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“Empty your mind, be formless.

Shapeless, like water.

If you put water into a cup, it becomes the cup.

You put water into a bottle and it becomes the bottle.

You put it in a teapot, it becomes the teapot.

Now, water can flow or it can crash.

Be water, my friend.”

− Bruce Lee



Abstract

With the rapid growing number of Cloud applications, demands for large-scale data

centers have raised to historical high. Technology advancements in recent years make

it possible to manufacture high performance processors and server units at low cost.

While it is feasible to have thousands of processors in a data center, the associated

energy problems can be catastrophic. High-energy consumption contributes to high

operational cost, unbalanced temperature distribution, and high hardware failure rates

at data centers. Therefore, there is an urgent need for developing efficient operational

schemes for Cloud data centers. Cloud data centers allow dynamic and flexible re-

source provisioning to accommodate time varying computational demands. To max-

imize resource utilization, Cloud service providers employ dynamic virtual machine

(VM) migrations technologies. This thesis aims to present different VM consolidation

mechanisms for better resource management in Cloud data centers.

First, a thermal-aware VM consolidation mechanism is proposed for resource al-

location optimization and server reliability assurance in Cloud data centers. The pro-

posed mechanism takes both host power consumption and temperature into account.

The variability in host temperature, which has been shown to have a negative impact

on server reliability, is considered as a migration criterion during the consolidation

process. A Markov model is further adopted to predict future CPU usages of physical

hosts and VMs to reduce the number of migrations needed in the long run. Perfor-

mance parameters, including energy consumption, Service Level Agreements (SLA)

violations with outage, number of outage incidents, and migration number, are evalu-
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ated.

Then, a VM consolidation mechanism inspired by host-switching behaviors in

symbiotic associates is proposed. Two heuristic functions which have been inspired

by host susceptibility and symbiotic coefficient among symbionts, are proposed to deal

with utilization levels of hosts and resource utilization correlations among co-located

VMs. In order to hedge the risk of host overloading, VMs having low symbiotic co-

efficient values will not be assigned to a host which is regarded as susceptible in the

symbiosis analogy. The performance of the proposed bio-inspired heuristics based

mechanism is compared with other existing correlation-based VM allocation mecha-

nisms. Moreover, experiment results are analyzed and discussed.

Finally, the VM allocation problem is further formulated as a stable matching prob-

lem. A deferred acceptance procedure is adopted to resolve conflicts among VMs

and physical hosts. During the matching process, each VM ranks the hosts according

to their maximum correlation level after migration to preserve the quality of service.

Similarly, each host has its own preference list regarding a combination of VMs such

that the host can operate close to a desirable utilization threshold. The proposed VM

consolidation mechanism can effectively reduce energy consumption and minimize vi-

olations of SLA in Cloud data centers.
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Chapter 1

Introduction

1.1 Cloud Computing

Nowadays, we live in a world populated with pervasive computing devices. Infor-

mation systems have been drastically evolved from parallel computing devices [1], to

distributed computing clusters [2], further to computing grids [3], and now to Cloud

computing [4, 5]. Cloud computing provides all of its resources as services with a

pay-as-you-go model to its consumers [6, 7]. The National Institute of Standards and

Technology (NIST) [8] defines Cloud Computing as “... a model for enabling ubiqui-

tous, convenient, on-demand network access to a shared pool of configurable comput-

ing resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider

interaction”. Cloud computing is the current wave of technology revolution, which is

a novel computing paradigm and a key technology for dynamic provision of computing

services.

The term “cloud computing” was first appeared in a 1996 Compaq internal doc-

ument on plotting a $2-billion-a-year Internet business plan [9]. With Amazon intro-

ducing Elastic Compute Cloud (EC2) in 2006, the term “cloud computing” became

popularized. Two years afterwards, Google released its Google App Engine product.

1
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Figure 1.1: Cloud computing.

In 2010, Microsoft Azure was released by Microsoft. Then, IBM announced its IBM

SmartCloud framework one year later. The development of these cloud-based services

is constantly redefining the horizon of Cloud computing.

1.1.1 Cloud Service and Deployment Models

As illustratred in Figure 1.2, Cloud service providers in general offer three predominant

service models which are infrastructure, platform, and software-as-a-service [10, 11].

These service models open up new opportunities and present potential benefits to com-

putational demanding applications.

• Infrastructure-as-a-service (IaaS): IaaS is a provision model that allocates vir-

tual equipment to users. Service providers own computing infrastructure and

virtualize them [12]. The virtualized components could be storage volumes,

processors, and/or network interfaces. Clients typically install and build their

own IT platforms on those virtualized components in a pay-per-use manner.

• Platform-as-a-service (PaaS): PaaS allows users to develop or create applica-

tions and services on a computing platform (such as web server and database).
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Figure 1.2: Cloud computing service models.

This kind of service provides a platform and a standard environment to host

Cloud applications without the hassle of hardware management.

• Software-as-a-service (SaaS): SaaS allows users to access Cloud services di-

rectly. Cloud applications are globally accessible via the Internet. SaaS is a

software distribution model, which seeks to replace software applications run-

ning on personal computers. The major advantages of SaaS over the traditional

model are smaller local storage, higher compatibility, and lower computational

burden to clients.

In addition to these service models, the cloud infrastructure can be provisioned

into four deployment models [13] to the general public. In a private cloud, the Cloud

is solely available to a organization or business, while a public cloud provides ser-

vices to the general public. Several individuals or organizations, which from a specific

community with common concerns (security, compliance, jurisdiction, etc.), access the

services on a community cloud. Moreover, two or more of the aforementioned cloud

deployment models can be integrated into a hybrid cloud to eliminate the limitations

and boundaries among cloud models. Different clouds on a hybrid cloud alliance or
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Figure 1.3: An example of hypervisor-based virtualization.

federation remain distinct but are orchestrating to provide the required synergy.

1.1.2 Virtualization Technology

Virtualization is the main enabling technology in Cloud computing [14,15]. This tech-

nology is considered as a physical resources abstraction that allows several virtual

resources being multiplexed on a physical one. Virtualization can provide fault and

security isolation while increasing efficiency, flexibility and scalability in information

systems. Data center management as well as resource provisioning can be simplified

and optimized with virtualization. The technology was introduced in the 1960’s [16]

and exists in many levels. In this thesis, we focus on the hypervisor-based virtualiza-

tion which is the key resource abstraction technique in an IaaS environment.

The hypervisor-based virtualization is based on a layer of software called hypervi-

sor to manage the physical server resources. Some well-known examples of hypervi-

sors are VMware [17], KVM [18], Xen [19], and VirtualBox [20]. In hypervisor-based

virtualization, hypervisors virtualize on a hardware level. Running on top of the host’s

hypervisor, there exists the emulated hardware called virtual machines (VMs). These

co-located VMs have their own operating systems (OS) and virtual devices. This kind

of virtualization is especially important since it provides users with maximum priv-

ileges in customizing their computing environment. It can also reduce energy con-
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sumption since it improves the utilization of resources while reducing the number of

physical hardware in use.

1.2 Opportunities and Applications

Cloud computing comes with lots of benefits, such as on-demand and self-service busi-

ness models, high efficiency, elastic storage, and rapid deployment. Additional benefits

include improved flexibility, accessibility, and reliability. Thanks to these advantages,

Cloud computing can be applied to a wide range of applications, including business,

education, entertainment, telecommunication, and health.

1.2.1 Business

Cloud computing provides a new business model for leasing high performance com-

puting equipment to users [21]. Through coordinating hardware, software, and net-

work resources over the web, Cloud computing can provide good user experience and

innovative services. It is a relatively costly process for organizations using traditional

computing infrastructures and management methods to allocate IT resources to their

end users within a short timeframe. Operational costs can be reduced as a result of

reducing human administrators and physical hardware.

In the manufacturing sector, manufacturers can leverage cloud resources to support

storage requirements and accommodate peak compute cycles with less capital expen-

diture. In addition, cloud computing makes it possible to develop new business models

and business processes. Cloud services can also be integrated as part of their final

products.

Financial companies can also take advantages of Cloud technology [22]. Parallel

processing and elastic storage realize high frequency transaction in banking and finan-

cial services industry. Distributed storage and redundant resources allow the delivery
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of more reliable and secure services to clients. Additionally, Cloud-based financial

services enable enterprise mobility and can accelerate financial inclusion.

1.2.2 Education

Demands for applications that support out-of-classroom interactions are increasing

rapidly among students and faculty members. Therefore, for delivering the next gen-

eration of education services, Cloud computing becomes an attractive option. Cloud

computing in education opens rooms for real-time discussions, community-based and

self-paced learning [23].

In cloud-based education, a virtual desktop environment can provide remote ed-

ucation on any terminal with an Internet connection. Cloud computing not only can

reduce costs, but also create a channel which students can have access to high-quality

education and resources.

1.2.3 Entertainment

Nowadays, the Internet is heavily used for entertainment and recreation. High def-

inition multiple views entertainment contents lead to high requirements in storage,

transmission, and computation. Cloud computing, with its elastic storage and compu-

tational power characteristics, can be a silver bullet to their corresponding demands.

Cloud-based entertainment can deliver contents to clients via different formats and de-

vices, like TV broadcasting or video streaming. Furthermore, it can lower the hardware

requirements on client devices.

1.2.4 Telecommunication

Cloud computing in the telecommunication field, which is known as Cloud communi-

cation, can provide both private and public cloud networks with better communication

and collaboration services. By applying the concept of virtualization to networking
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equipment, telecommunication company can achieve a better utilization of resource.

Networking can be more flexible based on real-time monitoring, filtering, and provi-

sion. Moreover, new network protocols can be implemented and deployed instantly to

tackle network vulnerabilities. .

1.2.5 Medical Care

Cloud computing also offers benefits to the healthcare industry. Both medical profes-

sionals and patients would be benefits from Cloud [24]. For patients, via the Cloud,

they can regularly receive updates regarding their conditions or illnesses. While for

medical professionals, Cloud makes medical care easier by providing them with con-

tinuous and complete patients’ data seamlessly. The Cloud can speed up and safeguard

the decision-making process of physicians, which means better care for patients.

1.3 Motivation

Cloud data centers allow dynamic and flexible resource provisioning to accommodate

time varying computational demands. Efficient virtualization technology makes Cloud

applications possible and allows them to proliferate further. In recent years, the de-

velopment of scientific, business and web applications has given rise to large-scale

computing data centers. With massive numbers of servers and networking equipment,

Cloud data centers consume a tremendous amount of energy in their daily operation,

including energy used in cooling their infrastructures. Consequently, their energy con-

sumption becomes critical to their sustainability. High energy consumption not only

leads to a huge operating cost, moreover, it has negative impact on the environment due

to the exhaust heat and greenhouse gases generated [25]. In 2014, 70 billions kWh of

energy was consumed by Cloud clusters in US [26], which has been one of the major

sources of carbon dioxide emissions. Therefore, with the unprecedented development
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of Cloud clusters in both their scale and complexity, their energy consumption has

become a key problem that needs to be addressed [27].

On the other hand, guaranteeing the required Quality of Servive (QoS) of Cloud ap-

plications is an essential task for Cloud service providers (CSPs) [28–30]. The desired

level of QoS is expressed in form of Service Level Agreements (SLAs). During a VM

consolidation process, the workload of applications on the VMs may vary dynamically.

Such fluctuations may cause server overload, which can affect the performance of all

VMs on the overloaded servers and thus lead to significant SLA violations. Therefore,

how to lower the risk of overloading is an important issue that needs to be tackled in

maintaining a high QoS level.

Hence, achieving energy saving of Cloud clusters while guaranteeing QoS between

CSPs and their subscribers is the main challenge in designing resource provisioning

policies. The objective of this thesis is to tackle the challenges of these two conflicting

problems in Cloud data centers. To achieve the objective, three mechanisms with the

following practical emphases are proposed.

First, the variability in host temperature is regarded as a migration criterion to avoid

outage incidents via having better VM consolidations. Maintaining server reliability is

one of the most important goals in Cloud data center operation. However, an outage

incident triggered by a fluctuation in server temperature will lead to unintended termi-

nations of VMs running on it and will cause severe violations of SLA. Therefore, host

temperature management should be considered in the VM consolidation process.

Second, both utilization levels of the hosts and CPU utilization correlations among

co-located VMs are considered as parameters for decision making in VM allocation

processes. Co-located VMs may have certain correlations in their CPU utilization pat-

terns. However, co-located VMs with high CPU utilization correlations are associated

with higher risks of overloading their host, as these VMs are more likely to reach their

peak utilization levels at the same time and exhaust all the available resource on the

host. An overloaded host may result in violations of SLA which may lead to additional
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economic losses. The necessary migration procedures after an overloading event will

also introduce extra energy consumption to the system. Therefore, both utilization lev-

els of the hosts and CPU utilization correlations among co-located VMs need to be

taken into account in an allocation process.

Third, the proposed mechanism is formulated as a stable matching problem, where

CSPs and VMs are the two disjoint sets of entities. During the matching process, each

host and VM can have its own preference list of partners from its own perspective.

The CSPs are the side that expects to optimize the energy consumption, while the

VMs intend to preserve the quality of service. The stable matching problem, which is

a distributed co-scheduling algorithm, enables both providers and users of Cloud data

centers to choose their preferred partners.

Several VM consolidation mechanisms for better resource management in the above

models are proposed to reduce energy consumption, control the number of migration,

and minimize SLA violations in Cloud data centers.

1.4 Thesis Organization

This thesis is organized as follows.

Chapter 2 provides a literature review. VM consolidation techniques based on some

selected parameters and some recent works based on different optimization methods

are reviewed.

Chapter 3 presents a thermal-aware VM consolidation mechanism for resource al-

location optimization and server reliability assurance. To avoid potential SLA viola-

tions, the proposed mechanism prevents outage events and detects overloaded hosts

based on host temperature and their CPU utilization levels, respectively. During the

consolidation process, the variability in temperature is considered as a migration crite-

rion for outage avoidance. A Markov model is adopted to predict future CPU usages of

physical hosts and VMs for a more effective VM reallocation. New evaluation metrics
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have been proposed to capture the performance of different mechanisms in avoiding

both overloading and outage incidents in Cloud clusters.

Chapter 4 presents a VM consolidation mechanism inspired by host-switching be-

haviors in symbiotic associates. Two heuristic functions which have been inspired by

host susceptibility and symbiotic coefficient among symbionts, are proposed to deal

with utilization levels of hosts and resource utilization correlation among co-located

VMs. In order to hedge the risk of host overloading, VMs having low symbiotic co-

efficient values will not be assigned onto a host which is regarded as susceptible in

the symbiosis analogy. The performance of the proposed bio-inspired heuristics based

mechanism is compared with other correlation-based VM allocation criteria. In addi-

tion, experiment results are discussed and analyzed.

Chapter 5 formulates the VM allocation problem as a stable matching problem. A

deferred acceptance procedure is adopted to handle conflicts among preferences from

VMs and physical hosts. During the matching process, each VM ranks the hosts ac-

cording to their maximum correlation level after migration to preserve the quality of

service. Similarly, each host has its own preference list regarding all the acceptable

VMs that can be running close to certain utilization thresholds to optimize the energy

consumption. The proposed VM consolidation mechanism can effectively reduce en-

ergy consumption and minimize violations of SLA in Cloud data centers.

The thesis concludes in Chapter 6, where major findings of the project are summa-

rized and some thoughts on future work are presented.



Chapter 2

Literature Review

In this chapter, fundamental models and parameters of Cloud computing are introduced

and reviewed. VM consolidation techniques based on these parameters and recent

works based on other optimization methods are also elaborated.

2.1 The System Model

In this thesis, the scenario under study is based on an IaaS model. The system under

consideration is an ordinary Cloud data center. Suppose there are N heterogeneous

physical hosts in a Cloud data center. The CPU performance of each node is measured

in terms of Millions of Instructions Per Second (MIPS). Additionally, each physical

node is further characterized by its amount of RAM, network bandwidth, and storage

capacity. At any time instance, multiple independent users may submit their requests

for provisioning of M VMs onto the given system. These VMs, characterized by their

requirements, are then allocated to the physical hosts. During the provisioning process,

QoS is derived according to the SLAs established between the Cloud service provider

and its users. If there are SLA violations, the service provider will have to pay a

penalty, which will increase its operating cost.

The system model of a general VM allocation process is depicted in Fig. 2.1. In

11
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Global Manager

Local Manager VMM

VM1 ...VM3VM2

...

Local Manager VMM

VM1 ...VM3VM2

Physical Host 1 Physical Host N

Figure 2.1: The system model considered in this thesis.

this model, the system is composed of two types of VM migration managers. One is

the local manager that resides on every physical host. Its objective is to decide when

and which VMs should be migrated away by observing the current CPU usage of the

corresponding host. The other one is the global manager that optimizes and adapts

the VM placement of the whole system on the basis of information collected from the

local managers. The procedures are outlined as follows.

