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Abstract 

 

ABSTRACT 

The modern design codes such as Eurocode3 (2005), AISC360 (2016), CoPHK (2011) 

and GB50017 (2017) recommend the use of direct analysis method (DAM) instead of 

traditional effective length method for daily design. However, the research and 

applications of DAM mainly focus on frame structures subjected to static loads. 

Performance-based seismic design (PBSD) is a new trend in structural engineering 

and appears in most of the modern design codes or specifications such as Eurocode-8 

(2005) and FEMA356 (2000). The philosophy inherent to the approach is to accurately 

capture the structural behavior under earthquake actions which is substantially in line 

with DAM, and the demanded performance according to the occupied functions is 

estimated. It is found that little work has been carried out on the extension of DAM to 

PBSD. The pushover analysis and time history analysis should be used with effective 

length method for PBSD in current practice as the member imperfections have not 

been taken into account. The DAM requires explicit consideration of member initial 

imperfections to suppress the use of effective length factor while PBSD needs to 

simulate progressive yielding along the section depth and member length. Thus, an 

advanced and high-performance beam-column element with member imperfection is 

urgently required for static and dynamic design.  

In the past decades, the stiffness and flexibility methods have been extensively used 

to derive beam-column elements. As the flexibility-based type elements can meet the 

compatibility and equilibrium conditions at the element level, they are more competent 

in direct analysis considering both geometrical and material nonlinearities. In this 

research project, an advanced flexibility-based beam-column element with member 
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initial imperfections, finite joint stiffness, rigid zone and end offsets, and distributed 

material nonlinearity is proposed for the second-order direct analysis of frame 

structures under static and dynamic actions. Considerable care has been taken to verify 

the accuracy and efficiency of this new element.  

To account for material nonlinearity, the stiffness-based elements with the plastic 

hinge method and the flexibility-based elements with the plastic zone method are well 

adopted in the second-order inelastic analysis. The former emphasizes the 

computational efficiency with relatively less-accurate structural responses, while the 

latter aims to precisely simulate the structural behavior but needs typically more 

computer time. One proposed element is generally sufficient to model a practical 

member in engineering structure without the assumption of effective length. The 

limitations of stiffness-based elements and conventional flexibility-based elements are 

removed in the new element. 

To further improve the computational efficiency of the proposed element, an 

alternative approach following the concept of the plastic hinge method is proposed by 

considering the elastoplastic behavior of steel members through the integration points 

using the stress resultant plasticity model rather than the fiber section. This method 

yields high accuracy comparable to the plastic zone method but requires much less 

computer time and resources, without the need of a fiber mesh along the section.  

To consider the effect of finite joint stiffness, two zero-length springs representing 

moment-rotation relationships are attached at the ends of the proposed beam-column 

element. The contribution of axial force on the bending moments are first discussed. 

The proposed hybrid beam-column element can well capture the behavior of a joint 

under monotonic or cyclic loading.  
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The current AISC360 (2016) specified a new effective stress-strain method for design of 

noncompact and slender concrete-filled steel tube (CFT) members. However, there is still 

lack of a practical tool for second-order direct analysis of this kind of members 

experiencing complicated behaviors such as local plate buckling, concrete confinement 

and yielding of steel tube. The stiffness change of the CFT members under combined axial 

force and bending moments should be considered during the incremental-iterative 

procedure of direct analysis. The proposed beam-column element with fiber section 

technique provides a new solution for the design of noncompact and slender CFT 

members using the effective stress-strain relationships. This method complies with the 

provisions in AISC360 (2016) and several recommendations are introduced for 

improvement of design codes. 

Special concentrically braced frames (SCBFs) are widely used in high seismic regions 

due to their structural efficiency and high ductility for energy dissipation. SCBFs are 

allowed for large inelastic deformation through tensile yielding, buckling and post-

buckling behaviors of braces. The accurate modeling of braces with acceptable 

computational costs is vital to capture the real structural behavior of SCBFs subjected 

to earthquakes. A hybrid beam-column element with consideration of gusset plate 

connection is proposed for modeling of SCBFs. It shows significant improvement in 

the time history analysis of SCBFs. 

In summary, this research project proposes a comprehensive method for second-order 

static and dynamic analysis of frame structures with consideration of member initial 

imperfections, material yielding and semi-rigid connections. It will significantly 

improve the current design practice and help the engineers to produce a safer and more 

economic design. 



Abstract 
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CHAPTER 1. INTRODUCTION 

 

1.1 Background 

 

The modern design codes such as Eurocode-3 (2005), AISC360 (2016), CoPHK (2011) 

and GB50017 (2017) recommend the use of direct analysis method (DAM) instead of 

traditional effective length method for daily design. However, the research and 

applications of DAM mainly focus on frame structures subjected to static loads. 

Performance-based seismic design (PBSD) is a new trend in structural engineering 

and appears in most of the modern design codes or specifications such as Eurocode-8 

(2005) and FEMA356 (2000). The philosophy inherent to the approach is to accurately 

capture the structural behavior under earthquake actions which is essentially in line 

with DAM, and the demanded performance according to the occupied functions is 

estimated.  

Compared to current seismic analysis approaches such as the lateral force (LF) and 

the response spectrum (RS) analysis methods based on linear and elastic assumptions, 

the analysis method for performance-based design requires consideration of the 

material and geometrical nonlinearities. The nonlinear static and dynamic analysis, 

which are also commonly called “push-over” and “time-history” analysis respectively, 

are two well-accepted methods for performance-based seismic design. 

AISC360 (2016) provides detailed requirements in direct analysis, which should 

include: (1) deformation of members, connections and other components; (2) 𝑃-∆ 

and 𝑃-𝛿  effects; (3) initial geometric imperfections; (4) material inelasticity and 
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residual stresses; and (5) uncertainty of strength and stiffness in the system, members 

and connection. Similar requirements are also presented in CoPHK (2011) and 

Eurocode-3 (2005). It can be seen that the above requirements should be also 

considered in the seismic analysis so that the actual structural behavior can be 

predicted for PBSD.  

It is found that little work has been carried out on the extension of DAM to PBSD. 

The pushover analysis and time history analysis should be used with effective length 

method for PBSD in current practice as the member imperfections have not been taken 

into account. The DAM requires explicit consideration of member initial 

imperfections to suppress the use of effective length factor while PBSD needs to 

simulate progressive yielding along the section depth and member length. Thus, an 

advanced and high-performance beam-column element with member imperfection is 

urgently required for the static and dynamic design.  

In the past decades, the stiffness and flexibility methods have been extensively used 

to derive beam-column elements. The stiffness-based elements have achieved great 

successes in handling large elastic deflection problems while the conventional 

flexibility-based elements have played a dominant role in second-order inelastic 

analysis. The accuracy of the former can be improved by enforcing equilibrium along 

mid-span or “stations” along the member length to achieve equilibrium which is not 

guaranteed along an element. However, as the actual location of plastic hinge can be 

anywhere along the element, the shape function becomes inadequate to describe the 

sharp angle due to formation of plastic hinge such that several stiffness-based elements 

should be used to represent the material yielding, which will significantly increase 

computer time and even cause difficulties in modeling of member imperfections. In 

contrast, the equilibrium along a flexibility-based element can always be guaranteed. 
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However, the conventional flexibility-based elements cannot meet the codified 

requirements of direct analysis because they did not take member initial imperfections 

into account. Being aware of the above, it motivates the author to develop a new 

element for direct analysis of static and dynamic problems by safety and economic 

design principles.  

For the practical design of frame structures using direct analysis method (DAM), the 

beam-column element adopted should have the merits of the above two types of 

elements. As the flexibility-based type elements can meet the compatibility and 

equilibrium conditions at the element level, they are more competent in direct analysis 

considering both geometrical and material nonlinearities.  

Thus, an advanced flexibility-based beam-column element with member initial 

imperfections, finite joint stiffness, rigid zone and end offsets, and distributed material 

nonlinearity is proposed for second-order direct analysis of frame structures under 

static and dynamic actions in this research project. Considerable care has been taken 

to verify the accuracy and efficiency of this new element. Further, the proposed 

element is applied to conduct direct analysis of two widely used structural forms, i.e. 

structures with concrete-filled steel tube (CFT) members and special concentrically 

braced frames (SCBFs). 

 

1.2 Objectives 

The main objective of this research project is to propose an advanced and high-

performance beam-column element explicitly considering member initial 

imperfections and distributed plasticity so that the direct analysis method (DAM) can 

be smoothly extended to performance-based seismic design (PBSD) without the need 
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of effective length method. The proposed element should have high accuracy even 

using one element per member and consequently, the computational efficiency in 

nonlinear dynamic analysis can be significantly enhanced. Furthermore, the 

requirements of direct analysis method need to be satisfied by incorporating the 

features into the proposed element.  

Currently, the direct analysis method (DAM) is mainly implemented via the stiffness-

based beam-column elements. Though being efficient in second-order elastic analysis, 

they face difficulties in second-order inelastic analysis which is required in PBSD. In 

contrast, the flexibility-base beam-columns show excellent performance in handling 

elastoplastic problems because they strictly satisfy the equilibrium of bending 

moments and axial force along the element. For this reason, the flexibility-based type 

element is selected as the candidate for PBSD under the framework of direct analysis. 

First, a new flexibility-based beam-column element considering member initial 

geometrical imperfection is derived. Several typical imperfection mode shapes such 

as sine function and polynomial function are allowed in this element. Second, the 

residual stress can be explicitly modeled by the proposed element via the fiber section 

technology through which the influence of residual stress on the structural response 

can be assessed. To save computer time and resource, an alternative method to form 

the sectional stiffness is proposed. The effects such as joint flexibility, rigid zone and 

end offsets, are also considered and finally an advanced hybrid beam-column element 

is developed to meet the general requirements of direct analysis. In summary, the goals 

of this research project are listed as: 

• To develop an advanced flexibility-based beam-column element with initial 

member imperfections to minimize the degrees of freedom and improve the 

convergence of nonlinear analysis; 

• To consider residual stress in the proposed element with fiber section 
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technology to improve accuracy; 

• To propose a distributed plastic hinge method to improve computational 

efficiency in second-order inelastic analysis; 

• To program and incorporate the proposed element and plastic methods into the 

existing computer program for practical use; 

• To consider joint flexibility in the proposed element; 

• To consider end rigid zone and end offsets in the proposed element; 

• To apply the proposed method in direct analysis of frame structures with 

noncompact and slender CFT members; 

• To apply the proposed method in the performance-based seismic design of 

special concentrically braced frames (SCBFs). 

 

1.3 Organization 

The outline of this thesis is presented as follows: 

Chapter 1 introduces the background, objectives, and organization of this thesis.  

Chapter 2 presents a literature survey. First, the beam-column elements for direct 

analysis are discussed. Plasticity models adopted in the beam-column elements for 

material nonlinearity are commented. Further, the modeling approaches of member 

initial imperfections and semi-rigid connection are reviewed. Finally, the design 

methods for CFT members with noncompact and slender sections, and special 

concentrically braced frames are outlined. 

Chapter 3 describes a new flexibility-based beam-column element with member 

imperfection. First, the equilibrium and compatibility equations are derived on the 

basis of Hellinger-Reissner variational functional. Second, the element flexibility 

matrix is formed by the integration of the section flexibility matrix along the member. 

Meanwhile, the curvature-based displacement interpolation (CBDI) for second-order 

flexibility-based elements is introduced. Further, the transformation from the basic 
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coordinate system to the global coordinate system and the process of element state 

determination are presented. The advantage of the proposed element for consideration 

of member imperfection is highlighted. Finally, several numerical examples are used 

to verify the accuracy and validation of the proposed element. 

Chapter 4 describes two plasticity models used in beam-column elements for the 

consideration of material nonlinearity. First, a conventional method, a distributed 

plasticity model with fiber sections technology, is illustrated. Second, a new stress-

resultant plasticity model is incorporated into the proposed flexibility-based element 

to enhance numerical efficiency. The critical steps of forming section tangent stiffness, 

i.e., the integration algorithm and return mapping algorithm, are presented to allow for 

hysteretic behavior. The proposed method is evaluated with the conventional method 

via several benchmarking examples. 

In Chapter 5, the joint flexibility, as an essential factor affecting structural behavior, 

is considered by improving the proposed element described in Chapter 3. First, several 

semi-rigid connection models for the joints subjected to monotonic or cyclic loading 

are introduced. Then, the proposed flexibility-based beam-column element is modified 

to account for semi-rigid behavior. Finally, several static and dynamic examples are 

adopted to verify the performance of the hybrid element to model frame structures 

with semi-rigid connections under static or dynamic loads. 

In Chapter 6, the proposed method is applied to design of frame structures with CFT 

members made of noncompact and slender sections. First, the design methods 

suggested by AISC360 (2016) are introduced and discussed. Second, the direct 

analysis method is extended to analyze CFT members with noncompact and slender 

sections. Finally, four experiments from literature, including rectangular and circular 

CFT members, are adopted to verify the proposed method. 
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In Chapter 7, the proposed method is applied to design of special concentrically braced 

frames (SCBFs). First, the special features of SCBFs are discussed. The proposed 

element is improved to incorporate the effect of rigid end zones, material nonlinearity, 

and residual stress. Then, a practical analytical model for SCBF systems is proposed. 

Finally, a considerable number of benchmark examples are used to illustrate the 

accuracy and efficiency of the proposed model. 

In Chapter 8, the conclusions drawn from this study are illustrated. Some suggestions 

for future work are also presented. 

 



Chapter 2. Literature review 

19 

 

CHAPTER 2. LITERATURE REVIEW 

 

This chapter presents a review on the development of beam-column elements and its 

related problems in regarding practical application. It mainly includes the review on 

the several existing beam-column elements, geometrical imperfection, approaches to 

model material nonlinearity, joint flexibility, modeling of concrete filled steel tube 

(CFT) members and the design of special concentrically braced frame. 

 

2.1 Beam-column elements for second-order analysis 

Finite element method was invented to solve complex elasticity and structural analysis 

problems in civil and aeronautical engineering in the early 1940s. Beam-column, as 

an effective kind of finite element to model beams and columns, attracted a 

considerable amount of research. Several kinds of beam-column elements with unique 

features were developed. Numerous scholars had made substantial efforts on nonlinear 

engineering problems. Generally, these elements can be divided into three categories: 

displacement, flexibility and mixed element. Extensive researches have been 

conducted on the structural analysis of frame structures with consideration of 

geometrical and material nonlinearities. Meanwhile, some reliable numerical methods 

were developed to solve the nonlinear problems. For instance, Chan (1988) proposed 

an approach, called minimizing the residual displacements, to solve geometric and 

material nonlinear problems. Chan and Zhou (1994) proposed a pointwise-

equilibrating-polynomial (PEP) element which can model one member with one 

element and show excellent performance on solving nonlinear geometrical problems. 

Chen and Chan (1995) proposed an element with plastic hinges at the mid-span and 
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two ends which can be used to model material nonlinearity. Izzuddin and Smith (1996) 

proposed a new formulation to consider elastoplastic material behavior using 

distributed plasticity. Izzuddin (1996) introduced geometrical imperfection in a local 

Eulerian system to beam-columns. Spacone (1996) proposed a mixed beam-column 

element, which has a high accuracy in the nonlinear analysis of structural members. 

Neuenhofer and Filippou (1998) proposed a flexibility-based beam-column element 

for geometrically nonlinear analysis of frame structures. Pi et al. (2006) employed an 

accurate rotation matrix to derive nonlinear strain, and proposed a beam-column 

element to model steel and concrete composite members based on total Lagrangian 

framework. 

In this section, these three kinds of beam-column elements have been reviewed and 

their features are discussed.  

 

2.1.1 Displacement-based beam-column element 

The displacement-based beam-column element is most widely used element and is 

embedded in most commercial software packages. This kind of element assumes a 

shape function to discrete and interpolate the displacement fields along the element. 

The general derivation process of stiffness matrix will be stated concisely. 

Conceptionally, the displacement field of the element can be described by shape 

function and the nodal displacements at two ends as, 

𝐮(𝑥) = 𝐍(𝑥)𝐃 (2.1) 

in which, 𝐍 is the shape function and 𝐃 is the nodal displacements. As the shape 

function is generally defined by limited order of polynomial function, it will lead to 

an approximate displacement field and further may give an inaccurate stiffness matrix. 

Taking the cubic beam-column element for example, its shape functions for transverse 
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displacements are, 

N1 =
1

8
(1 − 𝜉)(1 − 𝜉2) (2.2) 

N2 = −
1

8
(1 + 𝜉)(1 − 𝜉2) (2.3) 

𝜉 = 2𝑥/𝐿 (2.4) 

in which, x is the distance from the first end, L is the member length. In Equations 

(2.2) to (2.4), the shape function only has an algebraic accuracy of three degrees. The 

deformation fields can be deduced as, 

𝐝(𝑥) = 𝐁(𝑥)𝐃 (2.5) 

in which, 𝐁  is the strain-displacement transformation matrix in related to shape 

functions; 𝐝 is an approximate strain field. 

The simple element is a cubic element, in which cubic and linear functions are 

assumed. Rewriting Equation (2.5) in differential form, we can get the increment of 

stress field as, 

d𝐒(𝑥) = 𝐤(𝑥)d𝐝(𝑥) = 𝐤(𝑥)𝐁(𝑥)d𝐃 (2.6) 

in which, 𝐤(𝑥)  is the section stiffness matrix. Integrating stress resultants 𝐒(𝑥) 

along the element, the equilibrium condition can be obtained, 

𝐏 =  ∫ 𝐁T(𝑥)𝐒(𝑥)
L

0

d𝑥 (2.7) 

Finally, the tangent stiffness matrix can be obtained as, 

𝐊 =
∂𝐏

∂𝐃
=   ∫ 𝐁T(𝑥)𝐤(𝑥)𝐁(𝑥)

L

0

dx (2.8) 

The discretization error limits the accuracy of the cubic element. Results predicted by 
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the Hermite element are precise if the deflection of the element is small, whereas if 

the deflection or the axial force is sufficiently large, the results could be erroneous due 

to the cubic deflection function is incapable of capturing the deformation (Chan and 

Gu, 2000). Accordingly, modeling a single member commonly requires two or more 

elements to improve the accuracy. Research indicated that Hermite element 

overestimated 21.6% of the buckling load for a simple-supported strut when a member 

was modeled by only one single element (So and Chan, 1991). Additionally, this 

element usually ignores the member initial curvature. Hence, this kind of element is 

unable to directly apply in the second-order direct analysis. The common solution to 

overcome this problem is adopted refined the finite element mesh. This will bring 

additional workload to engineers and increase the computer time. This conventional 

displacement-based beam-column does not satisfy the requirement of the practical 

design.  

Chan and Zhou (1994) initially proposed a Pointwise-Equilibrating-Polynomial (PEP) 

element which has been promoted in varied kinds of second-order analysis over the 

last decades. The element is particularly effective and workable for second-order 

nonlinear analysis and allows for a single element per member. There are four 

compatibility conditions and two equilibrium conditions in the PEP element. The 

shape function of the element is a fifth-order polynomial.  

Apart from increasing the order of the shape function, Liu et al. (2014) introduced 

internal degrees of freedom to form a curved arbitrarily-located plastic (ALH) element. 

Before the elemental stiffness matrix is assembled into the global stiffness matrix, the 

internal degrees of freedom need to be condensed, which can reduce the dimension of 

the global stiffness matrix and improve the computational efficiency. By imposing an 

internal node to the element, the ALH element can model the arbitrarily-located plastic 
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hinge along the member. Its capability of material nonlinearity will be discussed in the 

following section. 

Through the increasing order of the shape function or adding internal nodes, the 

accuracy of the displacement-based element is improved. However, these approaches 

also lead to the complexity of formula derivation. Miguel Ferreria et al. (2017) 

proposed an improved displacement-based element (IDBE) by adding the corrective 

fields to alleviate error of the shape functions. The corrective nonlinear strain fields 

dNL,0,s are defined as 

∫ 𝐁(𝑥)𝐝𝑁𝐿,0,𝑠(𝑥)d𝑥 = 0
L

0

 (2.9) 

Compared with the conventional displacement-based element, its accuracy can be 

easily improved by increasing integration points. But internal iteration steps are 

needed to determine the element status, and additional parameters associated with 

element state are needed to be stored. 

 

2.1.2 Flexibility-based beam-column element 

Compared with the displacement-based elements using displacement interpolation 

shape functions, the flexibility-based beam-column element is deduced from exact 

force interpolation functions. The typical form of this element will be introduced. The 

governing equation is defined as below, 

𝐒(𝑥) = 𝐛(𝑥)𝐏 (2.10) 

where 𝐛  is the force shape functions. This equation satisfies the equilibrium 

condition and do not make any approximation. Using special shape function, the 

element is able to consider second-order effect. Rewriting Equation (2.10) in 
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differential form, we can get the increment of deformation field, 

d𝐝(𝑥) = 𝐟(𝑥)d𝐒(𝑥) = 𝐟(𝑥)𝐛(𝑥)d𝐏 (2.11) 

where f is the section flexibility matrix. The compatibility condition can be expressed 

as, 

𝐃 =  ∫ 𝐛𝑇(𝑥)𝐝(𝑥)
L

0

d𝑥 (2.12) 

Finally, the flexibility matrix of the beam-column element can be obtained as, 

𝐊 =
∂𝐃

∂𝐏
=   ∫ 𝐛𝑇(𝑥)𝐟(𝑥)𝐛(𝑥)

L

0

d𝑥 (2.13) 

Because of the exact force interpolation function, flexibility-based elements can 

provide more accurate numerical results comparing with displacement-base elements. 

