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Abstract
Copying and Rewriting are two core writing behaviors in human summarization. Tra-

ditional automatic summarization approaches basically follow these two styles. For ex-

ample, extractive summarization copies source sentences, compressive summarization

copies source words, and template-based summarization utilizes handcrafted rules to

rewrite from pre-defined templates. Since 2016, sequence-to-sequence (seq2seq) neu-

ral networks have attracted increasing attention from abstractive summarization resear-

chers. Compared with traditional summarization approaches, seq2seq models generate

summaries end-to-end and require less human efforts. However, most existing seq2seq

approaches focus more on how to learn to generate the summary text, but overlook the

previously mentioned two essential summarization skills, i.e., copying and rewriting.

These approaches suffer from two major problems. First, summarization has to start

almost from scratch, discarding the prior knowledge accumulated during the past half

a century research. The data scale thus becomes the most significant bottleneck for per-

formance improvement. Second, the neural network architecture lacks explanation and

is hard to evaluate. To address these problems, we explore to explicitly model copying

and rewriting in seq2seq summarization by utilizing the prior knowledge learned from

traditional summarization approaches.

Our research consists of three parts. In the work to be presented in Chapter 3, we

leverage the popular attention mechanism to copy and rewrite words in the source text.

Our model fuses a copying decoder and a rewriting decoder. The copying decoder

finds out words to be copied in the source text based on learned attentions. The rewri-

ting decoder produces other necessary summary words limited in the source-specific

vocabulary, which is also derived from the attention mechanism. Extensive experi-

ments show that our model is able to generate informative summaries efficiently. In
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Chapter 4, we investigate an important but neglected problem, i.e., the faithfulness

problem in abstractive summarization. Abstractive summarization has to fuse diffe-

rent parts of the source text, which inclines to create fake facts. We call this issue

summary faithfulness. Our preliminary study reveals nearly one third of the outputs

from a state-of-the-art neural abstractive summarization system suffer from fake gene-

ration. To copy facts in the source text, we leverage open information extraction and

dependency parsing techniques to extract true facts from the source text. Note that

these techniques are also widely-used in compressive summarization. We propose a

dual-attention seq2seq summarization model to force the summary generation condi-

tioned on both the source text and the extracted facts. Experiments demonstrate that

our model greatly reduces fake summaries by 55%, and at the same time achieves sig-

nificant improvement on informativeness. Inspired by template-based summarization,

we propose to use existing summaries as soft templates to guide the seq2seq model,

which will be elaborated in Chapter 5. To this end, we use a popular information retrie-

val tool to retrieve appropriate existing summaries as candidate templates. We extend

the seq2seq model by jointly learning template reranking and template-aware sum-

mary generation. Essentially, the model learns to rewrite the selected template (i.e.,

the summary pattern) according to the source text. Experiments show that our model

significantly outperforms the state-of-the-art methods in terms of informativeness, and

even soft templates themselves demonstrate high competitiveness. More importantly,

the import of high-quality “external” summaries improves the stability and readability

of output summaries and provides potential in generation diversity. As one of the few

large-scale studies of copying and rewriting in seq2seq models, our work is expected

to advance a more in-depth research in core writing behavior driven neural abstractive

summarization.
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Chapter 1

Introduction

More matter with less art.

— William Shakespeare
(Poet, playwright and actor)

1.1 A Brief Tour of Text Summarization

Automatic text summarizationis a typical application of machine learning and text mi-

ning1. The fundamental idea of summarization is to find out a subset of text, which can

condense the “information” of the overall document. The study of text summarization

spans over a half century. Since [Luhn, 1958] firstly brought us the concept of au-

tomatic text summarization, the age of information explosion has largely necessitated

the development of effective text summarization systems. Currently, text summariza-

tion has become a research focus of Natural Language Processing (NLP) area and been

widely applied in the industry today, for example, used by search engines.

In this section, I review the important aspects to conduct summarization research,

including its taxonomies, available datasets, evaluation and existing systems.

1https://en.wikipedia.org/wiki/Automatic_summarization
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1.1.1 Taxonomies

Over decades of research, numerous terms and theories have been developed to refine

this task. As a result, text summarization can be classified based on different criteria.

According to the constituents of summaries, two automatic summarization approaches

are extraction and abstraction. Extractive summarization approaches pick up a subset

of existing sentences in the source document to form a summary. It is easy to im-

plement, able to preserve the original information and maintain the readability at the

sentence-level. In contrast, abstractive summarization approaches adopt Natural Lan-

guage Generation (NLG) techniques to generate a summary, which is expected to be

similar to a human-written summary. Such a summary usually requires content fusion

and paraphrasing. Traditional abstractive summarization approaches include compres-

sive and template-based approaches (see Section 2 for more details). According to the

learning approaches, summarization models can be either supervised or unsupervised.

A large amount of human-written summaries are necessary for a supervised approach

to learn model parameters. Various machine learning techniques have be applied in the

past, including Support Vector Machine (SVM) [Ouyang et al., 2011], Logistic Regres-

sion (LR) [Li et al., 2013b] and Neural Network (NN) [Cao et al., 2015a]. Unsupervi-

sed approaches, in contrast, do not need any labeled data. They usually apply heuristic

rules (e.g., tfidf and sentence position) to extract salient sentences to form a summary.

They can produce summaries by accessing merely the input documents. Thus, unsu-

pervised approaches can be quickly adapted to a new domain. One of the most popular

unsupervised summarization models is the graph-based models like LexRank [Erkan

and Radev, 2004].

According to the number of documents, summarization can be classified into single-

document and multi-document summarization. Compared with single-document sum-

marization, it is much more hard to summarizing multiple documents due to the serious

redundancy problem. Recently, Sentence summarization [Rush et al., 2015a], which

aims to shorten an input sentence while preserving the main meaning, becomes popular.
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It can be used to design or refine appealing headlines. Thus, it is often called headline

generation. Sentence-level summarization is different from document-level summari-

zation since it is hard to apply the common extractive techniques [Over and Yen, 2004].

That is, selecting existing sentences to form the sentence summary is impossible. In na-

ture, sentence summarization is abstractive.

There are also a series of summarization tasks. Generic summarization does not

care about a particular query while query-focused summaries are expected to response

to a query. In update summarization, readers are supposed to already know some

information about a topic and they need to be updated with the latest news regarding

the topic. The above-mentioned summarization systems all provide the same summary

to different users. [Paice and Jones, 1993] finds that users usually pick up the pieces

of documents, which are more closely associated with their interests. Personalized

summarization aims to identify the user’s interest and extract the important information

that the user specifically desires to generate a summary. In other words, different users

will receive different summaries from the same document(s).

Language is also important criterion, which divide summarization into multi-lingual,

mono-lingual and cross-lingual summarization. If documents and summaries are writ-

ten in the same language, it is defined as a mono-lingual summarization scenario. In

comparison, if summaries are expected to be written in a language rather than the source

language, it is cross-lingual summarization. When source documents are mixed in mul-

tiple languages, e.g., English, Chinese and Japanese, and summaries are written in the

same languages, it is known as multi-lingual summarization.

Referring to [Gambhir and Gupta, 2017], Table 1.1 presents the different kinds of

summarization along with the determinant factors.

3



Category Factor

Approach
Extractive and Abstractive Sentence Selection or Sentence

Generation
Supervised and Unsupervised Training Data Available or Not

Source Single-document, Multi-document
and Sentence

One Document, Multiple Docu-
ments or One Sentence

Task

Generic Document(s) Alone
Query-focused An Additional Given Query
Update Current Updates Regarding previ-

ous Summaries
Personalized Target to Particular Users

Language Mono, Multi and Cross-lingual Languages in Source Document(s)
and Target Summaries

Table 1.1: Taxonomies of summarization.

1.1.2 Datasets

The most popular benchmark datasets for multi-document summarization are publis-

hed by Document Understanding Conferences (DUC2) and Text Analytics Conferences

(TAC3). The documents in DUC/TAC are news from a wide range of categories, such

as Natural Disaster, Politics and Biography. A set of documents coming from the same

topic are grouped together. Each document set contains a number of reference summa-

ries written by human experts. DUC 01, 02 and 04 focus on multi-document generic

summarization, whereas DUC 03, 05, 06 and 07 are query-focused. The subsequent

two datasets TAC 08 and 09 are devoted to update summarization. Note that DUC 03

and 04 provide additional datasets on sentence summarization.

Although originally built for machine reading comprehension, DuReader [He et al.,

2017] can be regarded as a typical Chinese multi-document query-focused summariza-

tion dataset. It collects user logs of Baidu Search and Baidu Zhidao as queries, and

the corresponding search results as the documents. The summaries (called answers in

DuReader) are generated manually. In addition, DuReader provides rich annotations

of query types, in particular including yes-no and opinion questions. The scale of this

2https://duc.nist.gov/
3https://tac.nist.gov/
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corpus is quite large, containing 200K queries, 420K summaries and 1M documents. A

similar English dataset is MS-MARCO [Nguyen et al., 2016], which is created through

Bing Search.

For single-document summarization, the New York Times Annotated corpus [Sand-

haus, 2008] is a good resource. It contains more than 1.8 million news documents pu-

blished by this newswire. The documents span from January 1987 to June 2007, and

are accompanied by metadata such as dates, authors and taxonomies. Among them,

over 650,000 articles contain summaries written by library scientists. Another large

scale dataset is CNN/Daily Mail crawled by [Hermann et al., 2015]. The documents

are news from CNN4 and Dail Mail5. The highlights provided by the newswires are

regarded as summaries. In all, the dataset contains 287k training pairs, 13k validation

pairs and 11k test pairs.

There are two small sentence summarization datasets provided in DUC 03 and 04.

Later, [Rush et al., 2015a] pair the headline and the leading sentence of a news do-

cument as the labeled data for sentence summarization. From English Gigaword, they

pick 3.8M training instances. Afterwards, [Hu et al., 2015a] build a large-scale Chinese

dataset for sentence summarization, called LCSTS. It is collected from Sina Weibo by

regarding a Weibo news post as the source text and its title as the summary. LCSTS

contains over 2 million actual Chinese (short text, summary) pairs. On this dataset, the

authors manually annotate the qualities of 11k pairs.

The basic information of each summarization dataset is presented in Table 1.2.

1.1.3 Evaluation Criteria and Automatic Evaluation Metrics

DUC/TAC has developed sophisticated evaluation criteria for the summarization chal-

lenges. Two important quality criteria are as follows:

4https://www.cnn.com/
5http://www.dailymail.com

5

https://www.cnn.com/
http://www.dailymail.com


Dataset Source Task
DUC 01, 02, 04 News Multi-document Generic Summarization
DUC 03, 05∼07 News

Multi-document Query-focused SummarizationDuReader Web doc/CQA
MS-MARCO Web doc
TAC 08, 09 News Multi-document Update Summarization
New York Times News

Single-document Generic Summarization
CNN/Daily Mail News
DUC 03, 04 News

Sentence SummarizationLCSTS Weibo
Gigaword News

Table 1.2: Popular datasets for summarization.

Informativeness A summary must reflect the main meaning of the source document.

It is the essential requirement of summarization. Informativeness is also called

saliency. Most current automatic summarization evaluation tools focus on the

measurement of informativeness.

Readability It is the ease with which a reader can understand a written text. A set of

keywords is obviously not an ideal summary. Although perplexity somewhats

reflects readability, in most cases, it is still inspected manually.

In addition to the above two, we propose the third one, summary faithfulness, which

is equally important if not more important, but largely neglected in previous work.

Our preliminary study reveals nearly one third of the outputs from a state-of-the-art

neural abstractive summarization model create fake facts. We argue that a summary

must accord with the semantic meaning of the source document. Summary faithfulness

should be the precondition of a practical summarization system.

Observing the datasets provided by DUC/TAC as well as the conclusion from [Rath

et al., 1961], it is notated that human summaries can vary largely. Therefore, a summa-

rization system, which is able to provide diverse candidate summaries, should be more

welcome.

Summarization evaluation is a necessary step in summarization research. Manual
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evaluation is time-consuming and subjective. Therefore, researchers concentrate on the

development of automatic evaluation tool. TAC has even established competitions, i.e.,

Automatically Evaluating Summaries of Peers (AESOP), to advance this study.

Automatic summarization evaluation can be classified into two types, extrinsic eva-

luation and intrinsic evaluation. Extrinsic approaches evaluate a summarization system

by leveraging external tasks and comparing the performance based on the summaries

against the original documents. A typical example is [Morris et al., 1992]. They use

generated summaries and original documents respectively as the source text to solve

reading comprehension questions. Other tasks include topic judgment [Tombros and

Sanderson, 1998], text classification and question answering [Mani et al., 1999].

Intrinsic approaches evaluate a summarization system through cross-summary com-

parisons. Usually, the system-generated summary is compared with human-written

summaries. Considering human-produced summaries often vary largely [Rath et al.,

1961], a number of human-written summaries can be used to enhance objectivity in

evaluating a single system summary. This is a common practice in DUC/TAC. Inspired

by the machine translation evaluation tool BLEU [Papineni et al., 2002], [Lin, 2004]

develop the content-oriented automatic evaluation metrics ROUGE. ROUGE measures

the quality of a candidate summary by computing the overlapping lexical units between

it and the golden summaries. The extensively used ROUGE variants include ROUGE-

1 (uni-gram), ROUGE-2 (bi-gram), ROUGE-L (longest common subsequence) and

ROUGE-SU4 (skip-bi-gram plus uni-gram). ROUGE scores have become the official

ranking basis for DUC/TAC competitive tasks since 2004. [Passonneau et al., 2005]

propose a more accurate evaluation method, called Pyramid. It measures the matching

of Summarization Content Units (SCUs). However, the acquirement of SCUs requires

extensive human annotation efforts.

Currently, these automatic evaluation tools mainly evaluate the informativeness

performance. Since we find the prevailing neural abstractive summarization tends to

create fake facts, we are the first to explore the automatic evaluation of summary fait-
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hfulness.

1.1.4 Text Summarization Systems

Numerous summarization systems have been developed throughout the decades of re-

search. In this section, I briefly introduce some important publicly available systems. A

well-known open domain platform for multi-document summarization is MEAD [Ra-

dev et al., 2004a]. It implements a number of summarization algorithms (e.g., Cen-

troid [Radev et al., 2004b] and LexRank [Erkan and Radev, 2004]) and provides popu-

lar classifiers for supervised content selection. Recently, the prevailing topic modeling

Python library gensim6 has embedded a series of summarization functions. Based on

a variation of TexRank [Barrios et al., 2016], the summarization package of gensim is

able to conduct generic summarization and keyword extraction at the same time. Open-

NMT7 is an open source sequence-to-sequence [Bahdanau et al., 2014] platform. Since

its launch in December 2016, OpenNMT has become a collection of implementations

targeting both academia and industry. Although initially designed for neural machine

translation, there are pre-trained OpenNMT models for sentence summarization and

single-document generic summarization.

There are also some real-life summarization systems. For example, Columbia

Newsblaster8 is a system that assists users to find out interesting news. The system

automatically crawls news from several websites (CNN, Reuters9, etc.) every day. This

system process the news through clustering, classification and summarization to pro-

vide users a flexible interface to browse the results. Newsblaster is online in 2001

[McKeown et al., 2001] and also has a multilingual version [Evans et al., 2004]. iRese-

arch Reporter10, a text-mining solution, allows you to quickly and easily analyze online

sources or local documents and receive informative report on virtually any subject. Ul-

6https://radimrehurek.com/gensim/
7http://opennmt.net/
8http://newsblaster.cs.columbia.edu/
9https://www.reuters.com/

10http://iresearch-reporter.com
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timate Research Assistant11 is an advanced internet knowledge mining technology. It

summarizes and visualizes the results of search engines to make them more understan-

dable.

1.2 Research Motivation

Copying and Rewriting are two core writing behaviors in human summarization. Tradi-

tional automatic summarization approaches basically follow these two styles. As shown

in Figure 1.1, extractive summarization [Ouyang et al., 2011] copies source sentences,

compressive summarization [Li et al., 2013a] copies source words, while template-

based summarization [Zhou and Hovy, 2004] utilizes handcrafted rules to rewrite from

pre-defined templates. Since 2016, the seq2seq model [Bahdanau et al., 2014] has at-

tracted increasing attention from abstractive summarization researchers [Rush et al.,

2015a; Chopra et al., 2016; Nallapati et al., 2016a]. With such a neural network struc-

ture, the source text is encoded by the encoder as a context vector. Then, a deco-

der decodes the semantic information in the context vector and outputs the target text.

Compared with the traditional summarization approaches, a seq2seq model generates

summaries end-to-end and requires less human efforts.

However, since the seq2seq model is originally developed for machine transla-

tion [Kalchbrenner and Blunsom, 2013; Cho et al., 2014a; Sutskever et al., 2014], it is

hard to exactly fit the need of summarization. Most existing seq2seq approaches focus

more on how to learn to generate the summary text, but overlook the previously mentio-

ned two essential summarization skills, copying and rewriting. These approaches suffer

from two weaknesses. First, summarization has to start almost from scratch, discarding

the prior knowledge during the past half a century research, which makes the data

scale usually become the most significant bottleneck for performance improvement.

There are plentiful models and theories in traditional summarization approaches. For

11http://www.ultimate-research-assistant.com
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example, extractive summarization proposes the idea of sentence ranking to estimate

the importance of a sentence; compressive summarization designs a series of models

to find the stem of a sentence; and template-based summarization develops a pipeline

from template construction to rule-based summary generation. In fact, a well-designed

traditional summarization system can also achieve competitive performance in many

scenarios. Therefore, we argue that the import of prior knowledge from the previous

summarization research could greatly advance abstractive summarization research. Se-

cond, the neural network architecture lacks explanation and is hard to evaluate. For

example, the attention mechanism [Bahdanau et al., 2014], i.e., a crucial mechanism in

the seq2seq model, is expected to learn the word alignment between source language

and target language for machine translation. Thus, it can be evaluated explicitly or uti-

lize the predefined alignment table. However, for summarization, there is no specific

alignments between summary words and document words, which heavily weakens the

effect of the attention mechanism. We show the attention learning results of the typical

work [Rush et al., 2015a] in Figure 1.2. As can be seen, “calls” is linked to “called” and

“against” is associated with “combating”. These learning results seem reasonable. Ne-

vertheless, the word that matches “Russia” best is “creation”. What does it mean? Due

to the ambiguous interpretation, it is indeed hard to evaluate the effect of attention me-

chanism in summarization, and thus there is no chance to guide the learning of attention

mechanism. Therefore, it is crucial to endow neural network architecture of seq2seq

with explicit meaning. We believe that modeling core summarization behaviors should

be an ideal choice.

1.3 Research Overview

In this dissertation, I am devoted to modeling the core writing behaviors of summa-

rization, i.e., copying and rewriting. Our work is unique in two aspects. On the one

hand, we introduce the prior knowledge of traditional summarization research into the

seq2seq model to instruct summary generation. On the other hand, we design the novel
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Figure 1.1: Copying and Rewriting in different summarization approaches.

Figure 1.2: Learning result of attention mechanism in summarization.
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Figure 1.3: Outline of the technical chapters. We use the dash line to link CoRe to Fait-
hful since the rewriting decoder suppresses the generation of irrelevant words, which
partially enhances faithfulness.

neural network architecture to explicitly capture the copying and rewriting modes in

the source text. Figure 1.3 depicts our research focuses. The summaries of technical

chapters are as follows.

In Chapter 3, we leverage the attention mechanism to copy and rewrite words in

source text. Our system, called CoRe, fuses a copying decoder and a rewriting decoder.

The copying decoder locates the words to be copied from the source text according to

the attention weights. The rewriting decoder produces other necessary words from the

source-specific vocabulary derived from learned alignments. To combine the two de-

coders and determine the final output, we train a predictor to predict the actual writing

modes. This predictor can be learned from the actual writing modes in the training

dataset. Extensive experiments show that our model is capable of generating informa-

tive summaries efficiently. In addition, compared with the standard seq2seq model,

CoRe better balances the proportions of the summary words generated via copying and

rewriting.

In Chapter 4, we investigate the an important but neglected problem, i.e., the fait-

hfulness problem in abstractive summarization. As we know, abstractive summari-
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zation inevitably needs to fuse different parts of the source text. Consequently, the

fused summaries often misrepresent the original meaning and yield fake facts. Thus,

we propose a fact-aware summarization system, called FTSum, to copy source facts.

We employ OpenIE and dependency parsing tools to extract the facts in the source

sentence. We propose the dual-attention seq2seq model to force summary generation

conditioned on both source sentence and extracted facts. Manual and automatic evalu-

ations demonstrate that our summarization system greatly outperforms state-of-the-art

models on both informativeness and faithfulness. We also develop an automatic fait-

hfulness evaluation tool, called FTEval, which reveals high correspondence with the

manual judgment of faithfulness.

In Chapter 5, inspired by template-based summarization, we propose a system, cal-

led Re3Sum, that uses soft templates as rewriting references to guide seq2seq summari-

zation. We use the mainstream IR tool Lucene to retrieve proper existing summaries as

candidate soft templates. Then, we extend the seq2seq model to jointly learn template

saliency (i.e., Rerank) and final summary generation (i.e., Rewrite). Rerank measures

the informativeness of a candidate template, similar to sentence ranking in extractive

summarization. In Rewrite, the summary is generated according to both sentence and

salient template. Experiments show that our model can generate informative, reada-

ble and stable summaries. In addition, our model demonstrates promising prospect in

generation diversity.

Our work covers three fundamental representations of copying and rewriting in

summarization, namely copying and rewriting source words, copying source facts and

rewriting with soft templates. We believe that the three models can work closely with

each other to yield a more powerful neural summarization system. For example, in

Chapter 5, we propose to embed the rewriting decoder into Re3Sum, which considera-

bly restrains the generation of new named entities derived from soft templates.

Our experiments are conducted on sentence summarization based on the following

considerations.
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• The output of sentence summarization is relatively short, which benefits human

evaluation.

• As mentioned in Section 1.1.2, the sentence summarization benchmark Giga-

word [Rush et al., 2015b] is almost the largest abstractive summarization dataset

available.

• Sentence summarization is a growing attractive task, with numerous models de-

veloped recently (refer to Section 2.3). Thus we can conduct plentiful compari-

sons.

• Sentence summarization is the foundation of document summarization. Ab-

stractive summarization is still in its infancy. Without the success of sentence

summarization, document summarization cannot come into being.

1.4 Research Contributions

The contributions of our research are summarized in this section. Generally, our work

is the one among the few large-scale studies of copying and rewriting in seq2seq mo-

dels. We are the precursor to promote the development of summarization-specific

seq2seq models. Actually, following our work, researchers (e.g., [Song et al., 2018;

Han et al., 2017]) have developed a series of models focusing on copying or rewri-

ting. In addition, our work builds a bridge between traditional summarization approa-

ches and the seq2seq neural network models. We make better use of prior knowledge

from extractive, compressive and template-based summarization to advance seq2seq

models for generating more informative, faithful and fluent summaries. We believe that

the prior knowledge largely accumulated during the past half a century research could

highly broaden the mind of researchers in seq2seq summarization.

The specific technical contributions are listed as below.

CoRe We distinguish the learned weights of the attention mechanism to explicitly re-
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present copying and rewriting of the source words, respectively. In copying,

the attention mechanism directly indicates the current copied position. In re-

writing, the attention mechanism helps to construct the source-specific vocabu-

lary, which empower the decoder to generate relevant words efficiently. Our

model greatly enhances the interpretability of the neural network architecture,

which is a crucial issue in research of deep neural networks. In addition, CoRe

provides a uniform framework to handle paraphrasing-related tasks as well as

many other types of generation. For example, we can easily adapt CoRe to

the the increasingly attractive task of sentiment style transfer [Li et al., 2018a;

Xu et al., 2018], where the copying decoder focuses on preserving semantic

content while the rewriting decoder generates words restricted in the opposite

sentiment.

