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ABSTRACT

The key-value database engine, which offers higher efficiency, scalability, availability, and

usually works with simple NoSQL schema, is becoming more and more popular. It has

been widely adopted as the caching system in today’s low-latency Internet services, such as

Memcached, Redis, McDipper, and Fatcache. However, these conventional key-value cache

systems are either heavily reliant on expensive DRAM memory or utilize commercial solid

state drives (SSDs) in an inefficient way. In addition, although the key-value database engine

has simple interfaces and has been proven to be more profitable than the traditional relational

SQL databases in cloud environments, it has seldom been adopted by mobile applications.

The reason for this is that most applications running on mobile devices depend on the SQL

interface to access databases, which the key-value database engine does not provide. In this

thesis, we address these issues from several aspects including the integration of the emerging

hardware open-channel SSD, the cross-layer hardware/software management, and the design

of an SQLite-to-KV compiler for mobile applications.

First, we focus on optimizing the key-value caching performance through a deep in-

tegration of flash hardware devices and key-value software management. To lower the Total

Cost of Ownership (TCO), the industry has recently been moving toward more cost-efficient

flash-based solutions, such as Facebook’s McDipper and Twitter’s Fatcache. These cache

systems typically take commercial SSDs and adopt a Memcached-like scheme to store and

manage key-value cache data in flash. Such a practice, although simple, is inefficient because

of the huge semantic gap between the key-value cache manager and the underlying flash de-

vices. In this thesis, we advocate reconsidering the design of the cache system and directly

opening device-level details of the underlying flash storage for key-value caching. We pro-

pose an enhanced flash-aware key-value cache manager, consisting of a novel unified address
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mapping module, an integrated garbage collection policy, a dynamic over-provisioning space

management, and a customized wear-leveling policy, to directly drive the flash management.

A thin intermediate library layer provides a slab-based abstraction of low-level flash mem-

ory space and an API interface for directly and easily operating flash devices. A special

flash memory SSD hardware that exposes flash physical details is adopted to store key-value

items. This codesign approach bridges the semantic gap and well connects the two layers,

allowing us to leverage both the domain knowledge of the key-value caches and the unique

properties of the device. In this way, we can maximize the efficiency of key-value caching on

flash devices while minimizing the weakness. We implemented a prototype, called DIDA-

Cache, based on the open-channel SSD platform. Our experiments on real hardware show

that we can significantly increase the throughput by 35.5%, reduce the latency by 23.6%,

and decrease unnecessary erase operations by 28%.

Second, we propose a new programming storage interface for SSDs to provide flex-

ible support for key-value caching. Solid-state drives (SSDs) are widely deployed in com-

puter systems of numerous types and purposes, in two main usage modes. In the first mode,

the SSD firmware hides the details of the hardware from the application and exports the

standard, backward-compatible block I/O interface. This ease of use comes at the cost of

low resource utilization, due to the semantic gap between application and hardware. In the

second mode, the SSD directly exposes the low-level details of the hardware to developers,

who leverage them for fine-grained application-specific optimizations. However, the im-

proved performance significantly increases the complexity of the software and also the cost

of developing it. Thus, application developers must choose between easy development and

optimal performance, without a real possibility of being able to balance the two. To address

this limitation, we propose Prism-SSD—a flexible storage interface for SSDs. Via a user-

level library, Prism-SSD exports the SSD hardware in three levels of abstraction: as a raw

flash medium with its low-level details, as a group of functions to manage flash capacity,

and simply as a configurable block device. This multi-level abstraction allows developers to
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choose the degree to which they want to control the flash hardware so that it best suits the

semantics and performance objectives of their applications. To demonstrate the usability and

performance of this new model and interface, we implemented a user-level library on the

open-channel SSD platform to the prototype Prism-SSD. We implemented three versions of

the key-value caching system by using each of the library’s three levels of abstraction, and

compared their performances and development overhead.

Third, we study the problem of making mobile applications benefit the efficient key-

value database engine. SQLite has been deployed in millions of mobile devices from web to

smartphone applications on various mobile operating systems. However, due to the uncoor-

dinated nature of the IO interactions with the underlying file system (e.g., ext4), SQLite is

not efficient, with a low number of transactions per second. In this thesis, we for the first time

propose a new SQLite-like database engine, called SQLiteKV, which adopts the LSM-tree-

based data structure but retains the SQLite operation interfaces. With its SQLite interface,

SQLiteKV can be utilized by existing applications without any modifications, while provid-

ing high performance with its LSM-tree-based data structure. We separate SQLiteKV into

front-end and back-end sections. In the front-end, we develop a light-weight SQLite-to-KV

compiler to solve the semantic mismatch, so that SQL statements can be efficiently trans-

lated into key-value operations. We also design a novel coordination caching mechanism

with memory fragmentation so that query results can be effectively cached inside SQLiteKV

by alleviating the discrepancy in data management between front-end SQLite statements

and back-end data organization. In the back-end, we adopt an LSM-tree-based key-value

database engine, and propose a lightweight metadata management scheme to mitigate the

memory requirement. We implemented and deployed SQLiteKV on a Google Nexus 6P

smartphone. The results of experiments with various workloads show that SQLiteKV out-

performs SQLite by up to 6 times.

Keywords: Key-value database, open-channel SSD, NAND flash memory, software/hardware

codesign, Mobile device, SQL/NoSQL interface.
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CHAPTER 1

INTRODUCTION

Various key-value data stores, such as Cassandra [15], Hbase [44], LevelDB [36], Mem-

cached [86], McDipper [32], and Fatcache [123], have been widely deployed for data man-

agement to support internet services. Compared with the traditional relational database man-

agement systems (RDBMS), the key-value stores offer higher efficiency, scalability, and

availability. The append-only log data structure, which transfers random writes to sequential

writes, is a common data structure that has been adopted by the key-value data stores. The

log-structured key-value data stores are initially optimized for hard disk drive (HDD) storage

systems. In recent years, with the development of NAND flash technology, flash-based solid

state drives (SSDs) are increasingly being adopted to replace the HDDs in the key-value data

stores. However, due the device specificity of flash-based SSDs (e.g., out-of-place updates,

limited programming cycles), it would not be efficient to simply replace HDDs with com-

mercial SSDs in the key-value data stores. A huge semantic gap would be incurred and it

would not be possible to exploit the full performance potentials of both the key-value soft-

ware and the underlying flash hardware. In addition, although the key-value data stores have

proven to be much more profitable than the RDBMS in big data environments, they cannot

be directly employed by most mobile applications. Nowadays, most mobile applications are

built based on the traditional SQL interface. However, the key-value data stores only support

simple interfaces (such as Set(), Get(), and Delete()). Redesigning these mobile

applications to support key-value interfaces would lead to too much development overhead.

Thus, the interface mismatch has become the bottleneck keeping mobile applications from

benefiting from the efficient key-value data stores.

In this thesis, we address the semantic gaps between the key-value store software

and the underlying flash-based hardware and bridge the interface mismatch between mo-
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bile applications and the key-value data stores. Specially, we employ an emerging hard-

ware, open-channel SSD, to improve the performance of key-value data stores (especially

key-value caching systems) in data centers. The open-channel SSD exposes its device-level

details and raw flash operations directly to applications. The host is responsible for utiliz-

ing SSD resources with primitive functions through a simplified I/O stack. This means that

the applications have the flexibility to schedule flash operations according to their own soft-

ware semantics. Meanwhile, open-channel SSDs also brings much development overhead to

developers of applications. Balancing the key-value data store performance and the develop-

ment overhead becomes a big challenge. In addition, to address the interface mismatch issue,

we propose a new SQLite-like database engine, which includes a light-weight SQLite-to-KV

compiler to translate SQL statements into key-value operations.

We first propose a software/hardware codesign approach to bridge the huge semantic

gap between the key-value cache manager and the underlying flash devices by employing

open-channel SSDs. We advocate reconsidering the cache system design and directly open-

ing device-level details of the underlying flash storage for key-value caching. By reconsider-

ing the division between software and hardware, a variety of new optimization opportunities

can become true: (1) A single, unified mapping structure can directly map the keys to phys-

ical flash pages storing the values, which completely removes the redundant mapping table

and saves a large amount of on-device memory; (2) An integrated Garbage Collection (GC)

procedure, which is directly driven by the cache system, can optimize the decision of when

and how to recycle semantically invalid storage space at a fine granularity, which removes the

high overhead caused by unnecessary and uncoordinated GCs at both layers; (3) An on-line

scheme can determine an optimal size for Over-Provisioning Space (OPS) and dynamical-

ly adapt to the characteristics of the workload, which will maximize the usable flash space

and greatly increase the cost efficiency of using expensive flash devices; (4) A wear-leveling

policy that cooperates with GC to evenly wear out underlying flash blocks. We have im-

plemented a fully functional prototype, called DIDACache, based on a PCI-E open-channel

SSD hardware to demonstrate the effectiveness of this new design scheme.

Second, to balance the performance and development overhead, we propose a flexi-
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ble storage interface for the underlying hardware SSDs to support the various needs of the

key-value stores. We propose to redefine the programming model for open-channel SSDs,

and develop an abstraction library between applications and the hardware to satisfy the d-

ifferent needs of applications. Based on the management granularity, the library abstracts

flash memory operation interfaces into three levels: (1) A raw-level flash abstraction, which

directly exposes all flash operations, such as physical page read/write, and block erase; (2) A

function-level flash abstraction, which exposes flash management function interfaces, main-

ly includes address translator, garbage collector, and wear-lever, to applications; and (3) A

user-level configurable FTL abstraction, which can be configured with different flash man-

agement policies and exposes block read/write and configure interfaces to applications. The

proposed programming model allows applications to integrate the hardware management us-

ing different levels of abstraction by balancing their semantic redundancies with flash SSDs

and the development overheads. We evaluated the powerfulness of this programming model

with the use case key-value caching system implemented with its three abstractions.

Third, for mobile applications, we propose a new SQLite-like database engine, called

SQLiteKV, which adopts the LSM-tree-based data structure but retains the SQLite operation

interfaces. With its SQLite interface, SQLiteKV can be utilized by existing applications

without any modifications, while providing high performance with its LSM-tree-based da-

ta structure. We separate SQLiteKV into a front-end and a back-end. For the front-end,

we develop a light-weight SQLite-to-KV compiler to solve the semantic mismatch, so that

SQL statements can be efficiently translated into key-value operations. We also design a

novel coordination caching mechanism with memory defragmentation so query results can

be effectively cached inside SQLiteKV by alleviating the discrepancy in data management

between front-end SQLite statements and back-end data organization. In the back-end, we

adopt an LSM-tree-based key-value database engine, and propose a lightweight metadata

management scheme to mitigate the memory requirement. We implemented and deployed

SQLiteKV on a Google Nexus 6P smartphone.

The rest of this chapter is organized as follows. Section 1.1 presents the related

work. Section 1.2 discusses the unified research framework. Section 1.3 summarizes the
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contributions of this thesis. Finally, Section 1.4 gives an outline of the thesis.

1.1 Related Work

In this section, we briefly discuss previous approaches to optimizing flash-based key-value s-

tores. In previous studies, work has been done in three main domains: (I) Key-value databas-

es, (II) Open-channel SSD integration, and (III) SQL-compatible key-value databases. We

briefly describe these techniques, and present detailed comparisons with representative tech-

niques in the respective chapters.

1.1.1 Key-Value Databases

Key-value stores [11, 14–16, 21, 26, 32, 36, 75, 123] are becoming widespread solutions for

handling large-scale data in cloud center applications. Compared with traditional RDBMSs,

key-value stores outperform in terms of simplicity, scalability, and high throughput. Key-

value store systems are available for applications that are used as back-end databases to

persistent data (e.g., LevelDB [36], RocksDB [4], and Cassandra [15]) and that are used as

caching systems to buffer frequently accessed data (e.g., Memcached [86], Redis [103], and

Fatcache [123]).

LevelDB [36], which is a typical key-value database, runs on a single node. By

wrapping the client-server support around the LevelDB, LevelDB can be employed as the

underlying single-node component in a distributed environment, such as Tair [5], Riak [3],

and HyperDex [31]. In order to meet the high throughput and low latency demands of appli-

cations, several recent works explore the key-value store on the flash-based storage. Flash-

Store [25] presents a high throughput persistent key-value store, which uses flash memory as

a non-volatile cache between RAM and the hard disk, to store the working set of key-value

pairs on flash and using one flash read per key lookup. SkimpyStash [26] proposes a RAM

space skimpy key-value store on flash-based storage for high throughput server application-

s. SkimpyStash requires an extremely low RAM footprint of about 1 byte per key-value
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pair. SILT [76] further reduces the DRAM footprint to 0.7 bytes per entry, and retrieves

key-value pairs using an average of 1.01 flash reads each. Key-value cache systems have

recently shown their practical importance in Internet services [11,37,79,130]. A report from

Facebook discusses the company’s efforts to scale Memcached to handle the huge amount of

Internet I/O traffic that they encounter [92]. McDipper [32] is their latest effort in the area of

flash-based key-value caching. Several prior research studies specifically focus on the issue

of optimizing key-value store/cache for flash. Ouyang et al. propose an SSD-assisted hybrid

memory for Memcached in high performance networks [97]. This solution essentially takes

flash as a swapping device. Flashield [29] is also a hybrid key-value cache that uses DRAM

as a “filter” to minimize writes to flash. Hot slab pages are retained in memory, while cold

slab pages are swapped out to flash SSDs. NVMKV [82] gives an optimized key-value store

based on flash devices with several new designs, such as dynamic mapping, transactional

support, and parallelization. Unlike NVMKV, our thesis proposes a key-value cache, which

allows us to aggressively integrate the two layers together and exploit some unique opportu-

nities. For example, we can invalidate all slots and erase an entire flash block, since we are

dealing with a cache rather than with storage.

1.1.2 Open-Channel SSD Integration

Open-channel SSDs are a new class of SSDs that open up a large design space for SSD

management. With open-channel SSDs, the internal channels and flash chips are exposed

to the host. The host is responsible for utilizing SSD resources with primitive functions

through a simplified I/O stack. From an abstract view of the software layer, the open-channel

SSDs exhibit three key features. (1) Open-channel SSD exposes the internal parallelism of

SSD to user applications. User applications can directly access individual flash channels,

and can effectively organize their data and schedule their data accesses to fully utilize the

raw flash performance. (2) The erase operation is exposed to software as a new interface.

Erase is an expensive operation compared to read and write. Erase operations triggered by

a GC process in conventional SSD can cause unpredictable service time fluctuation. With
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the new erase interface, the software is responsible for conducting and scheduling erase

operations before a block can be overwritten. (3) Open-channel SSD provides a simplified

I/O stack. Applications can directly operate the device hardware through the Linux builds a

complicated I/O stack which highly degrades the high-end SSD’s performance. For the sake

of efficiency, the open-channel SSD bypasses most of the I/O layers in the kernel and uses

the ioctl interface to directly communicate with the hardware driver.

Recent research has proposed exposing internal flash layout details directly to the

application. SDF [96] exposes the channels in commodity SSD hardware to software and

causes the software to interact with the devices in a manner that is friendlier towards their per-

formance characteristics to realize the raw bandwidth and storage capacity of the hardware.

LOCS [125] integrates SDF with LSM-tree-based key-value stores to optimize scheduling

and dispatching decisions according to data access patterns from LSM-tree-based key-value

stores. ParaFS [131] exposes physical information about the device to the file system in

order to exploit the internal parallelism, and coordinates GC processes in the FS and FTL

levels to keep GC overhead low. KAML [49] presents a key-addressable, multi-log SSD

with a key-value interface. KAML maps flash internal channels to its multiple logs and di-

rectly maps key-value items to physical flash pages, so as to improve system concurrency.

FlashBlox [46] proposes utilizing flash parallelism to improve isolation between applications

by running them on dedicated channels and dies, and balancing wear within and across d-

ifferent applications. AMF [71] moves the intelligence of the flash management from the

device to applications by providing a new out-of-place block I/O interface to reduce flash

management overhead and improve the performance of the applications. LightNVM [13] is

an open-channel SSD subsystem in the Linux kernel, which introduces a new physical page

address I/O interface that exposes SSD parallelism and storage media characteristics.

There are also some other works that propose leveraging the computing capability

of SSDs. Kang [55] introduces a Smart SSD model that pairs in-device processing with a

powerful host system capable of handling data-oriented tasks without modifying operating

system codes. ActiveFlash [122] offloads data analysis tasks for HPC applications to SS-

D controller without degrading the performance of the simulation job. Willow [109] offers
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programmers the ability to implement customized an SSD features to support particular ap-

plications. Programmers can augment and extend the semantics of an SSD with application-

specific features without compromising file system protections.

Different from prior work, in our work we aim to provide a flexible programming

model for open-channel SSD, so that applications can integrate their semantic logics with

the flash management with different levels of abstraction. With our programming model,

the application can benefit from the flash memory performance with minimum development

overhead.

1.1.3 SQL-Compatible Key-Value Database

Key-value databases have simple interfaces (such as Put() and Get()) and are more effi-

cient than the traditional relational SQL databases in cloud environments [11, 16, 27]. To

utilize the advantages of a key-value database engine under SQL environments, Apache

Phoenix [99] provides an open source relational database, in which an SQL statement is com-

piled into a series of key-value operations for HBase [44], a distributed, key-value database.

Phoenix provides well-defined and industry standard APIs for OLTP and operational ana-

lytics for Hadoop [30, 132]. Nevertheless, without deep integration with the Hadoop frame-

work, it would be difficult for mobile devices to adopt either HBase as their storage engine

or Phoenix for SQL-to-KV transitions. Also, Phoenix, along with other Hadoop-related

modules, has been designed for scalable and distributed computing environments with large

datasets [34], which means they can hardly fit in mobile environments with limited re-

sources [115]. However, the approach cannot be directly adopted by resource-limited mo-

bile devices as it is targeted at scalable and distributed computing environments with large

datasets [20, 78].

In this thesis, we propose an efficient LSM-tree-based lightweight database engine,

SQLiteKV, which retains the SQLite interface for mobile devices, provides better perfor-

mance than SQLite and adopts an efficient LSM-tree structure for its storage engine.
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Figure 1.1: The Unified Research Framework.

1.2 The Unified Research Framework

In this section, we present the unified research framework for the proposed techniques. A

sketch of our research framework is given in Figure 1.1.

In this thesis, the key-value store manager runs at the software layers, either as a

caching system or as a persistent database. The flash-based hardware is used as the stor-

age medium. As shown in Figure 1.1, for key-value caching systems adopted by big data

applications, we propose to integrate the flash hardware management with the software de-

velopment to improve the system performance and balance the development overhead. We

further propose to make the mobile applications benefit from the efficient key-value database

engine using an SQL-to-KV compiler.

For the first scheme, in Chapter 2, we advocate reconsidering the cache system de-

sign and directly opening device-level details of the underlying flash storage for key-value

caching. Such a codesign effort not only enables us to remove the unnecessary intermediate
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layers between the cache manager and the storage devices, but also allows us to leverage the

precious domain knowledge of key-value cache systems. For the second scheme, in Chapter

3, we propose to export the SSD hardware in three levels of abstraction: as a raw flash medi-

um with its low-level details, as a group of functions to manage flash capacity, and simply

as a configurable block device. This multi-level abstraction allows developers to choose the

degree to which they desire to control the flash hardware in a manner that best suits the se-

mantics and performance objectives of their applications. For the third scheme, in Chapter

4, we propose a new SQLite-like database engine, called SQLiteKV, which adopts the LSM-

tree-based data structure but retains the SQLite operation interfaces. With its SQLite inter-

face, SQLiteKV can be utilized by existing applications without any modifications, while

providing high performance with its LSM-tree-based data structure.

1.3 Contributions

The contributions of this thesis are summarized as follows.

• In order to bridge the semantic gap between the application (key-value cache) and the

hardware (SSD), we propose to integrate the low-level hardware management with

the software key-value caching system design. We have created a thin intermediate

library layer, called libssd, which provides an easy-to-use programming interface

to facilitate applications to access low-level device information and directly operate

the underlying flash device, such as reading and writing a flash page, erasing a flash

block, and so on. By using this library layer, the key-value cache manger integrates its

software semantics and the characteristics of the hardware and significantly improves

its performance.

• We propose a highly flexible system interface, designed as a user-level library, for

developers to interact with flash-based SSDs in varying layers of abstraction. We

present a fully functional prototype of Prism-SSD on the real open-channel hardware

platform, which will be made available as an open-source project. We demonstrate
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the efficacy of our approach in three use cases, with a range of development costs and

performance benefits.

• We for the first time propose to improve the performance of SQLite by adopting the

LSM-tree-based key-value database engine while retaining the SQLite interfaces for

mobile devices. We design a slab-based coordination caching scheme to solve the

semantic mismatch between the SQL interfaces and the key-value database engine,

which also effectively improves the system performance. We have re-designed the

index management policy for the LSM-tree-based key-value database engine.

• We implement prototypes with the proposed techniques. We conduct experiments and

compare our proposed schemes with representative schemes. The experimental results

prove the effectiveness of the proposed schemes.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we handle the semantic gap between the software key-value cache man-

ager and the underlying SSD hardware. We advocate opening the underlying details of

flash SSDs for key-value cache systems so as to effectively exploit the great potential

of flash storage while avoiding its weaknesses.

• In Chapter 3, to balance easy development and optimal performance, we propose a

flexible storage interface for SSDs. We integrate the key-value caching system with

the SSD hardware in three level details.

• In Chapter 4, to handle the interface semantic mismatch, we for the first time pro-

pose to improve the performance of SQLite by adopting the LSM-tree-based key-value

database engine while retaining the SQLite interfaces for mobile devices.

• In Chapter 5, we present our conclusions and propose possible future directions of

research arising from this work.
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CHAPTER 2

DIDACACHE: A DEEP INTEGRATION OF DEVICE AND APPLICATION FOR

FLASH-BASED KEY-VALUE CACHING

2.1 Introduction

High-speed key-value caches, such as Memcached [86] and Redis [103], are the “first line

of defense” in today’s low-latency Internet services. By caching the working set in memory,

key-value cache systems can effectively remove time-consuming queries to the backend data

store (e.g., MySQL or LevelDB). Though effective, the in-memory key-value caches heavily

rely on large amount of expensive and power-hungry DRAM for high cache hit ratio [45].