Its numerical error is only involved with integration along the element, which can be 

relieved by increasing the number of integration points. Many scholars devote to the 

research of exquisite element, such as King et al. (1992), Pi and Trahair (1994), 

Neuenhofer and Filippou (1998), Barsan and Chiorean (1999), El-Tawil and Deierlein 

(2001), Nukala and White (2004a), Scott and Fenves (2006), Saritas and Soydas 

(2012). Although these elements are utilized to numerous frame analyses, they do not 

consider the influence of member initial imperfection. It means they are unsuitable for 

second-order direct analysis, especially when the structure is complex in such case the 

effective length method is not applicable. Chiorea (2017) accounted for initial 

geometrical imperfections by applying a uniform member load and solving the 

second-order differential equation. This method is not convenient to satisfy different 

patterns of the initial geometrical imperfection in design codes. 

Some scholars also developed a beam-column element based on the equilibrium 
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equation, called stability function element, such as Chan and Gu (2000). The tangent 

stiffness can be deduced from the equilibrium equation as below, 

𝐸𝐼
d2𝑣1
d𝑥2

= −𝑃𝑣 +
𝑀1 +𝑀2

𝐿
𝑥 −𝑀1 (2.14) 

in which, 𝐸𝐼 is the flexural stiffness; 𝑀1 and 𝑀2 are the end moments; 𝑃 is the 

axial force. With the boundary conditions, the relationship between the forces and the 

deformations can be derived as follows, 

𝑀1 =
𝐸𝐼

𝐿
[𝑐1𝜃1 + 𝑐2𝜃2] (2.15) 

𝑀2 =
𝐸𝐼

𝐿
[𝑐2𝜃1 + 𝑐1𝜃2] (2.16) 

𝑃 = 𝐸𝐴[
𝑢

𝐿
− 𝑏1(𝜃1 + 𝜃2)

2−𝑏21(𝜃1 − 𝜃2)
2] (2.17) 

where c1 and c2 are the stability function, b1 and b2 are the curvature function owing 

to axial loads. Noted that these parameters are depended on the various loading 

conditions. It needs three sets of stiffness matrixes for the cases P > 0, P = 0 and P < 

0. Thus, there exists a potential risk in the numerical instability during the process of 

the analysis.  

 

2.2 Plasticity models for material nonlinearity 

Performance-based design method is adopted in most design codes, which requires 

structural analysis with material and geometrical nonlinearities. The inelastic 

deformation should be accurately predicted during the analysis process. To achieve 

this aim, scholars developed beam-column elements considering material nonlinearity 

by three methods, i.e., concentrated plasticity, distributed plasticity and distributed 

plastic hinge. 
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2.2.1 Concentrated plasticity 

As we known, time history analysis, due to small time increment and some iterations 

during the incremental-iterative process, is time-consuming. Concentrated plasticity 

method, also well-known as plastic hinge method, is a good compromise between the 

accuracy and the computational efficiency and therefore is widely used to consider 

material nonlinearity. Plastic hinge method assumes that ideally plastic behavior 

occurs at the end of members, and the length of plastic hinge is considered as zero. 

Noted that the plastic hinge is lumped only at the end of beam-column elements, while 

the rest of the element remains elastic during the analysis. Through defining different 

plastic hinge models, the beam-column element with plastic hinge can have various 

performance. Several plasticity models will be discussed in the following subsections. 

 

2.2.1.1 Perfectly elastic-plastic hinge model 

This model assumes that two ends of the beam-column element remain elastic before 

their internal forces reach the cross-section plastic strength. When the internal force 

violates the yield criteria surface, the section will be assumed to fully yield and a fully 

plastic hinge happens. This model is simple and adopted by many design codes, such 

as AISC-LRFD (2011), but it does not consider the gradually yielding process from 

elastic to plastic state. 

 

2.2.1.2 Elastic-plastic hinge model  

Unlike perfectly elastic-plastic hinge model, the elastic-plastic hinge model can reflect 

the degradation of frame section stiffness, which is closer to the actual situation. There 

are three types of elastic-plastic hinge models: column tangent modulus model, 



Chapter 2. Literature review 

27 

 

stiffness degradation model and refined-plastic hinge model. The column tangent 

modulus model reduces the elastic modulus as the axial force increases, and the 

relationship between tangent modulus and axial force can be defined by designers. The 

design codes, such as AISC-LRFD (2011), also give the reduction factors of the 

tangent modulus. Liew et al. (1993) also improved the equations of reduction factors 

as showed in Equation (2.18) and (2.19). 

𝐸𝑡
𝐸
= 1.0                  for 𝑃 ≤ 0.39 𝑃𝑦 (2.18) 

𝐸𝑡
𝐸
= −2.7243

𝑃

𝑃𝑦
 for 𝑃 > 0.39 𝑃𝑦 (2.19) 

Clearly, this method considers the influence of axial force, and is efficient to the plastic 

strength for columns under heavy axial force. However, it cannot be able to model the 

plastic strength change of beams which are usually dominated by bending moments.  

The stiffness degradation model adjusts stiffness based on the force situation to 

simulate gradual yielding. It means the element stiffness varies from elastic to 

perfectly plastic. Liew et al. (1993) proposed a coefficient matrix to change elemental 

stiffness as, 

(
𝛥𝑀𝐴
𝛥𝑀𝐵

) =
𝐸𝑡𝐼

𝐿

[
 
 
 
 𝜙𝐴[𝑆1 −

𝑆2
2

𝑆1
(1 − 𝜙𝐵)] 𝜙𝐴𝜙𝐵𝑆2

𝜙𝐴𝜙𝐵𝑆2 𝜙𝐵[𝑆1 −
𝑆2
2

𝑆1
(1 − 𝜙𝐴)]]

 
 
 
 

(
𝛥𝜃𝐴
𝛥𝜃𝐵

) (2.20) 

𝜙 is a scalar parameter and determined by axial force and moment. Thus, it considers 

the interaction between the axial force and the bending moment and also allows 

gradual degradation of element stiffness from elastic to fully plastic. 

Iu et al. (2009) developed a refined plastic hinge model for steel frames which allows 

for gradual yielding, having the same features as distributed plasticity. When the cross-

section becomes fully plastic, this model also can consider strain hardening. Combined 
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with a fourth-order beam-column element, it achieves high accuracy and fewer 

iterations when solving material nonlinearity problems. In this model, partial plasticity 

is modeled by initial yield and full yield functions, and accordingly the axial stiffness 

and bending stiffness varies from infinity to zero. For seismic design, Dides and De la 

Llera (2005) conducted a dynamic analysis of building structures by the lumped 

plasticity models.  

The concentrated plasticity model is used not only in modeling steel structures but also 

in modeling RC structures. Zhao et al. (2012) adopted the lumped plasticity model to 

model RC flexural members and evaluated the plastic-hinge length by comparing with 

distributed plasticity model. Babazdeh et al. (2016) also investigated the plastic-hinge 

length of RC bridge columns. They found that the plastic hinge model developed for 

shorter columns produces a conservative prediction of long RC bridge columns. 

Compared with steel structures, the behavior of RC or composite structures is largely 

affected by the reinforcement ratio. Generally, the plastic hinge models for RC or 

composite structures are section-dependent, and therefore it is inconvenient for 

practical use. 

 

2.2.1.3 Stress resultant model 

The stress resultant model is also able to model the gradual yielding of frame sections. 

This kind of model is derived from the classical material constitutive model. The latter 

one is presented in stress space, while the former is described in stress-resultant space. 

This model has been used to simulate material nonlinearity of shell sections and frame 

sections. Stress resultant model is studied by many scholars, such as Orbison (1982), 

Hajjar (1998), Ma (2004), Alemdar (2005). El-Tawil (1998) proposed a bounding 

surface plasticity model, which can obtain a better result when using Mroz’s kinematic 
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rule in stress-resultant space. Generalized plasticity firstly was used to model metal 

behaviors. This model has only two parameters with clear physical meaning and can 

describe the process from elastic to plastic. Auricchio and Taylor (1999, 1995 and 

1993) also developed a return map algorithm to determine the stress state, which was 

proved to be very efficient. Some scholars extended generalized plasticity concept to 

describe stress resultants of frame sections. Kostic (2013, 2016) proposed a 

generalized plasticity model to represent the gradual yielding of frame sections. This 

model has two surfaces: loading surface and limited surface. The interaction between 

the axial force and bending moments has been taken into account. Long and Hung 

(2008) introduced the effective strain and the plastic modulus to model gradual 

yielding. However, these two parameters are difficult to determine, which lead 

inconvenience to practical use. 

 

2.2.2 Distributed plasticity 

Though the aforementioned concentrated plasticity models are effective in elastic-

plastic analysis, they are unable to reflect the distribution of plasticity along the 

members due to its zero-length assumption. The distributed plasticity models are 

developed to overcome the disadvantages of the concentrated plasticity models. 

Generally, the distributed plasticity is achieved by fiber section approach. This method 

is section-independent, and any frame sections can be discretized to several finite 

regions to get more accuracy inelastic response, as seen in Fig. 2.1. The uniaxial 

material is imposed to each fiber. It means that the state of each fiber can be 

determined by axial strain and curvature of the frame section. The constitutive 

relationship of uniaxial material can be defined by users. The models such as elastic-

perfectly plastic with zero tensile strength for concrete and Giuffre-Menegotto-Pinto 



Chapter 2. Literature review 

30 

 

model for steel have been widely used. Filippou (1983) and Botez et al. (2014) 

compared concentrated plastic hinge and distributed plasticity by conducting 

progressive collapse analysis. They found that though distributed plasticity costs more 

run-time than the plastic hinge method, it can provide more trustful results and make 

better progressive collapse verdict. Astroza et al. (2014) adopted distributed plasticity 

using fiber sections to identify damage by a nonlinear stochastic filtering technique. 

The accuracy of distributed plasticity is affected by the integration scheme and number 

of integration points. Scott and Fenves (2006) evaluated several integration schemes 

and reported their precision with different number of integration points. He et al. (2016) 

tried to resolve this disadvantage by studying the relationship between the optimal 

element size and the number of integration points. Though evaluating the possible 

plastic-hinge length, the optimal element size can be used to mesh members. In 

practice, this method can be used to model frame structures with any sections, such as 

steel, RC or composite sections. Based on the distributed plasticity models, Kucukler 

et al. (2014) used the stiffness reduction method to capture the effects of residual stress 

and geometrical imperfections. Pan et al. (2016) investigated the effect of 

reinforcement anchorage slip in the footing by efficient fiber beam-column elements.  

In general, the distributed plasticity model performs well in computational accuracy 

with wider application range. The main obstacle of this model lies in the less 

computational efficiency. 

 

2.3 Modeling of member initial imperfections 

As mentioned above, the Pointwise-Equilibrating-Polynomial (PEP) element can 

consider member initial imperfection and allow large deflection via only a single 

element per member. The PEP element was used for the second-order inelastic 
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analysis of steel frameworks was proposed by Zhou and Chan (2004). An arbitrary 

elastic-perfectly plastic hinge can be formed along the element length. The PEP 

element was employed to the second-order analysis of single angle trusses and further 

validated by experiment results (Chan and Cho, 2008; Cho and Chan, 2008; Fong et 

al., 2009). The PEP element was extended to the nonlinear analysis of composite steel 

and concrete members and frameworks and verified by a range of experiments (Fong 

et al., 2009, 2011). Liu et al. (2010) adopted this element to conduct the pushover 

analysis for performance-based seismic design. An imperfection truss element is 

proposed by Zhou et al. (2014) to consider geometrically nonlinear buckling and 

seismic performance of suspend-dome. However, their work did not consider material 

nonlinearity. The ALH element (Liu et al., 2014a, 2014b) can not only model member 

P-δ effect directly but also material nonlinearities using the plastic hinge method. Bar-

spring models were developed by Meimand et al. (2013) to simulate geometrical 

imperfections and nonlinear material behavior. A set of slope-deflection equations or 

closed-form equations (Smith-Pardo and Aristizábal-Ochoa, 1999; Chan and Gu 2000; 

Aristizabal-Ochoa 2010) based on the classical stability functions were used to capture 

the imperfections by the corresponding beam-column elements. The geometrical-

nonlinear axial factor (Aristizabal-Ochoa, 2000) can include transverse forces caused 

by initial imperfections, but these formulas are limited to elastic members. The 

stability functions were further refined by Goto and Chen (1987) through a power 

series without truncations. Following this research, the power series was formulated, 

and a full set of stiffness equations for nonlinear analysis was proposed by Goto and 

Chen (1987). Ekhande et al. (1989) recommended a new expression of the stability 

functions for the sake of the analysis of three-dimensional frames. Chan and Gu (2000) 

developed the stability function including the member initial imperfection for second-
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order elastic analysis allowing for one element per member. A stability function 

accounting for lateral-torsional buckling was proposed by Kim et al. (2006) with 

sufficient accuracy for engineering practice. 

In summary, there is lack of study on the flexibility-based beam-column elements 

incorporating member initial imperfection at the elemental level for second-order 

inelastic analysis. Although the studies of stiffness-based beam-column elements 

considering initial imperfection are sufficient, this kind of elements does not show 

good performance on second-order inelastic analysis. 

 

2.4 Modeling of semi-rigid connections 

The connection behavior may significantly affect the system behavior. In such case, 

the joint flexibility should be carefully considered in the process of second-order direct 

analysis. It is hard to propose a generalized model for connection systems due to their 

variety and especially the different geometry of the connected members. Therefore, 

experimental tests are commonly used to explore the joint behavior and then some 

empirical formulas are developed according to experimental data. A rather 

considerable amount of research works on monotonic loading tests and cyclic loading 

tests for different connection systems have been conducted in the past few decades, 

for example, Prabha et al. (2010). Valuable data about joint behavior have been 

collected to form various mathematical functions representing the different nonlinear 

behavior of diverse connection types. The details about modeling of connection will 

be described in Chapter 5. 

After obtaining the formulation of connection models, different semi-rigid connection 

modeling approaches are proposed. Asgarian et al. (2015) developed a three-

dimensional joint flexibility element to represent the local behavior of a tubular joint. 
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This element has two nodes with one located at the intersection of diagonal braces and 

chord and horizontal braces and chord, and the other one located at the intersection of 

the brace centerline with wall of chord. Hence, local joint deformation can be taken 

into account during the analysis, and relatively accurate predictions can be produced 

by this element. Yu and Zhu (2016) introduced an independent zero-length element to 

simulate the connections in the nonlinear dynamic collapse analysis with finite particle 

method (FPM). The zero-length element with the hysteretic relationship of moment 

and rotation can absorb energy and therefore improve the anti-collapse capacity of the 

whole structure. On the contrary, fully rigid or ideally pinned connections do not make 

any contribution to the energy absorbing. More importantly, this effect also is in 

conjunction with axial forces, which has been ignored by many researchers. 

 

2.5 Design method for CFT members with noncompact and 

slender sections 

The concrete-filled steel tube (CFT) members have been studied by many researchers 

based on experimental tests or numerical simulation. Various loading conditions such 

as axial compression, flexural, and their combination were set up to test the complex 

behaviors of CFT members. Several parameters, such as yield stress 𝐹𝑦 of the steel 

tube, the compressive strength of the concrete infill, width-to-thickness ratios of the 

steel tube, column length to depth ratio and so on, were investigated through numerous 

tests. However, most experiments force on compact CFT members, such as Nishiyama 

et al. (2002), Kim (2005), Gourley et al. (2008) and Hajjar (2013). In contrast, there 

is few tests on the noncompact and slender CFT members, which brings about few 

researches on the development of design method for these kinds of CFT members.  
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In the field of numerical simulation, the complex behaviors of CFT such as steel tube 

yielding, local buckling, concrete confinement, crack, and slippage between the steel 

tube and the concrete infill, make them difficult to be directly modeled by numerical 

methods for practical use. Generally, there are two categories of modeling methods to 

predict the behavior of CFT members: detailed 3D finite element models and simple 

beam-column element models. The first method can explicitly account for the effects 

of local buckling and hoop stresses in the steel tube, and the effects of confinement on 

the concrete infill. Due to the accurate and relative detailing modeling of CFT 

members, this method often is used to conduct parameter studies with true experiments 

or calibrate other numerical modeling methods by researchers. Lai et al. (2014) built 

detailed 3D finite element models to model noncompact or slender rectangular CFT 

members to address gaps in the experimental database. Lai and Varma (2015) 

conducted varies of parametric studies of noncompact and slender circular CFT 

members to by 3D finite element modes. Lam et al. (2012) adopted three-dimensional 

8-node solid elements to model the stub concrete-filled steel tubular column with 

tapered members. Liew and Xiong (2009) used continuum solid and shell elements to 

study the behavior of CFT members with initial preload. Du et al. (2017) adopted 8-

node reduced integration brick elements to study the behaviors of high-strength steel 

in CFT members.  

The second method adopts beam-column elements to consider the complex behaviors 

of CFT members explicitly or implicitly. The explicit one adds extra degrees-of-

freedom to the end nodes of beam-column elements. Tort and Hajjar (2010) extended 

the conventional 12 DOF beam element into 18 DOF beam element to consider the 

slip deformation between the steel tube and the concrete infill of rectangular CFT 

members. Lee and Filippou (2015) proposed a composite frame element to capture the 
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bond-slip behavior at the interface between the steel tube and concrete infill based on 

an extension of the Hu-Washizu variational principle. Its highlight is the exact 

interpolation of the total section forces. These kinds of beam-column elements, 

solving problems, need to introduce additional DOF although they can be condensed 

in elemental level. The implicit approach commonly adopts fiber-based beam-column 

elements with effective stress-strain relationship to reflect complex behaviors of CFT 

members phenomenally. Regarding CFT members with compact sections, there are 

several effective stress-strain relationships available to be utilized by fiber-based 

beam-column elements, such as Tort and Hajja (2010), Sakino et al. (2004), Han et al. 

(2005) and Liang (2009). As for noncompact and slender CFT members, available 

effective stress-strain relationships are few. Lai and Varma (2016) proposed effective 

stress-strain relationships for noncompact and slender circular or rectangular CFT 

members. They also were implemented in a nonlinear fiber analysis macro model to 

verify its conservatism. But NFA was only capable of analyzing the problems of P-M. 

As for the problems with P-M-M or torsional force, this method was not suitable. 

Meanwhile, NFA divided one single CFT member into several components, which 

would lead to heavier computer time. 

 

2.6 Design method of special concentrically braced frames 

During the last decades, several strong earthquakes happened around the world. These 

earthquakes caused huge loss of property and human life. Special concentrically 

braced frames (SCBFs) are widely used in high seismic regions due to structural 

efficiency and particularly high ductility for energy dissipation. SCBFs are allowed 

for large inelastic deformation through tensile yielding, buckling and post-buckling 

behaviors of braces. This structural system can provide reasonable lateral stiffness and 
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strength in elastic range, and have advantages on energy dissipation and ductility in 

plastic range to achieve operational performance targets. Recently, the performance-

based seismic design (PBSD) is recommended by many modern codes to achieve an 

economic design. This design method requires more accurate numerical analysis. For 

this reason, the accurate modeling of braces with acceptable computational costs is 

vital to capture the real structural behavior of SCBFs subjected to earthquakes.  

Lots of scholars proposed modeling methods to capture the complex behaviors of 

SCBFs, such as buckling capacity, tensile yielding, post-buckling, the fracture and 

post-fracture behavior. Previous researches (Hsiao et al. 2012, 2013; Karamanci and 

Lignos 2014; Krishnan 2010; Uriz 2005) show that the initial curvature of steel braces 

should be taken into account so that the buckling and post-buckling behavior of steel 

braces can be triggered in numerical analysis. Several elements per member are 

recommended to capture the complex behavior of braces and accurate prediction 

compared to the test results is reported (Hsiao 2012, 2013; Karamanci 2014; Uriz, 

2005). This treatment will significantly increase the computational time. Krishnan 

(2010) proposes a modified elastoplastic fiber element, which consists of three fiber 

segments demarcated by two external nodes and four internal nodes, to simulate the 

inelastic behavior of slender columns and braces. However, the element formulation 

is too complicated with lower numerical efficiency. Hsiao (2012) modeled the beams, 

columns, and braces by fully nonlinear beam-column elements which fail to consider 

local second-order effect or 𝑃-𝛿 effect. Meanwhile, this study indicated that a special 

node located at the middle of braces must be assigned to model the initial member 

imperfection. This is one reason for that muti-elements are needed to model a single 

brace. Uriz (2008) suggested that the brace member should be subdivided into two 

inelastic beam-column elements for an accurate representation of its complex behavior. 
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Though an extensive set of experimental data of braces with different cross sections 

and slenderness ratios were matched with his proposed model, all these specimens are 

single brace components.  

