding and analysis for the quantitative impact and relative importance of 

different uncertainty factors in the open channel flow system, with providing exact 

expressions and formulations for such impact description. As presented in the 

introduction chapter, this is the motivation and scope of current thesis research. 

 

2.3 Stochastic Analysis Methods for Open Channel Flows 

Stochastic analysis in engineering has been investigated for many years due 

to the significance and inescapability of the stochastic process occurrence in 

engineering practice. In the literature, it can be summarized that there are two main 

categories of methods employed for stochastic analysis for physical problems: 

simulation methods and non-simulation methods. On the basis of these two 

categories of methods, a combination of simulation methods (such as Monte Carlo 

simulation) and non-simulation method has also been developed and applied 

afterwards to overcome the disadvantages (or part of them) of each method. Overall 

speaking, the simulation method can represent the stochastic processes fairly well 

though it may be computationally intensive, and therefore, it is commonly used to 
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validate and confirm the accuracy and reliability of the relevant non-simulation 

method. In this section, the main representatives of these two categories of methods 

and their combined form developed in the literature are briefly reviewed and 

summarized as follows. 

 

2.3.1 Simulation methods  

Simulation methods are commonly employed for the analysis of stochastic 

process in engineering practice due to their advantages of accuracy and reliability for 

representing different system complexities. In principle, this sort of method deals 

with the random data directly, and therefore it has main advantage in flexibility and 

generality of application since it can deal with any kind of stochastic factors in the 

system if only they can be treated/described appropriately in mathematical or 

numerical forms. In the regard, stochastic simulation methods can incorporate 

complicated features of these systems, allow calculation of any desired set of 

reliability measures, and thus can provide a realistic analysis. Though it is applicable 

to any circumstance in principle, the generation and operation of sample realizations 

for complex systems could be numerous, which leads to the need for great efforts in 

computation. Even for nowadays development of computational capacity, it is still 

impossible to accomplish such stochastic numerical simulation for many practical 

problems. 

Basically, the simulation program of stochastic numerical methods for 

analyzing system reliability consists of two following parts (Wagner et al. 1988): 

(1) The simulation section, which generates realizations of system input 

according to specified probability distributions; 
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(2) The solution section, which gives the solution samples for all realizations 

generated in (1), and obtain the statistics of these samples for probability 

distribution analysis. 

It is also noted that for different open channel systems, e.g., with different 

complexities of flows and structures, the requirements of computational capacity and 

program skills will be greatly different. So far, there still not exists a general 

criterion that can govern such numerical requirements and process for all systems. 

Amongst these numerical methods, the Monte Carlo simulation is the commonly 

used one, and has been proved to be robust and reliable, in principle, to model the 

hydrosystems (Tung et al. 2006), which is taken as example herein for illustrating 

this type of numerical methods. 

In a parametrically nonlinear system with a sufficiently large number of 

simulations, the Monte Carlo method is much superior in accuracy to perturbation or 

first-order methods. The use of Monte Carlo simulation and random field generators 

have played an important role in solving nonlinear stochastic problems that cannot 

be solved by other types of methods such as analytical or semi-analytical techniques. 

(Mantoglou and Wilson 1982). On this point, the Monte Carlo Simulation is the most 

common simulation method used for nonlinear stochastic process modeling and 

analysis.  

In principle, the Monte Carlo simulation method is a broad class of 

computational algorithms relying on repeated random sampling to obtain numerical 

results and can deal with any problem with probability distribution function in 

principle. In more details, the Monte Carlo methods aim to solve two problems 

(MacKay 1998): (a) to generate samples from a given probability distribution; and (b) 
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to estimate expectations of functions under this distribution. In the application of this 

method, the latter problem is very based on the solution of former one (sampling), 

which is used to test the reliability of the samples. 

Regarding the sample generation (the first problem) in the Monte Carlo 

simulation, various sampling methods have been developed in the literature, such as 

simple random sampling which is just an ensemble of random numbers, e.g., the 

Latin Hypercube sampling (LHS) ensuring samples to represent the real variability 

(McKay et al. 2000); and the Orthogonal sampling guaranteeing better representative 

of the real variability (Garcia 2000). However, in complex stochastic processes, the 

input variables are usually correlated to each other, such that difficulty may occur in 

the generation process for accurately representing input random functions. To this 

end, different data generation approaches have been developed, including the linear 

Gaussian state-space model coupled with the well-known and widespread Kalman 

filter; the hidden Markov model HMM filter with a finite state-space Markov chain 

(Doucet et al. 2001); and the Sequential Monte Carlo (SMC) model for more flexible 

and general to provide a convenient and attractive approach for computing the 

posterior distributions. Furthermore, the developed Sequential Gaussian simulation 

(SGs) can model the spatial uncertainty through generation of several equally 

probable stochastic realizations, which are useful and applicable to generate spatial 

variables in open channel flows (Delbari et al. 2009). 

With its various advantages, the Monte Carlo Simulation has been widely 

applied for different purposes in hydraulic engineering problems. For instance, Smith 

and Freeze (1979) conducted a stochastic analysis of 1-D steady state groundwater 

flow through a bounded domain which is divided into a finite set of discrete block, 

and the spatial variations in conductivity are assumed to be presented as a first-order 
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nearest-neighbor stochastic process model. Fai (1987) then employed this method to 

explore the effect of input uncertainty on output variability for the formulation 

developed for the synthesis of random fields in which groundwater flows. Recently, 

it has been used to sample uncertain variables including channel roughness and 

friction slope in the flood water level estimation (Guganesharajah et al. 2006). 

 

2.3.2 Non-simulation methods 

Non-simulation methods of stochastic modeling deal with the partial 

differential equations (PDEs) analytically for describing the hydraulic evolution 

process of open channel flows. In this type of methods, the variables in the 

governing equations are treated as random functions. As a result, the governing 

equations can be transformed into stochastic PDEs with necessary mathematical 

operations, and the solution to which becomes also stochastic functions. Compared 

with former simulation methods, the non-simulation methods are convenient and 

efficient in calculation, but difficulties may occur in the analytical derivation process 

of governing equations because of complicated mathematical work. 

 

Probability distribution function method 

Probability density function (PDF) method is conducted by deriving 

probability density functions from the stochastic PDEs with particular methods. Pope 

(1985) introduced a method whose principle is to solve a modelled transport 

equation for the velocity-composition joint PDF for calculating the properties of 

turbulent reactive flow fields. Later, this method was further developed with the help 
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of Monte Carlo Simulation to calculate the properties of inhomogeneous turbulence 

flows (Pope 1994), and the accuracy of PDF model calculations with different 

models was examined later by others (Cao et al. 2007). Yoon (2003) also proposed a 

method with Fokker-Planck equation (FPE) describing the evolution of the PDF of 

overland flow depth at the downstream section of a hill slope. Under particular 

conditions, this method can produce a good comparison between the predicted 

evolution of the PDF for overland flow depth and the corresponding prediction from 

the Monte Carlo method. Thereafter, A new modeling approach—multiple mapping 

conditioning (MMC) which combines the advantages of PDF and moment equation 

methods is developed for treating turbulent reactive flows (Klimenko and Pope 

2003). More recently, Sett (2007) presented a solution for the evolution of the PDF 

of elastic-plastic stress-strain relationship in 1D form.  

The PDF methods have emerged as one of the most promising and powerful 

approaches for accommodating the effects of turbulent fluctuations in velocity and 

chemical composition in CFD-based modeling of turbulent reacting flows (Haworth 

2010). However, these solution methods are based on the approximation imposed on 

the original system equations, with the accuracy highly dependent on the pre-

understanding of the system. Moreover, in many general and complex cases, it will 

be hardly to obtain the solutions of stochastic PDEs for nonlinear complex systems.  
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Moment equation method 

The moment equations method investigates not a single case but the 

statistical moments of the stochastic processes, which leads to less consideration of 

objects and enhances the efficiency of computation. The moment equations can be 

derived from the stochastic PDEs and the solution of moment equations presents the 

statistical characteristics of the stochastic process. Several commonly used moment 

equation methods are introduced herein. 

 

Spectral method 

The spectral method is accomplished by employing spectral representations 

of the uncertain variables of the PDEs. These uncertain random inputs are expressed 

in the spectral representation with the treatment process of Fourier-Stieltjes integral 

(Gelhar et al. 1979). As a result, the moment equations can be established and solved 

with a series of derivations. This method has been widely applied to solve perturbed 

forms of the stochastic differential equation which describes flow through porous 

media with random variety in hydraulic conductivity (Bakr et al. 1978). Dikow 

(1988) studied a saturated flow problem with spatially varying conductivity in a 

rectangular domain, using discrete spectra to calculate the expected flux across the 

outflow boundary and its variability. Li and McLaughlin (1991) further combined 

the classical Fourier transform with numerical solution techniques, extending its 

application to nonstationary processes. In the study of Si (2008), the spectral analysis 

was applied to study soil hydraulic conductivity, which has significant meaning in 

natural resources management and environment protecting. Furthermore, Ni et al. 

(2011) presented an unconditional approximate spectral method for delineating well 
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capture zones in nonstationary groundwater systems. Thereafter, Ghanbari and 

Bravo (2011) applied spectral methods to study the phase lag between precipitation 

and groundwater-level response. At the same time, Ge and Cheung (2010) extended 

the spectral method for long-wave runup calculation, which is able to minimize 

truncation errors and provide an accurate and robust solution for forecasting of flood 

events. More recently, this method has been further developed with backward 

particle tracking algorithm to delineate stochastic well capture zones in Choushui 

River in Taiwan (Lin et al. 2015). Moreover, the spectral analysis has also been used 

to obtain the design hydrographs based on historical floods (Fuentes-Mariles et al. 

2015).  

On the other hand, the polynomial chaos based spectral method has also 

attracted many studies in different research fields. Xiu et al. (2002) developed a 

generalized polynomial chaos algorithm for modeling the input uncertainty and its 

propagation in flow-structure interactions, in which the random inputs are 

represented spectrally by the use of orthogonal polynomial functions. Polynomial 

chaos was also employed in modeling the input uncertainty and propagation in 

incompressible flow simulations (Xiu and Karniadakis 2003), model problems 

involving simplified dynamic system and Rayleigh-Benard instability (Le Maıtre et 

al. 2004) with Wiener-Haar representation, uncertain representation and propagation 

in CFD computations (Knio and Le Maitre 2006), and for the “non-intrusive” 

analysis of parametric uncertainty in reacting-flow systems (Reagana et al. 2003). 

Afterwards, Marzouk et al. (2007) developed an efficient reformulation of the 

Bayesian approach to inverse problems based on polynomial chaos expansions 

representing random variables. In practical applications of these spectral methods, 

the unknown or a simple basic distribution of the process can be represented by 
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conducting a numerical projection procedure with a set of Wiener-Askey polynomial 

chaos expansion (Xiu and Karniadakis 2002). Therefore, different forms of the 

polynomial methods have been widely developed and successfully applied in 

different fields.  

In these previous studies, the spectral method has been proved to have the 

attractive feature that can provide a response continuous in time (Gambolati 1993). It 

is demonstrated in the literature that, when applied in solving 1D shallow water wave 

problems, this method may have infinite-order accuracy in space and first-order 

accurate in time, and have better performance when the time-stepping errors are 

relatively low (Sinha et al. 1995). When it is applied to groundwater problems, the 

spectral method has the advance of high-order accuracy and fast convergence for 

calculating the flow field in porous media (Fagherazzi et al. 2004, Li and Liu 2015). 

However, it is also shown from various applications that the random processes in 

this type of methods are represented by truncated spectral expansions, which may 

lead to non-exponential convergence of the expansion, therefore induce potential 

inefficiency in computation. 