1. Each local manager monitors the current CPU usage of its host to detect its sta-

tus. A physical host is identified as being overloaded if it meets some predefined

overloading conditions. The local manager can also employ prediction tech-

niques to estimate how likely the current host is going to be overloaded in the

future.

2. The global manager gathers information of individual physical hosts from the

local managers, regularly makes global VM re-allocation plans, and issues the

instructions to the corresponding VM Monitors (VMMs).

3. VMM performs VM consolidation and migration tasks according to the interpre-

tations and instructions of the global manager. Selected VMs on an overloaded

physical host are migrated to other physical hosts to resolve overloading inci-

dences and to avoid or alleviate future SLA violations.
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2.2 VM Consolidation Techniques

2.2.1 Based on Hardware Utilization

One of the most used parameters in VM consolidation algorithms is hardware utiliza-

tion. Various hardware resources, including CPU, memory, storage, and network, are

regarded as decision criteria in the provisioning process.

An approach based on live migration was proposed by Song et al. [31] for reducing

the number of active hosts. In their approach, VMs were categorized into four different

types based on their sizes. There are several operations and restrictions for having a

mix of VM types to be co-located on a single host. Allocation and migration actions

are executed carefully according to those restrictions to minimize storage and energy

consumption.

The algorithm presented by Xiao et al. [32] is designed to cope with the unevenness

of servers’ multiple resources. In their work, they adopted the skewness concept. A

high skewness value indicates a host has an uneven utilization of its different resources.

To prevent overload and to foster higher utilization, workloads with different attributes

are recommended to be co-located to minimize the skewness of each server.

Chen and Shen [33] presented an initial VM placement method for Cloud clus-

ters that consolidates VMs with spatial/temporal-awareness. Resource requirements

are modeled as simple pulse functions, including single peak, repeated fixed-width

peaks, varying-width peaks, and varying height and width peaks. Then, an algorithm

utilizes a sliding window to predict the resource demand pattern of a VM based on

its smoothened maximum resource demand at each time interval. In their work, a

spatial/temporal-aware algorithm based on the predicted VM resource utilization pat-

tern was applied to optimize VM placement with a minimum number of hosts. In the

temporal space, VMs whose total demand on each resource dimension (in the spatial

space) that can closely reach a host’s capacity will be allocated onto the same host.
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Therefore, resources on the Cloud can be better utilized when multi-dimensional re-

sources of the physical hosts are all reaching their limits.

The problem of consolidating multiple resources in Cloud data centers was also

considered in [34]. The authors presented an algorithm to overcome the imbalanced

utilization problem caused by heterogeneous workload. In their algorithm, imbalanced

utilization value (IUV) is an indicative parameter for VM allocations. Within an eval-

uation period, average CPU utilization, average memory utilization, and average net-

work bandwidth utilization of each host are regarded as three variables. IUV is defined

as the variance of those three variables. Hosts with small IUV values will become

the destination servers and then unused physical hosts will be powered off for energy

saving.

2.2.2 Power Consumption

Energy efficiency of Cloud data centers becomes a critical concern of their owners

and the public as they consume considerable amounts of power. Without a proper

resource provisioning, energy consumption of high-end computing systems can lead

to excessive waste heat and ultimately lead to higher carbon footprint. Power-aware

provisioning not only can cut down the electricity bill directly due to computations, it

can also reduce energy expenditure due to cooling.

Power Models of the Computing Units

A host’s power consumption is mainly determined by its CPU, storage, memory, and

network interfaces utilizations. In particular, CPU contributes the most to such value.

In our experiments, we first use the power model provided by SpecPower08 [35] to

conduct preliminary studies on the effectiveness of the proposed mechanism. Then,

we utilize a more general model to estimate the power consumed by servers when their

power consumption and CPU utilization are having a linear relationship. In the linear
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model, when CPU utilization increases, power consumption drawn by a physical host

will also increase linearly from the power level at its idle state up to the power level at

its fully-utilized state. So the power consumption of a host with a utilization level u is

expressed as:

P(u) = Pidle + (Pmax − Pidle) × u, (2.1)

where Pmax and Pidle are the power consumed when a physical host is working at its

maximum utilization and idle states, respectively.

VM Consolidation based on Host Power Consumption

Several studies have been done on power-aware VM consolidation [36–38]. With

the Dynamic Voltage Frequency Scaling (DVFS) technique, authors in [36] developed

energy-aware scheduling heuristics for reducing power consumption of parallel tasks

in a computer cluster. Their work first studied the slack time for non-critical jobs. By

extending execution time of non-critical jobs, the supply voltages and frequencies of

processors could be reduced adaptively to achieve energy saving.

In [37], a green cloud framework was presented to provide efficient resource man-

agement functionalities to Cloud systems. The framework covers major managing

components in a Cloud system, including VM scheduling, VM image management,

and provides suggestions for data center design. They found that the amount of power

consumption does not increase proportionally with increase of the number of process-

ing cores. A power-based VM scheduling algorithm, which exploits the above obser-

vation and tries to consolidate VMs onto fewer nodes, was proposed in [37] to achieve

energy saving.

A work closely related to this thesis is the solution presented by Beloglazov and

Buyya [38]. They presented several approaches to tackle a power-aware scheduling

problem. In their power-based methods, the destination host is chosen based on its

recent power consumption readings. A host with the least increase in estimated power
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consumption after taking up a migrated VM is chosen as the destination for migra-

tion. Their proposed algorithms can significantly reduce energy consumption, while

ensuring a high level of QoS.

2.2.3 Host Temperature

Majority studies in VM consolidation consider host power consumption as a key mi-

gration criterion but often neglect host temperature. Such designs are easy to imple-

ment but can introduce hot-spots in data centers, which can either lead to extra cool-

ing costs or higher hardware outage rates and jeopardize service quality. Nowadays,

air conditioning units of Cloud data centers can easily consume 30−40% of its total

energy consumption. Therefore, considering host temperature in the resource manage-

ment processes can provide new insights to this study.

Temperature Model

In this thesis, the thermal behavior of processors is formulated using a lumped RC

thermal model [39,40]. Assuming the initial temperature of a processor at time t = 0 is

represented by Tinit. During a time period [0, t], suppose the host power consumption P

remains unchanged. Then, its final temperature after operating for a time t is calculated

as

T (t) = P × Rth + Tamb − (P × Rth + Tamb − Tinit)e
−t/RthCth (2.2)

where Rth is its equivalent thermal resistance, and Cth is its equivalent thermal capac-

itance. Tamb and Tinit represent the ambient temperature and the initial temperature,

respectively.

In the experiment, temperature measurements are sampled at regular intervals with

a duration ∆t. It is assumed that the power consumption of each physical host remains

unchanged during the time interval. Therefore, the temperature at the κth time interval
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is calculated as

Tκ =























Pκ × Rth + Tamb − [Pκ × Rth + Tamb − Tκ−1]e−∆t/RthCth , if κ > 0

Tinit, otherwise.

(2.3)

Here, κ is a non-negative integer.

VM Consolidation based on Host Temperature

Studies have been conducted on using host temperature as a migration criterion [41–

43]. A thermal-aware workload placement algorithm was presented by Moore et

al. [41] to reduce cooling costs. Two workload placement policies, zone-based dis-

cretization (ZBD) and minimize-heat-recirculation (MINHR), were formulated in their

work. In ZBD, workloads (and their heat generated) are assigned inversely propor-

tional to servers based on servers’ inlet temperature. While MINHR focuses on the

cause of inefficiencies. It assigns fewer tasks to overheated chassis to lower the total

amount of heat recirculation within a data center. Tang et al. [42] used a genetic algo-

rithm and sequential quadratic programming to save cooling energy in homogeneous

high-performance computing (HPC) data centers. Through cooling-oriented task man-

agement, the peak inlet temperature within a data center can be significantly lowered.

The authors in [43] conducted comparative analysis on cooling power in both raised-

floor and container-based data centers. They found that cooling-aware optimizations

are not very effective at high utilization levels.

The temperature of individual physical host was considered as a decision crite-

ria in VM scheduling processes [44–46]. A proactive thermal-aware VM consolida-

tion solution was proposed by Lee et al. [44] to minimize energy consumption and

maximize resource utilization in HPC Cloud data centers. A new concept called heat

imbalance which captures the unevenness in heat generation and extraction in phys-

ical machines, was introduced in their work to forecast temperature fluctuations. In
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their proposed solution, the VM consolidation problem is formulated as a variable-size

multi-dimensional bin packing problem. There are five different dimensions (i.e. CPU,

memory, disk, network capacity, and heat imbalance) with different capacities in the

optimization problem. Like other methods introduced above, their algorithm tries to

consolidate VMs onto fewer hosts for energy saving. Nonetheless, the cooling effi-

ciency of the data center can be concurrently improved with the help of temperature

predictions.

Each host is supposed to have a critical temperature, which is the maximum al-

lowed operational temperature provided by the manufacturer. A host running on or

beyond its critical temperature is subjected to a higher outage probability. Therefore,

the authors in [45] consolidate VMs to hosts that have largest margins from their criti-

cal temperatures.

In [46], the authors imposed utilization and temperature thresholds for detecting

host overloading events. In their work, they conducted a study on finding their opti-

mum values which can achieve desirable trade-offs between energy consumption and

SLA violations. However, such values are system dependent which are required to be

re-calculated whenever there are changes to the system.

2.2.4 Correlation Among Workloads

With virtualization, multiple VMs can be collocated on a single physical host to yield

higher efficiency. However, co-located VMs with high correlations on their CPU uti-

lization patterns are associated with higher risks of overloading their host, as these

VMs are more likely to reach their peak utilization levels at the same time and exhaust

one or multiple types of resources on that host. An overloaded host may result in viola-

tions of SLA which may lead to additional economic losses. The necessary migration

processes after an overloading event will also introduce extra energy consumption to

the system. Therefore, CPU utilization correlations among co-located VMs should be
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taken into account in the allocation process.

Pearson Correlation Coefficient

To study the correlation between two VMs, the correlation between the last q CPU

utilization observations of two VMs, i.e.
{

x1, x2, ..., xq

}

and
{

y1, y2, ..., yq

}

, is represented

by the corresponding Pearson correlation coefficient. The value of Pearson correlation

coefficient varies between -1 and 1. If the two sequences are perfectly and positively

correlated, their Pearson correlation coefficient will equal 1. If there is no relationship

between those sequences, the value will be 0. While a value of -1 indicates that these

two sequences are negatively correlated. The Pearson correlation coefficient between

the CPU utilization observations of two VMs is expressed as

rxy =

∑q

i=1
(xi − x̄) (yi − ȳ)

√

∑q

i=1
(xi − x̄)2

√

∑q

i=1
(yi − ȳ)2

, (2.4)

where variables x̄ and ȳ represent the means of
{

x1, x2, ..., xq

}

and
{

y1, y2, ..., yq

}

, respec-

tively.

Multiple Correlation Coefficient

In this thesis, the multiple correlation coefficient in [47] was adopted to estimate the

Resource Utilization Correlation (RUC) among co-located VMs. In multiple regres-

sion analysis, the multiple correlation coefficient is commonly used to measure the

accuracy of predicted dependent variables. The value of a multiple correlation coeffi-

cient varies between 0 and 1. It is 0 if there is no relationship between those variables

and 1 if those variables are perfectly correlated.

Suppose there are m VMs on a host. We denote these co-located VMs using vector

V = [V1,V2, ...,Vm]. The RUC level of the kth VM toward the other m − 1 VMs is

measured based on their last q CPU utilization observations. We denote the last q
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observations of the kth VM using vector yk. Similarly, we denote X as an augmented

matrix contains the q observations of the remaining m−1 VMs on the host. The vector

yk and matrix X are expressed as

yk =


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Here, variable xp,s represents the pth CPU utilization observation of Vs. The multiple

correlation coefficient R2
Vk ,V\Vk

for each Vk is calculated as

R2
Vk ,V\Vk

=

∑q

p=1
(yp,k − myk

)2(ŷp,k − mŷk
)2

∑q

p=1
(yp,k − myk

)2
∑q

p=1
(ŷp,k − mŷk

)2
, (2.5)

where the variables myk
and mŷk

represent the means of yk and ŷk, respectively. Here,

ŷk is a vector of predicted values of the kth VM, which is obtained as

ŷk = X(XTX)−1XTyk. (2.6)

In this thesis, the RUC between the kth VM and other co-located VMs is represented

by the corresponding multiple correlation coefficient.

VM Consolidation based on Correlations

Verma et al. [48] conducted some pioneering studies on the RUC among co-located ap-

plications and their results sheded light on the possibilities of applying it as a criterion

in VM placement processes. Their work is designed for the long-term consolidation

problem. Their results shown that there exists both positively correlated and negatively

correlated applications in a typical server cluster. Therefore, they suggested consider-
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ing correlation information during application placement for SLA management.

In [49], performance interferences due to different combinations of co-located

workloads were studied experimentally. They found that VMEXIT events (such as

external interrupt, I/O interrupt, and control-register access) are the main source of

performance interferences. Therefore, it is highly suggested to estimate the interfer-

ence effects by exploiting the correlation information among co-located applications.

In their work, a performance interference prediction model was developed to manage

application QoS in Clouds based on the application-level and VM-level characteristics

of co-located applications.

In [50], another interference prediction model was proposed by Zhu and Tung to

estimate the application QoS metric. In their proposed model, an influence matrix,

which considers interferences from multiple resources, was presented to estimate the

extra resources requested by an application for optimal consolidation configuration.

They first adopted affiliation rules to initialize the mapping between applications and

servers. Their proposed interference model was then adopted to estimate application

deadlines and adjust the consolidation configuration accordingly. The resulting con-

figuration was further improved by applying hill climbing algorithm.

A VM placement scheme was proposed by Wei et al. [51] to guarantee a reason-

able QoS level. Their work assumes a normal distribution for resource demands of

VMs. First, an autoregressive integrated moving average model was adopted to predict

the mean of the future demand. Then, the volatility (i.e. the variance) of the future

demand was analyzed based on a generalized autoregressive conditional heteroskedas-

ticity model. The correlation between different VMs on a host was calculated using

(2.4). Based on the correlation, the predicted mean, and the predicted variance, the

probability of SLA violation was obtained. Their work tries to allocate VMs to hosts

with a SLA violation probability less than the probability determined by the QoS re-

quirement.

Zhang et al. [52] proposed a VM migration algorithm that minimizes the number
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of VM migrations in an over-committed data center. In their proposed idea, VMs with

high utilization correlation should be scattered onto different hosts. First, VMs having

both fluctuating utilization levels and high utilization correlation are selected to be

scattered across hosts. Such VMs are then migrated to less occupied hosts with VMs

that are less correlated. During the reallocation process, to reduce delay due to the

computer network underneath, hosts on the same rack are having higher priorities to

be the destination hosts.

A power management solution was presented by Kim et al. [53] to host scale-

out [54] applications (e.g., MapReduce, web search, etc.) in Cloud clusters. First, they

conducted comparative analysis on the workload characteristics of applications and

proposed a cost function based on CPU utilization information to quantify correlations

between two selected VMs for server consolidation. Then, they determined an optimal

voltage to frequency ratio (v/ f ) for each server according to the estimated cost level

of those co-located VMs. They jointly utilized server consolidation and v/ f scaling by

considering correlation information among VMs to reduce global power consumption.

In [55], Hwang and Pedram modeled resource demands as random variables and

then considered the correlations among these random variables in order to solve the

VM consolidation problem. They formulated the VM consolidation problem as a

multi-capacity stochastic bin packing problem. In their work, there are two distinct

resource managers, i.e. global and local managers. The global manager assigns VMs

with low correlations to the same cluster, while the objective of local manager is to

balance the resource usage within each host. The local manager tries to select the host

which has smallest difference between its available resources and the resource demand

of a VM, to accommodate the VM.

Nathuji et al. [56] proposed a QoS-aware control framework to tackle performance

interferences introduced by the consolidation of multiple VMs onto multicore servers.

Their work is a closed loop resource management controller based on application feed-

back (i.e. QoS information) to build a multi-input multi-output model. Their closed
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loop controller helps determine whether additional resources should be allocated to

compensate performance degradation due to interferences between co-located work-

loads.