Extensive works have been conducted on the modeling of braces as well as their joints 

connected to beams and columns and aim to accurately predict the cyclic deterioration 

in strength and stiffness of structural components. The typical behavior and the 

potential failure locations of a single brace are shown in Fig. 2.3. Uriz (2005) points 

out the limitation of the traditional phenomenological model in predicting peak 

responses of steel braces and proposes a brace component model which can well 

simulate the post-buckling behavior and fracture of steel braces subjected to cyclic 

loading. Yoo et al. (2008) use continuum finite element (FE) model to study the 

behavior of gusset plate connection and the interaction between the connection and 

framing elements. They also point out that proper detailing of gusset plate connection 

will improve the performance of SCBFs. Uriz and Mahin (2008) propose a force-based 

fiber element to simulate the behavior of gusset plate connection while Hsiao et al. 

(2012) introduce rotational hinges attached to ends of the beam-column element to 

model the connections. Lehman et al. (2008) conduct an experimental test to improve 

the economy and performance of gusset plate connections. Fell et al. (2009) 

experimentally investigate the inelastic buckling and fracture behavior of steel braces 

including square hollow section, pipe and wide-flange H-shape section. Generally, the 

geometry and properties of the gusset plate determine the stiffness of zero-length end 

spring. 

To improve the design practice for the braced frames, a practical analytical model is 

proposed. The accuracy of the proposed model is verified using a series of 

experimental specimens, single-brace component and full-scale multistory frames. 
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The computation cost of the proposed model was also compared with other fiber-type 

finite element model, which uses several elements to model one brace. 
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FIGURES 

 

Fig. 2.1 Section discretization 
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Fig. 2.2 Commonly used configurations of SCBFs 

 

 

 

Fig. 2.3 Structural behavior of brace and failure locations 
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CHAPTER 3. FLEXIBILITY-BASED BEAM-

COLUMN ELEMENT CONSIDERING 

MEMBER IMPERFECTION 

 

3.1 Introduction 

The modern design codes such as AISC360 (2016) and Eurocode-3 (2005) specify a 

rational approach, i.e., second-order direct analysis method (DAM), for stability 

analysis and design. “Direct Analysis” is also well-known as “Second-order Analysis” 

or “Advanced Analysis”. This method has several advantages compared with the 

conventional effective length method (ELM). Firstly, it has a wider range of 

application as it can be applied to all types of structural systems. Secondly, more 

accurate internal forces and moments of members can be captured by direct analysis. 

Thirdly, accurate consideration of column restraints brings a rotational design of 

beams and connections. Lastly, accessing the member and system stability in an 

integrated way makes the whole design procedure simpler without the need of 

effective length factor.  

General speaking, the factors such as initial imperfection, material yielding, second-

order effects and joint flexibility may affect the deflection and instability of the 

structural system. Regarding initial imperfection, it consists of geometrical 

imperfections and residual stress. In comparison of DAM, “Indirect Analysis” means 

that the analysis ignores one or several key factors above. The second-order effects, 

the member initial bowing and their coupling effects make a big contribution to the 

geometrical nonlinearity of individual members and the structural system. Therefore, 
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it is necessary to develop a practical second-order beam-column element to consider 

the member initial bowing for global analysis. The first global buckling mode is 

commonly adopted to determine the frame imperfection as well as the member initial 

imperfections in accordance with design codes. The practical design requires a simple 

modeling method, using as fewer elements as possible, to model initial out-of-

straightness because more elements will lead to significant increase of modeling 

efforts and computer time.  

There are several researches focusing on the development of beam-columns elements. 

As for displacement-based elements, Chan and Zhou (1995) directly incorporated 

member initial bowing in the elemental formulation. And this element has high 

accuracy. Liu et al. (2014a, 2014b) also developed a beam-column, using condense 

degrees of freedom (DOFs) technology, for second-order direct analysis. Based on the 

stability function, Chan and Gu (2000) developed a nonlinear beam-column element 

which performs well on modeling highly slender members under axial compressional 

force. Furthermore, the refined plastic hinge technique is introduced to the beam-

column element to consider material nonlinearity of steel and composite structures 

(Liu et al. 2010, 2012). The element stiffness matrices of the beam-column elements 

developed by Chan (1995, 2000) and Liu et al. (2014a, 2014b) were formed by exact 

integration method which is better than the numerical integration method regarding 

numerical efficiency. Excellent performance and fast convergence are reported in their 

works. Ziemian and McGuire (2002) proposed a modified tangent modulus approach 

considering residual stress and plastic hinge for second-order inelastic analysis. Their 

method is simple and can be easily incorporated into the conventional displacement-

based beam-column elements, but the geometric imperfections are not included at the 

element level. 
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For the flexibility-based beam-column elements, extensive works have been done to 

improve their performance (Alemdar, 2005; De-Souza, 2000; Jafari, 2010; 

Neuenhofer, 1997, 1998; Rezaiee-Pajand 2015; Spacone 1996). Neuenhofer and 

Filippou extended the elastic flexibility-based beam-column to consider material 

nonlinearity (1997) and second-order effect (1998). Neuenhofer and Filippou (1998) 

introduced Newton-Raphson method to determine elemental state and form element 

stiffness matrix. Nukala and White (2004a) summarized four algorithms to determine 

element state for nonlinear beam-column elements based on Hellinger-Reissner (HR) 

variational principle. This principle was adopted by De Souza (2000) to derive the 

weak form of equilibrium and compatibility equations for a new flexibility-based 

element. With the corotational technology, this new element was capable of large 

displacement inelastic analysis of 3-dimensional frame. Though flexibility-based 

beam-column elements have been improved largely, they still cannot explicitly model 

initial member geometric imperfections which is a vital factor emphasized by 

Eurocode-3 (2005) and CoPHK (2011) in the practical design. 

From above, displacement-based elements and flexibility-based elements show unique 

superiority for computational efficiency and wide application range. The former can 

solve problems of geometric nonlinearity with a simple procedure and quick 

convergence to get reasonably accurate results, which save much computer time. On 

the other hand, the latter shows powerful capacity on geometric and material 

nonlinearity. Strict satisfaction of force equilibrium enables it to erase fitting errors of 

shape function. Although increasing the number of modeling elements can increase 

the accuracy by displacement-based elements, it will bring extra works for modeling 

the member initial imperfection and post-processing. Elastic-plasticity problems can 

be handled by the displacement-based elements equipped with refined plastic hinge 
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technique by Liew (1993). Recently, the plastic hinges can be formed in arbitrary 

location along the member in some elements proposed by Liu et al. (2014a, 2014b). 

But they may give inadequate results for the more complicated plastic behavior of 

member under complex loading scenarios. 

In this study, a second-order flexibility-based beam-column element is proposed for 

direct analysis. The equilibrium and compatibility equations are derived by Hellinger-

Reissner (HR) functional. The original work by Neuenhofer (1998) is improved here 

by incorporating member initial geometric imperfection at the elemental level to 

satisfy the requirements of the practical design. As for geometric nonlinearity, the 

effect of 𝑃 − 𝛿  and 𝑃 − 𝛿0  can be directly accounted for. In terms of material 

nonlinearity, the distributed plasticity approach is used in the proposed element. The 

stiffness matrix of cross-sections at integration points can be assembled by fiber 

section technology or be directly calculated by stress-resultant plasticity model, which 

will be introduced in Chapter 4. 

 

3.2 Element formulations 

The flexibility-based beam-column element proposed by Neuenhofer and Filippou 

(1998) will be improved by incorporating initial member geometric imperfection at 

the elemental level for direct analysis.  

The following assumptions have been adopted in the proposed element:  

1. The effect of warping and shear deformation is ignored;  

2. Euler-Bernoulli beam theory is adopted by the proposed element.  

For simplicity, the proposed element is derived in the elemental basic coordinate 

system excluding the rigid body movement. The description of the proposed element 

will be arranged as:  
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1. The kinematic hypothesis is presented for the proposed element.  

2. The equilibrium and compatibility equations are introduced by the Hellinger-

Reissner (HR) functional.  

3. The section flexibility matrix is formed by the integration along the cross-section to 

assemble the elemental flexibility matrix.  

4. The curvature-based displacement interpolation (CBDI) technique proposed by 

Neuenhofer and Filippou (1998) will be briefly introduced to calculate the 

displacements of integration points.  

5. The transformation from basic coordination system to global coordination system 

will be carried out by a corotational approach. 

 

3.2.1 Basic coordinate system 

In the global coordinate system, there are six degrees of freedom for each node, i.e., 

three translational and three rotational DOFs, as shown in Fig. 3.1. Excluding the rigid 

body modes, the proposed beam-column element can be simply expressed in the 

elemental basic coordinate system. In the basic coordinate system, the total degrees of 

freedom (DOF) are six, with P for element forces and D for the corresponding end 

displacements. They are given below,  

𝐏 = {𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6}
𝑇 = {𝑁 𝑀𝐼𝑧 𝑀𝐽𝑧 𝑀𝐼𝑦 𝑀𝐽𝑦 𝑇}

𝑇
 (3.1) 

𝐃 = {𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6}
𝑇 = {𝑢 𝜃𝐼𝑧 𝜃𝐽𝑧 𝜃𝐼𝑦 𝜃𝐽𝑦  𝜓}

𝑇
 (3.2) 

 

3.2.2 Kinematic hypothesis 

Ignoring the effect of warping, the displacement field of the three-dimensional beam-

column element based on Bernoulli-Euler beam theory can be given as, 
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𝐮(𝑥, 𝑦, 𝑧) = {

𝑢𝑥(𝑥, 𝑦, 𝑧)
𝑢𝑦(𝑥, 𝑦, 𝑧)

𝑢𝑧(𝑥, 𝑦, 𝑧)

}={

𝑢(𝑥) − 𝑦 ∙ 𝑣′(𝑥) − 𝑧 ∙ 𝑤′(𝑥)

𝑣(𝑥) − 𝑧 ∙ 𝜓(𝑥)

𝑤(𝑥) + 𝑦 ∙ 𝜓(𝑥)
} (3.3) 

where 𝑢(𝑥), 𝑣(𝑥) and 𝑤(𝑥) are displacement along the x direction, y direction and 

z direction respectively; 𝜓(𝑥) is torsional angle about x direction. 

The Green-Lagrange strain tensor can be simplified and written regarding the 

displacement components as, 

{
  
 

  
 𝐸𝑥𝑥 ≅

𝜕𝑢𝑥
𝜕𝑥

+
1

2
(
𝜕𝑢𝑦

𝜕𝑥
)

2

+
1

2
(
𝜕𝑢𝑧
𝜕𝑥
)
2

𝐸𝑥𝑦 ≅
1

2
(
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑥
)                      

𝐸𝑥𝑧 ≅
1

2
(
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑥
)                    

 (3.4) 

Ignoring the contribution of torsional deformation on the axial strains, the strain field 

at the arbitrary location (𝑥, 𝑦, 𝑧)  of the cross section can be derived by the 

substituting Equation (3.3) into Equation (3.4). It can be expressed as  

𝛆(𝑥, 𝑦, 𝑧) =  𝚿(𝑦, 𝑧)𝐝(𝑥) (3.5) 

where 𝚿(𝑦, 𝑧) is a 3x4 transformation matrix as shown in Equation (3.7); 𝜀0(𝑥) is 

the strain along neutral axis; 𝜅𝑦(𝑥) and 𝜅𝑧(𝑥) are curvatures of cross-sections about 

y and z axes respectively; 𝜑(𝑥) is the torsional angle about x axis. 

𝐝(𝑥) =

{
 

 
𝜀0(𝑥)

𝜅𝑧(𝑥)

𝜅𝑦(𝑥)

𝜑(𝑥) }
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=

{
 
 

 
 𝑢

′(𝑥) +
1

2
((𝑣(𝑥) + 𝑣0(𝑥))

′
)
2

+
1

2
((𝑤(𝑥) + 𝑤0(𝑥))

′
)
2

−
1

2
(𝑣
0
′ (𝑥))

2
−
1

2
(𝑤

0
′ (𝑥))

2

(𝑣(𝑥) + 𝑣0(𝑥))
′′
− 𝑣0

′′(𝑥)

− ((𝑤(𝑥) + 𝑤0(𝑥))
′′
− 𝑤0

′′(𝑥))

𝜓′(𝑥) }
 
 

 
 

=

{
 
 

 
 𝑢′(𝑥) +

1

2
(𝑣′(𝑥))

2
+
1

2
(𝑤′(𝑥))

2
+ 𝑣′(𝑥) 𝑣0

′ (𝑥) + 𝑤′(𝑥) 𝑤0
′(𝑥)

𝑣′′(𝑥)

−𝑤′′(𝑥)

𝜓′(𝑥) }
 
 

 
 

 

 

 
(3.6) 

𝚿(𝑦, 𝑧) =  [
1 −𝑦 𝑧 0
0 0 0 −𝑧
0 0 0 𝑦

] (3.7) 

In Equation (3.6), 𝑣0(𝑥)  and 𝑤0(𝑥) are lateral initial geometrical imperfections 

with respect to y  and z  axes respectively. They will be explained and will be 

detailed in section 4 of this thesis. It is worth to point that the effect of member initial 

geometric imperfection is directly incorporated which is not mentioned in previous 

researches (De-Souza, 2000; Neuenhofer, 1997; Rezaiee-Pajand, 2015). 

 

3.2.3 Hellinger-Reissner variational formulation 

Regarding displacement-based elements, equilibrium and compatibility equations are 

generally induced by the principle of minimum potential energy. The proposed 

element is derived by the Hellinger-Reissner (HR) variational principle. This principle 

has two variables: displacement field 𝐮 and stress field 𝛔 as given in Equation (3.8). 

Π𝐻𝑅(𝛔, 𝐮) =  ∫ {𝛆(𝑥, 𝑦, 𝑧)𝛔 −  𝜒(𝛔)}𝑑𝛺
𝛺

+ 𝚷𝑒𝑥𝑡(𝐮) (3.8) 
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in which, Π𝑒𝑥𝑡(𝐮) is the external work potential term due to the external loads and 

given in Equation (3.9); 𝛺 is the volume of elements in the undeformed pattern; 𝜎 

is the stress field of cross-sections as given in matrix form in Equation (3.11). 

Π𝑒𝑥𝑡(𝐮) = 𝑷
𝑇
𝐃 (3.9) 

𝛔 = {

𝜎𝑥
𝜏𝑥𝑦
𝜏𝑥𝑧
} (3.10) 

where 𝜎𝑥  is the normal stress; 𝜏𝑥𝑦  and 𝜏𝑥𝑧  are the shear stress along z and y 

respectively. 

After getting the stress of cross-sections, the stress resultants 𝐒(𝑥) at the integration 

points can be integrated over the cross-section areaas, 

𝐒(𝑥)  =

{
 

 
𝑁(𝑥)

𝑀𝑧(𝑥)

𝑀𝑦(𝑥)

𝑇(𝑥) }
 

 

=  ∫ 𝚿(𝑦, 𝑧)𝑇𝛔
𝐴

𝑑𝐴 (3.11) 

Substituting Equation (3.11) into Equation (3.8), we can rewrite the variational 

formulation as 

Π𝐻𝑅(𝐒, 𝐮) =  ∫ {𝐒𝑇  

{
 
 

 
 𝑢′ +

1

2
𝑣′
2
+
1

2
𝑤′2 + 𝑣′𝑣0

′ + 𝑤′𝑤0
′

𝑣′′

−𝑤′′

𝜓′ }
 
 

 
 

−  𝜒(𝐒)}𝑑𝑥
𝐿

+ 𝑷
𝑻
𝐃 

 (3.12) 

In the basic coordinate system, the boundary conditions can be presented as  

𝑢(0) = 𝑣(0) = 𝑤(0) = 𝑣(𝐿) = 𝑤(𝐿) =  𝜓(0) = 0 (3.13) 

𝛿𝑢(0) =  𝛿𝑣(0) =  𝛿𝑤(0) =  𝛿𝑣(𝐿) =  𝛿𝑤(𝐿) =  𝛿𝜓(0) = 0 (3.14) 

{
𝑢(𝐿) = 𝐷1    𝑣

′(0) = 𝐷2    𝑣
′(𝐿) = 𝐷3

𝑤′(0) = 𝐷4    𝑤
′(𝐿) = 𝐷5    𝜓(𝐿) = 𝐷6

 (3.15) 

𝛿𝑣0(𝑥) = 𝛿𝑤0(𝑥) =  𝛿𝑣0
′(𝑥) = 𝛿𝑤0

′(𝑥)  = 0 (3.16) 
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The stationary of the Hellinger-Reissner potential can be obtained by taking the first 

variation about the independent fields: the displacement field and the stress resultant 

field. After setting the stationary equal to zero, the equation can be written as 

𝛿𝚷𝐻𝑅(𝐒, 𝐮) =  𝛿𝑺𝚷𝐻𝑅 + 𝛿𝒖𝚷𝐻𝑅 = 0 (3.17) 

When Equation (3.17) always holds, it can produce the equilibrium and compatibility 

equations simultaneously. They are given in Equation (3.18) and (3.19) respectively 

as, 

𝛿𝒖𝚷𝐻𝑅 = 0 (3.18) 

𝛿𝑺𝚷𝐻𝑅 = 0 (3.19) 

 

3.2.4 Equilibrium equations 

Substituting Equation (3.6) and Equation (3.16) into Equation (3.18), the equilibrium 

equations can be rewritten in expanded form as 

𝛿𝒖𝚷𝐻𝑅 = ∫ 𝐒𝑇

𝐿

{

𝛿𝑢′ + 𝑣′𝛿𝑣′ + 𝑤′𝛿𝑤′ + 𝑣0
′𝛿𝑣′ + 𝑤0

′𝛿𝑤′

𝛿𝑣′′

−𝛿𝑤′′

𝛿𝜓′

}𝑑𝑥 − 𝑷
𝑻
𝛿𝐃 = 0 

(3.20) 

Making use of Equation(3.11) and Equation (3.2), Equation (3.20) can be rewritten as 

∫ [𝑁(𝛿𝑢′ + 𝑣′𝛿𝑣′ + 𝑤′𝛿𝑤′ + 𝑣0
′𝛿𝑣′ +𝑤0

′𝛿𝑤′) + 𝑀𝑧𝛿𝑣
′′ +𝑀𝑦𝛿𝑤

′′

𝐿

+ 𝑇𝛿𝜓′] 𝑑𝑥 

−∑ 𝑃𝑖𝛿𝐷𝑖
6

𝑖=1
= 0 

 (3.21) 

Introducing the boundary conditions defined in Equation (3.14) into Equation (3.21), 

integration by parts can be conducted as 
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∫ {𝑁′𝛿𝑢 + [(𝑁𝑣′)′ + (𝑁𝑣0
′)′ −𝑀𝑧

′′]𝛿𝑣 + [(𝑁𝑤′)′ + (𝑁𝑤0
′)′ +𝑀𝑦

′′]𝛿𝑤
𝐿

+ 𝑇′𝛿𝜓} 𝑑𝑥 + [−𝑁(𝐿) + 𝑃1]𝛿𝐷1 + [𝑀𝑧(0) + 𝑃2]𝛿𝐷2

+ [−𝑀𝑧(𝐿) + 𝑃3]𝛿𝐷3 + [𝑀𝑦(0) + 𝑃4]𝛿𝐷4 + [−𝑀𝑦(𝐿) + 𝑃5]𝛿𝐷5

+ [−𝑇(𝐿) + 𝑃6]𝛿𝐷6 = 0 

 (3.22) 

To keep Equation (3.22) always holding, the following equations of equilibrium are 

obtained as 

𝑑𝑁(𝑥)

𝑑𝑥
= 0

−
𝑑2𝑀𝑧(𝑥)

𝑑𝑥2
+
𝑑

𝑑𝑥
[𝑁(𝑥)

𝑑𝑣(𝑥)

𝑑𝑥
] +

𝑑

𝑑𝑥
[𝑁(𝑥)

𝑑𝑣0(𝑥)

𝑑𝑥
] = 0

𝑑2𝑀𝑦(𝑥)

𝑑𝑥2
+
𝑑

𝑑𝑥
[𝑁(𝑥)

𝑑𝑤(𝑥)

𝑑𝑥
] +

𝑑

𝑑𝑥
[𝑁(𝑥)

𝑑𝑤0(𝑥)

𝑑𝑥
] = 0

𝑑𝑇(𝑥)

𝑑𝑥
= 0}

 
 
 
 

 
 
 
 

 𝑥 ∈  [0, 𝐿] (3.23) 

with the natural boundary conditions as 

𝑁(𝐿) = 𝑃1 𝑀𝑧(0) = −𝑃2 𝑀𝑧(𝐿) = 𝑃3
𝑀𝑦(0) = −𝑃4 𝑀𝑦(𝐿) = 𝑃5 𝑇(𝐿) = 𝑃6

 (3.24) 

Using Equations (3.23) and (3.24), the following stress resultant fields 𝐒(𝑥) are 

obtained as 

𝐒(𝑥) =

{
 

 
𝑁(𝑥)

𝑀𝑧(𝑥)

𝑀𝑦(𝑥)

𝑇(𝑥) }
 

 

= 𝐛(𝑥)𝐏 (3.25) 

where 

𝐛(𝑥) = [

1 0 0 0 0 0
𝑣(𝜉) + 𝑣0(𝜉) 𝜉 − 1 𝜉 0 0 0

−𝑤(𝜉) − 𝑤0(𝜉) 0 0 𝜉 − 1 𝜉 0
0 0 0 0 0 1

] , 𝜉 =
𝑥

𝐿
 (3.26) 

in which, b(x) is the matrix of displacement-dependent force interpolation functions; 

x is the basic coordinate along x-direction. It should be noted that 𝑣(𝜉) and 𝑤(𝜉), 
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being included in Equation (3.25), are denoted the P- effect due to external loads. 

