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Abstract 

 

In order to save life and property from fire, early and accurate fire detection is one of 

the important aspects in fire safety design. For traditional spot type and line type fire 

detectors, information concerning the fire parameters such as flame height, fire growth 

rate and fire location are difficult to obtain. Such information is very useful especially 

to enable effective fire evacuation and firefighting. In addition, traditional fire detection 

technology has 8 – 10% false alarm rates. With the fast development of computer 

technology and image processing techniques, it is now possible to use video images to 

detect fire in different locations and obtain those fire parameters. It is able to 

supplement traditional fire detection technology so the development of video fire 

detection is becoming important. Besides, it is also useful in fire safety design for 

outdoor environments. This thesis presents the study of video fire detection and its 

application.  

 

Based on the literature review, video fire detection systems have already been 

developed to detect forest fires. Four kinds of video fire detection analysis methods 

including the digital image processing method, statistical colour model method, 

artificial neural network method and combined different approaches are used. The 

primary objective for the development of different analysis methods is to enhance the 

accuracy of video fire detection. In addition, video fire detection system is not only 

connected to surveillance system but it can also be combined with the fire suppression 

system for better fire control and mitigate unnecessary water damages.  
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In this study, computer program analysis of the fire images is conducted using 

MATLAB toolbox, Visual C++, C, C++. Open source computer vision library 

(OpenCV) and software is developed to capture the fire image and conduct analysis. In 

addition, image processing techniques using OpenCV are able to processing the real 

time images for fire detection. Experimental study was conducted using thermal still 

images and normal still images to develop flame region segmentation codes using the 

Otsu’s method. The traditional Otsu’s method is able to segment the flame region and 

background but unable to segment the flame region completely with complicated 

background such as the shading and the objects reflection. Therefore, modified Otsu’s 

multi – threshold analysis method is developed to segment the flame region from 

complicated background video images. To recognize the fire images, parameters such 

as colour, flame size, motion characteristics of fire are used. Flickering frequency and 

direction of flame spread are two important fire images characteristics used. Logistic 

discrimination rules are then set up to determine the probability of the true fire 

conditions. Once the fire condition is determined, the analyses of real time flame motion 

images are conducted. Optical flow analysis is then used to track the flame spread 

direction and flame height can then be estimated. With the information of the flame 

height, the fire size is estimated using the flame height empirical equation developed 

by other fire researchers.  
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Chapter 1 Introduction 

 

Building fire is a complex phenomenon. Fire and smoke spread within the building can 

be affected by various factors such as the geometry, dimension, layout and usage of the 

building. In order to provide fire protection in the building, it is very important to detect 

fire at its early stage. This can be achieved by detecting the fire signatures such as 

aerosol, Infrared (IR), Ultraviolet (UV), heat, and gases, generated from fire. The most 

common fire and smoke detection methods include the use of point type detectors (i.e. 

ionisation smoke detectors, photoelectric detectors, heat detectors), line type detectors 

etc. However, these detection methods have some significant drawbacks including 

delay in smoke and fire detection especially in large space such as atrium and large 

shopping mall.  

 

For example, in heat detection, the heat released by burning materials in an atrium 

would not be able to heat the large amount of air to the flashover temperature of 500 

C within a short period because the different building geometry is able to affect the 

concentration of hot smoke layer. It has been demonstrated that the air temperatures 

will be very low compared to flashover temperatures due to air entrainment into the 

smoke plume. Experimental studies have shown that the smoke temperature in a 26.3 

m atrium with a 1.3 MW methanol fire was less than 50 C. (Yamana & Tanaka, 1985) 

 

In some cases, the smoke may not be able to reach the ceiling of the atrium. Similar 

problems can be encountered in using spot type smoke detectors. Besides, important 

parameters such as flame height, flame spread direction cannot be obtained easily using 

these type of spot detectors.  
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As computer technology develops and becomes both more sophisticated and more 

widely employed, it is now possible to use computer to analyse the fire images captured 

from a video surveillance system and act as a fire detection device. In recent years, the 

function of video surveillance systems is becoming increasingly diverse. The 

functionality of modern video surveillance systems is not limited to monitoring 

environments but also for the recognition and tracking of dynamic objects over time. In 

closed – circuit television (CCTV) monitoring system, car camera and unmanned aerial 

vehicles (UAVs) are also required to use a manned or unmanned video surveillance 

system. (Xie , 2015) A CCTV system is able to monitor traffic situations, recognise car 

registrations, and recognize faces. A car camera is able to monitor the distance in 

between cars for prevention of collision. An UAV is able to monitor the aerial 

reconnaissance to detect forest fires. (Merino, Caballero, Ramiro Martinez - de - Dios, 

Maza, & Ollero, 2011) 

 

Recognition and tracking methods can be used as detection algorithms. Different 

detection algorithms require the use of digital image processing technology. Spatial, 

spectral, and temporal properties of dynamic objects are important parameters for 

unmanned video surveillance systems. Figure 1.1 illustrates the properties of dynamic 

objects for unmanned video surveillance.  

 

A dynamic object’s temporal, spectral, and spatial properties define its relation to time, 

colour, and images shape. (Healey, Slater, Lin, Drda, & Goedeke, 1993) When analysis 

takes place on two or three properties of a dynamic object, a video surveillance system 

can respond automatically. An unmanned video surveillance system provides this 

automatic response.  
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Today, unmanned video monitoring technology is useful for fire prevention in a variety 

of environments. (So & Chan, 1994) When analysis algorithms are embedded in 

traditional video surveillance systems, the system is able to identify fire from the 

images captured. This technology is known as a video fire detection system.  

 

Video fire detection systems are not widely used in Hong Kong. In other countries, 

however, many fire engineers use video fire detection technologies as one of the fire 

safety strategies. In analysis the video fire detection, any features of fire regions in 

image is related to spectral, spatial, and temporal features properties. Figure 1.2 shows 

the relationship of features of fire regions and spectral, spatial, temporal features 

 

1.1 Early application of video fire detection 

 

Currently, video fire detection systems are able to protect many different environments 

and premises including (a) warehouses, (b) atriums, (c) tunnels, (d) forests, (e) 

historical buildings, (f) plant rooms and (g) aircraft hangars. Figure 1.3 illustrates some 

of the inhospitable environments. In addition, in these environments, Installation of 

traditional fire detection systems are not feasible. 

 

1.2 Traditional fire detection 

 

Prior to the discussion of video fire detection technologies, it is necessary to consider 

traditional fire detection systems. The primary objective of fire detection systems is the 

protection of life and property. Based on the environmental condition changes caused 

by fire, traditional fire detectors are able to detect fire automatically. Examples of 

traditional fire detection technologies are smoke detectors, heat detectors, flame 
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detectors, and gas sensors. Figure 1.4 shows examples of traditional fire detectors 

including smoke detectors, heat detectors, flame detectors, and gas sensors. 

 

Only three types of fire detection systems are commonly used in Hong Kong. All types 

of fire detectors used in Hong Kong must be endorsed by the Fire Services Department 

(FSD). Figure 1.5 shows examples of traditional fire detectors approved by FSD. 

 

Generally, fire development is related to the temporal changing. A review of the 

literature reveals that three phases have been considered to the fire detection systems 

including (1) alarm phase, (2) response time (3) extinguishment. (Chapter 10 Fire 

Detection Systems, 1993). Figure 1.6 shows the time relationship to fire development 

and fire control. 

 

1.2.1 Heat detectors  

 

The function of heat detectors is to recognise the presence of the thermal energy out-the 

heat-of a fire in a protected area. (12 Thermal Detection Systems, 1993) The heat is 

dissipated from the laminar flow and convection heat so traditional heat detectors 

activated by the convective heat from the fire source. Although different kinds of heat 

detectors have been designed for the detection of convective heat, smoke detectors are 

more sensitive than heat detectors. The performance of heat detectors depends on the 

ambient conditions, the size and volume of the room, and the amount of space. 

Generally, heat detectors are located on ceilings or in confined spaces such as electrical 

and mechanical (E and M) plant rooms and storerooms. When the ambient temperature 

is over a certain threshold value, a heat detector generates a signal and sends it to the 

associated fire annunciator panels. (Chapter 10 Automatic fire detection, 1990) 
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Generally, the FSD have approved four kinds of heat detectors including (1) fixed 

temperature, (2) rate of rise temperature, (3) combination, and (4) linear cable. 

 

1.2.2 Smoke detectors 

 

The FSD have approved four kinds of traditional smoke detectors including (1) 

ionisation, (2) Photoelectric optical, (3) beam, and (4) self-aspirating. The function of 

traditional smoke detectors is to detect the presence of smoke particles, and aerosol in 

a protected area. Smoke includes both solid and liquid particles. Smoke detectors are 

able to detect smoke particles rapidly. (Chapter 11 Smoke detectors, 1990) Although 

the response of smoke detectors is faster than that of heat detectors, it depends on what 

is burning and the burning conditions. However, dust and small insects can also activate 

smoke detectors, causing nuisance alarms when smoke is not actually present. 

 

1.2.3 Flame detectors 

 

The function of flame detectors is to detect the presence of flame in a protected area. 

Generally, infrared (IR) and ultraviolet (UV) flame detectors are used for the protection 

of life and property and the FSD have approved their use. IR and UV flame detectors 

each operates in a specific spectrum of wavelength. The wavelength spectrum for IR 

flame detectors is approximately 0.76µm to 220µm. (Dungan, 2008) The wavelength 

spectrum for UV flame detectors is approximately 0.1µm to 0.35µm. (Dungan, 2008) 

As with smoke detectors, nuisance alarms are also generated by flame detectors, false 

triggers can include lighting, arc welding, X-rays, radioactive materials, gas welding, 

and solar radiation. 
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 1.2.4 Gas sensors 

 

The function of gas sensors is to recognise the presence of abnormal gas in protected 

area. Gas sensors monitor the detectable levels of gases and measure gas concentration. 

(Dungan, 2008) Examples of gases detected by gas sensors include carbon dioxide, 

carbon monoxide, water vapour and hydrocarbons. Generally, different gas sensors 

have been used to detect the gases from a fire such as Semiconductor type, Catalytic 

type, Infrared Absorption type. Gas sensing fire detectors are defined and classified by 

the National Fire Protection Association. (Gas Sensing Fire Detectors, 1993) 

 

1.3 False alarms 

 

To study the status of unwanted alarm and false alarm in Hong Kong, the literature 

from “Hong Kong Fire Services Department Review” are reviewed and data is collected 

for statistical analysis. Table 1.1 shows the statistical results including the total numbers 

of fire calls, unwanted alarms, and false alarms in Hong Kong from 2002 to 2015. From 

the statistic results in table 1.1, it is clear that many unwanted alarms and false alarm 

occur. In 2002, a total of 4,131 false alarms occurred, but in 2010, a total of 30,710 

unwanted alarms occurred. False alarm and unwanted alarms are a nuisance to the fire 

services. Figure 1.7 illustrates the total fire calls, unwanted alarms, and false alarms. 

The number of unwanted alarms is greater than the number of false alarms. 

 

Figure 1.8 illustrates the standardisation of total fire calls, unwanted alarms and false 

alarms. From the Hong Kong Fire Services Department Review collected 14 years total 

fire calls, unwanted alarms and false alarm data. There are used to calculation the 

standardisation.  
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𝑆𝑦𝑒𝑎𝑟 =
𝑁𝑦𝑒𝑎𝑟−𝑛14̅̅ ̅̅ ̅

𝜎14
        1.1 

 

where 𝑆𝑦𝑒𝑎𝑟 is standardisation result of each year. 𝑁𝑦 is the collected data of unwanted 

alarms and false alarm. 𝑛14̅̅ ̅̅  is the average value of 14 years, and 𝜎14 is the standard 

deviation value of 14 years 

 

1.4 Video fire detection  

 

Traditional video fire detection technologies can provide extra information such as the 

flame location and flame height. Video images can be used to identify fire because they 

record unique visual signatures. Video fire detection technologies offer advantages over 

traditional fire detection methods. Research of video fire detection technology has 

shown that the primary objective of video fire detection system is the protection of 

various harsh environments by capturing video images.  

 

The two main parts of a video fire detection system are: 

 

(1) Hardware (image sensors, central processing unit) 

(2) Software (Algorithm, computer program and language) 

 

Different hardware and algorithm can provide the distinct function and the application 

in distinct environment. Figure 1.9 provides conceptual diagram of video fire detection.  

Video detection of flame images and smoke images is commonly used in video fire 

detection systems. Generally, the movement of flame and smoke can be captured by 
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video images. Figure 1.10 shows examples of a smoke image and a flame image. Based 

on analysis of fire signatures and the use of various algorithms, video fire detection 

systems are able to recognise the fire sources.  

 

In the early development of video fire detection methods, thermal images have been 

considered as an important technology. In thermal images, each pixel records 

temperature data. (Noda & Ueda, 1994) Figure 1.11 shows an example of a thermal 

image. Thermal images provide not only temperature data but they also display the 

flame shape. Flame shape seen in still images is similar to that of thermal images. 

(Wong & Fong, 2014) Figure 1.12 shows an example of a flame image and a thermal 

image simultaneously. Typical thermal imagers can record by analysing the 

temperature differences between objects in any lighting condition, day or night. 

(Thermal imaging for Safety and Efficiency in Public Transportation, 2016) 

 

Image processing technology is commonly used for flame images and thermal images 

analysis because computer program technology continuously develops. Computer 

programming, computer languages and computer technologies are important tools for 

the processing of images. Examples of these technologies are the following: Visual C++, 

C++, Open Source Computer Vision Library (OpenCV), and the MATLAB Image 

Processing Toolbox. (Wong & Fong, 2014) (Wong & Fong, 2014) Figure 1.13 

illustrates the operation framework of video fire detection.  

 

Besides that, video fire detection technologies are able to capture the fire images. The 

digital image technologies including the lens and image sensors are also very important 

evolution in comparison with traditional film cameras. (Toyota, 1972) Figure 1.14 

compares the traditional film camera with the digital camera. Whereas a traditional film 
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camera records analogue images on film, a digital camera records digital images using 

image sensors. 

 

Generally, digital cameras used Charge-coupled Device (CCD) and Complementary 

Metal Oxide Semiconductor (CMOS) to capture the image. CCD and CMOS image 

sensor have different amplifiers and analogue to digital (A/D) convertor design in 

circuity. When the light source falls on the CCD or CMOS chip, the amplifier and A/D 

convertor can transform the analogue signal to digital signal and output from the sensor. 

(CCD and CMOS sensor technology Technical white paper, 2010) 

 

Although CCD image sensors and CMOS image sensors are two different technologies, 

they are both used to capture fire images in video fire detection systems. Fire images 

include four unique visual signatures and these signatures display the region of interest 

(ROI). The four unique visual signatures are the following: 

 

1. Colour,  

2. Shape 

3. Intensity level  

4. Motion direction 

 

When the CCD and CMOS image sensors capture the images, image-processing 

technology is used to identify those images.  

 

During the evolution of video fire detection, computer technology and image 

processing analysis have played an important role. In early 1985, International Business 

Machines Corporation (IBM) developed an image processing experimental study on 
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aimed at analysing digital images (Mayers & Bernstein, 1985). The personal computer 

system, which includes charge-coupled device (CCD) camera, has used. The processing 

of image pixels is1032 x 1025. The function of the system is identified the boxcar from 

the digital images. 

 

In addition to the rapid developments made in digital camera technology and image 

processing techniques, downward trends in computer hardware and image-processing 

costs have made video fire detection more attractive. The webcam and the Internet 

protocol (IP) camera, shown in Figure 1.15, are commonly used in computer technology. 

Today, unmanned aircraft systems have also been used in video fire detection (Merino, 

Caballero, Ramiro Martinez - de - Dios, Maza, & Ollero, 2011). In this study, a webcam 

is used to record real-time fire images.  

 

1.5 Images file format 

 

The image file format must be considered for the computer program algorithm. Image 

file formats can be separated into two types including still images and video images. 

Image file formats follow standards regarding how the researchers organise and store 

data (Gonzalez & Woods, Image Compression, 2010). Generally, there are six 

international organisations that sanction standards for image file format, as follows: 

 

1. International standards organisation (ISO) 

2. International Electrotechnical Commission (IEC) 

3. International Telecommunications Union (ITU-T) 

4. Consultative Committee of International Telephone and Telegraph (CCITT) 

5. Society of Motion Pictures and Television Engineers (SMPTE) 
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6. Chinese Ministry of Information Industry (MII) 

 

An image file formats contain the image data and has different compression standards. 

Compression standards aim to reduce the transmission time and storage space. Table 

1.2 provides the popular formats for still images and video images. In this study, two 

kinds of image file formats for analysing fire images are used: Windows bitmap (BMP) 

and audio video interleave (AVI).  

 

1.6 Codes and Standards  

 

Several different codes of practice and international standards have been developed to 

meet the specific requirement of a video fire detection system. The National Fire 

Protection Association’s Fire Alarm Code (NFPA72) involves video image flame 

detection (VIFD) and video image smoke detection (VISD). As per NFPA 72, a video 

fire detection system requires inspection, testing, and maintenance in accordance with 

the manufacturer’s recommendation (Gottuk D. , 2008).  

 

NFPA 72 is not the only international standards, further Codes of Practice concerning 

video fire detection system are available in the public domain. Table 1.3 shows the 

different Codes and Standards related to the video fire detection system. Any video fire 

detection must adhere to the relevant Codes of Practice and specified product standards 

(Wong & Fong, 2014). Table 1.4 shows the summary of the contents from different 

standards, as follows: NFPA 72, ANSI/FM 3260, BS 5839, and UL 268. In fact, the 

requirements of video fire detection technology lacks standards and codes of practice 

at this moment. 
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1.7 Digital image processing  

 

Digital images processing includes editing images and recovering files. In 1900s, an 

important advancement in digital image processing was the increasing speed of image 

data transfer. (Introduction, 2010) Today, digital image processing technologies 

focuses also on colour image analysis.  

 

The colour spectrum approach has relating to visible flame and colour analysis is 

important in this current study. A review of the literature reveals that, Sir Isaac Newton 

discovered that sunlight could be transformed into a colour spectrum when it passes 

through a prism. Figure 1.16 shows this natural phenomenon of the colour spectrum. 

Figure 1.17 illustrates the visible spectrum and electromagnetic spectrum. Table 1.5 

shows the visible band of the electromagnetic spectrum (red, green and blue colours). 

The maximum wavelength is about 790nm and the minimum wavelength is about 

430nm. Various types of colour models have been developed in digital image 

processing technology to analyse colours in a flame image. 

 

Digital image processing technologies used around the world employ different colour 

space models. In video fire detection, the following colour space models are used: (Red, 

Green, and Blue) RGB, (Hue, Saturation, and Intensity) HSI, (Hue, Saturation, and 

Value) HSV, (Luminance, and Chroma) YIQ, (Luminance, and Chroma) YUV, 

(Luminance, and Chroma) YCbCr, and (Luminance and Two colour channel) CIELAB. 

 

Colour space model analysis is a type of spatial analysis. Generally, the RGB, HSI and 

YIQ colour space models are used for converting colour images to the greyscale images.  
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1.7.1 The Red, Green and Blue (RGB) colour space model 

 

Different calculation approaches in colour space models generate different colours in 

images. One traditional approach to colour calculation is the analysis of the mixture of 

colour. Figure 1.18 illustrates the mixture of colour approach (additive primaries).  

 

In digital images, different variations of red, green and blue function values generate 

the different colours in the images. Table 1.6 shows common colours of RGB function 

values.  

 

1.7.2 The greyscale images approach 

 

In most of the methods used for image analysis, the colour images are transformed to 

grey-scale images so that the intensity of the RGB values can be calculated. (Color 

Image Processing, 2010) Figure 1.19 depicts a schematic image of a colour cube and 

provides a description of the grey-scale axis. When the function values of the red, green 

and blue colours are placed along the grey-scale axis, grey coloured images are 

displayed. 

1.7.3 The HSI colour space model 

 

For the HSI colour space model, three components are used for the generation of colour 

images, namely: hue (H), saturation (S), and intensity (I). In order to transform the 

colour images into greyscale images, it is necessary to consider the intensity I 

calculation. Equation 1.2 shows the method for calculating the intensity I. Generally, 

the range of intensity is from 0 to 255.  
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𝑰 =
𝟏

𝟑
(𝑹 + 𝑩 + 𝑮)        1.2 

 

where I is the intensity of output images, and where R , G and B are primary colours 

within the input images. 

 

1.7.4 The YIQ colour space model 

 

In the Matrix Laboratory (MATLAB), it is possible to use the YIQ colour space model 

to transform colour images to greyscale images. Equation 1.3 shows the YIQ colour 

space model algorithm. The YIQ colour space model has three components, namely: 

one luminance value (Y), two chrominance value (I and Q).  

 

(
𝒀
𝑰
𝑸

) = (
𝟎. 𝟐𝟗𝟗 𝟎. 𝟓𝟖𝟕 𝟎. 𝟏𝟏𝟒
𝟎. 𝟓𝟗𝟕 −𝟎. 𝟐𝟕𝟒 −𝟎. 𝟑𝟐𝟐
𝟎. 𝟐𝟏𝟏 −𝟎. 𝟐𝟓𝟑 −𝟎. 𝟑𝟏𝟐

)(
𝑹
𝑮
𝑩

)     1.3 

 

In greyscale image analysis, it is only necessary to consider the calculation of the 

luminance (Y). Colour images can be transformed into greyscale images. Equation 1.4 

shows the calculation method. The range of luminance is from 0 to 255.  

 

𝒀 = 𝟎. 𝟐𝟗𝟗 × 𝑹 + 𝟎. 𝟓𝟖𝟕 × 𝑮 + 𝟎. 𝟏𝟏𝟒 × 𝑩     1.4 

 

where Y is the luminance of output images and where R , G and B are primary colours 

of the input images. 
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1.7.5 The YCbCr colour space model 

 

Another colour space model used in the analysis of fire images is the YCbCr colour 

space. Equation 1.5 shows the YCbCr colour space model algorithm. 

 

(
𝒀
𝑪𝒃

𝑪𝒓

) = (
𝟏𝟔
𝟏𝟐𝟖
𝟏𝟐𝟖

) + (
𝟔𝟓. 𝟒𝟖𝟒 𝟏𝟐𝟖. 𝟓𝟓𝟑 𝟐𝟒. 𝟗𝟔𝟔

−𝟑𝟕. 𝟕𝟗𝟕 −𝟕𝟒. 𝟐𝟎𝟑 𝟏𝟏𝟐. 𝟎𝟎
𝟏𝟏𝟐. 𝟎𝟎 −𝟗𝟑. 𝟕𝟖𝟔 −𝟏𝟖. 𝟐𝟏𝟒

)(
𝑹
𝑮
𝑩

)  1.5 

 

The YCbCr colour space model has three components. Y is the luminance; Cb and Cr 

are both Chroma components. Cr is the red-difference component and Cb is the blue-

difference component. The YCbCr colour space model is especially useful in video fire 

detection technology. In chapter 2, the colour space model and its applications are 

studied in detail. 

 

1.8 Statistical analysis 

 

Statistical analysis is also an important tool in video fire detection technology. It is 

worth noting, however, that statistical approaches to video fire detection often suffer 

from an iceberg effect. (Suzuki & Takehara, 2012) The iceberg effect occurs when there 

is insufficient image data to reflect a real-world scenario and insufficient number of 

flame images available for analysis. Consequently, due to insufficient sample size, the 

results of the analysis may not be able to reflect reality. In practical application, this 

iceberg effect can lead to false alarms or unwanted fire alarms. However, discussion of 

the problem that the iceberg effect brings to video fire detection technologies, however, 

is not the objective of this thesis. Thus, this problem is left for further research. Hence, 
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Chapter 2 focuses on the detail concerning the statistical approach to video fire 

detection. 

 

1.9 Artificial neural networks 

 

Artificial Neural Networks (ANNs) are commonly used to recognise fire in video 

images. (Song, Fan, & Wu, 1999) One type of ANN is the Back-Propagation Neural 

Network (BPNN). The structure of BPNN requires an input layer, a hidden layer, and 

an output layer. Each layer in the structure is assigned a different number of nodes. 

Figure 1.20 shows the typical structure of neural networks. Chapter 2 provides more 

detail about the ANN approach and the applications. 

 

 1.10 Fire characteristics 

 

Another important area in the development of the video fire detection system is the 

understanding of fire characteristics. Generally, fire has unique visual signatures. These 

are seen with temporal change. The characteristics of fire include light (flame), heat 

(radiation), sound (combustion noise), and smoke (combustion product) (Yang, Deng, 

Fan, & Wang, 2001). All can be used both to identify the fire load in the video image 

and to recognise the flame shape and the smoke spread at the early stage of a fire.  
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Chapter 2 Literature review of video fire detection 

 

A literature review of four key areas is presented in this chapter. Focus is on 1) the 

analysis method used in current study and the related algorithm, 2) how images are 

captured, 3) video fire detection functions, and application and 4) video fire detection 

technology since 1991.  

 

From 1991 to 2015, the total number of video fire detection journal articles was 

approximately 146. By the year 2009, studies relating to video fire detection had 

increased with the highest number of papers being published during the years 2009 and 

2011 reaching 18 in total. Figure 2.1 gives the publication rate of research papers 

published from 1991 through to 2015.  

 

Various kinds of video fire detection technologies have been studied by several 

countries, each stimulated by that country’s specific demands. Of such published 

research papers, China has been responsible for approximately 25.7 percent, while in 

Hong Kong, research on video fire detection technology makes up only 4.7 percent of 

the worldwide.  

 

Figure 2.2 shows the percentage of research papers published in different countries. In 

total, nine countries have studied video fire detection technology quite intensively. 

Besides China, the second highest number of papers were published by the USA, but 

that number is only 9.5 percent of the total. Korea, Turkey, Taiwan, Spain, Japan, and 

Canada have also studied video fire detection technology.  

 



18 

 

In some studies, different countries have collaborated in the research of video fire 

detection technologies. Collaborating countries include Australia, UK, Canada, China, 

Taiwan, Japan, USA, Germany, Hong Kong, Korea, Slovenia, Spain, Portugal, Turkey, 

Greece, and Belgium.  

 

2.1 Functions 

 

The primary function of video fire detection technology is the early detection of fire 

with, obviously, the accuracy of video fire detection a vital issue. Reviewed literature 

reveals that, video fire detection systems fall into different categories. Fire, in most 

cases, generates smoke and flame, however, the detection of fire is actually 

accomplished more specifically by the analysis of the flame. Figure 2.3 shows the three 

different categories of video fire detection technology.  

 

From 1991 to 2015, statistical results of the detection of the characteristics of fire were 

in terms of–flame only, smoke only, or a combination of the specifics of both flame and 

smoke. Figure 2.4 shows a percentage breakdown of these ways in which fire is 

detected. Statistics indicate that, many researchers study video flame detection through 

the analysis of flame images. This is likely because flame images are easier to analyse 

than those of smoke images are. 

 

Recognition of the characteristics of fire, in terms of flame images, is normally, key to 

the success of a video fire detection system. Such recognisable characteristics include 

(1) flame colour; (2) flame height; (3) flame shape; (4) flame light intensity; and (5) 

flickering frequency. Such characteristics are recognisable in still images and in video 
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images. Figure 2.5 shows statistics regarding the quantities of the five different fire 

characteristics that have been analysed from 1991 through to 2015.  

  

The flame colour, flame shape, flame light intensity, and flame flickering frequency are 

key to video fire detection analysis. It is of note that flame height has not been 

commonly analysed, even though all fire characteristics, presented in images, can be 

used to recognise the fire state. Video fire detection makes use of various algorithms to 

obtain flame characteristics. In the following section, of this thesis the results of flame 

colour analysis, flame geometry analysis (including flame height, flame shape) flame 

light intensity and flame flickering frequency analyses are described  

 

2.1.1 Flame colour 

 

In image processing technology, the colour of fire is the main parameter for flame 

recognition from images. A review of the literature reveals that seven kinds of colour 

space models have been used for flame recognition or segmenting flame in images. 

These seven colour space models are as follows:  

 

1. RGB colour space model (Noda & Ueda, 1994) (Phillips III, Shah, & Lobo, 2000) 

(CHen, Kao, & Chang, 2003) (Liu & Ahuja, 2004) 

2. HSI colour space model (CHen, Kao, & Chang, 2003) 

3. HSV colour space model (Yamagishi & Yamaguchi, 1999) 

4. YUV colour space model (Celik, Demirel, & Ozkaramanli, 2006) 

5. YCbCr colour space model (Çelik, Özkaramanlı, & Demirel, 2007) 

6. YIQ colour space model (Shi, Liu, & Liu, 2009) 

7. CIE LAB colour space model (Celik T. , 2010) 
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Most researchers of video fire detection, study the flame colours. Image analysis using 

a colour space model involves not only segmentation of the images but also recognition 

of fire in images. The RGB, HSI, HSV, and YUV colour space models were used in the 

earlier years of video fire detection research. Most recently, the YCbCr and CIE LAB 

colour space models have also been used for fire detection. 

 

Generally, the colour components of digital images are red, green, and blue. The RGB 

colour space model is commonly used for the analysis of flame images. Flame colour 

only, however, is not converted to temperature distribution. In this case, the use of an 

infrared camera is an important auxiliary piece of equipment. When grey colour images 

from an infrared camera are compared with the colour ratio of colour images (Noda & 

Ueda, 1994), the flame region is obtained from these images. 

 

Although the colour of the flame is an important phenomenon in the study of flame 

images, the probability of fire (i.e. the colorprob) (Phillips III, Shah, & Lobo, 2000) can 

also be analysed. To identify fire in images, the nature of flame motion and colorprob 

are used (Phillips III, Shah, & Lobo, 2000). The threshold (k) of the fire is found from 

these two parameters 𝐶𝑜𝑙𝑜𝑟(𝑥, 𝑦) and 𝜎(𝑥, 𝑦).  

 

To reduce the detection time in video fire detection, the colour decision rule can be 

used. In 2002, Chen et al (CHen, Kao, & Chang, 2003) proposed the use of a colour 

model and decision rule for detecting real-time fire. To apply the decision rule, the fire 

pixels are first extracted from the images. The colour image processing uses the HSI 

and the RGB colour models. The colour decision rule for use with fire has three decision 

rules, and are as follows.  
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Rule 1: Red colour  Green colour > Blue colour  

Rule 2: Red colour > Red colour threshold 

Rule 3: IF (Saturation  ((255-Red colour) x Saturation threshold/Red colour threshold)) 

 Fire – pixel 

ELSE 

 Not fire – pixel 

The second decision rule considers the fire pixels in comparison to the threshold value.  

 

𝑖 =
1

3
(𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛 + 𝑏𝑙𝑢𝑒)       2.1 

 

𝑆 = 1 −
3

(𝑟+𝑔+𝑏)
[𝑚𝑖𝑛(𝑟, 𝑔, 𝑏)]      2.2 

 

ℎ = {
𝜃

260 − 𝜃
     

𝑖𝑓 𝑏 ≤ 𝑔
𝑖𝑓 𝑏 > 𝑔

       2.3 

 

𝜃 = 𝑐𝑜𝑠−1 {
1

2
[(𝑟−𝑔)+(𝑟−𝑏)]

[(𝑟−𝑔)2+(𝑟−𝑏)(𝑔−𝑏)]
1

2⁄
}      2.4 

 

The use of the results of research on flame colour features in different environments, 

Table 2.1 show saturation and intensity information for different features of low-

temperature fire. (Horng, Peng , & Chen, 2005)  

 



22 

 

By analysing the flame colour features, video fire detection can segment the fire region 

from these images, by removing false fire-like regions and estimating the burning 

degree of flames (Horng, Peng , & Chen, 2005). 

 

Normally, the main colours visible in fire images are orange, yellow and red (Liu & 

Ahuja, 2004). To analyse the ratio of colours in fire, it is necessary to include blue along 

with red, orange, yellow. Table 2.2 shows the ratio distribution of blue, yellow, orange, 

and red. A review of the literature reveals that the colour ratio of real fire pixels is not 

less than 1.5%.  

 

2.1.2 Flame height 

 

A review of the literature reveals that, although flame height is an evident feature of 

fire visible in images, this fire characteristic is not commonly used in video detection 

of fire. Clearly, flame height can be measured in pixels and it is of note from the results 

of different kinds of fuel used in experiments that correspondingly, different flame 

heights result. (Maoult, Sentenac, Orteu, & Arcens, 2007) Table 2.3 shows test results 

of the flame height when gasoline, acetone and alcohol were burned. 

 

An important technique for use in video fire detection is the analysis of the actual flame 

height, achieved by an estimation of flame height measured in pixels. Table 2.4 shows 

flame height in pixels in accordance with the actual flame height. 

 

Only the real-flame height measurement can be used to estimate the heat release rate 

(HRR) indirectly. When video fire detection is able to separate real flame images, real 

flame height can estimate the HRR using fire dynamics. 
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Analysis of real flame height is a subject of study undertaken by many researchers such 

as Heskestad and McCaffrey (Drysdale, 1999). Using measurements of real flame 

height and the fuel-pool diameter, researchers are able to estimate the HRR. Equations 

2.5 and 2.6 show Heskestad and McCaffrey algorithm (Drysdale, 1999).  

 

𝐻𝑓𝑙𝑎𝑚𝑒

𝐷𝑝𝑜𝑜𝑙
= −1.02 + 3.7𝑄̇∗2 5⁄        2.5 

𝑄̇∗ =
𝑄̇

𝜌
∞

𝑐𝑝𝑇
∞√𝑔𝐷𝑝𝑜𝑜𝑙𝐷𝑝𝑜𝑜𝑙

2        2.6 

 

where 𝐻𝑓𝑙𝑎𝑚𝑒 is real flame height (m). 𝐷𝑝𝑜𝑜𝑙is pool diameter (m). 𝑄∗̇ is dimensionless 

heat release rate ( - ). 𝑄̇  is the total heat release rate (kW). 𝜌∞  is ambient density 

(kg/m3). 𝑐𝑝 is the specific air heat at constant pressure (kJ/kg K), 𝑇∞  is ambient 

temperature (k) and 𝑔 is acceleration due to gravity (m/s2).  

 

Using another approach, the HRR can also be calculated using the flame volume (Beji, 

Merci, Verstockt, & Walle, 2012) (Stratton, 2005). 

 

𝑄 = 𝛾𝑉𝑓         2.7 

 

where 𝑄  is the heat release rate (kW), 𝑉𝑓 is the flame volume (m3), and 𝛾  is the 

coefficient (kW/m3) of probability.  
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To verify the detection of flame in images effectively, the flame height and width can 

be used (Verstockt, et al., 2011). Equation 2.8 shows the local maxima and minima, in 

the set of 𝑁 consecutive 𝐵𝐵𝑤𝑖𝑑𝑡ℎ and 𝐵𝐵ℎ𝑒𝑖𝑔ℎ𝑡 

 

𝐵𝐵𝐷 =
|𝑒𝑥𝑡𝑟𝑒𝑚𝑎(𝐵𝐵1:𝑁

𝑤𝑖𝑑𝑡ℎ)|+|𝑒𝑥𝑡𝑟𝑒𝑚𝑎(𝐵𝐵1:𝑁
ℎ𝑒𝑖𝑔ℎ𝑡

)|

𝑁
     2.8  

 

Some researchers have used the ratio of the maximum height and maximum width to 

determine the existence of both the flame and its volume within the images. Generally, 

when the height and width ratio is greater than the threshold value, the image contains 

a fire region. (Nguyen - Ti, Nguyen - Phuc, & Do - Hong, 2013) 

 

2.1.3 Flame shape 

 

Dynamic flame shape is a stochastic motion, so flame shape analysis is a spatial-

temporal analysis (Wang, Finn, Erdinc, & Vincitore, 2013). Many researchers use 

flame shape analysis to study video fire detection. In flame detection, three primary 

flame shape analysis are used. They are (1) flame area analysis; (2) flame contour 

feature analysis; and (3) flame texture analysis. In some research, analysis of flame 

shape is used to reconstruct fire images. (Stratton, 2005)  

 

A review of the literature reveals that in the early years of video fire detection, the polar 

coordinate transformation (Yamagishi & Yamaguchi, 1999) approach was used to 

analyse the fluctuation area. The polar coordinate transformation approach employs an 

angle () against the horizontal axis, a distance (r) between the contour, and a position 

(G) being the centre of gravity. The fluctuation data is 𝑟(𝜃, 𝑡). The polar coordinate 
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transformation approach results require fluctuation data to be recorded over a period of 

time (t)  

 

In recent years, some researchers (Liu & Ahuja, 2004) have used Fourier coefficients 

to represent the shape of a fire region. In general, the shape of a fire region is illustrated 

by a boundary line. To determine the boundary of that shape, the Discrete Fourier 

Transform (DFT) method can be used. Equation 2.9 shows the coefficients of the DFT. 