FTSum To the best of our knowledge, we are the first to explore the faithfulness

problem in abstractive summarization. We want to arouse attentions in resear-

chers that faithfulness, in addition to informativeness, is a vital precondition for a

practical abstractive summarization system. To address this issue, we propose the

first fact-aware seq2seq model. Experiments show that the proposed model gre-

atly reduces fake summaries by 55%, and at the same time achieves significant

improvement on informativeness, compared with the standard seq2seq model.

We publish the first labeled faithfulness dataset and believe that this dataset will

promote the research on faithfulness in summarization. We also develop a tool,

called FTEval, for automatic faithfulness evaluation. FTEval highly corresponds

to the manual judgment. Thus, we expect that FTEval could become a benchmark

tool for summary evaluation. In addition, FTEval gives explanations to all iden-

tified fake summaries, which benefits researchers to fix the errors and develop

more reliable summarization systems.

Re3Sum We incorporate the idea of template-based summarization into the seq2seq

model to make it more stable and generate more fluent summaries. We are the

pioneers to integrate IR-based ranking techniques and seq2seq-based generation
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techniques in a creative way by fully taking the advantages of both sides. The

abstraction-after-extraction framework is deserves more attention in the summa-

rization area. Finally, to the best of our knowledge, we initiate the research of

generation diversity in seq2seq summarization and provide a simple yet effective

solution. It is the basis of personalized summarization, another fascinating task.

1.5 Structure of Dissertation

Now, let me introduce the skeleton of the thesis. Chapter 1, this chapter, describes

the background of automatic text summarization and provides the overview of our

research. We explain the motivations of our work and summarize our contributions.

Chapter 2 is the review of the literature of text summarization, including traditional

extractive summarization, compressive summarization and template-based summariza-

tion. It also introduces the existing research on generation-based seq2seq summariza-

tion, covering its application and adaptation in text summarization and other relevant

areas. The next three chapters construct the technical body of this thesis. Chapter 3

illustrates the copying and rewriting behaviors in summarization, where I propose to

explicitly model them within the seq2seq framework. Chapter 4 is absorbed in the fait-

hfulness problem of neural abstractive summarization. To reduce fake generation, I

modify seq2seq to simulate compressive summarization, that is, using source facts as

additional input. Chapter 5 is engaged with the stability requirement of summarization.

Borrowed the idea from template-based summarization, I force seq2seq to learn to re-

write from an existing summary. In Chapter 6, I point out the potential extension of our

work in personalized summarization. In Chapter 7, the last chapter, I review the major

findings, technical results , and reiterate the major contributions in this thesis.
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Chapter 2

Literature Review

Automatic text summarization was born in 1958 [Luhn, 1958]. Since then, resear-

chers on text summarization have proposed numerous theories, models and algorithms,

and applied this technique to various scenarios. The past decades have witnessed text

summarization gradually becomes one of the most significant research focuses in the

Natural Language Processing (NLP) area.

I will firstly introduce the widely-studied extractive summarization in Section 2.1.

Various approaches are discussed, including shallow feature-based, graph-based, learning-

based and the recently proposed deep neural network-based approaches. It is followed

by the review of two types of traditional abstractive summarization approaches, namely

compressive summarization and template-based summarization, in Section 2.2. Finally,

Sequence-to-sequence (seq2seq) neural summarization models, which are the focus of

this thesis, will be discussed and analyzed in Section 2.3.

2.1 Extractive Summarization

Extractive summarization [Over and Yen, 2004] selects important sentences in the

source text to form a summary. It is easy to implement, able to preserve the origi-

nal information and maintain the readability at the sentence-level. Thus, extractive
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summarization becomes most common approaches to automatic summarization. Many

actual scenarios can be regarded as the application of extractive summarization like the

snippets provided by a search engine. Basically, there are two crucial processes in ex-

tractive summarization: sentence ranking and sentence selection. The former measures

the saliency of a sentence, while the latter aims to generate a non-redundant summary.

Sentence ranking plays a core role in extractive summarization. Research on it spans

a large range of approaches. Based on the intermediate representation, four important

sentence ranking approaches are introduced in the rest of this section. They are shallow

features-based, graph-based, learning-based and deep neural network-based ranking

approaches.

Sentence selection is an also important step for extractive summarization, especi-

ally for multi-document summarization. Since the strategies for sentence selection are

relatively fixed, I go through a quick overview here. Maximum Marginal Relevance

(MMR) [Carbonell and Goldstein, 1998] is one of the most well-known sentence se-

lection approaches. MMR, rooted in Information Retrieval (IR) systems, used a greedy

approach to consider the trade-off between sentence saliency and redundancy among

existing summary sentences. Better performance could be achieved by formulating

sentence selection as an integer linear programming (ILP) problem where the optimal

solution exists [McDonald, 2007]. Instead of directly measuring redundancy between

two sentences, some studies, such as [Gillick and Favre, 2009], modeled redundancy

based on the n-gram overlap. Then, the task is transformed to the weighted set co-

ver problem which can be solved by ILP as well. Since ILP is NP-hard, researchers

(e.g., [Sipos et al., 2012; Dasgupta et al., 2013]) converted it into a submodular maxi-

mization problem that can be handled by efficient approximation algorithms. Without

specification, the extractive summarization approaches mentioned below choose one of

the sentence selection strategy (MMR, ILP, submodular) to handle redundancy.
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2.1.1 Shallow Feature-based Approaches

This type of summarization approaches take advantages of shallow text features, such

as word or n-gram frequency, sentence length and sentence position, to detect salient

sentences. Most models are developed heuristically or empirically. One early work on

this study was [Luhn, 1958], who measured the saliency of a word by its frequency and

relative position in sentences. Then, the summary sentence were expected to be those

containing the most frequent words in certain important positions. Later, [Edmundson,

1969] extended [Luhn, 1958]’s work with additional consideration of cue phrases, title,

and sentence position in the document. It is noted that the proposed two features, title

similarity and sentence position, have been widely used in subsequent research work.

[Lin and Hovy, 1997] conducted rigorous experiments to assess the importance of dif-

ferent positions. [Nenkova and Vanderwende, 2005] simply used word frequency to

measure saliency. Their summarization system, called SumBasic, achieved competi-

tive performance in DUC 2004. Later, its extended version, named SumFocus [Vander-

wende et al., 2007], was also a top system on query-focused summarization in DUC

2007. [Radev et al., 2004a] developed a famous summarization platform MEAD. It

allowed people to employ several important features to measure sentence saliency, in-

cluding Centroid [Radev et al., 2004b], the sentence length and LexRank scores [Erkan

and Radev, 2004]. MEAD required manually defined weights to merge these features

to derive the final saliency score. Recent years, concept coverage based summarization

approaches also demonstrated competitive performance. For example, [Gillick and Fa-

vre, 2009] used bi-grams to represent concepts and weighed them with document fre-

quency. Then, the Integer Linear Programming (ILP) formulas were proposed to find

the summary sentences covering the most important bi-grams. [Schluter and Søgaard,

2015] further tested the work of [Gillick and Favre, 2009] by using other text units to

convey concepts. They introduced a series of syntactic and semantic concepts, inclu-

ding syntactic dependencies, semantic frames and named entities. The conclusion was

that using such concepts could lead to significant improvements in text summarization
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performance on legal judgments and Wikipedia articles.

2.1.2 Graph-based Approaches

The graph-based approaches have flourished increasingly in Natural Language Proces-

sing (NLP) as well as Information Retrieval (IR) areas [Mihalcea and Radev, 2011].

This technique has also attracted growing attentions in extractive summarization these

years. Normally, a graph-base model regards documents as a text graph where a node

represents a text unit such as a sentence or a word, and an edge stands for relations

between text units. Common relations include similarity, association and relevance.

Then, the importance of a node can be computed through graph-based ranking algo-

rithms which are capable of considering the global information from the entire graph.

Common ranking algorithms include PageRank [Page et al., 1999] or HITS [Klein-

berg, 1999]. A popular stochastic graph-based summarization approach was LexRank

[Erkan and Radev, 2004]. It built a sentence graph where edges represented sentence

similarities measured by the tf-idf cosine similarity between two sentences.. Developed

on the PageRank algorithm, LexRank measured sentence saliency based on eigenvector

centrality in this graph. A similar and equally representative model was TextRank [Mi-

halcea and Tarau, 2004], where sentence similarities were simply computed from term

overlaps. LexRank and TextRank served generic summarization. Later, [Otterbacher

et al., 2005] extended LexRank to handle query-focused summarization. They treated

the relevance to the query as the initial probabilities to construct a biased PageRank

ranking.

The above-mentioned approaches ignore the difference among documents and sim-

ply combine multiple documents into a single document. A series of following work

have tried to handle this problem. For example, [Wan et al., 2006] built two independent

graphs, connecting inter-document sentences and intra-document sentences, respecti-

vely. Separate graph-ranking algorithms were then run on the two graphs. Finally, the

saliency score of a sentence was the weighted sum of the inter-document ranking score
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and intra-document ranking score. Interestingly, their experiments showed that using

only intra-document relationships between sentences outperformed other approaches,

including using both the intra-document graph and inter-document graph. Later, [Wei

et al., 2010] presented a document-sensitive graph model called DsR. It distinguished

sentence relations in sentence similarities calculation.

Apart from representing sentences as nodes, researchers have attempted other text

units to build the graph. [Zha, 2002] constructed a weighted bipartite graph on both the

words and the sentences. If a word appeared in a sentence, an edge would connect them.

Their motivation was that a salient word should appear in many salient sentences, and

vice versa. By applying the mutual reinforcement principle, their system extracted both

salient sentences and terms at the same time. [Wan and Yang, 2008] introduced themes,

represented by sentence clusters, as additional nodes in the text graph. They argued that

themes usually held various sizes and saliency for users to understand the source text.

While [Wan and Yang, 2008] used simple clustering algorithms, such as k-means and

agglomerative clustering, [Cai et al., 2010] extended this work by integrating clustering

and ranking simultaneously to update each other so as to improve both performances.

Many graph-based approaches rank sentences according to their independent sa-

liency. Then, a sentence selection step as mentioned above is necessary to avoid or to

redundant sentences. Some researchers considered the diversity issue when developing

the graph ranking algorithms. For example, [Zhu et al., 2007] adopted the absorbing

random walk on graph, which ranked nodes with an emphasis on diversity. At each

iteration, the node representing the sentence selected in the last iteration became the ab-

sorbing node, preventing the redundant sentences from receiving a high ranking score.

In DivRank [Mei et al., 2010], the diversity was guaranteed by using the reinforced

random walk on graph. The nodes competed with each other so that the node with a

high ranking score would progressively absorb the ranking scores from its neighbors.
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2.1.3 Learning-based Approaches

In contrast to the aforementioned unsupervised approaches, there are also numerous

efforts on supervised learning for summarization. That is, with human summaries as

labeled data, supervised machine learning models are introduced to train a summari-

zation system. A classical learning-based summarization system was KPC [Kupiec et

al., 1995]. The authors built a corpus containing 188 (document, summary) pairs as the

training dataset. Then, they defined a set of features, such as sentence length, fixed-

phrase list, paragraph-related features (whether leading or ending paragraphs, and sen-

tence position in the paragraph), topic word frequency and uppercase word frequency,

to learn a Bayesian classifier. [Larsen, 1999] experimented combinations of different

features. Likewise, they found that the summaries produced by supervised learning

significantly outperformed those by unsupervised learning. Many early studies follo-

wed the same idea although examined different classification models, such as deci-

sion tree [Chuang and Yang, 2000] and Support Vector Machine (SVM) [Hirao et al.,

2002]. Some researchers converted single-document summarization into a sequence la-

beling task. It was thus nature to apply maximum entropy [Osborne, 2002], conditional

random field (CRF) [Galley, 2006] or hidden Markov model (HMM) [Conroy et al.,

2004]. Later, learning-to-rank models were exploited. [Fisher and Roark, 2006] built

a perceptron-based ranking system and automatically constructed a corpus to train this

system. [Toutanova et al., 2007] proposed a system called PYTHY, which learned a

log-linear sentence ranking function to combine features. They also developed diffe-

rent metrics to measure the actual saliency of a sentence. With two sophisticated post-

processing processes, their system achieved the second best performance in DUC 2007.

Recently, regression models have attracted growing attention in extractive summariza-

tion. [Ouyang et al., 2007] presented the pioneering work of applying Support Vector

Regression (SVR) to learn sentence saliency. Later, many researchers [Li et al., 2013b;

Hong and Nenkova, 2014] adopted logistic regression to find out important n-grams in

the documents. Some works were also devoted to the performance evaluation of dif-
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ferent learning-based models. For example, To build a text summarizer, [Fattah and

Ren, 2009] implemented and compared five learning models, including mathematical

regression (MR), Gaussian mixture model (GMM), genetic algorithm (GA), probabilis-

tic neural network (PNN) and feed forward neural network (FFNN). The result showed

that GMM were the most promising. [Ouyang et al., 2011] conducted direct com-

parisons of regression, classification and learning-to-rank models, and indicated that

regression models were usually preferable.

2.1.4 Deep Neural Network-based Approaches

Recently, the application of deep neural networks has become increasingly popular in

the summarization area. [He et al., 2015] trained their summarization model based on

data reconstruction. They treated a summary as a compressed representation of docu-

ments. Using a term frequency vector to represent a sentence, they aimed to find the

proper subset which could reproduce the input documents. Nevertheless, their system

failed to achieve satisfactory performance. Later, [Yao et al., 2015] improved the work

of [He et al., 2015] by introducing an additional sentence dissimilarity term in the loss

function. Their system showed competitive performance on DUC 2006 and DUC 2007

benchmarks. A few researches have explored to directly measure saliency based on

similarity between distributed representations. [Yin and Pei, 2015] trained a language

model on the basis of Convolutional Neural Networks (CNN) to map sentences into

embedding representations. Afterwards, they use cosine similarity of embeddings to

measure the sentence similarity. Based on the sentence similarity, they adopted Page-

Rank to get the sentence saliency score and designed a submodular function to con-

sider both prestige and diversity. Others like [Kobayashi et al., 2015] just summed

up existing word embeddings to represent a document or sentence. [Li et al., 2017b]

used Variational Auto-Encoders (VAEs) to represent sentences. Then, an unsupervised

data reconstruction framework was followed to jointly consider the reconstruction in

both latent semantic space and observed term vector space. They regarded attention
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as saliency and performed sentence ranking and keyword extraction at the same time.

Supervised methods have also been explored. For example, [Cheng and Lapata, 2016]

used binary sequence labeling to model single-document summarization and proposed

a RNN solution. Some researchers based on the neural network representation of docu-

ments to develop multi-task learning algorithms. For example, [Isonuma et al., 2017]

jointly learned sentence ranking and document classification.

The summarization approaches mentioned above are purely data-driven. Since nu-

merous significant features have been defined for summarization (e.g., TF-IDF) in the

past, some researchers also investigated the combination of hand-crafted features and

learned features. For example, we [Cao et al., 2015a] applied recursive neural networks

to automatically learn the combination of hand-crafted features. Subsequently, regres-

sions were conducted at different text granularities based on the learned representations

as well as the input features. Later, we [Cao et al., 2015b] proposed to use convolu-

tional neural networks to learn document-independent features. These features mainly

stood for the summary prior quality hard to be manually defined. Together with four

simple document-dependent features, the model of [Cao et al., 2015b] reached a new

state of the art.

Some researchers also attempted to use deep learning for summary evaluation. For

example, [Genest et al., 2011] used unsupervised auto-encoders to represent both ma-

nual and system summaries for the task of summary evaluation. The difference of these

two representations were defined as features for regression, with regard to the Pyramid

scores [Passonneau et al., 2005]. Their method, however, did not surpass ROUGE.

2.2 Traditional Abstractive Summarization

Although extractive approaches are relatively easy to implement, the quality of ex-

tracted summaries is rather restricted. For example, suppose there is a long yet partly

relevant sentence. Without this sentence, the summary may lose important information.

24



While extracting this sentence, the conciseness of the summary is likely to worsen se-

riously. In addition, experiments in [Murray et al., 2010] showed that users highly ex-

pected summaries to be more abstractive. Thus, abstractive summarization has drawn

growing attentions in recent years. Here I will review two typical kinds of traditional

abstractive summarization approaches, i.e., compressive summarization and template-

based summarization.

2.2.1 Compressive Approaches

Compressive summarization[Almeida and Martins, 2013] does not restrict a summary

sentence to be the exact same as a original sentence in the documents. Instead, it allows

the extraction of compressed sentences [Knight and Marcu, 2000] where some words

can be deleted. In comparison, sentence fusion [Barzilay and McKeown, 2005] aims to

construct a new sentence which covers the main information of sentences in a given set

of similar sentences. To simplify, we call both techniques compressive approaches.

[Lin, 2003] conducted a pilot study on compressive summarization. Their results

showed that pure compressive approaches failed to outperform extractive approaches.

However, reranking using an oracle demonstrated a potential significant improvement.

Bascially, there are two strategies for compressive summarization, with either the joint

or pipeline approaches. Joint approaches attempted to conduct compress and extract

sentences at the same time. [Gillick and Favre, 2009], though using an unsupervised

model, explored to combine extraction and compression within the Integer Linear Pro-

gramming (ILP) formulation. Specifically, they extended the ILP formulation used for

pure extraction with additional constraints to incorporate sentence compression. Com-

pared with pure extraction, compression showed a marginal increase in the ROUGE

evaluation, but a decline in the Pyramid evaluation. [Daume, 2006] proposed a joint

framework to learn model parameters for extraction and compression in the same time,

but his system could not compete with purely extractive approaches.
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The lack of proper training datasets largely hinders the development of joint com-

pressive summarization. Moreover, joint optimization is rather computationally expen-

sive. As a result, numerous researchers opted for pipeline approaches, which conducted

sentence compression in advance and then formed summaries from the compressed

sentences. For example, [Zajic et al., 2006] applied heuristic rules to yield additional

compressive candidates for each sentence. Then, a simple greedy sentence selection

step was used to pick summary sentences from these candidates. Their system, ho-

wever, did not achieve the state-of-the-art performance. [Li et al., 2013a] trained a

supervised sentence compression model beforehand using a set of word-, syntax-, and

document-level features. Then, they fed multiple compressed sentences into Integer

Linear Programming (ILP) to select salient summary sentences. Experiments showed

that their compressive model was simple yet effective. [Bing et al., 2015] proposed a

fusion-based summarization framework with a particular focus on noun and verb phra-

ses. Specifically, their first extracted phrases from the source documents to resemble a

pool of concepts and facts. Then they generated new sentences by choosing and mer-

ging informative phrases. The objective of the generated summary was to maximize the

saliency of the selected phrases and also obey the restraints of sentence construction.

Deep learning technologies have also been employed in compressive summarization.

For instance, [Filippova et al., 2015] regarded compression as a binary sequence labe-

ling task which was modeled by Long Short Term Memory (LSTM) networks. They

also built a large scale compression dataset through automatically paralleling (sentence,

headline) pairs.

All the above-mentioned approaches rely on parse trees for compression and/or

fusion. Researchers have also proposed to utilize word graphs [Barzilay and Lee, 2003]

to fuse important content. A word graph is represented by a directed graph. If word

X and word Y are adjacent in a source sentence, then an an edge from X to Y will

be added into the graph. The technique of word graphs has been widely used in NLP

such as language modeling and paraphrasing. [Filippova, 2010] introduced this idea

for fusion-based summarization. They used various graph and semantic features to
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measure the weight for an edge. Then, the shortest path algorithm was adopted to find

the concise and informative sentence to represent a word graph.

2.2.2 Template-based Approaches

One serious problem that all the above-mentioned summarization approaches suffer

is that there might be no appropriate sentence to extract or compress. It hence pro-

motes a more abstractive approach called template-based summarization [Moratanch

and Chitrakala, 2016]. In general, template is a common natural language generation

technique that matches its nonlinguistic input directly (i.e., without intermediate repre-

sentations) to the linguistic surface structure [Reiter and Dale, 1997]. This structure

may contain “gaps” which are filled in during output. Defining templates usually re-

quires a lot of human efforts and domain knowledge. Thus, template-based natural

language generation approaches are often applied in industry to produce fluent and re-

levant text. For example, the prevailing chatting robot XiaoIce1 contains numerous

templates manually created in real time to fix bad cases. In summarization research,

[Harabagiu and Lacatusu, 2002] developed an automatic summarization system GIS-

TEXTER to produce both extracts and abstracts from the documents. It leveraged the

CICERO IE system [Surdeanu and Harabagiu, 2002] to generate templates. Thereafter,

these templates were mapped into text snippets from documents, in order to generate

coherent, informative multi-document summaries. [Zhou and Hovy, 2004] investigated

template-based headline summarization. Their system consisted two phases. Utilizing

a serious of manually defined keywords, the keyword clustering phase found out title

phrases in the front of the document. The template filter phase subsequently popu-

lated pre-specified headline templates with headline phrases to produce the resulting

headlines. [Oya et al., 2014] presented a template-based abstractive meeting summari-

zation system. It first automatically extracted templates from human-written summaries

through clustering and fusion. Afterwards, the system picked up the best templates for

1http://www.msxiaoice.com/
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the current summary generation based on the relationship between summaries in the

training data and the source meeting transcripts.

2.3 Seq2seq in NLP

The sequence-to-sequence (seq2seq) framework (a.k.a encoder-decoder architecture) is

a newly emerging approach for natural language generation. With a seq2seq model, the

source text is encoded by the encoder as a context vector. Then, a decoder decodes the

semantic information in the vector and outputs the target text. The seq2seq framework,

as Neural Machine Translation (NMT), was originally proposed by [Kalchbrenner and

Blunsom, 2013; Cho et al., 2014a; Sutskever et al., 2014]. Compared with the tra-

ditional statistical machine translation (SMT) approaches (e.g., [Koehn et al., 2007]),

seq2seq models required less human efforts and achieved better performance. Later,

[Bahdanau et al., 2014] developed the attention mechanism which largely promoted

the applications of the seq2Seq models. In addition to machine translation, seq2seq

models have reached the competitive performance in many other areas like dialog ge-

neration [Shang et al., 2015]. Recently, the application of the attentional seq2seq model

has also attracted growing attention in abstractive sentence summarization. [Rush et al.,

2015a] firstly attempted the encoder-decoder architecture. In their model, the encoder

was attentional Convolutional Neural Network (CNN), and the decoder was a simple

neural network language model like [Bengio et al., 2003]. Later, the authors proposed

to replace the decoder with Recurrent Neural Network (RNN) [Chopra et al., 2016].

Finally, in [Nallapati et al., 2016a], both encoder and decoder were RNN, yielding a

complete attentional seq2seq model. Since then, there have been a series of variants of

seq2seq summarization models. In what follows, I will introduce five important types

of modifications, including changes in encoder, attention, decoder, neural network ar-

chitecture and loss function. Since these changes can usually be employed universally,

I will survey work on different generation tasks (e.g., machine translation and dialog

generation), where the study on abstractive summarization will be highlighted.
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2.3.1 Encoder Modification

The original encoders [Sutskever et al., 2014] only read source text either forward or

backward, which makes a word ignore its subsequent context. [Sundermeyer et al.,

2014] proposed a bidirectional architecture, which can take the full source sentence

into account for all word predictions. Since then, the bidirectional LSTM has become

the standard configuration in seq2seq.