 

Perturbation method 

The perturbation method is relatively a simple approach in mathematics so 

that is it efficient in practical applications compared to other methods such as the 

spectral method with complicated derivation processes and results. Therefore, the 

perturbation method has become the most popular one among various non-sampling 

methods, in which the random functions are essentially expanded via Taylor series 

around their mean and truncated to a certain order as desired (Xiu 2009). In practical 
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applications, the analysis up to second-order expansion is fairly enough to obtain the 

expected accuracy, while it has to be extended to high-order (>2) analysis for some 

very particular and complex problems.  

For the use of this method, Dettinger and Wilson (1981) conducted the first- 

and second-order analysis of uncertainty for the numerical model of groundwater 

flows. This state-space method utilized a compact matrix calculus notation to derive 

Taylor series expansions of the model for estimating the mean and variance-

covariance properties of piezometric head predictions. Graham and McLaughlin 

(1989) then applied perturbation techniques to the governing transport equation for a 

conservative solute to deriving PDEs for a statistical moment for the analysis and 

prediction of solute transport in heterogeneous saturated porous media, and a 

solution procedure relying on a Galerkin finite element algorithm is also illustrated. 

In an extended application in Andersson and Shapiro (1983), an analytical 

derivation from a first-order perturbation solution was employed with the assistance 

of Monte Carlo simulation to the investigation of stochastic nature of moisture 

content in a soil profile where the saturated hydraulic conductivity was taken as a 

stationary stochastic process. In that study, the link of the perturbation expressions 

with Monte Carlo simulation method has indicated an accurate representation of the 

nature stochastic process, and the result showed that the analytic nature of the 

perturbation solution could represent very well the nature stochastic properties. 

Based on the original perturbation method, Willis et al. (1989) presented a 

new methodology for solving the stochastic hydraulic equations that characterize the 

steady 1D estuarine flow. This method was developed based on the combination of 

quasi-linearization and perturbation methods, and the finite difference approximation 
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of the stochastic differential operators, which assumed Manning’s roughness 

coefficient to be the governing uncertainty source in the model so as to derive the 

stochastic equations. The results of moment equations can include the mean and 

variance of water depth, which were examined and analyzed for a comparison with 

the results of Monte Carlo simulation, in order to understand and investigate the 

effects of random channel roughness on flow process.  

In the study of Horritt (2002), a second-order perturbation approach was 

developed and used to investigate the effects of topographic uncertainty on a 

numerical model of shallow water flow. Finite difference techniques were employed 

to discretize the partial differential governing equations, and the resulted nonlinear 

system was expanded in Taylor series to a second-order performance. The Fourier 

analysis technique was then employed for estimation of the first- and second-order 

approximations, and the results showed that the second-order terms could be very 

significant even for small perturbations. In that study, the Monte Carlo simulation 

was also conducted to verify the developed second-order perturbation model. 

In order to solve particularly complex system, a higher-order analysis is 

necessary to better understand the relationships between variables (inputs and 

outputs) and the system dynamic processes. To this end, the higher-order solutions 

of the means and covariance of hydraulic head for saturated flows in randomly 

heterogeneous porous media were conducted in Zhang and Lu (2004) and Liu et al. 

(2006). This new high-order stochastic approach, termed the Karhunen-Loeve 

decomposition-based moment equation (KLME) in their studies, was actually 

developed on the basis of a combination of Karhunen-Loeve decomposition, 

polynomial expansion and perturbation methods. A series of numerical tests were 

conducted, in comparison with Monte Carlo simulation results, and the results 
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indicated that the KLME approach was more efficient in estimating the covariance 

and means of stochastic variables than the Monte Carlo simulation under the 

condition of same accuracy settings. 

In addition, Chen et al. (2005) proposed a new solution based on the KLME 

approach to the stochastic multi-phase flows. In this problem, the perturbation of the 

two soil properties is firstly decomposed into an infinite series with the help of 

orthogonal normal random variables, and other dependent variables are expanded by 

polynomial expansions and the perturbation method to formulate differential 

equations of different orders. The moments of the dependent variables are then 

constructed from the solutions of these equations. The obtained results have also 

been validated by the Monte Carlo simulations using the finite element heat and 

mass (FEHM) transfer code (Chen et al. 2006), indicating that a better computational 

efficiency has been obtained by the newly proposed method for transient two-phase 

flow problems. 

Recently, Lu (2008) further developed the perturbation method, in which a 

stochastic model was derived for describing the spatial varied roughness and random 

initial boundary conditions in open channel flows, in order to investigate the 

influence range of these two stochastic parameters. But other parameters, such as 

lateral flows, initial flow conditions and channel scales, which were widely observed 

to also have great influence on the unsteady open channel flow process in the 

literature, were not considered and included in that developed method. It is a 

reminder that the current thesis research aims to develop a more general stochastic 

model so as to include and examine these common and important factors in the open 

channel systems. 
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2.4 Summary on Research Gap and Needs 

Despite that the development and progress of different methods (numerical 

and non-numerical methods) in the literature, it is also noted that these existing 

approaches are either computational expensive for applications (e.g. numerical 

methods) or inaccurate/invalid due to many different assumptions/simplifications in 

the method (non-numerical methods), especially for complex and practical 

hydrosystems (Vereecken et al. 2007). However, all these previous studies and their 

results have demonstrated the clear advantages of perturbation methods with regard 

to compromise the computational cost and efficiency of the applications and the 

description/representation of system complexities, compared with other numerical 

and non-numerical methods. From this perspective, it is necessary to further develop 

and extend such effective method to more practical and complex situations so as to 

capture accurately and efficiently the complete stochastic feathers of hydro-systems 

including open channel flow system. For this reason, the perturbation method will be 

adopted as the main tool and method for the further extension and development in 

this thesis research for the stochastic analysis of unsteady open channel flows, with 

the aims to investigate systematically the common and different parameters (system 

and flow) for their influences and relative importance on the unsteady open channel 

flow evolution and process. 
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CHAPTER 3 METHOD DEVELOPMENT AND 

VERIFICATION 

3.1 Governing Equations of 1D Unsteady Open Channel Flow 

As introduced in Chapter 2, the one-dimensional (1D) unsteady open channel 

flow can be modelled by two hyperbolic partial-differential equations (PDEs) 

including the mass equation (continuity equation) and the momentum equation over 

the channel cross-section. The full form of these governing equations, which are also 

known as shallow water equations or St.Venant equations in the literature 

(Schaffranek 1987), can be written as follows: 

 

 2 2
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h Q
B q

t x

Q AQ h gn
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 [3.1] 

where 𝑥 is horizontal spatial coordinate along the channel, 𝑡 is time coordinate, B = 

B(x) is the top width of the channel flow at location x, h = h(x, t) is the water depth 

normal to the horizontal coordinate, Q = Q(x, t) is the flowrate averaged for the 

cross-sectional area, β is the momentum coefficient, q = q(x, t) is the lateral inflow 

per unit length of channel, u = u(x, t) is the x-component of lateral flow velocity, g is 

the gravitational acceleration, R is the hydraulics radius, n is the roughness 

representation since Manning’s formula is applied for friction slope expression, ξ is 

the wind-resistance coefficient, Bc is the top width of conveyance part of cross 

section, Uc is the wind velocity and α is wind direction measured from positive x-

axis. 
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It is noted that the full form of governing equations in Eq. [3.1] is relatively 

complicated for analysis due to the difficulties of the complex mathematical 

expressions of system configurations (e.g., channel shape), flow processes (e.g., 

turbulence dynamics) and external factor characteristics (e.g., wind and friction).  

For the solvability and feasibility to the development of stochastic model in this 

study, several key assumptions are made as follows: 

(a) The water is incompressible and homogeneous, and the density and viscosity 

of water are constant. 

(b) The water pressure distribution is hydrostatic. 

(c) The channel bed slope is relatively mild and constant. 

(d) The channel cross section is rectangular and wide, so the area of cross section 

can be A = Bh, and the hydraulic radius could be illustrated as R = h. 

(e) Frictional resistance is the same as steady flow, so the Manning’s formula 

can be used to describe the friction loss. 

(f) Wind resistance is negligible. 

With these assumptions, the governing equations of 1D unsteady open 

channel flow with lateral flow in wide rectangular open channels can be transformed 

into: 

 

2 2 2 2 1 3
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  [3.2] 

Within this simplified form, the unknown variables are only the water depth 

h and velocity v, which would be more concise and efficient in later perturbation 

treatment and computation. Therefore, the governing equations of Eq. [3.2] are a set 
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of partial differential equations expressing the mass and momentum conservations in 

a relatively simplified open channel. The initial and boundary conditions describing 

the initial state of flow and boundaries of the computation flow region are required to 

obtain the solution of a designated flow problem. 

 

Initial conditions 

The steady state flow water surface and velocity distribution are taken as the 

initial condition for solving the governing equations, which are described by: 

 ℎ(𝑥, 0) = ℎ𝐼(𝑥), 𝑣(𝑥, 0) = 𝑣𝐼(𝑥) [3.3] 

where hI(x) and vI(x) are the initial water surface profile of the channel flow and the 

cross-sectional average velocity. For simplicity, the steady uniform flow is used as 

initial conditions for theoretical analysis, in which the water surface profile and 

velocity distribution can be analytically obtained, i.e., the normal depth and velocity 

of a particular open channel system. 

 

Boundary conditions 

Boundary conditions of open channel flow problems usually include the 

variations of water surface, velocity or flow rate, and the relation between velocity 

and water depth and the boundaries of the solution domain. For subcritical flow, both 

the upstream and downstream boundaries are required since the perturbed wave in 

the flow may propagate to both ends. For the supercritical flow, two upstream 

conditions would be necessary since the wave only propagates downstream under 

this condition. In this study, focus is given only to the subcritical flow, while similar 
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analysis method and process can be performed to the supercritical flow situation. For 

this purpose, an upstream boundary condition and a downstream boundary condition 

are needed to specify in a mathematical form to obtain the solution. 

For the upstream boundary, an inflow profile is specified and given by: 

 ℎ(0, 𝑡)𝑣(0, 𝑡) = 𝑞𝑢(𝑡) [3.4] 

in which qu(t) is the flow rate of inflow at the upstream boundary of the channel. 

In this study, a water level time series at downstream boundary is taken for 

the consideration, so as to eliminate the potential influence from downstream end to 

the wave behavior from upstream under analysis (Napiorkowski and Dooge 1988). 

That is: 

  ℎ(𝐿𝑒 , 𝑡) = ℎ𝑒(𝑡) [3.5] 

where Le represents the location of the end of the channel, and he represents the 

water level at the end node. 

 

3.2 Moment Equations for 1D Unsteady Open Channel Flows 

The input parameters of the governing equations for describing realistic 

channel flows are usually accompanied by uncertainties with randomness, therefore, 

the solution to the governing equations is also subject to stochastic characteristics. 

