

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

A STUDY OF VIDEO FIRE DETECTION AND ITS APPLICATION

WONG KWOK KEUNG ARTHUR

PhD

The Hong Kong Polytechnic University

2018

The Hong Kong Polytechnic University

Department of Building Services Engineering

A Study of video fire detection and its application

Wong Kwok Keung Arthur

A thesis submitted in partial fulfilment of the

requirements for the Degree of Doctor of Philosophy

October 2016

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

____________________________ (Signed)

____________________________ (Name of student) Wong Kwok Keung Arthur

i

Abstract

In order to save life and property from fire, early and accurate fire detection is one of

the important aspects in fire safety design. For traditional spot type and line type fire

detectors, information concerning the fire parameters such as flame height, fire growth

rate and fire location are difficult to obtain. Such information is very useful especially

to enable effective fire evacuation and firefighting. In addition, traditional fire detection

technology has 8 – 10% false alarm rates. With the fast development of computer

technology and image processing techniques, it is now possible to use video images to

detect fire in different locations and obtain those fire parameters. It is able to

supplement traditional fire detection technology so the development of video fire

detection is becoming important. Besides, it is also useful in fire safety design for

outdoor environments. This thesis presents the study of video fire detection and its

application.

Based on the literature review, video fire detection systems have already been

developed to detect forest fires. Four kinds of video fire detection analysis methods

including the digital image processing method, statistical colour model method,

artificial neural network method and combined different approaches are used. The

primary objective for the development of different analysis methods is to enhance the

accuracy of video fire detection. In addition, video fire detection system is not only

connected to surveillance system but it can also be combined with the fire suppression

system for better fire control and mitigate unnecessary water damages.

ii

In this study, computer program analysis of the fire images is conducted using

MATLAB toolbox, Visual C++, C, C++. Open source computer vision library

(OpenCV) and software is developed to capture the fire image and conduct analysis. In

addition, image processing techniques using OpenCV are able to processing the real

time images for fire detection. Experimental study was conducted using thermal still

images and normal still images to develop flame region segmentation codes using the

Otsu’s method. The traditional Otsu’s method is able to segment the flame region and

background but unable to segment the flame region completely with complicated

background such as the shading and the objects reflection. Therefore, modified Otsu’s

multi – threshold analysis method is developed to segment the flame region from

complicated background video images. To recognize the fire images, parameters such

as colour, flame size, motion characteristics of fire are used. Flickering frequency and

direction of flame spread are two important fire images characteristics used. Logistic

discrimination rules are then set up to determine the probability of the true fire

conditions. Once the fire condition is determined, the analyses of real time flame motion

images are conducted. Optical flow analysis is then used to track the flame spread

direction and flame height can then be estimated. With the information of the flame

height, the fire size is estimated using the flame height empirical equation developed

by other fire researchers.

iii

Publications arising from the thesis

(1) Wong, A. K., and Fong, N. (2012). Using Thermal Image for Fire Detection.

The 2nd Asian-US-European Thermophysics Conference Thermal Science for

Sustainable World 2012

(2) Wong, A. K., and Fong, N. (2014). Experimental study of video fire detection

and its applications. Procedia Engineering, 71, 316 - 327.

(3) Wong, A. K., and Fong, N. (2014). Study of pool fire heat release rate using

video fire detection. 3th International High Performance Building Conference,

Purdue.

iv

Acknowledgements

I would like to express my deepest gratitude to my chief supervisor, Dr. N. K. Fong and

co – supervisor, Professor W. K. Chow, for their guidance, encouragement and support

over the years. Their great enthusiasm and devotion to research has inspired me greatly.

I also sincerely thank Ms. Anson and Professor Anson for their guidance and

encouragement in finishing this thesis.

Finally, I want to thank my wife, my children, and the rest of my family who have

always supported me.

v

Table of contents

Abstract i

Publications arising from the thesis iii

Acknowledgements iv

Table of contents v

List of Figures ix

List of Tables xii

Nomenclature xiv

Chapter 1 Introduction 1

1.1 Early application of video fire detection 3

1.2 Traditional fire detection 3

1.2.1 Heat detectors 4

1.2.2 Smoke detectors 5

1.2.3 Flame detectors 5

1.2.4 Gas sensors 6

1.3 False alarms 6

1.4 Video fire detection 7

1.5 Image file format 10

1.6 Codes and Standards 11

1.7 Digital image processing 12

1.7.1 The RGB colour space model 13

1.7.2 The greyscale images approach 13

1.7.3 The HSI colour space model 13

vi

1.7.4 The YIQ colour space model 14

1.7.5 The YCbCr colour space model 15

1.8 Statistical analysis 15

1.9 Artificial neural networks 16

1.10 Fire characteristics 16

Chapter 2 Literature review on video fire detection 17

2.1 Functions 18

2.1.1 Flame colour 19

2.1.2 Flame height 22

2.1.3 Flame shape 24

2.1.4 Flame brightness 25

2.1.5 Flame Flickering Frequency 35

2.1.6 Fire dynamics analysis for flickering frequency 42

2.2 Video fire detection for forest fires 43

2.2.1 Satellite method 43

2.2.2 Infrared method 45

2.2.3 Unmanned Aircraft System and Internet Protocol 46

2.3 Video fire detection in other environments 47

Chapter 3 Methodology 50

3.1 Image segmentation process 50

3.1.1 Single threshold method 52

3.1.2 Multi-threshold method 53

3.2 Recognition method 55

vii

3.2.1 Natural fire flame height analysis 56

3.2.2 Flickering frequency analysis 58

3.2.3 Logistic regression 58

3.3 Tracking method (optical flow analysis) 59

Chapter 4 Experimental setup and results 62

4.1 The first stage of the experimental study 63

4.1.1 Computer program 63

4.1.2 Experiment 63

4.2 The second stage of the experimental study 64

4.2.1 Computer program 64

4.2.2 Experiment 65

4.3 The third stage of the experimental study 67

4.3.1 Computer program 67

4.3.2 Experiment 68

Chapter 5 Conclusions 70

5.1 Application 72

Chapter 6 Suggestions for future research 73

References R-1

Appendix A MATLAB A-1

Appendix B C++ / OpenCV B-1

viii

Appendix B1 Revised C++ / OpenCV source code B1-1

Appendix C Otsu method formulation C-1

Appendix D Optical flow approach D-1

Appendix E Multiple logistic regression E-1

ix

List of Figures

Figure 1.1 Properties of dynamic objects for unmanned video surveillance

Figure 1.2 Relationship of features of fire regions and spectral, spatial, temporal

features

Figure 1.3 Examples of different environments and premises

Figure 1.4 Traditional fire detectors

Figure 1.5 Fire detectors approved by the Fire Services Department (Codes of

Practice Minimum Fire Service Installations and Equipment and Inspection, Testing

and Maintenance of Installtions and Equipment, 1998)

 Figure 1.6 Time relationship to fire development and fire control (Chapter 10 Fire

Detection Systems, 1993)

 Figure 1.7 Total fire calls, unwanted alarms, and false alarms (Hong Kong Fire

Services Department, 2002 - 2015)

 Figure 1.8 Standardisation of the numbers of total fire calls, unwanted alarms, and

false alarms

Figure 1.9 Conceptual diagram of video fire detection

Figure 1.10 Typical fire images

Figure 1.11 Typical thermal image

Figure 1.12 Flame shapes captured simultaneously

Figure 1.13 Operation framework for video fire detection

Figure 1.14 A traditional film camera compared with a digital camera

Figure 1.15 A traditional webcam compared with an IP camera

Figure 1.16 Natural phenomenon (colour spectrum)

Figure 1.17 The visible spectrum and the electromagnetic spectrum (Beer Color

Laboratories, n.d.)

x

Figure 1.18 Mixture of colour (additive primaries)

Figure 1.19 Greyscale model: (a) schematic of colour cube, (b) colour cube

Figure 1.120 Typical structure of neural networks

Figure 2.1 Quantity of research papers have gone through

Figure 2.2 Quantity of research papers in different countries

Figure 2.3 Classification video fire detection technology

Figure 2.4 Statistical results in video fire detection functions

Figure 2.5 Statistical results regarding the quantity of flame characteristics

Figure 3.1 Flow diagram of the grey colours images conversion method

Figure 3.2 Histogram analysis of Otsu method

Figure 3.3 Flow diagram of Otsu threshold method

Figure 3.4 Examples of histogram analysis of Multi threshold method

Figure 3.5 Flow diagram of Otsu multi threshold approach

Figure 3.6 Sketch of distribution curve of fire images and estimated fire region

Figure 3.7 Flow diagram of modified Otsu method (Rayleigh distribution analysis)

Figure 3.8 Flow diagram of optimal threshold selection method

Figure 3.9 Field of View and Focal length

Figure 3.10 Schematic of digital camera and fire pool setup

Figure 3.11 Theory of optical flow analysis

Figure 4.1 Property information of propanol fuel

Figure 4.2 Different pool diameter for experimental study

Figure 4.3 Colour images segmentation results

Figure 4.4 Colour images segmentation results (Distortion

Figure 4.5 Original colour images and Greyscale images

Figure 4.6 Thermal images (Left) Colour still images (Right) Computer output

Figure 4.7 Thermal images (Left) Grey colour images (Right)

xi

Figure 4.8 Histogram and Calculation result.

Figure 4.9 Binary image (Threshold value = 85)

Figure 4.10 Computer output of greyscale images and histogram (still images)

Figure 4.11 Experimental results

Figure 4.12 Calculation results of traditional Otsu method and Rayleigh Otsu method

Figure 4.13 Segmentation images overlap on the original colour flame images

Figure 4.14 Flame images (left) non – flame images (right)

Figure 4.15 Calculation and analysis results of x and y coordinate

Figure 4.16 HRR curve against Pool diameter

Figure 4.17 Experimental setup in fire chamber

Figure 4.18 Output displayed on a computer screen

Figure 4.19 Flame Image Height (Flame motion) (10mL)

Figure 4.20 Flame Image Height (Flame motion) (20mL)

Figure 4.21 The change of flickering

Figure 4.22 The histogram of flame flickering

Figure 4.23 Display of optical flow analysis (left) and motion detection (right)

Figure 4.24 Flow diagram of video fire detection system

Figure 5.1 Different knowledge in video fire detection research

xii

List of Tables

Table 1.1 Calculation the statistical results of false alarm and fire calls (Hong Kong

Fire Services Department, 2002 - 2015)

Table 1.2 Popular still images and video file format and organization

Table 1.3 The topics of different standards

Table 1.4 Summary of different standard relative video fire detection

Table 1.5 Visible band of electromagnetic spectrum

Table 1.6 Common colours in RGB function

Table 2.1 colour feature of low temperature fire flames (Horng, Peng , & Chen, 2005)

Table 2.2 Ratio distribution of Blue, Yellow, Orange and Red

Table 2.3 Measured flame heights in pixels (Maoult, Sentenac, Orteu, & Arcens,

2007)

Table 2.4 Number of flame pixels and real flame height (Jianzhong, Jian, Jian, & Jun,

2010)

Table 2.5 Experimental results of oscillation frequency (Jianzhong, Jian, Jian, & Jun,

2010)

Table 2.6 Flame oscillation in two different pool size (Juan & Qifu, 2012)

Table 2.7 Review of flickering frequency (Stratton, 2005)

Table 2.8 The countries of research of video fire detection for protection forest

environment

Table 4.1 Summary of three stage of experimental study

Table 4.2 Multi threshold calculation results

Table 4.3 Numerical data of two different procedures in threshold values

Table 4.4 Numerical data of calculation the heat release rate

Table 4.5 Specification of the webcam.

xiii

Table 4.6 Information data of pool fire setup and images

xiv

Nomenclature

R Red colours

G Green colours

B Blue colours

I Intensity

Y Luminance

flameH Real flame height (m)

Dpool Pool diameter (m)

*Q Heat release rate (-)

Q Total heat release rate (kW)

 Ambient density (kg/m3)

pc Specific heat of air at constant pressure (kJ/kg K),

T Ambient temperature (k)

g Acceleration due to gravity (m/s2)

Cb Blue colour Chroma components

Cr Red colours Chroma components

Q Heat release rate (kW)

fV Flame volume (m3)

 Coefficient of probability (kW/m3)

1f Original signal from first images

2f New signal from second images

 Predetermined threshold

S Self-radiation of the flame, and

xv

N Reflected radiation of the surroundings

objT Temperature of the flame

sT Temperature of the illumination source

D Attenuation coefficient of the illumination

W Corresponds to the total number of pixels in each line

h Line index

n Frame number

ROI Active pixels of ROI

1 Threshold from 0 to 255

ROI Fire candidate in the region

 tYik Luminance component.

L The number of possible levels of intensity

 zp The histogram of the intensity levels in a region

iz The variable intensity

Npixels The number of pixels

ji, Property vector of the pixel at its location  ji,

 jiBn ,1 Background intensity value

 jiI n , Intensity value of the pixel at its location  ji,

 The standard deviation of grey-level probability distribution

4 The fourth central moment of the grey-level probability

distribution

 yxHm , The history matrix with the coordinate  yx, at time point m

 The maximum duration

xvi

 yxMHIm , The intensity of the pixel with the coordinate  yx, in the

thm  frame

i The frame of a video stream

ip The fire probability for i video frame

mH The height sequence set of fire-like area

mCl Extracted from a video image sequence.

mA The set of the coefficients of the Discrete Fourier Transform

m

ka A coefficient of the Discrete Fourier Transform

l The length of the Discrete Fourier Transform

f Pagni’s oscillation frequency of flame (Hz)

Ncount The counting period

0SUM The threshold

imageh The flame height in the images

topbottom yy  The number of flame pixels

sizep The pixel size of the images

cH Height of digital camera

cL Horizontal distance from digital camera to pool fire

cD Images distance from fire sources to the image sensors.

𝑆𝑦𝑒𝑎𝑟 Standardisation result of each year

 𝑁𝑦 The collected data of unwanted alarms and false alarm

𝑛11̅̅ ̅̅ The average value of 11 years

𝜎11 The standard deviation value of 11 years

xvii

1

Chapter 1 Introduction

Building fire is a complex phenomenon. Fire and smoke spread within the building can

be affected by various factors such as the geometry, dimension, layout and usage of the

building. In order to provide fire protection in the building, it is very important to detect

fire at its early stage. This can be achieved by detecting the fire signatures such as

aerosol, Infrared (IR), Ultraviolet (UV), heat, and gases, generated from fire. The most

common fire and smoke detection methods include the use of point type detectors (i.e.

ionisation smoke detectors, photoelectric detectors, heat detectors), line type detectors

etc. However, these detection methods have some significant drawbacks including

delay in smoke and fire detection especially in large space such as atrium and large

shopping mall.

For example, in heat detection, the heat released by burning materials in an atrium

would not be able to heat the large amount of air to the flashover temperature of 500

C within a short period because the different building geometry is able to affect the

concentration of hot smoke layer. It has been demonstrated that the air temperatures

will be very low compared to flashover temperatures due to air entrainment into the

smoke plume. Experimental studies have shown that the smoke temperature in a 26.3

m atrium with a 1.3 MW methanol fire was less than 50 C. (Yamana & Tanaka, 1985)

In some cases, the smoke may not be able to reach the ceiling of the atrium. Similar

problems can be encountered in using spot type smoke detectors. Besides, important

parameters such as flame height, flame spread direction cannot be obtained easily using

these type of spot detectors.

2

As computer technology develops and becomes both more sophisticated and more

widely employed, it is now possible to use computer to analyse the fire images captured

from a video surveillance system and act as a fire detection device. In recent years, the

function of video surveillance systems is becoming increasingly diverse. The

functionality of modern video surveillance systems is not limited to monitoring

environments but also for the recognition and tracking of dynamic objects over time. In

closed – circuit television (CCTV) monitoring system, car camera and unmanned aerial

vehicles (UAVs) are also required to use a manned or unmanned video surveillance

system. (Xie , 2015) A CCTV system is able to monitor traffic situations, recognise car

registrations, and recognize faces. A car camera is able to monitor the distance in

between cars for prevention of collision. An UAV is able to monitor the aerial

reconnaissance to detect forest fires. (Merino, Caballero, Ramiro Martinez - de - Dios,

Maza, & Ollero, 2011)

Recognition and tracking methods can be used as detection algorithms. Different

detection algorithms require the use of digital image processing technology. Spatial,

spectral, and temporal properties of dynamic objects are important parameters for

unmanned video surveillance systems. Figure 1.1 illustrates the properties of dynamic

objects for unmanned video surveillance.

A dynamic object’s temporal, spectral, and spatial properties define its relation to time,

colour, and images shape. (Healey, Slater, Lin, Drda, & Goedeke, 1993) When analysis

takes place on two or three properties of a dynamic object, a video surveillance system

can respond automatically. An unmanned video surveillance system provides this

automatic response.

3

Today, unmanned video monitoring technology is useful for fire prevention in a variety

of environments. (So & Chan, 1994) When analysis algorithms are embedded in

traditional video surveillance systems, the system is able to identify fire from the

images captured. This technology is known as a video fire detection system.

Video fire detection systems are not widely used in Hong Kong. In other countries,

however, many fire engineers use video fire detection technologies as one of the fire

safety strategies. In analysis the video fire detection, any features of fire regions in

image is related to spectral, spatial, and temporal features properties. Figure 1.2 shows

the relationship of features of fire regions and spectral, spatial, temporal features

1.1 Early application of video fire detection

Currently, video fire detection systems are able to protect many different environments

and premises including (a) warehouses, (b) atriums, (c) tunnels, (d) forests, (e)

historical buildings, (f) plant rooms and (g) aircraft hangars. Figure 1.3 illustrates some

of the inhospitable environments. In addition, in these environments, Installation of

traditional fire detection systems are not feasible.

1.2 Traditional fire detection

Prior to the discussion of video fire detection technologies, it is necessary to consider

traditional fire detection systems. The primary objective of fire detection systems is the

protection of life and property. Based on the environmental condition changes caused

by fire, traditional fire detectors are able to detect fire automatically. Examples of

traditional fire detection technologies are smoke detectors, heat detectors, flame

4

detectors, and gas sensors. Figure 1.4 shows examples of traditional fire detectors

including smoke detectors, heat detectors, flame detectors, and gas sensors.

Only three types of fire detection systems are commonly used in Hong Kong. All types

of fire detectors used in Hong Kong must be endorsed by the Fire Services Department

(FSD). Figure 1.5 shows examples of traditional fire detectors approved by FSD.

Generally, fire development is related to the temporal changing. A review of the

literature reveals that three phases have been considered to the fire detection systems

including (1) alarm phase, (2) response time (3) extinguishment. (Chapter 10 Fire

Detection Systems, 1993). Figure 1.6 shows the time relationship to fire development

and fire control.

1.2.1 Heat detectors

The function of heat detectors is to recognise the presence of the thermal energy out-the

heat-of a fire in a protected area. (12 Thermal Detection Systems, 1993) The heat is

dissipated from the laminar flow and convection heat so traditional heat detectors

activated by the convective heat from the fire source. Although different kinds of heat

detectors have been designed for the detection of convective heat, smoke detectors are

more sensitive than heat detectors. The performance of heat detectors depends on the

ambient conditions, the size and volume of the room, and the amount of space.

Generally, heat detectors are located on ceilings or in confined spaces such as electrical

and mechanical (E and M) plant rooms and storerooms. When the ambient temperature

is over a certain threshold value, a heat detector generates a signal and sends it to the

associated fire annunciator panels. (Chapter 10 Automatic fire detection, 1990)

5

Generally, the FSD have approved four kinds of heat detectors including (1) fixed

temperature, (2) rate of rise temperature, (3) combination, and (4) linear cable.

1.2.2 Smoke detectors

The FSD have approved four kinds of traditional smoke detectors including (1)

ionisation, (2) Photoelectric optical, (3) beam, and (4) self-aspirating. The function of

traditional smoke detectors is to detect the presence of smoke particles, and aerosol in

a protected area. Smoke includes both solid and liquid particles. Smoke detectors are

able to detect smoke particles rapidly. (Chapter 11 Smoke detectors, 1990) Although

the response of smoke detectors is faster than that of heat detectors, it depends on what

is burning and the burning conditions. However, dust and small insects can also activate

smoke detectors, causing nuisance alarms when smoke is not actually present.

1.2.3 Flame detectors

The function of flame detectors is to detect the presence of flame in a protected area.

Generally, infrared (IR) and ultraviolet (UV) flame detectors are used for the protection

of life and property and the FSD have approved their use. IR and UV flame detectors

each operates in a specific spectrum of wavelength. The wavelength spectrum for IR

flame detectors is approximately 0.76µm to 220µm. (Dungan, 2008) The wavelength

spectrum for UV flame detectors is approximately 0.1µm to 0.35µm. (Dungan, 2008)

As with smoke detectors, nuisance alarms are also generated by flame detectors, false

triggers can include lighting, arc welding, X-rays, radioactive materials, gas welding,

and solar radiation.

6

 1.2.4 Gas sensors

The function of gas sensors is to recognise the presence of abnormal gas in protected

area. Gas sensors monitor the detectable levels of gases and measure gas concentration.

(Dungan, 2008) Examples of gases detected by gas sensors include carbon dioxide,

carbon monoxide, water vapour and hydrocarbons. Generally, different gas sensors

have been used to detect the gases from a fire such as Semiconductor type, Catalytic

type, Infrared Absorption type. Gas sensing fire detectors are defined and classified by

the National Fire Protection Association. (Gas Sensing Fire Detectors, 1993)

1.3 False alarms

To study the status of unwanted alarm and false alarm in Hong Kong, the literature

from “Hong Kong Fire Services Department Review” are reviewed and data is collected

for statistical analysis. Table 1.1 shows the statistical results including the total numbers

of fire calls, unwanted alarms, and false alarms in Hong Kong from 2002 to 2015. From

the statistic results in table 1.1, it is clear that many unwanted alarms and false alarm

occur. In 2002, a total of 4,131 false alarms occurred, but in 2010, a total of 30,710

unwanted alarms occurred. False alarm and unwanted alarms are a nuisance to the fire

services. Figure 1.7 illustrates the total fire calls, unwanted alarms, and false alarms.

The number of unwanted alarms is greater than the number of false alarms.

Figure 1.8 illustrates the standardisation of total fire calls, unwanted alarms and false

alarms. From the Hong Kong Fire Services Department Review collected 14 years total

fire calls, unwanted alarms and false alarm data. There are used to calculation the

standardisation.

7

𝑆𝑦𝑒𝑎𝑟 =
𝑁𝑦𝑒𝑎𝑟−𝑛14̅̅ ̅̅ ̅

𝜎14
 1.1

where 𝑆𝑦𝑒𝑎𝑟 is standardisation result of each year. 𝑁𝑦 is the collected data of unwanted

alarms and false alarm. 𝑛14̅̅ ̅̅ is the average value of 14 years, and 𝜎14 is the standard

deviation value of 14 years

1.4 Video fire detection

Traditional video fire detection technologies can provide extra information such as the

flame location and flame height. Video images can be used to identify fire because they

record unique visual signatures. Video fire detection technologies offer advantages over

traditional fire detection methods. Research of video fire detection technology has

shown that the primary objective of video fire detection system is the protection of

various harsh environments by capturing video images.

The two main parts of a video fire detection system are:

(1) Hardware (image sensors, central processing unit)

(2) Software (Algorithm, computer program and language)

Different hardware and algorithm can provide the distinct function and the application

in distinct environment. Figure 1.9 provides conceptual diagram of video fire detection.

Video detection of flame images and smoke images is commonly used in video fire

detection systems. Generally, the movement of flame and smoke can be captured by

8

video images. Figure 1.10 shows examples of a smoke image and a flame image. Based

on analysis of fire signatures and the use of various algorithms, video fire detection

systems are able to recognise the fire sources.

In the early development of video fire detection methods, thermal images have been

considered as an important technology. In thermal images, each pixel records

temperature data. (Noda & Ueda, 1994) Figure 1.11 shows an example of a thermal

image. Thermal images provide not only temperature data but they also display the

flame shape. Flame shape seen in still images is similar to that of thermal images.

(Wong & Fong, 2014) Figure 1.12 shows an example of a flame image and a thermal

image simultaneously. Typical thermal imagers can record by analysing the

temperature differences between objects in any lighting condition, day or night.

(Thermal imaging for Safety and Efficiency in Public Transportation, 2016)

Image processing technology is commonly used for flame images and thermal images

analysis because computer program technology continuously develops. Computer

programming, computer languages and computer technologies are important tools for

the processing of images. Examples of these technologies are the following: Visual C++,

C++, Open Source Computer Vision Library (OpenCV), and the MATLAB Image

Processing Toolbox. (Wong & Fong, 2014) (Wong & Fong, 2014) Figure 1.13

illustrates the operation framework of video fire detection.

Besides that, video fire detection technologies are able to capture the fire images. The

digital image technologies including the lens and image sensors are also very important

evolution in comparison with traditional film cameras. (Toyota, 1972) Figure 1.14

compares the traditional film camera with the digital camera. Whereas a traditional film

9

camera records analogue images on film, a digital camera records digital images using

image sensors.

Generally, digital cameras used Charge-coupled Device (CCD) and Complementary

Metal Oxide Semiconductor (CMOS) to capture the image. CCD and CMOS image

sensor have different amplifiers and analogue to digital (A/D) convertor design in

circuity. When the light source falls on the CCD or CMOS chip, the amplifier and A/D

convertor can transform the analogue signal to digital signal and output from the sensor.

(CCD and CMOS sensor technology Technical white paper, 2010)

Although CCD image sensors and CMOS image sensors are two different technologies,

they are both used to capture fire images in video fire detection systems. Fire images

include four unique visual signatures and these signatures display the region of interest

(ROI). The four unique visual signatures are the following:

1. Colour,

2. Shape

3. Intensity level

4. Motion direction

When the CCD and CMOS image sensors capture the images, image-processing

technology is used to identify those images.

During the evolution of video fire detection, computer technology and image

processing analysis have played an important role. In early 1985, International Business

Machines Corporation (IBM) developed an image processing experimental study on

10

aimed at analysing digital images (Mayers & Bernstein, 1985). The personal computer

system, which includes charge-coupled device (CCD) camera, has used. The processing

of image pixels is1032 x 1025. The function of the system is identified the boxcar from

the digital images.

In addition to the rapid developments made in digital camera technology and image

processing techniques, downward trends in computer hardware and image-processing

costs have made video fire detection more attractive. The webcam and the Internet

protocol (IP) camera, shown in Figure 1.15, are commonly used in computer technology.

Today, unmanned aircraft systems have also been used in video fire detection (Merino,

Caballero, Ramiro Martinez - de - Dios, Maza, & Ollero, 2011). In this study, a webcam

is used to record real-time fire images.

1.5 Images file format

The image file format must be considered for the computer program algorithm. Image

file formats can be separated into two types including still images and video images.

Image file formats follow standards regarding how the researchers organise and store

data (Gonzalez & Woods, Image Compression, 2010). Generally, there are six

international organisations that sanction standards for image file format, as follows:

1. International standards organisation (ISO)

2. International Electrotechnical Commission (IEC)

3. International Telecommunications Union (ITU-T)

4. Consultative Committee of International Telephone and Telegraph (CCITT)

5. Society of Motion Pictures and Television Engineers (SMPTE)

11

6. Chinese Ministry of Information Industry (MII)

An image file formats contain the image data and has different compression standards.

Compression standards aim to reduce the transmission time and storage space. Table

1.2 provides the popular formats for still images and video images. In this study, two

kinds of image file formats for analysing fire images are used: Windows bitmap (BMP)

and audio video interleave (AVI).

1.6 Codes and Standards

Several different codes of practice and international standards have been developed to

meet the specific requirement of a video fire detection system. The National Fire

Protection Association’s Fire Alarm Code (NFPA72) involves video image flame

detection (VIFD) and video image smoke detection (VISD). As per NFPA 72, a video

fire detection system requires inspection, testing, and maintenance in accordance with

the manufacturer’s recommendation (Gottuk D. , 2008).

NFPA 72 is not the only international standards, further Codes of Practice concerning

video fire detection system are available in the public domain. Table 1.3 shows the

different Codes and Standards related to the video fire detection system. Any video fire

detection must adhere to the relevant Codes of Practice and specified product standards

(Wong & Fong, 2014). Table 1.4 shows the summary of the contents from different

standards, as follows: NFPA 72, ANSI/FM 3260, BS 5839, and UL 268. In fact, the

requirements of video fire detection technology lacks standards and codes of practice

at this moment.

12

1.7 Digital image processing

Digital images processing includes editing images and recovering files. In 1900s, an

important advancement in digital image processing was the increasing speed of image

data transfer. (Introduction, 2010) Today, digital image processing technologies

focuses also on colour image analysis.

The colour spectrum approach has relating to visible flame and colour analysis is

important in this current study. A review of the literature reveals that, Sir Isaac Newton

discovered that sunlight could be transformed into a colour spectrum when it passes

through a prism. Figure 1.16 shows this natural phenomenon of the colour spectrum.

Figure 1.17 illustrates the visible spectrum and electromagnetic spectrum. Table 1.5

shows the visible band of the electromagnetic spectrum (red, green and blue colours).

The maximum wavelength is about 790nm and the minimum wavelength is about

430nm. Various types of colour models have been developed in digital image

processing technology to analyse colours in a flame image.

Digital image processing technologies used around the world employ different colour

space models. In video fire detection, the following colour space models are used: (Red,

Green, and Blue) RGB, (Hue, Saturation, and Intensity) HSI, (Hue, Saturation, and

Value) HSV, (Luminance, and Chroma) YIQ, (Luminance, and Chroma) YUV,

(Luminance, and Chroma) YCbCr, and (Luminance and Two colour channel) CIELAB.

Colour space model analysis is a type of spatial analysis. Generally, the RGB, HSI and

YIQ colour space models are used for converting colour images to the greyscale images.

13

1.7.1 The Red, Green and Blue (RGB) colour space model

Different calculation approaches in colour space models generate different colours in

images. One traditional approach to colour calculation is the analysis of the mixture of

colour. Figure 1.18 illustrates the mixture of colour approach (additive primaries).

In digital images, different variations of red, green and blue function values generate

the different colours in the images. Table 1.6 shows common colours of RGB function

values.

1.7.2 The greyscale images approach

In most of the methods used for image analysis, the colour images are transformed to

grey-scale images so that the intensity of the RGB values can be calculated. (Color

Image Processing, 2010) Figure 1.19 depicts a schematic image of a colour cube and

provides a description of the grey-scale axis. When the function values of the red, green

and blue colours are placed along the grey-scale axis, grey coloured images are

displayed.

1.7.3 The HSI colour space model

For the HSI colour space model, three components are used for the generation of colour

images, namely: hue (H), saturation (S), and intensity (I). In order to transform the

colour images into greyscale images, it is necessary to consider the intensity I

calculation. Equation 1.2 shows the method for calculating the intensity I. Generally,

the range of intensity is from 0 to 255.

14

𝑰 =
𝟏

𝟑
(𝑹 + 𝑩 + 𝑮) 1.2

where I is the intensity of output images, and where R , G and B are primary colours

within the input images.

1.7.4 The YIQ colour space model

In the Matrix Laboratory (MATLAB), it is possible to use the YIQ colour space model

to transform colour images to greyscale images. Equation 1.3 shows the YIQ colour

space model algorithm. The YIQ colour space model has three components, namely:

one luminance value (Y), two chrominance value (I and Q).

(
𝒀
𝑰
𝑸

) = (
𝟎. 𝟐𝟗𝟗 𝟎. 𝟓𝟖𝟕 𝟎. 𝟏𝟏𝟒
𝟎. 𝟓𝟗𝟕 −𝟎. 𝟐𝟕𝟒 −𝟎. 𝟑𝟐𝟐
𝟎. 𝟐𝟏𝟏 −𝟎. 𝟐𝟓𝟑 −𝟎. 𝟑𝟏𝟐

)(
𝑹
𝑮
𝑩

) 1.3

In greyscale image analysis, it is only necessary to consider the calculation of the

luminance (Y). Colour images can be transformed into greyscale images. Equation 1.4

shows the calculation method. The range of luminance is from 0 to 255.

𝒀 = 𝟎. 𝟐𝟗𝟗 × 𝑹 + 𝟎. 𝟓𝟖𝟕 × 𝑮 + 𝟎. 𝟏𝟏𝟒 × 𝑩 1.4

where Y is the luminance of output images and where R , G and B are primary colours

of the input images.

15

1.7.5 The YCbCr colour space model

Another colour space model used in the analysis of fire images is the YCbCr colour

space. Equation 1.5 shows the YCbCr colour space model algorithm.

(
𝒀
𝑪𝒃

𝑪𝒓

) = (
𝟏𝟔
𝟏𝟐𝟖
𝟏𝟐𝟖

) + (
𝟔𝟓. 𝟒𝟖𝟒 𝟏𝟐𝟖. 𝟓𝟓𝟑 𝟐𝟒. 𝟗𝟔𝟔

−𝟑𝟕. 𝟕𝟗𝟕 −𝟕𝟒. 𝟐𝟎𝟑 𝟏𝟏𝟐. 𝟎𝟎
𝟏𝟏𝟐. 𝟎𝟎 −𝟗𝟑. 𝟕𝟖𝟔 −𝟏𝟖. 𝟐𝟏𝟒

)(
𝑹
𝑮
𝑩

) 1.5

The YCbCr colour space model has three components. Y is the luminance; Cb and Cr

are both Chroma components. Cr is the red-difference component and Cb is the blue-

difference component. The YCbCr colour space model is especially useful in video fire

detection technology. In chapter 2, the colour space model and its applications are

studied in detail.

1.8 Statistical analysis

Statistical analysis is also an important tool in video fire detection technology. It is

worth noting, however, that statistical approaches to video fire detection often suffer

from an iceberg effect. (Suzuki & Takehara, 2012) The iceberg effect occurs when there

is insufficient image data to reflect a real-world scenario and insufficient number of

flame images available for analysis. Consequently, due to insufficient sample size, the

results of the analysis may not be able to reflect reality. In practical application, this

iceberg effect can lead to false alarms or unwanted fire alarms. However, discussion of

the problem that the iceberg effect brings to video fire detection technologies, however,

is not the objective of this thesis. Thus, this problem is left for further research. Hence,

16

Chapter 2 focuses on the detail concerning the statistical approach to video fire

detection.

1.9 Artificial neural networks

Artificial Neural Networks (ANNs) are commonly used to recognise fire in video

images. (Song, Fan, & Wu, 1999) One type of ANN is the Back-Propagation Neural

Network (BPNN). The structure of BPNN requires an input layer, a hidden layer, and

an output layer. Each layer in the structure is assigned a different number of nodes.

Figure 1.20 shows the typical structure of neural networks. Chapter 2 provides more

detail about the ANN approach and the applications.

 1.10 Fire characteristics

Another important area in the development of the video fire detection system is the

understanding of fire characteristics. Generally, fire has unique visual signatures. These

are seen with temporal change. The characteristics of fire include light (flame), heat

(radiation), sound (combustion noise), and smoke (combustion product) (Yang, Deng,

Fan, & Wang, 2001). All can be used both to identify the fire load in the video image

and to recognise the flame shape and the smoke spread at the early stage of a fire.

17

Chapter 2 Literature review of video fire detection

A literature review of four key areas is presented in this chapter. Focus is on 1) the

analysis method used in current study and the related algorithm, 2) how images are

captured, 3) video fire detection functions, and application and 4) video fire detection

technology since 1991.

From 1991 to 2015, the total number of video fire detection journal articles was

approximately 146. By the year 2009, studies relating to video fire detection had

increased with the highest number of papers being published during the years 2009 and

2011 reaching 18 in total. Figure 2.1 gives the publication rate of research papers

published from 1991 through to 2015.

Various kinds of video fire detection technologies have been studied by several

countries, each stimulated by that country’s specific demands. Of such published

research papers, China has been responsible for approximately 25.7 percent, while in

Hong Kong, research on video fire detection technology makes up only 4.7 percent of

the worldwide.

Figure 2.2 shows the percentage of research papers published in different countries. In

total, nine countries have studied video fire detection technology quite intensively.

Besides China, the second highest number of papers were published by the USA, but

that number is only 9.5 percent of the total. Korea, Turkey, Taiwan, Spain, Japan, and

Canada have also studied video fire detection technology.

18

In some studies, different countries have collaborated in the research of video fire

detection technologies. Collaborating countries include Australia, UK, Canada, China,

Taiwan, Japan, USA, Germany, Hong Kong, Korea, Slovenia, Spain, Portugal, Turkey,

Greece, and Belgium.

2.1 Functions

The primary function of video fire detection technology is the early detection of fire

with, obviously, the accuracy of video fire detection a vital issue. Reviewed literature

reveals that, video fire detection systems fall into different categories. Fire, in most

cases, generates smoke and flame, however, the detection of fire is actually

accomplished more specifically by the analysis of the flame. Figure 2.3 shows the three

different categories of video fire detection technology.

From 1991 to 2015, statistical results of the detection of the characteristics of fire were

in terms of–flame only, smoke only, or a combination of the specifics of both flame and

smoke. Figure 2.4 shows a percentage breakdown of these ways in which fire is

detected. Statistics indicate that, many researchers study video flame detection through

the analysis of flame images. This is likely because flame images are easier to analyse

than those of smoke images are.

Recognition of the characteristics of fire, in terms of flame images, is normally, key to

the success of a video fire detection system. Such recognisable characteristics include

(1) flame colour; (2) flame height; (3) flame shape; (4) flame light intensity; and (5)

flickering frequency. Such characteristics are recognisable in still images and in video

19

images. Figure 2.5 shows statistics regarding the quantities of the five different fire

characteristics that have been analysed from 1991 through to 2015.

The flame colour, flame shape, flame light intensity, and flame flickering frequency are

key to video fire detection analysis. It is of note that flame height has not been

commonly analysed, even though all fire characteristics, presented in images, can be

used to recognise the fire state. Video fire detection makes use of various algorithms to

obtain flame characteristics. In the following section, of this thesis the results of flame

colour analysis, flame geometry analysis (including flame height, flame shape) flame

light intensity and flame flickering frequency analyses are described

2.1.1 Flame colour

In image processing technology, the colour of fire is the main parameter for flame

recognition from images. A review of the literature reveals that seven kinds of colour

space models have been used for flame recognition or segmenting flame in images.