Syntactic information benefits a series of traditional generation models, including

syntax-based SMT and compressive summarization. Thus, the syntax-aware seq2seq

framework has been proposed in the area of machine translation. [Li et al., 2017a]

linearized a phrase parse tree into a structural label sequence and used the standard

encoder to read this mixed word and label sequence. [Hashimoto and Tsuruoka, 2017]

argued that a syntactic parser trained by supervised learning in advance might not be

suitable for the current generation. Therefore, the authors proposed to learn a parser as

part of the encoder. Different from the common dependency parse tree, they defined a

parse graph where a word could hold multiple head words. In such way, they added an

attention layer over the encoder to learn the dependency weights of each source word

on the source sentence. Experimental results demonstrated that their model was able

to learn meaningful dependency by itself, while using initialization of a pre-trained

dependency tree could further improve the performance.

The representations of the RNN encoder may be insufficient for a more complete

understanding of the source text, such as its style or theme. Inspired by the variati-

onal auto-encoder (VAE) [Kingma and Welling, 2013; Rezende et al., 2014], many

researchers (e.g., [Zhang et al., 2016]) have proposed to learn latent variables from the

encoder output. These latent variables, fed into each decoder state, are expected to

handle the diversity in the source text. Generative Adversarial Net (GAN) [Yu et al.,

2017] has also been applied for the similar purpose. Their system outperformed other

approaches on three tasks, i.e., poem generation, speech language generation and music
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generation.

Many researches on summarization have attempted to inject more semantics into

the encoder. For example, [Nallapati et al., 2016a] enriched the encoder with lexical

and statistic features such as position, named entity and part-of-speech tags. These

features played important roles in traditional feature based summarization approaches.

Their experiments verified the effect of these features. [Zhou et al., 2017b] added a

selective gate network over the encoder hidden states. This network constructed a se-

cond level sentence representation by controlling the information flow from encoder to

decoder. Experiments showed that their model was able to tailor source text according

to saliency.

2.3.2 Attention Modification

Recently, the attention mechanism has nearly become a standard module in seq2seq

models, due to its strong ability to learn alignments between different modalities [Cho-

rowski et al., 2014; Mnih et al., 2014; Xu et al., 2015]. the attention mechanism can be

classified into hard and soft types [Xu et al., 2015]. The soft attention works globally

by measuring alignment weights over all the source positions. In comparison, the hard

attention only concentrates on a small part of the source content at a time.

[Bahdanau et al., 2014] firstly introduced the attention mechanism into neural ma-

chine translation to learn the alignment between source and target words. They used

multi-layer perceptrons (MLP) to measure the weights of attentions. [Vaswani et al.,

2017] proposed the scaled dot-product attention, which added a scaling factor on the

dot product of two hidden states. The authors believed this attention could run much

faster and achieve competitive performance against MLP attention.

In addition to source-target word alignment learning, researchers also explored the

other uses of attentions. For instance, attentions were accumulated to measure which

source words had already been translated in [Tu et al., 2016b]. [Vaswani et al., 2017]
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proposed a more complicate multi-head attention, which computed attentions on all the

encoder-encoder, encoder-decoder, decoder-decoder positions. Their machine transla-

tion system, Transformer, could be trained far more quickly than common architec-

tures, and outperformed state-of-the-art approaches on two translation benchmarks.

In the summarization area, [Gu et al., 2016] made use of attentions to measure the

copying mechanism . As mentioned above, copying is one of the core writing beha-

vior in summarization, that is, most keywords in the source text should be reserved

by the summary. [Nallapati et al., 2016a] developed hierarchical attentions to measure

the alignment of a summary word from source sentences to source words. Inspired by

the graph-based extractive summarization approach LexRank [Erkan and Radev, 2004],

[Tan et al., 2017b] proposed the graph-based attention mechanism to measure the sa-

liency of sentences.

2.3.3 Decoder Modification

When the seq2seq framework was first applied in abstractive summarization in [Rush et

al., 2015a], the decoder was a neural network language model. Most subsequent work

applied the RNN decoder as to generate a sentence word by word. The general decoder

packs all linguistic granularities (e.g., words, phrases and clauses) in the same times-

cale of RNN. [Zhou et al., 2017a], in contrast, proposed a hierarchical RNN decoder

for machine translation. It split the hidden states of the decode into two phases and

updated them in different time steps. The bottom state was used for phrase modeling,

and the word states were generated on it. While the encoder in a seq2seq framework is

usually bi-directional, the decoder often works in a forward manner, leaving the target-

side contexts generated from right to left unexploited. [Zhang et al., 2018] equipped

the conventional seq2seq framework with a backward decoder to enable bi-directional

machine translation. Specifically, the backward decoder first learned to generate the

target-side hidden state sequence from right to left. Then, the forward decoder perfor-

med generation in the forward direction, which simultaneously applied two attention
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neural networks corresponding to the source-side and the reverse target-side hidden

states, respectively. [He et al., 2016; Wang et al., 2017] found that NMT generally pro-

duced fluent but inadequate translations, in contrast to conventional SMT. To handle

this problem, they incorporated the SMT model into the NMT framework where SMT

offered additional recommendations of generated words for NMT. [Kiyono et al., 2017]

proposed the Source-side Prediction Module (SPM) which was put on the decoder to di-

rectly estimate the correspondence between source and target words. In this way, SPM

enabled to jointly estimate the probability distributions over source and target vocabu-

laries. In abstractive summarization, [Kikuchi et al., 2016] argued that length control

was crucial. They added the desired length information into the decoder through two

ways: LenEmb and LenInit. The first one inputted the remaining length to the decoder

at each decoding step, while the second one embedded the expected length as the addi-

tional initialization parameters of the decoder. Results showed that both methods were

able to control length and keep summary quality.

To enhance efficiency of learning, researchers have also tried to modify the out-

put dimension of the decoder. [Cho et al., 2015] restricted the decoder to generate

the words from the actual target words together with a sampled word set during trai-

ning of NMT. In dialog generation, [Wu et al., 2017] proposed a dynamic vocabulary

seq2seq model which allowed each input to possess their own vocabulary in decoding.

Vocabulary construction and response generation were jointly learned during training.

In summarization, [Nallapati et al., 2016b] extended the work of [Cho et al., 2015]

by supplementing the output vocabulary with the 1-nearest-neighbors of words in the

source text, as measured by the similarity in the word embedding space. We believe

these neighbors of source words can partially reflect the rewriting behavior in summa-

rization.
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2.3.4 Neural Network Architecture Modification

In NLP, [Mikolov et al., 2010] was the first to use the vanilla RNN to train a language

model. However, with the increase of network depth, the vanilla RNN often suffers

from vanishing gradient or exploding gradient. To handle this problem, earlier work

[Kalchbrenner and Blunsom, 2013; Cho et al., 2014a; Sutskever et al., 2014] opted to

use Long Short-Term Memory (LSTM) [Gers et al., 1999] as the recurrent unit. LSTM

is a special type of recurrent neural network. It usually outperforms vanilla recurrent

neural network due to the import of various gates to control the input and update proces-

ses. Later, another competitive architecture called Gated Recurrent Unit (GRU) [Cho et

al., 2014b] was also widely applied in seq2seq (e.g., [Bahdanau et al., 2014]). Compa-

red with LSTM, GRU has been shown to exhibit better performance on smaller datasets

[Chung et al., 2014]. Meanwhile, it contains fewer parameters with the removed output

gate. However, both LSTM and GRU are still far slower than Convolutional Neural

Network (CNN) due to the intrinsic difficulty in parallelizing their state computations.

Recently, [Lei and Zhang, 2017] have proposed Simple Recurrent Unit (SRU), i.e., a re-

current unit that simplified the computation and exposed more parallelism. m. In SRU,

the majority of computation for each step was independent of the recurrence and could

be easily parallelized. SRU was reported to be as fast as a convolutional layer and 5-10

times faster than an optimized LSTM implementation. [Li et al., 2018b] argued that

construction and training of a deep LSTM or GRU based RNN network was practically

difficult because of the use of the hyperbolic tangent or the sigmoid functions as the

activation function. In addition, all neurons in an RNN layer were entangled together

and their behaviors were hard to interpret. Thus, they developed the Independently Re-

current Neural Network (IndRNN), where neurons in the same layer were independent

of each other and connected across layers. Experimental results showed that IndRNN

was able to process very long sequences (over 5000 time steps), and could be used to

construct very deep networks.

Some studies even attempted to substitute the RNN architecture in seq2seq. For
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example, [Gehring et al., 2017] used the Convolutional Neural Network (CNN) for

both encoder and decoder. Compared to RNN, computations over CNN can be fully

parallelized, which makes full use of the power of GPUs. In addition, the optimization

of CNN is more convenient due to the fixed number of non-linearities. [Vaswani et al.,

2017] proposed Transformer which totally depended on attention mechanisms, with

neither recurrence nor convolution.

2.3.5 Loss Function Modification

The dominant approach [Bahdanau et al., 2014] to training a seq2seq model is equiva-

lent to training a conditional language model. The learning objective is to maximize

the likelihood of each actual target word given the source text and the actual history

of target text. Usually, the word-level loss function, called Negative Log-Likelihood

(NLL), is adopted during training. However, in test, seq2seq models are expected to

fluent target text similar to what humans write. It is a global objective and is impossi-

ble to evaluate word-by-word. [Ranzato et al., 2015] argued that NLL loss in seq2seq

models would suffer from two serious problems, i.e., exposure bias and loss-evaluation

mismatch. Later, [Wiseman and Rush, 2016] pointed out another important issue, i.e.,

label bias [Lafferty et al., 2001], which deteriorates the performance of a seq2seq mo-

del quickly with the increase of the length of generation [Koehn and Knowles, 2017].

In view of these weaknesses, some summarization researchers proposed to use a global

loss function during training. For instance, [Ayana et al., 2016] employed the Minimum

Risk Training (MRT) strategy, which could tune model parameters directly according

to the summarization evaluation metrics of ROUGE. Specifically, during training, their

model also used the beam search to generate a summary. Then, according to MRT,

the loss function was based on the difference of ROUGE scores between the generated

summary and actual summary. As such, the training process was exactly the same as

the test process. Similar idea was adopted by [Wiseman and Rush, 2016], except that

they computed the ROUGE loss during each decoding step to accelerate convergence.
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Although these methods were able to achieve high ROUGE scores on test datasets,

the generated summaries were often only composed of key phrases and ungrammati-

cal. Later, [Paulus et al., 2017] applied the reinforcement learning algorithm to learn a

mixed objective function of likelihood and ROUGE scores.

Other auxiliary losses have also been introduced in summarization. [Cao et al.,

2017a] added a 0/1 label for each summary word to predict whether it was copied from

the source text. These labels provided additional supervision for this task. Likewise,

[Zhou et al., 2017a] used the similar binary labels to indicate the boundary of a phrase

for machine translation. Inspired by the idea of input reconstruction in extractive sum-

marization [He et al., 2012], [Miao and Blunsom, 2016] firstly used a seq2seq model

to generate a summary from the source sentence, and then recovered the input con-

ditioned on this summary. Since the generated summary was discrete, they used the

reinforcement learning algorithm to tune model parameters. Notably, their approach

can work in the semi-supervised and even unsupervised scenarios. Later, [Tu et al.,

2016a] further developed the reconstruction concept for NMT. Differently, the input of

the reconstruction process was the hidden layer at the target side, rather than the output

words. As such, model became derivable, bringing huge convenience and efficiency for

training.
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Chapter 3

Copy and Rewrite Words in Source
Text

You can’t do better design with a computer, but
you can speed up your work enormously.

— Wim Crouwel
(Graphic designer and typographer)

3.1 Introduction

Summarization is to use a condensed description to summarize the main idea of a docu-

ment. As a result, copying and rewriting are two main writing styles in summarization.

Copying means repeating keywords in the source text while in rewriting a concept is

paraphrased or generalized using other words. Recently, the encoder-decoder structure

(aka. seq2seq framework) has become more and more popular in many language gene-

ration tasks [Bahdanau et al., 2014; Shang et al., 2015]. Studies such as [Rush et al.,

2015b; Hu et al., 2015b] have applied the seq2seq models to the sentence summariza-

tion task. Despite the competitive performance, these models seldom take into account

the two major writing modes in summarization.

On the one hand, due to the nature of the task, keywords in the source text are

usually reserved in the target text. However, with only one decoder generating over
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the entire vocabulary, a typical seq2seq model fails to reflect the copying mode. As

a result, many keywords provided in the source text may be overlooked in the target

text. In addition, certain keywords like named entities are often rare words and masked

as unknown (UNK) tags in seq2seq models, which unavoidably causes the decoder

to generate a number of UNK tags. Although not aiming to explicitly explore the

copying mechanism, the work of [Rush et al., 2015b] finds that it largely improves the

performance to add the input-related hand-crafted features to guide generation.

On the other hand, rewriting also plays a significant role in summarization. With

this writing mode, although the target words are not the same as the source words,

there are semantic associations between them. For example, “seabird” is possibly ge-

neralized as “wildlife”, and “rise strongly” can be paraphrased into “boom” for short.

The decoders in most previous work generate words by simply picking the likely tar-

get words that fit the contexts out of a large vocabulary. This common practice suffers

from two problems. First, the computation complexity is linear to the vocabulary size.

In order to cover enough target words, the vocabulary size usually reaches 104 or even

105. Consequently, the decoding process becomes quite time-consuming. Moreover,

the decoder sometimes produces the named entities that are common but do not exist

in or even irrelevant to the input text, leading to an unfaithful summary.

In this chapter, we propose a novel seq2seq model named CoRe, which captures the

two core writing modes in summarization, i.e., Copying and Rewriting. CoRe fuses a

copying decoder and a rewriting decoder. Inspired by [Vinyals et al., 2015], the copying

decoder finds the position to be copied based on the existing attention mechanism.

Therefore, the weights learned by the attention mechanism have the explicit meanings

in the copying mode. Meanwhile, the rewriting decoder produces the words restricted

in the source-specific vocabulary. This vocabulary consists of a (source, target) word

alignment table together with a small collection of frequent words. The alignment

table is trained in advance, and updated according to the attention mechanism. With

the supplement of a few frequent words, experiments (see Table:3.2) show that more
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than 90% of the target words have been covered by our decoders. While the output

dimension of our rewriting decoder is just one tenth of the output dimension used by

the common seq2seq models, it is able to generate highly relevant words concerning

rewriting. To combine the two decoders and determine the final output, we develop a

predictor to predict whether the writing mode is copying or rewriting. Since we know

the actual writing mode at each output position in a training instance, we introduce

a binary sequence labeling task to guide the learning of this predictor, which takes

advantages of the supervision derived from the writing modes.

To our knowledge, the work most relevant to ours is the COPYNET [Gu et al.,

2016], which also explores the copying mechanism. However, COPYNET adds an

additional attention-like layer to predict the copying weight distribution. This layer

then competes with the output of the rewriting decoder. Therefore, it is not easy for

COPYNET to explain the contributions of copying and generation. Compared with

our model, COPYNET introduces a lot of extra parameters and ignores the supervision

derived from the writing modes. Moreover, the rewriting decoder of COPYNET is only

allowed to produce frequent words. As a result, the rewriting patterns are discarded to

a large extent.

We conduct a wide range of experiments on three different datasets. The result

shows that both informativeness and sentence quality of our model outperform the stan-

dard seq2seq models.

The rest of this chapter is organized as follows. Section 3.2 surveys the previous

work in sentence summarization. Section 3.3 describes the proposed method. Experi-

ments are presented in Section 3.4. Finally, we summarize this chapter in Section 3.5.
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3.2 Related Work

The seq2seq model is a newly emerging approach. It was initially proposed by [Kal-

chbrenner and Blunsom, 2013; Cho et al., 2014a; Sutskever et al., 2014] as NMT. Com-

pared with the SMT approaches (e.g., [Koehn et al., 2007]), seq2seq models require

less human efforts. Later, [Bahdanau et al., 2014] developed the attention mechanism

which largely promoted the applications of seq2seq models. In addition to machine

translation, seq2seq models achieved competitive performance in many other applica-

tions such as response generation [Shang et al., 2015] Some researches (e.g., [Rush et

al., 2015b; Hu et al., 2015b]) have directly applied the general seq2seq model [Bah-

danau et al., 2014] to abstractive sentence summarization. However, the experiments

of [Rush et al., 2015b] demonstrated that the introduction of hand-crafted features sig-

nificantly improved the performance of the original model. Consequently, the general

seq2seq model used for machine translation seemed not suitable for summarization,

which involves both copying and rewriting.

Limited work has explored the copying mechanism. [Vinyals et al., 2015] propo-

sed a pointer mechanism to predict the output sequence directly from the input. In

addition to the different applications, their model cannot generate items outside of the

set of input sequence. Later, [Allamanis et al., 2016] developed a convolutional atten-

tion network to generate the function name of the source code. Since there are many

out-of-vocabulary words, they used another attention model in the decoder to directly

copy a source code token. In seq2seq generation, the most relevant work we find is

COPYNET [Gu et al., 2016], which has been explained in the introduction.

Some existing work has tried to modify the output dimension of the decoder to

speed up the training process. In training, [Cho et al., 2015] restricted the decoder

to generate the words from the actual target words together with a sampled word set.

[Nallapati et al., 2016b] supplemented the 1-nearest-neighbors of source words, as me-

asured through the similarity in the word embedding space. Notice that, these models
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still decoded on the full vocabulary during test. In comparison, our rewriting decoder

always produces the words in a small yet highly relevant vocabulary.

3.3 Method

3.3.1 Background

Seq2seq models have been extensively applied to a series of natural language gene-

ration tasks, including machine translation [Bahdanau et al., 2014], response genera-

tion [Shang et al., 2015] as well as abstractive summarization [Rush et al., 2015b]. With

these models, the source sequence X = [x1, · · · , xn] is converted into a context vector

c. The common practice is to adopt a Recurrent Neural Network (RNN) encoder:

hτ = f(xτ ,hτ−1) (3.1)

c = φ(h1, · · ·hn) (3.2)

where {hτ} are the RNN states, f is the recurrent function, and φ is used to summarize

the hidden states. For example, some early work simply pick up the last state hn.

The decoder unfolds the context vector c into the target RNN state st through the

similar dynamics in the encoder:

st = f(yt−1, st−1, c) (3.3)

Then, the predictor is followed to generate the final sequence, usually using a softmax

classifier:

p(yt|y<t,X) =
exp(ψ(yt−1, st, ct)wt)∑

yt′∈V
exp(ψ(yt−1, st, ct)wt′)

(3.4)

where yt is the predicted target word at the state t, wt is the corresponding weight

vector, and ψ is an affine transformation. V is the target vocabulary, and it is usually as

large as 104 or even 105.

To release the burden of summarizing the entire source into a single context vector,

the attention mechanism [Bahdanau et al., 2014] uses a dynamic context ct to replace
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c in Equation 3.3. A common practice is to use the weighted sum of {hτ} to compute

the context vector:

αtτ =
eη(st−1,hτ )∑n
τ ′=1 e

η(st−1,hτ ′ )
,∀τ ∈ [1, n] (3.5)

ct =
∑n

τ=1
αtτhτ (3.6)

where αtτ reflects the alignments between source and target words, and η denotes the

function to measure the correspondence weight of the attention.

3.3.2 Overview of CoRe

As illustrated in Figure 3.1, CoRe is an advanced seq2seq framework. The source

sequence is transformed by a RNN Encoder into the context representation. Then we

develop two Decoders to model copying and rewriting, respectively.

Figure 3.1: Overview of CoRe.

Encoder

We follow the work of [Bahdanau et al., 2014] to build the encoder. Specifically, the

bi-directional RNN (BiRNN) is introduced to make the hidden state hτ aware of the

entire context from both sides. Given a source word xτ , its hidden state of the forward
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RNN can be represented by:

−→
h τ = RNN(xτ ,

−→
h τ−1) (3.7)

Here we use the Gated Recurrent Unit (GRU) [Cho et al., 2014b] as the recurrent unit,

which often performs much better than the vanilla RNN. The detailed computation of

GRU is as follows:

zτ = σ([
−→
h τ−1,xτ ]Wz) (3.8)

rτ = σ([
−→
h τ−1,xτ ]Wr) (3.9)

lτ = tanh([rτ �
−→
h τ−1,xτ ]Wl) (3.10)

−→
h τ = (1− zτ )�

−→
h τ−1 + zτ � lτ (3.11)

where zτ , rτ are two gates, W. stands for model weights and � means element-wise

multiplication. We use bold font xτ to represent the word embeddings of the word xτ .

The BiRNN reads text both forward and backward. Suppose the corresponding outputs

are {
−→
h τ} and {

←−
h τ}, respectively. Then we concatenate two RNN representations to

finally represent a word, i.e., hτ = [
−→
h τ ;
←−
h τ ].

Then, according to Equation 3.2, we apply the attention mechanism to compute the

context vector. Here we adopt the common form of η as [Luong et al., 2015]:

η(st−1,hτ ) = va tanh(st−1Wa + hτUa)
> (3.12)

where va, Wa and Ua are model parameters. However, unlike most previous work, we

re-use the alignment learned by Equation 3.5 in the decoders.

Decoder

Instead of using the canonical RNN-decoder like [Bahdanau et al., 2014], we develop

two distinct decoders to simulate the copying and rewriting behaviors, respectively.

The Copying Decoder (C) picks the words from the source text. In summarization,

most keywords from the original document will be reserved in the output. This decoder
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reflects this fact. Since the attention mechanism is supposed to provide the focus of

source text during generation, for the copying behavior, the weights learned by Equa-

tion 3.5 can be interpreted as the copying probability distribution. Thus, the output of

the copying decoder is:

pC(yt|y<t,X) =

{
αtτ , if yt = xτ
0, otherwise (3.13)

Most previous work uses the attention mechanism as a module to build the context vec-

tor. In contrast, our copying decoder provides the explicit meanings (i.e., the copying

probability distribution) to the learned alignment. Notice that, this decoder only gene-

rates words in the source, i.e., the vocabulary for this decoder is VC = X. We observe

that quite a number of low-frequency words in the actual target text are extracted from

the source text. Hence, the copying decoder largely reduces the chance to produce the

unknown (UNK) tags.

The Rewriting Decoder (G), on the other hand, restricts the output in a small yet

highly relevant vocabulary according to the source text. At first, we use a GRU decoder

like [Bahdanau et al., 2014] to compute the current generation state st, that is:

zt = σ([st−1,yt−1, ct]Uz) (3.14)

rt = σ([st−1,yt−1, ct]Ur) (3.15)

lt = tanh([rt � st−1,yt−1, ct]Ul) (3.16)

st = (1− zt)� st−1 + zt � lt (3.17)

where U. denotes model parameters. The output of this decoder is formulated by Equa-

tion 3.18, which is similar to Equation 3.4, except for the reduced vocabulary VG:

pG(yt|y<t,X) =
exp(ψ(yt−1, st, ct)wt)∑

yt′∈VG
exp(ψ(yt−1, st, ct)wt′)

(3.18)

To obtain VG, we train a rough alignment table A based on the IBM Model [Dyer et al.,

2013] beforehand. This table is able to capture many representative rewriting patterns,

such as “sustain→ injury”, and “seabird→ wildlife”. In addition, during training, we

utilize the learned attentions to supplement more rewriting alignments. Specifically, for
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each target word yt, if it is not copied, we find out the word with the maximal attention

weight as its alignment. To formulate, the computation is:

A(yt) = argmax
τ

(αtτ ), ∀yt /∈ X (3.19)

Our pilot experimental results show that the alignment table covers most target words

which are not extracted from the source. To further increase the coverage, we introduce

an additional frequent word table U1. Putting together, the final vocabulary for this

decoder is limited to:

VG = A(X) ∪U (3.20)

Compared with generation with the large vocabulary V, the restricted decoder not only

runs much faster but also produces more relevant words.

To combine the two decoders, we introduce a binary sequence labeling task to de-

cide whether the current target word should come from copying or rewriting. Specifi-

cally, for each hidden state st, we compute a predictor λt to represent the probability of

copying at the current generation position:

λt = σ(stwC) (3.21)

where σ represents the sigmoid function and wC is the model parameters. λt measures

the contributions of the two decoders. The final combined prediction probability is:

p(yt|y<t,X) = λtpC + (1− λt)pG (3.22)

It is noted that λt has the following actual supervision in the training set:

λ∗t =

{
1, if target word at t exists in the source
0, otherwise (3.23)

Therefore, we can utilize this supervision to guide the writing mode prediction.