 

𝑎𝑘 =
1

𝑁
∑ 𝑧𝑖𝑒𝑥𝑝 (−𝑗

2𝜋

𝑛
𝑖𝑘)𝑁

𝑖=1        2.9 

where 𝑘 = − ⌊
𝑁−1

2
⌋ , ……………… , ⌊

𝑁

2
⌋ 

 

In general, after video fire detection has segmented the foreground and background, the 

flame contour information can be used for the analysis by the probability model 

𝑓(𝐹(𝐴𝑚)) (Hongliang, Qing, & Sun'an, 2012). 

 

A review of the literature reveals that video fire detection can be used to discriminate 

fire from contour dynamic features. The spatial-temporal contour dynamics feature is 

also discriminated by the support vector machine (SVM) (Wang, Finn, Erdinc, & 

Vincitore, 2013). 

 

2.1.4 Flame brightness 

 

Generally, flame brightness is used for illumination, for instance in video fire detection 

research, flame brightness is not simply a fire characteristic, it also supplies the light 

needed for image capture. For flame image detection in dark environments such as 
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inside an aircraft (Foo, 1996), flame brightness is an important consideration. Normally, 

a charge coupled device (CCD) camera is able to capture flame images because the 

flame itself generates the brightness required. (Cheng, Wu, Yuan, & Zhou, 1999) High 

contrast between the flame and its surrounding environments is also an important image 

aspect enabling recognition of flame regions therein (Liu & Ahuja, 2004). 

 

Generally, the image processing approach is an appropriate method for analysis of 

flame brightness. A comparison of two images is a commonly used method in the 

analysis of flame brightness. 

 

𝑑𝑖𝑗(𝑥, 𝑦) = {
1
0

        𝑖𝑓 |𝑓(𝑥, 𝑦, 𝑡𝑖) − 𝑓(𝑥, 𝑦, 𝑡𝑗)| > 𝜃

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     2.10 

where 𝜃 is a predetermined threshold. 

 

Generally, flame images have two brightness sources: the self-radiation of the flame 

and the reflected radiation of the surroundings (Cheng, Wu, Yuan, & Zhou, 1999). 

Equations 2.11 and 1.12 show the self-radiation of the flame and the reflected radiation 

of the surroundings. 

 

𝑺 = ∫
𝑪𝟏

𝝀𝟓[𝒆𝒙𝒑(
𝑪𝟐

𝝀𝑻𝒐𝒃𝒋
)−𝟏]

× 𝑪𝑪𝑫(𝝀)𝒅𝝀
𝝀𝟐

𝝀𝟏
     2.11 

 

𝑵 = ∫ 𝑫 ×
𝑪𝟏

𝝀𝟓[𝒆𝒙𝒑(
𝑪𝟐
𝝀𝑻𝒔

)−𝟏]

𝝀𝟐

𝝀𝟏
× 𝑪𝑪𝑫(𝝀)𝒅𝝀     2.12 
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where 𝑆is self-radiation of the flame, and 𝑁is the reflected radiation of the surroundings. 

𝑇𝑜𝑏𝑗 and 𝑇𝑠 represent the respective temperature and illumination source of the flame. 

𝐷 is the attenuation coefficient of the illumination. 𝐶𝐶𝐷(𝜆) is the spectral response 

function of the CCD – camera. A review of the literature reveals that the radiation 

distribution spectrum of the flame’s surroundings can be obtained by differentiation. 

Equation 2.13 and 2.14 illustrates the expression. 

 

𝒅𝑺

𝒅𝝀
=

𝑪𝟏×𝑪𝑪𝑫(𝝀)

𝝀𝟓[𝒆𝒙𝒑(
𝑪𝟐

𝝀𝑻𝒐𝒃𝒋
)−𝟏]

≈
𝑪𝟏×𝑪𝑪𝑫(𝝀)

𝝀𝟓×𝒆𝒙𝒑(
𝑪𝟐

𝝀𝑻𝒐𝒃𝒋
)

      2.13 

 

𝒅𝑵

𝒅𝝀
= 𝑫 ×

𝑪𝟏×𝑪𝑪𝑫(𝝀)

𝝀𝟓[𝒆𝒙𝒑(
𝑪𝟐

𝝀𝑻𝒐𝒃𝒋
)−𝟏]

≈ 𝑫 ×
𝑪𝟏×𝑪𝑪𝑫(𝝀)

𝝀𝟓×𝒆𝒙𝒑(
𝑪𝟐
𝝀𝑻𝒔

)
     2.14 

 

To analyse wavelength, 0.4 – 0.8 m wavelength band blocking, filter technology can 

be used for recognition of flame. A liquid crystal – light valve (LC – LV) is located at 

the front of the CCD camera.  

 

Analysis of flame images requires not only algorithms but also the LCLV (Yang, Deng, 

Fan, & Wang, 2001), as the principle function of the LCLV is to filter out other nearby 

images. Two criteria are used for the analysis of the flame images. The first is that the 

grey-scale of the flame pixels must be brighter than that of the background. The second 

criterion is that the number of bright flame pixels must be greater than the threshold 

value. The threshold value can be used to identify the flame region from the images. 
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The mean value of the brightness can be used (Schultze, Kempka, & Willms, 2006) to 

analyse flame brightness. The mean brightness is between 0 and 255. (Equation 2.15 

below shows the mean value calculation of brightness). 

 

𝒈(𝒉, 𝒏) =
𝟏

𝑾
∑ 𝒔(𝒊, 𝒉, 𝒏)𝑾

𝒊=𝟏        2.15 

 

where 𝑊 corresponds to the total number of pixels in each line, ℎ is the line index and 

𝑛 is the frame number.  

 

To detect flame in images from any brightness, some researchers (Owrutsky, et al., 

2006) use the threshold method for the analysis of images. 

 

If 𝐿𝑎𝑙𝑎𝑟𝑚 > 𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 + 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , then the alarm count increase. If 𝐿𝑎𝑙𝑎𝑟𝑚 <

𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 + 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , then the alarm count decrease. In a past study, the alarm 

count reached 75. The response time was within five seconds (Owrutsky, et al., 2006). 

 

Luminance of active pixels 𝐼𝑅𝑂𝐼(𝑡) (Marbach , Loepfe, & Brupbacher, 2006 ) is a 

primary feature in flame images. The following algorithm for luminance of active pixels 

can be used: 

 

𝑰𝑹𝑶𝑰(𝒕) = {𝒎𝒆𝒂𝒏{𝒀𝒊𝒌(𝒕)}|(𝒊, 𝒌) ∈ 𝝅𝑹𝑶𝑰}     2.16 

𝝅𝑹𝑶𝑰 = {(𝒊, 𝒌) ∈ 𝛀𝑹𝑶𝑰|𝑨𝒊𝒌(𝒕) ≥ 𝜼𝟏}      2.17 
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where 𝜋𝑅𝑂𝐼is the set of active pixels of Ω
𝑅𝑂𝐼

, 𝜂1 is the threshold from 0 to 255, Ω𝑅𝑂𝐼 is 

the fire candidate in the region, and 𝑌𝑖𝑘(𝑡) is the luminance component.  

 

In flame image analysis, the phenomenon of flame brightness can also use different 

spectral range values. The spectral range (Maoult, Sentenac, Orteu, & Arcens, 2007) 

includes (1) Near UV: 350-390 nm (low cost camera), (2) Visible 390-750 nm, (3) Near 

infrared (NIR) 750-1100 nm, and (4) NIR limited to  = 100nm around 950nm. 

  

To detect fire from video images by analysing luminance, the variances shown on the 

luminance map can be used. (Ko, Cheong, & Nam, 2009) Equation 2.18 shows the 

luminance map variances. Equation 2.19 shows the variance of luminance. 

  

𝝁𝒙,𝒚𝑳 =
𝟏

∑ 𝑯𝒙,𝒚𝑳(𝒖)
𝑵
𝒖=𝟏

∑ 𝒖𝑯𝒙,𝒚𝑳(𝒖)𝑵
𝒖=𝟏       2.18 

𝝈𝒙,𝒚𝑳 =
𝟏

∑ 𝑯𝒙,𝒚𝑳(𝒖)
𝑵
𝒖=𝟏

∑ (𝒖 − 𝝁𝒙,𝒚𝑳)
𝟐
𝑯𝒙,𝒚𝑳(𝒖)𝑵

𝒖=𝟏     2.19 

 

Where 𝜎𝑥,𝑦𝐿 > 𝐿𝑇 fire pixel else non-fire pixel; 𝐿𝑇 is the default threshold for variance, 

𝑁 is the number of consecutive images, 𝑯𝒙,𝒚𝑳(𝒖) is the luminance histograms of pixel 

(𝑥, 𝑦) in 10 consecutive frames and subscripts, and 𝐿 is used to indicate this histogram 

as part of the luminance map. 

 

Generally, flame images have a very high brightness in tunnel environments. Some 

researchers (Han & Lee, 2009) have used the discrepancy between brightness of objects 

and brightness of tunnel environments for flame image recognition. Equation 2.20, 2.21 

and 2.22 show the algorithm used.  
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𝑰𝒌
′ (𝒙, 𝒚) = {

𝟏
𝟎
  
           𝒊𝒇 𝑰𝒌(𝒙, 𝒚) > 𝒕𝒉𝟏

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
    𝟎 ≤ 𝒌 ≤ 𝑵   2.20 

 

𝑻′′(𝒙, 𝒚) = {
𝟏
𝟎
  
           𝒊𝒇 𝑻(𝒙, 𝒚) > 𝒕𝒉𝟏

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
         2.21 

 

𝑫𝒌
𝒇(𝒙, 𝒚) = 𝑰𝒌

′ (𝒙, 𝒚) − 𝑻′′(𝒙, 𝒚)       𝟎 ≤ 𝒌 ≤N    2.22 

 

𝑰𝒌(𝒙, 𝒚) is the intensity of one image among 𝑵 sequential input images. 𝑻(𝒙, 𝒚) is the 

intensity of the background and 𝒕𝒉𝟏 is the threshold value. 𝑫𝒌
𝒇(𝒙, 𝒚) is the difference in 

the intensity of the images between binary inputs and image backgrounds. 

 

In addition, the intensity values of the background and the image can be used in 

threshold method analysis (Ko, Cheong, & Nam, 2010). If |𝐼𝑛(𝑥) − 𝐵𝑛(𝑥)| > 𝑇𝑛(𝑥) 

then x  is moving, otherwise x  is non-moving. 𝐼𝑛(𝑥) is the intensity value at each 

spatial location x  in frame n . 𝐵𝑛(𝑥) is the background value at the same position, and 

𝑇𝑛(𝑥) is the threshold value of the difference between background and image. 

 

In addition, the level of intensity can be used in pixel analysis (Bosch, Gomez, Molina, 

& Miralles, 2009). Equation 2.23 shows the expression for the intensity. 

  

𝒎 = ∑ 𝒁𝒊 ∙ 𝒑(𝒛𝒊)
𝑳−𝟏
𝒊=𝟎         2.23 
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where L  is the number of possible levels of intensity,  zp represents the histogram of 

the intensity levels in a region, iz is the variable intensity. 

 

Generally, video fire detection can make use of the spatial and temporal information 

for flame detection (Habiboglu, Gunay, & Cetin, 2011). Equations from 2.24 to 2.30 

show calculations of pixel property parameters. However, these equations consider only 

spatial information.  

 

𝑿(𝒊, 𝒋) = 𝒊         2.24 

𝒀(𝒊, 𝒋) = 𝒋         2.25 

𝑰(𝒊, 𝒋) = 𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊, 𝒋)       2.26 

𝑰𝒙(𝒊, 𝒋) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋)

𝝏𝒊
|       2.27 

𝑰𝒚(𝒊, 𝒋) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋)

𝝏𝒋
|       2.28 

𝑰𝒙𝒙(𝒊, 𝒋) = |
𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋)

𝝏𝒊𝟐
|       2.29 

𝑰𝒚𝒚(𝒊, 𝒋) = |
𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋)

𝝏𝒋𝟐
|       2.30 

 

When video detection of fire in images uses spatial analysis and temporal analysis of 

the same coordinates, another calculation method for pixel property parameters is 

necessary. Equation 2.31 to 2.37 show the calculation method.  

 

𝑰(𝒙, 𝒚, 𝒏) = 𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒙, 𝒚, 𝒏)      2.31 
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𝑰𝒙(𝒊, 𝒋, 𝒏) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒊
|       2.32 

𝑰𝒚(𝒊, 𝒋, 𝒏) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒋
|       2.33 

𝑰𝒙𝒙(𝒊, 𝒋, 𝒏) = |
𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒊𝟐
|      2.34 

𝑰𝒚𝒚(𝒊, 𝒋, 𝒏) = |
𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒋𝟐
|      2.35 

𝝏𝒕𝑰(𝒊, 𝒋, 𝒏) = |
𝝏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒏
|      2.36 

𝝏𝒕
𝟐𝑰(𝒊, 𝒋, 𝒏) = |

𝝏𝟐𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒊,𝒋,𝒏)

𝝏𝒏𝟐 |      2.37 

 

𝝏𝒕𝑰 and 𝝏𝒕
𝟐𝑰 are the first and second derivatives of intensity with respect to time (t). 

From the above equations, the property vector Φ
𝑆𝑇

(𝑖, 𝑗, 𝑛) is able to use a covariance 

matrix to detect a flame.  

 

𝚽𝑺𝑻(𝒊, 𝒋, 𝒏) =

[
 
 
 
 
 
 
 

𝑰(𝒊, 𝒋, 𝒏)

𝑰𝒙(𝒊, 𝒋, 𝒏)

𝑰𝒚(𝒊, 𝒋, 𝒏)

𝑰𝒙𝒙(𝒊, 𝒋, 𝒏)

𝑰𝒚𝒚(𝒊, 𝒋, 𝒏)

𝝏𝒕𝑰(𝒊, 𝒋, 𝒏)

𝝏𝒕
𝟐𝑰(𝒊, 𝒋, 𝒏)]

 
 
 
 
 
 
 

        2.38 

The following covariance matrix can be used to estimate the given region in images.  

 

∑ =
𝟏

𝑵𝒑𝒊𝒙𝒆𝒍𝒔−𝟏
∑ ∑ (𝚽𝒊,𝒋 − 𝚽̅)𝒋 (𝚽𝒊,𝒋 − 𝚽̅)

𝑻
𝒊      2.39 

where 
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𝚽̅ =
𝟏

𝑵𝒑𝒊𝒙𝒆𝒍𝒔
∑ ∑ 𝚽𝒊,𝒋𝒋𝒊         2.40 

 

where 𝑵𝒑𝒊𝒙𝒆𝒍𝒔 is the number of pixels, and 𝚽𝒊,𝒋 is the property vector of the pixel at 

its location, and (𝑖, 𝑗). 

The intensity background and the intensity value of the pixel at its location (𝑖, 𝑗) in the 

𝑛𝑡ℎvideo frame are used to detect the moving regions. A review of the literature, 

(Truong, Kin, & Kin, 2011) reveals that this analysis method is popular for flame 

detection . 

 

 
     
     









1,,,

1,,,
,1

jiBjiBjiI

jiBjiBjiI
jiB

nnn

nnn

n      2.41 

    ThresholdjiBjiI nn  ,,       2.42 

 

The threshold value can be assumed from guesswork or experience.  jiBn ,1  is the 

background intensity value, and  jiI n ,  is the intensity value of the pixel at its location

 ji, . 

 

The contrast in an image, however reveals the amount of local intensity. The intensity 

histogram graphs can describe the range of brightness levels (Jiao, Weir, & Yan, 2011). 

Equation 2.43 shows he picture contrast used for analysis of the images. 

 

 n
CONF

4


          2.43 
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n is a positive number,  is the standard deviation of grey-level probability distribution, 

and 4 is kurtosis. Equation 2.44 shows the calculation of kurtosis. 

 

4

4
4




           2.44 

4 is the fourth central moment of the grey-level probability distribution. 

  

The absolute value calculation is performed using two images  Af  and  Bf  (Ning 

& Fei, 2012). Equation 2.45 shows the calculation. Equation 2.46 shows the algorithms.  

 

     BfAfCf          2.45 

when 

   
   








ThresholdCfCf

ThresholdCfCf

,1

,0
       2.46 

 

When the pixels are larger than the threshold, the pixels are a grey colour. Therefore 

the pixels are equal to 1   11 f . 

 

The Motion History Image (HMI) algorithm is another method for the analysis of the 

motion history images (Xu, Zhu, & Xie, 2012). 

 

 
 
     









 myxHandyxIif

yxIifm
yxH

mm

m

m
,0,0

1,
,

1

   2.47 
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 yxHm ,  is an element in the history matrix with the coordinate  yx,  at time point 

m .   is the maximum duration. A review of the literature reveals that,  is set to 5.  

 

 
     

others

yxHifmyxH

yxMHI
m

m

m

0,

0

255
,

,












 


   2.48 

 

 yxMHIm , is the intensity of the pixel with the coordinate  yx,  in the thm  frame. 

The history information of the motion region is recorded in the MHI. 

 

In recent years, intensity values have been used for the dynamic background subtraction 

method (Beji, Merci, Verstockt, & Walle, 2012). Equation 2.49 shows the algorithm of 

the background subtraction method.  yxTn ,  is the threshold at position  ji, . The 

brightness values in image frame nx  and frame 1nx  

 

     jiTjixjix nnn ,,, 1          2.49 

 

The video detection method is commonly used for the analysis of moving objects such 

as flame flickering. A review of literature reveals that flickering frequency is observed 

in many studies of video fire detection. Normally, analysis of flickering frequency is 

necessary to enable records of different brightness levels, over time to be made.  

 

2.1.5 Flame flickering frequency 

 



36 

 

The recognition of flame flickering frequency is generally, a form of space-time data 

analysis (Yamagishi & Yamaguchi, 1999). The magnitudes of flame flickering are used 

to analyse the frequency. When images are recorded by a digital camera, generally the 

image sampling frequency is 25Hz meaning 25 frames per second in a video sequence 

(Zhang, Zhuang, Du, Wang, & Li, 2006). Consequently, the flame flickering cannot be 

directly obtained from the video sequence. Normally, the calculation of flame flickering 

frequency uses the Discrete Fourier Transform (DFT).  

 

 m

i

m

i ClHeighth          2.50 

  












n

i

m

i

mm

k ik
n

jh
n

HDFTa
1

2
exp

1 
     2.51 

  
 




2

1

2 12i

m

k

m

km

d
l

aa
Af         2.52 

 

where mH  is the height sequence set of fire-like area 
mCl  being extracted from a video 

image sequence. mA  is the set of the DFT coefficients, and 
m

ka is a coefficient of the 

DFT, l is the length of the DFT. 

  

Normally, the actual flame height is more difficult to analyse, hence the calculation of 

the suspected flame area   bitiZone ,,1,0,,  of the fire offers an alternative method 

(Hongliang, Qing, & Sun'an, 2012). The relative area is expressed as   ,,,2,1, bitSi 

where b is the region number. The image resolution factor is assumed to be NM  . 

The grey colour value is  tyxf ,,  at location  yx,  in the time of t .  tkp ,  is the 
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probability results. Equation 2.53, 2.54 and 2.55 shows the algorithm for calculating 

flame area. 

  

   
   




iZoneyx

i tkpMNtS
,

,        2.53 

   
 





1,

11,
yxf

MNtkp         2.54 

       bmnSSSS mmmm ,,1,0,,2,1      2.55 

 

For extraction of the dynamic characteristic sequence of changes, Fourier coefficients 

can be used. Equation 2.56 shows the algorithm of Fourier coefficients. 

 

 



n

i

nikj

m

m

k eiS
n

f
1

21 
       2.56 

 

The Fourier power spectrum can be used for analysis of the energy spectrum. Equation 

2.57 shows the algorithm of the energy spectrum. The algorithm of the energy spectrum 

is used to eliminate unwanted objects.  

 

  



n

k

m

k

m

k

m ff
n

FP
1

1
        2.57 

 

In image processing technology, block techniques (Yu, Mei , & Zhang, 2013) is used 

to recognise features of flame motion. Equation 2.58 shows the block algorithm. To 
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experiment, the predetermined threshold can be set to 50. When more than half of all 

pixels in a block satisfy, the block can then be considered a flame block. 

  

  TtyxH ,,          2.58 

 

where T  is a predetermined threshold.  

 

Past experiments reveal analysis of flame flickering to be a powerful tool for 

differentiating between actual fire and fire-like objects. The following algorithm 

(Barmpoutis, Dimitropoulos, & Grammalidis, 2013) is used to calculate flame 

flickering frequency. Equation 2.59 shows the algorithm. 

  

    12, ,  jicjiF         2.59 

 

where  jic ,  is mathematically expression.  

 

Normally, video fire detection uses not only one flame image feature, but several. When 

the method involves the use of three or four flame image features, fire detection 

accuracy is reinforced. Researchers have determined a threshold value for each flame 

feature. The results of past experiments reveal the flickering threshold is 44.  

 

Generally, analysis of flickering frequency uses the Fast Fourier Transform (FFT) 

(Schröder, Krüger, & Kümmerlen, 2014). The image processing method detects a 

deflagration situation, but little research has been conducted on this method. The 
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Nyquist – Shannon sampling theorem can also be used to analyse flickering frequency. 

Equation 2.60 shows the theorem. 

 

 

 
 1,0

max

1

2

28

2









a

fX

fX
a

f

f Hz

Hz

f Hz
      2.60 

 

where maxf is the maximum frequency, a is the power ratio of the frequency band from 

2 to 8 Hz, and  fX  is the amplitude value at the frequency f . In results from past 

experiments, typical fires or flames illustrate the ratio a  in the range of 0.6 to 0.9.  

 

From the literature (Marbach , Loepfe, & Brupbacher, 2006 ) it can be seen that the 

luminance of the active region of interest is expressed in  tIROI , and the frequency of 

the region of interest is expressed in  tfROI . Analysis of the frequency  tfROI  can be 

used to plot the luminance curve  tIROI  over time t .  

 

Another method of flickering frequency analysis is the Power Density Spectrum (PDS) 

approach (Schultze, Kempka, & Willms, 2006). The spectrogram illustrates the 

evolution of the PDS of the pool fire’s flame-flickering. The x-axis shows the time in 

seconds, and y-axis shows the frequency in Hertz.  

 

Temporal wavelet analysis (Toreyin, Dedeoglu, Gudukbay, & Cetin, 2006) is another 

method for detecting flickering frequency. Each fire pixel  lkxn ,  is fed through a high-

and also a low-pass filter. The coefficients of a high-pass filter are -0.25, 0.5, and -0.25, 

whilethe coefficients of low-pass filter are 0.25, 0.5 and 0.25. Two wavelets expressed 
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as  lkdn ,  and  lken , are sub-signals produced by the filter. In an analysis of the flame 

flickering frequency, flame brightness is not a unique feature. Analysis of red moving 

objects, however, can be created to determine the flame flickering, and the threshold 

value  RT  (Duong & Tuan, 2009) of the red channel is 200. In addition, researchers 

can analyse flame flickering based on the variation of the flame’s area (Hou, Qian, Zhao, 

Pan, & Zhang, 2009). Flame can also be captured by CCD cameras and near infrared 

cameras (NIR) although flame flickering appears in a different spectral range (Maoult, 

Sentenac, Orteu, & Arcens, 2007). 

 

A review of the literature reveals that, fire researchers have used Pagni’s oscillation 

frequency formula (Jianzhong, Jian, Jian, & Jun, 2010). Equation 2.61 shows the 

Pagni’s oscillation frequency formula. Previous experiments have shown that the 

equivalent diameter ranges from 0.03m and 60m (Juan & Qifu, 2012).  

 

Dpool
f

3.22           2.61 

 

where f is Pagni’s flame oscillation frequency (Hz) and Dpool  is the equivalent 

diameter of the pool fire (m). Tables 2.5 and 2.6 show the experimental results.  

 

In video images, when the oscillation counter (Chen, He, & Wang, 2010) exceeds a 

threshold 0SUM , it can be determined that the video images are showing fire. Equation 

2.62 shows the algorithm of the oscillation counter. 

 

     0,,,, SUMNcounttyxSUMtyxSUM      2.62 
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where Ncount is the counting period, 0SUM  is the threshold, and the threshold is 

related to the counting period. Further study is needed to analyse the optimal threshold. 

  

In order to ensure that flame flickering analysis is able to detect real fire in images, 

various flame. Detection flickering frequency techniques can be used A counter 

 yxTimer ,  (He, Yang, Zeng, Ye, & Wu, 2015) can be used for counting pixel change. 

Equation 2.63-2.65 shows the counter algorithm.  tyxTimer ,,  and  1,, tyxTimer  

can also be used as counter values for the pixels at time  t  and at time  1t . fT  is a 

predefined flickering threshold.  tyxY ,,  is the Y  component of the YCbCr colour 

model. When the counter value of a pixel is larger than the threshold at a given time, 

the region of interest is considered a flickering image. 
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,,
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,,

11,,

,      2.63 

     1,,,,,,  tyxYtyxYtyxY       2.64 

     fTntyxTimertyxTimer  ,,,,      2.65 

 

Generally, flame flickering is the oscillation of flame in images. In flame flickering 

analysis, to determine the optimal threshold, different detection algorithms are 

necessary. Fast Fourier Transform (FFT), Wavelet Transform (WT) and Mean Crossing 

Rate (MCR) can also be used to calculate flame flickering frequency. In flame 
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flickering frequency analysis, the brightness intensity variation, flame height and flame 

area are also used.  

 

Image processing techniques are also a necessary part of the flame flickering frequency 

analysis. The intensity values in each pixel can be obtained from the colour space model. 

The colour space model used can be either the RGB colour space model or the YCbCr 

colour space model. In order to identify real flame in video images, the characteristics 

of real flame flickering frequency must be known.  

 

2.1.6 Fire dynamics analysis for flickering frequency 

 

Video fire detection also used the characteristics of flame. Another important 

characteristic is real flame’s flickering frequency. Many fire science researchers have 

studied flickering frequency including Chitty and Cox, McCaffrey and Zukoski 

(Drysdale, 1999), obtaining the different flickering frequency results from observation. 

The range of flame flickering frequency is from 1 Hz to 10 Hz (Schröder, Krüger, & 

Kümmerlen, 2014). The flickering frequency effect is based on pool diameters. 

Equation 2.66 shows the relationship between flickering frequency and pool diameters. 

 

   HzDpoolgf
21

04.050.0        2.66  

 

where Dpool  is pool diameter (m), f is flickering frequency, and g is a gravitational 

acceleration constant (9.81 m/s2).  
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In video fire detection technology, the sequence of video image captured records of not 

only the changes of flame shape, but also of the flame flickering frequency. 

 

In the detection of the real flame from video images, analysis of the features of those 

images are an important contribution in the achievement of fire control. Besides the 

feature, flickering frequency, mentioned above, other flame image features such as, 

colour, brightness intensity, flame geometry (flame shape or flame height) are 

important, if a fire is to be controlled. In order to enhance the accuracy of video fire 

detection, Researchers, such as Xiong, Cballero, Wang, Finn and Peng, all report the 

need to use more than one fire feature. A review of the literature by Gottuk and 

Dinaburg, 2010 reveals that, spectral, spatial and temporal properties of flame images 

can also be used to identify flame characteristics. Video fire detection can be conducted 

effectively both indoors and outdoors. Of special interest is the proposal that video fire 

detection can prevent the spread of forest fires, if caught in the early stages. This is 

enabled by the ability of the detection system to operate from different heights and 

distances. (Liu, Hadjisophocleous, Ding, & Lim, 2012), In addition, various detection 

algorithms can also be used to further analyse the properties of the flame images, colour 

strength height. 

 

2.2 Video fire detection for forest fires 

 

As suggested above, one primary objective of video fire detection design is to enable 

the prevention of forest fires. Over the years, researchers have studied a variety of video 

fire detection methods. Much research has been conducted in this area, especially in 

Spain and China, Table 2.7 shows the statistical results of the countries that have 
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researched video fire detection with the aim of finding a means of protection against 

forest fire spread. 

 

2.2.1 Satellite method 

 

For forest fires, video fire detection offers the best chance of protection against fire 

spread. Beginning in 1991, many countries and researchers have analysed the 

performance and effectiveness of video fire detection technology for the prevention of 

undisciplined spread of forest fires. Satellites infrared cameras, digital cameras, 

unmanned aircraft systems, and IP cameras are also used in video fire detection 

technology. Satellites are able to capture Advanced Very High Resolution Radiometer 

(AVHRR) images, a special category of images.  

 

In 1991, the Normalised Difference Vegetation Index (NDVI) method was developed 

to analyse AVHRR images for use in the detection of forest fires. Equation 2.67 shows 

the NDVI formula. (Lopez, Gonza;lez, Llop, & Cuevas, 1991) 

 

𝑁𝐷𝑉𝐼 =
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 2−𝐶ℎ𝑎𝑛𝑛𝑒𝑙 1

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 2+𝐶ℎ𝑎𝑛𝑛𝑒𝑙 1
       2.67 

 

The normalised difference vegetation index (NDVI) calculation results are 

representative of the various colours. Table 2.8 shows the summary of colour relative 

NDVI values 

 

Some researchers have used not only the NDVI calculation for forest fire analysis but 

also hot pixel analysis (PEREIRA & SETZER, 1993). The channels 1 and 2 present the 
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reflectance of visible and near infrared. Channel 1 is 0.58-0.68µm. Channel 2 is 0.73-

1.1µm (Fernández, Illera, & Casanova, 1997). In 1997, some researchers adopted a 

statistical method to analyse AVHRR images for the study of forest fire risk (Gonzalez-

Alonso, Cuevas, Casanova, Calle, & Illera, 1997). The main aim of forest fire detection 

by video is the prevention of large-scale forest fires, thus flame and smoke detection 

can also be useful in video fire detection technology (Fang & Huang, 1998). To analyse 

AVHRR images in the prevention of forest fire, measurement of Fuel Moisture Content 

is (FMC) is another approach that can be used (Chuvieco, Aguado, Cocero, & Riaño, 

2003).  

 

Satellites are able to capture not only AVHRR images but also digital images. To 

analyse satellite digital images, classification fire and non-fire in images is important. 

In 2005, Florent Lafarge, Xavier Descombes and Josiane Zerubia proposed the use of 

the Support Vector Machine (SVM) classification method. SVM is a probability 

calculation method used in the analysis of fire texture characteristics. 

 

2.2.2 Infrared method 

 

Distributed Environmental Disaster Information and Control Systems (DEDICS) use 

infrared camera technology. DEDICS contain a number of integrated components 

including threshold-based detection, detection of bright oscillations, visual/infrared 

matching, memory-based utilisation, motion filters, size and shape detection, 

meteorological detection, and solar conditions (Ollero, Arrue, Martinez, & Murillo, 

1999). When a certain value for each component is lower than a certain number 

(determined by a rule), there is zero possibility of forest fire. 
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Digital cameras are also popular for detecting forest fire, but the flame analysis method 

is different. Wavelet and Fast Fourier Transform (FFT) are two different methods of 

analysis used (Contour Based Forest Fire Detection Using FFT and Wavelet, 2008). 

  

Colour space modes namely RGB, YCbCr, CIELAB, HSI and HS’I can also be used to 

evaluate forest fire images (Krstinić, Stipaničev, & Jakovčević, 2009). In 2012, Vipin 

V used the YCbCr and RGB colour space models for detection of forest fires (V, 2012) 

(Roberto, 2014). In some research, colour space models are used only to segment flame 

images. In 2009, Dengyi Zhang, Shizhong Han, Jianhui Zhao, Zhong Zhang, 

Chengzhang Qu, Youwang Ke and Xiang Chen not only used a colour space model for 

segmentation of fire images, they also worked with back propagation neural networks 

(BPNN) to recognize forest fire (Zhang, et al., 2009). 

 

2.2.3 Unmanned Aircraft System and Internet Protocol  

 

Today, the development of unmanned aircraft systems (UASs) and of (IP) cameras is 

important because satellites have limitations regarding forest surveillance, including, 

for example, the need for large economic investment, the low resolution of the images 

captured, and the fact that cloud layers can affect visibility (Merino, Caballero, Ramiro 

Martinez - de - Dios, Maza, & Ollero, 2011) (Roberto, 2014). UASs, however, offer 

real-time fire monitoring, and provide geographic coordinates. Analysis methods 

involved in the use of UASs and IP cameras are different. A review of the literature 

reveals that IP cameras use K-Singular Value Decomposition (K-SVD) method to 

analyse forest fire images. UASs adopt the probability analysis method. Probability 

values include fire  1,  tkk Fpf  and fuel exhaustion  1,  tkk Qpq .  
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As indicated above, when discussing video recognition of the existence of flame within 

a forest, it is not surprising that this mode of detection can also be the first step leading 

to the prevention of fires taking hold and spreading out of control (Mathi & Latha, 

2016). The methodology uses a computerised vision-based approach for the detection 

of flame in specific images. The detection approach includes spatial-temporal flame 

modelling and dynamic texture analysis. Researchers have used different approaches to 

overcoming detection errors in a variety of outdoor environments.  

 

2.3 Video fire detection in other environments 

 

Hence as indicated above, Video fire detection technology is popularly in use in the 

prevention of forest fire because the monitoring system can be controlled remotely. 

Remote controlled monitoring is critical in inhospitable environments to avoid loss of 

life.  

 

A review of the literature reveals that video fire detection has been used to recognize 

fire by its physical properties. In 1993, Glenn et al. (Healey, Slater, Lin, Drda, & 

Goedeke, 1993) tested an automatic real-time fire detection method using colour video 

input. Their video fire detection algorithm analysed the spectral, spatial and temporal 

properties of fire images. 

 

In 1994, Noda et al. (Noda & Ueda, 1994) researched an image-processing method to 

detect flame. They recorded thermal images using infrared cameras. Colour images 

were recorded using a CCD camera. Their analysis method included thermal values as 

well as red, green, and blue colour elements. 
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In 1996, Simon Foo (Foo, 1996) researched video fire detection for the prevention of 

fires occurring in aircraft dry bays and engine compartments. A rule-based machine 

vision approach using statistical measures was employed for real-time fire detection. 

The statistical measures used were the calculation of the median, the standard deviation, 

and the first-order moment measures of histogram data. Results from this calculation 

approach showed that the thresholds of the median, the standard deviation, and the first-

order moments are 140.0, 700.0, and 1.3 x 107 respectively. When the median, the 

standard deviation, and the first-order moments exceed the predetermined threshold, 

the images are likely fire images. Foo also investigated fire spread. Foo’s approach to 

fire spread was to analyse the change or motion observable in two images. 

 

In 1999, Song Wei-guo, Fan Wei-cheng and Wu Long-biao used BPNN to detect fire 

(Song, Fan, & Wu, 1999). Their research examined six image characteristics, including 

area, edge, shape, flame pulsation, layer, and motion. 

  

Prior to the year 2000, detection and recognition of flame in images was only a one-

approach application. In 1999, Hideaki Yamagishi and Jun’ichi Yamaguchi combined 

two approaches to detect flame (Yamagishi & Yamaguchi, 1999). The two approaches 

were the image processing method and the neural network method. The primary 

objective in the image processing method is extraction of the flame region. The image 

processing method adopts the RGB colour space model and the HSV colour space 

model. (The RGB colour space model and HSI colour space model is explained above 

in Chapter 1.) The HSV and HSI colour space models differ in terms of their calculation 

of brightness (I and V). The neural network method is used for recognition of the flame 

region. The output layer has two output units (fire flame or non-fire flame). 
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A review of the literature reveals that in the early stages of video fire detection, 

researchers used algorithms with the image processing method, statistical measures, 

and the artificial neural networks (ANNs) approach. Some researchers combined two 

different approaches in their studies. 

 

Before 2000, satellites, charge coupled devices (CCD) cameras, black-and-white (BW) 

cameras, panoramic annular lenses, and moving cameras were used by researchers. 