These seven colour space models are as follows:

1. RGB colour space model (Noda & Ueda, 1994) (Phillips III, Shah, & Lobo, 2000)

(CHen, Kao, & Chang, 2003) (Liu & Ahuja, 2004)

2. HSI colour space model (CHen, Kao, & Chang, 2003)

3. HSV colour space model (Yamagishi & Yamaguchi, 1999)

4. YUV colour space model (Celik, Demirel, & Ozkaramanli, 2006)

5. YCbCr colour space model (Çelik, Özkaramanlı, & Demirel, 2007)

6. YIQ colour space model (Shi, Liu, & Liu, 2009)

7. CIE LAB colour space model (Celik T. , 2010)

20

Most researchers of video fire detection, study the flame colours. Image analysis using

a colour space model involves not only segmentation of the images but also recognition

of fire in images. The RGB, HSI, HSV, and YUV colour space models were used in the

earlier years of video fire detection research. Most recently, the YCbCr and CIE LAB

colour space models have also been used for fire detection.

Generally, the colour components of digital images are red, green, and blue. The RGB

colour space model is commonly used for the analysis of flame images. Flame colour

only, however, is not converted to temperature distribution. In this case, the use of an

infrared camera is an important auxiliary piece of equipment. When grey colour images

from an infrared camera are compared with the colour ratio of colour images (Noda &

Ueda, 1994), the flame region is obtained from these images.

Although the colour of the flame is an important phenomenon in the study of flame

images, the probability of fire (i.e. the colorprob) (Phillips III, Shah, & Lobo, 2000) can

also be analysed. To identify fire in images, the nature of flame motion and colorprob

are used (Phillips III, Shah, & Lobo, 2000). The threshold (k) of the fire is found from

these two parameters 𝐶𝑜𝑙𝑜𝑟(𝑥, 𝑦) and 𝜎(𝑥, 𝑦).

To reduce the detection time in video fire detection, the colour decision rule can be

used. In 2002, Chen et al (CHen, Kao, & Chang, 2003) proposed the use of a colour

model and decision rule for detecting real-time fire. To apply the decision rule, the fire

pixels are first extracted from the images. The colour image processing uses the HSI

and the RGB colour models. The colour decision rule for use with fire has three decision

rules, and are as follows.

21

Rule 1: Red colour  Green colour > Blue colour

Rule 2: Red colour > Red colour threshold

Rule 3: IF (Saturation  ((255-Red colour) x Saturation threshold/Red colour threshold))

 Fire – pixel

ELSE

 Not fire – pixel

The second decision rule considers the fire pixels in comparison to the threshold value.

𝑖 =
1

3
(𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛 + 𝑏𝑙𝑢𝑒) 2.1

𝑆 = 1 −
3

(𝑟+𝑔+𝑏)
[𝑚𝑖𝑛(𝑟, 𝑔, 𝑏)] 2.2

ℎ = {
𝜃

260 − 𝜃

𝑖𝑓 𝑏 ≤ 𝑔
𝑖𝑓 𝑏 > 𝑔

 2.3

𝜃 = 𝑐𝑜𝑠−1 {
1

2
[(𝑟−𝑔)+(𝑟−𝑏)]

[(𝑟−𝑔)2+(𝑟−𝑏)(𝑔−𝑏)]
1

2⁄
} 2.4

The use of the results of research on flame colour features in different environments,

Table 2.1 show saturation and intensity information for different features of low-

temperature fire. (Horng, Peng , & Chen, 2005)

22

By analysing the flame colour features, video fire detection can segment the fire region

from these images, by removing false fire-like regions and estimating the burning

degree of flames (Horng, Peng , & Chen, 2005).

Normally, the main colours visible in fire images are orange, yellow and red (Liu &

Ahuja, 2004). To analyse the ratio of colours in fire, it is necessary to include blue along

with red, orange, yellow. Table 2.2 shows the ratio distribution of blue, yellow, orange,

and red. A review of the literature reveals that the colour ratio of real fire pixels is not

less than 1.5%.

2.1.2 Flame height

A review of the literature reveals that, although flame height is an evident feature of

fire visible in images, this fire characteristic is not commonly used in video detection

of fire. Clearly, flame height can be measured in pixels and it is of note from the results

of different kinds of fuel used in experiments that correspondingly, different flame

heights result. (Maoult, Sentenac, Orteu, & Arcens, 2007) Table 2.3 shows test results

of the flame height when gasoline, acetone and alcohol were burned.

An important technique for use in video fire detection is the analysis of the actual flame

height, achieved by an estimation of flame height measured in pixels. Table 2.4 shows

flame height in pixels in accordance with the actual flame height.

Only the real-flame height measurement can be used to estimate the heat release rate

(HRR) indirectly. When video fire detection is able to separate real flame images, real

flame height can estimate the HRR using fire dynamics.

23

Analysis of real flame height is a subject of study undertaken by many researchers such

as Heskestad and McCaffrey (Drysdale, 1999). Using measurements of real flame

height and the fuel-pool diameter, researchers are able to estimate the HRR. Equations

2.5 and 2.6 show Heskestad and McCaffrey algorithm (Drysdale, 1999).

𝐻𝑓𝑙𝑎𝑚𝑒

𝐷𝑝𝑜𝑜𝑙
= −1.02 + 3.7𝑄̇∗2 5⁄ 2.5

𝑄̇∗ =
𝑄̇

𝜌
∞

𝑐𝑝𝑇
∞√𝑔𝐷𝑝𝑜𝑜𝑙𝐷𝑝𝑜𝑜𝑙

2 2.6

where 𝐻𝑓𝑙𝑎𝑚𝑒 is real flame height (m). 𝐷𝑝𝑜𝑜𝑙is pool diameter (m). 𝑄∗̇ is dimensionless

heat release rate (-). 𝑄̇ is the total heat release rate (kW). 𝜌∞ is ambient density

(kg/m3). 𝑐𝑝 is the specific air heat at constant pressure (kJ/kg K), 𝑇∞ is ambient

temperature (k) and 𝑔 is acceleration due to gravity (m/s2).

Using another approach, the HRR can also be calculated using the flame volume (Beji,

Merci, Verstockt, & Walle, 2012) (Stratton, 2005).

𝑄 = 𝛾𝑉𝑓 2.7

where 𝑄 is the heat release rate (kW), 𝑉𝑓 is the flame volume (m3), and 𝛾 is the

coefficient (kW/m3) of probability.

24

To verify the detection of flame in images effectively, the flame height and width can

be used (Verstockt, et al., 2011). Equation 2.8 shows the local maxima and minima, in

the set of 𝑁 consecutive 𝐵𝐵𝑤𝑖𝑑𝑡ℎ and 𝐵𝐵ℎ𝑒𝑖𝑔ℎ𝑡

𝐵𝐵𝐷 =
|𝑒𝑥𝑡𝑟𝑒𝑚𝑎(𝐵𝐵1:𝑁

𝑤𝑖𝑑𝑡ℎ)|+|𝑒𝑥𝑡𝑟𝑒𝑚𝑎(𝐵𝐵1:𝑁
ℎ𝑒𝑖𝑔ℎ𝑡

)|

𝑁
 2.8

Some researchers have used the ratio of the maximum height and maximum width to

determine the existence of both the flame and its volume within the images. Generally,

when the height and width ratio is greater than the threshold value, the image contains

a fire region. (Nguyen - Ti, Nguyen - Phuc, & Do - Hong, 2013)

2.1.3 Flame shape

Dynamic flame shape is a stochastic motion, so flame shape analysis is a spatial-

temporal analysis (Wang, Finn, Erdinc, & Vincitore, 2013). Many researchers use

flame shape analysis to study video fire detection. In flame detection, three primary

flame shape analysis are used. They are (1) flame area analysis; (2) flame contour

feature analysis; and (3) flame texture analysis. In some research, analysis of flame

shape is used to reconstruct fire images. (Stratton, 2005)

A review of the literature reveals that in the early years of video fire detection, the polar

coordinate transformation (Yamagishi & Yamaguchi, 1999) approach was used to

analyse the fluctuation area. The polar coordinate transformation approach employs an

angle () against the horizontal axis, a distance (r) between the contour, and a position

(G) being the centre of gravity. The fluctuation data is 𝑟(𝜃, 𝑡). The polar coordinate

25

transformation approach results require fluctuation data to be recorded over a period of

time (t)

In recent years, some researchers (Liu & Ahuja, 2004) have used Fourier coefficients

to represent the shape of a fire region. In general, the shape of a fire region is illustrated

by a boundary line. To determine the boundary of that shape, the Discrete Fourier

Transform (DFT) method can be used. Equation 2.9 shows the coefficients of the DFT.

𝑎𝑘 =
1

𝑁
∑ 𝑧𝑖𝑒𝑥𝑝 (−𝑗

2𝜋

𝑛
𝑖𝑘)𝑁

𝑖=1 2.9

where 𝑘 = − ⌊
𝑁−1

2
⌋ , ……………… , ⌊

𝑁

2
⌋

In general, after video fire detection has segmented the foreground and background, the

flame contour information can be used for the analysis by the probability model

𝑓(𝐹(𝐴𝑚)) (Hongliang, Qing, & Sun'an, 2012).

A review of the literature reveals that video fire detection can be used to discriminate

fire from contour dynamic features. The spatial-temporal contour dynamics feature is

also discriminated by the support vector machine (SVM) (Wang, Finn, Erdinc, &

Vincitore, 2013).

2.1.4 Flame brightness

Generally, flame brightness is used for illumination, for instance in video fire detection

research, flame brightness is not simply a fire characteristic, it also supplies the light

needed for image capture. For flame image detection in dark environments such as

26

inside an aircraft (Foo, 1996), flame brightness is an important consideration. Normally,

a charge coupled device (CCD) camera is able to capture flame images because the

flame itself generates the brightness required. (Cheng, Wu, Yuan, & Zhou, 1999) High

contrast between the flame and its surrounding environments is also an important image

aspect enabling recognition of flame regions therein (Liu & Ahuja, 2004).

Generally, the image processing approach is an appropriate method for analysis of

flame brightness. A comparison of two images is a commonly used method in the

analysis of flame brightness.

𝑑𝑖𝑗(𝑥, 𝑦) = {
1
0

 𝑖𝑓 |𝑓(𝑥, 𝑦, 𝑡𝑖) − 𝑓(𝑥, 𝑦, 𝑡𝑗)| > 𝜃

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 2.10

where 𝜃 is a predetermined threshold.

Generally, flame images have two brightness sources: the self-radiation of the flame

and the reflected radiation of the surroundings (Cheng, Wu, Yuan, & Zhou, 1999).

Equations 2.11 and 1.12 show the self-radiation of the flame and the reflected radiation

of the surroundings.

𝑺 = ∫
𝑪𝟏

𝝀𝟓[𝒆𝒙𝒑(
𝑪𝟐

𝝀𝑻𝒐𝒃𝒋
)−𝟏]

× 𝑪𝑪𝑫(𝝀)𝒅𝝀
𝝀𝟐

𝝀𝟏
 2.11

𝑵 = ∫ 𝑫 ×
𝑪𝟏

𝝀𝟓[𝒆𝒙𝒑(
𝑪𝟐
𝝀𝑻𝒔

)−𝟏]

𝝀𝟐

𝝀𝟏
× 𝑪𝑪𝑫(𝝀)𝒅𝝀 2.12

27

where 𝑆is self-radiation of the flame, and 𝑁is the reflected radiation of the surroundings.

𝑇𝑜𝑏𝑗 and 𝑇𝑠 represent the respective temperature and illumination source of the flame.

𝐷 is the attenuation coefficient of the illumination. 𝐶𝐶𝐷(𝜆) is the spectral response

function of the CCD – camera. A review of the literature reveals that the radiation

distribution spectrum of the flame’s surroundings can be obtained by differentiation.

Equation 2.13 and 2.14 illustrates the expression.

𝒅𝑺

𝒅𝝀
=

𝑪𝟏×𝑪𝑪𝑫(𝝀)

𝝀𝟓[𝒆𝒙𝒑(
𝑪𝟐

𝝀𝑻𝒐𝒃𝒋
)−𝟏]

≈
𝑪𝟏×𝑪𝑪𝑫(𝝀)

𝝀𝟓×𝒆𝒙𝒑(
𝑪𝟐

𝝀𝑻𝒐𝒃𝒋
)

 2.13

𝒅𝑵

𝒅𝝀
= 𝑫 ×

𝑪𝟏×𝑪𝑪𝑫(𝝀)

𝝀𝟓[𝒆𝒙𝒑(
𝑪𝟐

𝝀𝑻𝒐𝒃𝒋
)−𝟏]

≈ 𝑫 ×
𝑪𝟏×𝑪𝑪𝑫(𝝀)

𝝀𝟓×𝒆𝒙𝒑(
𝑪𝟐
𝝀𝑻𝒔

)
 2.14

To analyse wavelength, 0.4 – 0.8 m wavelength band blocking, filter technology can

be used for recognition of flame. A liquid crystal – light valve (LC – LV) is located at

the front of the CCD camera.

Analysis of flame images requires not only algorithms but also the LCLV (Yang, Deng,

Fan, & Wang, 2001), as the principle function of the LCLV is to filter out other nearby

images. Two criteria are used for the analysis of the flame images. The first is that the

grey-scale of the flame pixels must be brighter than that of the background. The second

criterion is that the number of bright flame pixels must be greater than the threshold

value. The threshold value can be used to identify the flame region from the images.

28

The mean value of the brightness can be used (Schultze, Kempka, & Willms, 2006) to

analyse flame brightness. The mean brightness is between 0 and 255. (Equation 2.15

below shows the mean value calculation of brightness).

𝒈(𝒉, 𝒏) =
𝟏

𝑾
∑ 𝒔(𝒊, 𝒉, 𝒏)𝑾

𝒊=𝟏 2.15

where 𝑊 corresponds to the total number of pixels in each line, ℎ is the line index and

𝑛 is the frame number.

To detect flame in images from any brightness, some researchers (Owrutsky, et al.,

2006) use the threshold method for the analysis of images.

If 𝐿𝑎𝑙𝑎𝑟𝑚 > 𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 + 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , then the alarm count increase. If 𝐿𝑎𝑙𝑎𝑟𝑚 <

𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 + 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , then the alarm count decrease. In a past study, the alarm

count reached 75. The response time was within five seconds (Owrutsky, et al., 2006).

Luminance of active pixels 𝐼𝑅𝑂𝐼(𝑡) (Marbach , Loepfe, & Brupbacher, 2006) is a

primary feature in flame images. The following algorithm for luminance of active pixels

can be used:

𝑰𝑹𝑶𝑰(𝒕) = {𝒎𝒆𝒂𝒏{𝒀𝒊𝒌(𝒕)}|(𝒊, 𝒌) ∈ 𝝅𝑹𝑶𝑰} 2.16

𝝅𝑹𝑶𝑰 = {(𝒊, 𝒌) ∈ 𝛀𝑹𝑶𝑰|𝑨𝒊𝒌(𝒕) ≥ 𝜼𝟏} 2.17

29

where 𝜋𝑅𝑂𝐼is the set of active pixels of Ω
𝑅𝑂𝐼

, 𝜂1 is the threshold from 0 to 255, Ω𝑅𝑂𝐼 is

the fire candidate in the region, and 𝑌𝑖𝑘(𝑡) is the luminance component.

In flame image analysis, the phenomenon of flame brightness can also use different

spectral range values. The spectral range (Maoult, Sentenac, Orteu, & Arcens, 2007)

includes (1) Near UV: 350-390 nm (low cost camera), (2) Visible 390-750 nm, (3) Near

infrared (NIR) 750-1100 nm, and (4) NIR limited to  = 100nm around 950nm.

To detect fire from video images by analysing luminance, the variances shown on the

luminance map can be used. (Ko, Cheong, & Nam, 2009) Equation 2.18 shows the

luminance map variances. Equation 2.19 shows the variance of luminance.

𝝁𝒙,𝒚𝑳 =
𝟏

∑ 𝑯𝒙,𝒚𝑳(𝒖)
𝑵
𝒖=𝟏

∑ 𝒖𝑯𝒙,𝒚𝑳(𝒖)𝑵
𝒖=𝟏 2.18

𝝈𝒙,𝒚𝑳 =
𝟏

∑ 𝑯𝒙,𝒚𝑳(𝒖)
𝑵
𝒖=𝟏

∑ (𝒖 − 𝝁𝒙,𝒚𝑳)
𝟐
𝑯𝒙,𝒚𝑳(𝒖)𝑵

𝒖=𝟏 2.19

Where 𝜎𝑥,𝑦𝐿 > 𝐿𝑇 fire pixel else non-fire pixel; 𝐿𝑇 is the default threshold for variance,

𝑁 is the number of consecutive images, 𝑯𝒙,𝒚𝑳(𝒖) is the luminance histograms of pixel

(𝑥, 𝑦) in 10 consecutive frames and subscripts, and 𝐿 is used to indicate this histogram

as part of the luminance map.

Generally, flame images have a very high brightness in tunnel environments. Some

researchers (Han & Lee, 2009) have used the discrepancy between brightness of objects

and brightness of tunnel environments for flame image recognition. Equation 2.20, 2.21

and 2.22 show the algorithm used.

30

𝑰𝒌
′ (𝒙, 𝒚) = {

𝟏
𝟎

 𝒊𝒇 𝑰𝒌(𝒙, 𝒚) > 𝒕𝒉𝟏

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 𝟎 ≤ 𝒌 ≤ 𝑵 2.20

𝑻′′(𝒙, 𝒚) = {
𝟏
𝟎

 𝒊𝒇 𝑻(𝒙, 𝒚) > 𝒕𝒉𝟏

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 2.21

𝑫𝒌
𝒇(𝒙, 𝒚) = 𝑰𝒌

′ (𝒙, 𝒚) − 𝑻′′(𝒙, 𝒚) 𝟎 ≤ 𝒌 ≤N 2.22

𝑰𝒌(𝒙, 𝒚) is the intensity of one image among 𝑵 sequential input images. 𝑻(𝒙, 𝒚) is the

intensity of the background and 𝒕𝒉𝟏 is the threshold value. 𝑫𝒌
𝒇(𝒙, 𝒚) is the difference in

the intensity of the images between binary inputs and image backgrounds.

In addition, the intensity values of the background and the image can be used in

threshold method analysis (Ko, Cheong, & Nam, 2010). If |𝐼𝑛(𝑥) − 𝐵𝑛(𝑥)| > 𝑇𝑛(𝑥)

then x is moving, otherwise x is non-moving. 𝐼𝑛(𝑥) is the intensity value at each

spatial location x in frame n . 𝐵𝑛(𝑥) is the background value at the same position, and

𝑇𝑛(𝑥) is the threshold value of the difference between background and image.

In addition, the level of intensity can be used in pixel analysis (Bosch, Gomez, Molina,

& Miralles, 2009). Equation 2.23 shows the expression for the intensity.

𝒎 = ∑ 𝒁𝒊 ∙ 𝒑(𝒛𝒊)
𝑳−𝟏
𝒊=𝟎 2.23

31

where L is the number of possible levels of intensity,  zp represents the histogram of

the intensity levels in a region, iz is the variable intensity.

Generally, video fire detection can make use of the spatial and temporal information

for flame detection (Habiboglu, Gunay, & Cetin, 2011). Equations from 2.24 to 2.30

show calculations of pixel property parameters. However, these equations consider only

spatial information.

𝑿(𝒊, 𝒋) = 𝒊 2.24

𝒀(𝒊, 𝒋) = 𝒋 2.25

𝑰(𝒊, 𝒋) = 𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊, 𝒋) 2.26

𝑰𝒙(𝒊, 𝒋) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋)

𝝏𝒊
| 2.27

𝑰𝒚(𝒊, 𝒋) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋)

𝝏𝒋
| 2.28

𝑰𝒙𝒙(𝒊, 𝒋) = |
𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋)

𝝏𝒊𝟐
| 2.29

𝑰𝒚𝒚(𝒊, 𝒋) = |
𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋)

𝝏𝒋𝟐
| 2.30

When video detection of fire in images uses spatial analysis and temporal analysis of

the same coordinates, another calculation method for pixel property parameters is

necessary. Equation 2.31 to 2.37 show the calculation method.

𝑰(𝒙, 𝒚, 𝒏) = 𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒙, 𝒚, 𝒏) 2.31

32

𝑰𝒙(𝒊, 𝒋, 𝒏) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒊
| 2.32

𝑰𝒚(𝒊, 𝒋, 𝒏) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒋
| 2.33

𝑰𝒙𝒙(𝒊, 𝒋, 𝒏) = |
𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒊𝟐
| 2.34

𝑰𝒚𝒚(𝒊, 𝒋, 𝒏) = |
𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒋𝟐
| 2.35

𝝏𝒕𝑰(𝒊, 𝒋, 𝒏) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒏
| 2.36

𝝏𝒕
𝟐𝑰(𝒊, 𝒋, 𝒏) = |

𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒏𝟐 | 2.37

𝝏𝒕𝑰 and 𝝏𝒕
𝟐𝑰 are the first and second derivatives of intensity with respect to time (t).

From the above equations, the property vector Φ
𝑆𝑇

(𝑖, 𝑗, 𝑛) is able to use a covariance

matrix to detect a flame.

𝚽𝑺𝑻(𝒊, 𝒋, 𝒏) =

[

𝑰(𝒊, 𝒋, 𝒏)

𝑰𝒙(𝒊, 𝒋, 𝒏)

𝑰𝒚(𝒊, 𝒋, 𝒏)

𝑰𝒙𝒙(𝒊, 𝒋, 𝒏)

𝑰𝒚𝒚(𝒊, 𝒋, 𝒏)

𝝏𝒕𝑰(𝒊, 𝒋, 𝒏)

𝝏𝒕
𝟐𝑰(𝒊, 𝒋, 𝒏)]

 2.38

The following covariance matrix can be used to estimate the given region in images.

∑ =
𝟏

𝑵𝒑𝒊𝒙𝒆𝒍𝒔−𝟏
∑ ∑ (𝚽𝒊,𝒋 − 𝚽̅)𝒋 (𝚽𝒊,𝒋 − 𝚽̅)

𝑻
𝒊 2.39

where

33

𝚽̅ =
𝟏

𝑵𝒑𝒊𝒙𝒆𝒍𝒔
∑ ∑ 𝚽𝒊,𝒋𝒋𝒊 2.40

where 𝑵𝒑𝒊𝒙𝒆𝒍𝒔 is the number of pixels, and 𝚽𝒊,𝒋 is the property vector of the pixel at

its location, and (𝑖, 𝑗).

The intensity background and the intensity value of the pixel at its location (𝑖, 𝑗) in the

𝑛𝑡ℎvideo frame are used to detect the moving regions. A review of the literature,

(Truong, Kin, & Kin, 2011) reveals that this analysis method is popular for flame

detection .

 
     
     









1,,,

1,,,
,1

jiBjiBjiI

jiBjiBjiI
jiB

nnn

nnn

n 2.41

    ThresholdjiBjiI nn  ,, 2.42

The threshold value can be assumed from guesswork or experience.  jiBn ,1 is the

background intensity value, and  jiI n , is the intensity value of the pixel at its location

 ji, .

The contrast in an image, however reveals the amount of local intensity. The intensity

histogram graphs can describe the range of brightness levels (Jiao, Weir, & Yan, 2011).

Equation 2.43 shows he picture contrast used for analysis of the images.

 n
CONF

4


 2.43

34

n is a positive number,  is the standard deviation of grey-level probability distribution,

and 4 is kurtosis. Equation 2.44 shows the calculation of kurtosis.

4

4
4




  2.44

4 is the fourth central moment of the grey-level probability distribution.

The absolute value calculation is performed using two images  Af and  Bf (Ning

& Fei, 2012). Equation 2.45 shows the calculation. Equation 2.46 shows the algorithms.

     BfAfCf  2.45

when

   
   








ThresholdCfCf

ThresholdCfCf

,1

,0
 2.46

When the pixels are larger than the threshold, the pixels are a grey colour. Therefore

the pixels are equal to 1   11 f .

The Motion History Image (HMI) algorithm is another method for the analysis of the

motion history images (Xu, Zhu, & Xie, 2012).

 
 
     









 myxHandyxIif

yxIifm
yxH

mm

m

m
,0,0

1,
,

1

 2.47

35

 yxHm , is an element in the history matrix with the coordinate  yx, at time point

m .  is the maximum duration. A review of the literature reveals that,  is set to 5.

 
     

others

yxHifmyxH

yxMHI
m

m

m

0,

0

255
,

,












 


 2.48

 yxMHIm , is the intensity of the pixel with the coordinate  yx, in the thm  frame.

The history information of the motion region is recorded in the MHI.

In recent years, intensity values have been used for the dynamic background subtraction

method (Beji, Merci, Verstockt, & Walle, 2012). Equation 2.49 shows the algorithm of

the background subtraction method.  yxTn , is the threshold at position  ji, . The

brightness values in image frame nx and frame 1nx

     jiTjixjix nnn ,,, 1   2.49

The video detection method is commonly used for the analysis of moving objects such

as flame flickering. A review of literature reveals that flickering frequency is observed

in many studies of video fire detection. Normally, analysis of flickering frequency is

necessary to enable records of different brightness levels, over time to be made.

2.1.5 Flame flickering frequency

36

The recognition of flame flickering frequency is generally, a form of space-time data

analysis (Yamagishi & Yamaguchi, 1999). The magnitudes of flame flickering are used

to analyse the frequency. When images are recorded by a digital camera, generally the

image sampling frequency is 25Hz meaning 25 frames per second in a video sequence

(Zhang, Zhuang, Du, Wang, & Li, 2006). Consequently, the flame flickering cannot be

directly obtained from the video sequence. Normally, the calculation of flame flickering

frequency uses the Discrete Fourier Transform (DFT).

 m

i

m

i ClHeighth  2.50

  












n

i

m

i

mm

k ik
n

jh
n

HDFTa
1

2
exp

1 
 2.51

  
 




2

1

2 12i

m

k

m

km

d
l

aa
Af 2.52

where mH is the height sequence set of fire-like area
mCl being extracted from a video

image sequence. mA is the set of the DFT coefficients, and
m

ka is a coefficient of the

DFT, l is the length of the DFT.

Normally, the actual flame height is more difficult to analyse, hence the calculation of

the suspected flame area   bitiZone ,,1,0,,  of the fire offers an alternative method

(Hongliang, Qing, & Sun'an, 2012). The relative area is expressed as   ,,,2,1, bitSi 

where b is the region number. The image resolution factor is assumed to be NM  .

The grey colour value is  tyxf ,, at location  yx, in the time of t .  tkp , is the

37

probability results. Equation 2.53, 2.54 and 2.55 shows the algorithm for calculating

flame area.

   
   




iZoneyx

i tkpMNtS
,

, 2.53

   
 





1,

11,
yxf

MNtkp 2.54

       bmnSSSS mmmm ,,1,0,,2,1  2.55

For extraction of the dynamic characteristic sequence of changes, Fourier coefficients

can be used. Equation 2.56 shows the algorithm of Fourier coefficients.

 



n

i

nikj

m

m

k eiS
n

f
1

21 
 2.56

The Fourier power spectrum can be used for analysis of the energy spectrum. Equation

2.57 shows the algorithm of the energy spectrum. The algorithm of the energy spectrum

is used to eliminate unwanted objects.

  



n

k

m

k

m

k

m ff
n

FP
1

1
 2.57

In image processing technology, block techniques (Yu, Mei , & Zhang, 2013) is used

to recognise features of flame motion. Equation 2.58 shows the block algorithm. To

38

experiment, the predetermined threshold can be set to 50. When more than half of all

pixels in a block satisfy, the block can then be considered a flame block.

  TtyxH ,, 2.58

where T is a predetermined threshold.

Past experiments reveal analysis of flame flickering to be a powerful tool for

differentiating between actual fire and fire-like objects. The following algorithm

(Barmpoutis, Dimitropoulos, & Grammalidis, 2013) is used to calculate flame

flickering frequency. Equation 2.59 shows the algorithm.

    12, ,  jicjiF 2.59

where  jic , is mathematically expression.

Normally, video fire detection uses not only one flame image feature, but several. When

the method involves the use of three or four flame image features, fire detection

accuracy is reinforced. Researchers have determined a threshold value for each flame

feature. The results of past experiments reveal the flickering threshold is 44.

Generally, analysis of flickering frequency uses the Fast Fourier Transform (FFT)

(Schröder, Krüger, & Kümmerlen, 2014). The image processing method detects a

deflagration situation, but little research has been conducted on this method. The

39

Nyquist – Shannon sampling theorem can also be used to analyse flickering frequency.

Equation 2.60 shows the theorem.

 

 
 1,0

max

1

2

28

2









a

fX

fX
a

f

f Hz

Hz

f Hz
 2.60

where maxf is the maximum frequency, a is the power ratio of the frequency band from

2 to 8 Hz, and  fX is the amplitude value at the frequency f . In results from past

experiments, typical fires or flames illustrate the ratio a in the range of 0.6 to 0.9.

From the literature (Marbach , Loepfe, & Brupbacher, 2006) it can be seen that the

luminance of the active region of interest is expressed in  tIROI , and the frequency of

the region of interest is expressed in  tfROI . Analysis of the frequency  tfROI can be

used to plot the luminance curve  tIROI over time t .

Another method of flickering frequency analysis is the Power Density Spectrum (PDS)

approach (Schultze, Kempka, & Willms, 2006). The spectrogram illustrates the

evolution of the PDS of the pool fire’s flame-flickering. The x-axis shows the time in

seconds, and y-axis shows the frequency in Hertz.

Temporal wavelet analysis (Toreyin, Dedeoglu, Gudukbay, & Cetin, 2006) is another

method for detecting flickering frequency. Each fire pixel  lkxn , is fed through a high-

and also a low-pass filter. The coefficients of a high-pass filter are -0.25, 0.5, and -0.25,

whilethe coefficients of low-pass filter are 0.25, 0.5 and 0.25. Two wavelets expressed

40

as  lkdn , and  lken , are sub-signals produced by the filter. In an analysis of the flame

flickering frequency, flame brightness is not a unique feature. Analysis of red moving

objects, however, can be created to determine the flame flickering, and the threshold

value  RT (Duong & Tuan, 2009) of the red channel is 200. In addition, researchers

can analyse flame flickering based on the variation of the flame’s area (Hou, Qian, Zhao,

Pan, & Zhang, 2009). Flame can also be captured by CCD cameras and near infrared

cameras (NIR) although flame flickering appears in a different spectral range (Maoult,

Sentenac, Orteu, & Arcens, 2007).

A review of the literature reveals that, fire researchers have used Pagni’s oscillation

frequency formula (Jianzhong, Jian, Jian, & Jun, 2010). Equation 2.61 shows the

Pagni’s oscillation frequency formula. Previous experiments have shown that the

equivalent diameter ranges from 0.03m and 60m (Juan & Qifu, 2012).

Dpool
f

3.22  2.61

where f is Pagni’s flame oscillation frequency (Hz) and Dpool is the equivalent

diameter of the pool fire (m). Tables 2.5 and 2.6 show the experimental results.

In video images, when the oscillation counter (Chen, He, & Wang, 2010) exceeds a

threshold 0SUM , it can be determined that the video images are showing fire. Equation

2.62 shows the algorithm of the oscillation counter.

     0,,,, SUMNcounttyxSUMtyxSUM  2.62

41

where Ncount is the counting period, 0SUM is the threshold, and the threshold is

related to the counting period. Further study is needed to analyse the optimal threshold.

In order to ensure that flame flickering analysis is able to detect real fire in images,

various flame. Detection flickering frequency techniques can be used A counter

 yxTimer , (He, Yang, Zeng, Ye, & Wu, 2015) can be used for counting pixel change.

Equation 2.63-2.65 shows the counter algorithm.  tyxTimer ,, and  1,, tyxTimer

can also be used as counter values for the pixels at time  t and at time  1t . fT is a

predefined flickering threshold.  tyxY ,, is the Y component of the YCbCr colour

model. When the counter value of a pixel is larger than the threshold at a given time,

the region of interest is considered a flickering image.

 

 

  
 

  





















Y

Y

TtyxYif

tyxTimer

TtyxYif

tyxTimer

yxTimer

,,

01,,

,,

11,,

, 2.63

     1,,,,,,  tyxYtyxYtyxY 2.64

     fTntyxTimertyxTimer  ,,,, 2.65

Generally, flame flickering is the oscillation of flame in images. In flame flickering

analysis, to determine the optimal threshold, different detection algorithms are

necessary. Fast Fourier Transform (FFT), Wavelet Transform (WT) and Mean Crossing

Rate (MCR) can also be used to calculate flame flickering frequency. In flame

42

flickering frequency analysis, the brightness intensity variation, flame height and flame

area are also used.

Image processing techniques are also a necessary part of the flame flickering frequency

analysis. The intensity values in each pixel can be obtained from the colour space model.

The colour space model used can be either the RGB colour space model or the YCbCr

colour space model. In order to identify real flame in video images, the characteristics

of real flame flickering frequency must be known.

2.1.6 Fire dynamics analysis for flickering frequency

Video fire detection also used the characteristics of flame. Another important

characteristic is real flame’s flickering frequency. Many fire science researchers have

studied flickering frequency including Chitty and Cox, McCaffrey and Zukoski

(Drysdale, 1999), obtaining the different flickering frequency results from observation.

The range of flame flickering frequency is from 1 Hz to 10 Hz (Schröder, Krüger, &

Kümmerlen, 2014). The flickering frequency effect is based on pool diameters.

Equation 2.66 shows the relationship between flickering frequency and pool diameters.

   HzDpoolgf
21

04.050.0  2.66

where Dpool is pool diameter (m), f is flickering frequency, and g is a gravitational

acceleration constant (9.81 m/s2).

43

In video fire detection technology, the sequence of video image captured records of not

only the changes of flame shape, but also of the flame flickering frequency.

In the detection of the real flame from video images, analysis of the features of those

images are an important contribution in the achievement of fire control. Besides the

feature, flickering frequency, mentioned above, other flame image features such as,

colour, brightness intensity, flame geometry (flame shape or flame height) are

important, if a fire is to be controlled. In order to enhance the accuracy of video fire

detection, Researchers, such as Xiong, Cballero, Wang, Finn and Peng, all report the

need to use more than one fire feature. A review of the literature by Gottuk and

Dinaburg, 2010 reveals that, spectral, spatial and temporal properties of flame images

can also be used to identify flame characteristics. Video fire detection can be conducted

effectively both indoors and outdoors. Of special interest is the proposal that video fire

detection can prevent the spread of forest fires, if caught in the early stages. This is

enabled by the ability of the detection system to operate from different heights and

distances. (Liu, Hadjisophocleous, Ding, & Lim, 2012), In addition, various detection

algorithms can also be used to further analyse the properties of the flame images, colour

strength height.

2.2 Video fire detection for forest fires

As suggested above, one primary objective of video fire detection design is to enable

the prevention of forest fires. Over the years, researchers have studied a variety of video

fire detection methods. Much research has been conducted in this area, especially in

Spain and China, Table 2.7 shows the statistical results of the countries that have

44

researched video fire detection with the aim of finding a means of protection against

forest fire spread.

2.2.1 Satellite method

For forest fires, video fire detection offers the best chance of protection against fire

spread. Beginning in 1991, many countries and researchers have analysed the

performance and effectiveness of video fire detection technology for the prevention of

undisciplined spread of forest fires. Satellites infrared cameras, digital cameras,

unmanned aircraft systems, and IP cameras are also used in video fire detection

technology. Satellites are able to capture Advanced Very High Resolution Radiometer

(AVHRR) images, a special category of images.

In 1991, the Normalised Difference Vegetation Index (NDVI) method was developed

to analyse AVHRR images for use in the detection of forest fires. Equation 2.67 shows

the NDVI formula. (Lopez, Gonza;lez, Llop, & Cuevas, 1991)

𝑁𝐷𝑉𝐼 =
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 2−𝐶ℎ𝑎𝑛𝑛𝑒𝑙 1

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 2+𝐶ℎ𝑎𝑛𝑛𝑒𝑙 1
 2.67

The normalised difference vegetation index (NDVI) calculation results are

representative of the various colours. Table 2.8 shows the summary of colour relative

NDVI values

Some researchers have used not only the NDVI calculation for forest fire analysis but

also hot pixel analysis (PEREIRA & SETZER, 1993). The channels 1 and 2 present the

45

reflectance of visible and near infrared. Channel 1 is 0.58-0.68µm. Channel 2 is 0.73-

1.1µm (Fernández, Illera, & Casanova, 1997). In 1997, some researchers adopted a

statistical method to analyse AVHRR images for the study of forest fire risk (Gonzalez-

Alonso, Cuevas, Casanova, Calle, & Illera, 1997). The main aim of forest fire detection

by video is the prevention of large-scale forest fires, thus flame and smoke detection

can also be useful in video fire detection technology (Fang & Huang, 1998). To analyse

AVHRR images in the prevention of forest fire, measurement of Fuel Moisture Content

is (FMC) is another approach that can be used (Chuvieco, Aguado, Cocero, & Riaño,

2003).

Satellites are able to capture not only AVHRR images but also digital images. To

analyse satellite digital images, classification fire and non-fire in images is important.

In 2005, Florent Lafarge, Xavier Descombes and Josiane Zerubia proposed the use of

the Support Vector Machine (SVM) classification method. SVM is a probability

calculation method used in the analysis of fire texture characteristics.

2.2.2 Infrared method

Distributed Environmental Disaster Information and Control Systems (DEDICS) use

infrared camera technology. DEDICS contain a number of integrated components

including threshold-based detection, detection of bright oscillations, visual/infrared

matching, memory-based utilisation, motion filters, size and shape detection,

meteorological detection, and solar conditions (Ollero, Arrue, Martinez, & Murillo,

1999). When a certain value for each component is lower than a certain number

(determined by a rule), there is zero possibility of forest fire.

46

Digital cameras are also popular for detecting forest fire, but the flame analysis method

is different. Wavelet and Fast Fourier Transform (FFT) are two different methods of

analysis used (Contour Based Forest Fire Detection Using FFT and Wavelet, 2008).

Colour space modes namely RGB, YCbCr, CIELAB, HSI and HS’I can also be used to

evaluate forest fire images (Krstinić, Stipaničev, & Jakovčević, 2009). In 2012, Vipin

V used the YCbCr and RGB colour space models for detection of forest fires (V, 2012)

(Roberto, 2014). In some research, colour space models are used only to segment flame

images. In 2009, Dengyi Zhang, Shizhong Han, Jianhui Zhao, Zhong Zhang,

Chengzhang Qu, Youwang Ke and Xiang Chen not only used a colour space model for

segmentation of fire images, they also worked with back propagation neural networks

(BPNN) to recognize forest fire (Zhang, et al., 2009).