The common canonical RNN-decoder outputs the probability distribution over the

reserved target word vocabulary V. Since the computation complex of a seq2seq model

1We add the UNK tag in this table
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is linear to the output dimension of the decoder, a large amount of infrequent target

words have to be discarded to ensure a reasonable vocabulary size. As a result, a target

sentence may contain many UNK tags, and thus unreadable. By contrast, the output

dimension of our rewriting decoder is totally independent on the preserved target word

vocabulary. Therefore, we opt to reserve all the training target words. Experiments

demonstrate that our model runs efficiently and well covers the actual target words.

3.3.3 Learning

The cost function ε in our model is the sum of two parts, i.e.,

ε = ε1 + ε2 (3.24)

The first one ε1 is the difference between the output {yt} and the actual target sequence

{y∗t }. As the common practice, we use Negative Log-Likelihood (NLL) to represent

the generation error:

ε1 = −
∑

t
ln(p(y∗t |y<t,X)) (3.25)

In most existing seq2seq models, ε1 is the final cost function. However, in our mo-

del, we include another cost function ε2 derived from the prediction of writing modes.

As shown in Equation 3.21, a binary sequence labeling process in our model predicts

whether or not the current target word is copied. ε2 measures the performance of this

task,

ε2 = −(
∑

t
(λ∗t ln(λt) + (1− λ∗t ) ln(1− λt))) (3.26)

ε2 utilizes additional supervision of the training data. The experiments show that this

cost function accurately balances the proportion of the words derived from copying and

generation.
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3.4 Experiment

3.4.1 Datasets

We test CoRe on various datasets, including

Gigaword Gigaword Headline Generation

CNN/DM CNN/Daily Mail Highlight Generation

Wikipedia Wikipedia Text simplification

The first two are sentence summarization datasets, while the last one focuses on sen-

tence simplification. Text simplification modifies a document in such a way that the

grammar and vocabulary is greatly simplified, while the underlying meaning remains

the same. It is able to make the scientific documents easily understandable for outsi-

ders. This task is analogous to text summarization where copying and rewriting are

also dominant writing modes. All the raw corpora are publicly available.

Gigaword: We conduct experiments on the Annotated English Gigaword dataset,

as with [Rush et al., 2015b]. This parallel dataset is produced by pairing the first sen-

tence in the news article and its headline as the summary with heuristic rules. The

whole dataset is publicly available2. This dataset has already been tokenized, lowerca-

sed and masked rare words with an out-of-vocabulary (OOV) tag. We replace the OOV

tag “<unk>” with “UNK” in the training and validation datasets, which accords with

the practice in the test set.

CNN/DM: We modify a machine reading comprehension [Hermann et al., 2015]

corpus to get the <document,highlight> pairs. In this dataset, a collection of news

documents and the corresponding highlights are downloaded from CNN and Daily Mail

websites. For each highlight, we reserve the original sentences that have at least one

2https://github.com/harvardnlp/sent-summary
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Statistics Gigaword CNN/DM Wikipedia
Training# 3.8M 987k 132k
Validation# 189k 52k 7k
Test# 1951 42k 3393
Source Length 31.4 71.0 24.3
Target Length 8.3 12.6 20.9
Vocab Size 124k 116k 123k

Table 3.1: Statistics of the three datasets.

word overlap with the source text. Therefore, if a document holds multiple highlights,

the source text for each highlight can be different.

Wikipedia: Simple English Wikipedia3 articles represent a simplified version of

traditional English Wikipedia articles. [Kauchak, 2013] built a <Wikipedia text, Sim-

ple English Wikipedia text> corpus according to the aligned articles. We eliminate the

non-English words in the corpus, and remove the pairs where the source and the target

are exactly the same.

The overall information of the experimental datasets is shown in Table 3.1. As can

be seen, each dataset has a large vocabulary size. In the summarization datasets, the

target length is much shorter than the source length, while in the simplification dataset,

their lengths are similar.

In addition, we compute the target word coverage ratio based on different vocabu-

lary sets, as shown in Table 3.2. For CNN/DM and Wikipedia, it appears that both

datasets hold a high copying ratio. When we restrict the rewriting decoder to produce

the source alignments, more than 85% target words can be covered. When combined

with 2000 frequent words, the coverage ratio of our model is already close to that using

the vocabulary of 30000 words. For Gigaword, due to its relatively high abstraction,

the alignment table can only cover 80% target words. Therefore, we introduce 3000

frequent words.

3http://simple.wikipedia.org

47

http://simple.wikipedia.org


Vocabulary Gigaword CNN/DM Wikipedia
X 58.4 79.2 78.1
X ∪A(X) 79.5 89.2 85.8
X ∪A(X) ∪U 92.4 95.3 96.0
|V| = 30000 96.5 96.3 95.4

Table 3.2: Target word coverage ratio (%) on the test set.

3.4.2 Evaluation Metrics

Informativeness is evaluated using ROUGE4 [Lin, 2004], which has been regarded as a

standard automatic summarization evaluation metric. ROUGE counts the overlapping

units between the candidate text Y and the actual target text T to evaluate the quality

of Y. As the common practice, we report ROUGE-1 (uni-gram), ROUGE-2 (bi-gram)

and ROUGE-L (longest common subsequence) scores. Since we do not try to cont-

rol the length of the generated sentences, we use the f-score rather than the recall for

comparison. The detailed formulas are presented as follows:

ROUGE− 1f - score =
2×

∑
u∈Y min{NY(u), NT(u)}∑

u∈YNY(u) +
∑

b∈TNT(u)
(3.27)

ROUGE− 2f - score =
2×

∑
b∈Y min{NY(b), NT(b)}∑

b∈YNY(b) +
∑

b∈TNT(b)
(3.28)

ROUGE− Lf - score =
2× LCS(Y,T)

|Y|+ |T|
(3.29)

where u, b denote a uni-gram or bi-gram, Y is a generated summary and T means the

actual summary, N(.) is the number of an item, and LCS is the length of a longest

common subsequence.

3.4.3 Model Settings

Turned on the validation dataset, we choose 256 as word embedding dimension and 512

as the RNN dimension. The initial learning rate is 0.05 and the batch size is 32. Our

implementation is on the basis of the standard attentional seq2seq framework dl4mt5

4ROUGE-1.5.5 with the following parameters: -p 0.5 -t 0 -n 2 -x -m -u -c 95 -r 1000 -f A.
5https://github.com/nyu-dl/dl4mt-multi

48

https://github.com/nyu-dl/dl4mt-multi


under the Theano framework6. We use the RmsProp [Tieleman and Hinton, 2012] op-

timizer with mini-batches to tune the model weights. RmsProp is a popular method to

train recurrent neural networks. We leverage the popular tool Fast Align [Dyer et al.,

2013] to construct the initial source-target word alignment table A. Then, this table

is automatically updated according to the learned attentions. The vocabulary of our

rewriting decoder is restricted to the top 10 alignments of each source word plus 2000

frequent words (3000 for Gigaword). Although our model is more complex than the

standard attentional seq2seq model, it only spends about three quarters of the time in

training. To be consistent with Chapter 5, for Gigaword, we also test a recently pu-

blished seq2seq implementation called OpenNMT7 which is built on the deep learning

framework Pytorch8. All the settings are the same as Chapter 5. Thus, this practice also

provides chances to compare the effect of deep learning frameworks. It is noted that

copying mechanism has already been equipped in OpenNMT. To distinguish the results

from dl4mt and OpenNMT, we add suffixes “D” and “O”, respectively.

3.4.4 Baselines

We compare the proposed model CoRe with various typical methods. At first, we in-

troduce the standard baseline called “LEAD” that simply outputs the “leading” words

of the source text. According to the averaged target length in Table 3.1, we choose the

first 20 words for CNN/Daily Mail, 25 for Wikipedia and 8 for Gigaword. In addition,

since statistical machine translation (SMT) has been used in sentence summarization

(e.g., [Banko et al., 2000]) and we adopt a popular SMT aligner Fast Align, we intro-

duce the prevailing SMT platform Moses [Koehn et al., 2007] as the baseline. For fair

comparison, when implementing Moses, we also employ the alignment tool Fast Align

as its aligner. We implement the standard attentional seq2seq model s2s-att [Bahdanau

et al., 2014] with dl4mt. Note that, we would like to but fail to take COPYNET [Gu et
6http://deeplearning.net/software/theano/
7http://opennmt.net/
8https://pytorch.org/
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al., 2016] into comparison. Its source code is not publicly available.

Since Gigaword is a widely studied dataset, we introduce the following published

results cited from corresponding papers:

ABS The first neural abstractive summarization system proposed by [Rush et al., 2015a].

ABS+ [Rush et al., 2015a] further tuned the ABS model with additional features to

balance the abstractive and extractive tendency.

RAS-Elman As the extension of the ABS model, it changed the decoder with RNN

[Chopra et al., 2016].

Featseq2seq [Nallapati et al., 2016a] used a full seq2seq model and added the hand-

crafted features such as POS tag and NER, to strengthen the encoder representa-

tion.

Luong-NMT [Chopra et al., 2016] implemented the neural machine translation mo-

del of [Luong et al., 2015] for summarization. This model contained two-layer

LSTMs for both encoder and decoder.

s2s-attO We also implement the standard attentional seq2seq model with OpenNMT.

All the settings are the same as our system.

3.4.5 Performance on CNN/DM and Wikipedia

The ROUGE performance is shown in Table 3.3. As can be seen, CoRe achieves the

highest ROUGE scores on both datasets. In contrast, the standard attentional seq2seq

model s2s-att is slightly inferior to Moses. It even performs worse than the simple ba-

seline LEAD in terms of ROUGE-2 in CNN/DM. Apparently, introducing the copying

and restricted generation mechanisms is critical for summarization.

Then, we check the text quality of the generation result. We learn a 3-gram Lan-

guage Model (LM) on the entire target datasets using the tool SRILM [Stolcke et al.,
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Data Model ROUGE-1(%) ROUGE-2(%) ROUGE-L(%)

CNN/DM

LEAD 28.13 14.12 25.82
Moses 27.81 14.15 24.91
s2s-att 28.16 12.42 26.50
CoRe 30.51 16.27 28.61

Wikipedia

LEAD 66.42 49.47 62.45
Moses 70.95 52.14 67.56
s2s-att 68.46 50.33 66.12
CoRe 72.73 55.30 69.23

Table 3.3: ROUGE performance on CNN/DM and Wikipedia.

Data Model PPL LENGTH UNK(%) COPY(%)

CNN/DM

LEAD 176 19.9 0 100
Moses 214 73.0 0∗ 99.6
s2s-att 113 13.7 0.88 92.0
CoRe 95 14.0 0.14 88.6

Wikipedia

LEAD 66.5 20.8 0 100
Moses 70.3 24.4 0∗ 97.6
s2s-att 69.5 22.7 5.6 87.7
CoRe 60.9 19.6 2.3 85.9

Table 3.4: Text quality performance on CNN/DM and Wikipedia. ∗Moses simply ig-
nore the unknown words.

2011], and calculate the perplexity (PPL) of the generated text. The lower PPL usually

means higher readability. We also perform the statistical analysis on the mean length

of the output text, the UNK ratio and the copy ratio. We assume that the good sen-

tences ought to have the similar length and copying ratio to the answers. As shown in

Table 3.4, according to PPL, the sentences produced by CoRe resemble the target lan-

guage the most. It is interesting that LEAD extracts human-written text in the source.

Nevertheless, its PPL is considerably higher than CoRe on both datasets. It seems that

CoRe indeed captures some characteristics of the target language, such as diction. We

also find that the PPL of Moses is the largest, and its generated length reaches the length

of the source text. Moses seems to conduct word-to-word translation. This practice to-

tally violates the summarization requirement. Although not manually controlled, the

lengths of the outputs in s2s-att and CoRe are both similar to the actual one, which

demonstrates the learning ability of seq2seq models. In addition, Table 3.4 shows that
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Figure 3.2: PPL changes during training.

compared to s2s-att, CoRe generates far fewer UNK tags and its copying ratio is closer

to the actual one. The former verifies the power of our two decoders, while the latter

may be attributed to the supplement of the supervision of writing modes.

3.4.6 Performance on Gigaword

Model ROUGE-1(%) ROUGE-2(%) ROUGE-L(%)
LEAD 22.37 7.90 21.12
Moses 28.90 12.12 26.56
ABS† 29.55 11.32 26.42
ABS+† 29.78 11.89 26.97
Featseq2seq† 32.67 15.59 30.64
RAS-Elman† 33.78 15.97 31.15
Luong-NMT† 33.10 14.45 30.71
s2s-attD 34.23 15.52 31.57
s2s-attO 35.01 16.55 32.42
CoReD 36.22 16.54 33.25
CoReO 36.72 17.12 33.37

Table 3.5: ROUGE performance on Gigaword. We use † to indicate the results from
citation.

Now let us look at the results on the Gigaword dataset. From Table 3.5, we observe

that CoRe achieves larger ROUGE values than all the other approaches. Note that

ABS+ and Featseq2seq have utilized a series of hand-crafted features, but our model is

52



Model
Copy Rewrite

COPY(%) RIGHTC RIGHTR NEW NE NEW UP
s2s-att 80 42 26 0.34 0.19
CoRe 74 48 25 0.26 0

Table 3.6: Copying and rewriting performance on Gigaword.

entirely data-driven. Even though, our model surpasses Featseq2seq by 10% and ABS+

by 44% in terms of ROUGE-2. We also observe that OpenNMT always works better

than dl4mt. Therefore, in the following part we only display the results of OpenNMT.

Next, we compare the training processes of CoReO and s2s-attO. The result is

shown in Figure 3.2. Obviously, PPL of CoRe drops faster than s2s-att, and the entire

training process of CoRe is shorter. It is interesting that PPL surges at the beginning of

each epoch. Maybe it is caused by the strategy of the learning rate decay.

Finally, we use series of metrics to evaluate the detailed copying and rewriting

performance, as described below:

COPY The copying ratio mentioned previously.

RIGHTC The proportion of the copied words which also appear in actual summaries.

RIGHTR The proportion of the rewritten words which also appear in actual summa-

ries.

NEW NE The number of the named entities that appear in neither the source sentence

nor the actual summary. Intuitively, the appearance of new named entities in the

summary is likely to bring unfaithfulness. We use Stanford CoreNLP [Manning

et al., 2014] to recognize named entities.

NEW UP The number of the uppercase words that appear in neither the source sen-

tence nor the actual summary. We use the “trucase” annotator of CoreNLP to

find these words. An uppercase word usually represent a named entity or some

adjectives like English or Chinese. The appearance of a new uppercase word in
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the summary is improper in most cases.

The results are presented in Table 3.6. Similar to Table 3.4, our model contains less

coying words, but its correct copying proportion increases 6%, verifying the effect of

explicit application of the attentions for copying. Although the correctness in rewriting

is almost the same, we can see that CoRe generates less new named entities and blocks

the appearance of new uppercase words. Thus we believe that rewriting modeling be-

nefits the improvement of summary faithfulness to some extent. This concept will be

illustrated in details in the next chapter.

We also investigate the n-gram level copying behaviors of different systems. As

shown in Figure 3.3, CoRe makes more accurate prediction than s2s-att in all n-gram

copying except tri-grams. It largely verifies the effectiveness of the proposed method.

In addition, we analyze the proportion of lengths in sequence copying. The results

of actual summaries, CoRe and s2s-att are displayed in Figure 3.4, Figure 3.5 and

Figure 3.6, respectively. As can been seen, long-sequence copying accounts for a half

in actually summaries. However, it is seriously biased in the seq2seq framework. For

example, the copying of a 5-gram or more is quite rare (5%) in actual summaries. By

contrast, this number is 10% in our model and 12% in s2s-att. Therefore, it requires a

mechanism to alleviate the long-sequence copying tendency in seq2seq. We leave it as

our future work.

3.4.7 Case Study

We further manually inspect what our model actually generates. We observe that the

paraphrase rules of Simple Wikipedia are relatively fixed. For example, no matter how

the article in Wikipedia illustrates, Simple Wikipedia usually adopts the following pat-

tern to describe a commune:

#NAME is a commune . it is found in #LOCATION .
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Figure 3.3: Correct copying in different sequence lengths.

Figure 3.4: Proportion of lengths of sequence copying in actual summaries.

Figure 3.5: Proportion of lengths of sequence copying in CoRe.
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Figure 3.6: Proportion of lengths of sequence copying in s2s-att.

Figure 3.7: Generation example in CNN/DM. We use colors to distinguish the word
source, i.e., copying , alignment or common words .
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Figure 3.8: Generation examples in Gigaword.

CoRe grasps many frequent paraphrase rules, and there are more than 130 cases where

the generation results of CoRe exactly hit the actual target sentences. Therefore, we

focus more on the analysis of the summarization results next.

In summarization, although most target words come from the copying decoder, we

find CoRe tends to pick keywords from different parts of the source document. By con-

trast, the standard attentional seq2seq model often extracts a large part of continuous

source words. Meanwhile, the restricted generation decoder plays the role to “connect”

these keywords, such as to change the tenses, or to supplement article words. Figure 3.7

and Figure 3.8 present some generation examples on CNN/DM and Gigaword. We find

that the sentence generated by CoRe is fluent and satisfies the need of summarization.

On CNN/DM, the only difference from the actual summary is that CoRe does not as-

sume “told @entity3” is important enough and simplifies it to “said”. It also accords

with the common sense. Notably, CoRe changes the starting word from “another” to

“a”, which is actually more preferred for an independent highlight. Looking at other

models, Moses almost repeats the content of the source text. As a result, the summary

generated by Moses is the longest one and fails to catch the main idea. The attentional

57



seq2seq framework indeed compresses the source text. It however focuses on the wrong

place, i.e., the attributive clause. Therefore, its output does not even form a complete

sentence. Moreover, in the first case on Gigaword, s2s-att wrongly changes “hoechst”

to UNK, which is avoided in our rewriting module.

3.5 Summary

In this chapter, we present a novel seq2seq model called CoRe to simulate the two core

writing modes in summarization, i.e., copying and rewriting. CoRe fuses a copying

decoder and a rewriting decoder. The copying decoder finds the position to be copied

based on the existing attention mechanism. The rewriting decoder produces words

limited in the source-specific vocabulary. To combine the two decoders and determine

the final output, we train a predictor to predict the writing modes. Experiments on

three datasets demonstrate that our model outperforms the state-of-the-art approaches

in terms of both informativeness and language quality. Our model has board application

prospects. For example, it currently focuses on producing a single sentence. We plan to

extend it to generate multi-sentence documents. Meanwhile, we are going to develop

mechanisms to model the frequent long-sequence copying.
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Chapter 4

Copy Facts in Source Text

Word of truth can be heavier than the whole
world.

— Aleksandr Isayevich Solzhenitsyn
(Novelist)

4.1 Introduction

Abstractive sentence summarization [Rush et al., 2015a] focuses on shortening a gi-

ven sentence while keeping its main idea. This task is different from document-level

summarization since it is hard to apply the common extractive techniques [Over and

Yen, 2004]. That is, selecting existing sentences to form the sentence summary is im-

possible. Recently, the application of the attentional sequence-to-sequence (seq2seq)

framework has attracted growing attention in this area [Rush et al., 2015a; Chopra et

al., 2016; Nallapati et al., 2016a]. To evaluate the performance of a summarization

system, by far the most extensively applied automatic evaluation tool is ROUGE [Lin,

2004].

As we know, sentence summarization inevitably needs to fuse different parts of the

source sentence and is abstractive in nature. Consequently, the fused summaries often

misrepresent the original meaning and yield fake facts. Look at an illustrative example

of the generation result using the state-of-the-art seq2seq model [Nallapati et al., 2016a]
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Source the repatriation of at least #,### bosnian moslems was postponed
friday after the unhcr pulled out of the first joint scheme to return
refugees to their homes in northwest bosnia .

Target repatriation of bosnian moslems postponed
seq2seq bosnian moslems postponed after unhcr pulled out of bosnia

Table 4.1: An example of fake summaries generated by the state-of-the-art seq2seq
model. “#” stands for a digit masked during preprocessing.

in Table 4.1. The actual subject of the verb “postponed” is “repatriation”. Nevertheless,

probably because the entity “bosnian moslems” is closer to “postponed” in the source

sentence, the summarization system wrongly regards “bosnian moslems” as the subject

and counterfeits a fact “bosnian moslems postponed”. In addition, the seq2seq system

generates another fake fact: “unhcr pulled out of bosnia” and puts it into the summary.

As a result, although the informativeness and readability of this summary are high, its

meaning departs far from the original.

Our preliminary study reveals that nearly one third of the outputs from the state-of-

the-art seq2seq system suffer from this problem. While previous researches are mainly

devoted to increasing summary informativeness, we argue that, it is one of the most es-

sential prerequisites for a practical abstractive summarization system that its generated

summaries must accord with the facts expressed in the source. We refer to this aspect

as summary faithfulness. A fake summary may greatly misguide the comprehension

of the original text.

To evaluate the system performance, ROUGE counts the overlapping lexical units

(e.g., n-grams), which mainly reflects informativeness. It is not originally defined to

evaluate faithfulness. Our experiments (refer to Fig 4.6) show that although the sum-

maries with very large ROUGE values are usually faithful, it is hard to judge the fait-

hfulness of a summary with relatively low ROUGE scores. Unfortunately, the average

performance of the state-of-the-art seq2seq summarization models is located in the in-

distinguishable area. As such, ROUGE scores fail to indicate the level of faithfulness.

In this chapter, we aim to handle both the above issues. Specifically, we propose a
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faithful summarization system and a faithfulness evaluation tool, both based on the im-

port of the facts in the source sentence. To this end, the first process is to extract the facts

mentioned in the source sentence. In the relatively mature task of Open Information Ex-

traction (OpenIE) [Banko et al., 2007], a fact is usually represented by a relation triple

consisting of (subject; predicate; object). However, the relation triples are not always

extractable, e.g., from the imperative sentences. Hence, we further adopt a dependency

parser to supplement with the (subject; predicate) and (predicate; object) tuples identi-

fied from the parse tree of the sentence. This is inspired by the work of parse tree based

sentence compression (e.g., [Clarke and Lapata, 2008]). Using both source sentence

and facts as input, we extend the standard attentional seq2seq model [Nallapati et al.,

2016a] to fully leverage their information. Since our summarization system encodes

FacTs to enhance FaiThfulness, we call it FTSum. On the other hand, we develop a

tool called FTEval to automatically evaluate faithfulness by matching facts between a

summary and its source sentence.

We test our summarization system and evaluation tool extensively on a popular

sentence summarization dataset. The results show that FTSum greatly reduces the fake

summaries by 55% with respect to the state-of-the-art seq2seq framework. Due to the

compression nature of facts, the use of them also brings the significant improvement

on informativeness. Meanwhile, FTEval demonstrates high correspondence with the

manual judgment of faithfulness.

4.2 Related Work

4.2.1 Abstractive Sentence Summarization

Abstractive sentence summarization benefits headline design and is able to refine the

selected sentences in extractive summarization. Early work of sentence summarization

covered a wide range of approaches, such as statistical machine translation [Banko

et al., 2000], parsing tree-based sentence compression [Knight and Marcu, 2002] and
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template-based summarization [Zhou and Hovy, 2004]. Recently, the application of the

attentional sequence-to-sequence (seq2seq) models [Rush et al., 2015a], has attracted

growing attention in this area. Experiments on the Gigaword test set [Rush et al.,

2015a] show that seq2seq models achieve state-of-the-art performance.