As the workload size rapidly grows, an increasing concern with such memory-based cache

systems is their cost and scalability [6]. A possible alternative is to directly replace DRAM

with byte-addressable non-volatile memory (NVM), such as PCM [66, 77], however, these

persistent memory devices are not yet available for large-scale deployment in commercial

environment. Recently, a more cost-efficient alternative, flash-based key-value caching, has

raised high interest in the industry [32, 123].

NAND flash memory provides a much larger capacity and lower cost than DRAM,

which enables a low Total Cost of Ownership (TCO) for a large-scale deployment of key-

value caches. Facebook, for example, deploys a Memcached-compatible key-value cache

system based on flash memory, called McDipper [32]. It is reported that McDipper allows

Facebook to reduce the number of deployed servers by as much as 90% while still deliver-

ing more than 90% “get responses” with sub-millisecond latencies [74]. Twitter also has a

similar key-value cache system, called Fatcache [123].
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Figure 2.1: Architecture of flash-based key-value cache.

Typically, these flash-based key-value cache systems directly use commercial flash

SSDs and adopt a Memcached-like scheme (NoSQL schema) to manage key-value cache

data in flash. For example, key-values are organized into slabs of different size classes,

and an in-memory hash table is used to maintain the key-to-value mapping. Such a design

is simple and allows a quick deployment. However, it disregards an important fact – the

key-value cache systems and the underlying flash devices both have very unique properties.

Figure 2.1 shows a typical flash-based key-value cache architecture. The key-value cache

manager that runs at the application level serves incoming requests and manages the cache

space for allocation and replacement. The flash SSD at the device level manages flash chips

and hides the unique characteristics of flash memory from applications. Simply treating

flash SSDs as a faster storage and the key-value cache as a regular application not only

fails to exploit various optimization opportunities but also raises several critical concerns:

Redundant mapping, an application-level key-value-to-cache mapping and a device-level

logical-to-physical flash space mapping; Double garbage collection, an application-level

garbage collection process at the key-value item granularity to reclaim cache space and a

device-level garbage collection process at the block granularity to reclaim flash space; and

Over-overprovisioning, an application-level cache space reservation policy and a device-

level over-provisioning space reservation. All these issues cause enormous inefficiencies

in practice, which have motivated us to reconsider the software/hardware structure of the

current flash-based key-value cache systems.
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In this thesis, we will discuss the above-mentioned three key issues (Section 2.3)

caused by the huge semantic gap between the key-value caches and the underlying flash

devices, and further present a cohesive cross-layer design to fundamentally address these

issues. Through our studies, we advocate to open the underlying details of flash SSDs for

key-value cache systems. Such a co-design effort not only enables us to remove the un-

necessary intermediate layers between the cache manager and the storage devices, but also

allows us to leverage the precious domain knowledge of key-value cache systems, such as

the unique access patterns and mapping structures, to effectively exploit the great potential

of flash storage while avoiding its weakness.

By reconsidering the division between software and hardware, a variety of new opti-

mization opportunities can be explored: (1) A single, unified mapping structure can directly

map the “keys” to physical flash pages storing the “values”, which completely removes the

redundant mapping table and saves a large amount of on-device memory; (2) An integrat-

ed Garbage Collection (GC) procedure, which is directly driven by the cache system, can

optimize the decision of when and how to recycle semantically invalid storage space at a

fine granularity, which removes the high overhead caused by the unnecessary and uncoor-

dinated GCs at both layers; (3) An on-line scheme can determine an optimal size of Over-

Provisioning Space (OPS) and dynamically adapt to the workload characteristics, which will

maximize the usable flash space and greatly increase the cost efficiency of using expensive

flash devices; (4) A wear-leveling policy that cooperates with GC to evenly wear out under-

lying flash blocks.

We implement a fully functional prototype, called DIDACache, based on a PCI-E

open-channel SSD hardware, and provide an performance analysis for both the conventional

key-value cache system and our proposed DIDACache. A thin intermediate library layer,

libssd, is created to provide a programming interface to facilitate applications to access

low-level device information and directly operate the underlying flash device. Using the

library layer, we developed a flash-aware key-value cache system based on Twitter’s Fat-

cache [123], and carried out a series of experiments to demonstrate the effectiveness of our
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new design scheme. Our experiments show that this approach can increase the throughput

by 35.5%, reduce the latency by 23.6%, and remove erase operations by 28%.

The rest of chapter is organized as follows. Section 2.2 and Section 2.3 give back-

ground and motivation. Section 2.4 describes the design and implementation. Experimental

results are presented in Section 2.5. Section 2.7 gives the related work. In Section 2.8 we

summarize this chapter.

2.2 Background

This section briefly introduces three key technologies, flash memory, SSDs, and the current

flash-based key-value cache systems.

• Key-value Cache. Key-value caching is the backbone of many systems in modern web-

server architecture. A cache can be deployed anywhere in the infrastructure where there is

congestion with data delivery. The two main cache models are look-aside cache and inline

cache. The main difference of these two is that for inline cache, applications write new data

or update the existing data in cache, which synchronously (write through) or asynchronously

(write behind) write data to the backend data store. However, for look-aside cache, applica-

tions write new data to the backend data store, and then update the data in cache, if existing.

In practice, key-value cache systems typically adopt the look-aside cache model, such as

Memcached [86] and McDipper [32].

Figure 2.2 illustrates the basic workflow of a look-aside style key-value cache. In

the example, the browser is the client, it sends requests to the application server, and the

application server stores or accesses data from the key-value cache or the backend database.

For writing a new data item, the application server directly stores the data to the backend

database. For retrieving a data item, the application server first checks the key-value cache,

if it is a cache hit, the data is returned from the cache without requesting the database;

otherwise, the application server obtains data from the backend database and then writes

it to the cache for future requests. For update operations, the application server updates
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Figure 2.2: A look-aside key-value caching example.

existing data in both the key-value cache and the backend database. In this model, the data

consistency is maintained by the application server.

• Flash Memory. NAND flash memory is a type of EEPROM device. A flash memory

chip consists of two or more dies and each die has multiple planes. Each plane contains

thousands of blocks (a.k.a. erase blocks). A block is further divided into hundreds of pages.

Flash memory supports three main operations, namely read, write, and erase. Reads

and writes are normally performed in units of pages. A read is typically fast (e.g., 50μs),

while a write is relatively slow (e.g., 600μs). A constraint is that pages in a block must be

written sequentially, and pages cannot be overwritten in place, meaning that once a page is

programmed (written), it cannot be written again until the entire block is erased. An erase is

typically slow (e.g., 5ms) and must be done in block granularity.

• Flash SSDs. A typical SSD includes four major components (Figure 2.3): A host interface

logic connects the device to the host via an interface connection (e.g., SATA or PCI-E). An

SSD controller is responsible for managing flash memory space, handling I/O requests, and

issuing commands to flash memory chips via a flash controller. A dedicated buffer holds

data or metadata, such as the mapping table. Most SSDs have multiple channels to connect

the controller with flash memory chips, providing internal parallelism [19]. Multiple chips

may share one channel. Actual implementations may vary in commercial products. More

details about the SSD architecture can be found in prior work [9, 28]. A Flash Translation

Layer (FTL) is implemented in SSD controller firmware to manage flash memory. and hide

all the complexities behind a simple Logical Block Address (LBA) interface. which makes

an SSD similar to to a disk drive. An FTL has three major roles: (1) Logical block mapping.
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Figure 2.3: Illustration of SSD architecture [9].

An in-memory mapping table is maintained in the on-device buffer to map logical block

addresses to physical flash pages dynamically. (2) Garbage collection. Due to the erase-

before-write constraint, upon a write, the corresponding logical page is written to a new

location, and the FTL simply marks the old page invalid. A GC procedure recycles obsolete

pages later, which is similar to a Log-Structured File System [104]. (3) Wear Leveling. Since

flash cells could wear out after a certain number of Program/Erase cycles, the FTL shuffles

read-intensive blocks with write-intensive blocks to even out writes over flash memory. A

previous work [35] provides a detailed survey of FTL algorithms.

• Flash-based key-value caches. In-memory key-value cache systems, such as Memcached,

adopt a slab-based allocation scheme. Due to its efficiency, flash-based key-value cache

systems, such as Fatcache [123], inherit a similar structure. Here we use Fatcache as an

example; based on open documents [32], McDipper has a similar design. In Fatcache, the

SSD space is first segmented into slabs. Each allocated slab is divided into slots (a.k.a.

chunks) of equal size. Each slot stores a “value” item. According to the slot size, the slabs

are categorized into different classes, from Class 1 to Class n, where the slot size increases

exponentially. A newly incoming item is accepted into a class whose slot size is the best fit of

the item size (i.e., the smallest slot that can accommodate the item). For quick access, a hash

mapping table is maintained in memory to map the keys to the slabs containing the values.

Querying a key-value pair (GET) is accomplished by searching the in-memory hash table

and loading the corresponding slab block from flash into memory. Updating a key-value pair

(SET) is realized by writing the updated value into a new location and updating the key-to-

slab mapping in the hash table. Deleting a key-value pair (DELETE) simply removes the
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mapping from the hash table. The deleted or obsolete value items are left for GC to reclaim

later.

Despite the structural similarity to Memcached, flash-based key-value cache systems

have several distinctions from their memory-based counterparts. First, the I/O granularity is

much larger. For example, Memcached can update the value items individually. In contrast,

Fatcache [123] has to maintain an in-memory slab to buffer small items in memory first

and then flush to storage in bulk later, which causes a unique “large-I/O-only” pattern on

the underlying flash SSDs. Second, unlike Memcached, which is byte addressable, flash-

based key-value caches cannot update key-value items in place. In Fatcache, all key-value

updates are written to new locations. Thus, a GC procedure is needed to clean/erase slab

blocks. Third, the management granularity in flash-based key-value caches is much coarser.

For example, Memcached maintains an object-level LRU list, while Fatcache uses a simple

slab-level FIFO policy to evict the oldest slab when free space is needed.

2.3 Motivation

As shown in Figure 2.1, in a flash-based key-value cache, the key-value cache manager

and the flash SSD run at the application and device levels, respectively. Both layers have

complex internals, and the interaction between the two raises three critical issues, which

have motivated the work presented in this thesis.

• Problem 1: Redundant mapping. Modern flash SSDs implement a complex FTL in

firmware. Although a variety of mapping schemes, such as block-level mapping [40] and

page-level mapping [41], exist, high-end SSDs often still adopt fine-grained page-level map-

ping for performance efficiency.As a result, for a 1TB SSD with a 4KB page size, a page-

level mapping table could be as large as 1GB. Integrating such a large amount of DRAM

on device not only raises production cost but also reliability concerns [41, 136, 137]. In the

meantime, at the application level, the key-value cache system also manages another map-

ping structure, an in-memory hash table, which translates the keys to the corresponding slab

blocks. The two mapping structures exist at two levels simultaneously, which unnecessarily
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doubles the memory consumption.

A fundamental problem is that the page-level mapping is designed for general-purpose

file systems, rather than key-value caching. In a typical key-value cache, the slab block size

is rather large (in Megabytes), which is typically 100-1,000x larger than the flash page size.

This means that the fine-grained page-level mapping scheme is an expensive over-kill. More-

over, a large mapping table also incurs other overheads, such as the need for a large capacitor

or battery, increased design complexity, reliability risks, etc. If we could directly map the

hashed keys to the physical flash pages, we can completely remove this redundant and highly

inefficient mapping for lower cost, simpler design, and improved performance.

• Problem 2: Double garbage collection. GC is the main performance bottleneck of flash

SSDs [9, 18]. In flash memory, the smallest read/write unit is a page (e.g., 4KB). A page

cannot be overwritten in place until the entire erase block (e.g., 256 pages) is erased. Thus,

upon a write, the FTL marks the obsolete page “invalid” and writes the data to another phys-

ical location. At a later time, a GC procedure is scheduled to recycle the invalidated space

for maintaining a pool of clean erase blocks. Since valid pages in the to-be-cleaned erase

block must be first copied out, cleaning an erase block often takes hundreds of milliseconds

to complete. A key-value cache system has a similar GC procedure to recycle the slab space

occupied by obsolete key-value pairs.

Running at different levels (application vs. device), these two GC processes not only

are redundant but also could interfere with one another. For example, from the FTL’s per-

spective, it is unaware of the semantic meaning of page content. Even if no key-value pair

is valid (i.e., no key maps to any value item), the entire page is still considered as “valid” at

the device level. During the FTL-level GC, this page has to be moved unnecessarily. More-

over, since the FTL-level GC has to assume all valid pages contain useful content, it cannot

selectively recycle or even aggressively invalidate certain pages that contain semantically “u-

nimportant” (e.g., LRU) key-value pairs. For example, even if a page contains only one valid

key-value pair, the entire page still has to be considered valid and cannot be erased, although

it is clearly of relatively low value. Note that TRIM command [119] cannot address this
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issue as well. If we merge the two-level GCs and control the GC process based on semantic

knowledge of the key-value caches, we could completely remove all the above-mentioned

inefficient operations and create new optimization opportunities.

• Problem 3: Over-overprovisioning. In order to minimize the performance impact of

GC on foreground I/Os, the FTL typically reserves a portion of flash memory, called Over-

Provisioned Space (OPS), to maintain a pool of clean blocks ready for use. High-end SSDs

often reserve 20-30% or even larger amount of flash space as OPS. From the user’s perspec-

tive, the OPS space is nothing but an expensive unusable space. We should note that the

factory setting for OPS is mostly based on a conservative estimation for worst-case scenar-

ios, where the SSD needs to handle extremely intensive write traffic. In key-value cache

systems, in contrast, the workloads are often read-intensive [11]. Reserving such a large

portion of flash space is a significant waste of expensive resource. In the meantime, key-

value cache systems possess rich knowledge about the I/O patterns and have the capability

of accurately estimating the incoming write intensity. Based on such estimation, a suitable

amount of OPS could be determined during runtime for maximizing the usable flash space

for effective caching. Considering the importance of cache size for cache hit ratio, such a

20-30% extra space could significantly improve system performance. If we could leverage

the domain knowledge of the key-value cache systems to determine the OPS management at

the device level, we would be able to maximize the usable flash space for caching and greatly

improve the overall cost efficiency as well as system performance.

In essence, all the above-mentioned issues stem from a fundamental problem in the

current I/O stack design: the key-value cache manager runs at the application level and

views the storage abstraction as a sequence of sectors; the flash memory manager (i.e., the

FTL) runs at the device firmware layer and views incoming requests simply as a sequence

of individual I/Os. This abstraction, unfortunately, creates a huge semantic gap between the

key-value cache and the underlying flash storage. Since the only interface connecting the two

layers is a strictly defined block-based interface, no semantic knowledge about the data could

be passed over. This enforces the key-value cache manager and the flash memory manager to

work individually and prevents any collaborative optimizations. This motivates us to study
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Figure 2.4: The architecture overview of DIDACache.

how to bridge this semantic gap and build a highly optimized flash-based key-value cache

system.

2.4 Design

As an unconventional hardware/software architecture (see Figure 3.1), our key-value cache

system is highly optimized for flash and eliminates all unnecessary intermediate layers. Its

structure includes three layers.

• An enhanced flash-aware key-value cache manager, which is highly optimized for

flash memory storage, runs at the application level, and directly drives the flash man-

agement;

• A thin intermediate library layer, which provides a slab-based abstraction of low-level

flash memory space and an API interface for directly and easily operating flash devices

(e.g., read, write, erase);

• A specialized flash memory SSD hardware, which exposes the physical details of

flash memory medium and opens low-level direct access to the flash memory medi-

um through the ioctl interface.
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With such a holistic design, we strive to completely bypass multiple intermediate

layers in the conventional structure, such as file system, generic block I/O, scheduler, and

the FTL layer in SSD. Ultimately, we desire to let the application-level key-value cache

manager leverage its domain knowledge and directly drive the underlying flash devices to

operate only necessary functions while leaving out unnecessary ones. In this section, we will

discuss each of the three layers.

2.4.1 Application Level: Key-value Cache

Our key-value cache manager has four major components: (1) a slab management mod-

ule, which manages memory and flash space in slabs; (2) a unified direct mapping module,

which records the mapping of key-value items to their physical locations; (3) an integrated

GC module, which reclaims flash space occupied by obsolete key-values; and (4) an OPS

management module, which dynamically adjusts the OPS size.

• Slab Management

Similar to Memcached, our key-value cache system adopts a slab-based space man-

agement scheme – the flash space is divided into equal-sized slabs; each slab is divided into

an array of slots of equal size; each slot stores a key-value item; slabs are logically organized

into different slab classes according to the slot size.

Despite these similarities to in-memory key-value caches, caching key-value pairs in

flash has to deal with several unique properties of flash memory, such as the “out-of-place

update” constraint. By directly controlling flash hardware, our slab management can be

specifically optimized to handle these issues as follows.

• Mapping slabs to blocks: Our key-value cache directly maps (logical) slabs to physical

flash blocks. We divide flash space into equal-sized slabs, and each slab is statically mapped

to one or several flash blocks, as shown in Figure 2.5. There are two possible mapping

schemes: (1) Per-channel mapping, which maps a slab to a sequence of contiguous physi-

cal flash blocks in one channel, and (2) Cross-channel mapping, which maps a slab across
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Figure 2.5: Mapping slabs to flash blocks.

multiple channels in a round-robin way. Both have pros and cons. The former is simple and

allows to directly infer the logical-to-physical mapping, while the latter could yield a better

bandwidth through channel-level parallelism.

We choose the simpler per-channel mapping for two reasons. First, key-value cache

systems typically have sufficient slab-level parallelism. Second, per-channel allows us to

directly translate “slabs” into “blocks” at the library layer with minimal calculation. For

cross-channel mapping, a big slab whose size is of several flash blocks may lead to flash

space waste and make the slab to block mapping more complicated. A small slab in cross-

channel mapping may pollute several flash blocks upon operations of invalidating slabs,

which contributes to device-level GC overhead. In fact, in our prototype, we directly map

a flash slab to a physical flash block, since the block size (8MB) is appropriate as one slab.

For flash devices with a smaller block size, we can group multiple contiguous blocks in one

channel into one slab.

• Slab buffer: Unlike DRAM memory, flash does not support random in-place overwrite.

As so, a key-value item cannot be directly updated in its original place in flash. For a SET

operation, the key-value item has to be stored in a new location in flash (appended like a log),

and the obsolete item will be recycled later. To enhance performance, we maintain some in-

memory slabs as buffer for flash slabs. Upon receiving a SET operation, the key-value pair

is first stored in the corresponding in-memory slab and completion is immediately returned.

When the in-memory slab is full, it is flushed into an in-flash slab for persistent storage. (the
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“Flush” process shown in Figure 2.5).

The slab buffer brings two benefits. First, the in-memory slab works as a write-back

buffer. It not only speeds up accesses but also makes incoming requests asynchronous, which

greatly improves the throughput. Second, and more importantly, the in-memory slab merges

small key-value slot writes into large slab writes (in units of flash blocks), which completely

removes the unwanted small flash writes. Thus, from the device’s perspective, all I/Os seen

at the device level are in large-size slabs, which renders the unnecessarity of the generic GC

at the FTL level. For this reason, flash writes in our system are all large writes, in units of

flash blocks. Our experiments show that a small slab buffer is sufficient for performance.

• Channel selection and slab allocation: For load balance considerations, when an in-

memory slab is full, we first select the channel with the lowest load. The load of each

channel is estimated by counting three key flash operations (read, write, and erase).

Once a channel is selected, a free slab is allocated. For each channel, we maintain a Free

Slab Queue and a Full Slab Queue to manage clean slabs and used slabs separately. The

slabs in a free slab queue are sorted in the order of their erase counts, and we always select

the slab with the lowest erase count first for wear-leveling purposes. The slabs in a full slab

queue are sorted in the Least Recently Used (LRU) order. When running out of free slabs,

the GC procedure is triggered to produce clean slabs, which we will discuss in more details

later.

With the above optimizations, a fundamental effect is, all I/Os seen at the device level

are shaped into large-size slab writes, which completely removes small page writes as well

as the need for generic GC at the FTL level.

• Unified Direct Mapping

In order to address the double mapping problem, a key change is to remove all the

intermediate mappings, and directly map the SHA-1 hash of the key to the corresponding

physical location (i.e., the slab ID and the offset) in the in-memory hash table.

Figure 2.6 shows the structure of the in-memory hash table. Each hash table entry
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Figure 2.6: The unified direct mapping structure.

includes three fields: <md, sid, offset>. For a given key, md is the SHA-1 digest, sid

is the ID of the slab that stores the key-value item, and offset is the slot number of the

key-value item within the slab. Upon a request, we first calculate the hash value of the “key”

to locate the bucket in the hash table, and then use the SHA-1 digest (md) to retrieve the

hash table entry, in which we can find the slab (sid) containing the key-value pair and the

corresponding slot (offset). The found slab could be in memory (i.e., in the slab buffer)

or in flash. In the former case, the value is returned in a memory access; in the latter case,

the item is read from the corresponding flash page(s).

Algorithm 2.4.1 shows the SET operation procedure in DIDACache with this unified

mapping structure. When a SET request of one key-value item comes, DIDACache first

checks wether it is an update operation or not. If it is an update operation, DIDACache

removes the mapping record and updates the information associated with the operation of

invalidating an obsolete key-value item (e.g., valid data ratio of its slab). Then, DIDACache

allocates one slab whose slot size best fits this key-value pair, stores this key-value item in

one slot, and updates the mapping with the slab and slot address. When there is not enough

free memory slabs, the background “drain” process will be triggered to flush memory slabs

to disk slabs. Similarly, an asynchronous integrated application-driven GC process will be

called once there is not enough flash disk slabs inside SSD. Algorithm 2.4.2 presents the

GET operations procedure, which is much simpler. When a GET request with one key comes,

DIDACache searches the hash table, if the mapping record does not exist, an non-exist value

is returned. Otherwise, DIDACache gets the ID of the slab (“sid”) that stores the key-value

item with the mapping structure. If the slab is in memory, the value is returned with one

memory load operation. If the slab is in disk, DIDACache needs to read the flash page which

contains the key-value item, and return the value.
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The unified direct mapping brings two benefits. First, it removes the redundant

lookup in the intermediate mapping structures, which speeds up the query processing. Sec-

ond, and more importantly, it dramatically reduces the demand for a large and expensive

on-device DRAM buffer. Since the mapping tables at different levels are collapsed into one

single must-have in-memory hash table, the FTL-level mapping table becomes unnecessary

and can be completely removed from the device. This saves hundreds of Megabytes to even

Gigabytes of on-device DRAM space. We could either reduce production cost or make a

better use of on-device DRAM, such as on-device caching/buffering.