In [57], an affinity model was proposed to explore the relationship among VMs

based on ARIMA prediction. Here, the affinity value, refers to the variance level of

total resource requirements after two VMs are migrated to the same host, is calculated

as

Aik =

D
∑

d=1

Ad
ik, (2.7)

where the affinity Aik between VM i and VM k is the sum of the affinities of D-

dimensional resources (i.e. CPU, memory, storage, and network). Here, for each kind

of resource d, its affinity Ad
ik

is expressed as

Ad
ik =




















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)2

T





















1
2

, (2.8)

where Rd
i
(t + δt) and Rd

k
(t + δt) represent the predicted utilization values of resource d

at time t + δt of VM i and VM k, respectively. Here, ud
ik

is the average utilization value

of resource d over T time slots, which is calculated as

ud
ik =

∑T
δt=1

(

Rd
i
(t + δt) + Rd

k
(t + δt)

)

T
. (2.9)

In their proposed algorithm, VMs with high affinity (i.e. small variance) will be con-

solidated together for better resource utilization.

A two-phase multi-objective VM placement scheme was presented by Pahlevan et

al. [58] for geo-distributed data centers. In the global phase, they exploited data and

CPU-load correlations among VMs for clustering VMs based on their characteristics.

In the local phase, CPU-load correlation is considered as the only allocation criterion.

Their two-phase VM placement scheme aims to achieve desirable cost-performance
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and energy-performance trade-offs.

2.3 Optimization methods used in VM Consolidation

2.3.1 Exact Methods

There are several exact methods proposed for solving the consolidation problem. Using

exact methods, optimal solutions are guaranteed, however due to the complexity of the

problem, the time needed will exponentially increase with the size of the problem.

Pillai et al. [59] proposed a resource allocation mechanism based on the principles

of coalition formation and the uncertainty principle in game theory. Coalitions of

machines are formed to satisfy requests with uncertain demands. Their game-theoretic

approach is able to achieve higher request fulfillment and better resource utilization.

Lin et al. [60] have investigated the problem of power consumption in data center

and came up with an extended Round-Robin method. In their work, if a VM has

finished and there are still other VMs running on the same host, this host is regarded

as “retired”. Such hosts will not accept new VM and they will be powered off when all

its VMs have been terminated.

A learning based resource allocation algorithm was proposed by Qavami et al. [61]

at the application level. In their learning algorithm, a quasi discrete-time Markov chain

is adopted to estimate future needs of cloud applications. An appropriate number of

VMs will then be allocated based on the predicated loading of a host. When the work-

load on a host is over provisioned, normal, or under provisioned, the state of the host

will be changed into decrement, normal, or increment states, respectively. According

to the state of a host, different actions will be taken.

In [62], independent tasks are scheduled on a single processor according to their

proposed dynamic voltage scaling (DVS) policy. First, by using the Lagrange multi-

plier, a theoretical relationship between the optimal task voltages for minimum energy



2.3. OPTIMIZATION METHODS USED IN VM CONSOLIDATION 25

and minimum peak power consumption was developed. Then, an iterative algorithm

was proposed to achieve this relation. A similar idea was given in [63], which explores

five mechanisms for reducing energy consumption of a server cluster with various

combinations of DVS and node vary-on/vary-off [64] policies.

In [65], three online mechanisms were proposed to manage server energy and op-

erational costs in data centers. The first mechanism is a proactive strategy based on

workload prediction and steady state queuing analysis. While the second is a reac-

tive mechanism which adopts feedback control theory to perform DVS control. The

third one is a hybrid scheme which combines these two mechanisms to perform server

provisioning and DVS control.

2.3.2 Heuristics

Resource provisioning, which is an NP-hard problem, has attracted a lot of interest

over the years. Numerous algorithms were focused on finding an approximate or near-

optimal solution that can schedule resources efficiently. Heuristic optimization meth-

ods have demonstrated as good candidates in solving the NP-hard problems. Due to

the complexity and the time-critical natures of VM consolidation problems, heuristics

are often adopted as their solvers.

In [66], the service placement problem was formulated as a generalization of the

on-line vector packing problem. In their model, services and nodes are two resource

matrices. The resources required by each service are expressed as a service matrix S ,

and the resources provided by each node are expressed as a node matrix N. The assign-

ment of services to the nodes is expressed using a placement matrix C. The difference

between the total amount of resources provided by each node N and the total amount

of resources consumed on each node CS , which determines the amount of over- or

under-provisioned resources, is regarded as a metric to evaluate the quality of a par-

ticular placement. Here, the quality measurement is expressed using the Provisioning
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Norm. The Provisioning Norm ‖M‖ω,F is the sum of two Frobenius Norms [67]: the

Frobenius Norm of the positive entries and the Frobenius Norm of the negative entries.

Here, the Frobenius Norm reflects the Euclidean distance of a given matrix A, which

is calculated as

‖A‖F =

√

√

m
∑

i

m
∑

j

∣

∣

∣ai j

∣

∣

∣

2
, (2.10)

where ai j is an entry in matrix A. Since the Frobenius Norm fails to discriminate

between under-provisioned nodes and over-provisioned nodes, the Provisioning Norm

‖M‖ω,F is defined as an asymmetric norm, which is expressed as

‖M‖ω,F = (1 − ω) ‖M+‖F + ω ‖M−‖F (2.11)

with ω ∈ (0, 1) such that

M = N −CS

M = M+ + M−

M+ with entries m+i j =























mi j, mi j ≥ 0

0, mi j < 0

M− with entries m−i j =























mi j, mi j ≤ 0

0, mi j > 0

Here, ω is a policy parameter which reflects a preference between under-provisioning

and over-provisioning. A proportional integral derivative control system feedback

loop was adopted to respond to changes in demand and performance. In their self-

organizing system, a heuristic based on a greedy randomized adaptive search method

and a hybrid multi-start method was adopted to find the best configuration (i.e. lowest

Provisioning Norm) of service placement.

A management algorithm for dynamic VM allocation was presented in [68] to

minimize the number of active hosts while allowing an acceptable number of SLA
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violations. First, a time series forecasting technique was adopted to predict the future

demand of VMs based on their historical data. Then a first-fit bin packing heuristic

was executed on the predicted data. For each host, the sum distribution of resource

demands after allocation is estimated. If the p-percentile of this sum distribution is

smaller or equal to the host capacity, the corresponding VMs will be assigned to this

host.

The authors in [69] proposed an application placement framework pMapper to

minimize power and migration costs. In their framework, there are three dynamic

placement algorithms. The first one is min Power Parity (mPP) algorithm which tries

to minimize the total power consumed. First, mPP determines a target utilization for

each server based on its power model. VMs are then placed onto the servers according

to the results of a First Fit Decreasing (FFD) algorithm. Following that is a min Power

Placement algorithm with History (mPPH), which adopts incremental FFD (iFFD)

instead of FFD. Here, in iFFD, servers with a target utilization higher or lower than

the current utilization are regarded as receivers or donors, respectively. Applications

on donors will be migrated to receivers to reach their target utilizations. The third

algorithm tries to maintain a balance between power consumption and migration cost.

The VM consolidation problem in [70] was once again formulated as a stochastic

bin packing problem. In their work, the network bandwidth demands of VMs are

modeled as probabilistic distributions. VMs are packed onto physical hosts using a

Next Fit algorithm which aims to reduce the number of active servers without violating

the server capacity constraints.

2.3.3 Metaheuristics

Another approximate optimization method, which is widely used to solve mid to large

scale optimization problems, is metaheuristics. Metaheuristics, as opposed to heuris-

tics, are problem-independent techniques. Metaheuristics are strategies that effectively
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guide the space search process to find (near-) optimal solutions and usually take more

time than quick heuristics to find the solution. A number of VM consolidation ap-

proaches have adopted metaheuristics for better resource management in Cloud data

centers.

An ant colony based algorithm was proposed by Farahnakian et al. [71] to keep

active hosts number low. In their model, a tuple, which consists of a source host, a VM

to migrated, and a destination host, is analogous to an edge in the Traveling Salesman

Problem. They introduced a pseudo-random-proportional rule as an efficient resource

management procedure in their ant colony based system. Here, the pseudo-random-

proportional rule is a state transition rule. A tuple with a higher pheromone level and

a higher heuristic value (i.e. fewer available resource after migration) was chosen as

the next tuple to traverse. In their system, a local agent resided in a host observes the

CPU utilization and categorizes the host into one of the four sets:Pnormal, Pover, P̂over

and Punder. Then a global agent collects data from the local agents to optimize the VM

placement.

In biology, different species may have symbiotic relationships (mutualism, com-

mensalism, and parasitism) under an ecosystem. The symbiotic organism search (SOS)

algorithm, which imitates the symbiotic behaviors, is a newly developed metaheuristic

technique for solving task assignment problems. In [72], a SOS algorithm is adopted

as an efficient solution to achieve higher system utilization with minimal makespan.

Their proposed discrete SOS algorithm adopted mutualism, commensalism, and par-

asitism mechanisms to update the positions of the solution vector (i.e. a mapping of

tasks to VMs) in the search space. In their model, a mutual benefit factor facilitates

the exploration of new regions in the search space, while a parasite vector prevents

premature convergence of the system.
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2.3.4 Stable Matching

The VM-host allocation problem in Cloud computing can be viewed as a stable match-

ing problem as well. Here, a matching is regarded as stable when no individual would

prefer another individual to its current partner. In the stable matching framework,

hosts and VMs are matched according to their individual preferences. Both participat-

ing party groups may have different and opposite preferences. On the other hand, VMs

and hosts in the stable matching problem can share a mutual objective.

An early attempt of formulating the VM allocation problem as a stable matching

problem was given by Xu and Li [73]. In their work, an egalitarian stable matching

framework was developed to address the VM allocation problem. The two matching

party groups in their work are considered as having opposite objectives. The objective

of their approach is to maintain the fairness between hosts and VMs. In their work, the

matching with the minimum total rank sum is considered as egalitarian. The authors

further presented a stable matching-based architecture called Anchor [74] for resource

management in Cloud clusters. Anchor is composed of three parts: a resource monitor,

a policy manager, and a matching engine. The resource monitor collects information

from each server and its VMs. Both the CSP and its customers can configure their

resource management policies via the policy manager. When VM placement requests

arrive, the matching engine executes the policies and outputs a matching between hosts

and VMs. In Anchor, job-machine stable matching theory was adopted to overcome

the problem of size heterogeneity.

A game theoretic approach, which adopted the rich theory of matching markets,

was proposed by Dhillon et al. [75] for efficient VM consolidation. In their work,

the VM co-scheduling problem was formulated as a cascade of a stable roommates

problem and a stable matching problem.

A similar idea was given by Xu et al. [76] who utilizes the game theoretic theory

for optimal mapping of containers to hosts in a container-based cloud. In their many-
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to-one matching model, each container ranks the hosts according to their processing

abilities. Here, hosts with higher processing speed, larger bandwidth, and lower fault

rate are assigned with higher processing ability values. Their resource scheduling ap-

proach can improve resource utilization rate and shorten the completion time of all the

submitted jobs.

In [77], the VM migration process was formulated as a hospital-residents problem

with ties. In their model, entities with identical preference are allowed to be bounded in

a tie to improve the performance of cloud-assisted smart TV services. In the classical

stable matching problem, each VM has only one preferred server at a time. However,

in a stable matching problem with ties, a VM can propose to all servers in a tie in its

preference list simultaneously, which makes the matching between them more efficient.

Such design can reduce VM transmission cost (i.e. the ratio of hop distance between

two hosts to their available bandwidth) when preferences are not given in a strict order.

2.4 Summary

In this chapter, we provide a literature review on different consolidation techniques,

various parameters, and a few optimization methods used to solve the consolidation

problem.

In the first part, we discuss various parameters in the VM consolidation prob-

lem. These parameters are directly or indirectly affecting the Cloud data center op-

erational costs and user experience. There are several parameters that could be taken

into account, including hardware utilization, power consumption, host temperature,

and workload correlation information. Each of these parameters can affect the VM

consolidation process. As the VM consolidation problem can be formulated as a high-

dimensional NP-hard bin-packing problem, it is often solved using various heuristics

and metaheuristics methods.

In the following three chapters, we propose three VM consolidation mechanisms
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with different optimization methods and considering different parameters.
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Chapter 3

A Thermal-aware VM Consolidation

Mechanism with Outage Avoidance

In the previous chapter, we reviewed a few consolidation techniques and optimiza-

tion methods for consolidation problem. In this chapter, we propose a thermal-aware

VM consolidation mechanism with outage avoidance for Cloud data centers. Efficient

energy and temperature management techniques are essential elements for operators

of Cloud data centers. Dynamic VM consolidation using live migration techniques

presents a great opportunity for Cloud service providers to adaptively reduce energy

consumption and optimize their resource utilization. In recent studies, power con-

sumption readings of individual physical hosts were chosen as the main monitoring

parameters in their allocation policies, while very few have considered host tempera-

ture, which has shown to have a negative impact on server reliability, as a migration

criterion. In this chapter, we consider the variability in host temperature as a migration

criterion to avoid outage incidents via having better VM consolidations. Extensive

simulation results obtained from CloudSim show the promising performance of the

proposed mechanism in energy saving while reducing the number of server outage

incidents due to fluctuations in host temperature.

33
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3.1 Introduction

Cloud computing is an enabling technology for dynamic provisioning of computing

resources among their shareholders [78]. Cloud data centers are always in-demand

for efficient resource management techniques to support current and emerging data-

intensive applications [79]. However, non-uniform distributions of application work-

loads can lead to non-trivial resource allocation. Nevertheless, a poor assignment pol-

icy may result in excessive energy consumption. High energy consumption not only

leads to a high operating cost, moreover, it introduces exhaust heat and greenhouse

gases both directly and indirectly [25].

A desired level of QoS is another essential requirement that needs to be guaran-

teed by CSPs [80, 81]. Typically, the required performance of cloud services is stated

in SLAs. Server overheating can trigger unexpected outage incidents [82] and/or per-

formance degradation [83], which both have negative influences on the QoS. Hence,

achieving energy saving of Cloud clusters while upholding the QoS level between

CSPs and their subscribers is the main challenge in designing resource provisioning

policies.

Virtualization technology provides several benefits to tackle the above problem [84–

86]. In a virtualized data center, multiple VMs can be co-located on the same host to

fully utilize its processing capacity. Such a strategy enables a higher resource utiliza-

tion and reduction of idling equipment. When the utilization of a host fluctuates and

causes a violation of SLA, live VM migration is enforced to resolve the situation [87],

which adjusts the VM layout on the affected host by migrating some or all of its VMs

to the others. The process is carried out seamlessly without interrupting the applica-

tions running on the VMs. Even when none of the SLA is violated, if the load of a

physical host is regarded as critically high, one or multiple of its VMs can be migrated

away as a precaution to guarantee sufficient resource on the host to deliver the agreed

performance. Such a tactic is important for minimizing the chances of having over-
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loading events in the future. In contrast, for instances with moderate to low demands,

VMs can be consolidated onto a smaller number of physical hosts to reduce the overall

energy consumption.

Apart from overloading incidents, reliability of the physical hosts is another criti-

cal factor that determine the capability of a Cloud cluster in delivering its services. An

outage incident triggered by a fluctuation in server temperature will lead to unintended

terminations of VMs running on it and will cause severe violations of SLA. Therefore,

host temperature management should be considered in the VM consolidation process.

It is often believed that high operating temperature is the major cause of hardware fail-

ures. However, a recent study [88] shown that the variability in temperature of a host

has a much stronger but negative impact on server reliability. The larger the varia-

tion in host temperature, the greater the likelihood of an outage to occur. Therefore,

maintaining a stable temperature is more preferred for server reliability assurance.

In this chapter, we design a VM consolidation mechanism which considers both

host power consumption and temperature to obtain reasonable trade-offs between en-

ergy saving and SLA violations. To avoid potential SLA violations, the proposed

mechanism prevents outage events and detects overloaded hosts based on host tem-

perature and their CPU utilization levels, respectively. During the consolidation pro-

cess, the variability in temperature is considered as a migration criterion for outage

avoidance. Furthermore, the proposed mechanism further adopts a Markov model to

predict future CPU usages of physical hosts and VMs to reduce the number of mi-

grations needed in the long run. Extensive simulation experiments were conducted on

CloudSim [89]. Simulation results highlight the advantage of the proposed mechanism

in energy conservation, overload avoidance, and outage avoidance.

Section 3.2 elaborates the details on the problem formulation. In Section 3.3, the

thermal-aware VM consolidation mechanism is introduced and explained. Details on

the experiment setup are outlined in Section 3.4. Experiment results and the corre-

sponding discussions are presented in Section 3.5.
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3.2 CoV In Temperature

In this chapter, we adopt the coefficient of variation (CoV) to measure the variability in

host temperature. Here, CoV is a standardized measure of dispersion of a distribution.

It shows the extent of variability in relation to the mean of the population.