In addition to the direct application of the general seq2seq framework, researchers

attempted to integrate various properties of summarization. For example, [Nallapati et

al., 2016a] enriched the encoder with manually defined features such as TF-IDF and

POS tags. These features have played important roles in traditional feature based sum-

marization systems. [Gu et al., 2016] proposed CopyNet which considered the copying

mechanism during generation. Recently, [See et al., 2017] used the coverage mecha-

nism to discourage repetition. There were also studies to modify the loss function to

fit the evaluation metrics. For instance, [Ayana et al., 2016] applied the Minimum

Risk Training strategy to maximize the ROUGE scores of generated summaries. [Pau-

lus et al., 2017] applied the Reinforcement Learning (RL) algorithm to learn a mixed

objective function of likelihood and ROUGE scores.

Although focused on the document level, we believe the event-based extractive

summarization [Filatova and Hatzivassiloglou, 2004] are relevant to our work. This

technique leverages the events described in the sentences to select and order senten-

ces to form the summary. A general representation of an event is “[Who] did [What] to

[Whom] [When] and [Where]” [Liu et al., 2007]. Usually “did [What]”, i.e., the action,

acts as the key element of an event. Apparently, the facts defined in this chapter can be

regarded as the core part of an event. In addition, OpenIE is also widely used for event

extraction [Pighin et al., 2014].

Previous researches usually focused on the improvement of summary informative-

ness. To our knowledge, we firstly explore the faithfulness issue in abstractive summa-

rization.
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4.2.2 Summary Evaluation

Automatic evaluation is crucial to advance the summarization research. [Lin, 2004]

proposed the widely-used summarization metric ROUGE. Motivated by BLEU [Papi-

neni et al., 2002], ROUGE measures the quality of summary by computing the overlap-

ping lexical units between the candidate summary and reference summaries. [Passon-

neau et al., 2005] proposed a more accurate evaluation method, called Pyramid, based

on the matching of Summarization Content Units (SCUs). However, the annotation of

SCUs requires heavy human efforts. While ROUGE and Pymarid mainly measure the

informativeness of the candidate summary, some studies also inspect the readability.

For example, [Pitler et al., 2010] used a set of syntactic features to judge the gramma-

ticality, and [Lin et al., 2012] applied the discourse relations to examine the coherence

of a summary with multiple sentences. Although our experiments show that fake gene-

ration is a serious problem in neural abstractive summarization, as far as we know, no

previous work has focused on the evaluation of faithfulness.

4.3 Fact Extraction

Based on our observation, about one third of the summaries generated by a state-of-the-

art seq2seq model suffer from the fact counterfeit problem, which is mainly caused by

mismatching the predicate with its subject or object. Therefore, we propose to expli-

citly use the facts conveyed in the source sentence for summarization and evaluation.

We leverage the popular tools of Open Information Extraction (OpenIE) and depen-

dency parser to identify the facts. OpenIE refers to the extraction of entity relations

from the open-domain text. In OpenIE, a fact is typically interpreted as a relation tri-

ple consisting of (subject; predicate; object). For example, given the source sentence in

Table 4.1, OpenIE [Angeli et al., 2015] generates two relation triples. They are (repatri-

ation; was postponed; friday) and (unhcr; pulled out of; first joint scheme). Obviously,

these triples can help rectify the mistakes made by the seq2seq model. It is also noted
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Sentence I saw a cat sitting on the desk

Triples
(I; saw; cat)
(I; saw; cat sitting)
(I; saw; cat sitting on desk)

Table 4.2: Examples of OpenIE triples in different granularities. We extract the follo-
wing fact: I saw cat sitting on desk

Figure 4.1: A dependency tree example.

that OpenIE may extract multiple triples to reflect an identical fact in different granu-

larities, as shown in Table 4.2. In some extreme cases, one relation can yield over 50

triple variants, which brings high redundancy and burdens the computation cost of the

model. To balance redundancy and fact completeness, we remove a relation triple if

all its words are covered by another. For example, only the last fact, i.e., (I; saw; cat

sitting on desk), in Table 4.2 is reserved. When using these triples, we join all the items

in a triple, i.e., (subject + predicate + object), considering it usually acts as a concise

sentence. Thus, the final extracted fact of Table 4.2 is (I saw cat sitting on desk). When

multiple facts are extracted at the end, we use a special separator “|||” to concatenate

them to accelerate the encoding process, which will be explained in Section 4.4.2.

OpenIE is able to give a complete description of the entity relations. However, it is

worth noting that the relation triples are not always extractable, e.g., from the impera-

tive sentences. In fact, about 15% of the OpenIE outputs are empty on our experimental

dataset. These empty instances are likely to damage the robustness of our model. As

observed, although the complete relation triples are not always available, the (subject;

predicate) or (predicate; object) tuples are almost present in every sentence. Therefore,

we leverage the dependency parser to dig out the appropriate tuples to supplement the

extracted triple facts. A dependency parser converts a sentence into the labeled (gover-

nor; dependent) tuples. We extract the predicate-related tuples according to the labels

of nsubj, nsubjpass, csubj, csubjpass, dobj and iobj. To acquire more complete facts,
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we also reserve the important modifiers such as the adjectival (amod), numeric (num-

mod) and noun compound (compound). The details of the tags we use are presented

in Figure 4.2. We then merge the tuples containing the same words, and order words

according to their positions in the original sentence to form the facts. For example, a

dependency tree is shown in Figure 4.1. The output of OpenIE is empty for the corre-

sponding sentence. Based on the dependency parser, we firstly pick up the following

predicate-related tuples: (prices; opened) (opened; tuesday) (dealers; said) and the

modify-head tuples: (taiwan; price) (share; price) (lower; tuesday). These tuples are

then merged to form two facts: taiwan share prices opened lower tuesday ||| dealers

said.

In the experiments, we employ the popular NLP pipeline Stanford CoreNLP [Man-

ning et al., 2014]1 to handle OpenIE and dependency parsing. We combine the facts

derived from both parts. The details of the redundancy control during combination is

presented in Algorithm 1. Thereafter, we screen out the facts with the pattern “so-

mebody said/declared/announced”, which are usually meaningless and insignificant.

The extracted facts actually form the skeletons of sentences. Referring to the copy ra-

tios in Table 4.3, words in facts are 40% (0.17/0.12 − 1) more likely to be used in

the summary than the words in the original sentence. It indicates that facts truly con-

dense the meaning of sentences to a large extent. The above statistics also supports the

practice of dependency parse based compressive summarization [Knight and Marcu,

2002]. However, the length sum of extracted facts is shorter than the actual summary

in 20% of the sentences, and 4% of the sentences even contain no fact. It is clear that,

we cannot reply on facts alone to generate summaries without reference to the source

sentence.
1Use the annotator property: “tokenize,depparse,openie”
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Figure 4.2: Dependency tags for fact extraction. Refer to http://
universaldependencies.org/docsv1/en/dep/all.html.
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Source: Sentence Fact
AvgLen 31.4 18.2
Count 1 2.7
Copy% 12 17

Table 4.3: Comparisons between source sentences and relations. AvgLen is the average
number of tokens. Copy% means the proportion of source tokens can be found in the
summary.

Figure 4.3: Model framework

4.4 Fact-Aware Neural Summarization

4.4.1 Overview

As shown in Figure 4.3, our model consists of three modules, including two encoders

and a dual-attention decoder equipped with a context selection gate network. The sen-

tence encoder reads the input words x = (x1, · · ·xn) and builds its corresponding repre-

sentation (hx1 , · · ·hxn). Likewise, the relation encoder converts the facts r = (r1, · · · rk)

into hidden states (hr1, · · ·hrk). With the respective attention mechanisms, our model

computes the sentence and relation context vectors (cxt and crt ) at each decoding time

step t. The gate network is followed to merge the context vectors according to their

relative associations with the current generation. The decoder produces summaries

y = (y1, · · · yl) word-by-word conditioned on the tailored context vector which em-

beds the semantics of both source sentence and facts.
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4.4.2 Encoders

The input to the encoders includes the source sentence x and the extracted facts r. For

each sequence, we employ the bidirectional Recurrent Neural Network (BiRNN) enco-

der [Cho et al., 2014b] to construct its semantic representation, similar to Chapter 3.

Take the sentence x as an example. Given a source word xτ , its hidden state of the

forward RNN is represented by:

−→
h τ = RNN(xτ ,

−→
h τ−1) (4.1)

In experiments, we use he Gated Recurrent Unit (GRU) [Cho et al., 2014b] as the

recurrent unit, which often performs much better than the vanilla RNN. Its computation

is as follows:

zτ = σ([
−→
h τ−1,xτ ]Wz) (4.2)

rτ = σ([
−→
h τ−1,xτ ]Wr) (4.3)

lτ = tanh([rτ �
−→
h τ−1,xτ ]Wl) (4.4)

−→
h τ = (1− zτ )�

−→
h τ−1 + zτ � lτ (4.5)

where zτ , rτ are two gates, W. stands for model weights and � means element-wise

multiplication. We use bold font xτ to represent the word embeddings of the word xτ .

The BiRNN encodes text both from left to right and from right to left. Suppose the

forward outputs are [
−→
h 1; · · · ;

−→
h −1] and backward outputs are [

←−
h 1; · · · ;

←−
h −1], where

the index “−1” stands for the last element. Then, BiRNN concatenate the two RNN

representations to build the composite hidden state of a word, i.e., hτ = [
−→
h τ ;
←−
h τ ]. To

distinguish source sentence and fact sequence, we add superscripts “x” and “r” on the

hidden states, respectively.

For the fact sequence r, since it contains multiple independent facts, we introduce

boundary indicators γ to separate their hidden states. Specially, the value of γ is defined

as follows:

γi =

{
0, ri is “|||”
1, otherwise (4.6)
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Then, γ is used to reset the GRU state in Equation 4.1:

h′i = γihi (4.7)

In this way, all the facts start with the same zero vector. In other words, they are

encoded independently. Finally, both sentence hidden states {hxi } and relation hidden

states {hri} are fed into the decoder.

4.4.3 Dual-Attention Decoder

Previous seq2seq models have developed some task-specific modifications on the de-

coder, such as to incorporate the copying mechanism [Gu et al., 2016] or the coverage

mechanism [See et al., 2017]. As we focus on the faithfulness problem here, we use

the most popular decoder, i.e., GRU with attentions [Bahdanau et al., 2014]. At each

decoding time step t, GRU reads the previous output yt−1 and context vector ct−1 as

inputs to compute new hidden state st:

st = GRU(yt−1, ct, st−1) (4.8)

Since we have both sentence and relation representations as input, we develop two

attentional layers to construct the overall context vector ct. The context representation

cxt of the sentence x at time step t is computed as [Luong et al., 2015]:

ext,i = MLP(st,hxi )

= va tanh(st−1Wa + hxiUa) (4.9)

αxt,i =
exp(ext,i)∑
j exp(e

x
t,j)

(4.10)

cxt =
∑

i
αxt,ih

x
i , (4.11)

where MLP means multi-layer perceptrons, and va, Wa, Ua are model parameters.

The context vector of the relation cr is computed in the same way. We combine cxt

and crt to build the overall context vector ct. We explore two alternative combination

approaches. The first one, called “FTSumc”, simply concatenates two context vectors:

ct = [cxt ; c
r
t ] (4.12)
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The second one, denoted as “FTSumg”, uses another MLP to build a gate network to

combine the two context vectors with the weighted sum:

gt = MLP(cxt , c
r
t ) (4.13)

ct = gt � cxt + (1− gt)� crt , (4.14)

Experiments show that FTSumg significantly outperforms FTSumc, and the gate values

apparently reflect the relative reliability of sentence and facts. Given yt−1, ct, st−1, the

decoder GRU is computed as follows:

zt = σ([st−1,yt−1, ct]Uz) (4.15)

rt = σ([st−1,yt−1, ct]Ur) (4.16)

lt = tanh([rt � st−1,yt−1, ct]Ul) (4.17)

st = (1− zt)� st−1 + zτ � lτ (4.18)

where U. denotes model parameters. Finally, the softmax layer is introduced to gene-

rate the next word based on previous word yt−1, context vector ct and current decoder

state st.

ot = Ww[yt−1] + ctWc + stWs (4.19)

p(yt|y<t) = softmax(otWo) (4.20)

where W. is a weight matrix.

4.4.4 Learning

The learning objective is to maximize the estimated probability of the actual summary.

We adopt the common loss function, i.e., Negative Log-Likelihood (NLL):

J(θ) = − 1

|D|
∑

(x,r,y)∈D

log(p(y|x, r)), (4.21)

where D denotes the training dataset and θ stands for the model parameters. The op-

timization algorithm is Adam [Kingma and Ba, 2014] with mini-batches (learning rate
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α = 0.001 and batch size=32) in our experiments. Similar to [Zhou et al., 2017b], we

evaluate the model performance on the validation dataset for every 2000 batches and

halve the learning rate if the cost increases for 10 consecutive validations. In addition,

we apply gradient clipping [Pascanu et al., 2013] with range [−5, 5] during training to

enhance the stability of the model.

4.5 Experiments on Summarization

We conduct experiments on the Annotated English Gigaword dataset [Rush et al.,

2015b], as shown in Section 3.4. The statistics of the Gigaword dataset is presented

in Table 4.4. We do not examine on the other summarization dataset used in Chap-

ter 3, i.e., CNN/DM, due to the following two reasons. On one hand, the source text of

CNN/DM is so long that the manual judgment of the generation faithfulness requires

huge human efforts. On the other hand, the generated summaries in CNN/DM often

repeat a word or a phrase. Thus the readability becomes a serious issue.

Dataset Train Dev. Test
Count 3.8M 189k 1951
AvgSourceLen 31.4 31.7 29.7
AvgTargetLen 8.3 8.3 8.8
COPY(%) 45 46 36

Table 4.4: Data statistics for English Gigaword. AvgSourceLen is the average input
sentence length and AvgTargetLen is the average summary length. COPY means the
copy ratio in the summaries (without stopwords).

4.5.1 Evaluation Metric

We adopt ROUGE [Lin, 2004] for automatic evaluation. Following the common practice,

we report ROUGE-1 (uni-gram), ROUGE-2 (bi-gram) and ROUGE-L (longest com-

mon subsequence) F1 scores in the following experiments. More details can refer to

Section 3.4.2.
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In addition, we also manually inspect whether the generated summaries accord with

the facts in the original sentences. We mark summaries into two categories: FAITHFUL

and FAKE. Noted that if a generated summary is too incomplete to judge its faithfulness

(e.g., just producing a UNK tag), we also mark it as FAKE.

4.5.2 Implementation Details

Since the dataset has already masked infrequent words with the UNK tag, we reserve

all the rest words in the training set. As a result, the sizes of source and target voca-

bularies are 120k and 69k, respectively. With reference to [Nallapati et al., 2016a], we

leverage the popular seq2seq framework dl4mt2 as the starting point, and set the size of

word embeddings to 200. We initialize word embeddings with GloVe [Pennington et

al., 2014]. All the GRU hidden state dimensions are fixed to 400. We use dropout [Sri-

vastava et al., 2014] with probability p = 0.5. Since the facts work like additional

source text, the training time of FTSum is close to the standard seq2seq model.

4.5.3 Baselines

We introduce the following six state-of-the-art neural summarization systems as base-

lines:

ABS The first neural abstractive summarization system proposed by [Rush et al., 2015a].

ABS+ [Rush et al., 2015a] further tuned the ABS model with additional features to

balance the abstractive and extractive tendency.

RAS-Elman As the extension of the ABS model, it changed the decoder with RNN

[Chopra et al., 2016].

2https://github.com/kyunghyuncho/dl4mt-material
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Featseq2seq [Nallapati et al., 2016a] used a full seq2seq model and added the hand-

crafted features such as POS tag and NER, to strengthen the encoder representa-

tion.

Luong-NMT [Chopra et al., 2016] implemented the neural machine translation mo-

del of [Luong et al., 2015] for summarization. This model contained two-layer

LSTMs for both encoder and decoder.

s2s-att We implement the standard attentional seq2seq with dl4mt, and call it “s2s-att”.

Considering our model is somewhat associated with compressive summarization,

we also introduce a state-of-the-art compression system called COMPRESS [Clarke

and Lapata, 2008]. We just cite the implementation result from [Rush et al., 2015a].

4.5.4 Informativeness Performance

Let’s first look at the cost values on the validation dataset. From Table 4.5 and Fi-

gure 4.4, we can see that our model achieves much lower perplexity compared against

the state-of-the-art systems. It is also noted that FTSumg largely outperforms FTSumc,

which verifies the importance of context selection. The ROUGE F1 scores are then

reported in Table 4.6. Although the focus of our model is to improve faithfulness, the

ROUGE scores it achieves are also much higher than the other methods. Note that,

ABS+ and Featseq2seq have utilized a series of hand-crafted features, but our model is

totally data-driven. Even though, our model surpasses Featseq2seq by 13% and ABS+

by 56% on ROUGE-2. When facts are ignored, our model is equivalent to the stan-

dard attentional seq2seq model s2s-att. Therefore, it is safe to conclude that, facts have

significant contribute to the increase of ROUGE scores. One possible reason is that

facts are much more informative than the original sentence, as shown in Table 4.3. It

also largely explains why FTSumg is superior to FTSumc. FTSumc treats the source

sentence and relations equally, while FTSumg realizes the facts are often more reliable,

as discussed later.
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Model Perplexity
ABS† 27.1
RAS-Elman† 18.9
s2s-att 24.5
FTSumc 20.1
FTSumg 16.4

Table 4.5: Final perplexity on the validation dataset. † indicates the value is cited from
the corresponding paper. ABS+, Featseq2seq and Luong-NMT do not provide this
value.

Figure 4.4: Perplexity change on the validation dataset.

Model ROUGE-1 ROUGE-2 ROUGE-L
COMPRESS† 19.63∗ 5.13∗ 18.28∗

ABS† 29.55∗ 11.32∗ 26.42∗

ABS+† 29.78∗ 11.89∗ 26.97∗

Featseq2seq† 32.67∗ 15.59∗ 30.64∗

RAS-Elman† 33.78∗ 15.97∗ 31.15∗

Luong-NMT† 33.10∗ 14.45∗ 30.71∗

s2s-att 34.23∗ 15.52∗ 31.57∗

FTSumc 35.73∗ 16.02∗ 34.13
FTSumg 37.27 17.65 34.24

Table 4.6: ROUGE F1 (%) performance. “∗” indicates statistical significance of the
corresponding model with respect to the baseline model on the 95% confidence interval
in the official ROUGE script.
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4.5.5 Faithfulness Performance

Next, we conduct manual evaluation to inspect the faithfulness of the generated sum-

maries. We randomly select 150 sentences from the test set. Then, we classify the

generated summaries as FAITHFUL or FAKE. For the sake of a complete compari-

son, we present the results of our system FTSumg together with the attentional seq2seq

model s2s-att. As shown in Table 4.7, about one third of the s2s-att outputs give disin-

formation. This number greatly reduces by 55% in our model, which largely enhances

the system practicability. We find that s2s-att tends to copy the words closer to the pre-

dicate and regard them as its subject and object. However, this is not always reasonable

and may make a counterfeiting message. In comparison, the facts indeed designate the

relations between a predicate and its subject and object. As a result, generation in line

with the facts is usually able to keep faithfulness.

We illustrate the examples of defective outputs in Table 4.8. As shown, s2s-att

often attempts to fuse different parts in the source sentence to form the summary, no

matter whether these phrases are relevant or not. For instance, s2s-att treats “bosnian

moslems” as the subject of “postponed” and “bosnia” as the object of “pulled out of”

in Example 1. By contract, since the fact point out the actual subject and object, the

output of our model is faithful. In fact, it is exactly the same as the target summary.

In Example 3, neither s2s-att nor our model achieves satisfactory performance. s2s-att

again mismatches the object while our model fails to produce a complete sentence. To

take a closer look, we find that the target summary of this sentence is somewhat strange

– it merely focuses on the prepositional phrase (after taking a ## stoke...), rather than

the main clause as usual. Since the main clause is hard to summarize and there is no

high-quality fact extracted, our model fails to give a complete summary.

It is also noteworthy that the generation of our model sometimes traps into one

item when given multiple long facts. For instance, there are two long facts in Example

4 and our model only utilizes the first one for generation. As a result, despite the
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Model Category Count

s2s-att
FAITHFUL 99
FAKE 51

FTSumg

FAITHFUL 127
FAKE 23

Table 4.7: Faithfulness performance on the test set.

high faithfulness, the informativeness is somewhat damaged. Therefore, it seems more

reliable to introduce the coverage mechanism [See et al., 2017] to handle the cases like

this one. We leave it as our future work.
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Example 1
Source the repatriation of at least #,### bosnian moslems was postponed fri-

day after the unhcr pulled out of the first joint scheme to return refu-
gees to their homes in northwest bosnia .

Facts unhcr pulled out of first joint scheme ||| repatriation was postponed
friday ||| unhcr return refugees to their homes

Target repatriation of bosnian moslems postponed
s2s-att (FAKE) bosnian moslems postponed after unhcr pulled out of bosnia
FTSum (FAITHFUL) repatriation of bosnian moslems postponed

Example 2
Source a us citizen who spied for communist east germany was given a sus-

pended jail sentence of ## months here .
Facts us citizen was given suspended jail sentence ||| who spied
Target us citizen who spied for east germans given suspended sentence
s2s-att (FAKE) u.s. citizen gets suspended jail sentence in germany
FTSum (FAITHFUL) us citizen who spied for east germany given suspended

jail sentence
Example 3

Source davis love said he was thinking of making the world cup of golf a full
time occupation after taking a ## stroke lead over japan in the event
with us partner fred couples here on saturday .

Facts making world cup full time occupation ||| taking ## stroke lead
Target americans lead UNK by ## strokes
s2s-att (FAKE) davis love says he is thinking of the world cup
FTSum (FAKE) love in the world cup of golf

Example 4
Source the us space shuttle atlantis separated from the orbiting russian mir

space station early saturday , after three days of test runs for life in a
future space facility , nasa announced .

Facts us space shuttle atlantis separated from orbiting russian mir space sta-
tion ||| us space shuttle atlantis runs after three days of test for line in
future space facility

Target atlantis mir part ways after three-day space collaboration by emma-
nuel UNK

s2s-att (FAKE) space shuttle atlantis separated after # days of test runs for
life

FTSum (FAITHFUL) space shuttle atlantis separated from mir

Table 4.8: Examples of defective outputs. We use bold font to indicate the problematic
parts.
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4.5.6 Effect of Facts

We investigate the effects of facts from various aspects. At first, we check the accuracy

of copying and rewriting. For comparison, we also present the result of s2s-att. Seen

from Table 4.9, the copying proportion and accuracy of FTSum are both higher than

s2s-att. A possible reason is due to the sentence skeleton nature of facts. On the one

hand, facts are extracted from source sentences. As a result, import of facts seems

to “lengthen” the source sentence which brings more chance to copy. On the other

hand, facts condense the meaning to guide summary generation. Since s2s-att does not

utilize facts, the prediction accuracies of the words in facts and the words not in facts

are almost the same.

Next, we manually inspect the correctness of extracted facts. Since the source sen-

tences come from formal news articles, the parsing accuracy is high. In 100 sentences,

we only observe one serious error, as shown in Table 4.10. Through common sense

we know “arabs” and “sudanese” are coordinate. However, CoreNLP wrongly regards

“arabs” as another object of “convicted of” and thus creates a fake facts. As a result,

our model is misguided. s2s-att does not achieve satisfactory performance neither. It

seems to discard the content before “and”.

Finally, we explore the performance of our system when different types of facts

are given. The result is present in Table 4.11. We find that the facts derived from

dependency parsing outperform the facts derived from OpenIE. A possible reason is

that the output of OpenIE is sometimes empty, seriously worsening the stability of the

system. As a result, the ROUGE performance of facts solely from OpenIE is close to

s2s-att.