Satellites were useful in the prevention of forest fire.  

 

 A review of the literature from 1991 to 2015 reveals that many researchers studied 

different video fire detection technology modes, such as flame detection, smoke 

detection, and fire detection. Many different kinds of video fire detection used the 

image processing method, statistical method, Artificial Neural Networks (ANN), or 

combined all methods. Table 2.9 to 2.11 show the development of video fire detection 

method from 1991 to 2000, 2001 to 2010, and 2011 to 2015.  
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Chapter 3 Methodology 

 

The video fire detection methodology used in this study involves separate processes for 

segmentation of images, recognition of targets, and the tracking of fire regions. Image 

segmentation is the first step because it is key to the recognition of the selected target. 

After a target area is successfully identified as a fire region, the tracking process then, 

makes it possible for the fire to be extinguished. 

 

3.1 Image segmentation process 

 

Segmentation algorithms used in image processing can divide images into two 

necessary regions: foreground and background. Generally, the foreground is the 

image’s target, which, for the purposes of video fire detection, is the fire region. The 

background is the surrounding environment. Image segmentation is a form of spatial 

analysis. The segmentation algorithm described in this chapter is the Otsu threshold 

method. The Otsu threshold method was proposed by Nobuyuki Otsu in 1979 (Otsu, 

1979). In the early stages of its development, the Otsu method was used for 

segmentation of brain tumours in Magnetic Resonance Imaging (MRI) (Jeevitha & 

Narendrain, 2013).  

 

The Otsu method provides a way of automatically selecting the threshold value. The 

concept is a cluster analysis of the flame region, followed by the segmentation of the 

images. Flame brightness is an important characteristic. Firstly, colour images of flames, 

as indicated above I the previous Chapter must be converted to greyscale images for 

generation of a grey-level histogram. 
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By calculating the histogram and the probability method of the intensity level, the Otsu 

method can automatically obtain the threshold value. From the results of the threshold 

value, binary data can be obtained from the greyscale images. In the following section, 

two important steps are described:  

 

1. Conversion of colour images to grey-level images 

2. The algorithm used in the Otsu threshold method 

 

Figure 3.1 depicts the flow diagram of the Otsu threshold method. If the captured 

images are colour images, they have to be transformed to greyscale images. To do this, 

the YIQ colour space model is used. Equation 3.1 shows the conversion expression for 

transforming colour images to greyscale images. 

 

 𝑌(𝑥, 𝑦, 𝑡) = 0.299 × 𝑅(𝑥, 𝑦, 𝑦) + 0.587 × 𝐺(𝑥, 𝑦, 𝑡) + 0.114 × 𝐵(𝑥, 𝑦, 𝑡) 3.1 

 

where  tyxY ,,  is the luminance value of output images in each pixel over time. 

 tyxR ,, ,  tyxG ,,  and  tyxB ,,  are primary colours of input images in each pixel 

again, over time.  

 

When the luminance value for all pixels from the input images has been calculated, the 

algorithm enables the transformation of the images to produce greyscale images as an 

output. The grey-level histogram is then, obtained from the grey-scale images. Figure 

3.2 depicts the flow diagram of the colour to a greyscale image conversion method. The 

greyscale levels range from 0 to 255 (256 values). The total number of pixels depends 

on the image resolution. The x-axis shows the grey-levels and the y-axis shows the 
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number of pixels. The histogram made from the greyscale fire images, the colour fire 

images, and the grey colours fire images are explained in Chapter 4. 

 

3.1.1 Single threshold method 

 

The traditional algorithm of the Otsu threshold method is able to segment the 

background as a histogram showing the distribution of different quantity of grey colour 

image. The results of single the threshold approach is explained in chapter 4. The Otsu 

algorithm supposes that all pixels dichotomise into background and objects, or vice 

versa. The algorithm of the Otsu threshold method requires four main steps:  

 

1. Probabilities of objects and background occurrence.  backgroundobjects  ,  

2. Objects and background mean levels.  backgroundobjects  ,  

3. Objects and background variances.  backgroundobjects  ,  

4. Discriminant analysis of the “maximum between class variance.”  2

B  

 

When the discriminant analysis has obtained the maximum value of between class 

variance   kB
k

2

2551
max 


, the threshold value is obtained from greyscale levels (range from 

0 to 255).  

 

Normally, the greyscale levels of fire images should be larger than the background 

images. Images of fire should be from threshold value (k) to the maximum grey-level 

(255). The background should extend from the minimum grey-level (0) to the threshold 

value (k). Figure 3.3 depicts a histogram analysis using the Otsu method. 
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3.1.2 Multi-threshold method 

 

Some fire images, however, are unable to use a single threshold value for image 

segmentation. In these cases, the multi-threshold approach should be considered. In the 

analysis approach used in this Thesis, first, the algorithm assumes six thresholds. 

Normally the algorithm of the multi-threshold method has different stages. The first 

stage is calculation of the greyscale level, from 0 to 255. The second stage is calculation 

of the grey-level, from  1k  to 255. Figure 3.4 depicts the example of histogram analysis 

of the multi-threshold method.  

 

The multi-threshold method is able to subdivide fire images effectively because it can 

obtain different threshold values from calculations. Figure 3.5 depicts the flow diagram 

of the Otsu multi-threshold approach. For the effective segmentation of images, two 

significant elements must be considered: the selection of the threshold and the number 

of threshold values. 

  

Normally, different images have different recorded regions of interest; consequently, 

the distributions of their histograms are, likewise different. For fire images, the 

distribution of the histogram is similar to a Rayleigh distribution when the fire occurs 

indoors and in dark environments. In fact, the Rayleigh distribution is not completely 

reflected in fire images because the fire image region has a high intensity level. Figure 

3.6 depicts the distribution curve of fire images and the estimated fire region.  

 

Although the Rayleigh distribution is not completely similar to the histogram of fire 

images, some researchers have studied the modified Otsu method for segmentation of 

images (Wan, Wang, Sun, & Hao, 2010). The development of the Rayleigh distribution 
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algorithm is based on the traditional Otsu method. First, the images must be grey colour 

images otherwise colour images must be transformed to the colour, grey. (In Section 

3.1, the transformation methods were introduced.) The theory of the Otsu method is 

based on the Normal distribution. The theory of the modified Otsu method is based on 

the Rayleigh distribution. The probability density function of the Rayleigh distribution 

is: 

 

   
0;

22 2

2
  xe

x
xf x 


        3.2 

 

In the modified Otsu method, calculations are also required to determine the 

probabilities of class occurrence of object and background  backgroundobject  , , class mean 

level of object and background  backgroundobject  , , and class variance of object and 

background  backgroundobject  , . For the traditional Otsu method, the calculation is able to 

obtain the threshold from the results of maximum between class variance

    Liii BB  1,max 2*2   . For the modified Otsu method, the calculation is able to 

satisfy equations 3.3, 3.4, and 3.5.  

 

      2222 iii objectobjectobject          3.3 

 

where  iobject

2  is the object parameter of the Rayleigh model in the histogram level  i . 

 

      2222 iii backgroundbackgroundbackground         3.4 
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where  ibackground

2  is the background parameter of the Rayleigh model in the histogram 

level  i . 

 

          22 iiiii bffbB          3.5 

 

From the calculation of the Otsu multi-threshold approach and the modified Otsu 

method (Rayleigh distribution analysis), it is possible to obtain the threshold value. 

Figure 3.7 depicts the flow diagram of modified Otsu method (Rayleigh distribution 

analysis). Two major criteria are used for deciding on the optimal threshold: 

  

1. The multi-threshold approach  ikO  and the modified Otsu method  ikMO  

2. The numbers of pixels  inO  and  inMO  

 

The optimal threshold can be obtained by comparing the two major criteria and the 

multi-threshold calculation method. From the calculation results of the optimal 

threshold value, the modified threshold method more effectively segments the images. 

Chapter 4 provides the results in detail. Figure 3.8 depicts the flow diagram of the 

optimal threshold selection method.  

 

3.2 Recognition method 

 

When an object can be extracted from the background, generally that extracted object 

is the target. In the event, it is not, however, necessarily the recognition target. There is 

a possible segmentation of the wrong target and accuracy needs to be enhanced. To 

recognise fire in images, the important fire characteristics include (1) flame colour, (2) 
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flame height, (3) flame shape, (4) flame light intensity, and (5) flickering frequency. 

However, most of these characteristics can also be created by false images. Analysis of 

accuracy is vital 

  

For digital images, flame height analysis is an appropriate method for recognition of 

fire images. Flame height analysis is also important to fire engineers because the 

diffusion that happens during the spread of the flame can ignite other objects. 

 

3.2.1 Natural fire flame height analysis 

 

Digital image technology enables images to be used to quantify the height of flame 

diffusion. Equation 3.6 shows the calculation method for the diffusion of flame height 

in images. 

 

  sizetopbottomimages pyyh         3.6 

where 

imageh  is the flame height in the images 

topbottom yy   is the number of flame pixels  

sizep  is the pixel size of the images 

 

The image sensors dominate the pixel size and the number of pixels can be obtained 

from digital images. The digital images can show the bottom level  bottomy and top level 

 topy of the flame region. From the bottom level and the top level of the flame region, it 

is possible to obtain the number of pixels. For calculating the real heights from images, 

photograph technology is also used.  
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objectimages ddf

111
         3.7 

 

Equation 3.7 can be rewritten as follow: 

 

 
 fd

df
d

object

object

images



         3.8 

22

ccobject HLd          3.9 

 

where cH is height of digital camera. cL  is horizontal distance from digital camera to 

pool fire. cD  is images distance from fire sources to the image sensors. 

 

Equation 3.10 shows the calculation of flame height in images. The actual flame height 

can be calculated, based on the image height, using the relevant equation of focal length

 f , object location  objectd , and image distance  imagesd .  

 

images

objects

imagesobjects
d

d
hh          3.10 

 

Chapter 4 provides details of the experimental setup and the results. Figure 3.9 and 3.10 

depicts a schematic of the digital camera and fire pool setup. 
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3.2.2 Flickering frequency analysis 

 

Flame flickering frequency is an important parameter for the recognition of flame from 

images.  

 

A commonly used method in video fire detection is the Fast Fourier Transformation 

(FFT). However, a simple counting method can also be used for flame flickering 

analysis. Using such a method saves computer processing time. 

  

The analysis of flame from images, in this thesis, uses the simple counting method. 

Equation 3.11 shows the simple counting method. In Chapter 4, the counting results 

have been detailed. 

 

period  timeofLength 

flickering ofNumber 
f         3.11 

where f  is the frequency (Hertz / Hz). 

 

However, the simple counting method has a significant limitation in video fire detection 

in terms of the frame rate. This limitation is not negligible, as it affects the results. 

 

3.2.3 Multiple Logistic regression 

 

Logistic regression is a useful statistical method to achieve better accuracy and faster 

processing when identifying a flame (Kong, Jin, Li, & Kim, 2016). This method enables 

the calculation of the class membership probability for one of the two categories 
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(Dreiseitl & Ohno - Machado, 2002). Therefore, fire and non-fire can be identified in 

this way. Equation 3.12 shows the general equation of logistic regression.  

 

    ii
y

i

y

ii ppyf



1

1        3.12 

 

where i  is the frame of a video stream and ip is the fire probability for i  video frame. 

 

The calculation output of iy is the probability density function of fire classification. If 

the calculation output of iy  is 0, then the images captured is possibly non-fire. From the 

experimental data, logistic regression can recognise fire image or non-fire image. The 

coefficient   obtain by the calculation of training data.  

 

02211  nn xxxConst        3.13 

In appendix E shows the detail calculation of logistic regression  

 

3.3 Tracking method (optical flow analysis) 

 

In video fire detection technology, the diffusion phenomenon is also an important 

parameter. Diffusion includes flame spread, smoke spread, and fire plumes. Of interest 

is that optical flow analysis can effectively predict the extent of fire movement and 

therefore spread. Optical flow analysis is effective at tracking smoke and flame 

displacement. A review of the literature reveals that generally, determining optical flow 

can be achieved by using the Lucas-Kanade method and Hom-Schunck method. The 
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optical flow of Lucas-Kanade method and Hom-Schunck Method are shown in the 

appendix D. 

 

Figure 3.11 shows the theory of optical flow analysis. Generally, real – time images are 

recorded over a period of time. The coordinates of location (x and y) and time (t) change. 

The first image of objects (I) is located at the (x) and (y) in time (t). The second image 

of objects (I) is located at the (x+x) and (y+y) in time (t+t). When the first and 

second images are analysed, the object motion can be extracted.  

 

In the source code for this experiment, the optical flow analysis uses the Gunnar 

Farneback algorithm (Farneback, 2003). The primary method of the Gunnar Farneback 

algorithm is the estimation of two frame motions. Equation 3.15 shows the general 

equation of the Gunnar Farneback algorithm.  

 

𝑓(𝑥)~𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐       3.14 

where A is a symmetric matrix, b is a vector and c is a scalar.  

 

The polynomial expansion of the Gunnar Farneback algorithm can also be used to 

estimate displacement fields. Equation 3.14, 3.15 show the polynomial expansion. 

  

𝑓1
(𝑥) = 𝑥𝑇𝐴1𝑥 + 𝑏1

𝑇𝑥 + 𝑐1       3.15 

where 1f  is an original signal from first images. 

 

𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = (𝑥 − 𝑑)𝑇𝐴1(𝑥 − 𝑑) + 𝑏1
𝑇(𝑥 − 𝑑) + 𝑐1 

𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = (𝑥𝑇 − 2𝑥𝑑 + 𝑑𝑇
)𝐴1(𝑥 − 𝑑) + 𝑏1

𝑇𝑥 − 𝑏1
𝑇𝑑 + 𝑐1 
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𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = (𝑥𝑇𝐴1 − 2𝐴1𝑥𝑑 + 𝑑𝑇𝐴1) (𝑥 − 𝑑) + 𝑏1
𝑇𝑥 − 𝑏1

𝑇𝑑 + 𝑐1 

𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = 𝑥𝑇𝐴1𝑥 + 𝑏1
𝑇𝑥 − 2𝑏1𝐴1𝑑𝑥 + 2𝐴1𝑑

𝑇𝑥 + 𝑑𝑇𝐴1𝑑 − 𝑏1
𝑇𝑑 + 𝑐1 

𝑓2
(𝑥) = 𝑓1

(𝑥 − 𝑑) = 𝑥𝑇𝐴1𝑥 + (𝑏1 − 2𝐴1𝑑)𝑇𝑥 + 𝑑𝑇𝐴1𝑑 − 𝑏1
𝑇𝑑 + 𝑐1 

 

When 𝐴1 = 𝐴2;  𝑏2 = 𝑏1 − 2𝐴1𝑑; 𝑐2 = 𝑑𝑇𝐴1𝑑 − 𝑏1
𝑇𝑑 + 𝑐1 

𝑓2
(𝑥) = 𝑥𝑇𝐴2𝑥 + 𝑏2

𝑇𝑥 + 𝑐2 

where 2f is a new signal from second images and 𝑑 is a global displacement  

 

The Optical flow technique in video fire detection and as indicated above, is also used 

in the analysis of fire plumes, therefore the optical flow technique is useful in any 

further study of video fire detection.  

 

The principle of motion analysis relates to the comparison of the variation in image 

pixels thus the threshold value is a necessary part of the software. In the software 

program, the presence of the sensitivity value. When two images have been compared, 

the results are found to be equal to the pre-set sensitivity value. The software is able to 

detect the flame motion while the motion of flame images is recorded on a hard disk. 

 



62 

 

Chapter 4 Experimental arrangements and results 

 

Video fire detection technology is software based (Scheffey, 2016) requiring the 

processing and analysis of detected fire images by the software itself. The experiment 

was composed of three stages.  

 

In the first stage, the MATLAB R2020a Image Processing Toolbox is used to separate 

the flame images. The toolbox provides different calculation platforms for the analysis 

of the images, such as image segmentation. Traditional Otsu's method is one of the tools 

in MATLAB. 

  

In the second stage, Visual C++, C++, and Microsoft Foundation Class (MFC) are used 

to separate the still images for further study.  

 

In the final stage, C++ and Open CV are used to develop a computer program to analyse 

the real-time video images. The operating system in the video fire system uses 

Windows XP Professional, and Windows 10. Table 4.1 summarises the three stages of 

the experimental study. 

 This chapter also describes the experimental configuration arrangements and the 

results. The source code is given in appendix B. 

 

In the experimental study, propanol fuel was used to create the fire and the flame images 

were recorded. Figure 4.1 reveals the properties of propanol fuel while Figure 4.2 

indicates the different pool diameters that can be used in future studies. 
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4.1 The first stage of the experimental study 

4.1.1 Computer software 

In the first stage of the experiment, the properties of the digital images were reviewed. 

The Otsu method (Otsu, 1979) was adopted to segment the colour flame images. The 

MATLAB source code is listed in Appendix A. Figure 4.3 depicts the original colour 

images alongside the binary images resulting from the MATLAB calculations.  

 

4.1.2 Experiment 

The experimental results show that the traditional Otsu method does not completely 

segment all flame images. Some regions of the flame lack fidelity, which indicates that 

the traditional method needs to be improved. Figure 4.4 illustrates the segmentation 

results (Distortion).  

 

The literature review revealed that the traditional Otsu method requires greyscale 

images to calculate the threshold value. In the experimental study using MATLAB, the 

colour flame images were converted by an algorithm involving the weighted sum of the 

red, green, and blue components. Equation 4.1 shows the algorithm for the RGB values 

and the greyscale values (Mathworks.com, 1994 - 2016). 

 

0.2989 × 𝑅 + 0.5870 × 𝐺 + 0.1140 × 𝐵     4.1 

 

where R is the value of the red colour, G is the value of the green colour, and B is the 

value of the blue colour. Figure 4.5 depicts the greyscale images and the original flame 

images. 
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4.2 The second stage of the experimental study 

 

4.2.1 Computer software 

 

Generally, video fire detection is based on the use of software. To further this present 

study of video fire detection technology, the second stage of the experiment employed 

computer languages and the programs C++, and C++ Microsoft Foundation Class 

(MFC)) to analyse the static flame images including thermal images and colour images. 

Figure 4.6 shows the computer analysis of colour images and thermal images.  

 

A thermal camera is used to capture thermal images. Specific associated computer 

software is used to analyse the images. Further source code also can segment the flame 

images with the Otsu method. Firstly, thermal images have to be converted to a 

greyscale image. Figure 4.7 shows the thermal images and greyscale images. 

 

From the data supplied by the greyscale images, the source code can also create a 

histogram. Figure 4.8 shows the histogram and the Otsu calculation result. From the 

Otsu calculation results he greyscale image can be converted to a binary image  

 

4.2.2 Experiment 

 

The results from the above experiment revealed that although the thermal images are 

able to separate the flame region from the background, the software cannot clearly 

identify the condition of the thermal images, images which we can observe for 

ourselves. Thus, it is better for colour images to be used, rather than thermal images in 

the analysis of video fire detection technology. Figure 4.9 shows the binary images. 
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From the source code of the Otsu method, the colour images can also be used to segment 

the background flame region. Figure 4.10 depicts the results, including colour flame 

images, greyscale images, and image histograms. 

 

In the second stage of this experiment, a modified source code was used to create the 

histogram, calculate the multi-threshold result, and segment the flame images. 

 

In addition, the modified source code can improve the lack of fidelity problem. The 

source code is given in appendix B. Figure 4.11 depicts the greyscale images, histogram 

and the segmentation results. The experimental results reveal that the first threshold 

value is unable to clearly segment the image. Table 4.2 shows the multi-threshold 

results. 

 

In total, six threshold values were picked out, the optimal-threshold value, is that which 

most easily enables segmentation of the flame. The Rayleigh distribution of the Otsu 

method contributes to an analysis of the images, by comparing the calculated results. 

Table 4.3 and Figure 4.12 show the calculation results. 

 

When the flame images can be segmented from the background using multi-threshold 

analysis, it is seen that the number of pixels has been reduced. If the segmentation 

results overlap the original images, this means successful segmentation of the flame 

from the image background has occurred. Figure 4.13 shows the experimental results.  

 

After the Otsu method has segmented the flame region in the image, the next item in 

the video fire detection procedure is the recognition of whether the revealed image is 

‘fire” or “non-fire”. However, for further clarity, the identification of the centroid 
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coordinates, flame shape, flame height, flame colour, and flame light intensity, that is 

the physical characteristics of the flame images, is necessary. By these means, 

contributions can be made to increased accuracy of the analysis. 

 

How the centroid coordinates of the flame shape can be used in distinguishing between 

“fire” and “non – fire” has been presented in the paper (Wong and Fong, 2014). Figure 

4.14 shows a sample of fire and non-fire images.  

 

In the above reported study, it was found that using flame region centroid coordinates, 

the Nearest Neighbour (NN) algorithm can be used to recognise whether or not an 

image is a fire image. Figure 4.15 depicts the centroid analysis results for fire images 

and non-fire images.  

 

The experimental results above, however, reveal that the nearest neighbour algorithm 

is not very accurate in recognising a fire from the images if the algorithm uses only 

centroid coordinates. In addition, the size of the database in relation to the fire image 

and non-fire images is a critical factor. 

 

In 2014, a fire size estimation method was studied based on details of the author’s work. 

(Wong & Fong, 2014) Table 4.4 shows the numerical results. From the numerical HRR 

results and the different pool diameters, two heat release rate curves were provided. 

Figure 4.16 depicts the HRR curve. The results of the HRR curve reveal that the heat 

release increases when the pool diameter increases. 

 

However, more research is required to understand how to couple HRR information with 

video fire detection technology. 



67 

 

4.3 The third stage of the experimental study 

 

4.3.1 Computer software 

 

In these above experiments computer software was used to record and analyse the flame 

images. The software used, included Microsoft Visual Studio Professional 2013 

Version 12.0.21005.1 REL and Open CV Version 2.4.10. Figure 4.18 shows the screen 

output display. Table 4.6 shows the numerical data derived from the equipment 

including the pool fire diameter, the quantity of propanol, resolution of images and the 

distance between the webcam and the fire source.  

 

The flame height data and the sampling counting method is used in video fire detection. 

The flame data is used to analyse flame flickering characteristics. Figure 4.19 and 4.20 

show the flame image height (flame motion). Figure 4.21 depicts a histogram of flame 

flickering. The experiment showed that the flame flicker is within the range of 8 to 10.  

 

4.3.2 Experiment 

 

In the third experimental, real-time images were captured using a webcam. The flame 

height can be estimated from the video images if careful attention is paid to the 

configuration of the experiment and to the technical specifications of the webcam. 

Table 4.5 shows the webcam specification. Figure 4.17 shows the experimental 

configuration. 

 

The data from the images including segmentation, recognition, and tracking 

performances was directly analysed and processed using the software. Appendix B 
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shows and describes the software detailed. The software also recorded the numerical 

data on the hard disk. The numerical data is thus available for future analysis in relation 

to future experiments. These data include the timings, threshold values, maximum grey 

levels, areas of regions of interest, heights of the regions of interest, centroid coordinate 

and the red, green, and blue colour values.  

 

In the experiment, the webcam recorded fire images at intervals between fire ignition 

to fire extinction and non-fire images. The regression coefficients revealed that logistic 

regression calculations could be used to distinguish between fire and non-fire images.  

The current video fire images uses logistic regression to recognise fire. Then, the fire 

can be tracked, by means of recorded images and spread of the flame or smoke. The 

optical flow method was the appropriate tool used to track the direction of smoke spread. 

Figure 4.23 shows the experimental result. 

 

A video showing the above results provides an informative example, illustrating the use 

of video detection technology with digital image processing, motion detection, and 

machine learning methods. All video detection technology provides individual examples 

of items of information, which can be used to better the use of Video fire detection. 

Figure 4.24 presents the flow diagram of video fire detection method used in this 

research study. 

 

The results of multiple logistic regression calculations related to fire image recognition 

are shown in the following equation. 

𝑷𝒇𝒊𝒓𝒆 = 𝟎. 𝟎𝟏𝟒𝟒𝟐𝟕 × 𝑪𝒆𝒏𝒕(𝑿) − 𝟎. 𝟎𝟎𝟐𝟕𝟑 × 𝑪𝒆𝒏𝒕(𝒀) + 𝟎. 𝟎𝟔𝟕𝟓𝟒𝟓 × 𝑯𝒕 −

𝟎. 𝟎𝟎𝟎𝟏𝟕 × 𝑹𝑶𝑰 − 𝟎. 𝟎𝟐𝟏𝟔𝟔 × 𝑹 + 𝟎. 𝟎𝟒𝟎𝟕𝟑𝟓 × 𝑮 − 𝟎. 𝟎𝟐𝟖𝟔𝟗 × 𝑩  4.2 
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The multiple logistic regression results include the coefficient of the centroid coordinate 

X and Y (Cent(X), Cent(Y)), flame height (Ht), region of interest (ROI), red (R), green 

(G), and blue (B) colour. Equation 4.1 can be used to obtain the probability of a fire, 

𝑃𝑓𝑖𝑟𝑒. Appendix E provides the full solution of the logistic regression. 
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Chapter 5 Conclusions 

 

 The objective of this study is an investigation of video fire detection technology. 

Successful results were achieved which provide feasible suggestions regarding 

improvements that could be used in fire detection systems technology. From the 

experimental study, by means of the use of a computer program method, image 

processing technology, logistic regression, and fire image characteristic such as 

flickering frequency, recognition the fire in images was achieved. From the optical flow 

analysis, the computer program is able to track the flame spread direction. From the 

flame height, the empirical formula is able to predict the fire size. Further findings from 

this study are presented as follows:  

 

Since 1991, video fire detection technology has been studied using a variety of 

techniques such as image processing, signal processing, statistical analysis, and ANN. 

Video fire detection techniques are able to detect flames, smoke, and fire plumes. Thus, 

forest fire surveillance and preservation of natural heritage sites are two domains that 

could benefit from the video fire detection techniques studied in this project, as applied 

to the developing early–stages of a fire. 

 

Frequently, in this study different colour models were same to use for segmentation 

include the RGB colour space model, and YIQ colour space model. 

 

The software-based methods studied in this project, offer a different imaging approach. 

It should be noted that the study required the application of knowledge from several 

distinct fields. Illustrations are provided in Figure 5.1  
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For segmentation of the fire images, the Otsu algorithm was used to segment the flame 

images. However, it was found that the traditional Otsu method cannot completely 

segment all flame images in all varieties of environments. A Modified Otsu method 

was therefore proposed for use in this study and better results were achieved.  

 

For recognition of the fire images, logistic regression and the nearest neighbour 

algorithm were also proposed. The recognition analysis of the nearest neighbour 

algorithm aims not only enabled the analysis of the centroid coordinates of flames but 

also the logistic regression. This analysis, therefore takes account of more than one fire 

characteristic.  

 

The logistic regression method is proposed to ensure greater accuracy in the recognition 

of fire images. In addition, the logistic regression methods includes regression learning, 

giving the power to improve the accuracy of fire recognition.  

 

It was found that using optical flow analysis to tracking the flame spread and its motion 

direction is an important part of fire detection. The tracking method in video fire 

detection can reduce property loss, and protect the safety of firefighters. 

 

Hardware, such as the computer and the digital camera were also found to play an 

important part. The digital camera is able to capture images, which are then analysed 

by the computer. If the image data can identify fire in a short period of time, the video 

fire detection system can likewise, immediately report the status of any fire.  
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5.1 Application 

 

Research findings confirmed that, today, video fire detection technology is of high 

interest and is currently developed by different manufacturers. However, the 

development of video fire detection technologies has not yet been fully explored to the 

extent that an analysis algorithm can describe the fire characteristics sufficiently well. 

However it seems clear that further study by computer technology and image 

processing algorithms, will enable the use of video fire detection in such protected 

spaces as Dangerous Goods (D.G.) stores and Sub-divided flat is now practical. 

 

A review of the literature revealed such as international video fire detection standards, 

system requirements, installation specifications, and analysis methodologies are being 

well recorded, possibly in readiness for further development in the light of further 

research. However, as yet the required specific and necessary data accuracy has not yet 

been fully determined, Hence the testing and commissioning of video fire detection is 

ready for further exploration and introduction to the public, and is anticipated as being 

the firefighting method of choice. 
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Chapter 6 Suggestions for future research 

 

Today, video fire detection has been the subject of many research studies. Different 

approaches are currently being studied. For instance, fire naturally, can occur in a 

variety of areas and environments such as atriums, tunnels, in E and M plant rooms, 

forests, warehouses, historic buildings and aircraft hangars. However, the video fire 

detection algorithm currently is not widely used in Hong Kong. Thus, further 

experimental study is necessary and for the comfort of society, to verify different 

algorithms to enable the use of video fire detection, anytime and anywhere. 

 

Better techniques that can reduce false alarms are also needed. Improved technology 

providing greater accuracy in video fire detection technology is a further research 

objective. The accuracy and compatibility of each video fire detection component 

identified in research studies need further verification and validation in order to further 

enhance and enlarge the use of this fire recognition/prevention skill features.  

 

In Hong Kong, business people intent on the development of virgin areas or those long 

out of use would welcome the availability of further research into the research 

mechanisms already present in video fire detection systems. Currently, the design of 

the video fire detection product is very bulky and expensive. From the television 

program “Guide to navigation” reported that, the cost of developed video fire detection 

system is more than three hundred to four hundred thousand Hong Kong dollars. 

(Television Broadcasts, 2017) In addition, the system only uses thermal images to 

analyse only forest fires.  
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In the near future, low-cost digital cameras will be commonly used. Many different 

computer techniques are being rapidly developed. In addition, the video fire detection 

techniques are destined to become more commonly used in the delivery of fire services, 

providing people’s trust in the accuracy of video fire detection systems grows. 

 

From the study of video fire detection technology presented in this thesis, it is seen that 

segmentation, discrimination, and tracking are important component, with each 

component enabling a better than average fire detection result. The further research 

suggested above, together with the achievements previously described, presents a 

convincing recommendation for the use of fully automatic video fire detection 

technology and the subsequent reduction of property loss and further protection of life  
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Figure 1.1 Properties of dynamic objects for unmanned video surveillance 

Unmanned video 
surveillance 

Temporal

SpatialSpectral



F-2 

 

Figure 1.2 Relationship of features of fire regions and spectral, spatial, temporal 

features 
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Figure 1.3 Examples of different environments and premises 
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Figure 1.4 Traditional fire detectors 
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Figure 1.5 Fire detectors approved by the Fire Services Department (Codes of Practice Minimum Fire Service Installations and Equipment 

and Inspection, Testing and Maintenance of Installtions and Equipment, 1998) 
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Figure 1.6 Time relationship to fire development and fire control (Chapter 10 Fire Detection Systems, 1993) 
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Figure 1.7 Total fire calls, unwanted alarms, and false alarms (Hong Kong Fire Services Department, 2002 - 2015) 
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Figure 1.8 Standardisation of the numbers of total fire calls, unwanted alarms, and false alarms 
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Figure 1.9 Conceptual diagram of video fire detection 
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Figure 1.10 Typical fire images  
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Figure 1.11 Typical thermal image 
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Figure 1.12 Flame shapes captured simultaneously 
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Figure 1.13 Operation framework for video fire detection 
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Figure 1.14 A traditional film camera compared with a digital camera 
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Figure 1.15 A traditional webcam compared with an IP camera 
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Figure 1.16 Natural phenomenon (colour spectrum) 
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Figure 1.17 The visible spectrum and the electromagnetic spectrum (Beer Color Laboratories, n.d.) 
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Figure 1.18 Mixture of colour (additive primaries) 
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(a) Schematic of colour cube (b) Colour cube 

Figure 1.19 Greyscale model: (a) schematic of colour cube, (b) colour cube 
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Figure 1.20 Typical structure of neural networks 
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Figure 2.1 Quantity of research papers have gone through 
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Figure 2.2 Quantity of research papers in different countries 
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Figure 2.3 Classification video fire detection technology 
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Figure 2.4 Statistical results in video fire detection functions 
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Figure 2.5 Statistical results regarding the quantity of flame characteristics 

 

71

6

39

28 27

(1) 
FLAME COLOR

(2) 
FLAME HEIGHT

(3) 
FLAME SHAPE

(4) 
FLAME LIGHT INTENSITY

(5) 
FLAME FLICKER FREQUENCY

Q
u

an
ti

ty

Flame characteristics



F-26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pixels coordinate: x=0; y=0; t=0 

Y(x,y,t) 

Generated the grey level histogram from grey 

colours images 

n = numbers of pixels in each grey level;  

i =histogram grey level; 

k = thresholds  

i =0 

Probabilities of class occurrence (Step 1) 

 

 

START 

A 

i =i+1 

i= 255 ? 

Yes 

No 



F-27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

i=0 

Class mean levels (Step 2) 

;  

i=0 

The class variances (Step 3) 

; 

 

B 

i=255 ? No 

Yes 

i=i+1 

i=255 ? No 

Yes 

i=i+1 



F-28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flow diagram of Otsu threshold method 
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Figure 3.2 Flow diagram of the grey colours images conversion method 

 

START 

Pixels coordinate: x=0; y=0; t=0 

R(x,y,t); G(x,y,t); B(x,y,t) 

Y(x,y,t)=0.299R(x,y,t)+0.587G(x,y,t)+0.114B(x,y,t) 

x=320; y=240; t=time  No 

Yes 

x=x+1;  

y=y+1;  

t=t+1 

Converted input images from Y(x,y,t) 

calculation results 

END 



F-30 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Histogram analysis of Otsu method 
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Figure 3.4 Examples of histogram analysis of Multi threshold method 
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Figure 3.5 Flow diagram of Otsu multi threshold approach 
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Figure 3.6 Sketch of distribution curve of fire images and estimated fire region 
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Figure 3.7 Flow diagram of modified Otsu method (Rayleigh distribution 

analysis) 
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Figure 3.8 Flow diagram of optimal threshold selection method 
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Figure 3.9 Field of View and Focal length 
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Figure 3.10 Schematic of digital camera and fire pool setup 
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Figure 3.11 Theory of optical flow analysis  
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Figure 4.1 Property information of propanol fuel 
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Figure 4.2 Different pool diameter for experimental study 
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Figure 4.3 Colour images segmentation results 
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Figure 4.4 Colour images segmentation results (Distortion) 
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Figure 4.5 Original colour images and Greyscale images  
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Figure 4.6 Thermal images (Left) Colour still images (Right) Computer output  
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Figure 4.7 Thermal images (Left) Grey colour images (Right) 
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Figure 4.8 Histogram and Calculation result. 
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Figure 4.9 Binary image (Threshold value = 85) 

 



F-51 

 

 

 

  

Figure 4.10 Computer output of greyscale images and histogram (still images) 
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(a) Grey images (b) Histogram (c) Segmentation images 

Figure 4.11 Experimental results 
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Figure 4.12 Calculation results of traditional Otsu method and Modified Otsu method 
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Figure 4.13 Segmentation images overlap on the original colour flame images 
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Figure 4.14 Flame images (left) non – flame images (right)  
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Figure 4.15 Calculation and analysis results of x and y coordinate 
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Figure 4.16 HRR curve against Pool diameter 
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Figure 4.17 Experimental setup in fire chamber  
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Index Histogram Index Images 

A Red colour histogram 1 Colour input images. 