Meanwhile, 𝑣0(𝜉) and 𝑤0(𝜉) represent the initial imperfections. 

 

3.2.5 Compatibility equations 

The compatibility equations are introduced weakly using Equation (3.19), which can 

be further expressed as 

𝛿𝑺𝚷𝐻𝑅 = ∫ 𝛿𝐒𝑇

𝐿

[
 
 
 
 

{
 
 

 
 𝑢′ +

1

2
𝑣′
2
+
1

2
𝑤′2 + 𝑣′𝑣0

′ +𝑤′𝑤0
′

𝑣′′

−𝑤′′

𝜓′ }
 
 

 
 

−
𝜕𝜒(𝐒)

𝜕𝐒

]
 
 
 
 

𝑑𝑥 = 0 

 (3.27) 

Based on the definition of the complementary energy density, the deformation of 

cross-sections can be given as 

𝜕𝜒(𝐒)

𝜕𝐒
=  𝐝(𝑥) =

{
 

 
𝜀0(𝑥)

𝜅𝑧(𝑥)

𝜅𝑦(𝑥)

𝜑(𝑥) }
 

 

 (3.28) 

Then, substituting Equation (3.28) into Equation (3.27), we have 

∫ [𝛿𝑁 (𝑢′ +
1

2
𝑣′2 +

1

2
𝑤′2 + 𝑣′𝑣0

′ + 𝑤′𝑤0
′ − 𝜀0) + 𝛿𝑀𝑧(𝑣

′′ − 𝜅𝑧)
𝐿

+ 𝛿𝑀𝑦(−𝑤
′′ − 𝜅𝑦) + 𝛿𝑇(𝜓

′ − 𝜑)] 𝑑𝑥 = 0 

 (3.29) 

Considering the boundary conditions in Equation (3.15), Equation (3.29) can be 

integrated by parts as 

∫ {𝛿𝑁′𝑢 + [
1

2
(𝛿𝑁𝑣′)′ + (𝛿𝑁𝑣0

′)′ − 𝛿𝑀𝑧
′′] 𝑣 + [

1

2
(𝛿𝑁𝑤′)′ + (𝛿𝑁𝑤0

′)′ + 𝛿𝑀𝑦
′′]𝑤

𝐿

+𝛿𝑁𝜀0 + 𝛿𝑀𝑧𝜅𝑧 + 𝛿𝑀𝑦𝜅𝑦 + 𝛿𝑇𝜑}𝑑𝑥

−𝛿𝑁(𝐿)𝐷1 + 𝛿𝑀𝑧(0)𝐷2 − 𝛿𝑀𝑧(𝐿)𝐷3 + 𝛿𝑀𝑦(0)𝐷4 − 𝛿𝑀𝑦(𝐿)𝐷5 − 𝛿𝑇(𝐿)𝐷6 = 0
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 (3.30) 

To keep Equation (3.30) always holding, the following differential equations are 

obtained as 

𝑑𝛿𝑁(𝑥)

𝑑𝑥
= 0

−
𝑑2𝛿𝑀𝑧(𝑥)

𝑑𝑥2
+
1

2

𝑑

𝑑𝑥
[𝛿𝑁(𝑥)

𝑑𝑣(𝑥)

𝑑𝑥
] +

𝑑

𝑑𝑥
[𝛿𝑁(𝑥)

𝑑𝑣0(𝑥)

𝑑𝑥
] = 0

𝑑2𝛿𝑀𝑦(𝑥)

𝑑𝑥2
+
1

2

𝑑

𝑑𝑥
[𝛿𝑁(𝑥)

𝑑𝑤(𝑥)

𝑑𝑥
] +

𝑑

𝑑𝑥
[𝛿𝑁(𝑥)

𝑑𝑤0(𝑥)

𝑑𝑥
] = 0

𝑑𝛿𝑇(𝑥)

𝑑𝑥
= 0}

 
 
 
 

 
 
 
 

 𝑥 ∈  [0, 𝐿] 

 (3.31) 

Considering the similarity between Equation (3.23) and Equation (3.31), the following 

virtual fields (section forces 𝛿𝐒(𝑥) and end forces 𝛿𝐏 can be obtained as 

𝛿𝐒(𝑥) =

{
 

 
𝛿𝑁(𝑥)

𝛿𝑀𝑧(𝑥)

𝛿𝑀𝑦(𝑥)

𝛿𝑇(𝑥) }
 

 

= 𝐛∗(𝑥)𝛿𝐏 (3.32) 

where 

𝐛∗(𝑥) =

[
 
 
 
 
 

1 0 0 0 0 0
1

2
𝑣(𝜉) + 𝑣0(𝜉) 𝜉 − 1 𝜉 0 0 0

−
1

2
𝑤(𝜉) − 𝑤0(𝜉) 0 0 𝜉 − 1 𝜉 0

0 0 0 0 0 1]
 
 
 
 
 

, 𝜉 =
𝑥

𝐿
 (3.33) 

Substituting Equation (3.32) into Equation (3.30), the equation between virtual 

internal forces and virtual end forces is shown below. 

∫ 𝛿𝐒(𝑥)𝑇𝐝(𝑥)𝑑𝑥 =
𝐿

𝛿𝐏𝑇𝐃 (3.34) 

Rewriting Equation (3.34) with the relation between virtual section forces 𝛿𝐒(𝑥) and 

virtual end forces 𝛿𝐏, the end displacements 𝐃 can be given as 
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𝐃 = ∫ 𝐛∗(𝑥)𝑇

𝐿

𝐝(𝑥)𝑑𝑥 (3.35) 

 

3.2.6 Section flexibility matrix 

For linear analysis cases, section stress resultant, in Equation(3.11), can be directly 

calculated by formulation. However, section stress resultant need to be obtained by 

integration over the cross-section. The nonlinear section constitutive relation between 

section forces and deformations is given as 

𝐒(𝑥)  = 𝑪[𝐝(𝑥)] =  ∫ 𝚿(𝑦, 𝑧)𝑇𝛔(𝛆(𝑥, 𝑦, 𝑧))
𝐴

𝑑𝐴 

           = ∫ 𝚿(𝑦, 𝑧)𝑇𝛔(𝚿(𝑦, 𝑧)𝐝(𝑥))
𝐴

𝑑𝐴 

(3.36) 

The section tangent stiffness matrix 𝐤𝑠(𝑥) can be obtained by taking the partial 

derivatives of Equation (3.36) as 

𝐤𝑠(𝑥) =
𝜕𝐒(𝑥)

𝜕𝐝(𝑥)
= ∫ 𝚿(𝑦, 𝑧)𝑇

𝜕𝛔(𝑥, 𝑦, 𝑧)

𝜕𝛆(𝑥, 𝑦, 𝑧)

𝜕𝛆(𝑥, 𝑦, 𝑧)

𝜕𝐝(𝑥)𝐴

𝑑𝐴 

            = ∫ 𝚿(𝑦, 𝑧)𝑇𝐄𝑡(𝑥, 𝑦, 𝑧)𝚿(𝑦, 𝑧)
𝐴

𝑑𝐴 

(3.37) 

in which, where 𝐄𝑡(𝑥, 𝑦, 𝑧) is the material tangent stiffness at an arbitrary point (x, y, 

z) of the beam-column element.  

Then, the section tangent flexibility matrix can be obtained by inverting the section 

tangent stiffness matrix 𝐤𝑠(𝑥) in (3.37) as shown below. 

𝐟𝑠(𝑥) = 𝐤𝑠(𝑥)
−1 (3.38) 
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3.2.7 Element flexibility matrix 

The elemental flexibility matrix considering the P- effect can be obtained by taking 

derivative of the end nodal displacements 𝐃 in Equation (3.35) with respect to end 

nodal forces 𝐏 as 

𝐅𝒆 = 
𝜕𝐃

𝜕𝐏
 =  ∫ (

𝜕𝐛∗(𝑥)𝑇

𝜕𝐏
𝐝(𝑥) + 𝐛∗(𝑥)𝑇

𝜕𝐝(𝑥)

𝜕𝐏
  ) 𝑑𝑥

𝐿

 =  ∫ (
𝜕𝐛∗(𝑥)𝑇

𝜕𝑣(𝑥)
𝐝(𝑥)

𝜕𝑣(𝑥)𝑇

𝜕𝐏
+ 
𝜕𝐛∗(𝑥)𝑇

𝜕𝑤(𝑥)
𝐝(𝑥)

𝜕𝑤(𝑥)𝑇

𝜕𝐏
+ 𝐛∗(𝑥)𝑇

𝜕𝐝(𝑥)

𝜕𝐒(𝑥)

𝜕𝐒(𝑥)

𝜕𝐏
  ) 𝑑𝑥

𝐿

= ∫ ( 
𝜕𝐛∗(𝑥)𝑇

𝜕𝑣(𝑥)
𝐝(𝑥)

𝜕𝑣(𝑥)𝑇

𝜕𝐏
+ 
𝜕𝐛∗(𝑥)𝑇

𝜕𝑤(𝑥)
𝐝(𝑥)

𝜕𝑤(𝑥)𝑇

𝜕𝐏𝐿

+𝐛∗(𝑥)𝑇𝐟𝑠(𝑥)[𝐛(𝑥) +
𝜕𝐛(𝑥)

𝜕𝑣(𝑥)
𝐏
𝜕𝑣(𝑥)𝑇

𝜕𝐏
+
𝜕𝐛(𝑥)

𝜕𝑤(𝑥)
𝐏
𝜕𝑤(𝑥)𝑇

𝜕𝐏
])𝑑𝑥

= ∫ {𝐛∗(𝑥)𝑇

𝐿

𝐟𝑠(𝑥)[𝐛(𝑥) + 𝐡(𝑥)] + 𝐠(𝑥)}𝑑𝑥

 

 (3.39) 

where 𝐛∗(𝑥) and 𝐛(𝑥) expressed in Equations (3.33) and (3.26) respectively are 

dependent on lateral displacements, initial imperfections and location x along the 

element, 𝐟𝑠(𝑥) is the section flexibility matrix given in Equation (3.37), and 𝐡(𝑥) 

and 𝐠(𝑥) are given by, 

𝐡(𝑥) =
𝜕𝐛(𝑥)

𝜕𝑣(𝑥)
𝐏
𝜕𝑣(𝑥)𝑇

𝜕𝐏
+
𝜕𝐛(𝑥)

𝜕𝑤(𝑥)
𝐏
𝜕𝑤(𝑥)𝑇

𝜕𝐏
= 𝑃1 [

𝟎
𝑽(𝑥)
−𝑾(𝑥)
𝟎

] (3.40) 

𝐠(𝑥) =  
𝜕𝐛∗(𝑥)𝑇

𝜕𝑣(𝑥)
𝐝(𝑥)

𝜕𝑣(𝑥)𝑇

𝜕𝐏
+ 
𝜕𝐛∗(𝑥)𝑇

𝜕𝑤(𝑥)
𝐝(𝑥)

𝜕𝑤(𝑥)𝑇

𝜕𝐏

=
1

2
𝜅𝑧

[
 
 
 
 
 
𝑽(𝑥)
𝟎
𝟎
𝟎
𝟎
𝟎 ]
 
 
 
 
 

−
1

2
𝜅𝑦

[
 
 
 
 
 
𝑾(𝑥)
𝟎
𝟎
𝟎
𝟎
𝟎 ]

 
 
 
 
 

 

(3.41) 

with 
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𝑽(𝑥) =
𝜕𝑣(𝑥)

𝜕𝑷
= [

𝜕𝑣(𝑥)

𝜕𝑃1

𝜕𝑣(𝑥)

𝜕𝑃2

𝜕𝑣(𝑥)

𝜕𝑃3

𝜕𝑣(𝑥)

𝜕𝑃4

𝜕𝑣(𝑥)

𝜕𝑃5

𝜕𝑣(𝑥)

𝜕𝑃6
] (3.42) 

𝑾(𝑥) =
𝜕𝑤(𝑥)

𝜕𝑷
= [

𝜕𝑤(𝑥)

𝜕𝑃1

𝜕𝑤(𝑥)

𝜕𝑃2

𝜕𝑤(𝑥)

𝜕𝑃3

𝜕𝑤(𝑥)

𝜕𝑃4

𝜕𝑤(𝑥)

𝜕𝑃5

𝜕𝑤(𝑥)

𝜕𝑃6
] (3.43) 

 

3.2.8 Curvature-based displacement interpolation (CBDI) 

Regarding the displacement 𝑣(𝑥) and 𝑤(𝑥), they are directly given by the shape 

functions of displacement-based elements. However, only curvatures are obtained by 

the flexibility-based elements explicitly. Therefore, 𝑣(𝑥)  and 𝑤(𝑥)  need to be 

calculated by curvatures as so to get the flexibility matrix. Neuenhofer and Filippou 

(1998) proposed a method to an interpolation function to get displacements by 

curvatures, called CBDI. The displacements, 𝑣𝑖 and 𝑤𝑖, at every integration point 

𝜉𝑖 (for i= 1,… , 𝑛) are represented by integration of all curvatures 𝑘𝑧𝑗 and 𝑘𝑦𝑗 (for 

j= 1,… , 𝑛). The interpolation function is given as 

𝑣𝑖 = ∑ 𝑙𝑖𝑗
∗ 𝑘𝑧𝑗

𝑛
𝑗=1   𝑤𝑖 = ∑ 𝑙𝑖𝑗

∗ 𝑘𝑦𝑗
𝑛
𝑗=1    (3.44) 

where n represents the number of integration points along the element; 𝑙𝑖𝑗
∗  is the 𝑗th 

integrated Lagrangian polynomial at the integration point 𝜉𝑖 . As obtaining 

displacements 𝑣𝑖  and 𝑤𝑖 , V(x) and W(x) in Equations (3.42) and (3.43) can be 

expressed as follows 

∂𝒗

∂𝐏
=

[
 
 
 
 
𝜕𝑣1
𝜕𝑃1

𝜕𝑣1
𝜕𝑃2

𝜕𝑣1
𝜕𝑃3

𝜕𝑣1
𝜕𝑃4

𝜕𝑣1
𝜕𝑃5

𝜕𝑣1
𝜕𝑃6

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜕𝑣𝑛
𝜕𝑃1

𝜕𝑣𝑛
𝜕𝑃2

𝜕𝑣𝑛
𝜕𝑃3

𝜕𝑣𝑛
𝜕𝑃4

𝜕𝑣𝑛
𝜕𝑃5

𝜕𝑣𝑛
𝜕𝑃6]

 
 
 
 

 (3.45) 
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∂𝒘

∂𝐏
=

[
 
 
 
 
𝜕𝑤1
𝜕𝑃1

𝜕𝑤1
𝜕𝑃2

𝜕𝑤1
𝜕𝑃3

𝜕𝑤1
𝜕𝑃4

𝜕𝑤1
𝜕𝑃5

𝜕𝑤1
𝜕𝑃6

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜕𝑤𝑛
𝜕𝑃1

𝜕𝑤𝑛
𝜕𝑃2

𝜕𝑤𝑛
𝜕𝑃3

𝜕𝑤𝑛
𝜕𝑃4

𝜕𝑤𝑛
𝜕𝑃5

𝜕𝑤𝑛
𝜕𝑃6 ]

 
 
 
 

 (3.46) 

For simplicity, the above two equations can also be given in matrix form as 

[

∂𝒗

∂𝐏
∂𝒘

∂𝐏

] = [
𝐀𝒛 𝐁
𝐁 𝐀𝒚

]
−1

[
𝐥∗𝐚𝑧
−𝐥∗𝐚𝑦

] (3.47) 

in which, influence matrix 𝐥∗ is given as 

𝐥∗

= 𝐿2

[
 
 
 
 
1

2
(𝜉1

2 − 𝜉1)
1

2
(𝜉1

3 − 𝜉1) ⋯
1

𝑛(𝑛 + 1)
(𝜉1

𝑛+1 − 𝜉1)

⋮ ⋮ ⋱ ⋮
1

2
(𝜉𝑛

2 − 𝜉𝑛)
1

6
(𝜉𝑛

3 − 𝜉𝑛) ⋯
1

𝑛(𝑛 + 1)
(𝜉𝑛

𝑛+1 − 𝜉𝑛)]
 
 
 
 

𝐆−1 

(3.48) 

and 

𝐆 = [

1 𝜉1 𝜉1
2 ⋯ 𝜉1

𝑛−1

⋮ ⋮ ⋮ ⋱ ⋮

1 𝜉𝑛 𝜉𝑛
2 ⋯ 𝜉𝑛

𝑛−1

] (3.49) 

𝐀𝒛, 𝐀𝑦 and 𝐁 are the 2𝑛 × 2𝑛 matrixes and the corresponding elements are given 

below 

{

𝐴𝑧𝑖𝑗 = 𝛿𝑖𝑗 − 𝑙𝑖𝑗
∗ 𝑓22(𝜉𝑗)𝑃1

𝐴𝑦𝑖𝑗 = 𝛿𝑖𝑗 − 𝑙𝑖𝑗
∗ 𝑓33(𝜉𝑗)𝑃1

𝐵𝑖𝑗 = 𝑙𝑖𝑗
∗ 𝑓23(𝜉𝑗)𝑃1

 (3.50) 

Where 

𝛿𝑖𝑗 = {
1,   for 𝑖 = 𝑗
 0,    for 𝑖 ≠ 𝑗 

 (3.51) 

and 𝑓2𝑙(𝜉𝑗) and 𝑓3𝑙(𝜉𝑗) are the section flexibility matrixes at the integration point 

𝜉𝑖 as 
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{
 
 

 
 𝑓2𝑙(𝜉𝑗) =  

𝜕𝑘𝑧(𝜉)

𝜕𝑆𝑙(𝜉)
|
𝜉=𝜉𝑗

 𝑓3𝑙(𝜉𝑗) =  
𝜕𝑘𝑦(𝜉)

𝜕𝑆𝑙(𝜉)
|
𝜉=𝜉𝑗

 (𝑙 = 2, 3) (3.52) 

𝐚𝒛 and 𝐚𝒚 are the 2𝑛 × 6 matrixes and the corresponding elements are given below 

{
 

 𝑎𝑧𝑗𝑘 =∑ 𝑓2𝑙(𝜉𝑗)𝑏𝑙𝑘(𝜉𝑗)
4

𝑙=1

𝑎𝑦𝑗𝑘 =∑ 𝑓3𝑙(𝜉𝑗)𝑏𝑙𝑘(𝜉𝑗)
4

𝑙=1
 

 (𝑘 = 1, 2, … , 6) (3.53) 

in which 𝑏𝑙𝑘(𝜉𝑗) is given in Equation (25). 

Theoretically, when a plastic hinge (fully plastic state) forms in a section (an 

integration point), the curvature 𝑘𝑧𝑗 or 𝑘𝑦𝑗 will be infinity mathematically, which 

will lead to numerical difficulty. In practical design, the rotation of plastic hinge 

should meet the requirements of design codes and cannot be infinite. During the 

analysis, the element will be removed from the structural system once its internal 

curvatures exceed the design limit. However, the proposed element has advantages on 

modelling member imperfection. To archive this, the conventional flexibility-based 

elements need at least two elements per member, which not only bring heavy computer 

time but also may cause the numerical problem when several plastic hinges are formed. 

The problem can be overcome by the proposed element allowing for “one element per 

member”. 

 

3.2.9 Transformation from basic to global system 

The conventional solvers in software like NIDA (2018) are generally based on 

stiffness matrix. It is also noted that the shell elements for shear walls and concrete 

slabs were commonly developed on the basis of stiffness method. Thus, the flexibility 
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matrix in Equation (3.39) needs to be inverted to get the element stiffness matrix 𝐊𝒆 

as 

𝐊𝒆 = 𝐅𝒆
−𝟏 (3.54) 

It should be pointed out that the above derivation is formulated in the basic system 

without rigid body modes. Hence, a transformation between the basic system and the 

global system is required to include the rigid body modes. In this thesis, the 

transformation following the co-rotational method by Chan and Zhou (1994) is 

adopted and therefore the elemental tangent stiffness matrix 𝐊𝑻 can be expressed as 

𝐊𝑻 = 𝑳(𝑻
𝑻𝐊𝒆𝑻 + 𝑵)𝑳

𝑻 (3.55) 

where, 𝑻 and 𝑳 are the matrices to transfer the stiffness matrix from basic to local 

system and from local to global system respectively; 𝑵 is the matrix to consider the 

work contributed by the initial force and the translational displacements. More details 

about these matrices can be found in the paper of Chan and Zhou (1994). 

 

3.2.10 Element state determination 

According to the classic procedure in finite element programs, the nodal displacements 

can be obtained by solving the global equations about the global stiffness matrix and 

external forces. Then the status of beam-columns is updated by the nodal displacement. 