• Garbage Collection

Garbage collection is a must-have in key-value cache systems, since operations (e.g.,

SET and DELETE) can create obsolete value items in slabs, which need to be recycled at a

later time. When the system runs out of free flash slabs, we need to reclaim their space in

flash.

With the semantic knowledge about the slabs, we can perform a fine-grained GC in

one single procedure, running at the application level only. There are two possible strategies

for identifying a victim slab: (1) Space-based eviction, which selects the slab containing the

largest number of obsolete values, and (2) Locality-based eviction, which selects the coldest

slab for cleaning based on the LRU order. Both policies are used depending on the runtime

system condition.

• Space-based eviction: As a greedy approach, this scheme aims to maximize the freed flash

space for each eviction. To this end, we first select a channel with the lowest load to limit the

search scope, and then we search its Full Slab Queue to identify the slab that contains the

least amount of valid data. As the slot sizes of different slab classes are different, we use the

number of valid key-value items times their size to calculate the valid data ratio for a given

flash slab. Once the slab is identified, we scan the slots of the slab, copy all valid slots into

the current in-memory slab, update the hash table mapping accordingly, then erase the slab

and place the cleaned slab back in the Free Slab Queue of the channel.

• Locality-based eviction: This policy adopts an aggressive measure to achieve fast recla-
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Algorithm 2.4.1 The Key-value SET Procedure

Input: key: Key for this key-value item

1: value :Value for this key-value item

2: CHnum: Channel number in SSD

3: function BOOL SET(key, value)

4: if hash(key) exists then //for update operation

5: remove(hash(key));

6: Update the invalid information;

7: end if

8: Select one memory slab whose slot size best fits the key-value size;

9: Insert the key-value item to the slot, establish an index for hash(key);

10: if number of free memory slab < freethreshold then

11: slab drain thread(); //trigger the background slab drain process

12: end if

13: return true;

14: end function

15:

16: function VOID SLAB DRAIN THREAD()

17: while full memory slab > fullthreshold do

18: if channel(CHnum) does not have free disk slab then

19: CHnum ← CHnum + 1;

20: end if

21: Drain one memory slab to disk slab;

22: if number of free disk slab < Whigh then

23: Integrated GC thread();

24: end if

25: end while
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Algorithm 2.4.2 The Key-value GET Procedure

Input: key: Key for this key-value item

1: function VALUE GET(key)

2: if hash(key) does not exist then

3: return -1; //key does not exist

4: end if

5: sid = hash(key)

6: if sid is in memory then

7: return value; //return value with one memory load

8: else

9: flash read(dev, sid); //read the data from flash

10: return value;

11: end if

12: end function

mation of free slabs. Similar to space-based eviction, we first select the channel with the

lowest load. We then select the LRU slab as the victim slab to minimize the impact to hit

ratio. This can be done efficiently as the full flash slabs are maintained in their LRU order for

each channel. A scheme, called quick clean, is then applied by simply dropping the entire

victim slab, including all valid slots. It is safe to remove valid slots, since our application is

a key-value cache (rather than a key-value store) – all clients are already required to write

key-values to the backend data store first, so it is safe to aggressively drop any key-value

pairs in the cache without any data loss.

Comparing these two approaches, space-based eviction needs to copy still-valid item-

s in the victim slab, so it takes more time to recycle a slab but retains the hit ratio. In contrast,

locality-based eviction allows to quickly clean a slab without moving data, but it aggressively

erases valid key-value items, which may reduce the cache hit ratio. To reach a balance be-
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Figure 2.7: Low and high watermarks.

tween the hit ratio and GC overhead, we apply these two policies dynamically during runtime

– when the system is under high pressure (e.g., about to run out of free slabs), we use the fast

but imprecise locality-based eviction to quickly release free slabs for fast response; when the

system pressure is low, we use space-based eviction and try to retain all valid key-values in

the cache for hit ratio.

To realize the above-mentioned dynamic selection policies, we set two watermarks,

low (Wlow) and high (Whigh). We will discuss how to determine the two watermarks in the

next section. As shown in Algorithm 2.4.3, the GC procedure checks the number of free

flash slabs, Sfree, in the current system periodically. If Sfree is between the high watermark,

Whigh, and the low watermark, Wlow, it means that the pool of free slabs is running low

but under moderate pressure. So we activate the less aggressive space-based eviction policy

to clean slabs. This process repeats until the number of free slabs, Sfree, reaches the high

watermark. If Sfree is below the low watermark, which means that the system is under high

pressure, the aggressive space-based eviction policy kicks in and uses quick clean to erase

the entire LRU slab and discard all items immediately. This fast-response process repeats

until the number of free slabs in the system, Sfree, is brought back to Wlow. If the system

is idle, the GC procedure switches to the space-based eviction policy and continues to clean

slabs until reaching the high watermark. Figure 2.7 illustrates this process.

• Over-Provisioning Space Management

In conventional SSDs, a large portion of flash space is reserved as OPS, which is

28



Algorithm 2.4.3 The Integrated Application Driven Garbage Collection Procedure

Input: Fdslab : The number of free disk slab

1: Wlow : Low watermark

2: Whigh : High watermark

3: CHnum : Channel number in SSD

Output: Reclaim disk slabs.

4: if Timer then

5: Space-based eviction:

6: if Fdslab is less than Whigh and larger than Wlow; then

7: Choose a slab with maximum invalid data from the full slab queue of channel CHnum;

8: Scan the slab and do valid key-value pair copy;

9: Erase the slab and insert it into the free slab queue CHnum;

10: CHnum ← CHnum + 1;

11: if CHnum equals to Total CH; then

12: CHnum ← 0;

13: end if

14: end if

15: if idle and Fdslab is less than Whigh; then

16: goto Space-based eviction

17: end if

18: Locality-based eviction:

19: while Fdslab is less than Wlow; do

20: Choose a victim disk slab which is recently least accessed from the

21: LRU full disk slab queue CHnum;

22: Erase the slab and insert it into the free slab queue CHnum;

23: CHnum ← CHnum + 1;

24: if CHnum equals to Total CH; then

25: CHnum ← 0;

26: end if

27: end while

28: end if
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Figure 2.8: Throughput for key-value items of size 256 bytes with different SET/Get ratios.

invisible and unusable by applications. In our architecture, applications can access all the

physical flash blocks. We aim to leverage the application’s domain knowledge to dynam-

ically adjust the reserved space and maximize the usable flash space for caching. In the

following, we refer to this dynamically changeable reserved space as OPS, and build a mod-

el to adjust its size during the run time.

In our system, the two watermarks, Wlow and Whigh, drive the GC procedure. The

two watermarks effectively determine the available OPS size – Wlow is the dynamically ad-

justed OPS size, and Whigh can be viewed as the upper bound of allowable OPS. We set the

difference between the two watermarks, Whigh −Wlow, as a constant (15% of the flash space

in our prototype). Ideally, we desire to have the number of free slabs, Sfree, fluctuating in

the window between the two watermarks.

Our goal is to keep just enough flash space for over-provisioning. However, it is

challenging to appropriately position the two watermarks and make them adaptive to the

workload. It is desirable to have an automatic, self-tuning scheme to dynamically determine

the two watermarks based on runtime situation. In our prototype, we have designed two

schemes, a feedback-based heuristic model and a queuing theory based model.

Our heuristic scheme is simple and works as follows: when the low watermark is

hit, which means that the current system is under high pressure, we lift the low watermark

by doubling Wlow to quickly respond to increasing writes, and the high watermark is cor-

respondingly updated. As a result, the system will activate the aggressive quick clean to

produce more free slabs quickly. This also effectively reserves a large OPS space for use.
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When the number of free slabs reaches the high watermark, which means the current sys-

tem is under light pressure, we linearly drop the watermarks. This effectively returns free

slabs back to the usable cache space (i.e., reduced OPS size). In this way, the OPS space

automatically adapts to the incoming traffic.

The second scheme is based on the well-known queuing theory, which builds slab

allocation and reclaim processes as a M/M/1 queue. As Figure 2.8 shows, in this system,

we maintain queues for free flash slabs and full flash slabs for each channel, separately. The

slab drain process consumes free slabs, and the GC process produces free slabs. Therefore

we can view the drain process as the consumer process, the GC process as the producer

process, and the free slabs as resources. The drain process consumes flash slabs at a rate

λ, and the GC process generates free flash slabs at a rate μ. Prior study [11] shows that

in real applications, the incoming of key-value pairs can be seen as a Markov process, so

the drain process is also a Markov process. For the GC process, when Sfree is less than

Wlow, the locality-based eviction policy is adopted. The time consumed for reclaiming one

slab is equal to the flash erase time plus the schedule time. The flash block erase time is a

constant, and the schedule time can be viewed as a random number. Thus the locality-based

GC process is also a Markov process with a service rate μ. Based on the analysis, the process

can be modeled as a M/M/1 queue with arrival rate λ, service rate μ, and one server.

According to Little’s law, the expected number of slabs waiting for service is λ/(μ−
λ). If we reserve at least this number of free slabs before the locality-based GC process

is activated, we can always eliminate the synchronous waiting time. So, for the system

performance benefit, we set

Wlow = λ/(μ− λ) (2.1)

In the above equation, λ is the slab consumption rate of the drain process, and μ is the slab

reclaim rate of GC, which equals 1/(tevict + tother), where tevict is the block erase time, and

tother is other system time needed for GC.

In Equation 2.2, the arrival rate is decided by the incoming rate of key-value pairs

and their average size, which are both measurable. Assuming the arrival rate of key-values
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is λKV , the average size is SKV , and the slab size is Sslab, λ can be calculated as follows.

λ =
λKV × SKV

Sslab

(2.2)

So, we have

Wlow =
λKV × SKV × (tevict + tother)

Sslab − λKV × SKV × (tevict + tother)
(2.3)

By using the above-mentioned equations, we can periodically update the settings of

the low and high watermarks. In this way, we can adaptively tune the OPS size based on

real-time workload demands.

• Wear-leveling

Flash memory wears out after a certain number of Program/Erase (P/E) cycles. In our

prototype, key-value update operations are performed in an out-of-place way, meaning that

the updated key-value items are stored within the newly allocated slabs, and the stale key-

value items need to be reclaimed through the GC process. For wear leveling, when allocating

slabs in the drain process and reclaiming slabs in the GC process, we take the erase count

of each slab into consideration and always use the block with the smallest erase count. Our

locality-based GC that selects the least recently used blocks also helps evict those cold key-

value items from their occupied flash blocks. Furthermore, as our channel-slab selection and

slab-allocation scheme can evenly distribute the workloads across all channels, wears can be

approximately distributed across channels as well.

Despite of these optimization policies, uneven aging still exists. For example, flash

blocks which are filled with read intensive key-value items may be rarely erased. To fur-

ther ensure uniform aging of all flash blocks, we adopt a simple yet effective approach by

periodically invoking the wear-leveling procedure. Nonetheless, instead of swapping flash

blocks that have higher wear number with those lower ones, we propose to incorporate this

periodical wear-leveling procedure within the GC process.

In DIDACache, we maintain the total erase count and erase number of each flash

slab. The wear-leveling process is periodically triggered when the total erase count exceeds
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m times of the total flash block number in the system. For example, we set m = 2 in our

prototype. Suppose there are 1,000 flash blocks in the system, then the wear-leveling process

will be triggered when the total erase count equals to 2,000. Once the wear-leveling process

is triggered, we calculate the average wear number of flash blocks, and identify those flash

blocks whose erase counts are far lower than the average number. These cold slabs are either

seldom accessed or read-intensive. If a victim slab is seldom accessed, we can directly evict

it out (just as quick-clean). If a victim slab is read-intensive, instead of simply swapping

key-value items stored in the cold flash slab with a hot slab, DIDACache marks the cold

block as victim block, and puts them into the GC queue. The GC process will reclaim these

cold flash blocks and put them into the free slab queue to serve new incoming requests.

Traditional wear-leveling requires to shuffle frequently erased flash blocks with the

less frequently erased ones, which involves a large amount of data copy, consuming I/O

bandwidth and also increasing P/E cycles. In DIDACache, we are able to directly integrate

wear-leveling within the GC procedure. This optimization policy reduces the amount of

unnecessary data copy without defeating the purpose of GC and wear-leveling. In particular,

since DIDACache does not support in-place update, if a slab has write-intensive key-value

items, they must have already been copied out to other blocks, leaving obsolete slots ready for

recycling. Thus, unlike traditional wear-leveling, we are able to skip copying these data. If a

key-value items in the slab are not frequently read, as described in Section 2.4.1, DIDACache

will devote the slab as “inactive” by checking its access count and use quick clean to directly

erase this entire slab without moving data. Only if the key-value items are read-intensive,

the GC process will find the slab active, and these hot items will be copied before erasing

the slab. Thus, compared to traditional wear-leveling, this approach only needs to copy

read-intensive data, achieving both effective wear-leveling and minimized data copy.

• Crash Recovery

Crash recovery is also a challenge. As a typical key-value cache, all the key-value

items have their persistent copy in the back database store. Thus, when system crash hap-

pens, we may simply drop the entire cache upon crashes. However, due to the excessively
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long warm-up time, it is preferred to retain the cached data through crashes [135]. In our

system, all key-value items are stored in persistent flash but the hash table is maintained in

volatile memory. There are two potential solutions to recover the hash table. One simple

method is to scan all the valid key-value items in flash and rebuild the hash table, which is

a time-consuming process. This approach demands more time for reconstructing the hash

table. A more efficient solution is to periodically checkpoint the in-memory hash table into

(a designated area of) the flash. Upon recovery, we only need to reload the latest hash ta-

ble checkpoint into memory and then apply changes by scanning the slabs written after the

checkpoint. Crash recovery is currently not implemented in our prototype. Applications use

a persistent cache to improve repeated accesses. However, it is possible that the data in the

backend data store are updated during the period of cache server downtime. Handling this

situation is out of the scope of a look-aside cache, and applications or systems should imple-

ment certain methods to ensure that the data in the cache are still up-to-date after recovery.

For example, when updating data, if the application finds the cache server is offline, it should

not only update the data in the backend data store but also log the update operations locally

or in another server, and when the cache server is recovered, the cache can be brought back

to a consistent state by examining the log and replaying the update operations.

2.4.2 Library Level: libssd

As an intermediate layer, the library, libssd, connects the application and device layers.

Unlike Liblightnvm [38], libssd is highly integrated with the key-value cache system. It

has three main functions: (1) Slab-to-block mapping, which statically maps a slab to one

(or multiple contiguous) flash memory block(s) in a channel. In our prototype, it is a range

of blocks in a flash LUN (logic unit number). Such a mapping can be calculated through a

mathematical conversion and does not require another mapping table. (2) Operation trans-

formation, which converts key slab operations, namely read, write, and erase, to flash

memory operations. This allows the key-value cache system to operate in units of slabs,

rather than flash pages/blocks. (3) Bad block management, which maintains a list of flash
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blocks that are detected as “bad” and ineligible for allocation, and hides them from the key-

value cache.

2.4.3 Hardware Level: Open-Channel SSD

Recently, there is a new trend of SSD design, called open-channel SSD, which directly ex-

poses the internal channels and its low-level flash details to the host. With open-channel

SSD, the responsibility of flash management is shared between the host software and hard-

ware device. Compared with conventional SSD design, open-channel SSD has three unique

features: (1) SSD internal parallelism is exposed to user applications. Open-channel SSD

exposes its internal geometry details (e.g., the layout of channels, LUNs, and flash blocks) to

software applications. Applications have the flexibility of scheduling I/O tasks among differ-

ent channels to fully utilize the raw flash performance. (2) Block erase command is available

to applications. Open-channel SSD exposes its low-level details to applications, thus, the

applications are capable of controlling the flash GC process. (3) Open-channel SSD enjoys

a simplified I/O stack. Applications can directly operate the device hardware through the

ioctl interface, which allows them to bypass many intermediate OS components, such as

file system and the block I/O layer.

We use an open-channel SSD manufactured by Memblaze [85]. This hardware is

similar to that used in SDF [96]. This PCIe based SSD contains 12 channels, each of which

connects to two Toshiba 19nm MLC flash chips. Each chip contains two planes and has a

capacity of 66GB. Unlike SDF [96], our SSD exposes several key device-level properties:

first, the SSD exposes the entire flash memory space to the upper level. The SSD hardware

abstracts the flash memory space in 192 LUNs, and an LUN is the smallest parallelizable

unit. The LUNs are mapped to the 12 channels in a sequential manner, i.e., channel #0

contains LUNs 0-15, channel #1 contains LUNs 16-31, and so on. Therefore, we know

the physical mapping of slabs on flash memory and channels. Second, unlike SDF, which

presents the flash space as 44 block devices, our SSD provides direct access to raw flash

memory through the ioctl interface. It allows us to directly operate the target flash memory
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pages and blocks by specifying the LUN ID and page number to compose commands added

to the device command queue. Third, all FTL-level functions, such as address mapping,

wear-leveling, bad block management, are bypassed. This allows us to remove the device-

level redundant operations and make them completely driven by the user-level applications.

2.5 Evaluation

In this section, we present evaluation results that demonstrate the benefits of the design

choices of DIDACache. Specially, we seek to answer the following fundamental perfor-

mance questions about DIDACache:

• Does this co-design approach result in higher SSD utilization, and how does it impact

performance (throughput, latency), and device endurance?

• How does DIDACache perform with real workloads, compared to its peers?

• What is the effect of memory slab buffer on DIDACache’s performance?

• What is DIDACache’s garbage collection overhead with different policies?

• How does the dynamic over-provisioning space schemes perform?

• What is the CPU and memory overhead of DIDACache?

2.5.1 Prototype System

We have prototyped the proposed key-value cache on the open-channel SSD hardware plat-

form manufactured by Memblaze [85]. Our implementation of the key-value cache manager

is based on Twitter’s Fatcache [123]. It includes 1,640 lines of code in the stock Fatcache

and 620 lines of code in the library.

In Fatcache, when a SET request arrives, if running out of in-memory slabs, it se-

lects and flushes a memory slab to flash. If there is no free flash slab, a victim flash slab is
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Figure 2.9: Hardware platform.

chosen to reclaim space. During this process, incoming requests have to wait synchronously.

To fairly compare with a cache system with non-blocking flush and eviction, we have en-

hanced the stock Fatcache [?] by adding a drain thread and a slab eviction thread. The other

part remains unchanged. We have open-sourced our asynchronous version of Fatcache for

public downloading [1]. In our experiments, we denote the stock Fatcache working in the

synchronous mode as “Fatcache-Sync”, and the enhanced one working in the asynchronous

mode as “Fatcache-Async” [1]. For each platform, we configure the slab size to 8 MB, the

flash block size. The memory slab buffer is set to 128MB.

For performance comparison, we also run Fatcache-Sync and Fatcache-Async on a

commercial PCI-E SSD manufactured by Memblaze. The SSD is built on the exact same

hardware as our open-channel SSD but adopts a typical, conventional SSD architecture de-

sign. This SSD employs a page-level mapping and the page size is 16KB. Unlike the open-

channel SSD, the commercial SSD has 2GB of DRAM on the device, which serves as a

buffer for the mapping table and a write-back cache. The other typical FTL functions (e.g.,

wear-leveling, GC, etc.) are active on the device.

2.5.2 Experimental Setup

Our experiments are conducted on a workstation, which features an Intel i7-5820K 3.3GHZ

processor and 16GB memory. An open-channel SSD introduced in Section 2.4.3 is used

as DIDACache’s underlying cache storage. (Figure 2.9). Since the SSD capacity is quite
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large (1.5TB), it would take excessively long time to fill up the entire SSD. To complete our

tests in a reasonable time frame, we only use part of the flash space, and we ensure the used

space is evenly spread across all the channels and flash LUNs. Note that for the commercial

SSD, since we cannot control its OPS space, Fatcache running on the commercial SSD is

able to use more OPS space than it should, which favors the stock Fatcache configuration as

a comparison to our DIDACache.For the software, we use Ubuntu 14.04 with Linux kernel

3.17.8. Our backend database server is MySQL 5.5 with InnoDB storage engine running

on a separate workstation, which features an Intel Core 2 Duo processor (3.13GHZ), 8GB

memory and a 500GB hard drive. The database server and the cache server are connected

in a 1-Gbps local Ethernet network. Note that in our experimental environment, network is

not the bottleneck.Fatcache-Sync and Fatcache-Async use the same system configurations,

except that they run on the commercial SSD rather than the open-channel SSD.

2.5.3 Overall Performance

Our first set of experiments simulate a production data-center environment to show the over-

all performance. In this experiment, we have a complete system setup with a workload

generator (client simulator), a key-value cache server, and a MySQL database server in the

backend.

To generate key-value requests to the cache server, we adopt a workload model pre-

sented in prior work [14]. This model is built based on real Facebook workloads [11], and

we use it to generate a key-value object data set and request sequences to exercise the cache

server. The size distribution of key-value objects in the database follows a truncated Gener-

alized Pareto distribution with location θ = 0, scale ψ = 214.4766, and shape k = 0.348238.

The object popularity, which determines the request sequence, follows a Normal distribution

with mean μt and standard deviation σ, where μt is a function of time. We first generate

800 million key-value pairs (about 250GB data) to populate our database, and then use the

object popularity model to generate 200 million requests. We have run experiments with

various numbers of servers and clients with the above-mentioned workstation, but due to the
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Figure 2.10: Throughput vs. cache size Figure 2.11: Hit ratio vs. cache size.

space constraint, we only present the representative experimental results with 32 clients and

8 key-value cache servers.