The CoV strength of host j is measured based on its last Q temperature observa-

tions which are represented by vector T j = [T j,1,T j,2, ...,T j,Q]. The CoV of host j can

then be calculated as

CoV j =

√

1
Q

Q
∑

i=1

(

T j,i −
∑Q

i=1
T j,i

Q

)2

∑Q

i=1
T j,i

Q

. (3.1)

3.3 Thermal-aware VM Consolidation Mechanism

The proposed VM consolidation mechanism has four procedures: (1) host outage

events handling, (2) host overloading events detection, (3) VM selection, and (4) VM

placement. The proposed VM consolidation process is summarized in Fig. 3.1 and

elaborated in the following sub-sections.

3.3.1 Host Outage Events Handling

According to the analysis in [88], variability in host temperature has a strong influence

on its reliability. For the simulation analyses presented in the later part of this chapter,

a host outage incident is simulated and triggered as follows.

1. For host j, we calculate its CoV j in temperature based on the last Q observations

of its temperature readings.

2. Obtain the host outage probability [88] P j at a specific CoV j:

P j =























3.472 × 10−6, if CoV j < 0.0074

5.787 × 10−6, otherwise;

(3.2)
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Figure 3.1: The proposed VM consolidation process.

3. Generate a random number in the interval (0,1) and compare it with P j.

If the random number is less than the host outage probability, an outage event occurs

and vice versa. Note that outage hosts will reboot and be available again at the next

interval. All VMs on the outage hosts will be terminated unexpectedly, and conse-

quently the application services deployed within those VMs will be interrupted. To

resume the applications, VM instances that had the same configurations as the original

VMs will be created. Those interrupted applications will be restarted and reassigned

to the newly initialized VMs. These VMs will then be allocated to hosts according to

the VM placement policy.
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3.3.2 Host Overloading Events Detection

As the workload of a host increases, it is more likely to commit SLA violations as its

CPU becomes more occupied. Therefore, it is necessary to detect signs of overloading

and take precautions in due course. If a host does not trigger an outage incident, host

overloading detection policy will be applied to check whether the host is overloaded.

Typical host overloading detection algorithms found in literature [38] are

1. Static Threshold (THR): the utilization thresholds are set as fixed values,

2. Median Absolute Deviation (MAD): the utilization threshold (Tu j) of host j is

defined as

Tu j = 1 − s1 · MAD j, (3.3)

where s1 ∈ R+ is a parameter which allows the adjustment of the VM consolida-

tion. In this chapter, the parameter s1 has been manually tuned to 2.5. Here, the

MAD j is the median of the absolute difference from the median of host j’s CPU

usage set (i.e. u j =
{

u j1, u j2, · · · , u jq

}

), which is calculated as

MAD j = median

(
∣

∣

∣

∣

u ji − median
(

u j

)

∣

∣

∣

∣

)

, (3.4)

3. Interquartile Range (IQR): the utilization threshold (Tu j) of host j is set as

Tu j = 1 − s2 · IQR j, (3.5)

where s2 ∈ R+ is a parameter similarly to the parameter s1, which has been

manually tuned to 1.5. Here, the IQR j is defined as the difference between the

third and first quartiles in host j’s CPU utilization history set (i.e. Q3 − Q1), and

4. Local Regression Robust (LRR): the main idea is that a trend polynomial is fit-

ted based on the last q observations of host’s CPU usage to estimate the next
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observation and check whether it satisfies some predefined overloading condi-

tions. Suppose that the degree of the polynomial fitted by the method is 1, then

the function is set as u = a+bx. The initial fit is carried out with weights defined

using the tricube weight function ωi(xi) (3.6).

ωi(xi) =













1 −
(

xq − xi

xq − x1

)3










3

, (3.6)

where xq is the last observation, and x1 is the qth observation from the right

boundary. Here, let xi satisfy x1 ≤ xi ≤ xq. The fit is evaluated at xi to get the

fitted values ûi, and the residuals ε̂i = ui − ûi. At the next step, each observation

(xi, ui) is assigned an additional robustness weight ζi, which is defined as

ζi =























(

1 −
(

ε̂i

6φ

)2
)2

, if
∣

∣

∣

∣

ε̂i

6φ

∣

∣

∣

∣

< 1

0, otherwise,

(3.7)

where φ = median |ε̂i|. Therefore, each observation is assigned the weight

ζiωi(xi) for local regression fitting. Using the estimated trend line, we estimate

the next observation û(xq+1) and check whether the inequality (3.8) is satisfied.

s3 · û(xq+1) ≥ 1, (3.8)

where s3 ∈ R+ is a parameter similarly to the parameter s1, which has been

manually tuned to 1.2.

3.3.3 VM Selection

According to the analysis in [87], live VM migration is a costly operation that in-

volves computational processing on both the source and destination hosts, and the link

bandwidth between the two hosts. Thus, the migration time should be kept as short

as possible. Here, the migration time is calculated based on the amount of RAM be-
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ing used by the VM divided by the available network bandwidth between source and

destination hosts. For each VM in the same data center, the available network band-

width between hosts is assumed to be identical. Therefore, the migration time of a

VM is mainly determined by its RAM capacity. By incorporating the relation between

host temperature fluctuations and the likelihood of having an outage incidents, in the

proposed method, a VM is migrated away from an overloading host in order for the

host to achieve a smaller CoV in its future temperature readings. Therefore, for an

overloading host j, its VM i′ will be chosen as the first candidate for migration, where

i′ = arg min
i

(

ωCoV j(i) + (1 − ω)
Ri norm

100

)

. (3.9)

Here, ω is a weight that varies the importances of variability in host temperature and

VM migration time in the decision process. CoV j(i) represents the estimated CoV

level of host j after VM i is migrated away. Ri norm is the normalized RAM value,

which is calculated as the RAM capacity of VM i divided by the maximum RAM

capacity among all the VMs in the data center, for measuring the migration time of

VM i. Here, 100 is a scaling factor which ensures the two monitoring parameters in

(3.9) are with comparable amplitudes. The rationale of the proposed selection method

is to select a VM with a shorter migration time, which will also allow the overloading

host to operate at a more stable temperature after the migration.

3.3.4 VM Placement

In the last part of the whole consolidation process, the proposed algorithm will be

utilized to select appropriate host(s) for VM placement. The process is formulated

as a bin packing problem with variable bin sizes and costs. For each physical host,

its available CPU resource is regarded as bin size. The selected VMs that need to be

reallocated are treated as items to be packed. Here, costs are corresponding to their

CoV values.
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Figure 3.2: The flowchart of CoV-BFD.
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On-chip temperature is available and accessible in modern processors. A high

utilization or a cooling system failure would result in high temperature of processors

and raise overheating possibility. Fluctuations in temperature would lead to hardware

failure ultimately. Therefore, it is desirable to reallocate VMs to hosts which show low

variations in temperature after adopting the VMs.

To achieve that, the proposed CoV function is integrated in a modified best fit

decreasing algorithm (BFD) [38] called CoV-BFD. The complexity of the proposed

mechanism is O(n ·m), where n is the amount of available hosts and m is the number of

VMs that need to be migrated. After obtaining the most-updated CPU utilization data

of the selected VMs in the third step, they are sorted in a decreasing order in CoV-BFD.

Then the proposed algorithm tries to find more appropriate destination hosts to accom-

modate these sorted VMs. Note that a host, which would trigger an outage incident

or become overloaded after accepting this VM, will never be selected as a destination

node. Among all the available hosts, those that can achieve the minimum CoV by

accepting the VMs will be chosen as the destination hosts. By doing so, hosts in the

data center can operate at a more stable temperature to ensure system reliability after

the VM consolidation. Once destination hosts are located, the migrations of VMs will

proceed. This step is executed iteratively until all the selected VMs have re-allocated

to some feasible and desirable servers. The flowchart of CoV-BFD is presented in Fig.

3.2.

3.3.5 Prediction

The future resource needs of hosts and VMs are important factors for VM consolida-

tion. The proposed algorithm makes predictions based on a Markov model [90,91]. In

this section, we aim to show the possible improvement that can be obtained with the

help of a prediction model. More sophisticated predictors can also be applied to obtain

further improvements. We define an X states Markov model corresponds to VM with
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Algorithm 3.1: Predicted CoV-based BFD Algorithm

Require: VmsToMigrateList, hostList

Ensure: migrationMap

1: VmsToMigrateList.sortDecreasingUtilization()

2: for vm in VmsToMigrateList do

3: Predicted U(vm) ← Transition M(history)

4: minCoV ← MAX

5: allocatedHost ← NULL

6: for host in hostList do

7: Predicted U(host) ← Transition M(history)

8: if host is not overloaded after allocation then

9: CoV ← estimatePredictedCoV

10: if CoV < minCoV then

11: allocatedHost ← host

12: minCoV ← CoV

13: end if

14: end if

15: end for

16: migrationMap.add(vm, allocatedHost)

17: end for

18: return migrationMap

X discrete levels of utilization. The transition probability between each pair of states is

derived from the previous K corresponding observations. The transition matrix is then

used together with the utilization u to obtain the expected utilization value of a host at

time t + 1.

In this chapter, the number of states is chosen as 2, which corresponding to cases

with ≤ 50% or > 50% utilization. The number of observations K is set as 10. The

predicted CPU usage of a host at time t+ 1 is used to estimate its corresponding power

level at time t + 1. Then, the predicted temperature at time t + 1 is calculated ac-

cording to (2.3). Once the predicted temperature of each host is obtained using the

aforementioned Markov model, (3.1) can be rewritten as

ˆCoV j =

√

1
Q

Q+1
∑

i=2

(

T j,i −
∑Q+1

i=2
T j,i

Q

)2

∑Q+1

i=2
T j,i

Q

, (3.10)
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Table 3.1: Simulation Setup

Host Type MIPS RAM[MB]

HP ProLiant G5 2660 4096

VM Types MIPS RAM[MB]

Extra Large Instance 2500 870

Large Instance 2000 1740

Small Instance 1000 1740

Micro Instance 500 613

Thermal Constants Value Unit

Initial CPU Temperature(Tinit) 310 Kelvin

Ambient Temperature(Tamb) 298 Kelvin

Thermal Resistance(Rth) 0.34 Kelvin/Watt

Thermal Capacitance(Cth) 340 Joule/Kelvin

where T j,Q+1 is the predicted temperature of host j at time Q + 1. The predicted ˆCoV

can be used with the BFD algorithm in Algorithm 3.1. As we will see in the later

sections, the Markov-based predictor introduces significant improvement in resource

allocation and outage avoidance.

3.3.6 Further Energy Saving

Among the active hosts, the one with the lowest utilization is regarded as the under-

utilized host. For such a host, the algorithm checks if it can place all its VMs onto

other hosts without overloading them or triggering any outage incidents. For each

VM hosted on this underutilized host, the proposed algorithm tries to select a suitable

destination host to accommodate it. Following the same logic mentioned before, the

algorithm selects a destination host that can achieve the smallest CoV after accepting

the migrated VM. The source host is turned off if all its VMs can be migrated away.

Otherwise, no changes will be applied. This process is then repeated on an active host

with the next minimum utilization which has not been considered as overloaded or as

a destination node.
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3.4 Experiments

The proposed algorithm is evaluated and implemented using CloudSim [89], which

supports modeling of Cloud computing environments. CloudSim is an evaluation plat-

form that is commonly used for modeling of application management and on-demand

virtualization resource.

3.4.1 Experiment Setup

The simulated data center is a homogeneous system composed of 800 units of HP

ProLiant G5 servers. The characteristics of the physical hosts are shown in Table 3.1.

All hosts have 1 TB storage and 1 Gbit/s network bandwidth. These configuration

settings impose physical limits on the number of VMs on each host. The power model

of HP ProLiant G5 server is adopted from SpecPower08 [35]. There are four different

types of VMs utilized in the experiments. Table 3.1 shows the properties of these VM

types with various MIPS and RAM values. All of these VMs were modeled to have

2.5 GB of storage and 100 Mbit/s of bandwidth individually. Table 3.1 also lists the

thermal constants used in the thermal model [92]. During a simulation period of a day

in an experiment, the VM consolidation processes were executed every five simulated

minutes.

3.4.2 Performance Metrics

Energy Consumption

In the experiments, we measure the total energy consumption of all the active physical

hosts in a Cloud data center. When being used solely, the energy consumption of a

Cloud data center may serve as a coarse indicator of its energy management efficiency.

However, other metrics are needed to give an all-round performance evaluation which

covers SLA violations, number of outage incidents, and migration numbers.
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SLA Violation Metrics

It is crucial for CSPs to deliver the guaranteed QoS to their subscribers. QoS is usually

negotiated on the basis of SLA. Beloglazov and Buyya [38] proposed to use SLA vio-

lation, a workload independent metric, to measure the QoS delivered to VMs deployed

in an IaaS Cloud. To measure the level of SLA violation, two metrics [38] are adopted

and further developed in this chapter.

(1) SLA violation Time per Active Host (SLATAH), a metric to measure the per-

centage of time when active hosts have experienced outage incidents or have reached

100% utilization, which is calculated as

SLATAH =
1

N

N
∑

j=1

To j
+ Ts j

Ta j

, (3.11)

where N is the number of physical hosts. To j
is the total time which host j has expe-

rienced an outage incident. In the simulation, whenever an outage incident happened

on a host, its To j
is incremented by five minutes. Ts j

is the total time which host j has

its utilization reached 100% and incurs a violation of SLA. Ta j
is the total duration of

host j being in the active state.

(2) Performance Degradation due to Migrations (PDM), a metric to measure the

overall degradation of performance due to VM migrations, which is expressed as

PDM =
1

M

M
∑

i=1

Cdi

Cri

, (3.12)

where M is the total number of VMs in the system. Cdi
is the estimated performance

degradation of VM i due to VM migrations. Cri
is the total CPU capacity required

by VM i during its lifetime. Here, we assume Cdi
equals 10% of the CPU utiliza-

tion [38]. SLATAH and PDM are equally important but independent to each other.

These two metrics are then integrated into a parameter called SLA Violations with
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Outage (SLAVwO), defined as

SLAVwO = SLATAH × PDM. (3.13)

Number of Outage Incidents

Server reliability is the most critical variable for a reliable data center. Servers with

high reliability can reduce the probability of having an outage incident which will

cause severe impact to SLAVwO. Hence, the number of outage incidents is used as

one of the criteria in measuring the effectiveness of a VM consolidation mechanism.

Migration Number

Live VM migration is a costly operation process. The process will occupy some CPU

time on both the source and the destination hosts. Bandwidth is utilized between the

two involving parties as well. It also takes time for VMs to migrate. Additionally,

each VM migration may cause further violations of SLA. Therefore, a small migration

number is preferred.

Energy and SLA Violations Metrics

In general, energy consumption has a conflicting relationship with SLAVwO. Energy

consumption can usually be reduced at the expense of an increase in SLAVwO. There-

fore, achieving a balanced trade-off between these two conflicting metrics is the pri-

mary goal of the proposed mechanism. In this chapter, we adopt a metric called Energy

and SLA Violations with Outage (ESVwO) [38] to evaluate the overall performance of

Cloud clusters. It is defined as

ESVwO = E × SLAVwO, (3.14)

where E is the total energy consumption of a Cloud data center.
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Figure 3.3: Comparisons of the CoV mechanism with the power-based method.

3.5 Experiment Results

To examine the effectiveness of the proposed mechanism, a series of simulations using

real-world workload data were carried out and the corresponding results are presented

in this section. In general, power-based methods are the most common and generic

methods for solving the VM consolidation problem. Therefore, in this chapter, power-

based methods [38] are chosen as referencing benchmarks. Among the selected power-

based methods, VMs with shortest migration time will be chosen for migration. Fur-

thermore, their destination hosts are chosen based on their power consumption. That

is, the host with the least increase of power consumption after taking up a migrated

VM is chosen as the destination. While in the proposed mechanism, the host with the
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Table 3.2: Total Number of Active Hosts and Extreme Hosts

Overloading

Detections
Algorithm

Active

Hosts

Extreme

Hosts

THR
Power-based 22036 9170

CoV Mechanism 16856 5731

MAD
Power-based 21005 9553

CoV Mechanism 14814 7033

IQR
Power-based 21691 9457

CoV Mechanism 14792 5761

LRR
Power-based 18671 8371

CoV Mechanism 12316 2586

lowest CoV after migration will be chosen. For simplicity, in the following section,

the terms “CoV mechanism” and “predicted CoV mechanism” refer to the proposed

CoV-based algorithm without and with prediction, respectively.

3.5.1 Validating CoV model of VM Consolidation Mechanism

In this experiment, we consider a homogeneous system with 1052 VMs. To highlight

the improvement delivered by the proposed idea, it is evaluated against other power-

based consolidation mechanisms with different overloading detection methods.