2.2.3 Unmanned Aircraft System and Internet Protocol

Today, the development of unmanned aircraft systems (UASs) and of (IP) cameras is

important because satellites have limitations regarding forest surveillance, including,

for example, the need for large economic investment, the low resolution of the images

captured, and the fact that cloud layers can affect visibility (Merino, Caballero, Ramiro

Martinez - de - Dios, Maza, & Ollero, 2011) (Roberto, 2014). UASs, however, offer

real-time fire monitoring, and provide geographic coordinates. Analysis methods

involved in the use of UASs and IP cameras are different. A review of the literature

reveals that IP cameras use K-Singular Value Decomposition (K-SVD) method to

analyse forest fire images. UASs adopt the probability analysis method. Probability

values include fire  1,  tkk Fpf and fuel exhaustion  1,  tkk Qpq .

47

As indicated above, when discussing video recognition of the existence of flame within

a forest, it is not surprising that this mode of detection can also be the first step leading

to the prevention of fires taking hold and spreading out of control (Mathi & Latha,

2016). The methodology uses a computerised vision-based approach for the detection

of flame in specific images. The detection approach includes spatial-temporal flame

modelling and dynamic texture analysis. Researchers have used different approaches to

overcoming detection errors in a variety of outdoor environments.

2.3 Video fire detection in other environments

Hence as indicated above, Video fire detection technology is popularly in use in the

prevention of forest fire because the monitoring system can be controlled remotely.

Remote controlled monitoring is critical in inhospitable environments to avoid loss of

life.

A review of the literature reveals that video fire detection has been used to recognize

fire by its physical properties. In 1993, Glenn et al. (Healey, Slater, Lin, Drda, &

Goedeke, 1993) tested an automatic real-time fire detection method using colour video

input. Their video fire detection algorithm analysed the spectral, spatial and temporal

properties of fire images.

In 1994, Noda et al. (Noda & Ueda, 1994) researched an image-processing method to

detect flame. They recorded thermal images using infrared cameras. Colour images

were recorded using a CCD camera. Their analysis method included thermal values as

well as red, green, and blue colour elements.

48

In 1996, Simon Foo (Foo, 1996) researched video fire detection for the prevention of

fires occurring in aircraft dry bays and engine compartments. A rule-based machine

vision approach using statistical measures was employed for real-time fire detection.

The statistical measures used were the calculation of the median, the standard deviation,

and the first-order moment measures of histogram data. Results from this calculation

approach showed that the thresholds of the median, the standard deviation, and the first-

order moments are 140.0, 700.0, and 1.3 x 107 respectively. When the median, the

standard deviation, and the first-order moments exceed the predetermined threshold,

the images are likely fire images. Foo also investigated fire spread. Foo’s approach to

fire spread was to analyse the change or motion observable in two images.

In 1999, Song Wei-guo, Fan Wei-cheng and Wu Long-biao used BPNN to detect fire

(Song, Fan, & Wu, 1999). Their research examined six image characteristics, including

area, edge, shape, flame pulsation, layer, and motion.

Prior to the year 2000, detection and recognition of flame in images was only a one-

approach application. In 1999, Hideaki Yamagishi and Jun’ichi Yamaguchi combined

two approaches to detect flame (Yamagishi & Yamaguchi, 1999). The two approaches

were the image processing method and the neural network method. The primary

objective in the image processing method is extraction of the flame region. The image

processing method adopts the RGB colour space model and the HSV colour space

model. (The RGB colour space model and HSI colour space model is explained above

in Chapter 1.) The HSV and HSI colour space models differ in terms of their calculation

of brightness (I and V). The neural network method is used for recognition of the flame

region. The output layer has two output units (fire flame or non-fire flame).

49

A review of the literature reveals that in the early stages of video fire detection,

researchers used algorithms with the image processing method, statistical measures,

and the artificial neural networks (ANNs) approach. Some researchers combined two

different approaches in their studies.

Before 2000, satellites, charge coupled devices (CCD) cameras, black-and-white (BW)

cameras, panoramic annular lenses, and moving cameras were used by researchers.

Satellites were useful in the prevention of forest fire.

 A review of the literature from 1991 to 2015 reveals that many researchers studied

different video fire detection technology modes, such as flame detection, smoke

detection, and fire detection. Many different kinds of video fire detection used the

image processing method, statistical method, Artificial Neural Networks (ANN), or

combined all methods. Table 2.9 to 2.11 show the development of video fire detection

method from 1991 to 2000, 2001 to 2010, and 2011 to 2015.

50

Chapter 3 Methodology

The video fire detection methodology used in this study involves separate processes for

segmentation of images, recognition of targets, and the tracking of fire regions. Image

segmentation is the first step because it is key to the recognition of the selected target.

After a target area is successfully identified as a fire region, the tracking process then,

makes it possible for the fire to be extinguished.

3.1 Image segmentation process

Segmentation algorithms used in image processing can divide images into two

necessary regions: foreground and background. Generally, the foreground is the

image’s target, which, for the purposes of video fire detection, is the fire region. The

background is the surrounding environment. Image segmentation is a form of spatial

analysis. The segmentation algorithm described in this chapter is the Otsu threshold

method. The Otsu threshold method was proposed by Nobuyuki Otsu in 1979 (Otsu,

1979). In the early stages of its development, the Otsu method was used for

segmentation of brain tumours in Magnetic Resonance Imaging (MRI) (Jeevitha &

Narendrain, 2013).

The Otsu method provides a way of automatically selecting the threshold value. The

concept is a cluster analysis of the flame region, followed by the segmentation of the

images. Flame brightness is an important characteristic. Firstly, colour images of flames,

as indicated above I the previous Chapter must be converted to greyscale images for

generation of a grey-level histogram.

51

By calculating the histogram and the probability method of the intensity level, the Otsu

method can automatically obtain the threshold value. From the results of the threshold

value, binary data can be obtained from the greyscale images. In the following section,

two important steps are described:

1. Conversion of colour images to grey-level images

2. The algorithm used in the Otsu threshold method

Figure 3.1 depicts the flow diagram of the Otsu threshold method. If the captured

images are colour images, they have to be transformed to greyscale images. To do this,

the YIQ colour space model is used. Equation 3.1 shows the conversion expression for

transforming colour images to greyscale images.

 𝑌(𝑥, 𝑦, 𝑡) = 0.299 × 𝑅(𝑥, 𝑦, 𝑦) + 0.587 × 𝐺(𝑥, 𝑦, 𝑡) + 0.114 × 𝐵(𝑥, 𝑦, 𝑡) 3.1

where  tyxY ,, is the luminance value of output images in each pixel over time.

 tyxR ,, ,  tyxG ,, and  tyxB ,, are primary colours of input images in each pixel

again, over time.

When the luminance value for all pixels from the input images has been calculated, the

algorithm enables the transformation of the images to produce greyscale images as an

output. The grey-level histogram is then, obtained from the grey-scale images. Figure

3.2 depicts the flow diagram of the colour to a greyscale image conversion method. The

greyscale levels range from 0 to 255 (256 values). The total number of pixels depends

on the image resolution. The x-axis shows the grey-levels and the y-axis shows the

52

number of pixels. The histogram made from the greyscale fire images, the colour fire

images, and the grey colours fire images are explained in Chapter 4.

3.1.1 Single threshold method

The traditional algorithm of the Otsu threshold method is able to segment the

background as a histogram showing the distribution of different quantity of grey colour

image. The results of single the threshold approach is explained in chapter 4. The Otsu

algorithm supposes that all pixels dichotomise into background and objects, or vice

versa. The algorithm of the Otsu threshold method requires four main steps:

1. Probabilities of objects and background occurrence.  backgroundobjects  ,

2. Objects and background mean levels.  backgroundobjects  ,

3. Objects and background variances.  backgroundobjects  ,

4. Discriminant analysis of the “maximum between class variance.”  2

B

When the discriminant analysis has obtained the maximum value of between class

variance   kB
k

2

2551
max 


, the threshold value is obtained from greyscale levels (range from

0 to 255).

Normally, the greyscale levels of fire images should be larger than the background

images. Images of fire should be from threshold value (k) to the maximum grey-level

(255). The background should extend from the minimum grey-level (0) to the threshold

value (k). Figure 3.3 depicts a histogram analysis using the Otsu method.

53

3.1.2 Multi-threshold method

Some fire images, however, are unable to use a single threshold value for image

segmentation. In these cases, the multi-threshold approach should be considered. In the

analysis approach used in this Thesis, first, the algorithm assumes six thresholds.

Normally the algorithm of the multi-threshold method has different stages. The first

stage is calculation of the greyscale level, from 0 to 255. The second stage is calculation

of the grey-level, from  1k to 255. Figure 3.4 depicts the example of histogram analysis

of the multi-threshold method.

The multi-threshold method is able to subdivide fire images effectively because it can

obtain different threshold values from calculations. Figure 3.5 depicts the flow diagram

of the Otsu multi-threshold approach. For the effective segmentation of images, two

significant elements must be considered: the selection of the threshold and the number

of threshold values.

Normally, different images have different recorded regions of interest; consequently,

the distributions of their histograms are, likewise different. For fire images, the

distribution of the histogram is similar to a Rayleigh distribution when the fire occurs

indoors and in dark environments. In fact, the Rayleigh distribution is not completely

reflected in fire images because the fire image region has a high intensity level. Figure

3.6 depicts the distribution curve of fire images and the estimated fire region.

Although the Rayleigh distribution is not completely similar to the histogram of fire

images, some researchers have studied the modified Otsu method for segmentation of

images (Wan, Wang, Sun, & Hao, 2010). The development of the Rayleigh distribution

54

algorithm is based on the traditional Otsu method. First, the images must be grey colour

images otherwise colour images must be transformed to the colour, grey. (In Section

3.1, the transformation methods were introduced.) The theory of the Otsu method is

based on the Normal distribution. The theory of the modified Otsu method is based on

the Rayleigh distribution. The probability density function of the Rayleigh distribution

is:

   
0;

22 2

2
  xe

x
xf x 


 3.2

In the modified Otsu method, calculations are also required to determine the

probabilities of class occurrence of object and background  backgroundobject  , , class mean

level of object and background  backgroundobject  , , and class variance of object and

background  backgroundobject  , . For the traditional Otsu method, the calculation is able to

obtain the threshold from the results of maximum between class variance

    Liii BB  1,max 2*2  . For the modified Otsu method, the calculation is able to

satisfy equations 3.3, 3.4, and 3.5.

      2222 iii objectobjectobject   3.3

where  iobject

2 is the object parameter of the Rayleigh model in the histogram level  i .

      2222 iii backgroundbackgroundbackground   3.4

55

where  ibackground

2 is the background parameter of the Rayleigh model in the histogram

level  i .

          22 iiiii bffbB   3.5

From the calculation of the Otsu multi-threshold approach and the modified Otsu

method (Rayleigh distribution analysis), it is possible to obtain the threshold value.

Figure 3.7 depicts the flow diagram of modified Otsu method (Rayleigh distribution

analysis). Two major criteria are used for deciding on the optimal threshold:

1. The multi-threshold approach  ikO and the modified Otsu method  ikMO

2. The numbers of pixels  inO and  inMO

The optimal threshold can be obtained by comparing the two major criteria and the

multi-threshold calculation method. From the calculation results of the optimal

threshold value, the modified threshold method more effectively segments the images.

Chapter 4 provides the results in detail. Figure 3.8 depicts the flow diagram of the

optimal threshold selection method.

3.2 Recognition method

When an object can be extracted from the background, generally that extracted object

is the target. In the event, it is not, however, necessarily the recognition target. There is

a possible segmentation of the wrong target and accuracy needs to be enhanced. To

recognise fire in images, the important fire characteristics include (1) flame colour, (2)

56

flame height, (3) flame shape, (4) flame light intensity, and (5) flickering frequency.

However, most of these characteristics can also be created by false images. Analysis of

accuracy is vital

For digital images, flame height analysis is an appropriate method for recognition of

fire images. Flame height analysis is also important to fire engineers because the

diffusion that happens during the spread of the flame can ignite other objects.

3.2.1 Natural fire flame height analysis

Digital image technology enables images to be used to quantify the height of flame

diffusion. Equation 3.6 shows the calculation method for the diffusion of flame height

in images.

  sizetopbottomimages pyyh  3.6

where

imageh is the flame height in the images

topbottom yy  is the number of flame pixels

sizep is the pixel size of the images

The image sensors dominate the pixel size and the number of pixels can be obtained

from digital images. The digital images can show the bottom level  bottomy and top level

 topy of the flame region. From the bottom level and the top level of the flame region, it

is possible to obtain the number of pixels. For calculating the real heights from images,

photograph technology is also used.

57

objectimages ddf

111
 3.7

Equation 3.7 can be rewritten as follow:

 
 fd

df
d

object

object

images



 3.8

22

ccobject HLd  3.9

where cH is height of digital camera. cL is horizontal distance from digital camera to

pool fire. cD is images distance from fire sources to the image sensors.

Equation 3.10 shows the calculation of flame height in images. The actual flame height

can be calculated, based on the image height, using the relevant equation of focal length

 f , object location  objectd , and image distance  imagesd .

images

objects

imagesobjects
d

d
hh  3.10

Chapter 4 provides details of the experimental setup and the results. Figure 3.9 and 3.10

depicts a schematic of the digital camera and fire pool setup.

58

3.2.2 Flickering frequency analysis

Flame flickering frequency is an important parameter for the recognition of flame from

images.

A commonly used method in video fire detection is the Fast Fourier Transformation

(FFT). However, a simple counting method can also be used for flame flickering

analysis. Using such a method saves computer processing time.

The analysis of flame from images, in this thesis, uses the simple counting method.

Equation 3.11 shows the simple counting method. In Chapter 4, the counting results

have been detailed.

period timeofLength

flickering ofNumber
f 3.11

where f is the frequency (Hertz / Hz).

However, the simple counting method has a significant limitation in video fire detection

in terms of the frame rate. This limitation is not negligible, as it affects the results.

3.2.3 Multiple Logistic regression

Logistic regression is a useful statistical method to achieve better accuracy and faster

processing when identifying a flame (Kong, Jin, Li, & Kim, 2016). This method enables

the calculation of the class membership probability for one of the two categories

59

(Dreiseitl & Ohno - Machado, 2002). Therefore, fire and non-fire can be identified in

this way. Equation 3.12 shows the general equation of logistic regression.

    ii
y

i

y

ii ppyf



1

1 3.12

where i is the frame of a video stream and ip is the fire probability for i video frame.

The calculation output of iy is the probability density function of fire classification. If

the calculation output of iy is 0, then the images captured is possibly non-fire. From the

experimental data, logistic regression can recognise fire image or non-fire image. The

coefficient  obtain by the calculation of training data.

02211  nn xxxConst   3.13

In appendix E shows the detail calculation of logistic regression

3.3 Tracking method (optical flow analysis)

In video fire detection technology, the diffusion phenomenon is also an important

parameter. Diffusion includes flame spread, smoke spread, and fire plumes. Of interest

is that optical flow analysis can effectively predict the extent of fire movement and

therefore spread. Optical flow analysis is effective at tracking smoke and flame

displacement. A review of the literature reveals that generally, determining optical flow

can be achieved by using the Lucas-Kanade method and Hom-Schunck method. The

60

optical flow of Lucas-Kanade method and Hom-Schunck Method are shown in the

appendix D.

Figure 3.11 shows the theory of optical flow analysis. Generally, real – time images are

recorded over a period of time. The coordinates of location (x and y) and time (t) change.

The first image of objects (I) is located at the (x) and (y) in time (t). The second image

of objects (I) is located at the (x+x) and (y+y) in time (t+t). When the first and

second images are analysed, the object motion can be extracted.

In the source code for this experiment, the optical flow analysis uses the Gunnar

Farneback algorithm (Farneback, 2003). The primary method of the Gunnar Farneback

algorithm is the estimation of two frame motions. Equation 3.15 shows the general

equation of the Gunnar Farneback algorithm.

𝑓(𝑥)~𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐 3.14

where A is a symmetric matrix, b is a vector and c is a scalar.

The polynomial expansion of the Gunnar Farneback algorithm can also be used to

estimate displacement fields. Equation 3.14, 3.15 show the polynomial expansion.

𝑓1
(𝑥) = 𝑥𝑇𝐴1𝑥 + 𝑏1

𝑇𝑥 + 𝑐1 3.15

where 1f is an original signal from first images.

𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = (𝑥 − 𝑑)𝑇𝐴1(𝑥 − 𝑑) + 𝑏1
𝑇(𝑥 − 𝑑) + 𝑐1

𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = (𝑥𝑇 − 2𝑥𝑑 + 𝑑𝑇
)𝐴1(𝑥 − 𝑑) + 𝑏1

𝑇𝑥 − 𝑏1
𝑇𝑑 + 𝑐1

61

𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = (𝑥𝑇𝐴1 − 2𝐴1𝑥𝑑 + 𝑑𝑇𝐴1) (𝑥 − 𝑑) + 𝑏1
𝑇𝑥 − 𝑏1

𝑇𝑑 + 𝑐1

𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = 𝑥𝑇𝐴1𝑥 + 𝑏1
𝑇𝑥 − 2𝑏1𝐴1𝑑𝑥 + 2𝐴1𝑑

𝑇𝑥 + 𝑑𝑇𝐴1𝑑 − 𝑏1
𝑇𝑑 + 𝑐1

𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = 𝑥𝑇𝐴1𝑥 + (𝑏1 − 2𝐴1𝑑)𝑇𝑥 + 𝑑𝑇𝐴1𝑑 − 𝑏1
𝑇𝑑 + 𝑐1

When 𝐴1 = 𝐴2; 𝑏2 = 𝑏1 − 2𝐴1𝑑; 𝑐2 = 𝑑𝑇𝐴1𝑑 − 𝑏1
𝑇𝑑 + 𝑐1

𝑓2
(𝑥) = 𝑥𝑇𝐴2𝑥 + 𝑏2

𝑇𝑥 + 𝑐2

where 2f is a new signal from second images and 𝑑 is a global displacement

The Optical flow technique in video fire detection and as indicated above, is also used

in the analysis of fire plumes, therefore the optical flow technique is useful in any

further study of video fire detection.

The principle of motion analysis relates to the comparison of the variation in image

pixels thus the threshold value is a necessary part of the software. In the software

program, the presence of the sensitivity value. When two images have been compared,

the results are found to be equal to the pre-set sensitivity value. The software is able to

detect the flame motion while the motion of flame images is recorded on a hard disk.

62

Chapter 4 Experimental arrangements and results

Video fire detection technology is software based (Scheffey, 2016) requiring the

processing and analysis of detected fire images by the software itself. The experiment

was composed of three stages.

In the first stage, the MATLAB R2020a Image Processing Toolbox is used to separate

the flame images. The toolbox provides different calculation platforms for the analysis

of the images, such as image segmentation. Traditional Otsu's method is one of the tools

in MATLAB.

In the second stage, Visual C++, C++, and Microsoft Foundation Class (MFC) are used

to separate the still images for further study.

In the final stage, C++ and Open CV are used to develop a computer program to analyse

the real-time video images. The operating system in the video fire system uses

Windows XP Professional, and Windows 10. Table 4.1 summarises the three stages of

the experimental study.

 This chapter also describes the experimental configuration arrangements and the

results. The source code is given in appendix B.

In the experimental study, propanol fuel was used to create the fire and the flame images

were recorded. Figure 4.1 reveals the properties of propanol fuel while Figure 4.2

indicates the different pool diameters that can be used in future studies.

63

4.1 The first stage of the experimental study

4.1.1 Computer software

In the first stage of the experiment, the properties of the digital images were reviewed.

The Otsu method (Otsu, 1979) was adopted to segment the colour flame images. The

MATLAB source code is listed in Appendix A. Figure 4.3 depicts the original colour

images alongside the binary images resulting from the MATLAB calculations.

4.1.2 Experiment

The experimental results show that the traditional Otsu method does not completely

segment all flame images. Some regions of the flame lack fidelity, which indicates that

the traditional method needs to be improved. Figure 4.4 illustrates the segmentation

results (Distortion).

The literature review revealed that the traditional Otsu method requires greyscale

images to calculate the threshold value. In the experimental study using MATLAB, the

colour flame images were converted by an algorithm involving the weighted sum of the

red, green, and blue components. Equation 4.1 shows the algorithm for the RGB values

and the greyscale values (Mathworks.com, 1994 - 2016).

0.2989 × 𝑅 + 0.5870 × 𝐺 + 0.1140 × 𝐵 4.1

where R is the value of the red colour, G is the value of the green colour, and B is the

value of the blue colour. Figure 4.5 depicts the greyscale images and the original flame

images.

64

4.2 The second stage of the experimental study

4.2.1 Computer software

Generally, video fire detection is based on the use of software. To further this present

study of video fire detection technology, the second stage of the experiment employed

computer languages and the programs C++, and C++ Microsoft Foundation Class

(MFC)) to analyse the static flame images including thermal images and colour images.

Figure 4.6 shows the computer analysis of colour images and thermal images.

A thermal camera is used to capture thermal images. Specific associated computer

software is used to analyse the images. Further source code also can segment the flame

images with the Otsu method. Firstly, thermal images have to be converted to a

greyscale image. Figure 4.7 shows the thermal images and greyscale images.

From the data supplied by the greyscale images, the source code can also create a

histogram. Figure 4.8 shows the histogram and the Otsu calculation result. From the

Otsu calculation results he greyscale image can be converted to a binary image

4.2.2 Experiment

The results from the above experiment revealed that although the thermal images are

able to separate the flame region from the background, the software cannot clearly

identify the condition of the thermal images, images which we can observe for

ourselves. Thus, it is better for colour images to be used, rather than thermal images in

the analysis of video fire detection technology. Figure 4.9 shows the binary images.

65

From the source code of the Otsu method, the colour images can also be used to segment

the background flame region. Figure 4.10 depicts the results, including colour flame

images, greyscale images, and image histograms.

In the second stage of this experiment, a modified source code was used to create the

histogram, calculate the multi-threshold result, and segment the flame images.

In addition, the modified source code can improve the lack of fidelity problem. The

source code is given in appendix B. Figure 4.11 depicts the greyscale images, histogram

and the segmentation results. The experimental results reveal that the first threshold

value is unable to clearly segment the image. Table 4.2 shows the multi-threshold

results.

In total, six threshold values were picked out, the optimal-threshold value, is that which

most easily enables segmentation of the flame. The Rayleigh distribution of the Otsu

method contributes to an analysis of the images, by comparing the calculated results.

Table 4.3 and Figure 4.12 show the calculation results.

When the flame images can be segmented from the background using multi-threshold

analysis, it is seen that the number of pixels has been reduced. If the segmentation

results overlap the original images, this means successful segmentation of the flame

from the image background has occurred. Figure 4.13 shows the experimental results.

After the Otsu method has segmented the flame region in the image, the next item in

the video fire detection procedure is the recognition of whether the revealed image is

‘fire” or “non-fire”. However, for further clarity, the identification of the centroid

66

coordinates, flame shape, flame height, flame colour, and flame light intensity, that is

the physical characteristics of the flame images, is necessary. By these means,

contributions can be made to increased accuracy of the analysis.

How the centroid coordinates of the flame shape can be used in distinguishing between

“fire” and “non – fire” has been presented in the paper (Wong and Fong, 2014). Figure

4.14 shows a sample of fire and non-fire images.

In the above reported study, it was found that using flame region centroid coordinates,

the Nearest Neighbour (NN) algorithm can be used to recognise whether or not an

image is a fire image. Figure 4.15 depicts the centroid analysis results for fire images

and non-fire images.

The experimental results above, however, reveal that the nearest neighbour algorithm

is not very accurate in recognising a fire from the images if the algorithm uses only

centroid coordinates. In addition, the size of the database in relation to the fire image

and non-fire images is a critical factor.

In 2014, a fire size estimation method was studied based on details of the author’s work.

(Wong & Fong, 2014) Table 4.4 shows the numerical results. From the numerical HRR

results and the different pool diameters, two heat release rate curves were provided.

Figure 4.16 depicts the HRR curve. The results of the HRR curve reveal that the heat

release increases when the pool diameter increases.

However, more research is required to understand how to couple HRR information with

video fire detection technology.

67

4.3 The third stage of the experimental study

4.3.1 Computer software

In these above experiments computer software was used to record and analyse the flame

images. The software used, included Microsoft Visual Studio Professional 2013

Version 12.0.21005.1 REL and Open CV Version 2.4.10. Figure 4.18 shows the screen

output display. Table 4.6 shows the numerical data derived from the equipment

including the pool fire diameter, the quantity of propanol, resolution of images and the

distance between the webcam and the fire source.

The flame height data and the sampling counting method is used in video fire detection.

The flame data is used to analyse flame flickering characteristics. Figure 4.19 and 4.20

show the flame image height (flame motion). Figure 4.21 depicts a histogram of flame

flickering. The experiment showed that the flame flicker is within the range of 8 to 10.

4.3.2 Experiment

In the third experimental, real-time images were captured using a webcam. The flame

height can be estimated from the video images if careful attention is paid to the

configuration of the experiment and to the technical specifications of the webcam.

Table 4.5 shows the webcam specification. Figure 4.17 shows the experimental

configuration.

The data from the images including segmentation, recognition, and tracking

performances was directly analysed and processed using the software. Appendix B

68

shows and describes the software detailed. The software also recorded the numerical

data on the hard disk. The numerical data is thus available for future analysis in relation

to future experiments. These data include the timings, threshold values, maximum grey

levels, areas of regions of interest, heights of the regions of interest, centroid coordinate

and the red, green, and blue colour values.

In the experiment, the webcam recorded fire images at intervals between fire ignition

to fire extinction and non-fire images. The regression coefficients revealed that logistic

regression calculations could be used to distinguish between fire and non-fire images.

The current video fire images uses logistic regression to recognise fire. Then, the fire

can be tracked, by means of recorded images and spread of the flame or smoke. The

optical flow method was the appropriate tool used to track the direction of smoke spread.

Figure 4.23 shows the experimental result.

A video showing the above results provides an informative example, illustrating the use

of video detection technology with digital image processing, motion detection, and

machine learning methods. All video detection technology provides individual examples

of items of information, which can be used to better the use of Video fire detection.

Figure 4.24 presents the flow diagram of video fire detection method used in this

research study.

The results of multiple logistic regression calculations related to fire image recognition

are shown in the following equation.

𝑷𝒇𝒊𝒓𝒆 = 𝟎. 𝟎𝟏𝟒𝟒𝟐𝟕 × 𝑪𝒆𝒏𝒕(𝑿) − 𝟎. 𝟎𝟎𝟐𝟕𝟑 × 𝑪𝒆𝒏𝒕(𝒀) + 𝟎. 𝟎𝟔𝟕𝟓𝟒𝟓 × 𝑯𝒕 −

𝟎. 𝟎𝟎𝟎𝟏𝟕 × 𝑹𝑶𝑰 − 𝟎. 𝟎𝟐𝟏𝟔𝟔 × 𝑹 + 𝟎. 𝟎𝟒𝟎𝟕𝟑𝟓 × 𝑮 − 𝟎. 𝟎𝟐𝟖𝟔𝟗 × 𝑩 4.2

69

The multiple logistic regression results include the coefficient of the centroid coordinate

X and Y (Cent(X), Cent(Y)), flame height (Ht), region of interest (ROI), red (R), green

(G), and blue (B) colour. Equation 4.1 can be used to obtain the probability of a fire,

𝑃𝑓𝑖𝑟𝑒. Appendix E provides the full solution of the logistic regression.

70

Chapter 5 Conclusions

 The objective of this study is an investigation of video fire detection technology.

Successful results were achieved which provide feasible suggestions regarding

improvements that could be used in fire detection systems technology. From the

experimental study, by means of the use of a computer program method, image

processing technology, logistic regression, and fire image characteristic such as

flickering frequency, recognition the fire in images was achieved. From the optical flow

analysis, the computer program is able to track the flame spread direction. From the

flame height, the empirical formula is able to predict the fire size. Further findings from

this study are presented as follows:

Since 1991, video fire detection technology has been studied using a variety of

techniques such as image processing, signal processing, statistical analysis, and ANN.

Video fire detection techniques are able to detect flames, smoke, and fire plumes. Thus,

forest fire surveillance and preservation of natural heritage sites are two domains that

could benefit from the video fire detection techniques studied in this project, as applied

to the developing early–stages of a fire.

Frequently, in this study different colour models were same to use for segmentation

include the RGB colour space model, and YIQ colour space model.

The software-based methods studied in this project, offer a different imaging approach.

It should be noted that the study required the application of knowledge from several

distinct fields. Illustrations are provided in Figure 5.1

71

For segmentation of the fire images, the Otsu algorithm was used to segment the flame

images. However, it was found that the traditional Otsu method cannot completely

segment all flame images in all varieties of environments. A Modified Otsu method

was therefore proposed for use in this study and better results were achieved.

For recognition of the fire images, logistic regression and the nearest neighbour

algorithm were also proposed. The recognition analysis of the nearest neighbour

algorithm aims not only enabled the analysis of the centroid coordinates of flames but

also the logistic regression. This analysis, therefore takes account of more than one fire

characteristic.

The logistic regression method is proposed to ensure greater accuracy in the recognition

of fire images. In addition, the logistic regression methods includes regression learning,

giving the power to improve the accuracy of fire recognition.

It was found that using optical flow analysis to tracking the flame spread and its motion

direction is an important part of fire detection. The tracking method in video fire

detection can reduce property loss, and protect the safety of firefighters.

Hardware, such as the computer and the digital camera were also found to play an

important part. The digital camera is able to capture images, which are then analysed

by the computer. If the image data can identify fire in a short period of time, the video

fire detection system can likewise, immediately report the status of any fire.

72

5.1 Application

Research findings confirmed that, today, video fire detection technology is of high

interest and is currently developed by different manufacturers. However, the

development of video fire detection technologies has not yet been fully explored to the

extent that an analysis algorithm can describe the fire characteristics sufficiently well.

However it seems clear that further study by computer technology and image

processing algorithms, will enable the use of video fire detection in such protected

spaces as Dangerous Goods (D.G.) stores and Sub-divided flat is now practical.

A review of the literature revealed such as international video fire detection standards,

system requirements, installation specifications, and analysis methodologies are being

well recorded, possibly in readiness for further development in the light of further

research. However, as yet the required specific and necessary data accuracy has not yet

been fully determined, Hence the testing and commissioning of video fire detection is

ready for further exploration and introduction to the public, and is anticipated as being

the firefighting method of choice.

73

Chapter 6 Suggestions for future research

Today, video fire detection has been the subject of many research studies. Different

approaches are currently being studied. For instance, fire naturally, can occur in a

variety of areas and environments such as atriums, tunnels, in E and M plant rooms,

forests, warehouses, historic buildings and aircraft hangars. However, the video fire

detection algorithm currently is not widely used in Hong Kong. Thus, further

experimental study is necessary and for the comfort of society, to verify different

algorithms to enable the use of video fire detection, anytime and anywhere.

Better techniques that can reduce false alarms are also needed. Improved technology

providing greater accuracy in video fire detection technology is a further research

objective. The accuracy and compatibility of each video fire detection component

identified in research studies need further verification and validation in order to further

enhance and enlarge the use of this fire recognition/prevention skill features.

In Hong Kong, business people intent on the development of virgin areas or those long

out of use would welcome the availability of further research into the research

mechanisms already present in video fire detection systems. Currently, the design of

the video fire detection product is very bulky and expensive. From the television

program “Guide to navigation” reported that, the cost of developed video fire detection

system is more than three hundred to four hundred thousand Hong Kong dollars.

(Television Broadcasts, 2017) In addition, the system only uses thermal images to

analyse only forest fires.

74

In the near future, low-cost digital cameras will be commonly used. Many different

computer techniques are being rapidly developed. In addition, the video fire detection

techniques are destined to become more commonly used in the delivery of fire services,

providing people’s trust in the accuracy of video fire detection systems grows.

From the study of video fire detection technology presented in this thesis, it is seen that

segmentation, discrimination, and tracking are important component, with each

component enabling a better than average fire detection result. The further research

suggested above, together with the achievements previously described, presents a

convincing recommendation for the use of fully automatic video fire detection

technology and the subsequent reduction of property loss and further protection of life

R-1

References

40/40R - Single IR Flame Detector. (2010). Retrieved 10 24, 2015, from http://spectrex-

inc.com/products/sharpeye/4040r

40/40U-UB - UV Flame Detector. (2010). Retrieved 10 24, 2015, from http://spectrex-

inc.com/products/sharpeye/4040u-ub

Barmpoutis, P., Dimitropoulos, K., and Grammalidis, N. (2013). Real time Video Fire

Detection using Spatio - Temporal Consistency Energy. 2013 10th IEEE

International Conference on Advanced Video and Signal Based Surveillance.

Beer Color Laboratories. (n.d.). Retrieved 2015, from

http://www.beercolor.com/color_basics1.htm

Beji, T., Merci, B., Verstockt, S., and Walle, R. V. (2012). On the Use of Real - Time

Video to Forecast Fire Growth in Enclosures. Fire Technology, 1 - 20.

Bosch, I., Gomez, S., Molina, R., and Miralles, R. (2009). Object Discrimination by

Infrared Image Processing. In Bioinspired Applications in Artificial and Natural

Computation (pp. 30 - 40). Springer.

(2010). CCD and CMOS sensor technology Technical white paper. Axis

Communications.

Celik, T. (2010). Fast and Efficient Method for Fire Detection Using Image Processing.

ETRI Journal, 32, 881 - 890.

Celik, T., Demirel, H., and Ozkaramanli, H. (2006). Automatic Fire Detection in Video

Sequences. 14th European Signal Processing Conference. Florence.

Çelik, T., Özkaramanlı, H., and Demirel, H. (2007). Fire and Smoke Detection without

Sensors: Image Processing based Approach. 15th European Siginal Processing

Conference. Poznan.

R-2

Chapter 10 Automatic fire detection. (1990). In Manual of Firemanship Book 9 Fire

Protection of buildings (pp. 91-98). London: HMSO.

Chapter 10 Fire Detection Systems. (1993). In J. L. Bryan, Fire Suppression and

Detection Systems (p. 347). USA: Prentice-Hall, Inc.

Chapter 11 Smoke detectors. (1990). In Manual of Firemanship Book 9 Fire protection

of buildings (pp. 99-108). London: HMSO.

Chen, J., He, Y., and Wang, J. (2010). Multi-feature fusion based fast video flame

detection. Building and Environment, 45, 1113 - 1122.

CHen, T.-H. (.-H., Kao, C.-L., and Chang, S.-M. (2003). An Intelligent Real - Time

Fire - Detection Method Based on Video Processing. IEEE, 104 - 111.

Cheng, X., Wu, J., Yuan, X., and Zhou, H. (1999). Principles for a video fire detection

system. Fire Safety Journal, 33, 57 - 69.

Chuvieco, E., Aguado, I., Cocero, D., and Riaño, D. (2003). Design of an empirical

index to estimate fuel moisture content from NOAA-AVHRR images in forest

fire danger studies. International Journal of Remote Sensing, 24, 1621 - 1637.

Codes of Practice Minimum Fire Service Installations and Equipment and Inspection,

Testing and Maintenance of Installtions and Equipment. (1998). Hong Kong.

Color Image Processing. (2010). USA: Pearson Education Inc.

Contour Based Forest Fire Detection Using FFT and Wavelet. (2008). International

Conference on Computer Science and Software Engineering, 760 - 763.

Dreiseitl, S., and Ohno - Machado, L. (2002). Methodological Review Logistic

regression and artificial neural network classification models: a methodology

review. Journal of Biomedical Informatics , 35, 352 - 359.

Drysdale, D. (1999). Diffusion Flames and Fire Plumes. In An Introduction to Fire

Dynamics (pp. 109 - 158). John Wiley and Sons.

R-3

Dungan, K. W. (2008). Chapter 2 Automatic Fire Detectors. In A. E. Cote, Fire

Protection Handbook (Twentieth Edition) Volume II (pp. 15 - 28). National Fire

Protection Association.

Duong, H. D., and Tuan, N. A. (2009). Using Bayes method and Fuzzy C - Mean

Algorithm for Fire Detection in Video. International Conference on Advanced

Technologies for Communications.

Electrochemical Cell Toxic Gas Detector. (2015). Retrieved 10 24, 2015, from

http://www.safetysys.com/wp-content/uploads/2015/03/GT814-toxic-gas-

detector.pdf

Fang, M., and Huang, W. (1998). Technical note - Tracking the Indonesian forest fire

using NOAA/AVHRR images. Int. J. Remote Sensing, 19, 387 - 390.

Farneback, G. (2003). Two-Frame Motion Estimation Based on Polynomial Expansion.

1 - 8.

Fernández, A., Illera, P., and Casanova, J. L. (1997). Automatic Mapping of Surfaces

Affected by Forest Fires in Spain Using AVHRR NDVI Composite Image Data.

REMOTE SENS. ENVIRON., 60, 153 - 162.

Foo, S. Y. (1996). A rule - based machine vision system for fire detection in aircraft

dry bays and engine compartments. Knowledge - Based Systems, 9, 531 - 540.

Gas Sensing Fire Detectors. (1993). In J. L. Bryan, Fire Supression and Detection

Systems (p. 511). USA: Prentice-Hall Inc.

Gonzalez, R. C., and Woods, R. E. (2010). Image Compression. In Digital Image

Processing (pp. 547 - 648). London: Perason Edition International.

Gonzalez-Alonso, F., Cuevas, J. M., Casanova, J. L., Calle, A., and Illera, P. (1997). A

forest fire risk assessment using NOAA AVHRR images in the Valencia area,

eastern Spain. International Journal of Remote Sensing, 2201- 2207.

R-4

Gottuk, D. (2008). Video Image Detection Systems Installation Performance Criteria

Research Project. The Fire Protection Research Foundation.

Gottuk, D. T., and Dinaburg, J. B. (2010). Video Image Detection and Optical Flame

Detection for Industrial Applications. Orlando: Fire Suppression and Detection

Research and Applicatons - A Technical Working Conference.

Habiboglu, Y. H., Gunay, O., and Cetin, A. (2011). Covariance matrix - based fire and

flame detection method in video. In Machine Vision and Applications (pp. 1 -

11). Springer.

Han, D., and Lee, B. (2009). Flame and smoke detection method for early real - time

detection of a tunnel fire. Fire Safety Journal, 44, 951 - 961.

He, S., Yang, X., Zeng, S., Ye, J., and Wu, H. (2015). Computer Vision Based Real -

time Fire Detection Method. Journal of Information and Computer Science ,

12(2), 533 - 545.

Healey, G., Slater, D., Lin, T., Drda, B., and Goedeke, A. D. (1993). A System for Real

- Time Fire Detection. IEEE, 605 - 606.

(2002 - 2015). Hong Kong Fire Services Department Review. Hong Kong: Hong Kong

Fire Services Department.

Hongliang, L., Qing, L., and Sun'an, W. (2012). A Novel Fire Recognition Algorithm

Based on Flame's Multi - features Fuson. 2012 International Conference on

Computer Communication and Informatices. Coimbatore.

