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ABSTRACT 

Recognizing humans in least-constrained environments is one of the key research 

goals for academia and industry. At-a-distance eye region based human recognition 

using iris and periocular information has emerged as a promising approach for 

addressing this problem due to the high level of uniqueness and stability of eye regions 

under less-constrained environments. However, image samples acquired under less-

constrained conditions usually suffer from degrading factors such as noise, occlusion 

and lower resolution. Therefore, advanced algorithms beyond traditional methods are 

required to fully exploit useful iris and periocular information from degraded images. 

This thesis focuses on developing effective and reliable algorithms for at-a-distance 

iris and periocular recognition under such conditions. 

The first stage of this thesis investigates accurate iris segmentation under less 

constrained environments, which is a key prerequisite for the iris recognition process. 

The key challenge comes from undesired factors such as noise, occlusion and light 

source reflection in degraded eye images. We built a novel relative total variation 

model with l1-norm regularization, referred to as RTV-L1, to deal with the 

aforementioned obstacles. With this new model, noise and texture can be suppressed 

from the acquired eye images while structures are soundly preserved, which provides 

ideal conditions for preliminary segmentation. We then applied a series of robust post-

processing to refine the segmentation contours. The proposed approach significantly 

outperforms other state-of-the-art iris segmentation methods, especially for degraded 

eye images acquired under less constrained environments. 

 Followed by the RTV-L1 based iris segmentation framework, we developed a 

novel deep learning based approach for extracting spatially corresponding features 

from iris images for more accurate and reliable matching. This approach is based on 
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fully convolutional network (FCN) which can retain critical locality of the deep iris 

features, and a newly designed extended triplet loss (ETL) function is able to 

accommodate non-iris occlusion and spatial translation during the learning process. 

The learned features are shown to offer superior matching accuracy and outstanding 

generalizability to different imaging environments, compared with traditional hand-

crafted iris features as well as convolutional neural network (CNN) based deep features. 

 Another important contribution of this thesis is the development of deep learning 

based periocular recognition algorithms for improved accuracy and adaptiveness. 

Inspired by human inference mechanism, we firstly investigated combining high-level 

semantic information in the periocular images (e.g., gender, left/right) into deep 

features learned by CNN. Supplement of such semantic information can help to 

recover more comprehensive and discriminative features and reduce the over-fitting 

problem, and superior performances over state-of-the-art periocular recognition 

methods were obtained. Furthermore, we proposed an attention based deep 

architecture for periocular recognition to further simulate the visual classification 

system of human. In this part, we inferred that regions of eye and eyebrow are of 

critical importance for identifying perioculars and deserve more attention during visual 

feature extraction. We therefore incorporated such visual attention by emphasizing 

convolutional responses within detected eye and eyebrow regions in CNNs to enhance 

the feature discriminability. This approach further boosted state-of-the-art 

performance dramatically for periocular recognition under varying less constrained 

situations. 
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CHAPTER 1    

Introduction 

1.1 Biometrics for Human Recognition 

Human recognition or identification plays an important role in modern society for 

resident authentication, security control, forensics, searching for missing people, and 

so on. Biometric recognition, or biometrics, refers to techniques for identifying a 

human based on his/her biological or behavioural patterns, which can be measured, 

analysed and used to distinguish a person from another. A desired biometric modality 

for accurate and reliable identification should provide several properties, such as 

uniqueness, permanence, measurability, performance, etc. [1] [2]. Typical biological 

patterns that can be used as a biometric modality include but are not limited to face, 

iris, fingerprint and palmprint, while useful behavioural patterns can be attributed to 

voice, gait, signature, etc. Figure 1.1 illustrates several popular biometric modalities 

which are widely studied and used in both academia and industry.  

 Exploiting such biometric patterns for human identification can offer a number of 

benefits over traditional authentication mechanisms such as password. The usefulness 

of biometrics has led to wide development and deployment of automated systems for 

identifying persons in various scenarios such as resident registration, border crossing, 

surveillance and crime detection. The workflow of a typical biometric system is shown 

in Figure 1.2. As shown in the figure, biometric patterns are acquired from 

users/suspects via certain sensors, and then the acquired data will be processed with 

several steps which usually involve pre-processing, feature extraction/template 

generation, and matching with known subject(s) that were previously 

enrolled/registered in the gallery. The performance of a biometric system is of vital 
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importance and will be affected by a variety of factors such as physical deployment 

environment, hardware configuration and matching algorithms. Although abundant 

approaches have been developed for accurately matching a wide range of biometric 

patterns, perfect solutions that can deal with every scenario do not exist and there is 

continuous demand for exploring more reliable methods on existing and new biometric 

modalities to deal with varying conditions.  

1.2 Performance Evaluation for Biometric Systems 

As discussed earlier, it is most unlikely for biometric recognition systems to identify 

Face

Periocular Iris

Fingerprint

Palmprint

Gait

Voice

 
 
Figure 1.1: Some examples of widely studied biometric modalities that can be used to
distinguish/identify people. 
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Figure 1.2: Workflow of a typical biometric recognition system. 



 
4 

every sample with perfect accuracy under various conditions, and it is required to 

quantitatively measure the performance for the biometrics systems in order to select 

most suitable approaches for the real applications. While there are many aspects to 

evaluate, within the scope of this thesis we will mainly focus on evaluating the 

accuracy of a specific biometric system or approach, i.e., the correct rate of made 

decisions under certain experimental configurations. The accuracy is also considered 

as one of the most important factors for a biometric system. In some parts of our work 

which will be detailed in the following chapters, the time efficiency will also be 

evaluated in order to access the feasibility for real-time or online video stream-based 

deployment. 

 The accuracy of a biometric approach is related to the operation mode of the 

system, i.e., verification and identification [1]. These two operation modes are most 

widely used and will be introduced in detail in the following, together with their 

corresponding metrics for measuring accuracy. 

z Verification mode (one-to-one) 

In the verification mode, the user claims or is suspected to be a specific person 

who has been previously enrolled in the system, and the system is required to 

determine whether the present user is the same or a different person compared to 

the claimed one. Such operation mode is widely adopted for access control, 

resident administration, forensics, etc. Figure 1.3 (a) illustrates the workflow 

diagram of a verification system.  

z Identification Mode (one-to-many) 

In this mode, the system is required to identify a presented person from a list of N 

known subjects, while the person does not need to claim an identity. This is often 

accomplished by iteratively matching (or sometimes distance-based searching) the 

template extracted from the presented subject with all previously extracted 
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templates from the list of subjects. The expected response from an identification 

system is whether the probe matches at least one gallery subjects, and if yes, 

returning the most similar candidates. A watchlist system is a typical application 

for this mode. Figure 1.3 (b) demonstrates the typical workflow of an 

identification system. The following explains commonly used metrics for 

evaluating biometric systems under these two modes. 

a) Evaluating verification systems 

When evaluating a verification system, we mainly consider two types of possible 

errors, which are: i) False Accept / False Match: Falsely accepting a person who is 

actually not the claimed identity; and ii) False Reject / False Non-match: Falsely 

rejecting a person who is indeed the claimed identity.  

In order to measure these two types of errors, usually a certain number of pairs of 

biometrics samples will be matched to simulate matching the probe (presented user) 

Figure 1.3: Typical workflows for (a) a verification system and (b) an identification 
system.  

(a) Verification system 

(b) Identification system 



 
6 

with the stored template(s) for the claimed identity. The tested pairs will include some 

genuine pairs (samples from a same person) and some imposter pairs (samples from 

different persons), then the frequency of false decisions will be counted. More 

specifically, two kinds of corresponding error rates that are used to estimate the 

probabilities of errors are computed: 

(i) False Accept Rate (FAR) or False Match Rate (FMR):  

The number of falsely accepted or approved imposter pairs over the total number 

of tested imposter pairs. 

(ii) False Reject Rate (FRR) or False Non-match Rate (FNMR): 

The number of falsely rejected genuine pairs over the total number of tested 

genuine pairs. 

Usually a trial of matching will generate a similarity (or dissimilarity) score for 

quantitatively describing how similar two samples or templates are. Given a score 

threshold t, if the score is larger than (sometimes smaller than, depending on the 

algorithm) t, the pair will be accepted and otherwise rejected. Apparently both the FAR 

and FRR are subjected to the given threshold t. When t varies within the possible range, 

FAR and FRR will also vary between zero and one accordingly, i.e., one exact value 

of t corresponds to a pair of exact values of FAR and FRR. Therefore, all possible 

(FAR, FRR) can form a curve on the 2-D space { }( , ) | 0 1,0 1x y x y≤ ≤ ≤ ≤ . Such a 

curve is referred to as Receiver Operating Characteristic (ROC) curve, which is 

actually a general performance metric for any binary classifiers. Sometimes the 

Genuine Accept Rate (GAR) or Verification Rate (VR), where GAR = 1 – FRR, is 

preferred when plotting ROCs, and in the following of this thesis we will adopt this 

style. Figure 1.4 (a) demonstrates a sample ROC for a specific biometric 

system/approach. Usually one biometric system or algorithm is considered superior 

than another one when its ROC is on top of that of the other under the same evaluation 
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configuration. It can be inferred that the left hand side of ROC curve (lower FAR) 

represents the performance when the false accepts seldom happen, and therefore will 

be weighted more for applications that require higher level of security where FAR 

should be kept extremely low. From time to time, a specific value of error rate, equal 

error rate (EER), which satisfies FAR = FRR or FAR = 1 - GAR, will be considered 

apart from the complete ROC for roughly describing the overall accuracy of the system. 

However, whenever applicable, the complete ROC should be preferred since EER can 

 
(a) Example of ROC 

 
(a) Example of CMC 

Figure 1.4: Examples of (a) ROC curve, where the EER can be revealed by 
intersecting the curve with the line y = 1-x, and (b) CMC curve. 
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be revealed by intersecting the ROC curve with the line { }( , ) | + 1x y x y = . 

b) Evaluating identification systems 

When evaluating an identification system, the primary factor to consider is whether 

the correct identity for the probe will appear in the most similar candidates after 

performing a search among the list of enrolled gallery subjects. This can be 

quantitatively measured with the rank-k accuracy (or top-k accuracy in some 

classification problems). Assume that a certain number of probes are iteratively input 

to an identification, while each probe will be matched with the templates from K 

known subjects that were previously enrolled in the system. The rank-k accuracy refers 

to the percentage of successful matches that the correct identity is given within the k 

most similar candidates for the probe. The discrete values of rank-k accuracies (k = 1, 

2, …, K) can also form a 2-D curve which is called cumulative match characteristic 

(CMC) curve. Figure 1.4 (b) demonstrates a sample CMC curve from a specific 

identification system/algorithm under certain experimental setup. Apparently higher 

rank-k accuracies are preferred for an identification system, and the accuracies for 

smaller k values are usually weighted more than those for larger k. 

 More detailed explanation for the above metrics are available in a variety of 

references in the literature, such as [1] – [4]. In addition, several other performance 

metrics, such as false positive identified rate (FPIR) and false negative identification 

rate (FNIR) are adopted in some studies [4] [6] for more comprehensively evaluating 

biometric systems. Within the scope of this thesis, however, we will mainly use the 

metrics explained above for performance evaluation. 

1.3 Towards Least-Constrained Recognition 

By reviewing the research/engineering progress for biometric technologies over the 
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past years, it can be concluded that the problem of accurate automated human 

recognition under relatively constant and controlled conditions has been largely 

addressed. For instance, advanced iris identification algorithms can reach rank-1 

accuracy of over 95% for approximately four millions of identities [6], which is pretty 

satisfactory for such a large-scale evaluation. However, traditional approaches often 

require the users to be highly cooperative to provide good-quality biometric samples. 

The requirements of strict constraints and cooperative sampling from the users have 

greatly limited the usage and deployment of biometric systems. In some passive 

recognition scenarios, e.g., surveillance and crime detection, cooperation from 

users/suspects cannot be expected and the systems should be able to identify subjects 

under less constrained environments. For some active recognition applications, such 

as border crossing, a more relaxing acquisition process is also desired to make the 

system more efficient and user-friendly. Due to such reasons, increasing research 

efforts have been devoted into more reliable person recognition under less constrained 

environments, and encouraging achievements have been made so far. To name a few, 

the Labeled Faces in the Wild (LFW) dataset [94] and YouTube Face (YTF) dataset 

[95], which were formed by collecting face images from Internet resource under 

unspecified/unconstrained conditions, have attracted a lot of research interest, and 

state-of-the-art approaches [57] [60] [62] have gained significant success in achieving 

high recognition accuracy on such datasets using deep learning models. Contactless 

fingerprint/palmprint recognition approaches [63] [64] have been proposed for 

relieving the constraints for the users and have obtained promising results. At-a-

distance iris and periocular recognition also offers practical and effective solutions for 

less constrained person identification, and numerous methods have been developed to 

pursue continuous and solid progresses [10][47]. In this thesis, we will focus on less 

constrained iris and periocular recognition algorithms for more accurate and robust 
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human identification. Kindly note that the term “less-constrained” is semantically a 

broad concept, and we mainly investigate factors of at-a-distance, lower resolution, 

off-angle/axis imaging and cross-database training/testing, which can be reflected by 

the selection of databases and experimental protocols used in this thesis. 

1.4 Earlier Work 

In this section we will have a detailed review on previous studies on iris recognition 

and periocular recognition, especially with the trend of applications from highly 

constrained recognition scenarios to at-a-distance and less constrained environments. 

1.4.1 Iris Segmentation 

Contemporary iris recognition approaches usually follow a workflow similar to that in 

Figure 1.5. Among the sequential procedures, iris segmentation refers to the step that 

identifies iris location and iris region pixels from the acquired eye images. Iris 

segmentation is a critical step at the beginning of the workflow and plays an important 

role for the final recognition accuracy [51]. Inaccurately segmented iris images are 

highly likely to degrade the matching performance severely. Therefore, it is necessary 

Acquisition Segmentation

Normalization

Feature 
Extraction

Matching

 

Figure 1.5: Typical workflow for contemporary iris recognition systems. 
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to ensure the robustness of iris segmentation, especially under less constrained 

environments. 

 Most of the earlier work on iris segmentation uses NIR images which are acquired 

from close distances. Duagman’s integro-differential operator [7] is the classical 

algorithm for iris segmentation under NIR illumination and is adopted in most of the 

commercial systems nowadays. It searches for a maximum response of an integro-

differential expression and then locates the circle of iris. However, as explored and 

addressed in [13]-[17], etc., under VW illumination or less-constrained environment, 

quality of images drops and such traditional approach performs poorly. 

The iris segmentation approach developed by Tan et al. [12] first adopts an 

iterative technique to cluster the iris and non-iris region coarsely, and then uses an 

improved integro-differential operator to locate the iris and pupil circle coarsely. One 

key limitation of this algorithm is that it relies highly on the coarse clustering result so 

that the final accuracy will be heavily affected if the first step is not accurate. Another 

promising approach by Proença [11] proposes to exploit local color features and 

classify iris pixels using a neural network. However, the color features are not very 

stable, which often leads to lower reliability. A recent work detailed in [10] also offers 

highly competitive alternative for the iris segmentation under less constrained imaging 

environment. This approach first adopts a Random Walker [24] to coarsely segment 

the iris region to locate the iris circle, then applies a set of gray level statistics based 

operations to refine the boundary. This method reports a better accuracy than previous 

ones. However, this approach also relies on the coarse segmentation result too much, 

and in its post-processing operations, one common threshold value is used for the 

whole iris, which may not fit local features and is possible to cause global error.  

Another promising work in relevant domain has been proposed by Li and Savvides 

[9]. In this method, a Gaussian Mixture Model (GMM) was adopted to simulate iris 
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pixel distribution and an unsupervised training method was used to obtain the 

parameters for the GMM. It has shown very high segmentation accuracy and reliability. 

However, a critical step for iris segmentation, which is the localization of iris and pupil 

circles, was performed manually in the experiments presented in this work, while other 

methods mentioned above locate the circles automatically. In other words, the 

performance of [9] will highly depend on the accuracy of iris and pupil circle 

localization. In practice, iris and pupil circle localization is not only used in iris 

segmentation, but also necessary for the iris normalization, which unwraps the iris 

region into a polar coordinate system and is an essential step for most of the iris 

recognition algorithms. 

1.4.2 Iris Recognition 

One of the most classic and effective approaches for automated iris recognition was 

proposed by Daugman [7] in 2002. In his work, Gabor filter is applied on the 

segmented and normalized iris image, and the responses are then binarized as IrisCode. 

The Hamming distance between two IrisCodes is used as the dissimilarity score for 

verification. Based on [7], 1D log-Gabor filter was proposed in [8] to replace 2D Gabor 

filter for more efficient iris feature extraction. A different approach, developed in [14] 

in 2007, has exploited discrete cosine transforms (DCT) for analyzing frequency 

information of image blocks and generating binary iris features. Another frequency 

information based approach was proposed in [15] in 2008, in which 2D discrete 

Fourier transforms (DFT) was employed. In 2009, the multi-lobe differential filter 

(MLDF), which is a specific kind of ordinal filters, was proposed in [16] as an 

alternative to the Gabor/log-Gabor filters for generating iris templates.  

Unlike the popularity of deep learning for various computer vision tasks, 

especially for face recognition, the literature so far has not yet fully exploited its 
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potential for iris recognition. There has been very little attention on exploring iris 

recognition using deep learning. A deep representation for iris was proposed in [37] in 

2015, but the purpose was for spoofing detection instead of iris recognition. A recent 

approach named DeepIrisNet in [38] has investigated deep learning based frameworks 

for general iris recognition. This work is essentially a direct application of typical 

convolutional neural networks (CNN) without much optimization for iris pattern. Our 

reproducible experimental comparison in Chapter 3.5 further indicates that under fair 

comparison, this approach [38] cannot deliver superior performance even over other 

popular methods. Another recent work [77] has attempted to employ deep belief net 

(DBN) for iris recognition. Its core component, however, is the optimal Gabor filter 

selection, while the DBN is again a simple application on the IrisCode without iris-

specific optimization. Above studies have made preliminary exploration but failed to 

establish substantial connections between iris recognition and deep learning. 

1.4.3 Periocular Recognition 

Continuous research efforts have been devoted into investigating periocular 

recognition algorithms under different environments [39] [40]. The early feasibility 

study on using periocular region for human identification was performed by Park et al. 

[41] in 2009, and promising results have been reported, which provides support to 

subsequent research. Miller et al. [127] investigated personal identification using 

periocular skin features, followed by studies on utility of the periocular region 

appearance cues [128] and for soft biometrics [129] from the same group of 

researchers. Bharadwaj et al. [42] further ascertained the usefulness of periocular 

recognition, especially when iris recognition fails. Some of the later research focuses 

on cross-spectrum periocular matching [46] using techniques of neural network. 

Above explorative works have motivated further research efforts to continuously 
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improve the accuracy of periocular recognition. One of the state-of-the-art approaches 

is proposed by [10] in 2013, which exploited DSIFT features of periocular images, 

followed by K-means clustering for dictionary learning and representation. This work 

also explored score level fusion of iris and periocular recognition and reported 

encouraging results. However, this approach did not investigate periocular-specific 

feature representation, and the employed DSIFT feature is computationally expensive. 

Smereka et al. [47] has proposed the Periocular Probabilistic Deformation Model 

(PPDM) in 2015, which provided a sound modelling for potential deformation existing 

between periocular images. Inference of the captured deformation using correlation 

filter is utilized for matching periocular pairs. Later in 2016, the same group of 

researchers improved their basic model by selecting discriminative patch regions for 

more accurate matching [49]. These two methods achieved promising performance on 

multiple datasets. Nevertheless, both of them rely on patch-based matching scheme, 

and therefore are less resistant to scale variation or misalignment that often violate the 

patch correspondence but is more likely to happen during the real deployments. More 

recently, Proença and Neves [123] claimed that iris and scalar regions may be less 

reliable for periocular recognition and proposed Deep-PRWIS, which weakened the 

energy of learning within these areas for CNN, and reported good results on two 

datasets. 

1.5 Organization of Thesis 

As introduced earlier, in this thesis we will focus on at-a-distance iris and periocular 

recognition for more accurate and robust person identification under less constrained 

environments. The rest of the thesis will detail my research work on developing novel 

approaches for improving state-of-the-art performance for at-a-distance iris and 
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periocular recognition. 

 Chapter 2 will firstly introduce my work on accurate iris segmentation framework 

under less constrained environments, including the formulation of newly proposed 

RTV-L1, improved circle detection and robust post-processing operations. Chapter 3 

will mainly disclose my proposed deep learning based iris feature descriptor, which is 

based on a fully convolutional network (FCN) and a problem-specific extended triplet 

loss (ETL) function. Chapter 4 will present a novel periocular recognition approach 

based on semantics-assisted convolutional neural network (SCNN), which utilizes 

explicit semantic attributes of the training data for more comprehensive periocular 

feature learning. This is followed by Chapter 5, where another new approach 

incorporating visual attention mechanism into deep neural network for more effective 

and robust periocular feature extraction. Finally, Chapter 6 will draw the conclusions 

for my research work presented in this thesis, as well as discussions on the current 

limitations and future work.  
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CHAPTER 2      

Iris Segmentation under Less Constrained Environment 

2.1 Background 

Iris recognition is one of the most accurate and widely employed approaches for 

automated personal identification. The performance of iris recognition algorithms is 

highly dependent on the effectiveness of segmenting iris region pixels [17]. However, 

the traditional iris segmentation and feature matching approaches adopt only to near-

infrared illumination and require the subjects to be sampled under strictly constrained 

conditions [13], which is the major difficulty for deploying iris recognition system in 

civilian and surveillance applications on a larger scale. Automated iris segmentation 

has been a topic of considerable research in recent past [21]-[33] and many methods 

[9]-[13] have been proposed to address the problem. However the accuracy of 

currently available iris segmentation algorithms is still below the expectations and 

requires further improvement for the deployments. 

This work proposes a new framework to automatically and accurately segment iris 

images from the distantly acquired face images. The developed approach can robustly 

operate using face or eye images acquired under less-constrained environments, i.e., 

using images acquired from a distance (typically 3-8m) and under near-infrared (NIR) 

or visible-wavelength (VW) illumination. The key contributions from this work can 

be summarized as follows: 

With the help of earlier studies on gradient dependent regularizer, such as relative 

total variation regularizer [20], we develop a new total variation formulation for iris 

segmentation in which the eye structure and surrounding texture are differently 

penalized. This formulation incorporates with an l1 norm which is more effective and 
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also computationally efficient. Our experimental results on three publicly available 

databases achieve significantly superior results over previous approaches presented in 

the most recent literature [9]-[10]. Moreover, the method developed in this work does 

not require any training and therefore is more attractive for the deployment in 

surveillance applications. 

We develop a series robust post-processing operations to accurately localize 

limbic boundaries in noisy iris images. The adaptive and self-correcting methodology 

introduced in these operations can independently exploit the local features as much as 

possible, and helps to significantly reduce global errors. The post-processing 

operations can effectively use the intermediate results and adopt dynamic threshold 

mechanisms. Such robust strategies help to improve the overall accuracy in the 

segmentation of noisy iris images and can also be applied in other challenging 

problems in surveillances and remote sensing. 

The performance of the proposed approach1 has been evaluated on three publicly 

available databases, i.e., UBIRIS.v2 [18], FRGC [28] using visible-light imaging and 

CASIA.v4-distance [27] under near infrared. The experimental results suggest average 

improvements of 28.82%, 30.98% and 16.05% on iris segmentation accuracy over 

state-of-the-art method on respective databases. Besides, we also illustrate from the 

experiments that using iris masks generated from our approach helps improve iris 

recognition performance. 

The approach described in this chapter has been published as [51]. 

 

                                                 

1 The implementation codes for our algorithm are available via [34]. 
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2.2 Proposed Methodology 

This section details the methodologies used in the proposed iris segmentation approach. 

The overall framework of the developed approach is illustrated in Figure 2.1. The 

proposed approach adopts a coarse-to-fine strategy to segment iris region pixels from 

the background (region pixels surrounding the iris) and foreground (noisy pixels in the 

iris region) pixels in the acquired eye images. Our approach assumes that each of the 

eye images may be acquired under a relaxed imaging environment, i.e., at-a-distance 

and under variable spectrum bands. 