We test the system performance by varying the cache size (in percentage of the data

set size). Figure 2.10 shows the throughput, i.e., the number of operations per second (op-

s/sec). We can see that as the cache size increases from 5% to 12%, the throughput of all

the three schemes improves significantly, due to the improved cache hit ratio. Comparing

the three schemes, DIDACache outperforms Fatcache-Sync and Fatcache-Async substan-

tially. With a cache size of 10% of the data set (about 25GB), DIDACache outperforms

Fatcache-Sync and Fatcache-Async by 9.7% and 9.2%, respectively. The main reason is that

the dynamic OPS management in DIDACache adaptively adjusts the reserved OPS size ac-

cording to the request arrival rate. In contrast, Fatcache-Sync and Fatcache-Async statically

reserve 25% flash space as OPS, which affects the cache hit ratio (see Figure 2.11). Another

reason is the reduced overhead due to the application-driven GC. The effect of GC policies

will be examined in Section 2.5.4.

We also note that Fatcache-Async only outperforms Fatcache-Sync marginally in this

workload. It is because for this workload, both Fatcache-Sync and Fatcache-Async use the

commercial SSD as the underlying storage and use the static OPS policy; thus, they have

the same cache hit ratio. Though Fatcache-Async adopts an asynchronous drain process

and GC process, they only benefit the ‘set’ operations, and its ‘get’ performance is identical

to Fatcache-Sync. When the cache size varies from 5% to 12% of the workload size, the

cache hit ratio can range from 71% to 87%, which is already high; thus, we cannot see much

further improvement between Fatcache-Async and Fatcache-Sync. Besides, when a cache
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miss happens, a slow database query is needed, so the relative benefit from asynchronization

is further diminished.

Figure 2.11 shows the hit ratios of these three cache systems. We can see that, as

the cache size increases, DIDACache’s hit ratio ranges from 76.5% to 94.8%, which is much

higher than that of Fatcache-Sync, ranging from 71.1% to 87.3%.

2.5.4 Cache Server Performance

In this section we focus on studying the performance details of the cache servers. In this

experiment, we directly generate SET/GET operations to the cache server. We create objects

with sizes ranging from 64 bytes to 4KB and first populate the cache server up to 25GB

in total. Then we generate SET and GET requests of various key-value sizes to measure

the average latency and throughput. All experiments use 8 key-value cache servers and 32

clients.

• Random SET/GET Performance

Figure 2.12 shows the throughput of SET operations. Among the three schemes, our

DIDACache achieves the highest throughput and Fatcache-Sync performs the worst. With

the object size of 64 bytes, the throughput of DIDACache is 2.48 × 105 ops/sec, which is

1.3 times higher than that of Fatcache-Sync and 35.5% higher than that of Fatcache-Async.

The throughput gain is mainly due to our unified slab management policy and the integrat-

ed application-driven GC policy. DIDACache also selects the least loaded channel when

flushing slabs to flash. Thus, the SSD’s internal parallelism can be fully utilized, and with

software and hardware knowledge, the GC overhead is significantly reduced. Compared

with Fatcache-Async, the relative performance gain of DIDACache is smaller and decreases

as the key-value object size increases. As the object size increases, the relative GC efficiency

improves and the valid data copy overhead is decreased. It is worth noting that the practical

systems are typically dominated by small key-value objects, on which DIDACache performs

particularly well.
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Figure 2.12: SET throughput vs. KV size Figure 2.13: SET latency vs. KV size

Figure 2.14: Throughput vs. SET/GET ratio. Figure 2.15: Latency vs. SET/GET ratio.

(a) SET/GET(1:0). (b) SET/GET(1:1). (c) SET/GET(0:1).

Figure 2.16: Latency (256-byte KV items) with different SET/GET ratios.

Figure 2.13 gives the average latency for SET operations with different key-value ob-

ject sizes. Similarly, it can be observed that Fatcache-Sync performs the worst, and DIDA-

Cache outperforms the other two significantly. For example, for 64-byte objects, compared

with Fatcache-Sync and Fatcache-Async, DIDACache reduces the average latency by 54.5%

and 23.6%, respectively.

Figures 2.14 and 2.16 show the throughput and latency for workloads with mixed
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Figure 2.17: Latency and Throughput for

Set Operation with Different Buffer Size.

Figure 2.18: Latency and Throughput for

Get Operation with Different Buffer Size.

SET/GET operations. We can observe that DIDACache outperforms Fatcache-Sync and

Fatcache-Async across the board, but as the portion of GET operations increases, the re-

lated performance gain reduces. Although we also optimize the path of processing GET,

such as removing intermediate mapping, the main performance bottleneck is the raw flash

read. Thus, with the workload of 100% GET, the latency and throughput of the three schemes

are nearly the same, which also indicates that the performance overhead (e.g., maintaining

queues) introduced by our scheme is minimal. Figure 2.16 shows the latency distributions

for key-value items of 256 bytes with different SET/GET ratios.

• Memory Slab Buffer Memory slab buffer enables the asynchronous operations of the drain

and GC processes. To show the effect of slab buffer size, we vary the slab buffer size from

128MB to 1GB and test the average latency and throughput with the workloads generated

with the truncated Generalized Pareto distribution. As shown in Figure 2.17 and Figure 2.18,

for both SET and GET operations, the average latency and throughput are insensitive to the

slab buffer size, indicating that a small in-memory slab buffer size (128M) is sufficient.

• Garbage Collection

Our cross-layer solution also effectively reduces the GC overhead, such as erase and

valid page copy operations. In our cache-driven system, we can easily count erase and page

copy operations in the library code. However, we cannot directly obtain these values on

the commercial SSD as they are hidden at the device level. For effective comparison, we

use the SSD simulator (extension to DiskSim [50]) from Microsoft Research and configure
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Table 2.1: Garbage collection overhead.

GC Scheme Key-values Flash Page Erase

DIDACache-Space 7.48GB N/A 4,231

DIDACache-Locality 0 N/A 3,679

DIDACache 2.05GB N/A 3,829

Fatcache-Greedy 7.48GB 5.73GB 5,024

Fatcache-Kick 0 3.86GB 4,122

Fatcache-FIFO 15.35GB 0 5,316

it with the same parameters of the commercial SSD. We first run the stock Fatcache on

the commercial SSD and collect traces by using blktrace in Linux, and then replay the

traces on the simulator. We compare our results with the simulator-generated results. In our

experiments, we confine the available SSD size to 30GB, and preload it with 25GB data with

workloads generated with the truncated Generalized Pareto distribution, and then do SET

operations (80 million requests, about 30GB), following the Normal distribution.

Table 3.1 shows GC overhead in terms of valid data copies (key-values and flash

pages) and block erases. We compare DIDACache using space-based eviction only (“DIDACache-

Space”), locality-based eviction only (“DIDACache-Locality”), the adaptively selected e-

viction approach (“DIDACache”) with the stock Fatcache using three schemes (“Fatcache-

Greedy”, “Fatcache-Kick”, and “Fatcache-FIFO”). In Fatcache, the application-level GC

has two options, copying valid key-value items from the victim slab for retaining hit ratio

or directly dropping the entire slab for speed. This incurs different overheads of key-value

copy operations, denoted as “Key-values”. In this experiment, both Fatcache-Greedy and

Fatcache-Kick use a greedy algorithm to find a victim slab, but the former performs key-

value copy operations while the latter does not. Fatcache-FIFO uses a FIFO algorithm to

find the victim slab and copies still-valid key-values. In the table, the flash page copy and

block erase operations incurred by the device-level GC are denoted as “Flash Page” and

“Erase”, respectively.
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Figure 2.19: Wear distribution among block-

s without wear-leveling.

Figure 2.20: Wear distribution among block-

s with wear-leveling.

Fatcache schemes show high GC overheads. For example, both Fatcache-Greedy

and Fatcache-FIFO recycle valid key-value items at the application level, incurring a large

volume of key-value copies. Fatcache-Kick, in contrast, aggressively drops victim slabs

without any key-value copy. However, since it adopts a greedy policy (as Fatcache-Greedy)

to evict the slabs with least valid key-value items, erase blocks are mixed with valid and

invalid pages, which incurs flash page copies by the device-level GC. Fatcache-FIFO fills

and erases all slabs in a sequential FIFO manner, thus, no device-level flash page copy is

needed. All three Fatcache schemes show a large number of block erases.

The GC process in our scheme is directly driven by the key-value cache. It performs a

fine-grained, single-level, key-value item-based reclamation, and no flash page copy is need-

ed (denoted as “N/A” in Table 3.1). The locality-based eviction policy enjoys the minimum

data copy overhead, since it aggressively evicts the LRU slab without copying any valid key-

value items. The space-based eviction policy needs to copy 7.48 GB key-value items and

incurs 4,231 erase operations. DIDACache dynamically chooses the most appropriate policy

at runtime, so it incurs a GC overhead between the above two (2.05 GB data copy and 3,829

erases). Compared to Fatcache schemes, the overheads are much lower (e.g., 28% lower than

Fatcache-FIFO).

• Wear-leveling

To investigate the block aging status in DIDACache, we carry out experiments by

keeping issuing SET and GET operations to DIDACache and collect the distribution of block
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Figure 2.21: CDF of blocks’ erase coun-

t without wear-leveling.

Figure 2.22: CDF of blocks’ erase coun-

t with wear-leveling.

Table 2.2: Wear-leveling overhead.

GC Wear-leveling

Flash Page
Data copy Erase Data copy Erase

Wear-leveling 13.48GB 16,542 6.34GB 1,323 N/A

No Wear-leveling 15.57GB 17,285 N/A N/A N/A

erase operations in our library layer. In this experiment, to control the experimental time,

we further confine the available SSD size to 15GB, and preload it with 10GB data with

workloads generated with the truncated Generalized Pareto distribution, and then do SET

and GET operations with workloads (480 million requests, about 240GB, SET/GET ratio

is 1:1) that follow the Normal distribution. During the experiment, we count the number

of GC operations, and our wear-leveling policy is periodically triggered when the total GC

time comes up to two times of the total number of flash blocks. When the wear-leveling

is triggered, we mark those blocks whose erase count is less than half of the average block

erase count as victim blocks, and then reclaim these flash blocks with the GC process.

Figure 2.19 and Figure 2.20 show the block wear out distribution before and after

we apply our wear-leveling policy, respectively. It can be observed that after applying our

wear-leveling policy, flash blocks in the system are worn out much more evenly. Without

wear-leveling, the minimum block erase count is 0, and the maximum block erase count is

17. With our wear-leveling policy, the flash block erase counts vary between 6 and 11. The
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(a) Static policy. (b) Heuristic policy. (c) Queuing theory policy.

Figure 2.23: Over-provisioning space with different policies.

(a) Static policy. (b) Heuristic policy. (c) Queuing theory policy.

Figure 2.24: Hit ratio with different OPS policies.

(a) Static policy. (b) Heuristic policy. (c) Queuing theory policy.

Figure 2.25: Garbage collection overhead with different OPS policies.

maximum gap is only 5, which is much smaller than 17 in the former case. Figure 2.21 and

Figure 2.22 give the CDF graphs of block erase counts accordingly. From them, we can see

that with our wear-leveling policy, more than 90% flash blocks are erased 9 or 10 times. For

the scheme without wear-leveling, although the majority of flash blocks are also erased by 9

or 10 times, but the percentage is much smaller, and the variance range is also much larger.

The experimental results show that the our wear-leveling policy can effectively bal-

ance wears across flash blocks. However, since the wear-leveling policy incurs more GC
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(a) Static policy. (b) Heuristic policy. (c) Queuing theory policy.

Figure 2.26: Request latency with different OPS policies.

operations, it also introduces some overhead. To illustrate the overhead of this mechanism,

we compare the GC overheads of the systems with and without the wear-leveling policy (de-

noted as No wear-leveling and Wear-leveling) in Table 2.2. In this table, “Data copy” and

“Erase” under column “GC” represent valid data copy and block erase operations caused by

the GC process. Similarly, “Data copy” and “Erase” under column “Wear-Leveling” repre-

sent valid data copy and block erase operations caused by the wear-leveling process.

During the experiment, wear-leveling is triggered 4 times, and incurs 1323 block

erase operations and 6.34GB data copy. Additionally, after applying our wear-leveling pol-

icy, the overhead of the GC procedure is less than that without our wear-leveling policy.

The reason behind this is that we have integrated our wear-leveling procedure with the GC

process. When wear-leveling happens, instead of swapping cold blocks with hot blocks, we

mark those cold blocks as victim blocks. When reclaiming these victim blocks, we only

copy those valid key-value items. If a victim block is not frequently accessed, we would

directly erase the flash block without coping data. These measures, to some extent, can ease

the pressure of the GC process. In all, with our wear-leveling, 580 more block erase and

4.25GB more data copy operations are introduced. We can further mitigate this overhead

using a longer interval for wear-leveling, if needed.

• Dynamic Over-Provisioning Space To illustrate the effect of our dynamic OPS man-

agement, we run DIDACache on our testbed that simulates the data center environment in

Section 2.5.3. We use the same data set containing 800 million key-value pairs (about 250G-
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Table 2.3: Effect of different OPS policies.

GC Scheme Hit Ratio GC Latency Throughput

Static 87.7 % 2716 79.95 198,076

Heuristic 94.1 % 2480 64.24 223,146

Queuing 94.8 % 2288 62.41 229,956

B), and the request sequence generated with the Normal distribution model. We set the cache

size as 12% (around 30GB) of the data set size. In the experiment, we first warm up the cache

server with the generated data, and then change the request coming rates to test our dynamic

OPS policies.

Figure 2.23 shows the dynamic OPS and the number of free slabs with the varying

request incoming rates for three different policies. The static policy reserves 25% of flash

space as OPS to simulate the conventional SSD. For the heuristic policy, we set the initial

Wlow with 5%. For the queuing theory policy, we use the model built in Equation 2.3 to

determine the value of Wlow at runtime. We set Whigh 15% higher than Wlow. The GC is

triggered when the number of free slabs drops below Whigh.

As shown in Figure 2.23(a), the static policy reserves a portion of flash space for

over-provisioning. The number of free slabs fluctuates, responding to the incoming request

rate. In Figure 2.23(b), our heuristic policy dynamically changes the two watermarks. When

the arrival rate of requests increases, the low watermark, Wlow, increases to aggressively

generate free slabs by using quick clean. The number of free slabs approximately follows

the trend of the low watermark, but we can also see a lag-behind effect. Our queuing policy

in Figure 2.23(c) performs even better since it dynamically adjust the OPS according to

the characteristics of the workloads , and it can be observed that the free slab curve almost

overlaps with the low watermark curve. Compared with the static policy, both heuristic and

queuing theory policies enable a much larger flash space for caching. Accordingly, we can

see in Figure 2.24 that the two dynamic OPS policies are able to maintain a hit ratio close

to 95%, which is 7% to 10% higher than the static policy. Figure 3.8 shows the GC cost,
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and we can find that the two dynamic policies incur lower overhead than the static policy.

In fact, compared with the static policy and the heuristic policy, the queuing theory policy

erases 15.7% and 8% less flash blocks, respectively. Correspondingly, in Figure 2.26, it can

be observed that the queuing policy can most effectively reduce the number of requests with

high latencies.

To further study the difference of these three policies, we also compared their runtime

throughput in Table 2.3. We can see that the static policy has the lowest throughput (198,076

ops/sec). The heuristic and queuing theory policies can deliver higher throughput, 223,146

and 229,956 ops/sec, respectively.

2.5.5 Overhead Analysis

DIDACache is highly optimized for key-value caching and moves certain device-level func-

tions up to the application level. This could raise consumption of host-side resources, espe-

cially memory and CPU.

Memory Utilization: In DIDACache, memory is mainly used for three purposes. (1)

In-memory hash table. DIDACache maintains a host-side hash table with 44-byte mapping

entries (<md, sid, offset>), which is identical to the stock Fatcache. (2) Slab buffer.

DIDACache performance is insensitive to the slab buffer size. We use a 128MB memory

for slab buffer, which is also identical to the stock Fatcache. (3) Slab metadata. For slab

allocation and GC, DIDACache introduces two additional queues (Free Slab Queue and Full

Slab Queue) for each channel. Each queue entry is 8 bytes, corresponding to a slab. Each

slab also maintains an erase count and a valid data ratio, each requiring 4 bytes. Thus,

in total, DIDACache adds 16-byte metadata for each slab. For a 1TB SSD with a regular

slab size of 8MB, it consumes at most 2MB memory. In our experiments, we found that

the memory consumptions of DIDACache and Fatcache are almost identical during runtime.

Also note that the device-side demand for memory is significantly decreased, such as the

removed FTL-level mapping table.
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Table 2.4: CPU utilization of different schemes.

Scheme SET GET SET/GET (1:1)

DIDACache 47.7% 20.5 % 37.4 %

Fatcache-Async 42.3 % 20 % 33.8 %

Fatcache-Sync 40.1 % 20 % 31.3 %

CPU utilization: DIDACache is multi-threaded. In particular, we maintain 12 thread-

s for monitoring the load of each channel, one global thread for garbage collection, and one

load-monitoring thread for determining the OPS size. To show the related computational

cost, we compare the CPU utilization of DIDACache, Fatcache-Async, and Fatcache-Sync

in Table 2.4. It can be observed that DIDACache only incurs marginal increase of the host-

side CPU utilization. In the worst case (100% SET), DIDACache only consumes extra 7.6%

and 5.4% CPU resources over Fatcache-Sync (40.1%) and Fatcache-Async (42.3%), respec-

tively. Finally it is worth noting that DIDACache removes much device-level processing,

such as GC, which simplifies device hardware.

Cost implications: DIDACache is cost efficient. As an application-driven design, the

device hardware can be greatly simplified for lower cost. For example, the DRAM required

for the on-device mapping table can be removed and the reserved flash space for OPS can

be saved. At the same time, our results also show that the host-side overhead, as well as the

additional utilization of the host-side resources are minor.

2.6 Discussion on Extreme Conditions

Due to hardware constraint, some extreme cases are not triggered in our experiment. In

this section, we will discuss the cache performance on some extreme conditions. We model

the working procedure and analyze the performance of SET and GET operations, which are

the two typical operations for key-value cache system. We breakdown and compare request

latency for both the conventional key-value caching design and DIDACache.
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• SET Operation: In both DIDACache and the conventional key-value caching, SET oper-

ations are served in an asynchronous way. When a SET operation comes, it will be firstly

served by a memory slab. If the key-value item is stored in memory slab, the request can be

returned, and the full memory slabs are flushed to flash in background as described in algo-

rithm 2.4.1. So, in the best case, one key-value item SET operation only consists of one hash

index build operation and one memory store operation. The request latency can be presented

as:

tSET = thash + twmem. (2.4)

In here, thash and twmem stand for the hash index build time and memory store time, respec-

tively.

However, in the worst case, the memory slab buffer and flash slabs are consumed

very fast, which may cause incoming requests wait for the flash write and GC process syn-

chronously. For DIDACache, in the worst case, the incoming SET request needs to wait

for one flash block write operation and one integrated GC process. DIDACache adopts the

quick clean scheme which directly erases the victim block without copying data; so when

the system is starving for space, the integrated GC process only incurs one flash block erase

operation. In the worst case, the request latency for SET operation can be denoted as:

tSET = thash + twmem + tfwrite + terase. (2.5)

In here, tfwrite is the time for one flash block write operation, terase is the time consumed by

erasing one flash block.

In contrast, for conventional key-value caching, when the worst case happens, the

serving process of one SET operation can be separated into software part and hardware part.

From the software aspect, the request needs to wait for one software level GC process to

reclaim cache space. From the hardware aspect, the request needs to wait for one slab flush

operation and one hardware GC process to reclaim flash blocks. For the slab flush operation,

the conventional SSD will slice one slab into stripes and flush the data to all its channels in

parallel. Suppose the SSD contains N channels, and the time for one slab flush operation
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is tfwrite/N . In the worst case, when hardware GC happens, each flash block contains one

invalid flash page. If each block has m flash pages, to reclaim one flash block, the SSD needs

to copy m(m − 1) flash pages, and erase m flash blocks. So the latency for one hardware

GC process can be tfwrite× (m− 1)/N + terase×m/N . Thus, in the worst case, the request

latency for SET operation is:

tSET = thash + twmem + tsgc + tfwrite × (m− 1)/N + terase ×m/N. (2.6)

Here, tsgc is the time consumed by software level GC process. In the worst case, the software

level GC process needs to copy Sslab/SKV − 1 key-value items.

• GET Operation: Basically, the working procedure for GET operations of DIDACache and

the conventional key-value caching are the same. For a GET operation, the caching system

will firstly look up its in-memory index. If the corresponding key-value item is in memory,

the data can be returned by a memory load operation. Otherwise, the system needs to read

the data from SSD flash. The difference is that in DIDACache, when reading data from SSD

flash, it does not need to use address mapping model to translate the logical disk slab number

to flash pages. The time consumption for one GET operation in the conventional key-value

caching is:

tGET =

{
trhash + trmem if the KV item is in memory slab

trhash + tmapping + tfread if the KV item is in disk slab
(2.7)

Here, trhash represents the time consumed by searching the in-memory hash table.

tmapping denotes the time consumed by FTL address mapping model, and tfread is the time

for flash page read operation. When the key-value item is in memory slab, it can be returned

by just one hash table search and one memory load operation. Otherwise, if the key-value

item is in disk slab, the latency is composed of a hash table search operation, an SSD address

mapping search operation, and a flash page read operation.

For DIDACache, the time consumption for one GET operation is:
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Table 2.5: Key-value (256Bytes) request latency on extreme conditions.

Key-value Caching

Best Case Worst Case

SET Latency GET Latency SET Latency GET Latency

DIDACache 1 us 1 us 0.363 s 370 us

Conventional 1 us 1 us 15.492 s 370 us

t′GET =

{
trhash + trmem if the KV item is in memory slab

trhash + tfread if the KV item is in disk slab
(2.8)

Similar to the conventional key-value caching, if the key-value item is in memory

slab buffer, the latency for GET request is also trhash + trmem. But if the key-value item is in

disk slab, the latency just include one hash table search and a flash page read operation. To

conclude, for both best case and worst case, the latency for GET operation of DIDACache

and the conventional key-value caching are basically the same.