The average performance of the methods under test are shown in Fig. 3.3. It can

be observed that different migration mappings between VMs and hosts can lead to dif-

ferent energy consumptions. Here, Fig. 3.3(a) reports the total energy consumption of

the proposed CoV mechanism and the power-based mechanisms. Experiment results

show that CoV mechanism can yield an extra energy saving when comparing with

its power-based counterparts. SLAVwO of different systems presented in Fig. 3.3(b)

demonstrate the ability of the proposed mechanism in achieving higher level of QoS

values. This suggests that CoV mechanism can balance CPU utilization among physi-

cal hosts, while mitigating performance losses and avoiding outage events during and
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Table 3.3: Number of VMs in the Real-world Workload from PlanetLab
Date Number of VMs

03/03/2011 1052

06/03/2011 898

09/03/2011 1061

22/03/2011 1516

25/03/2011 1078

03/04/2011 1463

09/04/2011 1358

11/04/2011 1233

12/04/2011 1054

20/04/2011 1033

after VM migrations. Fig. 3.3(c) compares the migration number using different algo-

rithms. It is observed that CoV mechanism using LRR method can reduce such value

by 57% when comparing with the power-based method. As expected, ESVwO values

presented in Fig. 3.3(d) indicate that CoV mechanism has better overall performances

than its counterparts. The ESVwO values of the proposed mechanism can be as much

as 84% smaller than a power-based mechanism.

When comparing the number of active hosts under different consolidation mech-

anisms, it is observed that systems with the proposed CoV mechanism utilize less

physical hosts to support system operations (Table 3.2). This indicates the promising

ability of the proposed CoV mechanism in reducing energy consumption as it tends to

consolidate VMs to fewer physical hosts to achieve better utilization. In addition, we

compare the number of extreme hosts, which refer to hosts that operate under 25% or

above 90% utilization. Table 3.2 shows that the proposed CoV mechanism can reduce

such number significantly. This is because CoV mechanism considers hosts’ temper-

ature values, which are correlated to CPU utilization and power level of the hosts, as

parameters to exploit efficient operating conditions for each host. Furthermore, the

results indicate that the CoV mechanism can work well with existing host overloading

detection and VM selection methods.
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3.5.2 Real-world Workload

A performance comparison using real-world workload data was further conducted. The

workload data is provided by the PlanetLab project [93]. Ten days have been chosen

randomly from the data for testing. Table 3.3 shows the total VM number on each

day. From the results [38], LRR/MMT is shown as a good algorithmic combinations

for better resource allocation. In this section, we choose LRR/MMT algorithm as the

basis for our evaluation. In the power-based LRR method, the host power consumption

is regarded as the sole migration criterion. While the proposed mechanism considers

the variability in temperature as the monitoring parameter for VM consolidation with

outage avoidance.

To provide a general performance evaluation, results presented in this section are

average values obtained from 20 simulations. In the experiments, we adopt LRR algo-

rithm [38] to identify overloading hosts. LRR algorithm, as we introduced before, is

an adaptive detection algorithm based on predicted thresholds. Simulation results [38]

shown that LRR algorithm can achieve better results than other detection algorithms in

identifying host overloading events. The utilization threshold and the weight are set as

0.8333 and 0.5 for host overloading detection and VM selection, respectively. The re-

sults produced by different methods are shown in Fig. 3.4. Here, CoV mechanism and

predicted CoV mechanism consume almost the same amount of energy and they utilize

a similar number of active hosts. In contrast, predicted CoV mechanism has a higher

service quality due to its better performance in SLAVwO reduction. From the results

in Fig. 3.4(c), it can be seen that both CoV mechanism and predicted CoV mechanism

can have better performance in outage avoidance when comparing with the referencing

benchmark. It is because the proposed mechanism considered the consolidation prob-

lem from a reliability perspective. For the migration number, it is observed that none of

the algorithms with prediction have their migration number exceeded 13,500 through-

out the experiment. This demonstrates the effectiveness of load predictor for avoiding
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Figure 3.4: Comparisons of the proposed mechanism with CoV, predicted CoV, and

the referencing benchmark.
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Figure 3.5: Average CoV level of all the active hosts during 20110303.

unnecessary future migrations. In terms of ESVwO, the predicted CoV mechanism

can obtain 69%-87% reductions comparing to the power-based mechanism.

We further analyze the average CoV level of all the active hosts during a simulation

period of a day in an experiment. The lines in bold shown in Fig. 3.5 represent their

mean values over a simulated day. From the results, it can be seen that systems with

predicted CoV mechanism may yield a slightly lower average CoV than that of CoV

mechanism without prediction. It is because the predictor tends to avoid hosts that are

more likely to be overloaded or to trigger outage incidents (i.e. those with higher pre-

dicted CoV value) in the coming iterations and tries to prevent unnecessary migrations

in the future. Such interpretation can be verified by the lower migration numbers and

lower values of SLA violations shown in Fig. 3.4. The proposed mechanism helps to

ensure the reliability of servers by maintaining the variations in their temperature at

lower levels.
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3.6 Summary

In this chapter, we propose a thermal-aware VM consolidation mechanism with out-

age avoidance for Cloud clusters. The proposed CoV mechanism and CoV mechanism

with prediction allocate VMs to suitable hosts on the basis of hosts’ temperature vari-

ability. CoV-based mechanism with prediction can yield low energy consumption and

high QoS value in the premise of ensuring server reliability. The proposed mechanisms

are compatible with common existing host overloading detection algorithms. Experi-

ment results obtained from CloudSim highlight the ability of the proposed mechanisms

in outage avoidance, overload avoidance, and energy saving. This chapter provides

insights on the importance of considering the variability in host temperature when per-

forming VM consolidation with outage avoidance in Cloud clusters.



Chapter 4

A Bio-inspired Heuristics-based VM

Consolidation Mechanism

In the previous chapter, we considered the VM consolidation problem from a relia-

bility perspective. In this chapter, inspired by host-switching behaviors in symbiotic

associates, we propose a bio-inspired heuristics-based VM consolidation mechanism

to tackle the challenges of energy saving and QoS management in Cloud data centers.

We found that in Cloud data centers, the relationship between hosts and VMs is similar

to that of symbiotic organisms in nature. Inspired by host susceptibility and symbiotic

coefficient among symbionts, two heuristic functions are proposed to deal with utiliza-

tion levels of hosts and resource utilization correlation among co-located VMs. We

further formulate a heuristics-based fitness function for VM placement. In the exper-

iments, we compare the performance of the proposed VM consolidation mechanism

with six other existing power-based and correlation-based mechanisms. Experiment

results demonstrate that the proposed mechanism can achieve reductions in VM mi-

gration numbers, energy consumption, and SLA violations.

55
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4.1 Introduction

Cloud technology, by pooling resource to on-demand computing in a cost-effective

manner, is gaining prominence rapidly. The soaring demand for Cloud applications has

produced a surge in energy consumption of Cloud data centers. Resource provisioning,

which minimizes the number of active physical hosts by allocating VMs carefully, is

an efficient way to reduce energy expenditure of Cloud data centers. On the other

hand, it is essential for Cloud service providers to provide the committed processing

power to their subscribers, or a penalty cost will be applied. Virtualization technology

has been widely adopted in Cloud data centers for adaptive resource provisioning.

With virtualization, multiple VMs can be co-located on a single physical host to yield

maximum efficiency.

Live migration, which allows VMs to move across different hosts with virtually no

interruption, is an efficient way to realize energy saving and load balancing in Cloud

data centers. Excess load will be migrated out from overloaded hosts to under-utilized

hosts to eliminate hotspots. However, co-located VMs may trigger overloading in-

cidents if majority of their applications reach their peak utilization level simultane-

ously [48]. Thus, to avoid potential violations of SLA, correlation information among

co-located VMs has to be considered in the VM consolidation process.

Bondings among VMs and hosts in Cloud data centers share a lot of characteristics

and features with organisms in natural with symbiotic relationship (i. e. parasites and

hosts), who are living and evolving together. During the evolutionary process, parasites

may switch their hosts if their living environments are not suitable for survival any

more [94]. Parasites are more likely to switch to hosts with adequate resources and

compatible symbionts during periods of environmental change [95].

In VM migration processes, energy saving and SLA management are often con-

flicting. Inspired by host-switching behaviors in symbiotic associates, a bio-inspired

heuristics-based VM consolidation mechanism is proposed in this chapter to tackle
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the challenges of these two conflicting problems in Cloud clusters. We propose two

heuristic functions based on utilization levels of hosts and Resource Utilization Cor-

relation (RUC) among co-located VMs. The concept of host susceptibility in [96] is

adopted here to evaluate hosts’ condition according to their utilization levels. Inspired

by mutual interactions among symbionts [97], symbiotic coefficient among parasites

is adopted to evaluate correlations among VMs. In the proposed mechanism, hosts and

VMs in Cloud data centers represent symbionts in ecosystems. VMs share resources

provided by the physical host to keep its utilization at a relatively moderate level. The

proposed mechanism addresses the VM consolidation problem with the objective of

reducing energy consumption while minimizing SLA violations in Cloud clusters.

Section 4.2 introduces host-switching behaviors in symbiotic associates and pre-

liminaries on the correlations among co-located VMs in detail. In Section 4.3, formu-

lations of the proposed heuristic functions and their rationales are given. Section 4.4

elaborates the details on the proposed VM consolidation mechanism. Details on the

experiment setup are described in Section 4.5. Six benchmarking mechanisms are

introduced in Section 4.6. Experiment results and discussions of the proposed VM

consolidation mechanism are analyzed in Section 4.7.

4.2 Symbiosis and Host Switching

The term symbiosis was first used in 1879 to describe the cohabitation behavior be-

tween two different biological organisms [98]. To survive, organisms choose to live

together in a reliance-based relationship. This kind of symbiotic behavior is ubiqui-

tous in terrestrial, freshwater, and marine communities. Undoubtedly, symbiosis has

played an important role in biological evolution in ecosystems.

The generation of biological diversity is accompanied by multiple evolutionary

host switches. Host switching is a necessary condition to keep pace in an evolutionary

race. A common evolutionary host switching occurs when host utilization capabili-
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ties are acquired rapidly or the living environment of parasites is harmed [94]. Thus,

parasites may switch to a new host with better fitness and survival advantages.

In general, the process of host switching consists of three basic stages, those are

opportunity, compatibility, and conflict resolution [95]. Opportunity is an essential

condition for a parasite to switch to a new host. After an opportunity presents, parasites

and their corresponding hosts should be compatible with each other for cohabitation

[94]. Furthermore, parasite survival is supported by adequate resources of a compatible

host. It is necessary for parasites to overcome physical barriers imposed by the new

host without impacting the survival of the species involved. During the process of host-

parasite coexistence, conflicts may arise subsequently. The host and parasites should

resolve such conflicts for mutual adaptation and better survival.

4.3 Heuristic Formulations

In nature, symbiotic organisms live together for sustenance and survival. In Cloud

data centers, hosts and VMs are associated with a similar relationship. Similar to host-

switching behaviors in symbiotic associates, VMs in Clouds are commonly migrated

to different hosts for better performance.

As mentioned earlier, there are three stages in the process of host-switching in sym-

biotic associates. In the compatibility stage, parasites prefer switching to compatible

hosts with adequate resources for better survival. Inspired by this phenomenon, VMs

are suggested to be allocated to hosts with more available resources. Therefore, host

utilization level should be considered as a migration criterion. Moreover, the stage of

conflict resolution inspires us to take mutual interactions among co-located organisms

into account in the VM consolidation process. In this work, resource utilization cor-

relations are used to represent the interactions among co-located VMs. For a physical

host, it is more likely for VMs with high RUC to their co-located VMs to trigger over-

loading events. Due to the heterogeneity of hosts and VMs, such a problem cannot be
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completely resolved by imposing static utilization thresholds to control the utilization

level of hosts.

Inspired by host-switching behaviors exhibited in symbiotic organisms, we formu-

late the host utilization level and the RUC among co-located VMs as two heuristic

functions to evaluate the state of each host and VM for making allocation decisions.

The bio-inspired heuristic functions assign low symbiotic coefficient [97] values to

VMs with high correlations in their CPU utilization patterns for co-location avoid-

ance. Conversely, hosts with high utilization levels are considered as susceptible to

prevent VMs from migrating onto them. Such kind of hosts may even expel some of

their VMs.

4.3.1 Host Susceptibility

In nature, a non-immune host is one who has little resistance against a particular organ-

ism, thus it is susceptible to be infected by parasites [99]. In contrast, hosts with fewer

resources are also susceptible to parasites infection since they have fewer resources to

allocate to immune functions or to other defenses against parasites [100]. Similarly,

in Cloud data centers, hosts with extreme utilization levels are operating outside their

maximum efficiency ranges. Therefore, keeping host utilization at relatively moderate

levels is highly recommended. Because of that, we formulate host susceptibility h1,

which corresponds to the utilization level of a host, to evaluate host state as

h1(γ) =
(a − c)(1 −

√
b)2

b

(

1

1 − √
γ
− 1

1 −
√

b

)2

+ c, (4.1)

where γ ∈ [0, 1] is the CPU utilization of a host. In (4.1), a represents the intrinsic

susceptibility of a host, e.g. h1(0) = a. In nature, once a host has been infected, its

immune system would be built up. Such hosts would become less susceptible to be

infected by parasites but more attractive to their mutualists. Similarly, once a host is

utilized in Cloud data centers, it is desirable to increase its utilization by taking up
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Figure 4.1: An illustration of the host susceptibility h1, with a = 0.4, b = 0.5, and

c = 0.2.

more loads. Because of that, the susceptibility value is being decreased until it reaches

a minimum value at a certain point, e.g. h1(b) = c. Here, b represents the optimum

utilization and c represents the minimum host susceptibility level. In (4.1), a, b, and c

are constants, which should be selected as a > 0, 1 > b ≥ 0, and a > c ≥ 0. In this

work, they are selected as a = 0.4, b = 0.5, and c = 0.2 to ensure hosts with extreme

utilization will have relatively higher susceptibility values. Characteristics of h1 versus

host utilization level γ are illustrated in Fig. 4.1. Using (4.1), we define an occupied

capacity of an active host j as

S (γ j) =

∫ γ j

0

h1(γ)dγ. (4.2)

Here, the occupied capacity is used in evaluating host operation level, which its usage

will be elaborated shortly.

The rationale behind (4.1) is that the susceptibility value of a host is high when its

utilization is low to avoid unnecessarily provisioning new hosts. Furthermore, the host
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Figure 4.2: An illustration of the symbiotic coefficient h2, with m = 5 and n = −2.5.

susceptibility value goes to infinity as its utilization reaches 100% to discourage more

loads (parasites) from overloading a host. VMs can therefore use susceptibility as an

indicator and try to pick hosts with more available resource and desirable operating

environment (i.e. those with lower susceptibility values). Details will be explained in

the later sections.

4.3.2 Symbiotic Coefficient

The level of mutual interactions among parasites is characterized by their symbiotic

coefficients [97]. Here, we formulate a symbiotic coefficient (SC) h2, which corre-

sponds to the RUC among co-located VMs, to evaluate the mutual interactions among

VMs. In the proposed mechanism, VMs with high CPU utilization correlations are less

likely to be co-located on the same host. Therefore, such VMs will be assigned with

low SC values for co-location avoidance. An exponential function is chosen here such

that VMs with significantly high CPU utilization correlations will have lower SC val-

ues, which will encourage them to migrate onto different hosts. Here, h2 is formulated
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as

h2(βi j) = m exp (nβi j), (4.3)

where βi j ∈ [0, 1] denotes the RUC of VM i to other co-located VMs on host j. Pa-

rameters m and n are constants, which should be selected as m > 0 and n < 0. In this

work, they are selected as m = 5 and n = −2.5 to give lower SC values to VMs with

higher RUC values. Fig. 4.2 illustrates SC versus RUC.

4.3.3 Capacity Threshold

To evaluate VMs under different conditions, (2) and (3) are integrated to form a global

tuning parameter

Cglobal =

∫ Ti j

0

1

h2(βi j)
h1(γ)dγ. (4.4)

Here, Ti j is the corresponding utilization threshold for VM i on host j. To keep each

VM operated normally, the utilization level of an active host cannot exceed the utiliza-

tion threshold of its VMs. According to (2), a capacity threshold for each VM i on host

j is calculated as

S (Ti j) = Cglobal × h2(βi j). (4.5)

4.3.4 Capacity Margin

The capacity margin of each VM is calculated as

Mi j =























S (Ti j) − S (γ j) if S (γ j) < S (Ti j),

0 if S (γ j) ≥ S (Ti j).