2.2.1 Preprocessing 

Under less-constrained imaging, several factors such as varying illumination intensity 

and the angle of the illumination source can have adverse impact on the accuracy and 

quality of iris segmentation. Such unexpected changes yield severe challenges in not 

only the iris biometrics but also many other image understanding tasks. We use the 

Single Scale Retinex (SSR) approach [23] for normalizing eye image illumination. The 

SSR enhancement method is able to improve color consistency under severe 

Figure 2.1: The block diagram for the proposed iris segmentation.  
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illumination variance. A sample image after applying SSR enhancement is shown in 

Figure 2.2(b).  After enhancement, we apply a median filter on the image to suppress 

isolated noisy pixels. Moreover, we only use the red channel in the following process 

because the imaging spectrum of red channel is closest to NIR, which retains better 

image quality. In Figure 2.2 (c) we can see a sample result from the pre-processing 

stage.  

2.2.2 Total Variation-Based Iris Structure Extraction 

One common characteristic for the eye images acquired under less-constrained 

environments is the sensitivity to noisy and complex details such as reflection and 

eyelashes, which are not needed in the initial structure analysis. The above factors are 

the major reason why the traditionally effective integro-differential operator or circular 

Hough transform perform poorly on images acquired under less-constrained 

environments, because both methods require clear contrast of structure components 

and least interference from noise. We exploit the total variation (TV) model to address 

such a problem. There have also been studies on using the total variation model for 

other biometric segmentation problems such as fingerprint segmentation [29]. 

A. Theoretical Foundation of Total Variation Model 

There are several total variation (TV) regularizers for image structure separation in the 

literature, of which most are extended from TV-L2 [25]. A recent reference in [20] 

Figure 2.2: Sample image from the pre-processing stage: (a) original image, (b) 
enhanced image, (c) smoothed red channel. 

(a)                 (b)                  (c) 
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proposed relative total variation (RTV) to measure and regularize local pixel variation. 

Such local gradient descriptors offer the strong capability to distinguish key image 

structure from the background image details. Motivated by such prior studies, we 

propose to use an improved RTV model to first localize the key eye structure, i.e., 

eyelid, pupil and sclera boundaries, in the noisy eye images. Such localization of eye 

structure can be used to accurately locate pupillary and limbic boundaries for accurate 

iris segmentation. In the following, we provide a brief review on the theoretical 

principles of RTV which are later used to develop an improved RTV model 

incorporated with l1 norm regularization to more effectively locate eye structure of key 

interest. 

The windowed total variation of an image S within a local rectangle region R is 

expressed as follows: 

,
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| |
| |

S x x

S y y

D G S

D G S
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= ∗ ∂
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                         (2.1) 

where Gσ  is a Gaussian kernel with standard deviation σ , x∂  and y∂  are the 

partial derivatives on image S in two directions and ∗  represents the convolution 

operation. By the convolution, which gives a weighting sum of nearby absolute 

gradients, we can observe that ,S xD  and ,S yD  represent absolute spatial difference 

within a rectangular window. In earlier studies in [20], both the detail and structure 

patches in an image with salient textures yield large D , which indicates that the 

windowed total variation is responsive to visual saliency. 

Another effective measure to help distinguishing prominent structures from the 

texture elements is to use windowed inherent variation, expressed as: 
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                         (2.2) 

Different from D, L measures overall spatial variation because xS∂  and yS∂  may 



 
21 

be positive or negative, and therefore such values may eliminate or offset others by the 

convolution in frequently varying gradient region. As a result, structure patches are 

typically expected to yield larger L than those from texture patches. 

The contrast between texture and structure can be further enhanced by combining D 

and L as RTV, expressed as follows: 

,,
,

, ,

( )( )
( ) ( )

S yS x
S p

S x S y

D pD p
RTV

L p L pε ε
= +

+ +
     (2.3) 

where p  is the pixel index, ε  is a small positive number to avoid division by zero. 

From expression (2.3) we can observe that texture region is typically expected to yield 

larger RTV  than structure since the denominator of the formulation, L , responses 

smaller value for texture. Making use of such a property of RTV, reference [20] 

proposed to minimize following energy to remove the texture (e.g., details and noise) 

from the input image: 

( )2

,arg min S p p p
S

p

RTV S Iλ ⋅ + −¦                   (2.4) 

where I is the input image and S is the output image. Notice that equation (2.4) 

incorporates the square of an l2 norm to enforce the similarity between the input and 

output image, which is similar to many other variants of TV regularization. We will 

refer to such a method as RTV-L2 for short. 

B. Extracting Eye Structure Using RTV-L1 

Each of the iris images acquired for conventional iris recognition includes surrounding 

eye structure. This structure essentially includes curved regions representing eyelid, 

pupil and sclera boundaries. Our objective is to locate the iris by automatically 

extracting such elements representing eye structure and other non-structural elements 

such as eyelash, and iris texture can be treated as noise because they could interference 
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with on our iris localization. Therefore, the RTV-L2 approach which can remove details 

and texture while maintaining the main structure of the input image is a good choice 

for our purpose. However, it has been studied in several references [31], [32] that using 

l1 norm instead of l2
 in such energy regularizers has better performance in some 

applications and presents more important geometric properties. We have studied the 

difference between l1 and l2 norm in RTV regularization, and propose to adopt l1 norm 

instead of the original l2 norm, i.e., we solve the following problem which we refer to 

as RTV-L1:  

,arg min S p p p
S

p

RTV S Iλ ⋅ + −¦                     (2.5) 

The difference between the output images by solving problems (2.4) and (2.5) is 

illustrated in Figure 2.3. We can observe from Figure 2.3 that while both RTV-L1 and 

RTV-L2 can suppress texture and noise, the results from RTV-L1 are sharper at critical 

edges than those from RTV-L2. This confirms the arguments that using l1 norm in the 

energy regularizer can present more important geometric properties, which is 

considered helpful for the subsequent iris localization process. The detailed numerical 

solution for problem (2.5) will be introduced in following sections.  

Figure 2.3: Sample results of RTV-L1 and RTV-L2 for eye images under (a) visible 
illumination and (b) NIR illumination. 

(a) 

(b) 

Original image           RTV-L1               RTV-L2 
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C. Numerical Solution for RTV-L1 

The objective function in problem (2.5) is non-convex. A trivial solution for this 

problem is not available. In addition, by replacing the l2 norm with l1 norm, the 

structure of the objective function has changed so that the approximating solution 

proposed in [20] becomes unusable. Here we propose an effective dual formulation 

based solution similar to [30] for the RTV-L1 problem. First, we approximate the 

minimization for problem (2.5) as minimizing the following new problem:  

( )2

,,

1argmin
2S p p p p p

S V
p

RTV S V I Vλ
θ

⋅ + + − +¦             (2.6) 

where V is a new variable in matrix form and the positive parameter θ is small, thus 

we have V I S≈ − . As a result, S presents the structural information and V captures 

the texture information from the input image. The minimization for problem (2.6) is 

performed with respect to S and V separately and iteratively. Thus, it boils down to the 

following two sub-problems: 

(i) S being fixed, search for V for the problem: 

( )21arg min
2 p p p p

V
p

S V I V
θ

+ − +¦                 (2.7) 

(ii) V being fixed, search for S for the problem: 

( )2

,
1argmin

2S p p p p
S

p

RTV S V Iλ
θ

⋅ + + −¦
            

(2.8) 

Problem (2.7) and (2.8) are solved alternately and iteratively, and then the energy 

function in problem (2.6) keeps reducing until it converges to a satisfying level. 

Following we will give solutions for (2.7) and (2.8): 

(a) Solution for (2.7): 

Since the objective function at each pixel is independent from others, this problem 

is a 1-D minimization problem and can be easily solved by calculus. The solution is 

given by: 
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                  (2.9) 

Such solution is also given in [30]. 

(b) Solution for (2.8): 

 The objective function in problem (2.8) has a quadratic term, which is very similar 

to the original RTV-L2 problem in [20]. Therefore, we can use a similar iterative 

solution to that proposed in [20] to solve problem (2.8) approximately. As shown in 

[20], the objective function in (8) can be approximated with a matrix form: 
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where Qv  is the vector representation of matrix Q, ( )x yC  is a Toeplitz matrix from 

gradient operator in x or y direction. ,S xU  and ,S xW  are diagonal matrices, whose 

values on the diagonals are respectively 
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                 (2.11) 

where p is the pixel index in the vector representation of the image, ε  and 'ε  are 

newly introduced small positive constants for preventing division by zero. After the 

approximation, let: 

, , , ,
T T

x S x S x x y S y S y yL C U W C C U W C= +                 (2.12) 

Considering L as a constant and computing the value of L using the results from last 

iteration, then the minimization problem (2.8) boils down to the following: 

( 2 ) S I VL v vθλ −+ ⋅ =1                       (2.13) 

The problem in (2.12) is easy to solve using knowledge of linear algebra. As the 
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number of iteration increases, the output approaches to the optimal solution and the 

value of the energy function in (2.6) keeps reducing until it converges to a stable level. 

Currently we iterate five times for each eye image based on the observation on the 

output and receive a satisfying noise removal effect, as shown in Figure 2.3. 

2.2.3 Coarse Iris Localization Using a Circle 

As discussed in section 2.2, a simple circular model cannot be employed to accurately 

segment iris images acquired under less constrained environments. However, it is 

widely observed that the human iris can be coarsely approximated as a circle [7], [26]. 

A circular boundary that coarsely but closely fits the limbic boundary can be used to 

further refine the boundaries for accurate iris segmentation using a series of efficient 

post-processing algorithms. In this work, we refer to such a coarse localization circle 

as an iris circle. Similarly, the pupil circle describes the circular boundaries that 

coarsely fit the pupillary boundary of iris images acquired for the segmentation. 

After structure extraction, the noise of the eye images is highly suppressed and it 

is possible to use the circular Hough transform (CHT) based approach to detect the iris 

and pupil circles coarsely, which highly relies on the clarity of the image structure. We 

implemented an improved version of CHT based on the two-phase CHT introduced in 

[19]. Firstly, we only detect the lower half circles to prevent possible interference from 

the eyelashes or eyebrow. Secondly, after the first phase in [9] which estimates the 

circle center, we enabled re-searching for the circle center within a rectangular region 

around the estimated center, to more accurately detect the center position and the radius. 

The robustness for coarsely localizing the iris region increases with the improved CHT. 

We detect the circles with empirically proper radius ranges, whose sample results are 

shown in Figure 2.4. The possible ranges of radius for the databases we used, i.e., 
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UBIRIS.v2, FRGC and CASIA.v4-distance, are [35, 120], [25, 40] and [60, 100] 

respectively.  

2.2.4 Iris Pixel Identification by Local Gray Level Analysis 

Automated boundary refinement approach has to be developed to accurately identify 

the limbic boundaries after the iris circle is detected. We developed an adaptive 

histogram-based binarization approach to firstly process lower half pixels of the iris 

circle in the image. 

A. Adaptive Detection of Lower Half Iris and Sclera Boundary 

The reason for processing the lower part firstly is that the lower half iris is less likely 

to be affected by eyelash and eyelid. Therefore, accurately identifying the iris pixels 

in the lower half region is firstly considered in identifying noisy pixels using the 

thresholding. Firstly processing the lower half not only can improve segmentation 

accuracy but also help to detect the thresholds for accurately segmenting the upper half.  

 The lower half circle is firstly processed by performing N sector thresholdings. In 

one thresholding, pixels in a certain sectorial region as expressed in the following are 

Figure 2.4: Sample results from the iris and pupil circle localization for (a) VW images 
and (b) NIR images. 

(a) 

(b) 
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identified: 

{ }1 2, 1 2 1 2    and  ir ir pC p t r cp t rφ φ φ θ φ= ≤ ≤ ≤ ≤
JJG

            (2.14) 

where c and irr  are the center and radius of iris circle respectively, pθ  is the angle 

from x axis to the vector cp
JJG

, says the central angle at point p, 1 2[ , ]φ φ  is the range of 

central angles with 1 20 φ φ π≤ < ≤ , 1 2[ , ]t t  is the constant ratio range to the iris radius 

restricting the region of the sector, and is empirically set to [0.6, 1.35]. In our approach, 

N is set to 3, and the sequence of ranges of central angels are [0, ]
4
π , 3[ , ]

4 4
π π  and 

3[ , ]
4
π π  respectively. These sectorial regions are also shown in Figure 2.5 (a).  

If the edge is clear and the iris circle is accurate, we can choose a threshold value 

that separates the low end and high end of the pixel values inside the sectorial region.  

Otsu’s method is a good approach for such purpose. It can automatically locate valley 

point between two peaks in the histogram of a set of pixel values using two-class 

separation metric. The significant aspect of our strategy is that we adopt different 

threshold values at each of the different sectors, which ensures that the overall error in 

the identification of iris pixels is significantly reduced. In addition, the number of 

sectors and range of angle sequences can be varied to accommodate iris images of 

degraded quality.  Note that the acquired eye images suffer from serious noise and 

occlusions. If each segment is too small (N is large), the computed threshold may not 

Figure 2.5: Illustration of three sectorial regions to be processed (a) and the Otsu’s 
thresholding result for one sectorial region (b). 

(a)                   (b) 
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be robust and the computational time will also increase. Therefore, 3N =  is a 

reasonable choice. In [10], the threshold is obtained from statistical information of 

pixel values within a region near the pupil. Such method applies only one fixed 

threshold for the whole circular boundary, which may not fit local features very well. 

Figure 2.6 shows the sample results from the post-processing of lower half of iris 

region pixels.  

B. Coarse-to-Fine Localization for Upper-Half Iris, Pupil Region and Reflection 

The upper half part is expected to be highly noisy, which is caused by the eyelash and 

shadow, and quite a significant part of the iris is occluded by eyelid and therefore the 

sector thresholding may not work well here. We can reuse the previous thresholds from 

the sectorial thresholding described in section 2.3.4.A. We just segment the upper-left 

1/4 circle using threshold determined in 3 ,
4

C π π
, and the upper right one using threshold 

determined in 
0,

4

C π . This approach is not expected to cause big error because two pairs 

of these regions are continuously connected, and further refinement regarding eyelid, 

eyelash and shadow will be performed.  

Since we have already detected the pupil circle earlier, the pupil removal step is 

Figure 2.6: Sample iris images and corresponding results from post processing of
lower half iris pixel region. 
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to eliminate the pupil region pixels from the iris circle in previous step. Another effect 

of the sector thresholding is that the detected threshold can be used to identify source 

reflections that usually exist in the images acquired under less-constrained imaging 

environment and occlude the iris region. We eliminate pixels whose gray levels are 

higher than the highest threshold among all the three sectors in the lower half iris 

processing section (Figure 2.5). In summary, the pixels which are brighter than the 

brightest pixels in lower half of iris region are considered as source reflection. Figure 

2.7 illustrates some sample results after masking upper half iris, eliminating pixels 

belonging to pupil and source reflection.  

C. Identifying Eyelid, Eyelash and Shadow (ES) 

As discussed earlier, the ES region brings much noise and ambiguity in the 

segmentation process. It is important to carefully identify this restricted region to 

Figure 2.7: Sample results after upper half masking, pupil removal and source
reflection removal for (a) VW images and (b) NIR images. 

(a) 

(b) 
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perform any refinement. Therefore, the position of upper eyelid should be accurately 

located. 

(i) Eyelid Fitting 

Using a parabola to approximate the eyelids is a popular approach in many iris 

segmentation algorithms and is found to have higher performance than other 

approaches [36]. Therefore we also propose to fit the eyelid with a parabola, which is 

in the following form:  

( )2
y c a x b− = −                         (2.15) 

Considering the shape of the upper eyelid and in order to fasten the parameter 

searching, we limit the ranges of a, b and c as follows: 

0 1/
2 2

1.5 0.3

ir

c ir c ir

c ir c ir

a r

x r b x r

y r c y r

< <­
° − ⋅ < < + ⋅®
° − ⋅ < < − ⋅¯

                   (2.16) 

where ( , )c cx y  and 
i rr  are the center and radius of iris circle respectively. The range 

of a ensures that the parabola is orienting downwards and will not be too sharp, and 

the ranges of b and c make the vertex of the parabola not too far away from the iris. 

The approach we propose to search the parabola is simple and yet very effective 

in terms of speed and accuracy. First, we define a rectangular region as the candidate 

eyelid area as follows: 

{( , ) , 0.3 }c ir ir c ir c irR x y x r x x r y r y y r= − ≤ ≤ + − ≤ ≤ − ⋅          (2.17) 

Figure 2.8: Sample results of the proposed eyelid fitting approach. Green curve is the 
fitted parabola representing upper eyelid, and the red points are the edge points 
detected by the canny edge detector in region R. 
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A Canny edge detector is applied in R and let us donate the set of detected edge points 

as E. We assume that among the edge points in E, some are close to the position of the 

eyelid, which we refer to as eyelid points, and some points belong to noise such as 

eyelashes and shadow, which we refer to as non-eyelid points. The spatial distribution 

of the non-eyelid points is highly random and less regular, while the positions of the 

eyelid points are very close to the parabola that can accurately fit the real eyelid. 

Therefore, we search for a parabola with the parameters {a, b, c} that has maximum 

number of points in E lying on it. Moreover, we actually search for {a, b, c} at discrete 

intervals so the speed can be greatly fastened. Figure 2.8 illustrates two sample results 

of the proposed eyelid fitting approach, which is highly accurate.  

(ii) Eyelash and Shadow Processing 

Having located the upper eyelid, the next step is to mask out those pixels which are 

belonging to the eyelashes and shadow at a certain distance below the eyelid. This step 

is the same as described in [10] and we choose the distance as 0.3 irr× . The pixel 

values within lower half of the currently processed iris mask are used to detect 

thresholds to identify those belonging to ES region. Figure 2.9 illustrates the idea.  

We choose the limiting thresholds that exclude 1% of the darkest pixels and 20% 

of the brightest pixels as the low and high thresholds respectively. Only the pixels 

between these two thresholds are retained. In order to eliminate isolated noisy pixels, 

the iris mask is subjected to an opening operation. Figure 2.10 illustrates some sample 

Figure 2.9: Illustration of ES processing. Pixels in the blue region are collected to 
calculate thresholds to process the pixels in the yellow region. 
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iris segmentation results from the databases used in this work.  

2.3 Experiments and Results 

2.3.1 Databases 

We have used three publicly available databases, UBIRIS.v2 [18], FRGC [28] and 

CASIA.v4 [27] to perform experiments for iris segmentation and recognition under 

VW and NIR imaging. The images from these databases were acquired under less-

constrained environments. It is judicious to expect that good performance on these 

databases indicates higher probability for the proposed approach to work well in 

surveillance and forensics applications. The summary of the employed datasets is 

presented in Table 2.1. We selected these subsets subject to the availablity of the 

ground truth iris masks (explained in section 2.4.2). Kindly note that images in 

CASIA.v4 (distance subset) and FRGC databases are full/partial face images, and we 

used the publicly available face and eye-pair classifiers [76] to extract the eye image 

Figure 2.10: Sample source images and corresponding final segmentation results 
(non-iris region is masked with blue color) for (a) VW images from UBIRIS.v2, (b) 
NIR images from CASIA.v4-distance and (c) VW images from FRGC. 

(a) 

(b) 

(c) 
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from the original images in these two databases for the subsequent operations. Face 

detection is firstly employed for the face images from FRGC and the eye-pair is 

detected from the detected face area. However, for the images in CASIA.v4 database 

the face detection is skipped because the images contain only face region. A sample 

image from FRGC and the detected face image along with eye image are shown in 

Figure 2.11. The size of the eye-pair region is adaptive to the size of the face image. 

However, since the size of the face images in FRGC varies significantly, we scaled the 

cropped eye images to a consistant size of 300 150× . For CASIA.v4-distance 

database, since the size of the face images varies little, we did not perform re-scaling.  

As for the parameter tunning, there are mainly two types of parameters. The first 

one is those related to the proposed RTV-L1 solution. We use the same set of parameters 

( 0.2, 0.05, 3, ' 0.005λ θ σ ε ε= = = = = ) for all three databases, which illustrates that 

the proposed RTV-L1 is highly generalizable for images captured in various condition. 

Table 2.1: Summary of databases employed in the experiments. 

 UBIRIS.v2 CASIA.v4-distance FRGC 

Imaging illumination visible near-infrared visible 

Standoff distance 4 – 8m ≥3m N/A 

Eye image size 400×300 about 780×400 300×150 

No. of subjects 171 77 163 

No. of images 1,000 581 540 
 

Figure 2.11: Illustration of eye image extraction from face images. Left and right eye
regions are simply cropped with equivalent width from the detected eye-pair region. 
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Other parameters are mainly database-specific, such as the range of radius of iris circle. 

Such parameters should be adjusted according to the image resolution. 

2.3.2 Performance Evaluation 

A. Segmentation Accuracy 

The accuracy of iris segmentation is evaluated using the same protocol as in the NICE. 

I competition [21], in which the average segmentation error rate is computed as follows: 

1e ( , ) ( , )
x w y h

T x y M x y
N w h ∈ ∈

= ⊕
× × ¦ ¦       

    
   (2.18) 

where N is the total number of images, w and h are width and height of one image, T 

and M are the ground truth mask and generated iris mask respectively. The symbol ⊕  

represents an exclusive OR operation to identify the segmentation error. While ground 

truth of UBIRIS.v2 are manually labeled and publicly provided by NICE.I, ground 

truth for the other two datasets is also manually generated by authors of [10] and made 

publicly available. Therefore, we can use the NICE.I protocol for the consistent 

segmentation accuracy evaluation. Kindly note that this metric does not separately 

panelize false positive and false negative in the iris segmentation task. It would be 

difficult to determine whether it is better to have more oversegmented or 

Table 2.2: Comparison of average segmentation error rates for different approaches. 

 Iris Segmentation Error,  e(%) 

Approaches UBIRIS.v2 CASIA.v4-diatance FRGC 

Proposed RTV-L1 1.21 0.68 1.27 

RTV-L2 1.41 0.75 1.28 

Li & Savvides (T-PAMI’13) [9] 1.92 0.85 1.34 

Tan & Kumar (T-IP’13) [10] 1.70 0.81 1.84 

Tan & Kumar (T-IP’12) [13] 1.90 1.13 1.84 

Proença (T-PAMI’09) [11] 3.75 1.61 2.42 

Tan et al. (ImVis’10) [12] 3.49 1.71 3.30 
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undersegmented pixels for the subsequent iris recognition problem, as it should depend 

on the properties of the feature extractor. For instance, if the iris feature representation 

is robust to existance of noise to some extent, it may be desired to include more pixels, 

even with some falsely segmented ones, for richer information; otherwise, if the 

feature is sensitive to noisy pixels, undersegmentation may cause less degradation to 

the recognition task. 

Table 2.2 summarizes the performance from state-of-the-art approaches in the 

recent literature while using the above protocol2. The approaches [10] and [13] are the 

work from my colleague, who also re-implemented methods [11] and [12]. The results 

of [9] are from my re-implementation with the assistance from the original authors. 

All the baselines methods have been extensively tuned to achieve their best possible 

performance. It can be observed from Table 2.2 that the proposed approach has 

achieved average segmentation error rates of 1.21%, 0.70% and 1.29% for UBIRIS.v2, 

CASIA.v4-distance and FRGC respectively.  

The comparative statistics suggest that the proposed approach consistently 

outperforms other iris segmentation methods developed in the literature. As compared 

with the recent approach published in [10], the proposed method can achieve average 

improvement of 28.82%, 16.05% and 30.98% for UBIRIS.v2, CASIA.v4-distance and 

FRGC databases respectively, in iris segmentation accuracy. It may be noted that the 

method described in [12] was ranked first in NICE. I competition [21] and therefore 

provides a good benchmark for the comparison. We have also evaluated the 

performance when using the original RTV-L2 approach for structure extraction and 

keeping other steps exactly the same. The results in Table 2.2 show that the proposed 

RTV-L1 has noticable superiority over RTV-L2 due to its ability to preserve sharpness 

                                                 

2 The average error rate of algorithm in [9] is also produced from our implementation and is made available via [34]. 
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of important edges. 