Table 2.5 shows an example of latencies for SET and GET request on two extreme

cases with our experimental hardware configuration. Due to space constraint, we only show

the results with key-value item size of 256 bytes. Key-value items of other sizes have the

same trend. For a SET request, in the best case, its latency only includes one index build

operation and one memory store operation. In our experiments, for both DIDACache and

the conventional key-value caching, the shortest latency is around 1 us. In our experiment,

the conventional SSD contains 12 channels and each block has 512 pages, and each slab is

8MB. The time for writing and erasing one block are 0.356s and 7 ms respectively. The

time granularity for thash and twmem are in us, which can be ignored in comparison. With

equations 2.5 and 2.6, we get that the worst latency for one SET request in DIDACache

is 0.363 s, and the worst latency for one SET request of conventional key-value caching is

15.492 s. For a GET request, DIDACache and the conventional key-value caching have quite

similar working procedure. In our experiment, the shortest latency for both DIDACache and

the conventional key-value caching is 1 us. In the worst case, the main bottleneck for the

GET request latency is the raw flash read performance, and it is about 370 us.
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2.7 Other Related Work

Both flash memory [9, 17–19, 28, 39, 63, 73, 81, 83, 102, 110, 117, 127] and key-value sys-

tems [10,11, 26, 37, 75, 79, 126, 130] are extensively researched. This section discusses prior

studies most related to this thesis.

A recent research interest in flash memory is to investigate the interaction between

applications and underlying flash storage devices. Yang et al. investigate the interactions

between log-structured applications and the underlying flash devices [129]. Differentiated

Storage Services [88] proposes to optimize storage management with semantic hints from

applications. Nameless Writes [133] is a de-indirection scheme to allow writing only data

into the device and let the device choose the physical location. Similarly, FSDV [134] re-

moves the FTL level mapping by directly storing physical flash addresses in the file systems.

Multi-stream SSD [53] maintains multiple write streams with different expected lifetime for

SSD. Applications write to different streams according to data lifetime. This design aims to

make the NAND capacity unfragmented and handle the GC without costly data movement.

Although sharing a similar principle of leveraging application semantics for efficient device

management, DIDACache aims to bridge the semantic gaps between application and the un-

derlying hardware and is specific for key-value cache systems. For example, DIDACache

leverages the properties of key-value cache for aggressive quick-clean without incurring

a problem.Willow [109] exploits on-device programmability to move certain computation

from the host to the device. FlashTier [107] uses a customized flash translation layer op-

timized for caching rather than storage. OP-FCL dynamically manages OPS on SSD to

balance the space needs for GC and for caching [94]. Some commercial SSDs allow users

to define their own OPS space, such as Samsung 840 Pro [106]. However, these SSDs only

allow applications to adjust the OPS space statically, and the OPS space cannot be dynami-

cally adjusted according to the applications’ runtime patterns. Our DIDACache dynamically

determines the minimum reserved space for OPS purpose and maximizes the usable cache s-

pace during the runtime according to the application workload pattern. RIPQ [121] optimizes

the photo caching in Facebook particularly for flash by reshaping the small random writes

to a flash-friendly workload. FlashBlox [46] proposes to utilize flash parallelism to improve
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isolation between applications by running them on dedicated channels and dies, and balance

wear within and across different applications. LightNVM [13] is an open-channel SSD sub-

system in the Linux kernel, which introduces a new physical page address I/O interface that

exposes SSD parallelism and storage media characteristics. Our solution shares a similar

principle of removing unnecessary intermediate layers and collapsing multi-layer mapping

into only one, but we particularly focus on tightly connecting key-value cache systems and

the underlying flash SSD hardware.

Key-value cache systems recently show their practical importance in Internet ser-

vices [11,37,79,130]. A report from Facebook discusses their efforts of scaling Memcached

to handle the huge amount of Internet I/O traffic [92]. McDipper [32] is their latest effort on

flash-based key-value caching. Several prior research studies specifically optimize key-value

store/cache for flash. Ouyang et al. propose an SSD-assisted hybrid memory for Memcached

in high performance network [97]. This solution essentially takes flash as a swapping device.

Flashield [29] is also a hybrid key-value cache which uses DRAM as a “filter” to minimize

writes to flash. NVMKV [82] gives an optimized key-value store based on flash devices with

several new designs, such as dynamic mapping, transactional support, and parallelization.

Unlike NVMKV, our system is a key-value cache, which allows us to aggressively integrate

the two layers together and exploit some unique opportunities. For example, we can inval-

idate all slots and erase an entire flash block, since we are dealing with a cache rather than

storage.

Some prior work also leverages open-channel SSDs for domain optimizations. Our

prior study [113] outlines the key issues and a preliminary design of flash-based key-value

caching. Ouyang et al. present SDF [96] for web-scale storage. Wang et al. further present a

design of LSM-tree based key-value store on the same platform, called LOCS [125]. KAM-

L [49] presents a key-addressable multi-log SSD which exposes a key-value interface to

enable applications to make use of internal parallelism of flash channels through using open-

channel SSD. We share the common principle of bridging the semantic gap and aim to deeply

integrate device and key-value cache management.
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2.8 Summary

Key-value cache systems are crucial to low-latency high-throughput data processing. In

this chapter, we present a co-design approach to deeply integrate the key-value cache system

design with the flash hardware. Our solution enables three key benefits, namely a single-level

direct mapping from keys to physical flash memory locations, a cache-driven fine-grained

garbage collection, and an adaptive over-provisioning scheme. We implemented a prototype

on real open-channel SSD hardware platform. Our experimental results show that we can

significantly increase the throughput by 35.5%, reduce the latency by 23.6%, and remove

unnecessary erase operations by 28%.

Although this chapter focuses on key-value caching, such an integrated approach can

be generalized and applied to other semantic-rich applications. For example, for file sys-

tems and databases, which have complex mapping structures in different levels, our unified

direct mapping scheme can also be applied. For read-intensive applications with varying

patterns, our dynamic OPS approach would be highly beneficial. Various applications may

benefit from different policies or different degrees of integration with our schemes. As our

future work, we plan to further generalize some functionality to provide fine-grained con-

trol on flash operations and allow applications to flexibly select suitable schemes and reduce

development overheads.
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CHAPTER 3

ONE SIZE NEVER FITS ALL: A FLEXIBLE STORAGE INTERFACE FOR SSDS

3.1 Introduction

Solid State Drives (SSDs) are becoming the mainstream secondary storage in various com-

puting systems. Applications typically access SSDs through the standard block I/O interface.

To be general and versatile, the block interface simply exports the storage as a sequence of

logical blocks. Unfortunately, the resulting semantic gap between applications and devices

causes numerous significant, well-known issues, such as ‘log-on-log’ [80, 129] and high tail

latency [24, 43, 127].

A recent industry trend directly opens the SSD hardware details to the upper-level

applications [13,96,109,114,125]. Open-channel SSD is one such representative and popular

example [13, 96, 114, 125].

With open-channel SSD, the physical layout details (e.g., channels, chips, and block-

s) are directly exposed to applications, which manage them via direct access to the core flash

operations—page-read, page-write, and block-erase. This low-level control allows applica-

tions to optimize their performance through a tight integration of software and hardware. At

the same time, it introduces significant challenges into software development. For example,

a strong expertise in SSD hardware is required from application developers; the develop-

ment process becomes more complex, involving both software and hardware in debugging

and testing; application optimizations become ad-hoc and hardware dependent. These issues

greatly limit the portability of software code, as one deployment case may not be immedi-

ately applicable to other hardware platforms.
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Currently, developers must choose between these two extreme usage modes, neither

of which is ideal. They can adopt the easy-to-use block interface, but suffer the long-term

consequences on their application’s performance, or directly control and optimize every as-

pect of their SSDs by taking on excessive development burden. In reality, many application

types and development scenarios call for a finer-grained compromise. For example, a de-

veloper may wish to parallelize I/Os but not be interested in explicit control of garbage

collection (GC). Existing interfaces do not allow developers to make a balance between de-

velopment cost and performance.

To support the versatile needs of such applications, we present Prism-SSD–a flex-

ible storage interface. Prism-SSD exports the SSD via a user-level library in three levels

of abstraction, allowing software developers to interact with the SSD hardware in different

degrees of detail and complexity: (1) A raw-flash level abstraction, which directly exposes

the low-level flash details, including physical structures and core flash operations to appli-

cations; (2) A flash-function level abstraction, which presents the SSD as a group of flash

management functions that can be scheduled and custom-defined by applications, such as

GC, wear-leveling, etc.; (3) A user-policy level abstraction, which presents flash hardware

as a block device that is configurable by selecting predefined high-level policies. At the bot-

tom of Prism-SSD, the user-level flash monitor, which is a user-level module, runs as a core

daemon and connects the library to the OS kernel-level device driver. This flash monitor

is also responsible for allocating and managing physical flash capacity for applications that

share the same SSD hardware.

Unlike some host-side FTL schemes [51, 87], Prism-SSD provides the storage ab-

straction at the user library level. This holds several advantages. First, it provides applica-

tion developers a familiar programming interface, to easily interact with the flash storage.

Second, the user-level library resides between the application layer and the OS kernel, which

allows it to bypass the intermediate OS kernel components, such as file systems, and directly

communicate with the device via ioctl. Third, it does not require any kernel-level changes,

thus ensuring portability across different hardware platforms.
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To demonstrate the versatility and performance of this new storage model, we im-

plemented a Prism-SSD prototype on the open-channel SSD platform. We enhanced the

I/O module of three representative applications, using each of the three abstraction levels

provided by the Prism-SSD library. We modified a key-value cache based on Twitter’s Fat-

cache [123], a user-level log-structured file system based on Linux FUSE [89], and a graph

computing engine based on GraphChi [65]. Together, these three use cases well demonstrate

the flexibility and efficiency of our model. Our results show that Prism-SSD allows develop-

ers to flexibly choose the most suitable storage abstraction for optimizing their applications,

at different tradeoff points between performance and development cost.

Our main contributions are as follows. (1) We propose a highly flexible system inter-

face, designed as a user-level library, for interacting with flash-based SSDs in varying layers

of abstraction. (2) We present a fully functional prototype of Prism-SSD on the real open-

channel hardware platform, which will be made available as an open-source project. (3) We

demonstrate the efficacy of our approach in three use cases, with a range of development

costs and performance benefits.

The rest of this chapter is organized as follows. Section 3.2 gives the background

for this work. Section 3.3 describes our goals, with the design details in Section 3.4 and a

discussion in Section 3.5. We present our prototype in Section 3.6, and the evaluation use

cases in Section 3.7. We discuss related work in Section 3.8, and conclude in Section 3.9.

3.2 Background

This section briefly introduces the background of traditional flash SSDs and open-channel

SSDs.

Generic flash SSDs. Conventional flash SSDs typically encapsulate an array of flash

memory chips, providing a generic block I/O interface to the host. An SSD controller, as

a major component of SSDs, is used to process I/O requests, and manage flash memory by

issuing commands to the flash memory controller. A Flash Translation Layer (FTL) is usu-

59



ally implemented in the device firmware to manage flash memory and hide its complexities

(e.g., sequential write, out-of-place overwrite constraints) behind the Logical Block Address

(LBA) interface. An FTL mainly consists of three components: an address mapping table

translating logical addresses to flash physical pages, a garbage collector reclaiming invalid

flash blocks, and a wear-leveler spreading the wear of flash blocks evenly across the chips.

The details of FTL algorithms can be found in prior work [9, 22, 35].

Open-Channel SSDs. Open-channel SSDs expose their device-level details and raw

flash operations directly to applications. The host is responsible for utilizing SSD resources

with primitive functions through a simplified I/O stack. The following design principles of

open-channel SSDs open up new prospects for SSD management. (1) Internal geometry de-

tails, such as the layout of channels, LUNs, and chips, are exposed to user-level applications.

With this knowledge, applications can effectively organize their data and schedule accesses

to fully exploit the raw flash performance. (2) Applications can directly operate the device

hardware through the ioctl interface, allowing them to bypass the intermediate OS com-

ponents, such as file system. (3) FTL-level functions, such as address mapping, GC, and

wear-leveling, are removed from the device firmware. Instead, applications are responsible

for dealing with flash physical constraints. For example, applications are responsible for

allocating physical flash pages, ensuring a block being erased before it is overwritten. Thus,

it can avoid issues, such as the ‘log-on-log’ problem [129], by directly issuing commands to

erase physical blocks [114].

3.3 Design Goals

Open-channel SSDs have been deployed with various kinds of applications, such as file

systems [131], key-value stores and caches [114,125], and virtualization environments [46],

where they help achieve significant performance improvements. However, the prohibitive

development overhead associated with open-channel SSDs hinders them from a much wider

adoption, especially by applications that require special but only minor deviations from the

standard block I/O interface (e.g., erase a block). This unrealized potential motivates our
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Figure 3.1: Overview of Prism-SSD architecture.

new model of a flexible storage interface for SSDs. We build our model, Prism-SSD, with

the following design goals.

• Flexibility: Applications should be able to flexibly choose the degree of control they

require over the SSD operations. We achieve this goal by providing multiple levels of ab-

straction for programmers to choose from.

• Generality: The application design, and most of the library implementation, should be

general and portable to different hardware and OS platforms. We achieve this goal by en-

capsulating the low-level flash accesses within the user-level flash monitor, and decoupling

it from the user-perceived storage abstraction.

• Efficiency: Applications should experience minimal overhead as a result of using our

library. We achieve this goal by implementing it in user-space, thus bypassing most of the

kernel’s I/O stack and the latencies it entails.

By following these goals, our proposed flexible storage interface is designed to pro-

vide users a fine-grained control on the tradeoff between performance and development cost,

while incurring minimal overhead.

3.4 The Design of Prism-SSD

Figure 3.1 depicts the architecture of Prism-SSD, which consists of three main components:

(1) A specialized flash memory SSD hardware, which exposes the physical details of flash

memory and opens low-level direct access to the flash memory media via the user-level

library. (2) A user-level abstraction library, which provides a comprehensive set of storage
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Figure 3.2: APIs of Prism-SSD.

I/O stack abstractions to allow application developers to choose the most suitable way of

interacting with the underlying flash hardware through different APIs. (3) Applications,

which customize their software design with flash memory management at different degrees

of integration through the library’s abstraction interface, so as to exploit the properties of the

underlying devices.

Prism-SSD bypasses multiple intermediate layers in the conventional storage I/O s-

tack, such as the file system, generic block I/O, the scheduler, and the FTL in the SSD

firmware. We allow applications to leverage their domain knowledge, while controlling only

those aspects of the underlying flash device that are absolutely necessary for exploiting this

knowledge. The other aspects should be transparently handled by the library.

The flexibility in software and hardware co-design is provided in Prism-SSD by

a user-level library, shown in Figure 3.1. The library includes three sets of abstraction

APIs with different degrees of hardware exposure to applications: a raw-flash level, a flash-

function level, and a user-policy level. The library also includes a flash monitor running as a

user-level module, which is responsible for allocating flash capacity to different applications

sharing the same SSD hardware, and for isolating them from one another [46]. Figure 3.2

presents the APIs of the three abstraction levels.

The full documentation of the each abstrtaction layer and its APIs will be made avail-

able as an open-source project along with our prototype. Below, we focus on their details

required for demonstrating our flexible I/O interface approach. We note, however, that the

specific three-layer design presented below is only one of many possible realizations of our

approach. Other designs may define different or additional abstraction layers to allow for

finer-grained tradeoff points between developement cost and performance.

62



Figure 3.3: The physical address format.

3.4.1 The User-level Flash Monitor

At the bottom layer of the Prism-SSD library is a user-level flash monitor. Its main role

is two-fold. First, as a storage capacity manager, it allocates the required flash capacity to

applications and ensures space isolation. Second, it is responsible for sharable services, such

as OPS allocation, global wear-leveling, bad block management, etc.

Applications request storage space through the user-level flash monitor. The monitor

uses LUNs as the basic allocation unit1 for satisfying applications’ capacity requirements.

Prism-SSD allocates LUNs in a round-robin fashion across channels. Consider an open-

channel SSD with 12 channels, each providing access to 16 LUNs of 1GB. If an application

requests a capacity of 24GB, the device manager will allocate two LUNs from each channel.

The monitor also allocates an amount of over-provisioning space (OPS) as specified by the

application. The developer can determine the size of OPS based on the application’s prop-

erties. For write-intensive applications, the OPS can be set larger (e.g., 25%, similar to a

typical high-end SSD); for read-intensive applications, the percentage can be smaller. The

over-provisioning space is also allocated in units of LUNs. In the above example, for an

OPS of 25%, six extra flash LUNs will be allocated to the application. As the flash monitor

tracks the channels and LUNs allocated to each application, the flash capacity of different

applications is completely isolated. Applications access the flash space allocated to them

using the address format as shown in Figure 3.3.

Workload patterns of different applications may vary considerably, causing the erase

counts of flash blocks in different channels to vary as well. To handle uneven wear of the

flash device, the design of Prism-SSD includes a global wear leveling module, which is

based on FlashBlox [46]: Global wear leveling is applied in LUN granularity—it calculates

the average erase count of each LUN to distinguish between ‘hot’ and ‘cold’ LUNs. If the

1An open-channel SSD usually consists of several channels, each providing access to multiple LUNs, which

are the smallest parallelization unit [19]. Each LUN includes multiple flash blocks.
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difference in average erase counts exceeds a threshold, a hot LUN will be shuffled with a cold

LUN, and their allocation to applications will be updated. This module is not implemented

in our current prototype.

For bad block management, the flash monitor maintains a list of blocks that are de-

tected faulty and marked ineligible, hiding them from applications.

3.4.2 Abstraction 1: Raw-Flash Level

The raw-flash level abstraction of Prism-SSD exposes the device geometry and allows ap-

plications to control the low-level flash hardware. Applications can directly operate on flash

pages or blocks through page read/write and block erase commands. Meanwhile, application

developers should be fully aware of the unique characteristics of flash memories, such as the

out-of-place update constraint, to operate the device correctly.

With this abstraction level, typical FTL functions, such as address mapping, GC and

wear-leveling, are not provided by the library. Whether to implement them or not depends

on the application’s requirements. The application should also be responsible for its own

flash space allocation and management, and for integrating them with its software semantic.

The library simply delivers function calls from applications to the device driver through the

ioctl interface.

Figure 3.2 shows the APIs provided by the raw-flash level abstraction. Get SSD Geometry

returns the SSD layout information to the application. The SSD layout is described by the

number of channels, LUNs in each channel, blocks in each LUN, pages in each block, and

the page size. This layout information is exposed to all abstraction layers via the same in-

terface. Applications use Page Read and Page Write to directly read and write flash

physical pages, and Block Erase to erase a specified block.

The raw-flash abstraction gives applications full knowledge and direct control of the

low-level flash device, at the cost of considerable development effort. The applications that

will likely benefit most from this abstraction are those with special, regular, and well-defined
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access patterns, such as large-chunk writes. The low-level details and control exposed by

this layer are similar to those exposed by existing low-level interfaces. However, it differs

from these interfaces in two main aspects. Its APIs are decoupled from any specific SSD

hardware, providing an additional degree of portability for developers. In addition, unlike

existing stand-alone interfaces, the raw-flash layer is provided within a multi-layer flexible

framework. This allows developers to build their applications with the same hardware but

with higher layers of abstractions, while being aware of the layout details exposed by the

lowest layer.

3.4.3 Abstraction 2: Flash-Function Level

Our flash-function level abstraction models the flash storage as a collection of core functions

for flash management, such as GC, wear-leveling, etc. Application developers can compose

them and implement more sophisticated and complex management tasks. Thus, they can

maintain a certain low-level control, while avoiding the need to handle other irrelevant details

of the SSD hardware. Figure 3.2 shows the core APIs of the flash-function level. These APIs

are used to divide the four main components of flash management between the application

and the library, as follows.

Space allocation. At this level, applications directly read and write flash physical addresses

via Flash Read and Flash Write, while the library is responsible for erasing block-

s and for allocating them to applications. The application requests physical blocks via

Address Mapper, specifying the channel in which the block should be allocated, and

the mapping scheme (i.e., page-level or block-level) for that block. It then maps the physical

address returned by the library to an application-managed logical address. This function call

returns the amount of free space available for the application, allowing the application to

invoke garbage collection according to its needs.

Garbage collection (GC). At this level, the application is responsible for selecting the victim

blocks for GC, and for identifying the valid data on this block. The granularity of the valid

data is determined by the application and can be as small as a tuple of several hundred bytes.
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Thus, the application is also responsible for copying the valid data to a new location. By

calling the Flash Trim command, the application notifies the library that a block is ready

to be erased, in the background, and reallocated.

Wear-leveling. At this level, the application manages the logical-to-physical block map-

ping while the library maintains the blocks’ erase counts. Thus, wear leveling is trig-

gered by the application and executed by the library, as follows. The application invokes

the Wear Leveler in a suitable time. The library identifies the hottest blocks and the

coldest ones, and swaps the data written on them. It returns these block addresses via the

“shuffle block” parameter, as well as the maximum variance between erase counts of the

application’s allocated blocks. The application then updates its mapping of the two blocks,

and potentially invokes another wear leveling operation according to its target variance.

OPS management. The application can dynamically determine the over-provisioning space

it requires according to its current workload via Flash SetOPS. The library reserves the

specified OPS for this application. The library cannot provide the requested OPS if too many

blocks are currently mapped by the application. In this case, the application must first release

sufficient flash space.

Algorithm 3.4.1 shows an example of block allocation and garbage collection imple-

mented with the flash-function level. In this simple example, the application requests 10 flash

blocks in an idle channel by repeatedly calling the address mapping function with block-level

address mapping (“Block”). This function call returns the number of free blocks currently

available in this channel. If the available free space is below a predefined threshold, the

application triggers an application-controlled background GC process in this channel. The

GC process selects a victim block, copies its valid data elsewhere, and releases this block for

erasure by the library.