The process of updating is easy for displacement-based beam-column elements whose 

shape functions can determine the internal forces and deformations directly. But this 

way is not applicable for flexibility-based beam-column elements because the nodal 

force is still unknown, and their shape function cannot be used directly. Therefore, an 

additional step of element state determination should be conducted before carrying out 

the standard procedure. Using nodal displacements to get nodal forces involves a trial-

and-error process. The process can be executed in global level or local level.  
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In the global level, the nodal forces are corrected in every incremental-iterative 

numerical iteration, such as Newton-Raphson method and Arc-length method. Global 

equations are needed to be solved in the global iteration, which will cause huge 

computer time to achieve global and local convergence. If elements can be convergent 

in the local iteration, it can save much compute time especially when there are some 

plastic hinges formed in some members. The iteration in local level involves two sub-

levels: elemental level and section level. Four types of iterations are discussed by 

Nukala and White (2004b) for flexibility-based beam-columns elements to deal with 

combination problems of geometric and material nonlinearity. They suggested that the 

N-L algorithm (“N” stands for nonlinear iteration at element level and “L” for a linear 

solution at section level) can reduce the number of global iterations. Therefore, the 

proposed element adopts the N-L algorithm to determine the status when conducting 

elemental update.  

For the N-L algorithm, the status of sections is only updated as the iteration of 

elements. The details of the N-L algorithm are given in blow. In the following, the 

subscript i stands for the iteration index of global iteration. The subscript j represents 

the iteration index of elemental iteration.  
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3.3 Member imperfections 

There are several provisions for global imperfections and local imperfections when 

conducting direct analysis in AISC360 (2016) and Eurocode-3 (2005). Global 
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imperfections generally refer to structural sway and local imperfections are member 

bowing. They are caused by practical construction tolerance and manufacturing 

process of the steel members. In the numerical simulation, it is easy to deal with the 

global imperfections by adjusting nodal coordinates or introducing notional horizontal 

load. As a consequence, the details of the global imperfections will not be discussed 

in this thesis. The application of member initial imperfection on numerical modeling 

for direct analysis will be explained herein. Generally, there are two methods, i.e., 

equivalent geometrical imperfection method and modified modulus approach, for 

considering local imperfection. They will be briefly discussed here. 

 

3.3.1 Equivalent geometrical imperfection method 

In steel structures, there unavoidably exist member initial imperfections, including the 

geometrical imperfections and the mechanical imperfections (residual stresses). These 

imperfections cannot be ignored during the analysis procedure as they will affect the 

structural behavior. The traditional design approach, indirect analysis, uses column 

buckling curves to consider these unfavorable factors. Column buckling curves are 

determined by section types and production process, which is based on individual 

members. In the global analysis, this method ignores the coupling effect between 

structural components and structural system, which may lead to an unrealistic 

prediction of structural behavior.  

Equivalent geometrical imperfection approach is suggested by Eurocode-3 (2005) to 

consider these imperfections in a uniform form, i.e., the equivalent geometrical 

imperfection. The concept of this method was proposed by Ayrton and Perry (1886). 

It assumes that the imperfection shape of members is a half-sine function. The 

amplitude of the half-sine function is represented by 𝛿0 which varies upon section 
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types. For the proposed element, the initial geometrical imperfection function in 

Equation (3.6) can be represented as, 

𝑣0(𝑥) = 𝛿0,𝑦sin
𝑥

𝐿
       𝑤0(𝑥) = 𝛿0,𝑧sin

𝑥

𝐿
 (3.56) 

where x is the coordinate along the x-axis in the local coordinate system; 𝛿0,𝑦 and 

𝛿0,𝑧 are the maximum amplitudes of initial geometrical imperfections, located at the 

mid-span of members, about y- and z-axis respectively. Calibrating from column 

buckling curves, Table 5.1 of Eurocode-3 (2005) is based on the following formula to 

determine 𝛿0,𝑦 and 𝛿0,𝑧 as 

𝛿0 = {
𝛼(𝜆 − 0.2)

𝑊𝑒𝑙

𝐴
,   for Elastic Analysis

𝛼(𝜆 − 0.2)
𝑊𝑝𝑙

𝐴
,   for Plastic Analysis

 (3.57) 

𝜆 = √𝐴𝑓𝑦 𝑁𝑐𝑟⁄  (3.58) 

in which, 𝐴, 𝑊𝑒𝑙 and 𝑊𝑝𝑙 are the area, elastic section modulus and plastic section 

modulus of the cross section respectively; 𝑓𝑦 is the characteristic yield strength of the 

material; 𝑁𝑐𝑟  is the elastic critical axial load; 𝛼  is the imperfection factor 

corresponding to the buckling curve (𝑎0, 𝑎, 𝑏, 𝑐 or 𝑑) and section shape, as listed 

in Table 6.1 of Eurocode-3 (2005). 

It should be noted that the magnitude of imperfection 𝛿0 calculated by Equation (3.57) 

will be different for same sectional and material properties in the elastic and plastic 

analysis. Therefore, the plastic analysis will make more conservatives prediction of 

structural than elastic analysis when all members remain elastic due to the larger 

magnitude of imperfection 𝛿0 being pre-set at the beginning of the analysis.  

Generally, the traditional approach, column buckling curves method, is altered by the 

equivalent geometrical imperfection method. It considers the coupling effect of 

several unfavorable factors which include the slenderness ratio, geometrical 
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imperfections, residual stress as well as loading eccentricity in the global analysis. The 

equivalent geometrical imperfection method can be used in practical design for 

considering these unfavorable factors in some modern design codes, such as 

Eurocode-3 (2005) and CoPHK (2011). To satisfy the requirements of design codes, 

the proposed element can incorporate the initial geometrical member imperfection 

directly. Besides, the residual stresses can also be considered explicitly by the fiber 

section technology. 

 

3.3.2 Modified modulus approach 

Surovek-Maleck and White (2004) and Ziemian and McGuire (2002) proposed an 

approach, called the modified modulus method, to model the two kinds of 

imperfections mentioned above. This method has been included in AISC360 (2016). 

It does not consider the initial bowing imperfection explicitly during the procedure of 

analysis. The flexural check at the design stage considers the effect of the local 

member imperfection. Regarding the material residual stress, AISC360 (2016) reduces 

the stiffness of members to reflect its influence explicitly. An overall stiffness 

reduction factor, 0.8 is suggested by AISC360 (2016) to reduce the stiffness of 

structural systems. The properties of cross sections with considering the reduction 

factor is shown as, 

𝐸𝐴𝑒 = 0.8𝐸𝐴  𝐸𝐼𝑒,𝑦 = 0.8𝜏𝑏𝐸𝐼𝑦  𝐸𝐼𝑒,𝑧 = 0.8𝜏𝑏𝐸𝐼𝑧 (3.59) 

𝜏𝑏 =

{
 
 

 
 1, for  

𝑃

𝑃𝑦
≤ 0.5

4
𝑃

𝑃𝑦
(1 −

𝑃

𝑃𝑦
) ,   for 

𝑃

𝑃𝑦
> 0.5

 (3.60) 

where 𝜏𝑏 is determined by applied axial force P and the axial yield strength 𝑃𝑦. The 

calculation of the flexural stiffness needs to consider this additional reduction factor 𝜏𝑏. 
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Maleck and White (2004) believed that 𝜏𝑏 reflects the influence of residual stress and 

the factor 0.8 considers the coupling effect between axial force and flexural moments.  

Taking I-shape section, for example, the Lehigh residual stress pattern proposed by 

Galambos and Ketter (1959) will lead to different reduction factor τb for major-axis 

and minor-axis if equation (3.58) is applied.  

 

3.4 Numerical examples 

To verify the accuracy, efficiency and versatility of the proposed, four examples, 

involving geometrical nonlinearity, or material nonlinearity, or both, are studied. The 

first three examples are planar problems and the last one is a space problem.  

Displacement-based beam-column elements generally adopt cubic shape function or 

other higher-order shape functions to fit the member deflection. While the flexibility-

based beam-column elements use the numerical integration. The proposed element, 

one of the flexibility-based beam-column elements, also adopts numerical integration 

approach along the member to form the elemental stiffness. The section stiffness at 

integration points should reflect the stiffness of the weight length. Thus, the integration 

scheme plays an important role in the prediction of the behavior of the proposed 

element. In the inelastic analysis, the integration points are better to be located as near 

as possible to the place of plastic hinges formed. Table 3-1 shows the features of 

common approaches which has been studied by Scott (2006). All these integration 

methods have high accuracy when using more than five integration points. The 

difference between the methods is the location of integrations. For example, Gauss-

Lobatto has integration points at two ends of the element, while none of Gauss-

Legendre’s integration points locates at the ends though it has the highest accuracy. 
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Therefore, the Gauss-Legendre method is suggested to be applied to the elastic 

analysis. In the inelastic analysis, it is better to use the Gauss-Lobatto method because 

plastic hinges of practical structures often form at the locations of its integration points. 

Newton-Cotes integration method with uniform integration points along the element 

is applicable for simple cases. In the following examples, suitable integration scheme 

will be adopted. 

 

3.4.1 Single initially-curved column under different boundary conditions 

Fig. 3.2 shows the column with three boundary conditions: pinned-pinned, pinned-

fixed and fixed-fixed. The column is subjected to an axial force. This example is 

usually employed for buckling check. Various amplitudes of the initial member 

imperfection of columns are studied to check the performance of the proposed element 

for direct analysis. The analytical result of this example can be obtained by solving 

differential equilibrium equations, also given in Appendix I, to verify the accuracy of 

the proposed element.  

In the numerical models, the material is assumed to be elastic so that the capability of 

geometrical nonlinearity of the proposed element can be directly verified. The material 

and section properties are unitless for simplicity. The Young’s modulus E is 107; the 

area of cross section A is 1.0; the moment of inertia I is 0.833. Therefore, the 

integration procedure across the section in equation (3.37) is not needed. Gauss-

Legendre integration scheme, with five integration points, is adopted to accumulate 

the elemental stiffness along the column. 

In practice, the slenderness ratio of columns affects the critical buckling loading in 

related to column instability. In this example, the column with same end condition is 

assumed to have three slenderness ratios, i.e., 50, 100 and 150. The slenderness ratio 
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λ =  L/√I A⁄  is changed by setting different member lengths, which can verify the 

practicability of the proposed element to model columns ranging from short to long. 

Besides, the amplitude of the local member imperfection, δ0, is also studied by taking 

as L/1000, L/500 and L/200, which covers most situations in practical structures. 

Figs. 3.3 to 3.5 show the results of the column subjected to axial compression with 

three slenderness ratios under three typical boundary conditions. Both numerical 

results and analytical results are plotted with three kinds of the amplitude of member 

imperfection. From these figures, all results under different conditions produced by 

the proposed element agree well with the analytical results obtained by equations in 

Appendix I. This example illustrates the high accuracy of the proposed element.  

Ignoring the influence of member imperfection, the critical loads of three typical 

boundary conditions: “pinned-pinned”, “pinned-fixed” and “fixed-fixed” are 1.0, 

2.0408 and 4.0 respectively with multiplying by π2EI/L. The ultimate loads shown 

in figures is less than the Euler buckling critical loads. The difference comes from the 

consideration of member imperfection in the proposed method. Therefore, the 

ignorance of member imperfection will overestimate the column capacity and lead to 

unsafe design.  

 

3.4.2 Distributed plasticity analysis of a fixed-ended beam 

Fig. 3.6 shows the layout of a single beam with member length L of 6 m. The beam is 

subjected to a concentrated point load. This example is also used to verify the ability 

dealing with member load of the proposed element. Several plastic hinges will be 

formed in this example. The cross-section is W30x99, with cross-sectional area A of 

1.87e-2 m2, and second-moment area I of 1.661e-3 m4. The section plastic modulus is 

5.113e-4 m3. The steel grade is S275, with Young’s modulus E of 205 GPa and yield 
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stress fy of 275 MPa. The local member imperfection is ignored in this example for 

easy comparison with analytical results. 

Chen and Sohal (1995) also studied this example and provided the analytical results 

using the plastic hinge method. They also indicated the number and forming sequence 

the plastic hinges. In the numerical model, the web of the cross-section is meshed into 

16 x 4 fibers, and flanges at top and bottom of the cross-section are divided into 4 x 

16 fibers. The constitutive relationship of each fiber is assumed to be elastic-perfectly 

plastic. The beam is modeled by one or two proposed elements. To explore the 

influence of different integration scheme on the analysis, three models are built as 

shown Table 3-2. For the models using two element, a node is inserted at the point B. 

Table 3-3 gives the analytical result of details about hinge sequence, applied load and 

deflection by Chen and Sohal (1995). The load vs. deflection curves of the present 

study with the analytical solution are plotted in Fig. 3.7. From the figure, the results 

of Model 1, Model 2 and Model 3, calculated by the proposed element, agree well 

with the analytical solutions. The ultimate load capacities obtained by these models 

are almost same. Apparently, the curve obtained by plastic hinge method is less 

smooth than the proposed method.  

From the figure, Model 2 has similar load-deflection curves with Model 3. Therefore, 

two elements with 5 Newton-Cotes’ integration points make a same accurate 

prediction as that of 2 elements with 7 Newton-Cotes’ integration points. Both Model 

2 and Model 3 have integration points accurately located at where the plastic hinges 

appear. Therefore, they can make an accurate prediction of deformation and internal 

forces of members. However, though Model 1 has ten integration points along the 

member, integration points do not accurately locate at same places. Fig. 3.8 shows the 

detailed deflection of the beam when the load factor is 8.0. The deflection values of 
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integration points are also shown in the figure. Both Model 1 and Model 2 have 

integration points located at point B and two ends of the beam. Therefore, their 

ultimate capacities are similar though the deflection curves are slightly different.  

The proposed element is verified by the example that exhibits highly nonlinearity of 

material with three plastic hinges. Meanwhile, the member loads can also be properly 

considered at the element level if the proper integration scheme is used. For practical 

design, the two ends and the middle point of members have relatively larger moment 

than other locations in such case the plastic hinges often form at these points. Gauss-

Lobatto integration scheme with 5 or 7 integration points covers these locations, which 

can produce acceptable results. Generally, increasing the number of elements per 

member or increasing the number of integration points are two approaches to improve 

the accuracy of plastic analysis. Though the first approach can largely improve the 

accuracy, it increases the number of global degree of freedom (DOF) and then 

increases the number of equilibrium equations which leads to more computer time. 

Besides, it also leads to numerical problems when some elements located at the inside 

of the member fail. In contrast, the increase of integration points will only lead to more 

computer time at the elemental level which does not increase the dimension of system 

stiffness matrix. Therefore, the integration scheme can be selected according to 

applied loads and end conditions of members, which can be automatically carried out 

by the program, such as NIDA (2018). Thus, the proposed element is practical in the 

second-order inelastic analysis. 

 

3.4.3 Second-order direct analysis of a two-story 2D steel frame 

This benchmark example is firstly studied by Ziemian et al. (1992). This example 

exhibits highly geometrical and material nonlinearities and is suitable to verify the 
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performance of beam-column elements. Fig. 3.9 shows the layout and load patterns of 

this example. Several frame sections are applied, and all sections have same material 

properties, with young modulus 199810 MPa and yielding stress 248 MPa. The bottom 

of all columns is assumed to be pinned. The connections between beams and columns 

are rigid in numerical models. The load combination is 1.2 DL + 1.6 LL. Displacement 

of the top point of the right column on the second floor is monitored during analysis. 

In this example, the effects and the modeling approaches of global imperfection, 

member imperfection, and residual stress will be studied. Table 3-4 shows details of 

seven models with different settings. The global and member imperfection patterns 

are determined by the first eigen-buckling mode, as given in Fig. 3.10. The proposed 

element is used in models M1 ~ M3. All members are modeled using one-member-

one-element strategy. All cross sections use the same mesh strategy with the web 

divided into 32 x 8 fibers, and the flange divided into 8 x 32 fibers. Gauss-Lobatto 

integration method is adopted, and seven integration points are located along the 

member including two ends and middle point to capture the plastic behavior of 

members. 

Plastic hinge method, embedded in the educational program MASTAN2 (2002), is 

used in models M4 and M5. Model M6 and M7 use program FE++2015 (2001) 

provided by MASTAN2 (2002). M4 ~ M7 do not consider imperfection directly. The 

material of all models uses the elastic-perfectly plastic model. Fig. 3.11 shows load 

factor vs. lateral displacement (∆t) curves from results of all models. Ultimate load 

factors from M1, M4, and M7 are similar with less than 1.04. These three models do 

not consider the imperfection. For M4, its load factor is more than 1.04, which uses 

plastic hinge method. For the plastic zone method, model 1 and model 6 make an 

identical prediction of frame behavior. The reason is that fiber sections provide a 
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smoother transition of the stiffness from elastic to fully plastic than that provided by 

the plastic hinge method. Under the combined effect of both geometrical and material 

nonlinearities, the plastic hinge leads to a less accurate simulation due to its 

assumption of discontinuous transition. 

In direct analysis, it is inevitable to consider initial member imperfection, eccentricity 

of applied load and residual stress of cross-sections. As for the local member 

imperfection, several different methods are adopted by model 2, 5 and 7. In Model 2, 

only local imperfections are modeled with an amplitude of L/300, and the global 

imperfection is ignored. Model 5 uses the modified modulus method to consider the 

local member imperfection. Residual stress is considered by Model 7. Model 2 and 

Model 5 make the similar prediction when the load factor is less than 0.75. Then, their 

results are diverse. Model 2 has a larger ultimate load factor than Model 5. Comparing 

the results of Model 6 and Model 7, residual stress slightly reduces the ultimate 

capacity of the frame. 

The results of Model 3 show that imperfections in local and global level largely 

decrease the ultimate capacity of the frame. The stiffness of the structural system is 

more flexible than other models when the load factor is less than 0.7. Fig. 3.12 shows 

the status of yielding about the cross-section and internal forces of members when the 

load factor is 1.0. The percentage of section area yielded in some locations is bigger 

than 90%. Meanwhile, some fibers of beam sections, located at the middle of members, 

become plastic. 

In this example, results obtained by several methods are adopted to verify the accuracy 

and ability of the proposed element. This element can be a powerful tool for practical 

design. 
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3.4.4 Second-order direct analysis of Harrison’s space frame 

Fig. 3.13 shows a spatial frame tested by Harrison (1965). This test will be used to 

verify the accuracy and practicability of the proposed element. The layout and load 

patterns of this test are demonstrated in Fig. 3.13. Young modulus of the material used 

in this test is 198432 MPa. Shear modulus is 79373 MPa. The yield stress of beams 

and columns are 214.3 MPa and 210.8 MPa respectively. The shape of the section is 

CHS, with diameter 42.72 mm and thickness 4.47 mm. All beams and columns use 

the same section. The length of all members is same as 1.2192 m. The boundaries of 

columns on base are fixed. The connections between columns are supposed to be rigid. 

The fiber section technology is also adopted in this example, with discretizing the 

section into 20 fibers along the circular direction and four fibers along the diametrical 

direction, as illustrated in Fig. 3.13. Each one of members is modeled one proposed 

element respectively. To capture the plastic hinge located at two ends and middle point, 

Gauss-Lobatto integration scheme with seven integration points is adopted. Material 

property of each fiber is modeled by elastic-perfectly-plastic model. Member 

imperfection is introduced according to first buckling mode with the magnitudes δ0 

being L/500, which satisfied the requirements of CoPHK (2011). 

Fig. 3.14 shows results from several scholars, about horizontal drift ∆x (as illustrated 

in Fig. 3.13 vs. applied loading factors. The experimental results by Harrison (1965) 

are also plotted. These results are perfectly predicted by the proposed element with 

initial imperfection. Form Fig. 3.14, all numerical results appear more stiffness, while 

the experimental results are relatively flexible. This deviation may be caused by: 1. 

lack-of-fit problem during the test process; 2. the assumption of rigid connection in 

numerical models. Though displacement-based element is used by both Teh and 

Clarke (1999) and Liu et al. (2014), their results diversified when loading factor is 
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achieving 0.85. All members remain elastic when loading factor is less than 0.85. And 

there is no plastic hinge forming in the structural system. When plastic hinge appears, 

plastic zone method and plastic hinge method work and reveal different features. Both 

of their results exhibit slightly stiffer than the experimental results, which may be 

caused by ignorance of initial geometrical imperfections in their numerical models. 

This phenomenon also can be seen in results predicted the proposed element without 

setting member imperfections.  

This experimental test shows that the proposed element is capable of satisfying the 

requirements of SODA. It can predict relatively high results and applies to space 

frames.  

 

3.5 Concluding remarks 

In this chapter, a new flexibility-based beam-column element is proposed. This 

element inherits advantages of flexibility-based elements, having high accuracy. The 

highlight of the proposed element is that it is capable to incorporate member 

imperfection explicitly. Meanwhile the distributed plasticity method is adopted to 

capture the plastic behavior. The fiber section approach also makes it possible to 

consider residual stress. These features of the proposed element will be a powerful 

tool for practical design to satisfy requirements of second-order direct analysis 

(SODA).  