We would like to give special explanation on the performance of approach [9] for 

comparison, which are 1.92%, 0.85% and 1.34% in terms of segmentation error rate 

for UBIRIS.v2, CASIA.v4-distance and FRGC databases respectively. Different from 

other comparative methods listed in Table 2.2, reference [9] only focuses on the steps 

after the iris images are normalized, and this reference method manually localizes iris 

and pupil circles for iris normalization, while our proposed method automatically 

localizes iris and pupil circles. In order to provide a fair comparison, we used our 

proposed approach in all the prior steps (SSR enhancement, RTV-L1 structure 

extraction and circle localization) and adopted the method in [9] for post-processing.  

 In order to ascertain that the performance improvements achieved using the 

proposed method are statistically significant, we further conducted the significance 

test on the results from the proposed approach and those in [9] and [10]. Since the 

segmentation error rates from a specific approach can be treated as a sequence of 

independent and identically distributed data, t-test can be used for evaluating the 

statistical significance of the difference between the results from two methods. The 

results of the t-test are summarized in Table 2.3. These results suggest that under the 

confidence level of 95% (p-value < 0.05), the performance improvements from our 

method are statistically significant for most of the comparisons, despite on FRGC there 

is marginal improvement over method [9].  

Table 2.3: Results of t-test between the proposed approach and other state-of-the-art 
methods. 

 UBIRIS.v2 CASIA.v4-diatance FRGC 

p-value 
over [9] 3.2e-21 2.3e-10 0.10 

over [10] 4.0e-11 4.9e-4 2.6e-28 
H0: Proposed method does not outperform the comparative method significantly. 
H1: Proposed method outperforms the comparative method significantly. 
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B. Recognition Performance 

It should be noted that the objective of this work is to develop a robust approach for 

iris segmentation and achieve significantly improved segmentation accuracy rather 

than iris recognition performance. It is reasonable to argue that improved iris 

segmentation should lead to improved iris recognition, but not always because in many 

cases non-iris pixels appearing due to the poor iris segmentation can be consistent and 

aid to the improved matching of such iris images. However, the recognition 

performance is always the first concern in iris recognition systems. To answer a 

possible query from the readers on the performance improvement, we have also 

performed some experiments on the recognition on each of these public databases.  

 For the experiments on recognition, we adopt the 1D log-Gabor filter as the 

feature encoding method, which is widely used in the deployed iris recognition 

systems, and use iris masks generated from different segmentation approaches for 

comparison. The log-Gabor filter involves two parameters, central wave length ( λ ) 

and Gaussian standard deviation over central frequency (sigmaOnf, / fσ ), which are 

critical for the final performance. To select the best parameters, we divided each 

database into non-overlapping training set and testing set, and the division method is 

the same as that in [10]. The parameter sets within closed regions were adopted for 

the training sets, and the one giving best GAR@FAR=1% was selected as the  

 

Table 2.4: Summary of training and testing protocols used in the experiments for the 
recognition. 

 UBIRIS.v2 CASIA.v4-diatance FRGC 

#Training subjects/images* 19/96 10/79 13/40 

#Test subjects/images 152/904 67/502 150/500 

Optimized parameters 22
/ 0.30f
λ

σ
=
=  

23
/ 0.35f
λ

σ
=
=  

18
/ 0.45f
λ

σ
=
=  
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Figure 2.12: ROC curves of iris recognition experiments using iris masks generated
from different segmentation approaches for (a) UBIRIS.v2, (b) CASIA.v4-distance 
and (c) FRGC. 

(c) 

(a) 

(b) 
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optimized set of parameters. Besides, we used the ground truth masks in the training 

process so that the selected parameters do not have bias on any of the segmentation 

approaches we are comparing. Table 2.4 gives the detailed separation of 

training/testing sets and the optimized parameters for three databases. It can be inferred 

that using the optimized parameters consistently for the log-Gabor filter for each 

database, the only important factor that impacts the recognition performance would be 

the iris segmentation approach.  

The ROC curves for the employed datasets using iris masks from comparative 

approaches are shown in Figure 2.12. From the comparison we can see that the 

experiments using the proposed iris segmentation approach produce better ROC than 

those using other segmentation approaches, clearly for FRGC and CASIA.v4-distance. 

For UBIRIS.v2, the proposed approach also improves the verification rate at lower 

false accept rate (FAR). Above experiments illustrate that the proposed iris 

segmentation approach not only provides the best segmentation accuracy but also 

offers noticeable improvements in the final iris recognition performance. Nevertheless, 

it should be clarify that higher segmentation accuracy does not always constitute to 

better recognition results, as non-iris pixels such as eyelash edge points may also form 

some discriminative patterns, especially when the overall performance is not 

satisfactory, i.e., when it is difficult to sufficiently exploit iris textures.  

C. Execution Speed 

The proposed approach is computationally simpler and highly attractive for online 

applications. Our proposed iris segmentation framework was implemented in Matlab 

2012b and run on a computer with 2GB RAM and a 2.0 GHz Intel Core2 Dual Core 

CPU. The average execution time for three databases is shown in Table 2.5. It is 

reasonable to expect that the execution time can be significantly reduced by 

implementing the code in C/C++ using multiple threading and GPU, etc. Currently no 
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significant efforts were employed to optimization of the code.  

2.4 Summary 

This work has developed a more accurate iris segmentation framework to 

automatically segment iris images acquired under less-constrained imaging 

environment. The proposed approach introduces a new total-variation based energy 

regularizer incorporated with an l1 norm, in which the slowly varying components of 

image structure such as eyelid, limbic boundaries, etc., and the surrounding texture 

and noise are differently penalized. In addition, an efficient solution for the proposed 

energy regularizing formulation is given. Such an approach allows us to reliably 

extract the eye structure for more accurately localizing iris and pupil circles for further 

segmentation. Our work also introduced a series of novel post-processing operations 

that exploit local (but often varying) distribution characteristics to adaptively refine 

pupillary and limbic boundaries. The overall framework has shown to be highly robust 

to achieve significant improvement in segmentation accuracy as well as iris 

recognition performance from publicly available iris databases that are under both VW 

and NIR spectrum. 

The RTV-L1 texture removal approach introduced in this work is not only 

significant for the noisy iris segmentation but can also be potentially employed to solve 

other texture or object segmentation tasks which require removal of accompanying 

Table 2.5: Average computational time of the proposed approach for automated iris
segmentation. 

Databases Execution Time (seconds / image) 

UBIRIS.v2 1.37 

CASIA.v4-distance 1.26 

FRGC 0.88 
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noise. The adaptive local intensity analysis developed in our work has been greatly 

successful in increasing the robustness of the proposed approach under less-

constrained imaging. Such adaptive decision-making strategies can also be effectively 

used in other challenging problems in surveillances and remote sensing that often 

suffer from less stable illumination conditions and unwanted occlusions. The 

framework developed in this work provides robust and effective prerequisite for 

researchers and applications which attempt to perform accurate iris recognition on 

noisy images acquired under less-constrained environment and at-a-distance. 
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CHAPTER 3      

Accurate Iris Recognition Using Deeply Learned Spatially 

Corresponding Features 

3.1 Background 

Automated iris recognition systems have been widely deployed for various 

applications from border control [65], citizen authentication [66], forensic [67] to 

commercial products [68]. The usefulness of iris recognition has motivated increasing 

research effort in the past decades for exploring more accurate and robust iris matching 

algorithms under different circumstances [1, 2, 8-11]. In recent years, deep learning 

has gained tremendous success especially in the area of computer vision, and 

accomplished state-of-the-art performance for a number of tasks such as general image 

classification [58], object detection [59] and face recognition [56] [60]. However, 

unlike face, in the field of iris recognition, in the best of to our knowledge, there is 

almost no attention to incorporate the remarkable capabilities of deep learning and 

achieve superior performance over popular or state-of-the-art iris recognition methods. 

3.1.1 Limitations of Existing Works 

Despite the popularity of iris recognition in biometrics, conventional iris feature 

descriptors have several limitations. The summaries of earlier work in [5] and [50] 

reveal that existing methods can achieve satisfactory performance, but the 

performance needs to be further improved to meet the expectations for wider range of 

deployments. Besides, traditional iris features, such as IrisCode, are mostly based on 

empirical models which apply hand-crafted filters or feature generators. As a result, 

these models rely heavily on parameter selection when applied for different databases 
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or imaging environments. Although there are some standards on iris image format [70], 

the selection of parameter for feature extraction remains empirical, or based on training 

methods such as boosting [71]. This situation can be observed from [16], where eight 

different combinations of parameters for ordinal filters delivered varying performance 

on three databases, or from [26] which employed two sets of parameters for log-Gabor 

filter on two databases by extensive tuning. Another limitation is that due to the 

simplicity of conventional iris descriptors, they are less promising to fully exploit the 

underlying distribution from various types of iris data available today. Learning data 

distribution from large amount of samples to further advance performance is one of 

the key trends nowadays. 

Deep learning has the potential to address the above limitations, since the 

parameters in deep neural networks are learned from data instead of being empirically 

set, and deep architectures are known to have good generalization capability. However, 

new challenges emerge while incorporating typical deep learning architectures (e.g., 

CNN) for the iris recognition, which can be primarily attributed to the nature of iris 

patterns. Different from face, iris pattern is observed to reveal little structural 

information or meaningful hierarchies. Iris texture is believed to be random [72]. 

Earlier promising works on iris recognition [1, 2, 8-10] mainly employed small-size 

filters or block-based operations to obtain iris features. Therefore, we can infer that the 

most discriminative information in the iris pattern comes from the local intensity 

distribution of an iris image rather than the global features, if any. CNN is known as 

effective for extracting features from low level to high level, and from local to global, 

due to the combination of convolutional layers and fully connected layers [61]. 

However, as discussed above, high level and global features may not be the optimal 

for iris representation. 
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3.1.2 Our Work 

We aim to develop a more accurate and robust deep learning based iris feature 

representation framework, making solid contributions towards fully discovering the 

potential of deep learning for the iris recognition. Such objectives have not been 

sufficiently pursued in the literature. In this chapter we propose a new deep learning 

based iris recognition framework which not only achieves satisfactory matching 

accuracy but also exhibits outstanding generalization capability to different databases. 

With the design of an effective fully convolutional network, our model is able to 

significantly reduce parameter space and learn comprehensive iris features which 

generalize well on different datasets. A newly developed Extended Triplet Loss (ETL) 

function provides meaningful and extensive supervision to the iris feature learning 

process with limited size of training data.  

 While most of the contents presented in this chapter have been published in [52], 

in this thesis we extend this work by developing a new end-to-end binary iris feature 

learning mechanism to improve feature robustness as well as theoretical soundness. 

The previous approach adopts an ad-hoc feature binarization step to empirically 

exploit robustness of binary feature for iris recognition. However, such a process is not 

part of the deep network and largely handcrafted, which may lead to reduced 

adaptiveness of the matching process on generalized data. In this paper we combined 

the binary feature representation into training of our deep model so that it can be end-

to-end, which enhances the train/test consistency and improves the recognition results. 

The main contributions of this work can be summarized as follows: (i) We develop 

a new deep learning based iris recognition framework which is highly generalizable 

for operating on different databases that represent diverse deployment environments. 

A new Extended Triplet Loss function has been developed to successfully address the 

nature of iris pattern for learning comprehensive iris features (more details in Section 



 
45 

3.2.2 and 3.3). Significant advancement therefore has been made to bridge the gap 

between deep learning and iris recognition. (ii) Under fair comparison, our approach 

consistently outperforms several state-of-the-art methods on multiple datasets. Even 

under challenging scenario that without having any parameter tuning on the target 

dataset, our model can still achieve superior performance over state-of-the-art methods 

that have been extensively tuned. (iii) We propose a new mechanism to directly learn 

binary iris features from our networks, which ensures the end-to-end property of our 

deep model and achieve further improved results. Such mechanism also provides an 

effective alternative to the solutions to an open research problem in the literature, i.e., 

learning binary hash codes with deep neural network. 

The rest of this chapter is organized as follows: Chapter 3.2-3.4 detail the proposed 

approach in terms of network architecture, improved triplet loss function and feature 

encoding respectively; Chapter 3.5 presents the experimental configurations, results 

and analysis; finally, the brief summary from this work is presented in Chapter 3.6. 

3.2 Network Architecture 

We have developed a highly optimized and unified deep learning architecture, referred 

to as UniNet, for both iris region masking and feature extraction, which is based on 

fully convolutional networks (FCN) [56]. A new customized loss function, named 

Extended Triplet Loss (ETL), has been developed to accommodate the nature of iris 

texture in supervised learning. The motivations and technical details for the proposed 

approach are explained in the following sections. 
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3.2.1 Image Preprocessing 

For all the experiments presented in this chapter, we use a recent iris segmentation 

approach [51] for iris detection, and normalize the iris region pixels from polar 

coordinate system to Cartesian coordinate system using the classic rubber-sheet model 

[7]. The resolution after normalization is uniformly set to 64 512× , which is 

considered as the upper-bound of adequate sizes for the iris images employed in this 

work to avoid information loss, even though some of the images may not support up 

to this scale. We then apply a simple contrast enhancement process, which adjusts the 

image intensity so that 5% darkest pixels and 5% brightest pixels are saturated at low 

and high intensities respectively. The enhanced images are used as input to the deep 

network for training and testing. Figure 3.1 illustrates the key steps of image 

preprocessing. 

3.2.2 Fully Convolutional Network 

The proposed unified network (termed as UniNet) is composed of two sub-networks, 

FeatNet and MaskNet, whose detailed structures are presented in Figure 3.2 and Table 

3.1. Both of the two sub-networks are based on fully convolutional networks (FCN)  

Figure 3.1: Illustration of key steps for iris image preprocessing. 
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Normalization
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Figure 3.2: Detailed structures for FeatNet (top) and MaskNet (bottom) respectively. 
The FeatNet generates a single-channel feature map for each sample for matching. The
MaskNet outputs a two-channel map, on which the values for each pixel along two
channels represent the probabilities of belonging to iris and non-iris regions, 
respectively. 
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Table 3.1: Layer configurations for MaskNet and FeatNet. 

FeatNet 
Layer Type Kernel size Stride # Output channels 
Conv1 Convolution 3 7×  1 16 
Conv2 Convolution 3 5×  1 24 
Conv3 Convolution 3 3×  1 32 
Conv4 Convolution 3 3×  1 1 

Tanh1, 2, 3 TanH activation / / / 
Pool1, 2, 3 Average pooling 2 2×  2 / 

MaskNet 
Layer Type Kernel size Stride # Output channels 
Conv1 Convolution 3 3×  1 16 
Conv2 Convolution 3 3×  1 32 

Conv2_s Convolution 1 1×  1 2 
Conv3 Convolution 3 3×  1 64 

Conv3_s Convolution 1 1×  1 2 
Conv4 Convolution 3 3×  1 128 

Conv4_s Convolution 1 1×  1 2 
Pool1, 2 Max pooling 2 2×  2 / 

Pool3 Max pooling 4 4×  4 / 
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which were originally developed for semantic segmentation [56]. Different from 

common convolutional neural networks (CNN), the FCN does not have fully 

connected layers. The major components of FCN are convolutional layers, pooling 

layers, activation layers, etc. Since all these layers operate on local regions of their 

bottom map, the output map can preserve spatial correspondence with the original 

input image. By incorporating up-sampling layers, FCN is able to perform pixel-to-

pixel prediction. In the following we detail the two components of UniNet.  

z FeatNet 

FeatNet is designed for extracting discriminative iris features which can be used in 

matching. As shown in Figure 3.2, the input iris image is forwarded by several 

convolutional layers, activation layers and pooling layers. The network activations at 

different scales, i.e., TanH1-3, are then up -sampled if necessary to the size of original 

input. These features form a multi-channel feature stack which contains rich 

information from different scales, and are finally convolved again to generate an 

integrated single-channel feature map.  

 The reason for selecting FCN instead of CNN for iris feature extraction primarily 

lies in the previous analysis on iris patterns, i.e., the most discriminative information 

of an iris probably comes from small and local patterns. FCN is able to maintain local 

pixel-to-pixel correspondence between input and output, and therefore is a better 

candidate for the iris feature extraction. 

z MaskNet 

MaskNet is set to perform non-iris region masking for normalized iris images, which 

can be regarded as a specific problem for the semantic segmentation.  It is basically 

a simplified version of the FCNs proposed in [56]. Similar to those in [56], MaskNet 

is supervised by a pixel-wise softmax loss, where each pixel is classified into one of 

two classes, i.e., iris or non-iris. In our practice, MaskNet is trained with 500 randomly 
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selected samples from the training set of ND-IRIS-0405 database, and the ground truth 

masks are manually generated by us. We would like to declare that the main focus of 

this work is on learning effective iris feature representation. MaskNet is developed to 

provide adequate and immediate information for masking non-iris regions, which is 

necessary for the newly designed loss function (will be detailed in Section 3.3) and 

also for the matching process. The placement of MaskNet in the unified network also 

preserves the possibilities that iris masks may be jointly optimized/fine-tuned with the 

feature representations, which is one of our future research goals. At this stage, 

however, MaskNet is pre-trained and fixed during learning the iris features. A sample 

evaluation for its performance is provided in Chapter 3.5. 

3.2.3 Triplet-based Network Architecture 

A triplet network [57] was implemented for learning the convolutional kernels in 

FeatNet. The overall structure for the triplet network in the training stage is illustrated 

in Figure 3.3. As shown in the figure, three identical UniNets, whose weights are kept 

identical during training, are placed in parallel to forward and back-propagate the data 

and gradients for anchor, positive and negative samples respectively. The anchor-

positive (AP) pair should come from the same person while the anchor-negative (AN) 

Figure 3.3: Triplet-based network organization for training. 
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pair comes from different persons. The triplet loss function in such architecture 

attempts to reduce the anchor-positive distance and meanwhile increase the anchor-

negative distance. However, in order to ensure more appropriate and effective 

supervision in the generation of iris features by the FCN, we improve the original 

triplet loss by incorporating a bit-shifting operation. The improved loss function is 

referred to as Extended Triplet Loss (ETL), whose motivation and mechanism are 

detailed in the next chapter.  

3.3 Extended Triplet Loss Function 

In this work we develop a problem-specific loss function for more effective iris feature 

learning. The new function has two versions, one operating on real-valued features and 

the other is for binary feature codes. The reason for developing the binary version is 

that, as indicated by a vast of studies on iris recognition (e.g., [7] [8] [14]-[17]), binary 

features are believed to be more suitable for iris pattern representation and can be 

robust to noise. Hence, an end-to-end deep learning framework which can directly 

learn binary iris features would be worth investigating. In the following we will 

introduce the two versions of the newly developed loss function. 

The original loss function for a triplet network is defined as follows: 

 
2 2

1

1 N
A P A N

i i i i
iB

L
N

α
+=

ª º= − − − +« »¬ ¼¦ f f f f             (3.1) 

where NB is the number of triplet samples in a mini-batch, A
if , P

if  and N
if  

are the feature maps of anchor, positive and negative images in the i-th triplet 

respectively. The symbol +[ ]• is the as same as used in [57] and is equivalent to 

max( , 0)• . α  is a preset parameter to control the desired margin between anchor-

positive distance and anchor-negative distance. Optimizing above loss will lead to the 
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anchor-positive distance being reduced and anchor-negative distance being enlarged 

until their margin is larger than a certain value. 

 In our case, however, using Euclidean distance as the dissimilarity metric is far 

from sufficient. As discussed earlier, we propose using spatial features which have the 

same resolution with the input, the matching process has to deal with non-iris region 

masking and horizontal shifting, which are frequently observed in iris samples as 

illustrated in Figure 3.4. Therefore in the following, we extend the original triplet loss 

function, which we refer to as the Extended Triplet Loss (ETL): 

 
1

1 ( , ) ( , )
N

A P A N
i i i i

iB

ETL D D
N

α
+

=

ª º= − +¬ ¼¦ f f f f             (3.2) 

where 1 2( , )D f f  represents the Minimum Shifted and Masked Distance (MMSD) 

function, defined as follows: 

 { }1 2 1 2( , )= min ( , )bB b B
D FD

− ≤ ≤
f f f f                 (3.3) 

bf  represents a shifted version of f obtained by horizontally shifting it by b pixels, 

and FD denotes the Fractional Distance. The shifted and the original feature maps have 

the following spatial correspondence: 

Figure 3.4: Illustration of occlusions (labeled in blue) and horizontal translation which
usually exist between two normalized iris images even from a same iris. 

Same iris with rotation

Iris normalizationIris normalization
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                   (3.4) 

where ,x y  are the spatial coordinates and bx  is obtained by shifting the pixel to the 

left by a step of b, assuming w is the width of the 2-D feature map. Note that when x 

is less than b, the pixel position will be directed to the right end of the map, as the iris 

map is normalized by unwrapping the original iris circularly and the left end is 

therefore physically connected with the right end. When b is negative, the bit-shifting 

operation would shift the map to the right by –b pixels. The Fractional Distance FD in 

Eq.3 measures the relative difference between two feature maps within non-masked 

regions only and normalize it by the number of involved pixels: 

 1 2 1 2
( , ) ( , )

( , )

1( , ) ( , )x y x y
x y M

FD d f f
M ∈

= ¦f f               (3.5) 

where M is the set common non-masked pixel positions for the two feature maps.  

The choice of the element-wise difference function ( )d <  in (3.5) will depend on 

the version of ETL we use, i.e., real-valued or binary version as mentioned above. In 

the real-valued version, the difference function is set to square of difference: 

 2
1 2 1 2( , ) ( )reald f f f f= −                      (3.6) 

while in the binary version, to measure the fractional Hamming distance, the difference 

will be result of the exclusive-or operation: 

 
1 2 1 2( , )

1, if 0
( )

0, otherwise

binaryd f f f f

f
f H f

′ ′= ⊕

≥­′ = = ®
¯

                    (3.7) 

(3.3) and (3.5) indicate that the new loss function will only evaluate the difference 

between features within non-masked areas and a shifting operation will be performed 

to address the horizontal translation, so that matching of the proposed spatially 

corresponding iris features is meaningful. In the following we will derive the gradients 
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of the proposed ETL in order to perform back-propagation for the learning process. 

The cases of real-valued and binary versions ETL are quite different and therefore we 

will separately proceed. 

3.3.1 Back-propagation for Real-valued ETL 

The components of the real-valued ETL are all differentiable and therefore the 

computation of gradients is quite straightforward. Firstly, in order to maintain 

simplicity of the notations for the upcoming derivation, we denote the offsets that 

fulfill the MMSD of AP-pair and AN-pair as follows: 

 
{ }
{ }

= argmin ( , )

= argmin ( , )

A P
AP b

B b B

A N
AN b

B b B

b FD

b FD

− ≤ ≤

− ≤ ≤

f f

f f
                    (3.8) 

During the back-propagation (BP) of the training process, the gradients (or partial 

derivatives) of the new loss on the anchor, positive and negative feature maps need to 

be computed. For simplicity, let us firstly derive the partial derivative w.r.t the positive 

feature map Pf . From (3.2) it can be derived that for one sample in the batch: 

0,     if 0
1 ( , ) , otherwise

( , )

A P
P

A P P
B

ETL
ETL

ETL D

N D

=­
∂ °= ∂ ∂®∂ ° ∂ ∂¯

f f
f

f f f
          (3.9) 

Again from (3.2) we can see that 0ETL= is equivalent to  

( , ) ( , ) 0A P A ND D α− + ≤f f f f . We only need to show the derivation when ETL is 

not 0. Let us denote the set of common valid iris pixel positions for AP pair as APM , 

from (3.3) and (3.4) we have the following pixel-wise derivatives:  

0,  if ( , )  or 0
( , )( , ) = 2 ( [ , ] [ , ]),  otherwise[ , ] [ , ]

| |
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A P APA P
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x y M ETL
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And apparently 1
( , )A P

ETL

D

∂ =
∂ f f , thus from (3.9) and (3.10). 
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Similarly, for the partial derivatives on the negative feature map, we have: 

0,  if ( , )  or 0
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           (3.12) 

The final step is to calculate the derivatives w.r.t the anchor feature map. It can be seen 

from (3)-(5) that shifting the first map to the left by b pixels is equivalent to shifting 

the second map to the right by b pixels. Making use of this property, we have 

( , ) ( , )
AP AP

A P A P
b bFD FD −=f f f f  and ( , ) ( , )

AN AN

A N A N
b bFD FD −=f f f f . It is 

therefore quite straightforward to obtain from (2)-(4): 

[ , ] [ , ] [ , ]
AP AN

A P N
b b

ETL ETL ETL

x y x y x y− −

∂ ∂ ∂= − +
∂ ∂ ∂f f f

             (3.13) 

After calculating the derivative maps w.r.t Af , Pf  and Nf  respectively, the rest 

of the BP process is the same as for common convolutional neural networks. Above 

derivation shows that gradients will be computed only for pixels that are not masked. 