B Green colour histogram 2 Grey images 

C Blue colour histogram 3 Segmentation images 

D Grey histogram 4 Optical flow images 

E Combined histogram  

(including RGB and grey) 

5 Threshold images  

F Flame height flickering 6 Output images  

  7 Image difference 

 

 

 

 

Figure 4.18 Output displayed on a computer screen 
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Figure 4.19 Flame Image Height (Flame motion) (10mL) 
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Figure 4.20 Flame Image Height (Flame motion) (20mL) 
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Figure 4.21 the change of flickering
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Figure 4.22 the histogram of flame flickering 
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Figure 4.23 Display of optical flow analysis (left) and motion detection (right) 
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Figure 4.24 Flow diagram of video fire detection system 
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Figure 5.1 Different knowledge in video fire detection research 
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 Years 

Total Fire Calls Unwanted alarms False alarms 

Total 

Average 

Total 

Average 

Total 

Average 

Per 

month 
Per day 

Per 

month 

Per 

day 

Per 

month 

Per 

day 

1 2015 
      

34,320  

        

2,860  

             

95  

      

24,811  

        

2,068  

             

69  

        

3,179  

           

265  

               

9  

2 2014 
      

36,335  

        

3,028  

           

101  

      

26,765  

        

2,230  

             

74  

        

3,206  

           

267  

               

9  

3 2013 
      

36,773  

        

3,064  

           

102  

      

27,356  

        

2,280  

             

76  

        

3,208  

           

267  

               

9  

4 2012 
      

37,638  

        

3,137  

           

105  

      

28,461  

        

2,372  

             

79  

        

2,995  

           

250  

               

8  

5 2011 
      

34,188  

        

2,849  

             

95  

      

23,889  

        

1,991  

             

66  

        

2,944  

           

245  

               

8  

6 2010 
      

40,604  

        

3,384  

           

113  

      

30,710  

        

2,559  

             

85  

        

3,108  

           

259  

               

9  

7 2009 
      

35,771  

        

2,981  

             

99  

      

25,405  

        

2,117  

             

71  

        

2,922  

           

244  

               

8  

8 2008 
      

35,513  

        

2,959  

             

99  

      

24,007  

        

2,001  

             

67  

        

3,296  

           

275  

               

9  

9 2007 
      

31,638  

        

2,637  

             

88  

      

20,717  

        

1,726  

             

58  

        

3,119  

           

260  

               

9  

10 2006 
      

33,268  

        

2,772  

             

92  

      

21,846  

        

1,821  

             

61  

        

3,302  

           

275  

               

9  

11 2005 
      

37,741  

        

3,145  

           

105  

      

25,766  

        

2,147  

             

72  

        

3,492  

           

291  

             

10  

12 2004 
      

35,092  

        

2,924  

             

97  

      

21,744  

        

1,812  

             

60  

        

3,425  

           

285  

             

10  

13 2003 
      

37,774  

        

3,148  

           

105  

      

24,448  

        

2,037  

             

68  

        

3,801  

           

317  

             

11  

14 2002 
      

41,204  

        

3,434  

           

114  

      

27,548  

        

2,296  

             

77  

        

4,131  

           

344  

             

11  

Total 
    

400,431  

      

33,369  

        

1,112  

    

274,541  

      

22,878  

           

763  

      

36,535  

        

3,045  

           

101  

Table 1.1 Calculation the statistical results of total fire calls, unwanted alarms 

and false alarms (Hong Kong Fire Services Department, 2002 - 2015) 
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Video images Still images 

Extension Format Developed by Extension Format Developed by 

MP4 

MPEG-4 Part 

14 

ISO /  IEC WebP --- Google 

AVI 

Audio Video 

Interleave 

Microsoft JPG 

Joint 

Photographic 

Experts Group 

ISO / IEC / 

ITU - T 

3GP 

Third 

Generation 

Partnership  

3GPP PNG 

Portable 

Network 

Graphic 

World Wide 

Web 

Consortium 

RMVB 

Real Media 

Variable 

Bitrate  

Real Networks  ICO Computer Icon Microsoft 

GIF 

Graphics 

Interchange 

Format 

CompuServe BMP 

Windows 

Bitmap 

Microsoft 

WMV 

Windows 

Media Video 

Microsoft GIF 

Graphics 

Interchange 

Format 

CompuServe 

MKV 

Matroska 

Video 

Matroska 

Media 

Container 

TIF / 

TIFF 

Tagged Image 

File Format 

Aldus 

MPG 

Motion Picture 

Expert Group 

ISO /  IEC PCX 

Picture 

Exchange 

ZSoft 

Corporation 

https://en.wikipedia.org/wiki/RealNetworks
https://en.wikipedia.org/wiki/CompuServe
https://en.wikipedia.org/wiki/CompuServe
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Video images Still images 

Extension Format Developed by Extension Format Developed by 

VOB Video Object DVD Forum TGA 

Truevision 

Graphics 

Adapter 

Truevision 

MOV 

Quick Time 

Movie 

Apple Inc.    

FLV Flash Video 

Adobe 

Systems 
   

SWF 

Small Web 

Format 

Adobe 

Systems 
   

Table 1.2 Popular still images and video file format and organisation 
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Standard Number Standard Topic 

NFPA 72 National Fire Alarm and Signaling Code 

ANSI/FM 3260 American National Standard for Radiant Energy – Sensing 

Fire Detectors for Automatic Fire Alarm Signaling 

BS 5839 Fire Detection and Fire Alarm Systems for Buildings 

UL 268 Standard for Safety – Smoke Detector for Fire Alarm Systems 

Table 1.3 The topics of different standards 
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Standard 

Number 

Summary 

NFPA 72 1. Video image flame detection and video image smoke 

detection are also described. 

2. Quarterly inspection video image smoke and fire detectors 

are necessary.  

3. Video image smoke and flame detectors is necessary to 

inspect, test and maintain following the manufacturer’s 

instructions. 

4. The location and spacing of video image smoke and flame 

detectors is following the principle of operation and 

engineering survey. 

5. The video signal can transmit to other systems. 

6. Video display require the alert and message. 

7. Video image flame / smoke detection can analyse the 

images from images features including brightness, 

contrast, edge content, loss of detail and motion. The 

analysis method uses software – based method. 

8. The protection of control and software requires the 

passwords and software keys or means of limiting access 

to authorized/qualified personnel. 

9. Trouble signal requires when any change of component 

settings or ambient conditions affect the design 

performance of the video detector. 
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10. Mass notification system requires including in fire alarm 

notification. 

ANSI/FM 3260 Test methods and practices are also referenced in NFPA 72 

BS 5839 1. New video smoke detection is taken into account. 

2. Video techniques are used to detect the smoke. 

3. Closed circuit television cameras monitor the protected 

space. 

4. Detection can use in normal lighting environments and 

also use in infra – red light sources environments. 

UL 268 1. The outline of video smoke detection describes. 

2. Normal operation and fire test are also analysis. 

3. Normal operation includes operation test, electrical 

supervision test, component failure, stability test, circuit 

measure test, overvoltage and under voltage tests, 

temperature test, vibration test, Jarring test, Variable 

ambient temperature test, etc. 

4. Fire test includes paper fire test, wood fire test, 

smouldering smoke test, smouldering smoke test – 

analysis maximum obscuration without alarm,  

 

Table 1.4 Summary of different standard relative video fire detection 
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 Visible name Wavelength  (nm) 

1 Visible Red 700 

2 Visible Green 546.1 

3 Visible Blue 435.8 

Table 1.5 Visible band of electromagnetic spectrum 
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Colour Function values 

Red Green Blue 

Red 255 0 0 

Green 0 255 0 

Blue 0 0 255 

White 255 255 255 

Black 0 0 0 

Yellow 255 255 0 

Cyan 0 255 255 

Magenta 255 0 255 

Table 1.6 Common colours in RGB function 
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Environment Hue Saturation Intensity 

Brighter 0o-60o 40-100 127-255 

Darker 0o-60o 20-100 100-255 

Table 2.1 colour feature of low temperature fire flames (Horng, 

Peng , & Chen, 2005) 
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Red level Ratio > 2.0% 

Orange level 1.0% < Ratio ≤ 2.0%  

Yellow level 0.5% < Ratio ≤ 1.0% 

Blue level 0% < Ratio ≤ 0.5% 

Table 2.2 Ratio distribution of Blue, Yellow, Orange and Red 
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Fire Height in pixels 

A gasoline 58 

Acetone 51 

Alcohol 24 

Table 2.3 Measured flame heights in pixels (Maoult, Sentenac, Orteu, & Arcens, 

2007) 
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Flame numbers #1 #2 #3 #4 #5 #6 

Height in pixels 112 159 148 164 218 256 

Real flame height (m) 0.2489 0.3533 0.3289 0.3644 0.4844 0.5689 

Flame numbers #7 #8 #9 #10 #11 #12 

Height in pixels 188 222 243 198 206 210 

Real flame height (m) 0.4178 0.4933 0.5400 0.4400 0.4578 0.4667 

Table 2.4 Number of flame pixels and real flame height (Jianzhong, Jian, Jian, & 

Jun, 2010) 
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Pool size Pagni’s 

method 

df Frequency of 

Experimental study 

zf Frequency of Zukoski 

calculation 

Bigger 3.5746 (Flue is heptane) 

Average 3.1875  

Average 3.0950 

(Flue is heptane) 

Average 3.1562 

Average 3.1070 

Smaller 4.7958 (Flue is gasoline) 

Average 4.5937 

Average 4.5065 

(Flue is gasoline) 

Average 4.8425 

Average 4.6270 

Table 2.5 Experimental results of oscillation frequency (Jianzhong, Jian, Jian, & 

Jun, 2010) 
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Pool diameter (m) 

Frequency (Hz) 

Hefei Lhasa Pagni’s method 

W x L = 0.27 x 0.27 2.48, 2.24,  2.44, 2.63 2.75 

D = 0.18 3.53, 3.43,  3.34, 3.38 3.57 

Table 2.6 Flame oscillation in two different pool size (Juan & Qifu, 2012) 
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 Research countries Qty. Years 

1 Spain 7 1991, 1995, 1997(2), 1999, 

2003, 2011 

2 Brazil 1 1993 

3 China 4 1998, 2008, 2009, 2011 

4 Canada 1 2001 

5 France 1 2005 

6 Croatia 1 2009 

7 India 2 2012, 2016 

8 Mexico 1 2014 

Table 2.7 The countries of research of video fire detection for protection forest 

environment 
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Class no. Colour NDVI value 

Class 1 Blue -1.0 – 0.0 

Class 2 Red 0.0 – 0.05 

Class 3 Black 0.05 – 0.10 

Class 4 Dark green 0.10 – 0.15 

Class 5 Green 0.15 – 0.20 

Class 6 Light green 0.20 – 0.25 

Class 7 Yellow 0.25 – 0.30 

Class 8 White 0.30 – 1.0 

Table 2.8 Summary of colour relative HDVI value 
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Years Researcher 

Fire / 
Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 

Network / Neural 
Network 

Remarks 

1994 S. Noda, K. Ueda 
 RGB colour model    

1996 Simon Y. Foo 
  

Median, Standard Deviation and 
First – order moment statistical 
measures of the histogram data 

 Aircraft dry bays and 

engine compartments 

1999 

Song Weiguo, Fan 

Weicheng, Wu 

Longbiao 


   Back Propagation  

1999 
Hideaki Yamagishi, 

Jun’ichi Yamaguchi 


 HSV colour model  Back propagation   

1999 

Xiaofang Cheng, 

Jianhua Wu, Xin 

Yuan, Hao Zhou 




Sensitivity of the CCD 
camera 
The relationship between 
lower illuminance and 
Planck’s Law 

   

2000 

Ivan Kopilovic, 

Balazs Vagvolgyi 

and Tamas Sziranyi 

 




Tracking information 
History of motion 
Detection the special motion of 
smoke  

 Panoramic Annular 

Lens  

2000 

Walter Phillips III, 

Mubarak Shah, 

Niels da Vitoria 

Lobo 

    

Gaussian – smoothed colour 
histogram define the fire colour 
pixels  
Using the temporal variation of 
pixels define the actual fire 
pixels. 

  
Recognition the fire 

(High, low temporal 

variation) 

Table 2.9 Development of video fire detection method from 1994-2000 
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Years Researcher 
Fire / Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2001 

Yang Lizhong, 

Deng Zhihua, Fan 

Weicheng and 

Wang Qing’an 


 Pixels analysis in 

Greyscale images 
  Liquid Crystal - Light 

Valve 

2003 

Thou - Ho (Chao - 

Ho) Chen, Cheng - 

Kiang Kao and Sju 

- Mo Chang 


 RGB and HSI colour model 

Statistical parameter (Average 
and Variance) 

  

2004 

Tao Chen, 

Hongyong Yuan, 

Guofeng Su, 

Weicheng Fan 


 Computer vision theory   Controlled the fire 

suppression system  

2004 
Lawrence S.M. 

Chiu 
 

 Grey level method 
Histogram method (Standard 
deviation, Mean and Maximum)  

  

2004 

Wolfgang Krüll, 

Ingolf Willms and 

Jeff Shirer 


  IMAGE STATISTICS to Cargo fire 

verification control unit 
 Cargo fire verification 

system 

2004 

Li Jin, Fong N. K., 

Chow W. K., Wong 

L. T., Lu Puyi and 

Xu Dian - guo 


  Nyquist sampling theorem  Moment features / 

Flickering frequency 

2004 
Che-Bin Liu and 

Narendra Ahuja 


  

(1) SEED REGION - A mixture of 
Gaussian distributions in HSV 
space 
(2) Using Fourier Descriptors 
(FD) discrimination the flame 
shape 
(3) Autoregressive model 
(analysis the temporal variation 
of shape) 

 

Colour probability 

density 

(1) Spectral model 

(2) Spatial model 

(3) Temporal model 
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Years Researcher 
Fire / Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2005 

Wen-Bing Homg, 

Jim-Wen Peng, and 

Chih-Yuan Chen 


 RGB and HSI colour model   Building a flame 

feature model 

2005 

B. Ugur Toreyin, 

Yigithan Dedeoglu, 

A. Enis Cetin 




Flame Chrominance 
Model - Defining the 
flame pixels  

"Hidden Markov Model" – Both 
temporal and spatial analysis of 
flame and non – flame pixels 

  

2005 

CHENG Xin, 

WANG Da - chuan, 

YIN Dong - liang 


  Colour analysis  Used MATLAB 

2005 

Yigithan Dedeoglu, 

B. Ugur Toreyin, 

Ugur Gudukbay, A. 

Enis Cetin 


 Wavelet analysis   

Combined all of the 

clue reach a final 

decision. 

2005 

Florent Lafarge, 

Xavier Descombes 

and Josiane Zerubia 


   Support Vector Machine 

(SVM) Classification 

Kernel based on a 

flame textural 

information analysis 

Forest fire detection 

2005 
Thorsten Schultze 

and Ingolf Willms 


 Spatial resolution of light 
scattering measurements 

  Used microscope 

2005 

Feiniu Yuan, 

Guangxuan Liao, 

Weicheng Fan, and 

Heqin Zhou 


  Mixture Gaussian Model  Colour and temporal 

features 

2006 

Jinhua Zhang, Jian 

Zhuang, Haifeng 

Du, Sun’an Wang, 

and Xiaohu Li 


  

Flame detection algorithm: 
(Multi - feature fusion) 
Static flame feature: Probability 
model 
Diffusion flame feature:  

 
Analysis the features of 

static flame and 

diffusion flame 
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Years Researcher 
Fire / Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2006 

Giuseppe Marbach, 

Markus Loepfe, 

Thomas 

Brupbacher 


 YUV colour model   

Feature extraction 

(1) Flickering 

(2) Reaching maximal 

luminance 

2006 

T. Ono, H. Ishii, K. 

Kawamura, H. 

Miura, E. Momma, 

T. Fujisawa, J. 

Hozumi 




RGB colour model  
Analysis the RG colour 
obtain the threshold  

 Hierarchical type Neural 
Network 

Car fire analysis 

2006 

Thorsten Schultze, 

Thorsten Kempka, 

Ingolf Willms 




Mean value of the 
brightness in each video 
frame 

  Flickering and flow 

movement 

2006 

T. Celik, H. 

Demirel, H. 

Ozkaramanli 


  Probability method    

2006 

Jeffrey C. 

Owrutsky, Daniel 

A. Steinhurst, 

Christian P. Minor, 

Susan L. Rose - 

Pehrsson, Frederick 

W. Williams, 

Daniel T. Gottuk 


 Long wavelength video 

image - based detection 
   

2006 

Thou-Ho (Chao-

Ho) Chen, Yen-Hui 

Yin, Shi-Feng 

Huang and Yan-

Ting Ye 

 


1. Chromaticity - based 
statistic decision rule 
2. Diffusion - based 
dynamic characteristic 
decision rule 

   

2006 

D.T. Gottuk, J.A. 

Lynch, S.L. Rose-

Pehrsson, J.C. 


    

Evaluate the 

effectiveness of 

commercial video 
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Years Researcher 
Fire / Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

Owrutsky, F.W. 

Williams 

image fire detection in 

shipboard 

2007 

C. L. Lai, J. C. 

Yang, and Y. H. 

Chen 

 

Spatial - temporal, spectra 
variation 
Colour / Greyscale 
histogram concentration 

   

2007 

Turgay Çelik, 

Hüseyin 

Özkaramanlı, and 

Hasan Demirel 

 

YCbCr Colour model for 
fire detection 
RGB Colour model for 
smoke detection 

   

2007 

Y. Le Maoult, T. 

Sentenac, J. J. 

Orteu and J. P. 

Arcens 


    

based on a low-cost 

CCD camera to detect a 

fire in the near infrared 

spectral band 

2007 
Byoungmoo Lee 

and Dongil Han 
 

Determined threshold of 
RGB colour  

  Tunnel fire analysis 

2008 Feiniu Yuan  


Determined the threshold 
based on the chrominance 
detection 

   

2008 
Chin-Lun Lai, Jie-

Ci Yang 
  Colour information Otsu method   

2008 
Yu Cui, Hua Dong, 

Enze Zhou 
 



Wavelet analysis 
Grey level Co-occurrence 
Matrices (GLCM) 

 For discrimination  Smoke texture analysis 

2008 

Zhong Zhang, 

Jianhui Zhao, 

Dengyi Zhang, 

Chengzhang Qu, 


 Combine both wavelet and 

Fourier analysis 
  Forest fire detection 
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Years Researcher 
Fire / Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

Youwang Ke, Bo 

Cai 

2008 

Paulo Vinicius 

Koerich Borges, 

Joceli Mayer, 

Ebroul Izquierdo 


  Statistical characteristic of fire 

features 
 

Skewness, texture, 

boundary roughness, 

colour, randomness of 

area size 

2008 

Bo-Ho Cho , Jong-

Wook Bae , and 

Sung-Hwan Jung 


 HSI colour model and RGB 

colour model 
Statistical colour model and 
Binary background mask 

  

2009 

Shuenn-Jyi Wang, 

Dah-Lih Jeng, 

Meng-Tsai Tsai 

 

Discriminated the region 
characteristics  - the shape 
of the changed region 

Fuzzy c - mean clustering 
algorithm (Dominant flame 
colour lookup table) – By 
comparing the pixels of changed 
regions 

 New generation vessels 

2009 

Jie Hou, Jiaru Qian, 

Zuozhou Zhao, 

Peng Pan, Weijing 

Zhang 


  Probability density (PD) 

algorithm  

Fuzzy Neural Network 
(FNN),  
Combined PD, FNN, 
Dempster - Shafer rule 
and Historical data fusion 

High and Large - Span 

Space Structures 

2009 

Byoung Chul Ko  , 

Kwang - Ho 

Cheong, Jae - Yeal 

Nam 




1. Using the frame 
difference detection 
moving pixels 
2. Flickering frequency  

RGB colour probability models  

1. Proposed robust fire 

detection algorithm that 

is installed in home 

network server 

2. Detection of moving 

regions 

3. Fire - coloured 

pixels 

2009 
Turgay Celik, 

Hasan Demirel 


 YCbCr Colour model    Forest fire detection 
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Years Researcher 
Fire / Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2009 
Dongil Han, 

Byoungmoo Lee 
 

Flame detection 
algorithm 
1. Colour information - 
Intensity of images 
2. Erosion and Dilation 
remove the nose 
Smoke detection 
algorithm 
Numerical equation for 
extract the images 
Used Motion History 
Images (MHI) method 

  Experimental study for 

tunnel fire 

2009 

Damir Krstinić, 

Darko Stipaničev, 

Toni Jakovčević 

 


Segmentation the smoke 
region from forest fire 
images  
Evaluated several colour 
spaces including RGB, HIS 
HS'I, YCrCb, and CIELab 

1. Simple Lookup Table Method 
2. Probabilistic model for 
classification to classify the 
pixels into the smoke class or 
non - smoke class 

 Forest fire detection 

2009 

Dengyi Zhan, 

Shizhong Han, 

Jianhui Zhao, 

Zhong Zhang, 

Chengzhang Qu, 

Youwang Ke, 

Xiang Chen 




Segmentation based on 
HSV colour model 
Extraction the fire 
features  

 BP Neural Networks 
Real time forest fire 

detection 

2009 

Ignacio Bosch, 

Soledad Gomez, 

Raquel Molina, and 

Ramon Miralles 




Segmentation - 
thresholding technique  
Feature extraction - 
Intensity, signature and 
orientation 

  

Infrared images 

processing 

Forest fire surveillance 

and preservation of 

natural heritage 
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Years Researcher 
Fire / Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2009 

Dong Keun Kim 

and Yuan-Fang 

Wang 

 


Block - based approach 
YUV colour model  

Classification of Smoke (k - 
temporal information) 
Area, boundary rectangle, The 
average and standard deviation 
of Y - value and UV - value 

 

Proposed three steps 

for smoke detection in 

outdoor video 

sequences. 

2009 

Yu Chunyu, Zhang 

Yongming, Fang 

Jun, Wang Jinjun 

 


Real - time detection and 
divided the image in block 

Gaussian Mixture Model (GMM) 
segment the background and 
foreground  
Grey level co - occurrence 
matrices analyse the smoke 
texture  

Neural Network 
Classifier 
Back Propagation Neural 
Network discriminate the 
smoke feature 

Texture analysis 

Feature extraction and 

Feature Classification 

2009 
Ha Dai Duong, 

Nguyen Anh Tuan 


  

Real - time detection the fire by 
Bayes method 
Fuzzy C - Means (FCM) 
algorithm is group pixels into 
clusters and retrieve Dominant 
flame colour look up table 
(DFCLT) 

  

2010 
Ishita Chakraborty, 

Tanoy Kr. Paul 




RGB and HSI Histogram 
Obtained the thresholding 
by HSI  

Hierarchical Clustering 
Partition Clustering 

  

2010 

Paulo Vinicius 

Koerich Borges, 

Ebroul Izquierdo 


  

Probabilistic Approach 
Statistical characteristics of 
fire  
Colour, Randomness of Area 
Size, Boundary Roughness, 
Surface Coarseness, Skewness, 
Spatial Distribution of Fire 

  

2010 Feiniu Yuan  

Motion and colour 
detection for smoke 
detection 

Probability of the incoming RGB 
colour pixel values for flame 
detection 

 
An integrated fire 

detection and 

suppression system 
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Years Researcher 
Fire / Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2010 

Rong Jianzhong, 

Wang Jian, Chen 

Jian, Jiang Jun 




Acoustic measurement 
technology calculate the 
oscillation frequency of 
flame 

   

2010 

Byoung Chul Ko, 

Kwang - Ho 

Cheong, Jae - Yeal 

Nam 


  

Separate foreground from 
background - Threshold analysis 
Detection of fire coloured pixels 
(Colour probability model - 
Gaussian probability 
distribution) 
Three layers hierarchical 
Bayesian Networks 

  

2010 Turgay Celik 


RGB colour model convert 
to CIE L*a*b* colour space  
Using CIE L*a*b* colour 
space identify the fire 
pixels. 

   

2010 

Magy Kandil, May 

Salama, Samia 

Rashad 


   Back Propagation feed 

forward neural networks 
 

2010 
Li Ma, Kaihua Wu, 

L. Zhu 
 



Extract continuous motion 
regions (Combined 
Kalman filtering and 
Moving History Image) 
Colour variation 
describing (colour 
blending coefficients) 
Dynamic feature 
verification (wavelet 
analysis) 

Delete some moving objects 
dissimilar to the smoke colour 
model (Offline trained Gaussian 
mixture model in RGB colour 
space) 
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Years Researcher 
Fire / Flame 

detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2010 

Jing Huang, Jianhui 

Zhao, Weiwei Gao, 

Chengjiang Long, 

Lu Xiong, Zhiyong 

Yuan, Shizhong 

Han 


  

Local Binary Pattern Based 
(LBP) operator filtering the 
object 
The texture analysis is 
Mahalanobis distance classifier 

 Texture analysis 

2010 
Juan Chen, Yaping 

He, Jian Wang 




Detected moving objects 
categorized flame region 
(flame colour) 

Extract moving foreground 
objects with improved Gaussian 
mixture model method 
Statistical frequency counting 
distinguish true flame 

 Multi feature fusion 

2010 

Yu Chunyu, Fang 

Jun, Wang Jinjun 

and Zhang 

Yongming 

 


Extracted moving pixels 
and regions 
Colour - Based Decision 
Rule for smoke 
recognition 

Optical flow method  

Back - propagation 
Neural Networks 
discriminate the smoke 
features 

 

2010 鄭文昌, 陳政達 


RGB colour space 
transform to YCbCr  
YCbCr colour space 
analysis 
Flame flickering detection  

   

Table 2.10 Development of video fire detection method from 2001-2010 
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Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2011 

Audrey Chenebert, 

Toby P. Breckon and 

Anna Gaszczak 

   
Grey Level Co – occurrence Grey 

Matrix (GLCM)  
 

Flame texture and 

colour feature analysis 

for classification  

2011 
Truong Xuan Tung, 

Jong-Myon Kim 
   

Fuzzy C – Mean method (FCM) 

and Support Vector Machine 

(SVM) distinguish the smoke 

features. 

 

Smoke features : 

Colour: low 

temperature (Blush – 

white to white) ; 

temperature rise until 

fire ignites (grey black 

to black) 

Movement : Drifting 

upward and diffuse 

Area, size and number 

of smoke region are 

varied and change from 

frame to frame 

Surface and boundary 

are rough and coarse. 

2011 

Luis Merino, Fernando 

Caballero, J. Ramiro 

Martínez-de-Dios, 

Iván Maza, Aníbal 

Ollero 

  
Image processing for 

extraction by fire features 

Perception system and decision 

system 

Analysis the probability values 

  

 

Application the 

Unmanned Aircraft 

System (UAS) 

monitoring and 

measurement the forest 

fire 

2011 

Yusuf Hakan 

Habibo˘glu, Osman 

Günay  and A, Enis 

Çetin 

  

Detection Algorithm:  

1. Chromatic colour model – 

Analysis the RGB colour 

Support Vector Machine (SVM) 

extracted the features including 

the RGB colour and Intensity 

 

Using the colour, 

spatial and temporal 

information in video 

fire detection  
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Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2. Covariance matric method 

for object detection and 

texture classification 

2011 
Li Jinghong, Lv 

Riqing, Zou Xiaohui 
  

Forest transform operation 

Sobel module – Edge 

detection 

Otsu method  

Field Programmable 

Gate Array (FPGA): 

The module of image 

collection 

The module of fire 

detection 

The module of image 

display 

2011 

Yang Zhao, Jianhui 

Zhao*, Erqian Dong, 

Bingyu Chen, Jun 

Chen, Zhiyong Yuan, 

and Dengyi Zhang 

  

Dynamic texture model: 

Multi – Resolution Analysis 

Linear Dynamic System  

(Threshold)  

  
Fire Recognition by 

texture analysis   

2011 

Tung Xuan Truong, 

Yongmin Kim, 

Jongmyon Kim 

  Discrete wavelet transform 
Approximate median method 

Fuzzy c – mean algorithm 

Genetic – Based Back – 

Propagation Neural 

Networks (BPNN) 

FIRE FEATURES 

Appropriate conditions 

Reacting oxygen from 

air 

Generating combustion 

products 

Emitting light 

Release heat 

Colour of fire range 

from red to yellow and 

white 
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Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

The size of area in fire 

regions changed  

The surface and 

boundary of flame is 

rough and coarse 

2011 

Yongqiang Jiao, 

Jonathan Weir, WeiQi 

Yan 

  

Intensity histogram  

RGB and HSI colour model 

Texture analysis – 
Coarseness 

Contrast 

Directionality 

Line – likeness 

Regularity 

Roughness  

  

Video content analysis 

technology monitoring  

Analysis the flame 

region by texture 

2011 

Yusuf Hakan 

Habiboglu, Osman 

Gunay, A. Enis Cetin 

  
Chromatic Colour model - 

RGB and HSI colour model  

Covariance matrix computation 

method - RGB colour values and 

First and second derivatives of 

intensity with respect to time 

  

2011 

CHENG Caixia (程

彩霞), SUN Fuchun 

(孙富春), ZHOU 

Xinquan (周心权) 

    

Neural network: Radial 

basis function (RBF) 

network  

Temperature 

CO concentration  

Smoke density 

 

2011 

Jianhui Zhao, Zhong 

Zhang, Shizhong Han, 

Chengzhang Qu, 

Zhiyong Yuan, and 

Dengyi Zhang 

    

Segmentation the possible flame 

regions with: 

3D colour model 

Gaussian mixture model  

  

 

Forest fire detection  

Statistic features 

including: Colour 

distribution (11 

features); Texture 
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Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

Support Vector Machine (SVM) 

classifier trains and filters the 

segmented results 

 

parameter (5 features); 

Shape roundness (1 

feature) 

Dynamic features 

including: (variation of 

colour distribution, 

texture parameter, 

shape roundness, area, 

contour, Flickering 

frequency 

2011 Feiniu Yuan    

Local binary pattern (LBP) is 

Grey scale texture operator. It can 

capture the spatial characteristic 

of images. 

Local binary patterns variance 

(LBPV) 

Histogram of LPB and LPBV 

pyramids enhance the feature 

vector 

BP neural network 

classifier is used for 

discrimination the smoke 

and non - smoke objects 

Texture analysis 

method is effetely 

detection the smoke in 

images  

2011 

Simone Calderara, 

Paolo Piccinini, Rita 

Cucchiara 

  

By means of wavelet 

transform coefficient analyse 

the image energy 

Bayesian approach classify the 

candidate objects 
 

Detecting the moving 

objects 

 

2011 

Changwoo Ha, 

Gwanggil Jeon, and 

Jechang Jeong 

  

RGB colour space – 

Chromatic analysis 

 

Motion information – Moving 

Region Decision (MRD) is based 

on calculation the Motion Vector 

(MV) by upward characteristic of 

smoke spread  

 

Smoke detection 

algorithm – Block – 

based smoke detection 

algorithm – three basic 

steps 
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Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2012 
Ha Dai Duong and 

Dao Thanh Tinh 
   

Combined algorithm detection the 

fire by average of RGB channel, 

coarseness and skewness of red 

channel distribution  

Bayes classifier, evaluation and  

classification the features  

 
Features : colour, 

geometry and motion 

2012 
Li Hongliang, Liu 

Qing,Wang Sun’an 
   

Probability model of fire 

recognition algorithm based on 

multi – features fusion 

 

 

Dynamic feature: 

Intensity 

Sequence 

Area variation 

Circularity 

2012 

Leonardo Millan-

Garcia, Gabriel 

Sanchez-Perez, Mariko 

Nakano, Karina 

Toscano-Medina, 

Hector Perez-Meana, 

Luis Rojas-Cardenas 

  

Morphological operators 

reduce the noise 

Detection algorithm is 

Discrete Cosine Transform 

(DCT) 

Smoke motion and smoke 

colour analysis is proposed. 

 

  

Video detection, IP 

cameras platform is 

used 

RGB and YCbCr 

colour model are used 

MPEG domain is used  

2012 
CHEN Juan, BAO 

Qifu 
  

Fire feature is Flame colour 

and oscillation frequency 

(flickering)  

Discrete time Fourier 

transform (DTFC) analyse 

the fire features. 

  

Rounded oil pool fire 

and squared oil pool 

fire 

2012 
CHEN Ning, DING 

Fei 
  

Flame segmentation 

Pixel analysis is proposed 

for evaluation the threshold 

value 

  
Fisheye camera are 

used for detection fire  
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Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2012 
 
 Vipin V 

  

RGB and YCbCr colour 

space pixels analysis 

Calculation the mean value 

of RGB and YCbCr   

Histogram analysis  

  

The processing of 

segmentation requires 

to satisfy the Rule 1 to 

7.  

2012 
Yong XU, Xingjie 

ZHU, Binglei XIE 
  

First step: Pixel analysis 

(RGB colour space 

analysis), fire processing is 

able to detect the genuine 

fire region 

Using adjustable KNN classifier     

2012 

Tarek Beji and Bart 

Merci, Steven 

Verstockt and Rik Van 

de Walle 

  

Smoke layer height 

estimation exploits the 

energy – related 

characteristics of smoke.  

Flame detection algorithm 

exploits the brightness value 

and threshold detection the 

flame. 

Estimation the fire size 

exploits the two – zone fire 

model (CFAST) 

  
Forecast fire growth in 

enclosures 

2012 

Chen – Yu Lee, Chin – 

Teng Lin, Chao – Ting 

Hong, Miin – Tsair Su 

  

Feature extraction includes 

the wavelet analysis, energy 

analysis and chromatic 

analysis. 

Verification is evaluation the 

images in a predefined time 

interval. If over 50% is 

required an alarm then sends 

out a real fire alarm signal.    

Support Vector Machine classifier 

proposes to use for classification 

the candidate region.  

 

  



T-34 

 

Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2012 

Zhigang Liu, George 
Hadjisophocleous, 
Guofeng Ding and 
Choon Siong Lim 

   
The second step: Smoke and 

flame probability   

The first step: Computing 

the features of smoke and 

flame with Back 

propagation neural 

networks (BPNN)  

Captured the Colour 

and Black and White 

Images and also use the 

Infrared Image 

2013 
Chunyu Yu, Zhibin 
Mei, Xi Zhang 

  

HIS colour model analysis 

for smoke feature.  

RGB colour model analysis 

for flame feature. 

Find the coordinates of the 

centre points calculate with 

Pyramidal Lucas – Kanade 

feature optical flow vector 

 

Back – propagation neural 

network for smoke 

recognition 

Feature analysis of fire 

flame and smoke 

Reddish colour 

The frequency of flame 

flickering  

 

2013 

De-chang 

Wang,XuenanCui,Eu

nsooPark,ChanglongJ

in,HakilKim 

   

Determined the probabilities 

(Colour and motion features) 

extract the candidate flame region 

Wald – Wolfowitz randomness 

test determine the flame 

probability 

 
Feature extraction by 

colour and motion 

2013 
Wanzhong Lei and 

Jingbo Liu 
  

Protection fire region 

detection is analysis the 

pixel in frame differencing. 

YCbCr and RGB colour 

space extract the flame 

region 

Median filtering algorithm is able 

to remove the noise 

Bayer classifier recognize the fire 

features 

 
Fire detection is able to 

use in Coalmine  

2013 

Divina A. Chua  

Carla Louie H. 

Leandicho  

Leo Angelo C. 

Magtibay  

   
Shape and colour analysis in 

statistic colour model are used  
 

Application in Mobile 

Application (app.) in 

Android Operating 

System and Internet 
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Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

Jerome T. Ortiz Protocol (IP) camera is 

required 

2013 
LI Xiao-bai, HUA 

Ying, XIA Ning 
  

Optical flow method is able 

to use in RGB colour space 

analysis 

  
Analysis of dynamic 

textures 

2013 

Ti Nguyen-Ti, 

Thuan Nguyen-

Phuc, Tuan Do-

Hong 

  

RGB colour space model 

and YCbCr colour space 

model are used for analysis 

fire pixels 

Motion filter, Colour filter 

and Position filter  use for 

analysis the region growth 

To increase reliability, Ratio 

height / width and correction 

coefficient are used for 

classification the fire from 

images. 

  

Total 9 rules detect the 

fire  

Colour and motion 

model is proposed to 

use.  

2013 

Jianzhong Rong, 

Dechuang Zhou, Wei 

Yao, Wei Gao, Juan 

Chen, Jian Wang 

  Generic colour model  

Geometrical Independent 

Component Analysis Model 

(GICA model) and Cumulative 

Geometric Independent 

Component Analysis Model are 

used for detection the moving 

region. 

BP neural network fire 

recognition model  
Filter the fire object 
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Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2013 

Panagiotis Barmpoutis, 

Kosmas 

Dimitropoulos, Nikos 

Grammalidis 

  

Temporal processing use for 

flickering analysis  

Analysis the Spatial and 

temporal consistency include 

the smoothness consistence 

and data consistency  

Adaptive median algorithm uses 

for subtraction the background. 

Fire colour probability is used for 

filtration the non – fire moving 

pixels 

 

  

2013 
N. Brovko, R. Bogush, 

S. Ablameyko 
  

Three steps of frame 

processing : Greyscale 

transformation, Histogram 

equalization, Discrete 

wavelet of current input 

frame 

Contrast calculated with Weber 

formula. 