The capacity about both geometrical and material nonlinearities of the proposed 

element is confirmed by several benchmarked examples. The first two examples 

provide closed-form solutions to check its accuracy. The last two examples 

demonstrate its application. The results obtained by the proposed element are also 
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verified by that produced by other scholars using other methods. Some meaningful 

conclusions are obtained as, 

(1) Member imperfection can be explicitly modeled by the proposed element at the 

elemental level without introducing internal forces, which is convenient and 

practical. 

(2) Fiber section technology is adopted by the proposed element, which can capture 

the process of gradually yielding and makes it easy to incorporate residual stress 

effect. 

(3) Because distributed plasticity analysis method uses limited integration points to 

monitor the plastic status of the member, appropriate integration method should 

be employed to capture the accurate location of plastic hinges. 

(4) The proposed element, having acceptable accuracy for practical design when one 

member being modeled by one proposed element, can save much computer time. 

Besides, it could not produce numerical problem due to member failure. 

(5) To make full use of flexibility-based element and displacement-based element, the 

first one can be used to model these members being controlled by material 

nonlinearity, and the second one is efficient to simulate the other that remain 

elastic or are dominated by geometrical nonlinearity. This strategy can maintain 

accuracy and also save much computer time. 

(6) Without considering geometrical imperfection in structural systems or individual 

members will overestimate the ultimate resistance of structural systems. Though 

design codes provide the other method to model geometrical imperfection, like 

through applying notional force. But they are practical to limited structural types, 

like regular structures. The proposed eradicate these shortages and can model 

initial imperfection explicitly. 
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3.6 Appendix – Analytical Solutions of Single Imperfect 

Column under Axial Load 
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FIGURES 

 

 

Fig. 3.1 Basic forces versus displacements relations 

 

 

Fig. 3.2 Layout of columns (𝛿0 is amplitude of the geometrical imperfection) 
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(a) Pinned-pinned (b) Pinned-fixed (c) Fixed-fixed
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(c) 

Fig. 3.3 Load vs. deflection curves for “pinned-pinned”: (a)  =  (b)  =   

(c)  =  

 

 

(a) 
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(b) 

 

(c) 

Fig. 3.4 Load vs. deflection curves for “pinned-fixed”: (a)  =  (b)  =  

(c)  =  
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(a) 

 

(b) 
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(c) 

Fig. 3.5 Load vs. deflection curves for “fixed-fixed”: (a)  =  (b)  =   

(c)  =  

 

 

 

Fig. 3.6 A single fixed-ended beam under a member point load 
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Fig. 3.7 Load-displacement curves of point B 
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Fig. 3.8 Deformation of integration points along the member 
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Fig. 3.9 Layout and load pattern of the planar frame by Ziemian and McGuire (2002) 

 

 

 

Fig. 3.10 Imperfection pattern of the planar frame by Ziemian and McGuire (2002) 
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Fig. 3.11 Response curves of the frame by Ziemian and McGuire (2002) 

 

 

 

Fig. 3.12 Bending moment, axial force and percentage of the cross-section yielded 
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Fig. 3.13 Layout and load pattern of Harrison’s space frame 

 

 

Fig. 3.14 Horizontal displacement of the top point 
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TABLES 

 

Table 3-1 Numerical integration methods for flexibility-based beam-column element 

Integration 

Method 

Order of Accuracy 

Number and Location of  

Integration Point 

Newton-Cotes N-1 

N points uniformly along the 

element including both two ends 

Gauss-Lobatto 2N-3 

N points along the element 

including both two ends 

Gauss-Radau 2N-2 

N points along the element 

including one end only 

Gauss-

Legendre 

2N-1 

N points along the element not 

including two ends 

Note: N is the number of integration points whose locations are depended on the 

integration method used. 

 

Table 3-2 Numerical integration methods for flexibility-based beam-column element 

Integration 

Method 

Number of  

Integration Point per 

member 

Number of  

elements 

Newton-Cotes 10 1 

Newton-Cotes 5 2 

Newton-Cotes 7 2 
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Table 3-3 Theory results of a fixed-ended beam under different point loads 

Hinge 

Sequence 

Applied Load, P Deflection, ∆B 

A 6.75
Mp

L
 0.0247

MpL
2

EI
 

A and B 8.67
Mp

L
 0.0423

MpL
2

EI
 

A, B and C 9.0
Mp

L
 0.0741

MpL
2

EI
 

 

Table 3-4 Models (M1~M7) for the planar frame by Ziemian and McGuire (2002) 
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Note: δ0 and ∆0 are the magnitudes of initial local and global geometrical 

imperfection respectively, L represents the member length, H is the frame height. 
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CHAPTER 4. TWO PLASTICITY MODELS FOR 

MATERIAL NONLINEARITY 

 

4.1 Introduction 

Many modern design codes, such as AISC360 (2016) and Eurocode-3 (2005), have 

specified “Direct analysis”, “Second-order Analysis” or “Advanced Analysis” for 

daily design of steel structures, through which the structural stability and safety can 

be assessed by checking the members and the system in an integrated manner rather 

than checking individual member using the effective length method (ELM). The ELM 

is simply based on the first-order linear analysis without consideration of many effects 

while the direct analysis method (DAM) considers the important factors affecting 

member and system strength, such as the second-order P–δ and P-∆ effects, initial 

geometrical imperfections, residual stress, material yielding and joint behavior. 

Several different beam-column elements have been proposed to incorporate initial 

geometrical imperfection at the element level. Chan and Zhou (1995) and Liu et al. 

(2014a, 2014b) proposed stiffness-based beam-column elements considering initial 

bowing for second-order direct analysis, which show high computational efficiency 

and accuracy. Chiorean (2017) and Du et al. (2017) proposed two flexibility-based 

elements which can also directly incorporate initial imperfection in different manners 

and exhibit high performance when using one-element-per-member modeling. 

Regarding material nonlinearity, there are two widely used methods, i.e., plastic hinge 

method and plastic zone method. The plastic hinge method (also named as 

concentrated plasticity method) is widely adopted in the stiffness-based beam-column 

elements due to its simplicity and computational efficiency, while the plastic zone 
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method (also well-known as distributed plasticity method) is usually used to calibrate 

the accuracy of plastic hinge method in previous research. Although the latter can 

obtain more accurate results, it costs more computer time as well as computer storage 

in the analysis as it is required to mesh a section into some fibers and several 

integration points are needed along the member length. This problem will be more 

serious in the nonlinear dynamic (time-history) analysis. With the recently fast 

development of computer hardware, it is possible to adopt the plastic zone method in 

the second-order inelastic analysis so that the structural behavior can be well predicted. 

However, the lack of consideration of initial imperfection in traditional flexibility-

based elements and tedious determination of fiber state require too many computer 

resources, especially in high-rise buildings and long-span structures. Thus, it is urgent 

to improve the current analysis method so that more accurate results can be provided 

for design purpose with enhancement of computational efficiency. 

Generalized plasticity method was firstly proposed by Auricchio and Taylor (1995) 

for material yielding and then extended to a stress resultant section model used in 

beam-column element developed by Kostic et al. (2013). Their element adopts 

concentrated plasticity model, whose feature is described by generalized plasticity 

using yield and limit surfaces. Thus, their method can take the benefit of well-accepted 

interaction functions between the axial force and the bending moments specified in 

design codes or more accurate yield functions in literature. However, the plastic hinges 

can be only formed at the ends of the element. It means that more elements are required 

if one or more plastic hinges are formed along the member. Further, their study does 

not take the P–δ effect into account and as a result their outcome cannot fulfill the 

requirement of direct analysis. 
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This thesis is intended to improve the computational efficiency of the flexibility-based 

element with distributed plasticity proposed by Du et al. (2017). The time-consuming 

fiber section integration will be replaced by the robust stress-resultant plasticity model 

based on the concept of the generalized plasticity method. As the discretization of 

cross-section into fibers is no longer required, the proposed method will significantly 

enhance the computational efficiency by directly using the relationship between 

section deformations and stress resultants. Also, good numerical convergence is 

observed when using the backward-Euler algorithm in the determination of section 

state. Thus, a practical solution will be proposed for second-order inelastic analysis 

through which a safer and more economical design can be achieved. 

 

4.2 Distributed plasticity analysis 

Comparing with displacement-based beam-column elements with high numerical 

efficiency, the biggest advantage of flexibility-based beam-column elements is the 

excellent performance in the second-order inelastic analysis. This highlighted feature 

is carried out by distributed plasticity method with fiber section technique. This 

technique is widely adopted in flexibility-based elements to consider distributed 

plasticity along the section height and member length，as seen in Fig. 4.1. Along the 

element, numerical integration scheme is used to represent the member with several 

integration points located in special locations. The cross-section is discretized into 

some fibers as integration points as shown in Fig. 4.2. For arbitrary shapes of cross-

sections, the Blossom-Quad algorithm (2013) can be used to mesh them into 

quadrilateral fibers. Each of them is an independent region, which is defined by its 

centroid coordinates (𝑦𝑗, 𝑧𝑗) and area (𝐴𝑗). Their mechanics behaviors are modeled 
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by the nonlinear stress-strain relationship. The stress resultants and tangent stiffness 

of the cross-section can be obtained by integration of these fibers as 

𝐒(𝜉𝑖)  = {

𝑁(𝜉𝑖)

𝑀𝑧(𝜉𝑖)

𝑀𝑦(𝜉𝑖)

𝑇

} =

{
 
 
 
 

 
 
 
 ∑(𝜎𝑗𝐴𝑗)

𝑚

𝑗=1

∑(−𝑦𝑗𝜎𝑗𝐴𝑗)

𝑚

𝑗=1

∑(𝑧𝑗𝜎𝑗𝐴𝑗)

𝑚

𝑗=1

𝐺𝐽𝜑′ }
 
 
 
 

 
 
 
 

 (4.1) 

𝐤𝑠(𝜉𝑖) =

[
 
 
 
 
 
 
 
 
 ∑(𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(−𝑦𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(𝑧𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

0

∑(−𝑦𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(𝑦𝑗
2𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(−𝑦𝑗𝑧𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

0

∑(𝑧𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(−𝑦𝑗𝑧𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(𝑧𝑗
2𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

0

0 0 0 𝐺𝐽]
 
 
 
 
 
 
 
 
 

 (4.2) 

in which, 𝐸𝑡𝑗 is the material tangent modulus of the fiber 𝑗 corresponding to current 

stress state. The nonlinear stress-strain curve of material can be adopted by Equation 

(4.2) to trace the progressive yielding of the cross-section. When conducting second-

order elastic analysis, the Equation (4.2) can be rewritten in a simple form as 

𝐤𝑠(𝜉𝑖) = [

EA 0 0 0
0 EIz 0 0
0 0 EIy 0

0 0 0 GJ

] (4.3) 

 

4.3 Stress-resultant plasticity model 

A natural idea to resolve this problem presented in the last sub-section is to treat the 

cross-section as a whole without discretization. One successful application of this idea 

is the plastic hinge method which has been widely used in the stiffness-based elements, 

for example, Liu et al. (2014a, 2014b). However, their method needs to increase the 
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load step with small increment so that the progressively yielding behavior can be 

captured. It will significantly increase computer time. Meanwhile, their method 

ignores the coupling effect between axial force and bending moments. 

In this thesis, a stress-resultant plasticity model is proposed to reflect the relationship 

between the section deformations and the stress resultants directly, which is extended 

from the generalized plasticity material model introduced by Auricchio and Taylor 

(1995) and Lubliner et al. (1994, 1995, 1993). This model is also studied by Kostic et 

al. (2013, 2016) to investigate the inelastic response of plastic hinge. With the yield 

function 𝑓 and limit function 𝐹 as shown in Fig. 4.3, the stress-resultant plasticity 

model is able to model the progressive yielding of the cross-section. The functions 𝑓 

and 𝐹 divide the space in terms of P-My-Mz into three regions: 

1) Region 1: 𝑓 < 0 and 𝐹 < 0, the section is in the elastic state; 

2) Region 2: 𝑓 > 0 and 𝐹 < 0, the section is in the inelastic state, or elastic state 

under unloading; 

3) Region 3: 𝑓 > 0 and 𝐹 > 0, the section is in the inadmissible state. 

Unlike the fiber section model which needs numerous variables to record material 

history state of every fiber during the analysis, the stress-resultant plasticity model 

only needs a few variables to represent the section state. Thus, this model will save 

much computer storage and cost less computer time in the determination of section 

state. Further, as the proposed flexibility-based element has taken the initial 

geometrical imperfections and P- effect into account, only one element per member 

can provide accurate responses for design which will significantly reduce the degrees 

of freedom and enhance computational efficiency. 

To distinguish section state between elastic and inelastic behaviors, the yield function 

of the metal material is expressed regarding stress when using fiber section approach. 
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As an extension of this concept, the fully yield function of a section at the integration 

point along a member can be expressed regarding section stress-resultant 𝐩  as 

𝑓(𝐩) = 𝛷(𝐩 − 𝐚) − 𝐻𝑖𝑠𝑜𝛼 (4.4) 

in which, 𝐚  is the center point of the yield surface to consider the Kinematic 

hardening effect; 𝐻𝑖𝑠𝑜  is the isotropic plastic hardening parameter; 𝛼  is the 

equivalent plastic strain.  

The gradually yielding process is described by a limit function as given in Equation 

(4.5), which is originally proposed for generalized plasticity model. 

𝐹 = ℎ(𝑓)
𝑑𝛷

𝑑𝑡
− 𝜆̇ (4.5) 

with h(f) =
f

δ(β−f)
 (4.6) 

in which, 𝜆̇  is the plastic strain-rate multiplier; 𝛿  and 𝛽  are two non-dimensional 

positive constants, and the former controls the speed from elastic status to fully plastic 

status while the latter represents the region of elastic-plastic status. 

When the section force exceeds the yield surface, plastic deformation will happen. 

Plastic deformation is determined by an associated plastic flow rule as 

𝐝̇𝑝 = 𝜆̇
𝜕𝑓

𝜕𝐩
 (4.7) 

According to the plastic theory, the Kuhn-Tucker complementarity conditions can be 

used to convert the plastic problem to a constrained optimization problem. The 

complementarity conditions are expressed as 

𝜆̇ ≥ 0, 𝐹 ≤ 0 𝜆̇𝐹 = 0 (4.8) 

Hence, the limit function in Equation (4.5) should satisfy the following equation. 

𝐹 = ℎ(𝑓)
𝑑𝛷

𝑑𝑡
− 𝜆̇ = 0 (4.9) 
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4.4 Integration of rate equations and section tangent stiffness 

4.4.1 Integration algorithm 

The section deformations can be decomposed into the elastic deformations and the 

plastic deformations as 

𝐝 = 𝐝𝑒 + 𝐝𝑝 (4.10) 

During the integration process, the section forces and the section deformations are 

assumed to be known at time step 𝑡𝑛. The relationship between the generalized strain 

field and stress resultants is given as 

𝐬𝑛 = 𝐤𝑠𝑒(𝐝𝑛 − 𝐝𝑛
𝑝) (4.11) 

in which, 𝐤𝑠𝑒 is the elastic section tangent stiffness matrix; 𝐝𝑛 and 𝐝𝑛
𝑝

 are the total 

section deformations and plastic section deformations respectively; 𝐬𝑛 is the section 

forces excluding the torsional moment. 

If the increment of section deformations is expressed as ∆𝐝 at time step 𝑡𝑛+1, the 

total section deformations can be determined as 

𝐝𝑛+1 = 𝐝𝑛 + ∆𝐝 (4.12) 

From the above, the only unknown variable for determination of section state is the 

plastic section deformations 𝐝𝑛+1
𝑝

. In this thesis, the backward-Euler numerical 

integration algorithm will be adopted to find the plastic section deformations. This 

method is based on the following equation, 

𝐝𝑛+1
𝑝 = 𝐝𝑛

𝑝 + 𝐫𝒏+𝟏(𝐬𝑛+1)∆𝜆 (4.13) 

in which,  

𝐫(𝐬) =
𝜕𝑓

𝜕𝐬
 (4.14) 

The incremental form of the Kuhn-Tucker conditions can be written as 
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∆𝜆 ≥ 0, 𝐹𝑛+1 ≤ 0 ∆𝜆𝐹 = 0 (4.15) 

Similarly, the continuous form of the limit function in Equation (4.9) can be rewritten 

to a discrete form as 

ℎ(𝑓)(𝛷𝑛+1 − 𝛷𝑛) − ∆𝜆 = 0 (4.16) 

in which,  

∆𝜆 = ∫ 𝜆𝑑𝑡
𝑡𝑛+1

𝑡𝑛

 (4.17) 

 

4.4.2 Return mapping algorithm 

Elastic predictor-plastic corrector integration strategy is adopted as the force 

integration algorithm. When the moment-axial force point lies outside the full yield 

surface, the procedure of return mapping algorithm as shown in Fig. 4.4 should be 

used to correct the section state. The position A is the starting point while the final 

position can be determined by the following three steps. 

Step 1: Prediction procedure 

In the first step, the trial position B is located by the elastic relationship between the 

section deformations and stress resultants given in Equation (4.18) 

𝐬𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝐤𝑠𝑒(𝐝𝑛+1 − 𝐝𝑛

𝑝) (4.18) 

The plastic deformations are assumed to be constant from time step 𝑡𝑛  to 𝑡𝑛+1 . 

Hence, the plastic deformations at the time step 𝑡𝑛+1 are equal to that at the time step 

𝑡𝑛 as shown in Equation (4.19), and ∆𝜆 = 0. 

𝒅𝑛+1
𝑝,𝑡𝑟𝑖𝑎𝑙 = 𝒅𝑛

𝑝
 (4.19) 

Further, the yield function in Equation (4.4) will be updated with the trial stress 

resultants 𝐬𝑛+1
𝑡𝑟𝑖𝑎𝑙 as 
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𝑓𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝛷𝑛+1

𝑡𝑟𝑖𝑎𝑙 − 𝐻𝑖𝑠𝑜𝛼 (4.20) 

Step 2: State check 

After trial point B and trial section state are determined from step 1, the trial location 

should be checked if the conditions in Equation (4.15) are satisfied or not. As the 

plastic flow is frozen at step 1 with ∆𝜆 = 0, the conditions can be rewritten as 

𝑓𝑛+1
𝑡𝑟𝑖𝑎𝑙 < 0, 𝑜𝑟 𝑓𝑛+1

𝑡𝑟𝑖𝑎𝑙(𝛷𝑛+1
𝑡𝑟𝑖𝑎𝑙 − 𝛷𝑛) ≤ 0 (4.21) 

The first condition in Equation (4.21) represents the state that the stress resultants do 

not violate the yield surface, and the second one is for the unloading state. If one of 

the conditions is satisfied, the plastic deformations, stress resultants and the tangent 

stiffness of the section can be updated by Equations (4.22) to (4.24) using the trial 

results from step 1, and then exit the whole return procedure. If both conditions are 

not satisfied, it should go to step 3 to perform the correction procedure. 

𝒅𝑛+1
𝑝 = 𝒅𝑛

𝑝
 (4.22) 

𝒔𝑛+1 = 𝒔𝑛+1
𝑡𝑟𝑖𝑎𝑙 (4.23) 

𝐤𝑛+1 = 𝐤𝑠𝑒 (4.24) 

Step 3: Correction procedure 

From step 2, it is known that the trial position B is not the balanced point and further 

iterative procedure is needed to satisfy the conditions in Equation (4.15). The 

difference between the current deformations and the backward-Euler deformations is 

represented by a vector 𝐑 which can be determined from Equation (4.25) for time 

step 𝑡𝑛+1. 