In this way, features are learned only within valid iris regions, while non-iris regions 

will be ignored since they are not of our interest. After the last convolutional layer, a 

single-channel feature map is generated which can be used to measure similarities 

between the iris samples. 

3.3.2 Back-propagation for Binary ETL 

In the case of binary version of ETL, the only difference with the real-valued version 

is the difference computation function (3.7). The step function ( )H <  generates either 

zero or undefined gradients and therefore it is infeasible to directly apply back-

propagation with gradient descent. This can be connected to an open research problem 
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in the literature, i.e., learning binary feature or Hash codes through deep neural 

networks. Some existing approaches, such as [125] and [126], typically employed 

"smooth" versions of the step function to simulate the binarization process in order to 

achieve compatibility with gradient descent. In this paper, we propose a completely 

different strategy to address this issue, i.e., instead of simulating the step function with 

its "soft" versions, we originally interpret the binarization process as a problem of 

binary classification. Our task is to properly classify each pixel or element in the 

feature maps Af , Pf  and Nf  such that the forward loss ETL computed from (3.7) 

is minimized. 

 Firstly, the forward loss is computed based on (3.2) - (3.5) and (3.7), and then the 

learning will be casted on triplet samples which generate non-zero ETL (thresholded 

by α ). As the forward loss is not able to be back-propagated, we consider the feature 

binarization as classification for binary case, and then a dependent backward loss is 

constructed with the widely used logistic (or sometimes called cross-entropy) loss 

function on each pixel: 

( ) log( ) (1 ) log(1 )clsL f y p y p= − − − −                (3.14) 

where {0,1}y ∈  is the latent target label for the current pixel, p is the probability of 

that pixel being class 1y =  and is estimated with sigmoid function: 

1( )
1 f

p f
e

σ −= =
+

                     (3.15) 

The key issue is that the correct class label y for each pixel is unknown in our case. 

Fortunately, we can make use of the logical relationship among the anchor, positive 

and negative samples in the triplet architecture and infer the desired labels which can 

reduce the forward loss. Assume the feature maps are aligned with (3.4) and a specific 

pixel position is not masked, the ideal case for that aligned pixel position will be 

A P Ny y y= ≠ , so that the anchor-positive distance shrinks and anchor-negative 
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distance grows. We therefore assign the following pseudo-labels to each pixel in the 

anchor feature map: 

( ), if  0ˆ
1 ( ), otherwise

P A P
A

N

H f f f
y

H f

­ >= ® −¯
                (3.16) 

The motivation of the above assignment is simple, i.e., to strengthen the trend that 

anchor has the same binary code with the positive, otherwise make it opposite to the 

negative. Kindly note that the feature values from other branches, i.e., fP and fN, are 

regarded as constants w.r.t the anchor feature fA. With the pseudo-labels, it is well 

known that the derivative of the logistic loss function is: 

1ˆ ˆ
1

A

A A Acls
A f

L
p y y

f e−

∂ = − = −
∂ +

                 (3.17) 

With the pseudo-labels and the resulting derivative, the backpropagation can be carried 

on. Currently in our implementation gradients are only computed for the anchor branch, 

but the weight updates will be merged to three branch networks at each iteration.  

The above optimization strategy does not simulate the step function like other 

approaches, but incorporates the real binarization step into forward and backward 

processes by modelling it as a binary classification problem. A backward classification 

loss which is closely related to the forward target loss ETL is then constructed for 

feature optimization, which can be more effective than numeric simulation that often 

needs to additionally consider a quantization loss and data distribution priors. 

3.4 Feature Encoding and Matching 

For the real-valued features output from UniNet, We perform a simple encoding 

scheme. We perform a simple encoding process for the feature map output from 

UniNet. The feature maps originally contain real values, and it is straightforward to 

measure the fractional Euclidean distance between the masked maps for matching, as 
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the network is trained in this manner. However, binary features are more popular in 

most of the research works on iris recognition (e.g., [1, 2, 8-11, 19]), since it is widely 

accepted by the community that binary features are more resistant to illumination 

change, blurring and other underlying noise. Besides, binary features consume smaller 

storage and enable faster matching. Therefore, we also investigated the feasibility of 

binarizing our features with a reasonable scheme as described in the following: 

For each of the output feature map, the mean value of the elements within the non-

masked iris regions is firstly computed as m. This mean value is then used as the 

threshold to binarize the original feature map. In order to avoid marginal errors, 

elements with feature values v close to m (i.e., | |v m t− < ) are regarded as less reliable 

and will be masked together with the original mask output by MaskNet. Such a further 

masking step is conceptually similar to “Fragile Bits” [53], which discovered that some 

bits in IrisCode, with filtered responses near the axes of the complex space, are less 

consistent or unreliable. The range threshold t for masking unreliable bits is uniformly 

set to 0.6 for all the experiments. The feature encoding process can be demonstrated 

in Figure 3.5. For matching, we use the fractional Hamming distance [8] from the 

binarized feature maps and extended masks. It is observed that using the binary 

Figure 3.5: Illustration of feature binarization process. 
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features does not degrade the performance compared with using the real-valued 

features, and even yield slight improvements in some cross-dataset scenarios, probably 

due to the factors discussed above. 

3.5 Experiments and Results 

Thorough experiments were conducted to evaluate the performance of the proposed 

approach from various aspects. The following sections detail the experimental settings 

along with the reproducible [78] results. 

3.5.1 Databases and Protocols 

We employed the following four publicly available databases our experiments: 

z ND-IRIS-0405 Iris Image Dataset (ICE 2006) 

This database [73] contains 64,980 iris samples from 356 subjects and is one of 

the most popular iris databases in the literature. The training set for this database 

is composed of the first 25 left eye images from all the subjects, and the test set 

consists of first 10 right eye images from all the subjects. The test set, after 

removing some falsely segmented samples, contains 14,791 genuine pairs and 

5,743,130 imposter pairs. 

z CASIA Iris Image Database V4 – distance 

This database (subset) [27] includes 2,446 samples from 142 subjects. Each 

sample captures the upper part of face and therefore contain both left and right 

irises. The images were acquired from 3 meters away. An OpenCV-implemented 

eye detector [76] was applied to crop the eye regions from the original images. 

The training set consists of all the right eye images from all the subjects, and the 
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test set comprises all the left eye images. The test set generates 20,702 genuine 

pairs and 2,969,533 imposter pairs.  

z IITD Iris Database 

The IITD database [74] contains 2,240 image samples from 224 subjects. All of 

the right eye iris images were used as training set while the first five left eye 

images were used as test set. The test set contains 2,240 genuine pairs and 624,400 

imposter pairs. 

z WVU Non-ideal Iris Database – Release 1 

The WVU Non-ideal database [75] (Rel1 subset) comprises 3,043 iris samples 

from 231 subjects which were acquired under different extends of off-angle, 

illumination change, occlusions, etc. The training set consists of all of the right 

eye images, and the test set was formed by the first five left eye images from all 

the subjects. The test set has 2,251 genuine pairs and 643,565 imposter pairs. 

From the above introduction we can observe that the imaging conditions for these 

databases are quite different. Sample images from the four employed datasets are 

provided in Figure 3.6, where noticeable variation in image quality can be observed. 

It is therefore judicious to assume that these databases can represent diverse 

deployment environments. The details on the division of the training set and the test 

Figure 3.6: Sample raw images from four employed databases. 
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set on the four employed databases are provided in Table 3.2. Both the training set and 

the test set are formed with the first X ( X = 25, 10 or 5, shown in Table 3.2) or all of 

the left/right eye images from each of the subjects. If a subject has less than X images 

in the respective database, then all images from this subject will be included. 

During the training phase of our model, the triplet-based architecture introduced 

in Chapter 3.2 requires the input data to be triplet sets (anchor-positive-negative entries) 

instead of single images. Therefore the training images in each of the databases need 

to be presented as triplet entries which are generated from the combinations of images. 

However, enumerating all the possible triplet combinations in the training set will lead 

to high storage and computational complexity, we therefore selectively generate part 

of the possible triplet entries for training, as described in the following: For each 

training set, we firstly enumerate all the possible anchor-positive (genuine) pairs, since 

the numbers of available genuine pairs are relatively small; for each anchor-positive 

pair, we randomly select five negative samples that are from different subjects than the 

anchor subject, and form the anchor-positive-negative triplet. In other words, each 

genuine pair in the training set will generate five triplet entries for training. 

3.5.2 Test Configurations 

We incorporated following two configurations during the test phase for extensive 

evaluation of the proposed model. 

Table 3.2: Summary of the division for training set and test set on the employed 
databases. 

Database Training Set Test Set 
#subjects samples side #images #subjects samples side #images 

ND-IRIS-0405 all 356 first 25 left 9,301 all 356 first 10 right 3,394 
CASIA.v4-

distance all 411 first 25 left 6,840 all 411 first 10 right 3,939 

IITD all 224 all right 1,052 all 224 first 5 left 1,120 
WVU Non-ideal all 231 all right 1,511 all 231 first 5 left 1,137 
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z CrossDB 

In the CrossDB configuration, we use the ND-IRIS-0405 as the training set. 

During testing, the trained model was directly applied on CASIA.v4-distance and 

IITD without any further tuning. The purpose of the CrossDB setting is to examine 

the generalization capability of the proposed framework under challenging 

scenario that few training samples are available. 

z WithinDB 

In this configuration we use the network trained on ND-IRIS-0405 as the initial 

model, then fine-tune it using the independent training set from the target database. 

The fine-tuned network is then evaluated on the respective test set. Being capable 

of learning from data is the key advantage of deep learning, therefore it is judicious 

to examine the best possible performance from the proposed model by fine-tuning 

it with some samples from the target database. The fine-tuned models from the 

WithinDB configuration are expected to perform better than the one with CrossDB, 

due to higher consistency of image quality between the training set and test set. 

It should be noted that left and right irises are regarded as different subjects in this 

work, and in both of the above configurations, training set and test set are subject-

disjoint, i.e., none of the irises are overlapping between the training set and test set. 

All the experimental results were generated under all-to-all matching protocol, i.e., the 

scores of every image pair in the test set have been counted. 

3.5.3 Comparison with Earlier Works 

We present comparative experimental results using several highly competitive 

benchmarks. Gabor filter based IrisCode [7] has been the most widely deployed iris 

feature descriptor, largely due to the fact that few alternative iris features in the 

literature are universally accepted as better than IrisCodes. Instead, the majority of 
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recent works on iris biometrics are more on improving segmentation and/or 

normalization models [51] [11], applying multi-score fusion [26] or feature bits 

selection [53]. In other words, in the context of iris feature representations, IrisCode 

is still the most popular and highly competitive approach, and therefore is definitely a 

fair benchmark for the performance evaluation. IrisCode has a number of advanced 

versions. From the publicly available ones, we selected OSIRIS [54], which is an open 

source tool for iris recognition and its latest version V4.1 was used. It implements a 

band of multiple tunable 2D Gabor filters that can encode iris patterns at different 

scales, therefore is a highly credible competitor. Another classic implementation of 

IrisCode is based on 1D log-Gabor filter(s) [8]. Despite the fact that this 

implementation is considered less competitive nowadays, and is also widely chosen as 

benchmark in a variety of research works (e.g., [17], [51]). Therefore, this approach is 

also investigated here. Apart from the Gabor series filters, ordinal filters proposed in 

[16] can serve as a different type of iris feature extractors to complement the 

comparisons.  

The aforementioned benchmarks have been extensively tuned on target databases 

during testing to ensure as good performance as possible. We iteratively adopted 

possible combinations of the parameters for these approaches on each of the training 

sets within the empirically selected ranges, similar to as in many references (e.g., [8], 

[16] and [26]). The best performing parameters on the training sets were then 

employed on the respective test sets for the performance evaluation. 

z Parameters for IrisCode (OSIRIS 2D Gabor filters): 

A Gabor filter band containing six filters is provided in the original OSIRIS 

implementation [54]. In addition to the default one, we generated five Gabor filter 

bands for tuning this tool to obtain the best performance. Based on [7], a 2D Gabor 

filter for generating IrisCode can be formulated as: 
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2 2

2 2( )
( , )

x y

i xg x y e e ωα β
− +

−=                    (3.18) 

Each set of parameters ( , , )α β ω  can be used to produce two filters which are the 

real and imaginary parts of the complex filter kernel. We apply three sets of 

parameters to form a band of six filters. The five additional Gabor filter bands are 

then generated using the following parameters: 

( , , ) {(3, 1.5, 0.4 ), (5, 1.5, 0.2 ), (7, 1.5, 0.1 )}α β ω π π π∈  

( , , ) {(3, 1.5, 0.4 ), (5, 1.5, 0.3 ), (7, 1.5, 0.2 )}α β ω π π π∈  

( , , ) {(5, 2, 0.3 ), (7, 2, 0.2 ), (9, 2, 0.1 )}α β ω π π π∈  

( , , ) {(3, 2, 0.3 ), (6, 2, 0.2 ), (9, 2, 0.1 )}α β ω π π π∈  

( , , ) {(5, 1.5, 0.3 ), (7, 1.5, 0.2 ), (9, 1.5, 0.1 )}α β ω π π π∈  

z Parameters for IrisCode (1D log-Gabor filter): 

Based on the model presented in [8], two parameters were tuned as follows: 

𝜎/𝑓 (bandwidth over frequency): ranges from 0.3 to 0.6, with a step of 0.05. 

𝜆 (wavelength): ranges from 15 to 40, with a step of 1. 

182 combinations in total.  

z Parameters for ordinal filter based method: 

Based on the model presented in [4], four parameters were tuned as follows: 

n (number of lobes): ranges between {2, 3}. 

s (size of each lobe): ranges among {5, 7, 9}. 

d (distance between lobes): ranges among {5, 9, 13, 17}. 

𝜎 (standard deviation of each lobe): ranges among {1.5, 1.7, 1.9}. 

72 combinations in total.  

The best parameters automatically selected using the above detailed steps are 

provided in Table 3.3. It can be observed that such optimal parameters vary for one 

dataset to another, which underlines the need for selecting parameters for conventional 
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methods according to the imaging environments and the quality of images for different 

databases. In contrast, our CrossDB model is able to deliver stable and satisfactory 

performance on the four public databases without any tuning, as would be shown in 

this chapter later.  

It is worth mentioning that we did not use the original or built-in iris 

segmentation/normalization procedures from OSIRIS and Masek’s 1D log-Gabor 

implementation. Iris segmentation has been shown to have significant impact on the 

recognition accuracy. Therefore to ensure the fairness in the evaluation of proposed 

iris feature representation, we uniformly adopt our previous proposed method in 

Chapter 2 [51] for iris detection and normalization (as this method has shown superior 

results on multiple public databases), and use the output of MaskNet as the iris masks 

for our method and other investigated methods in this part. 

The comparison results for recognition are shown in Figure 3.7 and Table 3.4. 

There are mainly two aspects which can be observed from the results. Firstly, 

significant and consistent improvements from our method over others have been 

shown on all of the four databases, under both WithinDB and CrossDB configurations. 

Such results suggest that the proposed iris feature representation not only achieves 

superior accuracy but also exhibits outstanding generalization capability. Even without 

additional parameter tuning, the well-trained model from our framework is promising 

Table 3.3: Best performing parameters for IrisCode and Ordinal filters on four 
employed databases. 

Method Parameter ND-IRIS-0405 CASIA.v4- 
distance IITD WVU Non-

ideal 
IrisCode  

(2D Gabor - OSIRIS) config. default (iii) (ii) (i) 

IrisCode  
(1D log-Gabor) 

𝜎/𝑓 
𝜆 

18 
0.45 

24 
0.35 

18 
0.4 

15 
0.55 

Ordinal filter 

n 
s 
d 
𝜎 

3 
5 
9 

1.9 

3 
9 

13 
1.7 

2 
7 
5 

1.9 

3 
9 
5 

1.9 
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to be directly used in deployment environments with varying image qualities. The 

relaxation of parameter tuning is apparently a highly desirable property for many real- 

 

 

 

 

 

 

 

 

  

Figure 3.7: ROCs for comparison with other state-of-the-art methods on for
employed databases. Best viewed in color. 

(a) ND-IRIS-0405                   (b) CASIA.v4-distance  

(c) IITD                         (d) WVU Non-ideal  
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Table 3.4: Summary of false reject rates (FRR) at 0.1% false accept rate (FAR) and 
equal error rates (EER) for the comparison. 

 ND-IRIS-0405 CASIA.v4-
distance IITD WVU Non-ideal 

FRR EER FRR EER FRR EER FRR EER 
IrisCode 
(OSIRIS) 3.73% 1.70% 19.93% 6.39% 1.61% 1.11% 13.70% 4.43% 

IrisCode  
(log-Gabor) 3.31% 1.88% 20.72% 7.71% 1.81% 1.38% 11.63% 6.82% 

Ordinal 3.22% 1.74% 16.93% 7.89% 1.70% 1.25% 9.89% 5.19% 

Ours (real-bin) - 
CrossDB / / 13.27% 4.54% 0.82% 0.64% 5.46% 2.83% 

Ours (real-bin) - 
WithinDB 1.78% 0.99% 11.15% 3.85% 1.19% 0.73% 5.00% 2.28% 

Ours (bin) - 
CrossDB / / 14.35% 5.06% 0.77% 0.61% 5.02% 2.69% 

Ours (bin) - 
WithinDB 1.62% 0.93% 10.27% 3.34% 1.01% 0.73% 4.35% 2.23% 
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life applications. An interesting finding is that on IITD database, the CrossDB model 

performs better even than the fine-tuned one. This is possibly because most of the 

images in IITD are with high qualities and less challenging, and its training set is not 

large enough, which causes slight over-fitting problem.  

 Secondly, in most scenarios the binary iris features which are learned end-to-end 

yield slight improvements over the real-valued version that has been binarized in ad-

hoc manner during test phase. Such results ascertain the effectiveness of the proposed 

end-to-end binary feature learning scheme, which is promising for addressing the 

problem of learning to hash with deep neural networks. 

3.5.4 Comparison with Other Deep Learning Configurations 

In order to ascertain the effectiveness of the proposed network architecture for spatial 

feature extraction and the extended triplet loss, we also compared our method against 

typical deep learning architectures that are widely employed in various recognition 

tasks. The tested configurations are introduced in the following: 

(i) CNN+softmax/triplet loss 

CNN+softmax is the most widely employed deep learning configurations in the 

community, such as in [58] and [61]. Besides, CNN+triplet loss is gaining 

increasing popularity after it was proposed in [57], and therefore may also be 

interesting and worth evaluating. For the CNN model, we have chosen the popular 

VGG-16 which has achieved superior performance in face recognition.  

(ii) FCN+triplet loss 

Comparative evaluation has also been performed on using the proposed FCN 

(FeatNet only) and the original triplet loss function without incorporating bit-
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shifting and masking. Such comparison may assert the necessity of extending the 

original triplet loss. 

(iii) DeepIrisNet [38] 

We also compared our method against the recent deep learning based iris 

recognition framework, DeepIrisNet, which reports promising results. This 

architecture actually belongs to the CNN+softmax category, but we separately 

inspected it as it is directly proposed for iris recognition.  Since the original 

model in their paper is not publicly available, we carefully implemented and 

trained the CNN according to all the details in [38].  

 The comparison with aforementioned configurations was performed on ND-IRIS-

0405 dataset, which has the largest number of training images among employed ones. 

The test set is kept consistent during the comparison. Hyper-parameters of the training 

processes for above architectures have been carefully investigated to achieve best 

possible performance. The results on the same test set are presented in Figure 3.8.  

 It can be observed from Figure 3.8 that our newly developed architecture 

significantly outperforms other deep learning configurations. CNN based 

configurations have failed to deliver satisfactory results especially at lower FAR. Such 

Figure 3.8: ROC curves for typical deep learning architectures available in the
literature and our method on ND-IRIS-0405. 
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results support our previous analysis that global and high-level features extracted by 

CNN may not be suitable for iris recognition. The poor performance from FCN+triplet 

loss strongly suggests that it is necessary to account for bit-shifting and non-iris region 

masking when learning spatially corresponding features through FCN.  

3.5.5 Sample Comparison with Commercial System 

In the earlier chapter we have provided reproducible performance comparison with the 

IrisCode and ordinal filter based method. Although these methods are widely cited and 

have shown to offer competitive performance in the literature, it can be interesting to 

provide comparison with some commercial solutions for iris recognition, as they are 

considered to be more suitable and optimized for real-life deployment. We therefore 

performed comparative evaluation using a popular commercial product, VeriEye iris 

recognition SDK from Neurotechnology [55], which released the latest version 9.0 in 

October 2016 and is available with us. The VeriEye SDK accepts original eye images 

(without normalization) as input and has its built-in iris segmentation components. 

Since this software is not open-source for its core functions, we are not able to describe 

its iris segmentation process. Therefore, the comparison results presented in this 

section may not be fully representing the effectiveness of iris feature representation, 

which is the key focus of this work. Instead, it can be a sample reference for overall 

performance evaluation. The results for the comparison are shown in Figure 3.9.  

 As shown in the figure, on ND-IRIS-0405 and WVU Non-ideal databases, 

VeriEye has better genuine accept rates (GAR) at lower false accept rates (FAR), while 

our approach consistently outperforms VeriEye on CASIA.v4-distance and IITD 

datasets. As discussed earlier, the difference in the segmentation process may have 

certain impact on the final recognition results. Besides, VeryEye has a built-in quality 

assessment function that it does not match images with low quality, which may 
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improve its overall performance to a certain extent, while our approach does not 

evaluate image quality at the current stage. Considering above factors, it is judicious 

to believe that our prototype model can already offer highly competitive performance 

compared with the well optimized commercial system.  

3.5.6 Computational Complexity 

The computational complexity of our model has been evaluated in order to address the 

potential concerns on the feasibility for the deployment. Since our FCN does not 

employ fully connected layers, the number of parameters is significantly reduced and 

therefore it is much spatially simpler than conventional CNN based architectures. 

Figure 3.9: ROC curves from our approaches and the commercial product VeriEye
SDK on four databases. 
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Table 3.5 summaries the computational time for feature extraction and the storage 

required by our model, as compared with the CNN based approach in [38]. It can be 

noted that the space and time complexities for our approach are quite small.  

3.5.7 Sample Evaluation for MaskNet 

As mentioned earlier, our key focus is on learning more effective iris feature 

representation. MaskNet is an essential component of UniNet for providing immediate 

and appropriate non-iris masking information to the proposed Extended Triplet Loss 

(ETL) function. In order to assert the adequateness of the masking information during 

the feature learning process, we have performed a sample evaluation of MaskNet. For 

the evaluation benchmark, we use our previously proposed iris segmentation 

framework in Chapter 2 [51] as this method has been published recently and already 

provided comparison with other promising methods in the literature. Similar to as used 

in Chapter 2, the average segmentation error is measured using Equation (2.18), i.e., 

the NICE.I protocol. The difference with [51] is that we measure the segmentation 

error after iris normalization.  

The MaskNet employed in our experiments was trained with 500 randomly 

selected left eye images from ND-IRIS-0405 database, with manually labeled iris 

masks as the ground truth. The test sets for its evaluation are also generated from the 

same database, excluding the training samples. We used the following two sets for the 

testing: (a) 100 randomly selected samples and their ground truth masks manually 

Table 3.5: Summary of number of parameters, model storage size and feature 
extraction time per image, run with Matlab wrapper and C++ implementation, on 
Intel i7-4770 CPU, 16G RAM and Nvidia GTX670 GPU. 

Approach #Parameters Model Size 
(Byte) 

Feature Extraction Time 
GPU CPU 

Ours ~ 110.7 K 1.5 M 7.6 ms 236 ms 
DeepIrisNet [38] ~55,420 K 289.0 M 12.7 ms 335 ms 
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created by us; (b) 792 samples and their ground truth masks which are available from 

a public iris segmentation ground truth database, IRISSEG-EP [22]. The average 

segmentation errors of MaskNet and [51] are shown in Table 3.6.  