Horng, W.-B., Peng , J.-W., and Chen, C.-Y. (2005). A New Image - Based Real - Time

Flame Detection Method Using Color Analysis. IEEE, 100 - 105.

Hou, J., Qian, J., Zhao, Z., Pan, P., and Zhang, W. (2009). Fire Detection Algorithms

in Video Images for High and Large - span Space Structures. IEEE, 1 - 5.

R-5

Introduction. (2010). In R. C. Gonzalez, and R. E. Woods, Digital Image Processing

(p. 25). USA: Pearson Education, Inc.

Jeevitha, A., and Narendrain, P. (2013). BTS (Brain Tumor Segmentation) Based on

Otsu Thresholding. Computer Science, 2(2), 53 - 55.

Jianzhong, R., Jian, W., Jian, C., and Jun, J. (2010). An Oscillation Frequency of Flame

Study based on Image processing Technology and Acoustic Measurement

Technology. IEEE, 1 - 4.

Jiao, Y., Weir, J., and Yan, W. (2011). Flame Detection in Surveillance. Journal of

Multimedia, 6, 22 - 32.

Jin, L., N.K., F., W.K., C., L.T., W., Puyi, L., and Dian-guo, X. (2004). The motion

analysis of fire video images based on moment features and flickering frequency.

Journal of Marine Science and Application, 3, 81 - 86.

Juan, C., and Qifu, B. (2012). Digital image processing based fire flame color and

oscillation frequency analysis. International Symposium on Safety Science and

Technology. Hangzhou.

Ko, B. C., Cheong, K.-H., and Nam, J.-Y. (2009). Fire detection based on vision sensor

and support vector machines. Fire Safety Journal, 44, 322 - 329.

Ko, B., Cheong, K.-H., and Nam, J.-Y. (2010). Early fire detection algorithm based on

irregular patterns of flames and hierarchical Bayesian Networks. Fire Safety

Journal, 45, 262 - 270.

Kong, S., Jin, D., Li, S., and Kim, H. (2016). Fast fire flame detection in surveillance

video using logistic regression and temporal smoothing. Fire Safety Journal, 79,

37-43.

R-6

Kopilovic, I., Vagvolgyi, B., and Sziranyi, T. (2000). Application of Panoramic

Annular Lens for Motion Analysis Tasks : Surveillance and Smoke Detection.

IEEE, 714 - 717.

Krstinić, D., Stipaničev, D., and Jakovčević, T. (2009). Histogram - Based Smoke

Segmentation in Forest Fire Detection System. INFORMATION

TECHNOLOGY AND CONTROL, 38, 237 - 244.

Litwiller, D. (2005). CMOS vs. CCD: Maturing Technologies, Maturing Markets.

Photonics Spectra.

Liu, C.-B., and Ahuja, N. (2004). Vision Based Fire Detection. IEEE, 1 - 4.

Liu, Z., Hadjisophocleous, G., Ding, G., and Lim, C. S. (2012). Study of a Video Image

Fire Detection System for Protection of Large Industrial Applications and Atria.

Fire Technology, 48, 459 - 492.

Lopez, S., Gonza;lez, F., Llop, R., and Cuevas, J. M. (1991). An evaluation of the utility

of NOAA AVHRR images for monitoring forest fire risk in Spain. International

Journal of Remote Sensing, 12:9, 1841 - 1851.

Maoult, Y. L., Sentenac, T., Orteu, J. J., and Arcens, J. P. (2007). Fire Detection A New

Approach Based on a Low Cost CCD Camera in the Near Infrared. Institution

of Chemical Engineers, 193 - 206.

Marbach , G., Loepfe, M., and Brupbacher, T. (2006). An image processing technique

for fire detection in video images. Fire Safety Journal, 41, 285 - 289.

Mathi, P., and Latha, L. (2016). Video Based Forest Fire Detection using Spatio -

Temporal Flame Modeling and Dynamic Texture Analysis. Internaltional

Journal on Applications in Information and Communcation Engineering, 2(4),

41 - 47.

R-7

Mayers, H. J., and Bernstein, R. (1985). Image Processing on the IBM Personal

Computer. Proceeding of the IEEE, 73, 1064 - 1070.

Merino, L., Caballero, F., Ramiro Martinez - de - Dios, J., Maza, I., and Ollero, A.

(2011). An Unmanned Aircraft System for Automatic Forest Fire Monitoring

and Measurement. J Intell Robot Syst, 1 - 16.

Nguyen - Ti, T., Nguyen - Phuc, T., and Do - Hong, T. (2013). Fire Detection Based

on Video Processing method. The 2013 International Conference on Advanced

technologies for Communications .

Ning, C., and Fei, D. (2012). Flame segmentation by an improved frame difference

algorithm. Fire Safety Science, 21, 209 - 215.

Noda, S., and Ueda, K. (1994). Fire Detection in Tunnels Using an Image Processing

Method. Vehicle Navigation and Information Systems Conference Proceeding,

(pp. 57 - 62).

Normalized Difference Vegetation Index (NDVI). (n.d.). Retrieved from

http://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_ve

getation_2.php

Ollero, A., Arrue, B., Martinez, J., and Murillo, J. (1999). Techniques for reducing false

alarms in infrared forest - fire automatic detection systems. Control Engineering

Practice , 7, 123 - 131.

Otsu, N. (1979). A Threshold Selection Method from Gray - Level Histogram. IEEE,

SMC - 9, 62 - 66.

Owrutsky, J. C., Steinhurst, D. A., Minor, C. P., Rose - Pehrsson, S. L., Williams, F.

W., and Gottuk, D. T. (2006). Long wavelength video detection of fire in ship

compartments. Fire Safety Journal, 41, 315 - 320.

R-8

PEREIRA, M. C., and SETZER, A. W. (1993). Spectral characteristics of deforestation

fires in NOAA/AVHRR images. International Journal of Remote Sensing, 583

- 597.

Phillips III, W., Shah, M., and Lobo, N. V. (2000). Flame Recognition in Video. IEEE,

224 - 229.

rgb2gray. (1994 - 2016). (The MathWorks, Inc.) Retrieved from

http://www.mathworks.com/help/matlab/ref/rgb2gray.html#output_argument_

i

Roberto, R.-R. (2014). Remote detection of forest fires from video signals with

classifiers based on K - SVD learned dictionaries. Engineering

ApplicationsofArtificial Intelligence, 33, 1 - 11.

Scheffey, J. (2016). New Hangar Fire Protection Design Concepts. In SFPE Handbook

of Fire Protection Engineering (pp. 1686 - 1689). Springer.

Schröder, T., Krüger, K., and Kümmerlen, F. (2014). Image processing based

deflagration detection using fuzzy logic classification. Fire Safety Journal , 65,

1 - 10.

Schultze, T., Kempka, T., and Willms, I. (2006). Audio - video fire - detection of open

fires. Fire Safety Journal, 41, 311 - 314.

Shi, L., Liu, X., and Liu, P. (2009). An Analysis of Fire Frame Processing and Video

Dynamic Features. Springer - Verlag Berlin Heidelberg.

Sky and Telescope. (2015). (Sky and Telescope Media, an F+W, Content + eCommerce

Company) Retrieved from http://www.skyandtelescope.com/astronomy-

resources/astrophotography-tips/simple-astrophotography/

R-9

So, A. T., and Chan, W. L. (1994). A Computer - Vision - Based and Fuzzy - Logic -

Aided Security and Fire - Detection System. Fire Technology Third Quarter,

341 - 356.

Song, w. g., Fan, w. c., and Wu, l. b. (1999, 7). BP Network Based Image Fire Detection

Method. Fire Safety Science, 8, 49 - 56.

Stratton, B. J. (2005). Determining Flame Height and Flame Pulsation Frequency and

Estimating Heat Release Rate from 3D Flame Reconstruction. Christchurch:

Department of Civil Engineering University of Canterbury.

Suzuki, K., and Takehara, A. a. (2012). Graphic probability, statistics. 台灣: 積木文

化.

Television Broadcasts. (2017). Guide to navigation. Retrieved from

http://programme.tvb.com/news/innovationgps/

Thermal imaging for Safety and Efficiency in Public Transportation. (2016, 9 14).

Retrieved from FLIR® Systems, Inc.:

http://www.flir.com/traffic/blog/details/?ID=78385

Toreyin, B., Dedeoglu, Y., Gudukbay, U., and Cetin, A. (2006). Computer vision based

method for real - time fire and flame detection. Pattern Rrecognition Letters,

27, 49 - 58.

Toyota, K. (1972). Graphic camera construction. Japan: 世茂出版集團.

Truong, T. X., Kin, Y., and Kin, J. (2011). Fire Detection in Video using Genetic -

based Netural Network. IEEE, 1 - 5.

V, V. (2012). Image Processing based Forest Fire Detection. International Journal of

Emerging Technology and Advanced Engineering, 2(2), 87 - 95.

R-10

Verstockt, S., Hoecke, S. V., Tilley, N., Merci, B., Sette, B., Lambert, P., . . . Walle, R.

V. (2011). FireCube: A multi - view localization framework for 3D fire analysis.

Fire Safety Journal, 46, 262 - 275.

Wallpapers You need. (2014). Retrieved 2015, from

http://hdwyn.com/glacier_iceberg_under_water_hd-wallpaper-14494/

Wan, L., Wang, J., Sun, X., and Hao, M. (2010). A Modified Otsu Image Segment

Method Based on the Rayleigh Distribution. IEEE, 281 - 285.

Wang, H., Finn, A., Erdinc, O., and Vincitore, A. (2013). Spatial - Temporal Structural

and Dynamic Features for Video Fire detection. IEEE.

Wong, A. K., and Fong, N. (2014). Experimental study of video fire detection and its

applications. Procedia Engineering, 71, 316 - 327.

Wong, A. K., and Fong, N. (2014). Study of pool fire heat release rate using video fire

detection. 3th International Hight Performance Building Conference . Purdue.

Xie , J. (2015). Security personnel about to be unemployed: unmanned monitoring

technology how to replace the artificial interpretation. 台北: 佳魁資訊.

Xiong, Z., Caballero, R. E., Wang, H., Finn, A. M., and Peng, P.-y. (2009). Video Fire

Detection - Techniques and Applications in the Fire Industrial. In Multimedia

Content Analysis Theory and Applications (pp. 339 - 351). USA: Springer.

Xu, Y., Zhu, X., and Xie, B. (2012). Method Design of Small - scale Fire Detection.

Journal of Computational Information Systems, 8, 7355 - 7365.

Y. L., D. Z., F. W., and W. Q. (2001). Experimental Study on Characteristics at Early

Stage of Fire. Journal of Fire Sciences, 19, 190 - 203.

Yamagishi, H., and Yamaguchi, J. (1999). Fire Flame Detection Algorithm Using a

Color Camera. IEEE, 255 - 259.

R-11

Yamana, T., and Tanaka, T. (1985). Smoke Control in Large Scale Spaces. Fire Science

and Technology, 5, 41-54.

Yu, C., Mei , Z., and Zhang, X. (2013). A real - time video fire flame and smoke

detection algorithm. Procedia Engineering, 891 - 898.

Zhang, D., Han, S., Zhao, J., Zhang, Z., Qu, C., Ke, Y., and Chen, X. (2009). Image

Based Forest Fire Detection Using Dynamic Characteristics With Artificial

Neural Networks. INFORMATION TECHNOLOGY AND CONTROL, 38, 237

- 244.

Zhang, J., Zhuang, J., Du, H., Wang, S., and Li, X. (2006). A Flame Detection

Algorithm Based on Video Multi - feature Fusion. Springer - Verlag Berlin

Heidelberg.

文昌, 鄭., and 政達, 陳. (2010). 影像式火災自動偵測系統之研究. 第九屆離島資訊

技術與應用研討會論文集.

F-1

Figure 1.1 Properties of dynamic objects for unmanned video surveillance

Unmanned video
surveillance

Temporal

SpatialSpectral

F-2

Figure 1.2 Relationship of features of fire regions and spectral, spatial, temporal

features

Features of fire regions

1.Colour

2.Motion

3.Shape

4.Growth

5.Flickering

6.Smoke behavior

Spectral

Temporal
features

Spatial

F-3

Figure 1.3 Examples of different environments and premises

a. Warehouse b. Atrium

c. Tunnel d. Forest

g. Aircraft hangar

f. Plant room

e. Historical building

F-4

Figure 1.4 Traditional fire detectors

a. Smoke detectors b. Heat detectors

c. Flame detectors d. Gas Sensors

(Electrochemical Cell

Toxic Gas Detector,

2015)

Ultraviolet type

(40/40U-UB - UV

Flame Detector,

2010)

Infrared type

(40/40R - Single

IR Flame Detector,

2010)

F-5

Figure 1.5 Fire detectors approved by the Fire Services Department (Codes of Practice Minimum Fire Service Installations and Equipment

and Inspection, Testing and Maintenance of Installtions and Equipment, 1998)

Fire detection systems

Heat detectors Smoke detectors Flame detectors

Fixed Temperature

Rate of rise

temperature

Combination

Linear cable

Ionisation

Optical

Beam

Self - aspirating

Infrared

Ultra – violet

F-6

Figure 1.6 Time relationship to fire development and fire control (Chapter 10 Fire Detection Systems, 1993)

Time

Volume

of fire

Alarm phase

Response time

Extinguishment

F-7

Figure 1.7 Total fire calls, unwanted alarms, and false alarms (Hong Kong Fire Services Department, 2002 - 2015)

 -

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

 45,000

2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002

N
u

m
b

er
s

Years

Total Fire Calls Unwanted alarms False alarms

F-8

Figure 1.8 Standardisation of the numbers of total fire calls, unwanted alarms, and false alarms

F-9

Figure 1.9 Conceptual diagram of video fire detection

(1) ALGORITHM
/ COMPUTER

PROGRAM

(2) HARDWARE
(Image sensors)

FUNCTION

and

APPLICATION

F-10

Figure 1.10 Typical fire images

Smoke image Flame image

F-11

Figure 1.11 Typical thermal image

F-12

Figure 1.12 Flame shapes captured simultaneously

Flame image Thermal image

F-13

Figure 1.13 Operation framework for video fire detection

CAMERA

SOFTWARE

HARD DISK

CENTRAL PROCESING

UNIT

To Fire Alarm

COMPUTER

F-14

Figure 1.14 A traditional film camera compared with a digital camera

Film Record
Analogue

Images

Lens

Shutter Lens

Digital

Record

Digital

Imagers

Electronic Viewfinder

Lens

Shutter
Lens

Digital Camera

Traditional Film Camera

F-15

Figure 1.15 A traditional webcam compared with an IP camera

Webcam IP camera

F-16

Figure 1.16 Natural phenomenon (colour spectrum)

OPTICAL PRISM

COLOUR SPECTRUM

COLOUR SPECTRUM

F-17

Figure 1.17 The visible spectrum and the electromagnetic spectrum (Beer Color Laboratories, n.d.)

F-18

Figure 1.18 Mixture of colour (additive primaries)

BLUE

(0,0,255)

GREEN

(0,255,0)

RED

(255,0,0)

MAGENTA

(255,0,255)

YELLOW

(255,255,0)

CYAN

(0,255,255)

WHITE

(255,255,255)

F-19

(a) Schematic of colour cube (b) Colour cube

Figure 1.19 Greyscale model: (a) schematic of colour cube, (b) colour cube

B

R

G

R

G

B
Cyan

(0, 255, 255)

Yellow

(255, 255, 0)

Magenta

(255, 0, 255)

Red

(255, 0, 0)

Blue

(0, 0, 255)

White

(255, 255, 255)

Black

 (0, 0, 0)
Green

(0, 255, 0)

Gray axis

R=G=B

F-20

Figure 1.20 Typical structure of neural networks

Input layer

Hidden layer

Output layer

F-21

Figure 2.1 Quantity of research papers have gone through

1
0

2
2

1
2
2

1
4

3
2
2

3
7

9
11

6
10

17
14

17
13
13

4
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

Number of issued reserch papers

Ye
ar

s

F-22

Figure 2.2 Quantity of research papers in different countries

2.7%

25.7%

4.7%
3.4%

8.1%

5.4%
6.8%

7.4%
9.5%

0%

5%

10%

15%

20%

25%

30%

A
u

st
ra

li
a

B
el

ar
u

s

B
el

g
iu

m

B
ra

zi
l

C
an

ad
a

C
h

in
a

C
ro

at
ia

E
g
y

p
t

E
sp

an
a

F
ra

n
ce

G
er

m
an

y

G
re

ec
e

H
o

n
g

 K
o
n

g

H
u

n
g

ar
y

In
d

ia

Ir
an

It
al

y

Ja
p

an

K
o

re
a

M
ex

ic
o

N
ew

 Z
e
al

an
d

O
rl

an
d
o

P
h
il

ip
p

in
e

P
o
rt

u
g
al

S
in

g
ap

o
re

S
lo

v
en

ia

S
p
ai

n

S
w

it
ze

rl
an

d

T
ai

w
an

T
u
rk

ey

U
K

U
rb

an
a

U
S

A
 /

 U
n
it

ed
 S

ta
te

s

V
ie

tn
am

P
er

ce
n

ta
g

e
o

f
is

su
ed

 r
e
se

a
rc

h
 p

a
p

er
s

Countries / Regions

F-23

Figure 2.3 Classification video fire detection technology

1. Video flame detection

2. Video smoke detection
Video detection

technology in fire and

smoke images

3. Video flame and smoke

detection

F-24

Figure 2.4 Statistical results in video fire detection functions

20.8%

61.7%

17.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Smoke detection Flame detection Flame and Smoke detection

P
er

ce
n

ta
g
e

Video fire detection functions

F-25

Figure 2.5 Statistical results regarding the quantity of flame characteristics

71

6

39

28 27

(1)
FLAME COLOR

(2)
FLAME HEIGHT

(3)
FLAME SHAPE

(4)
FLAME LIGHT INTENSITY

(5)
FLAME FLICKER FREQUENCY

Q
u

an
ti

ty

Flame characteristics

F-26

Pixels coordinate: x=0; y=0; t=0

Y(x,y,t)

Generated the grey level histogram from grey

colours images

n = numbers of pixels in each grey level;

i =histogram grey level;

k = thresholds

i =0

Probabilities of class occurrence (Step 1)

START

A

i =i+1

i= 255 ?

Yes

No

F-27

A

i=0

Class mean levels (Step 2)

;

i=0

The class variances (Step 3)

;

B

i=255 ? No

Yes

i=i+1

i=255 ? No

Yes

i=i+1

F-28

Figure 3.1 Flow diagram of Otsu threshold method

B

i=0

Between Class Variance (Step 4)

i=0

i  k

END

i=255 ? No

Yes

i=i+1

 No

Yes

i=i+1

F-29

Figure 3.2 Flow diagram of the grey colours images conversion method

START

Pixels coordinate: x=0; y=0; t=0

R(x,y,t); G(x,y,t); B(x,y,t)

Y(x,y,t)=0.299R(x,y,t)+0.587G(x,y,t)+0.114B(x,y,t)

x=320; y=240; t=time No

Yes

x=x+1;

y=y+1;

t=t+1

Converted input images from Y(x,y,t)

calculation results

END

F-30

Figure 3.3 Histogram analysis of Otsu method

(k) = threshold value

0 255

N
u
m

b
er

s
o
f

p
ix

el
s

Background Fire images

F-31

Figure 3.4 Examples of histogram analysis of Multi threshold method

k(1) = threshold value 1

0 255

N
u
m

b
er

s
o
f

p
ix

el
s

Background

Fire images

k(1) = threshold value 1

0 255

N
u
m

b
er

s
o
f

p
ix

el
s k(2) = threshold value 2

Fire images

Background

k(1)

F-32

START

Number of threshold values = 6

Count = 1; grey level i = 0

By Otsu method calculation:

1. Probabilities of class occurrence     iandi fb 

2. Class mean levels     iandi fb 

3. The class variance     iandi fb 

 Between Class Variance

A

Storage analysis results into threshold

i = k(count)

B

Yes

Re-storage the threshold

into grey level

k(count) = i

i = 0

i = i+1

F-33

Figure 3.5 Flow diagram of Otsu multi threshold approach

END

Count = 6?

Yes

No

Count = Count +1

B A

F-34

Figure 3.6 Sketch of distribution curve of fire images and estimated fire region

Estimated

Fire region

F-35

      2222 iii fff  

Between class variance

          22 iiiii bffbB  

      2222 iii bbb  

By Otsu method Calculation:

1. Class mean level    iandi fb 

2. The class variance    iandi fb 

i = 0

START

i = i+1

 No

Yes

A

F-36

Figure 3.7 Flow diagram of modified Otsu method (Rayleigh distribution

analysis)

i  k

END

A

F-37

START

Calculation the Multi threshold value by

Otsu method

Calculation the Multi threshold value by

modified Otsu method

i = 0

and

i = i+1

No

Yes

Calculation the numbers of pixels

Calculation the Numbers of pixels

A

F-38

Figure 3.8 Flow diagram of optimal threshold selection method

END

A

ik*

F-39

Figure 3.9 Field of View and Focal length

Real

fire

Fire

images

Focal length (f)

Angle of view Field of view

Lens

Image sensor

F-40

Figure 3.10 Schematic of digital camera and fire pool setup

Digital camera

Hc

Lc

dobjects

F-41

Figure 3.11 Theory of optical flow analysis

x

y
v

I(x, y, t)
I(x, y, t)

I(x+x, y+t, t+t)

F-42

Figure 4.1 Property information of propanol fuel

F-43

Figure 4.2 Different pool diameter for experimental study

100mm diameter 200mm diameter

300mm diameter 400mm diameter

F-44

Figure 4.3 Colour images segmentation results

F-45

Figure 4.4 Colour images segmentation results (Distortion)

F-46

Figure 4.5 Original colour images and Greyscale images

Colour images Grey images

F-47

Figure 4.6 Thermal images (Left) Colour still images (Right) Computer output

F-48

Figure 4.7 Thermal images (Left) Grey colour images (Right)

F-49

Figure 4.8 Histogram and Calculation result.

F-50

Figure 4.9 Binary image (Threshold value = 85)

F-51

Figure 4.10 Computer output of greyscale images and histogram (still images)

F-52

(a) Grey images (b) Histogram (c) Segmentation images

Figure 4.11 Experimental results

F-53

Figure 4.12 Calculation results of traditional Otsu method and Modified Otsu method

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

Th
re

sh
o

ld
 v

al
u

es

Sequences of calculation

Threshold values (By Otsu) Threshold values (By Rayleigh distribution)

F-54

Figure 4.13 Segmentation images overlap on the original colour flame images

F-55

Figure 4.14 Flame images (left) non – flame images (right)

F-56

Figure 4.15 Calculation and analysis results of x and y coordinate

Fluorescent tube

(Test images)

Flame

(Test images)

F-57

Figure 4.16 HRR curve against Pool diameter

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

H
ea

t
R

el
e

as
e

R
at

e
(k

W
)

Pool Diameter (mm)

F-58

Figure 4.17 Experimental setup in fire chamber

Fire source

Computer

Webcam

F-59

Index Histogram Index Images

A Red colour histogram 1 Colour input images.

B Green colour histogram 2 Grey images

C Blue colour histogram 3 Segmentation images

D Grey histogram 4 Optical flow images

E Combined histogram

(including RGB and grey)

5 Threshold images

F Flame height flickering 6 Output images

 7 Image difference

Figure 4.18 Output displayed on a computer screen

F

A

B

C

E D

4

1

2

3

7 5

6

F-60

Figure 4.19 Flame Image Height (Flame motion) (10mL)

0

50

100

150

200

250

300

15:28:31 15:28:48 15:29:05 15:29:23 15:29:40 15:29:57 15:30:14 15:30:32 15:30:49

H
ei

gh
t

o
f

fl
am

e
re

gi
o

n
 (

p
ix

el
s)

Time (hh:mm:ss)

Flame Image Height (Flame motion)

F-61

Figure 4.20 Flame Image Height (Flame motion) (20mL)

0

50

100

150

200

250

300

350

400

15:54:43 15:55:26 15:56:10 15:56:53 15:57:36 15:58:19 15:59:02

H
ei

gh
t

o
f

fl
am

e
re

gi
o

n
 (

p
ix

el
s)

Time (hh:mm:ss)

Flame Image Height (Flame motion)

F-62

Figure 4.21 the change of flickering

5

6

7

8

9

10

11

15:28:31 15:28:48 15:29:05 15:29:23 15:29:40 15:29:57 15:30:14 15:30:32 15:30:49

N
u

m
b

er
s

o
f

fl
ic

ke
ri

n
g

Time, (hh,mm,ss)

Numbers of record Quantity of flickering

F-63

Figure 4.22 the histogram of flame flickering

0

10

20

30

40

50

60

5 6 7 8 9 10 11

N
u

m
b

er
s

Flame flickering

F-64

Figure 4.23 Display of optical flow analysis (left) and motion detection (right)

Flame region

F-65

Figure 4.24 Flow diagram of video fire detection system

START

CAPTURE IMAGES

SEGMENTATION

IDENTIFY THE FIRE

FIRE
NO

YES

WARNING TRACK THE FLAME

MOVEMENT

(A)

Hardware details

Software details

(B)

Calculation of

threshold

(C)

Nearest Neighbour

method

Logistic Regression

method

(D)

Optical flow

Motion detection

A

B

C

D

F-66

Figure 5.1 Different knowledge in video fire detection research

VIDEO FIRE

DETECTION

Fire dynamics

Mathematics in

computer graphics Image processing

Computer

programming

T-1

 Years

Total Fire Calls Unwanted alarms False alarms

Total

Average

Total

Average

Total

Average

Per

month
Per day

Per

month

Per

day

Per

month

Per

day

1 2015

34,320

2,860

95

24,811

2,068

69

3,179

265

9

2 2014

36,335

3,028

101

26,765

2,230

74

3,206

267

9

3 2013

36,773

3,064

102

27,356

2,280

76

3,208

267

9

4 2012

37,638

3,137

105

28,461

2,372

79

2,995

250

8

5 2011

34,188

2,849

95

23,889

1,991

66

2,944

245

8

6 2010

40,604

3,384

113

30,710

2,559

85

3,108

259

9

7 2009

35,771

2,981

99

25,405

2,117

71

2,922

244

8

8 2008

35,513

2,959

99

24,007

2,001

67

3,296

275

9

9 2007

31,638

2,637

88

20,717

1,726

58

3,119

260

9

10 2006

33,268

2,772

92

21,846

1,821

61

3,302

275

9

11 2005

37,741

3,145

105

25,766

2,147

72

3,492

291

10

12 2004

35,092

2,924

97

21,744

1,812

60

3,425

285

10

13 2003

37,774

3,148

105

24,448

2,037

68

3,801

317

11

14 2002

41,204

3,434

114

27,548

2,296

77

4,131

344

11

Total

400,431

33,369

1,112

274,541

22,878

763

36,535

3,045

101

Table 1.1 Calculation the statistical results of total fire calls, unwanted alarms

and false alarms (Hong Kong Fire Services Department, 2002 - 2015)

T-2

T-3

Video images Still images

Extension Format Developed by Extension Format Developed by

MP4

MPEG-4 Part

14

ISO / IEC WebP --- Google

AVI

Audio Video

Interleave

Microsoft JPG

Joint

Photographic

Experts Group

ISO / IEC /

ITU - T

3GP

Third

Generation

Partnership

3GPP PNG

Portable

Network

Graphic

World Wide

Web

Consortium

RMVB

Real Media

Variable

Bitrate

Real Networks ICO Computer Icon Microsoft

GIF

Graphics

Interchange

Format

CompuServe BMP

Windows

Bitmap

Microsoft

WMV

Windows

Media Video

Microsoft GIF

Graphics

Interchange

Format

CompuServe

MKV

Matroska

Video

Matroska

Media

Container

TIF /

TIFF

Tagged Image

File Format

Aldus

MPG

Motion Picture

Expert Group

ISO / IEC PCX

Picture

Exchange

ZSoft

Corporation

https://en.wikipedia.org/wiki/RealNetworks
https://en.wikipedia.org/wiki/CompuServe
https://en.wikipedia.org/wiki/CompuServe

T-4

Video images Still images

Extension Format Developed by Extension Format Developed by

VOB Video Object DVD Forum TGA

Truevision

Graphics

Adapter

Truevision

MOV

Quick Time

Movie

Apple Inc.

FLV Flash Video

Adobe

Systems

SWF

Small Web

Format

Adobe

Systems

Table 1.2 Popular still images and video file format and organisation

T-5

Standard Number Standard Topic

NFPA 72 National Fire Alarm and Signaling Code

ANSI/FM 3260 American National Standard for Radiant Energy – Sensing

Fire Detectors for Automatic Fire Alarm Signaling

BS 5839 Fire Detection and Fire Alarm Systems for Buildings

UL 268 Standard for Safety – Smoke Detector for Fire Alarm Systems

Table 1.3 The topics of different standards

T-6

Standard

Number

Summary

NFPA 72 1. Video image flame detection and video image smoke

detection are also described.

2. Quarterly inspection video image smoke and fire detectors

are necessary.

3. Video image smoke and flame detectors is necessary to

inspect, test and maintain following the manufacturer’s

instructions.

4. The location and spacing of video image smoke and flame

detectors is following the principle of operation and

engineering survey.

5. The video signal can transmit to other systems.

6. Video display require the alert and message.

7. Video image flame / smoke detection can analyse the

images from images features including brightness,

contrast, edge content, loss of detail and motion. The

analysis method uses software – based method.

8. The protection of control and software requires the

passwords and software keys or means of limiting access

to authorized/qualified personnel.

9. Trouble signal requires when any change of component

settings or ambient conditions affect the design

performance of the video detector.

T-7

10. Mass notification system requires including in fire alarm

notification.

ANSI/FM 3260 Test methods and practices are also referenced in NFPA 72

BS 5839 1. New video smoke detection is taken into account.

2. Video techniques are used to detect the smoke.

3. Closed circuit television cameras monitor the protected

space.

4. Detection can use in normal lighting environments and

also use in infra – red light sources environments.

UL 268 1. The outline of video smoke detection describes.

2. Normal operation and fire test are also analysis.

3. Normal operation includes operation test, electrical

supervision test, component failure, stability test, circuit

measure test, overvoltage and under voltage tests,

temperature test, vibration test, Jarring test, Variable

ambient temperature test, etc.

4. Fire test includes paper fire test, wood fire test,

smouldering smoke test, smouldering smoke test –

analysis maximum obscuration without alarm,

Table 1.4 Summary of different standard relative video fire detection

T-8

 Visible name Wavelength  (nm)

1 Visible Red 700

2 Visible Green 546.1

3 Visible Blue 435.8

Table 1.5 Visible band of electromagnetic spectrum

T-9

Colour Function values

Red Green Blue

Red 255 0 0

Green 0 255 0

Blue 0 0 255

White 255 255 255

Black 0 0 0

Yellow 255 255 0

Cyan 0 255 255

Magenta 255 0 255

Table 1.6 Common colours in RGB function

T-10

Environment Hue Saturation Intensity

Brighter 0o-60o 40-100 127-255

Darker 0o-60o 20-100 100-255

Table 2.1 colour feature of low temperature fire flames (Horng,

Peng , & Chen, 2005)

T-11

Red level Ratio > 2.0%

Orange level 1.0% < Ratio ≤ 2.0%

Yellow level 0.5% < Ratio ≤ 1.0%

Blue level 0% < Ratio ≤ 0.5%

Table 2.2 Ratio distribution of Blue, Yellow, Orange and Red

T-12

Fire Height in pixels

A gasoline 58

Acetone 51

Alcohol 24

Table 2.3 Measured flame heights in pixels (Maoult, Sentenac, Orteu, & Arcens,

2007)

T-13

Flame numbers #1 #2 #3 #4 #5 #6

Height in pixels 112 159 148 164 218 256

Real flame height (m) 0.2489 0.3533 0.3289 0.3644 0.4844 0.5689

Flame numbers #7 #8 #9 #10 #11 #12

Height in pixels 188 222 243 198 206 210

Real flame height (m) 0.4178 0.4933 0.5400 0.4400 0.4578 0.4667

Table 2.4 Number of flame pixels and real flame height (Jianzhong, Jian, Jian, &

Jun, 2010)

T-14

Pool size Pagni’s

method

df Frequency of

Experimental study

zf Frequency of Zukoski

calculation

Bigger 3.5746 (Flue is heptane)

Average 3.1875

Average 3.0950

(Flue is heptane)

Average 3.1562

Average 3.1070

Smaller 4.7958 (Flue is gasoline)

Average 4.5937

Average 4.5065

(Flue is gasoline)

Average 4.8425

Average 4.6270

Table 2.5 Experimental results of oscillation frequency (Jianzhong, Jian, Jian, &

Jun, 2010)

T-15

Pool diameter (m)

Frequency (Hz)

Hefei Lhasa Pagni’s method

W x L = 0.27 x 0.27 2.48, 2.24, 2.44, 2.63 2.75

D = 0.18 3.53, 3.43, 3.34, 3.38 3.57

Table 2.6 Flame oscillation in two different pool size (Juan & Qifu, 2012)

T-16

 Research countries Qty. Years

1 Spain 7 1991, 1995, 1997(2), 1999,

2003, 2011

2 Brazil 1 1993

3 China 4 1998, 2008, 2009, 2011

4 Canada 1 2001

5 France 1 2005

6 Croatia 1 2009

7 India 2 2012, 2016

8 Mexico 1 2014

Table 2.7 The countries of research of video fire detection for protection forest

environment

T-17

Class no. Colour NDVI value

Class 1 Blue -1.0 – 0.0

Class 2 Red 0.0 – 0.05

Class 3 Black 0.05 – 0.10

Class 4 Dark green 0.10 – 0.15

Class 5 Green 0.15 – 0.20

Class 6 Light green 0.20 – 0.25

Class 7 Yellow 0.25 – 0.30

Class 8 White 0.30 – 1.0

Table 2.8 Summary of colour relative HDVI value

T-18

Years Researcher

Fire /
Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural

Network / Neural
Network

Remarks

1994 S. Noda, K. Ueda 
 RGB colour model

1996 Simon Y. Foo 


Median, Standard Deviation and
First – order moment statistical
measures of the histogram data

 Aircraft dry bays and

engine compartments

1999

Song Weiguo, Fan

Weicheng, Wu

Longbiao


 Back Propagation

1999
Hideaki Yamagishi,

Jun’ichi Yamaguchi


 HSV colour model Back propagation

1999

Xiaofang Cheng,

Jianhua Wu, Xin

Yuan, Hao Zhou




Sensitivity of the CCD
camera
The relationship between
lower illuminance and
Planck’s Law

2000

Ivan Kopilovic,

Balazs Vagvolgyi

and Tamas Sziranyi





Tracking information
History of motion
Detection the special motion of
smoke

 Panoramic Annular

Lens

2000

Walter Phillips III,

Mubarak Shah,

Niels da Vitoria

Lobo



Gaussian – smoothed colour
histogram define the fire colour
pixels
Using the temporal variation of
pixels define the actual fire
pixels.

Recognition the fire

(High, low temporal

variation)

Table 2.9 Development of video fire detection method from 1994-2000

T-19

Years Researcher
Fire / Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2001

Yang Lizhong,

Deng Zhihua, Fan

Weicheng and

Wang Qing’an


 Pixels analysis in

Greyscale images
 Liquid Crystal - Light

Valve

2003

Thou - Ho (Chao -

Ho) Chen, Cheng -

Kiang Kao and Sju

- Mo Chang


 RGB and HSI colour model

Statistical parameter (Average
and Variance)

2004

Tao Chen,

Hongyong Yuan,

Guofeng Su,

Weicheng Fan


 Computer vision theory Controlled the fire

suppression system

2004
Lawrence S.M.

Chiu

 Grey level method
Histogram method (Standard
deviation, Mean and Maximum)

2004

Wolfgang Krüll,

Ingolf Willms and

Jeff Shirer


 IMAGE STATISTICS to Cargo fire

verification control unit
 Cargo fire verification

system

2004

Li Jin, Fong N. K.,

Chow W. K., Wong

L. T., Lu Puyi and

Xu Dian - guo


 Nyquist sampling theorem Moment features /

Flickering frequency

2004
Che-Bin Liu and

Narendra Ahuja




(1) SEED REGION - A mixture of
Gaussian distributions in HSV
space
(2) Using Fourier Descriptors
(FD) discrimination the flame
shape
(3) Autoregressive model
(analysis the temporal variation
of shape)

Colour probability

density

(1) Spectral model

(2) Spatial model

(3) Temporal model

T-20

Years Researcher
Fire / Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2005

Wen-Bing Homg,

Jim-Wen Peng, and

Chih-Yuan Chen


 RGB and HSI colour model Building a flame

feature model

2005

B. Ugur Toreyin,

Yigithan Dedeoglu,

A. Enis Cetin




Flame Chrominance
Model - Defining the
flame pixels

"Hidden Markov Model" – Both
temporal and spatial analysis of
flame and non – flame pixels

2005

CHENG Xin,

WANG Da - chuan,

YIN Dong - liang


 Colour analysis Used MATLAB

2005

Yigithan Dedeoglu,

B. Ugur Toreyin,

Ugur Gudukbay, A.

Enis Cetin


 Wavelet analysis

Combined all of the

clue reach a final

decision.

2005

Florent Lafarge,

Xavier Descombes

and Josiane Zerubia


 Support Vector Machine

(SVM) Classification

Kernel based on a

flame textural

information analysis

Forest fire detection

2005
Thorsten Schultze

and Ingolf Willms


 Spatial resolution of light
scattering measurements

 Used microscope

2005

Feiniu Yuan,

Guangxuan Liao,

Weicheng Fan, and

Heqin Zhou


 Mixture Gaussian Model Colour and temporal

features

2006

Jinhua Zhang, Jian

Zhuang, Haifeng

Du, Sun’an Wang,

and Xiaohu Li




Flame detection algorithm:
(Multi - feature fusion)
Static flame feature: Probability
model
Diffusion flame feature:

Analysis the features of

static flame and

diffusion flame

T-21

Years Researcher
Fire / Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2006

Giuseppe Marbach,

Markus Loepfe,

Thomas

Brupbacher


 YUV colour model

Feature extraction

(1) Flickering

(2) Reaching maximal

luminance

2006

T. Ono, H. Ishii, K.

Kawamura, H.

Miura, E. Momma,

T. Fujisawa, J.

Hozumi




RGB colour model
Analysis the RG colour
obtain the threshold

 Hierarchical type Neural
Network

Car fire analysis

2006

Thorsten Schultze,

Thorsten Kempka,

Ingolf Willms




Mean value of the
brightness in each video
frame

 Flickering and flow

movement

2006

T. Celik, H.

Demirel, H.