(4.6)

It is assumed that each VM on host j is assigned with a non-zero margin if the occu-

pied capacity of host j did not exceed the capacity threshold of VM i. In the proposed

mechanism, VMs with low h2 values are assigned with zero margin if they are cur-

rently accommodated on a host with an extreme utilization level. Since such states are
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more likely to trigger overloading incidents, VMs with zero margin are suggested to

be migrated to a more suitable host.

4.3.5 Fitness

All the available hosts will be evaluated such that suitable hosts can be selected as

destination hosts for VM reallocations. In this work, we formulate a heuristics-based

fitness function for each host as

Fit( j) =
Mi j

(

1 +

∣

∣

∣

∣

∣

dh1(γ
′
j
)

dγ
′
j

∣

∣

∣

∣

∣

)
, (4.7)

where Mi j is the capacity margin of VM i if it is migrated to host j. In (4.7), γ
′

j is the

utilization level of host j after receiving the migrating-in VM i.

4.4 Proposed VM Consolidation Mechanism

The proposed VM consolidation mechanism is executed in four steps: (1) identify-

ing critical VMs and hosts, (2) selecting VMs for migration, (3) reallocating selected

VMs, and (4) detecting under-utilized host. The proposed VM consolidation process

is summarized in Fig. 4.3 and described in details below.

4.4.1 Identifying Critical VMs and Hosts

The objective of the first step is to identify VMs and hosts that are regarded as criti-

cal. This step is triggered periodically according to the specified interval of the CSP.

Whenever the mechanism is invoked, the susceptibility value h1, the SC value h2, and

the capacity margin of each host and its VMs will be calculated. Here, VMs with zero

margin, i.e. lower SC values or higher susceptibility values, are considered as critical

VMs. In the proposed mechanism, if there exist any critical VM on a host, that host is
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Figure 4.3: The proposed VM consolidation process.

regarded as critical. As critical hosts often degrade application performance, migrating

critical VM(s) away can prevent potential SLA violations.

4.4.2 Selecting VMs for Migration

Once critical hosts are identified, one or multiple of their VM(s) will be selected for

migration. In the second step, the proposed mechanism selects VM(s) to be migrated

according to their migration time. On a critical host, its critical VM that requires the

shortest time for migration will be given the highest priority to be migrated. As long

migration time can have negative impacts on application performance, such design can

lower the chance of having SLA violations. After each selection, the values of h1, h2,

and the capacity margin of the critical host and its VMs will be updated. This step is

executed repeatedly until no more critical VMs can be found on the host.
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4.4.3 Reallocating Selected VMs

To accommodate the migrated out VMs in the second step, suitable hosts will be se-

lected for VM reallocations. This step is executed in two stages: (1) reallocation of

selected VMs from critical hosts and (2) reallocation of VMs from under-utilized hosts.

The problem addressed in this step is formulated as a bin packing problem with vari-

able bin sizes and costs. In this chapter, the bin size is representing the available CPU

resource of each physical host, items are representing the selected VMs obtained from

the second step while costs are corresponding to the heuristics-based fitness values of

the selected VMs if they are reallocated onto different hosts. Here, we adopt a modified

BFD algorithm together with the proposed bio-inspired heuristic functions introduced

in Section 4.3 to solve the bin packing problem. The modified BFD is regarded as

highly efficient as it uses no more than 71/60 · OPT + 1 bins in its operation (where

OPT is the number of bins provided by the optimal solution) [101].

The flowchart of the modified BFD is presented in Fig. 4.4. After selecting VMs

for migration in the second step, a list of VMs that need to be reallocated is obtained.

According to current CPU utilizations of selected VMs in the second step, they are

first sorted in a decreasing order in the modified BFD. For each VM on the sorted list,

we try to find a host with adequate resources to accommodate it. For each available

host, the values of h1, h2, and the capacity margin of that host and its VMs (including

the sorted VM) after migration will then be estimated. Note that a host, which would

become critical after accepting a VM, will not be selected. For each VM, a host that

can yield the largest fitness value after migration will be chosen as a destination host,

i.e. a host with both a low susceptibility value and a high SC value. In summary,

the algorithm reallocates a critical VM to a host with the largest capacity margin and

a moderate utilization level. This allows critical VMs to choose more capable hosts

and avoid co-locating with VMs with similar utilization patterns. If no active host

can accommodate the migrated out critical VMs, an inactive host which can yield the
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largest fitness among the switched-off hosts, will be turned on. Once a host is located,

the migration will proceed. This step is repeated until all the VMs in the migration list

are reallocated. The reallocation process allows hosts to operate at desired utilization

levels.

4.4.4 Detecting Under-Utilized Hosts

In Clouds, hosts with relatively low utilizations, even being idle, could still reach 70%

of their peak power. Therefore, turning off under-utilized hosts is highly recommended

for energy saving. Among the active hosts, the host with the minimum utilization will

be regarded as the under-utilized host. Note that hosts which have been considered as

critical in the first step or have accepted VM(s) in the third step, will not be considered

as under-utilized. For an under-utilized host, the proposed mechanism tries to find des-

tination host(s) to accommodate each of its VM(s) and then checks if such a host can

place all its VMs on other hosts without introducing new critical host(s). Following the

same logic mentioned earlier, the mechanism selects a destination host that can yield

the largest fitness value from the available hosts which are better than the source host.

The source host is turned off only if all of its VMs can be migrated away. Otherwise,

no changes will be applied. This process is then repeated on the host having the next

minimum utilization.

Note that the fitness value of a destination host should be larger than that of the

under-utilized host in the VM reallocation process. Otherwise, the newly migrated-in

VM(s) would trigger overloading on the host assigned and cause unnecessary migra-

tions in the coming rounds.

4.4.5 A Worked Example

The rationale of the proposed VM consolidation mechanism can be further elaborated

using the following worked example.
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Figure 4.5: A worked example of the proposed mechanism.

Example 1 Consider a Cloud data center with 5 physical hosts P1, P2, . . . , P5, and 10

VMs V1,V2, . . . ,V10 as shown in Fig. 4.5. Suppose the global tuning parameter Cglobal

is 0.5. For each host, the number inside its bracket indicates its current CPU utiliza-

tion. For each VM, the numbers inside its bracket respectively represent its current

CPU utilization, amount of RAM, and RUC level.

For hosts, the proposed mechanism first calculates their Mi j for each VM on them.

Note that as M11 = 0 and M12 = 0, thus V1 and V2 will be considered as critical

VMs. Therefore, P1 is regarded as critical. Between these two critical VMs on P1, V1
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requires shorter migration time. Therefore, V1 will be selected for migration. After V1

being chosen, M12 and M13 will be updated. Since M12 > 0 and M13 > 0, after the

migration of V1, no critical host is found in the data center.

By the end of the second iteration, V1 is migrated out for reallocation. The pro-

posed mechanism will proceed to its third iteration and calculates Mi1 for the remain-

ing 4 physical hosts P2, P3, P4, and P5. Among the remaining hosts, P2 is not feasible

as it will be regarded as critical after accepting V1. Among the feasible physical hosts,

P4 can yield the largest fitness value of 0.57895. Therefore, P4 will be chosen as the

destination host for V1.

After the actual migration of V1, the mechanism will enter its fourth iteration. As

mentioned earlier, hosts which have been considered as critical in the first iteration

(i.e. P1) or have accepted VM(s) in the third iteration (i.e. P4) will not be considered

as under-utilized. Among P2, P3, and P5, P5 is regarded as the under-utilized host as

it has the minimum utilization of 0.3. For V10, the mechanism will select a destination

host that can yield the largest fitness value from the available options (i.e. P2 and P3)

which is better than P5. If V10 can be migrated away without introducing new critical

host(s), P5 will be turned off. Otherwise, P5 will remain active. The above process will

repeat on the host having the next minimum utilization level.

From this example, it can be observed that the proposed mechanism tends to con-

solidate VMs onto a smaller set of hosts rather than distributing them across all the

hosts evenly. By doing so, some physical hosts can be turned off to save energy. Fur-

thermore, the proposed mechanism tries to drive physical hosts to operate at desired

utilization levels and loads them moderately with VMs having different utilization pat-

terns, which avoids triggering further overloading events.
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4.5 Experiments

To evaluate the efficiency of the proposed VM consolidation mechanism, a series of ex-

periments were conducted in this section. The CloudSim [89] toolkit, which supports

modeling of virtualized Cloud data center, was chosen as the experiment platform to

implement the proposed mechanism.

4.5.1 Experiment Setup

In the experiments, 800 heterogeneous physical hosts were simulated. The simulated

data center consists of two types of dual-core servers with equal volumes: HP ProLiant

ML110 G4 (1860 MIPS, 4 GB) and HP ProLiant ML110 G5 (2660 MIPS, 4 GB).

All hosts were equipped with 1TB storage and 1Gbit/s network bandwidth. These

configuration settings limit the number of VMs on each host. For these physical hosts,

their power models were obtained from SpecPower08 [35] correspondingly.

To simulate real world scenarios, four different types of single-core VMs were sim-

ulated in the experiments: High-CPU Medium Instance (2500 MIPS, 0.85 GB RAM),

Extra Large Instance (2000 MIPS, 1,7 GB RAM), Small Instance (1000 MIPS, 1.7 GB

RAM), and Micro Instance (500 MIPS, 613 MB RAM). All of these VMs were mod-

eled to have 2.5 GB storage and 100 Mbit/s of bandwidth individually. In a simulated

day, the VM consolidation processes were triggered every five simulated minutes.

4.5.2 Performance Metrics

Energy Consumption

In this chapter, the total energy consumption consumed by all active hosts were mea-

sured. In Cloud clusters, high energy consumption will lead to high carbon dioxide

emissions and high operational cost. Therefore, the amount of energy consumption is

a key measurement to evaluate energy management efficiency. Furthermore, other per-
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formance indices are needed to give an all-round evaluation in other dimensions such

as SLA violations and migration numbers.

SLA Violation Metrics

In Cloud clusters, CSPs should satisfy the expected QoS of their subscribers through

the negotiated SLA. Here, the SLA, which is defined as a two-sided commitment, is a

measurement to evaluate the level of QoS between a CSP and its subscribers. A typical

SLA usually comprises several components such as type of service provided, desired

performance level, rewards, and penalties. CSPs will have to pay penalties if the nego-

tiated SLA is violated, which will increase their operating costs. To measure the level

of SLA violation, two metrics in [38] are adopted in this chapter: (1) SLA violation

Time per Active Host (SLATAH): SLATAH is a metric to measure the percentage of

time when active hosts have been fully utilized. It can be calculated as

SLATAH =
1

N

N
∑

j=1

Ts j

Ta j

, (4.8)

where N is the number of physical hosts; Ts j
is the total time during which host j

has been fully utilized incurring on an violation of SLA; Ta j
is the total duration of

host j being in the active state; and (2) Performance Degradation due to Migrations

(PDM): PDM is a metric to measure the overall degradation of performance due to

VM migrations. It can be computed as

PDM =
1

M

M
∑

i=1

Cdi

Cri

, (4.9)

where M is the total number of VMs in the system; Cdi
is the estimated performance

degradation of VM i due to VM migrations; Cri
is the total CPU capacity required by

VM i during its lifetime. Here, we assume Cdi
equals 10% of the CPU utilization.

SLATAH and PDM are equally important but independent to each other. These two
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metrics are then integrated into a parameter called SLA Violation (SLAV). It is defined

as

SLAV = SLATAH × PDM. (4.10)

Here, SLAV measures degradation of performance caused by VM migrations and host

overloading.

Energy and SLA Violations Metrics

Energy consumption has a conflicted relationship with SLA violations. Energy con-

sumption can usually be decreased at the expense of an increase of SLAV. Therefore,

achieving a balanced trade-off between these two conflicting metrics is a major objec-

tive of the proposed mechanism. In this chapter, we adopt a metric called Energy and

SLA Violations (ESV) [38] to evaluate the overall performance of Cloud clusters. It is

defined as

ESV = E × SLAV, (4.11)

where E is the total energy consumption of a data center. Here, energy consumption

and SLAV metrics are combined together for ESV evaluation.

Migration Number

Live VM migration is a costly process. During migration, the migrated VMs will oc-

cupy some CPU time and network bandwidth on both source and destination hosts.

Additionally, such migration may adversely affect the performance of application run-

ning on the migrating VM. Therefore, a small migration number is always preferred.

4.6 Benchmarking Mechanisms

In the experiments, six existing power-based and correlation-based mechanisms were

selected for comparison purposes, including the power-based LRR-MMT method in
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[38], the power-based THR-MUG method in [102], the three consolidation mecha-

nisms adopting different correlation-based criteria in [103], and the heuristics-based

method in [104].

4.6.1 Power-based VM Consolidation Mechanisms

In the power-based mechanisms, the power consumption of a host is adopted as a mi-

gration criterion. The host with the least increase in power consumption after receiving

the migrated VM will be selected as the primary destination candidate for migration.

Power-based LRR-MMT Mechanism

In the experiments, the power-based Local Regression Robust-Minimum Migration

Time (LRR-MMT) mechanism in [38] was selected as a referencing benchmark. It

is because such mechanism outperforms other existing power-based methods in [38].

Here, LRR method, which estimates host utilization level based on its historical utiliza-

tion values, is an adaptive-threshold method for overloading detection. In the power-

based LRR-MMT mechanism, if the estimated CPU utilization of a host is larger than

the static utilization threshold, the VM with the minimum migration time on such host

is chosen for migration.

Power-based THR-MUG Mechanism

In the power-based static threshold-Minimum Utilization Gap (THR-MUG) method,

an upper fixed utilization threshold is set for host overloading detection. On an over-

loaded host, VM(s) with minimum utilization gap will be selected for migration.

4.6.2 Correlation-based VM Consolidation Mechanisms

The work in [103] provides an analysis on effects of correlation-based VM allocation

criteria to Cloud data centers. The correlations among VMs’ CPU utilizations are con-
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sidered as parameters for decision making in VM allocation processes. In the first

and second steps, the LRR and MMT policies are adopted for host overloading detec-

tion and VM selection. Then, three different correlation-based VM allocation criteria

are designed to be used in the last step of the consolidation process, where the BFD

heuristic is employed.

Correlation of Migrated VM(s)

In this approach, a VM will be allocated to a host such that the correlation between the

migrated VM and the existing VMs on the host is minimized. The correlation level is

obtained using (2.5).

Average Correlation Level of Destination Host(s)

In the second approach, we allocate a migrated VM to a host with the minimal average

correlation level. A host’s average correlation function (ACL) is defined as follow

ACL =

∑m
i=1 R2

Vi,V\Vi

m
, (4.12)

where m is the total number of VMs on the candidate host together with the migrated

in VM. Comparing with the previous approach, the current approach considers the

impact of the migration to the co-located VMs and allows a host with a relatively large

number of VMs being selected, provided that the correlations between the migrating-in

VM and the co-located VMs are all at low values.

Variation of Correlation Level of Destination Host(s)

The higher the correlations among VMs running on a host, the higher the probability

for the host to be overloaded [48]. Based on such phenomenon, in the last approach,

we try to consolidate VMs such that each active host could achieve a low correlation

level among all its co-located VMs to reduce the risk of overloading.
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Intuitively, VMs with strong correlations should be placed onto different hosts to

reduce such a risk. A VM to be migrated will not choose hosts with VMs that have

strong correlations with it. It should also avoid causing significant performance im-

pacts on the destination host. Therefore, we compute the total correlation variation

of each candidate host to efficiently quantify the impact of the migrating-in VM(s) on

their existing VMs, which is defined as

VCL =

m−1
∑

i=1

(

R2
Vi,V\Vi

− R2
Vi,V′\Vi

)

, (4.13)

where V′ is the vector represents VMs on the host before receiving the migrating-in

VM. Under this criterion, we select hosts with minimal VCL values for VM reallo-

cation. All the above approaches can be applied in BFD algorithm for solving the

re-allocation problem. Here, the last approach is chosen as an example and presented

in Figure 4.6.

Details on the operation of the mechanism are elaborated as follows. At first, we

initialize a list of available hosts from the host overloading detection process and a

list of to-be-migrated VMs (VmsToMigrate) obtained from the VM selection process.

Then the selected VMs are sorted in a descending order of their current CPU utiliza-

tions. For each VM in the pipeline, the host with the minimum VCL value will be

selected as its destination. After each reallocation, the migrated VM will be removed

from the VmsToMigrate list. If no host is available, an inactive host will be turned on

to accommodate the VM. On the other hand, under-utilized hosts will be turned off to

conserve energy. The algorithm is repeated until all the VMs on the VmsToMigrate

list are being allocated.