The results shown in Table 3.6 suggest that for both test sets, the developed 

MaskNet can achieve superior segmentation accuracy compared with state-of-the-art 

iris segmentation approach. It is therefore reasonable to conclude that MaskNet is able 

to provide appropriate information for identifying valid iris region during the feature 

learning process via ETL.  

3.6 Summary 

This chapter has developed a novel deep learning based iris feature representation 

which can offer superior matching accuracy and generalization capability for the iris 

recognition. The specially designed Extended Triplet Loss function can provide 

effective supervision for learning comprehensive and spatially corresponding iris 

features through the fully convolutional network. Further extension of this work should 

focus on learning more robust iris mask information through the deep networks, which 

is expected to further exploit the spatially corresponding features for more accurate 

iris recognition. 

 

 

 

Table 3.6: Comparison of average segmentation errors from MaskNet and [51]. 

Approach Average Segmentation Error 
Set (a) Set (b) 

MaskNet 5.89% 9.00% 
ICCV’15 [51] 6.73% 11.83% 
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CHAPTER 4      

Deep Learning Based Periocular Recognition Using Explicit 

Semantic Information 

4.1 Background 

Periocular recognition is an emerging biometric modality that has attracted noticeable 

interest in recent years and a lot of research effort has been devoted to advance 

accuracy from the automated algorithms. The periocular region usually refers to the 

region around the eye, although there is no strict definition or standard from research 

bodies like NIST [105]. Periocular recognition is believed to be useful when accurate 

iris recognition cannot be ensured, such as under visible illumination [41], 

unconstrained environment [44] or when the whole face is not available, as illustrated 

from some real-life samples in Figure 4.2. It has also been shown that the periocular 

region is more resistant to expression variations [47] and aging [82] as compared with 

the face. In addition to serving as an independent biometric modality, periocular 

information can also be simultaneously combined with iris [10], [84] and/or face [86] 

to improve the overall recognition performance. However matching periocular images, 

particularly under less constrained environment, is a challenging problem as this 

region itself contains less information than the entire face and often accompanied by 

high intra-class variations along with occlusions like from glasses, hair, etc. 

In recent years, deep learning techniques, e.g., Convolutional Neural Network 

(CNN), have gained popularity for their strong ability to extract comprehensive 

features from the input data, especially for visual patterns. It has demonstrated its 

robustness to the real-life intra-class spatial variations. The CNN has many successful 
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applications like hand-written character recognition [80], object detection [59], large-

scale image classification [58] [81] and face recognition [57] [61] [87], where CNN 

has significantly outperformed traditional methods using handcrafted features or other 

learning based approaches. Therefore we have been motivated to use CNN to achieve 

better performance for the challenging periocular recognition problem.  

4.2 Our Work 

Automated periocular recognition under less constrained environment has shown 

promising performance and underlined the need for further research. Several databases, 

acquired under visible and near-infrared illuminations, have been introduced in the 

public domain [28], [99]-[100] and it can be observed that researchers require/use 

training samples from respective databases, primarily to select or learn best set of 

parameters. The performance achieved on these less-constrained databases is 

encouraging but requires further work. This work attempts to address these two 

   
(a) 

   

(b)                (c)               (d) 

Figure 4.1: Periocular recognition is useful when (a) iris texture is degraded or when 
the faces are covered for (b) protection from environment, (c) during sickness or (d)
during demonstrations or riots [106]. 
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limitations for the automated periocular recognition.  

In addition to successfully investigating the strengths of CNN for the less-

constrained periocular recognition, this work introduces the Semantics-Assisted CNN 

(SCNN) architecture to fully exploit the discriminative information within limited 

number of training samples. The key contributions of our work can be summarized as 

in the following. 

Our approach for periocular recognition using SCNN does not require training 

samples from target datasets, while achieving outperforming results, which is a key 

advantage over state-of-the-art approaches [10] and [47]. In our experiments, the 

SCNN is trained with one database and tested on totally independent/separate 

databases. The testing and training sets have mutually exclusive subjects and highly 

different image quality as well as imaging conditions and/or equipment’s. The SCNN 

architecture can also enable recovery of more comprehensive periocular features from 

the limited training samples. Another key advantage of the proposed method in this 

work is its computational simplicity, i.e., our trained model requires much less 

computational time for feature extraction and matching compared with other methods. 

Unlike earlier works, the trained models and executable files of our work are made 

publicly available [104] so that other researchers can easily reproduce our results or 

evaluate on new databases. Finally, the use of SCNN is not only limited to the 

periocular recognition but can also be useful for general image classification task. By 

attaching branch CNN(s) that are trained with semantic supervision from the training 

data, the SCNN architecture can be easily used to extend and improve existing CNN 

based approaches while limiting the general requirement of increase in training data 

for such performance improvement. The SCNN enables the deep neural network to 

fully learn the training data in conjunction with the semantical correlation and 

therefore can benefit the final classification task, especially when the size of training 
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data is limited to build a very deep network. The structure of SCNN is easy to 

implement, and semantic annotation of the training samples is often included with the 

release of many public databases. 

The work introduced in this chapter has been published as [48].  

4.3 Proposed Methodology 

As discussed earlier, we were motivated to incorporate CNN for the challenging 

periocular recognition problem due to its known ability to extract comprehensive 

feature from image. In this section we will first introduce the theoretical background 

of CNN and the practical architecture of our SCNN model in Chapter 4.3.1, followed 

by detailing the application for the periocular recognition problem in Chapter 4.3.2 

and 4.3.3. 

4.3.1 Semantics-Assisted Convolution Neural Network (SCNN) 

A. Basic Introduction to CNN 

CNN is a biologically-inspired variants of multilayer perceptron (MLP) and well-

known as one of typical deep learning architectures. CNN has shown strong ability to 

learn effective feature representation from input data especially for image/video 

understanding tasks, such as handwritten character recognition [80], large-scale image 

classification [58] [81], face recognition [57] [61] [87], etc. In the following, we will 

briefly introduce the basic knowledge of a typical CNN architecture that is used in our 

and many other work.  

CNN is usually composed of convolution layers, pooling layers and fully 

connected (FC) layers. At the output of each layer, there is often a nonlinear activate 

function, such as  sigmoid, ReLU [79], etc. In our work, we adopt the basic CNN 
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structure similar to AlexNet [81] and is shown in Figure 4.2 (say the periocular 

recognition problem as an example). The input image is passed through several 

convolutional units and then a few fully connected layers. The output of the last FC 

layer with N (number of classes) nodes would represent probabilistic prediction to the 

class labels.  

Each of the convolution units is composed of three components - a convolution 

layer, a max-pooling layer and a non-linear activation function, e.g., ReLU (Rectified 

Linear Unit), as shown in Figure 4.2. For the convolutional layer, each channel of its 

output is computed as: 

( ) ( ) ( )( * )i ij ij j

j

= +¦y b k x                     (4.1) 

where ( )iy  is the i-th channel of the output map, ( )jx  is the j-th channel of the input 

map, ( )ijb  is called the bias term, ( )ijk  is the convolution kernel between ( )iy  and 

( )jx , and * denotes the 2D convolution operation. ( )ijb  and ( )ijk  will be learned by 

back-propagation so that the convolution kernels are trained to extract most useful 

features that are discriminative among different subjects. 

 The pooling layer extracts one maximum or average value from each patch of the 

input channel. In our application, we use max-pooling with non-overlapping patches. 

As a result, the input maps, after convolution, are down-sampled with a scale 

determined by the pooling kernel. The pooling operation aggregates low-level features 
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Figure 4.2: Structure of the employed deep convolutional neuron network. 
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from the input to high-level representation and thus could achieve spatial invariance 

among different samples. 

 At the output of each pooling layer and the first FC layer (e.g., L7 in Figure 4.2), 

we choose the ReLU (Rectified Linear Unit) [79] as the activation function: 

 max( ,0)i iy y′ =                           (4.2) 

The ReLU activation ensures the nonlinearity of the feature extraction process and is 

more efficient for training, compared with the traditional activation functions like 

sigmoid or tanh employed in other approaches [85]. 

The FC layers process the input as in conventional neural networks: 

 i i j ij
j

y b x w= + ⋅¦                         (4.3) 

where jx  is the j-th element of the vectorized input map to the current layer, iy  is 

the i-th element of the output map, which is also a vector. ib  and ijw  are elements 

of the bias and weights to be learned through training. The last FC layer, as usually 

configured in classification problem, is not followed by ReLU but a softmax function: 

 
i

j

y

i y

j

e
y

e
′′=
¦

                          (4.4) 

The use of softmax function in the final output of the network results in a 1 N×  vector 

with positive elements which are summed up to one. Each element then is treated as 

the probabilistic prediction of the class label. The cross-entropy loss function is to be 

minimized, which is formulated as: 

 ( ) log tL y′′ ′′= −y                        (4.5) 

where t is the ground truth label of the training sample. The loss function is minimized 

via back-propagation so that the predictions of the ground truth class of the training 

samples will approach to unity. 



 
78 

B.  Limitation of Contemporary CNN Based Approaches 

A common way to achieve superior performance using CNN based methods is to add 

more layers to make the network deeper and more comprehensive, and/or devote more 

labeled training data because CNN is usually trained in a supervised manner. For 

instance, the famous CNN architecture GoogLeNet [58] has 22 layers and later comes 

the Microsoft’s deep network with 152 layers [89]. Apparently, common researchers 

or companies could hardly afford to train such deep networks due to the lack of enough 

computational power. Also, as the network goes deeper, the need for training data 

grows accordingly, while in many research areas, it is difficult to acquire enough 

labelled training samples like ImageNet [90]. Table 4.1 provides examples of several 

typical deep learning based approaches and their employed training data. In reference 

[61] in Table 4.1, for instance, where the developed CNN is not very deep (nine layers), 

a total of ~200,000 face images from more than 10,000 people were used for training 

to achieve superior performance. However for other popular biometrics modalities like 

iris or periocular, in the best of our knowledge, there is currently no single public 

database with that many images.  

Therefore, we are motivated to improve the performance of existing CNN based 

architecture in another way - to enhance CNN with supervision from explicit semantic 

Table 4.1: Examples of several deep learning based approaches and their required
number of training images. 

Approach Task 
Size of Training Data 

No. of Classes No. of Samples 
CVPR [58] Image classification 1,000 1,281,167 

ICML [91]  Handwritten digits 
recognition 10 60,000 

T-PAMI [92]  Object detection 200 456,567 
CVPR [61] Face recognition 10,177 202,599 
CVPR [87] Face recognition 4,030 ~ 4,400,000 
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information. When human recognizes objects, for example while recognizing a face 

image, one would analyze not only the overall visual pattern but also the semantic 

information, such as gender, ethnicity, age, etc., to judge whether the face image 

belongs to a certain known person. Therefore, it is reasonable to believe that semantic 

information is helpful for the visual identification task. For a CNN that is trained with 

the identity label only, it is possible that the network is already capable of acquiring 

semantic information. For instance, for the well-known deep learning model for face 

recognition, DeepID2+, researchers discovered that although the network was trained 

using subject identities, certain neurons turn out to exhibit selectiveness to attributes 

like gender, ethnicity, age, etc. These semantic attributes contribute to discriminating 

identities [60]. However, such useful semantic information is expected to be implicitly 

learned by the CNN. It is not easy to answer the following questions: 

(1) How many types of semantic information can be acquired? Since the 

discriminative capacity of a certain CNN is limited, we cannot guarantee that all 

the semantic information we prefer to have has already been included. 

(2) To what extent the semantic information can be analyzed by the trained CNN? 

Does it really help in the final identification task, or could it be further improved? 

Above problems arise due to the nature of training popularly employed for the CNN, 

i.e., the loss function is usually only related to the class labels, therefore it is hard to 

reveal how the semantic information can be implicitly acquired. In order to address 

this issue, we propose to empower the CNN with the ability to analyze semantic 

information explicitly. The idea is very simple and illustrated in Figure 4.3. 

C.  Semantics-Assisted CNN 

As illustrated in Figure 4.3, we simply add a branch, which is also a CNN, to the 

existing CNN. The attached CNN is not trained using the identity of the training data 

but the semantic groups. For example, we could train CNN2 using the gender 
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information of the training sample, i.e., let the CNN2 be able to estimate the gender 

instead of identity, and train CNN3 using the ethnicity information. After the CNNs 

are trained, we can combine the output of each CNN in the way of feature fusion. We 

refer to such extended structure of the CNN as Semantics-Assisted CNN (SCNN for 

short). Despite the simplicity of this idea, it can inherently improve the original CNN 

by adding more discriminative power to it, which has been shown from the 

experiments described in Section 3. Theoretically, the SCNN has the following 

benefits:  

z Instead of having the CNN learn the semantic information from the identities in 

an unpredictable and uncontrolled way, SCNN allows us to explicitly recover the 

preferred semantic information that can be helpful for the identification task. As a 

result, the feature representation from the SCNN is accompanied by more reliable 

semantic information that is closer to mechanism in human visual system.  

CNN n – Trained by Semantic Information

CNN 2 – Trained by Semantic Information

CNN 1 – Trained by Identity

Joint 
Feature or 
Prediction...

 

Figure 4.3: Structure of the proposed Semantics-Assisted CNN (SCNN). While first
branch is trained by the label of the intended tasks, other branch CNNs are trained
using different semantic information, then the branches are joint in the end to get a 
comprehensive feature representation or perform score fusion. 

 



 
81 

z The training scheme for SCNN can reuse the same set of training data but just 

labeled in another way than the simple identities. Since the labeling scheme is 

variable, the branches of SCNN learn the training data from different points of 

view, which is equivalent to increasing the data volume without really adding the 

number of training samples. This can relax the constraints on the requirements of 

enormous training data for deep neural networks to some extent, i.e., instead of 

pursuing for superior performance from a single CNN, we enhance the joint 

performance of branches of CNNs with fewer amounts of training data. 

z The SCNN architecture and training scheme is naturally compatible for most of 

the existing CNN based approaches. What we need is just to train some 

independent CNNs with semantic grouping labels and judiciously combine the 

features from multiple CNNs to benefit from such training, as the semantic 

annotations of training samples are also available for many public databases. In 

addition, the architecture of SCNN is highly friendly for parallel computing 

platforms. 

4.3.2 Application for Periocular Recognition 

As discussed earlier, CNN has been successfully used for the face recognition in 

several state-of-the-art approaches [61] [87]. Considering that the periocular region is 

actually a part of face and also presents some structural information (eyebrow, eyelids, 

eyeball, etc.), it is reasonable to expect that CNN can be effective for the periocular 

recognition problem. However, as compared with such related work, we are 

constrained by lack of large-scale periocular databases that are usually required to 

sufficiently train a deep neural network. Therefore we developed and investigated 

SCNN for the periocular recognition problem. 
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A. Network Structure and Supervision Information 

The detailed SCNN structure used for the periocular recognition is shown in Figure 

4.4. In order to examine the impact of adding a branch to an existing CNN, we simply 

designed one branch that is trained with semantic information, denoted as CNN2 in 

Figure 4.4. While CNN1 is like the ones commonly trained with the subject identities 

from the training samples, CNN2 is designated to be trained with the side (left or right) 

and the gender information. More specifically, we labelled the training data as follows, 

also shown in Figure 4.5:  

CNN 2

CNN 1

Feature or 
Score Fusion

10 x 226 x 226

L1
Convolution

10 x 113 x 113

L2
Pooling

+
ReLU

20 x 103 x 103

L3
Convolution

20 x 52 x 52

L4
Pooling

+
ReLU

40 x 46 x 46

L5
Convolution

40 x 23 x 23

L6
Pooling

+
ReLU

1 x 250

L7: Features
Fully connected

+
ReLU

15

15

2

2

11

11
2

2
7

7 2
2

10 x 226 x 226

L1
Convolution

10 x 113 x 113

L2
Pooling

+
ReLU

20 x 103 x 103

L3
Convolution

2

2

11

11
2

2

1 x 200

L5: Features
Fully connected

+
ReLU

20 x 52 x 52

L4
Pooling

+
ReLU  

Figure 4.4: Structure of the employed SCNN for the periocular recognition. 
 

Semantical Annotation

Left Right

Male Female Male Female

Label: 0                       1                       2                       3
 

Figure 4.5: Semantical labeling used in our implantation to train CNN2. 
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0 - Left and Male 
1 - Right and Male 
2 - Left and Female 
3 - Right and Female 

 

The reason for using left/right and gender information is that humans also tend to 

incorporate such judgment by visually inspecting the presented periocular images, 

although such accuracy may not reach a hundred percent. Therefore there is some 

scientific basis to believe that CNN can learn to distinguish above semantic 

information from the periocular patterns and assist in the identification task. Another 

reason for using gender information is that the genders of subjects are often included 

in the metadata of many publicly available datasets, such as UBIpr [100]. Therefore 

we can directly use those labels to train CNN2. Other possible and useful semantic 

information include iris color (light/dark), ethnicity, shape of eyebrow, etc.  

 Using such additional semantic information to supervise the network makes the 

overall architecture and learning process of SCNN similar to multi-label learning [107] 

to some extent. However, the principal difference is that, the introduction of semantic 

labeling in our model aims to assist/supplement the prediction of subject identity labels, 

i.e., they are inequally important, while in traditional multi-label learning, the multiple 

labels are usually in equal positions. In addition, the learning processes of identities 

and other semantic information are separately undertaken to maximally ensure the 

explicitness of semantic learning and compatibility to other CNN based model, while 

in general multi-label learning, features are usually jointly learned for predicting 

different lables. Nevertheless, in spite of the diffrentiation between the identity labels 

and other supportive labels, the  semantic learning process (e.g., CNN2 itself) can 

also be conducted in the manner of multi-label learning alternatively. 
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B. Training Protocol and Data Augmentation 

Among the original training samples, the last sample of each subject is selected to form 

the validation set, which is tested in every certain amount of iterations to observe 

whether the training process is converging in a right direction or not.  

Furthermore, it is observed that the periocular images from the training set are 

well aligned and scaled to a similar level, while the samples from independent test 

   
(a) UBIpr (training) 

   

(b) UBIRIS.v2 (testing) 

   
(c) FRGC (testing) 

   
(d) FOCS (training and testing) 

   
(e) CASIA.v4-distance (testing) 

 
Figure 4.6: Sample images from the databases we used in the experiments. Scale
variance and misalignment are common in the testing environment. 
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datasets and real applications may have misalignments and scale variations. Such 

inconsistency can also be observed from the image samples in Figure 4.6.  

If the deep network is trained with the well aligned and scaled images, it may not 

be effectively generalized to other datasets or data acquired by real applications. In 

order to address such problems, we firstly augmented the training data with a different 

scale to simulate scale inconsistency in the test environment. Then we applied random 

cropping during the training process to ensure that the network can accommodate 

spatial variations among the periocular images. The scale augmentation and random 

cropping process is also illustrated in Figure 4.7. As illustrated in this, each original of 

the image in training set is automatically cropped from its center with a size of 

0.6 0.6w h× , where w and h are its original width and height respectively. The original 

images and its cropped patch are resized to 300 240× , then padded with symmetric 

edges filled with zeroes to a size of 300 300× . So far one original periocular image 

could generate two training samples. As a result, we have 6,270 samples for training 

and 448 samples for validation while training for each side of the periocular images. 

Furthermore, during the training process, each training sample would be cropped by a 

Original Image

w

h

0.6w

0.6h

300

300

240

300 240

Bi-scaling

240

240

240

240

Training

Training

Pre-processed In real-time

Random cropping
 

Figure 4.7: Illustration of scale augmentation and random cropping. Each original
image is augmented to two samples with different scales, and each augmented sample
would be cropped by a smaller window that is randomly placed before entering the
network for each epoch of the training process. 
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240 240×  window randomly placed within the image region before entering the first 

layer of the network. Such randomized cropping process from one training sample 

could produce abundant samples that have randomized misalignments with others. In 

this way, the network can be enforced to learn to extract features that are robust to the 

misalignments. 

C. Visualization of Trained SCNN 

Once the networks have been trained, CNN1 is expected to lock-into features that are 

directly relevant to the subject identities, while CNN2 is expected to analyze the 

features that are more related to side and the gender difference. In order to observe the 

CNN1: 
First convolutional layer (L1) Second convolutional layer (L3) 

 

 
 
CNN2: 
First convolutional layer (L1) Second convolutional layer (L3) 

 

 
 
Figure 4.8: Visualization of the filter kernels from the first two convolutional layers
of trained CNN1 and CNN2 respectively. 
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difference among features extracted by the two CNNs, we have visualized the filter 

kernels from the first two convolutional layers of trained CNN1 and CNN2 in Figure 

4.8.  

 We can visually observe from Figure 4.8 that: 1) Overall both CNNs were not 

trained sufficiently. Compared with convolutional kernels trained with large amount 

of samples (e.g., those in [81]), a number of kernels here remain flat or noisy, for which 

it is less likely to extract useful information. Insufficiently trained network parameters 

usually results in certain levels of over-fitting. 2) Despite the over-fitting concern, the 

convolutional filter kernels of CNN1 and CNN2 are quite different. Critical kernels in 

CNN2 are sharper and present more visual salience, therefore might be more sensitive 

to small texture, edges or corners than the filters in CNN1. This indicates CNN2 can 

provide complementary information that CNN1 was not able to learn due to lack of 

sufficient training data. Although the features extracted by CNN2 are not directly 

related to the subject identities, it is reasonable to expect that those visual features 

could assist CNN1 to form a more comprehensive visual representation of the 

periocular image, therefore help to distinguish different subjects finally. 

4.3.3  Feature Vector and Verification Score Generation 

The CNNs we use are trained in a classification protocol, i.e., the category or identity 

of the input data is known and fixed. Therefore this network can be directly used in 

some classification or identification tasks. However, in biometrics, one-to-one 

matching for probably unseen subjects is the key problem and needs to be evaluated. 

Therefore, we need to generalize the trained model to separated subjects that are not 

included in the training set, and formulate one-to-one matching scheme.  

Similar to [61], we use the output of second last layer (L7 in CNN1 and L5 in 

CNN2) as the feature representation of the input data. While the last layer represents 
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the class prediction during the training process, the second-to-last layer should contain 

the most relevant and aggregated information that can contribute to distinguishing the 

classes or identities. Therefore, it is reasonable to use the output of the second last 

layer as the feature representation and generalize the model to unseen subjects. Once 

we get the layer output vectors, we first normalize them by l2 norm, then apply PCA 

to reduce the dimensionality of the vector. For the SCNN architecture, we simply 

concatenate the two independently normalized output vectors to form a longer vector 

before PCA. In our experiments, the dimension of output vectors after PCA is set to 

80, for both the single CNN and SCNN cases. Then the joint Bayesian scheme [98] is 

utilized to predict the similarity between a pair of feature vectors. The joint Bayesian 

is primarily designed for face verification, in which a face (equivalent to the periocular 

feature vector here) is represented by: 

 f = μ+ ε                             (4.6) 

where f  is the observation, in this work the feature vector after PCA, μ  is the 

identity of the subject, ε  is the intra-class variation. μ  and ε  are assumed to be 

two independent Gaussian variables following ( , )µS& 0  and ( , )εS& 0  

respectively, then the covariance of two observation is: 

 1 2 1 2 1 2cov( , ) cov( , ) cov( , )= +f f μ μ ε ε                 (4.7) 

The joint distribution of a pair of observations 1 2{ , }f f  is considered. Let HI denote 

the intra-person hypothesis indicating that two observations are from the same person, 

and HE the extra-person hypothesis. Under HI, since 1μ  and 2μ  are the same, 1ε   

and 2ε  are independent, the covariance matrix of the distribution 1 2( , | )IP Hf f  is: 

 +
+I

µ ε µ

µ µ ε

ª º
= « »
¬ ¼

S S S
Σ

S S S
                      (4.8) 

On the other hand, under HE, 1μ  and 2μ  are also independent, therefore the 
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covariance matrix has become: 

 +
+E

µ ε

µ ε

ª º
= « »
¬ ¼

S S
Σ

S S
0

0
                      (4.9) 

 With above conditional joint probabilities, the log likelihood ratio which tells the 

difference between intra- and extra-person probabilities can be obtained in a closed 

form: 

 T T T1 2
1 2 1 1 2 2 1 2

1 2

( , | )( , ) 2
( , | )
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where 

 ( ) ( )µ ε= + − +Α S S F G                     (4.11) 
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S S SG F G

             (4.12) 

 The covariance matrix µS  and εS  can be estimated using an EM based 

algorithm as detailed in [98], and the log likelihood ratio 1 2( , )r f f  is used as the 

similarity score in our one-to-one matching scenario. 