The random parameters concerned in the model of current study include: the channel 

width B, lateral flow per channel length q, the lateral flow velocity in x-component u, 

Manning’s n for roughness, bed slope S0, initial water depth hI, initial velocity vI, and 

inflow rate at upstream boundary qu. 
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To express and understand the probability distribution functions of these 

stochastic input parameters, experimental tests or field measurement can be one 

option for research, which is actually impossible or impractical for most of cases 

because of the unrealistic sample sizes and resolutions for measurement. In this 

regard, the statistical method might be another feasible way to obtain the stochastic 

moments of these parameters. Similarly, it is also difficult to obtain or solve directly 

the probability distribution functions of the unknown variables, i.e., water depth h(x,t) 

and velocity v(x,t)  in the governing equations so as to understand the stochastic 

properties of flow processes. However, if the statistical moments of water depth and 

velocity are of interest and can be dealt by moment equations method instead (where 

equations with stochastic variables can be greatly simplified), the investigation for 

the flow characteristics becomes possible and more practical (Lu 2008). For this 

purpose, the means of the variables water depth and velocity, denoted by <h(x,t)> 

and <v(x,t)> respectively, and their covariance Chh(x,t;χ,τ), Chv(x,t;χ,τ) and Cvv(x,t;χ,τ) 

are the main concerns to solve and analyze, where the covariance here is defined as 

Chh(x,t;χ,τ) = <h’(x,t)h’(x,t)>, in which h’ represents the fluctuation of water depth, 

with independent variables (x,t) from the sample space and (χ,τ) being a probability 

measure. In principle, the covariance of these variables reflects the tendency of the 

changes for the corresponding variables at (x,t), when the variables are changing and 

other parameters are measured at different location and time (χ,τ). 

The moment equations governing the means and covariance of water depth 

and velocity of unsteady open channel flow can be derived from the 1D unsteady 

channel flow model. In this study, the perturbation expansion based moment 

equation method is adopted for its efficiency and accuracy of computation, which is 

described in detail later in the next section. As stated above, the random parameters 
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for the stochastic analysis include the channel width, lateral flowrate and flow 

velocity, channel bed slope, initial conditions, and boundary conditions. 

 

Perturbation expansion of 1D model 

To solve the 1D model, the unknown variables of water depth and flow 

velocity are firstly expanded into infinite series as represented by follows (Lu, 2008): 

  
       

       

0 1 2

0 1 2

k

k

h h h h h

v v v v v

    

    
 [3.6] 

in which h(k) represents the k th-order in the perturbation parameter scale factor 𝛿 

which will be explained later, namely h(k) = Ο(δk). In physics, different orders of the 

series represent the influences or results from the system dynamic responses of 

different scales. For example, usually the zero order terms refer to the results of 

mean flow scales, while the first order ones for the results of system boundary 

variation induced scales such as channel bank width changes or bottom slope 

changes, which have relatively smaller scale than whole system domain (mean flow). 

A further smaller scale might be resulted from the friction of the channel bottom 

roughness, and so on. As a result, the overall/total response of the system dynamic 

flows becomes the superposition of all these different scale responses or influence 

results (Afzal et al. 2009, Lambrechtsen 2013, Smith and McLean 1984). 

To examine the impacts of the uncertainties of different system and input 

parameters, the following perturbation factors are considered and applied to this 

study regarding the stochastic characteristics of unsteady channel flows (i.e., each 

random parameter is composed of the mean part with “<>” and perturbed part with 

“ ′ ” respectively):  
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Here we take a variable A to explain the perturbation parameter scale factor δ. 

This factor δ is assumed to be very small, and the variable A can thus be 

approximated into a series as follows: 

𝐴 = 𝐴0 + 𝛿𝐴1 + 𝛿2𝐴2 + 𝛿3𝐴3 + ⋯ 

Since the perturbation parameter scale factor δ is small (in order to 

distinguish and highlight the difference of different scales), the high order terms in 

the series become successively small compared to the lower order terms. Therefore, 

by truncating this series we could obtain an approximate perturbation solution for the 

variable A. 

As a result of these assumptions and approximations, the kth-other variable h(k) 

in this study equals δkhk and v(k) in this study equals δkvk. Similarly for the known or 

input parameters, q’ is of the same order as δq, which is defined by δq = σq/<q> and 

σq is the standard deviation of q. Since δq ≪ 1, the convergence of the perturbation 

expansion of ℎ  and 𝑣  as well as other perturbation parameters δn, δB, δqu… are 

guaranteed from the perspective of mathematical operations, with the minimum of 

which providing the best convergence. 
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Furthermore, to apply the above perturbation method, additional treatments 

for some special terms in the governing equations are necessary. Particularly, the 

term         h-1/3 in equation [3.2] is expanded with binomial expansion as  

ℎ−1 3⁄ = (ℎ(0))
−1/3

[1 +
ℎ(1)

ℎ(0)
+

ℎ(2)

ℎ(0)
+ ⋯ ]

−1/3

= (ℎ(0))
−1/3

[1 −
1

3

ℎ(1)

ℎ(0)
−

1

3

ℎ(2)

ℎ(0)
+

2

9
(

ℎ(1)

ℎ(0)
)

2

+ ⋯ ] 

This expansion converges under the condition δ ≪ 1, since ℎ
(1)

ℎ(0)⁄  and 

ℎ(2)

ℎ(0)⁄  are order of δ and δ2 respectively. 

Substituting these variable expansions into the governing mass and 

momentum equations [3.1] & [3.2], yields 
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   [3.8] 

Consequently, the results of any order representative from the governing 

equations can be expressed through extracting and collecting the relevant terms in 

that order/scale (i.e., with the same order of factor δ). Specifically, the zeroth-order 

equations and the corresponding initial and boundary conditions can be obtained as, 
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 [3.9] 

which has exactly the same format as the original governing equation, and 

thus can be solved by the well-developed numerical schemes and tools for the 1D 

unsteady channel flow model in this field. 

Accordingly, all the perturbation equations can be obtained from the derived 

equation [3.8] above. For example, the first-order perturbation equation with the 

corresponding initial and boundary conditions is shown in following equation [3.10]. 

All other different order perturbation equations can also be extracted and obtained 

easily from the derived equation [3.8] above by following this similar procedure, 

which are omitted in this study. 
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 [3.10] 

It is noted that the formats of the perturbation equations (even for the 1st 

order equation) are much more complicated than the zeroth-order or original 

governing equations, which are very difficult to solve directly and accurately by so-

far available numerical methods. Particularly, the complexity of these perturbation 

equations increases rapidly as the order grows and the number of unknown 

parameters required for a solution also increases progressively. As illustrated 

formerly in this study, only the first two statistical moments are of interest and used 

to understand and investigate the stochastic characteristics of unsteady channel flows 

in this preliminary research, and therefore, these complex perturbation equations are 

truncated to the first-order approximations only in the following moment analysis. 
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Moment representation 

As shown in equation [3.9], the zeroth-order equations are identical to the 

original governing equations with representing the mean flow state with all potential 

random inputs, which are used to solve the mean water depth and velocity of the 

uncertain unsteady open channel flow. For convenience, the flow with mean water 

depth and mean velocity of the open channel system is termed mean flow or base 

flow hereafter. Since the stochastic characteristics are the objective of this study (but 

not the mean flow), the available free solution tool (i.e., software platform of Storm 

Water Management Model, SWMM) is adopted in this study to compute the mean 

flow results so as to provide the basis for the analysis of the statistical moments (i.e., 

stochastics). 

On the other hand, the solutions of first-order equation [3.10] represent the 

perturbations (variations) of the unknown water depth and velocity on the basic of 

the mean flow. Instead of solving directly the perturbation equations, the covariance 

or cross-covariance is used to express the variation and stochastic properties of the 

unsteady open channel flows. To this end, the obtained perturbation equations are 

converted into the corresponding covariance equations so that the statistical moments 

can be analyzed explicitly.  

To obtain the covariance equations, multiplying the perturbation of 

unknowns water depth and velocity at different location and time ℎ′(𝜒, 𝜏), 𝑣′(𝜒, 𝜏) 

with the first-order equation [3.10] respectively and then taking expectation for the 

whole equation, yields two sets of following equations [3.11, 3.12], with the 

solutions to which are the cross-covariance 𝐶ℎℎ(𝑥, 𝑡; 𝜒, 𝜏), 𝐶ℎ𝑣(𝑥, 𝑡; 𝜒, 𝜏)  and 
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𝐶𝑣𝑣(𝑥, 𝑡; 𝜒, 𝜏). Noting that the covariance terms are denoted as 𝐶ℎℎ, 𝐶𝑣𝑣 and 𝐶ℎ𝑣 for 

simplification and readability in the covariance functions. 

(1) Covariance equations for 𝐶ℎℎ and 𝐶ℎ𝑣: 
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   [3.11] 

 

 

 

 

 

 



45 

 

(2) Covariance equations for 𝐶𝑣ℎ and 𝐶𝑣𝑣: 
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  [3.12] 

However, to solve these two sets of equations, a series of model input 

parameters with unknown covariance expressions, including 

𝐶𝑏ℎ, 𝐶𝑞ℎ. 𝐶𝑢ℎ, 𝐶ℎ𝑖ℎ, 𝐶𝑣𝑖ℎ, 𝐶𝑞𝑢ℎ, 𝐶𝑛ℎ  and 𝐶𝑏𝑣, 𝐶𝑞𝑣. 𝐶𝑢𝑣, 𝐶ℎ𝑖𝑣, 𝐶𝑣𝑖𝑣, 𝐶𝑞𝑢𝑣, 𝐶𝑛𝑣 , are 

necessary. For this purpose, the similar mathematical operations are imposed to the 

perturbation equation in terms of each input parameters. That is, multiplying the 

first-order equation with the perturbations of all these required random input 

parameters (namely 𝐵, 𝑞, 𝑢, ℎ𝑖 , 𝑣𝑖 , 𝑞𝑢, and 𝑛) respectively and taking expectations, 

yields the following equations for expressing the covariance of the uncertain input 

parameters. 
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(3) Covariance equations for 𝐶𝑏ℎ and 𝐶𝑏𝑣: 
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(4) Covariance equations for Cqh and Cqv: 
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(5) Covariance equations for 𝐶𝑢ℎ and 𝐶𝑢𝑣: 
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(6) Covariance equations for 𝐶ℎ𝐼ℎ and 𝐶ℎ𝐼𝑣: 
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(7) Covariance equations for 𝐶𝑣𝐼ℎ and 𝐶𝑣𝐼𝑣: 
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(8) Covariance equations for 𝐶𝑞𝑢ℎ and 𝐶𝑞𝑢𝑣: 
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(9) Covariance equations for 𝐶𝑛ℎ and 𝐶𝑛𝑣: 
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(10) Covariance equations for 𝐶𝑠ℎ and 𝐶𝑠𝑣: 
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  [3.20] 

Consequently, the solution of statistical moments (covariance or cross-

covariance) to the first-order perturbation equation can be obtained by combining 

equations [3.11] to [3.20]. All the input parameters of equations [3.13-3.20] are 

zeroth-order based results that are deterministic and available in advance. With 

obtained 𝐶𝑏ℎ, 𝐶𝑞ℎ. 𝐶𝑢ℎ, 𝐶ℎ𝑖ℎ, 𝐶𝑣𝑖ℎ, 𝐶𝑞𝑢ℎ, 𝐶𝑛ℎ  and 𝐶𝑏𝑣, 𝐶𝑞𝑣. 𝐶𝑢𝑣, 𝐶ℎ𝑖𝑣, 𝐶𝑣𝑖𝑣, 𝐶𝑞𝑢𝑣, 𝐶𝑛𝑣 

from equations [3.13] through [3.20], equations [3.11] and [3.12] can be solved and 

the statistical moments of decision variables (water depth and flow velocity) ,  𝐶ℎℎ, 

𝐶𝑣𝑣 and 𝐶ℎ𝑣 , are then obtained.  
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Stochastic flowrate 

Based on the perturbation method illustrated above, the statistical moments 

of two decision variables (water depth ℎ and flow velocity 𝑣) are obtained for the 

analysis of stochastic characteristics of unsteady open channel flows. In addition to 

the water depth and flow velocity, however, the flowrate is another quantity/variable 

that is of great interest in engineering field. In deterministic theory and definition, 

the variable flowrate (usually denoted as Q) is actually dependent on those two 

obtained variables – water depth h and flow velocity v. To obtain the stochastic 

result of this additional variable in this study, the following operations are performed 

on the basis of the two formerly obtained variables. 