Ozkaramanli


 Probability method

2006

Jeffrey C.

Owrutsky, Daniel

A. Steinhurst,

Christian P. Minor,

Susan L. Rose -

Pehrsson, Frederick

W. Williams,

Daniel T. Gottuk


 Long wavelength video

image - based detection

2006

Thou-Ho (Chao-

Ho) Chen, Yen-Hui

Yin, Shi-Feng

Huang and Yan-

Ting Ye



1. Chromaticity - based
statistic decision rule
2. Diffusion - based
dynamic characteristic
decision rule

2006

D.T. Gottuk, J.A.

Lynch, S.L. Rose-

Pehrsson, J.C.




Evaluate the

effectiveness of

commercial video

T-22

Years Researcher
Fire / Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

Owrutsky, F.W.

Williams

image fire detection in

shipboard

2007

C. L. Lai, J. C.

Yang, and Y. H.

Chen

 

Spatial - temporal, spectra
variation
Colour / Greyscale
histogram concentration

2007

Turgay Çelik,

Hüseyin

Özkaramanlı, and

Hasan Demirel

 

YCbCr Colour model for
fire detection
RGB Colour model for
smoke detection

2007

Y. Le Maoult, T.

Sentenac, J. J.

Orteu and J. P.

Arcens




based on a low-cost

CCD camera to detect a

fire in the near infrared

spectral band

2007
Byoungmoo Lee

and Dongil Han
 

Determined threshold of
RGB colour

 Tunnel fire analysis

2008 Feiniu Yuan


Determined the threshold
based on the chrominance
detection

2008
Chin-Lun Lai, Jie-

Ci Yang
  Colour information Otsu method

2008
Yu Cui, Hua Dong,

Enze Zhou



Wavelet analysis
Grey level Co-occurrence
Matrices (GLCM)

 For discrimination Smoke texture analysis

2008

Zhong Zhang,

Jianhui Zhao,

Dengyi Zhang,

Chengzhang Qu,


 Combine both wavelet and

Fourier analysis
 Forest fire detection

T-23

Years Researcher
Fire / Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

Youwang Ke, Bo

Cai

2008

Paulo Vinicius

Koerich Borges,

Joceli Mayer,

Ebroul Izquierdo


 Statistical characteristic of fire

features

Skewness, texture,

boundary roughness,

colour, randomness of

area size

2008

Bo-Ho Cho , Jong-

Wook Bae , and

Sung-Hwan Jung


 HSI colour model and RGB

colour model
Statistical colour model and
Binary background mask

2009

Shuenn-Jyi Wang,

Dah-Lih Jeng,

Meng-Tsai Tsai

 

Discriminated the region
characteristics - the shape
of the changed region

Fuzzy c - mean clustering
algorithm (Dominant flame
colour lookup table) – By
comparing the pixels of changed
regions

 New generation vessels

2009

Jie Hou, Jiaru Qian,

Zuozhou Zhao,

Peng Pan, Weijing

Zhang


 Probability density (PD)

algorithm

Fuzzy Neural Network
(FNN),
Combined PD, FNN,
Dempster - Shafer rule
and Historical data fusion

High and Large - Span

Space Structures

2009

Byoung Chul Ko ,

Kwang - Ho

Cheong, Jae - Yeal

Nam




1. Using the frame
difference detection
moving pixels
2. Flickering frequency

RGB colour probability models

1. Proposed robust fire

detection algorithm that

is installed in home

network server

2. Detection of moving

regions

3. Fire - coloured

pixels

2009
Turgay Celik,

Hasan Demirel


 YCbCr Colour model Forest fire detection

T-24

Years Researcher
Fire / Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2009
Dongil Han,

Byoungmoo Lee
 

Flame detection
algorithm
1. Colour information -
Intensity of images
2. Erosion and Dilation
remove the nose
Smoke detection
algorithm
Numerical equation for
extract the images
Used Motion History
Images (MHI) method

 Experimental study for

tunnel fire

2009

Damir Krstinić,

Darko Stipaničev,

Toni Jakovčević



Segmentation the smoke
region from forest fire
images
Evaluated several colour
spaces including RGB, HIS
HS'I, YCrCb, and CIELab

1. Simple Lookup Table Method
2. Probabilistic model for
classification to classify the
pixels into the smoke class or
non - smoke class

 Forest fire detection

2009

Dengyi Zhan,

Shizhong Han,

Jianhui Zhao,

Zhong Zhang,

Chengzhang Qu,

Youwang Ke,

Xiang Chen




Segmentation based on
HSV colour model
Extraction the fire
features

 BP Neural Networks
Real time forest fire

detection

2009

Ignacio Bosch,

Soledad Gomez,

Raquel Molina, and

Ramon Miralles




Segmentation -
thresholding technique
Feature extraction -
Intensity, signature and
orientation

Infrared images

processing

Forest fire surveillance

and preservation of

natural heritage

T-25

Years Researcher
Fire / Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2009

Dong Keun Kim

and Yuan-Fang

Wang



Block - based approach
YUV colour model

Classification of Smoke (k -
temporal information)
Area, boundary rectangle, The
average and standard deviation
of Y - value and UV - value

Proposed three steps

for smoke detection in

outdoor video

sequences.

2009

Yu Chunyu, Zhang

Yongming, Fang

Jun, Wang Jinjun



Real - time detection and
divided the image in block

Gaussian Mixture Model (GMM)
segment the background and
foreground
Grey level co - occurrence
matrices analyse the smoke
texture

Neural Network
Classifier
Back Propagation Neural
Network discriminate the
smoke feature

Texture analysis

Feature extraction and

Feature Classification

2009
Ha Dai Duong,

Nguyen Anh Tuan




Real - time detection the fire by
Bayes method
Fuzzy C - Means (FCM)
algorithm is group pixels into
clusters and retrieve Dominant
flame colour look up table
(DFCLT)

2010
Ishita Chakraborty,

Tanoy Kr. Paul




RGB and HSI Histogram
Obtained the thresholding
by HSI

Hierarchical Clustering
Partition Clustering

2010

Paulo Vinicius

Koerich Borges,

Ebroul Izquierdo




Probabilistic Approach
Statistical characteristics of
fire
Colour, Randomness of Area
Size, Boundary Roughness,
Surface Coarseness, Skewness,
Spatial Distribution of Fire

2010 Feiniu Yuan  

Motion and colour
detection for smoke
detection

Probability of the incoming RGB
colour pixel values for flame
detection

An integrated fire

detection and

suppression system

T-26

Years Researcher
Fire / Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2010

Rong Jianzhong,

Wang Jian, Chen

Jian, Jiang Jun




Acoustic measurement
technology calculate the
oscillation frequency of
flame

2010

Byoung Chul Ko,

Kwang - Ho

Cheong, Jae - Yeal

Nam




Separate foreground from
background - Threshold analysis
Detection of fire coloured pixels
(Colour probability model -
Gaussian probability
distribution)
Three layers hierarchical
Bayesian Networks

2010 Turgay Celik 


RGB colour model convert
to CIE L*a*b* colour space
Using CIE L*a*b* colour
space identify the fire
pixels.

2010

Magy Kandil, May

Salama, Samia

Rashad


 Back Propagation feed

forward neural networks

2010
Li Ma, Kaihua Wu,

L. Zhu



Extract continuous motion
regions (Combined
Kalman filtering and
Moving History Image)
Colour variation
describing (colour
blending coefficients)
Dynamic feature
verification (wavelet
analysis)

Delete some moving objects
dissimilar to the smoke colour
model (Offline trained Gaussian
mixture model in RGB colour
space)

T-27

Years Researcher
Fire / Flame

detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2010

Jing Huang, Jianhui

Zhao, Weiwei Gao,

Chengjiang Long,

Lu Xiong, Zhiyong

Yuan, Shizhong

Han




Local Binary Pattern Based
(LBP) operator filtering the
object
The texture analysis is
Mahalanobis distance classifier

 Texture analysis

2010
Juan Chen, Yaping

He, Jian Wang




Detected moving objects
categorized flame region
(flame colour)

Extract moving foreground
objects with improved Gaussian
mixture model method
Statistical frequency counting
distinguish true flame

 Multi feature fusion

2010

Yu Chunyu, Fang

Jun, Wang Jinjun

and Zhang

Yongming



Extracted moving pixels
and regions
Colour - Based Decision
Rule for smoke
recognition

Optical flow method

Back - propagation
Neural Networks
discriminate the smoke
features

2010 鄭文昌, 陳政達 


RGB colour space
transform to YCbCr
YCbCr colour space
analysis
Flame flickering detection

Table 2.10 Development of video fire detection method from 2001-2010

T-28

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2011

Audrey Chenebert,

Toby P. Breckon and

Anna Gaszczak


Grey Level Co – occurrence Grey

Matrix (GLCM)

Flame texture and

colour feature analysis

for classification

2011
Truong Xuan Tung,

Jong-Myon Kim
 

Fuzzy C – Mean method (FCM)

and Support Vector Machine

(SVM) distinguish the smoke

features.

Smoke features :

Colour: low

temperature (Blush –

white to white) ;

temperature rise until

fire ignites (grey black

to black)

Movement : Drifting

upward and diffuse

Area, size and number

of smoke region are

varied and change from

frame to frame

Surface and boundary

are rough and coarse.

2011

Luis Merino, Fernando

Caballero, J. Ramiro

Martínez-de-Dios,

Iván Maza, Aníbal

Ollero


Image processing for

extraction by fire features

Perception system and decision

system

Analysis the probability values

Application the

Unmanned Aircraft

System (UAS)

monitoring and

measurement the forest

fire

2011

Yusuf Hakan

Habibo˘glu, Osman

Günay and A, Enis

Çetin



Detection Algorithm:

1. Chromatic colour model –

Analysis the RGB colour

Support Vector Machine (SVM)

extracted the features including

the RGB colour and Intensity

Using the colour,

spatial and temporal

information in video

fire detection

T-29

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2. Covariance matric method

for object detection and

texture classification

2011
Li Jinghong, Lv

Riqing, Zou Xiaohui


Forest transform operation

Sobel module – Edge

detection

Otsu method

Field Programmable

Gate Array (FPGA):

The module of image

collection

The module of fire

detection

The module of image

display

2011

Yang Zhao, Jianhui

Zhao*, Erqian Dong,

Bingyu Chen, Jun

Chen, Zhiyong Yuan,

and Dengyi Zhang



Dynamic texture model:

Multi – Resolution Analysis

Linear Dynamic System

(Threshold)

Fire Recognition by

texture analysis

2011

Tung Xuan Truong,

Yongmin Kim,

Jongmyon Kim

 Discrete wavelet transform
Approximate median method

Fuzzy c – mean algorithm

Genetic – Based Back –

Propagation Neural

Networks (BPNN)

FIRE FEATURES

Appropriate conditions

Reacting oxygen from

air

Generating combustion

products

Emitting light

Release heat

Colour of fire range

from red to yellow and

white

T-30

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

The size of area in fire

regions changed

The surface and

boundary of flame is

rough and coarse

2011

Yongqiang Jiao,

Jonathan Weir, WeiQi

Yan



Intensity histogram

RGB and HSI colour model

Texture analysis –
Coarseness

Contrast

Directionality

Line – likeness

Regularity

Roughness

Video content analysis

technology monitoring

Analysis the flame

region by texture

2011

Yusuf Hakan

Habiboglu, Osman

Gunay, A. Enis Cetin


Chromatic Colour model -

RGB and HSI colour model

Covariance matrix computation

method - RGB colour values and

First and second derivatives of

intensity with respect to time

2011

CHENG Caixia (程

彩霞), SUN Fuchun

(孙富春), ZHOU

Xinquan (周心权)



Neural network: Radial

basis function (RBF)

network

Temperature

CO concentration

Smoke density

2011

Jianhui Zhao, Zhong

Zhang, Shizhong Han,

Chengzhang Qu,

Zhiyong Yuan, and

Dengyi Zhang



Segmentation the possible flame

regions with:

3D colour model

Gaussian mixture model

Forest fire detection

Statistic features

including: Colour

distribution (11

features); Texture

T-31

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

Support Vector Machine (SVM)

classifier trains and filters the

segmented results

parameter (5 features);

Shape roundness (1

feature)

Dynamic features

including: (variation of

colour distribution,

texture parameter,

shape roundness, area,

contour, Flickering

frequency

2011 Feiniu Yuan 

Local binary pattern (LBP) is

Grey scale texture operator. It can

capture the spatial characteristic

of images.

Local binary patterns variance

(LBPV)

Histogram of LPB and LPBV

pyramids enhance the feature

vector

BP neural network

classifier is used for

discrimination the smoke

and non - smoke objects

Texture analysis

method is effetely

detection the smoke in

images

2011

Simone Calderara,

Paolo Piccinini, Rita

Cucchiara

 

By means of wavelet

transform coefficient analyse

the image energy

Bayesian approach classify the

candidate objects

Detecting the moving

objects

2011

Changwoo Ha,

Gwanggil Jeon, and

Jechang Jeong

 

RGB colour space –

Chromatic analysis

Motion information – Moving

Region Decision (MRD) is based

on calculation the Motion Vector

(MV) by upward characteristic of

smoke spread

Smoke detection

algorithm – Block –

based smoke detection

algorithm – three basic

steps

T-32

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2012
Ha Dai Duong and

Dao Thanh Tinh


Combined algorithm detection the

fire by average of RGB channel,

coarseness and skewness of red

channel distribution

Bayes classifier, evaluation and

classification the features

Features : colour,

geometry and motion

2012
Li Hongliang, Liu

Qing,Wang Sun’an


Probability model of fire

recognition algorithm based on

multi – features fusion

Dynamic feature:

Intensity

Sequence

Area variation

Circularity

2012

Leonardo Millan-

Garcia, Gabriel

Sanchez-Perez, Mariko

Nakano, Karina

Toscano-Medina,

Hector Perez-Meana,

Luis Rojas-Cardenas

 

Morphological operators

reduce the noise

Detection algorithm is

Discrete Cosine Transform

(DCT)

Smoke motion and smoke

colour analysis is proposed.

Video detection, IP

cameras platform is

used

RGB and YCbCr

colour model are used

MPEG domain is used

2012
CHEN Juan, BAO

Qifu


Fire feature is Flame colour

and oscillation frequency

(flickering)

Discrete time Fourier

transform (DTFC) analyse

the fire features.

Rounded oil pool fire

and squared oil pool

fire

2012
CHEN Ning, DING

Fei


Flame segmentation

Pixel analysis is proposed

for evaluation the threshold

value

Fisheye camera are

used for detection fire

T-33

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2012

 Vipin V



RGB and YCbCr colour

space pixels analysis

Calculation the mean value

of RGB and YCbCr

Histogram analysis

The processing of

segmentation requires

to satisfy the Rule 1 to

7.

2012
Yong XU, Xingjie

ZHU, Binglei XIE


First step: Pixel analysis

(RGB colour space

analysis), fire processing is

able to detect the genuine

fire region

Using adjustable KNN classifier

2012

Tarek Beji and Bart

Merci, Steven

Verstockt and Rik Van

de Walle

 

Smoke layer height

estimation exploits the

energy – related

characteristics of smoke.

Flame detection algorithm

exploits the brightness value

and threshold detection the

flame.

Estimation the fire size

exploits the two – zone fire

model (CFAST)

Forecast fire growth in

enclosures

2012

Chen – Yu Lee, Chin –

Teng Lin, Chao – Ting

Hong, Miin – Tsair Su

 

Feature extraction includes

the wavelet analysis, energy

analysis and chromatic

analysis.

Verification is evaluation the

images in a predefined time

interval. If over 50% is

required an alarm then sends

out a real fire alarm signal.

Support Vector Machine classifier

proposes to use for classification

the candidate region.

T-34

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2012

Zhigang Liu, George
Hadjisophocleous,
Guofeng Ding and
Choon Siong Lim

 
The second step: Smoke and

flame probability

The first step: Computing

the features of smoke and

flame with Back

propagation neural

networks (BPNN)

Captured the Colour

and Black and White

Images and also use the

Infrared Image

2013
Chunyu Yu, Zhibin
Mei, Xi Zhang

 

HIS colour model analysis

for smoke feature.

RGB colour model analysis

for flame feature.

Find the coordinates of the

centre points calculate with

Pyramidal Lucas – Kanade

feature optical flow vector

Back – propagation neural

network for smoke

recognition

Feature analysis of fire

flame and smoke

Reddish colour

The frequency of flame

flickering

2013

De-chang

Wang,XuenanCui,Eu

nsooPark,ChanglongJ

in,HakilKim

Determined the probabilities

(Colour and motion features)

extract the candidate flame region

Wald – Wolfowitz randomness

test determine the flame

probability

Feature extraction by

colour and motion

2013
Wanzhong Lei and

Jingbo Liu


Protection fire region

detection is analysis the

pixel in frame differencing.

YCbCr and RGB colour

space extract the flame

region

Median filtering algorithm is able

to remove the noise

Bayer classifier recognize the fire

features

Fire detection is able to

use in Coalmine

2013

Divina A. Chua

Carla Louie H.

Leandicho

Leo Angelo C.

Magtibay

Shape and colour analysis in

statistic colour model are used

Application in Mobile

Application (app.) in

Android Operating

System and Internet

T-35

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

Jerome T. Ortiz Protocol (IP) camera is

required

2013
LI Xiao-bai, HUA

Ying, XIA Ning


Optical flow method is able

to use in RGB colour space

analysis

Analysis of dynamic

textures

2013

Ti Nguyen-Ti,

Thuan Nguyen-

Phuc, Tuan Do-

Hong



RGB colour space model

and YCbCr colour space

model are used for analysis

fire pixels

Motion filter, Colour filter

and Position filter use for

analysis the region growth

To increase reliability, Ratio

height / width and correction

coefficient are used for

classification the fire from

images.

Total 9 rules detect the

fire

Colour and motion

model is proposed to

use.

2013

Jianzhong Rong,

Dechuang Zhou, Wei

Yao, Wei Gao, Juan

Chen, Jian Wang

 Generic colour model

Geometrical Independent

Component Analysis Model

(GICA model) and Cumulative

Geometric Independent

Component Analysis Model are

used for detection the moving

region.

BP neural network fire

recognition model
Filter the fire object

T-36

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2013

Panagiotis Barmpoutis,

Kosmas

Dimitropoulos, Nikos

Grammalidis



Temporal processing use for

flickering analysis

Analysis the Spatial and

temporal consistency include

the smoothness consistence

and data consistency

Adaptive median algorithm uses

for subtraction the background.

Fire colour probability is used for

filtration the non – fire moving

pixels

2013
N. Brovko, R. Bogush,

S. Ablameyko
 

Three steps of frame

processing : Greyscale

transformation, Histogram

equalization, Discrete

wavelet of current input

frame

Contrast calculated with Weber

formula.

Motion and contrast

two key features for

smoke detection

2013

Hongcheng Wang,

Alan Finn, Ozgur

Erdinc, Antonio

Vincitore



Pixel – level processing:

Identify the potential fire

pixels with motion and

intensity and grouped into

blobs.

Spatial – Temporal structure

features

Spatial – Temporal contour

dynamic features

Classifier: SVM classifier

Spatial – temporal

structural

Dynamics features

2014
Roberto Rosas-

Romero
 

Feature extraction include the

intensity colour values, mean of

the intensity value and variance of

the intensities on each colour

plane.

Classification the forest fire K –

Singular Value Decomposition (K

– SVD) method

Spatial – temporal

interaction

Wireless camera

networks

Forest fire monitoring

system

T-37

Years Researcher

Fire /
Flame
detection

Smoke
detection

Image processing Statistical analysis
Artificial Neural
Network / Neural
Network

Remarks

2014

Yoon-Ho Kim, Alla

Kim, and Hwa-Young

Jeong



RGB colour model is used

2.Colour detection of

moving pixels

3.Blob analysis

1.Detection of moving pixels or

regions in the current frame of a

video

Wireless sensor

networks

2015

Yang Jia, Jie Yuan,

Jinjun Wang, Jun Fang

and Yongming Zhang,

Qixing Zhang

 

Optical flow analysis with

Horn–Schunck algorithm

based on the image

brightness so-called Motion

Map Calculation

Detection the Saliency Smoke

Region with human vision system

based on probability

Saliency – based

method

Forest fire detection

2015

Sumei He, Xiaoning

Yang, Sitong Zeng,

Jinhua Ye, Haibin Wu



Calculation the average of

luminance information with

fire colour pixel based on

Colour clues - YCbCr colour

space

Fire detection employ the

Statistical analysis based on the

flame motion feature (flame

flickering)

Real – time fire

detection

Computer vision based

2015

Kosmas

Dimitropoulos,

Panagiotis Barmpoutis,

and Nikos

Grammalidis



First step1: filter out the non-fire

coloured moving regions by

probability based on RGB colour

space model

Discriminating the fire and non

- fire moving object:

Spatio – temporal consistency

energy

Flickering energy

Spatio – temporal energy

Spatio – Temporal

Flame Model

Dynamic Texture

Analysis

Table 2.11 Development of video fire detection method from 2011-2015

T-38

 Software Tools Image types

Stage 1 1. MATLAB image

processing toolbox

Still Images

Colour Images

Stage 2 1. Visual C++

2. Microsoft Foundation

Class (MFC)

Still Images

Thermal Images

Colour Images

Stage 3 1. C++

2. Open CV

Real time video images

Table 4.1 Summary of three stage of experimental study

T-39

Sequences of calculation Threshold values

1 128

2 208

3 238

4 248

5 252

6 253

Table 4.2 Multi threshold calculation results

T-40

Sequences of calculation Threshold values

(By Otsu)

Threshold values

(By Rayleigh distribution)

1 128 169

2 208 212

3 238 238

4 248 248

5 252 252

6 253 253

Table 4.3 Numerical data of two different procedures in threshold values

T-41

Fuel 2 – Propanol

Pool diameter mm 102 197 330 410

Fuel mL 100 800 800 800

Mass loss rate g/s 0.1264919 0.5157317 1.6350179 2.0463882

Molar coefficient kJ/mol 2220 2220 2220 2220

Molar weight g/mol 60.1 60.1 60.1 60.1

Heat of combustion kJ/g 36.938436 36.938436 36.938436 36.938436

Combustion efficiency 0.7 0.7 0.7 0.7

Heat Release Rate

(Based on Mass Loss Rate)
kW 3.2706883 13.335226 42.276503 52.913266

Number of images nos. 30 30 30 30

Mean flame height mm 183.63 283.80 462.16 667.80

Pool diameter m 0.102 0.197 0.33 0.41

Revised Heat Release Rate

(Based on images results)
kW 1.6579322 6.1108622 21.299584 45.909748

Table 4.4 Numerical data of calculation the heat release rate

T-42

Product Name Microsoft LifeCam HD 3000

Interface High – speed USB compatible with the USB 2.0

specification

Operating System 1. Microsoft Windows

2. Macintosh OS

3. Android

Image Features

Sensor CMOS sensor technology

Resolution Motion Video: 1280 pixel x 720 pixel resolution

Still Image: 1280 x 800

Imaging Rate Up to 30 frames per second

Field of View 68.5o diagonal field of view

Aspect ratio 16:9 widescreen

Fixed focus From 0.3m to 1.5m

Table 4.5 Specification of the webcam.

T-43

Pool diameter 10 cm

Propanol 10 mL – 20mL

Dimensions (spatial resolution) 640 x 480

Distance (from webcam to fire source) 110 cm

Table 4.6 Information data of pool fire setup and images

A-1

Appendix A: MATLAB

A.1 MATLAB’s Otsu method source code

6/8/16 9:10 PM C:\Documents and Settings\user\My Documents\MATLAB\otsu.m 1

of 5

1 function [IDX,sep] = otsu(I,n)

2

3 %OTSU Global image thresholding/segmentation using Otsu's method.

4 % IDX = OTSU(I,N) segments the image I into N classes by means of Otsu's

5 % N-thresholding method. OTSU returns an array IDX containing the cluster

6 % indices (from 1 to N) of each point. Zero values are assigned to

7 % non-finite (NaN or Inf) pixels.

8 %

9 % IDX = OTSU(I) uses two classes (N=2, default value).

10 %

11 % [IDX,sep] = OTSU(...) also returns the value (sep) of the separability

12 % criterion within the range [0 1]. Zero is obtained only with data

13 % having less than N values, whereas one (optimal value) is obtained only

14 % with N-valued arrays.

15 %

16 % Notes:

17 % -----

18 % It should be noticed that the thresholds generally become less credible

19 % as the number of classes (N) to be separated increases (see Otsu's

20 % paper for more details).

21 %

22 % If I is an RGB image, a Karhunen-Loeve transform is first performed on

23 % the three R,G,B channels. The segmentation is then carried out on the

24 % image component that contains most of the energy.

25 %

26 % Example:

27 % -------

28 % load clown

29 % subplot(221)

30 % X = ind2rgb(X,map);

31 % imshow(X)

32 % title('Original','FontWeight','bold')

33 % for n = 2:4

34 % IDX = otsu(X,n);

35 % subplot(2,2,n)

36 % imagesc(IDX), axis image off

37 % title(['n = ' int2str(n)],'FontWeight','bold')

38 % end

39 % colormap(gray)

40 %

41 % Reference:

42 % ---------

A-2

43 % Otsu N, A

Threshold

Selection Method from Gray-Level Histograms,

44 % IEEE Trans. Syst. Man Cybern. 9:62-66;1979

45 %

46 % See also GRAYTHRESH, IM2BW

47 %

48 % -- Damien Garcia -- 2007/08, revised 2010/03

49 % Visit my <a

50 %

href="matlab:web('http://www.biomecardio.com/matlab/otsu.html')">website for

more details

about OTSU

6/8/16 9:10 PM C:\Documents and Settings\user\My Documents\MATLAB\otsu.m 2

of 5

51

52 error(nargchk(1,2,nargin))

53

54 % Check if is the input is an RGB image

55 isRGB = isrgb(I);

56

57 assert(isRGB | ndims(I)==2,...

58 'The input must be a 2-D array or an RGB image.')

59

60 %% Checking n (number of classes)

61 if nargin==1

62 n = 2;

63 elseif n==1;

64 IDX = NaN(size(I));

65 sep = 0;

66 return

67 elseif n~=abs(round(n)) || n==0

68 error('MATLAB:otsu:WrongNValue',...

69 'n must be a strictly positive integer!')

70 elseif n>255

71 n = 255;

72 warning('MATLAB:otsu:TooHighN',...

73 'n is too high. n value has been changed to 255.')

74 end

75

76 I = single(I);

77

78 %% Perform a KLT if isRGB, and keep the component of highest energy

79 if isRGB

80 sizI = size(I);

81 I = reshape(I,[],3);

82 [V,D] = eig(cov(I));

83 [~,c] = max(diag(D));

84 I = reshape(I*V(:,c),sizI(1:2)); % component with the highest energy

85 end

A-3

86

87 %% Convert to 256 levels

88 I = I-min(I(:));

89 I = round(I/max(I(:))*255);

90

91 %% Probability distribution

92 unI = sort(unique(I));

93 nbins = min(length(unI),256);

94 if nbins==n

95 IDX = ones(size(I));

96 for i = 1:n, IDX(I==unI(i)) = i; end

97 sep = 1;

98 return

99 elseif nbins<n

100 IDX = NaN(size(I));

101 sep = 0;

102 return

6/8/16 9:10 PM C:\Documents and Settings\user\My Documents\MATLAB\otsu.m 3

of 5

103 elseif nbins<256

104 [histo,pixval] = hist(I(:),unI);

105 else

106 [histo,pixval] = hist(I(:),256);

107 end

108 P = histo/sum(histo);

109 clear unI

110

111 %% Zeroth- and first-order cumulative moments

112 w = cumsum(P);

113 mu = cumsum((1:nbins).*P);

114

115 %% Maximal sigmaB^2 and Segmented image

116 if n==2

117 sigma2B =...

118 (mu(end)*w(2:end-1)-mu(2:end-1)).^2./w(2:end-1)./(1-w(2:end-1));

119 [maxsig,k] = max(sigma2B);

120

121 % segmented image

122 IDX = ones(size(I));

123 IDX(I>pixval(k+1)) = 2;

124

125 % separability criterion

126 sep = maxsig/sum(((1:nbins)-mu(end)).^2.*P);

127

128 elseif n==3

129 w0 = w;

130 w2 = fliplr(cumsum(fliplr(P)));

131 [w0,w2] = ndgrid(w0,w2);

132

133 mu0 = mu./w;

134 mu2 = fliplr(cumsum(fliplr((1:nbins).*P))./cumsum(fliplr(P)));

A-4

135 [mu0,mu2] = ndgrid(mu0,mu2);

136

137 w1 = 1-w0-w2;

138 w1(w1<=0) = NaN;

139

140 sigma2B =...

141 w0.*(mu0-mu(end)).^2 + w2.*(mu2-mu(end)).^2 +...

142 (w0.*(mu0-mu(end)) + w2.*(mu2-mu(end))).^2./w1;

143 sigma2B(isnan(sigma2B)) = 0; % zeroing if k1 >= k2

144

145 [maxsig,k] = max(sigma2B(:));

146 [k1,k2] = ind2sub([nbins nbins],k);

147

148 % segmented image

149 IDX = ones(size(I))*3;

150 IDX(I<=pixval(k1)) = 1;

151 IDX(I>pixval(k1) and I<=pixval(k2)) = 2;

152

153 % separability criterion

154 sep = maxsig/sum(((1:nbins)-mu(end)).^2.*P);

6/8/16 9:10 PM C:\Documents and Settings\user\My Documents\MATLAB\otsu.m 4

of 5

155

156 else

157 k0 = linspace(0,1,n+1); k0 = k0(2:n);

158 [k,y] = fminsearch(@sig_func,k0,optimset('TolX',1));

159 k = round(k*(nbins-1)+1);

160

161 % segmented image

162 IDX = ones(size(I))*n;

163 IDX(I<=pixval(k(1))) = 1;

164 for i = 1:n-2

165 IDX(I>pixval(k(i)) and I<=pixval(k(i+1))) = i+1;

166 end

167

168 % separability criterion

169 sep = 1-y;

170

171 end

172

173 IDX(~isfinite(I)) = 0;

174

175 %% Function to be minimized if n>=4

176 function y = sig_func(k)

177

178 muT = sum((1:nbins).*P);

179 sigma2T = sum(((1:nbins)-muT).^2.*P);

180

181 k = round(k*(nbins-1)+1);

182 k = sort(k);

183 if any(k<1 | k>nbins), y = 1; return, end

A-5

184

185 k = [0 k nbins];

186 sigma2B = 0;

187 for j = 1:n

188 wj = sum(P(k(j)+1:k(j+1)));

189 if wj==0, y = 1; return, end

190 muj = sum((k(j)+1:k(j+1)).*P(k(j)+1:k(j+1)))/wj;

191 sigma2B = sigma2B + wj*(muj-muT)^2;

192 end

193 y = 1-sigma2B/sigma2T; % within the range [0 1]

194

195 end

196

197 end

198

199 function isRGB = isrgb(A)

200 % --- Do we have an RGB image?

201 % RGB images can be only uint8, uint16, single, or double

202 isRGB = ndims(A)==3 and (isfloat(A) || isa(A,'uint8') || isa(A,'uint16'));

203 % ---- Adapted from the obsolete function ISRGB ----

204 if isRGB and isfloat(A)

205 % At first, just test a small chunk to get a possible quick negative

206 mm = size(A,1);

6/8/16 9:10 PM C:\Documents and Settings\user\My Documents\MATLAB\otsu.m 5

of 5

207 nn = size(A,2);

208 chunk = A(1:min(mm,10),1:min(nn,10),:);

209 isRGB = (min(chunk(:))>=0 and max(chunk(:))<=1);

210 % If the chunk is an RGB image, test the whole image

211 if isRGB, isRGB = (min(A(:))>=0 and max(A(:))<=1); end

212 end

213 end

214

215

216

A-6

A.2 MATLAB’s RGB to grayscale source code

6/8/16 9:11 PM C:\Program

Files\MATLAB\R2010a\toolbox\images\images\rgb2gray.m 1 of 3

1 function I = rgb2gray(varargin)

2 %RGB2GRAY Convert RGB image or colormap to grayscale.

3 % RGB2GRAY converts RGB images to grayscale by eliminating the

4 % hue and saturation information while retaining the

5 % luminance.

6 %

7 % I = RGB2GRAY(RGB) converts the truecolor image RGB to the

8 % grayscale intensity image I.

9 %

10 % NEWMAP = RGB2GRAY(MAP) returns a grayscale colormap

11 % equivalent to MAP.

12 %

13 % Class Support

14 % -------------

15 % If the input is an RGB image, it can be uint8, uint16, double, or

16 % single. The output image I has the same class as the input image. If the

17 % input is a colormap, the input and output colormaps are both of class

18 % double.

19 %

20 % Example

21 % -------

22 % I = imread('board.tif');

23 % J = rgb2gray(I);

24 % figure, imshow(I), figure, imshow(J);

25 %

26 % [X,map] = imread('trees.tif');

27 % gmap = rgb2gray(map);

28 % figure, imshow(X,map), figure, imshow(X,gmap);

29 %

30 % See also IND2GRAY, NTSC2RGB, RGB2IND, RGB2NTSC, MAT2GRAY.

31

32 % Copyright 1992-2007 The MathWorks, Inc.

33 % $Revision: 5.20.4.6 $ $Date: 2007/12/10 21:37:27 $

34

35 X = parse_inputs(varargin{:});

36 origSize = size(X);

37

38 % Determine if input includes a 3-D array

39 threeD = (ndims(X)==3);

40

41 % Calculate transformation matrix

42 T = inv([1.0 0.956 0.621; 1.0 -0.272 -0.647; 1.0 -1.106 1.703]);

43 coef = T(1,:)';

44

45 if threeD

46 %RGB

A-7

47 % Shape input matrix so that it is a n x 3 array and initialize output

48 % matrix

49 X = reshape(X(:),origSize(1)*origSize(2),3);

50 sizeOutput = [origSize(1), origSize(2)];

51

52 % Do transformation

6/8/16 9:11 PM C:\Program

Files\MATLAB\R2010a\toolbox\images\images\rgb2gray.m 2 of 3

53 if isa(X, 'double') || isa(X, 'single')

54 I = X*coef;

55 I = min(max(I,0),1);

56 else

57 %uint8 or uint16

58 I = imlincomb(coef(1),X(:,1),coef(2),X(:,2),coef(3),X(:,3), ...

59 class(X));

60 end

61 %Make sure that the output matrix has the right size

62 I = reshape(I,sizeOutput);

63

64 else

65 I = X * coef;

66 I = min(max(I,0),1);

67 I = [I,I,I];

68 end

69

70

71 %%%

72 %Parse Inputs

73 %%%

74 function X = parse_inputs(varargin)

75

76 iptchecknargin(1,1,nargin,mfilename);

77

78 if ndims(varargin{1})==2

79 if (size(varargin{1},2) ~=3 || size(varargin{1},1) < 1)

80 eid = sprintf('Images:%s:invalidSizeForColormap',mfilename);

81 msg = 'MAP must be a m x 3 array.';

82 error(eid,'%s',msg);

83 end

84 if ~isa(varargin{1},'double')

85 eid = sprintf('Images:%s:notAValidColormap',mfilename);

86 msg1 = 'MAP should be a double m x 3 array with values in the';

87 msg2 = ' range [0,1].Convert your map to double using IM2DOUBLE.';

88 error(eid,'%s %s',msg1,msg2);

89 end

90 elseif (ndims(varargin{1})==3)

91 if ((size(varargin{1},3) ~= 3))

92 eid = sprintf('Images:%s:invalidInputSize',mfilename);

93 msg = 'RGB must be a m x n x 3 array.';

94 error(eid,'%s',msg);

95 end

A-8

96 else

97 eid = sprintf('Images:%s:invalidInputSize',mfilename);

98 msg1 = 'RGB2GRAY only accepts a Mx3 matrix for MAP or a MxNx3 input for ';

99 msg2 = 'RGB.';

100 error(eid,'%s %s',msg1,msg2);

101 end

102 X = varargin{1};

103

104

6/8/16 9:11 PM C:\Program

Files\MATLAB\R2010a\toolbox\images\images\rgb2gray.m 3 of 3

105 %no logical arrays

106 if islogical(X)

107 eid = sprintf('Images:%s:invalidType',mfilename);

108 msg = 'RGB2GRAY does not accept logical arrays as inputs.';

109 error(eid,'%s',msg);

110 end

111

A-9

A.3 MATLAB ‘s image processing source code

6/10/16 3:06 PM C:\Documents and Settings\user\My

Documents\...\Otsu_method_18_10_2011.m 1 of 1

1 %% Fire Image Processing

2 clear, clc;

3

4 %% Load fire image (1)

5 image1 = imread('IMG_0110.JPG');

6

7 figure(1), imshow(image1), title('Fig 1.1: Original Image (Fire Image)');

8

9 %% Threshold fire image (1)

10 I1 = rgb2gray (image1);

11 threshold1 = graythresh (I1);

12 BW1 = im2bw (I1, threshold1);

13

14 figure(2), imshow(I1), title('Fig 1.2: Convert the image to grey');

15 figure(3), imshow(BW1), title('Fig 1.3: Convert the image to black and white by

MATLAB Otsu

method');

16

17 %end of program

B-1

Appendix B: C++ / OpenCV

1 // opencvApplication.cpp : Defines the entry point for the console application.
2 //
3
4 #define _CRT_SECURE_NO_DEPRECATE
5
6
7 #include <cctype>
8 #include <iostream> // Basic input and output library
9 #include <iomanip>
10 #include <iterator>
11 #include <stdio.h>
12 #include <math.h>
13 #include <time.h>
14 #include <windows.h>
15 #include <fstream> // For file stream
16
17 #include "opencv2/video/tracking.hpp" // For optical flow analysis
18 #include "opencv2/highgui/highgui.hpp" // For histogram
19 #include "opencv2/imgproc/imgproc.hpp" // For histogram
20
21 #include "C:\Users\arthur\Downloads\OpenCV with Visual
Studio\Code\opencvApplication_fire4.1\
sgVision\SgGeneral.h"
22 #include "C:\Users\arthur\Downloads\OpenCV with Visual
Studio\Code\opencvApplication_fire4.1\
sgVision\SgSignal.h"
23 #include "C:\Users\arthur\Downloads\OpenCV with Visual
Studio\Code\opencvApplication_fire4.1\
sgVision\SgTimeControl.h"
24
25 using namespace std;
26 using namespace cv;
27
28 bool pause = false;
29
30 //our sensitivity value to be used in the absdiff() function
31 //for higher sensitivity, use a lower value
32 const static int SENSITIVITY_VALUE = 40;
33
34 //size of blur used to smooth the intensity image output from absdiff()
function
35 const static int BLUR_SIZE = 10; // SMOOTH THE INTENSITY (EXISING,
FOR MOTION
DETECTION IS 10)
36 const static int BLUR_SIZE_INTENSITY = 7; // SMOOTH THE INTENSITY
37
38 //these two can be toggled by pressing 'd' or 't' (Motion detection code)
(Debug mode is disabled)
39 //bool debugMode;

B-2

40 bool trackingEnabled;
41
42 //int thresholdParameter = 255; // This thresholdParameter control the
intensity
43 int thresholdParameter; // This thresholdParameter control the intensity
44
45 int theObject[2] = { 0, 0 };
46
47 //bounding rectangle of the object, we will use the center of this as its position
48 Rect objectBoundingRectangle = Rect(0, 0, 0, 0);
49
50 //float fps = 25.f;
51
52 vector<vector<Point>> masks;
53 vector<Point> mask;
54 deque<Point> centroids;
55
56 //Mat frame;
57
58 // get time information //
59
60 string intToString(int number)
61 {
62
63 //this function has a number input and string output
64 std::stringstream ss;
65 ss << number;
66 return ss.str();
67 }
68
69 /* Display time and date on hardcopy */
70 string getDateTime()
71 {
72 //get the system time
73 SYSTEMTIME theTime;
74 GetLocalTime(andtheTime);
75 //create string to store the date and time
76 string dateTime;
77
78 //convert year to string
79 string year = intToString(theTime.wYear);
80
81 //use stringstream to add a leading '0' to the month (ie. 3 -> 03)
82 //we use 'setw(2)' so that we force the string 2 characters wide with a zero
in front of it.
83 //if the month is '10' then it will remain '10'
84 std::stringstream m;
85 m << std::setfill('0') << std::setw(2) << theTime.wMonth;
86 string month = m.str();
87 //day
88 std::stringstream d;

B-3

89 d << std::setfill('0') << std::setw(2) << theTime.wDay;
90 string day = d.str();
91 //hour
92 std::stringstream hr;
93 hr << setfill('0') << std::setw(2) << theTime.wHour;
94 string hour = hr.str();
95 //minute
96 std::stringstream min;
97 min << setfill('0') << std::setw(2) << theTime.wMinute;
98 string minute = min.str();
99 //second
100 std::stringstream sec;
101 sec << setfill('0') << std::setw(2) << theTime.wSecond;
102 string second = sec.str();
103
104 //here we use the year, month, day, hour, minute info to create a custom
string
105 //this will be displayed in the bottom left corner of our video feed.
106 dateTime = year + "-" + month + "-" + day + " " + hour + ":" + minute + ":" +
second;
107
108 return dateTime;
109 }
110
111 /* Display time only on hardcopy */
112 string gettimeonly()
113 {
114 //get the system time
115 SYSTEMTIME theTime;
116 GetLocalTime(andtheTime);
117 //create string to store the date and time
118 string timeonly;
119
120 //convert year to string
121
122 //hour
123 std::stringstream hr;
124 hr << setfill('0') << std::setw(2) << theTime.wHour;
125 string hour = hr.str();
126 //minute
127 std::stringstream min;
128 min << setfill('0') << std::setw(2) << theTime.wMinute;
129 string minute = min.str();
130 //second
131 std::stringstream sec;
132 sec << setfill('0') << std::setw(2) << theTime.wSecond;
133 string second = sec.str();
134
135 //here we use the year, month, day, hour, minute info to create a custom
string
136 //this will be displayed in the bottom left corner of our video feed.