The flash-function level abstraction exports basic flash functions that application de-

velopers can use to configure different flash-management policies and to invoke them at the

most suitable timing according to their current workload. At the same time, it hides the

low-level device details, such as LUNs and erase counts, from the application level. This
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abstraction level is suitable for applications that can leverage their software semantics for

specific optimizations but are not willing to handle the low-level management details. To

the best of our knowledge, it is the first general-purpose implementation to provide this fine-

grained tradeoff between application management and ease-of development.

3.4.4 Abstraction 3: User-policy Level

The user-policy level abstraction hides all the flash related management operations from

users, allowing them to manage the SSD as a simple block device. To some extent, it can

be regarded as a user-level FTL that handles address mapping, GC, wear-leveling, etc. This

abstraction level is designed to provide the highest generality for SSDs. However, unlike

conventional device-level FTLs, this “FTL” runs as part of the user-level library and is con-

figurable, allowing applications to select their preferred policies for managing and allocating

flash capacity.

The applications use their semantic knowledge about the data usage patterns to choose

the best policies for optimizing their specific objectives. Thus, these configuration parameter-

s serve as application ‘hints’ to the FTL. At the same time, the full device layout information

is exposed to applications, allowing them to optimize the size of their data structures or level

of I/O parallelism for the underlying device.

Figure 3.2 lists the APIs provided in the user-policy level abstraction. Logical ad-

dresses are read and written via the FTL Read and FTL Write block I/O interface com-

mands. Applications configure the key flash management policies, address mapping and

garbage collection, via the FTL Ioctl function. The same policies implemented in the

flash-function level (see Section 3.4.3) are available for selection.

The user-policy level abstraction is similar to existing host-level FTLs. However,

it is managed as part of a general-purpose user-level library which also exposes additional

abstraction layers. Furthermore, it allows application developers to leverage their semantic

knowledge to configure the FTL policies. This abstraction level requires the lowest inte-

gration overhead, which makes it suitable for applications that only demand certain hard-
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Algorithm 3.4.1 Example of block allocation and GC implemented with the flash-function

level.

1: FBN ; //free block space

2: PBN ; //physical address

3: LBN ; //logical address

4: len← 10×Blocksize; //length

5: while len > 0 do

6: CHid ← choose a channel with the least workload;

7: FBN ← Address Mapper(CHid, &PBN , “Block”);

8: LBN ← PBN ; // map logical to physical

9: //allocate physical block in channel CHid

10: if FBN < GC Threshold then

11: //Free space is under a GC threshold

12: APP GC(CHid);

13: end if

14: len← len− 1;

15: end while

16: function VOID APP GC(CHid)

17: while FBN < GC Threshold do

18: PBNvictim ← victim block in CHid;

19: //select block by “Greedy”, “LRU”, etc.

20: //copy valid data from the victim block elsewhere

21: Flash Trim(CHid, PBNvictim);

22: end while

23: end function
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ware/software cooperation through a configurable interface, but are sensitive to their devel-

opment cost.

3.5 Discussion

The introduction of a new, flexible storage interface holds great potential for application

development and optimization, as well as for quick adoption of new hardware. By realizing

this new model within a user-level library—unlike the traditional approaches that implement

the complex flash management policies in the device firmware [9] or the OS kernel driver [51,

56]—Prism-SSD delivers this potential to general developers and hardware vendors.

We discussed the perspective of the application developers in detail above and demon-

strate it in our use-cases below. Prism-SSD presents them with the first opportunity to choose

from a range of abstraction layers for interacting with their hardware. They may further

leverage its APIs to develop and stack additional libraries for different languages and appli-

cations.

From the perspective of hardware vendors, a flexible storage interface in the form of a

user-level library is a powerful tool for reducing development costs and the time-to-market.

Moving complex internal firmware into the library layer will allow hardware vendors to

quickly roll out new features in the form of library updates, and to accelerate the development

cycle thanks to reduced coding, debugging, and testing requirements at the user level. These

advantages are particularly appealing with the increasing complexity of hardware storage

devices.

Finally, hardware vendors can easily offer custom-built hardware/software solutions

addressing various applications’ requirements. Such solutions are currently prohibitive in

terms of development time and costs. Combined, these advantages offer hardware vendors

the means to build and own a complete vertical stack to closely connect with applications,

creating more business opportunities.
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3.6 Implementation and Prototype System

We have built a prototype of Prism-SSD on the open-channel SSD hardware platform man-

ufactured by Memblaze [85]. This PCI-E based SSD contains 12 channels, each of which

connects to two Toshiba 19nm MLC flash chips. Each chip consists of two planes and has a

capacity of 66GB. The SSD exports its physical space to the upper level as one volume, with

access to 192 LUNs. The 192 LUNs are evenly mapped to the 12 channels in a channel-by-

channel manner. That is, channel #0 contains LUNs 0-15, channel #1 contains LUNs 16-31,

and so on. Thus, the physical mapping of flash memory LUNs to channels is known.

This interface is different from that of open-channel SSDs used in other studies,

which exports flash space as 44 individual volumes [96]. The hardware used in our proto-

type allows the upper level to directly access raw flash memory via the ioctl interface, by

specifying the LUN ID, block ID, or page ID in the commands sent to the device command

queue. Standard FTL-level functions, such as address mapping and GC, are not provided.

In Prism-SSD, they are implemented in the library. The user-level flash monitor module is

responsible for conveying the I/O operations to the device driver via ioctl.

Our prototype implements the user-level flash monitor and the three abstraction lev-

els, accounting for 4,460 lines of C code. Specifically, the user-level flash monitor module

accounts for 560 lines, the raw-flash abstraction for 380 lines, and the flash-function abstrac-

tion and the user-policy abstraction for 2,580 and 940 lines, respectively. We deployed our

prototype on a Linux workstation, which features an Intel i7-5820K 3.3GHZ processor and

16GB memory. We use Ubuntu 14.04 with Linux kernel 3.17.8 as our operating system.

3.7 Case Studies

The Prism-SSD model offers a powerful tool for developers to optimize their performance

with SSDs. Choosing the abstraction level that best suits their needs, application develop-

ers can integrate their software design with the hardware management at the right balance

between performance and development cost.
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In this section, we demonstrate the versatility of this approach in typical software

development scenarios, mainly from the perspective of developers. We carefully selected

three major applications as our case studies: a key-value cache system based on Twitter’s

Fatcache (Section 3.7.1), a user-level log-structured file system based on Linux FUSE (Sec-

tion 3.7.2), and a graph computing engine based on GraphChi (Section 3.7.3). Due to space

constraint, we use key-value caching as our main case study and the other two as examples

demonstrating the general applicability of Prism-SSD.

3.7.1 Case 1: In-flash Key-value Caching

Recently, flash-based key-value cache systems have raised high interest in industry, such as

Facebook’s McDipper [32] and Twitter’s Fatcache [123]. The flash-based key-value cache

systems typically run on commercial flash SSDs and adopt a slab-based allocation scheme,

as Memcached [86], to manage key-value pairs in flash. Taking Fatcache as an example,

Fatcache divide the SSD space into large slabs (e.g., 1MB), slabs are further separated into

slots. Each slot is used to store one key-value item. An in-memory hash table is used to

record the mapping between key-value items and slabs.

Flash-based key-value cache systems are designed with the awareness of the under-

lying SSD devices, and has several flash-friendly properties. First, SSDs are treated as a

log-structured object store, and I/O operations are done with large slab unit. For example,

to accommodate small key-value items , Fatcache maintains an in-memory slab to buffer

small items in memory first and then flush to storage in bulk later, which causes a unique

“large-I/O-only” pattern on the underlying flash SSDs. Second, flash-based key-value caches

cannot update key-value items in place. In Fatcache, all key-value updates are written to new

locations. Thus, a GC procedure is needed to clean/erase slab blocks. Third, the manage-

ment granularity in flash-based key-value caches is much coarser. For example, Fatcache

uses a simple slab-level FIFO policy to evict the oldest slab when free space is needed.

Flash-based key-value caching represents a category of applications that are highly

suitable for deep software/hardware integration. For example, Fatcache segments the SSD
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space into large slabs, and all I/O operations are no smaller than 1MB, which makes low-

level page-based mapping unnecessary. Fatcache never updates key-value items in place.

Instead, it implements a periodic application-level GC for space recycling, which makes it

a perfect candidate to merge with the device-level GC. Furthermore, Fatcache is fully aware

of the slab liveness, which can serve as ideal ‘hints’ for scheduling erase operations.

Optimizing Fatcache with Prism-SSD. In this use case, we illustrate how to optimize Fat-

cache with Prism-SSD. We will demonstrate three different approaches of using the Prism-

SSD library for this purpose.

• Deep Integration: Using the raw-flash level abstraction provided by Prism-SSD, we allow

the key-value cache manager to fully exploit the semantic knowledge of Fatcache and directly

drive the SSD hardware. To that end, we have augmented the key-value cache manager as

described in DIDACache [114], with four major components, as follows.

(1) a slab/block management module, which directly translates slabs into one or more

blocks with minimal calculation; (2) a unified hash-key-to-block mapping module, which

records the mapping of key-value items to their physical flash locations; (3) an integrated

garbage collection module, which reclaims flash space occupied by obsolete key-value item-

s; and (4) a dynamic over-provisioning space (OPS) management module, which dynami-

cally adjusts the OPS size based on a queuing-theory based model. Unlike DIDACache, our

implementation uses the library’s APIs, and accounts for 1,450 lines of code. Due to the

space constraint, we omit the details about the DIDACache policies, which can be found in

the paper [114].

• Function-level Integration: The second implementation, based on the flash-function level

abstraction, allows the key-value cache manager to design cache-friendly policies without

managing all low-level details.

In contrast to the raw-level approach, the four major components in this implemen-

tation are as follows: (1) A slab to block mapping module. At the function level, the ap-

plication can still see and manage the physical flash blocks via the library APIs. Thus, it

is responsible for the mapping between slabs and flash physical blocks; (2) A hash-key-to-
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Figure 3.4: Hit ratio vs. cache size. Figure 3.5: Throughput vs. cache size.

Figure 3.6: Throughput vs. Set/Get ra-

tio.

Figure 3.7: Latency vs. Set/Get ratio.

slab mapping module. The key-value cache manager also records the mapping of key-value

items to their slab locations, which is identical to the stock Fatcache implementation. (3) A

garbage collection module. The key-value cache reclaims slab space occupied by obsolete

(deleted or updated) key-value items. The flash physical blocks are invalidated and recycled

via the library API; (4) A dynamic OPS management module, which estimates the preferred

OPS based on a queuing theory based model. Note that at this level, the slab-to-flash-block

mapping is still maintained by the application, but the block allocation, reclamation, and

status are maintained by the library. This implementation consists of 860 lines of code.

• Light Integration: For comparison, we also implemented a light-weight optimization for

Fatcache by using the user-policy level abstraction. In this implementation, the key-value

cache manager is nearly identical to the stock Fatcache. Our implementation only replaces

the device initialization process with the library APIs. The change accounts for 210 lines of

code.

Implementation and Evaluation. Our implementation is based on Twitter’s Fatcache [123].
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For fair comparison, we added non-blocking slab allocation and eviction to the stock Fat-

cache. We use this version as our baseline and denote it as “Fatcache-Original” [1]. We

refer to our implementation with the raw-flash level, flash-function level, and user-policy

level abstractions as “Fatcache-Raw”, “Fatcache-Function”, and “Fatcache-Policy”, respec-

tively. For performance comparison, we run Fatcache-Original on a commercial PCI-E SSD,

which has the same hardware as the open-channel SSD. We also show the results of DIDA-

Cache [114], denoted as “DIDACache”, which directly integrates the hardware management

into the Fatcache application, representing the ideal case.

• Overall performance. We first evaluate the key-value cache system performance in a

simulated production data-center environment. This setup includes a front-end client, a key-

value cache server, and an MySQL database in the backend. The key-value workload is

generated using a model based on real Facebook workloads [11, 14], which is also used in

prior work [114].

Figure 3.4 shows the hit ratios of the four cache systems with cache sizes of 6%–

12% of the data set size. As the cache size increases, the hit ratio of all schemes improves

significantly. Fatcache-Original and Fatcache-Policy have the same hit ratio because they

both reserve 25% flash capacity as static OPS. In contrast, DIDACache, Fatcache-Raw, and

Fatcache-Function have a higher hit ratio thanks to their adaptive OPS policy, which adap-

tively tunes the reserved space according to the workload, saving more space for caching.

This extends the available cache space to accommodate more cache data. As a result, they

outperform Fatcache-Original and Fatcache-Policy substantially: their hit ratios range be-

tween 76.5% and 94.8%, while those of Fatcache-Original and Fatcache-Policy are between

71.1% and 87.3%.

Figure 3.5 shows the throughput, i.e., the number of operations per second (ops/sec).

We can see that as the cache size increases from 6% to 12%, the throughput of all the four

schemes improves significantly, due to the improved cache hit ratio. Fatcache-Raw has the

highest throughput, and Fatcache-Function is slightly lower. With a cache size of 10% of the

data set (about 25GB), Fatcache-Raw outperforms Fatcache-Original, Fatcache-Function,
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((a) Raw-Flash level. (b) Flash-Function level. (c) User-Policy level.

Figure 3.8: Garbage collection overhead with different OPS policies of three abstractions.

and Fatcache-Policy by 9.2%, 0.4%, and 8.8%, respectively.

• Cache server performance. In our next set of experiments, we study the performance

details of the cache server. We first populate the cache server with 25GB key-value items,

and then directly issue Set and Get operations to the cache server. Figure 3.6 shows the

throughput of the five cache systems with different Set/Get ratios. Fatcache-Raw achieves

the highest throughput across the board. Fatcache-Original achieves the lowest throughput.

With 100% Set operations, the throughput of Fatcache-Raw is 27.6% higher than that of

Fatcache-Original, 5.2% higher than that of Fatcache-Function, and 15.5% higher than that

of Fatcache-Policy. The performance gain of Fatcache-Raw is mainly due to its unified

slab management policy and the integrated application-driven GC policy, and the better use

of the SSD’s internal parallelism. Fatcache-Raw achieves almost the same performance as

DIDACache. The throughput of Fatcache-Raw is only 1.7% lower than that of DIDACache

in the worst case, which also demonstrates that the overhead of the Prism-SSD library is

negligible compared to its benefits.

As we expected, the performances of Fatcache-Function and Fatcache-Policy are

lower than that of Fatcache-Raw, which is more thoroughly optimized. The performance

of Fatcache-Function is slightly lower than that of Fatcache-Raw. This is because although

Fatcache-Function cannot operate with full low-level controls, it can still integrate the cache

semantics within flash management, such as the GC process. Fatcache-Policy outperforms

Fatcache-Original by 10.2%, due to its simplified I/O stack and block-level mapping, which

reduces the overhead. As the portion of Get operations increases, the raw flash read latency

becomes the main bottleneck, and this performance gain decreases.
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Figure 3.7 shows the average latency of the five cache systems with different Set/Get

ratios. Fatcache-Original suffers the highest latency, while Fatcache-Raw, implemented with

Prism-SSD, has the lowest latency. For example, with 100% Set operations, Fatcache-Raw

reduces the average latency of Fatcache-Original, Fatcache-Function, and Fatcache-Policy

by 22.9%, 2.8% and 12.1%, respectively.

• Effect of garbage collection. In our next set of experiments, we evaluate the effect

of optimized GC on the flash erase counts, which directly affect the device lifetime. We

configure the available SSD size to 30GB, and preload it with 25GB data. We then issue

140M Set operations following the Normal distribution, writing approximately 50GB of

logical data. To retrieve the erase counts of Fatcache-Original, which runs on a commercial

SSD, we collect its I/O trace and replay it with the widely used SSD simulator from Microsoft

Research [50]. Table 3.1 shows the GC overhead in terms of valid data copies (key-values

and flash pages) and block erases of the four schemes.

Fatcache-Original suffers from the highest GC overhead. It uses the greedy GC pol-

icy and the SSD hardware uses page-level mapping. As a result, blocks selected for erasure

store a mix of valid and invalid pages, incurring flash page copies by the device-level GC.

In contrast, the block-level mapping used by Fatcache-Function and Fatcache-Policy maps

each slab directly to one flash block, thus eliminating all page copies caused by the device-

level GC. By aggressively evicting valid clean items as part of the cache management policy,

Fatcache-Function, Fatcache-Raw, and DIDACache further leverage application semantics

to reduce the key-value copies to only 3.63 GB, 3.49 GB and 3.45 GB, respectively.

Figure 3.8 shows the GC cost, and we can find that the GC overheads of Fatcache-

Raw and Fatcache-Function are basically the same. In fact, compared with Fatcache-Policy,

Fatcache-Raw and Fatcache-Function erase 15.5% and 15.2% less flash blocks, respectively.

Fatcache-Policy is more affected by the GC overhead due to the lack of deep optimization.

This case study demonstrates the effectiveness of Prism-SSD by comparing four im-

plementations of an optimized in-flash key-value caching. With the raw-flash abstraction,

the developer can tightly control the low-level flash operations and optimize flash physical
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Table 3.1: Garbage collection overhead.

GC Scheme Key-values Flash Page Erase Count

Fatcache-Original 13.27 GB 7.15 GB 8,540

Fatcache-Policy 13.27 GB 0 7,620

Fatcache-Function 3.63 GB 0 6,017

Fatcache-Raw 3.49 GB N/A 5,994

DIDACache 3.45 GB N/A 5,985

Figure 3.9: Performance evaluation. Figure 3.10: Pagerank performance.

layout. With the flash-function abstraction, the software integrates its software semantic-

s into hardware management without handling low-level details, and the performance can

be close to the raw-flash implementation. With the user-policy abstraction, the application

achieves noteworthy performance gains with minimal development overhead (210 lines of

code). This successfully demonstrates the flexibility of our proposed storage interface.

3.7.2 Case 2: Log-structured File System

Flash-based Log-structured file systems suffer from the well-known “log-on-log” problem [129,

131], which has detrimental effects on GC costs and performance. In this use case, we have

implemented a user-level log-structured file system, called ULFS-Prism, on open-channel

SSD with flash-function abstraction provided by Prism-SSD to avoid redundant logging.

ULFS-Prism directly allocates flash physical blocks to files. It maintains only the

block-to-file mapping. Similarly, ULFS-Prism triggers greedy GC policy when the num-

ber of free blocks drops below a threshold, using the library’s implementation of the greedy
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Table 3.2: Filesystem GC overhead.

Filesystem File copy Flash copy Erase

ULFS-SSD 9.82GB 7.24GB 6,594

ULFS-Prism 9.82GB N/A 5,280

MIT-XMP N/A 9.37GB 5,429

scheme. ULFS-Prism implements the channel-level parallelism and load balancing explicit-

ly, by utilizing the channel information provided by the function-level abstraction. It main-

tains a workload queue for each channel, and counts the read/write/erase operations in each

queue. A similar scheme was implemented in ParaFS [131] as a kernel-level file system on

top of a specialized device-level FTL.

We also implemented a user-level log-structured file system, ULFS-SSD, and ran

on a commercial PCI-E SSD, which has the same hardware as our open-channel SSD. For

performance reference, we compare both log-structured file systems to MIT-XMP—a user

level file system implemented as a FUSE wrapper for the host Ext4 file system [7] that ran

on the commercial SSD.

In our first experiment, we use Filebench [2] to compare the results of the three file

systems with three workloads, namely fileserver, webserver, and varmail. Figure 3.9 shows

the throughput (operations per second, ops/sec) of the three file system implementations.

The throughput of the two log-structured file systems is of a similar order of magnitude

with MIT-XMP. ULFS-Prism outperforms ULFS-SSD in all three workloads, thanks to the

cooperation between the hardware and software. Its throughput is 21.5% higher than that of

ULFS-SSD on the varmail workload.

Table 3.2 shows the erase counts and valid data copied—file copies in the filesystem

level and flash page copies in the device level—of each file system. ULFS-Prism and ULFS-

SSD incur the same amount of file copies, but ULFS-Prism does not incur any flash page

copies, because it does not require any additional device-level GC. However, with ULFS-

SSD, the device-level GC may choose segments that still include valid data as victims blocks.

78



Table 3.3: Graphs computing workloads.

Graph Name Nodes Edges Size

Twitter2010 [64] 41.7 million 1.4 billion 26.2GB

Yahooweb [8] 1.4 billion 6.6 billion 50GB

Friendster [128] 6.6 million 1.8 billion 211MB

Twitter [84] 81,306 1.8 million 44MB

LiveJournal [128] 4.0 million 34.7 million 1.1GB

Soc-Pokec [120] 1.6 million 30.6 million 404MB

MIT-XMP performs in-place updates at the file-system level, but incurs high GC cost at the

device level.

This use case demonstrates that the flash-function level abstraction allows developers

to quickly optimize their software design with relatively lower development cost. ULFS-

SSD was implemented from scratch with 2,880 lines of code, and ULFS-Prism required

only 660 more lines for integrating its flash management optimizations. This medium-level

development effort is well paid off for a 21.5% speedup.

3.7.3 Case 3: Graph Computing Engine

Graph computing platforms are important for analyzing massive graph data and extracting

valuable information from social, biological, health-care, information and cyber-physical

systems. External memory graph processing systems, such as GraphChi [65], X-Stream [105]

and GridGraph [138], are especially important, due to their scalability and low cost. In this

use case, we have enhanced a popular graph computing platform, GraphChi, with the Prism-

SSD library.

We modify GraphChi with Prism-SSD using the user-policy level abstraction, as a

showcase of quick, light-weight integration. In the initialization process, we divide the allo-

cated logical space into two parts, and use one to store the shard data, and the other to store

the results. We divide the data of each shard into block-sized segments (instead of files),
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Table 3.4: Use case summary.