Since 𝑄(𝑥, 𝑡) = ℎ(𝑥, 𝑡)𝑣(𝑥, 𝑡) , the perturbation expansion for 𝑄(𝑥, 𝑡) can be 

expressed as: 

𝑄(0) + 𝑄(1) + 𝑄(2) + ⋯ = (ℎ(0) + ℎ(1) + ℎ(2) + ⋯ )(𝑣(0) + 𝑣(1) + 𝑣(2) + ⋯ ) 

Therefore, the following results can be obtained: 

Zeroth-order:  𝑄(0)(𝑥, 𝑡) = ℎ(0)(𝑥, 𝑡)𝑣(0)(𝑥, 𝑡) 

First-order: 𝑄(1)(𝑥, 𝑡) = ℎ(1)(𝑥, 𝑡)𝑣(0)(𝑥, 𝑡) + ℎ(0)(𝑥, 𝑡)𝑣(1)(𝑥, 𝑡) 

Accordingly, the mean and covariance of the flowrate 𝑄 are: 

〈𝑄(𝑥, 𝑡)〉 = ℎ(0)(𝑥, 𝑡)𝑣(0)(𝑥, 𝑡) 

𝐶𝑄𝑄(𝑥, 𝑡; 𝜒, 𝜏) = ℎ(0)(𝑥, 𝑡)ℎ(0)(𝜒, 𝜏)𝐶𝑣𝑣(𝑥, 𝑡; 𝜒, 𝜏)

+ ℎ(0)(𝑥, 𝑡)𝑣(0)(𝜒, 𝜏)𝐶𝑣ℎ(𝑥, 𝑡; 𝜒, 𝜏)

+ ℎ(0)(𝜒, 𝜏)𝑣(0)(𝑥, 𝑡)𝐶ℎ𝑣(𝑥, 𝑡; 𝜒, 𝜏)

+ 𝑣(0)(𝑥, 𝑡)𝑣(0)(𝜒, 𝜏)𝐶ℎℎ(𝑥, 𝑡; 𝜒, 𝜏) 
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Based on the solved variables ℎ(0)(𝑥, 𝑡) , 𝑣(0)(𝜒, 𝜏) , 𝐶𝑣𝑣(𝑥, 𝑡; 𝜒, 𝜏) , 

𝐶𝑣ℎ(𝑥, 𝑡; 𝜒, 𝜏), 𝐶ℎ𝑣(𝑥, 𝑡; 𝜒, 𝜏), 𝐶ℎℎ(𝑥, 𝑡; 𝜒, 𝜏) from the previous perturbation method, 

the mean and covariance of the variable flowrate can thus be obtained from these 

expressions. 

To summarize, the procedure of the perturbation method to solve the 1D 

unsteady open channel flows is shown in the flowchart of Figure 3.1. The details on 

the numerical scheme and method for each solution step in this procedure are 

presented in the next section.  

 

3.3 Numerical Scheme and Method 

Both the obtained zeroth-order and first-order moment equations are partial 

differential equations (PDEs), and thus it is usually difficult to obtain the analytical 

solutions, especially under complex system and flow conditions. Therefore, 

numerical methods such as finite difference or finite volume are usually employed to 

solve these equations. It is also noted that all the moment equations from [3.11] to 

[3.20] are linear PDEs, which are easily solved by using many well-established 

numerical schemes. In this study, the Preissmann four-point implicit difference 

scheme, which is widely used scheme in open channel flow modeling, is adopted in 

this study (Fread 1974b). As shown in Figure 3.2, the whole system/solution 

range/domain is discretized into small domains with grids, with axes of 𝑥 and 𝑡 for 

spatial and temporal coordinates, respectively. As a result, each partial differential 

term could be approximated by 
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 [3.21]  

where 𝜃  is a weighting coefficient, 𝑓  represents the variables involved in the 

equations, and 𝑓𝑖
𝑗
 refers to the value of variable at the time-space grid point (𝑖, 𝑗).  

 

Figure 3.1 Flow chart of the model solution process 

mean of Qu & q Solve mean of h & v 

𝐶𝑞𝑢𝑞 , 𝐶𝑞𝑢𝑞𝑢, 𝐶𝑞𝑢𝑛, 𝐶𝑞𝑢𝑏, 𝐶𝑞𝑢𝑠, 𝐶𝑞𝑢ℎ𝐼, 𝐶𝑞𝑢𝑣𝐼 

𝐶𝑞𝑞 , 𝐶𝑞𝑞𝑢, 𝐶𝑞𝑛, 𝐶𝑞𝑏, 𝐶𝑞𝑠, 𝐶𝑞ℎ𝐼, 𝐶𝑞𝑣𝐼 

𝐶𝑏𝑞 , 𝐶𝑏𝑞𝑢, 𝐶𝑏𝑛, 𝐶𝑏𝑏, 𝐶𝑏𝑠, 𝐶𝑏ℎ𝐼, 𝐶𝑏𝑣𝐼 

𝐶𝑠𝑞 , 𝐶𝑠𝑞𝑢, 𝐶𝑠𝑛, 𝐶𝑠𝑏, 𝐶𝑠𝑠, 𝐶𝑠ℎ𝐼, 𝐶𝑠𝑣𝐼 

𝐶𝑛𝑞 , 𝐶𝑛𝑞𝑢, 𝐶𝑛𝑛, 𝐶𝑛𝑏, 𝐶𝑛𝑠, 𝐶𝑛ℎ𝐼, 𝐶𝑛𝑣𝐼 

𝐶ℎ𝐼𝑞 , 𝐶ℎ𝐼𝑞𝑢, 𝐶ℎ𝐼𝑛, 𝐶ℎ𝐼𝑏, 𝐶ℎ𝐼𝑠, 𝐶ℎ𝐼ℎ𝐼, 𝐶ℎ𝐼𝑣𝐼 

𝐶𝑣𝐼𝑞 , 𝐶𝑣𝐼𝑞𝑢, 𝐶𝑣𝐼𝑞 , 𝐶𝑣𝐼𝑞, 𝐶𝑣𝐼𝑞, 𝐶𝑣𝐼𝑞, 𝐶𝑣𝐼𝑞, 𝐶𝑣𝐼𝑞 

𝐶𝑞ℎ, 𝐶𝑞𝑣, 𝐶𝑞𝑢ℎ, 𝐶𝑞𝑢𝑣,𝐶𝑏ℎ, 𝐶𝑏𝑣 𝐶𝑛ℎ,𝐶𝑛𝑣,𝐶𝑠ℎ,𝐶𝑠𝑣,𝐶ℎ𝐼ℎ,𝐶ℎ𝐼𝑣,𝐶𝑣𝐼ℎ,𝐶𝑣𝐼𝑣 

Solve 𝐶ℎℎ(𝑥, 𝑡; 𝜒, 𝜏), 𝐶ℎ𝑣(𝑥, 𝑡; 𝜒, 𝜏), 𝐶𝑣ℎ(𝑥, 𝑡; 𝜒, 𝜏), 𝐶ℎ𝑣(𝑥, 𝑡; 𝜒, 𝜏) 

Solve 𝐶𝑄𝑄(𝑥, 𝑡; 𝜒, 𝜏) 
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Figure 3.2 Discretization grids for computation 

 

Based on the Preissmann four-point implicit difference scheme, this 

difference form is unconditionally stable if 0.5 ≤ θ ≤ 1 and the accuracy order 

decreases from second to first as the value of θ grows from 0.5 to 1. In this study, the 

value of θ = 0.55 is taken to minimize the loss of accuracy order with the growing 

value of θ, and at the same time to avoid the possibility of pseudo-instability (Fread 

1974a).  

With this numerical scheme, all the partial differential equations [3.11-3.20] 

are thus discretized. For n grids of the whole channel domain, 2n equations and 2 

boundary equations are obtained, and therefore, the solution of (2n + 2) unknowns 

become possible. It is noted again that these moment equations are linear PDEs, and 

thus the following linear matrix equation can be obtained: 

𝐽𝑋𝑗+1 = 𝐵 
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where J stands for the Jacobian matrix and Xj+1 represents the (2n + 2) unknowns at 

timestep j + 1. Since J and B are both formed by knowns for the current computation 

step, the Gaussian elimination is then applied here to provide an efficient solution 

process with fast convergence speed (Hougardy and Vygen 2016).  

This numerical scheme and procedure are successfully implemented in the 

MatLab based program (named “Stopch”), which allows a flexible input and output 

definitions, and thus may provide an integrated platform for simulating and 

analyzing the stochastic process of unsteady open channel flows. 

 

3.4 Base Flow Computation 

As mentioned in section 3.2, the software package of Storm Water 

Management Model (SWMM) is employed in this study to compute the base flow 

condition because of its wide recognitions with regard to accuracy and efficiency in 

this field. Moreover, this software is freely available and open source based tool, 

which can be easily integrated into the developed stochastic framework in this study 

(the MatLab platform “Stopch”). 

In this research, the whole designed channel system under computation is a 

rectangular shaped channel with the width of 20m and length of 60km. The 

average/mean channel bottom (bed) slope is set as 0.5m decrease in elevation per 

kilometer (i.e., 0.5‰). For numerical simulation, the channel is divided into 100 

sections (i.e., n = 101). An inflow time series profile is given at the upstream 

boundary, a water level control with negligible wave reflection is set at the end of the 

channel. In the study of lateral flows, the inflow is given at the first 10 nodes from 

nodes 2 to 11 as shown in Figure 3.3(a) (or the second 10 nodes from nodes 12 to 21 
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in Figure 3.3(b)). Once the base flow conditions are obtained from the SWMM tool, 

the results are then sent to the stochastic analysis framework (Figure 3.1) as 

input/known conditions. 

 

Figure 3.3 (a) inflow at upstream nodes; (b) inflow at middle channel nodes 

Despite that these specific channel system conditions and settings are adopted 

throughout this thesis research, the obtained results for stochastic analysis are 

basically converted into appropriate forms of normalization, so as to provide general 

views/findings and conclusions to this research field. 

 

3.5 Primary Verification for the Model 

This model and solution methods are employed to compute a simple case, 

with the results compared with the solutions obtained in a previous research which 

were presented by both numerical and the analytical approach (Chen et al. 2017). 

(b) 

(a) 

Inflow at node 2 to 11 

Inflow at node 12 to 21 
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The following initial and system conditions are taken to conduct this 

computation: (1) cross-covariance functions 𝐶𝑢𝑞𝑢, 𝐶𝑞𝑞𝑢  are zero; (2) the mean 

velocity and water depth in the channel are steady and uniform; (3) the channel is 

semi-infinite so that the downstream boundary effect is negligible. 

Therefore, the hypothetical channel in this case is set to be semi-infinite with 

a constant bed slope S0 = 0.0005, channel width B = 20m, Manning coefficient is set 

to be n = 0.03, and the uniform steady mean flow is assumed as Fr = 0.25, Q = 

20m3/s. The results are analyzed in terms of the dimensionless independent variables 

defined with the help of bottom slope, mean water depth and velocity as 

 
   0 0

0 0 0/ ; /L h s T L v   [3.22] 

The upstream boundary which is the stochastic process of the upstream 

inflow is generated by an exponential covariance function as 

    2

0; expququ qu quC t t T       [3.23] 

where  𝜎𝑞𝑢
2  is the variance of inflow discharge, and t, τ are independent time 

positions, λqu is the correlation length of the exponential distribution which is set to 

be 0.27. 