 

 

Motion and contrast 

two key features for 

smoke detection 

2013 

Hongcheng Wang, 

Alan Finn, Ozgur 

Erdinc, Antonio 

Vincitore 

  

Pixel – level processing: 

Identify the potential fire 

pixels with motion and 

intensity and grouped into 

blobs. 

Spatial – Temporal structure 

features  

Spatial – Temporal contour 

dynamic features 

Classifier: SVM classifier  

Spatial – temporal 

structural 

Dynamics features 

2014 
Roberto Rosas-

Romero 
   

Feature extraction include the 

intensity colour values, mean of 

the intensity value and variance of 

the intensities on each colour 

plane. 

Classification the forest fire K – 

Singular Value Decomposition (K 

– SVD) method   

 

Spatial – temporal 

interaction 

Wireless camera 

networks 

Forest fire monitoring 

system 
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Years Researcher 

Fire / 
Flame 
detection 

Smoke 
detection 

Image processing Statistical analysis 
Artificial Neural 
Network / Neural 
Network 

Remarks 

2014 

Yoon-Ho Kim, Alla 

Kim, and Hwa-Young 

Jeong 

  

RGB colour model is used 

2.Colour detection of 

moving pixels 

3.Blob analysis 

1.Detection of moving pixels or 

regions in the current frame of a 

video 

 

 
Wireless sensor 

networks 

2015 

Yang Jia, Jie Yuan, 

Jinjun Wang, Jun Fang 

and Yongming Zhang, 

Qixing Zhang 

  

Optical flow analysis with 

Horn–Schunck algorithm 

based on the image 

brightness so-called Motion 

Map Calculation  

Detection the Saliency Smoke 

Region with human vision system 

based on probability 

 

Saliency – based 

method 

Forest fire detection  

2015 

Sumei He, Xiaoning 

Yang, Sitong Zeng, 

Jinhua Ye, Haibin Wu 

  

Calculation the average of 

luminance information with 

fire colour pixel based on 

Colour clues - YCbCr colour 

space 

Fire detection employ the 

Statistical analysis based on the 

flame motion feature (flame 

flickering)  

 

Real – time fire 

detection 

Computer vision based 

2015 

Kosmas 

Dimitropoulos, 

Panagiotis Barmpoutis, 

and Nikos 

Grammalidis 

   

First step1: filter out the non-fire 

coloured moving regions by 

probability based on RGB colour 

space model 

Discriminating the fire and non 

- fire moving object: 

Spatio – temporal consistency 

energy 

Flickering energy 

Spatio – temporal energy 

 

Spatio – Temporal 

Flame Model  

Dynamic Texture 

Analysis 

Table 2.11 Development of video fire detection method from 2011-2015 
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 Software Tools Image types 

Stage 1 1. MATLAB image 

processing toolbox 

Still Images 

Colour Images 

Stage 2 1. Visual C++ 

2. Microsoft Foundation 

Class (MFC) 

Still Images 

Thermal Images 

Colour Images 

Stage 3 1. C++ 

2. Open CV 

Real time video images 

Table 4.1 Summary of three stage of experimental study 
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Sequences of calculation Threshold values 

1 128 

2 208 

3 238 

4 248 

5 252 

6 253 

Table 4.2 Multi threshold calculation results 
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Sequences of calculation Threshold values 

(By Otsu) 

Threshold values  

(By Rayleigh distribution) 

1 128 169 

2 208 212 

3 238 238 

4 248 248 

5 252 252 

6 253 253 

Table 4.3 Numerical data of two different procedures in threshold values 
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Fuel 2 – Propanol 

Pool diameter mm 102 197 330 410 

Fuel mL 100 800 800 800 

Mass loss rate g/s 0.1264919 0.5157317 1.6350179 2.0463882 

Molar coefficient kJ/mol 2220 2220 2220 2220 

Molar weight g/mol 60.1 60.1 60.1 60.1 

Heat of combustion kJ/g 36.938436 36.938436 36.938436 36.938436 

Combustion efficiency  0.7 0.7 0.7 0.7 

Heat Release Rate  

(Based on Mass Loss Rate) 
kW 3.2706883 13.335226 42.276503 52.913266 

Number of images nos. 30 30 30 30 

Mean flame height mm 183.63 283.80 462.16 667.80 

Pool diameter m 0.102 0.197 0.33 0.41 

Revised Heat Release Rate  

(Based on images results) 
kW 1.6579322 6.1108622 21.299584 45.909748 

Table 4.4 Numerical data of calculation the heat release rate 
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Product Name Microsoft LifeCam HD 3000 

Interface High – speed USB compatible with the USB 2.0 

specification 

Operating System 1. Microsoft Windows 

2. Macintosh OS 

3. Android 

Image Features 

Sensor  CMOS sensor technology 

Resolution Motion Video: 1280 pixel x 720 pixel resolution 

Still Image: 1280 x 800 

Imaging Rate Up to 30 frames per second 

Field of View 68.5o diagonal field of view 

Aspect ratio 16:9 widescreen  

Fixed focus From 0.3m to 1.5m 

Table 4.5 Specification of the webcam. 
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Pool diameter 10 cm 

Propanol 10 mL – 20mL 

Dimensions (spatial resolution) 640 x 480 

Distance (from webcam to fire source) 110 cm 

Table 4.6 Information data of pool fire setup and images  
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Appendix A: MATLAB 

A.1 MATLAB’s Otsu method source code 

6/8/16 9:10 PM C:\Documents and Settings\user\My Documents\MATLAB\otsu.m 1 

of 5 

1 function [IDX,sep] = otsu(I,n) 

2 

3 %OTSU Global image thresholding/segmentation using Otsu's method. 

4 % IDX = OTSU(I,N) segments the image I into N classes by means of Otsu's 

5 % N-thresholding method. OTSU returns an array IDX containing the cluster 

6 % indices (from 1 to N) of each point. Zero values are assigned to 

7 % non-finite (NaN or Inf) pixels. 

8 % 

9 % IDX = OTSU(I) uses two classes (N=2, default value). 

10 % 

11 % [IDX,sep] = OTSU(...) also returns the value (sep) of the separability 

12 % criterion within the range [0 1]. Zero is obtained only with data 

13 % having less than N values, whereas one (optimal value) is obtained only 

14 % with N-valued arrays. 

15 % 

16 % Notes: 

17 % ----- 

18 % It should be noticed that the thresholds generally become less credible 

19 % as the number of classes (N) to be separated increases (see Otsu's 

20 % paper for more details). 

21 % 

22 % If I is an RGB image, a Karhunen-Loeve transform is first performed on 

23 % the three R,G,B channels. The segmentation is then carried out on the 

24 % image component that contains most of the energy. 

25 % 

26 % Example: 

27 % ------- 

28 % load clown 

29 % subplot(221) 

30 % X = ind2rgb(X,map); 

31 % imshow(X) 

32 % title('Original','FontWeight','bold') 

33 % for n = 2:4 

34 % IDX = otsu(X,n); 

35 % subplot(2,2,n) 

36 % imagesc(IDX), axis image off 

37 % title(['n = ' int2str(n)],'FontWeight','bold') 

38 % end 

39 % colormap(gray) 

40 % 

41 % Reference: 

42 % --------- 
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43 % Otsu N, <a 

href="matlab:web('http://dx.doi.org/doi:10.1109/TSMC.1979.4310076')">A 

Threshold 

Selection Method from Gray-Level Histograms</a>, 

44 % IEEE Trans. Syst. Man Cybern. 9:62-66;1979 

45 % 

46 % See also GRAYTHRESH, IM2BW 

47 % 

48 % -- Damien Garcia -- 2007/08, revised 2010/03 

49 % Visit my <a 

50 % 

href="matlab:web('http://www.biomecardio.com/matlab/otsu.html')">website</a> for 

more details 

about OTSU 
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51 

52 error(nargchk(1,2,nargin)) 

53 

54 % Check if is the input is an RGB image 

55 isRGB = isrgb(I); 

56 

57 assert(isRGB | ndims(I)==2,... 

58 'The input must be a 2-D array or an RGB image.') 

59 

60 %% Checking n (number of classes) 

61 if nargin==1 

62 n = 2; 

63 elseif n==1; 

64 IDX = NaN(size(I)); 

65 sep = 0; 

66 return 

67 elseif n~=abs(round(n)) || n==0 

68 error('MATLAB:otsu:WrongNValue',... 

69 'n must be a strictly positive integer!') 

70 elseif n>255 

71 n = 255; 

72 warning('MATLAB:otsu:TooHighN',... 

73 'n is too high. n value has been changed to 255.') 

74 end 

75 

76 I = single(I); 

77 

78 %% Perform a KLT if isRGB, and keep the component of highest energy 

79 if isRGB 

80 sizI = size(I); 

81 I = reshape(I,[],3); 

82 [V,D] = eig(cov(I)); 

83 [~,c] = max(diag(D)); 

84 I = reshape(I*V(:,c),sizI(1:2)); % component with the highest energy 

85 end 
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86 

87 %% Convert to 256 levels 

88 I = I-min(I(:)); 

89 I = round(I/max(I(:))*255); 

90 

91 %% Probability distribution 

92 unI = sort(unique(I)); 

93 nbins = min(length(unI),256); 

94 if nbins==n 

95 IDX = ones(size(I)); 

96 for i = 1:n, IDX(I==unI(i)) = i; end 

97 sep = 1; 

98 return 

99 elseif nbins<n 

100 IDX = NaN(size(I)); 

101 sep = 0; 

102 return 
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103 elseif nbins<256 

104 [histo,pixval] = hist(I(:),unI); 

105 else 

106 [histo,pixval] = hist(I(:),256); 

107 end 

108 P = histo/sum(histo); 

109 clear unI 

110 

111 %% Zeroth- and first-order cumulative moments 

112 w = cumsum(P); 

113 mu = cumsum((1:nbins).*P); 

114 

115 %% Maximal sigmaB^2 and Segmented image 

116 if n==2 

117 sigma2B =... 

118 (mu(end)*w(2:end-1)-mu(2:end-1)).^2./w(2:end-1)./(1-w(2:end-1)); 

119 [maxsig,k] = max(sigma2B); 

120 

121 % segmented image 

122 IDX = ones(size(I)); 

123 IDX(I>pixval(k+1)) = 2; 

124 

125 % separability criterion 

126 sep = maxsig/sum(((1:nbins)-mu(end)).^2.*P); 

127 

128 elseif n==3 

129 w0 = w; 

130 w2 = fliplr(cumsum(fliplr(P))); 

131 [w0,w2] = ndgrid(w0,w2); 

132 

133 mu0 = mu./w; 

134 mu2 = fliplr(cumsum(fliplr((1:nbins).*P))./cumsum(fliplr(P))); 



A-4 

 

135 [mu0,mu2] = ndgrid(mu0,mu2); 

136 

137 w1 = 1-w0-w2; 

138 w1(w1<=0) = NaN; 

139 

140 sigma2B =... 

141 w0.*(mu0-mu(end)).^2 + w2.*(mu2-mu(end)).^2 +... 

142 (w0.*(mu0-mu(end)) + w2.*(mu2-mu(end))).^2./w1; 

143 sigma2B(isnan(sigma2B)) = 0; % zeroing if k1 >= k2 

144 

145 [maxsig,k] = max(sigma2B(:)); 

146 [k1,k2] = ind2sub([nbins nbins],k); 

147 

148 % segmented image 

149 IDX = ones(size(I))*3; 

150 IDX(I<=pixval(k1)) = 1; 

151 IDX(I>pixval(k1) and I<=pixval(k2)) = 2; 

152 

153 % separability criterion 

154 sep = maxsig/sum(((1:nbins)-mu(end)).^2.*P); 
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155 

156 else 

157 k0 = linspace(0,1,n+1); k0 = k0(2:n); 

158 [k,y] = fminsearch(@sig_func,k0,optimset('TolX',1)); 

159 k = round(k*(nbins-1)+1); 

160 

161 % segmented image 

162 IDX = ones(size(I))*n; 

163 IDX(I<=pixval(k(1))) = 1; 

164 for i = 1:n-2 

165 IDX(I>pixval(k(i)) and I<=pixval(k(i+1))) = i+1; 

166 end 

167 

168 % separability criterion 

169 sep = 1-y; 

170 

171 end 

172 

173 IDX(~isfinite(I)) = 0; 

174 

175 %% Function to be minimized if n>=4 

176 function y = sig_func(k) 

177 

178 muT = sum((1:nbins).*P); 

179 sigma2T = sum(((1:nbins)-muT).^2.*P); 

180 

181 k = round(k*(nbins-1)+1); 

182 k = sort(k); 

183 if any(k<1 | k>nbins), y = 1; return, end 
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184 

185 k = [0 k nbins]; 

186 sigma2B = 0; 

187 for j = 1:n 

188 wj = sum(P(k(j)+1:k(j+1))); 

189 if wj==0, y = 1; return, end 

190 muj = sum((k(j)+1:k(j+1)).*P(k(j)+1:k(j+1)))/wj; 

191 sigma2B = sigma2B + wj*(muj-muT)^2; 

192 end 

193 y = 1-sigma2B/sigma2T; % within the range [0 1] 

194 

195 end 

196 

197 end 

198 

199 function isRGB = isrgb(A) 

200 % --- Do we have an RGB image? 

201 % RGB images can be only uint8, uint16, single, or double 

202 isRGB = ndims(A)==3 and (isfloat(A) || isa(A,'uint8') || isa(A,'uint16')); 

203 % ---- Adapted from the obsolete function ISRGB ---- 

204 if isRGB and isfloat(A) 

205 % At first, just test a small chunk to get a possible quick negative 

206 mm = size(A,1); 
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207 nn = size(A,2); 

208 chunk = A(1:min(mm,10),1:min(nn,10),:); 

209 isRGB = (min(chunk(:))>=0 and max(chunk(:))<=1); 

210 % If the chunk is an RGB image, test the whole image 

211 if isRGB, isRGB = (min(A(:))>=0 and max(A(:))<=1); end 

212 end 

213 end 

214 

215 

216 
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A.2 MATLAB’s RGB to grayscale source code 

6/8/16 9:11 PM C:\Program 

Files\MATLAB\R2010a\toolbox\images\images\rgb2gray.m 1 of 3 

1 function I = rgb2gray(varargin) 

2 %RGB2GRAY Convert RGB image or colormap to grayscale. 

3 % RGB2GRAY converts RGB images to grayscale by eliminating the 

4 % hue and saturation information while retaining the 

5 % luminance. 

6 % 

7 % I = RGB2GRAY(RGB) converts the truecolor image RGB to the 

8 % grayscale intensity image I. 

9 % 

10 % NEWMAP = RGB2GRAY(MAP) returns a grayscale colormap 

11 % equivalent to MAP. 

12 % 

13 % Class Support 

14 % ------------- 

15 % If the input is an RGB image, it can be uint8, uint16, double, or 

16 % single. The output image I has the same class as the input image. If the 

17 % input is a colormap, the input and output colormaps are both of class 

18 % double. 

19 % 

20 % Example 

21 % ------- 

22 % I = imread('board.tif'); 

23 % J = rgb2gray(I); 

24 % figure, imshow(I), figure, imshow(J); 

25 % 

26 % [X,map] = imread('trees.tif'); 

27 % gmap = rgb2gray(map); 

28 % figure, imshow(X,map), figure, imshow(X,gmap); 

29 % 

30 % See also IND2GRAY, NTSC2RGB, RGB2IND, RGB2NTSC, MAT2GRAY. 

31 

32 % Copyright 1992-2007 The MathWorks, Inc. 

33 % $Revision: 5.20.4.6 $ $Date: 2007/12/10 21:37:27 $ 

34 

35 X = parse_inputs(varargin{:}); 

36 origSize = size(X); 

37 

38 % Determine if input includes a 3-D array 

39 threeD = (ndims(X)==3); 

40 

41 % Calculate transformation matrix 

42 T = inv([1.0 0.956 0.621; 1.0 -0.272 -0.647; 1.0 -1.106 1.703]); 

43 coef = T(1,:)'; 

44 

45 if threeD 

46 %RGB 
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47 % Shape input matrix so that it is a n x 3 array and initialize output 

48 % matrix 

49 X = reshape(X(:),origSize(1)*origSize(2),3); 

50 sizeOutput = [origSize(1), origSize(2)]; 

51 

52 % Do transformation 

6/8/16 9:11 PM C:\Program 

Files\MATLAB\R2010a\toolbox\images\images\rgb2gray.m 2 of 3 

53 if isa(X, 'double') || isa(X, 'single') 

54 I = X*coef; 

55 I = min(max(I,0),1); 

56 else 

57 %uint8 or uint16 

58 I = imlincomb(coef(1),X(:,1),coef(2),X(:,2),coef(3),X(:,3), ... 

59 class(X)); 

60 end 

61 %Make sure that the output matrix has the right size 

62 I = reshape(I,sizeOutput); 

63 

64 else 

65 I = X * coef; 

66 I = min(max(I,0),1); 

67 I = [I,I,I]; 

68 end 

69 

70 

71 %%% 

72 %Parse Inputs 

73 %%% 

74 function X = parse_inputs(varargin) 

75 

76 iptchecknargin(1,1,nargin,mfilename); 

77 

78 if ndims(varargin{1})==2 

79 if (size(varargin{1},2) ~=3 || size(varargin{1},1) < 1) 

80 eid = sprintf('Images:%s:invalidSizeForColormap',mfilename); 

81 msg = 'MAP must be a m x 3 array.'; 

82 error(eid,'%s',msg); 

83 end 

84 if ~isa(varargin{1},'double') 

85 eid = sprintf('Images:%s:notAValidColormap',mfilename); 

86 msg1 = 'MAP should be a double m x 3 array with values in the'; 

87 msg2 = ' range [0,1].Convert your map to double using IM2DOUBLE.'; 

88 error(eid,'%s %s',msg1,msg2); 

89 end 

90 elseif (ndims(varargin{1})==3) 

91 if ((size(varargin{1},3) ~= 3)) 

92 eid = sprintf('Images:%s:invalidInputSize',mfilename); 

93 msg = 'RGB must be a m x n x 3 array.'; 

94 error(eid,'%s',msg); 

95 end 
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96 else 

97 eid = sprintf('Images:%s:invalidInputSize',mfilename); 

98 msg1 = 'RGB2GRAY only accepts a Mx3 matrix for MAP or a MxNx3 input for '; 

99 msg2 = 'RGB.'; 

100 error(eid,'%s %s',msg1,msg2); 

101 end 

102 X = varargin{1}; 

103 

104 

6/8/16 9:11 PM C:\Program 

Files\MATLAB\R2010a\toolbox\images\images\rgb2gray.m 3 of 3 

105 %no logical arrays 

106 if islogical(X) 

107 eid = sprintf('Images:%s:invalidType',mfilename); 

108 msg = 'RGB2GRAY does not accept logical arrays as inputs.'; 

109 error(eid,'%s',msg); 

110 end 

111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A-9 

 

A.3 MATLAB ‘s image processing source code  

6/10/16 3:06 PM C:\Documents and Settings\user\My 

Documents\...\Otsu_method_18_10_2011.m 1 of 1 

1 %% Fire Image Processing 

2 clear, clc; 

3 

4 %% Load fire image (1) 

5 image1 = imread('IMG_0110.JPG'); 

6 

7 figure(1), imshow(image1), title('Fig 1.1: Original Image (Fire Image)'); 

8 

9 %% Threshold fire image (1) 

10 I1 = rgb2gray (image1); 

11 threshold1 = graythresh (I1); 

12 BW1 = im2bw (I1, threshold1); 

13 

14 figure(2), imshow(I1), title('Fig 1.2: Convert the image to grey'); 

15 figure(3), imshow(BW1), title('Fig 1.3: Convert the image to black and white by 

MATLAB Otsu 

method'); 

16 

17 %end of program 
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Appendix B: C++ / OpenCV 