4.5.7 Gate Analysis

As shown in Table 4.6, FTSumg achieves much higher ROUGE scores than FTSumc.

Now, we investigate what the gate network (Equation 4.13) actually learns. The chan-
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Mode FTSum s2s-att
Copy r 0.71 (0.47) 0.69 (0.38)

x− r 0.15 (0.28) 0.12 (0.36)
x 0.86 (0.43) 0.81 (0.38)

Rewrite 0.14 (0.22) 0.19 (0.23)

Table 4.9: Copy and rewrite performance. Here r stands for facts and x means source
sentences. The value form is: length proportion (correct proportion).

Source a sudanese convicted of a series of murders and two other arabs found
guilty of drug trafficking were beheaded on friday , the saudi interior mi-
nistry said .

Facts sudanese found guilty of drug trafficking
Target three beheaded in saudi arabia
s2s-att (FAKE) two convicts beheaded in saudi arabia
FTSum (FAKE) sudanese convicted of drug trafficking beheaded in saudi arabia

Table 4.10: An example of extracted fake facts.

ges of the gate values on the validation dataset during training are shown in Figure 4.5.

At the beginning, the average gate value exceeds 0.5, which means generation is biased

to the source sentence. As training proceeds, the model realizes that facts are more re-

liable, resulting in a consecutive drop of the gate value. Finally, the average gate value

is gradually stabilized to 0.415. Interestingly, the ratio of sentence and relation gate

values i.e., (1−0.415)/0.415 ≈ 1.41, is extremely close to the ratio of copying propor-

tions shown in Table 4.3 i.e., 0.17/0.12 ≈ 1.42. Then, look at the standard deviation of

gates. To our surprise, its change is nearly anti-symmetric to the mean value. The final

standard deviation reaches about 90% of the mean gate value. Thus, still many senten-

ces can dominate generation. This strange observation urges us to carefully check the

summaries with top/bottom-100 gate values in the validation dataset. We find that 10

facts in the top-100 cases are empty, and nearly 60% of the extracted facts contains the

UNK tag. Our model believes these facts have less value to guide generation. Instead,

there is no empty fact and only 1 UNK tag in the bottom 100 cases. Hence these facts

are usually informative enough. In addition, we find the instances with the lowest gate

values often hold the following (target summary; fact) pair:
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Fact ROUGE-1 ROUGE-2 ROUGE-L
OpenIE 34.88 15.73 32.02
Parse 36.25 16.32 33.67

Table 4.11: ROUGE F1 (%) performance of FTSum generated with different facts.

Figure 4.5: Gates change during training.

Target COUNTRY share prices close/open #.# percent higher/lower

Fact COUNTRY share prices slumped/dropped/rose #.# percent

The extracted fact itself is already a proper summary. That is why facts are particularly

preferred in generation.

4.6 Automatic Faithfulness Evaluation

4.6.1 Motivation

Metrics Category AvgScore

RG-1
FAITHFUL 42.61
FAKE 22.52

RG-2
FAITHFUL 15.58
FAKE 3.62

Table 4.12: The Average ROUGE F1 scores (%) in faithful and fake summaries
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We investigate the correspondence between faithfulness and ROUGE based on the

manually annotated faithfulness data summarized in Table 4.7. The result is shown in

Figure 4.6. From the figure, we observe the following points:

• Summaries with very high ROUGE scores are usually faithful.

• Fake summaries usually hold low ROUGE scores. As shown in Table 4.12, the

average ROUGE-1 score for faithful summaries is 0.43 while it is only 0.23 for

fake ones.

• However, summaries with low ROUGE scores are a mixture of faithful and fake

results. For example, even among summaries with ROUGE-2=0, 65% of them

are faithful.

Unfortunately, the state-of-the-art performance of the neural abstractive summarization

system is still located within the area of low ROUGE scores. Consequently, it is almost

impossible to judge the faithfulness performance of the current abstractive summariza-

tion system according to ROUGE scores. Thus, we explore to develop an automatic

faithfulness evaluation tool, called FTEval.

4.6.2 Tool Overview

A simple solution to faithfulness evaluation is to extract the facts in the summary as

what we have done for the source sentence, and then check their fact agreement. Ho-

wever, due to the concise nature of a summary, we observe the following two challenges

that OpenIE encounters:

1. About 15% of the OpenIE outputs are empty, which makes it often useless.

2. It is hard to judge the agreement of the relation triples since the granularities in

the sentence and summary vary largely.
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Figure 4.6: The correlation between ROUGE F1 scores and faithfulness. We demon-
strate the average performance of our summarization system.

Therefore, we opt to utilize the facts extracted by the dependency parser to measure

faithfulness. That is, we compute the matching degree of the predicate-related tuples

derived from dependency trees of the sentence and summary. The details will be ex-

plained in the rest of this section.

Our tool FTEval also brings an advantage that all the identified fake summaries are

explainable. To be specific, the tuples, which cause the faithfulness problem, are high-

lighted. As a result, we can further inspect whether and how these tuples violate the

original facts. The workload is reduced greatly compared with direct manual evalua-

tion.

4.6.3 Text Preprocessing

We conduct the following three tasks on both sentences and summaries, namely lemma-

tization, POS tagging and dependency parsing. Likewise, we use the CoreNLP pipeline

to achieve this goal3. As shown in Table 4.13, the first two tasks help to align words

3Use the annotator property: “tokenize,pos,lemma,depparse,”
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between a source sentence and its summary, while dependency parse is used to measure

the predicate agreement.

Label Task Name Usage
Lemma Lemmatization Section 4.6.4
POS POS Tagging Section 4.6.4
Dep Dependency Parsing Section 4.6.4 and 4.6.5

Table 4.13: Required NLP Tasks.

4.6.4 Word Alignment

Although the meaning of a summary should be covered by the source sentence, it is so-

metimes conveyed with different words that express the same concept. As we want to

check whether the predicate-related tuples in the summary accords with the source sen-

tence, it is necessary to find the “prototypes” of the summary words. Here we just focus

on the alignment of verbs (POS beginning with “VB”) and nouns (POS beginning with

“NN”) which are associated with facts. In addition, we assume each summary word

links to one and only one sentence word. According to the nature of summarization,

we classify the alignment into three types:

COPY The summary word is also found in the source sentence.

LEMMA The lemma of the summary word is the same as the lemma of a word in the

source sentence. For example, “stopped” (sentence)→ “stops” (summary).

OTHER The rest words in the summary. Usually, they are the paraphrases of the

source words. For instance, “boost” (sentence)→ “rise” (summary).

The proportions of different alignment types in the summaries are shown in Table 4.14.

As can be seen, in a current neural abstractive summarization system, over 80% sum-

mary words are copied from the source sentence.
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It is easy to find the first two types of alignment. For the OTHER type, we align a

summary word with its most semantically relevant source word. We have tried several

approaches for it, such as the alignment tool of statistical machine translation [Dyer et

al., 2013] and the attentions learned from the seq2seq model. However, since the pro-

portion of the words belonging to OTHER is quite small, the two alignment approaches

do not make much difference on the final performance. To make our tool more general,

we choose to use the cosine similarity of pre-trained word embeddings [Pennington et

al., 2014] to measure the semantic relevance. Thus, our evaluation tool can be directly

used on any other dataset. To formulate, for a source word x and target word y, their

similarity is:

sim(x, y) =
exe

T
y

||ex|| × ||ey||
(4.22)

where e. stands for a word embedding. The detail of the alignment is presented in

Algorithm 2.

Model COPY LEMMA OTHER
s2s-att 8137 991 895
FTSum 8204 627 723

Table 4.14: Statistics of alignment types in different summarization models.

4.6.5 Fact Agreement

We measure the fact agreement between sentence and summary based on the depen-

dency parse tree and word alignment. The detailed algorithm is explained as follows:

Step 1 Extract all predicate-related tuples from the parse tree of a summary, as intro-

duced in Section 4.3.

Step 2 Suppose (s; p) is an extracted subject-predicate tuple. We check whether their

aligned words (s’; p’) also hold the subject relation in the parse tree of the corre-

sponding source sentence.
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Step 3 If all the predicate-related tuples can be found in the source sentence, we label

the summary as FAITHFUL, and FAKE otherwise.

In cases when there is no predicate in a summary, we deem this summary as incom-

plete and label it as FAKE. In addition, based on the findings shown in Figure 4.6, we

directly label the summaries whose ROUGE scores exceed a threshold as FAITHFUL.

Experiments demonstrate that such practice largely increases the precise of our tool.

4.7 Experiments on Automatic Faithfulness Evaluation

4.7.1 Data and Setting

In this section, we discuss the performance of our faithfulness evaluation tool. We

use the 300 summaries with manual faithfulness labels mentioned in Section 4.5.5 as

the dataset. Similarly, we make use of CoreNLP to conduct word lemmatization, POS

tagging and dependency parsing on both sentences and summaries4.

Since detecting fake generation is crucial, we adopt three common metrics, i.e., Pre-

cise, Recall and F1-measure, to measure the performance of a faithfulness evaluation

approach:

Precise =
nf (correct)
nf (predicted)

(4.23)

Recall =
nf (correct)
nf (actual)

(4.24)

F1-measure =
2× nf (correct)

nf (predicted) + nf (actual)
(4.25)

where nf (.) stands for the number of fake results.

4Use the annotator property: “tokenize,pos,lemma,depparse,”
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4.7.2 Baselines

We introduce three baselines for comparison. The first one is based on ROUGE sco-

res. As shown in Figure 4.6, fake summaries usually have small ROUGE scores. Thus,

we set a threshold of the ROUGE score and regard all the summaries lower than this

threshold as FAKE and higher as FAITHFUL. Through cross validation, we set the

threshold to 0.405 for ROUGE-1 and 0.15 for ROUGE-2. The two baselines are named

RG-1 and RG-2, respectively. The second one is called NO-RG, which is the same

as our tool FTEval but without the ROUGE threshold. The last one is derived from

the task of textual entailment recognition. Textual entailment judges whether the fact

of one text follows from another. Obviously, summary faithfulness is a special kind

of textual entailment, where the facts in the source text and the summary are usually

the same. We adopt a state-of-the-art textual entailment recognition tool ESIM [Chen

et al., 2017]. Notably, this tool is also extended from the framework dl4mt, and uses

recurrent neural networks as well as the attention mechanism. We train this tool on

the popular textual entailment recognition dataset, called Stanford Natural Language

Inference (SNLI) corpus [Bowman et al., 2015]. SNLI contains 570k human-written

English sentence pairs. Each pair is manually annotated as neutral, entailment or con-

tradiction. During test, we regard the “entailment” label as FAITHFUL, and the labels

of both “neutral” and “contradiction” as FAKE.

4.7.3 Performance Comparison

Table 4.15 presents the performance of different faithfulness evaluation approaches. As

can be seen, FTEval greatly outperforms other approaches on precise and F1-measure.

Its recall exceeds 90%, meaning that the clear majority of actual fake summaries are de-

tected. The high recall benefits further manual annotation if necessary. The comparison

of FTEval and NO-RG reveals that recognition of actual faithful summaries can largely

profit from the introduction of ROUGE threshold. The recall of ROUGE is also high,
5We also set ROUGE-1=0.4 as the threshold for our evaluation tool FTEval.
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Figure 4.7: Faithful summaries misdiagnosed as fake ones.

but it is at the cost of large precise loss. ROUGE regards nearly 60% summaries as

fake ones, while the actual proportion is only about 20%. To our surprise, ESIM works

terribly on this task, despite its nearly 90% accuracy on the SNLI dataset. It marks 90%

summaries as FAITHFUL. One possible reason is the high text-level similarity between

sentences and summaries, which much differs from the entailment training data.

Metrics Precise Recall F1-measure
RG-1 0.39 0.89 0.54
RG-2 0.35 0.86 0.50
ESIM 0.25 0.11 0.15
NO-RG 0.32 0.93 0.47
FTEval 0.52 0.91 0.66

Table 4.15: Comparison of different faithfulness evaluation methods.
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4.7.4 Error Analysis

In this section, we analyze the mistakes that FTEval makes. Since the recall of FTEval

is quite high, we firstly inspect the fake summaries which not detected by our tool. We

find the common problems among them are the incomplete facts. Due to the concise

nature of summarization, we cannot ensure all the predicate-related tuples reserved in

the summary. Nevertheless, sometimes missing a tuple largely obscures the meaning

of a summary. An example is shown in Figure 4.8. The complete fact in the source

sentence is (deal; cleared; hurdle), but the object is missing in the generated summary.

As a result, the meaning of this summary is incomplete and FTEval labels it as fake.

However, our evaluation tool only checks the predicate-related tuple in the summary

(here is (deal; cleared)), and determines it accords with the source.

Second, we check the faithful summaries misdiagnosed as the fake ones. Exam-

ples are shown in Figure 4.7. A typical error of our tool is rooted from the missing

of predicate. Since our evaluation tool focuses on the predicate-related facts, it simply

marks any summaries with no predicate as fake. However, we observe that someti-

mes this type of summaries is still understandable, as shown in Example 3. Thus, the

human annotation labels them as faithful, which is impossible for our evaluation tool

to distinguish. Another serious problem is caused by the dependency parse error. For

instance, the word “face” is wrongly tagged as a noun in the source. As a result, the

fact (germany; face; costa rica) cannot be extracted. It is also noted that the align-

ment errors will occasionally hurt the evaluation performance. As in Example 2, our

tool fails to recognize the full name of “u.n.” and this makes the fact (u.n.; condemns)

unrecognizable. A pre-defined abbreviation table should be a good solution to these

problems.
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Figure 4.8: An example of mistake.

4.8 Summary

This chapter resents our work of investigating an important faithfulness issue in ab-

stractive summarization. We employ popular OpenIE and dependency parsing tools to

extract facts in the source sentence. We propose the dual-attention seq2seq framework

to force the generation conditioned on both source sentence and the facts. Based on the

extracted facts, we also develop an automatic tool for faithfulness evaluation. Experi-

ments on the Gigaword benchmark dataset demonstrate that our summarization system

greatly outperforms state-of-the-art models on both informativeness and faithfulness.

Meanwhile, our evaluation tool reveals high correspondence with the manual judgment

of faithfulness.

We think this work can be improved in various aspects in the future. On the one

hand, we can improve the decoder of our summarization system with the copying me-

chanism and coverage mechanism. On the other hand, we plan to test our summariza-

tion system and evaluation tool on document summarization datasets.
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Algorithm 1 Merge Facts
Input: Fact sets rie and rdep extracted through OpenIE and dependency parsing
Output: Merged facts r

1: r← []
2: for all i ∈ [1, |rdep|] do
3: is unique← TRUE
4: for all j ∈ [1, |rie|] do
5: if predicate(ridep) ∈ predicate(rj

ie) then
6: is unique← FALSE
7: break
8: end if
9: end for

10: if is unique then
11: r.append(ridep)
12: end if
13: end for
14: r.extend(rie)
15: Sort r in descending order based on the length
16: r′ ← []
17: for all i ∈ [1, |r|] do
18: is unique← TRUE
19: for all j ∈ [1, |r′|] do
20: if words(ri) ⊂ words(r′j) then
21: is unique← FALSE
22: break
23: end if
24: end for
25: if is unique then
26: r′.append(ri)
27: end if
28: end for
29: r← r′

30: return r

90



Algorithm 2 Get Alignment
Input: Sentence x = {xi} and Summary y = {yj}
Output: Alignment Table a

1: for all j ∈ [1, |y|] do
2: if ∃i, s.t. xi == yt then
3: aj ← i
4: continue
5: end if
6: if ∃i, s.t. lemma(xi) == lemma(yt) then
7: aj ← i
8: continue
9: end if

10: aj ← argmaxi sim(xi, yj)
11: end for
12: return a
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Chapter 5

Rewrite with Soft Templates

If I have seen further, it is by standing on the
shoulders of giants.

— Isaac Newton
(Mathematician and physicist)

5.1 Introduction

Most previous seq2seq models purely depend on the source text to generate summa-

ries. However, as reported in many studies such as [Koehn and Knowles, 2017], the

performance of a seq2seq model deteriorates quickly with the increase of the length of

generation. Our experiments also show that seq2seq models sometimes tend to “lose

control” (refer to Table 5.5). For example, 3% of summaries are composed of less than

3 words, while there are 4 summaries repeating a word for even 99 times. These results

largely reduce informativeness and readability of the generated summaries. In addition,

we find that seq2seq models usually copy source words consecutively, without any ac-

tual “summarization”. Therefore, we argue that, free generation based on the source

sentence is not enough for a seq2seq model.

Template-based summarization (e.g., [Zhou and Hovy, 2004]) is a traditional ap-

proach to abstractive summarization. In general, a template is an incomplete sentence

that can be filled with the input text using the manually defined rules. An example of
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Template [REGION] shares [open/close] [NUMBER] percent [lower/higher]
Source hong kong shares closed down #.# percent on friday due to an absence

of buyers and fresh incentives .
Summary hong kong shares close #.# percent lower

Table 5.1: An example of template-based summarization.

template-based summarization is shown in Table 5.1. As can be seen, the generated

summary indeed concludes the stock market quotation, and the given template can be

easily adapted to sentences describing other stock markets. Since the templates are

handcrafted by humans, the produced summaries are usually fluent and informative.

However, the construction of templates is extremely time-consuming and requires a

plenty of domain knowledge. Moreover, it is impossible to develop all templates for

summaries in various domains.

Inspired by retrieve-based conversation systems [Ji et al., 2014], we assume that the

golden summaries of the similar sentences can provide a reference point to guide the

input sentence summarization process. We call these existing summaries soft templa-

tes since no actual rules are needed to build new summaries from them. Meanwhile,

due to the strong rewriting ability of the seq2seq framework [Cao et al., 2017a], we

propose to combine the seq2seq and template-based summarization approaches. We

call our summarization system Re3Sum, which consists of three modules: Retrieve,

Rerank and Rewrite. We rely on a widely-used Information Retrieval (IR) platform to

find out candidate soft templates from the training dataset. Then, we extend the seq2seq

model to jointly learn template saliency measurement (i.e., Rerank) and final summary

generation (i.e., Rewrite). Specifically, a Recurrent Neural Network (RNN) encoder is

applied to convert the input sentence and each candidate template into hidden states.

Rerank measures the informativeness of a candidate template according to its hidden

state relevance to the input sentence, similar to sentence ranking in extractive sum-

marization (refer to Section 2.1). The candidate template with the highest predicted

informativeness is regarded as the actual soft template. In Rewrite, the summary is

generated according to the hidden states of both sentence and template.
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We conduct extensive experiments on the popular Gigaword dataset [Rush et al.,

2015b]. Experiments show that, Re3Sum significantly outperforms the state-of-the-

art seq2seq models with regard to informativeness, and even soft templates themselves

demonstrate high competitiveness. In addition, the import of high-quality external sum-

maries improves stability and readability of generated summaries. Last but not least,

Re3Sum is able to summarize diversely given different templates.

5.2 Related Work

Retrieve-based summarization, a.k.a extractive summarization, is a popular kind of

document summarization approaches [Over and Yen, 2004]. It forms a summary by

extracting important source sentences. Basically, there are two major steps in retrieve-

based summarization: sentence ranking and sentence selection. Sentence ranking, the

crucial step, measures the saliency of a sentence. It is worth noting that previous re-

searchers [Kobayashi et al., 2015; Cheng and Lapata, 2016] have tried to use neural

network representations to conduct sentence ranking. Our Rerank module borrows the

idea of sentence ranking. However, the soft templates used in our model are extracted

from the summaries in the training dataset, rather than the source text like retrieve-

based summarization.

Template-based generation [Reiter and Dale, 1997] is a common natural language

generation technique. Defining templates usually requires a lot of human efforts and

domain knowledge, which blocks the research of this area. In summarization, [Zhou

and Hovy, 2004] investigated template-based headline generation, and [Oya et al.,

2014] presented a template-based abstractive meeting summarization system.

Information retrieval (IR) [Larson, 2010] aims to acquire information from a large

set of data resources. Information ranges from various types, such as texts [Barry et

al., 2007], images [Goodrum, 2000], audio [Foote, 1999] or videos [Lew et al., 2006].

An IR system usually calculates a relevance score between the query and the objects in
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the stored database. Then the retrial results are ranked according to the scores. Finally,

the objects with top ranking scores are returned. Common ranking metrics include

BM25 [Robertson et al., 1995] and its extensions [Robertson et al., 2009; Lv and Zhai,

2011].

[Guu et al., 2017] also proposed to encode human-written sentences to impro-

vement the performance of neural text generation. However, they handled the task

of Language Modeling and randomly picked an existing sentence in the training da-

taset. In comparison, we develop an IR system to find proper existing summaries as

soft templates. Moreover, [Guu et al., 2017] used a general seq2seq framework while

we extend the seq2seq framework to conduct template reranking and template-aware

summary generation simultaneously. Some researchers have also explored to com-

bine extraction and generation within the seq2seq framework. For example, in the task

of machine reading comprehension, [Tan et al., 2017a] developed an extraction-then-

synthesis framework to synthesize answers from extraction results. Specifically, the

answer extraction model was first employed to predict the most important sub-spans

from the passage as evidence, and the answer synthesis model took the evidence as

additional features along with the question and passage to further elaborate the final

answers.

5.3 Method

As shown in Figure 5.1, our summarization system is composed of three modules,

i.e., Retrieve, Rerank and Rewrite. Given the input sentence x, the Retrieve module

picks up candidate soft templates C = {ri} from the training dataset. For validation

and test, we regard the candidate template with the highest predicted saliency (a.k.a

informativeness) score as the actual soft template r. For training, we choose the one

with the maximal actual saliency score in C, which speeds up convergence and shows

no obvious side effect in the experiments. Similar idea is also used in the work of [Tan
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Figure 5.1: Flow chat of the proposed method. We use the dashed line for Retrieve
since there is an IR system embedded.

et al., 2017a].

Then, we jointly conduct reranking and rewriting through a shared encoder. Spe-

cifically, both the sentence x and the soft template r are converted into hidden states

via a RNN encoder. In the Rerank module, we measure the saliency of r according to

its hidden state relevance to x. In the Rewrite module, a RNN decoder combines the

hidden states of x and r to generate a summary y. More details will be described in the

rest of this section

5.3.1 Retrieve

The purpose of the Retrieve module in our work is to find out candidate templates from

the training dataset. We assume that similar sentences should hold similar summary

patterns. Therefore, given a sentence x, we find out its analogies in the dataset and pick

up their summaries as the candidate templates. Since the size of the dataset is quite large

(over 3M), we leverage the widely-used Information Retrieve (IR) system Lucene1 to

index and search efficiently. There are two fundamental steps in an IR system, i.e.,

Index Construct the index map for the training dataset.

Search Retrieve relevant documents from the index map.

We keep the default settings of Lucene2. Pre-processing of a source sentence includes

tokenization, lowercasing, stopword removal and stemming. The ranking function we

use is BM25 [Robertson et al., 1995].
1https://lucene.apache.org/
2TextField with EnglishAnalyzer
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For each input sentence, we select top 30 ranking results as candidate templates.

Notice that we remove exact matches when searching for sentences in the training da-

taset. Otherwise, the model is likely to deem the actual summary the same as the soft

template.

5.3.2 Jointly Rerank and Rewrite

To conduct template-aware seq2seq generation (i.e., rewriting), it is a necessary step

to encode both the source sentence x and the soft template r into hidden states. We

propose to jointly conduct reranking and rewriting through a shared encoding step, as

shown in Figure 5.2. Specifically, we employ bidirectional Recurrent Neural Network

(BiRNN) encoders [Cho et al., 2014b] to read x and r, similar to previous chapters.