Under these conditions, the results of the uncertainty of unsteady open 

channel flows based on the developed method and procedure in this research are 

obtained and shown in Figure 3.1, in which the results from the literature (Dooge et 

al. 1983, Lu 2008) are also plotted in the figure for comparison. For illustration, only 

the temporal variation of the uncertainty covariance 𝐶𝑞𝑢𝑄  at the location x = 5L0 

along the channel are extracted and shown here for the comparative analysis. 



61 

 

Figure 3.4 shows clearly the good agreement at early stage of the results by 

different methods (numerical in this study and both numerical & analytical results 

from literature), which confirms the validity and accuracy of the derived stochastic 

model and the developed computation methods in this research. The lower 

covariance value after the crest resulted mainly from the rather small grid density 

while at present stage this study cannot afford the computation effort for larger grid 

system. Afterwards, the developed model and methods are further applied to analyze 

more complicated variable influences on the stochastic process of the complex 

unsteady open channel flows in this research. 

 

Figure 3.4 Comparison between results from this model and the literature 
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3.6 Summary 

In this chapter, a 1D stochastic open channel flow model is developed based 

on the 1D St.Venant equations with the help of the perturbation method for solution 

to the first two statistical moments (mean and variance) of flow properties. The 

original St.Venant equations are simplified with several assumptions at first, and 

then equations of different orders are derived, in which zeroth-order equations 

governs the mean flow condition, and first-order equations represents the 

fluctuations of flow properties. Afterwards, the covariance equations are derived 

based on the first-order equations. The software EPA SWMM is employed to obtain 

the solutions to mean flow, and the covariance equations, which are linear partial 

differential equations, are discretized in Preissmann four-point scheme and solved by 

Gaussian Elimination Algorithm (also known as row reduction). The whole solution 

process is introduced then, and the detailed setup in EPA SWMM is also described. 

This stochastic model and solution methods are then primarily verified by 

comparison of model computation results for a simple case and the results from the 

literature. It is found that the covariance data computed from this model and the 

literature match good in magnitude and tendency despite there is still little disparity 

possibly due to subtle differences in initial setup. In next chapter, this model will be 

applied in more complicated conditions and more variables are to be considered for a 

general understanding of the stochastic behavior in complex open channels. 
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CHAPTER 4 MODEL APPLICATIONS AND RESULTS 

DISCUSSION 

4.1 Introduction 

As presented in the former chapter, the 1D stochastic model has been 

developed and validated in this research for capturing the first two statistic moments 

of the unsteady flow process in complex open channels with different uncertainties, 

namely the mean and variance of water depth and flow velocity (or flowrate). In this 

chapter, this developed stochastic flow model is applied for the analysis of stochastic 

characteristics in unsteady open channel flows under different conditions, with aim 

to understand and analyze the influences of such different conditions/factors on the 

variability of unsteady flow responses in the open channel. In this research, the 

considered factors affecting the uncertainty propagation in the open channel flows 

include: channel top width B, bed slope S, channel roughness (Manning’s roughness 

coefficient n), upstream boundary inflow Qu, and lateral inflow q along the channel. 

In particular, the random features of these factors are considered to be both spatially 

and temporally correlated, so as to mimic the common situations in the realistic open 

channel flow process. As a result, this stochastic model may provide spatial-temporal 

solutions for the unsteady flow process including the mean water depth h and flow 

velocity v, and their standard deviations σh and σv for better analysis of uncertainty 

propagation of the system responses. Meanwhile, from these results, the probability 

distribution function of flow velocity v (and also flowrate) and water depth h could 

be effectively estimated with the assumption that these quantities are in Gaussian 

distribution. 
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4.2 Numerical Experiment 

In this research, a hypothetical open channel system (as shown in Figure 4.1 

below) is employed to conduct extensive numerical applications, in order to analyze 

the stochastic characteristics of unsteady open channel flows. In this numerical 

experimental system, the channel is assumed to be prismatic and rectangular, with 

deterministic parameters (i.e., mean values) as follows: total channel length L = 

48km, channel width B = 20m, channel bed slope S = 0.0005, and the Manning’s 

roughness coefficient n = 0.03. For simplicity and illustration purposes, the initial 

state of the flow in the channel is set to be a uniform steady flow with a flowrate Q = 

20m3/s, water depth h = 1.25m and average velocity v = 0.8m/s. Under this condition, 

the Froude number for the initial flow Fr = 0.23. For unsteady flow state, the inflow 

from upstream boundary (i.e., left hand side end of the channel in Figure 4.1) is 

given by a time-dependent variation function of flowrate in each application case, 

and a settled surface height h = 1.25m (downstream control has little effects on 

location far from channel end) (Napiorkowski and Dooge 1988) is given to the 

downstream discharge end of the channel (i.e., right hand side end of the channel in 

Figure 4.1). The total simulation duration for the unsteady flow process of this open 

channel system is about 10 hours (i.e., before the flooding wave reflection from the 

downstream end to avoid the analysis complexity). After the grid dependence tests 

for the deterministic flow condition, the temporal and spatial grid numbers are set to 

be 100 and 80, to obtain an effective trade-off the efficiency and accuracy for the 

computation.  
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Figure 4.1 (a) schematic diagram for wave propagation in the hypothesis channel; (b) 

cross-section shape of the channel at x = 1km 

With the consideration that parameters at closer location (time/space) usually 

have stronger relation, the random parameters for stochastic flow process in this 

study are assumed to be distributed in an exponential manner (convenient in 

changing magnitude and correlation strenth) with correlation in either space or time 

or both (though the real world scenario can be more complex), and for illustration in 

this research, these parameters are supposed to be second-order stationary in the 

application cases, with following expression: 

 𝐶𝑛𝑛(𝑥; 𝜒) = 𝜎𝑛
2 ∗ exp (−|𝑥 − 𝜒|/𝜆𝑛𝐿0) [4.1] 

As a result, the covariance 𝐶𝑛𝑛(𝑥; 𝜒)  only depends on the distance or time lag 

between points ( | t – τ | or | x – χ | ), where (t, x) and (, ) are two sets of variables 

for different times and locations. Specifically, the standard deviation 𝜎𝑛 governs the 

(b) 

(a) 

h 

v 

h 

B = 20m 
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magnitude of uncertainty/randomness of each parameter and the coefficient λn shapes 

the level of variation in space (or time for other variables). All the parameters are 

considered in such similar way, and the detailed exponential distribution functions of 

these model input parameters are to be presented in each study case study later. 

 

4.3 Stochastic Influence of Random Upstream Inflows 

In this section, the influence of random upstream inflows on the stochastic 

response and uncertainty propagation of the open channel flows is firstly 

investigated, with followed by other factors in the next sections. It is noted that the 

other factors are assumed to be deterministic (i.e., without uncertainties) when one of 

these factors is examined for its stochastic influence. Meanwhile, it is good to start 

the inspection from the stationary inflow state (i.e., in the section 4.3.1 below) so as 

for comparative study of further complex conditions (non-stationary). Under this 

condition, the influences of different uncertainty features of the random upstream 

inflows (including the deviation σn and correlation length λn) are examined 

respectively in the subsequent sections (i.e., sections 4.3.2 and 4.3.3). Thereafter, the 

more general situation of non-stationary inflows is investigated in the section 4.3.4. 

 

4.3.1 Stationary mean-uniform inflow 

In this case, the upstream inflow is set to be stochastic with relevant mean 

and standard deviation process, but the mean flow is assumed to be time-independent 

(stationary) and the uncertainty feature can be time-dependent. For numerical tests, 
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the mean inflow discharge is fixed as q = 20m3/s, and the covariance distribution 

function is given by: 

 𝐶𝑞𝑢𝑞𝑢(𝑡; 𝜏) = 𝜎𝑞𝑢
2 ∗ exp (−|𝑡 − 𝜏|/𝜆𝑞𝑢𝑇0) [4.2] 

where σqu is the standard deviation of the upstream inflow discharge and λqu is the 

correlation length in time, t and τ are two independent moments considered in the 

specific case. It is indicated by this second-order stationary exponential distribution 

that the covariance of random inflows at two any time moments depends only on the 

distance between them rather than the exact time location. Herein, the standard 

deviation of upstream inflow is set to be σqu = 0.1Qu, with the correlation length λn = 

0.27, with aim to study the uncertainty propagation and stochastic response of the 

open channel flow. The influences of these two stochastic parameters are to be 

examined in detail later in the next sections. 

Based on the developed stochastic model and numerical procedure in Chapter 

3, the results are obtained and plotted in Figures 4.2(a) and 4.2(b) for the temporal 

and spatial variations of stochastic responses of the open channel flow. The system 

response of water depth is taken here for demonstration, and similar variation trends 

have also been obtained for other responses (velocity or flowrate). 

Figure 4.2(a) shows the temporal profile of σℎ (standard deviation of water 

depth variation) at nodes 11 (6km to upstream) and 31 (18km to upstream) for 

example. These results show clearly that the uncertainty of the flow response from 

the upstream inflows arrives at each node after certain time period, with the 

propagation time actually determined by the wave speed of the zeroth-other equation 

(i.e., mean flow). Thereafter, the uncertainty of the water depth (σqu) starts to 

increase with time, and finally achieves a relatively constant and maximum value 
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(i.e., steady variation speed for the stochastic response of water depth). Furthermore, 

the comparative results of these two nodes imply that the increasing speed of 

uncertainty is slower with distance from upstream inflow location, e.g., the gradient 

of the increasing curve is smaller (flatter) at node 31 than that at node 11. Moreover, 

the achieved steady and maximum value of the uncertainty of system response is 

also decreasing with the flowing distance along the channel. For example, the 

achieved steady uncertainty is decreasing from about 0.028 at node 11 to about 0.022 

at node 31, which reveals over 21% damping of the maximum uncertainty value. 

This is mainly due to the gravity (flooding) wave dispersion and dissipation during 

the propagation process along the open channel, which simultaneously results in the 

decrease of uncertainty level propagating from upstream to downstream in the 

channel. 

The spatial uncertainty distribution results at different time moments shown 

in Figure 4.2(b) demonstrate clearly the uncertainty propagation of system response 

induced from the upstream inflows with time. Meanwhile, at the same location, e.g., 

at distance of 10 km for example, the uncertainty level is increasing with time after 

the arrival of the upstream inflow wave, which is actually consistent with the results 

of Figure 4.2(a). Moreover, after a relatively long period, e.g., before the distance of 

3 km in Figure 4.2(b), the uncertainty level achieves a relatively steady state (i.e., 

maximum value), which again confirms the results and analysis in Figure 4.2(a). 

Consequently, the results in Figures 4.2 demonstrate the propagation and change 

(damping) of stochastic features of random upstream inflows in the open channel 

system.  
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Figure 4.2 (a) Time variation of 𝜎ℎ at node 11 and 31; (b) spatial profile of 𝜎ℎ at 

time 20 and 40 

(a) 

(b) 
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4.3.2 Effect of standard deviation 𝝈𝒒𝒖 of random upstream inflows 

To study the effect of the stochastic features of random upstream inflows on 

the uncertainty propagation, the same channel flow system in Figure 4.1 is adopted 

and the flow conditions are assumed to be the same, but with different standard 

deviations of the random inflows. For illustration, the temporal and spatial variations 

of uncertainty propagation for different standard deviations of random inflows (σqu = 

0.1Qu and σqu = 0.2Qu) are shown in Figure 4.4. Specifically, Figure 4.3(a) shows the 

comparison of uncertainty propagation with time at the two nodes (11 and 31) for 

different standard deviations, and Figure 4.3(b) reveals that of uncertainty 

distribution at different time moments under different standard deviations. Both 

results indicate clearly the significant influence of the standard deviation of random 

upstream inflows on the uncertainty level and propagation. In particular, both the 

increasing speed and the achieved maximum steady uncertainty level are increasing 

with the standard deviation of the random inflows. A numerical estimation for the 

results comparison implies that the resulted uncertainty level and increasing speed 

are directly proportional to the initial uncertainty level (standard deviation) of the 

random upstream inflows. For example, for both the uncertainty level and changing 

speed in Figure 4.3, the results of the case σqu = 0.2Qu are almost as twice as those of 

the case σqu = 0.1Qu. This is reasonable according to the derived analytical results of 

first-order equations in Chapter 3, which are exactly in linear forms from the 

perturbation analysis. 