1 // opencvApplication.cpp : Defines the entry point for the console application. 
2 // 
3 
4 #define _CRT_SECURE_NO_DEPRECATE 
5 
6 
7 #include <cctype> 
8 #include <iostream> // Basic input and output library 
9 #include <iomanip> 
10 #include <iterator> 
11 #include <stdio.h> 
12 #include <math.h> 
13 #include <time.h> 
14 #include <windows.h> 
15 #include <fstream> // For file stream 
16 
17 #include "opencv2/video/tracking.hpp" // For optical flow analysis 
18 #include "opencv2/highgui/highgui.hpp" // For histogram 
19 #include "opencv2/imgproc/imgproc.hpp" // For histogram 
20 
21 #include "C:\Users\arthur\Downloads\OpenCV with Visual 
Studio\Code\opencvApplication_fire4.1\ 
sgVision\SgGeneral.h" 
22 #include "C:\Users\arthur\Downloads\OpenCV with Visual 
Studio\Code\opencvApplication_fire4.1\ 
sgVision\SgSignal.h" 
23 #include "C:\Users\arthur\Downloads\OpenCV with Visual 
Studio\Code\opencvApplication_fire4.1\ 
sgVision\SgTimeControl.h" 
24 
25 using namespace std; 
26 using namespace cv; 
27 
28 bool pause = false; 
29 
30 //our sensitivity value to be used in the absdiff() function 
31 //for higher sensitivity, use a lower value 
32 const static int SENSITIVITY_VALUE = 40; 
33 
34 //size of blur used to smooth the intensity image output from absdiff() 
function 
35 const static int BLUR_SIZE = 10; // SMOOTH THE INTENSITY (EXISING, 
FOR MOTION 
DETECTION IS 10) 
36 const static int BLUR_SIZE_INTENSITY = 7; // SMOOTH THE INTENSITY 
37 
38 //these two can be toggled by pressing 'd' or 't' (Motion detection code) 
(Debug mode is disabled) 
39 //bool debugMode; 
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40 bool trackingEnabled; 
41 
42 //int thresholdParameter = 255; // This thresholdParameter control the 
intensity 
43 int thresholdParameter; // This thresholdParameter control the intensity 
44 
45 int theObject[2] = { 0, 0 }; 
46 
47 //bounding rectangle of the object, we will use the center of this as its position 
48 Rect objectBoundingRectangle = Rect(0, 0, 0, 0); 
49 
50 //float fps = 25.f; 
51 
52 vector<vector<Point>> masks; 
53 vector<Point> mask; 
54 deque<Point> centroids; 
55 
56 //Mat frame; 
57 
58 // get time information // 
59 
60 string intToString(int number) 
61 { 
62 
63 //this function has a number input and string output 
64 std::stringstream ss; 
65 ss << number; 
66 return ss.str(); 
67 } 
68 
69 /* Display time and date on hardcopy */ 
70 string getDateTime() 
71 { 
72 //get the system time 
73 SYSTEMTIME theTime; 
74 GetLocalTime(andtheTime); 
75 //create string to store the date and time 
76 string dateTime; 
77 
78 //convert year to string 
79 string year = intToString(theTime.wYear); 
80 
81 //use stringstream to add a leading '0' to the month (ie. 3 -> 03) 
82 //we use 'setw(2)' so that we force the string 2 characters wide with a zero 
in front of it. 
83 //if the month is '10' then it will remain '10' 
84 std::stringstream m; 
85 m << std::setfill('0') << std::setw(2) << theTime.wMonth; 
86 string month = m.str(); 
87 //day 
88 std::stringstream d; 
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89 d << std::setfill('0') << std::setw(2) << theTime.wDay; 
90 string day = d.str(); 
91 //hour 
92 std::stringstream hr; 
93 hr << setfill('0') << std::setw(2) << theTime.wHour; 
94 string hour = hr.str(); 
95 //minute 
96 std::stringstream min; 
97 min << setfill('0') << std::setw(2) << theTime.wMinute; 
98 string minute = min.str(); 
99 //second 
100 std::stringstream sec; 
101 sec << setfill('0') << std::setw(2) << theTime.wSecond; 
102 string second = sec.str(); 
103 
104 //here we use the year, month, day, hour, minute info to create a custom 
string 
105 //this will be displayed in the bottom left corner of our video feed. 
106 dateTime = year + "-" + month + "-" + day + " " + hour + ":" + minute + ":" + 
second; 
107 
108 return dateTime; 
109 } 
110 
111 /* Display time only on hardcopy */ 
112 string gettimeonly() 
113 { 
114 //get the system time 
115 SYSTEMTIME theTime; 
116 GetLocalTime(andtheTime); 
117 //create string to store the date and time 
118 string timeonly; 
119 
120 //convert year to string 
121 
122 //hour 
123 std::stringstream hr; 
124 hr << setfill('0') << std::setw(2) << theTime.wHour; 
125 string hour = hr.str(); 
126 //minute 
127 std::stringstream min; 
128 min << setfill('0') << std::setw(2) << theTime.wMinute; 
129 string minute = min.str(); 
130 //second 
131 std::stringstream sec; 
132 sec << setfill('0') << std::setw(2) << theTime.wSecond; 
133 string second = sec.str(); 
134 
135 //here we use the year, month, day, hour, minute info to create a custom 
string 
136 //this will be displayed in the bottom left corner of our video feed. 
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137 //dateTime = year + "-" + month + "-" + day + " " + hour + ":" + minute + ":" 
+ second; 
138 timeonly = hour + ":" + minute + ":" + second; 
139 
140 return timeonly; 
141 } 
142 
143 /* Display time and date on hardcopy */ 
144 string getdateonly() 
145 { 
146 //get the system time 
147 SYSTEMTIME theTime; 
148 GetLocalTime(andtheTime); 
149 //create string to store the date and time 
150 string dateonly; 
151 
152 //convert year to string 
153 string year = intToString(theTime.wYear); 
154 
155 //use stringstream to add a leading '0' to the month (ie. 3 -> 03) 
156 //we use 'setw(2)' so that we force the string 2 characters wide with a zero 
in front of it. 
157 //if the month is '10' then it will remain '10' 
158 std::stringstream m; 
159 m << std::setfill('0') << std::setw(2) << theTime.wMonth; 
160 string month = m.str(); 
161 //day 
162 std::stringstream d; 
163 d << std::setfill('0') << std::setw(2) << theTime.wDay; 
164 string day = d.str(); 
165 
166 //here we use the year, month, day, hour, minute info to create a custom 
string 
167 //this will be displayed in the bottom left corner of our video feed. 
168 dateonly = year + "-" + month + "-" + day; 
169 
170 return dateonly; 
171 } 
172 
173 string getDateTimeForFile() 
174 { 
175 //this function does the exact same as "getDateTime()" 
176 //however it returns a string that can be used as a filename 
177 SYSTEMTIME theTime; 
178 GetLocalTime(andtheTime); 
179 string dateTime; 
180 
181 string year = intToString(theTime.wYear); 
182 
183 std::stringstream m; 
184 m << std::setfill('0') << std::setw(2) << theTime.wMonth; 
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185 string month = m.str(); 
186 
187 std::stringstream d; 
188 d << std::setfill('0') << std::setw(2) << theTime.wDay; 
189 string day = d.str(); 
190 
191 std::stringstream hr; 
192 hr << setfill('0') << std::setw(2) << theTime.wHour; 
193 string hour = hr.str(); 
194 
195 std::stringstream min; 
196 min << setfill('0') << std::setw(2) << theTime.wMinute; 
197 string minute = min.str(); 
198 
199 std::stringstream sec; 
200 sec << setfill('0') << std::setw(2) << theTime.wSecond; 
201 string second = sec.str(); 
202 
203 //here we use "_" instead of "-" and ":" 
204 //if we try to save a filename with "-" or ":" in it we will get an error. 
205 dateTime = year + "_" + month + "_" + day + "_" + hour + "h" + minute + 
"m" + second + "s"; 
206 
207 return dateTime; 
208 } 
209 
210 /* Dispaly time and date above */ 
211 
212 /* Motion detection below */ 
213 bool detectMotion(Mat thresholdImage, Mat andcameraFeed){ 
214 //create motionDetected variable. 
215 bool motionDetected = false; 
216 
217 //create temp Mat for threshold image 
218 Mat temp; 
219 thresholdImage.copyTo(temp); 
220 
221 //these two vectors needed for output of findContours 
222 vector< vector<Point> > contours; 
223 vector<Vec4i> hierarchy; 
224 
225 //find contours of filtered image using openCV findContours function 
226 
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APP
ROX_SIMPLE );// retrieves all 
contours 
227 findContours(temp, contours, hierarchy, CV_RETR_EXTERNAL, 
CV_CHAIN_APPROX_SIMPLE);// retrieves 
external contours 
228 
229 //if contours vector is not empty, we have found some objects 
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230 //we can simply say that if the vector is not empty, motion in the video feed 
has been detected 
. 
231 if (contours.size()>0)motionDetected = true; 
232 else motionDetected = false; 
233 
234 //find the motion object 
235 if (motionDetected){ 
236 //the large contour is found at the end of the contours vector 
237 //we will simply assume that the biggest contour is the object 
238 vector< vector<Point> > largestContourVec; 
239 largestContourVec.push_back(contours.at(contours.size() - 1)); 
240 
241 //make a bounding rectangle around the largest contour then find its 
centroid 
242 //this will be the objects final estimated position 
243 objectBoundingRectangle = boundingRect(largestContourVec.at(0)); 
244 int xpos = objectBoundingRectangle.x + objectBoundingRectangle.width / 
2; 
245 int ypos = objectBoundingRectangle.y + objectBoundingRectangle.height / 
2; 
246 
247 
248 //update the objects position by changing the 'theObject' array values 
249 theObject[0] = xpos, theObject[1] = ypos; 
250 
251 } 
252 
253 return motionDetected; 
254 
255 } 
256 /* Motion detection code above */ 
257 
258 ///////////////////////////////// CALCULATION OPTICAL FLOW 
//////////////////////////////////////// 
/////// 
259 void drawOptFlowMap(const Matand flow, Matand cflowmap, int step, 
double, const Scalarand color) 
260 { 
261 for (int y = 0; y < cflowmap.rows; y += step) 
262 for (int x = 0; x < cflowmap.cols; x += step) 
263 { 
264 const Point2fand fxy = flow.at<Point2f>(y, x); 
265 
266 // Displacement direction 
267 line(cflowmap, Point(x, y), Point(cvRound(x + fxy.x), cvRound(y + fxy.y)), 
color); 
268 
269 // Green dot 
270 circle(cflowmap, Point(x, y), 2, color, -1); 
271 } 
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272 } 
273 /////////////////////////////////////////////////////////////////////////////////////////////////// 
////// 
274 
275 void CallBackFunc(int event, int x, int y, int flags, void* userdata) 
276 { 
277 if ( event == EVENT_LBUTTONDOWN ) 
278 { 
279 Point p = Point(x,y); 
280 mask.push_back(p); 
281 } 
282 else if (event == EVENT_RBUTTONDOWN) 
283 { 
284 masks.push_back(mask); 
285 mask.clear(); 
286 } 
287 else if (event == EVENT_MBUTTONDOWN) 
288 { 
289 mask.clear(); 
290 masks.clear(); 
291 } 
292 
293 } 
294 
295 #define FILEPATH "D:/" + getDateTimeForFile() + ".csv" //define file stream 
object 
296 
297 // open the video image // 
298 int main( int argc, const char** argv ) //program entry points 
299 { 
300 
301 /* Declaraction the motion detection code start */ 
302 
303 //set recording and startNewRecording initially to false. 
304 bool recording = false; 
305 bool startNewRecording = false; 
306 int inc = 0; 
307 bool firstRun = true; 
308 //if motion is detected in the video feed, we will know to start recording. 
309 bool motionDetected = false; 
310 
311 //pause and resume code (if needed) 
312 bool pause = false; 
313 //set debug mode and trackingenabled initially to false 
314 //these can be toggled using 'd' and 't' 
315 //debugMode = false; 
316 trackingEnabled = false; 
317 
318 //set up the matrices that we will need 
319 //the two frames we will be comparing 
320 Mat frame1, frame2; 
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321 //their grayscale images (needed for absdiff() function) 
322 Mat grayImage1, grayImage2; 
323 //resulting difference image 
324 Mat differenceImage; 
325 //thresholded difference image (for use in findContours() function) 
326 Mat thresholdImage; 
327 
328 Mat prevgray, gray; //OPTICAL FLOW 
329 Mat flow, cflow; //OPTICAL FLOW 
330 
331 /* Declaraction the motion detection code end */ 
332 
333 /* Trackbar control threshold value below */ 
334 SgSignal signal; 
335 //cvNamedWindow("display", 0); 
336 //createTrackbar( "threshold", "display", andthresholdParameter, 255, 
NULL ); 
337 //setMouseCallback("display", CallBackFunc, NULL); 
338 
339 /* Trackbar control threshold value above*/ 
340 
341 /* Start access camera below */ 
342 VideoCapture video; 
343 
344 video.open(0); //Access the webcam. 
345 
346 video >> frame1; //Input the first real time image to frame1 
347 
348 VideoWriter oVideoWriter; //create videoWriter object, not initialized yet 
(Motion 
detection code) 
349 
350 if (!video.isOpened()) 
351 { 
352 std::cout << "ERROR!!! could not access the webcam !!!" << std::endl; 
353 system("PAUSE"); 
354 return EXIT_SUCCESS; 
355 //exit(1); 
356 } 
357 
358 // Record the data to file 
359 
360 fstream file; 
361 
362 file.open(FILEPATH, ios::out | ios::trunc); 
363 
364 if (!file)// Check file open or not 
365 { 
366 cerr << "Sorry!!! Can't open file in Hard drive !!!" << endl; 
367 exit(1); 
368 } 
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369 
370 double dWidth = video.get(CV_CAP_PROP_FRAME_WIDTH); //get the 
width of frames1 of the video 
371 double dHeight = video.get(CV_CAP_PROP_FRAME_HEIGHT); //get the 
height of frames1 of the video 
372 
373 //set framesize for use with videoWriter 
374 Size frameSize(static_cast<int>(dWidth), static_cast<int>(dHeight)); 
375 
376 /* Display on command prompt */ 
377 cout << "-------------------------------------------------------------------------------" << 
endl; 
378 cout << "VIDEO FIRE DETECTION" << endl; 
379 cout << "Frame Size = " << frameSize << endl; 
380 cout << "Record date " << getdateonly () << endl; 
381 cout << "Start record time " << gettimeonly() << endl; 
382 cout << "OpenCV verson " << CV_VERSION << endl; 
383 cout << "-------------------------------------------------------------------------------" << 
endl; 
384 cout << "Press 'Esc' exit the Code" << endl; 
385 cout << "Press 'p' paused or resume the code" << endl; 
386 cout << "Press 'Space bar' will toggle tracking" << endl; 
387 
388 /* Write on hard disk */ 
389 file << "VIDEO FIRE DETECTION DATA RECORD" << endl; 
390 file << "Frame Size " << "," << frameSize << endl; 
391 file << "Record date " << "," << getdateonly() << endl; 
392 file << "OpenCV verson " << CV_VERSION << endl; 
393 file << " " << endl; 
394 
395 file << setw(0) << "," << setiosflags(ios::right) << "FROM FLAME-
INTENSITY" << "," << "," << ", 
" 
396 << setw(0) << "," << "," << "," << setiosflags(ios::right) << "FROM FLAME-
MOTION" 
397 << endl; 
398 
399 file << setw(0) << setiosflags(ios::right) << "Time" << "," 
400 
401 << setw(0) << setiosflags(ios::right) << "Otsu Threshold value" << "," 
402 
403 << setw(0) << setiosflags(ios::right) << "Max. Gray level" << "," 
404 
405 << setw(0) << setiosflags(ios::right) << "ROI" << "," 
406 << setw(0) << setiosflags(ios::right) << "Height" << "," 
407 << setw(0) << setiosflags(ios::right) << "Centroid X" << "," 
408 << setw(0) << setiosflags(ios::right) << "Centroid Y" << "," 
409 
410 << setw(0) << setiosflags(ios::right) << "ROI" << "," 
411 << setw(0) << setiosflags(ios::right) << "Height" << "," 
412 << setw(0) << setiosflags(ios::right) << "Centroid X" << "," 
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413 << setw(0) << setiosflags(ios::right) << "Centroid Y" << "," 
414 
415 << setw(0) << setiosflags(ios::right) << "Pixel no. (Red)" << "," 
416 << setw(0) << setiosflags(ios::right) << "Pixel no. (Green)" << "," 
417 << setw(0) << setiosflags(ios::right) << "Pixel no. (Blue)" 
418 << endl; 
419 
420 deque<float> heights,widths,areas,mheight; 
421 double numberFrame = video.get(CV_CAP_PROP_FRAME_COUNT); 
422 int countFrame = 0; 
423 float lengthTrajectory = 10.0f; 
424 float sizeWindow = 1920.0f; 
425 
426 while (true) // Infinite Loop 
427 { 
428 if (!pause) video >> frame1; 
429 countFrame++; 
430 if (countFrame == numberFrame - 1) 
431 { 
432 video.set(CV_CAP_PROP_POS_FRAMES, 1); 
433 countFrame = 1; 
434 continue; 
435 } 
436 
437 //localize the fire 
438 Mat image, grayimage, grayimage2, fireMask, display, graph; 
439 
440 frame1.copyTo(display); 
441 
442 /*Motion detection code start*/ 
443 
444 //read first frame 
445 video.read(frame1); 
446 
447 /////////////////////////////////////////////////////////////////////////////////////////// 
//////// 
448 
449 //convert frame1 to gray scale for frame differencing 
450 cv::cvtColor(frame1, grayImage1, COLOR_BGR2GRAY); 
451 
452 //copy second frame 
453 video.read(frame2); 
454 
455 //convert frame2 to gray scale for frame differencing 
456 cv::cvtColor(frame2, grayImage2, COLOR_BGR2GRAY); 
457 
458 /////////////////////////////////////////////////////////////////////////////////////////// 
///////// 
459 
460 //perform frame differencing with the sequential images. This will output an 
"intensity 
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image" 
461 //do not confuse this with a threshold image, we will need to perform 
thresholding 
afterwards. 
462 cv::absdiff(grayImage1, grayImage2, differenceImage); 
// COMPARE THE DIFF. for motion detection 
463 
464 //threshold intensity image at a given sensitivity value 
465 cv::threshold(differenceImage, thresholdImage, SENSITIVITY_VALUE, 
255, THRESH_BINARY); 
// threshold --> SENSITIVITY VALUE = 40 
466 
467 /*if (debugMode == true){ 
468 //show the difference image and threshold image 
469 cv::imshow("Difference Image", differenceImage); 
470 cv::imshow("Threshold Image", thresholdImage); 
471 } 
472 else{ 
473 //if not in debug mode, destroy the windows so we don't see them anymore 
474 cv::destroyWindow("Difference Image"); 
475 cv::destroyWindow("Threshold Image"); 
476 }*/ 
477 
478 //blur the image to get rid of the noise. This will output an intensity image 
479 cv::blur(thresholdImage, thresholdImage, cv::Size(BLUR_SIZE, 
BLUR_SIZE)); // Dilate and 
Erode 
480 
481 //threshold again to obtain binary image from blur output 
482 cv::threshold(thresholdImage, thresholdImage, SENSITIVITY_VALUE, 
255, THRESH_BINARY); 
//Sensitivity value is 40 (threshold) 
483 
484 
485 /*if (debugMode == true){ 
486 //show the threshold image after it's been "blurred" 
487 
488 imshow("Final Threshold Image", thresholdImage); 
489 
490 } 
491 else { 
492 //if not in debug mode, destroy the windows so we don't see them anymore 
493 cv::destroyWindow("Final Threshold Image"); 
494 }*/ 
495 
496 //if tracking enabled, search for Motion 
497 if (trackingEnabled){ 
498 //detectMotion function will return true if motion is detected, else it will return 
false. 
499 //set motionDetected boolean to the returned value. 
500 motionDetected = detectMotion(thresholdImage, frame1); 
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501 } 
502 else{ 
503 //reset our variables if tracking is disabled 
504 recording = false; 
505 motionDetected = false; 
506 } 
507 /*Motion detection code end*/ 
508 
509 /*Motion detection code start*/ 
510 //if we're in recording mode, write to file 
511 if (recording){ 
512 
513 oVideoWriter.write(frame1); 
514 //show "REC" in red 
515 //be sure to do this AFTER you write to the file so that "REC" doesn't show 
up 
516 //on the recorded video. 
517 circle(display, Point(500, 20), 12.0, Scalar(0, 0, 255), -1, 8); 
518 putText(display, "REC", Point(515, 28), 2, 1, Scalar(0, 0, 255), 2); 
519 
520 } 
521 if (motionDetected){ 
522 //show "MOTION DETECTED" in bottom left corner in green 
523 //once again, be sure to do this AFTER you write to the file so that "MOTION 
DETECTED" 
doesn't show up 
524 //on the recorded video. Place this code above if(recording) to see what I'm 
talking 
about. 
525 putText(display, "MOTION DETECTED", cv::Point(0, 420), 2, 1, 
cv::Scalar(0, 255, 0), 2); 
526 
527 //set recording to true since there is motion in the video feed. 
528 recording = true; 
529 
530 if (firstRun == true){ 
531 
532 string videoFileName = "D:/" + getDateTimeForFile() + ".avi"; 
533 cout << "File has been opened for writing: " << videoFileName << endl; 
534 oVideoWriter = VideoWriter(videoFileName, CV_FOURCC('D', 'I', 'V', '3'), 
20, 
frameSize, true); 
535 
536 if (!oVideoWriter.isOpened()) 
537 { 
538 cout << "ERROR!!! Failed to initialize video writing in Hard drive !!!" << endl 
; 
539 getchar(); 
540 return -1; 
541 } 
542 firstRun = false; 
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543 
544 } 
545 
546 } 
547 else recording = false; 
548 /*Motion detection code end*/ 
549 
550 cvtColor(frame2, grayimage, CV_BGR2GRAY); // Convert to gratscale and 
store in 
"grayimage" ORIGINAL DATA FROM WEBCAM 
551 
552 // Calculation the gray values (IN PROGRESS) 
553 double alpha = 0.2989, Beta = 0.5870, Gamma = 0.1140; // For calculation !! 
554 vector<Mat> bgr_planesforgray; 
555 split(frame2, bgr_planesforgray); 
556 /* 
557 float hist_val[256]; 
558 for (int i = 0; i < 256; i++) 
559 { 
560 hist_val[i] = 0.0; 
561 //cout << i << " " << hist_val[i] << endl; 
562 
563 } 
564 */ 
565 /* Analysis for captured the Region of Interest */ 
566 cvtColor(frame2,image,CV_BGR2GRAY); // Convert to grayscale and 
store in "image 
" for analysis 
567 
568 // Smooths an image using the Gaussian filter (Dilate and Erode) 
569 
GaussianBlur(image,image,Size(BLUR_SIZE_INTENSITY,BLUR_SIZE_INTE
NSITY),0,0); 
570 //blur(image, image, Size(BLUR_SIZE, BLUR_SIZE)); // BLUR_SIZE = 10 
reference: line no. 
32 
571 
572 
573 // Otsu calculation (IN PROGRESS) 
574 /* 
575 float wB; //Weight Background 
576 float wF; //Weight Foreground 
577 float mB; //Mean Background 
578 float mF; //Mean Foreground 
579 float varBetween; //Between Class Variance 
580 float varMax; //Maximum Between Class Variance 
581 */ 
582 // Total number of pixels 
583 
584 
585 // Calculate Weight background 
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586 
587 
588 //threshold(image, fireMask, thresholdParameter, 255, 
cv::THRESH_BINARY); 
589 
590 
591 // Optimal threshold value obtained by Otsu algorithm 
592 thresholdParameter = threshold(image, fireMask, 0, 255, 
cv::THRESH_BINARY | cv:: 
THRESH_OTSU); // WARNING double to int problem ?? 
593 
594 fillPoly(fireMask,masks,cvScalarAll(0)); 
595 bitwise_and(image, fireMask, image); 
596 
597 /* 
598 /// Apply Histogram Equalization 
599 equalizeHist(image,image); 
600 
601 Mat dst; 
602 equalizeHist(image, dst); 
603 
604 /// Display results 
605 namedWindow("equalized_window", CV_WINDOW_AUTOSIZE); 
606 imshow("equalized_window", dst); 
607 */ 
608 
609 //resize the user interface 
610 /* 
611 resizeWindow("input", 450, 350); 
612 resizeWindow("display", 450, 350); 
613 cvResizeWindow("rgb and gray_Hist", 450, 350); 
614 resizeWindow("data", 450, 350); 
615 
616 //resizeWindow("gray", 240, 120); 
617 //cvResizeWindow("Threshold by Otsu", 240, 120); 
618 //cvResizeWindow("Diff. by motion", 240, 120); 
619 //cvResizeWindow("Threshold by motion", 240, 120); 
620 
621 //cvResizeWindow("Gray Hist", 320, 240); 
622 //cvResizeWindow("Red Hist", 320, 200); 
623 //cvResizeWindow("Green Hist", 320, 200); 
624 //cvResizeWindow("Blue Hist", 320, 200); 
625 
626 //resizeWindow("Motion", 800, 100); 
627 
628 //resizeWindow("flow", 320, 240); 
629 */ 
630 
631 //FIXED LOCATION OF WINDOWS 
632 /* 
633 cvMoveWindow("input", 10, 0); 
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634 cvMoveWindow("display", 10, 400); 
635 cvMoveWindow("rgb and gray_Hist", 500, 0); 
636 cvMoveWindow("data", 500, 400); 
637 
638 cvMoveWindow("Gray Hist", 640, 0); 
639 cvMoveWindow("flow", 960, 0); 
640 cvMoveWindow("Threshold by Otsu", 1280, 160); 
641 cvMoveWindow("gray", 1280, 0); 
642 cvMoveWindow("Threshold by Otsu", 1280, 160); 
643 cvMoveWindow("Diff. by motion", 1280, 320); 
644 cvMoveWindow("Threshold by motion", 1280, 480); 
645 
646 cvMoveWindow("Red Hist", 640, 280); 
647 cvMoveWindow("Green Hist", 960, 280); 
648 cvMoveWindow("Blue Hist", 960, 560); 
649 
650 cvMoveWindow("Motion", 0, 560); 
651 */ 
652 
653 cvNamedWindow("Threshold by Otsu", WINDOW_NORMAL); 
654 cvNamedWindow("Diff. by motion", WINDOW_NORMAL); 
655 cvNamedWindow("Threshold by motion", WINDOW_NORMAL); 
656 
657 cv::imshow("Threshold by Otsu", fireMask); 
658 
659 
660 cv::imshow("Diff. by motion",differenceImage); 
661 cv::imshow("Threshold by motion",thresholdImage); 
662 
663 //get contours 
664 vector<vector<Point>> contourFires; 
665 vector<Vec4i> hierarchy; 
666 findContours(fireMask,contourFires,hierarchy,CV_RETR_CCOMP, 
CV_CHAIN_APPROX_SIMPLE); 
667 vector<Point> contourMax; 
668 SgGeneral::sgGetMaxContour(contourFires,20,contourMax); 
669 if (!contourMax.empty()) 
670 { 
671 Point centroid = SgGeneral::sgGetCentroid(contourMax); 
672 
673 centroids.push_back(centroid); 
674 
675 while (centroids.size() > lengthTrajectory) centroids.pop_front(); 
676 } 
677 
678 float area = SgGeneral::sgGetArea(contourFires); 
679 areas.push_back(area); 
680 if (areas.size() > sizeWindow) areas.pop_front(); 
681 
682 //calculate bounding box of multiple contours 
683 int yMin = 999, yMax = 0, xMax = 0, xMin = 999; 
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684 
685 Point peak; 
686 for( int i = 0; i < contourFires.size(); i++ ) 
687 { 
688 if (contourFires[i].size() > 20) 
689 { 
690 for( int j = 0; j < contourFires[i].size(); j++ ) 
691 { 
692 if (contourFires[i][j].y > yMax) yMax = contourFires[i][j].y; 
693 else if(contourFires[i][j].y < yMin) 
694 { 
695 yMin = contourFires[i][j].y; 
696 peak.x = contourFires[i][j].x; 
697 peak.y = contourFires[i][j].y; 
698 } 
699 if (contourFires[i][j].x > xMax) xMax = contourFires[i][j].x; 
700 else if(contourFires[i][j].x < xMin) xMin = contourFires[i][j].x; 
701 } 
702 } 
703 } 
704 
705 // Input the informaton data 
706 heights.push_back(yMax-yMin); // WARNING int to float problem ?? 
707 
708 widths.push_back(xMax-xMin); // WARNING int to float problem ?? 
709 mheight.push_back(objectBoundingRectangle.height); // NEW Pushback 
motion height to "mheight" 
710 
711 if (heights.size() > sizeWindow) 
712 { 
713 heights.pop_front(); 
714 widths.pop_front(); 
715 mheight.pop_front(); 
716 } 
717 
718 //visualize ?? 
719 polylines(display,masks,true,CV_RGB(0,0,128),1); 
720 for (int j = 0; j < mask.size(); j++) 
circle(display,mask[j],2,CV_RGB(255,0,0),-1); 
721 
722 //mask the segmentation region 
723 /*Mat rgb[3]; 
724 split(display,rgb); 
725 rgb[0] += image; // Blue 
726 rgb[1] += image; // Green 
727 rgb[2] += image; // Red 
728 merge(rgb,3,display); 
729 */ 
730 
731 if (!contourFires.empty()) 
732 for( int i = 0; i < contourFires.size(); i++ ) 
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733 drawContours(display,contourFires,i,CV_RGB(0,0,0), 2); // draw contout 
line in display 
734 
735 //float scale = 255. / lengthTrajectory; 
736 double scale = 255. / lengthTrajectory; 
737 if(centroids.size() > 2) 
738 { 
739 for (int i = 0; i < centroids.size() - 1; i++) 
740 { 
741 circle(display, Point(centroids.back().x, centroids.back().y), 7, Scalar(255, 
0, 0) 
, 2); //draw centroid 
742 
743 line(display, Point(centroids.back().x, centroids.back().y), 
Point(centroids.back() 
.x, centroids.back().y - 15), 
744 Scalar(255, 0, 0), 2); 
745 line(display, Point(centroids.back().x, centroids.back().y), 
Point(centroids.back() 
.x, centroids.back().y + 15), 
746 Scalar(255, 0, 0), 2); 
747 line(display, Point(centroids.back().x, centroids.back().y), 
Point(centroids.back() 
.x - 15, centroids.back().y), 
748 Scalar(255, 0, 0), 2); 
749 line(display, Point(centroids.back().x, centroids.back().y), 
Point(centroids.back() 
.x + 15, centroids.back().y), 
750 Scalar(255, 0, 0), 2); 
751 
752 //line(display, centroids[i], centroids[i+1], CV_RGB(0, scale*i, 0), 2); 
753 } 
754 } 
755 
756 circle(display,centroids.back(),3,CV_RGB(0,255,0),-1); // ???? 
757 
758 //make some temp x and y variables 
759 int x = theObject[0]; 
760 int y = theObject[1]; 
761 
762 //draw some crosshairs (motion detection) 
763 
764 circle(display, Point(x, y), 7, Scalar(0, 255, 0), 2); 
765 
766 line(display, Point(x, y), Point(x, y - 15), Scalar(0, 255, 0), 2); 
767 line(display, Point(x, y), Point(x, y + 15), Scalar(0, 255, 0), 2); 
768 line(display, Point(x, y), Point(x - 15, y), Scalar(0, 255, 0), 2); 
769 line(display, Point(x, y), Point(x + 15, y), Scalar(0, 255, 0), 2); 
770 
771 // drawing region of interest (ROI) based on xMin,yMin,xMax,yMax 
(Threshold analysis) 
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772 rectangle(display, Point(xMin, yMin), Point(xMax, yMax), CV_RGB(255, 
255, 0), 2); // 
threshold analysis 
773 
774 rectangle(display, Point(objectBoundingRectangle.x, 
objectBoundingRectangle.y), 
775 Point(objectBoundingRectangle.x + objectBoundingRectangle.width, 
objectBoundingRectangle.y + objectBoundingRectangle.height), 
776 CV_RGB(255, 0, 0), 2); 
777 
778 //draw time stamp to video in bottom left corner. We draw it before we write 
so that it is 
written on the video file. 
779 rectangle(display, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -
1); 
780 putText(display, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); // 
show date time on 'display' 
781 rectangle(frame2, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -
1); 
782 putText(frame2, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); // 
show date time on 'frame' 
783 rectangle(grayimage, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), 
-1); 
784 putText(grayimage, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); 
// 
show date time on 'grayimage' 
785 
786 //draw the height, width and area region of interest 
787 string heightFire = "ROI Height (Intnesity) : " + to_string(yMax - yMin); 
788 //putText(display, heightFire, Point(40, 20), 1, 1, CV_RGB(0, 0, 255), 2); 
789 
790 string widthFire = "ROI Width (Intensity) : " + to_string(xMax - xMin); 
791 //putText(display, widthFire, Point(40, 40), 1, 1, CV_RGB(0, 0, 255), 2); 
792 
793 string ROIFire = "ROI Area (Intensity) : " + to_string((yMax - yMin)*(xMax - 
xMin)); 
794 //putText(display, ROIFire, Point(40, 60), 1, 1, CV_RGB(0, 0, 255), 2); 
795 
796 string fireThreshold = "Otsu : " + to_string(thresholdParameter); 
// Intensity threshold 
797 //putText(display, fireThreshold, Point(320, 20), 1, 1, CV_RGB(255, 255, 
255), 2); 
798 
799 //draw the centroid coordinate X and Y 
800 string cenFire = "X,Y (Intensity) : "; 
801 if (!centroids.empty()) 
802 cenFire = "X,Y (Intensity) : " + to_string(centroids.back().x) + "," + to_string 
(centroids.back().y); 
803 //putText(display, cenFire, Point(40, 80), 1, 1, CV_RGB(0, 0, 255), 2); 
804 
805 string movcenFire = "X,Y (Motion) : " + to_string(x)+","+to_string(y); 
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806 //putText(display, movcenFire, Point(40, 100), 1, 1, CV_RGB(255, 0, 0), 2); 
807 
808 string ROIMovFire = "ROI Area (Motion) : " + 
to_string(objectBoundingRectangle.width * 
objectBoundingRectangle.height); 
809 //putText(display, ROIMovFire, Point(40, 120), 1, 1, CV_RGB(255, 0, 0), 2); 
810 
811 string ROIMovheightFire = "ROI Height (Motion) : " + 
to_string(objectBoundingRectangle. 
height); 
812 //putText(display, ROIMovheightFire, Point(40, 140), 1, 1, CV_RGB(255, 0, 
0), 2); 
813 
814 string ROIMovwidthFire = "ROI Width (Motion) : " + 
to_string(objectBoundingRectangle.width) 
; 
815 //putText(display, ROIMovwidthFire, Point(40, 160), 1, 1, CV_RGB(255, 0, 
0), 2); 
816 
817 
818 /*Histogram analysis*/ 
819 
820 /// Separate the image in 3 places ( B, G and R ) 
821 vector<Mat> bgr_planes; 
822 split(frame2, bgr_planes); 
823 
824 // Separate the image in gray places 
825 vector<Mat> gray_planes; 
826 split(image, gray_planes); 
827 
828 vector<Mat> grayplanes; 
829 split(grayimage, grayplanes); 
830 
831 /// Establish the number of bins 
832 int histSize = 256; //From 0 to 255 
833 
834 /// Set the ranges (for B,G,R and gray) 
835 float range[] = { 0, 256 }; //the upper boundary is exclusive 
836 const float* histRange = { range }; 
837 
838 bool uniform = true; bool accumulate = false; 
839 
840 Mat b_hist, g_hist, r_hist, gray_hist; 
841 
842 /// Compute the histograms: 
843 calcHist(andbgr_planes[0], 1, 0, Mat(), b_hist, 1, andhistSize, 
andhistRange, uniform, 
accumulate); 
844 calcHist(andbgr_planes[1], 1, 0, Mat(), g_hist, 1, andhistSize, 
andhistRange, uniform, 
accumulate); 
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845 calcHist(andbgr_planes[2], 1, 0, Mat(), r_hist, 1, andhistSize, 
andhistRange, uniform, 
accumulate); 
846 
847 calcHist(andgrayplanes[0], 1, 0, Mat(), gray_hist, 1, andhistSize, 
andhistRange, uniform, 
accumulate); 
848 
849 // Draw the histograms for B, G and R 
850 int hist_w = 512; int hist_h = 400; 
851 int bin_w = cvRound((double)hist_w / histSize); // int histSize = 256 
852 
853 Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
854 
855 Mat R_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
856 Mat G_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
857 Mat B_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
858 
859 Mat grayhistImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
860 
861 /// Normalize the result to [ 0, histImage.rows ] 
862 normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat()); 
863 normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat()); 
864 normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat()); 
865 
866 normalize(b_hist, b_hist, 0, B_histImage.rows, NORM_MINMAX, -1, Mat()); 
867 normalize(g_hist, g_hist, 0, G_histImage.rows, NORM_MINMAX, -1, Mat()); 
868 normalize(r_hist, r_hist, 0, R_histImage.rows, NORM_MINMAX, -1, Mat()); 
869 
870 normalize(gray_hist, gray_hist, 0, grayhistImage.rows, NORM_MINMAX, -
1, Mat()); //Normalize 
the gray result 
871 
872 /// Draw for each channel 
873 int gray_maxtemp = 0; 
874 int red_maxtemp = 0; 
875 int green_maxtemp = 0; 
876 
877 for (int i = 0; i < histSize; i++) 
878 { 
879 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))), 
880 Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))), 
881 Scalar(255, 0, 0), 0, 8, 0); 
// Blue colour 
882 
883 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))), 
884 Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))), 
885 Scalar(0, 255, 0), 0, 8, 0); 
// Green colour 
886 
887 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))), 
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888 Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))), 
889 Scalar(0, 0, 255), 0, 8, 0); 
// Red colour 
890 
891 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(gray_hist.at<float>(i - 
1))), 
// Gray color 
892 Point(bin_w*(i), hist_h - cvRound(gray_hist.at<float>(i))), 
893 Scalar(255, 255, 255), 0, 8, 0); 
894 
895 /* Individual histogram */ 
896 line(B_histImage, Point(bin_w*(i - 1), hist_h), 
897 Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))), 
898 Scalar(255, 0, 0), 0, 8, 0); 
// Blue colour 
899 
900 line(G_histImage, Point(bin_w*(i - 1), hist_h), 
901 Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))), 
902 Scalar(0, 255, 0), 0, 8, 0); 
// Green colour 
903 
904 line(R_histImage, Point(bin_w*(i - 1), hist_h), 
905 Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))), 
906 Scalar(0, 0, 255), 0, 8, 0); 
// Red colour 
907 
908 line(grayhistImage, Point(bin_w*(i - 1), hist_h), 
// Gray color 
909 Point(bin_w*(i), hist_h - cvRound(gray_hist.at<float>(i))), 
910 Scalar(255, 255, 255), 0, 8, 0); 
911 
912 // Indicate the threshold 
913 line(grayhistImage, Point(bin_w*(thresholdParameter), hist_h), 
914 Point(bin_w*(thresholdParameter), hist_h - 
cvRound(gray_hist.at<float>(i))), 
915 Scalar(0, 255, 255), 0, 4, 0); 
916 
917 line(histImage, Point(bin_w*(thresholdParameter), hist_h), 
918 Point(bin_w*(thresholdParameter), hist_h - 
cvRound(gray_hist.at<float>(i))), 
919 Scalar(0, 255, 255), 0, 8, 0); 
920 
921 /* Analysis the maximim gray level */ 
922 float gray_binVal = gray_hist.at<float>(i); 
923 if (gray_hist.at<float>(i) > gray_maxtemp) 
924 { 
925 gray_maxtemp = i; 
926 } 
927 
928 } 
929 
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930 //display on grayhistImage 
931 string maxgray = "Max Gray Level : " + to_string(gray_maxtemp); 
932 putText(grayhistImage, maxgray, Point(40, 20), 1, 1, CV_RGB(255, 255, 
255), 2); 
933 
934 string threshold_value = "Threshold by Otsu : " + 
to_string(thresholdParameter); 
935 //putText(grayhistImage, threshold_value, Point(40, 40), 1, 1, 
CV_RGB(255, 255, 0), 2); 
936 
937 //diaply on histImage 
938 string threshold_value_hist = "Threshold by Otsu : " + 
to_string(thresholdParameter); 
939 putText(histImage, threshold_value_hist, Point(40, 20), 1, 1, CV_RGB(255, 
255, 0), 2); 
940 
941 string nosofpixels_red = "Pixels no.(R) : " + to_string(r_hist.at<float> 
(thresholdParameter)); 
942 putText(histImage, nosofpixels_red, Point(40, 40), 1, 1, CV_RGB(255, 0, 
0), 2); 
943 string pixelsno_red = to_string((int)r_hist.at<float>(thresholdParameter)); 
944 
945 string nosofpixels_green = "Pixels no.(G) : " + to_string(g_hist.at<float> 
(thresholdParameter)); 
946 putText(histImage, nosofpixels_green, Point(40, 60), 1, 1, CV_RGB(0, 255, 
0), 2); 
947 string pixelsno_green = 
to_string((int)g_hist.at<float>(thresholdParameter)); 
948 
949 string nosofpixels_blue = "Pixels no.(B) : " + to_string(b_hist.at<float> 
(thresholdParameter)); 
950 putText(histImage, nosofpixels_blue, Point(40, 80), 1, 1, CV_RGB(0, 0, 
255), 2); 
951 string pixelsno_blue = to_string((int)b_hist.at<float>(thresholdParameter)); 
952 
953 file << setw(1) << setiosflags(ios::right) << gettimeonly() << "," 
//date and time 
954 << setw(4) << setiosflags(ios::right) << thresholdParameter << "," 
//threhsold Otsu 
955 << setw(5) << setiosflags(ios::right) << gray_maxtemp << "," 
//Max. gray level 
956 << setw(8) << setiosflags(ios::right) << (yMax - yMin)*(xMax - xMin) << "," 
//ROI 
957 << setw(4) << setiosflags(ios::right) << (yMax - yMin) << "," 
//Region Height 
958 << setw(4) << setiosflags(ios::right) << centroids.back().x <<"," 
//Centroid (Intensity) 
959 << setw(3) << setiosflags(ios::right) << centroids.back().y << "," 
//Centroid (Intensity) 
960 << setw(5) << setiosflags(ios::right) << x <<"," 
//Centroid X (Motion) 
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961 << setw(3) << setiosflags(ios::right) << y << "," 
//Centroid Y (Motion) 
962 << setw(5) << setiosflags(ios::right) << objectBoundingRectangle.height 
<< "," 
//motion object height 
963 << setw(7) << setiosflags(ios::right) << objectBoundingRectangle.width * 
objectBoundingRectangle.height << "," //ROI (Motion) 
964 << setw(7) << setiosflags(ios::right) << pixelsno_red << "," 
//red color pixels in threshold Otsu 
965 << setw(7) << setiosflags(ios::right) << pixelsno_green << "," 
//green color pixels in threshold Otsu 
966 << setw(7) << setiosflags(ios::right) << pixelsno_blue << "," 
//blue color pixels in threshold Otsu 
967 << endl; 
968 
969 
970 //display the output on screen 
971 
972 string text1 = "Developed by : Arthur Wong" ; 
973 
974 int fontFace = FONT_HERSHEY_SIMPLEX; 
975 double fontScale = 0.8; 
976 int thickness = 2.0; 
977 
978 Mat img(300, 900, CV_8UC3, Scalar::all(0)); 
979 
980 putText(img, string("VIDEO FIRE DETECTION"), Point(20, 20), fontFace, 
fontScale, Scalar:: 
all(255), thickness, 8); 
981 
982 putText(img, threshold_value, Point (20, 45), fontFace, fontScale, 
Scalar::all(255), 
thickness, 8); 
983 putText(img, nosofpixels_red, Point(20, 70), fontFace, fontScale, 
Scalar::all(255), 
thickness, 8); 
984 putText(img, nosofpixels_green, Point(20, 95), fontFace, fontScale, 
Scalar::all(255), 
thickness, 8); 
985 putText(img, nosofpixels_blue, Point(20, 120), fontFace, fontScale, 
Scalar::all(255), 
thickness, 8); 
986 putText(img, heightFire, Point(20, 145), fontFace, fontScale, 
Scalar::all(255), thickness, 
8); 
987 putText(img, widthFire, Point(20, 170), fontFace, fontScale, 
Scalar::all(255), thickness, 
8); 
988 putText(img, cenFire, Point(20, 195), fontFace, fontScale, Scalar::all(255), 
thickness, 8); 
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989 putText(img, ROIFire, Point(20, 220), fontFace, fontScale, Scalar::all(255), 
thickness, 8); 
990 
991 putText(img, ROIMovheightFire, Point(500, 45), fontFace, fontScale, 
Scalar::all(255), 
thickness, 8); 
992 putText(img, ROIMovwidthFire, Point(500, 70), fontFace, fontScale, 
Scalar::all(255), 
thickness, 8); 
993 putText(img, movcenFire, Point(500, 95), fontFace, fontScale, 
Scalar::all(255), thickness, 
8); 
994 putText(img, ROIMovFire, Point(500, 120), fontFace, fontScale, 
Scalar::all(255), thickness, 
8); 
995 
996 putText(img, text1, Point (500, 280), fontFace, fontScale, Scalar::all(255), 
thickness, 8); 
997 
998 namedWindow("data", WINDOW_NORMAL); 
999 imshow("data", img); 
1000 
1001 
1002 
/****************************************************************************************
** 
***********************************************************/ 
1003 cvNamedWindow("input", WINDOW_NORMAL); 
1004 cvNamedWindow("gray", WINDOW_NORMAL); 
1005 cvNamedWindow("display",WINDOW_NORMAL); 
1006 
1007 cv::imshow("input",frame2); // display input video image 
1008 cv::imshow("gray",grayimage); // display gray video image 
1009 cv::imshow("display",display); // display final video image 
1010 
1011 /// Display histogram 
1012 cvNamedWindow("Gray Hist", WINDOW_NORMAL); 
1013 
1014 cvNamedWindow("Red Hist", WINDOW_NORMAL); 
1015 cvNamedWindow("Green Hist", WINDOW_NORMAL); 
1016 cvNamedWindow("Blue Hist", WINDOW_NORMAL); 
1017 
1018 cvNamedWindow("rgb and gray_Hist", WINDOW_NORMAL); 
1019 
1020 cv::imshow("Red Hist", R_histImage); 
1021 cv::imshow("Green Hist", G_histImage); 
1022 cv::imshow("Blue Hist", B_histImage); 
1023 cv::imshow("Gray Hist", grayhistImage); 
1024 cv::imshow("rgb and gray_Hist", histImage); 
1025 
1026 if (widths.size() > 1) // SgSignal.cpp line no 332 
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1027 { 
1028 
1029 //vector<float> tempH; 
1030 vector<float> motionheight; 
1031 //vector<float> tempW; 
1032 //vector<float> tempA; 
1033 
1034 //signal.sgDequeToVector(widths,tempW); 
1035 //signal.sgDequeToVector(heights, tempH); 
1036 signal.sgDequeToVector(mheight,motionheight); 
1037 //signal.sgDequeToVector(areas,tempA); 
1038 
1039 //signal.sgNormalizeByMinMax(tempW,tempW,0,1000); //original 300 red 
1040 //signal.sgNormalizeByMinMax(tempH, tempH, 0, 1000); //original 300 
green 
1041 signal.sgNormalizeByMinMax(motionheight, motionheight, 0, 300); 
1042 //signal.sgNormalizeByMinMax(tempA,tempA,0,30000); 
1043 
1044 Mat graph = Mat::zeros(200, 1920, CV_8UC3); 
1045 //signal.sgDraw01(graph, CV_RGB(255, 255, 255), tempH, 1); 
1046 signal.sgDraw01(graph, CV_RGB(255, 255, 255), motionheight, 1); 
1047 //signal.sgDraw01(graph,CV_RGB(255,0,0),tempW,1); 
1048 
1049 
1050 //calculation and display on chart 
1051 int intensityflameheight = (yMax - yMin); 
1052 int motionflameheight = (objectBoundingRectangle.height); 
1053 
1054 
1055 //string intflicker = "flame height (intensity) : " + 
to_string(intensityflameheight); 
1056 //putText(graph, intflicker, Point(40, 60), 1, 1, CV_RGB(255, 255, 255), 2); 
1057 
1058 string motflicker = "Object motion (height) : " + 
to_string(motionflameheight); 
1059 putText(graph, motflicker, Point(40, 20), 1, 1, CV_RGB(255, 255, 255), 2); 
1060 
1061 cvNamedWindow("Motion", WINDOW_NORMAL); 
1062 cv::imshow("Motion", graph); 
1063 
1064 
1065 } 
1066 
1067 ///////////////////////////////// CALCULATION OPTICAL FLOW 
////////////////////////////// 
1068 
1069 namedWindow("flow", WINDOW_NORMAL); 
1070 //namedWindow("realtime input", 1); 
1071 
1072 video.read(frame2); 
1073 cvtColor(frame2, gray, COLOR_BGR2GRAY); // 
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1074 
1075 //imshow("realtime input", frame2); 
1076 imshow("flow", gray); 
1077 
1078 if (prevgray.data) 
1079 { 
1080 calcOpticalFlowFarneback(prevgray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0); 
1081 
1082 cvtColor(prevgray, cflow, COLOR_GRAY2BGR); 
1083 drawOptFlowMap(flow, cflow, 16, 1.5, Scalar(0, 255, 0)); 
1084 
1085 imshow("flow", cflow); 
1086 } 
1087 
1088 ///////////////////////////////////////////////////////////////////////////////////////// 
1089 
1090 /* 
1091 int c = cvWaitKey(30); 
1092 if(c == 27) break; 
1093 else if (c == 32) pause = !pause; 
1094 else if (char(c) == '+') for (int i = 0; i < 30*5; i++) video.grab(); 
1095 else if (char(c) == 'n') video >> frame; 
1096 */ 
1097 
1098 switch (waitKey(30)) 
1099 { 
1100 case 27: //'Esc' has been pressed. this wil exit the code. 
1101 file << "END" << endl; 
1102 file.close(); 
1103 return 0; 
1104 
1105 case 32: //'Space bar' has been pressed. this will toggle tracking 
1106 trackingEnabled = !trackingEnabled; 
1107 if (trackingEnabled == false) cout << "Tracking disabled." << endl; 
1108 else cout << "Tracking enabled." << endl; 
1109 break; 
1110 
1111 case 112: //'p' has been pressed. this will pause/resume the code. 
1112 pause = !pause; 
1113 if (pause == true) 
1114 { 
1115 cout << "Code paused, press 'p' again to resume" << endl; 
1116 while (pause == true) 
1117 { 
1118 //stay in this loop until 
1119 switch (waitKey()) 
1120 { 
1121 //a switch statement inside a switch statement? Mind blown. 
1122 case 112: 
1123 //change pause back to false 
1124 pause = false; 
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1125 cout << "Code Resumed" << endl; 
1126 break; 
1127 
1128 
1129 } 
1130 } 
1131 
1132 } 
1133 
1134 } 
1135 swap(prevgray, gray); // OPTICAL FLOW 
1136 } 
1137 //cvDestroyWindow("fire"); 
1138 
1139 return 0; // Exit the program 
1140 
1141 } 
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Appendix B1: Revised C++ / OpenCV source code 