𝐑𝑛+1 = −𝐝𝑛+1
𝑝 + 𝐝𝑛

𝑝 + 𝐫𝑛+1∆𝜆 (4.25) 

To find the final deformations meeting the requirements in Equation (4.15), all 

elements in vector 𝐑 should be less than a tolerance. For the trial plastic deformations, 
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𝐝𝑛
𝑝

 being fixed, a truncated Taylor expansion can be applied to Equation (4.25) such 

that a new residual, 𝐑𝑘, can be produced as 

𝐑𝑘 = 𝐑0 − 𝐝̇𝑛+1
𝑝 + ∆𝜆𝐐𝐬̇ + 𝜆̇𝐫 (4.26) 

with 

𝐐(𝐬) =
𝜕2𝑓

𝜕𝐬2
, 𝐬̇ = −𝐤𝑠𝑒𝐝̇𝑛+1

𝑝  (4.27) 

in which, 𝐬̇ is the change in 𝐬; 𝜆̇ is the change in ∆𝜆. Setting 𝐑𝑘 to zero, it gives 

𝐝̇𝑛+1
𝑝 = (𝐈 + ∆𝜆𝐐𝐤𝑠𝑒)

−1(𝐑0 + 𝜆̇𝐫) (4.28) 

With Equation (4.28), a truncated Taylor series on Equation (4.15) will produce 

a∆∆𝜆 + 𝑏∆∆𝜆 + 𝑐 = 0 (4.29) 

in which, 

a = (𝛿 − 𝐫𝑇𝐂𝐫)(𝐫𝑇𝐂𝐫) (4.30) 

b = 𝛿∆𝜆(𝐫𝑇𝐂𝐫) + 𝛿(𝛽 − 𝑓𝑡𝑟𝑖𝑎𝑙 + 𝐫𝑇𝐂𝐑1) + (𝑓
𝑡𝑟𝑖𝑎𝑙 + 𝛷𝑡𝑟𝑖𝑎𝑙 − 2𝐫𝑇𝐂𝐑1

− 𝛷𝑛)(𝐫
𝑇𝐂𝐫) 

(4.31) 

c = 𝛿∆𝜆(𝛽 − 𝑓𝑡𝑟𝑖𝑎𝑙 + 𝐫𝑇𝐂𝐑1) − (𝑓
𝑡𝑟𝑖𝑎𝑙 − 𝐫𝑇𝐂𝐑1)(𝛷

𝑡𝑟𝑖𝑎𝑙 − 𝐫𝑇𝐂𝐑1

− 𝛷𝑛) 

(4.32) 

𝐂 = (𝐤𝑠𝑒
−1 + ∆𝜆𝐐)−1 (4.33) 

The smaller positive solution ∆∆𝜆 in Equation (4.29) will be used to update ∆𝜆 on 

iteration 𝑘 as 

∆𝜆𝑛+1
𝑘+1 = ∆𝜆𝑛+1

𝑘 + ∆∆𝜆𝑛+1
𝑘  (4.34) 

When ∆∆𝜆 is less than the given tolerance, the final force position is located and the 

whole process is terminated. Otherwise, the iterative procedure using Equation (4.34) 

should be continued until ∆∆𝜆 meets the convergent condition. 
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4.4.3 Section tangent stiffness matrix 

After determination of the section state by the return mapping algorithm above, the 

section tangent stiffness can be calculated. The standard backward-Euler algorithm in 

Equation (4.13) can be rewritten as 

𝐬𝑛+1 = 𝐬𝑛+1
𝑡𝑟𝑖𝑎𝑙 − ∆𝜆𝐤𝑠𝑒𝐫 (4.35) 

Taking the derivative of Equation (4.35) it gives 

𝐬̇𝑛+1 = 𝐤𝑠𝑒𝐝̇ − 𝜆̇𝐤𝑠𝑒𝐫 − ∆𝜆𝐤𝑠𝑒𝐬̇𝑛+1 (4.36) 

To satisfy Equation (4.16), the consistent tangent matrix can be derived as 

𝐤𝑛+1 = 𝐂𝑛+1 − 𝑘𝐂𝑛+1𝐫𝑛+1𝐫𝑛+1
𝑇 𝐂𝑛+1 (4.37) 

in which, 

𝑘 =
(𝑓𝑛+1 + 𝛷𝑛+1 − 𝛷𝑛 + 𝛿∆𝜆𝑛+1)

𝛿(𝛽 − 𝑓𝑛+1) + (𝑓𝑛+1 + 𝛷𝑛+1 − 𝛷𝑛 + 𝛿∆𝜆𝑛+1)𝐫𝑇𝐂𝑛+1𝐫
 (4.38) 

 

4.5 Verification examples 

For the steel member with the wide-flange compact section, Orbison (1982) proposed 

a yield function which is reproduced in Equations (4.39) and (4.40) below to trace the 

material nonlinearity, 

Φ(F) = 1.15𝑝2+𝑚𝑧
2+𝑚𝑦

2+ 3.67𝑝2𝑚𝑧
2+ 3𝑝6𝑚𝑦

2+ 4.65𝑚𝑦
2𝑚𝑧

4 = 1 (4.39) 

F(𝑃,𝑀𝑧 , 𝑀𝑦) = [

𝑝
𝑚𝑧

𝑚𝑦

] =

[
 
 
 
 
 
 
𝑃

𝑃𝑦
𝑀𝑧

𝑀𝑝𝑧

𝑀𝑦

𝑀𝑝𝑦]
 
 
 
 
 
 

 (4.40) 

in which, 𝑃𝑦 is the axial resistance, 𝑀𝑝𝑧 and 𝑀𝑝𝑦 are the plastic moment resistance 

about z- and y-axis respectively. For easy comparison, the Kinematic and isotropic 
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hardening effects in Equation (21) are ignored in the following examples. The full 

surface under the interaction of force resultants is shown in Fig. 4.5. 

For fair comparison regarding computational efficiency, all examples were analyzed in 

the same personal computer with an Intel® Core™ i7-3770 CPU of 3.4 GHz and 16 GB 

RAM. 

4.5.1 A cantilever column subjected to a cyclic axial force 

The cantilever column as shown in Fig. 4.6 was firstly studied by Kostic et al. (2013) 

in a beam-column element with end plastic hinges only. In this thesis, this example is 

used to validate the ability of the proposed element in dealing with material and 

geometrical nonlinearity using the stress-resultant plasticity model. The fiber section 

plasticity model will be used for comparison purpose. The layout, section and material 

properties of the column are shown in Fig. 4.6. Two cases have been studied as follows. 

Case 1: The column is subjected to uniaxial tip translation history along the weak y-

axis.  

Case 2: The column, with or without initial geometrical imperfection L/300, is 

subjected to a variable axial force. 

In case 1, both the proposed stress-resultant plasticity model and the fiber section model 

are used to simulate the column behavior. Only one flexibility-based element is used 

in the two methods for easy comparison.  

The hysteresis curves of bending moment versus rotation on the bottom of the column, 

predicted by two different models, are shown in Fig. 4.7. It can be seen that the results 

from the stress-resultant plasticity model are remarkably close to the fiber section 

model. It demonstrates that the proposed model can capture the gradually yielding of 

the cross section with acceptable accuracy.  
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In case 2, the column, with and without initial geometrical imperfection, is modeled 

by one proposed flexibility-based element using the stress-resultant plasticity model. 

The initial bowing of the column is taken as L/300, which L is the member length. 

This case aims to study the influence of initial imperfection on the structural behavior. 

The hysteresis curves of bending moment versus rotation at the bottom of the column 

with and without consideration of imperfection are plotted in Fig. 4.8. It is interesting 

to find that the initial imperfection has little effect on tension capacity, but it will 

weaken the column’s compressive capacity and alter the structural behavior. It also 

demonstrates that the proposed flexibility-based element with the stress-resultant 

plasticity model has good performance under the pseudo-static load. 

 

4.5.2 Vogel six-story steel frame 

A two-bay six-story 2D steel frame subjected to distributed gravity loads and 

concentrated lateral loads at each story level was firstly studied by Vogel (1985). The 

layout, applied loads, section and material properties of the structure are given in Fig. 

4.9. This frame will be used to calibrate accuracy and numerical stability of the 

proposed method with the stress-resultant plasticity model. The result using several 

flexibility-based elements per member with fiber section model is believed as a 

sufficiently accurate response for calibration purpose. The influence of initial out-of-

plumb straightness is neglected for easy comparison. Two simulation strategies are 

designed as follows: 

Case 1: All beams and columns are modeled by one flexibility-based element with the 

stress-resultant plasticity model. Seven Gauss-Lobatto integration points along each 

element are employed. 
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Case 2: All beams are modeled by four proposed elements while all columns are 

modeled by two flexibility-based elements. The fiber section model is adopted for 

consideration of material nonlinearity. Seven Gauss-Lobatto integration points along 

each element are employed. 

The load-deflection curve of the node A at the top level is plotted in Fig. 4.10. It can 

be seen that the proposed method produces very close results compared with the more 

accurate fiber section approach which generally consumes more computer time. Thus, 

this example demonstrates that the proposed method can accurately predict the 

responses of practical structures with one-element-per-member modeling. 

 

4.5.3 Two-story high strength steel frame 

Six full-scale tests of single-bay two-story frames under cyclic loading were 

conducted by Hu et al. (2017) to study the seismic behavior of high strength steel 

frames. In this thesis, the specimen B460-C460-2 with a clear presentation of results 

as comparison purpose is selected to verify the proposed element with the stress-

resultant plasticity model. The layout, section and material properties of the specimen 

are shown in Fig. 4.11.  

A constant axial load of 756 kN is applied on the top of each column. The point A is 

subjected to a lateral cyclic displacement as shown in Fig. 4.12. At the same time, a 

variable force F𝐵 is applied on point B. The force F𝐵 is taken as one twentieth of 

the lateral reaction force of point A, which is resistant force determined in the last 

cycle. All beams and columns are modeled by one flexibility-based element. The 

yielding behavior of the frame is captured by the stress-resultant plasticity model. 

The hysteresis results of the base shear versus controlled overall drift ratio against the 

experimental results are plotted in Fig. 4.13. Generally speaking, the proposed method 
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can predict the energy absorbing ability through the inelastic behavior of steel 

members. The numerical simulation results by the proposed method are slightly higher 

than experimental results. It may be due to ignorance of the contribution of 

connections on the absorption of energy in a numerical study. 

 

4.5.4 Four-story 3D steel frame 

As shown in Fig. 4.14, the four-story 3D steel frame with irregular layout both in plan 

and elevation under different ground motions is used to study the computational 

efficiency of the proposed method against the conventional fiber section approach. 

The structural geometry, section sizes, and material properties are detailed in Fig. 4.14. 

For simplicity, the static loads on the frame consist of self-weight (SW), five kPa of 

dead loads (DL) and 2 kPa of live loads (LL) applied at each floor. The combination 

of static loads is 1.0(SW+DL) + 0.5LL, which is also used as the input of mass sources. 

For the ground motions, four earthquake records are studied here, i.e., the El-Centro 

1940, the San Fernando 1971, the Loma Prieta 1989 and the Northridge 1994.  

All beams and columns are modeled by one proposed element. The material 

nonlinearity is considered by the stress-resultant plasticity model and fiber section 

model respectively so that the advantage of the proposed method can be quantified 

based on their computer time cost. The Newmark method with γ = 0.5 and β =

0.25 is adopted for time integration. The Rayleigh damping is calculated by the first 

two frequencies of the elastic structure. The time increment is 0.02 second. 

The base shear F𝑥 and displacement U𝑥 at the roof level are shown in Fig. 4.15 and 

Fig. 4.16. It can be seen that both the base shears and the roof displacements from the 

proposed method are well agreed with the fiber section model.  
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The time consumed using two different methods related to four ground motions is 

shown in Fig. 4.17. It is observed that the total computer times obtained from the 

proposed method are shorter than the fiber approach and the minimum time saving is 

above 25%. Thus, the proposed method can provide sufficiently accurate results with 

a significant reduction in computational cost. This method is ready for the design of 

practical structures. 

 

4.6 Concluding remarks 

The conventional flexibility-based beam-column elements show high accuracy in 

inelastic analysis, but they are rarely adopted in a global analysis of engineering 

structures due to huge consumption of computer time and storage. Also, the 

conventional method did not take the member initial imperfection into account and, as 

a result, they require several elements per member to capture the real behavior and 

fulfill the design code requirement for direct analysis. 

This thesis fills the gap between the research and the practical application and a better 

analysis method regarding safety, efficiency, robustness, and economy can be 

achieved. The stress-resultant plasticity model is introduced to a robust flexibility-

based element developed by the authors to replace the commonly used fiber section 

model which generally consumes more computer time. Several integration points 

along an element are used to trace the distributed plasticity. The backward-Euler 

algorithm is adopted to determine complex section state which may undergo loading, 

unloading and re-loading behavior. This algorithm is reliable with good numerical 

convergence. 

The numerical examples show that the proposed method produces not only accurate 

results when compared with the conventional fiber section model, but also reduces 
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significantly the computational cost. Thus, this innovative solution, complying with 

the codified requirement of second-order direct analysis, is readily applicable to the 

design of practical steel structures. 
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FIGURES 

 

 

Fig. 4.1 Distributed plasticity by fiber section approach 

 

 

 

Fig. 4.2 Fiber discretization for wide-flange section 
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Fig. 4.3 Yield function and limit function for section state 

 

 

 

Fig. 4.4 Backward-Euler return procedure 
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Fig. 4.5. Full surface under interaction of force resultants 

 

 

 

Fig. 4.6 Layout of cantilever column and loading patterns 
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Fig. 4.7 Bending moment-plastic rotation about y-axis for case 1 

 

 

Fig. 4.8 Bending moment-plastic rotation about y-axis for case 2 
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Fig. 4.9 Layout and loading pattern of the Vogel’s six-story frame 

 

Fig. 4.10 Horizontal displacement of the Vogel’s six-story frame 
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Fig. 4.11 Layout and loading pattern of the high strength steel frame (Unit: mm) 

 

 

 

Fig. 4.12 Loading protocol for the top displacement 
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Fig. 4.13 Base shear versus overall drift ratio 

 

 

 

 

 

 

 

 

 

Fig. 4.14 Layout of four-story 3D steel frame 
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(a) El Centro 1940 

 

(b)  Loma Prieta 1989 
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(c)  Northridge 1994 

 

(d)  San Fernando 1971 

Fig. 4.15 Displacement under four earthquakes 
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(a) El Centro 1940 

 

 

(b)  Loma Prieta 1989 
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(c)  Northridge 1994 

 

(d)  San Fernando 1971 

Fig. 4.16 Base Shear under four earthquakes 
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Fig. 4.17 Consuming time of time history analysis under four earthquakes 
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CHAPTER 5. SEMI-RIGID CONNECTIONS 

UNDER MONOTONIC AND CYCLIC LOADS  

 

5.1 Introduction 

Connection systems play important role in the skeletal space structures. A large 

number of connection details have been proposed in the practical projects with great 

success, such as solid ball joint systems, socket joint systems, plate joint systems, slot 

joint systems and so on. These joint systems are usually analyzed and designed with 

the simple assumption that they are either perfectly rigid or frictionlessly pinned for 

convenience. In fact, the actual joints may have completely different features 

compared with the rigid and pinned joints. This lead to increasing concerns on the 

joint behaviors as many collapse events were initiated by connection failure. To satisfy 

the moment transfer between the beams and the columns, heavily detailed connections 

between these members are required, which cause larger size of beams required. Extra 

lateral resisting systems are needed in the pinned-joint structures due to zero rotational 

connection stiffness between these members. Noted that, connection systems will 

certainly affect the overall behavior of the entire structure. Many national steel design 

codes, such as AISC360 (2016) and Eurocode-3-1-8 (2005), have the provisions of 

semi-rigid connections to consider joint flexibility to overcome the drawbacks 

described above. Many scholars have noticed this phenomenon and conducted many 

experimental tests to explore the overall effects of joint flexibility. For example, 

Csébfalvi (2007) used an optimal method to design structures with consideration of 

semi-rigid joints, which lead to the redistribution of the internal forces between 
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members. Ahmadizadeh and Maalek (2014) investigated the effects of socket joint 

flexibility on the overall behavior of full-scale space structures and demonstrated that 

the rigid-connection assumption made unsafe prediction of displacements and ultimate 

load-carrying capacity of the studied structure. Thus, they suggested that the analysis 

and design of space structures should directly include the effects of socket joint 

flexibility. Sagiroglu and Aydin (2015) reported that the semi-rigid connection design 

could lead to a better prediction of the response and reliability of structures. Truong et 

al. (2017) utilized the zero-length element model to simulate the nonlinear behavior 

of steel connection when optimizing space steel frames with the micro-genetic 

algorithm. During the optimization process, the type of semi-rigid connection was also 

a variable. They reported that the column sizes should be increased due to the 

degradation of connection stiffness. In summary, the joint flexibility should be 

reflected in the direct analysis with proper beam-column elements. 

In this chapter, the modeling methods for the connections under static and cyclic loads 

will be introduced. Further, the semi-rigid models will be directly incorporated into 

the proposed element as described in Chapter 3. Several numerical examples will be 

studied to verify the practicability and accuracy of the proposed approach. Finally, 

several concluding remarks will be listed to highlight the priorities. 

 

5.2 Modeling of connection behavior under monotonic 

loading 

To consider the joint flexibility in numerical analysis, several linear or nonlinear 

models have been proposed in the past decades. Generally, the models for static 

analysis ignored the unloading phase. There are three methods to get the moment-
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rotation or force-displacement curves for modeling of semi-rigid connection, i.e. 

experimental approaches, empirical approaches, and numerical approaches.  

 

5.2.1 Experimental approaches 

Among all approaches exploring joint behaviors, the experimental approaches are the 

accurate way to investigate the characterization of joints. In the past few decades, 

many monotonic loading tests have been conducted to study the moment-rotation 

curves of different types of beam-column connections including single/double web 

cleats, header plates, top and seat angles, extend/flush end plates, etc. These rich 

experimental results can provide accurate and reliable data for modeling the different 

types of beam-column connections. Nevertheless, the cost of these experiments was 

high compared with other approaches, and it was hard to cover all the circumstances. 

Although there are many disadvantages of these approaches, the basic data regarding 

joint systems are vital for other methods as the benchmark and calibration purposes. 

 

5.2.2 Empirical approaches 

The models from empirical approaches are often calibrated by the experimental test 

results. By collecting numerous test results, the moment versus rotation curves of 

various connection types were proposed which can be used for mathematical modeling 

of beam-column connections. Because these moment-rotation curves are obtained 

from the limited experimental data, it may not be that accurate for studying the real 

connection behavior. Moreover, it is difficult to propose an appropriate model for the 

uncommonly used connection type due to the lack of data. 

 



Chapter 5. Semi-rigid connections under monotonic and cyclic loads 

121 

 

5.2.2.1 Component method 

Eurocode-3-1-8 (2005) introduces an approach called the component method to 

represent the rotational behavior of extended end plate connections. The stiffness of 

connection components, such as column web, column flanges, end plates, and bolts, 

are calculated and then combined together to the overall joint rotational stiffness. 

Faella (1997) proposed a modified version of this component model. In the modified 

model, the joint rotational stiffness is determined by the stiffness of the connected 

beams as 

𝐾𝜑 =
𝐸𝐼𝑏
𝐿𝑒

=
𝐸𝐼𝑏
𝜂𝑑𝑏

 (5.1) 

in which, 𝐼𝑏 is the inertia moment of the beams; 𝐿𝑒 is the equivalent beam length 

which affects the joint performance; 𝑑𝑏 is the depth of the beam; and 𝜂 is a constant 

parameter. 

 

5.2.2.2 Neural network method 

With the aim of exploring the tolerance for uncertainty, a methodology entitled soft-

computing is utilized to attain tractability at low computational cost. Soft-computing 

has been widely used in various application fields. The basic model of soft-computing 

is based on the human mind, which is achieved by a neural network (NN). Some 

scholars such as Abdalla and Stavroulakis (1995) and Güneyisi et al. (2014), 

introduced this method to build models for the joint flexibility. This type of models is 

based on rich experimental connection data. Its function is composed of three 

components: weights, bias and an activation function. The function is given as  
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𝑈𝑘 = 𝐵𝑖𝑎𝑠𝑘 +∑(𝑤𝑗,𝑘𝐼𝑘)

𝑛

𝑗=1

 (5.2) 

in which, 𝐼𝑘 is the input parameter; 𝑤𝑗,𝑘 is the weight; 𝐵𝑖𝑎𝑠𝑘 is the bias; and 𝑈𝑘 

is the output value. Before training a NN, the database of experimental tests is 

collected. Then the mathematical formulation is used to generate the artificial neural 

network. The training quality is generally evaluated by the mean square errors and 

correlation coefficients. After training, equation (5.1) can be used to predict the 

ultimate moment and rotation values.   

Though the neural network method is an alternative method for modeling joint 

connections, this method is case-dependent and drastically influenced by the optimal 

choice of the network configuration. Meanwhile, the speed of the learning procedure 

is also a critical problem. 

 

5.2.3 Numerical approaches 

Based on the concepts of mechanics theory, such as equilibrium equations, 

compatibility equations and material properties, the relationship between the joint 

rotational stiffness and the moment resistance can be derived. Compared with the 

empirical approaches which should be mainly depended on experiments, the 

numerical approaches have several advantages: (1) due to their lower computational 

expense, sufficient data can be obtained quickly and conveniently, as opposed to 

conducting numerous experimental tests; (2) the local behavior of joints can be 

investigated while this is difficult for experimental approaches because of the limited 

observation instruments; (3) parametric analysis can be conducted by numerical 

approaches to study joint behavior more thoroughly. 
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Finite element method (FEM) is widely used to explore the relationship between the 

moment and rotation of joints. Generally, the joints are simulated by solid elements or 

shell elements, and contact elements with full size geometric dimensioning and 

nonlinear materials shown in Fig. 5.1 and Fig. 5.2. Large deformation, strain, buckling, 

and strain-hardening of joints can be captured by proper input. In particular, highly 

nonlinear behavior, such as slip, friction, and interaction between bolts and plate 

components, can be reflected in the numerical simulation. 

A refined finite element model can produce relatively accurate joint behaviors. FEM 

is a well-recognized and powerful tool for study of joint behaviors. Through this 

method, the moment and rotation curves of the conventional and newly-developed 

joints can be obtained. However, the models as shown in Fig. 5.1 and Fig. 5.2 require 

large amounts of modeling and computational time. There is a large drawback to apply 

it in practical design by engineers. Moreover, highly nonlinear problems involve 

various analysis settings to control numerical convergence, which limits its application, 

especially in large-scale structure design. 

 

5.2.4 Formulation for the moment-rotation curve 

Several models can be used to simulate joint stiffness: the linear model, multi-linear 

model, polynomial model, three parameter power model and other nonlinear models. 

The linear and multi-linear model are easy to use but may lead to inaccurate results. 