However, both results also indicate clearly that the standard deviation of 

random upstream inflows has little impact on the propagation speed of system 

response uncertainty in the open channel. That is, the arrival time moments of the 

resulted uncertainty of system responses are exactly same for different cases in 
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Figure 4.3. From the perspective, the uncertainty propagation speed is governed 

mainly by the zeroth-order flows (base/mean flows), while the uncertainty level and 

variation are dependent largely on the randomness level of the upstream inflows. 

 

4.3.3 Effect of correlation length 𝝀𝒒𝒖 of random upstream inflows 

In addition to the influence of standard deviation of random inflows, the 

correlation length 𝜆𝑞𝑢 in Eq. [4.1] is another important factor that may affect the 

stochastic characteristics of system responses. Under the other same conditions (σqu = 

0.1Qu), the results for different correlation lengths are obtained and shown in Figure 

4.4, which presents the significant influence of this factor. Specifically, the 

uncertainty level and changing speed are increasing with the correlation length in 

time domain. This is mainly because the correlation length can affect average 

covariance of system responses based on Eq. [4.1]. In other words, a larger time-

domain correlation length may lead to higher average covariance of Qu, and result in 

larger uncertainty of system response. Meanwhile, a larger correlation length in time 

domain indicates a stronger correlation of the results at different time steps, which 

therefore provides a potential influence on the variation speed (increasing gradient of 

the results in Figure 4.4) of the uncertainty in the open channel flows. However, 

similar to the above stander deviation of random upstream inflows, the correlation 

length factor has little impact on the propagation speed of uncertainty in the open 

channel.  
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Figure 4.3 (a) Time variation of 𝜎ℎ at node 11 and 31; (b) spatial profile of 𝜎ℎ at 

time 20 and 40 under different 𝜎𝑞𝑢 

(b) 

(a) 
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Figure 4.4 (a) Time variation of 𝜎ℎ at node 11 and 31; (b) spatial profile of 𝜎ℎ at 

time 20 and 40 under different 𝜆𝑞𝑢 

(b) 

(a) 
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4.3.4 Effect of non-uniform non-stationary boundary inflows 

All the above results and analysis are based on simple situations of uniform 

base flows and stationary inflows with uncertainty. In this section, a base flow with 

non-uniform boundary inflow is considered for the investigation. For tests, the mean 

inflow discharge is set to be: (with unit m3/s) 

 {
𝑄𝑢(𝑡) = 20 + 10(1 − cos(2𝜋𝑡/𝑇))                𝑡 < 𝑇
                                   20                                          𝑡 ≥ 𝑇

 [4.3] 

and the covariance function is the same to section 4.3.2, which is defined by: 

 𝐶𝑞𝑢𝑞𝑢(𝑡; 𝜏) = 𝜎𝑞𝑢(𝑡) ∗ 𝜎𝑞𝑢(𝜏) ∗ exp (−|𝑡 − 𝜏|/𝜆𝑞𝑢𝑇0) [4.4] 

Firstly, the standard deviation of upstream inflows is set to be σqu(t) = 0.1Qu(t), and 

the correlation length is λqu = 0.27. Since the mean inflow discharge is no longer 

steady but a function of time, this exponential distribution function is therefore a 

non-stationary updating process in which different time and location results will 

affect the covariance rather than only the time interval between two locations. 

Based on the results from the developed model and numerical method, Figure 

4.5(a) presents the water depth variation in time at node points 11 and 31, and Figure 

4.5(b) shows the water surface profile along the channel at time points 20 and 40. It 

is found that the flow in the channel is steady at the beginning, and as time goes, an 

unsteady wave propagates from upstream to downstream, giving fluctuation to the 

mean flow in the channel. After the wave passed, the flow in the channel returns to 

the steady-state that is same as the initial condition. It is also noticed that the wave 

crest attenuates and wave length grows as the wave propagates toward downstream 

in the force of gravity and pressure. 
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As for the standard deviation considered in this case, Figure 4.6 presents the 

time variation at node point 11 and 31, and the horizontal profile along the channel at 

time 20 and 40. It is again confirmed that the uncertainty propagation speed in the 

channel is only dependent on wave speed of mean flows since the first-order and 

zeroth-order equations have the same characteristic curves according to the 

previously derived results in Chapter 3. It is also noticed that the crest of standard 

deviation appears slightly later than the flood wave, which means at the same 

location, the peak of uncertainty occurs after the crest of flood wave, indicating that 

the uncertainty level still accumulates (increases) for a while after the flood wave 

passed. This is mainly because of the non-stationary characteristics of the base flow, 

which is different from the former stationary case. After that the non-stationary 

upstream discharge passed, the system finally returns to a steady state same as 

plotted in Figure 4.2, since the base flow conditions are identical again and the 

effects of non-stationary σqu become negligible. 
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Figure 4.5 (a) Temporal variation of water depth at node 11 and 31; (b) spatial 

profile of water depth at time 20 and 40 under non-uniform boundary inflow 

(b) 

(a) 
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Figure 4.6 (a) Time variation of 𝜎ℎ at node 11 and 31; (b) spatial profile of 𝜎ℎ at 

time 20 and 40 under non-stationary boundary inflow 

(b) 

(a) 
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4.4 Stochastic Influence of Random Channel Width 𝑩 

It is easily understood from the zeroth-order equations that the channel width 

𝐵 has significant influence on flow properties in the channel. However, it is difficult 

to analyze directly the influence of channel width uncertainty on the flow stochastic 

behaviors from the governing equations because of its relatively complicated 

differential forms. In this section, the channel width is examined by the developed 

stochastic model for its influence on the flow uncertainty properties, under the non-

uniform mean inflow conditions as conducted in section 4.3.4. Due to the prismatic 

rectangular assumption of channel cross-section shape, the channel width along the 

channel is supposed to vary in the same pattern (otherwise the governing equation 

will fail for the analysis). To this end, the stochastic distribution of channel width B 

is assumed as: 

 𝐶𝐵𝐵(𝑥, 𝜒) = 𝜎𝐵
2 [4.5] 

Note that the values of σB = 0.1μB and σB = 0.1μB are taken in the numerical 

experiments for illustration in this thesis research work, where μB is the mean of 

channel width.  

By applying the developed stochastic model and numerical scheme in 

Chapter 3, the simulation results under different uncertainty conditions (h) of the 

channel width are plotted in Figure 4.7 for comparison. Firstly, it is found that the 

growth curves of different 𝜎ℎ at same location (e.g., herein node 11 in Fig. 4.7(a) or 

node 31 in Fig. 4.7(b)) are almost on the top of each other during the beginning stage 

of the upstream flooding wave arrival. Thereafter, the h values for stochastic 

channel width situations become gradually smaller than that for the deterministic 

width situation (i.e., B = 0). As the whole upstream wave with uncertainty passed 
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through, however, these curves in the figures start to become close to each other 

again, which means the final h values are kept the same for all cases with different 

uncertainties of channel width. This result indicates that the existence of channel 

width uncertainty can slow down the growth of flow uncertainties at the downstream 

but cannot decrease the total and final uncertainty magnitudes of the uncertainty 

propagation process. This can actually be explained through the covariance 

equations derived in Chapter 3. In Eq.[3.12], it can be found that Cbb (the covariance 

of channel width B) terms are mostly multiplied with spatial and temporal partial 

differential terms of h(0) and v(0) which results in the initially small difference of the 

different results in the figures (i.e., the separation of curves in the figures). 

Specifically, the flow properties vary relatively smoothly first on arrival of the flood 

wave, so that Cbb related terms are very small causing little difference of h. 

However, as shown in the figure, when the flow responses vary rapidly, the partial 

differential terms with regard to space and time become more and more critical, and 

therefore the influence of Cbb becomes significant, leading to a clear decrease in the 

uncertainty growth.  

Finally, as the mainstream flooding wave passed, the partial differential terms 

(gradient terms) get small again, and therefore the influence of channel width 

uncertainty on system responses becomes less significant again. In conclusion, 

channel width uncertainty may decrease the growth ratio of flow uncertainties 

because of its detention effect on the upstream waves (which is similar to a flow 

routing process of deterministic wave propagation process), resulting in a relatively 

longer period for uncertainty propagation process than deterministic channel 

condition. Moreover, such detention effect of channel width uncertainty increases 

with the uncertainty extent (B). 
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4.5 Stochastic Influence of Random Manning’s n 

In this section, the impacts of Manning’s coefficient (n) are considered to 

investigate how the uncertainty of the roughness along the channel affects the 

unsteady flow response in the channel. As stated in section 4.1, the exponential 

distribution function of Manning’s n is defined by: 

 𝐶𝑛𝑛(𝑥; 𝜒) = 𝜎𝑛
2 ∗ exp (−|𝑥 − 𝜒|/𝜆𝑛𝑇0) [4.6] 

in which x and χ are two specific location considered, σn is the standard deviation of 

Manning’s n, and λn is the correlation length of this exponential distribution. 

For numerical tests, a mean value of Manning’s n = 0.03 (reference), together 

with two different standard deviations of σn = 1/3μn and σn = 1/6μn (reference)and 

two different correlation lengths of λn = 0.27 and λn = 2.7 are applied for 

investigation in this section. Though for side inflow of mountain rivers the value of 

Manning’s n could be larger and also the uncertainty magnitude, the main channel 

roughness and slope are rather mild. With the prior concerning of main channel in 

this study, the roughness and slope are assumed to be small in present study. And the 

base flow condition is the same as stated in section 4.3.1. 

The computation results are plotted in Figure 4.8. It can be seen that under 

the correlation length λn = 0.27, the impacts of different value of σn on flow 

uncertainty are hard to distinguish. The reason is that a weak correlation of 

roughness in space will have impacts in mainly a small interval of distance, leading 

to very minor influence on the flow uncertainty in the whole flow domain (with 

relatively long period). However, when the correlation length value of λn is increased 

from 0.27 to 2.7, which imposes a stronger correlation of roughness in space, the 

results indicate clearly that the influence of this factor on the flow uncertainty 
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becomes more significant. It is also observed that with higher correlation length λn, 

the covariance of Manning’s n along the whole flow domain grows, and therefore the 

uncertainty level is weakened at first though it still has the same propagation speed. 