4.4 Experiments and Results 

In this chapter we provide the details on the experiments and analyze the results. The 

experimental details on the periocular identification are firstly provided and this is 

followed by details on supporting experiments for the image classification. 

4.4.1 Periocular Recognition 

A. Training and Testing Datasets and Protocol 

We use following publicly available databases for the experiments. Two different 

databases were employed for training the deep neural networks and three separate 
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databases were employed for the testing. 

z UBIpr [100] - for training 

We employed UBIpr periocular database for training the SCNN for the visible 

spectrum. This database originally contains 5,126 images for each of left and right 

perioculars from 344 subjects. However, we are also employing a subset of 

UBIRIS.v2 database [18] for separate test experiments, which has some 

overlapping subjects with the UBIpr database. In order to ensure that subjects of 

training set and testing set are mutually exclusive, we removed these overlapping 

subjects from UBIpr database before we perform training on the network. As a 

result, we only have 3359 periocular images from each of the two sides of 224 

subjects. Such a scale is relatively small as compared with those in the training 

protocols in other typical deep learning work like ImageNet [93] or LFW [94]. 

Therefore, the application scenario is good for validating the ability of SCNN for 

learning comprehensive information from limited size of training data. 

z UBIRIS.v2 [18] 

The UBIRIS.v2 database is primarily released for evaluation of at-a-distance iris 

segmentation and recognition algorithms under visible illumination and 

challenging imaging environment. Since the eye images in this database contain 

surrounding regions of the eye, it is possible to perform periocular recognition on 

the UBIRIS.v2 database. Similar to as in [10], we use a subset of 1,000 images 

from this database that is released in NICE.I competition [21]. This subset 

contains left and right eye images together from 161 subjects that are captured 

from 3m to 8m, bringing serious scale inconsistency. Some images only contain 

the eye region without eyebrow and other surrounding texture which makes the 

task of periocular recognition highly challenging. Some sample images are shown 

in Figure 4.6 (b). 
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z FRGC [28] 

The dataset of Face Recognition Grand Challenge (FRGC) is released by the 

National Institute of Standards and Technology (NIST) and has been primarily for 

the evaluation of new algorithms for the automated face recognition. Similar to as 

in [10], we automatically extracted the periocular region from the original face 

images of FRGC using publicly available face and eye detector [96]-[97]. A subset 

of 540 right eye images from 163 subjects, same as also the ones used in [10], 

were employed in the experiments. Some sample images are reproduced in Figure 

4.6 (c).  

z FOCS [99] - for training and testing 

The Face and Ocular Challenge Series (FOCS) dataset is also released by NIST 

and contains face, ocular images and videos. We employed the 

“OcularStillChallenge1” section, which consists of 4,792 left and 4,789 right 

periocular images from 136 subjects that are cropped from face video clips 

acquired under near-infrared (NIR) spectrum. The periocular samples from this 

dataset, as shown in Figure 4.6, suffer from serious illumination inconsistency and 

misalignments, therefore this dataset is considered as highly challenging. We used 

3,262 left and 3,259 right periocular images of the first 80 subjects to train the 

CNNs and used the remaining images from 56 subjects for testing. Again, such a 

scale of training samples and subjects is small compared with other typical deep 

learning tasks. 

z CASIA.v4-distance [27] 

CASIA.v4 is the first publicly available long-range iris and face database acquired 

under NIR illumination, which is released by the Center for Biometrics and 

Security Research (CBSR) from the Chinese Academy of Sciences (CASIA). The 

full database contains 2,567 images from 142 subjects in single session. The 
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standoff distance of the subjects to the camera is from 3 meters away. Similar to 

FRGC, we used publicly available eye detector [96]-[97] to automatically segment 

left periocular images which are used in our experiments. The first eight samples 

of each subject, excluding a few badly segmented images, were used for the 

periocular matching experiment.  

Above datasets were selected for evaluation because of the availability of periocular 

images acquired under less constrained environments that are close to real world 

scenarios. The selected subsets from FRGC and UBIRIS.v2 contain multi-session data 

and exhibit obvious scale/illumunation variation. Samples in FOCS database suffer 

from significant illumination degradation and misalignment. Images from CASIA.v4-

distance are more consistent than the other three databases, but were acquired at a 

distance and some contain artifacts like glasses and/or hair, therefore also represent 

less constrained scenarios. In addition, networks for visible and NIR spectrums were 

trained separately due to the significant difference between the image properties.  

It is important to clarify that during our (reproducible [104]) experiments, the 

SCNN is tested in totally cross-database manner, i.e., not only the subjects from the 

training and test set sets are totally separated, the databases themselves are independent 

Table 4.2: Summary of the employed databases for training and testing. 

Spectrum Visible Near Infrared (NIR) 
Division Train Test Train Test 

Dataset UBIpr UBIRIS.v2 FRGC FOCS FOCS CASIA.v4-
distance 

Standoff 
distance 4 – 8m 3 - 8m N/A N/A N/A ≥3m 

No. of 
subjects* 224 171 

(19/152) 
163  

(13/150) 80 56 141 (10/131) 

No. of 
images* 

left: 3,359 
right: 3,359 

1,000 
(96/904) 

540 
(40/500) 

left: 3,262 
right: 3,259 1,530 1,077 

(79/998) 

* In the bracket (a/b) means a subjects or images were used for training for methods
[10] and [47] (not for our method), remaining b subjects or images were used for
testing. 
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from training for three sets of experiments. However, the methods we are going to 

compare with, [10] and [47], both require some samples of the target databases for the 

training. In order to compare with the best performance of [10] and [47] as well as to 

ensure the fairness in such comparison, we still divide the target datasets into training 

and testing sets, as summarized in Table 4.2. For example, 96 samples of the first 19 

subjects in UBIRIS.v2 were used to train the models [10] and [47], the remaining were 

used for test as in [10], [47] and also for our method. Such a configuration is highly 

disadvantageous to our methods because the inter-database variance is always a key 

factor for the performance of all learning based methods. However, our method has 

still been able to achieve outperforming results as detailed later. 

We perform periocular matching using the all-to-all protocol, i.e., every image is 

matched to all the other images in the testing set, and all the generated matching scores 

are taken into calculation of the receiver operating characteristic (ROC) curve.  Such 

a protocol is considered to be highly challenging because one bad sample may result 

in several poor genuine scores, which drops the overall matching performance.  

B. Effectiveness of SCNN 

We firstly examine the impact of the added branch that has been trained with the 

semantic information. We have compared the performance of a single CNN, i.e., only 

CNN1 in Figure 4.3, with the performance of the extended SCNN. The results from 

the verification experiments are illustrated in Figure 4.9.  

We can observe from Figure 4.9 that the SCNN consistently achieves better 

performance than that of original or single CNN. This observation suggests that the 

newly added CNN2 which is trained with semantic supervision has been successful in 

contributing to some useful information that is not reinforced in CNN1, and therefore 

improving the overall discriminative power of the network. In theory, we can add more 

branches that are trained with different semantic information (e.g., iris color) to further 
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improve the final recognition accuracy. However, the need for computational power 

would also increase and the trade-off may need to be made according to the 

applications. In our example, since CNN2 shown in Figure 4.4 has a relatively 

simplified structure, the additional training cost is minor. 

C. Comparison with Earlier Work on Periocular Recognition 

We also compared the performance of our approach with state-of-the-art approaches 

[10], [47] on the periocular recognition problem. While [10] is our previous work, we 

have carefully implemented the methods in [47] with the help of the original authors. 

The test protocols were kept exactly the same for different approaches during the 

experimental process and therefore the comparisons of ROC/CMC curves are fair. 

However several factors can be firstly clarified here to ensure clarity in understanding 

the experimental comparisons.  

1) For UBIRIS.v2, we use the 1,000 image set that was employed for the NICE.I 

competition. This subset is the same as was used in [10] but different from the one 

in [47]. In [47], test images were gathered from the full dataset, but only those 

acquired from 6-8 meters were used, while the 1,000 image set in [10] included 

samples acquired from 3-8 meters. Due to the relatively consistent imaging 

distance, the subset used in [47] involves much less scale variance than those in 

[10] and also in this work. As a result, the performance from our experiment using 

exact method in [47] is not reproduced as good as what appears to be in [47] and 

this is reasonable due to the difference in selection of images as explained above.  

2) For FRGC, we also used the same subset as in [10] but different from the one used 

in [47]. As described before, the subset we used contains 540 periocular images 

which were automatically segmented from the original face images and therefore 

may suffer from some misalignment. Moreover, images in this subset were 

acquired from various sessions with certain time lapse and different imaging 
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environments, which increases the difficulty for accurate recognition. However, 

the subset used in [47] only consists of images captured in consistent illumination 

and background in single session, and the periocular regions were manually 

segmented. Therefore, it is also a reasonable explanation for the drop in 

performance in our reproduced results, over the ones shown in [47] using manual 

segmentation.  

3) For FOCS, we used fixed division of training and testing sets as shown in Table 

4.2, while the original setup in [47] used 5-fold cross validation for the entire 

dataset. Although the subsets used in our experiment and their original experiment 

  
(a) UBIRIS.v2                          (b) FRGC 

  
(c) FOCS                      (d) CASIA.v4-distance 

Figure 4.9: ROC curves of the periocular verification using SCNN and comparison 
with single CNN and other state-of-the-art methods for different databases. 
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are not exactly the same, the quality of images is observed to be quite similar. 

Therefore our reproduced result is very close to those appearing in reference [47]. 

The verification results (ROC) for above comparisons are also shown in Figure 

4.9, while the identification results (CMC) are shown in Figure 4.10. It can be observed 

from the experimental results in these two figures that the proposed approach using 

SCNN consistently outperforms the two state-of-the-art approaches.  

In order to ascertain statistical significance of the improvements, we have 

conducted the significance test for the ROC curves using the method described in [83], 

which judges from the area under the curve (AUC). Table 4.3 shows the significance 

level (p-value) of the difference of the SCNN based method over the comparative 

  
(a) UBIRIS.v2                          (b) FRGC 

  
(c) FOCS                      (d) CASIA.v4-distance 

 
Figure 4.10: CMC curves of the periocular verification using SCNN and comparison 
with state-of-the-art methods for different databases. 
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methods [10] and [47]. The results indicate that, by the commonly used confidence 

level of 95%, our approach significantly outperforms these two methods (p-value < 

0.05) on all the employed datasets.  

It may be noted that [47] performed poorly on the UBIRIS.v2 set because it adopts 

the patch based matching scheme while, as explained above, the 1,000-image set of 

UBIRIS.v2 used in our experiment suffers from serious scale variations among the 

samples, which results in significant loss of patch correspondence.  The approach 

from [10] which uses DSIFT features is more robust to scale variance, however the 

extraction of DSIFT feature is especially time consuming.  In contrast, our approach 

not only performs better than both of the baseline approaches on different databases, 

but is also computationally simpler for the deployment using the trained network.  

Table 4.4 presents the summary of the average time required for the feature extraction 

Table 4.3: Results of significance test for comparison of ROCs using method [83]. p-
value indicates the probability of the null hypothesis that two methods have no 
difference statistically. 

Comparison 
p-value* 

UBIRIS.v2 FRGC CASIA.v4-
distance FOCS 

SCNN & TIP’13 [10] < 1e-4 < 1e-4 < 1e-4 < 1e-4 
SCNN & TIFS’15 [47] < 1e-4 < 1e-4 < 1e-4 < 1e-4 

*  The computed z-statistics are too large that the corresponding p-values exceed 
double precision, therefore expressed as < 1e-4. 

 

Table 4.4: Comparison of time required to match two periocular images by different
approaches, from Matlab implementation running on a computer with Linux OS, 16
GB RAM, 3.4 GHz Intel i7-4770 CPU (4 cores) and NVIDIA GeForce GTX 670 GPU.

Approach Major Time Consuming 
Operations 

Matching Time (s) 
GPU CPU 

proposed convolution, matrix multiplication 0.013 0.183 

TIP’13 [10] DSIFT feature extraction, K-
means clustering / 15.478 

TIFS’15 [47] Gabor feature extraction, 
correlation filter matching / 1.441 
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for the considered state-of-art approaches. These tests were performed using the 

Matlab wrapper and C++ implementation running on a computer with Linux OS, 16 

GB RAM, 3.4 GHz Intel® Core™ i7-4770 CPU (4 cores) and NVIDIA® GeForce 

GTX 670 GPU. It can be observed that the proposed approach is much faster due to 

the straightforward architecture and the use of GPU could further reduce the 

computational time. 

4.4.2 Image Classification 

In order to examine that the proposed SCNN architecture is not only effective for the 

periocular recognition but can also be useful for more general problems, we performed 

experiment for image classification on the CIFAR-10 dataset [101].  

The CIFAR-10 dataset contains 60,000 32×32 color images from 10 classes. 

Among these images, 50,000 images are for training and 10,000 are for testing. Figure 

4.11 shows some randomly selected samples from each class. As we can see from 

Figure 4.11, although the number of classes is not large, the intra-class variation is 

significant and the resolution is also smaller, which brings certain challenge for 

classifying those images. The CIFAR-10 has therefore emerged as a popular dataset 

for evaluating image classification algorithms along with others like ImageNet and 

CIFAR-100, etc.  

Since the SCNN is developed to enhance existing CNN based approaches, we 

select a baseline CNN to ascertain the improvement. We adopt the CNN originated 

from Krizhevsky’s cuda-convnet [102], re-implemented and introduced in the Caffe 

tutorial [103]. Although the selected CNN is not the state-of-the-art for CIFAR-10 in 

terms of performance, we chose it because this model is publicly available under Caffe, 

the deep learning framework employed in the work, and it is also quick to train. For 
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Figure 4.11: Sample images from each class of CIFAR-10 dataset. 
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Figure 4.12: The semantical group labelling used in our experiment to train the cuda-
convnet-s. 
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simple annotation, we refer to this network as cuda-convnet. By following the tutorial, 

we can quickly get an accuracy of about 75% on the CIFAR-10 test set.  Then we 

trained a branch CNN to learn the semantic features of the images in CIFAR-10 in 

order to build the SCNN architecture. We define one possible grouping of semantic 

information for the classes in the CIFAR-10 dataset as follows, also shown in Figure 

4.12.  

­
®
¯

 
artificial {  

rectangular, has wheel: (automobile, truck) 
no/invisible wheel: (airplane, ship) 

natural {  
round, short: (cat, dog, bird, frog) 
slim, long: (deer, horse) 

 

With above division, the entire dataset is grouped into four semantical classes. It may 

be noted that this is not the unique or the optimal division, but it is an easy-to-

understand scheme to start with. In order to obtain a branch CNN that was trained to 

acquire above semantic features, we simply duplicate the structure of the base cuda-

convnet but replace the last fully connected layer having 10 neurons with a new fully 

connected layer with four neurons, since the task now is to recognize the four semantic 

groups. We then just repeat, as described in Caffe tutorial, but train the new network 

with newly labeled data. We refer to this new CNN as cuda-convnet-s. Again, above 

configuration is made because of the ease to execute and one has many choices for 

actual applications. We then built an SCNN with the architecture as in Figure 4.13. As 

shown in this figure, we combine the branch CNN and the original one to obtain an 

extended structure. The components highlighted in red are retrained after the 

combination to aggregate the long concatenated features, and this process can be 

considered as a kind of finetuning. Since the number of layers to be retrained is small, 

the finetuning is very fast. Table 4.5 shows the classification results on the test set 

using the original cuda-convnet and the extended SCNN.  

 We can observe from the results that the proposed SCNN can achieve an 
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improvement of 2.11% over the original result. Although this may not be considered 

as a very large improvement, the achieved results reinforce the motivation for SCNN 

is to make solid and consistent enhancement on existing CNN based approaches, 

especially for the scenario when the training data may not be enough to feed a complex 

network.  In the CIFAR-10 dataset, the number of images per class is actually quite 

large and therefore the effect of SCNN is not significant, but it still offers a noticable 

improvement with minor addition in the complexity. Moreover, as discussd above, the 

experimental setup is reproducible and made to execute in a straightforward manner. 

Therefore  it is reasonable to expect certain space for further improvement.   

4.5 Summary 

This chapter has presented automated periocular recognition using CNN with 

Table 4.5: Results of classification on the CIFAR-10 testing set using original existing
cuda-convnet and the proposed SCNN enhancement on the cuda-convnet. 

Approach Accuracy 
cuda-convnet 74.95% 

cuda-convnet-SCNN 77.06% 
 

cuda-convnet

L1 L2 L3 L4 L5 L6

.

.

.

L7
.
.
.

.

.

.

L8 Prediction
to 10 

classes

cuda-convnet-s

L1 L2 L3 L4 L5 L6

.

.

.

L7  

Figure 4.13: The structure of SCNN used in the experiment for CIFAR-10 dataset. The 
cuda-convnet is from the original Caffe tutorial, and the cuda-convnet-s is newly 
trained by the semantic information. 
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outperforming results and significantly smaller complexity. In particular, we proposed 

a robust and more accurate framework for the periocular recognition using the 

semantics-assisted convolutional neural network (SCNN). By training one or more 

branches of CNNs with semantical information corresponding to training data, the 

SCNN is capable of recovering more comprehensive features from the images and 

therefore achieve superior performance. Our experimental results on four publicly 

available databases suggest that the proposed approach can achieve outperforming 

results while requiring much smaller computational time for the matching process. The 

SCNN architecture can also be generalized for other image classification tasks, which 

can improve the performance over the single CNN based approaches. The source and 

executable files of our approach are made publicly available [104] to encourage other 

researchers to easily reproduce our results and further advance research on accurate 

periocular recognition. 

 It may be noted that at the current stage, we decouple the identity supervision and 

other semantic supervision, in order to ensure high level of explicitness of semantic 

learning and compatibility to existing CNN based approaches. However, it is believed 

that a well-designed network structure may explicitly incorporate semantic 

information itself and facilitate efficient training in an end-to-end training manner. It 

will be our future work to investigate improved architecture which enables joint 

learning of semantic information explicitly as well as preserving the network integrity. 
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CHAPTER 5      

Periocular Recognition by Strengthening Attention to 

Critical Regions in Deep Neural Networks 

5.1 Background 

As discussed in Chapter 4, periocular recognition has been receiving increasing 

attention for its promising performance especially under less constrained conditions 

[39] [40]. Periocular region has been validated to be discriminative for different 

persons, and is considered highly effective as an independent biometric modality or as 

supplement to face and/or iris recognition. 

 In spite of usefulness of periocular recognition, matching periocular images 

accurately under less constrained environments remains a challenging problem in the 

community. By reviewing the recent development of periocular recognition algorithms, 

we can conclude that there is still considerable space for the matching accuracy 

improvement in order to meet the need for large scale real applications, and therefore 

further research efforts are necessary to advance state-of-the-art performance for 

periocular recognition. 

5.1.1 Limitations of Existing Works 

Despite the significant and encouraging research progress gained by aforementioned 

studies in Chapter 1.4 as well as the proposed approach in Chapter 4, the performance 

of periocular recognition still needs to be further improved in order to meet the 

expectation for real applications. Besides, existing periocular feature extraction 

methods seldom consider the underlying regional significance that may exist in 

periocular images. In summary, the following aspects require further research in order 



 
104 

to facilitate the performance of periocular recognition: 

z Hand-crafted features and shallow learning models are still in the majority of 

focus for periocular recognition algorithms. Advanced deep learning architectures 

and technologies, whose effectiveness has already been largely ascertained, have 

immense potential but not yet been fully exploited in this area, possibly due to the 

need for large amount of training data; 

z Several studies already revealed the importance of eye and eyebrow regions for 

periocular recognition, but most of existing approaches only consider including 

these regions for the input/acquired images, and little effort has focused on 

emphasizing these regions during feature extraction process. 

Based on the above facts as well as earlier studies on the human visual attention, 

this chapter proposes an attention based CNN architecture for more accurate and robust 

periocular feature learning, under the assumption that eyebrow and eye regions 

preserve higher importance and deserve more attention than the surrounding skin areas. 

As discussed earlier, employing visual attention mechanism may address the regional 

significance for the deep feature extraction and benefit the recognition accuracy [111]-

[114]. Besides, several mechanisms including customized network structure, pair-wise 

training and dynamic data augmentation are adopted to relax the need for training data. 

5.1.2 Our Work 

In this chapter we propose the attention based deep learning architecture, referred to 

as AttNet, for more accurate and robust periocular recognition under less constrained 

environments. The key assumption of our approach is that, the eyebrow and eye region 

are critical for periocular recognition and should attract additional attention for feature 

learning. This is inspired by human perception as well as the recent trend in the deep 

learning community, which suggests that incorporating visual attention to potentially 
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more important regions can significantly benefit the performance for a number of 

image understanding tasks [111]-[114]. As illustrated in Figure 5.1, when human 

performs recognition tasks, salient regions such as eye and eyebrow within periocular 

may provide more discriminative information, and naturally attract more attention than 

the surrounding regions.  

 With such assumption, we develop the explicit attention based deep neural 

network, which incorporates a region of interest detection network and attention 

implication module. The proposed framework is shown to extract more comprehensive 

periocular features with higher discriminative capability. The main contributions of 

our work can be summarized as follows: 1) the proposed approach achieves superior 

accuracy for periocular recognition under less constrained environments with visible 

and near-infrared (NIR) imaging. Extensive experimental results on four publicly 

available databases suggest that our attention based model outperforms several state-

 

？

Human 
Observation

same or different

 

 

Figure 5.1: Illustration of implicit human visual attention while performing
recognition tasks such as periocular verification. Critical regions that can provide
more discriminative information attract more attention, especially for the find-grained 
recognition. 
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of-the-art methods significantly. Such results provide strong support to our assumption 

on the importance of critical regions, i.e., eye and eyebrow, for more accurate 

periocular recognition. 2) We also present a customized loss function, referred to as 

Distance-driven Sigmoid Cross-entropy (DSC) loss. The DSC loss is shown to offer a 

marginal effect for both positive and negative training samples during the verification 

oriented learning, which results in more effective supervision compared with other loss 

functions such as contrastive loss and triplet loss. 

The trained models and source codes of our approach are provided in [116] for 

reproducing our experimental results, so that other researchers can easily follow our 

work for further research progress on periocular recognition. 

The rest of this chapter is organized in the following way: Chapter 5.2 explains 

the methodology of the proposed approach, including the visual attention based model 

and the customized DSC loss function; Chapter 5.3 and 5.4 provide analysis on the 

importance of attention-drawing regions and convergence status of training 

respectively; Chapter 5.3 details the experimental configurations and the analysis on 

the results; Chapter 5.4 draws conclusions of this work and introduces our future 

research goals. 

5.2 Proposed Methodology 

As discussed earlier, the key innovation of our method is the incorporation of attention 

model which draws the network attention to specific region of interest (RoI) during 

feature learning and matching for the periocular recognition. The overall framework 

is illustrated in Figure 5.2. The proposed network structure, referred to as AttNet in 

this work, firstly exploits a convolutional unit (i.e., conv1) for extracting low-level 

features from the input image. The network is then split into two branches, where the 
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first branch process the bottom inputs as usual CNNs, while the second branch 

incorporates RoI information in its intermediate layers (i.e., conv2 and conv4)  so 

that higher attention is imparted to the specific areas of the input periocular image. 

The first branch without utilizing attention mechanism is designed to recover global 

features that a typical CNN can perform, which is able to maintain the robustness of 

the network when RoI information is incorrect, and improve overall performance by 

feature conjunction. The RoI information is provided by a fully convolutional network 

(FCN) [56], i.e., FCN-Peri in Figure 5.2. The detailed layer configuration of these two 

networks are provided in Table 5.1. Kindly note that both networks employed in this 

work are relatively simple compared with popular and very deep architectures such as 

VGG [62] and ResNet [89], considering the availability of training data. Besides, we  

conv1 conv2 conv3 conv4 fc5 (features)

FCN-Peri
RoI

AttNet

loss

loss
width

height

Depth

+

+

conv1 conv2 conv3 conv4 conv4_s

conv2_s

conv3_s

upsample

upsample

upsample

 

Figure 5.2: Architecture of the proposed attention based convolutional neuron network,
referred to as AttNet (top), and the utilized fully convolutional network for specific region
detection, called FCN-Peri (bottom). 
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Table 5.1: Detailed layer configurations for AttNet and FCN-Peri. 