B-4

137 //dateTime = year + "-" + month + "-" + day + " " + hour + ":" + minute + ":"
+ second;
138 timeonly = hour + ":" + minute + ":" + second;
139
140 return timeonly;
141 }
142
143 /* Display time and date on hardcopy */
144 string getdateonly()
145 {
146 //get the system time
147 SYSTEMTIME theTime;
148 GetLocalTime(andtheTime);
149 //create string to store the date and time
150 string dateonly;
151
152 //convert year to string
153 string year = intToString(theTime.wYear);
154
155 //use stringstream to add a leading '0' to the month (ie. 3 -> 03)
156 //we use 'setw(2)' so that we force the string 2 characters wide with a zero
in front of it.
157 //if the month is '10' then it will remain '10'
158 std::stringstream m;
159 m << std::setfill('0') << std::setw(2) << theTime.wMonth;
160 string month = m.str();
161 //day
162 std::stringstream d;
163 d << std::setfill('0') << std::setw(2) << theTime.wDay;
164 string day = d.str();
165
166 //here we use the year, month, day, hour, minute info to create a custom
string
167 //this will be displayed in the bottom left corner of our video feed.
168 dateonly = year + "-" + month + "-" + day;
169
170 return dateonly;
171 }
172
173 string getDateTimeForFile()
174 {
175 //this function does the exact same as "getDateTime()"
176 //however it returns a string that can be used as a filename
177 SYSTEMTIME theTime;
178 GetLocalTime(andtheTime);
179 string dateTime;
180
181 string year = intToString(theTime.wYear);
182
183 std::stringstream m;
184 m << std::setfill('0') << std::setw(2) << theTime.wMonth;

B-5

185 string month = m.str();
186
187 std::stringstream d;
188 d << std::setfill('0') << std::setw(2) << theTime.wDay;
189 string day = d.str();
190
191 std::stringstream hr;
192 hr << setfill('0') << std::setw(2) << theTime.wHour;
193 string hour = hr.str();
194
195 std::stringstream min;
196 min << setfill('0') << std::setw(2) << theTime.wMinute;
197 string minute = min.str();
198
199 std::stringstream sec;
200 sec << setfill('0') << std::setw(2) << theTime.wSecond;
201 string second = sec.str();
202
203 //here we use "_" instead of "-" and ":"
204 //if we try to save a filename with "-" or ":" in it we will get an error.
205 dateTime = year + "_" + month + "_" + day + "_" + hour + "h" + minute +
"m" + second + "s";
206
207 return dateTime;
208 }
209
210 /* Dispaly time and date above */
211
212 /* Motion detection below */
213 bool detectMotion(Mat thresholdImage, Mat andcameraFeed){
214 //create motionDetected variable.
215 bool motionDetected = false;
216
217 //create temp Mat for threshold image
218 Mat temp;
219 thresholdImage.copyTo(temp);
220
221 //these two vectors needed for output of findContours
222 vector< vector<Point> > contours;
223 vector<Vec4i> hierarchy;
224
225 //find contours of filtered image using openCV findContours function
226
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APP
ROX_SIMPLE);// retrieves all
contours
227 findContours(temp, contours, hierarchy, CV_RETR_EXTERNAL,
CV_CHAIN_APPROX_SIMPLE);// retrieves
external contours
228
229 //if contours vector is not empty, we have found some objects

B-6

230 //we can simply say that if the vector is not empty, motion in the video feed
has been detected
.
231 if (contours.size()>0)motionDetected = true;
232 else motionDetected = false;
233
234 //find the motion object
235 if (motionDetected){
236 //the large contour is found at the end of the contours vector
237 //we will simply assume that the biggest contour is the object
238 vector< vector<Point> > largestContourVec;
239 largestContourVec.push_back(contours.at(contours.size() - 1));
240
241 //make a bounding rectangle around the largest contour then find its
centroid
242 //this will be the objects final estimated position
243 objectBoundingRectangle = boundingRect(largestContourVec.at(0));
244 int xpos = objectBoundingRectangle.x + objectBoundingRectangle.width /
2;
245 int ypos = objectBoundingRectangle.y + objectBoundingRectangle.height /
2;
246
247
248 //update the objects position by changing the 'theObject' array values
249 theObject[0] = xpos, theObject[1] = ypos;
250
251 }
252
253 return motionDetected;
254
255 }
256 /* Motion detection code above */
257
258 ///////////////////////////////// CALCULATION OPTICAL FLOW
//
///////
259 void drawOptFlowMap(const Matand flow, Matand cflowmap, int step,
double, const Scalarand color)
260 {
261 for (int y = 0; y < cflowmap.rows; y += step)
262 for (int x = 0; x < cflowmap.cols; x += step)
263 {
264 const Point2fand fxy = flow.at<Point2f>(y, x);
265
266 // Displacement direction
267 line(cflowmap, Point(x, y), Point(cvRound(x + fxy.x), cvRound(y + fxy.y)),
color);
268
269 // Green dot
270 circle(cflowmap, Point(x, y), 2, color, -1);
271 }

B-7

272 }
273 ///
//////
274
275 void CallBackFunc(int event, int x, int y, int flags, void* userdata)
276 {
277 if (event == EVENT_LBUTTONDOWN)
278 {
279 Point p = Point(x,y);
280 mask.push_back(p);
281 }
282 else if (event == EVENT_RBUTTONDOWN)
283 {
284 masks.push_back(mask);
285 mask.clear();
286 }
287 else if (event == EVENT_MBUTTONDOWN)
288 {
289 mask.clear();
290 masks.clear();
291 }
292
293 }
294
295 #define FILEPATH "D:/" + getDateTimeForFile() + ".csv" //define file stream
object
296
297 // open the video image //
298 int main(int argc, const char** argv) //program entry points
299 {
300
301 /* Declaraction the motion detection code start */
302
303 //set recording and startNewRecording initially to false.
304 bool recording = false;
305 bool startNewRecording = false;
306 int inc = 0;
307 bool firstRun = true;
308 //if motion is detected in the video feed, we will know to start recording.
309 bool motionDetected = false;
310
311 //pause and resume code (if needed)
312 bool pause = false;
313 //set debug mode and trackingenabled initially to false
314 //these can be toggled using 'd' and 't'
315 //debugMode = false;
316 trackingEnabled = false;
317
318 //set up the matrices that we will need
319 //the two frames we will be comparing
320 Mat frame1, frame2;

B-8

321 //their grayscale images (needed for absdiff() function)
322 Mat grayImage1, grayImage2;
323 //resulting difference image
324 Mat differenceImage;
325 //thresholded difference image (for use in findContours() function)
326 Mat thresholdImage;
327
328 Mat prevgray, gray; //OPTICAL FLOW
329 Mat flow, cflow; //OPTICAL FLOW
330
331 /* Declaraction the motion detection code end */
332
333 /* Trackbar control threshold value below */
334 SgSignal signal;
335 //cvNamedWindow("display", 0);
336 //createTrackbar("threshold", "display", andthresholdParameter, 255,
NULL);
337 //setMouseCallback("display", CallBackFunc, NULL);
338
339 /* Trackbar control threshold value above*/
340
341 /* Start access camera below */
342 VideoCapture video;
343
344 video.open(0); //Access the webcam.
345
346 video >> frame1; //Input the first real time image to frame1
347
348 VideoWriter oVideoWriter; //create videoWriter object, not initialized yet
(Motion
detection code)
349
350 if (!video.isOpened())
351 {
352 std::cout << "ERROR!!! could not access the webcam !!!" << std::endl;
353 system("PAUSE");
354 return EXIT_SUCCESS;
355 //exit(1);
356 }
357
358 // Record the data to file
359
360 fstream file;
361
362 file.open(FILEPATH, ios::out | ios::trunc);
363
364 if (!file)// Check file open or not
365 {
366 cerr << "Sorry!!! Can't open file in Hard drive !!!" << endl;
367 exit(1);
368 }

B-9

369
370 double dWidth = video.get(CV_CAP_PROP_FRAME_WIDTH); //get the
width of frames1 of the video
371 double dHeight = video.get(CV_CAP_PROP_FRAME_HEIGHT); //get the
height of frames1 of the video
372
373 //set framesize for use with videoWriter
374 Size frameSize(static_cast<int>(dWidth), static_cast<int>(dHeight));
375
376 /* Display on command prompt */
377 cout << "---" <<
endl;
378 cout << "VIDEO FIRE DETECTION" << endl;
379 cout << "Frame Size = " << frameSize << endl;
380 cout << "Record date " << getdateonly () << endl;
381 cout << "Start record time " << gettimeonly() << endl;
382 cout << "OpenCV verson " << CV_VERSION << endl;
383 cout << "---" <<
endl;
384 cout << "Press 'Esc' exit the Code" << endl;
385 cout << "Press 'p' paused or resume the code" << endl;
386 cout << "Press 'Space bar' will toggle tracking" << endl;
387
388 /* Write on hard disk */
389 file << "VIDEO FIRE DETECTION DATA RECORD" << endl;
390 file << "Frame Size " << "," << frameSize << endl;
391 file << "Record date " << "," << getdateonly() << endl;
392 file << "OpenCV verson " << CV_VERSION << endl;
393 file << " " << endl;
394
395 file << setw(0) << "," << setiosflags(ios::right) << "FROM FLAME-
INTENSITY" << "," << "," << ",
"
396 << setw(0) << "," << "," << "," << setiosflags(ios::right) << "FROM FLAME-
MOTION"
397 << endl;
398
399 file << setw(0) << setiosflags(ios::right) << "Time" << ","
400
401 << setw(0) << setiosflags(ios::right) << "Otsu Threshold value" << ","
402
403 << setw(0) << setiosflags(ios::right) << "Max. Gray level" << ","
404
405 << setw(0) << setiosflags(ios::right) << "ROI" << ","
406 << setw(0) << setiosflags(ios::right) << "Height" << ","
407 << setw(0) << setiosflags(ios::right) << "Centroid X" << ","
408 << setw(0) << setiosflags(ios::right) << "Centroid Y" << ","
409
410 << setw(0) << setiosflags(ios::right) << "ROI" << ","
411 << setw(0) << setiosflags(ios::right) << "Height" << ","
412 << setw(0) << setiosflags(ios::right) << "Centroid X" << ","

B-10

413 << setw(0) << setiosflags(ios::right) << "Centroid Y" << ","
414
415 << setw(0) << setiosflags(ios::right) << "Pixel no. (Red)" << ","
416 << setw(0) << setiosflags(ios::right) << "Pixel no. (Green)" << ","
417 << setw(0) << setiosflags(ios::right) << "Pixel no. (Blue)"
418 << endl;
419
420 deque<float> heights,widths,areas,mheight;
421 double numberFrame = video.get(CV_CAP_PROP_FRAME_COUNT);
422 int countFrame = 0;
423 float lengthTrajectory = 10.0f;
424 float sizeWindow = 1920.0f;
425
426 while (true) // Infinite Loop
427 {
428 if (!pause) video >> frame1;
429 countFrame++;
430 if (countFrame == numberFrame - 1)
431 {
432 video.set(CV_CAP_PROP_POS_FRAMES, 1);
433 countFrame = 1;
434 continue;
435 }
436
437 //localize the fire
438 Mat image, grayimage, grayimage2, fireMask, display, graph;
439
440 frame1.copyTo(display);
441
442 /*Motion detection code start*/
443
444 //read first frame
445 video.read(frame1);
446
447 ///
////////
448
449 //convert frame1 to gray scale for frame differencing
450 cv::cvtColor(frame1, grayImage1, COLOR_BGR2GRAY);
451
452 //copy second frame
453 video.read(frame2);
454
455 //convert frame2 to gray scale for frame differencing
456 cv::cvtColor(frame2, grayImage2, COLOR_BGR2GRAY);
457
458 ///
/////////
459
460 //perform frame differencing with the sequential images. This will output an
"intensity

B-11

image"
461 //do not confuse this with a threshold image, we will need to perform
thresholding
afterwards.
462 cv::absdiff(grayImage1, grayImage2, differenceImage);
// COMPARE THE DIFF. for motion detection
463
464 //threshold intensity image at a given sensitivity value
465 cv::threshold(differenceImage, thresholdImage, SENSITIVITY_VALUE,
255, THRESH_BINARY);
// threshold --> SENSITIVITY VALUE = 40
466
467 /*if (debugMode == true){
468 //show the difference image and threshold image
469 cv::imshow("Difference Image", differenceImage);
470 cv::imshow("Threshold Image", thresholdImage);
471 }
472 else{
473 //if not in debug mode, destroy the windows so we don't see them anymore
474 cv::destroyWindow("Difference Image");
475 cv::destroyWindow("Threshold Image");
476 }*/
477
478 //blur the image to get rid of the noise. This will output an intensity image
479 cv::blur(thresholdImage, thresholdImage, cv::Size(BLUR_SIZE,
BLUR_SIZE)); // Dilate and
Erode
480
481 //threshold again to obtain binary image from blur output
482 cv::threshold(thresholdImage, thresholdImage, SENSITIVITY_VALUE,
255, THRESH_BINARY);
//Sensitivity value is 40 (threshold)
483
484
485 /*if (debugMode == true){
486 //show the threshold image after it's been "blurred"
487
488 imshow("Final Threshold Image", thresholdImage);
489
490 }
491 else {
492 //if not in debug mode, destroy the windows so we don't see them anymore
493 cv::destroyWindow("Final Threshold Image");
494 }*/
495
496 //if tracking enabled, search for Motion
497 if (trackingEnabled){
498 //detectMotion function will return true if motion is detected, else it will return
false.
499 //set motionDetected boolean to the returned value.
500 motionDetected = detectMotion(thresholdImage, frame1);

B-12

501 }
502 else{
503 //reset our variables if tracking is disabled
504 recording = false;
505 motionDetected = false;
506 }
507 /*Motion detection code end*/
508
509 /*Motion detection code start*/
510 //if we're in recording mode, write to file
511 if (recording){
512
513 oVideoWriter.write(frame1);
514 //show "REC" in red
515 //be sure to do this AFTER you write to the file so that "REC" doesn't show
up
516 //on the recorded video.
517 circle(display, Point(500, 20), 12.0, Scalar(0, 0, 255), -1, 8);
518 putText(display, "REC", Point(515, 28), 2, 1, Scalar(0, 0, 255), 2);
519
520 }
521 if (motionDetected){
522 //show "MOTION DETECTED" in bottom left corner in green
523 //once again, be sure to do this AFTER you write to the file so that "MOTION
DETECTED"
doesn't show up
524 //on the recorded video. Place this code above if(recording) to see what I'm
talking
about.
525 putText(display, "MOTION DETECTED", cv::Point(0, 420), 2, 1,
cv::Scalar(0, 255, 0), 2);
526
527 //set recording to true since there is motion in the video feed.
528 recording = true;
529
530 if (firstRun == true){
531
532 string videoFileName = "D:/" + getDateTimeForFile() + ".avi";
533 cout << "File has been opened for writing: " << videoFileName << endl;
534 oVideoWriter = VideoWriter(videoFileName, CV_FOURCC('D', 'I', 'V', '3'),
20,
frameSize, true);
535
536 if (!oVideoWriter.isOpened())
537 {
538 cout << "ERROR!!! Failed to initialize video writing in Hard drive !!!" << endl
;
539 getchar();
540 return -1;
541 }
542 firstRun = false;

B-13

543
544 }
545
546 }
547 else recording = false;
548 /*Motion detection code end*/
549
550 cvtColor(frame2, grayimage, CV_BGR2GRAY); // Convert to gratscale and
store in
"grayimage" ORIGINAL DATA FROM WEBCAM
551
552 // Calculation the gray values (IN PROGRESS)
553 double alpha = 0.2989, Beta = 0.5870, Gamma = 0.1140; // For calculation !!
554 vector<Mat> bgr_planesforgray;
555 split(frame2, bgr_planesforgray);
556 /*
557 float hist_val[256];
558 for (int i = 0; i < 256; i++)
559 {
560 hist_val[i] = 0.0;
561 //cout << i << " " << hist_val[i] << endl;
562
563 }
564 */
565 /* Analysis for captured the Region of Interest */
566 cvtColor(frame2,image,CV_BGR2GRAY); // Convert to grayscale and
store in "image
" for analysis
567
568 // Smooths an image using the Gaussian filter (Dilate and Erode)
569
GaussianBlur(image,image,Size(BLUR_SIZE_INTENSITY,BLUR_SIZE_INTE
NSITY),0,0);
570 //blur(image, image, Size(BLUR_SIZE, BLUR_SIZE)); // BLUR_SIZE = 10
reference: line no.
32
571
572
573 // Otsu calculation (IN PROGRESS)
574 /*
575 float wB; //Weight Background
576 float wF; //Weight Foreground
577 float mB; //Mean Background
578 float mF; //Mean Foreground
579 float varBetween; //Between Class Variance
580 float varMax; //Maximum Between Class Variance
581 */
582 // Total number of pixels
583
584
585 // Calculate Weight background

B-14

586
587
588 //threshold(image, fireMask, thresholdParameter, 255,
cv::THRESH_BINARY);
589
590
591 // Optimal threshold value obtained by Otsu algorithm
592 thresholdParameter = threshold(image, fireMask, 0, 255,
cv::THRESH_BINARY | cv::
THRESH_OTSU); // WARNING double to int problem ??
593
594 fillPoly(fireMask,masks,cvScalarAll(0));
595 bitwise_and(image, fireMask, image);
596
597 /*
598 /// Apply Histogram Equalization
599 equalizeHist(image,image);
600
601 Mat dst;
602 equalizeHist(image, dst);
603
604 /// Display results
605 namedWindow("equalized_window", CV_WINDOW_AUTOSIZE);
606 imshow("equalized_window", dst);
607 */
608
609 //resize the user interface
610 /*
611 resizeWindow("input", 450, 350);
612 resizeWindow("display", 450, 350);
613 cvResizeWindow("rgb and gray_Hist", 450, 350);
614 resizeWindow("data", 450, 350);
615
616 //resizeWindow("gray", 240, 120);
617 //cvResizeWindow("Threshold by Otsu", 240, 120);
618 //cvResizeWindow("Diff. by motion", 240, 120);
619 //cvResizeWindow("Threshold by motion", 240, 120);
620
621 //cvResizeWindow("Gray Hist", 320, 240);
622 //cvResizeWindow("Red Hist", 320, 200);
623 //cvResizeWindow("Green Hist", 320, 200);
624 //cvResizeWindow("Blue Hist", 320, 200);
625
626 //resizeWindow("Motion", 800, 100);
627
628 //resizeWindow("flow", 320, 240);
629 */
630
631 //FIXED LOCATION OF WINDOWS
632 /*
633 cvMoveWindow("input", 10, 0);

B-15

634 cvMoveWindow("display", 10, 400);
635 cvMoveWindow("rgb and gray_Hist", 500, 0);
636 cvMoveWindow("data", 500, 400);
637
638 cvMoveWindow("Gray Hist", 640, 0);
639 cvMoveWindow("flow", 960, 0);
640 cvMoveWindow("Threshold by Otsu", 1280, 160);
641 cvMoveWindow("gray", 1280, 0);
642 cvMoveWindow("Threshold by Otsu", 1280, 160);
643 cvMoveWindow("Diff. by motion", 1280, 320);
644 cvMoveWindow("Threshold by motion", 1280, 480);
645
646 cvMoveWindow("Red Hist", 640, 280);
647 cvMoveWindow("Green Hist", 960, 280);
648 cvMoveWindow("Blue Hist", 960, 560);
649
650 cvMoveWindow("Motion", 0, 560);
651 */
652
653 cvNamedWindow("Threshold by Otsu", WINDOW_NORMAL);
654 cvNamedWindow("Diff. by motion", WINDOW_NORMAL);
655 cvNamedWindow("Threshold by motion", WINDOW_NORMAL);
656
657 cv::imshow("Threshold by Otsu", fireMask);
658
659
660 cv::imshow("Diff. by motion",differenceImage);
661 cv::imshow("Threshold by motion",thresholdImage);
662
663 //get contours
664 vector<vector<Point>> contourFires;
665 vector<Vec4i> hierarchy;
666 findContours(fireMask,contourFires,hierarchy,CV_RETR_CCOMP,
CV_CHAIN_APPROX_SIMPLE);
667 vector<Point> contourMax;
668 SgGeneral::sgGetMaxContour(contourFires,20,contourMax);
669 if (!contourMax.empty())
670 {
671 Point centroid = SgGeneral::sgGetCentroid(contourMax);
672
673 centroids.push_back(centroid);
674
675 while (centroids.size() > lengthTrajectory) centroids.pop_front();
676 }
677
678 float area = SgGeneral::sgGetArea(contourFires);
679 areas.push_back(area);
680 if (areas.size() > sizeWindow) areas.pop_front();
681
682 //calculate bounding box of multiple contours
683 int yMin = 999, yMax = 0, xMax = 0, xMin = 999;

B-16

684
685 Point peak;
686 for(int i = 0; i < contourFires.size(); i++)
687 {
688 if (contourFires[i].size() > 20)
689 {
690 for(int j = 0; j < contourFires[i].size(); j++)
691 {
692 if (contourFires[i][j].y > yMax) yMax = contourFires[i][j].y;
693 else if(contourFires[i][j].y < yMin)
694 {
695 yMin = contourFires[i][j].y;
696 peak.x = contourFires[i][j].x;
697 peak.y = contourFires[i][j].y;
698 }
699 if (contourFires[i][j].x > xMax) xMax = contourFires[i][j].x;
700 else if(contourFires[i][j].x < xMin) xMin = contourFires[i][j].x;
701 }
702 }
703 }
704
705 // Input the informaton data
706 heights.push_back(yMax-yMin); // WARNING int to float problem ??
707
708 widths.push_back(xMax-xMin); // WARNING int to float problem ??
709 mheight.push_back(objectBoundingRectangle.height); // NEW Pushback
motion height to "mheight"
710
711 if (heights.size() > sizeWindow)
712 {
713 heights.pop_front();
714 widths.pop_front();
715 mheight.pop_front();
716 }
717
718 //visualize ??
719 polylines(display,masks,true,CV_RGB(0,0,128),1);
720 for (int j = 0; j < mask.size(); j++)
circle(display,mask[j],2,CV_RGB(255,0,0),-1);
721
722 //mask the segmentation region
723 /*Mat rgb[3];
724 split(display,rgb);
725 rgb[0] += image; // Blue
726 rgb[1] += image; // Green
727 rgb[2] += image; // Red
728 merge(rgb,3,display);
729 */
730
731 if (!contourFires.empty())
732 for(int i = 0; i < contourFires.size(); i++)

B-17

733 drawContours(display,contourFires,i,CV_RGB(0,0,0), 2); // draw contout
line in display
734
735 //float scale = 255. / lengthTrajectory;
736 double scale = 255. / lengthTrajectory;
737 if(centroids.size() > 2)
738 {
739 for (int i = 0; i < centroids.size() - 1; i++)
740 {
741 circle(display, Point(centroids.back().x, centroids.back().y), 7, Scalar(255,
0, 0)
, 2); //draw centroid
742
743 line(display, Point(centroids.back().x, centroids.back().y),
Point(centroids.back()
.x, centroids.back().y - 15),
744 Scalar(255, 0, 0), 2);
745 line(display, Point(centroids.back().x, centroids.back().y),
Point(centroids.back()
.x, centroids.back().y + 15),
746 Scalar(255, 0, 0), 2);
747 line(display, Point(centroids.back().x, centroids.back().y),
Point(centroids.back()
.x - 15, centroids.back().y),
748 Scalar(255, 0, 0), 2);
749 line(display, Point(centroids.back().x, centroids.back().y),
Point(centroids.back()
.x + 15, centroids.back().y),
750 Scalar(255, 0, 0), 2);
751
752 //line(display, centroids[i], centroids[i+1], CV_RGB(0, scale*i, 0), 2);
753 }
754 }
755
756 circle(display,centroids.back(),3,CV_RGB(0,255,0),-1); // ????
757
758 //make some temp x and y variables
759 int x = theObject[0];
760 int y = theObject[1];
761
762 //draw some crosshairs (motion detection)
763
764 circle(display, Point(x, y), 7, Scalar(0, 255, 0), 2);
765
766 line(display, Point(x, y), Point(x, y - 15), Scalar(0, 255, 0), 2);
767 line(display, Point(x, y), Point(x, y + 15), Scalar(0, 255, 0), 2);
768 line(display, Point(x, y), Point(x - 15, y), Scalar(0, 255, 0), 2);
769 line(display, Point(x, y), Point(x + 15, y), Scalar(0, 255, 0), 2);
770
771 // drawing region of interest (ROI) based on xMin,yMin,xMax,yMax
(Threshold analysis)

B-18

772 rectangle(display, Point(xMin, yMin), Point(xMax, yMax), CV_RGB(255,
255, 0), 2); //
threshold analysis
773
774 rectangle(display, Point(objectBoundingRectangle.x,
objectBoundingRectangle.y),
775 Point(objectBoundingRectangle.x + objectBoundingRectangle.width,
objectBoundingRectangle.y + objectBoundingRectangle.height),
776 CV_RGB(255, 0, 0), 2);
777
778 //draw time stamp to video in bottom left corner. We draw it before we write
so that it is
written on the video file.
779 rectangle(display, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -
1);
780 putText(display, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); //
show date time on 'display'
781 rectangle(frame2, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -
1);
782 putText(frame2, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); //
show date time on 'frame'
783 rectangle(grayimage, Point(0, 460), Point(200, 480), Scalar(255, 255, 255),
-1);
784 putText(grayimage, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2);
//
show date time on 'grayimage'
785
786 //draw the height, width and area region of interest
787 string heightFire = "ROI Height (Intnesity) : " + to_string(yMax - yMin);
788 //putText(display, heightFire, Point(40, 20), 1, 1, CV_RGB(0, 0, 255), 2);
789
790 string widthFire = "ROI Width (Intensity) : " + to_string(xMax - xMin);
791 //putText(display, widthFire, Point(40, 40), 1, 1, CV_RGB(0, 0, 255), 2);
792
793 string ROIFire = "ROI Area (Intensity) : " + to_string((yMax - yMin)*(xMax -
xMin));
794 //putText(display, ROIFire, Point(40, 60), 1, 1, CV_RGB(0, 0, 255), 2);
795
796 string fireThreshold = "Otsu : " + to_string(thresholdParameter);
// Intensity threshold
797 //putText(display, fireThreshold, Point(320, 20), 1, 1, CV_RGB(255, 255,
255), 2);
798
799 //draw the centroid coordinate X and Y
800 string cenFire = "X,Y (Intensity) : ";
801 if (!centroids.empty())
802 cenFire = "X,Y (Intensity) : " + to_string(centroids.back().x) + "," + to_string
(centroids.back().y);
803 //putText(display, cenFire, Point(40, 80), 1, 1, CV_RGB(0, 0, 255), 2);
804
805 string movcenFire = "X,Y (Motion) : " + to_string(x)+","+to_string(y);

B-19

806 //putText(display, movcenFire, Point(40, 100), 1, 1, CV_RGB(255, 0, 0), 2);
807
808 string ROIMovFire = "ROI Area (Motion) : " +
to_string(objectBoundingRectangle.width *
objectBoundingRectangle.height);
809 //putText(display, ROIMovFire, Point(40, 120), 1, 1, CV_RGB(255, 0, 0), 2);
810
811 string ROIMovheightFire = "ROI Height (Motion) : " +
to_string(objectBoundingRectangle.
height);
812 //putText(display, ROIMovheightFire, Point(40, 140), 1, 1, CV_RGB(255, 0,
0), 2);
813
814 string ROIMovwidthFire = "ROI Width (Motion) : " +
to_string(objectBoundingRectangle.width)
;
815 //putText(display, ROIMovwidthFire, Point(40, 160), 1, 1, CV_RGB(255, 0,
0), 2);
816
817
818 /*Histogram analysis*/
819
820 /// Separate the image in 3 places (B, G and R)
821 vector<Mat> bgr_planes;
822 split(frame2, bgr_planes);
823
824 // Separate the image in gray places
825 vector<Mat> gray_planes;
826 split(image, gray_planes);
827
828 vector<Mat> grayplanes;
829 split(grayimage, grayplanes);
830
831 /// Establish the number of bins
832 int histSize = 256; //From 0 to 255
833
834 /// Set the ranges (for B,G,R and gray)
835 float range[] = { 0, 256 }; //the upper boundary is exclusive
836 const float* histRange = { range };
837
838 bool uniform = true; bool accumulate = false;
839
840 Mat b_hist, g_hist, r_hist, gray_hist;
841
842 /// Compute the histograms:
843 calcHist(andbgr_planes[0], 1, 0, Mat(), b_hist, 1, andhistSize,
andhistRange, uniform,
accumulate);
844 calcHist(andbgr_planes[1], 1, 0, Mat(), g_hist, 1, andhistSize,
andhistRange, uniform,
accumulate);

B-20

845 calcHist(andbgr_planes[2], 1, 0, Mat(), r_hist, 1, andhistSize,
andhistRange, uniform,
accumulate);
846
847 calcHist(andgrayplanes[0], 1, 0, Mat(), gray_hist, 1, andhistSize,
andhistRange, uniform,
accumulate);
848
849 // Draw the histograms for B, G and R
850 int hist_w = 512; int hist_h = 400;
851 int bin_w = cvRound((double)hist_w / histSize); // int histSize = 256
852
853 Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
854
855 Mat R_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
856 Mat G_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
857 Mat B_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
858
859 Mat grayhistImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
860
861 /// Normalize the result to [0, histImage.rows]
862 normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
863 normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
864 normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
865
866 normalize(b_hist, b_hist, 0, B_histImage.rows, NORM_MINMAX, -1, Mat());
867 normalize(g_hist, g_hist, 0, G_histImage.rows, NORM_MINMAX, -1, Mat());
868 normalize(r_hist, r_hist, 0, R_histImage.rows, NORM_MINMAX, -1, Mat());
869
870 normalize(gray_hist, gray_hist, 0, grayhistImage.rows, NORM_MINMAX, -
1, Mat()); //Normalize
the gray result
871
872 /// Draw for each channel
873 int gray_maxtemp = 0;
874 int red_maxtemp = 0;
875 int green_maxtemp = 0;
876
877 for (int i = 0; i < histSize; i++)
878 {
879 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))),
880 Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
881 Scalar(255, 0, 0), 0, 8, 0);
// Blue colour
882
883 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))),
884 Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
885 Scalar(0, 255, 0), 0, 8, 0);
// Green colour
886
887 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))),

B-21

888 Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))),
889 Scalar(0, 0, 255), 0, 8, 0);
// Red colour
890
891 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(gray_hist.at<float>(i -
1))),
// Gray color
892 Point(bin_w*(i), hist_h - cvRound(gray_hist.at<float>(i))),
893 Scalar(255, 255, 255), 0, 8, 0);
894
895 /* Individual histogram */
896 line(B_histImage, Point(bin_w*(i - 1), hist_h),
897 Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
898 Scalar(255, 0, 0), 0, 8, 0);
// Blue colour
899
900 line(G_histImage, Point(bin_w*(i - 1), hist_h),
901 Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
902 Scalar(0, 255, 0), 0, 8, 0);
// Green colour
903
904 line(R_histImage, Point(bin_w*(i - 1), hist_h),
905 Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))),
906 Scalar(0, 0, 255), 0, 8, 0);
// Red colour
907
908 line(grayhistImage, Point(bin_w*(i - 1), hist_h),
// Gray color
909 Point(bin_w*(i), hist_h - cvRound(gray_hist.at<float>(i))),
910 Scalar(255, 255, 255), 0, 8, 0);
911
912 // Indicate the threshold
913 line(grayhistImage, Point(bin_w*(thresholdParameter), hist_h),
914 Point(bin_w*(thresholdParameter), hist_h -
cvRound(gray_hist.at<float>(i))),
915 Scalar(0, 255, 255), 0, 4, 0);
916
917 line(histImage, Point(bin_w*(thresholdParameter), hist_h),
918 Point(bin_w*(thresholdParameter), hist_h -
cvRound(gray_hist.at<float>(i))),
919 Scalar(0, 255, 255), 0, 8, 0);
920
921 /* Analysis the maximim gray level */
922 float gray_binVal = gray_hist.at<float>(i);
923 if (gray_hist.at<float>(i) > gray_maxtemp)
924 {
925 gray_maxtemp = i;
926 }
927
928 }
929

B-22

930 //display on grayhistImage
931 string maxgray = "Max Gray Level : " + to_string(gray_maxtemp);
932 putText(grayhistImage, maxgray, Point(40, 20), 1, 1, CV_RGB(255, 255,
255), 2);
933
934 string threshold_value = "Threshold by Otsu : " +
to_string(thresholdParameter);
935 //putText(grayhistImage, threshold_value, Point(40, 40), 1, 1,
CV_RGB(255, 255, 0), 2);
936
937 //diaply on histImage
938 string threshold_value_hist = "Threshold by Otsu : " +
to_string(thresholdParameter);
939 putText(histImage, threshold_value_hist, Point(40, 20), 1, 1, CV_RGB(255,
255, 0), 2);
940
941 string nosofpixels_red = "Pixels no.(R) : " + to_string(r_hist.at<float>
(thresholdParameter));
942 putText(histImage, nosofpixels_red, Point(40, 40), 1, 1, CV_RGB(255, 0,
0), 2);
943 string pixelsno_red = to_string((int)r_hist.at<float>(thresholdParameter));
944
945 string nosofpixels_green = "Pixels no.(G) : " + to_string(g_hist.at<float>
(thresholdParameter));
946 putText(histImage, nosofpixels_green, Point(40, 60), 1, 1, CV_RGB(0, 255,
0), 2);
947 string pixelsno_green =
to_string((int)g_hist.at<float>(thresholdParameter));
948
949 string nosofpixels_blue = "Pixels no.(B) : " + to_string(b_hist.at<float>
(thresholdParameter));
950 putText(histImage, nosofpixels_blue, Point(40, 80), 1, 1, CV_RGB(0, 0,
255), 2);
951 string pixelsno_blue = to_string((int)b_hist.at<float>(thresholdParameter));
952
953 file << setw(1) << setiosflags(ios::right) << gettimeonly() << ","
//date and time
954 << setw(4) << setiosflags(ios::right) << thresholdParameter << ","
//threhsold Otsu
955 << setw(5) << setiosflags(ios::right) << gray_maxtemp << ","
//Max. gray level
956 << setw(8) << setiosflags(ios::right) << (yMax - yMin)*(xMax - xMin) << ","
//ROI
957 << setw(4) << setiosflags(ios::right) << (yMax - yMin) << ","
//Region Height
958 << setw(4) << setiosflags(ios::right) << centroids.back().x <<","
//Centroid (Intensity)
959 << setw(3) << setiosflags(ios::right) << centroids.back().y << ","
//Centroid (Intensity)
960 << setw(5) << setiosflags(ios::right) << x <<","
//Centroid X (Motion)