Over time, the effect of this larger uncertainty of roughness becomes 

gradually important, resulting in higher uncertainty at final steady state. As for the 

influence of the uncertainty of roughness, namely the standard deviation of 

Manning’s n, both the cases under correlation λn = 0.27 and σn = 0.01 (or σn = 0.005) 

are plotted in the figure as well for comparison. With higher standard deviation of 

roughness, the rising of σh becomes slower with the same reason that the larger 

uncertainty of roughness may weaken the uncertainty level of the wave at first, but 

with time goes, the final steady σh value is larger under higher uncertainty of 

roughness though it takes a relatively longer period to reach the final state. It is also 

noticed that at the flow domain close to upstream (e.g., at node point 11 in the 

figure), the curves under high roughness uncertainty have lower growth rates, but as 

it goes to the downstream (at node point 31), the uncertainty effects will accumulate 

with time so that the curve growth rates overtake the curves under lower roughness 

uncertainty. On this point, it can be concluded that the influence of uncertainty of 

channel roughness is historically dependent (larger time scale or longer period), 

which becomes more important and thus should be paid more attention during 

uncertainty analysis for a relatively long channel flow process. 
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(b) 

(a) 



83 

 

Figure 4.7 (a) Time variation of 𝜎ℎ and water depth at node 11 under different 𝜎𝐵; (b) 

time variation of 𝜎ℎ and water depth at node 31 under different 𝜎𝐵; (c) spatial profile 

of 𝜎ℎ at time 20 under different 𝜎𝐵; (d) spatial profile of 𝜎ℎ at time 40 under 

different 𝜎𝐵 

 

(d) 

(c) 
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(b) 

(a) 
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Figure 4.8 (a) Time variation of 𝜎ℎ and water depth at node 11 under different 

𝜎𝑛. 𝜆𝑛; (b) time variation of 𝜎ℎ and water depth at node 31 under different 𝜎𝑛. 𝜆𝑛; (c) 

spatial profile of 𝜎ℎ at time 20 under different 𝜎𝑛. 𝜆𝑛; (d) spatial profile of 𝜎ℎ at time 

40 under different 𝜎𝑛. 𝜆𝑛 

(d) 

(c) 
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4.6 Stochastic Influence of Random Bed Slope 𝑺𝟎 

In this section, the influence of random channel bed slope S0 is investigated, 

in order to examine the sensitivity of the stochastic unsteady flow responses to the 

uncertainty of bed slope. As defined in the model assumptions in Chapter 3, the bed 

slope is relatively mild and uniform, which means the variation of the bed slope is 

supposed to be within a relatively small range. For analysis in this research, the 

stochastic distribution function describing the uncertainty of bed slope is given by: 

 𝐶𝑠𝑠(𝑥, 𝜒) = 𝜎𝑠
2 ∗ exp  (−|𝑥 − 𝜒|/𝜆𝑠𝑇0) [4.7] 

in which σs is the standard deviation of the bed slope of the hypothetical channel and 

stay steady everywhere along the channel, λs is the correlation length in space, x and 

χ are two independent location considered. Since the bed slope is uniform, the space 

correlation goes to infinity (λs = ∞), and the function becomes the form below: 

 𝐶𝑠𝑠(𝑥, 𝜒) = 𝜎𝑠
2 [4.8] 

For illustration, two different standard deviation values of σs = 0.1μs and σs = 0.2μs 

are applied to numerical tests in this section, where μs is the mean of bed slope. Base 

flow condition is set to be the same uniform condition as section 4.3.1. 

Figure 4.9 presents the results of unsteady flow responses (by taking water 

depth for demonstration) are obtained under different uncertainty conditions of the 

bed slope (including also the deterministic condition with σs = 0). The overall results 

show clearly that the uncertainty of bed slope may have significant influence on the 

unsteady flow response variability in the channel. Specifically, the flow response 

grows with relatively slower speed for the bed slope with uncertainty. The reason 

might be attributed to the negative correlation between bed slope uncertainty and the 
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inflow uncertainty, and therefore the uncertainty wave is weakened in the early times 

after its arrival. However, over the time, the bed slope uncertainty begins to become 

dominant gradually, until the growth rate becomes higher, leading to higher 

uncertainty at final stage. As a result, the duration of flow uncertainty propagation 

and evolution becomes relatively longer for the uncertainty cases. However, from 

these figures, the similar time arrivals of upstream wave/flow uncertainty for 

different uncertainties of bed slope (at both node 11 and node 31) indicate that the 

uncertainty of bed slope has little influence on flooding wave speed propagation in 

the channel.  

Furthermore, the comparative results in both temporal and spatial domains in 

Fig. 4.9 demonstrate clearly that the influence of the uncertainty of the bed slope is 

increasing with the uncertainty extent of the slope. Specifically, the flow response 

variability for the case of σs = 0.2μs is much larger than that for the case of σs = 0.1μs 

in the whole inspection domain of interest in this research. Meanwhile, with larger 

bed slope uncertainty, it takes more time for the flow response variability to attain 

the final steady state of variation (node 11), which means that larger uncertainty of 

bed slope may present relatively longer-period influence on the unsteady flow 

response variation. In conclusion, the bed slope uncertainty may have a significant 

influence on the flow response variation though it neutralizes the upstream inflow 

uncertainty at first, but it finally leads to much higher flow uncertainty at the 

downstream in the channel. The results and analysis of this section, indicate 

obviously the importance of considering and including the uncertainty of bed slopes 

in stochastic open channel flow analysis, especially in many practical 

natural/mountainous river channels which subject to various uncertainties. 
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Figure 4.9 (a) Time variation of 𝜎ℎ and water depth at node 11 under different 𝜎𝑠; (b) 

time variation of 𝜎ℎ and water depth at node 31 under different 𝜎𝑠; (c) spatial profile 

of 𝜎ℎ at time 20 under different 𝜎𝑠; (d) spatial profile of 𝜎ℎ at time 40 under different 

𝜎𝑠 

 

(d) 

(c) 
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4.7 Stochastic Influence of Lateral Inflows 

In complex open channel systems, especially in mountainous region, side 

lateral inflows commonly occur along the flow channel. This section is conducted to 

analyze the effects of different lateral inflows along the channel on the upstream 

uncertainty wave propagation. For tests, the upstream flow uncertainty (σqu = 0.1Qu, 

σqu = 0.2Qu) are the same as the former section, while three different base flow cases 

are considered and studied for comparative analysis in this section (i.e., no lateral 

flow, lateral flows at first 10 space steps and at second 10 space steps, respectively; 

for simplicity, termed as base flow cases 1, 2 and 3 hereafter). The obtained results 

are shown in Figure 4.10 below. Note that due to the lateral inflow (with sum up to 

10m3/s), which is assumed to uniformly distribute along the lateral inflow section, 

the total base flow becomes finally 30m3/s in the downstream of the channel for both 

base flow cases 2 and 3.  

The overall results in Figure 4.10 show that, compared to original case 1 

without lateral flow, the lateral flow (cases 2 and 3) may have significant influence 

on the uncertainty level and propagation in the unsteady open channel flows. 

Specifically, at the node 11, the standard deviation σh of case 2 becomes much 

smaller than it under the other base flow cases. This is mainly because that the lateral 

inflow located upstream to the node 11 which has increased the whole base flow 

discharge in the channel, and thus weakens the uncertainty level (uncertainty relative 

to base flow) from the random upstream inflow. This similar influence has been 

shown for the node 31 under the lateral inflow cases 2 and 3, where the lateral flows 

are located at the upstream of this node. But the comparative results also show that, 

at this node 31, the uncertainty growth rate for the base flow case 3 becomes slower 
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than that for base flow 2, which indicates the lateral inflow may cause more 

attenuation with distance in addition to the original base flow from upstream end.  

The horizontal profiles of standard deviation σh at time points 20 and 40 in 

Figure 4.10 demonstrate almost the same findings that the lateral flow along the 

channel has obvious influence on the flow uncertainty at the downstream of the 

lateral flow location, and at the same time, the influence decreases along the flow 

direction. It is learned as well that the lateral inflow in base flow case 3 has slight 

effects on the flow uncertainty in the nearby upstream flow area where the 

uncertainty level is less than that for base flow case 1, and this difference grows over 

time. By inspection, this phenomenon is mainly due to the subcritical flow condition 

where the wave speed exceeds the water velocity in the channel, so that the 

uncertainty level of the flooding wave is able to propagate upstream continuously 

under this base flow condition. These results also demonstrate that the lateral flows 

(cases 2 and 3) have little impact on the uncertainty (also wave) propagation speed 

since the arrival time moments of the uncertainty at the same location are exactly 

same for different base flow conditions.  
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Figure 4.10 While 𝜎𝑞𝑢 = 0.1𝑄𝑢 (a) time variation of 𝜎ℎ and water depth at node 11 

under different lateral flow; (b) time variation of 𝜎ℎ and water depth at node 31 

lateral flow; (c) spatial profile of 𝜎ℎ at time 20 under different lateral flow; (d) 

spatial profile of 𝜎ℎ at time 40 under different lateral flow 

 

(d) 

(c) 
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4.8 Combined Influence of Different Uncertainties 

The individual influence of different uncertainties on the open channel flow 

responses have been examined above, with results indicating the potential and 

significant impact of each uncertainty factor. In this section, the combined influence 

with existence of all above uncertainty factors on the unsteady flow responses is 

further investigated in this section by the developed stochastic model and numerical 

scheme in Chapter 3 in this thesis work. For demonstration, the upstream boundary 

inflow properties are the same as presented in section 4.3.4, with other uncertainty 

factors as follows: uncertainty of channel width is set to be σB = 0.2μB, roughness 

uncertainty is σn = 1/3μn, and bed slope uncertainty is σs = 0.1μs. For comparison, the 

results of combined and individual influences of these uncertainty factors are 

obtained and plotted in Fig. 4.11 for comparative analysis, with the results in the 

temporal domain for nodes 11 and 31 shown in Figure 4.11(a) and Figure 4.11(b), 

and the results in the spatial domain along the channel given in Figure 4.11(c) and 

Figure 4.11(d), respectively. 

 From Figure 4.11(a), which is for the time variation result of water depth 

response (σh) at node 11, it can be observed that the influence of roughness and 

channel width is much less important than that of bed slope effect in this upstream 

location, and therefore the curve of combined result coincides with the bed slope 

result through the whole process (i.e., dominated mainly by bed slope influence). In 

Figure 4.11(b), which plots the σh variation at node 31, it is found that the influence 

of the bed slope uncertainty still dominates the system response uncertainty behavior, 

however, compared with above upstream node 11, the influence of the uncertainty of 

the roughness starts to play more important role (although it is still much smaller 

than that of bed slope) because of the longer propagation distance of the wave 
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uncertainty in the channel, such that σh under combined uncertainty condition 

becomes relatively larger than that under random bed slope only. In conclusion, 

under the analysis conditions given in this study, the flow uncertainty in the channel 

is mainly dominated by the randomness of channel bed slope, and the random 

roughness effects become more obvious during the uncertainty wave propagation 

process towards downstream. Note that these observation and results are analyzed 

and summarized only for the cases of interest herein, which are mainly aimed to 

demonstrate the validity and feasibility of the developed 1D stochastic model and 

numerical solution scheme in this research. More other practical cases can be 

investigated with the aid of this developed model and method for the in-depth 

understanding of the influence of uncertainties on unsteady open channel flows and 

also the better design and management of the practical engineering systems. 
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Figure 4.11 Time variation of 𝜎ℎ under different condition at (a) node 11; (b) node 

31; spatial profile of 𝜎ℎat (c) time 20; (d) time 40   

(d) 

(c) 
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4.9 Summary and Discussion 

4.9.1 Summary of this chapter 

In this chapter, the stochastic model is applied through extensive numerical 

applications to investigate the influences of different uncertainty factors in the open 

channel system on the variability and uncertainty propagation of system responses. 

The factors of upstream inflows (stationary and non-stationary base flows), 

Manning’s n, and lateral flows are investigated for the uncertainty analysis by the 

developed model and method in this research. 

Based on the model application and results analysis, the characteristics of the 

uncertainty propagation in the unsteady open channel flows have been discussed in 

detail under the influences of different model input variables. Furthermore, the 

results indicate that the uncertainty of the Manning’s n presents a historical (long 

time period) dependence on affecting the stochastic features of system responses, 

and the location of the lateral flows along the channel may have important influence 

on the uncertainty propagation in the system. Meanwhile, the developed model and 

method may provide quantified evaluations on the influence of different uncertainty 

factors on the variability of the system responses such as water depth and flowrate, 

as well as the stochastic characteristic of unsteady open channel flows.  