Application Abstraction Level Code Lines Library Services Application Responsibilities

Raw-flash 1,450 Transfer to flash operations Slab-to-block mapping, block allocation,

garbage collection, OPS management

Key-value caching Flash-function 860 Block allocation, Wear leveling, Slab-to-block mapping, Dynamic OPS,

Asynchronous block erase Valid data copies

User-Policy 210 Wear leveling, garbage collection, Slab allocation,

block allocation, block mapping item-to-slab mapping

User-level LFS Flash-function (2,880+) 660 Wear leveling, block erasure, block File-to-segment mapping, segment-based

allocation, block mapping garbage collection, load balancing

Graph computing User-Policy 490 Wear leveling, garbage collection, Shard-to-segment mapping,

block allocation, block mapping logical space partitioning

and record the mapping between shards, intervals, and segments. We configure the logical

space for shards with block-level mapping. The GC policy is irrelevant because this data is

never updated. Similarly, we divide the result data into segments and record their mapping

information in the application. We configure the logical space for result data with block-level

mapping and greedy GC.

We compare the original GraphChi platform to our optimized implementation by

running the “pagerank” algorithm on the graphs shown in Table 3.3. Figure 3.10 shows the

total run time of both GraphChi versions on each graph, divided into preprocessing time and

execution time. In general, our optimized implementation outperforms the stock GraphChi

in both preprocessing and execution steps across the board. For example, on the Soc-Journal

graph, the optimized GraphChi reduces the preprocessing and execution times of the original

platform by 5.2% and 7.6%, respectively, resulting in an overall 5.7% reduction.

This performance improvement is limited compared to our previous use cases. This is

mainly due to the highly optimized nature of the original GraphChi: its I/O stack is simplified

and its access pattern has already been carefully optimized for SSDs. Also, I/O is not a

major bottleneck in this platform, and optimizing it does not have a major impact on overall

runtime. Nevertheless, we still were able to noticeably reduce this run time with a small

development effort with only 490 lines of code.
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3.7.4 Summary and Discussion

Table 3.4 summarizes the development cost and main characteristics of our three use cas-

es. These case studies clearly demonstrate the flexibility and versatility provided by Prism-

SSD—applications built with the raw-flash level abstraction require the most development

effort, while the user-policy level abstraction requires the least code adaptation. Developers

can choose how to integrate the application software with the low-level hardware manage-

ment, according to their design goals.

Our case studies also show that the potential benefit from the flexible storage interface

strongly depends on the application. Some applications have only little to gain from it.

For example, some applications already generate flash friendly I/O traffic, such as read-

only, highly parallel, or large I/Os. For these applications, applying the light-weight user-

policy level abstraction will make little difference. The graph computing use case serves as

a representative example for this class of applications. Another category of applications that

cannot gain much benefit from this model consists of computation-intensive applications,

such as typical machine learning, HPC, image processing applications. Our proposed storage

model and its flexible intercase are particularly suitable for data-intensive applications with

rich semantic information, such as key-value stores, user-level file servers, object stores, and

virtual machines.

3.8 Related Work

Flash memory based SSDs have been extensively studied and optimized in the last decades.

We focus here on the work related to their storage interface and their integration with file

systems and applications.

SSDs with block I/O interface. File system and applications implemented on top of SSDs

with the traditional block I/O interface often suffer from resource underutilization and low

performance. Several approaches have been proposed for addressing this problem at the file-

system level. For example, SFS [90] is a log-structured file system that transforms random

application writes to sequential writes at the SSD level.
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At the FTL level, BAST [60] combines page and block mapping granularities to allow

efficient handling of both sequential and random writes, while reducing storage overhead of

page-level address translation. FAST [70] further enhances random write performance with

flexible mapping in log area, thus improving its utilization. CAFTL [?] reduces write traffic

to the flash memory by eliminating duplicate writes and redundant data.

An alternative approach is to implement the FTL at the host level, allowing it to

control data placement and I/O scheduling. Host-side FTLs have been implemented by both

FusionIO DFS [51] and Violin Memory [87]. FSDV [?] relies on mapping at the device

level, but assumes that the file system can learn and replace some of the mappings in the

device by directly querying and storing physical flash address in the file systems.

Open-Channel SSDs. Several recent works proposed to expose some or all of the internal

flash layout details directly to the application. The Open-Channel SSD used in our imple-

mentation is one such example. Another example is SDF [96], which exposes the channels

in commodity SSD hardware to the software, allowing it to fully utilize the device’s raw

bandwidth and storage capacity. FlashBlox [46], based on Open-Channel SSD, utilizes flash

parallelism to improve isolation between applications. It runs them on dedicated channels

and dies, and balances wear within and across different applications.

Other designs, implemented on customized SSDs or FPGAs, followed a similar ap-

proach. ParaFS [131] exposes device physical information to the file system, which in turn

exploits its internal parallelism and coordinates the garbage collection processes minimize

its overhead. AMF [71] provides a new out-of-place block I/O interface, reducing flash

management overhead and pushing management responsibilities to the applications.

While the semantics of the interfaces exported by these systems vary, they all export

a fixed interface of the device to the application level. However, as we have demonstrated

in our use cases and discussion, many applications can benefit from a flexible interface that

will allow developers to balance their performance and development cost. At the same time,

we believe that the designs in these works can be implemented and made portable with

PrismSSD.
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Smart storage. Another emerging trend is to leverage the computing capability of SSDs to

offload some of the application’s tasks. Kang [55] introduces a Smart SSD model, which

pairs in-device processing with a powerful host system capable of handling data-oriented

tasks without modifying operating system code. ActiveFlash [122] proposes offloading data

analysis tasks for HPC applications to SSD controller without degrading the performance of

the simulation job. Willow [109] offers programmers the ability to implement customized

SSD features to support particular applications.

We view this line of research as another indication that the interface between the

devices and the applications must be made more flexible, to allow users to enjoy the full

power of the hardware that they own.

3.9 Summary

In this chapter, we presented a flexible storage interface, Prism-SSD, which exports SSDs

to applications in three abstraction levels. This interface allows developers to choose how

tightly they want to integrate flash management into their application, providing more than

just the two extreme options available to developers today. We demonstrated the usability of

the proposed model by comparing application performance improvement and development

cost of three representative use cases. Our evaluation results reveal potential optimization

opportunities that are facilitated by our model in a wide range of applications.
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CHAPTER 4

AN EFFICIENT LSM-TREE-BASED SQLITE-LIKE DATABASE ENGINE FOR

MOBILE DEVICES

4.1 Introduction

Smart mobile devices, e.g., smartphones, phablets, tablets, and smartTVs, are becoming

prevalent. SQLite [118], which is a server-less, transactional SQL database engine, is of

vital importance and has been widely deployed in these mobile devices [33, 58, 59]. Popular

mobile applications such as messenger, email and social network services, rely on SQLite

for data management. However, due to the inefficient date organization and the poor coordi-

nation between its database engine and the underlying storage system, SQLite suffers from

poor transactional performance [47, 48, 62, 67, 69, 112].

Many efforts have been done to optimize the performance of SQLite. These opti-

mization approaches mainly fall into two categories. (1) Investigating I/O characteristics of

different workloads of SQLite and mitigating its journaling over journal problem [48,54,62,

69, 112]. Lee et al. [69] points out that the excessive IO activities caused by uncoordinated

interactions between EXT4 journaling and SQLite journaling are one of the main sources

that incur inefficiency to mobile devices. Jeong et al. [48] integrate external journaling to

eliminate unnecessary file system metadata journaling in the SQLite environment. Shen et

al. [112] optimize SQLite transactions by adaptively allowing database files to have their

custom file system journaling mode. (2) Utilizing emerging non-volatile memory technol-

ogy, such as phase change memory (PCM), to eliminate small, random updates to storage

devices [57, 61, 93, 98]. Oh et al. [93] optimize SQLite by persisting small insertions or

updates in SQLite with the non-volatile, byte-addressable PCM. Kim et al. [61] develop N-
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VWAL (NVRAM Write-Ahead Logging) for SQLite to exploit byte addressable NVRAM

to maintain the write-ahead log and to guarantee the failure atomicity and the durability of

a database transaction. Though various mechanisms have been proposed, they all culmi-

nate with limited performance improvement. In this work, we for the first time propose to

leverage the LSM-tree-based key-value data structure to improve SQLite performance.

Key-value database engine, which offers higher efficiency, scalability, availability,

and usually works with simple NoSQL schema, is becoming more and more popular [15,

21, 25, 36]. Key-value databases have simple interfaces (such as Put() and Get()) and

are more efficient than the traditional relational SQL databases in cloud environments [11,

16, 27]. To utilize the advantages of key-value database under SQL environments, Apache

Phoenix [99] provides a SQL-like interface which translates SQL statements into a series of

key-value operations in a NoSQL database HBase. Phoenix demonstrates outstanding per-

formance in data cluster environment. However, the approach cannot be directly adopted by

resource limited mobile devices as targeting at scalable and distributed computing environ-

ments with large datasets [20, 78].

There exist key-value databases on mobile device, such as SnappyDB [116], Un-

Qlite [124], and Leveldown-Mobile [72]. However, they are not widely used in mobile

devices for two major reasons. Firstly, nowadays, most mobile applications are built with

SQL statements. Lacking of the SQL interface causes semantic mismatch between the SQL-

based mobile applications and key-value database engine. Thus, mobile applications need

to be redesigned to be compatible with the key-value databases, which incurs too much

overhead. Secondly, current key-value databases require large memory footprints to main-

tain in-memory metadata [26, 45, 75]. Such an in-memory metadata management approach

introduces the overhead of notable memory occupation. In most of cloud computing envi-

ronments, this is not a critical issue. However, for mobile devices with constrained memory

space, this is nontrivial [68].

To make mobile applications benefit from the efficient key-value database engine,

in this chapter, we propose a novel SQLite-like database engine, called SQLiteKV, which
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adopts the LSM-tree-based key-value data structure but retains the SQLite interfaces. SQLiteKV

consists of two layers: (1) A front-end layer that includes an SQLite-to-KV compiler and a

novel coordination caching mechanism. (2) A back-end layer that includes an LSM-tree-

based key-value database engine with an effective metadata management scheme.

In the front-end, the SQLite-to-KV compiler receives SQL statements and translates

them into the corresponding key-value operations. A caching mechanism is designed to

alleviate the discrepancy of data organization between SQLite and the key-value database.

Considering the memory constraints issue in mobile devices, we manage the caching with a

slab-based approach to eliminate memory fragmentation. Cache space is firstly segmented

into slabs while each slab is further striped into an array of slots with equal size. One query

result is buffered into the slab whose slot size is of the best fit with its own size [92,108,114].

For the back-end, we deploy an LSM-tree-based key-value database engine which

transforms random writes to sequential writes by aggregating multiple updates in memory

and dumping them to storage in a “batch” manner. To deal with the limited memory and

energy resources for mobile devices [111], we propose to store exclusively the metadata for

the top levels of the LSM tree in memory and leave others on storage to mitigate the memory

requirement.

We have implemented and deployed the proposed SQLiteKV on a Google Nexus

Android platform based on a key-value database-SnappyDB [116]. The experimental re-

sults with various workloads show that, our SQLiteKV presents up to 6 times performance

improvement compared with SQLite. Our contributions are concluded as follows:

• We for the first time propose to improve the performance of SQLite by adopting the

LSM-tree-based key-value database engine while remaining the SQLite interfaces for

mobile devices.

• We design a slab-based coordination caching scheme to solve the semantic mismatch

between the SQL interfaces and the key-value database engine, which also effectively

improves the system performance.
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Figure 4.1: Architecture of SQLite.

• To mitigate the memory requirement for mobile devices, we have re-designed the index

management policy for the LSM-tree-based key-value database engine.

• We have implemented and deployed a prototype of SQLiteKV with a real Google

Android platform, and the evaluation results show the effective of our proposed design.

The rest of chapter is organized as follows. Section 4.2 presents some background

information. Section 4.3 gives the motivation. Section 4.4 describes the design and imple-

mentation. Experimental results are presented in Section 4.5. Section 4.6 concludes this

chapter.

4.2 Background

This section introduces some background information about SQLite, the LSM-tree-based

key-value database, and other SQL-compatible key-value databases.

4.2.1 SQLite

SQLite is an in-process library, as well as an embedded SQL database widely used in mo-

bile devices [52, 118]. Figure 4.1 gives the architecture of SQLite. SQLite exposes SQL

interfaces to applications, and works by compiling SQL statements to bytecode, which then

will be executed by a virtual machine. During the compiling of one SQL statement, the SQL
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Figure 4.2: Architecture of the LSM-tree-based database.

command processor first sends it to the tokenizer. The tokenizer breaks the SQL statement

into tokens and passes those tokens to the parser. The parser assigns meaning to each token

based on its context, and assembles the tokens into a parse tree. Thereafter, the code gener-

ator analyzes the parser tree and generates virtual machine code that performs the work of

the SQL statement. The virtual machine will run the generated virtual machine code with

different operations files.

The data organization of SQLite is based on B-tree. One separate B-tree is used for

each table in the database. The B-tree indexes data from the disk in fix-sized pages. The

pages can be either data page, index page, free page or overflow page. All pages are of

the same size and are comprised of multi-byte fields. The pager is responsible for reading,

writing, and caching these pages. SQLite communicates with the underlying file system by

system calls like open, write and fsync. Moreover, SQLite uses a journal mechanism

for crush recovery, which makes the database file and journal file [12, 101] synchronized

frequently with the disk and leads to a performance degradation consequently.

4.2.2 LSM-tree-based Key-Value Database

The LSM-tree-based data structure has been widely adopted by key-value databases which

map a set of keys to associated values [15,36,95]. Applications access their data through sim-

ple Put() and Get() interfaces, that are the most generally used in NoSQL database [42,

91,100]. Figure 4.2 presents the architecture of an LSM-tree-based key-value storage engine,

which consists of two MemTables in main memory and a set of sorted SSTables (shown as

SST) in the disk. To assist database query operations, metadata, including indexes, bloom
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(a) Throughput w. Insert operation. (b) Throughput w. Query operation.

Figure 4.3: Performance comparison of SQLite vs SnappyDB

filters, key-value ranges and sizes of these on-disk SSTables, are maintained in memory

[16, 108].

The LSM-tree-based key-value design is based on two optimizations: (1) New data

must be quickly admitted into the store to support high-throughput writes. The database first

uses an in-memory buffer, called MemTable, to receive incoming key-value items. Once a

MemTable is full, it is first transferred into a sorted immutable MemTable, and dumped to

disk as an SSTable. Key-value items in one SSTable are sorted according to their keys. Key

ranges and a bloom filter of each SSTable are maintained as metadata cached in memory

space to assist key-value query operations. (2) Key-value items in the store are sorted to

support fast data localization. A multilevel tree-like structure is build to progressively sort

key-value items in this architecture as shown in Figure 4.2.

The youngest level, Level0, is generated by writing the immutable MemTable from

memory to disk. Each level has a limitation on the maximum number of SSTables. In order

to keep the stored data in an optimized layout, a compaction process will be conducted to

merge overlapping key-value items to the next level when the total size of Levell exceeds its

limitation.
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4.2.3 Other SQL-Compatible Key-Value Databases

Apache Phoenix [99] is an open source relational database, in which a SQL statement is com-

piled into a series of key-value operations for HBase [44], a distributed, key-value database.

Phoenix provides well-defined and industry standard APIs for OLTP and operational analyt-

ics for Hadoop [30, 132]. Nevertheless, without a deep integration with the Hadoop frame-

work, it is difficult for mobile devices to adopt either HBase as its storage engine or Phoenix

for SQL-to-KV transitions. Besides, Phoenix, along with other Hadoop related modules,

is designed for scalable and distributed computing environments with large datasets [34],

which means they can hardly fit in mobile environments with limited resources [115].

In this thesis, we propose an efficient LSM-tree-based lightweight database engine,

SQLiteKV, which retains the SQLite interface for mobile devices, provides better perfor-

mance compared with SQLite and adopts an efficient LSM-tree structure on its storage en-

gine.

4.3 Motivation

To compare the performance of SQLite and the key-value based database engine, we choose

one lightweight LSM-tree-based key-value database, called SnappyDB [116], and measure

the throughput (operation per second, ops/sec) by running them with a Google Nexus smart-

phone. We use the Zipfian distribution [23] to generate the request popularity and request

sizes are varied from 64 bytes to 4096 bytes. Figure 4.3 presents the throughput for both

insert and query operations of these two databases, respectively.

Figure 4.3(a) shows the throughput for insert operations with SQLite and SnappyDB

over vary-sized requests. It is obvious that SnappyDB outperforms SQLite significantly

across the board. For instance, with the request size of 64 bytes, SnappyDB outperforms

SQLite 7.3 times. The reason is mainly two folds. First, SQLite is a relational database

which has strict data organization schema. All insert requests have to strictly follow the data

organization schema and the slow transaction process of SQLite. The second reason is the

90



journaling of journal problem. In SQLite, an insert transaction firstly logs the insertion at

an individual SQLite journal, and then inserts the record to the actual database table. At the

end of each phase, SQLite calls fsync() to persist the results. Each fsync() call makes the

underlying file system (e.g., ext4) update the database file and write the new metadata to the

file system journal. Hence, a single insert operation may result in up to 9 I/Os to the storage

device, and each I/O is done with the 4KB unit. This uncoordinated IO interaction brings

much write amplification and sacrifices the performance of SQLite a lot. On the other hand,

SnappyDB maintains a shared log, and an insert operation is firstly logged in the log file, and

then served by its memory table as shown in Figure 4.2. This process is much simple and

incurs less IOs to the storage device compared with SQLite.

It can also be observed from Figure 4.3(a) that with the request size increasing, the

performance improvement of SnappyDB over SQLite decreases. This is because when the

function fsync() is called, the underlying file system will do write operation with the 4KB

unit. With the request size increasing close to 4KB, the write amplification overhead decreas-

es. When the request size is of 4KB, the throughput of SQLite and SnappyDB are almost

the same. Figure 4.3(b) gives the throughput for query operations of SQLite and SnappyDB,

and it shows the same trend with insert operations.

We can conclude that the efficient LSM-tree-based key-value database engine outper-

forms the traditional relational database SQLite significantly. However, since the key-value

database engine does not support SQL statements, most mobile applications cannot be di-

rectly moved to it and benefit from its high performance. To address this issue, in this thesis,

we propose a new database engine, called SQLiteKV, which retains the SQLite interface

for mobile devices and adopts an efficient LSM-tree-based key-value data structure on its

storage engine.

4.4 SQLiteKV: An SQLite-like Key Value Database

To make mobile applications benefit from the efficient key-value database engine, we pro-

pose SQLiteKV, which not only inherits the high performance of key-value database en-
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Figure 4.4: Architecture of SQLiteKV.

gines, but also provides the application compatible SQLite interfaces. In this section, we

first present an overview of the SQLiteKV design, and then give the detailed descriptions for

each of its modules.

4.4.1 Design Overview

Figure 4.4 presents the architecture of SQLiteKV. Similar to SQLite, SQLiteKV is com-

posed of a front-end statement parser layer and a back-end data storage management layer.

SQLiteKV’s front-end layer mainly consists of two function modules: an SQLite-to-KV

processor and a coordination read cache. Instead of translating SQL statements into virtu-

al machine code in SQLite, the front-end of SQLiteKV parses the SQL statements into the

corresponding key-value operations (e.g., Put, Get). The coordination read cache is used

to buffer and quickly serve hot query requests. To reduce memory fragmentation, we adop-

t a slab-based way to manage the cache space. The SQLiteKV back-end layer is used to

maintain the key-value pairs on disk with the LSM-tree-based data structure, and serve the

parsed key-value requests. It also includes two function modules: a redesigned in-memory

index management module which is used to save memory space for mobile devices, and an

LSM-tree-based storage engine.

With SQLiteKV, when a SQL query statement comes, it will first search the coor-

dination read cache, if the request data states in cache, the query will be directly returned.

Otherwise, the SQL query statement will be translated into its corresponding key-value Get
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Figure 4.5: The SQLite to KV compiler.

operations through the SQLite-to-KV compiler. At last, the Get operation will be served by

the back-end key-value database engine. In the following sections, we will introduce these

four function modules in detail.

4.4.2 Front-End Layer

The SQLiteKV front-end layer includes two major components: an SQLite-to-KV compiler

(Figure 4.5) which provides the compatible SQLite interface, and a coordination read cache

(Figure 4.6) which accelerates the query process.

• SQLite-to-KV Compiler

As shown in Figure 4.5, the function of the SQLite-to-KV compiler is to translate

a SQL statement to the corresponding key-value operations. It provides users SQLite-

compatible interface while storing/retrieving key-value pairs with Put and Set operations

in the back-end database. When a SQL statement comes, the SQLite-to-KV compiler firstly

breaks down the statement into several tokens. Then it will assign each token a meaning

based on the context and assemble it into a parser tree. The parsing process of the compiler

is similar to SQLite. The noteworthy difference is that the SQLite-to-KV compiler generates

key-value operations based on the result of the parse tree instead of SQL bytecode. The gen-

erated key-value operations do not depends on any virtual machine like SQLite, which make

them more effective.

Basically, the SQLite-to-KV compiler translates the most commonly used SQLite

interfaces Insert() and Select() to the corresponding key-value Put() and Set()
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operations. Since we adopt an LSM-tree-based key-value database engine that does not

support in-place updates, the SQLite interface delete() is transferred into one key-value

Put() operations with an invalid value (e.g., “NULL” in Figure 4.5).

Algorithm 4.4.1 presents the working process for one insert operation in SQLiteKV.

When SQLiteKV receives one insert SQL statement, it firstly begins a new transaction for

this operation. Then SQLiteKV analyzes the tokens (Primary key, column1, and column2)

contained in this SQL statement and put them into the parse tree (container). SQLiteKV

organizes the key and value pair for this SQL request based on this parse tree. In this exam-

ple, SQLiteKV directly makes the primary key as the key, and the column1 as the value. At

last, the corresponding Put() operation with the newly identified key-value pair is issued to

the back-end key-value database engine. As described above, the LSM-tree-based key-value

engine does not support in-place updates, so the delete() statement is performed by the

put() operation with an invalid value part (NULL) in SQLiteKV as shown in Algorith-

m 4.4.3.

Algorithm 4.4.2 describes the working process for a query operation in SQLiteKV.

Similar to insert operation, SQLiteKV firstly parse the SQL statement into tokens (lines 3-

4). Then it calculates a hash value based on these tokens, and search the cache with the

hashed value. With cache hits, the data is directly returned from the cache. Otherwise,

a corresponding key-value Get() operation is issued to the key-value database engine to

retrieve the value to users and store it in the cache.