4.6.3 Heuristics-based Method

In the heuristics-based method [104], a single heuristic hT, which comprises two heuris-

tics h1 and h2 introduced in Sections 4.3.1 and 4.3.2 , is regarded as the migration
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criterion. It is defined as

hT(γ, β) =
h1(γ)

h2(β)
.

The heuristics-based VM allocation mechanism is composed of the following three

major steps:

Step 1 Identifying critical hosts: The mechanism checks for VMs with high values

of hT. Here, if the hT value of a VM on a host exceeds a system threshold

T1 = 0.9, the VM is considered as critical. In the heuristics-based mechanism,

if there exists any critical VMs on a host, such host will be regarded as a critical

host. Some VMs on a critical host will have to be migrated away to prevent a

potential SLA violation.

Step 2 Selecting VM(s) for migration: Once a host has been identified as critical, the

next step is to select one or multiple of its VMs to migrate away from it. In the

heuristics-based mechanism, a critical VM with the shortest migration time on

a critical host will be given a higher priority to be migrated first. After each

migration, h1 and h2 will be updated. Therefore, Step 2 is executed iteratively

until no more critical VM can be found on the host.

Step 3 Reallocation of migrated VMs: The last step of the VM allocation process is

to find new hosts to accommodate the migrated out VMs. As the bin packing

problem is an NP-hard problem, we adopt a modified BFD algorithm known as

heuristics-based BFD to solve it. In heuristics-based BFD, the selected VMs

obtained from Step 2 are sorted in a decreasing order based on their current

CPU utilizations. Each sorted VM will be allocated to a host that can yield the

lowest value of hT which is lower than the system threshold T2 = 0.3.

The rationale of the heuristics-based VM allocation mechanism is to arrange VMs

with high h2 values to operate under hosts with appropriate utilization levels (i.e. low

h1 values). The heuristics-based idea reallocates critical VMs to hosts that can yield
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minimum hT values. This allows critical VMs to choose more capable hosts and avoid

co-locating with VMs with similar utilization patterns.

4.7 Experiment Results

A series of experiments were conducted in CloudSim using a real-world workload to

evaluate the performance of the proposed VM consolidation mechanism. The work-

load data is provided by the PlanetLab project [105]. Such project collects CPU usage

data from thousands of VMs every five minutes. In the experiments, workload traces

randomly chosen from 10 days of the provided data were used.

4.7.1 Effects of Global Tuning Parameter to the Proposed Mecha-

nism

As mentioned in Section 4.3, a global tuning parameter Cglobal is required for VM

consolidation. An experiment on examining the performance of using different global

tuning parameters was carried out using the real-world workload on 03 March, and the

results are shown in Fig. 4.7.

From the experiments, it can be observed that having Cglobal = 0.5 can yield a min-

imum level of ESV, which indicates a balanced trade-off between energy and SLAV.

Therefore, the same value was used for the remaining experiments. In addition, it is

observed that a higher Cglobal value, which refers to a higher threshold for each VM,

would allow some hosts to operate at higher utilization levels with more co-located

VMs, thus more hosts can be switched off. As a result, the system requires lower total

energy consumption. Meanwhile, higher utilization on some hosts implies a higher

chance of overloading, which incurs more SLA violations.

The proposed mechanism is executed every five minutes. It can be estimated that

the energy consumption decreases with the increase of the global tuning parameter,
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which concurs with our results. However, having the value of Cglobal being too low,

which refers to a small capacity threshold for each VM, triggers over-provisioning and

introduces more under-utilized hosts to the system. On the contrary, an extremely high

value of Cglobal is also not desirable as it is more likely to trigger overloading incidents.

Therefore, the value of Cglobal is suggested to be selected within [0.25, 0.65], which

allows VMs with moderate RUC to be co-located and yield a better utilization.

4.7.2 Real-World Workload

Fig. 4.8 shows the experiment results under different consolidation mechanisms. The

total energy consumption of different VM consolidation mechanisms under test are

reported in Fig. 4.8(a). It is shown that the energy consumption of the proposed

mechanism is about 30% lower than the power-based LRR-MMT method. It can also

be noticed that the proposed mechanism can achieve more reductions in energy con-

sumption than the power-based THR-MUG and other four correlation-based methods,

which indicates the capability of proposed mechanism in energy saving. Fig. 4.8(b)

compares SLAV of Cloud clusters under different VM consolidation mechanisms. The

proposed mechanism yielded significantly less violations of SLA compared to the other

six benchmarking mechanisms. This demonstrates the effectiveness of the proposed

VM consolidation mechanism in overload avoidance. VM migrations may trigger vi-

olations of SLA, hence it is essential to minimize the migration number whenever

possible. As shown in Fig. 4.8(c), a fewer number of migrations were invoked by

the proposed mechanism compared to the power-based LRR-MMT and THR-MUG

methods. In addition, the number of hot-spots and cold-spots are reported for com-

parison. Here, hosts with CPU utilization above 90% or below 25% are considered as

hot-spots or cold-spots, respectively. In Fig. 4.8(d), hot-spots are significantly relieved

using the proposed mechanism by prohibiting over-commitment. To a certain degree,

the number of cold-spots represents the extent of resource waste. Fig. 4.8(e) shows
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that the proposed mechanism mitigates a considerable number of cold-spots to avoid

resource waste. Furthermore, a compromise between energy consumption and QoS

can be demonstrated by the ESV metric. Systems which are more capable of achieving

energy saving and a higher level of QoS, are normally with lower ESV values. The

results of ESV in Fig. 4.8(f) show that the proposed mechanism outperforms other ex-

isting mechanisms under test, which indicates the ability of the proposed mechanism

in delivering a better overall performance in Cloud computing environments.

We further analyze the number of active hosts during the simulation period of a day

in an experiment. When comparing the number of active hosts under different consol-

idation mechanisms in Fig. 4.9, it is observed that the amount of active hosts in sys-

tems with the proposed mechanism is smaller than that of the power-based LRR-MMT

mechanism. Within the active hosts, the number of cold-spots utilized by the proposed

mechanism is much lower than other mechanisms under test. This explains the promis-

ing energy saving performance of the proposed mechanism as it tends to consolidate

VMs onto fewer physical hosts by considering the host utilization levels. In addition,

by incorporating with the RUC among co-located VMs in the VM consolidation pro-

cess, the risk of overloading can be lowered. Hence, the proposed mechanism enables

better consolidations of VMs with less violations of SLA and hot-spots.

4.8 Summary

In this chapter, a VM consolidation mechanism based on bio-inspired heuristics is

proposed. Heuristic functions in the proposed mechanism, which incorporate both

the host utilization levels and resource utilization correlations among co-located VMs,

are inspired by host-switching behaviors in symbiotic organisms. Under the proposed

mechanism, a larger capacity margin and a higher fitness value indicate a more de-

sirable operating environment for VMs and hosts, respectively. Experiment results

demonstrate that the proposed mechanism can lower the risk of overloading, reduce
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(a) The distribution of 16801 active hosts using power-based LRR-MMT mechanism

(b) The distribution of 11273 active hosts using the proposed mechanism

Figure 4.9: The distributions of active hosts using different consolidation mechanisms

during 20110303.
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SLA violations, and minimize the energy consumption in comparisons with other ex-

isting mechanisms under test.



Chapter 5

A VM Allocation Mechanism based on

Stable Matching Model

In the previous two chapters, we formulated the VM allocation problem as a bin pack-

ing problem based on certain global objective functions. In this chapter, the VM allo-

cation mechanism is formulated as a stable matching problem, which is a distributed

co-scheduling algorithm. A matching is regarded as stable when no individual would

prefer another individual to its current partner. In our stable matching framework, hosts

and VMs are matched according to their individual preferences. During the matching

process, each VM ranks the hosts according to their maximum correlation level with

other co-located VMs after migration to maintain a high level of QoS. Similarly, each

host has its own preference list regarding a combination of VMs such that the host

can operate close to a desirable utilization threshold, which can ultimately reduce the

energy consumption of Cloud data centers. Simulation results show that the proposed

allocation mechanism can bring significant benefits in terms of energy saving and QoS

to Cloud data centers.

85
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5.1 Introduction

To catch up with the soaring demands from Cloud service subscribers, Cloud data cen-

ters are now expanding in unprecedented scales and complexities. Energy consump-

tion of Cloud data centers increases rapidly with the demands on Cloud applications.

Besides energy bills, costs associated with cooling and hardware failure due to over-

heating become critical concerns of CSPs nowadays. Nevertheless, CSPs are required

to maintain QoS to their subscribers. All these have put CSPs into dilemma situations.

Virtualization is the enabling technology that makes resource provisioning in Cloud

computing feasible. By creating several VMs on a physical host, virtualization helps

improve the utilization of resources and reduces idling of computational equipment.

An attractive mechanism for dynamic resource management is live VM migration [87,

106]. It is the process of migrating a VM from one physical machine to another, which

aims to yield a better resource allocation or consolidate VMs onto fewer physical hosts.

However, VMs which show high CPU utilization correlations to other co-located peers

are more likely to trigger overloading incidents. Therefore, how to prevent the co-

location of highly correlated VMs on the same host becomes an important issue that

needs to be addressed.

There is an inherent dilemma between energy saving and overload avoidance in

typical VM migration processes. For energy saving, one should keep host utilization

reasonably high to yield a high efficiency. In contrast, for overload avoidance, uti-

lization of hosts should be kept as low as possible to avoid potential SLA violations.

Therefore, host utilization should be taken into accounts in the VM consolidation pro-

cess.

In this chapter, the VM consolidation problem is formulated as a stable matching

problem. There are two disjoint sets of entities, CSPs and VMs, in our stable matching

model. A deferred acceptance procedure is adopted to handle conflicts among their

preferences. During the matching process, each host and VM can have its own prefer-
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ences on partners from its own perspective. The CSPs are the side that expects to re-

duce energy consumption by increasing host utilization levels. While the VMs owners

intend to preserve the QoS by avoiding high loading correlations among VMs. Fur-

thermore, the proposed mechanism further adopts an overload probability assessment

to provide better matching in long term. Similar to the previous chapters, the proposed

mechanism is evaluated using CloudSim with real-world workload data. Simulation

results show that Cloud data centers with the proposed mechanism can reduce energy

consumption and avoid violations of SLA.

Section 5.2 elaborates the details on the framework of the stable matching model.

In Section 5.3, the stable matching-based VM allocation mechanism is introduced and

explained. In Section 5.4, performance of the proposed mechanism is evaluated using

extensive simulations. The results are further studied and discussed in Section 5.5.

5.2 The Stable Matching Framework

5.2.1 The Theory of Stable Matching

The basic stable matching model is the one-to-one marriage model proposed by Gale

and Shapley [107]. There are two disjoint sets of agents in the stable matching prob-

lem. In the one-to-one marriage model, men and women are two sets of populations

with equal sizes. These two sets can be represented as M =

{

m1,m2, · · · ,mn

}

and

W =

{

w1,w2, · · · ,wn

}

, respectively. Each person has a preference list on the opposite

sex for the marriage partner. We denote a rank order list (i.e. p(m1)) as the preference

list for each person. For man m1, suppose p(m1) = w3,w1, · · ·wi, then his first choice

of partner is woman w3, followed by woman w1 and so on.
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5.2.2 VM Migration as A Job-machine Stable Matching Problem

In the VM consolidation process, VM migration is triggered periodically for better

utilization and sustainable maintenance. Different from the generic stable matching

problem, hosts and VMs are forming two disjoint sets of agents with unequal sizes.

Alternatively, the college admissions problem [107], which is a variant of the stable

matching problem with different sizes of population sets, is adopted here to model the

VM migration process. This is a many-to-one stable matching model where hosts are

”colleges” and VMs are ”students”.

In the traditional college admissions problem, each college has a limitation on the

number of students that it can accept. Unfortunately, it cannot be directly applied to

VM migration scenario as VMs can have different sizes. It is not a trivial problem

in finding the maximum number of VMs that a host can accommodate. Therefore, a

more general many-to-one stable matching model, called a job-machine stable match-

ing model is formulated here to address the VM allocation problem. In the job-machine

stable matching model, jobs and machines have different sizes and capacities, respec-

tively. Each machine can host multiple jobs on the condition that the total size of jobs

does not exceed its capacity. During the matching process, each job ranks the ma-

chines that have adequate capacities to host it according to its preference. Similarly,

each machine has its own preference list on the jobs that are trying to feed into it.

5.3 Proposed VM Allocation Mechanism

In this chapter, an ordinary Cloud data center with an IaaS model is analyzed. The

proposed VM allocation mechanism is executed in three separate processes: (1) iden-

tification of critical hosts, (2) VM selection for migration, (3) reallocation of selected

VMs.
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5.3.1 Identification of Critical Hosts

Due to the dynamic changes of application workload in VMs, it is not sufficient to

identify critical hosts by only referring to the current state of the system. In the first

part of our allocation process, apart from the deterministic resource demand estimation

in Section 3.3.2, the resource demand of VMs and load states of hosts are probabilis-

tically characterized to capture the dynamic and uncertainty in resource utilizations.

Recent studies [108–110] show that the resource demands of VMs can be character-

ized by stochastic models. In this chapter, the resource demands of VMs are assumed

to follow the normal distribution [70, 110, 111]. However, depending on the nature

and properties of both the applications and the setup of the Cloud considered, more

sophisticated probability distributions can be applied for the estimation of stochastic

resource demands.

In this part, host j is identified as a critical host based on the following conditions:

• If the current CPU utilization U j exceeds a utilization threshold Uth, the host is

considered as critical.

• If the current CPU utilization U j is less than the utilization threshold Uth, an

overload probability assessment will be conducted to check the probability of

overloading in the future. The process of overload probability assessment is

described as follows.

1. For each VM on host j, we estimate its load distribution based on its last

q observations of its CPU utilization. Since CPU utilization readings are

non-negative, these observations are left-truncated. Here, we adopt a max-

imum likelihood estimation of truncated regression model to get a better

estimation on the load distribution of a VM;

2. For a host, its distribution of its loading over time is estimated by aggregat-

ing the load distributions of all the VMs on it;
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3. Compute the probability of the host for not having an overload incident,

i.e. the probability for the aggregated CPU utilization of host j to be below

Uth, and

4. Compare such probability with a predefined probability threshold ǫth.

If the probability of a host for not committing an overloaded event is smaller than the

probability threshold, such host will be regarded as a critical host.

5.3.2 VM Selection for Migration

For the second part, Minimum Migration Time (MMT) policy [38] is employed in our

experiments to select VMs on critical hosts for migration. In MMT, the VM using the

least amount of RAM will be chosen as the first candidate for migration. After each

selection, if the host is still considered as a critical host, the VM selection is applied

again to select another VM to migrate away from it. This process is executed iteratively

until the host is no longer considered as critical.

5.3.3 Reallocation of Selected VM

The proposed algorithm is utilized in the last part of the whole allocation process to

identify suitable host(s) to accommodate the migrated VM(s). Details on the proposed

VM reallocation policy are elaborated as follows.

Step I : Identify the most preferred host of each migrated VM.

(a) Suppose there are α ≤ M VMs to be migrated and ψ ≤ N physical hosts.

Denote the VMs to be migrated as a set V = {V1,V2, · · · ,Vα} and denote

the available hosts as another set P = {P1, P2, · · · , Pψ}.

(b) For each VM in V , estimate the utilization of each host in P if such VM is

assigned to them as

Ui j =
U jM j + uimi

M j

. (5.1)
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Table 5.1: Nomenclature

Symbol Definition

ui Current CPU utilization of VM Vi

U j Current CPU utilization of physical host P j

mi MIPS of VM Vi

M j MIPS provided by physical host P j

Uth A predefined utilization threshold

Ui j

Estimated CPU utilization of physical host P j after

the allocation of a migrated VM Vi

RUCi j

An array which consists of correlation level of each

VM on physical host P j if VM Vi is assigned to it.

Vlist j

A list of migrated VM(s) which regard physical

host P j as their most preferred host.

(c) Compare the estimated utilization Ui j with a target utilization threshold

Uth. If Ui j ≤ Uth, then for VM Vi, estimate the maximum correlation level

max j

(

RUCi j

)

of each host in P if VM Vi is assigned to them. Otherwise,

the host is not considered as a suitable host for migration.

(d) Physical host Pk(i) is the most preferred host of a VM Vi, where

k(i) = arg min
1≤ j≤ψ

max j

(

RUCi j

)

. (5.2)

Multiple VMs can select the same physical host as their most preferred

host. Here, we denote Vlist j as a list of migrated VM(s) which regard phys-

ical host P j as their most preferred host.

Step II : Matching VMs with the hosts.