Unit Layer Type #Output 
channels Kernel size Stride 

AttNet 

conv1 

conv1_1 convolution 32 5×5 1 
relu1_1 ReLU / / / 
conv1_2 convolution 32 5×5 1 
relu1_2 ReLU / / / 
pool1 max pooling / 2×2 2 

conv2 

conv2_1 convolution 32 3×3 1 
relu2_1 ReLU / / / 
conv2_2 convolution 32 3×3 1 
relu2_2 ReLU / / / 
pool2 max pooling / 2×2 2 
att2* attention / / / 

conv3 

conv3_1 convolution 64 3×3 1 
relu3_1 ReLU / / / 
conv3_2 convolution 64 3×3 1 
relu3_2 ReLU / / / 
pool3 max pooling / 2×2 2 

conv4 

conv4_1 convolution 64 3×3 1 
relu4_1 ReLU / / / 
conv4_2 convolution 64 3×3 1 
relu4_2 ReLU / / / 
pool4 max pooling / 2×2 2 
att4* attention / / / 

fc5 fc5 fully connected 64 / / 
FCN-Peri 

conv1 
conv1 convolution 16 5×5 1 
relu1 ReLU / / / 
pool1 max pooling / 2×2 2 

conv2 

conv2 convolution 32 3×3 1 
relu2 ReLU / / / 

conv2_s convolution 3 1×1 1 
pool2 max pooling / 2×2 2 

conv3 

conv3 convolution 64 3×3 1 
relu3 ReLU / / / 

conv3_s convolution 3 1×1 1 
pool3 max pooling / 4×4 2 

conv4 
conv4 convolution 128 3×3 1 
relu4 ReLU / / / 

conv4_s convolution 3 1×1 1 

* Two branches of AttNet as shown in Figure 5.2 have the same layer configuration,
but attention layers are only placed in the second branch. 
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adopt the Siamese infrastructure for training the network in end-to-end verification 

protocol, and develop a new compositional loss function which is referred to as 

Distance-driven Sigmoid Cross-entropy (DSC) loss. This new DSC loss has shown to 

offer superior performance than traditional verification oriented loss functions like 

contrastive loss and triplet loss.  

In this chapter, the detailed mechanisms for RoI detection and attention 

implication are explained in Chapter 5.2.1 and Chapter 5.2.2 respectively; Chapter 

5.2.3 presents the newly developed DSC loss function, followed by the details on the 

training and test configurations in Chapter 5.2.4. 

5.2.1 FCN-Peri – Semantical Region Detection 

The key issue for incorporating visual attention model is to identify potentially 

important regions that deserve more attention than other regions during learning. In 

general image classification/understanding, the inference of important regions is often 

jointly learned with the specific tasks [111] [114], as the input data generally involves 

significantly different background information and those regions could not be 

predefined. Such strategies, however, require huge amount of training data with 

sufficient variation to regularize the learning process. For fine-grained tasks such as 

periocular recognition, predefined region detection is preferred [113] as prior 

knowledge about the input images is usually available, so that the learning process can 

be better regularized with limited training data. In our approach, based on human 

perception model, we assume that the regions containing eyebrow and eye are 

relatively important for periocular recognition. Under such assumption, we firstly 

exploit a fully convolutional network (FCN) to detect the eyebrow and eye regions.  

 The FCN employed in our work was firstly proposed for the semantic 

segmentation in [56]. Different from common CNNs, FCN does not contain fully 
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connected layers, and the upsampling layers are utilized to integrate intermediate 

convolutional feature maps at different scales. The spatial correspondence between the 

input image and the output features is therefore maintained to achieve pixel-to-pixel 

prediction. The FCN is supervised by a pixel-wise softmax loss function using 

groundtruth labels. In our approach, we employed a simplified version of the FCN 

proposed in [56] for segmenting eyebrow and eye from background in the input 

periocular image, which we refer to as FCN-Peri. The detailed architecture of FCN-

Peri is illustrated in Figure 5.2 (bottom), which contains about 0.1M parameters. 

 The original FCN in [56] was developed to classify each pixel into one of 21 

 
(a) 

 
(b) 

Figure 5.3: Samples outputs of FCN-Peri for test images with visible (a) and near 
infrared (b) imaging. The black pixels represent predicted background, and the white
and gray pixels identify predicted eyebrow and eye respectively. 
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classes. In our work, eyebrow and eye are regarded as two different classes, and pixels 

in the original input image are to be segmented into three classes, i.e., eye, eyebrow 

and background. We manually labeled the eyebrow and eye regions for about 100 

images from the training sets of visible and near infrared (NIR) data (details of datasets 

are in Section III) respectively as the ground truths to train FCN-Peri from scratch. It 

should be noted that by “eye region”, we refer to the region including the iris, sclera, 

eyelid and eyelash, etc., rather than just the iris region. Figure 5.3 shows several region 

segmentation results from trained FCN-Peri on the test sets. It can be observed that 

the region predictions are quite robust despite that it makes some mistakes for some 

challenging samples. The proposed attention based deep neural network, i.e., AttNet, 

is however expected to be tolerant to such level of errors in a few samples. Also kindly 

note that the networks for visible and NIR spectrums are trained separately. 

5.2.2 AttNet – Incorporating Visual Attention for Periocular 

Feature Learning 

With the detected regions containing eyebrow and eye for an input image from FCN-

Peri, we then incorporate the resulting RoI in AttNet for attention model 

implementation. As shown in Fig. 2, after convolutional units conv2 and conv4, the 

output map from FCN-Peri indicating eyebrow and eye positions is utilized to adjust 

the convolutional features. There is no standard procedure for accomplishing attention 

in deep neural networks. Some methods use the RoI for affine transformation and 

alignment [112], while others consider bluring/masking the background for the input 

images or intermediate features [114], or feed cropped areas into multiple deep 

networks [113]. In our approach, we apply a straightforward yet effective mechanism 

for emphasizing important areas inferred by FCN-Peri, i.e., increasing the magnitudes 

of the convolutional features within the RoI and decreasing those outside the RoI. 
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More specifically, an attention layer is placed after a convolutional unit and performs 

the follow operation:  
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                     (5.1) 

where R is the set of x-y coordinates where the current position is considered as RoI, f 

is the convolutional feature map from the previous layer, ′f  is the processed feature 

map before entering the next layer, and α  is a positive parameter controlling the 

intensity of adjustment. It was empirically fixed to 5 for all our experiments. Such 

operation attempts to simulate human visual attention by weighting the features within 

the RoI more than those in the background for the subsequent layers of the network. 

The feature adjustments for eyebrow and eye are separately performed, each on half 

of the channels of the feature maps respectively, as these two regions present quite 

different characteristics. We selectively incorporate such attention mechanism for 

conv2 and conv4 to account for both low-level and high-level convolutional features. 

Since conv1 is shared by the RoI-aware and common branches, conv2 is therefore 

more appropriate to incorporate for the low-level attention. On the other hand, conv4 

is right before the fully connected layer fc5 (i.e., the layer generating feature vectors) 

and is also judicious to be selected to impart high-level attention. Figure 5.4 visualizes 

the effect of the employed attention model for the features from the two convolutional 

units. It can be observed that the background features which do not belong to the RoI 

“fade” after the operation by attention layers. In this way, the foreground features make 

more impact on the feature extraction process by subsequent layers. Although simply 

increasing the feature magnitudes inside the RoI may not be an optimal approach to 

incorporate visual attention, it is a reasonble and easy-to-implement scheme to achieve 

key objective of our research, i.e., to investigate and evaluate the importance of eye 

and eyebrow regions to advance periocular recognition through the deep periocular 
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feature extraction.  

5.2.3 Distance-driven Sigmoid Cross-entropy (DSC) Loss for 

Verification Oriented Supervision 

We adopt Siamese-like pair-wise network infrastructure for training our AttNet, i.e., 

instead of classifying a single image into a standalone class, a pair of images are jointly 

evaluated to predict whether they belong to the same class or not. Such configuration 

is illustrated by Figure 5.5. Contrastive loss [115] or triplet loss [57] are often used for 

the pair-wise training. Compared with the classification training protocol which 

usually uses a softmax loss function for supervision, the pair-wise protocol is closer to 

the verification problem (one-to-one matching) which is a fundamental application 

scenario for most biometric systems. A classification based model, in contrast, may 

conv1 conv2 attention 
layer conv3 attention 

layerconv4

Image

RoI  

Figure 5.4: Visualization of convolutional features from intermediate layers before and
after attention layers. Attention layers increase the feature values within the RoI, and
meanwhile decrease those in background. Feature maps of different scales are
upsampled to the same size for better illustration. 
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require additional transfer learning to make itself more effective and scalable, such as 

in [57]. Besides, the pair combination from training samples introduce more data 

variation, which is believed to reduce the overfitting of trained model. In the following, 

we present a brief introduction to conventionally used loss functions for the pair-wise 

training, followed by our newly designed DSC loss function.  

A. Conventional Verification Oriented Loss Functions 

The conventional contrastive loss function for training Siamese network is formulated 

as follows: 

 2 2(1 ) max(0, )conL td t m d= + − −                    (5.2) 

where t is the label of the current pair, i.e., t=1 if the two samples come from a same 

class and t=0 otherwise, and d is simply the Euclidean distance between the two input 

feature vectors Xf  and Yf : 

weight sharing

CNN

CNN

fx

fY

L(fx , fy)

 
 
Figure 5.5: Illustration of Siamese architecture for training CNN in verification
protocol. Two identical CNNs are placed in parallel to process a pair of samples.
Specific pair-wise loss function (e.g., contrastive loss) is employed to supervise the
training, and the weights (parameters) of the two networks are kept the same (weight
sharing) during the entire training process. 



 
115 

 2X Yd = −f f                          (5.3) 

m is a preset margin for regularizing the distance from a negative pair (i.e., a pair for 

samples from different classes). The contrastive loss is designed to reduce the distance 

between a positive pair as a quadratic energy term, while for negative pairs, the 

distance between a negative pair would be increased until it exceeds the hard margin 

m. The effect of m is to force the network to concentrate on relatively challenging 

negative pairs only. However, there is no regularization on the positive pair samples. 

As the training progresses, more and more negative pairs do not produce any losses 

due to the hard margin, while all the positive pairs still have continues impact on the 

backpropagation. This causes unbalanced training for positive and negative pair 

samples. 

 The above side effect is to some extent alleviated by triplet loss, which can be 

considered as a variant of contrastive loss. Instead of evaluating a simple pair, the 

triplet loss composes positive and negative pair into a triple structure, and measures 

the loss by: 

1 2 1

2 2

2 2
max( ,0)tri X X X YL m′= − − − +f f f f               (5.4) 

where 
1Xf  and 

2Xf  are features from a same class while Yf  is extracted from 

another class. Different from contrastive loss, which uses an absolute margin to 

regularize negative pairs, the triple loss relies on a relative margin m′  to enlarge the 

difference between the positive pair distance and negative pair distance. In this way, 

the balance of positive and negative pair samples is always retained during the training 

process. Verification oriented applications, however, mostly use an absolute value as 

threshold instead of relative margin for decision making, and therefore slight 

inconsistency exists between the training process supervised by triplet loss and the 

actual test (matching) process.  
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B. Distance-driven Sigmoid Cross-entropy (DSC) Loss 

In order to address the above limitations, in this chapter we introduce a customized 

compositional loss function called Distance-driven Sigmoid Cross-entropy (DSC) loss. 

Given the distance d between a pair of features to be evaluated, we firstly perform 

following mapping on it: 

 2s b ad= −                             (5.5) 

 1
1 s

p
e−=

+
                            (5.6) 

where a and b are positive constants which are used for linear transformation on the 

square of the Euclidean distance, p is obtained by a sigmoid function on the 

transformed s and can be regarded as the probability that the two samples come from 

a same class. The motivation of using sigmoid function is that it maps any real value 

into (0, 1), and varies significantly near zero but much slower at two ends. Such 

property essentially enables a kind of soft margins for the low and high values of s. In 

this way, the learning process for both positive and negative pairs can be regularized, 

so that it mainly focuses on challenging samples with s values near zero. The loss for 

the obtained probability p is then measured by the cross-entropy function: 

 [ log (1 ) log(1 )]DSCL t p t p= − + − −                  (5.7) 

The sigmoid cross-entropy loss is widely used when the task is to predict probabilities 

of certain events. In this case, we regard our task as predicting the probability of a 

binary event – same class or different classes. Different from common approaches 

which feed a single neuron output spanning over ( , )−∞ +∞  into the sigmoid function, 

we originally map the Euclidean distance d to a term s that spans over ( , ]b−∞ , then 

transfer to approximated probability p. The constant b should be selected such that its 

sigmoid value 1/ (1 )be+  is very close to one. Such transfer is the key to the new DSC 

loss function which utilizes the soft margins of sigmoid function in a straightforward 
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way. 

 Figure 5.6 demonstrates the comparison of the newly developed DSC loss function 

and conventional contrastive loss function w.r.t d, for both positive (t = 1) and negative 

(t = 0) cases. It can be clearly observed that for negative cases the two losses have 

similar distribution that, when d is greater than certain values, the losses approach to 

zero. Such marginal effects make sure that the learning process does not waste energy 

on unchallenging negative pairs that already have large distance. For positive cases, 

however, notably different characteristics are presented by the two losses. The 

contrastive loss simply evaluates the distance with a quadratic term, which results in 

the fact that unchallenging positive samples would have continuous impact on the 

learning process. In contrast, a number of negative samples would be ignored due to 

the hard margin m. Such imbalance may mislead the training process to focus too much 

on positive samples, even for unchallenging ones. On the other hand, our DSC loss 

provides a (soft) marginal effect for positive cases as well, i.e., when d is in certain 

small range, it produces a loss close to zero. Such minor loss values indicate that the 

current samples are typically unchallenging, and they do not generate noticeable 

DSC loss

contrastive
loss

t = 0 t = 1

soft margin

 
Figure 5.6: Comparison of DSC loss (a = 1, b = 4) and conventional contrastive loss
(m = 2) with respect to d. The DSC loss provides a (soft) margin for positive cases (t
= 1) which achieves better regularization for genuine pairs, such that the learning
process mainly focuses on challenging samples. 
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gradients for the backpropagation of the training process. In this way, the learning 

keeps focusing on challenging samples, for both positive and negative cases, to 

maximally increase the discriminating capability of the network.  

As would be shown from the experiments in Chapter 5.3.3, the proposed DSC loss 

contributes to better discriminating power than conventional contrastive loss and 

triplet loss, especially for lower false acceptance rates. 

5.2.4 Training and Test Configuration 

In order to improve the network generalizability and feature effectiveness, we have 

adopted several commonly used data augmentation techniques for the training process, 

as well as feature composition during the matching phase. These measures are 

explained in the following. 

A. Training Data Augmentation 

All the training images are resized to 300×240 in advance. Besides, we have performed 

several on-the-fly image augmentation approaches which are commonly adopted in 

various deep learning studies and proven to help improving the performance. These 

approaches are randomly applied before each image is fed into the network, and are 

described in the following: 

z Scaling – There is 80% probability for each image to be enlarged, with a factor 

randomly drawn from a uniform distribution over (1, 1.3). 

z Cropping – Each image is cropped with a window of 240×240 that is randomly 

placed across the entire image region. 

z Color/intensity jittering – For an RGB image (visible imaging), a color 

augmentation method called Fancy PCA as described in [88] is applied. For a 
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grayscale image (NIR imaging), a random value drawn from (0, 0.02)& �is 

added to its pixel intensities to simulate illumination variation. 

Above random parameters are drawn once for each image in the mini-batch during the 

training process. When a same image appears again in a later iteration, the parameters 

will be randomly drawn again to create a different variant of that image. In this way, 

one source image can produce a good amount of different versions without consuming 

much of the storage space. Such augmentation measures can effectively reduce the risk 

of over-fitting when training deep neural networks, especially when the number of 

training samples is not very large. 

B. Test Feature Composition 

As mentioned earlier, our network model accepts 240×240 square image as the input. 

On the other hand, the source periocular images used in our experiments have 

rectangular aspect ratios close to 5:4. During the test phase, we adopt feature 

composition similar to [61] and [62], to make our model adaptive to (slightly) different 

resolutions / aspect ratios, and also to obtain multi-scale feature representation. The 

composition process is described sequentially in the following: 

a) The input image is resized to w×240, where w is larger than 240 and subject to the 

image’s original aspect ratio.  

b) The resized image is cropped with three 240×240 windows that are placed on the 

left end, center and right end of it respectively.  

c) The resized image is enlarged with a factor of 1.2, then another 240×240 window 

is placed in the center of it, to create the fourth cropped version. 

d) Four cropped versions are fed into the network separately, each generating a 128-

D feature vector. These four vectors are then concatenated into a 512-D vector for 

the matching.  
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The Euclidean distance between two vectors is regarded as the dissimilarity score. 

Above feature composition process can cover the entire image region and account for 

the multi-scale feature representation to certain extent. 

5.3 Analysis on Region Selection 

In this section we will investigate the reasonableness of the pre-defined regions for 

visual attention enhancement. As mentioned before, we select eyebrow and eye as the 

RoI mainly due the following two reasons: 

a) Inspired by human perception, eyebrow and eye regions will attract most of 

attention when humans observe periocular images. Kindly note that many 

machine learning / deep learning algorithms are inspired by human perception / 

behaviors, including neural networks, reinforcement learning, long-short term 

memory (LSTM) and also the referenced attention models in this paper.  

b) The importance of eyebrow and eye characteristics for periocular recognition has 

been ascertained by a number of earlier research works [41][42][47][84][124], 

where excluding or masking eyebrow or eye regions will lead to performance 

degradation in most cases. 

In order to statistically ascertain the effect of selecting these areas for attention 

enhancement, we have attempted training different versions of AttNet by adjusting the 

feature weights α  in Equation (1), detailed as follows: 

- Eye + Eyebrow: eye eyebrow 5α α= =  

- Eye only: eye eyebrow5,  1α α= =  

- Eyebrow only: eye eyebrow1,  5α α= =  

- No attention: eye eyebrow 1α α= =  

The above settings enable preliminary investigation into the effect of selected 
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regions for attention enhancement on the recognition results. Comparative study was 

performed on the UBIPr database and the results are shown in Figure 5.7. It can be 

observed that with explicitly enhanced attention on eye and eyebrow regions 

simultaneously can mostly benefit the recognition accuracy. Emphasizing eyebrow 

region separately yields higher improvement than focusing on the eye region only. This 

is probably because the eyebrow characteristics are more stable and resistant to 

illumination variation, eyeball movement, etc. The above observations have validated 

the positive effect of incorporating visual attention within the detected eyebrow and 

eye regions during deep feature extraction for more accurate periocular recognition. 

5.4 Analysis on Training 

The effectiveness of training is a key aspect to consider for deep learning based 

approaches, which is related to a number of factors such as the classification task, 

network complexity, volume of training data and learning algorithm. Compared with 

   

Figure 5.7: Comparison of different weights on the selected regions of interest for
attention incorporation. 
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typical deep learning solutions on ImageNet classification [58][89][110], semantic 

segmentation [56], etc., one of the most critical challenges when researchers explore 

deep learning’s potential on biometrics may lie in the availability of labeled training 

data. Insufficient training data may cause severe over-fitting, i.e., the model fits too 

well on the small scale of training data but is not able to properly classify test data 

which was unseen during training phase. In this section, we perform analysis on the 

training processes of AttNet and FCN-Peri to validate that our models are adequately 

trained and the level of over-fitting is within acceptable range. 

5.4.1 Training of AttNet  

There is no definite conclusions so far about the minimum required number to properly 

train a CNN for classification purpose. Generally, it is accepted that when there are 

more parameters to learn and the problem is more complicated, the required amount 

of training data will be larger in order to avoid over-fitting. A practical way is to refer 

to some typical architectures and the training configuration which have been widely 

adopted by researchers/developers in the literature. Table 5.2 presents the summary of 

scale of our networks as well as some existing architectures for different classification 

tasks.  

Table 5.2: Comparison of network configurations for our work and other typical
architectures. 

Architecture Problem #Classes #Param. # Train 
Images 

AlexNet [88] Image class. 1,000 60M ~1M 
VGG-16 [62] Image class. 1,000 138M ~1M 

ResNet-152 [89] Image class. 1,000 60M ~1M 
DeepIrisNet [38] Iris recog. 356 138M ~30K 

PRWIS [123] Periocular recog. 518 248M ~8K 
AttNet Periocular recog. 224 7.7M ~3K 

 
FCN [56] Semantic segm. 21 134M ~8K 
FCN-Peri Semantic segm. 3 0.1M 100 
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It can be implied from the table that: (1) Our network is much smaller than other 

typical network architectures in terms of parameter scale, and it is therefore reasonable 

to assume that the required number of training samples should be less than other 

examples in the Table 5.2. (2) For general image classification such as [88] and [89], 

dramatic intra- and inter-class variation exists and large volume of training data should 

be applied for sufficient learning; On the other hand, for typical biometric problems 

such as iris and periocular recognition, relatively small amount of training samples 

was employed but promising results can still be obtained. This is probably because 

smaller inter-image variation for biometric recognition may not require that many 

training samples to supply over-complicated information. The periocular recognition 

problem discussed in this paper belongs to the latter. Considering the above two factors, 

our configuration for training the small AttNet with about 3,000 (on UBIPr dataset 

which will be detailed in the next section) images should be reasonable.  

 In order to statistically examine the convergence condition of our configuration, 

we vary the number of training samples to train AttNet on UBIPr database for several 

   

Figure 5.8: Learning status of AttNet with different number of training samples (NS). 
With NS no less than 1,000, test loss converges to a stable level. Train losses with
different NS are similar and therefore only one is plotted for clarity. Best viewed in 
color. 
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times and observe the convergence status. The results are shown in Figure 5.8. It can 

be observed that employing several hundreds of training images may easily cause over-

fitting as there is a large gap between the train loss and the test loss. However, when 

the number increases to 1,000 or above, test loss converge to similar level and the gap 

becomes smaller. Note that it is difficult to totally eliminate the gap for most deep 

learning approaches. The above results indicate that the actual configuration we 

applied in this paper, in which approximately 3,000 images were used for training 

AttNet, is practically appropriate for sufficient training.  

5.4.2 Training of FCN-Peri 

The case of training an FCN for semantic segmentation is quite different from training 

a CNN for image classification. Semantic segmentation (e.g., detecting eyebrow and 

eye regions in this paper) is a task of pixel-wise classification, rather than entire image 

classification. In other words, with semantic segmentation, each pixel in the input 

image is classified into one of several pre-defined classes. Therefore, analysis on the 

number of training samples, or data points, should be casted at pixel level instead of 

image level. However, not all the pixels should be considered as independent data 

points, as adjacent pixels will have highly redundant information. The concept of 

receptive field can help to more scientifically estimate meaningful data points in an 

image when training FCN. 

 In single or multiple regular convolution/pooling operations, one output element 

or pixel is computed from a certain region in the input image/map, and this region is 

referred to as the receptive field. For example, with one convolutional layer in 

CNN/FCN having a 3×3 kernel, the receptive field is 3×3. With two such convolutional 

layers, the receptive field from input to output is 5×5. can illustrate the concept. Since 

FCN mainly comprises convolutional layer and pooling layer, each output 
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element/pixel is determined by a patch from the input rather than the entire image. We 

can therefore compute the receptive field of FCN-Peri first to estimate the approximate 

number of non-redundant data points available in the training process. 