The SQLite-to-KV compiler makes it possible that existing applications run smoothly

with original SQL statements and leverage the potentials of key value storage.

• Coordination Caching

Caching mechanism is of vital importance for improving the query efficiency of

databases. Through buffering part of hot data in memory, query operations can be served

fast without accessing the low-latency disk. In SQLiteKV, there are two cache configuration

choices. As shown in Figure 4.6, the first choice is to maintain the cache in the back-end
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Algorithm 4.4.1 Insert operation in SQLiteKV.

Input:

1: insert values(Primary key, column1)

Output: Perform key-value put operation

2: SQLiteKV.getWriteableDatabase();

3: //open the database for write

4: SQLiteKV.beginTransaction();

5: Container.put(Primary key);

6: //construct the key for key-value pair

7: container.put(column1);

8: //construct the value for key-value pair

9: SQLiteKV.put(container.key, container.value);

10: //put the key-value item in the container to the key-value database

11: SQLiteKV.endTransaction();

12: return;

key-value database engine, and the second one is to put the cache in the front-end and before

the SQLite-to-KV compiler module.

In SQLiteKV, we propose to adopt the second configuration as shown in Figure 4.6(b).

The reason is that in Figure 4.6(a), the KV cache module stays in the back-end key-value

database engine. Hot data buffered by this cache are maintained in the format of key-value

pairs. When a SQL statement comes, if the data hit in cache, this configuration firstly needs

to re-organize the data in key-value pairs to the SQL column format and then return to the

users. Besides, in this configuration, whether cache hits or not, an incoming SQL statement

always needs to go through the SQLite-to-KV compiler, which incurs reasonable overhead.

In the second configuration, the cache stays in the front-end layer, and the hot data are main-
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Algorithm 4.4.2 Query operation in SQLiteKV.

Input:

1: select from test where column = values

Output: Perform key-value get operation

2: SQLiteKV.getRriteableDatabase();

3: select token = column+”=?”;

4: arg token = values;

5: hash sql = hash(select token, arg token);

6: result = SQLiteKV.Cache.get(hash sql)

7: // first access cache

8: if result == NULL then // not in cache

9: result = SQLiteKV.get(arg token);

10: //get key-value pairs from KV database

11: SQLiteKV.Cache.put(hash sql, result);

12: //buffer the result in cache

13: end if

14: return result;

tained in a SQL statement-oriented approach. When a SQL statement comes, if cache hits,

the results can be directly returned without performing the SQLite-to-KV translation.

To further utilize the memory space efficiently, we adopt a slab-based memory allo-

cation scheme as shown in Figure 4.7. We first segment the cache memory space into slabs.

Each slab is further divided into an array of slots of equal size. Each slot stores one request

data. Slabs are logically organized into different slab classes based on the slot sizes (e.g.,

32B, 64B, 128B, ...). The data for one SQL query is stored into a class whose slot size is the

best fit of its size. A hash mapping table is used to record the position of each SQL state-
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Algorithm 4.4.3 Delete operation in SQLiteKV.

Input:

1: delete from test where column = values

Output: Perform key-value delete operation

2: SQLiteKV.getWriteableDatabase();

3: delete token = column+”=?”;

4: arg token = values;

5: hash sql = hash(delete token, arg token);

6: result = SQLiteKV.Cache.get(hash sql)

7: // first access cache

8: if result != NULL then // clean cache

9: SQLiteKV.Cache.delete(hash sql);

10: end if

11: SQLiteKV.put(arg token, NULL);

12: return;

ment. The key for the hash table is calculated by hashing tokens of each SQL query request

as shown in Algorithm 4.4.2. When one query comes, SQLiteKV firstly analyzes its tokens,

gets the hash value, and then read the data by combining the slab “sid” with offset “offset”.

Such a design can effectively address the issue of memory fragmentation, and utilizes the

limited embedded memory resource more properly.

4.4.3 Back-End Layer

In SQLiteKV, we adopt an LSM-tree-based key-value database engine, like Google’s Lev-

elDB [36], and Facebook’s Cassandra [15]. In this section, we will introduce our proposed

new metadata management scheme, and the data storage in this database engine.
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Figure 4.6: SQLiteKV Coordination Caching Mechanism.

Figure 4.7: Slab-based cache management.

Figure 4.8: Back-End in-memory index management.
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Figure 4.9: Data management in SSTable.

• Data Storage Management

Figure 4.8 shows the data storage engine for the back-end LSM-tree-based key-value

store. As described in Section 4.2, LSM-tree-based data store aggregates key-value items in-

to equal-sized tables. There are three kinds of tables in the key-value database engine: mem-

ory table (MemTable), immutable table (ImmuteTable), and on-disk SSTable (SST).

Memtable and ImmuteTable are maintained in memory, and SSTables are stored on

disk. The SSTables are maintained in several levels (e.g., Level0, Level1, Level2). Each

level contains different numbers of SSTables, and its capacity grows exponentially. Log,

Manifest, and Current, are three configuration files used to assist the working process

of the database engine.

When a key-value write request comes, it will firstly be written to the disk Log

file in order to guarantee the overall consistency, and then buffered into the MemTable in

memory. Once the MemTable becomes full, the key-value items in this table will be sorted

and stored in the ImmuteTable. A minor compaction process will flush the key-value

items in ImmutaTable to one disk SSTable in Level0. Key-value pairs stored in SSTables

are sorted with their keys as shown in Figure 4.9. Each SSTable consists of several data

blocks and index blocks. The index blocks maintain the mapping of the key range to the data

blocks. With more SSTables flushed, if one level runs out of its space, a major compaction

will be triggered to select one of its SSTable and do the merge sort operation with several

SSTables in the next level (As shown in Figure 4.8, one SSTable in Level1 is compacted

with 4 SSTables in Level2).

• Index Management

99



(a) Random insertions. (b) Sequential insertions.

Figure 4.10: Insertion throughput vs. Request size

(a) Random queries. (b) Sequential queries.

Figure 4.11: Basic performance of SQLiteKV and SQLite.
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As described, each SSTable maintains some indexes to assist the quick search of

key-value items. Usually, the indexes are stored at the end of each SSTable. To accelerate

the query process, LSM-tree-based storage engines commonly scan over the entire disk and

maintain a copy of all indexes in memory [126]. Hence when a query operation is to be

executed, the in-memory meta data is accessed quickly with the target key to locate the data

block on disk. Thus, the data block is visited to get the key-value item. Generally, one disk

seek is required for a single query on LSM-tree-based key-value database engines.

However, this approach is not practical nor efficient for mobile devices. Since most

mobile devices are memory constraint and cannot accommodate all the indexes in memory.

Considering this limitation, we redesign the indexing management approach, which exclu-

sively stores indexes of data blocks from higher levels, like Level0 and Level1, of the entire

LSM tree. The reason is that as the level goes further down, data at lower levels are less

likely to be visited. In other words, the data on top levels are fresher and more likely to be

visited, since nearly 90 percent request are served by Level0 and Level1 [27]. This approach

helps reduce the memory requirement in our key-value database with minimum overhead.

4.5 Evaluation

We have prototyped the proposed efficient LSM-tree-based SQLite-like database engine -

SQLiteKV, on a Google mobile platform. Our implementation of the database engine is

based on SnappyDB [116], which is a representative key-value database for mobile devices.

Our SQLiteKV totally includes 2,506 lines in Java. In this section, we will first introduce the

basic experimental setup, and then provide the experimental results with real-world bench-

marks [23] and synthetic workloads.

4.5.1 Experiment Setup

The prototype of our proposed SQLiteKV is implemented on a Google mobile platform -

Google Nexus 6p, which is equipped with a 2.0GHz oct-core 64 bit Qualcomm Snapdragon
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810 processor, 3GB LPDDR4 RAM, and 32GB Samsung eMMC NAND Flash device. We

use the Android 8.0 operating system with Linux Kernel 3.10. In the evaluation, SQLite 3.18

is utilized in the experiments as it is the current version in Android 8.0 Oreo. The page size

of SQLite is set as 1024 bytes, which is the default value. SnappyDB 0.5.2, which is the

latest version of a Java implementation of Google’s LevelDB, is adopted.

Since in most real-world SQLite workloads, one SQLite query always carry more

than one records. So, in our experiments, we make each SQL statement in SQLite contains

up to 999 records, which is the maximum value allowed. With this performance tuning

method, we can make a fair comparison between SQLiteKV and SQLite. Moreover, trivial

calls, like moving cursors after queries in SQLite, are omitted for the sake of efficiency.

4.5.2 Basic Performance

We first evaluate the basic performance of SQLiteKV and SQLite, mainly in terms of through-

put (operations per second, ops/sec). In this experiment, we set the data size vary from 64

bytes to 4096 bytes, and investigate the throughputs of both random and sequential access-

es. We test and compare the throughput of SQLiteKV and SQLite with the commonly used

insert, query, and delete operations.

• Insertion Performance

Figure 4.10a and Figure 4.10b show the performances of SQLiteKV and SQLite

with random and sequential insertion operations, respectively. The request sizes vary from

64 bytes to 4096 bytes. For the sequential access workload, the requests are in ascending

order, while the requests are randomly traversed for the random case.

It can be observed that the performances of SQLiteKV outperform SQLite signifi-

cantly for request of all sizes. For sequential operations, with the request size of 64 bytes,

the throughput of SQLiteKV is 1.41×105, which is 6.1 times higher than that of SQLite. For

random operations, the SQLiteKV outperforms SQLite 3.8 times in maximum with request

size of 64 bytes. As the request size increases, the throughputs decrease across the board
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Figure 4.12: Delete throughput vs.

Delete operations.

Figure 4.13: Throughput vs. Request

size with Zipfan model.

for both SQLite and SQLiteKV. The performance improvement of SQLiteKV over SQLite

also decreases with the request size increasing. This is because the write amplification ef-

fect caused by SQLite’s journal of journal problem declines as the request size increases.

Besides, it can be observed that for SQLitKV, the insertion performance with sequential ac-

cess workloads are better than that with random access ones (the average improvement is

40%). On the contrary, for SQLite, there are basically no differences between the random

and sequential cases.

• Query Performance

Figure 4.11b shows the performance of SQLiteKV and SQLite with random and se-

quential query operations, respectively. Basically, query operations show the same trend with

insert operations. For sequential queries, with the request size of 64 bytes, the throughput

of SQLiteKV is 1.01 × 105, which is 4.91 times higher than that of SQLite. For random

queries, the performance improvement of SQLiteKV over SQLite is up to 5.4 times with

the request size of 128 bytes. Furthermore, the sequential query throughput of SQLiteKV is

much higher than the random query one, which is about 1.3 times.

• Delete Performance

Figure 4.12 presents the throughput of delete operations for SQLiteKV and SQLite,

respectively. It is obvious that the throughput for delete operations of SQLiteKV is much

higher than that of SQLite. For instance, with the request size of 4KB, it even takes more than
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several minutes to delete a record for SQLite. However, in SQLiteKV, the delete operation

is implemented by the key-value Put operation with invalid data area. Thus, the delete

operations of SQLiteKV perform the same as insert operations.

We further test the random insert, random query, sequential insert, and sequential

query performance of SQLiteKV and SQLite with request sizes that follow the Zipfian [23,

114] distribution. The results are given in Figure 4.13. We can conclude that SQLiteKV out-

performs SQLite for all cases. Especially, for sequential write operations, the improvement

is up to 5.3 times.

4.5.3 Overall Performance

Table 4.1: Workload characteristics.

Workload(s) Query Insert

Update Heavy 0.5 0.5

Read Most 0.95 0.05

Read Heavy 1 0

Read Latest 0.95 0.05

To evaluate the overall performance, we further test the proposed SQLiteKV with a

set of YCSB [23] core workloads that define a basic benchmark as shown in Table 4.1. Here,

the update heavy workload has a mix of 50/50 reads and writes, the read most workload has a

95/5 reads/write mix, the read heavy workload is 100% read, and in the read latest workload,

new records are inserted, and the most recently inserted records are the most popular.

To conduct the experiments, we first generate 100 thousand key value pairs to pop-

ulate SQLiteKV and SQLite, and then use the object popularity model to generate 100 t-

housand requests sequence. The object popularity, which determines the requests sequence,

follows the Zipfian distribution, by which records in the head will be extremely popular while
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(a) Throughput w. Update heavy. (b) Throughput w. Read most.

(c) Throughput w. Read heavy. (d) Throughput w. Read latest.

Figure 4.14: Overall Performance

Figure 4.15: Performance evaluation.
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those in the tail are not. For the read latest workload, we make most recently inserted records

in the head that will be accessed more frequently. For the request size, similarly, we use both

the fixed request sizes from 64 bytes to 4KB and the request sizes which follows the Zipfian

distribution.

Figure 4.14 shows the experimental results by running SQLiteKV and SQLite with

the four workloads in Table 4.1. For each workload, the request sizes vary from 64 bytes

to 4096 bytes. It can be observed that, compared with SQLite, SQLiteKV significantly

increases the throughput across the board with varied request sizes. For the update heavy

workload, the throughput of SQLiteKV is 3.9 times higher than that of SQLite on average.

With the request size of 256 bytes, the performance improvement achieves the highest point,

which is about 5.9 times. On average, the performance improvement of SQLiteKV over

SQLite for the other three workloads: read most, read heavy and read latest, are 2 times, 2.4

times and 1.9 times, respectively.

We also notice that when the key-value sizes are over 2048 bytes, SQLiteKV on-

ly outperform SQLite slightly. The reason is that bigger request size can reduce the write

amplification effect in SQLite. Besides, for LSM-tree-based databases, keys and values are

written at least twice: the first time for the transactional log and the second time for storing

data to storage devices. Thus, the per-operation performance of SQLiteKV is degraded by

extra write operations. Regardless of this degradation, as most data sets in mobile appli-

cations only contain very few large requests, SQLiteKV can still significantly outperform

SQLite in practice.

We also test the database performance with request sizes following the Zipfian dis-

tribution. Figure 4.15 presents the results with the four workloads. It can be observed that

with the update heavy workload, SQLiteKV achieves the highest performance improvement

over SQLite, which is 2.7 times. On average, the SQLiteKV outperforms SQLite 1.7 times

for all these four workloads.
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(a) Throughput w. Update heavy. (b) Throughput w. read most.

(c) Throughput w. Read heavy. (d) Throughput w. Read latest.

Figure 4.16: Performance of SQLiteKV with and without cache.

Figure 4.17: Cache effect with Zipfian distributed request sizes.
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4.5.4 Coordination Cache Effect

We further evaluate the efficiency of our proposed coordination read cache with differen-

t workloads . Figure 4.16 presents the performance comparisons of SQLiteKV with and

without cache. Similarly, the request sizes vary from 64 bytes to 4KB, and for all these ex-

periments, we configured the cache size fixed with 1MB. Through the figures, we can clearly

see that the coordination cache can effectively improve the database performance. The aver-

age performance improvement are 12.7% for the update heavy workload, 28.9% for the read

most workload, 14.7% for the read heavy workload, and 43% for the read latest workload.

The highest performance improvement with the coordination cache achieves 57.9% for the

read latest workload with the request size of 256 bytes. We also test the cache effect with

the request sizes that follow the Zipfian distribution. As shown in Figure 4.17 , similarly the

coordination cache effectively improves the throughput across all the workloads.

4.5.5 CPU and Memory Consumption

In this section, we will investigate the efficiency of our re-designed index management

policy, and then compare the memory and CPU consumption of SQLite, SnappyDB, and

SQLiteKV. For SQLiteKV, we have enabled the coordination cache. In this experiment, we

also generated 100 thousand request data to pollute the database, and then issue insert and

query requests to investigate their effects on the CPU and memory.

Table 4.2: CPU and memory consumption.

Databases

CPU/(%) Memory/(MB)

Insert Query Insert Query

SQLite 41 38 165.06 148.89

SnappyDB 26 50 188.28 192.29

SQLiteKV 32 61 82.47 81.9
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Memory Footprint. Table 4.2 presents the memory utilization status for SQLite,

SnappyDB, and SQLiteKV. SnappyDB consumes the most memory space for both insert

and query operations. The reason is that in SnappyDB, the LSM-tree-based data structure

needs to maintain the indexes of all the SSTables from all the levels in memory, which is

non-trivial. As we have described in Section 4.4.3, nearly 90 percent query requests goes

to Level0 and Level1 in real key-value store applications [27]. Thus, in SQLiteKV, we

only maintain the indexes of Level0 and Level1 in memory, and leaves the others on disk.

The experimental results in Table 4.2 show that our index management policy significantly

reduces the memory requirement. Comparing with SnappyDB, SQLiteKV saves 56.2% and

57.4% memory space for insert and query operations, respectively.

CPU Utilization. We can observe that for insert operations, SQLite requires the most

CPU resource. This is because SQLite needs to maintain its in-memory B-tree index struc-

ture, which may include many split and compaction processes. On the contrary, the indexes

management for SnappyDB and SQLiteKV maintain the bloom filters and key ranges infor-

mation, whose operation are relatively simple. However, we also notice that our SQLiteKV

consumes nearly 20% more CPU resource compared with SnappyDB. The reason is that in

SQLiteKV, the SQLite-to-KV compiler requires the participation of CPU to keep translat-

ing the incoming SQL statements into the corresponding key-value operations. For query

operations, SnappyDB and SQLiteKV require more CPU resources compared with SQLite,

and SQLiteKV consumes the most. Since in SnappyDB and SQLiteKV, to locate a request,

they may need to check several bloom filters and the indexes of SSTables in more than one

levels, which requires extra CPU resource. For SQLiteKV, except the SQLite-to-KV com-

piler consumption, it may need to do more search to located one key-value item compared

with SnappyDB, since it only stores the metadata of Level0 and Level1 in memory. Thus,

SQLiteKV requires the most CPU resource.
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4.6 Summary

In this chapter, we propose a new database engine for mobile devices, called SQLiteKV,

which is an SQLite-like key-value database engine. SQLiteKV adopts the LSM-tree-based

data structure but retains the SQLite operation interfaces. SQLiteKV consists of two parts:

a front end that contains a light-weight SQLite-to-key-value compiler and a coordination

caching mechanism; a back end that adopts a LSM-tree-based key-value database engine.

We have implemented and deployed our SQLiteKV on a Google Nexus 6P Android platform

based on a key-value database SnappyDB. Experimental results with various workloads show

that the proposed SQLiteKV outperforms SQLite significantly.

110



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The key-value database engine, which provides higher efficiency, scalability, availability,

and works with a simple NoSQL interface, has been widely adopted as the caching system

in todays low-latency Internet services. However, when using SSDs as the storage devices,

several redundant functions exist between the key-value caching systems and the underlying

hardware, which hurt the system performance. In addition, although the key-value database

engine has been proven to be more profitable than traditional relational SQL databases in

cloud environments, it has seldom been adopted by mobile applications, in this thesis, we

optimize the key-value data stores with three schemes, namely the integration of the emerg-

ing hardware open-channel SSD, the cross-layer hardware/software management, and the

design of an SQLite-to-KV compiler for mobile applications.

For the first scheme, we present a codesign approach to deeply integrate the key-value

cache system design with the flash hardware. Our solution enables three key benefits, namely

a single-level direct mapping from keys to physical flash memory locations, a cache-driven

fine-grained garbage collection, and an adaptive over-provisioning scheme. We implemented

a prototype on a real open-channel SSD hardware platform. Our experimental results show

that we can significantly increase the throughput by 35.5%, reduce the latency by 23.6%,

and remove unnecessary erase operations by 28%. Although this thesis focuses on key-value

caching, such an integrated approach can be generalized and applied to other semantically

rich applications, such as file systems, databases, and virtualization, which will be the focus

of our work in the future.
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For the second scheme, current SSDs either adopt the traditional block I/O interface

or directly expose its low-level details to applications with open-channel SSDs. Both have

their advantages and disadvantages, but neither is the optimal approach. We propose a new

programming model that includes three layers of abstraction for open-channel SSDs: a raw

flash abstraction, a flash function abstraction, and a user-FTL abstraction. The programming

model provides applications with the flexibility to integrate their software semantics with

the flash management with different granularities. We have implemented applications based

on the programming model, and the results of the evaluation show the effectiveness of our

proposed programming model.

For the third scheme, we propose a new database engine for mobile devices, called

SQLiteKV, which is an SQLite-like key-value database engine. SQLiteKV adopts the LSM-

tree-based data structure but retains the SQLite operation interfaces. SQLiteKV consists

of two parts: a front end that contains a light-weight SQLite-to-key-value compiler and a

coordination caching mechanism; and a backend that adopts an LSM-tree-based key-value

database engine. We have implemented and deployed our SQLiteKV on a Google Nexus 6P

Android platform based on a key-value database SnappyDB. The results of experiments with

various workloads show that the proposed SQLiteKV significantly outperforms SQLite.

5.2 Future Work

The work presented in this thesis can be extended to different directions in the future.

First, crash recovery is an important character of key-value caching system. How

to combine our approach to effectively do crash recovery can be a future direction for us

to explore. Second, when deploying DIDACache in a distributed environment, we will en-

counter new challenges and problems. We will continue to work on DIDACache to make

it run in a distributed environment and try to solve the new challenges under a distributed

storage cluster. Third, our prototype Prism-SSD is implemented with three user level ab-

stractions. However, the implementation is not strictly constrained to these three levels. We

will further extend the library with some application-specific interfaces, such as key-value
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set/get interfaces for key-value stores. Forth, our approach is based on flash-based hard-

ware. We will extend our approach to other emerging non-volatile-memories (NVMs). We

will explore how to integrate NVMs into the key-value stores to further improve their per-

formances. Fifth, wear-leveling is critical to flash lifetime. We will further explore how to

integrate the key-value store semantics with flash management to customize new effective

wear-leveling policies. Finally, as the first step in the exploration of SQLite-like key-value

database engines, the translation of SQL operations to key-value operations in SQLiteKV

is a straightforward process. In the future, we will extend the compiler design to make this

process of translation to support more complicated SQL interfaces.
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