(a) For each physical host in P, compute the difference between the target uti-

lization threshold Uth and the estimated utilization Ui j as

∆Ui j = Uth − Ui j. (5.3)
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(b) Match physical host P j with a VM Vk( j) in its Vlist j list, which can yield a

minimum ∆Ui j, where

k( j) = arg min
i∈Vlist j

∆Ui j. (5.4)

(c) After each successful matching, discard Vlist j and remove Vi from V .

Step III : Repeat Steps I and II if V , ∅, otherwise terminate and return the

final migration map.

The flowchart of the proposed algorithm is presented in Fig. 5.1. The complexity

of the proposed algorithm is O(ψ ·α3). The proposed algorithm is repeated until all the

VMs in the VmsToMigrate List are being matched and return the final migration map.

5.3.4 A Worked Example

The rationale of the proposed VM allocation mechanism can be further elaborated

using the following example.

Example 2 Consider a Cloud data center with 5 physical hosts P1, · · · , P5, and 3

migrated VMs V1, · · · ,V3 as shown in Fig. 5.2. Suppose the target utilization threshold

Uth is 70%. For each host, the numbers inside its bracket respectively represent its

current maximum correlation level and CPU utilization (in percentages). For each VM,

the number inside its bracket indicates its current CPU utilization (in percentages).

The grey boxes are representing the preference lists of the VMs and the hosts.

For V1, compare its U1 j for j = 1, · · · , 5 with Uth. Note that as U12 > Uth, P2

will be discarded from the preference list of V1. Among the remaining 4 physical hosts

P1, P3, P4, and P5, P1 can yield the minimum value of max j

(

RUCi j

)

. Therefore, P1

is the most preferred hosts of V1. V1 will then “propose” to P1. The same process is
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Figure 5.1: Flowchart (simplified) of the proposed algorithm
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(b) Preference lists of hosts during the first round of allocation.
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(c) Preference lists of VMs and the hosts during the second round of allocation.

Figure 5.2: Example of the proposed mechanism

carried out for V2 and V3. When all the VMs have proposed to their most preferred

host, P3 will have 1 proposer, which is V2, therefore it will accept V2 immediately. In

contrast, P1 will have 2 proposers, V1 and V3. P1 will then accept the one which can

yield the minimum value of ∆Ui1, which is V1. Once a physical host has accepted a

VM, it will discard all the remaining proposers (i.e. V3). By the end of the first round of

allocation, V3 will remain unallocated. It will enter the second round and recalculate

its max j

(

RUCi j

)

to the remaining feasible hosts. The above process will repeat until

V3 is accepted by a host.

From this example, it can be observed that the proposed mechanism incorporates

preferences of both hosts and VMs from their own perspectives. From CSPs’ perspec-

tives, the proposed mechanism tends to consolidate VMs onto a smaller set of hosts

rather than distributing them across all the hosts evenly. By doing so, more physical

hosts can be turned off to save energy. Furthermore, the proposed mechanism tries to
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drive physical hosts to operate close to the target threshold. On the other hand, the

criteria were utilized in our allocation mechanism which optimizes resource allocation

to mitigate overloading caused by correlated VMs loading patterns. More specifically,

correlation information among VMs are taken into account in the migration process to

lower the risk of future overloading on source hosts while without imposing signifi-

cant negative impacts on destination hosts. Under the proposed mechanism, both the

overall energy consumption and SLA violations can be reduced.

5.4 Experiments

5.4.1 Experiment Setup

We carried out extensive simulations on CloudSim [89] to evaluate the effectiveness

of our proposed mechanism. In the simulated data center, there are 800 heterogeneous

physical hosts including same amount of HP ProLiant G4 servers and G5 servers. Each

host has two CPU cores. The CPUs in G4 and G5 servers are assigned with 1860 and

2660 MIPS respectively. The simulated cloud data center comprises four different

types of single-core VMs. The data set we used in the simulations is obtained from

real-world workload traces of PlanetLab [93]. We choose 10 arbitrary days from the

dataset as in Table 3.3 and average out the simulation results for comparisons.

5.4.2 Benchmarking Mechanisms

In the simulations, two other existing mechanisms were selected for comparison pur-

poses, namely the power-based LRR method [38] and the stable matching-based LRR

mechanism in [112]. In the power-based LRR method, the increase in host’s power

consumption after receiving a VM is regarded as the only migration criterion. While

for the stable matching-based LRR mechanism, both involving party groups in the

matching process are having a mutual objective, that is to consolidate VMs such that
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Algorithm 5.1: UT-based Stable Matching

Require: hostList,VMsToMigrateList

Ensure: allocation of VMs

1: for vm in VMsToMigrateList do

2: minUTDiff1 ← MAX

3: preferredHostList ← NULL

4: for host in hostList do

5: if host has enough resources for vm then

6: UTDiff1 ← estimateUTDiff1(host,vm)

7: if UTDiff1<minUTDiff1 then

8: preferredHost ← host

9: minUTDiff1 ← UTDiff1

10: end if

11: end if

12: end for

13: if preferredHostList , NULL then

14: preferredHostList.add(vm,preferredHost)

15: end if

16: end for

17: for preferredHost in preferredHostList do

18: minUTDiff2 ← MAX

19: finalSelectedVM ← NULL

20: for VM in VMsSelectpreferredHost do

21: UTDiff2 ← estimateUTDiff2(host,vm)

22: if UTDiff2<minUTDiff2 then

23: minUTDiff2 ← UTDiff2

24: finalSelectedVM ← VM

25: end if

26: end for

27: end for

28: if finalSelectedVM , NULL then

29: allocation.add(finalSelectedVM,preferredHost)

30: end if

31: return allocation

active hosts can operate close to a desirable utilization threshold. The pseudocode of

the stable matching-based LRR algorithm is presented in Algorithm 5.1. Under the

stable matching-based LRR mechanism, the total utilization of hosts’ CPU can be kept

close to the target utilization level where hosts can operate at high efficiency.



98 CHAPTER 5. STABLE MATCHING PROBLEM

5.5 Experiment Results

5.5.1 Effects of the Utilization Threshold and Probability Thresh-

old on the Proposed Mechanism

As mentioned in Section 5.3, a predefined utilization threshold Uth and probability

threshold ǫth are required for the proposed mechanism. Experiments on examining

the performance of using different utilization thresholds and probability thresholds are

carried out using the real-world workload on 03 March, and the results are shown in

Fig. 5.3.

The proposed mechanism is executed every five minutes. To control the number of

overloading incidents to a desirable level, the value of ǫth is suggested to be selected

within [0.8, 0.99]. From the experiments, it can be observed that having Uth = 0.9 and

ǫth = 0.9 can yield a low level of ESV, which indicates a balanced trade-off between

energy and SLAV. Therefore, the same set of thresholds is being adopted in other

experiments.

Note that the utilization threshold used in the VM reallocation process should not

be higher than that used in the overload detection process. Otherwise, the newly moved

in VM(s) would trigger overloading on the host assigned and cause unnecessary mi-

gration(s) in the coming round(s).

Under the proposed mechanism, VM reallocation will be executed whenever a host

is overloaded or very likely to commit an overloading incident. As expected, with

the proposed mechanism, the mean utilization of the whole system will approach the

overload detection threshold without exceeding it, which concurs with our simulation

results. Besides, it can be observed that the mean utilization of hosts are higher than

0.55 for most of the time. Interestingly, in the proposed mechanism, when Uth <

0.55, it is observed that a significant number of inactive hosts are being booted-up to

accommodate VM migrated away from overloaded hosts. Such behavior can reduce
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Figure 5.3: Results of the proposed mechanism under different utilization thresholds

and probability thresholds.

the chance for triggering an overloading event and hence gives a lower SLAV value.

However, the physical hosts cannot operate at their desirable utilization levels and lead

to extra energy consumption. Therefore, it is desirable to set Uth > 0.55.

5.5.2 Real-world Workload

We compare the proposed mechanism with the benchmarking mechanisms with the

metrics namely, energy consumption, SLA violations, migration number, and ESV.

Fig. 5.4 shows that our proposed mechanism enables better consolidations of VMs

comparing with the benchmark.

The total energy consumption of Cloud data centers with different VM alloca-

tion mechanisms are reported in Fig. 5.4(a). It can be observed that the proposed

method consumed less power than the benchmarking mechanisms. Fig. 5.4(b) com-

pares the SLA violations of Cloud data centers with different VM allocation mech-

anisms. Our proposed mechanism led to significantly less SLA violations than its
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Figure 5.4: Comparison results of the proposed mechanism with other existing mech-

anisms.
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counterpart, which indicates a much lower impact on service quality. Each VM mi-

gration may result in SLA violations, therefore it is essential to minimize the number

of migrations. As observed from Fig. 5.4(c), the proposed mechanism invoked less

migrations compared to the benchmark. In addition, The ESV metric demonstrates

a balanced trade-off between minimizing energy consumption and maximizing QoS.

Systems with lower ESV mean that the systems can reduce energy consumption and

avoid SLA violations. From the results of ESV in Fig. 5.4(d), it is shown that our

proposed mechanism outperforms benchmarking mechanisms. Under the proposed

mechanism, the total utilization of host’s CPU is kept close to the target utilization

level. With predictions in workload, the proposed mechanism can reduce unneces-

sary VM migrations in the coming rounds. Furthermore, our proposed mechanism can

consolidate VMs with low correlations onto some hosts for overload avoidance.

5.6 Summary

In this chapter, a stable matching-based VM allocation mechanism for Cloud data cen-

ters is proposed. The matching parties, VMs and physical hosts, have their own pref-

erences. The objective of physical hosts and their owners is to consolidate VMs such

that fewer active hosts are needed and active hosts can operate close to a desirable uti-

lization threshold. While VMs have their own preference lists based on its maximum

correlation level on utilization patterns with other co-located VMs to lower the risk of

overloading, and thus avoid potential SLA violations. Furthermore, we also consider

the stochastic properties of resource demands to provide better resource allocation in

the long run and avoid unnecessary VM migrations in the future. The performance of

the proposed mechanism has been verified using extensive simulations on CloudSim

with real-world workload traces. Simulation results show that Cloud data centers with

the proposed mechanism can yield lower energy consumption and commit fewer SLA

violations.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the main contributions of the thesis to resource management

for Cloud data centers. It also discusses some potential topics for future research.

6.1 Key Contributions

Cloud computing allows provision of infrastructure, platform, and software as services

to users with a pay-as-you-go model. The proliferation of Cloud applications has in-

troduced strong demands for large-scale computing clusters in recent years. Without

a proper resource provisioning, energy consumption of high-end computing systems

can lead to unbalanced temperature distribution and hot-spot problems. With virtual-

ization technology, better resource utilization and thermal distribution can be achieved

by allocating virtual machines (VMs) onto physical hosts strategically. Live VM mi-

gration can yield a better utilization of resource by migrating VMs across different

physical hosts, without interrupting the applications running on them. In contrast, a

poor resource provisioning will lead to undesirable resource utilization and incur per-

formance degradation.

This thesis proposes three VM consolidation mechanisms for better resource man-

agement in Cloud data centers:

103
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1. A thermal-aware VM consolidation mechanism with outage avoidance is pro-

posed for resource allocation optimization. The variability in host temperature,

which has shown to have a negative impact on server reliability, is considered as

a migration criterion during the consolidation process. New evaluation metrics

(i.e. SLAVwO and ESVwO) have been proposed to capture the performance

of different mechanisms in avoiding both overloading and outage incidents in

Cloud clusters. By keeping hosts operating at a more stable temperature, the

thermal-aware mechanism is able to reduce Service Level Agreements (SLA)

violations, avoid outage incidents due to thermal issues, and minimize energy

consumption. Furthermore, the thermal-aware mechanism is the first piece of

work that considers outage events due to variations in host temperature in the

simulation process and provides new insights on the future development of VM

consolidation processes.

2. Inspired by host-switching behaviors in symbiotic associates, a bio-inspired heuristics-

based VM consolidation mechanism is proposed to address the VM consolida-

tion problem in Cloud data centers. We propose two heuristic functions which

are based on host utilization levels and resource utilization correlation among

co-located VMs, to evaluate host condition and correlations among VMs, re-

spectively. In the bio-inspired mechanism, hosts and VMs in Cloud data centers

represent an example of symbionts in ecosystems. VMs share resources pro-

vided by the same physical host while keeping its utilization at a relatively mod-

erate level. The bio-inspired mechanism proposes a set of solutions for better re-

source management, including two heuristic functions, a new hotspot detection

mechanism and a new VM migration algorithm based on the proposed heuris-

tics. The bio-inspired mechanism can find efficient VM consolidation plans for

Cloud data centers.

3. A stable matching-based VM consolidation mechanism for Cloud data centers
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is proposed to tackle the challenges in energy saving and SLA management in

Cloud clusters. In our stable matching model, VMs and physical hosts are the

matching parties with their own preferences. The objective of physical hosts

and their owners is to consolidate VMs such that fewer active hosts are needed

and active hosts can operate close to a desirable utilization threshold. While

VMs have their own preference lists based on its maximum correlation level

on utilization patterns with other co-located VMs to lower the risk of overload-

ing, and thus avoid potential SLA violations. Furthermore, we also consider the

stochastic properties of resource demands to provide better resource allocations

in the long run and avoid unnecessary VM migrations in the future. The sta-

ble matching-based mechanism can obtain reasonable trade-offs between energy

consumption and SLA violations in Cloud data centers.

Three VM consolidation mechanisms can be applied to address the resource man-

agement problem under different scenarios. The thermal-aware VM consolidation

mechanism with outage avoidance is applicable when temperature information is avail-

able. The bio-inspired heuristics-based VM consolidation mechanism analyzes corre-

lations among co-located VMs, which perform well when the system has access to VM

utilization logs. Furthermore, the stable matching-based VM consolidation mechanism

allows Cloud service providers and VMs to choose their preferred partners from their

own perspectives.

6.2 Future Work

6.2.1 Incorporate Multi-dimensional Resources

Each host has multi-dimensional resources, such as CPU, memory and network band-

width. In the VM consolidation mechanisms proposed in Chapters 4 and 5, our mi-

gration criteria are formulated based on CPU utilization readings while ensuring that
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the aggregated demand of VMs on a host does not exceed its capacity in any resource

dimension. To put every resource dimension into consideration during optimization,

future work will focus on extending heuristic functions and the stable matching model

for managing other resources in the VM consolidation process. Such design can fully

utilize server resources and reduce future VM migrations. Furthermore, as heteroge-

neous workloads have different resource requirements, we can combine different types

of workloads and coordinate the resource requirements in different resource dimen-

sions to improve the overall utilization of servers.

6.2.2 Incorporate Network Topology

Cloud computing is a network-based computing model. A data center network, which

consists of a large number of servers and switches connected with high speed commu-

nication links, can impose significant migration cost to the VM consolidation process.

Fig. 6.1 shows a typical data center network topology. It is a three-tier network archi-

tecture comprises of a tree of routers and switches. The root of the tree forms the core

layer. The core switches at this layer is directly connected to external networks and

aggregation switches at the middle layer. The leaves of the tree form the bottom layer,

where racks are connected to top-of-rack (ToR) switches. Servers on the same rack

use a ToR switch to communicate, while two racks communicate through aggregation

switches. Hence, a communication link between servers located in adjacent racks is

consists of the ToR switch of the source rack, aggregation switch and the ToR switch

of the destination rack. If the racks are located farther apart, there may be multiple

levels of aggregation switches. Therefore, one possible future work is to consider the

network topology of the Cloud data center in the VM consolidation process.
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Figure 6.1: Three-tier data center network topology.

6.2.3 Adopt the Container-as-a-service Model

Cloud computing is moving from centralized, large-scale data centers to a more dis-

tributed multi-cloud setting comprises a network of virtualized nodes, which allows In-

ternet of Things (IoT) infrastructures to be integrated. Such architectures and settings

are often referred to as edge clouds, edge computing [113] or fog computing [114].

Their highly distributed nature and the computational constraints on edge IoT devices

raised the need to develop more lightweight solutions for replacing the current VM-

based virtualization technology.

Google [115] and Amazon Web Services have introduced a new type of service,

called Container-as-a-service (CaaS), to manage and orchestrate applications through

containers in the edge cloud environment. The CaaS model, which is different from

the traditional cloud services (i.e., IaaS, PaaS, and SaaS), is a lightweight solution for

packaging, delivering, and orchestrating applications in the cloud. Fig. 6.2 shows the

differences between these two virtualization architectures. Containers, comparing to

VMs, require far less efforts in configuring and managing. Furthermore, containers are

far less resource demanding than VMs. In the CaaS environment, how to allocate a

group of orchestrating containers to hosts becomes an important issue. Therefore, one
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Figure 6.2: Hypervisor- vs. container-based virtualization.

possible future work is to address the container allocation problem in Cloud clusters.
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