 The receptive field can be computed in a top-down manner to identify the region 

at bottom layer determining one pixel at the topmost layer. Following the longest path 

from input to output in FCN-Peri, the process is illustrated in the following:  

Layer Kernel, 
Stride 

Receptive 
Field 

output - 1×1 
upsample×3 - 2×2 

conv4 3×3, 1 4×4 
pool3 4×4, 4 16×16 
conv3 3×3, 1 18×18 
pool2 2×2, 2 36×36 
conv2 3×3, 1 38×38 
pool1 2×2, 2 76×76 
conv1 5×5, 1 80×80 

 

The result indicates that each output pixel of FCN-Peri is determined by a patch 

of 80×80 from the input image. We can roughly assume that two patches can be 

1x1

33

33 5
5

Conv. 
3x3

Conv. 
3x3

   

Figure 5.9: Illustration of receptive fields. Through one or more convolutional or
pooling layers, each output neuron in the top layer is determined by a patch in the
bottom/input layer. 
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considered as independent data points when the overlap between them is no less than 

25% (otherwise the information will be highly redundant). As a result, a 300×240 

image we used as input can provide approximately 108 (9×12) non-redundant data 

points. As discussed earlier, we have labelled about 100 images for training FCN-Peri, 

generating approximately 10,000 data points for learning classification of three classes 

(i.e., eyebrow, eye and background). On average, about 3,000 training samples per 

class are available for training. Note that network is more than 1,000 times smaller 

than the original FCN as revealed from Tab. 2, which suggest that the number of 

available training samples should be sufficient. In fact, the segmentation results on test 

data shown in Fig. 3, which were visually appropriate, can also validate that our FCN-

Peri has been properly trained. 

5.5 Experiments and Results 

Thorough experiments have been performed to evaluate the proposed approach from 

various perspectives, and comparisons are made with several state-of-the-art methods. 

All of our experimental results are reproducible via [116]. We have conducted two 

sessions of experiments, which focuses on Open-World problem and Closed-World 

problem respectively. In this chapter we detail the problem definition, experimental 

configurations as well as observation and analysis on the results. 

5.5.1 Open-World vs. Closed-World Verification 

The open-world problem refers to the configuration that the subjects to be enrolled 

into the gallery in the deployment process may be unseen during the training phase. 

On the other hand, the closed-world problem has a constraint that all the subjects to be 

recognized in the deployment process are already known during the training phase.  

 The open-world problem is apparently more challenging but closer to the real 
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deployment environments for most applications, such as citizen authentication, general 

access control and searching for missing people, as it is impractical for these systems 

to collect data from all possible subjects in advance during training/development phase. 

The closed-world setting may result in higher recognition accuracy as more precise 

data adaptation can be achieved during training, but the system may be less scalable 

for the deployment, which is also clarified by [123]. 

 It should be clarified that the approached presented in this paper, especially the 

newly developed DSC loss function, are proposed for the open-world problem. 

However, we noticed that some recent method and contest [118] [123] in the literature 

focus on closed-world problem only, and therefore we investigate the performance 

under both settings. 

5.5.2 Baseline Methods 

Several state-of-the-art methods, i.e., SCNN proposed in Chapter 4 [48], [10], [47] and 

[123], are selected as baselines to evaluate the performance of proposed approach. 

These methods are selected as baselines because they focus on the same problem with 

us, i.e., less constrained periocular recognition under either visible or NIR imaging, 

and report state-of-the-art performance on multiple datasets in the recent years and 

with judicious theoretical significance. Kindly note that methods [10], [47], [48] and 

also ours are adaptive to the open-world setting, while [123] is only developed for 

closed-world setting as clarified in their paper.  

5.5.3 Datasets and Protocols 

We employ six publicly available databases for the experiments. Four of them are 

acquired under visible spectrum while the other two are with NIR imaging. While four 

of these databases have been introduced in Chapter 4.4.1, two of them are newly 
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included or with new training/test protocol applied, which are detailed in the following: 

z UBIRIS.v2 [18] 

 As introduced earlier, this dataset is released for noisy iris recognition under visible 

spectrum. The full set contains 11,101 eye images from 518 subjects, which are 

acquired from 3-8 meters away. In this chapter, experiments on this dataset is mainly 

set for closed-world verification and comparison with method [123], but will also 

attach open-world results for comparative study. In the closed-world setting, 80% of 

images from all 518 subjects are used for training and the remaining 20% are selected 

for testing. In the open-world setting, images from the first 400 subjects are used for 

    
(a) UBIPr 

    

(b) FRGC 

    
(c) FOCS 

    
(d) CASIA.v4-distance 

    
(e) UBIRIS.v2 

    
(f) VISOB 

Figure 5.10: Sample images from the employed databases, which present noticeable 
pose, illumination variation and occlusions due to the less constrained imaging
environments. 
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training while the remaining are used for testing.  

z VISOB [118] 

This competition dataset comprises ocular images captured with three different 

smartphones under three illumination conditions. The Visit-1 involves 550 subjects 

and was released for algorithm development. The Visit-2 has images from 290 subjects 

and was used for performance evaluation in the competition. Kindly note that the data 

we acquired from the competition organizer only contains Visit-1, and therefore our 

experimental results were obtained on Visit-1 only and should not be directly 

compared with the published ranked methods in [118]. Closed-world setting was 

applied on the experiments on this dataset. 

The six employed datasets cover both visible and NIR spectrums, and were 

collected under varying and less constrained imaging environments that are close to 

real world application scenarios. A few sample images from them are provided in 

Figure 5.10. More detailed information about the employed databases and training/test 

set division is provided in Table 5.3. 

 For experiments carried out under open-world configuration, it is important to 

clarify the reasonable difference of training mechanisms for the four methods: a) For 

our method and [48], the visible models are trained on UBIPr database and tested on 

Table 5.3: Summary of the employed databases for training and testing. The training 
sets of FRGC and CASIA.v4-distance are used for training [10] and [47]. Our method 
and [48] only adopt UBIPr and FOCS for training. 

Database UBIPr FRGC FOCS CASIA.v4-dist. UBIRIS.v2 VISOB 
Spectrum visible visible NIR NIR visible visible 
Imaging 
distance 4 – 8m N/A N/A ≥3m 3 - 8m 8 - 12 in. 

World 
scenario Open Open Open Open Open/closed Closed 

Division Train Test Train Test Train Test Train Test Train Test Train Test 
#Subjects 224 120 13 150 80 56 10 131 518 518 484 475 
#Images 3,359 1,767 40 500 3,262 1,530 79 998 8,886 2,215 5,270 5,103 

#Genuine 
scores (Test) 12,351 826 39,614 3,371 2,215 4,914 

#Imposter 
scores (Test) 1,547,910 123,425 1,130,071 494,132 1,145,155 2,464,938 
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UBIPr and FRGC databases; the NIR models are trained on FOCS and tested on FOCS 

and CASIA.v4-distance datasets. In other words, experiments on FRGC and 

CASIA.v4 are under cross-database scenarios. Such a training/test configuration is 

identical to the original one in [48], which therefore provides a fair comparison. 

Nevertheless, while our model only uses the left periocular images for training, the 

model from [48] has employed both the left and the corresponding right periocular 

images which are required for training its semantical branch CNN. The result will be 

that [48] potentially benefits from two times more training samples during the 

comparison. b) For methods [10] and [47], the required training efforts are less, and it 

is observed that the within-database training and testing manner offers better results 

for these two methods. Therefore the training and testing are performed on the same 

dataset for them. Aforementioned experimental configuration is also the same as used 

in [48], and justification has been provided to incorporate the best possible 

performance from these two baseline methods and ensure fairness in the performance 

comparisons. 

5.5.4 Open-World Performance 

A. Effectiveness of DSC Loss Function 

The performance of the proposed DSC loss function is firstly examined. We compare 

it with conventional contrastive loss and triplet loss, which are also designed for 

verification tasks. The experiment is performed on all the employed databases. Three 

AttNet models with identical structures are trained with DSC loss, contrastive loss and 

triplet loss respectively. When training with contrastive loss and triplet loss, the 

margins are discretely tuned from {1, 2, 3, 4}, and the ones providing best performance 

are used for comparison. The receiver operating characteristic (ROC) curves are shown 

in Figure 5.11.  
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 It can be observed that DSC loss delivers noticeable and consistent improvements 

over the other two losses, especially for lower false acceptance rates (FAR). The 

performance at low FAR is regarded as more important for biometric verification 

systems, and the key factor to this metric is the ability to verify challenging cases, i.e., 

highly dissimilar genuine pairs and similar imposter pairs. The superiority of DSC loss 

is mainly attributed to the marginal effects for both positive and negative pair samples 

during the feature learning process, such that more training efforts can be put into 

challenging cases.  

 
(a) UBIPr                           (b) FRGC 

 
(c) FOCS                      (d) CASIA.v4-distance 

Figure 5.11: ROCs of training AttNet with DSC loss and conventional losses on four 
employed databases. The parameters of DSC loss are empirically set to a=10 and 
b=5; margins for contrastive loss and triplet loss are tuned among {1, 2, 3, 4} and 
the best performing ones are used here for comparison, which are m=3 and m’=4. 
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B. Comparison with State-of-the-art Works 

As discussed earlier, the performance of the proposed approach has been 

comparatively evaluated with state-of-the-art methods [10], [47] and [48] in the 

literature for the open-world setting. The resulting ROC curves are provided in Figure 

5.12.  We can observe from these results that our method consistently outperforms 

the other three baseline methods on all of the four employed databases. It is important 

to note that the advancements from our method are particularly significant at lower 

FAR, which indicates the outstanding capability of our method for verifying 

  
(a) UBIPr                            (b) FRGC 

  
(c) FOCS                      (d) CASIA.v4-distance 

Figure 5.12: ROC curves of the periocular verification using our method and 
comparison with other state-of-the-art methods on different databases. 
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challenging periocular samples. Even under the challenging cross-database training 

and test protocol, the proposed method has exhibited high level of robustness. The 

promising results from the proposed attention based model have further validated the 

importance of eyebrow and eye regions for the periocular recognition. We would like 

to specially clarify that the performance from one of the baselines PPDM [47] on 

FRGC is lower than what was reported in their original paper due to the difference in 

experimental settings. In the original setup in [47], the periocular regions were 

manually cropped from the face images in FRGC, and only single session data was 

used for the experiments. In our experiments, as introduced earlier, the periocular 

regions were automatically segmented and data from multiple sessions was selected 

for matching. Such configuration is highly desirable, closer to reality but introduces 

noticeable scale variation and misalighment for the data, which violates the patch 

correspondce and is the main reason for the performance degradation of PPDM. 

Furthermore, we adopted all-to-all verification protocol which is believed to be more 

challenging than their employed gallery-probe protocol. 

  We have also performed significance tests to ascertain the statistical significance 

of the improvements from our method. The method for the significance test is 

described in [83], which is based on the area under the curve (AUC) of the ROC 

statistics. Comparison has been made with [48] only, as this method delivers the best 

performance among the three baselines. The results from the tests are provided in Table 

Table 5.4: Results of significance test for comparison of our method and [48]. p-value 
indicates the probability of the null hypothesis, i.e., two sets of data do not differ
significantly. 

Comparison with SCNN UBIPr FRGC FOCS CASIA.v4-
distance 

z-statistic 14.323 3.859 25.259 8.829 
p-value* <10-4 1.14×10-4 <10-4 <10-4 

*  p will be denoted as <10-4 if the computed z is too large such that the corresponding
p is too small for the computer to return the exact value. 
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5.4. It can be inferred that, with widely used confidence level of 95%, the 

improvements from our method are statistically significant over its competitors.  

5.5.5 Closed-World Performance 

As discussed earlier, the proposed approach is mainly designed for open-world 

verification problem. However, some recent methods/competitions also adopt or focus 

on closed-world setting, in which all the subjects to be recognized are known during 

training/development phase, and it is usually allowed to use the gallery set for the 

training process. Typical examples include [118][119][123]. Despite the closed-world 

setting is less challenging, it is feasible for some applications to know all the interested 

subjects in advance during training phase, such as watchlist system. Hence, we 

supplement experiments under the closed-world configuration, which were conducted 

on UBIRIS.v2 and VISOB databases. 

Under the closed-world setting, we maintained the architecture of AttNet but 

trained it in a different way. Similar to [123], we added a softmax layer after the feature 

layer (fc5 in Figure 5.2) with NC output neurons, where NC is the number of classes 

(subjects) to be recognized. As closed-world setting is applied, NC is consistent during 

training and test phases. Each output neuron at the softmax layer is regarded as the 

probability that the current sample belongs to a specific subject, and therefore is used 

as a verification score. Figure 5.13 provides ROCs for the verification results on 

UBIRIS.v2 with comparison to [123], and on VISOB with comparison to [10], [47] 

and [48]. Note that for experiments on UBIRIS.v2, we also attached open-world results 

for comparative study. To obtain the comparative open-world results from [123], we 

used the l2-norm distance between the feature vectors from fc7 layer as suggested in 

their paper. 

 From the results on UBIRIS.v2, we can observe that  our approach consistently 
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outperforms the recently published state-of-the-art method [123]. Under the closed-

world settings, our results have scored significantly high accuracy (0.14% EER), due 

to reason that class-specific recognition has been learned with softmax loss function 

for given and fixed set of subjects (and same for the baseline method). In contrast, 

when switched to open-world setting, both [123] and our method suffer from obvious 

performance degradation, which reflects that open-world problem inherently brings 

more challenges compared with the closed-world problem. However, our appraoch can 

still achieve superior results over that from [123].  

 The results on VISOB dataset reveal that our method still consistently outperforms 

other methods investigated in this paper. It should be noted that the eye images in this 

database do not include the eyebrow region, and the eye region occupies most the 

image area (Figure 5.10f). This implies that the proposed visual attention mechanism 

may not benefit much the recognition performance. Figure 5.14 visulizes the 

intermediate features learned by AttNet on such data, from which we can observe that 

enhancing attention within the eye region does not affect much the feature contents. In 

this case, AttNet can serve as a common CNN for backing up the perfomance even if 

  
(a) UBIRIS.v2 (open-/closed-world)          (b) VISOB (closed-world) 

Figure 5.13: ROC curves on UBIRIS.v2 database and VISOB database (iphone-day-
light-short subset). Note that the AttNet result under closed-world setting on 
UBIRIS.v2 is close to line y = 1. 
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desired regions are absent or can not be correctly segmented. Another aspect to notice 

is that, as mentioned before, we have only acquired the Visit-1 subset (550 subjects) 

for this dataset rather than the Visit-2 (290 subjects) which was used for benchmarking 

in [118], therefore it would be unfair to directly compare the results provided in this 

paper with those in [118].  

5.6 Summary 

This chapter has developed an attention based CNN architecture for more accurate and 

robust periocular recognition. The proposed framework includes FCN-Peri, which can 

accurately detect eyebrow and eye regions as key regions of interest, and AttNet, which 

makes use of the RoI information for more discriminative feature learning. A newly 

developed verification oriented loss function, referred to as DSC loss, has also been 

introduced in this work. The new loss function has shown to provide marginal effects 

for both positive and negative training samples during learning, which contributes to 

more robust feature representation for matching challenging periocular image pairs. 

Extensive experiments on four publicly available databases presented in Chapter 5.3 

indicate that, the proposed attention based framework achieves significantly better 

Image conv2 
feature

RoI Processed 
feature

Attention layer

 

Figure 5.14: Visualization of convolutional features on a VISOB image which does
not contain eyebrow. In this case the attention mechanism does not much impact on
the feature distribution, and AttNet will basically act like a common CNN to guarantee
fundamental performance. 
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results than several state-of-the-art methods for the periocular recognition. The 

effectiveness of the newly designed DSC loss function was also separately validated 

through comparison with conventional contrastive loss and triplet loss. The 

experimental results provide strong support to our assumption that, information within 

eyebrow and eye regions are critical to periocular recognition, and deserve more 

attention during feature learning and matching. The trained models and source for 

reproducing our experimental results are made publicly available via [116].   

 Despite success in simulating human visual attention model for the automated 

periocular recognition, as illustrated from promising results on multiple databases in 

this work, a lot more work needs to be done, e.g. to develop on-the-fly and more 

intelligent RoI learning through the feedback from the feature learning process, on the 

basis of pre-trained FCN-Peri. More robust and adequate visual attention mechanisms, 

in addition to the currently used feature adjustment strategy, is also expected to further 

improve the performance and therefore pursued in the future extension of this work. 

Last but not least, the separate impact from each of eyebrow and eye regions is another 

interesting and important aspect to investigate. 
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CHAPTER 6      

Conclusions 

This thesis has presented details of my research work on developing novel algorithms 

for accurate and reliable iris and periocular recognition, which aims at addressing the 

problem of less constrained human recognition. In this chapter we will draw 

conclusions on the contributions made by my research work, followed by 

contemporary limitations of the approaches developed in this thesis as well as future 

work for further facilitating the work on less constrained iris and periocular recognition. 

6.1 Contributions 

 We firstly looked at the problem of accurate iris segmentation under relaxing 

conditions with visible and/or NIR spectrums, which is a critical primary step for the 

subsequent iris matching process. The key challenges lie in the existence of noise, 

occlusion, source reflection and other artifacts like glasses which severely degrade 

image quality. We established a novel relative total variation model with l1 norm 

regularization, named as RTV-L1, to remove the aforementioned degrading factors. 

The key advantage of RTV-L1 is that it can suppress the noise and texture from the 

acquired eye images while preserving the salient structures, which is highly desired 

for accurate preliminary segmentation. We also developed a series of robust post-

processing to refine the segmentation contours. The proposed approach significantly 

outperforms other state-of-the-art iris segmentation methods, especially for degraded 

eye images acquired under less constrained environments. In addition, the newly 

proposed RTV-L1 is also expected to be useful for general computer vision tasks that 

involve noise removal and/or structure analysis. 
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 We further stepped forward to investigating more effective and generalizable iris 

feature representation for matching irises more accurately. Having observed that 

traditional hand-crafted iris features suffer from heavy parameter tuning and low 

generalizability, we exploited deep neural networks for the iris feature learning. Based 

on our analysis that the discriminating information of iris pattern comes from local 

intensity distributions, we originally adopted fully convolutional network (FCN), 

instead of widely used convolutional neural network (CNN), for learning spatially 

corresponding iris features. We also designed a problem-specific loss function, i.e., 

extended triplet loss (ETL), to accommodate frequently observed occlusion and spatial 

translation for the iris matching. The proposed framework has delivered superior 

performance over popular and state-of-the-art methods in terms of matching accuracy 

and data generalizability on four publicly available database, including those for at-a-

distance and non-ideal imaging scenarios. 

 Beside at-a-distance iris recognition, we also devoted significant research effort 

into periocular recognition with both visible and NIR spectrum, which is considered 

as another promising approach for addressing the focused problem of less constrained 

recognition. We firstly developed the semantics-assisted convolutional neural network 

(SCNN) which was inspired by human inference mechanism that combined high-level 

semantic information in the periocular images (e.g., gender, side) for more 

comprehensive deep feature learning. Experimental results indicated that the 

supplement of such semantic information can help to recover more discriminative 

features than a usual CNN, especially when the training data is less sufficient. The 

proposed method has gained superior performances over state-of-the-art periocular 

recognition methods especially under cross-dataset evaluation.  

Further beyond exploitation of semantic information, we proposed an attention 

based deep architecture for periocular recognition to simulate the visual classification 
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system of human. Motivated by earlier studies that eye and eyebrow are of critical 

importance for identifying perioculars, regional visual attention was incorporated into 

CNNs by emphasizing convolutional responses within detected eye and eyebrow 

regions. The learned features through such attention mechanism were observed to be 

more discriminative and stable. We also developed a verification oriented loss function, 

distance-driven sigmoid cross-entropy (DSC) loss, which provides better 

regularization for the training data than the traditional loss functions. This approach 

further boosted state-of-the-art performance dramatically for periocular recognition 

under varying less constrained situations. 

An overview of the contributions from my research work has been illustrated in 

Figure 6.1. In summary, my research work on less-constrained at-a-distance iris 

segmentation, iris feature generation and periocular recognition has achieved 

significant superiority over traditional approaches and largely advanced state-of-the-

art performance in these areas, therefore making solid contributions to achieving least-

constrained human recognition. The key novelties of my research outcome lie in the 

more suitable formulation for the l1-norm regularized relative total variation (RTV) 

model in dealing with noisy and degraded data, and exploitation of deep learning 

techniques facilitated with fully convolutional spatially corresponding features, 

semantics information as well as the visual attention based feature extraction 

mechanism. The above contributions are also expected to be generalizable to other 

common computer vision tasks which involve noise removal, local texture analysis, 

deep feature enhancement and so on. 

6.2 Limitations and Future Work 

As discussed earlier, solid contributions have been made in my research work to 
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advancing state-of-the-art for at-a-distance iris and periocular recognition in 

addressing least-constrained human recognition. However, there are still a number of 

limitations at the current stage of my research, which should be further addressed in 

the future extension of the work presented in this thesis. In particular, critical 

limitations and future directions for overcoming such bottlenecks are concluded as 

follows:  

z The RTV-L1 based iris segmentation framework described in Chapter 2 is much 

hand-crafted, relying on several parameters and involves certain ad-hoc operations. 

While such properties can save the applications from heavy training, they also 

Less-constrained 
Human 

Recognition

At-a-distance 
Iris Recognition

Periocular 
Recognition

Less-constrained Iris Segmentation
• RTV-L1 structure extraction model
• Coarse-to-fine Post-processing
• Outperforming state-of-the-art under 

less-constrained environments

Deep Iris Feature Representation
• Effective spatially corresponding 

features via FCN
• Iris-specific Extended Triplet Loss
• Higher accuracy and better 

generalizability

Semantics-assisted CNN
• Exploiting semantic information for 

improved feature learning
• Relieving need for large amount of 

training
• Superior performance for periocular 

recognition

Attention-based Periocular Feature 
Learning

• Incorporating visual attention during 
feature learning and extraction

• Distance-driven sigmoid cross-entropy 
loss

• Further advancing state-of-the-art

 

 
Figure 6.1: Overview of research contributions delivered from this thesis. 
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decrease the generalizability and may lead to certain fragility for the approach. In 

the future we will extend the segmentation framework by unifying the hand-

crafted parameters and ad-hoc operations into learnable architectures, such as 

FCN, to increase the robustness and adaptiveness of the iris segmentation. Special 

attention should be paid to control and model complexity and optimization 

algorithm so that it can learn from least amount of data for saving training efforts. 

z The deeply learned spatially corresponding features for iris recognition presented 

in Chapter 3 are not fully end-to-end in terms of non-iris region detection 

(MaskNet) and the final binary feature encoding. It is indicated in the literature 

that end-to-end training is more desired to achieve higher performance and 

adaptiveness to the data for deep learning approaches [120]. We plan to develop 

end-to-end version of the spatial iris features by jointly optimizing FeatNet and 

MaskNet, where specific supervision mechanism for identifying effective iris 

region is required, and by designing learnable binary features on top of FeatNet, 

which may be similar to supervised discrete Hashing (SDH) [121]. Such measures 

are expected to further increase the feature performance and reliability for the 

more accurate and generalizable iris matching. 

z The exploitation of explicit semantic information for learning more 

comprehensive periocular features as described in Chapter 4 is proven quite useful, 

but currently the mechanism for integrating identity-relevant semantic 

information, i.e., fusing features from two separate networks by joint-Bayesian, is 

quite trivial and less effective. This not only requires additional training efforts 

but may also lead to lower generalizability of the fused features. In the following 

work, we will investigate learning semantic information and features for 

identification simultaneously, in a fashion of multi-label learning [107] and/or 
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reinforcement learning [122], which should be able to further improve the level of 

integrity of the network and robustness of the learned features. 

z The last important aspect to address lies in the attention-based periocular feature 

learning framework presented in Chapter 5. Currently the critical regions which 

attract more attention during feature learning is predefined as eye and eyebrow 

regions based on previous studies and human perception, and the corresponding 

detection model pre-trained separately. This may not be optimal and can also limit 

the network adaptiveness to the data. In the future we will explore more intelligent 

visual attention mechanism which automatically learns to discover salient regions 

to pay attention to via the feedback from output features, as well as improving 

attention implication, e.g., learnable weighted sum of foreground/background 

features, for more adaptive and effective periocular feature learning. 

As concluded above, despite the encouraging progresses gained by the research work 

introduced in this thesis, there are still considerably significant challenges towards 

more accurate at-a-distance iris and periocular recognition in addressing least-

constrained human identification. We believe that with continuous effort devoted into 

developing more intelligent learning algorithms on the basis of my research studies, 

and with more insights into least-constrained human recognition, the research problem 

can be significantly solved in the near future. 
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