For example, given the sentence x, its hidden state of the forward RNN at timestamp i

can be represented by:
−→
h x
i = RNN(xi,

−→
h x
i−1) (5.1)

In experiments, we use Long Short-term Memory (LSTM) [Gers et al., 1999] as the

recurrent unit. Its computation is as follows:

ft = σ([
−→
h t−1,xt]Wf + bf ) (5.2)

it = σ([
−→
h t−1,xt]Wi + bi) (5.3)

fo = σ([
−→
h t−1,xt]Wo + bf ) (5.4)

l̃t = tanh([
−→
h t−1,xt]Wl + bl) (5.5)

lt = ft � lt−1 + it � l̃t (5.6)
−→
h t = ot � tanh(lt) (5.7)

where it, ot and ft are gates for input, output and forget, respectively. � denotes

element-wise multiplication while b. and W. are model weights. The BiRNN is com-

posed of a forward RNN and a backward RNN. Suppose the corresponding outputs

are [
−→
h x

1 ; · · · ;
−→
h x
−1] and [

←−
h x

1 ; · · · ;
←−
h x
−1], respectively, where the index “−1” stands for

the last element. Then, the composite hidden state of a word is the concatenation of the
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Figure 5.2: Jointly Rerank and Rewrite

two RNN representations, i.e., hxi = [
−→
h x
i ;
←−
h x
i ]. The entire representation for the source

sentence is [hx1 ; · · · ;hx−1]. Since a soft template r can also be regarded as a readable

concise sentence, we use the BiRNN encoder with the same structure to convert it into

hidden states [hr1; · · · ;hr−1].

Rerank

In Retrieve, the template candidates are ranked according to the text similarity between

the input sentence and corresponding indexed sentences. However, for the summariza-

tion task, we expect the soft template r resembles the actual summary y∗ as much as

possible. Here we use the widely-used summarization evaluation metrics ROUGE [Lin,

2004] to measure the actual saliency s∗(r,y∗) (see Section 5.4.2). We utilize the hidden

states of x and r to predict the saliency s of the template. Specifically, we regard the

output of the BiRNN as the representation of the sentence or template:

hx = [
←−
h x

1 ;
−→
h x
−1] (5.8)

hr = [
←−
h r

1;
−→
h r
−1] (5.9)

Next, we use the Bilinear network to predict the saliency of the template for the input

sentence.

s(r,x) = sigmoid(hrWsh
T
x + bs), (5.10)

where Ws and bs are parameters of the Bilinear network. We add the sigmoid activa-

tion function to make the range of s consistent with the actual saliency s∗. According to
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[Chen et al., 2016], Bilinear outperforms multi-layer forward neural networks in me-

asuring relevance. As shown later, the difference of s and s∗ will provide additional

supervisions for the seq2seq framework.

Rewrite

The soft template r selected by the Rerank module has already competed with the state-

of-the-art method with regard to ROUGE evaluation (see Table 5.4). However, r usually

contains a lot of named entities which never appear in the source (see Table 5.5). Con-

sequently, it is hard to ensure that the soft templates are faithful to the input sentences.

Therefore, we leverage the seq2seq model that has the strong rewriting ability to ge-

nerate more faithful and informative summaries. Specifically, since the input of our

system consists of both sentence and soft template, we use the concatenation function

to combine the hidden states of the sentence and the template:

Hc = [hx1 ; · · · ;hx−1;hr1; · · · ;hr−1] (5.11)

We also attempted complex combination approaches such as the gate network [Cao et

al., 2017b] but failed to achieve obvious improvement. We assume the Rerank module

has partially played the role of the gate network. The combined hidden states are then

fed into the prevailing attentional RNN decoder [Bahdanau et al., 2014] to generate the

decoding hidden state at the position t:

st = Att-RNN(st−1, yt−1,Hc), (5.12)

where yt−1 is the previous output summary word. Specifically, the attention mechanism

uses a dynamically changing context ct to replace Hc. We follow the common practice

to represent ct as the weighted sum of {Hc}:

αtτ =
eη(st−1,Hτ )∑n
τ ′=1 e

η(st−1,Hτ ′ )
,∀τ ∈ [1, n] (5.13)

ct =
∑n

τ=1
αtτHτ (5.14)
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where αtτ reflects the alignments between source and target words, and η is the function

that shows the correspondence strength for attention. Here we use the formula of [Lu-

ong et al., 2015]:

η(st−1,Hτ ) = va tanh(st−1Wa +HτUa) (5.15)

where va, Wa and Ua are model parameters. Then the decoder generates the current

hidden state st using another LSTM like the one used in the encoder:

ft = σ([st−1,yt−1, ct]Uf + uf ) (5.16)

it = σ([st−1,yt−1, ct]Ui + ui) (5.17)

ot = σ([st−1,yt−1, ct]Uo + uo) (5.18)

l̃t = tanh([st−1,yt−1, ct]Ul + ul) (5.19)

lt = ft � lt−1 + it � l̃t (5.20)

st = ot � tanh(lt) (5.21)

where U. and u. are model parameters.

Finally, a softmax layer is built to predict the current summary word based on st,

yt−1 and ct:

pt = softmax([st,yt−1, ct]Wp) (5.22)

where Wp is a parameter matrix.

5.3.3 Learning

There are two types of costs in our system. For Rerank, we expect the predicted saliency

s(r,x) close to the actual saliency s∗(r,y∗). Therefore, we apply the Cross Entropy

(CE) between s and s∗ as the loss function:

JR(θ) = CE(s(r,x), s∗(r,y∗)) (5.23)

= −s∗ log s− (1− s∗) log(1− s),
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where θ stands for the model parameters. For Rewrite, the learning objective is to

maximize the estimated probability of the actual summary y∗. We adopt the common

Negative Log-Likelihood (NLL) as the loss function:

JG(θ) = − log(p(y∗|x, r)) (5.24)

= −
∑

t
log(pt[y

∗
t ])

To make full use of supervisions from both sides, we combine the above two costs as

the final loss function:

J(θ) = JR(θ) + JG(θ) (5.25)

We use Stochastic Gradient Descent (SGD) with mini-batch to tune model parame-

ters. The batch size is 64. To enhance generalization, we introduce dropout [Srivastava

et al., 2014] with probability p = 0.3. The initial learning rate is 1, and it decays by

50% if the generation loss does not decrease on the validation dataset.

5.4 Experiments

5.4.1 Dataset

We conduct experiments on the Annotated English Gigaword dataset. The details of

this dataset is shown in Section 3.4.

5.4.2 Evaluation Metrics

We adopt ROUGE [Lin, 2004] for automatic evaluation. Following the common practice,

we compute ROUGE-1 (uni-gram), ROUGE-2 (bi-gram) and ROUGE-L (LCS) F1 sco-

res in the following experiments. More details can refer to Section 3.4.2. We also me-

asure the actual saliency of a candidate template r with its combined ROUGE scores

given the actual summary y∗:

s∗(r,y∗) = ROUGE-1(r,y∗) + ROUGE-2(r,y∗) (5.26)
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ROUGE mainly evaluates informativeness. We also introduce a series of metrics to

measure the summary quality from the following aspects:

LEN DIF The absolute value of the length difference between the generated summa-

ries and the actual summaries. We use mean value±standard deviation to present

this aspect. The average value partially reflects readability and informativeness,

while the standard deviation links to stability.

LESS 3 The number of the generated summaries containing less than three tokens.

These extremely short summaries are usually unreadable.

COPY The proportion of the summary words (excluding stopwords) copied from the

source sentence. A very large copy ratio indicates that the summarization system

pays more attention to compression rather than required abstraction.

NEW NE The number of the named entities which never appear in the source sen-

tence or actual summary. Intuitively, the appearance of new named entities in the

summary is likely to bring unfaithfulness. We use Stanford CoreNLP [Manning

et al., 2014] to recognize named entities.

NEW UP The number of the uppercase words in neither the source sentence nor the

actual summary. We use the “trucase” annotator of CoreNLP to find them. An up-

percase word usually represent a named entity or an adjective related to a country

(e.g., Chinese, English). The appearance of a new uppercase word in the sum-

mary is improper in most cases.

5.4.3 Implementation Details

We use the popular seq2seq framework OpenNMT3 as the starting point. To make

our model more general, we retain the default settings of OpenNMT to build the net-

work architecture. Specifically, the dimensions of word embeddings and RNN are both

3https://github.com/OpenNMT/OpenNMT-py
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500, and the encoder and decoder structures are two-layer bidirectional Long Short

Term Memory Networks (LSTMs). The only difference is that we add the argument

“-share embeddings” to share the word embeddings between the encoder and deco-

der. This practice largely reduces model parameters for the monolingual task. Since

a soft template is introduced as additional source text, the training time of our model

approaches the standard seq2seq model.

During test, we use beam search of size 5 to generate summaries. We add the

argument “-replace unk” to replace the generated unknown words with the source word

that holds the highest attention weight. Since the generated summaries are often shorter

than the actual ones, we introduce an additional length penalty argument “-alpha 1” to

encourage longer generation, like [Wu et al., 2016].

5.4.4 Baselines

We introduce the following state-of-the-art neural summarization systems for compari-

son:

ABS The first neural abstractive summarization system proposed by [Rush et al., 2015a].

ABS+ [Rush et al., 2015a] further tuned the ABS model with additional features to

balance the abstractive and extractive tendency.

RAS-Elman As the extension of the ABS model, it changed the decoder with RNN

[Chopra et al., 2016].

Featseq2seq [Nallapati et al., 2016a] used a full seq2seq model and added the hand-

crafted features such as POS tag and NER, to strengthen the encoder representa-

tion.

Luong-NMT [Chopra et al., 2016] implemented the neural machine translation mo-

del of [Luong et al., 2015] for summarization. This model contained two-layer

LSTMs for both encoder and decoder.
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Figure 5.3: Perplexity change on the validation dataset.

OpenNMT We also implement the standard attentional seq2seq model with Open-

NMT. All the settings are the same as our system. Noted that Gigaword is a

benchmark dataset of OpenNMT. We distinguish the official result4 and our ex-

perimental result with suffixes “O” and “I” respectively.

In addition, to check the power of our joint learning framework, we develop a base-

line named “PIPELINE”. Its architecture is identical to Re3Sum. However, it trains the

Rerank module and Rewrite module in pipeline.

5.4.5 Informativeness Evaluation

Model Perplexity
ABS† 27.1
RAS-Elman† 18.9
OpenNMTI 13.2
PIPELINE 12.5
Re3Sum 12.9

Table 5.2: Final perplexity on the validation dataset. † indicates the value is cited from
the corresponding paper. ABS+, Featseq2seq and Luong-NMT do not provide this
value.

Let’s first look at the cost values (Equation 5.24) on the validation dataset. From

Table 5.2 and Figure 5.3, we can see that our model achieves much lower perplexity
4http://opennmt.net/Models/
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Model ROUGE-1 ROUGE-2 ROUGE-L
ABS† 29.55∗ 11.32∗ 26.42∗

ABS+† 29.78∗ 11.89∗ 26.97∗

Featseq2seq† 32.67∗ 15.59∗ 30.64∗

RAS-Elman† 33.78∗ 15.97∗ 31.15∗

Luong-NMT† 33.10∗ 14.45∗ 30.71∗

OpenNMT†O 33.13∗ 16.09∗ 31.00∗

OpenNMTI 35.01∗ 16.55∗ 32.42∗

PIPELINE 36.49 17.48∗ 33.90
Re3Sum 37.04 19.03 34.46

Table 5.3: ROUGE F1 (%) performance.

Type ROUGE-1 ROUGE-2 ROUGE-L
Random 2.81 0.00 2.72
First 24.44 9.63 22.05
Max 38.90 19.22 35.54
Optimal 52.91 31.92 48.63
Rerank 28.77 12.49 26.40

Table 5.4: ROUGE F1 (%) performance of different types of soft templates.

compared against the state-of-the-art systems. It is also noted that PIPELINE slightly

outperforms Re3Sum. One possible reason is that Re3Sum additionally considers the

cost derived from the Rerank module.

The ROUGE F1 scores of different methods are then reported in Table 5.3. It is

obvious that our model significantly outperforms most other approaches. Note that,

ABS+ and Featseq2seq have utilized a series of hand-crafted features, but our model

is completely data-driven. Even though, our model surpasses Featseq2seq by 22% and

ABS+ by 60% on ROUGE-2. When soft templates are ignored, our model is equivalent

to the standard attentional seq2seq model OpenNMTI . Therefore, it is safe to conclude

that soft templates have great contribute to guide generation of summaries.

We also examine the performance of directly regarding soft templates as output

summaries. We introduce five types of different soft templates:

Random An existing summary randomly selected from the training dataset.
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First The top-ranked candidate template given by the Retrieve module.

Max The template with the maximal actual ROUGE scores among the 30 candidate

templates.

Optimal An existing summary in the training dataset which holds the maximal ROUGE

scores.

Rerank The template with the maximal predicted ROUGE scores among the 30 can-

didate templates. It is the actual soft template we adopt.

As shown in Table 5.4, the performance of Random is terrible, indicating it is impos-

sible to use one summary template to fit various actual summaries. Rerank largely

outperforms First, which verifies the effectiveness of the Rerank module. However,

according to Max and Rerank, we find the Rerank performance of Re3Sum is far from

perfect. By comparing Max and Optimal, we believe there is much room to improve

the Retrieve module. Notice that Optimal greatly exceeds all the state-of-the-art appro-

aches. This finding strongly supports our practice of using existing summaries to guide

the seq2seq models.

5.4.6 Linguistic Quality Evaluation

Item Template OpenNMT Re3Sum
LEN DIF 2.6±2.6 3.0±4.4 2.7±2.6
LESS 3 0 53 1
COPY(%) 31 80 74
NEW NE 0.51 0.34 0.30
NEW UP 0.38 0.19 0.11

Table 5.5: Statistics of different types of summaries.

Here we check the linguistic quality of generated summaries from various aspects,

and the results are presented in Table 5.5. Look at the rows “LEN DIF” and “LESS 3”.

The performance of Re3Sum is almost the same as that of soft templates. It sugge-

sts that the soft templates indeed well guide summary generation. Compared with
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Re3Sum, the standard deviation of LEN DF in OpenNMT is 0.7 times larger, indica-

ting that OpenNMT works quite unstably. Moreover, OpenNMT generates 53 extreme

short summaries, which seriously reduces readability. Meanwhile, the copy ratio of

actual summaries is 36%. Therefore, the copy mechanism is severely overweighted

in OpenNMT. Our model is encouraged to generate according to human-written soft

templates, which relatively diminishes copying from the source sentences. Look at the

last rows “NEW NE” and “NEW UP”. A number of new named entities appear in the

soft templates, which makes them quite unfaithful to source sentences. By contrast,

NEW NE in Re3Sum is close to NEW NE in OpenNMT while NEW UP in Re3Sum

is much less than NEW UP in OpenNMT. It demonstrates the rewriting ability of our

seq2seq framework.

5.4.7 Effect of Templates

Type ROUGE-1 ROUGE-2 ROUGE-L
+Random 32.60 14.31 30.19
+First 36.01 17.06 33.21
+Max 41.50 21.97 38.80
+Optimal 46.21 26.71 43.19
+Rerank(Re3Sum) 37.04 19.03 34.46

Table 5.6: ROUGE F1 (%) performance of Re3Sum generated with different soft tem-
plates.

Mode OpenNMTI First Max Optimal Rerank

Copy

r - 0.39 (0.51) 0.43 (0.70) 0.40 (0.85) 0.52 (0.52)
r− x - 0.14 (0.24) 0.13 (0.47) 0.14 (0.70) 0.09 (0.30)
r ∩ x - 0.25 (0.66) 0.30 (0.80) 0.26 (0.93) 0.43 (0.57)
x− r - 0.48 (0.33) 0.45 (0.26) 0.48 (0.27) 0.31 (0.31)
x 0.80 (0.43) 0.73 (0.45) 0.75 (0.48) 0.74 (0.50) 0.74 (0.46)

Rewrite 0.20 (0.26) 0.27 (0.22) 0.25 (0.32) 0.26 (0.45) 0.26 (0.28)

Table 5.7: Copy and rewrite performance. Here r stands for templates and x means
source sentences. The value form is: length proportion (correct proportion). To com-
pare with OpenNMT, we regard all the words not copied from the source sentences as
Rewrite.

107



Figure 5.4: Example 1 of generated summaries. We use Bold font to indicate the crucial
rewriting behavior from the templates to generated summaries.

Figure 5.5: Example 2 of generated summaries.

Figure 5.6: Example 3 of generated summaries.
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Figure 5.7: Example 1 of generation with diversity. We use Bold font to indicate the
difference between two summaries

Figure 5.8: Example 2 of generation with diversity.
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Figure 5.9: Example 3 of generation with diversity.

In this section, we show how soft templates affect our model. At the beginning, we

feed different types of soft templates (refer to Table 5.4) into the Rewriting module of

Re3Sum. As illustrated in Table 5.6, the more high-quality templates are provided, the

higher ROUGE scores are achieved. It is interesting to see that,while the ROUGE-2

score of Random templates is zero, our model can still generate acceptable summaries

with Random templates. It seems that Re3Sum can automatically judge whether the

soft templates are trustworthy and ignore the seriously irrelevant ones. We believe that

the joint learning with the Rerank model plays a vital role here. We then examine the

copying and rewriting performance of our system. The result is presented in Table 5.7.

We find that the most accurate prediction happens in the overlap of source sentences

and templates (r ∩ x). We believe that templates reiterate salient words in the source

sentences. In addition, the copying behavior in templates is always more accurate than

that in source sentences. For Max and Optimal templates, this difference is extremely

significant. This fact highlights the effectiveness of high-quality templates. Compared

with OpenNMT, our model achieves improvement on both copying and rewriting be-

haviors. As mentioned above, copying mainly benefits from the overlap part between

templates and sentences. For rewriting, the unique words in templates (r − x) trans-
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fer rewriting from source sentences into copying in templates, while the latter usually

works better.

Next, we manually inspect the summaries generated by different methods. We find

the outputs of Re3Sum are usually longer and more fluent than the outputs of Open-

NMT. Some illustrative examples are shown in Figure2 5.4, 5.5 and 5.6. In Example 1,

there is no predicate in the source sentence. Since OpenNMT prefers selecting source

words around the predicate to form the summary, it fails on this sentence. By contract,

Re3Sum rewrites the template and produces an informative summary. In Example 2,

OpenNMT deems the starting part of the sentences are more important, while our mo-

del, guided by the template, focuses on the second part to generate the summary.

In the end, we test the ability of our model to generate diverse summaries. In

practice, a system that can provide various candidate summaries is probably more wel-

come. Specifically, two candidate templates with large text dissimilarity are manually

fed into the Rewriting module. The corresponding generated summaries are shown in

Figures 5.7, 5.8 and 5.9. For the sake of comparison, we also present the 2-best re-

sults of OpenNMT with beam search. As can be seen, with different templates given,

our model is likely to generate dissimilar summaries. In contrast, the 2-best results of

OpenNMT are almost the same, and often a shorter summary is only a piece of the other

one. To sum up, our model demonstrates promising prospect in generation diversity.

5.4.8 Using Restricted Decoder

Seen from Table 5.5, there are still a number of new named entities and new capita-

lized word in the generated summaries. It may worsen the faithfulness of our model.

As shown next, this problem becomes much more serious when using other types of

templates (First, Max or Optimal). Therefore, we try to integrate the restricted decoder

(RD) proposed in Chapter 3 to control the vocabulary of the generation. Specifically,
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Data NEW NE NEW UP

Template

First 1.93 1.02
Max 1.77 0.98
Optimal 1.26 0.82
Rerank 0.51 0.38

Summary

First 1.31 0.27
Max 1.21 0.22
Optimal 1.08 0.17
Rerank 0.30 0.11

RD

First 0.35 0
Max 0.32 0
Optimal 0.32 0
Rerank 0.29 0

Table 5.8: Numbers of new named entities and new uppercase words in different data.

Type ROUGE-1 ROUGE-2 ROUGE-L
First 36.41 17.23 33.52
Max 41.82 22.11 38.98
Optimal 46.44 26.91 43.36
Rerank 37.08 19.04 34.47

Table 5.9: ROUGE F1 (%) performance of generation with restricted decoder.

the permissible output vocabulary is:

VY = X ∪A(X) ∪U (5.27)

where X is the source vocabulary, A(X) means the alignments of source words (obtai-

ned from the attention mechanism) and U is a frequent word set. In this way, the

results of NEW NE and NEW UP are shown in Table 5.8. Obviously, after control-

ling the output vocabulary, the generation of new named entities becomes rare, and the

new uppercase words even disappear. Meanwhile, since this restriction aims to reduce

surely unreasonable words in the generated summaries, the ROUGE performance also

enjoys a consistent increase, as shown in Table 5.9.
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5.5 Summary

In this chapter, we propose to introduce soft templates as additional input to guide

seq2seq summarization. We use the popular IR platform Lucene to retrieve proper ex-

isting summaries as candidate soft templates. Then we extend the seq2seq framework

to jointly conduct template reranking and template-aware summary generation. Expe-

riments show that our model can generate informative, readable and stable summaries.

In addition, our model demonstrates promising prospect in generation diversity.

We believe our work can be extended in various aspects in the future. Since the

candidate templates are far inferior to the optimal ones, we intend to improve the Re-

trieve module, e.g., by searching both the sentence and summary. We also plan to test

our system on the other tasks such as document-level summarization and short text

conversation.
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Chapter 6

Future Work: Rewrite for
Personalization

6.1 Introduction

Chapter 5 has verified that our summarization system is able to generate diverse sum-

maries. We find it is natural to extend this idea to personalized summarization which

aims to generate summaries specific to the user’s interest. Personalized summariza-

tion is not a new idea. The early work on summarization [Luhn, 1958] has already

mentioned the possibility of personalizing summaries by adapting them to particular

areas of interest. To this end, sentences that contain words related to the reader’s in-

terests are given more importance. Experiments on summary user evaluation [Paice

and Jones, 1993] show that users tend to select the parts of the text that are more

closely related to their interests. As a result, personalized summaries should be far

more attractive than a general one. However, the research of personalized summari-

zation is limited largely due to the lack of labeled data. As a result, most previous

personalized summarization systems (e.g., [Dı́az et al., 2005; Dı́az and Gervás, 2007;

Kumar et al., 2008]) had to simply adopt unsupervised extractive approaches and model

the interest of a user merely by the surface features such as given keywords and user’s

profile. During evaluation, annotators were asked to “imagine” whether the users would

like the generated summaries.
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Our future work on personalized summarization is two-fold. On the one hand, we

plan to collect a large-scale personalized summarization dataset automatically from

social media platforms. In such way, we can conduct experiments on real data. On the

other hand, we are going to develop a neural abstractive personalized summarization

system by extending our previous work.

6.2 Personalized Summary Dataset Collection

Social media (e.g., Twitter1 and Weibo2) have surged in the recent decade. Numerous

tweets have been published every day. Since tweets are written by users, they naturally

sculpt their preferences and personal interests. We suggest an effective way to automa-

tically collect large-scales of personalized summaries on Twitter. Previously, a series

of NLP tasks have tried to utilize social annotations like followers [Chen et al., 2014],

emoticons [Zhao et al., 2012] and replies [Hu et al., 2014] etc. Two kinds of common

social labels, i.e., hyper-link and user ID can be leveraged for our purpose. First of all,

our previous work [Cao et al., 2016] has validated that a tweet with a hyper-link can be

regarded as the summary of the corresponding document. Take tweets in Table 6.1 as

an example. This document describes how Greece’s Crisis drowns the life of a sardine

fisherman. Since the local fish industry owns the world first robotic sardine processing

line, Tweet 1 is interested in how it works. Tweet 2 and 3 both describe the key points

of this paper, like “Greece”, “fish industry” and “crisis”, but Tweet 2 can be used as

the title while Tweet 3 tells author’s writing experience. As can been seen, each tweet

summarizes a part of the document with its own focus and writing style.