1 // opencvApplication.cpp : Defines the entry point for the console application. 
2 // 
3 
4 #define _CRT_SECURE_NO_DEPRECATE 
5 
6 
7 #include <cctype> 
8 #include <iostream> // Basic input and output library 
9 #include <iomanip> 
10 #include <iterator> 
11 #include <stdio.h> 
12 #include <math.h> 
13 #include <time.h> 
14 #include <windows.h> 
15 #include <fstream> // For file stream 
16 
17 #include "opencv2/video/tracking.hpp" // For optical flow analysis 
18 #include "opencv2/highgui/highgui.hpp" // For histogram 
19 #include "opencv2/imgproc/imgproc.hpp" // For histogram 
20 
21 #include "C:\Users\arthur\Downloads\OpenCV with Visual 
Studio\Code\opencvApplication_fire4.1\sgVision\ 
SgGeneral.h" 
22 #include "C:\Users\arthur\Downloads\OpenCV with Visual 
Studio\Code\opencvApplication_fire4.1\sgVision\ 
SgSignal.h" 
23 #include "C:\Users\arthur\Downloads\OpenCV with Visual 
Studio\Code\opencvApplication_fire4.1\sgVision\ 
SgTimeControl.h" 
24 
25 using namespace std; 
26 using namespace cv; 
27 
28 bool pause = false; 
29 
30 //our sensitivity value to be used in the absdiff() function 
31 //for higher sensitivity, use a lower value 
32 const static int SENSITIVITY_VALUE = 40; 
33 
34 //size of blur used to smooth the intensity image output from absdiff() function 
35 const static int BLUR_SIZE = 10; // SMOOTH THE INTENSITY (EXISING, FOR 
MOTION 
DETECTION IS 10) 
36 const static int BLUR_SIZE_INTENSITY = 7; // SMOOTH THE INTENSITY 
37 
38 //these two can be toggled by pressing 'd' or 't' (Motion detection code) (Debug 
mode is disabled) 
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39 //bool debugMode; 
40 bool trackingEnabled; 
41 
42 //int thresholdParameter = 255; // This thresholdParameter control the intensity 
43 int thresholdParameter; // This thresholdParameter control the intensity 
44 
45 int theObject[2] = { 0, 0 }; 
46 
47 //bounding rectangle of the object, we will use the center of this as its position 
48 Rect objectBoundingRectangle = Rect(0, 0, 0, 0); 
49 
50 //float fps = 25.f; 
51 
52 vector<vector<Point>> masks; 
53 vector<Point> mask; 
54 deque<Point> centroids; 
55 
56 //Mat frame; 
57 
58 // get time information // 
59 
60 string intToString(int number) 
61 { 
62 
63 //this function has a number input and string output 
64 std::stringstream ss; 
65 ss << number; 
66 return ss.str(); 
67 } 
68 
69 /* Display time and date on hardcopy */ 
70 string getDateTime() 
71 { 
72 //get the system time 
73 SYSTEMTIME theTime; 
74 GetLocalTime(andtheTime); 
75 //create string to store the date and time 
76 string dateTime; 
77 
78 //convert year to string 
79 string year = intToString(theTime.wYear); 
80 
81 //use stringstream to add a leading '0' to the month (ie. 3 -> 03) 
82 //we use 'setw(2)' so that we force the string 2 characters wide with a zero in front 
of it. 
83 //if the month is '10' then it will remain '10' 
84 std::stringstream m; 
85 m << std::setfill('0') << std::setw(2) << theTime.wMonth; 
86 string month = m.str(); 
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87 //day 
88 std::stringstream d; 
89 d << std::setfill('0') << std::setw(2) << theTime.wDay; 
90 string day = d.str(); 
91 //hour 
92 std::stringstream hr; 
93 hr << setfill('0') << std::setw(2) << theTime.wHour; 
94 string hour = hr.str(); 
95 //minute 
96 std::stringstream min; 
97 min << setfill('0') << std::setw(2) << theTime.wMinute; 
98 string minute = min.str(); 
99 //second 
100 std::stringstream sec; 
101 sec << setfill('0') << std::setw(2) << theTime.wSecond; 
102 string second = sec.str(); 
103 
104 //here we use the year, month, day, hour, minute info to create a custom string 
105 //this will be displayed in the bottom left corner of our video feed. 
106 dateTime = year + "-" + month + "-" + day + " " + hour + ":" + minute + ":" + second; 
107 
108 return dateTime; 
109 } 
110 
111 /* Display time only on hardcopy */ 
112 string gettimeonly() 
113 { 
114 //get the system time 
115 SYSTEMTIME theTime; 
116 GetLocalTime(andtheTime); 
117 //create string to store the date and time 
118 string timeonly; 
119 
120 //convert year to string 
121 
122 //hour 
123 std::stringstream hr; 
124 hr << setfill('0') << std::setw(2) << theTime.wHour; 
125 string hour = hr.str(); 
126 //minute 
127 std::stringstream min; 
128 min << setfill('0') << std::setw(2) << theTime.wMinute; 
129 string minute = min.str(); 
130 //second 
131 std::stringstream sec; 
132 sec << setfill('0') << std::setw(2) << theTime.wSecond; 
133 string second = sec.str(); 
134 
135 //here we use the year, month, day, hour, minute info to create a custom string 
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136 //this will be displayed in the bottom left corner of our video feed. 
137 //dateTime = year + "-" + month + "-" + day + " " + hour + ":" + minute + ":" + 
second; 
138 timeonly = hour + ":" + minute + ":" + second; 
139 
140 return timeonly; 
141 } 
142 
143 /* Display time and date on hardcopy */ 
144 string getdateonly() 
145 { 
146 //get the system time 
147 SYSTEMTIME theTime; 
148 GetLocalTime(andtheTime); 
149 //create string to store the date and time 
150 string dateonly; 
151 
152 //convert year to string 
153 string year = intToString(theTime.wYear); 
154 
155 //use stringstream to add a leading '0' to the month (ie. 3 -> 03) 
156 //we use 'setw(2)' so that we force the string 2 characters wide with a zero in front 
of it. 
157 //if the month is '10' then it will remain '10' 
158 std::stringstream m; 
159 m << std::setfill('0') << std::setw(2) << theTime.wMonth; 
160 string month = m.str(); 
161 //day 
162 std::stringstream d; 
163 d << std::setfill('0') << std::setw(2) << theTime.wDay; 
164 string day = d.str(); 
165 
166 //here we use the year, month, day, hour, minute info to create a custom string 
167 //this will be displayed in the bottom left corner of our video feed. 
168 dateonly = year + "-" + month + "-" + day; 
169 
170 return dateonly; 
171 } 
172 
173 string getDateTimeForFile() 
174 { 
175 //this function does the exact same as "getDateTime()" 
176 //however it returns a string that can be used as a filename 
177 SYSTEMTIME theTime; 
178 GetLocalTime(andtheTime); 
179 string dateTime; 
180 
181 string year = intToString(theTime.wYear); 
182 
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183 std::stringstream m; 
184 m << std::setfill('0') << std::setw(2) << theTime.wMonth; 
185 string month = m.str(); 
186 
187 std::stringstream d; 
188 d << std::setfill('0') << std::setw(2) << theTime.wDay; 
189 string day = d.str(); 
190 
191 std::stringstream hr; 
192 hr << setfill('0') << std::setw(2) << theTime.wHour; 
193 string hour = hr.str(); 
194 
195 std::stringstream min; 
196 min << setfill('0') << std::setw(2) << theTime.wMinute; 
197 string minute = min.str(); 
198 
199 std::stringstream sec; 
200 sec << setfill('0') << std::setw(2) << theTime.wSecond; 
201 string second = sec.str(); 
202 
203 //here we use "_" instead of "-" and ":" 
204 //if we try to save a filename with "-" or ":" in it we will get an error. 
205 dateTime = year + "_" + month + "_" + day + "_" + hour + "h" + minute + "m" + 
second + "s"; 
206 
207 return dateTime; 
208 } 
209 
210 /* Dispaly time and date above */ 
211 
212 /* Motion detection below */ 
213 bool detectMotion(Mat thresholdImage, Mat andcameraFeed){ 
214 //create motionDetected variable. 
215 bool motionDetected = false; 
216 
217 //create temp Mat for threshold image 
218 Mat temp; 
219 thresholdImage.copyTo(temp); 
220 
221 //these two vectors needed for output of findContours 
222 vector< vector<Point> > contours; 
223 vector<Vec4i> hierarchy; 
224 
225 //find contours of filtered image using openCV findContours function 
226 
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_
SIMPLE );// retrieves all 
contours 
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227 findContours(temp, contours, hierarchy, CV_RETR_EXTERNAL, 
CV_CHAIN_APPROX_SIMPLE);// retrieves 
external contours 
228 
229 //if contours vector is not empty, we have found some objects 
230 //we can simply say that if the vector is not empty, motion in the video feed has 
been detected. 
231 if (contours.size()>0)motionDetected = true; 
232 else motionDetected = false; 
233 
234 //find the motion object 
235 if (motionDetected){ 
236 //the large contour is found at the end of the contours vector 
237 //we will simply assume that the biggest contour is the object 
238 vector< vector<Point> > largestContourVec; 
239 largestContourVec.push_back(contours.at(contours.size() - 1)); 
240 
241 //make a bounding rectangle around the largest contour then find its centroid 
242 //this will be the objects final estimated position 
243 objectBoundingRectangle = boundingRect(largestContourVec.at(0)); 
244 int xpos = objectBoundingRectangle.x + objectBoundingRectangle.width / 2; 
245 int ypos = objectBoundingRectangle.y + objectBoundingRectangle.height / 2; 
246 
247 
248 //update the objects position by changing the 'theObject' array values 
249 theObject[0] = xpos, theObject[1] = ypos; 
250 
251 } 
252 
253 return motionDetected; 
254 
255 } 
256 /* Motion detection code above */ 
257 
258 ///////////////////////////////// CALCULATION OPTICAL FLOW 
/////////////////////////////////////////// 
//// 
259 void drawOptFlowMap(const Matand flow, Matand cflowmap, int step, double, 
const Scalarand color) 
260 { 
261 for (int y = 0; y < cflowmap.rows; y += step) 
262 for (int x = 0; x < cflowmap.cols; x += step) 
263 { 
264 const Point2fand fxy = flow.at<Point2f>(y, x); 
265 
266 // Displacement direction 
267 line(cflowmap, Point(x, y), Point(cvRound(x + fxy.x), cvRound(y + fxy.y)), color); 
268 
269 // Green dot 



B1-7 

 

270 circle(cflowmap, Point(x, y), 2, color, -1); 
271 } 
272 } 
273 ////////////////////////////////////////////////////////////////////////////////////////////////////// 
/// 
274 
275 void CallBackFunc(int event, int x, int y, int flags, void* userdata) 
276 { 
277 if ( event == EVENT_LBUTTONDOWN ) 
278 { 
279 Point p = Point(x,y); 
280 mask.push_back(p); 
281 } 
282 else if (event == EVENT_RBUTTONDOWN) 
283 { 
284 masks.push_back(mask); 
285 mask.clear(); 
286 } 
287 else if (event == EVENT_MBUTTONDOWN) 
288 { 
289 mask.clear(); 
290 masks.clear(); 
291 } 
292 
293 } 
294 
295 #define FILEPATH "D:/" + getDateTimeForFile() + ".csv" //define file stream object 
296 
297 // open the video image // 
298 int main( int argc, const char** argv ) //program entry points 
299 { 
300 
301 /* Declaraction the motion detection code start */ 
302 
303 //set recording and startNewRecording initially to false. 
304 bool recording = false; 
305 bool startNewRecording = false; 
306 int inc = 0; 
307 bool firstRun = true; 
308 //if motion is detected in the video feed, we will know to start recording. 
309 bool motionDetected = false; 
310 
311 //pause and resume code (if needed) 
312 bool pause = false; 
313 //set debug mode and trackingenabled initially to false 
314 //these can be toggled using 'd' and 't' 
315 //debugMode = false; 
316 trackingEnabled = false; 
317 
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318 //set up the matrices that we will need 
319 //the two frames we will be comparing 
320 Mat frame1, frame2; 
321 //their grayscale images (needed for absdiff() function) 
322 Mat grayImage1, grayImage2; 
323 //resulting difference image 
324 Mat differenceImage; 
325 //thresholded difference image (for use in findContours() function) 
326 Mat thresholdImage; 
327 
328 Mat prevgray, gray; //OPTICAL FLOW 
329 Mat flow, cflow; //OPTICAL FLOW 
330 
331 Mat src; // Add for image inpuut 
332 
333 /* Declaraction the motion detection code end */ 
334 
335 /* Trackbar control threshold value below */ 
336 SgSignal signal; 
337 //cvNamedWindow("display", 0); 
338 //createTrackbar( "threshold", "display", andthresholdParameter, 255, NULL ); 
339 //setMouseCallback("display", CallBackFunc, NULL); 
340 
341 /* Trackbar control threshold value above*/ 
342 
343 VideoCapture cap("C:\\Users\arthur\Desktop\Video Clips\Fire and smoke video 
clips\fire1.avi"); 
344 
345 //VideoCapture cap("C:\\Users\arthur\Documents\My Documents\Desptop 
folder\Fire video\fire1.avi"); 
346 if (!cap.isOpened()) 
347 { 
348 printf("Fail to open"); 
349 return -1; 
350 } 
351 Mat frame; 
352 
353 while (1) 
354 { 
355 cap >> frame; 
356 namedWindow("video", CV_WINDOW_NORMAL); 
357 imshow("video", frame); 
358 } 
359 
360 
361 
362 
363 /* Start access camera below */ 
364 VideoCapture video; 
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365 video.open(0); //Access the webcam. 
366 video >> frame1; //Input the first real time image to frame1 
367 
368 VideoWriter oVideoWriter; //create videoWriter object, not initialized yet (Motion 
detection 
code) 
369 
370 /// for realtime video 
371 if (!video.isOpened()) 
372 { 
373 std::cout << "ERROR!!! could not access the webcam !!!" << std::endl; 
374 system("PAUSE"); 
375 return EXIT_SUCCESS; 
376 //exit(1); 
377 } 
378 
379 // Record the data to file 
380 
381 fstream file; 
382 
383 file.open(FILEPATH, ios::out | ios::trunc); 
384 
385 if (!file)// Check file open or not 
386 { 
387 cerr << "Sorry!!! Can't open file in Hard drive !!!" << endl; 
388 exit(1); 
389 } 
390 
391 double dWidth = video.get(CV_CAP_PROP_FRAME_WIDTH); //get the width of 
frames1 of the video 
392 double dHeight = video.get(CV_CAP_PROP_FRAME_HEIGHT); //get the height 
of frames1 of the video 
393 
394 //set framesize for use with videoWriter 
395 Size frameSize(static_cast<int>(dWidth), static_cast<int>(dHeight)); 
396 
397 /* Display on command prompt */ 
398 cout << "-------------------------------------------------------------------------------" << endl; 
399 cout << "VIDEO FIRE DETECTION" << endl; 
400 cout << "Frame Size = " << frameSize << endl; 
401 cout << "Record date " << getdateonly () << endl; 
402 cout << "Start record time " << gettimeonly() << endl; 
403 cout << "OpenCV verson " << CV_VERSION << endl; 
404 cout << "-------------------------------------------------------------------------------" << endl; 
405 cout << "Press 'Esc' exit the Code" << endl; 
406 cout << "Press 'p' paused or resume the code" << endl; 
407 cout << "Press 'Space bar' will toggle tracking" << endl; 
408 
409 /* Write on hard disk */ 
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410 file << "VIDEO FIRE DETECTION DATA RECORD" << endl; 
411 file << "Frame Size " << "," << frameSize << endl; 
412 file << "Record date " << "," << getdateonly() << endl; 
413 file << "OpenCV verson " << CV_VERSION << endl; 
414 file << " " << endl; 
415 
416 file << setw(0) << "," << setiosflags(ios::right) << "FROM FLAME-INTENSITY" << 
"," << "," << "," 
417 << setw(0) << "," << "," << "," << setiosflags(ios::right) << "FROM FLAME-
MOTION" 
418 << endl; 
419 
420 file << setw(0) << setiosflags(ios::right) << "Time" << "," 
421 
422 << setw(0) << setiosflags(ios::right) << "Otsu Threshold value" << "," 
423 
424 << setw(0) << setiosflags(ios::right) << "Max. Gray level" << "," 
425 
426 << setw(0) << setiosflags(ios::right) << "ROI" << "," 
427 << setw(0) << setiosflags(ios::right) << "Height" << "," 
428 << setw(0) << setiosflags(ios::right) << "Centroid X" << "," 
429 << setw(0) << setiosflags(ios::right) << "Centroid Y" << "," 
430 
431 << setw(0) << setiosflags(ios::right) << "ROI" << "," 
432 << setw(0) << setiosflags(ios::right) << "Height" << "," 
433 << setw(0) << setiosflags(ios::right) << "Centroid X" << "," 
434 << setw(0) << setiosflags(ios::right) << "Centroid Y" << "," 
435 
436 << setw(0) << setiosflags(ios::right) << "Pixel no. (Red)" << "," 
437 << setw(0) << setiosflags(ios::right) << "Pixel no. (Green)" << "," 
438 << setw(0) << setiosflags(ios::right) << "Pixel no. (Blue)" 
439 << endl; 
440 
441 deque<float> heights,widths,areas,mheight; 
442 double numberFrame = video.get(CV_CAP_PROP_FRAME_COUNT); 
443 int countFrame = 0; 
444 float lengthTrajectory = 10.0f; 
445 float sizeWindow = 1920.0f; 
446 
447 while (true) // Infinite Loop 
448 { 
449 if (!pause) video >> frame1; 
450 countFrame++; 
451 if (countFrame == numberFrame - 1) 
452 { 
453 video.set(CV_CAP_PROP_POS_FRAMES, 1); 
454 countFrame = 1; 
455 continue; 
456 } 
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457 
458 //localize the fire 
459 Mat image, grayimage, grayimage2, fireMask, display, graph; 
460 
461 frame1.copyTo(display); 
462 
463 /*Motion detection code start*/ 
464 
465 //read first frame 
466 video.read(frame1); 
467 
468 ////////////////////////////////////////////////////////////////////////////////////////////// 
///// 
469 
470 //convert frame1 to gray scale for frame differencing 
471 cv::cvtColor(frame1, grayImage1, COLOR_BGR2GRAY); 
472 
473 //copy second frame 
474 video.read(frame2); 
475 
476 //convert frame2 to gray scale for frame differencing 
477 cv::cvtColor(frame2, grayImage2, COLOR_BGR2GRAY); 
478 
479 ////////////////////////////////////////////////////////////////////////////////////////////// 
////// 
480 
481 //perform frame differencing with the sequential images. This will output an 
"intensity image" 
482 //do not confuse this with a threshold image, we will need to perform thresholding 
afterwards. 
483 cv::absdiff(grayImage1, grayImage2, differenceImage); // 
COMPARE THE DIFF. for motion detection 
484 
485 //threshold intensity image at a given sensitivity value 
486 cv::threshold(differenceImage, thresholdImage, SENSITIVITY_VALUE, 255, 
THRESH_BINARY); // 
threshold --> SENSITIVITY VALUE = 40 
487 
488 /*if (debugMode == true){ 
489 //show the difference image and threshold image 
490 cv::imshow("Difference Image", differenceImage); 
491 cv::imshow("Threshold Image", thresholdImage); 
492 } 
493 else{ 
494 //if not in debug mode, destroy the windows so we don't see them anymore 
495 cv::destroyWindow("Difference Image"); 
496 cv::destroyWindow("Threshold Image"); 
497 }*/ 
498 
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499 //blur the image to get rid of the noise. This will output an intensity image 
500 cv::blur(thresholdImage, thresholdImage, cv::Size(BLUR_SIZE, BLUR_SIZE)); // 
Dilate and Erode 
501 
502 //threshold again to obtain binary image from blur output 
503 cv::threshold(thresholdImage, thresholdImage, SENSITIVITY_VALUE, 255, 
THRESH_BINARY); 
//Sensitivity value is 40 (threshold) 
504 
505 
506 /*if (debugMode == true){ 
507 //show the threshold image after it's been "blurred" 
508 
509 imshow("Final Threshold Image", thresholdImage); 
510 
511 } 
512 else { 
513 //if not in debug mode, destroy the windows so we don't see them anymore 
514 cv::destroyWindow("Final Threshold Image"); 
515 }*/ 
516 
517 //if tracking enabled, search for Motion 
518 if (trackingEnabled){ 
519 //detectMotion function will return true if motion is detected, else it will return false. 
520 //set motionDetected boolean to the returned value. 
521 motionDetected = detectMotion(thresholdImage, frame1); 
522 } 
523 else{ 
524 //reset our variables if tracking is disabled 
525 recording = false; 
526 motionDetected = false; 
527 } 
528 /*Motion detection code end*/ 
529 
530 /*Motion detection code start*/ 
531 //if we're in recording mode, write to file 
532 if (recording){ 
533 
534 oVideoWriter.write(frame1); 
535 //show "REC" in red 
536 //be sure to do this AFTER you write to the file so that "REC" doesn't show up 
537 //on the recorded video. 
538 circle(display, Point(500, 20), 12.0, Scalar(0, 0, 255), -1, 8); 
539 putText(display, "REC", Point(515, 28), 2, 1, Scalar(0, 0, 255), 2); 
540 
541 } 
542 if (motionDetected){ 
543 //show "MOTION DETECTED" in bottom left corner in green 
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544 //once again, be sure to do this AFTER you write to the file so that "MOTION 
DETECTED" 
doesn't show up 
545 //on the recorded video. Place this code above if(recording) to see what I'm talking 
about 
. 
546 putText(display, "MOTION DETECTED", cv::Point(0, 420), 2, 1, cv::Scalar(0, 255, 
0), 2); 
547 
548 //set recording to true since there is motion in the video feed. 
549 recording = true; 
550 
551 if (firstRun == true){ 
552 
553 string videoFileName = "D:/" + getDateTimeForFile() + ".avi"; 
554 cout << "File has been opened for writing: " << videoFileName << endl; 
555 oVideoWriter = VideoWriter(videoFileName, CV_FOURCC('D', 'I', 'V', '3'), 20, 
frameSize 
, true); 
556 
557 if (!oVideoWriter.isOpened()) 
558 { 
559 cout << "ERROR!!! Failed to initialize video writing in Hard drive !!!" << endl; 
560 getchar(); 
561 return -1; 
562 } 
563 firstRun = false; 
564 
565 } 
566 
567 } 
568 else recording = false; 
569 /*Motion detection code end*/ 
570 
571 cvtColor(frame2, grayimage, CV_BGR2GRAY); // Convert to gratscale and store 
in 
"grayimage" ORIGINAL DATA FROM WEBCAM 
572 
573 // Calculation the gray values (IN PROGRESS) 
574 double alpha = 0.2989, Beta = 0.5870, Gamma = 0.1140; // For calculation !! 
575 vector<Mat> bgr_planesforgray; 
576 split(frame2, bgr_planesforgray); 
577 /* 
578 float hist_val[256]; 
579 for (int i = 0; i < 256; i++) 
580 { 
581 hist_val[i] = 0.0; 
582 //cout << i << " " << hist_val[i] << endl; 
583 
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584 } 
585 */ 
586 /* Analysis for captured the Region of Interest */ 
587 cvtColor(frame2,image,CV_BGR2GRAY); // Convert to grayscale and store in 
"image" 
for analysis 
588 
589 // Smooths an image using the Gaussian filter (Dilate and Erode) 
590 
GaussianBlur(image,image,Size(BLUR_SIZE_INTENSITY,BLUR_SIZE_INTENSITY
),0,0); 
591 //blur(image, image, Size(BLUR_SIZE, BLUR_SIZE)); // BLUR_SIZE = 10 
reference: line no. 32 
592 
593 
594 // Otsu calculation (IN PROGRESS) 
595 /* 
596 float wB; //Weight Background 
597 float wF; //Weight Foreground 
598 float mB; //Mean Background 
599 float mF; //Mean Foreground 
600 float varBetween; //Between Class Variance 
601 float varMax; //Maximum Between Class Variance 
602 */ 
603 // Total number of pixels 
604 
605 
606 // Calculate Weight background 
607 
608 
609 //threshold(image, fireMask, thresholdParameter, 255, cv::THRESH_BINARY); 
610 
611 
612 // Optimal threshold value obtained by Otsu algorithm 
613 thresholdParameter = threshold(image, fireMask, 0, 255, cv::THRESH_BINARY | 
cv::THRESH_OTSU); 
// WARNING double to int problem ?? 
614 
615 fillPoly(fireMask,masks,cvScalarAll(0)); 
616 bitwise_and(image, fireMask, image); 
617 
618 /* 
619 /// Apply Histogram Equalization 
620 equalizeHist(image,image); 
621 
622 Mat dst; 
623 equalizeHist(image, dst); 
624 
625 /// Display results 
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626 namedWindow("equalized_window", CV_WINDOW_AUTOSIZE); 
627 imshow("equalized_window", dst); 
628 */ 
629 
630 //resize the user interface 
631 /* 
632 resizeWindow("input", 450, 350); 
633 resizeWindow("display", 450, 350); 
634 cvResizeWindow("rgb and gray_Hist", 450, 350); 
635 resizeWindow("data", 450, 350); 
636 
637 //resizeWindow("gray", 240, 120); 
638 //cvResizeWindow("Threshold by Otsu", 240, 120); 
639 //cvResizeWindow("Diff. by motion", 240, 120); 
640 //cvResizeWindow("Threshold by motion", 240, 120); 
641 
642 //cvResizeWindow("Gray Hist", 320, 240); 
643 //cvResizeWindow("Red Hist", 320, 200); 
644 //cvResizeWindow("Green Hist", 320, 200); 
645 //cvResizeWindow("Blue Hist", 320, 200); 
646 
647 //resizeWindow("Motion", 800, 100); 
648 
649 //resizeWindow("flow", 320, 240); 
650 */ 
651 
652 //FIXED LOCATION OF WINDOWS 
653 /* 
654 cvMoveWindow("input", 10, 0); 
655 cvMoveWindow("display", 10, 400); 
656 cvMoveWindow("rgb and gray_Hist", 500, 0); 
657 cvMoveWindow("data", 500, 400); 
658 
659 cvMoveWindow("Gray Hist", 640, 0); 
660 cvMoveWindow("flow", 960, 0); 
661 cvMoveWindow("Threshold by Otsu", 1280, 160); 
662 cvMoveWindow("gray", 1280, 0); 
663 cvMoveWindow("Threshold by Otsu", 1280, 160); 
664 cvMoveWindow("Diff. by motion", 1280, 320); 
665 cvMoveWindow("Threshold by motion", 1280, 480); 
666 
667 cvMoveWindow("Red Hist", 640, 280); 
668 cvMoveWindow("Green Hist", 960, 280); 
669 cvMoveWindow("Blue Hist", 960, 560); 
670 
671 cvMoveWindow("Motion", 0, 560); 
672 */ 
673 
674 cvNamedWindow("Threshold by Otsu", WINDOW_NORMAL); 
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675 cvNamedWindow("Diff. by motion", WINDOW_NORMAL); 
676 cvNamedWindow("Threshold by motion", WINDOW_NORMAL); 
677 
678 cv::imshow("Threshold by Otsu", fireMask); 
679 
680 
681 cv::imshow("Diff. by motion",differenceImage); 
682 cv::imshow("Threshold by motion",thresholdImage); 
683 
684 //get contours 
685 vector<vector<Point>> contourFires; 
686 vector<Vec4i> hierarchy; 
687 findContours(fireMask,contourFires,hierarchy,CV_RETR_CCOMP, 
CV_CHAIN_APPROX_SIMPLE); 
688 vector<Point> contourMax; 
689 SgGeneral::sgGetMaxContour(contourFires,20,contourMax); 
690 if (!contourMax.empty()) 
691 { 
692 Point centroid = SgGeneral::sgGetCentroid(contourMax); 
693 
694 centroids.push_back(centroid); 
695 
696 while (centroids.size() > lengthTrajectory) centroids.pop_front(); 
697 } 
698 
699 float area = SgGeneral::sgGetArea(contourFires); 
700 areas.push_back(area); 
701 if (areas.size() > sizeWindow) areas.pop_front(); 
702 
703 //calculate bounding box of multiple contours 
704 int yMin = 999, yMax = 0, xMax = 0, xMin = 999; 
705 
706 Point peak; 
707 for( int i = 0; i < contourFires.size(); i++ ) 
708 { 
709 if (contourFires[i].size() > 20) 
710 { 
711 for( int j = 0; j < contourFires[i].size(); j++ ) 
712 { 
713 if (contourFires[i][j].y > yMax) yMax = contourFires[i][j].y; 
714 else if(contourFires[i][j].y < yMin) 
715 { 
716 yMin = contourFires[i][j].y; 
717 peak.x = contourFires[i][j].x; 
718 peak.y = contourFires[i][j].y; 
719 } 
720 if (contourFires[i][j].x > xMax) xMax = contourFires[i][j].x; 
721 else if(contourFires[i][j].x < xMin) xMin = contourFires[i][j].x; 
722 } 
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723 } 
724 } 
725 
726 // Input the informaton data 
727 heights.push_back(yMax-yMin); // WARNING int to float problem ?? 
728 
729 widths.push_back(xMax-xMin); // WARNING int to float problem ?? 
730 mheight.push_back(objectBoundingRectangle.height); // NEW Pushback motion 
height to "mheight" 
731 
732 if (heights.size() > sizeWindow) 
733 { 
734 heights.pop_front(); 
735 widths.pop_front(); 
736 mheight.pop_front(); 
737 } 
738 
739 //visualize ?? 
740 polylines(display,masks,true,CV_RGB(0,0,128),1); 
741 for (int j = 0; j < mask.size(); j++) circle(display,mask[j],2,CV_RGB(255,0,0),-1); 
742 
743 //mask the segmentation region 
744 /*Mat rgb[3]; 
745 split(display,rgb); 
746 rgb[0] += image; // Blue 
747 rgb[1] += image; // Green 
748 rgb[2] += image; // Red 
749 merge(rgb,3,display); 
750 */ 
751 
752 if (!contourFires.empty()) 
753 for( int i = 0; i < contourFires.size(); i++ ) 
754 drawContours(display,contourFires,i,CV_RGB(0,0,0), 2); // draw contout 
line in display 
755 
756 //float scale = 255. / lengthTrajectory; 
757 double scale = 255. / lengthTrajectory; 
758 if(centroids.size() > 2) 
759 { 
760 for (int i = 0; i < centroids.size() - 1; i++) 
761 { 
762 circle(display, Point(centroids.back().x, centroids.back().y), 7, Scalar(255, 0, 0), 
2); //draw centroid 
763 
764 line(display, Point(centroids.back().x, centroids.back().y), Point(centroids.back().x, 
centroids.back().y - 15), 
765 Scalar(255, 0, 0), 2); 
766 line(display, Point(centroids.back().x, centroids.back().y), Point(centroids.back().x, 
centroids.back().y + 15), 
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767 Scalar(255, 0, 0), 2); 
768 line(display, Point(centroids.back().x, centroids.back().y), Point(centroids.back().x 
- 15, centroids.back().y), 
769 Scalar(255, 0, 0), 2); 
770 line(display, Point(centroids.back().x, centroids.back().y), Point(centroids.back().x 
+ 15, centroids.back().y), 
771 Scalar(255, 0, 0), 2); 
772 
773 //line(display, centroids[i], centroids[i+1], CV_RGB(0, scale*i, 0), 2); 
774 } 
775 } 
776 
777 circle(display,centroids.back(),3,CV_RGB(0,255,0),-1); // ???? 
778 
779 //make some temp x and y variables 
780 int x = theObject[0]; 
781 int y = theObject[1]; 
782 
783 //draw some crosshairs (motion detection) 
784 
785 circle(display, Point(x, y), 7, Scalar(0, 255, 0), 2); 
786 
787 line(display, Point(x, y), Point(x, y - 15), Scalar(0, 255, 0), 2); 
788 line(display, Point(x, y), Point(x, y + 15), Scalar(0, 255, 0), 2); 
789 line(display, Point(x, y), Point(x - 15, y), Scalar(0, 255, 0), 2); 
790 line(display, Point(x, y), Point(x + 15, y), Scalar(0, 255, 0), 2); 
791 
792 // drawing region of interest (ROI) based on xMin,yMin,xMax,yMax (Threshold 
analysis) 
793 rectangle(display, Point(xMin, yMin), Point(xMax, yMax), CV_RGB(255, 255, 0), 
2); // 
threshold analysis 
794 
795 rectangle(display, Point(objectBoundingRectangle.x, 
objectBoundingRectangle.y), 
796 Point(objectBoundingRectangle.x + objectBoundingRectangle.width, 
objectBoundingRectangle.y 
+ objectBoundingRectangle.height), 
797 CV_RGB(255, 0, 0), 2); 
798 
799 //draw time stamp to video in bottom left corner. We draw it before we write so 
that it is 
written on the video file. 
800 rectangle(display, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -1); 
801 putText(display, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); //show 
date time on 'display' 
802 rectangle(frame2, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -1); 
803 putText(frame2, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); //show 
date time on 'frame' 
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804 rectangle(grayimage, Point(0, 460), Point(200, 480), Scalar(255, 255, 255), -1); 
805 putText(grayimage, getDateTime(), Point(0, 475), 1, 1, Scalar(0, 0, 0), 2); //show 
date time on 'grayimage' 
806 
807 //draw the height, width and area region of interest 
808 string heightFire = "ROI Height (Intnesity) : " + to_string(yMax - yMin); 
809 //putText(display, heightFire, Point(40, 20), 1, 1, CV_RGB(0, 0, 255), 2); 
810 
811 string widthFire = "ROI Width (Intensity) : " + to_string(xMax - xMin); 
812 //putText(display, widthFire, Point(40, 40), 1, 1, CV_RGB(0, 0, 255), 2); 
813 
814 string ROIFire = "ROI Area (Intensity) : " + to_string((yMax - yMin)*(xMax - xMin)); 
815 //putText(display, ROIFire, Point(40, 60), 1, 1, CV_RGB(0, 0, 255), 2); 
816 
817 string fireThreshold = "Otsu : " + to_string(thresholdParameter); // 
Intensity threshold 
818 //putText(display, fireThreshold, Point(320, 20), 1, 1, CV_RGB(255, 255, 255), 2); 
819 
820 //draw the centroid coordinate X and Y 
821 string cenFire = "X,Y (Intensity) : "; 
822 if (!centroids.empty()) 
823 cenFire = "X,Y (Intensity) : " + to_string(centroids.back().x) + "," + 
to_string(centroids 
.back().y); 
824 //putText(display, cenFire, Point(40, 80), 1, 1, CV_RGB(0, 0, 255), 2); 
825 
826 string movcenFire = "X,Y (Motion) : " + to_string(x)+","+to_string(y); 
827 //putText(display, movcenFire, Point(40, 100), 1, 1, CV_RGB(255, 0, 0), 2); 
828 
829 string ROIMovFire = "ROI Area (Motion) : " + 
to_string(objectBoundingRectangle.width * 
objectBoundingRectangle.height); 
830 //putText(display, ROIMovFire, Point(40, 120), 1, 1, CV_RGB(255, 0, 0), 2); 
831 
832 string ROIMovheightFire = "ROI Height (Motion) : " + 
to_string(objectBoundingRectangle.height) 
; 
833 //putText(display, ROIMovheightFire, Point(40, 140), 1, 1, CV_RGB(255, 0, 0), 2); 
834 
835 string ROIMovwidthFire = "ROI Width (Motion) : " + 
to_string(objectBoundingRectangle.width); 
836 //putText(display, ROIMovwidthFire, Point(40, 160), 1, 1, CV_RGB(255, 0, 0), 2); 
837 
838 
839 /*Histogram analysis*/ 
840 
841 /// Separate the image in 3 places ( B, G and R ) 
842 vector<Mat> bgr_planes; 
843 split(frame2, bgr_planes); 
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844 
845 // Separate the image in gray places 
846 vector<Mat> gray_planes; 
847 split(image, gray_planes); 
848 
849 vector<Mat> grayplanes; 
850 split(grayimage, grayplanes); 
851 
852 /// Establish the number of bins 
853 int histSize = 256; //From 0 to 255 
854 
855 /// Set the ranges (for B,G,R and gray) 
856 float range[] = { 0, 256 }; //the upper boundary is exclusive 
857 const float* histRange = { range }; 
858 
859 bool uniform = true; bool accumulate = false; 
860 
861 Mat b_hist, g_hist, r_hist, gray_hist; 
862 
863 /// Compute the histograms: 
864 calcHist(andbgr_planes[0], 1, 0, Mat(), b_hist, 1, andhistSize, andhistRange, 
uniform, accumulate); 
865 calcHist(andbgr_planes[1], 1, 0, Mat(), g_hist, 1, andhistSize, andhistRange, 
uniform, accumulate); 
866 calcHist(andbgr_planes[2], 1, 0, Mat(), r_hist, 1, andhistSize, andhistRange, 
uniform, accumulate); 
867 
868 calcHist(andgrayplanes[0], 1, 0, Mat(), gray_hist, 1, andhistSize, andhistRange, 
uniform, 
accumulate); 
869 
870 // Draw the histograms for B, G and R 
871 int hist_w = 512; int hist_h = 400; 
872 int bin_w = cvRound((double)hist_w / histSize); // int histSize = 256 
873 
874 Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
875 
876 Mat R_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
877 Mat G_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
878 Mat B_histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
879 
880 Mat grayhistImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0)); 
881 
882 /// Normalize the result to [ 0, histImage.rows ] 
883 normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat()); 
884 normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat()); 
885 normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat()); 
886 
887 normalize(b_hist, b_hist, 0, B_histImage.rows, NORM_MINMAX, -1, Mat()); 
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888 normalize(g_hist, g_hist, 0, G_histImage.rows, NORM_MINMAX, -1, Mat()); 
889 normalize(r_hist, r_hist, 0, R_histImage.rows, NORM_MINMAX, -1, Mat()); 
890 
891 normalize(gray_hist, gray_hist, 0, grayhistImage.rows, NORM_MINMAX, -1, 
Mat()); //Normalize 
the gray result 
892 
893 /// Draw for each channel 
894 int gray_maxtemp = 0; 
895 int red_maxtemp = 0; 
896 int green_maxtemp = 0; 
897 
898 for (int i = 0; i < histSize; i++) 
899 { 
900 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))), 
901 Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))), 
902 Scalar(255, 0, 0), 0, 8, 0); 
// Blue colour 
903 
904 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))), 
905 Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))), 
906 Scalar(0, 255, 0), 0, 8, 0); 
// Green colour 
907 
908 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))), 
909 Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))), 
910 Scalar(0, 0, 255), 0, 8, 0); 
// Red colour 
911 
912 line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(gray_hist.at<float>(i - 1))), 
// Gray color 
913 Point(bin_w*(i), hist_h - cvRound(gray_hist.at<float>(i))), 
914 Scalar(255, 255, 255), 0, 8, 0); 
915 
916 /* Individual histogram */ 
917 line(B_histImage, Point(bin_w*(i - 1), hist_h), 
918 Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))), 
919 Scalar(255, 0, 0), 0, 8, 0); // 
Blue colour 
920 
921 line(G_histImage, Point(bin_w*(i - 1), hist_h), 
922 Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))), 
923 Scalar(0, 255, 0), 0, 8, 0); // 
Green colour 
924 
925 line(R_histImage, Point(bin_w*(i - 1), hist_h), 
926 Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))), 
927 Scalar(0, 0, 255), 0, 8, 0); // 
Red colour 
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928 
929 line(grayhistImage, Point(bin_w*(i - 1), hist_h), // 
Gray color 
930 Point(bin_w*(i), hist_h - cvRound(gray_hist.at<float>(i))), 
931 Scalar(255, 255, 255), 0, 8, 0); 
932 
933 // Indicate the threshold 
934 line(grayhistImage, Point(bin_w*(thresholdParameter), hist_h), 
935 Point(bin_w*(thresholdParameter), hist_h - cvRound(gray_hist.at<float>(i))), 
936 Scalar(0, 255, 255), 0, 4, 0); 
937 
938 line(histImage, Point(bin_w*(thresholdParameter), hist_h), 
939 Point(bin_w*(thresholdParameter), hist_h - cvRound(gray_hist.at<float>(i))), 
940 Scalar(0, 255, 255), 0, 8, 0); 
941 
942 /* Analysis the maximim gray level */ 
943 float gray_binVal = gray_hist.at<float>(i); 
944 if (gray_hist.at<float>(i) > gray_maxtemp) 
945 { 
946 gray_maxtemp = i; 
947 } 
948 
949 } 
950 
951 //display on grayhistImage 
952 string maxgray = "Max Gray Level : " + to_string(gray_maxtemp); 
953 putText(grayhistImage, maxgray, Point(40, 20), 1, 1, CV_RGB(255, 255, 255), 2); 
954 
955 string threshold_value = "Threshold by Otsu : " + to_string(thresholdParameter); 
956 //putText(grayhistImage, threshold_value, Point(40, 40), 1, 1, CV_RGB(255, 255, 
0), 2); 
957 
958 //diaply on histImage 
959 string threshold_value_hist = "Threshold by Otsu : " + 
to_string(thresholdParameter); 
960 putText(histImage, threshold_value_hist, Point(40, 20), 1, 1, CV_RGB(255, 255, 
0), 2); 
961 
962 string nosofpixels_red = "Pixels no.(R) : " + 
to_string(r_hist.at<float>(thresholdParameter)); 
963 putText(histImage, nosofpixels_red, Point(40, 40), 1, 1, CV_RGB(255, 0, 0), 2); 
964 string pixelsno_red = to_string((int)r_hist.at<float>(thresholdParameter)); 
965 
966 string nosofpixels_green = "Pixels no.(G) : " + to_string(g_hist.at<float> 
(thresholdParameter)); 
967 putText(histImage, nosofpixels_green, Point(40, 60), 1, 1, CV_RGB(0, 255, 0), 2); 
968 string pixelsno_green = to_string((int)g_hist.at<float>(thresholdParameter)); 
969 
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970 string nosofpixels_blue = "Pixels no.(B) : " + 
to_string(b_hist.at<float>(thresholdParameter)) 
; 
971 putText(histImage, nosofpixels_blue, Point(40, 80), 1, 1, CV_RGB(0, 0, 255), 2); 
972 string pixelsno_blue = to_string((int)b_hist.at<float>(thresholdParameter)); 
973 
974 file << setw(1) << setiosflags(ios::right) << gettimeonly() << "," 
//date and time 
975 << setw(4) << setiosflags(ios::right) << thresholdParameter << "," 
//threhsold Otsu 
976 << setw(5) << setiosflags(ios::right) << gray_maxtemp << "," 
//Max. gray level 
977 << setw(8) << setiosflags(ios::right) << (yMax - yMin)*(xMax - xMin) << "," 
//ROI 
978 << setw(4) << setiosflags(ios::right) << (yMax - yMin) << "," 
//Region Height 
979 << setw(4) << setiosflags(ios::right) << centroids.back().x <<"," 
//Centroid (Intensity) 
980 << setw(3) << setiosflags(ios::right) << centroids.back().y << "," 
//Centroid (Intensity) 
981 << setw(5) << setiosflags(ios::right) << x <<"," 
//Centroid X (Motion) 
982 << setw(3) << setiosflags(ios::right) << y << "," 
//Centroid Y (Motion) 
983 << setw(5) << setiosflags(ios::right) << objectBoundingRectangle.height << "," 
//motion object height 
984 << setw(7) << setiosflags(ios::right) << objectBoundingRectangle.width * 
objectBoundingRectangle.height << "," //ROI (Motion) 
985 << setw(7) << setiosflags(ios::right) << pixelsno_red << "," 
//red color pixels in threshold Otsu 
986 << setw(7) << setiosflags(ios::right) << pixelsno_green << "," 
//green color pixels in threshold Otsu 
987 << setw(7) << setiosflags(ios::right) << pixelsno_blue << "," 
//blue color pixels in threshold Otsu 
988 << endl; 
989 
990 
991 //display the output on screen 
992 
993 string text1 = "Developed by : Arthur Wong" ; 
994 
995 int fontFace = FONT_HERSHEY_SIMPLEX; 
996 double fontScale = 0.8; 
997 int thickness = 2.0; 
998 
999 Mat img(300, 900, CV_8UC3, Scalar::all(0)); 
1000 
1001 putText(img, string("VIDEO FIRE DETECTION"), Point(20, 20), fontFace, 
fontScale, Scalar::all 