B-23

961 << setw(3) << setiosflags(ios::right) << y << ","
//Centroid Y (Motion)
962 << setw(5) << setiosflags(ios::right) << objectBoundingRectangle.height
<< ","
//motion object height
963 << setw(7) << setiosflags(ios::right) << objectBoundingRectangle.width *
objectBoundingRectangle.height << "," //ROI (Motion)
964 << setw(7) << setiosflags(ios::right) << pixelsno_red << ","
//red color pixels in threshold Otsu
965 << setw(7) << setiosflags(ios::right) << pixelsno_green << ","
//green color pixels in threshold Otsu
966 << setw(7) << setiosflags(ios::right) << pixelsno_blue << ","
//blue color pixels in threshold Otsu
967 << endl;
968
969
970 //display the output on screen
971
972 string text1 = "Developed by : Arthur Wong" ;
973
974 int fontFace = FONT_HERSHEY_SIMPLEX;
975 double fontScale = 0.8;
976 int thickness = 2.0;
977
978 Mat img(300, 900, CV_8UC3, Scalar::all(0));
979
980 putText(img, string("VIDEO FIRE DETECTION"), Point(20, 20), fontFace,
fontScale, Scalar::
all(255), thickness, 8);
981
982 putText(img, threshold_value, Point (20, 45), fontFace, fontScale,
Scalar::all(255),
thickness, 8);
983 putText(img, nosofpixels_red, Point(20, 70), fontFace, fontScale,
Scalar::all(255),
thickness, 8);
984 putText(img, nosofpixels_green, Point(20, 95), fontFace, fontScale,
Scalar::all(255),
thickness, 8);
985 putText(img, nosofpixels_blue, Point(20, 120), fontFace, fontScale,
Scalar::all(255),
thickness, 8);
986 putText(img, heightFire, Point(20, 145), fontFace, fontScale,
Scalar::all(255), thickness,
8);
987 putText(img, widthFire, Point(20, 170), fontFace, fontScale,
Scalar::all(255), thickness,
8);
988 putText(img, cenFire, Point(20, 195), fontFace, fontScale, Scalar::all(255),
thickness, 8);

B-24

989 putText(img, ROIFire, Point(20, 220), fontFace, fontScale, Scalar::all(255),
thickness, 8);
990
991 putText(img, ROIMovheightFire, Point(500, 45), fontFace, fontScale,
Scalar::all(255),
thickness, 8);
992 putText(img, ROIMovwidthFire, Point(500, 70), fontFace, fontScale,
Scalar::all(255),
thickness, 8);
993 putText(img, movcenFire, Point(500, 95), fontFace, fontScale,
Scalar::all(255), thickness,
8);
994 putText(img, ROIMovFire, Point(500, 120), fontFace, fontScale,
Scalar::all(255), thickness,
8);
995
996 putText(img, text1, Point (500, 280), fontFace, fontScale, Scalar::all(255),
thickness, 8);
997
998 namedWindow("data", WINDOW_NORMAL);
999 imshow("data", img);
1000
1001
1002
/**
**
***/
1003 cvNamedWindow("input", WINDOW_NORMAL);
1004 cvNamedWindow("gray", WINDOW_NORMAL);
1005 cvNamedWindow("display",WINDOW_NORMAL);
1006
1007 cv::imshow("input",frame2); // display input video image
1008 cv::imshow("gray",grayimage); // display gray video image
1009 cv::imshow("display",display); // display final video image
1010
1011 /// Display histogram
1012 cvNamedWindow("Gray Hist", WINDOW_NORMAL);
1013
1014 cvNamedWindow("Red Hist", WINDOW_NORMAL);
1015 cvNamedWindow("Green Hist", WINDOW_NORMAL);
1016 cvNamedWindow("Blue Hist", WINDOW_NORMAL);
1017
1018 cvNamedWindow("rgb and gray_Hist", WINDOW_NORMAL);
1019
1020 cv::imshow("Red Hist", R_histImage);
1021 cv::imshow("Green Hist", G_histImage);
1022 cv::imshow("Blue Hist", B_histImage);
1023 cv::imshow("Gray Hist", grayhistImage);
1024 cv::imshow("rgb and gray_Hist", histImage);
1025
1026 if (widths.size() > 1) // SgSignal.cpp line no 332

B-25

1027 {
1028
1029 //vector<float> tempH;
1030 vector<float> motionheight;
1031 //vector<float> tempW;
1032 //vector<float> tempA;
1033
1034 //signal.sgDequeToVector(widths,tempW);
1035 //signal.sgDequeToVector(heights, tempH);
1036 signal.sgDequeToVector(mheight,motionheight);
1037 //signal.sgDequeToVector(areas,tempA);
1038
1039 //signal.sgNormalizeByMinMax(tempW,tempW,0,1000); //original 300 red
1040 //signal.sgNormalizeByMinMax(tempH, tempH, 0, 1000); //original 300
green
1041 signal.sgNormalizeByMinMax(motionheight, motionheight, 0, 300);
1042 //signal.sgNormalizeByMinMax(tempA,tempA,0,30000);
1043
1044 Mat graph = Mat::zeros(200, 1920, CV_8UC3);
1045 //signal.sgDraw01(graph, CV_RGB(255, 255, 255), tempH, 1);
1046 signal.sgDraw01(graph, CV_RGB(255, 255, 255), motionheight, 1);
1047 //signal.sgDraw01(graph,CV_RGB(255,0,0),tempW,1);
1048
1049
1050 //calculation and display on chart
1051 int intensityflameheight = (yMax - yMin);
1052 int motionflameheight = (objectBoundingRectangle.height);
1053
1054
1055 //string intflicker = "flame height (intensity) : " +
to_string(intensityflameheight);
1056 //putText(graph, intflicker, Point(40, 60), 1, 1, CV_RGB(255, 255, 255), 2);
1057
1058 string motflicker = "Object motion (height) : " +
to_string(motionflameheight);
1059 putText(graph, motflicker, Point(40, 20), 1, 1, CV_RGB(255, 255, 255), 2);
1060
1061 cvNamedWindow("Motion", WINDOW_NORMAL);
1062 cv::imshow("Motion", graph);
1063
1064
1065 }
1066
1067 ///////////////////////////////// CALCULATION OPTICAL FLOW
//////////////////////////////
1068
1069 namedWindow("flow", WINDOW_NORMAL);
1070 //namedWindow("realtime input", 1);
1071
1072 video.read(frame2);
1073 cvtColor(frame2, gray, COLOR_BGR2GRAY); //

B-26

1074
1075 //imshow("realtime input", frame2);
1076 imshow("flow", gray);
1077
1078 if (prevgray.data)
1079 {
1080 calcOpticalFlowFarneback(prevgray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
1081
1082 cvtColor(prevgray, cflow, COLOR_GRAY2BGR);
1083 drawOptFlowMap(flow, cflow, 16, 1.5, Scalar(0, 255, 0));
1084
1085 imshow("flow", cflow);
1086 }
1087
1088 ///
1089
1090 /*
1091 int c = cvWaitKey(30);
1092 if(c == 27) break;
1093 else if (c == 32) pause = !pause;
1094 else if (char(c) == '+') for (int i = 0; i < 30*5; i++) video.grab();
1095 else if (char(c) == 'n') video >> frame;
1096 */
1097
1098 switch (waitKey(30))
1099 {
1100 case 27: //'Esc' has been pressed. this wil exit the code.
1101 file << "END" << endl;
1102 file.close();
1103 return 0;
1104
1105 case 32: //'Space bar' has been pressed. this will toggle tracking
1106 trackingEnabled = !trackingEnabled;
1107 if (trackingEnabled == false) cout << "Tracking disabled." << endl;
1108 else cout << "Tracking enabled." << endl;
1109 break;
1110
1111 case 112: //'p' has been pressed. this will pause/resume the code.
1112 pause = !pause;
1113 if (pause == true)
1114 {
1115 cout << "Code paused, press 'p' again to resume" << endl;
1116 while (pause == true)
1117 {
1118 //stay in this loop until
1119 switch (waitKey())
1120 {
1121 //a switch statement inside a switch statement? Mind blown.
1122 case 112:
1123 //change pause back to false
1124 pause = false;

B-27

1125 cout << "Code Resumed" << endl;
1126 break;
1127
1128
1129 }
1130 }
1131
1132 }
1133
1134 }
1135 swap(prevgray, gray); // OPTICAL FLOW
1136 }
1137 //cvDestroyWindow("fire");
1138
1139 return 0; // Exit the program
1140
1141 }

B1-1

Appendix B1: Revised C++ / OpenCV source code

1 // opencvApplication.cpp : Defines the entry point for the console application.
2 //
3
4 #define _CRT_SECURE_NO_DEPRECATE
5
6
7 #include <cctype>
8 #include <iostream> // Basic input and output library
9 #include <iomanip>
10 #include <iterator>
11 #include <stdio.h>
12 #include <math.h>
13 #include <time.h>
14 #include <windows.h>
15 #include <fstream> // For file stream
16
17 #include "opencv2/video/tracking.hpp" // For optical flow analysis
18 #include "opencv2/highgui/highgui.hpp" // For histogram
19 #include "opencv2/imgproc/imgproc.hpp" // For histogram
20
21 #include "C:\Users\arthur\Downloads\OpenCV with Visual
Studio\Code\opencvApplication_fire4.1\sgVision\
SgGeneral.h"
22 #include "C:\Users\arthur\Downloads\OpenCV with Visual
Studio\Code\opencvApplication_fire4.1\sgVision\
SgSignal.h"
23 #include "C:\Users\arthur\Downloads\OpenCV with Visual
Studio\Code\opencvApplication_fire4.1\sgVision\
SgTimeControl.h"
24
25 using namespace std;
26 using namespace cv;
27
28 bool pause = false;
29
30 //our sensitivity value to be used in the absdiff() function
31 //for higher sensitivity, use a lower value
32 const static int SENSITIVITY_VALUE = 40;
33
34 //size of blur used to smooth the intensity image output from absdiff() function
35 const static int BLUR_SIZE = 10; // SMOOTH THE INTENSITY (EXISING, FOR
MOTION
DETECTION IS 10)
36 const static int BLUR_SIZE_INTENSITY = 7; // SMOOTH THE INTENSITY
37
38 //these two can be toggled by pressing 'd' or 't' (Motion detection code) (Debug
mode is disabled)

B1-2

39 //bool debugMode;
40 bool trackingEnabled;
41
42 //int thresholdParameter = 255; // This thresholdParameter control the intensity
43 int thresholdParameter; // This thresholdParameter control the intensity
44
45 int theObject[2] = { 0, 0 };
46
47 //bounding rectangle of the object, we will use the center of this as its position
48 Rect objectBoundingRectangle = Rect(0, 0, 0, 0);
49
50 //float fps = 25.f;
51
52 vector<vector<Point>> masks;
53 vector<Point> mask;
54 deque<Point> centroids;
55
56 //Mat frame;
57
58 // get time information //
59
60 string intToString(int number)
61 {
62
63 //this function has a number input and string output
64 std::stringstream ss;
65 ss << number;
66 return ss.str();
67 }
68
69 /* Display time and date on hardcopy */
70 string getDateTime()
71 {
72 //get the system time
73 SYSTEMTIME theTime;
74 GetLocalTime(andtheTime);
75 //create string to store the date and time
76 string dateTime;
77
78 //convert year to string
79 string year = intToString(theTime.wYear);
80
81 //use stringstream to add a leading '0' to the month (ie. 3 -> 03)
82 //we use 'setw(2)' so that we force the string 2 characters wide with a zero in front
of it.
83 //if the month is '10' then it will remain '10'
84 std::stringstream m;
85 m << std::setfill('0') << std::setw(2) << theTime.wMonth;
86 string month = m.str();

B1-3

87 //day
88 std::stringstream d;
89 d << std::setfill('0') << std::setw(2) << theTime.wDay;
90 string day = d.str();
91 //hour
92 std::stringstream hr;
93 hr << setfill('0') << std::setw(2) << theTime.wHour;
94 string hour = hr.str();
95 //minute
96 std::stringstream min;
97 min << setfill('0') << std::setw(2) << theTime.wMinute;
98 string minute = min.str();
99 //second
100 std::stringstream sec;
101 sec << setfill('0') << std::setw(2) << theTime.wSecond;
102 string second = sec.str();
103
104 //here we use the year, month, day, hour, minute info to create a custom string
105 //this will be displayed in the bottom left corner of our video feed.
106 dateTime = year + "-" + month + "-" + day + " " + hour + ":" + minute + ":" + second;
107
108 return dateTime;
109 }
110
111 /* Display time only on hardcopy */
112 string gettimeonly()
113 {
114 //get the system time
115 SYSTEMTIME theTime;
116 GetLocalTime(andtheTime);
117 //create string to store the date and time
118 string timeonly;
119
120 //convert year to string
121
122 //hour
123 std::stringstream hr;
124 hr << setfill('0') << std::setw(2) << theTime.wHour;
125 string hour = hr.str();
126 //minute
127 std::stringstream min;
128 min << setfill('0') << std::setw(2) << theTime.wMinute;
129 string minute = min.str();
130 //second
131 std::stringstream sec;
132 sec << setfill('0') << std::setw(2) << theTime.wSecond;
133 string second = sec.str();
134
135 //here we use the year, month, day, hour, minute info to create a custom string

B1-4

136 //this will be displayed in the bottom left corner of our video feed.
137 //dateTime = year + "-" + month + "-" + day + " " + hour + ":" + minute + ":" +
second;
138 timeonly = hour + ":" + minute + ":" + second;
139
140 return timeonly;
141 }
142
143 /* Display time and date on hardcopy */
144 string getdateonly()
145 {
146 //get the system time
147 SYSTEMTIME theTime;
148 GetLocalTime(andtheTime);
149 //create string to store the date and time
150 string dateonly;
151
152 //convert year to string
153 string year = intToString(theTime.wYear);
154
155 //use stringstream to add a leading '0' to the month (ie. 3 -> 03)
156 //we use 'setw(2)' so that we force the string 2 characters wide with a zero in front
of it.
157 //if the month is '10' then it will remain '10'
158 std::stringstream m;
159 m << std::setfill('0') << std::setw(2) << theTime.wMonth;
160 string month = m.str();
161 //day
162 std::stringstream d;
163 d << std::setfill('0') << std::setw(2) << theTime.wDay;
164 string day = d.str();
165
166 //here we use the year, month, day, hour, minute info to create a custom string
167 //this will be displayed in the bottom left corner of our video feed.
168 dateonly = year + "-" + month + "-" + day;
169
170 return dateonly;
171 }
172
173 string getDateTimeForFile()
174 {
175 //this function does the exact same as "getDateTime()"
176 //however it returns a string that can be used as a filename
177 SYSTEMTIME theTime;
178 GetLocalTime(andtheTime);
179 string dateTime;
180
181 string year = intToString(theTime.wYear);
182

B1-5

183 std::stringstream m;
184 m << std::setfill('0') << std::setw(2) << theTime.wMonth;
185 string month = m.str();
186
187 std::stringstream d;
188 d << std::setfill('0') << std::setw(2) << theTime.wDay;
189 string day = d.str();
190
191 std::stringstream hr;
192 hr << setfill('0') << std::setw(2) << theTime.wHour;
193 string hour = hr.str();
194
195 std::stringstream min;
196 min << setfill('0') << std::setw(2) << theTime.wMinute;
197 string minute = min.str();
198
199 std::stringstream sec;
200 sec << setfill('0') << std::setw(2) << theTime.wSecond;
201 string second = sec.str();
202
203 //here we use "_" instead of "-" and ":"
204 //if we try to save a filename with "-" or ":" in it we will get an error.
205 dateTime = year + "_" + month + "_" + day + "_" + hour + "h" + minute + "m" +
second + "s";
206
207 return dateTime;
208 }
209
210 /* Dispaly time and date above */
211
212 /* Motion detection below */
213 bool detectMotion(Mat thresholdImage, Mat andcameraFeed){
214 //create motionDetected variable.
215 bool motionDetected = false;
216
217 //create temp Mat for threshold image
218 Mat temp;
219 thresholdImage.copyTo(temp);
220
221 //these two vectors needed for output of findContours
222 vector< vector<Point> > contours;
223 vector<Vec4i> hierarchy;
224
225 //find contours of filtered image using openCV findContours function
226
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_
SIMPLE);// retrieves all
contours

B1-6

227 findContours(temp, contours, hierarchy, CV_RETR_EXTERNAL,
CV_CHAIN_APPROX_SIMPLE);// retrieves
external contours
228
229 //if contours vector is not empty, we have found some objects
230 //we can simply say that if the vector is not empty, motion in the video feed has
been detected.
231 if (contours.size()>0)motionDetected = true;
232 else motionDetected = false;
233
234 //find the motion object
235 if (motionDetected){
236 //the large contour is found at the end of the contours vector
237 //we will simply assume that the biggest contour is the object
238 vector< vector<Point> > largestContourVec;
239 largestContourVec.push_back(contours.at(contours.size() - 1));
240
241 //make a bounding rectangle around the largest contour then find its centroid
242 //this will be the objects final estimated position
243 objectBoundingRectangle = boundingRect(largestContourVec.at(0));
244 int xpos = objectBoundingRectangle.x + objectBoundingRectangle.width / 2;
245 int ypos = objectBoundingRectangle.y + objectBoundingRectangle.height / 2;
246
247
248 //update the objects position by changing the 'theObject' array values
249 theObject[0] = xpos, theObject[1] = ypos;
250
251 }
252
253 return motionDetected;
254
255 }
256 /* Motion detection code above */
257
258 ///////////////////////////////// CALCULATION OPTICAL FLOW
///
////
259 void drawOptFlowMap(const Matand flow, Matand cflowmap, int step, double,
const Scalarand color)
260 {
261 for (int y = 0; y < cflowmap.rows; y += step)
262 for (int x = 0; x < cflowmap.cols; x += step)
263 {
264 const Point2fand fxy = flow.at<Point2f>(y, x);
265
266 // Displacement direction
267 line(cflowmap, Point(x, y), Point(cvRound(x + fxy.x), cvRound(y + fxy.y)), color);
268
269 // Green dot

B1-7

270 circle(cflowmap, Point(x, y), 2, color, -1);
271 }
272 }
273 //
///
274
275 void CallBackFunc(int event, int x, int y, int flags, void* userdata)
276 {
277 if (event == EVENT_LBUTTONDOWN)
278 {
279 Point p = Point(x,y);
280 mask.push_back(p);
281 }
282 else if (event == EVENT_RBUTTONDOWN)
283 {
284 masks.push_back(mask);
285 mask.clear();
286 }
287 else if (event == EVENT_MBUTTONDOWN)
288 {
289 mask.clear();
290 masks.clear();
291 }
292
293 }
294
295 #define FILEPATH "D:/" + getDateTimeForFile() + ".csv" //define file stream object
296
297 // open the video image //
298 int main(int argc, const char** argv) //program entry points
299 {
300
301 /* Declaraction the motion detection code start */
302
303 //set recording and startNewRecording initially to false.
304 bool recording = false;
305 bool startNewRecording = false;
306 int inc = 0;
307 bool firstRun = true;
308 //if motion is detected in the video feed, we will know to start recording.
309 bool motionDetected = false;
310
311 //pause and resume code (if needed)
312 bool pause = false;
313 //set debug mode and trackingenabled initially to false
314 //these can be toggled using 'd' and 't'
315 //debugMode = false;
316 trackingEnabled = false;
317

B1-8

318 //set up the matrices that we will need
319 //the two frames we will be comparing
320 Mat frame1, frame2;
321 //their grayscale images (needed for absdiff() function)
322 Mat grayImage1, grayImage2;
323 //resulting difference image
324 Mat differenceImage;
325 //thresholded difference image (for use in findContours() function)
326 Mat thresholdImage;
327
328 Mat prevgray, gray; //OPTICAL FLOW
329 Mat flow, cflow; //OPTICAL FLOW
330
331 Mat src; // Add for image inpuut
332
333 /* Declaraction the motion detection code end */
334
335 /* Trackbar control threshold value below */
336 SgSignal signal;
337 //cvNamedWindow("display", 0);
338 //createTrackbar("threshold", "display", andthresholdParameter, 255, NULL);
339 //setMouseCallback("display", CallBackFunc, NULL);
340
341 /* Trackbar control threshold value above*/
342
343 VideoCapture cap("C:\\Users\arthur\Desktop\Video Clips\Fire and smoke video
clips\fire1.avi");
344
345 //VideoCapture cap("C:\\Users\arthur\Documents\My Documents\Desptop
folder\Fire video\fire1.avi");
346 if (!cap.isOpened())
347 {
348 printf("Fail to open");
349 return -1;
350 }
351 Mat frame;
352
353 while (1)
354 {
355 cap >> frame;
356 namedWindow("video", CV_WINDOW_NORMAL);
357 imshow("video", frame);
358 }
359
360
361
362
363 /* Start access camera below */
364 VideoCapture video;

B1-9

365 video.open(0); //Access the webcam.
366 video >> frame1; //Input the first real time image to frame1
367
368 VideoWriter oVideoWriter; //create videoWriter object, not initialized yet (Motion
detection
code)
369
370 /// for realtime video
371 if (!video.isOpened())
372 {
373 std::cout << "ERROR!!! could not access the webcam !!!" << std::endl;
374 system("PAUSE");
375 return EXIT_SUCCESS;
376 //exit(1);
377 }
378
379 // Record the data to file
380
381 fstream file;
382
383 file.open(FILEPATH, ios::out | ios::trunc);
384
385 if (!file)// Check file open or not
386 {
387 cerr << "Sorry!!! Can't open file in Hard drive !!!" << endl;
388 exit(1);
389 }
390
391 double dWidth = video.get(CV_CAP_PROP_FRAME_WIDTH); //get the width of
frames1 of the video
392 double dHeight = video.get(CV_CAP_PROP_FRAME_HEIGHT); //get the height
of frames1 of the video
393
394 //set framesize for use with videoWriter
395 Size frameSize(static_cast<int>(dWidth), static_cast<int>(dHeight));
396
397 /* Display on command prompt */
398 cout << "---" << endl;
399 cout << "VIDEO FIRE DETECTION" << endl;
400 cout << "Frame Size = " << frameSize << endl;
401 cout << "Record date " << getdateonly () << endl;
402 cout << "Start record time " << gettimeonly() << endl;
403 cout << "OpenCV verson " << CV_VERSION << endl;
404 cout << "---" << endl;
405 cout << "Press 'Esc' exit the Code" << endl;
406 cout << "Press 'p' paused or resume the code" << endl;
407 cout << "Press 'Space bar' will toggle tracking" << endl;
408
409 /* Write on hard disk */

B1-10

410 file << "VIDEO FIRE DETECTION DATA RECORD" << endl;
411 file << "Frame Size " << "," << frameSize << endl;
412 file << "Record date " << "," << getdateonly() << endl;
413 file << "OpenCV verson " << CV_VERSION << endl;
414 file << " " << endl;
415
416 file << setw(0) << "," << setiosflags(ios::right) << "FROM FLAME-INTENSITY" <<
"," << "," << ","
417 << setw(0) << "," << "," << "," << setiosflags(ios::right) << "FROM FLAME-
MOTION"
418 << endl;
419
420 file << setw(0) << setiosflags(ios::right) << "Time" << ","
421
422 << setw(0) << setiosflags(ios::right) << "Otsu Threshold value" << ","
423
424 << setw(0) << setiosflags(ios::right) << "Max. Gray level" << ","
425
426 << setw(0) << setiosflags(ios::right) << "ROI" << ","
427 << setw(0) << setiosflags(ios::right) << "Height" << ","
428 << setw(0) << setiosflags(ios::right) << "Centroid X" << ","
429 << setw(0) << setiosflags(ios::right) << "Centroid Y" << ","
430
431 << setw(0) << setiosflags(ios::right) << "ROI" << ","
432 << setw(0) << setiosflags(ios::right) << "Height" << ","
433 << setw(0) << setiosflags(ios::right) << "Centroid X" << ","
434 << setw(0) << setiosflags(ios::right) << "Centroid Y" << ","
435
436 << setw(0) << setiosflags(ios::right) << "Pixel no. (Red)" << ","
437 << setw(0) << setiosflags(ios::right) << "Pixel no. (Green)" << ","
438 << setw(0) << setiosflags(ios::right) << "Pixel no. (Blue)"
439 << endl;
440
441 deque<float> heights,widths,areas,mheight;
442 double numberFrame = video.get(CV_CAP_PROP_FRAME_COUNT);
443 int countFrame = 0;
444 float lengthTrajectory = 10.0f;
445 float sizeWindow = 1920.0f;
446
447 while (true) // Infinite Loop
448 {
449 if (!pause) video >> frame1;
450 countFrame++;
451 if (countFrame == numberFrame - 1)
452 {
453 video.set(CV_CAP_PROP_POS_FRAMES, 1);
454 countFrame = 1;
455 continue;
456 }

B1-11

457
458 //localize the fire
459 Mat image, grayimage, grayimage2, fireMask, display, graph;
460
461 frame1.copyTo(display);
462
463 /*Motion detection code start*/
464
465 //read first frame
466 video.read(frame1);
467
468 //
/////
469
470 //convert frame1 to gray scale for frame differencing
471 cv::cvtColor(frame1, grayImage1, COLOR_BGR2GRAY);
472
473 //copy second frame
474 video.read(frame2);
475
476 //convert frame2 to gray scale for frame differencing
477 cv::cvtColor(frame2, grayImage2, COLOR_BGR2GRAY);
478
479 //
//////
480
481 //perform frame differencing with the sequential images. This will output an
"intensity image"
482 //do not confuse this with a threshold image, we will need to perform thresholding
afterwards.
483 cv::absdiff(grayImage1, grayImage2, differenceImage); //
COMPARE THE DIFF. for motion detection
484
485 //threshold intensity image at a given sensitivity value
486 cv::threshold(differenceImage, thresholdImage, SENSITIVITY_VALUE, 255,
THRESH_BINARY); //
threshold --> SENSITIVITY VALUE = 40
487
488 /*if (debugMode == true){
489 //show the difference image and threshold image
490 cv::imshow("Difference Image", differenceImage);
491 cv::imshow("Threshold Image", thresholdImage);
492 }
493 else{
494 //if not in debug mode, destroy the windows so we don't see them anymore
495 cv::destroyWindow("Difference Image");
496 cv::destroyWindow("Threshold Image");
497 }*/
498

B1-12

499 //blur the image to get rid of the noise. This will output an intensity image
500 cv::blur(thresholdImage, thresholdImage, cv::Size(BLUR_SIZE, BLUR_SIZE)); //
Dilate and Erode
501
502 //threshold again to obtain binary image from blur output
503 cv::threshold(thresholdImage, thresholdImage, SENSITIVITY_VALUE, 255,
THRESH_BINARY);
//Sensitivity value is 40 (threshold)
504
505
506 /*if (debugMode == true){
507 //show the threshold image after it's been "blurred"
508
509 imshow("Final Threshold Image", thresholdImage);
510
511 }
512 else {
513 //if not in debug mode, destroy the windows so we don't see them anymore
514 cv::destroyWindow("Final Threshold Image");
515 }*/
516
517 //if tracking enabled, search for Motion
518 if (trackingEnabled){
519 //detectMotion function will return true if motion is detected, else it will return false.
520 //set motionDetected boolean to the returned value.
521 motionDetected = detectMotion(thresholdImage, frame1);
522 }
523 else{
524 //reset our variables if tracking is disabled
525 recording = false;
526 motionDetected = false;
527 }
528 /*Motion detection code end*/
529
530 /*Motion detection code start*/
531 //if we're in recording mode, write to file
532 if (recording){
533
534 oVideoWriter.write(frame1);
535 //show "REC" in red
536 //be sure to do this AFTER you write to the file so that "REC" doesn't show up
537 //on the recorded video.
538 circle(display, Point(500, 20), 12.0, Scalar(0, 0, 255), -1, 8);
539 putText(display, "REC", Point(515, 28), 2, 1, Scalar(0, 0, 255), 2);
540
541 }
542 if (motionDetected){
543 //show "MOTION DETECTED" in bottom left corner in green

B1-13

544 //once again, be sure to do this AFTER you write to the file so that "MOTION
DETECTED"
doesn't show up
545 //on the recorded video. Place this code above if(recording) to see what I'm talking
about
.
546 putText(display, "MOTION DETECTED", cv::Point(0, 420), 2, 1, cv::Scalar(0, 255,
0), 2);
547
548 //set recording to true since there is motion in the video feed.
549 recording = true;
550
551 if (firstRun == true){
552
553 string videoFileName = "D:/" + getDateTimeForFile() + ".avi";
554 cout << "File has been opened for writing: " << videoFileName << endl;
555 oVideoWriter = VideoWriter(videoFileName, CV_FOURCC('D', 'I', 'V', '3'), 20,
frameSize
, true);
556
557 if (!oVideoWriter.isOpened())
558 {
559 cout << "ERROR!!! Failed to initialize video writing in Hard drive !!!" << endl;
560 getchar();
561 return -1;
562 }
563 firstRun = false;
564
565 }
566
567 }
568 else recording = false;
569 /*Motion detection code end*/
570
571 cvtColor(frame2, grayimage, CV_BGR2GRAY); // Convert to gratscale and store
in
"grayimage" ORIGINAL DATA FROM WEBCAM
572
573 // Calculation the gray values (IN PROGRESS)
574 double alpha = 0.2989, Beta = 0.5870, Gamma = 0.1140; // For calculation !!
575 vector<Mat> bgr_planesforgray;
576 split(frame2, bgr_planesforgray);
577 /*
578 float hist_val[256];
579 for (int i = 0; i < 256; i++)
580 {
581 hist_val[i] = 0.0;
582 //cout << i << " " << hist_val[i] << endl;
583

B1-14

584 }
585 */
586 /* Analysis for captured the Region of Interest */
587 cvtColor(frame2,image,CV_BGR2GRAY); // Convert to grayscale and store in
"image"
for analysis
588
589 // Smooths an image using the Gaussian filter (Dilate and Erode)
590
GaussianBlur(image,image,Size(BLUR_SIZE_INTENSITY,BLUR_SIZE_INTENSITY
),0,0);
591 //blur(image, image, Size(BLUR_SIZE, BLUR_SIZE)); // BLUR_SIZE = 10
reference: line no. 32
592
593
594 // Otsu calculation (IN PROGRESS)
595 /*
596 float wB; //Weight Background
597 float wF; //Weight Foreground
598 float mB; //Mean Background
599 float mF; //Mean Foreground
600 float varBetween; //Between Class Variance
601 float varMax; //Maximum Between Class Variance
602 */
603 // Total number of pixels
604
605
606 // Calculate Weight background
607
608
609 //threshold(image, fireMask, thresholdParameter, 255, cv::THRESH_BINARY);
610
611
612 // Optimal threshold value obtained by Otsu algorithm
613 thresholdParameter = threshold(image, fireMask, 0, 255, cv::THRESH_BINARY |
cv::THRESH_OTSU);
// WARNING double to int problem ??
614
615 fillPoly(fireMask,masks,cvScalarAll(0));
616 bitwise_and(image, fireMask, image);
617
618 /*
619 /// Apply Histogram Equalization
620 equalizeHist(image,image);
621
622 Mat dst;
623 equalizeHist(image, dst);
624
625 /// Display results

B1-15

626 namedWindow("equalized_window", CV_WINDOW_AUTOSIZE);
627 imshow("equalized_window", dst);
628 */
629
630 //resize the user interface
631 /*
632 resizeWindow("input", 450, 350);
633 resizeWindow("display", 450, 350);
634 cvResizeWindow("rgb and gray_Hist", 450, 350);
635 resizeWindow("data", 450, 350);
636
637 //resizeWindow("gray", 240, 120);
638 //cvResizeWindow("Threshold by Otsu", 240, 120);
639 //cvResizeWindow("Diff. by motion", 240, 120);
640 //cvResizeWindow("Threshold by motion", 240, 120);
641
642 //cvResizeWindow("Gray Hist", 320, 240);
643 //cvResizeWindow("Red Hist", 320, 200);
644 //cvResizeWindow("Green Hist", 320, 200);
645 //cvResizeWindow("Blue Hist", 320, 200);
646
647 //resizeWindow("Motion", 800, 100);
648
649 //resizeWindow("flow", 320, 240);
650 */
651
652 //FIXED LOCATION OF WINDOWS
653 /*
654 cvMoveWindow("input", 10, 0);
655 cvMoveWindow("display", 10, 400);
656 cvMoveWindow("rgb and gray_Hist", 500, 0);
657 cvMoveWindow("data", 500, 400);
658
659 cvMoveWindow("Gray Hist", 640, 0);
660 cvMoveWindow("flow", 960, 0);
661 cvMoveWindow("Threshold by Otsu", 1280, 160);
662 cvMoveWindow("gray", 1280, 0);
663 cvMoveWindow("Threshold by Otsu", 1280, 160);
664 cvMoveWindow("Diff. by motion", 1280, 320);
665 cvMoveWindow("Threshold by motion", 1280, 480);
666
667 cvMoveWindow("Red Hist", 640, 280);
668 cvMoveWindow("Green Hist", 960, 280);
669 cvMoveWindow("Blue Hist", 960, 560);
670
671 cvMoveWindow("Motion", 0, 560);
672 */
673
674 cvNamedWindow("Threshold by Otsu", WINDOW_NORMAL);

B1-16

675 cvNamedWindow("Diff. by motion", WINDOW_NORMAL);
676 cvNamedWindow("Threshold by motion", WINDOW_NORMAL);
677
678 cv::imshow("Threshold by Otsu", fireMask);
679
680
681 cv::imshow("Diff. by motion",differenceImage);
682 cv::imshow("Threshold by motion",thresholdImage);
683
684 //get contours
685 vector<vector<Point>> contourFires;
686 vector<Vec4i> hierarchy;
687 findContours(fireMask,contourFires,hierarchy,CV_RETR_CCOMP,
CV_CHAIN_APPROX_SIMPLE);
688 vector<Point> contourMax;
689 SgGeneral::sgGetMaxContour(contourFires,20,contourMax);
690 if (!contourMax.empty())
691 {
692 Point centroid = SgGeneral::sgGetCentroid(contourMax);
693
694 centroids.push_back(centroid);
695
696 while (centroids.size() > lengthTrajectory) centroids.pop_front();
697 }
698
699 float area = SgGeneral::sgGetArea(contourFires);
700 areas.push_back(area);
701 if (areas.size() > sizeWindow) areas.pop_front();
702
703 //calculate bounding box of multiple contours
704 int yMin = 999, yMax = 0, xMax = 0, xMin = 999;
705
706 Point peak;
707 for(int i = 0; i < contourFires.size(); i++)
708 {
709 if (contourFires[i].size() > 20)
710 {
711 for(int j = 0; j < contourFires[i].size(); j++)
712 {
713 if (contourFires[i][j].y > yMax) yMax = contourFires[i][j].y;
714 else if(contourFires[i][j].y < yMin)
715 {
716 yMin = contourFires[i][j].y;
717 peak.x = contourFires[i][j].x;
718 peak.y = contourFires[i][j].y;
719 }
720 if (contourFires[i][j].x > xMax) xMax = contourFires[i][j].x;
721 else if(contourFires[i][j].x < xMin) xMin = contourFires[i][j].x;
722 }

B1-17

723 }
724 }
725
726 // Input the informaton data
727 heights.push_back(yMax-yMin); // WARNING int to float problem ??
728
729 widths.push_back(xMax-xMin); // WARNING int to float problem ??
730 mheight.push_back(objectBoundingRectangle.height); // NEW Pushback motion
height to "mheight"
731
732 if (heights.size() > sizeWindow)
733 {
734 heights.pop_front();
735 widths.pop_front();
736 mheight.pop_front();
737 }
738
739 //visualize ??
740 polylines(display,masks,true,CV_RGB(0,0,128),1);
741 for (int j = 0; j < mask.size(); j++) circle(display,mask[j],2,CV_RGB(255,0,0),-1);
742
743 //mask the segmentation region
744 /*Mat rgb[3];
745 split(display,rgb);
746 rgb[0] += image; // Blue
747 rgb[1] += image; // Green
748 rgb[2] += image; // Red
749 merge(rgb,3,display);
750 */
751
752 if (!contourFires.empty())
753 for(int i = 0; i < contourFires.size(); i++)
754 drawContours(display,contourFires,i,CV_RGB(0,0,0), 2); // draw contout
line in display
755
756 //float scale = 255. / lengthTrajectory;
757 double scale = 255. / lengthTrajectory;
758 if(centroids.size() > 2)
759 {
760 for (int i = 0; i < centroids.size() - 1; i++)
761 {
762 circle(display, Point(centroids.back().x, centroids.back().y), 7, Scalar(255, 0, 0),
2); //draw centroid
763
764 line(display, Point(centroids.back().x, centroids.back().y), Point(centroids.back().x,
centroids.back().y - 15),
765 Scalar(255, 0, 0), 2);
766 line(display, Point(centroids.back().x, centroids.back().y), Point(centroids.back().x,
centroids.back().y + 15),

B1-18

767 Scalar(255, 0, 0), 2);
768 line(display, Point(centroids.back().x, centroids.back().y), Point(centroids.back().x
- 15, centroids.back().y),
769 Scalar(255, 0, 0), 2);
770 line(display, Point(centroids.back().x, centroids.back().y), Point(centroids.back().x
+ 15, centroids.back().y),
771 Scalar(255, 0, 0), 2);
772
773 //line(display, centroids[i], centroids[i+1], CV_RGB(0, scale*i, 0), 2);
774 }
775 }
776
777 circle(display,centroids.back(),3,CV_RGB(0,255,0),-1); // ????
778
779 //make some temp x and y variables
780 int x = theObject[0];
781 int y = theObject[1];
782
783 //draw some crosshairs (motion detection)
784
785 circle(display, Point(x, y), 7, Scalar(0, 255, 0), 2);
786
787 line(display, Point(x, y), Point(x, y - 15), Scalar(0, 255, 0), 2);
788 line(display, Point(x, y), Point(x, y + 15), Scalar(0, 255, 0), 2);
789 line(display, Point(x, y), Point(x - 15, y), Scalar(0, 255, 0), 2);
790 line(display, Point(x, y), Point(x + 15, y), Scalar(0, 255, 0), 2);
791
792 // drawing region of interest (ROI) based on xMin,yMin,xMax,yMax (Threshold
analysis)
793 rectangle(display, Point(xMin, yMin), Point(xMax, yMax), CV_RGB(255, 255, 0),
2); //
threshold analysis
794
795 rectangle(display, Point(objectBoundingRectangle.x,
objectBoundingRectangle.y),
796 Point(objectBoundingRectangle.x + objectBoundingRectangle.width,
objectBoundingRectangle.y
+ objectBoundingRectangle.height),
797 CV_RGB(255, 0, 0), 2);
798
799 //draw time stamp to video in bottom left corner. We draw it before we write so
that it is
written on the video file.
800 rectangle(display, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -1);
801 putText(display, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); //show
date time on 'display'
802 rectangle(frame2, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -1);
803 putText(frame2, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); //show
date time on 'frame'