Consequently, the case applications and results analysis demonstrate that the 

developed model and method of this thesis research can provide an essential 

extension for the theoretical development of open channel flows as well as a useful 

tool for practical engineering design and management.   
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4.9.2 Computational efficiency of this model 

The computation effort needed for the 1D stochastic model developed in this 

study mainly subjects to the computation grid size, and the number of random input 

variables (uncertainty factors) as well. With a flow domain discretized into grids of 

𝑁𝑥  nodes in space and 𝑁𝑡  nodes in time, namely a grid size of 𝑁𝑥 × 𝑁𝑡 , the total 

nodes number in computation for solution of standard deviation 𝜎ℎ are: 

 𝑁𝜎 = (𝑎𝑁𝑥 + 𝑏𝑁𝑡 + 𝑁𝑥 × 𝑁𝑡) × 𝑁𝑥 × 𝑁𝑡 [4.9] 

where a is the number of spatial random variables (e.g. Manning’s n), and b is the 

number of temporal random variables (e.g. the boundary inflow Qu) respectively. It 

is clear that the total number of computation nodes is dependent on the degree of 

discretization. The computation effort could be unsatisfying when the flow domain 

and the flow duration are long, which leads to large number in 𝑁𝑥 and 𝑁𝑡. However, 

compared with other stochastic analysis methods (such as Monte-Carlo Simulation), 

the time required for the computation and analysis by this developed method 

becomes much less, and thus this method will be more practical to use for solving 

engineering problems.  

Particularly, if only part of the flow domain rather than the whole channel, or 

a certain period of time rather than the whole process are of interest, which is 

reasonable for open channel engineering practices, the computation nodes number 

would be: 

 𝑁𝜎 = (𝑎𝑁𝑥 + 𝑏𝑁𝑡 + 𝑐𝑁𝑥 + 𝑑𝑁𝑡) × 𝑁𝑥 × 𝑁𝑡 [4.10] 

where c and d are the nodes number in time and space respectively of interest. 

Therefore, the number of nodes required for computation is reduced greatly if only 
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part of the whole process is under consideration, which promises a reasonable 

number of times in computation.  

In addition, all the equations derived for the 1D stochastic analysis in Chapter 

3 are linear equations, which makes it much easier with less effort for numerical 

solution. In fact, it takes only about 0.015 seconds for each time-step computation 

for the cases of interest above in this research, and therefore only less than 1000 

seconds computation time have been taken for each of the cases applied in this study. 

While for Monte Carlo simulation, tens of thousands of simulations will be required 

for obtaining accurate and convergent results in problems with many uncertainty 

variables (Tung et al. 2006), and thus by estimation, it would take more than 10 

times of the computation time for the simple application cases of this study than the 

analysis method developed in this research.  

Consequently, the developed stochastic model and method of this thesis work 

could provide very efficient and feasible analysis for the uncertainty evaluation of 

unsteady open channel flows, which may become a useful tool for the future 

practical applications. 
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CHAPTER 5 SUMMARY AND CONCLUSIONS 

5.1 Summary of This Thesis Research 

Flow behaviors in open channel systems are closely related to human 

civilization and social development. Human has taken advantages of rivers and 

excavate canals for agricultural and industrial purposes, but suffered from the 

disasters such as flood and mudslide as well. Therefore, the understanding of open 

channel flow process is vital, and to this end, many research projects in this field 

were conducted in past decades. A thorough literature review in this thesis research 

has indicated that these past and current researches are largely conducted, either for 

simple open channel systems that was aimed to develop theory and model, or for 

deterministic situations of the system operation that was targeted to solve problems 

under specific conditions encountered in practice.  However, open channel systems 

can be highly complex, especially for mountainous rivers, including not only their 

configurations and topologies but also the inside flow and operation conditions that 

usually subject to various uncertainties in both temporal and spatial domains. As a 

result, the flow process in such open channel system may become random and 

stochastic, so that the design, operation and management of the open channel flows 

are very difficult to deal with (i.e., time and space dependent variation for the 

dynamic flow process). However, the past studies on open channel uncertainty either 

considering only single/independent parameters, or the models and solution methods 

are very complex with difficulty in practical application, which has motivated this 

thesis research. 

The research work conducted in this thesis presents a general 1D stochastic 

model and solution method as well as analysis framework for unsteady complex 
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open channel flows with different uncertainties. This model takes most common 

variables of unsteady flow process in complex open channel systems into 

consideration including channel width, channel bed slope, roughness, boundary 

inflow discharge, and lateral inflow along the channel, providing an approach to 

solve the first two statistical moments of stochastic flow process. Specifically, the 

proposed solution methods for these stochastic results are demonstrated through 

various applications in this research, in which the software EPA SWMM is 

employed for the zeroth-order solution and a combination of Preissmann four-point 

scheme and Gaussian elimination for solving numerically the first-order linear partial 

differential covariance equations. This means this study provides a general 1D 

stochastic model considering uncertainty of all important parameters of open channel 

flow both temporally and spatially with an efficient solution method 

The developed 1D stochastic model and solution method is then primarily 

validated and verified by the comparison with the results from a previous research, 

and the result shows good agreement in the prediction of uncertainty propagation 

behaviors. Afterwards, the validated model is applied to study further the unsteady 

open channel flow systems under different uncertainty conditions. Overall results 

and analysis demonstrate that the variabilities of unsteady flow responses (such as 

water depth and discharge/velocity) can be affected in both temporal and spatial 

domains by different random factors with different extents during the unsteady flow 

process. Particularly, not only the amplitude but also the propagation speed of the 

uncertainty may be affected during the unsteady flow process. The main results are 

summarized as below. 

(1) The uncertainty of the upstream inflow (σqu and λqu) is found to have great 

influence on the variability of the unsteady flow responses along the open 
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channel. Specifically, the system response is almost changing linearly to 

the inflow variance, as indicated in the derived results in Chapter 3. 

However, the inflow uncertainty has little influence on the uncertainty 

propagation speed in the whole domain of the application results. That is, 

the speed of uncertainty propagation is the same as the mainstream 

flooding wave speed of the base flow, confirming the same characteristic 

paths of zeroth-order and first-order equations implicated in the stochastic 

model. 

(2) The uncertainty of open channel width is assumed to have the same 

variation at all location (i.e., fully spatial correlated) in this thesis. As 

indicated in the first-order covariance equations in Chapter 3, Cbb related 

term values are sensitive to the partial differential values of water depth h 

and velocity v in both time and space. Thus, the channel width uncertainty 

effects only become obvious when h and v varies rapidly in time or space, 

and it is found that the occurrence of channel width can decrease the 

growth rate of σh. However, its influence on the final values at steady stage 

is little, which means a longer flow uncertainty grow process. 

(3) In this study, the channel bed roughness is represented by Mannings’s 

coefficient n, which has been included in the model development in 

Chapter 3. The application results and analysis indicate that the 

randomness of Manning’s n provides clear influence on the unsteady flow 

behavior. Especially when the correlation length λn of random roughness 

along the channel becomes larger, which indicates stronger spatial 

correlation of roughness, the influence on the uncertainty of flow response 

becomes more significant. Moreover, the uncertainty of channel roughness 
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may weaken the wave variability during the initial stage, while gradually 

increase the wave changes when the uncertainty of flow response (water 

depth σh) grows to a certain gradient during the later stage of the unsteady 

open channel flows. 

(4) Bed slope uncertainty with infinite spatial correlation (i.e., fully correlated) 

is then investigated for different flow situations. The results show that the 

variability of water depth (σh) grows slower at the early stage with the 

presence of bed slope uncertainty, but with time goes, σh grows faster and 

finally reaches a relatively larger value. This indicates the slope uncertainty 

might have a negative correlation with the upstream inflow, which results 

in that the response uncertainty is mainly governed by the inflow 

variability, while with the time goes, the slope uncertainty becomes more 

and more dominant to the variability of system responses (e.g., downstream 

of the channel). 

(5) The lateral inflow along the channel at different location is investigated to 

explore its effects on uncertainty wave propagation towards downstream. 

Note that the lateral flow along the channel may increase the base flow 

discharge, and thus can actually weaken the relative uncertainty level of 

system response with time. Especially, under the subcritical flow condition, 

the uncertainty wave may propagate to upstream as well, and therefore, the 

lateral flow can suppress the upstream flow uncertainty with time. 

However, the results also reveal that the lateral flow has little influence on 

the uncertainty wave propagation speed. 

(6) Finally, the influence of the combination of different uncertainty factors on 

the system flow response is examined by the developed model. The results 
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show that the uncertainty of channel bed slope dominants the variation 

tendency of flow property uncertainties, while the roughness effects are 

found to be more obvious with distance from upstream increase. As for 

uncertainty of channel width, its influence is relatively insignificant 

compare to bed slope and roughness on the uncertainty factors combination 

condition. 

 

5.2 Contributions of This Thesis Work and Recommendations for 

Future Research 

This research aims to study the stochastic characteristics of complex open 

channel flows through the establishment of one-dimensional (1D) stochastic model 

and the systematic analysis of different factors affecting the uncertainty evolution 

based on the developed model. The originality and main contributions of this thesis 

research include:  

(1) Developing the 1D stochastic model of unsteady open channel flows for 

the first two statistic moments;  

(2) Analyzing the uncertainty propagation and sensitivity of unsteady open 

channel flows to the different random inputs and parameters as well as 

system conditions based on the developed 1D stochastic model; and  

(3) Understanding the stochastic characteristics of unsteady open channel 

flows by examining the influence ranges and relative importance of 

different uncertainty factors to the open channel flow responses (water 

depth and flowrate/velocity) under different system and flow conditions. 
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The achievements and results of the research in this thesis, including the 

developed 1D stochastic model, the numerical simulation data and the sensitivity 

analysis results, are expected to be useful for: (1) understanding the complex 

hydraulic process and stochastic evolution mechanism of open channel flow systems; 

and (2) providing useful tools for the engineering practice of hydraulic structure 

design and open channel flow management. 

Despite that the above-mentioned contributions of this research, the applications 

of the developed model and method as well as the study of practical open channel 

flow systems may still encounter many potential difficulties. On the basis of the 

results and achievements of current research work, more future work will be required 

to improve and enhance the study of unsteady open channel flows, with some 

recommendations (also the limitations of current work) as follows:   

(1) The developed stochastic model in this study is based on 1D averaged flow 

characteristics in the system, and the open channel is assumed to be 

rectangular prismatic throughout the analytical derivation and application 

process in this research. For open channels in engineering practice, 

however, the flow conditions and channel configurations could very 

complicated, such that the 1D stochastic model should be extended to more 

general situations;  

(2) Only subcritical flow situations are considered and applied in the cases 

study of this research, and more supercritical flow cases are required to 

generalize the results and findings of this thesis; 

(3) For simplicity of analysis and unavailability of supporting data, all 

uncertainty parameters of interest in this research are assumed to follow the 

stationary Gaussian distribution and exponentially distributed in both 
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temporal and spatial domains. In the future, it is necessary to examine the 

validity of such assumptions, and if possible, to obtain and apply the exact 

distributions of these random factors from enough measurement dataset by 

experimental tests. Also, by conducting the study on influence range of 

different parameter uncertainty, the importance of their effects can be 

obtained. Therefore, with better understanding of the stochastic flow 

process, the model can be slightly modified in specific cases application 

and the input data would be more accurate, so that the developed model 

and method would be more useful and applicable to practical engineering 

problems. 
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