B1-24 

 

(255), thickness, 8); 
1002 
1003 putText(img, threshold_value, Point (20, 45), fontFace, fontScale, 
Scalar::all(255), thickness 
, 8); 
1004 putText(img, nosofpixels_red, Point(20, 70), fontFace, fontScale, Scalar::all(255), 
thickness, 
8); 
1005 putText(img, nosofpixels_green, Point(20, 95), fontFace, fontScale, 
Scalar::all(255), 
thickness, 8); 
1006 putText(img, nosofpixels_blue, Point(20, 120), fontFace, fontScale, 
Scalar::all(255), 
thickness, 8); 
1007 putText(img, heightFire, Point(20, 145), fontFace, fontScale, Scalar::all(255), 
thickness, 8); 
1008 putText(img, widthFire, Point(20, 170), fontFace, fontScale, Scalar::all(255), 
thickness, 8); 
1009 putText(img, cenFire, Point(20, 195), fontFace, fontScale, Scalar::all(255), 
thickness, 8); 
1010 putText(img, ROIFire, Point(20, 220), fontFace, fontScale, Scalar::all(255), 
thickness, 8); 
1011 
1012 putText(img, ROIMovheightFire, Point(500, 45), fontFace, fontScale, 
Scalar::all(255), 
thickness, 8); 
1013 putText(img, ROIMovwidthFire, Point(500, 70), fontFace, fontScale, 
Scalar::all(255), thickness 
, 8); 
1014 putText(img, movcenFire, Point(500, 95), fontFace, fontScale, Scalar::all(255), 
thickness, 8); 
1015 putText(img, ROIMovFire, Point(500, 120), fontFace, fontScale, Scalar::all(255), 
thickness, 8) 
; 
1016 
1017 putText(img, text1, Point (500, 280), fontFace, fontScale, Scalar::all(255), 
thickness, 8); 
1018 
1019 namedWindow("data", WINDOW_NORMAL); 
1020 imshow("data", img); 
1021 
1022 
1023 
/********************************************************************************************* 
********************************************************/ 
1024 cvNamedWindow("input", WINDOW_NORMAL); 
1025 cvNamedWindow("gray", WINDOW_NORMAL); 
1026 cvNamedWindow("display",WINDOW_NORMAL); 
1027 
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1028 cv::imshow("input",frame2); // display input video image 
1029 cv::imshow("gray",grayimage); // display gray video image 
1030 cv::imshow("display",display); // display final video image 
1031 
1032 /// Display histogram 
1033 cvNamedWindow("Gray Hist", WINDOW_NORMAL); 
1034 
1035 cvNamedWindow("Red Hist", WINDOW_NORMAL); 
1036 cvNamedWindow("Green Hist", WINDOW_NORMAL); 
1037 cvNamedWindow("Blue Hist", WINDOW_NORMAL); 
1038 
1039 cvNamedWindow("rgb and gray_Hist", WINDOW_NORMAL); 
1040 
1041 cv::imshow("Red Hist", R_histImage); 
1042 cv::imshow("Green Hist", G_histImage); 
1043 cv::imshow("Blue Hist", B_histImage); 
1044 cv::imshow("Gray Hist", grayhistImage); 
1045 cv::imshow("rgb and gray_Hist", histImage); 
1046 
1047 if (widths.size() > 1) // SgSignal.cpp line no 332 
1048 { 
1049 
1050 //vector<float> tempH; 
1051 vector<float> motionheight; 
1052 //vector<float> tempW; 
1053 //vector<float> tempA; 
1054 
1055 //signal.sgDequeToVector(widths,tempW); 
1056 //signal.sgDequeToVector(heights, tempH); 
1057 signal.sgDequeToVector(mheight,motionheight); 
1058 //signal.sgDequeToVector(areas,tempA); 
1059 
1060 //signal.sgNormalizeByMinMax(tempW,tempW,0,1000); //original 300 red 
1061 //signal.sgNormalizeByMinMax(tempH, tempH, 0, 1000); //original 300 
green 
1062 signal.sgNormalizeByMinMax(motionheight, motionheight, 0, 300); 
1063 //signal.sgNormalizeByMinMax(tempA,tempA,0,30000); 
1064 
1065 Mat graph = Mat::zeros(200, 1920, CV_8UC3); 
1066 //signal.sgDraw01(graph, CV_RGB(255, 255, 255), tempH, 1); 
1067 signal.sgDraw01(graph, CV_RGB(255, 255, 255), motionheight, 1); 
1068 //signal.sgDraw01(graph,CV_RGB(255,0,0),tempW,1); 
1069 
1070 
1071 //calculation and display on chart 
1072 int intensityflameheight = (yMax - yMin); 
1073 int motionflameheight = (objectBoundingRectangle.height); 
1074 
1075 
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1076 //string intflicker = "flame height (intensity) : " + to_string(intensityflameheight); 
1077 //putText(graph, intflicker, Point(40, 60), 1, 1, CV_RGB(255, 255, 255), 2); 
1078 
1079 string motflicker = "Object motion (height) : " + to_string(motionflameheight); 
1080 putText(graph, motflicker, Point(40, 20), 1, 1, CV_RGB(255, 255, 255), 2); 
1081 
1082 cvNamedWindow("Motion", WINDOW_NORMAL); 
1083 cv::imshow("Motion", graph); 
1084 
1085 
1086 } 
1087 
1088 ///////////////////////////////// CALCULATION OPTICAL FLOW ////////////////////////////// 
1089 
1090 namedWindow("flow", WINDOW_NORMAL); 
1091 //namedWindow("realtime input", 1); 
1092 
1093 video.read(frame2); 
1094 cvtColor(frame2, gray, COLOR_BGR2GRAY); // 
1095 
1096 //imshow("realtime input", frame2); 
1097 imshow("flow", gray); 
1098 
1099 if (prevgray.data) 
1100 { 
1101 calcOpticalFlowFarneback(prevgray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0); 
1102 
1103 cvtColor(prevgray, cflow, COLOR_GRAY2BGR); 
1104 drawOptFlowMap(flow, cflow, 16, 1.5, Scalar(0, 255, 0)); 
1105 
1106 imshow("flow", cflow); 
1107 } 
1108 
1109 ///////////////////////////////////////////////////////////////////////////////////////// 
1110 
1111 /* 
1112 int c = cvWaitKey(30); 
1113 if(c == 27) break; 
1114 else if (c == 32) pause = !pause; 
1115 else if (char(c) == '+') for (int i = 0; i < 30*5; i++) video.grab(); 
1116 else if (char(c) == 'n') video >> frame; 
1117 */ 
1118 
1119 switch (waitKey(30)) 
1120 { 
1121 case 27: //'Esc' has been pressed. this wil exit the code. 
1122 file << "END" << endl; 
1123 file.close(); 
1124 return 0; 
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1125 
1126 case 32: //'Space bar' has been pressed. this will toggle tracking 
1127 trackingEnabled = !trackingEnabled; 
1128 if (trackingEnabled == false) cout << "Tracking disabled." << endl; 
1129 else cout << "Tracking enabled." << endl; 
1130 break; 
1131 
1132 case 112: //'p' has been pressed. this will pause/resume the code. 
1133 pause = !pause; 
1134 if (pause == true) 
1135 { 
1136 cout << "Code paused, press 'p' again to resume" << endl; 
1137 while (pause == true) 
1138 { 
1139 //stay in this loop until 
1140 switch (waitKey()) 
1141 { 
1142 //a switch statement inside a switch statement? Mind blown. 
1143 case 112: 
1144 //change pause back to false 
1145 pause = false; 
1146 cout << "Code Resumed" << endl; 
1147 break; 
1148 
1149 
1150 } 
1151 } 
1152 
1153 } 
1154 
1155 } 
1156 swap(prevgray, gray); // OPTICAL FLOW 
1157 } 
1158 //cvDestroyWindow("fire"); 
1159 
1160 return 0; // Exit the program 
1161 
1162 } 
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Appendix C: Otsu method formulation (Otsu, 1979) 

 

In an ideal case, if the histogram has two peaks and one deep valley, the threshold can be 

selected from the deep valley. Generally, two peaks represent the object and background. The 

deep valley represents the threshold. 

 

 

 

 

 

 

 

 

 

However, for most of real situation, the histogram is difficult to select the valley bottom 

precisely so the threshold is also difficult to elevate from the grey level histogram. The Otsu 

method can be used to overcome these difficulties when the histogram is not in an ideal case.  

 

Otsu method is aimed in selection the threshold value 𝑘∗ from the calculation result of 

maximum between class variance (max
1≤𝑘≤𝐿

𝜎𝐵
2(𝑘)). 

 

Letter N is the total number of pixel and Letter L is represented the grey levels, the range is 

from 0-255. 

 

Threshold (From 0 to 255) 
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N = n1 + n2 + n3 + ⋯⋯⋯⋯⋯⋯+ nL−1 + nL 

Pi =
ni

N
                                     Pi ≥ 0,∑Pi = 1

L

i=1

 

Classes: C0 , C1 

C0: Background: level [1⋯⋯⋯⋯k] 

C1: Objects:    level [k + 1 ⋯⋯⋯L]  

Threshold level: 𝑘 

 

Probability 

ω
0

= p(C0) = ∑pi

k

i=1

= ω(k) 

ω
1

= p(C1) = ∑ pi

L

i=k+1

= (1 −ω(k)) 

 

Mean  

μ
0

= ∑i P(i|C0)

k

i=1

= ∑
ipi

ω
0

k

i=1

= 
μ(k)

ω(k)
 

μ
1

= ∑ iP(i|C1) = ∑
ipi

ω
1

L

i=k+1

L

i=k+1

= 
μ

T
−μ(k)

1 −ω(k)
 

⇒ 𝜔0𝜔1 = 𝜇(𝑘) 

⇒ 𝜔1𝜇1 = 𝜇𝑇 − 𝜔0𝜇𝑜 

⇒ 𝜇𝑇 = 𝜔1𝜇1 + 𝜔0𝜇0 

Since  𝜔0 = 𝜔(𝑘)  𝜔1 = 1 − 𝜔(𝑘) 

⇒  𝜔0 + 𝜔1 = 1 
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Variance 

𝜎𝐵
2 = 𝜔1(𝜇1 − 𝜇𝑇)2 + 𝜔0(𝜇0 − 𝜇𝑇)2 

= 𝜔1(𝜇1
2 − 2𝜇1𝜇𝑇 + 𝜇𝑇

2) + 𝜔0(𝜇0
2 − 2𝜇0𝜇𝑇 + 𝜇𝑇

2) 

= 𝜔1𝜇1
2 − 2𝜔1𝜇1𝜇𝑇 + 𝜔1𝜇𝑇

2 + 𝜔0𝜇0
2 − 2𝜔0𝜇0𝜇𝑇 + 𝜔𝑜𝜇𝑇

2  

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − (2𝜔1𝜇1𝜇𝑇 + 2𝜔0𝜇0𝜇𝑇) + 𝜔1𝜇𝑇
2 + 𝜔𝑜𝜇𝑇

2  

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − (2𝜔1𝜇1𝜇𝑇 + 2𝜔0𝜇0𝜇𝑇) + (𝜔1 + 𝜔0)𝜇𝑇
2  

𝜔1 + 𝜔0 = 1 

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 2𝜇𝑇(𝜔1𝜇1 + 𝜔0𝜇0) + 𝜇𝑇
2  

𝜔1𝜇1 + 𝜔0𝜇0 = 𝜇𝑇 

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 2𝜇𝑇𝜇𝑇 + 𝜇𝑇
2  

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 𝜇𝑇
2  

𝜎𝐵
2 = (∑𝜔𝑖

𝐿

𝑖=1

𝜇𝑖
2) − 𝜇𝑇

2  

 

𝜇𝑇
2 = (𝜔0𝜇0 + 𝜔1𝜇1)

2 

= (𝜔0𝜇0 + 𝜔1𝜇1) (𝜔0𝜇0 + 𝜔1𝜇1) 

= 𝜔0
2𝜇0

2 + 𝜔1𝜔0𝜇1𝜇0 + 𝜔1𝜔0𝜇1𝜇0 + 𝜔1
2𝜇1

2 

= 𝜔0
2𝜇0

2 + 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1
2𝜇1

2 

 

𝜎𝐵
2 = 𝜔1𝜇1

2 + 𝜔0𝜇0
2 − 𝜇𝑇

2  

𝜎𝐵
2 = 𝜔1𝜇1

2 + 𝜔0𝜇0
2 − (𝜔0

2𝜇0
2 + 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1

2𝜇1
2) 

𝜎𝐵
2 = 𝜔0𝜇0

2 + 𝜔1𝜇1
2 − 𝜔0

2𝜇0
2 − 2𝜔1𝜔0𝜇1𝜇0 − 𝜔1

2𝜇1
2 

𝜎𝐵
2 = (𝜔0 − 𝜔0

2)𝜇0
2 − 2𝜔1𝜔0𝜇1𝜇0 + (𝜔1 − 𝜔1

2)𝜇1
2 
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𝜎𝐵
2 = 𝜔0(1 − 𝜔0)𝜇0

2 − 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1(1 − 𝜔1)𝜇1
2 

𝜔0 = 1 − 𝜔1 ;  𝜔1 = 1 − 𝜔0 

𝜎𝐵
2 = 𝜔0𝜔1𝜇0

2 − 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1𝜔0𝜇1
2 

𝜎𝐵
2 = 𝜔0𝜔1(𝜇0

2 − 2𝜇1𝜇0 + 𝜇1
2) 

𝜎𝐵
2 = 𝜔0𝜔1(𝜇0 − 𝜇1)

2 

𝜎𝐵 = 𝜔0𝜔1(𝜇1 − 𝜇0)
2  

 

The optimal threshold value k∗ is obtained from maximum between class variance 𝜎𝐵
2. 

The range is from 0 to 255 

𝜎𝐵
2(𝑘∗) = max

0≤𝑘≤𝐿
𝜎𝐵

2(𝑘) 

Since 

𝜎2 = 𝜎𝑤
2 + 𝜎𝐵

2 

𝜎2 = 𝜎𝑤
2 + (𝜔1)(1 − 𝜔1)(𝜇0 − 𝜇1)

2 

Or 

𝜎2 = 𝜎𝑤
2 + (𝜔0)(1 − 𝜔0)(𝜇0 − 𝜇1)

2 

 

Multithreshold analysis 

For the selected multithreshold(𝑘, 𝑘1, 𝑘2 ……… , 𝑘𝑛), the method to multithresholding is 

straightforward to calculate the maximum between class variance. The multithreshold 

can be segmented the fire image succefully, depending on the quantity of threshold.  

1st threshold is 𝑘 (Single threshold value) 

2nd threshold is 𝑘1 

3rd thrrehsold is 𝑘2 

. 
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. 

. 

nth threshold is 𝑘𝑛 

where n is the quantity of threshold from 0 to 255 

 

Probabillity of Multithreshold 

ω
0

= p(C0) = ∑pi

𝑘𝑛

i=k

= ω(𝑘𝑛) 

ω
1

= p(C1) = ∑ pi

L

i=𝑘𝑛+1

= (1 −ω(𝑘𝑛)) 

 

Mean of Multithreshold 

μ
0

= ∑i P(i|C0)

𝑘𝑛

i=k

= ∑
ipi

ω
0

𝑘𝑛

i=k

= 
μ(𝑘𝑛)

ω(𝑘𝑛)
 

μ
1

= ∑ iP(i|C1) = ∑
ipi

ω
1

L

i=𝑘𝑛+1

L

i=𝑘𝑛+1

= 
μ

T
−μ(𝑘𝑛)

1 −ω(𝑘𝑛)
 

⇒ 𝜔0𝜔1 = 𝜇(𝑘𝑛) 

⇒ 𝜔1𝜇1 = 𝜇𝑇 − 𝜔0𝜇𝑜 

⇒ 𝜇𝑇 = 𝜔1𝜇1 + 𝜔0𝜇0 

Since  𝜔0 = 𝜔(𝑘𝑛)  𝜔1 = 1 − 𝜔(𝑘𝑛) 

⇒  𝜔0 + 𝜔1 = 1 

 

Variance of Multithreshold 

𝜎𝐵
2 = 𝜔1(𝜇1 − 𝜇𝑇)2 + 𝜔0(𝜇0 − 𝜇𝑇)2 
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= 𝜔1(𝜇1
2 − 2𝜇1𝜇𝑇 + 𝜇𝑇

2) + 𝜔0(𝜇0
2 − 2𝜇0𝜇𝑇 + 𝜇𝑇

2) 

= 𝜔1𝜇1
2 − 2𝜔1𝜇1𝜇𝑇 + 𝜔1𝜇𝑇

2 + 𝜔0𝜇0
2 − 2𝜔0𝜇0𝜇𝑇 + 𝜔𝑜𝜇𝑇

2  

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − (2𝜔1𝜇1𝜇𝑇 + 2𝜔0𝜇0𝜇𝑇) + 𝜔1𝜇𝑇
2 + 𝜔𝑜𝜇𝑇

2  

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − (2𝜔1𝜇1𝜇𝑇 + 2𝜔0𝜇0𝜇𝑇) + (𝜔1 + 𝜔0)𝜇𝑇
2  

𝜔1 + 𝜔0 = 1 

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 2𝜇𝑇(𝜔1𝜇1 + 𝜔0𝜇0) + 𝜇𝑇
2  

𝜔1𝜇1 + 𝜔0𝜇0 = 𝜇𝑇 

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 2𝜇𝑇𝜇𝑇 + 𝜇𝑇
2  

= 𝜔1𝜇1
2 + 𝜔0𝜇0

2 − 𝜇𝑇
2  

𝜎𝐵
2 = (∑ 𝜔𝑖

𝐿

𝑖=𝑘𝑛

𝜇𝑖
2) − 𝜇𝑇

2  

 

𝜇𝑇
2 = (𝜔0𝜇0 + 𝜔1𝜇1)

2 

= (𝜔0𝜇0 + 𝜔1𝜇1) (𝜔0𝜇0 + 𝜔1𝜇1) 

= 𝜔0
2𝜇0

2 + 𝜔1𝜔0𝜇1𝜇0 + 𝜔1𝜔0𝜇1𝜇0 + 𝜔1
2𝜇1

2 

= 𝜔0
2𝜇0

2 + 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1
2𝜇1

2 

 

𝜎𝐵
2 = 𝜔1𝜇1

2 + 𝜔0𝜇0
2 − 𝜇𝑇

2  

𝜎𝐵
2 = 𝜔1𝜇1

2 + 𝜔0𝜇0
2 − (𝜔0

2𝜇0
2 + 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1

2𝜇1
2) 

𝜎𝐵
2 = 𝜔0𝜇0

2 + 𝜔1𝜇1
2 − 𝜔0

2𝜇0
2 − 2𝜔1𝜔0𝜇1𝜇0 − 𝜔1

2𝜇1
2 

𝜎𝐵
2 = (𝜔0 − 𝜔0

2)𝜇0
2 − 2𝜔1𝜔0𝜇1𝜇0 + (𝜔1 − 𝜔1

2)𝜇1
2 

𝜎𝐵
2 = 𝜔0(1 − 𝜔0)𝜇0

2 − 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1(1 − 𝜔1)𝜇1
2 

𝜔0 = 1 − 𝜔1 ;  𝜔1 = 1 − 𝜔0 

𝜎𝐵
2 = 𝜔0𝜔1𝜇0

2 − 2𝜔1𝜔0𝜇1𝜇0 + 𝜔1𝜔0𝜇1
2 



C-7 

 

𝜎𝐵
2 = 𝜔0𝜔1(𝜇0

2 − 2𝜇1𝜇0 + 𝜇1
2) 

𝜎𝐵
2 = 𝜔0𝜔1(𝜇0 − 𝜇1)

2 

𝜎𝐵 = 𝜔0𝜔1(𝜇1 − 𝜇0)
2  

 

The optimal threshold value k∗ is obtained from maximum between class variance 𝜎𝐵
2. 

The range is from k to 255 

𝜎𝐵
2(𝑘𝑛

∗ ) = max
𝑘≤𝑘𝑛≤𝐿

𝜎𝐵
2(𝑘𝑛) 
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Appendix D: Optical flow approach 

Several approaches can use to determine the optical flow field. Lucas-Kanade method is a 

sparse/local method. Hon schunck Method is a dense/global method. Existing state of the art 

algorithm are used to calculate the optical flow field or velocity flow field. In our experimental 

study, application of Gunnar Farneback method are used. 

 

(Lucas-Kanade Method) 

The general equation of Lucas-Kanade algorithm. 

𝐼𝑥𝑉𝑥 + 𝐼𝑦𝑉𝑦 + 𝐼𝑡 = 0 

The objective is analysis the flow velocity vector (𝑉𝑥, 𝑉𝑦). To re-arranged the general equation 

as follow. 

𝐼𝑥(𝑞1)𝑉𝑥 + 𝐼𝑦(𝑞1)𝑉𝑦 = −𝐼𝑡(𝑞1) 

𝐼𝑥(𝑞2)𝑉𝑥 + 𝐼𝑦(𝑞2)𝑉𝑦 = −𝐼𝑡(𝑞2) 

⋮ 

𝐼𝑥(𝑞𝑛)𝑉𝑥 + 𝐼𝑦(𝑞𝑛)𝑉𝑦 = −𝐼𝑡(𝑞𝑛) 

Lucas-Kanade method can write as the matrix equation. 𝐴𝜐 = 𝑏  

𝐴 =

[
 
 
 
𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)

𝐼𝑥(𝑞2) 𝐼𝑦(𝑞2)

⋮
𝐼𝑥(𝑞𝑛) 𝐼𝑦(𝑞𝑛)]

 
 
 

  

𝜐 = [
𝑉𝑥

𝑉𝑦
]  

𝑏 = [

−𝐼𝑡(𝑞1)

−𝐼𝑡(𝑞2)
⋮

−𝐼𝑡(𝑞𝑛)

] 

Solve the matrix equation, 𝜐 = 𝐴−1𝑏 can be obtained the new flow velocity vector. (𝑉𝑥, 𝑉𝑦) 
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(Hon schunck Method) 

The intensity of image pixel in the pattern is constant, so that 

𝑑𝐼

𝑑𝑡
= 0 

Rate of change of Imgae brightness describe mathematically as follows. 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡) + 𝛿𝑥
𝜕𝐼

𝜕𝑥
+ 𝛿𝑦

𝜕𝐼

𝜕𝑦
+ 𝛿𝑡

𝜕𝐼

𝜕𝑡
+ 𝜖 

𝜖 contains second and higher order terms in 𝛿𝑥, 𝛿𝑦 and 𝛿𝑡. 

 

𝜕𝐼

𝜕𝑥

𝛿𝑥

𝛿𝑡
+

𝜕𝐼

𝜕𝑦

𝛿𝑦

𝛿𝑡
+

𝜕𝐼

𝜕𝑡
+ 𝒪(𝛿𝑡) = 0 

𝛿𝑡 → 0 

𝜕𝐼

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐼

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐼

𝜕𝑡
+ 0 = 0 

𝜕𝐼

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐼

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐼

𝜕𝑡
= 0 

𝑢 =
𝑑𝑥

𝑑𝑡
;  𝑣 =

𝑑𝑦

𝑑𝑡
 

𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 +

𝜕𝐼

𝜕𝑡
= 0 

𝜕𝐼

𝜕𝑥
= 𝐼𝑥;  

𝜕𝐼

𝜕𝑦
= 𝐼𝑦;  

𝜕𝐼

𝜕𝑡
= 𝐼𝑡 

Linear equation have been obtained and have two unknown 𝑢 and 𝑣. 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0 

Where 𝐼𝑥, 𝐼𝑦 and 𝐼𝑡 are the derivatives of the image brightness. 𝑢 and 𝑣 are two components of 

the optical flow vectorat the pixel position. 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 = −𝐼𝑡 
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The equation can illustrate in another way. 

(𝐼𝑥𝐼𝑦)(𝑢𝑣) = −𝐼𝑡 

−
𝐼𝑡

√𝐼𝑥
2 + 𝐼𝑦

2

 

 

The Horn and Schunck global optimisation algorithm, two optical flow analysis requires to 

consideration. 

Optical flow is smooth: 

𝐹𝑠𝑚𝑜𝑜𝑡ℎ(𝑢, 𝑣) = ∬(𝑢𝑥
2 + 𝑢𝑦

2) (𝑣𝑥
2 + 𝑣𝑦

2)𝑑𝑥𝑑𝑦 

Optical flow constraint equation: 

𝐹𝑜𝑝𝑡𝑖𝑐𝑎𝑙(𝑢, 𝑣) = ∬(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)
2
𝑑𝑥𝑑𝑦 

Minimisation the sum of the errors in the equation for calculation the rate of change of 

brightness. 

𝐹𝐻𝑆(𝑢, 𝑣) = ∬[(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)
2
+ 𝛼2(𝑢𝑥

2 + 𝑢𝑦
2 + 𝑣𝑥

2 + 𝑣𝑦
2)] 𝑑𝑥𝑑𝑦 

 

Using the calculus of variation, the equation can see that 

𝐼𝑥
2𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2∇2𝑢 − 𝐼𝑥𝐼𝑡 

∇2𝑢 = 𝑢̅ − 𝑢 

𝐼𝑥
2𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2(𝑢̅ − 𝑢) − 𝐼𝑥𝐼𝑡 

𝐼𝑥
2𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2𝑢̅ − 𝛼2𝑢 − 𝐼𝑥𝐼𝑡 

𝐼𝑥
2𝑢 + 𝛼2𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2𝑢̅ − 𝐼𝑥𝐼𝑦 

(𝐼𝑥
2 + 𝛼2)𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2𝑢̅ − 𝐼𝑥𝐼𝑦 
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𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 = 𝛼2∇2𝑣 − 𝐼𝑦𝐼𝑡 

∇2𝑣 = 𝑣̅ − 𝑣 

𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 = 𝛼2(𝑣̅ − 𝑣) − 𝐼𝑦𝐼𝑡 

𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 = 𝛼2𝑣̅ − 𝛼2𝑣 − 𝐼𝑦𝐼𝑡 

𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 + 𝛼2𝑣 = 𝛼2𝑣̅ − 𝐼𝑦𝐼𝑡 

𝐼𝑥𝐼𝑦𝑢 + (𝐼𝑦
2 + 𝛼2)𝑣 = 𝛼2𝑣̅ − 𝐼𝑦𝐼𝑡 

 

To slove the velocity field 𝑢 

(𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2)𝑢 = (𝛼2 + 𝐼𝑦
2)𝑢̅ − 𝐼𝑥𝐼𝑦𝑣̅ − 𝐼𝑥𝐼𝑡 

Rrewrite to alternate form 

(𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2)(𝑢 − 𝑢̅) = −𝐼𝑥(𝐼𝑥𝑢̅ + 𝐼𝑦𝑣̅ + 𝐼𝑡) 

From the iterative solution can estimate the new velocity. 

𝑢𝑛+1 = 𝑢̅𝑛 − 𝐼𝑥
𝐼𝑥𝑢̅

𝑛 + 𝐼𝑦𝑣̅𝑛 + 𝐼𝑡

𝛼2 + 𝐼𝑥2 + 𝐼𝑦2
 

To slove the velocity field 𝑣  

(𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2)𝑣 = (𝛼2 + 𝐼𝑥
2)𝑣̅ − 𝐼𝑥𝐼𝑦𝑢̅ − 𝐼𝑦𝐼𝑡 

(𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2)(𝑣 − 𝑣̅) = −𝐼𝑦(𝐼𝑥𝑢̅ + 𝐼𝑦𝑣̅ + 𝐼𝑡) 

𝑣𝑛+1 = 𝑣̅𝑛 − 𝐼𝑦
𝐼𝑥𝑢̅

𝑛 + 𝐼𝑦𝑣̅𝑛 + 𝐼𝑡

𝛼2 + 𝐼𝑥2 + 𝐼𝑦2
 

 

𝑢𝑛 and 𝑣𝑛 is the previous estimate velocity 

𝑢𝑛+1 and 𝑣𝑛+1 is the new estimate velocity 
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Appendix E: Multiple logistic regression  

Multiple logistic regression can be used to calculate the multivariable case which is more than 

one independent variable.  

𝑥′ = (𝑥1, 𝑥2, … , 𝑥𝑝) 

The general equation of multiple logistic regression: 

𝑙𝑜𝑔 (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝 

To solve above equation for probability 𝑝 apply the exponential function into both side. 

𝑒𝑥𝑝(𝑙𝑜𝑔 (
𝑝

1 − 𝑝
)) = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝) 

In right hand side:  

If 𝑒𝑥𝑝(𝑥) = 𝑒𝑥, then 

𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝) = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 

In right hand side: 

𝑒𝑥𝑝(𝑙𝑜𝑔 (
𝑝

1 − 𝑝
)) =

𝑝

1 − 𝑝
 

𝑝

1 − 𝑝
= 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 

𝑝 = (1 − 𝑝)𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 

𝑝 = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 − 𝑝𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 

𝑝 + 𝑝𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 

𝑝(1 + 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝) = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 

𝑝 =
𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

1 + 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝
 

𝑔(x) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝 
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𝑝 =
𝑒𝑔(x)

1 + 𝑒𝑔(x)
 

The probability 𝑝 can be shown by 𝑃(𝑌 = 1|x) = 𝜋(x). 

𝜋(x) =
𝑒𝑔(x)

1 + 𝑒𝑔(x)
 

 