B1-19

804 rectangle(grayimage, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -1);
805 putText(grayimage, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); //show
date time on 'grayimage'
806
807 //draw the height, width and area region of interest
808 string heightFire = "ROI Height (Intnesity) : " + to_string(yMax - yMin);
809 //putText(display, heightFire, Point(40, 20), 1, 1, CV_RGB(0, 0, 255), 2);
810
811 string widthFire = "ROI Width (Intensity) : " + to_string(xMax - xMin);
812 //putText(display, widthFire, Point(40, 40), 1, 1, CV_RGB(0, 0, 255), 2);
813
814 string ROIFire = "ROI Area (Intensity) : " + to_string((yMax - yMin)*(xMax - xMin));
815 //putText(display, ROIFire, Point(40, 60), 1, 1, CV_RGB(0, 0, 255), 2);
816
817 string fireThreshold = "Otsu : " + to_string(thresholdParameter); //
Intensity threshold
818 //putText(display, fireThreshold, Point(320, 20), 1, 1, CV_RGB(255, 255, 255), 2);
819
820 //draw the centroid coordinate X and Y
821 string cenFire = "X,Y (Intensity) : ";
822 if (!centroids.empty())
823 cenFire = "X,Y (Intensity) : " + to_string(centroids.back().x) + "," +
to_string(centroids
.back().y);
824 //putText(display, cenFire, Point(40, 80), 1, 1, CV_RGB(0, 0, 255), 2);
825
826 string movcenFire = "X,Y (Motion) : " + to_string(x)+","+to_string(y);
827 //putText(display, movcenFire, Point(40, 100), 1, 1, CV_RGB(255, 0, 0), 2);
828
829 string ROIMovFire = "ROI Area (Motion) : " +
to_string(objectBoundingRectangle.width *
objectBoundingRectangle.height);
830 //putText(display, ROIMovFire, Point(40, 120), 1, 1, CV_RGB(255, 0, 0), 2);
831
832 string ROIMovheightFire = "ROI Height (Motion) : " +
to_string(objectBoundingRectangle.height)
;
833 //putText(display, ROIMovheightFire, Point(40, 140), 1, 1, CV_RGB(255, 0, 0), 2);
834
835 string ROIMovwidthFire = "ROI Width (Motion) : " +
to_string(objectBoundingRectangle.width);
836 //putText(display, ROIMovwidthFire, Point(40, 160), 1, 1, CV_RGB(255, 0, 0), 2);
837
838
839 /*Histogram analysis*/
840
841 /// Separate the image in 3 places (B, G and R)
842 vector<Mat> bgr_planes;
843 split(frame2, bgr_planes);

B1-20

844
845 // Separate the image in gray places
846 vector<Mat> gray_planes;
847 split(image, gray_planes);
848
849 vector<Mat> grayplanes;
850 split(grayimage, grayplanes);
851
852 /// Establish the number of bins
853 int histSize = 256; //From 0 to 255
854
855 /// Set the ranges (for B,G,R and gray)
856 float range[] = { 0, 256 }; //the upper boundary is exclusive
857 const float* histRange = { range };
858
859 bool uniform = true; bool accumulate = false;
860
861 Mat b_hist, g_hist, r_hist, gray_hist;
862
863 /// Compute the histograms:
864 calcHist(andbgr_planes[0], 1, 0, Mat(), b_hist, 1, andhistSize, andhistRange,
uniform, accumulate);
865 calcHist(andbgr_planes[1], 1, 0, Mat(), g_hist, 1, andhistSize, andhistRange,
uniform, accumulate);
866 calcHist(andbgr_planes[2], 1, 0, Mat(), r_hist, 1, andhistSize, andhistRange,
uniform, accumulate);
867
868 calcHist(andgrayplanes[0], 1, 0, Mat(), gray_hist, 1, andhistSize, andhistRange,
uniform,
accumulate);
869
870 // Draw the histograms for B, G and R
871 int hist_w = 512; int hist_h = 400;
872 int bin_w = cvRound((double)hist_w / histSize); // int histSize = 256
873
874 Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
875
876 Mat R_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
877 Mat G_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
878 Mat B_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
879
880 Mat grayhistImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
881
882 /// Normalize the result to [0, histImage.rows]
883 normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
884 normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
885 normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
886
887 normalize(b_hist, b_hist, 0, B_histImage.rows, NORM_MINMAX, -1, Mat());

B1-21

888 normalize(g_hist, g_hist, 0, G_histImage.rows, NORM_MINMAX, -1, Mat());
889 normalize(r_hist, r_hist, 0, R_histImage.rows, NORM_MINMAX, -1, Mat());
890
891 normalize(gray_hist, gray_hist, 0, grayhistImage.rows, NORM_MINMAX, -1,
Mat()); //Normalize
the gray result
892
893 /// Draw for each channel
894 int gray_maxtemp = 0;
895 int red_maxtemp = 0;
896 int green_maxtemp = 0;
897
898 for (int i = 0; i < histSize; i++)
899 {
900 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))),
901 Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
902 Scalar(255, 0, 0), 0, 8, 0);
// Blue colour
903
904 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))),
905 Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
906 Scalar(0, 255, 0), 0, 8, 0);
// Green colour
907
908 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))),
909 Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))),
910 Scalar(0, 0, 255), 0, 8, 0);
// Red colour
911
912 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(gray_hist.at<float>(i - 1))),
// Gray color
913 Point(bin_w*(i), hist_h - cvRound(gray_hist.at<float>(i))),
914 Scalar(255, 255, 255), 0, 8, 0);
915
916 /* Individual histogram */
917 line(B_histImage, Point(bin_w*(i - 1), hist_h),
918 Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
919 Scalar(255, 0, 0), 0, 8, 0); //
Blue colour
920
921 line(G_histImage, Point(bin_w*(i - 1), hist_h),
922 Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
923 Scalar(0, 255, 0), 0, 8, 0); //
Green colour
924
925 line(R_histImage, Point(bin_w*(i - 1), hist_h),
926 Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))),
927 Scalar(0, 0, 255), 0, 8, 0); //
Red colour

B1-22

928
929 line(grayhistImage, Point(bin_w*(i - 1), hist_h), //
Gray color
930 Point(bin_w*(i), hist_h - cvRound(gray_hist.at<float>(i))),
931 Scalar(255, 255, 255), 0, 8, 0);
932
933 // Indicate the threshold
934 line(grayhistImage, Point(bin_w*(thresholdParameter), hist_h),
935 Point(bin_w*(thresholdParameter), hist_h - cvRound(gray_hist.at<float>(i))),
936 Scalar(0, 255, 255), 0, 4, 0);
937
938 line(histImage, Point(bin_w*(thresholdParameter), hist_h),
939 Point(bin_w*(thresholdParameter), hist_h - cvRound(gray_hist.at<float>(i))),
940 Scalar(0, 255, 255), 0, 8, 0);
941
942 /* Analysis the maximim gray level */
943 float gray_binVal = gray_hist.at<float>(i);
944 if (gray_hist.at<float>(i) > gray_maxtemp)
945 {
946 gray_maxtemp = i;
947 }
948
949 }
950
951 //display on grayhistImage
952 string maxgray = "Max Gray Level : " + to_string(gray_maxtemp);
953 putText(grayhistImage, maxgray, Point(40, 20), 1, 1, CV_RGB(255, 255, 255), 2);
954
955 string threshold_value = "Threshold by Otsu : " + to_string(thresholdParameter);
956 //putText(grayhistImage, threshold_value, Point(40, 40), 1, 1, CV_RGB(255, 255,
0), 2);
957
958 //diaply on histImage
959 string threshold_value_hist = "Threshold by Otsu : " +
to_string(thresholdParameter);
960 putText(histImage, threshold_value_hist, Point(40, 20), 1, 1, CV_RGB(255, 255,
0), 2);
961
962 string nosofpixels_red = "Pixels no.(R) : " +
to_string(r_hist.at<float>(thresholdParameter));
963 putText(histImage, nosofpixels_red, Point(40, 40), 1, 1, CV_RGB(255, 0, 0), 2);
964 string pixelsno_red = to_string((int)r_hist.at<float>(thresholdParameter));
965
966 string nosofpixels_green = "Pixels no.(G) : " + to_string(g_hist.at<float>
(thresholdParameter));
967 putText(histImage, nosofpixels_green, Point(40, 60), 1, 1, CV_RGB(0, 255, 0), 2);
968 string pixelsno_green = to_string((int)g_hist.at<float>(thresholdParameter));
969

B1-23

970 string nosofpixels_blue = "Pixels no.(B) : " +
to_string(b_hist.at<float>(thresholdParameter))
;
971 putText(histImage, nosofpixels_blue, Point(40, 80), 1, 1, CV_RGB(0, 0, 255), 2);
972 string pixelsno_blue = to_string((int)b_hist.at<float>(thresholdParameter));
973
974 file << setw(1) << setiosflags(ios::right) << gettimeonly() << ","
//date and time
975 << setw(4) << setiosflags(ios::right) << thresholdParameter << ","
//threhsold Otsu
976 << setw(5) << setiosflags(ios::right) << gray_maxtemp << ","
//Max. gray level
977 << setw(8) << setiosflags(ios::right) << (yMax - yMin)*(xMax - xMin) << ","
//ROI
978 << setw(4) << setiosflags(ios::right) << (yMax - yMin) << ","
//Region Height
979 << setw(4) << setiosflags(ios::right) << centroids.back().x <<","
//Centroid (Intensity)
980 << setw(3) << setiosflags(ios::right) << centroids.back().y << ","
//Centroid (Intensity)
981 << setw(5) << setiosflags(ios::right) << x <<","
//Centroid X (Motion)
982 << setw(3) << setiosflags(ios::right) << y << ","
//Centroid Y (Motion)
983 << setw(5) << setiosflags(ios::right) << objectBoundingRectangle.height << ","
//motion object height
984 << setw(7) << setiosflags(ios::right) << objectBoundingRectangle.width *
objectBoundingRectangle.height << "," //ROI (Motion)
985 << setw(7) << setiosflags(ios::right) << pixelsno_red << ","
//red color pixels in threshold Otsu
986 << setw(7) << setiosflags(ios::right) << pixelsno_green << ","
//green color pixels in threshold Otsu
987 << setw(7) << setiosflags(ios::right) << pixelsno_blue << ","
//blue color pixels in threshold Otsu
988 << endl;
989
990
991 //display the output on screen
992
993 string text1 = "Developed by : Arthur Wong" ;
994
995 int fontFace = FONT_HERSHEY_SIMPLEX;
996 double fontScale = 0.8;
997 int thickness = 2.0;
998
999 Mat img(300, 900, CV_8UC3, Scalar::all(0));
1000
1001 putText(img, string("VIDEO FIRE DETECTION"), Point(20, 20), fontFace,
fontScale, Scalar::all

B1-24

(255), thickness, 8);
1002
1003 putText(img, threshold_value, Point (20, 45), fontFace, fontScale,
Scalar::all(255), thickness
, 8);
1004 putText(img, nosofpixels_red, Point(20, 70), fontFace, fontScale, Scalar::all(255),
thickness,
8);
1005 putText(img, nosofpixels_green, Point(20, 95), fontFace, fontScale,
Scalar::all(255),
thickness, 8);
1006 putText(img, nosofpixels_blue, Point(20, 120), fontFace, fontScale,
Scalar::all(255),
thickness, 8);
1007 putText(img, heightFire, Point(20, 145), fontFace, fontScale, Scalar::all(255),
thickness, 8);
1008 putText(img, widthFire, Point(20, 170), fontFace, fontScale, Scalar::all(255),
thickness, 8);
1009 putText(img, cenFire, Point(20, 195), fontFace, fontScale, Scalar::all(255),
thickness, 8);
1010 putText(img, ROIFire, Point(20, 220), fontFace, fontScale, Scalar::all(255),
thickness, 8);
1011
1012 putText(img, ROIMovheightFire, Point(500, 45), fontFace, fontScale,
Scalar::all(255),
thickness, 8);
1013 putText(img, ROIMovwidthFire, Point(500, 70), fontFace, fontScale,
Scalar::all(255), thickness
, 8);
1014 putText(img, movcenFire, Point(500, 95), fontFace, fontScale, Scalar::all(255),
thickness, 8);
1015 putText(img, ROIMovFire, Point(500, 120), fontFace, fontScale, Scalar::all(255),
thickness, 8)
;
1016
1017 putText(img, text1, Point (500, 280), fontFace, fontScale, Scalar::all(255),
thickness, 8);
1018
1019 namedWindow("data", WINDOW_NORMAL);
1020 imshow("data", img);
1021
1022
1023
/***
**/
1024 cvNamedWindow("input", WINDOW_NORMAL);
1025 cvNamedWindow("gray", WINDOW_NORMAL);
1026 cvNamedWindow("display",WINDOW_NORMAL);
1027

B1-25

1028 cv::imshow("input",frame2); // display input video image
1029 cv::imshow("gray",grayimage); // display gray video image
1030 cv::imshow("display",display); // display final video image
1031
1032 /// Display histogram
1033 cvNamedWindow("Gray Hist", WINDOW_NORMAL);
1034
1035 cvNamedWindow("Red Hist", WINDOW_NORMAL);
1036 cvNamedWindow("Green Hist", WINDOW_NORMAL);
1037 cvNamedWindow("Blue Hist", WINDOW_NORMAL);
1038
1039 cvNamedWindow("rgb and gray_Hist", WINDOW_NORMAL);
1040
1041 cv::imshow("Red Hist", R_histImage);
1042 cv::imshow("Green Hist", G_histImage);
1043 cv::imshow("Blue Hist", B_histImage);
1044 cv::imshow("Gray Hist", grayhistImage);
1045 cv::imshow("rgb and gray_Hist", histImage);
1046
1047 if (widths.size() > 1) // SgSignal.cpp line no 332
1048 {
1049
1050 //vector<float> tempH;
1051 vector<float> motionheight;
1052 //vector<float> tempW;
1053 //vector<float> tempA;
1054
1055 //signal.sgDequeToVector(widths,tempW);
1056 //signal.sgDequeToVector(heights, tempH);
1057 signal.sgDequeToVector(mheight,motionheight);
1058 //signal.sgDequeToVector(areas,tempA);
1059
1060 //signal.sgNormalizeByMinMax(tempW,tempW,0,1000); //original 300 red
1061 //signal.sgNormalizeByMinMax(tempH, tempH, 0, 1000); //original 300
green
1062 signal.sgNormalizeByMinMax(motionheight, motionheight, 0, 300);
1063 //signal.sgNormalizeByMinMax(tempA,tempA,0,30000);
1064
1065 Mat graph = Mat::zeros(200, 1920, CV_8UC3);
1066 //signal.sgDraw01(graph, CV_RGB(255, 255, 255), tempH, 1);
1067 signal.sgDraw01(graph, CV_RGB(255, 255, 255), motionheight, 1);
1068 //signal.sgDraw01(graph,CV_RGB(255,0,0),tempW,1);
1069
1070
1071 //calculation and display on chart
1072 int intensityflameheight = (yMax - yMin);
1073 int motionflameheight = (objectBoundingRectangle.height);
1074
1075

B1-26

1076 //string intflicker = "flame height (intensity) : " + to_string(intensityflameheight);
1077 //putText(graph, intflicker, Point(40, 60), 1, 1, CV_RGB(255, 255, 255), 2);
1078
1079 string motflicker = "Object motion (height) : " + to_string(motionflameheight);
1080 putText(graph, motflicker, Point(40, 20), 1, 1, CV_RGB(255, 255, 255), 2);
1081
1082 cvNamedWindow("Motion", WINDOW_NORMAL);
1083 cv::imshow("Motion", graph);
1084
1085
1086 }
1087
1088 ///////////////////////////////// CALCULATION OPTICAL FLOW //////////////////////////////
1089
1090 namedWindow("flow", WINDOW_NORMAL);
1091 //namedWindow("realtime input", 1);
1092
1093 video.read(frame2);
1094 cvtColor(frame2, gray, COLOR_BGR2GRAY); //
1095
1096 //imshow("realtime input", frame2);
1097 imshow("flow", gray);
1098
1099 if (prevgray.data)
1100 {
1101 calcOpticalFlowFarneback(prevgray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
1102
1103 cvtColor(prevgray, cflow, COLOR_GRAY2BGR);
1104 drawOptFlowMap(flow, cflow, 16, 1.5, Scalar(0, 255, 0));
1105
1106 imshow("flow", cflow);
1107 }
1108
1109 ///
1110
1111 /*
1112 int c = cvWaitKey(30);
1113 if(c == 27) break;
1114 else if (c == 32) pause = !pause;
1115 else if (char(c) == '+') for (int i = 0; i < 30*5; i++) video.grab();
1116 else if (char(c) == 'n') video >> frame;
1117 */
1118
1119 switch (waitKey(30))
1120 {
1121 case 27: //'Esc' has been pressed. this wil exit the code.
1122 file << "END" << endl;
1123 file.close();
1124 return 0;

B1-27

1125
1126 case 32: //'Space bar' has been pressed. this will toggle tracking
1127 trackingEnabled = !trackingEnabled;
1128 if (trackingEnabled == false) cout << "Tracking disabled." << endl;
1129 else cout << "Tracking enabled." << endl;
1130 break;
1131
1132 case 112: //'p' has been pressed. this will pause/resume the code.
1133 pause = !pause;
1134 if (pause == true)
1135 {
1136 cout << "Code paused, press 'p' again to resume" << endl;
1137 while (pause == true)
1138 {
1139 //stay in this loop until
1140 switch (waitKey())
1141 {
1142 //a switch statement inside a switch statement? Mind blown.
1143 case 112:
1144 //change pause back to false
1145 pause = false;
1146 cout << "Code Resumed" << endl;
1147 break;
1148
1149
1150 }
1151 }
1152
1153 }
1154
1155 }
1156 swap(prevgray, gray); // OPTICAL FLOW
1157 }
1158 //cvDestroyWindow("fire");
1159
1160 return 0; // Exit the program
1161
1162 }

C-1

Appendix C: Otsu method formulation (Otsu, 1979)

In an ideal case, if the histogram has two peaks and one deep valley, the threshold can be

selected from the deep valley. Generally, two peaks represent the object and background. The

deep valley represents the threshold.

However, for most of real situation, the histogram is difficult to select the valley bottom

precisely so the threshold is also difficult to elevate from the grey level histogram. The Otsu

method can be used to overcome these difficulties when the histogram is not in an ideal case.

Otsu method is aimed in selection the threshold value 𝑘∗ from the calculation result of

maximum between class variance (max
1≤𝑘≤𝐿

𝜎𝐵
2(𝑘)).

Letter N is the total number of pixel and Letter L is represented the grey levels, the range is

from 0-255.

Threshold (From 0 to 255)

C-2

N = n1 + n2 + n3 + ⋯⋯⋯⋯⋯⋯+ nL−1 + nL

Pi =
ni

N
 Pi ≥ 0,∑Pi = 1

L

i=1

Classes: C0 , C1

C0: Background: level [1⋯⋯⋯⋯k]

C1: Objects: level [k + 1 ⋯⋯⋯L]

Threshold level: 𝑘

Probability

ω
0

= p(C0) = ∑pi

k

i=1

= ω(k)

ω
1

= p(C1) = ∑ pi

L

i=k+1

= (1 −ω(k))

Mean

μ
0

= ∑i P(i|C0)

k

i=1

= ∑
ipi

ω
0

k

i=1

=
μ(k)

ω(k)

μ
1

= ∑ iP(i|C1) = ∑
ipi

ω
1

L

i=k+1

L

i=k+1

=
μ

T
−μ(k)

1 −ω(k)

⇒ 𝜔0𝜔1 = 𝜇(𝑘)

⇒ 𝜔1𝜇1 = 𝜇𝑇 − 𝜔0𝜇𝑜

⇒ 𝜇𝑇 = 𝜔1𝜇1 + 𝜔0𝜇0

Since 𝜔0 = 𝜔(𝑘) 𝜔1 = 1 − 𝜔(𝑘)

⇒ 𝜔0 + 𝜔1 = 1

C-3

Variance

𝜎𝐵
2 = 𝜔1(𝜇1 − 𝜇𝑇)2 + 𝜔0(𝜇0 − 𝜇𝑇)2

= 𝜔1(𝜇1
2 − 2𝜇1𝜇𝑇 + 𝜇𝑇

2) + 𝜔0(𝜇0
2 − 2𝜇0𝜇𝑇 + 𝜇𝑇

2)

= 𝜔1𝜇1
2 − 2𝜔1𝜇1𝜇𝑇 + 𝜔1𝜇𝑇

2 + 𝜔0𝜇0
2 − 2𝜔0𝜇0𝜇𝑇 + 𝜔𝑜𝜇𝑇

2

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − (2𝜔1𝜇1𝜇𝑇 + 2𝜔0𝜇0𝜇𝑇) + 𝜔1𝜇𝑇
2 + 𝜔𝑜𝜇𝑇

2

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − (2𝜔1𝜇1𝜇𝑇 + 2𝜔0𝜇0𝜇𝑇) + (𝜔1 + 𝜔0)𝜇𝑇
2

𝜔1 + 𝜔0 = 1

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 2𝜇𝑇(𝜔1𝜇1 + 𝜔0𝜇0) + 𝜇𝑇
2

𝜔1𝜇1 + 𝜔0𝜇0 = 𝜇𝑇

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 2𝜇𝑇𝜇𝑇 + 𝜇𝑇
2

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 𝜇𝑇
2

𝜎𝐵
2 = (∑𝜔𝑖

𝐿

𝑖=1

𝜇𝑖
2) − 𝜇𝑇

2

𝜇𝑇
2 = (𝜔0𝜇0 + 𝜔1𝜇1)

2

= (𝜔0𝜇0 + 𝜔1𝜇1) (𝜔0𝜇0 + 𝜔1𝜇1)

= 𝜔0
2𝜇0

2 + 𝜔1𝜔0𝜇1𝜇0 + 𝜔1𝜔0𝜇1𝜇0 + 𝜔1
2𝜇1

2

= 𝜔0
2𝜇0

2 + 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1
2𝜇1

2

𝜎𝐵
2 = 𝜔1𝜇1

2 + 𝜔0𝜇0
2 − 𝜇𝑇

2

𝜎𝐵
2 = 𝜔1𝜇1

2 + 𝜔0𝜇0
2 − (𝜔0

2𝜇0
2 + 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1

2𝜇1
2)

𝜎𝐵
2 = 𝜔0𝜇0

2 + 𝜔1𝜇1
2 − 𝜔0

2𝜇0
2 − 2𝜔1𝜔0𝜇1𝜇0 − 𝜔1

2𝜇1
2

𝜎𝐵
2 = (𝜔0 − 𝜔0

2)𝜇0
2 − 2𝜔1𝜔0𝜇1𝜇0 + (𝜔1 − 𝜔1

2)𝜇1
2

C-4

𝜎𝐵
2 = 𝜔0(1 − 𝜔0)𝜇0

2 − 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1(1 − 𝜔1)𝜇1
2

𝜔0 = 1 − 𝜔1 ; 𝜔1 = 1 − 𝜔0

𝜎𝐵
2 = 𝜔0𝜔1𝜇0

2 − 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1𝜔0𝜇1
2

𝜎𝐵
2 = 𝜔0𝜔1(𝜇0

2 − 2𝜇1𝜇0 + 𝜇1
2)

𝜎𝐵
2 = 𝜔0𝜔1(𝜇0 − 𝜇1)

2

𝜎𝐵 = 𝜔0𝜔1(𝜇1 − 𝜇0)
2

The optimal threshold value k∗ is obtained from maximum between class variance 𝜎𝐵
2.

The range is from 0 to 255

𝜎𝐵
2(𝑘∗) = max

0≤𝑘≤𝐿
𝜎𝐵

2(𝑘)

Since

𝜎2 = 𝜎𝑤
2 + 𝜎𝐵

2

𝜎2 = 𝜎𝑤
2 + (𝜔1)(1 − 𝜔1)(𝜇0 − 𝜇1)

2

Or

𝜎2 = 𝜎𝑤
2 + (𝜔0)(1 − 𝜔0)(𝜇0 − 𝜇1)

2

Multithreshold analysis

For the selected multithreshold(𝑘, 𝑘1, 𝑘2 ……… , 𝑘𝑛), the method to multithresholding is

straightforward to calculate the maximum between class variance. The multithreshold

can be segmented the fire image succefully, depending on the quantity of threshold.

1st threshold is 𝑘 (Single threshold value)

2nd threshold is 𝑘1

3rd thrrehsold is 𝑘2

.

C-5

.

.

nth threshold is 𝑘𝑛

where n is the quantity of threshold from 0 to 255

Probabillity of Multithreshold

ω
0

= p(C0) = ∑pi

𝑘𝑛

i=k

= ω(𝑘𝑛)

ω
1

= p(C1) = ∑ pi

L

i=𝑘𝑛+1

= (1 −ω(𝑘𝑛))

Mean of Multithreshold

μ
0

= ∑i P(i|C0)

𝑘𝑛

i=k

= ∑
ipi

ω
0

𝑘𝑛

i=k

=
μ(𝑘𝑛)

ω(𝑘𝑛)

μ
1

= ∑ iP(i|C1) = ∑
ipi

ω
1

L

i=𝑘𝑛+1

L

i=𝑘𝑛+1

=
μ

T
−μ(𝑘𝑛)

1 −ω(𝑘𝑛)

⇒ 𝜔0𝜔1 = 𝜇(𝑘𝑛)

⇒ 𝜔1𝜇1 = 𝜇𝑇 − 𝜔0𝜇𝑜

⇒ 𝜇𝑇 = 𝜔1𝜇1 + 𝜔0𝜇0

Since 𝜔0 = 𝜔(𝑘𝑛) 𝜔1 = 1 − 𝜔(𝑘𝑛)

⇒ 𝜔0 + 𝜔1 = 1

Variance of Multithreshold

𝜎𝐵
2 = 𝜔1(𝜇1 − 𝜇𝑇)2 + 𝜔0(𝜇0 − 𝜇𝑇)2

C-6

= 𝜔1(𝜇1
2 − 2𝜇1𝜇𝑇 + 𝜇𝑇

2) + 𝜔0(𝜇0
2 − 2𝜇0𝜇𝑇 + 𝜇𝑇

2)

= 𝜔1𝜇1
2 − 2𝜔1𝜇1𝜇𝑇 + 𝜔1𝜇𝑇

2 + 𝜔0𝜇0
2 − 2𝜔0𝜇0𝜇𝑇 + 𝜔𝑜𝜇𝑇

2

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − (2𝜔1𝜇1𝜇𝑇 + 2𝜔0𝜇0𝜇𝑇) + 𝜔1𝜇𝑇
2 + 𝜔𝑜𝜇𝑇

2

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − (2𝜔1𝜇1𝜇𝑇 + 2𝜔0𝜇0𝜇𝑇) + (𝜔1 + 𝜔0)𝜇𝑇
2

𝜔1 + 𝜔0 = 1

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 2𝜇𝑇(𝜔1𝜇1 + 𝜔0𝜇0) + 𝜇𝑇
2

𝜔1𝜇1 + 𝜔0𝜇0 = 𝜇𝑇

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 2𝜇𝑇𝜇𝑇 + 𝜇𝑇
2

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 𝜇𝑇
2

𝜎𝐵
2 = (∑ 𝜔𝑖

𝐿

𝑖=𝑘𝑛

𝜇𝑖
2) − 𝜇𝑇

2

𝜇𝑇
2 = (𝜔0𝜇0 + 𝜔1𝜇1)

2

= (𝜔0𝜇0 + 𝜔1𝜇1) (𝜔0𝜇0 + 𝜔1𝜇1)

= 𝜔0
2𝜇0

2 + 𝜔1𝜔0𝜇1𝜇0 + 𝜔1𝜔0𝜇1𝜇0 + 𝜔1
2𝜇1

2

= 𝜔0
2𝜇0

2 + 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1
2𝜇1

2

𝜎𝐵
2 = 𝜔1𝜇1

2 + 𝜔0𝜇0
2 − 𝜇𝑇

2

𝜎𝐵
2 = 𝜔1𝜇1

2 + 𝜔0𝜇0
2 − (𝜔0

2𝜇0
2 + 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1

2𝜇1
2)

𝜎𝐵
2 = 𝜔0𝜇0

2 + 𝜔1𝜇1
2 − 𝜔0

2𝜇0
2 − 2𝜔1𝜔0𝜇1𝜇0 − 𝜔1

2𝜇1
2

𝜎𝐵
2 = (𝜔0 − 𝜔0

2)𝜇0
2 − 2𝜔1𝜔0𝜇1𝜇0 + (𝜔1 − 𝜔1

2)𝜇1
2

𝜎𝐵
2 = 𝜔0(1 − 𝜔0)𝜇0

2 − 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1(1 − 𝜔1)𝜇1
2

𝜔0 = 1 − 𝜔1 ; 𝜔1 = 1 − 𝜔0

𝜎𝐵
2 = 𝜔0𝜔1𝜇0

2 − 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1𝜔0𝜇1
2

C-7

𝜎𝐵
2 = 𝜔0𝜔1(𝜇0

2 − 2𝜇1𝜇0 + 𝜇1
2)

𝜎𝐵
2 = 𝜔0𝜔1(𝜇0 − 𝜇1)

2

𝜎𝐵 = 𝜔0𝜔1(𝜇1 − 𝜇0)
2

The optimal threshold value k∗ is obtained from maximum between class variance 𝜎𝐵
2.

The range is from k to 255

𝜎𝐵
2(𝑘𝑛

∗) = max
𝑘≤𝑘𝑛≤𝐿

𝜎𝐵
2(𝑘𝑛)

D-1

Appendix D: Optical flow approach

Several approaches can use to determine the optical flow field. Lucas-Kanade method is a

sparse/local method. Hon schunck Method is a dense/global method. Existing state of the art

algorithm are used to calculate the optical flow field or velocity flow field. In our experimental

study, application of Gunnar Farneback method are used.

(Lucas-Kanade Method)

The general equation of Lucas-Kanade algorithm.

𝐼𝑥𝑉𝑥 + 𝐼𝑦𝑉𝑦 + 𝐼𝑡 = 0

The objective is analysis the flow velocity vector (𝑉𝑥, 𝑉𝑦). To re-arranged the general equation

as follow.

𝐼𝑥(𝑞1)𝑉𝑥 + 𝐼𝑦(𝑞1)𝑉𝑦 = −𝐼𝑡(𝑞1)

𝐼𝑥(𝑞2)𝑉𝑥 + 𝐼𝑦(𝑞2)𝑉𝑦 = −𝐼𝑡(𝑞2)

⋮

𝐼𝑥(𝑞𝑛)𝑉𝑥 + 𝐼𝑦(𝑞𝑛)𝑉𝑦 = −𝐼𝑡(𝑞𝑛)

Lucas-Kanade method can write as the matrix equation. 𝐴𝜐 = 𝑏

𝐴 =

[

𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)

𝐼𝑥(𝑞2) 𝐼𝑦(𝑞2)

⋮
𝐼𝑥(𝑞𝑛) 𝐼𝑦(𝑞𝑛)]

𝜐 = [
𝑉𝑥

𝑉𝑦
]

𝑏 = [

−𝐼𝑡(𝑞1)

−𝐼𝑡(𝑞2)
⋮

−𝐼𝑡(𝑞𝑛)

]

Solve the matrix equation, 𝜐 = 𝐴−1𝑏 can be obtained the new flow velocity vector. (𝑉𝑥, 𝑉𝑦)

D-2

(Hon schunck Method)

The intensity of image pixel in the pattern is constant, so that

𝑑𝐼

𝑑𝑡
= 0

Rate of change of Imgae brightness describe mathematically as follows.

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡)

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡) + 𝛿𝑥
𝜕𝐼

𝜕𝑥
+ 𝛿𝑦

𝜕𝐼

𝜕𝑦
+ 𝛿𝑡

𝜕𝐼

𝜕𝑡
+ 𝜖

𝜖 contains second and higher order terms in 𝛿𝑥, 𝛿𝑦 and 𝛿𝑡.

𝜕𝐼

𝜕𝑥

𝛿𝑥

𝛿𝑡
+

𝜕𝐼

𝜕𝑦

𝛿𝑦

𝛿𝑡
+

𝜕𝐼

𝜕𝑡
+ 𝒪(𝛿𝑡) = 0

𝛿𝑡 → 0

𝜕𝐼

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐼

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐼

𝜕𝑡
+ 0 = 0

𝜕𝐼

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐼

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐼

𝜕𝑡
= 0

𝑢 =
𝑑𝑥

𝑑𝑡
; 𝑣 =

𝑑𝑦

𝑑𝑡

𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 +

𝜕𝐼

𝜕𝑡
= 0

𝜕𝐼

𝜕𝑥
= 𝐼𝑥;

𝜕𝐼

𝜕𝑦
= 𝐼𝑦;

𝜕𝐼

𝜕𝑡
= 𝐼𝑡

Linear equation have been obtained and have two unknown 𝑢 and 𝑣.

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0

Where 𝐼𝑥, 𝐼𝑦 and 𝐼𝑡 are the derivatives of the image brightness. 𝑢 and 𝑣 are two components of

the optical flow vectorat the pixel position.

𝐼𝑥𝑢 + 𝐼𝑦𝑣 = −𝐼𝑡

D-3

The equation can illustrate in another way.

(𝐼𝑥𝐼𝑦)(𝑢𝑣) = −𝐼𝑡

−
𝐼𝑡

√𝐼𝑥
2 + 𝐼𝑦

2

The Horn and Schunck global optimisation algorithm, two optical flow analysis requires to

consideration.

Optical flow is smooth:

𝐹𝑠𝑚𝑜𝑜𝑡ℎ(𝑢, 𝑣) = ∬(𝑢𝑥
2 + 𝑢𝑦

2) (𝑣𝑥
2 + 𝑣𝑦

2)𝑑𝑥𝑑𝑦

Optical flow constraint equation:

𝐹𝑜𝑝𝑡𝑖𝑐𝑎𝑙(𝑢, 𝑣) = ∬(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)
2
𝑑𝑥𝑑𝑦

Minimisation the sum of the errors in the equation for calculation the rate of change of

brightness.

𝐹𝐻𝑆(𝑢, 𝑣) = ∬[(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)
2
+ 𝛼2(𝑢𝑥

2 + 𝑢𝑦
2 + 𝑣𝑥

2 + 𝑣𝑦
2)] 𝑑𝑥𝑑𝑦

Using the calculus of variation, the equation can see that

𝐼𝑥
2𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2∇2𝑢 − 𝐼𝑥𝐼𝑡

∇2𝑢 = 𝑢̅ − 𝑢

𝐼𝑥
2𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2(𝑢̅ − 𝑢) − 𝐼𝑥𝐼𝑡

𝐼𝑥
2𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2𝑢̅ − 𝛼2𝑢 − 𝐼𝑥𝐼𝑡

𝐼𝑥
2𝑢 + 𝛼2𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2𝑢̅ − 𝐼𝑥𝐼𝑦

(𝐼𝑥
2 + 𝛼2)𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2𝑢̅ − 𝐼𝑥𝐼𝑦

D-4

𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 = 𝛼2∇2𝑣 − 𝐼𝑦𝐼𝑡

∇2𝑣 = 𝑣̅ − 𝑣

𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 = 𝛼2(𝑣̅ − 𝑣) − 𝐼𝑦𝐼𝑡

𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 = 𝛼2𝑣̅ − 𝛼2𝑣 − 𝐼𝑦𝐼𝑡

𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 + 𝛼2𝑣 = 𝛼2𝑣̅ − 𝐼𝑦𝐼𝑡

𝐼𝑥𝐼𝑦𝑢 + (𝐼𝑦
2 + 𝛼2)𝑣 = 𝛼2𝑣̅ − 𝐼𝑦𝐼𝑡

To slove the velocity field 𝑢

(𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2)𝑢 = (𝛼2 + 𝐼𝑦
2)𝑢̅ − 𝐼𝑥𝐼𝑦𝑣̅ − 𝐼𝑥𝐼𝑡

Rrewrite to alternate form

(𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2)(𝑢 − 𝑢̅) = −𝐼𝑥(𝐼𝑥𝑢̅ + 𝐼𝑦𝑣̅ + 𝐼𝑡)

From the iterative solution can estimate the new velocity.

𝑢𝑛+1 = 𝑢̅𝑛 − 𝐼𝑥
𝐼𝑥𝑢̅

𝑛 + 𝐼𝑦𝑣̅𝑛 + 𝐼𝑡

𝛼2 + 𝐼𝑥2 + 𝐼𝑦2

To slove the velocity field 𝑣

(𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2)𝑣 = (𝛼2 + 𝐼𝑥
2)𝑣̅ − 𝐼𝑥𝐼𝑦𝑢̅ − 𝐼𝑦𝐼𝑡

(𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2)(𝑣 − 𝑣̅) = −𝐼𝑦(𝐼𝑥𝑢̅ + 𝐼𝑦𝑣̅ + 𝐼𝑡)

𝑣𝑛+1 = 𝑣̅𝑛 − 𝐼𝑦
𝐼𝑥𝑢̅

𝑛 + 𝐼𝑦𝑣̅𝑛 + 𝐼𝑡

𝛼2 + 𝐼𝑥2 + 𝐼𝑦2

𝑢𝑛 and 𝑣𝑛 is the previous estimate velocity

𝑢𝑛+1 and 𝑣𝑛+1 is the new estimate velocity

E-1

Appendix E: Multiple logistic regression

Multiple logistic regression can be used to calculate the multivariable case which is more than

one independent variable.

𝑥′ = (𝑥1, 𝑥2, … , 𝑥𝑝)

The general equation of multiple logistic regression:

𝑙𝑜𝑔 (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝

To solve above equation for probability 𝑝 apply the exponential function into both side.

𝑒𝑥𝑝(𝑙𝑜𝑔 (
𝑝

1 − 𝑝
)) = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝)

In right hand side:

If 𝑒𝑥𝑝(𝑥) = 𝑒𝑥, then

𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝) = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

In right hand side:

𝑒𝑥𝑝(𝑙𝑜𝑔 (
𝑝

1 − 𝑝
)) =

𝑝

1 − 𝑝

𝑝

1 − 𝑝
= 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

𝑝 = (1 − 𝑝)𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

𝑝 = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 − 𝑝𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

𝑝 + 𝑝𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

𝑝(1 + 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝) = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

𝑝 =
𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

1 + 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

𝑔(x) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝

E-2

𝑝 =
𝑒𝑔(x)

1 + 𝑒𝑔(x)

The probability 𝑝 can be shown by 𝑃(𝑌 = 1|x) = 𝜋(x).

𝜋(x) =
𝑒𝑔(x)

1 + 𝑒𝑔(x)