Furthermore, given the author ID, we can easily access his/her profile and social

behaviors, which largely benefits targeting the preference. For example, the main page

of Stephen Curry (user ID: StephenCurry30) on Twitter is shown in Figure 6.1. From

this page, we extract plentiful user information, such as:

1https://twitter.com
2https://weibo.com
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Figure 6.1: An example of user information shown in Twitter

Profile Family, location, occupation and so on.

Relationship Following, followers and likes.

Writing History All the tweets created by the user.

It is noted that user modeling is one of the most fundamental tasks in the area of social

network research (e.g., [Abel et al., 2011]), and word embedding-like user representa-

tion becomes a growing tendency (e.g., [Elkahky et al., 2015]). Therefore, we plan to

apply an existing model to pre-train user embeddings to represent user’s preference in

our work.

The whole data collection process is described as follows:

1. Find out the tweets containing hyper-links through the Twitter search function to

find out tweets containing hyper-links.

2. Retrieve hyper-links to acquire the corresponding documents, for example, using

the open source Python package “newspaper”3.

3. Collect the user information with the Twitter user streaming API.

3https://pypi.python.org/pypi/newspaper
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Tweet
Software determines which are sardines and ... how much they weigh
A fish tale: How #GreeceCrisis drowned an industry and a way of life
.@georgikantchev, @movingpicturetv, @vaniabturner and I look inside Greece’s
fish industry and see crisis

News The Fisherman’s Lament – A Way of Life Drowned by Greece’s Crisis
(http://t.co/FXGTUY3IBq)

Table 6.1: An example of the tweets linked to the same news. Hyper-links and user IDs
in tweets are elided for short.

6.3 Personalized Neural Abstractive Summarization

In Chapter 5, we have demonstrated that our system Re3Sum is able to generate diverse

summaries given different templates. Naturally, if we provide a user-specific template,

the summary should reflect personalization. We plan to extend Re3Sum by introducing

user information to generate personalized summaries. At first, we are considering to

make the Retrieve module of our Re3Sum associated with the Rerank and Rewrite

modules to improve the recall of salient templates. To achieve this goal, we are going

to introduce an additional output vocabulary prediction layer onto the encoder. This

layer works in two-fold. On the one hand, the predicted vocabulary can be used in

the Retrieve module to conduct composite search. That is, for each retrieved result, its

sentence must be similar to the input sentence and its summary must be close to the

predicted summary words. We believe this practice is likely to significantly improve

the recall of Retrieve. On the other hand, the predicted vocabulary can be naturally

adopted in restricted generation describe in Section 5.4.8. Since vocabulary restriction

plays a crucial role to reduce unreasonable generation, it should work more accurately

to embed it as a learning module of the whole system. The new framework is shown in

Figure 6.2. The work flow of the extended system is as follows:

1. Input a source sentence x.

2. Encode it and predict the target vocabulary Vy.

3. The Retrieve module searches candidate templates through sentence ≈ x and
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headline ≈ Vy.

4. Ihe Rerank module finds out the most salient template r within the candidates.

5. The Rewrite module generates a summary based on x and r, restricted in the vocabulary Vy.

We use the underline to emphasize the extension.

To further import user information, we plan to add pre-trained user embedding to

makes all the modules of Retrieve, Rerank and Rewrite personalized. The entire frame-

work is shown in Figure 6.3. We consider to use a state-of-the-art approach to pre-train

user embeddings on the collected user information. Then, the work flow of the extended

system can be as follows.

1. Input a source sentence x and a user ID.

2. Encode the sentence and project the user ID onto user embeddings u

3. Predict the user-specific target vocabulary Vu
y , based on the sentence representa-

tion and user embeddings.

4. Retrieve searches candidate templates through document ≈ x and tweet ≈ Vu
y .

5. Rerank finds out the most user-specific salient template ru within the candidates.

6. Rewrite generates a summary based on x, r and u, restricted in the vocabulary Vu
y .
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Chapter 7

Conclusion

In this last chapter, I wrap up the thesis by combining the there technical chapters into

a thorough view of copying and rewriting driven neural abstractive summarization.

7.1 Research Summary

We explore two core writing behaviors in summarization, i.e., copying and rewriting,

and incorporate them in seq2seq models. Our work is unique in two aspects. On

the one hand, we introduce the prior knowledge of traditional summarization research

into seq2seq to enable more informative, faithful and diverse generation. On the other

hand, we design novel neural network architectures to explicitly capture copying and

rewriting behaviors in summarization. The technical details are presented as follows.

In Chapter 3, we leverage the popular attention mechanism to copy and rewrite

words in the source text. Our system, called CoRe, fuses a copying decoder and a re-

writing decoder. The copying decoder finds out the words to be copied in the source

text according to the attention weights. The rewriting decoder produces other neces-

sary summary words limited in the source-specific vocabulary derived from learned

alignments. To combine the two decoders and determine the final output, we train a

predictor to predict the actual writing modes, which is able to utilize additional super-
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vision. Extensive experiments show that our model is capable of generating informative

summaries efficiently.

In Chapter 4, we investigates an important but neglected problem, i.e., the faithful-

ness problem in abstractive summarization. We propose a fact-aware summarization sy-

stem, called FTSum, to copy source facts. We employ open information extraction and

dependency parsing tools to extract the facts in the source sentence, which was a com-

mon practice in compressive summarization. We develop the dual-attention seq2seq

framework to force summary generation conditioned on both the source sentence and

the extracted facts. Automatic and human evaluations demonstrate that our summari-

zation system greatly outperforms state-of-the-art models on both informativeness and

faithfulness. In addition, we annotate a first dataset with faithfulness labels and propose

an effective automatic faithfulness evaluation tool, called FTEval.

In Chapter 5, we propose a system, called Re3Sum, which uses soft templates as

rewriting references to guide seq2seq summarization. This is inspired by template-

based summarization. We use Lucene, a popular information retrieval tool, to retrieve

appropriate existing summaries as candidate soft templates. We extend the seq2seq

framework by jointly learning template reranking and template-aware summary gene-

ration. Experiments show that our system can generate informative, readable and stable

summaries. Our system also demonstrates promising prospect in generation diversity.

Our future work on personalized abstractive summarization is described in Chap-

ter 6. We plan to collect a large-scale personalized summarization dataset automatically

from social media platforms. In such a way, we can conduct experiments on real data,

which is usually the most significant hindrance to the previous work. Our aim is to

extend the current systems proposed in this thesis to model user-aware rewriting.

The pros and cons of our work are summarized in Table 7.1. Compared with the

standard seq2seq model, all the proposed methods require additional pre-processing

steps. That is, CoRe initializes an alignment table, FTSum uses OpenIE and depen-
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dency parsing to extract facts, and Re3Sum leverages an IR system to find out candi-

date soft templates. The latter two spend quite a lot of time. In terms of faithfulness,

Re3Sum may generate new named entities that appear in the soft template. It is noted

that this problem can be solved by combining the rewriting decoder of CoRe (refer to

Section 5.4.8).

Method Pre-processing ROUGE Faithfulness
CoRe − + +
FTSum −− ++ +++
Re3Sum −− +++ ?∗

Table 7.1: Pros and cons of proposed methods compared with the standard seq2seq
model. ∗Unstable and can be addressed by introducing the rewriting decoder.

7.2 Technical Highlights

Our work mainly focuses on modeling the two core writing behaviors in summariza-

tion, i.e., copying and rewriting. We have proposed neural network approaches to expli-

citly model copying and rewriting during summary generation. We also incorporate the

prior knowledge from traditional summarization researches into the seq2seq model. As

such, the seq2seq model is guided to copy facts (inspired by compressive summariza-

tion techniques) and rewrite from templates (inspired by template-based summarization

techniques). The specific technical contributions are listed as follows.

CoRe We separate the attention mechanism to explicitly model copying and rewriting

source words, respectively. The copying decoder copy the important words from

the source text based on the attention mechanism. The rewriting decoder is re-

stricted to generate from the source-specific vocabulary, which is able to produce

rewriting-related words efficiently. We introduce a binary sequence labeling task

to predict the current writing mode, which utilizes additional supervision.

FTSum To the best of our knowledge, we are the first to approach the faithfulness

problem in abstractive summarization. To address this issue, we propose the first
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fact-aware seq2seq model, which can generate faithful and informative summa-

ries. We develop the dual-attention seq2seq model to force summary genera-

tion conditioned on both the source text and the facts extracted from the source

text. We also develop the first automatic tool for faithfulness evaluation. FTEval

highly corresponds with the manual judgment of faithfulness, and it gives ex-

planations to all identified fake summaries. We expect that FTEval could be a

benchmark tool for summary evaluation and awaken the research community to

handle the serious fake generation in seq2seq summarization.

Re3Sum We propose to introduce soft templates as additional input to improve rea-

dability and stability of seq2seq summarization systems. To achieve this goal,

we extend the seq2seq framework to enable simultaneous template reranking and

template-aware summary generation. In such a way, Re3Sum fuses the IR-based

ranking technique and seq2seq-based generation technique and fully takes ad-

vantages of both sides.
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[Erkan and Radev, 2004] Günes Erkan and Dragomir R Radev. Lexrank: Graph-based

lexical centrality as salience in text summarization. JAIR, 22(1):457–479, 2004.

[Evans et al., 2004] David Kirk Evans, Judith L Klavans, and Kathleen R McKeown.

Columbia newsblaster: Multilingual news summarization on the web. In Demon-

stration Papers at HLT-NAACL 2004, pages 1–4. Association for Computational

Linguistics, 2004.

[Fattah and Ren, 2009] Mohamed Abdel Fattah and Fuji Ren. Ga, mr, ffnn, pnn and

gmm based models for automatic text summarization. Computer Speech & Lan-

guage, 23(1):126–144, 2009.

130



[Filatova and Hatzivassiloglou, 2004] Elena Filatova and Vasileios Hatzivassiloglou.

Event-based extractive summarization. Text Summarization Branches Out, 2004.

[Filippova et al., 2015] Katja Filippova, Enrique Alfonseca, Carlos A. Colmenares,

Lukasz Kaiser, and Oriol Vinyals. Sentence compression by deletion with lstms.

In Proceedings of EMNLP, pages 360–368, 2015.

[Filippova, 2010] Katja Filippova. Multi-sentence compression: Finding shortest paths

in word graphs. In Proceedings of the 23rd International Conference on Computati-

onal Linguistics, pages 322–330. Association for Computational Linguistics, 2010.

[Fisher and Roark, 2006] Seeger Fisher and Brian Roark. Query-focused summariza-

tion by supervised sentence ranking and skewed word distributions. In Proceedings

of the Document Understanding Conference, DUC-2006, New York, USA. Citeseer,

2006.

[Foote, 1999] Jonathan Foote. An overview of audio information retrieval. Multimedia

systems, 7(1):2–10, 1999.

[Galley, 2006] Michel Galley. A skip-chain conditional random field for ranking meet-

ing utterances by importance. In Proceedings of EMNLP, pages 364–372, 2006.

[Gambhir and Gupta, 2017] Mahak Gambhir and Vishal Gupta. Recent automatic text

summarization techniques: a survey. Artificial Intelligence Review, 47(1):1–66,

2017.

[Gehring et al., 2017] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and

Yann N Dauphin. Convolutional sequence to sequence learning. arXiv preprint

arXiv:1705.03122, 2017.

[Genest et al., 2011] Pierre-Etienne Genest, Fabrizio Gotti, and Yoshua Bengio. Deep

learning for automatic summary scoring. In Proceedings of the Workshop on Auto-

matic Text Summarization, pages 17–28, 2011.

131



[Gers et al., 1999] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning

to forget: Continual prediction with lstm. 1999.

[Gillick and Favre, 2009] Dan Gillick and Benoit Favre. A scalable global model for

summarization. In Proceedings of the Workshop on ILP for NLP, pages 10–18, 2009.

[Goodrum, 2000] Abby A Goodrum. Image information retrieval: An overview of

current research. Informing Science, 3(2):63–66, 2000.

[Gu et al., 2016] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incor-

porating copying mechanism in sequence-to-sequence learning. arXiv preprint

arXiv:1603.06393, 2016.

[Guu et al., 2017] Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Li-

ang. Generating sentences by editing prototypes. arXiv preprint arXiv:1709.08878,

2017.

[Han et al., 2017] Mengqiao Han, Ou Wu, and Zhendong Niu. Unsupervised automa-

tic text style transfer using lstm. In National CCF Conference on Natural Language

Processing and Chinese Computing, pages 281–292. Springer, 2017.

[Harabagiu and Lacatusu, 2002] Sanda M Harabagiu and Finley Lacatusu. Generating

single and multi-document summaries with gistexter. In Document Understanding

Conferences, pages 11–12, 2002.

[Hashimoto and Tsuruoka, 2017] Kazuma Hashimoto and Yoshimasa Tsuruoka. Neu-

ral machine translation with source-side latent graph parsing. arXiv preprint

arXiv:1702.02265, 2017.

[He et al., 2012] Zhanying He, Chun Chen, Jiajun Bu, Can Wang, Lijun Zhang, Deng

Cai, and Xiaofei He. Document summarization based on data reconstruction. In

AAAI, 2012.

132



[He et al., 2015] Liu He, Yu Hongliang, and Deng Zhi-Hong. Multi-document sum-

marization based on two-level sparse representation model. In Proceedings of AAAI,

2015.

[He et al., 2016] Wei He, Zhongjun He, Hua Wu, and Haifeng Wang. Improved neural

machine translation with smt features. In AAAI, pages 151–157, 2016.

[He et al., 2017] Wei He, Kai Liu, Yajuan Lyu, Shiqi Zhao, Xinyan Xiao, Yuan Liu,

Yizhong Wang, Hua Wu, Qiaoqiao She, Xuan Liu, et al. Dureader: a chinese ma-

chine reading comprehension dataset from real-world applications. arXiv preprint

arXiv:1711.05073, 2017.

[Hermann et al., 2015] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette,

Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines

to read and comprehend. In Advances in Neural Information Processing Systems,

pages 1693–1701, 2015.

[Hirao et al., 2002] Tsutomu Hirao, Hideki Isozaki, Eisaku Maeda, and Yuji Matsu-

moto. Extracting important sentences with support vector machines. In Proceedings

of the 19th international conference on Computational linguistics-Volume 1, pages

1–7. Association for Computational Linguistics, 2002.

[Hong and Nenkova, 2014] Kai Hong and Ani Nenkova. Improving the estimation of

word importance for news multi-document summarization. In Proceedings of EACL,

2014.

[Hu et al., 2014] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convo-

lutional neural network architectures for matching natural language sentences. In

Advances in Neural Information Processing Systems, pages 2042–2050, 2014.

[Hu et al., 2015a] Baotian Hu, Qingcai Chen, and Fangze Zhu. Lcsts: A large scale

chinese short text summarization dataset. In Proceedings of EMNLP, pages 1967–

1972, 2015.

133



[Hu et al., 2015b] Baotian Hu, Qingcai Chen, and Fangze Zhu. Lcsts: A large scale

chinese short text summarization dataset. arXiv preprint arXiv:1506.05865, 2015.

[Isonuma et al., 2017] Masaru Isonuma, Toru Fujino, Junichiro Mori, Yutaka Matsuo,

and Ichiro Sakata. Extractive summarization using multi-task learning with docu-

ment classification. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pages 2101–2110, 2017.

[Ji et al., 2014] Zongcheng Ji, Zhengdong Lu, and Hang Li. An information retrieval

approach to short text conversation. arXiv preprint arXiv:1408.6988, 2014.

[Kalchbrenner and Blunsom, 2013] Nal Kalchbrenner and Phil Blunsom. Recurrent

continuous translation models. In EMNLP, volume 3, page 413, 2013.

[Kauchak, 2013] David Kauchak. Improving text simplification language modeling

using unsimplified text data. In ACL (1), pages 1537–1546, 2013.

[Kikuchi et al., 2016] Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Taka-

mura, and Manabu Okumura. Controlling output length in neural encoder-decoders.

arXiv preprint arXiv:1609.09552, 2016.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba. Adam: A method for sto-

chastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[Kingma and Welling, 2013] Diederik P Kingma and Max Welling. Auto-encoding

variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[Kiyono et al., 2017] Shun Kiyono, Sho Takase, Jun Suzuki, Naoaki Okazaki, Kentaro

Inui, and Masaaki Nagata. Source-side prediction for neural headline generation.

arXiv preprint arXiv:1712.08302, 2017.

[Kleinberg, 1999] Jon M Kleinberg. Authoritative sources in a hyperlinked environ-

ment. Journal of the ACM (JACM), 46(5):604–632, 1999.

[Knight and Marcu, 2000] Kevin Knight and Daniel Marcu. Statistics-based

summarization-step one: Sentence compression. AAAI/IAAI, 2000:703–710, 2000.

134



[Knight and Marcu, 2002] Kevin Knight and Daniel Marcu. Summarization beyond

sentence extraction: A probabilistic approach to sentence compression. Artificial

Intelligence, 139(1):91–107, 2002.

[Kobayashi et al., 2015] Hayato Kobayashi, Masaki Noguchi, and Taichi Yatsuka.

Summarization based on embedding distributions. In Proceedings of EMNLP, pages

1984–1989, 2015.

[Koehn and Knowles, 2017] Philipp Koehn and Rebecca Knowles. Six challenges for

neural machine translation. arXiv preprint arXiv:1706.03872, 2017.

[Koehn et al., 2007] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-

Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine

Moran, Richard Zens, et al. Moses: Open source toolkit for statistical machine

translation. In Proceedings of the 45th annual meeting of the ACL on interactive

poster and demonstration sessions, pages 177–180. Association for Computational

Linguistics, 2007.

[Kumar et al., 2008] Chandan Kumar, Prasad Pingali, and Vasudeva Varma. Genera-

ting personalized summaries using publicly available web documents. In Procee-

dings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence

and Intelligent Agent Technology-Volume 03, pages 103–106. IEEE Computer So-

ciety, 2008.

[Kupiec et al., 1995] Julian Kupiec, Jan Pedersen, and Francine Chen. A trainable

document summarizer. In Proceedings of the 18th annual international ACM SI-

GIR conference on Research and development in information retrieval, pages 68–73.

ACM, 1995.

[Lafferty et al., 2001] John Lafferty, Andrew McCallum, and Fernando CN Pereira.

Conditional random fields: Probabilistic models for segmenting and labeling se-

quence data. 2001.

135



[Larsen, 1999] Bjornar Larsen. A trainable summarizer with knowledge acquired from

robust nlp techniques. Advances in automatic text summarization, 71, 1999.

[Larson, 2010] Ray R Larson. Introduction to information retrieval. Journal of the

American Society for Information Science and Technology, 61(4):852–853, 2010.

[Lei and Zhang, 2017] Tao Lei and Yu Zhang. Training rnns as fast as cnns. arXiv

preprint arXiv:1709.02755, 2017.

[Lew et al., 2006] Michael S Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain.

Content-based multimedia information retrieval: State of the art and challenges.

ACM Transactions on Multimedia Computing, Communications, and Applications

(TOMM), 2(1):1–19, 2006.

[Li et al., 2013a] Chen Li, Fei Liu, Fuliang Weng, and Yang Liu. Document summa-

rization via guided sentence compression. In EMNLP, pages 490–500, 2013.

[Li et al., 2013b] Chen Li, Xian Qian, and Yang Liu. Using supervised bigram-based

ilp for extractive summarization. In Proceedings of ACL, pages 1004–1013, 2013.

[Li et al., 2017a] Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min Zhang, and

Guodong Zhou. Modeling source syntax for neural machine translation. arXiv pre-

print arXiv:1705.01020, 2017.

[Li et al., 2017b] Piji Li, Zihao Wang, Wai Lam, Zhaochun Ren, and Lidong Bing. Sa-

lience estimation via variational auto-encoders for multi-document summarization.

In AAAI 2017: The Thirty-First AAAI Conference on Artificial Intelligence. AAAI,

2017.

[Li et al., 2018a] Juncen Li, Robin Jia, He He, and Percy Liang. Delete, retrieve,

generate: A simple approach to sentiment and style transfer. arXiv preprint

arXiv:1804.06437, 2018.

136



[Li et al., 2018b] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. In-

dependently recurrent neural network (indrnn): Building a longer and deeper rnn.

arXiv preprint arXiv:1803.04831, 2018.

[Lin and Hovy, 1997] Chin-Yew Lin and Eduard Hovy. Identifying topics by position.

In Proceedings of the fifth conference on Applied natural language processing, pages

283–290. Association for Computational Linguistics, 1997.

[Lin et al., 2012] Ziheng Lin, Chang Liu, Hwee Tou Ng, and Min-Yen Kan. Combi-

ning coherence models and machine translation evaluation metrics for summariza-

tion evaluation. In Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics: Long Papers-Volume 1, pages 1006–1014. Association

for Computational Linguistics, 2012.

[Lin, 2003] Chin-Yew Lin. Improving summarization performance by sentence com-

pression: a pilot study. In Proceedings of the sixth international workshop on In-

formation retrieval with Asian languages-Volume 11, pages 1–8. Association for

Computational Linguistics, 2003.

[Lin, 2004] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries.

In Proceedings of the ACL Workshop, pages 74–81, 2004.

[Liu et al., 2007] Maofu Liu, Wenjie Li, Mingli Wu, and Qin Lu. Extractive summa-

rization based on event term clustering. In Proceedings of the 45th Annual Meeting

of the ACL on Interactive Poster and Demonstration Sessions, pages 185–188. As-

sociation for Computational Linguistics, 2007.

[Luhn, 1958] Hans Peter Luhn. The automatic creation of literature abstracts. IBM

Journal of research and development, 2(2):159–165, 1958.

[Luong et al., 2015] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Ef-

fective approaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025, 2015.

137



[Lv and Zhai, 2011] Yuanhua Lv and ChengXiang Zhai. Lower-bounding term fre-

quency normalization. In Proceedings of the 20th ACM international conference on

Information and knowledge management, pages 7–16. ACM, 2011.

[Mani et al., 1999] Inderjeet Mani, David House, Gary Klein, Lynette Hirschman,

Therese Firmin, and Beth Sundheim. The tipster summac text summarization eva-

luation. In Proceedings of the ninth conference on European chapter of the Asso-

ciation for Computational Linguistics, pages 77–85. Association for Computational

Linguistics, 1999.

[Manning et al., 2014] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny

Finkel, Steven J. Bethard, and David McClosky. The Stanford CoreNLP natural

language processing toolkit. In Proceedings of ACL: System Demonstrations, pages

55–60, 2014.

[McDonald, 2007] Ryan McDonald. A study of global inference algorithms in multi-

document summarization. Springer, 2007.

[McKeown et al., 2001] Kathleen R McKeown, Vasileios Hatzivassiloglou, Regina

Barzilay, Barry Schiffman, David Evans, and Simone Teufel. Columbia multi docu-

ment summarization: Approach and evaluation. Technical report, Columbia Univer-

sity New York United States, 2001.

[Mei et al., 2010] Qiaozhu Mei, Jian Guo, and Dragomir Radev. Divrank: the interplay

of prestige and diversity in information networks. In Proceedings of the 16th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

1009–1018. Acm, 2010.

[Miao and Blunsom, 2016] Yishu Miao and Phil Blunsom. Language as a latent

variable: Discrete generative models for sentence compression. arXiv preprint

arXiv:1609.07317, 2016.

138



[Mihalcea and Radev, 2011] Rada Mihalcea and Dragomir Radev. Graph-based na-

tural language processing and information retrieval. Cambridge university press,

2011.

[Mihalcea and Tarau, 2004] Rada Mihalcea and Paul Tarau. Textrank: Bringing order

into text. In Proceedings of the 2004 conference on empirical methods in natural

language processing, 2004.

[Mikolov et al., 2010] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ,
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