The nonlinear models can provide better approximations for joint. However, these 

moment-rotation curves often require many parameters which are hard to be 

determined. The commonly used beam-column connection models will be detailly 

introduced in this section. 
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5.2.4.1 Linear model 

The linear model provides the simplest moment-rotation curve and only requires one 

parameter. The cM −  curve can be written as 

o

c cM S =  (5.3) 

in which 
o

cS  is a constant value representing the initial connection stiffness and can 

be obtained from experimental results. According to Lightfoot and LeMessurier’s 

assumption (1974), the initial stiffness can be expressed as 

4o

c

EI
S

L
=  (5.4) 

in which,   is the rigidity index which indicates the degree of connection flexibility. 

The value of   varies from zero to infinite based on the joint type. Alternatively, 

o

cS  can be written as 

4

1

o

c

EI
S

L





 
=  

−  
 (5.5) 

in which,   is a fixity factor proposed by Romstad and Subramanian (1970) and Yu 

and Shanmugam (1986). The factor   is zero for a pinned joint and unity for a rigid 

joint. 

 

5.2.4.2 Multi-linear model 

The linear model can be used only on the premise of small joint deflection. Regarding 

large deflection, the degradation of the connection stiffness should be considered. 

Therefore, the multi-linear model is proposed to improve the accuracy of connection 

behavior and model the degradation of the stiffness of connections in the large 
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deflection problem. In fact, another nonlinear model can be described approximately 

by the multi-linear model with sufficient segmentations. 

 

5.2.4.3 Polynomial model 

The first non-dimensional polynomial model of connection behavior was proposed by 

Frye and Morris (1975). This model can provide a smoother moment-rotation curve 

and is included in IS: 800 (1893). The original form is 

𝜙𝑐 = 𝐶1(𝐾 𝑀)
1 + 𝐶2(𝐾 𝑀)

3 + 𝐶3(𝐾 𝑀)
5 (5.6) 

where 𝐾 is a constant parameter determined by geometrical characteristics, such as 

member size, throat thickness and so on; 𝑀 is the moment applied on the joint; 𝐶1, 

𝐶2 , and 𝐶3  are fitting parameters; and 𝜙𝑐  is the joint rotation. The Frye-Morris 

model provides a generalized form that can be extended to different connection types. 

For example, Prabha et al. (2010) proposed a polynomial model for pallet rack 

connection based on this model with 𝐾 defined by the thickness of columns (𝑡𝑢), 

depth of beams (𝑑𝑏) and the depth of the connector (𝑑𝑐). 

Generally, the polynomial model exhibits good performance in the initial stiffness 

prediction, but less accuracy in the ultimate capacity of the connection. Also, the 

stiffness of the connection is derived by Equation (5.6), which may lead to negative 

stiffness. This case does not conform to reality and causes difficulty in numerical 

computation. 

 

5.2.4.4 Three-parameter power model 

Kishi and Chen (1987a, 1987b) proposed a three-parameter power model as 
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 (5.7) 

in which, the parameters iK , uM  and n  are the initial stiffness, the ultimate 

moment capacity and the shape parameter of the cM −  curve respectively. 

The power model can always produce positive connection stiffness and has a better 

numerical performance compared with the polynomial model. Meanwhile, this model 

is convenient to engineers for practical design due to the reduced number of 

parameters obtained from experiments. However, it sometimes may have less 

accuracy in predicting the stiffness of joint connections when remaining elastic. 

 

5.3 Modeling of connection behavior under cyclic loading 

5.3.1 M-𝝓 approach 

5.3.1.1 Connection models without degradation 

The concept of the constitutive relationship between stress and strain can be extended 

to generate new M-𝜙 models. Taking the Giuffré-Menegotto-Pinto hysteretic material 

model (1983) for example, it is a uni-axial material with isotropic strain hardening for 

steel material. The smooth transition of stiffness is widely adopted in nonlinear 

analysis. When rewriting this relationship for moment and rotation, the transitional 

portion from elastic to plastic state is as given in Equation (5.8) below. 

𝑀∗ = 𝑏𝜀∗ +
(1 − 𝑏)𝜙∗

(1 + 𝜙∗ 𝑅)
1
𝑅

 (5.8) 

in which, 𝑀∗ and 𝜙∗ are the normalized moment and rotation respectively; and 𝑏 

is the strain hardening ratio between the post-yield tangent and initial elastic tangent; 
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𝑅 is the parameter to adjust the shape of the transition curve and should be determined 

by the parameters 𝑅0 , 𝑎1  and 𝑎2  during the cyclic loading to reflect the 

Bauschinger effect. More details regarding this model can be found in Filippou et al. 

(1983).  

This model is capable of modeling the joint behavior without strength degradation. 

Isotropic hardening, compression hardening, and tension hardening can be achieved 

by setting suitable hardening parameters. Meanwhile, the transition shape can be 

adjusted according to the joint connection types. This model can be used in the 

dynamic analysis if its parameters are verified by experiments. 

 

5.3.1.2 Connection models with degradation 

Pinching-type responses generally appear with the bond-slip phenomenon, which was 

originally proposed for reinforced concrete frames. Though it is developed for 

modeling stress-strain history by Lowes et al. (2003), it was virtually a one-

dimensional hysteretic load-deformation relationship, which can be used to model 

joint connections with degradation. It is composed of three components: the response 

envelope, unload-reload paths, and hysteric damage rules. They are illustrated in Fig. 

5.21. The most important feature of this model is the stiffnesss degradation. It provides 

three options to simulate hysteretic damage: unloading stiffness degradation, reloading 

stiffness degradation and strength degradation. For unloading stiffness degradation, 

the unloading stiffness 𝑘𝑖 is defined as 

𝑘𝑖 = 𝑘0(1 − 𝛿𝑘𝑖) (5.9) 

where 𝑘0  is the initial unloading stiffness without damage; 𝛿𝑘𝑖  is the current 

damage index of stiffness which can be determined by equation (5.12). 
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Reloading stiffness degradation is implemented by increasing the maximum historic 

deformation as,  

𝑑𝑚𝑎𝑥,𝑖 = 𝑑𝑚𝑎𝑥,0(1 + 𝛿𝑑𝑖) (5.10) 

in which, 𝑑𝑚𝑎𝑥,0  is the initial maximum deformation; 𝑑𝑚𝑎𝑥,𝑖  is the current 

maximum deformation after damage; and 𝛿𝑑𝑖 is defined by the same way as 𝛿𝑘𝑖.  

The strength degradation is defined as, 

𝑓𝑚𝑎𝑥,𝑖 = 𝑓𝑚𝑎𝑥,0(1 − 𝛿𝑓𝑖) (5.11) 

where 𝑓𝑚𝑎𝑥,0 is the initial maximum strength; 𝑓𝑚𝑎𝑥,𝑖 is the maximum strength after 

damage; and 𝛿𝑓𝑖 is calculated as 𝛿𝑘𝑖.  

The damage indexes such as 𝛿𝑘𝑖, 𝛿𝑑𝑖 and 𝛿𝑓𝑖 are defined as, 

𝛿𝑘𝑖 = (𝑔𝐾1(𝑑𝑚𝑎𝑥)
𝑔𝐾3 + 𝑔𝐾2(

𝐸𝑖
𝐸𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐

)
𝑔𝐾4

≤ 1.0 (5.12) 

with 

𝑑𝑚𝑎𝑥 = max [
𝑑𝑚𝑎𝑥,𝑖
𝑑𝑒𝑓𝑚𝑎𝑥

,
𝑑𝑚𝑖𝑛,𝑖
𝑑𝑒𝑓𝑚𝑖𝑛

] (5.13) 

𝐸𝑖 = ∫ 𝑑𝐸

𝑙𝑜𝑎𝑑 ℎ𝑖𝑠𝑡𝑜𝑟𝑦

  

where 𝑔𝐾1, 𝑔𝐾2, 𝑔𝐾3 and 𝑔𝐾4 are parameters fitting the damage rule to the test 

data; 𝐸  is hysteretic energy; 𝐸𝑖  is cumulative energy; and 𝐸𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐  is failure 

energy under monotonic loading. 𝑑𝑒𝑓𝑚𝑎𝑥 and 𝑑𝑒𝑓𝑚𝑖𝑛 are the positive and negative 

deformations respectively; 𝑑𝑚𝑎𝑥,𝑖  and 𝑑𝑚𝑖𝑛,𝑖  are the maximum and minimum 

historic deformation respectively. The damage caused by the historical displacement 

is the damage type called as “cycle”, and “energy” for that is caused by energy 

accumulation. 
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This model provides three optional types for modeling degradation, which can be 

applied for the modeling of RC or composite joint connections after calibration of 

the model. 

5.3.2 P-My-Mz approach 

All models described in the previous sections are one-dimensional models, ignoring 

the coupling effect of the axial force and the bending moments. The P-My-Mz 

approach provides a smooth transition from ideally elastic to plastic states of semi-

rigid connections. Generally, this method is implemented by integration of fibers 

along cross-sections as shown in Fig. 4.2. Each fiber can be assigned a one-

dimensional stress-strain model according to the properties of joint connections. When 

updated by the axial strain and curvature about the y- and z- axes, the axial force and 

bending moments can be integrated along the cross section. Then, the stiffness of 

connections is determined by the following equation when becoming semi-rigid. 

𝑘 𝑖,𝑗 = 𝑘𝑖,0(|
𝑓𝑖
𝑝 − 𝑓𝑖,𝑗

𝑓𝑖,𝑗 − 𝑓𝑖
𝑒|) (5.14) 

in which, 𝑘𝑖,0 is the initial stiffness of DOF i; 𝑘 𝑖,𝑗 is the stiffness after the update. 

𝑓𝑖,𝑗 is the input force; 𝑓𝑖
𝑒
 and 𝑓𝑖

𝑝
 are the yield force and ultimate plastic force about 

DOF i of the joint connections. And 𝑓𝑖,𝑗 ranges from 𝑓𝑖
𝑒
 to 𝑓𝑖

𝑝
. When 𝑓𝑖,𝑗 is less 

than 𝑓𝑖
𝑒

, the connection remains rigid. If 𝑓𝑖,𝑗  is larger than 𝑓𝑖
𝑒

, the connection 

becomes semi-rigid.  

The P-My-Mz approach based on the fiber section concept provides a new solution to 

consider the coupling effect of the section forces. If the stress-strain relationship of 

each fiber of the cross-sections is the hysteric type, the P-My-Mz model of joint 

connections is workable for dynamic analysis. 
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5.4 Flexibility-based beam-column element accounting for 

semi-rigid joints 

Ihaddoudène et al. (2017) proposed a 2D beam-column element derivated from the 

stability function which has high accuracy for modeling one member with one element. 

A joint model was directly incorporated into the beam-column element. However, this 

2D element can only be used in plane steel frames. It should be also noted that the 

coupling effect between the axial force and the bending moment is not considered. 

Thus, the semi-rigid connection was set in the beams almost without axial force in all 

calibrated examples in their work. The beam-column element proposed by them shows 

many limitations and therefore it cannot be used in practical design. 

The novelty of the proposed flexibility-based beam-column element with initial 

geometric imperfection in Chapter 3 (hereafter called FBMI) with a semi-rigid 

connection not only reserves all excellent quality as described in the previous chapters, 

but can also consider the effects of the joint flexibility which is an indispensable factor 

in the modern direct analysis and design. The coupling effect between the axial force 

and the bending moment, which has been generally ignored in previous studies, is 

implicitly included in the proposed element. As demonstrated in previous chapter, 

only one element is required over the length of the element to model the member. This 

is a marked contribution and the proposed method shows many advantages in terms 

of simplicity and accuracy in solving practical problems with significant enhancement 

of computational effort. 

It is evident that the gusset plate connection linking a brace and its framing elements 

exhibits semi-rigid behavior which is different from the conventional fully rigid and 

ideally pinned behaviors (Hsiao et al., 2012; Uriz et al., 2008; Yoo et al., 2008). The 
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required strength, stiffness and ductility should be provided when designing a semi-

rigid connection. The moment versus rotation ( 𝑀 - 𝜃 ) curve of a connection 

representing its semi-rigid behavior can be determined by experimental test, 

sophisticated finite element analysis or design codes based on an analytical model.  

It is a common practice for a joint to be modeled as dimensionless with its location at 

the intersection of the element centerlines. Furthermore, a rotational spring element 

satisfying the 𝑀-𝜃 relationship can be inserted into each end of the beam-column 

element to model the connection behavior. The joint equilibrium condition can be 

simply expressed as, 

𝑀𝑖𝑘
𝑏 +𝑀𝑖𝑘

𝑐 = 0 (5.15) 

in which 𝑀𝑖𝑘
𝑏  and 𝑀𝑖𝑘

𝑐  are the moments at the ends of the members and connection 

respectively; the subscript 𝑖 stands for the first or the second end of the brace; the 

subscript 𝑘 represents the y- or z- axis, as seen in Fig. 5.3. The internal node is 

connected to the beam-column element while the external node is associated with the 

global node. 

The connection stiffness 𝑆𝑖𝑘
𝑐  is related to relative rotations at the connection spring 

ends by 

𝑆𝑖𝑘
𝑐 =

𝑀𝑖𝑘
𝑏

(𝜃𝑖𝑘
𝑏 − 𝜃𝑖𝑘

𝑐 )
=

𝑀𝑖𝑘
𝑐

(𝜃𝑖𝑘
𝑐 − 𝜃𝑖𝑘

𝑏 )
 (5.16) 

where 𝜃𝑖𝑘
𝑏  and 𝜃𝑖𝑘

𝑐  are the conjugate rotations for the moments 𝑀𝑖𝑘
𝑏  and 𝑀𝑖𝑘

𝑐  

respectively (see Fig. 5.3). Rewriting Equation (5.16) in an incremental form using 

matrix format, the spring stiffness matrix will be written as 

[
𝑆𝑖𝑘
𝑐 −𝑆𝑖𝑘

𝑐

−𝑆𝑖𝑘
𝑐 𝑆𝑖𝑘

𝑐 ] [
∆𝜃𝑖𝑘

𝑏

∆𝜃𝑖𝑘
𝑐 ] = [

∆𝑀𝑖𝑘
𝑏

∆𝑀𝑖𝑘
𝑐 ] (5.17) 

A typical elemental bending stiffness matrix can be expressed as 
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[

𝑘11 𝑘12 𝑘13
𝑘21 𝑘22 𝑘23
𝑘31 𝑘32 𝑘33

] [

Δ𝜀
Δ𝜃𝑖𝑘

𝑏

Δ𝜃𝑗𝑘
𝑏
] = [

Δ𝑁
∆𝑀𝑖𝑘

𝑏

∆𝑀𝑗𝑘
𝑏
] (5.18) 

in which 𝑘𝑖𝑗  is the stiffness coefficient associated with the axial force and the 

bending moments about one of the principal axes of the element FBMI given in 

Equation (3.55). Therefore, a hybrid element can be formed by adding the connection 

stiffness at two ends to the bending part of FBMI as 

[
 
 
 
 
 𝑘11
0
𝑘21
𝑘31
0

   

0
𝑆𝑖𝑘
𝑐

−𝑆𝑖𝑘
𝑐

0
0

   

𝑘12
−𝑆𝑖𝑘

𝑐

𝑆𝑖𝑘
𝑐 + 𝑘22
𝑘32
0

   

𝑘13
0
𝑘23

𝑆𝑗𝑘
𝑐 + 𝑘33
−𝑆𝑗𝑘

𝑐

   

0
0
0

−𝑆𝑗𝑘
𝑐

𝑆𝑗𝑘
𝑐
]
 
 
 
 
 

[
 
 
 
 
 
Δ𝑢
∆𝜃𝑖𝑘

𝑐

Δ𝜃𝑖𝑘
𝑏

Δ𝜃𝑗𝑘
𝑏

∆𝜃𝑗𝑘
𝑐
]
 
 
 
 
 

=

[
 
 
 
 
 
Δ𝑁
∆𝑀𝑖𝑘

𝑐

∆𝑀𝑖𝑘
𝑏

∆𝑀𝑗𝑘
𝑏

∆𝑀𝑗𝑘
𝑐
]
 
 
 
 
 

 (5.19) 

in which the subscripts i and j refers to nodes i and j respectively; the subscript k refers 

to the y- or z-axis. To eliminate internal degrees of freedom due to the connection 

spring, the standard static condensation procedure in the finite element textbook 

should be adopted. Finally, the hybrid element’s stiffness expression with a pair of 

springs at both ends about one of the principal axes can be written as 

[𝑘𝑐][Δ𝐷𝑐] = [Δ𝑃𝑐] (5.20) 

in which 

[Δ𝐷𝑐] = [Δ𝑢 ∆𝜃𝑖𝑘
𝑐 ∆𝜃𝑗𝑘

𝑐 ]𝑇 ,   [Δ𝑃𝑐] = [Δ𝑁 ∆𝑀𝑖𝑘
𝑐 ∆𝑀𝑗𝑘

𝑐 ]𝑇  (5.21) 

[𝑘𝑐]

= [

𝑘11 0 0

0 𝑆𝑖𝑘
𝑐 0

0 0 𝑆𝑗𝑘
𝑐
]

+ [

𝑘12 𝑘13
−𝑆𝑖𝑘

𝑐 0

0 −𝑆𝑗𝑘
𝑐
] [
𝑆𝑖𝑘
𝑐 + 𝑘22 𝑘23
𝑘32 𝑆𝑗𝑘

𝑐 + 𝑘33
]

−1

[
𝑘21 −𝑆𝑖𝑘

𝑐 0

𝑘32 0 −𝑆𝑗𝑘
𝑐 ] 

(5.22) 

where 𝑆𝑖𝑘
𝑐  and 𝑆𝑗𝑘

𝑐
 are the connection stiffness values at nodes i and j, respectively. 

Specially, when the spring stiffness 𝑆𝑐 is zero, it means that the corresponding end 



Chapter 5. Semi-rigid connections under monotonic and cyclic loads 

133 

 

is an ideally pinned end; when the spring stiffness 𝑆𝑐 is infinite, it means that the 

corresponding end is a fully rigid end. For the semi-rigid case, the spring stiffness 𝑆𝑐 

can be determined by the given 𝑀-𝜃 function from the experimental test, continuum 

finite element analysis and so on. The complete stiffness matrix 𝐊𝒄 considering both 

principal axes can be simply expanded from Equation (5.22) and is not shown here. 

It is worth emphasizing that the coupling effect of the axial force and bending 

moments, which was generally overlooked in previous research studies, has been 

considered in Equation (5.22). In previous studies, the semi-rigid connections were 

mainly applied at the beam ends dominated by the bending moment so that the 

influence of the axial force on the connection can be ignored. However, some members, 

such as the braces in SCBFs, undergo considerably large axial forces and dissipate 

energy through tensile yielding, buckling and post-buckling behaviors. In this study, 

the member stiffness coefficients 𝑘𝑖𝑗  ( 𝑖 = 1, 𝑗 = 2,3;  𝑗 = 1, 𝑖 = 2,3; ) due to 

bending moments may be not be zero as in previous research studies. This means that 

their interaction can be considered at the element level. This proposed stiffness 

expression in Equation (5.22) can be applied not only in the connections of braces but 

also in those of beams and columns if the associated connections cannot be simply 

classified as pinned or rigid. 

 

5.5 Numerical examples 

To validate the proposed approach described in this chapter, several static and dynamic 

examples, which have been widely studied by other scholars, will be analyzed by the 

proposed element FBMI considering joint flexibility. In addition, a new example will 
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be introduced to demonstrate the influence of joint stiffness on the stability of the 

entire structure. 

 

5.5.1 Non-sway frame under static loads 

The structural layout of the non-sway frame steel frame as shown in Fig. 5.4 was 

originally studied by Mageirou et al. (2006). In Fig. 5.4(a), the lower of the column is 

pinned and the upper is connected with a semi-rigid joint. The right joint of the beam 

is also fixed. The length of a column is 10 m, and the EI and EA are 9.0699e4 kN*m2 

and 1.2726e6 kN respectively. The length of the beam is 20 m, and the EI and EA are 

4.8573e4 kN*m2 and 8.9649e5 kN respectively. The stiffness of the joint connecting a 

beam and column is assumed to be linear with k1 = 150 kN*m/rad. This example is 

designed to explore the influence of the semi-rigid connection on column stability. 

Therefore, the only difference between Model B and Model C as shown in Fig. 5.4(b) 

and Fig. 5.4(c) is the right boundary condition of a beam. The stiffness of the right 

connection is 500 kN*m/rad in Model 2. All connections of the beam in Model 3 are 

rigid. Whether it will affect the critical loading will be analyzed by comparing the 

results obtained from two cases. All members are modeled using the one-member-

one-element strategy by the proposed method.  

Table 5-1 shows the critical load for Model A and Model B from the prediction of the 

proposed method, as well as that from Mageirou et al. (2006). From the table, the 

proposed method obtains similar results. It is worth noting that F.E.M-MSC-

NASTRAN used 3D solid elements to model this simple frame. Accurate results can 

be produced, but it requires huge computer time, which is hard to apply in practical 

design. In contrast, the proposed method can obtain accurate results at the same level 

with lower computational cost.  
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Fig. 5.5 shows the curves of applied force vs. displacements about the top point of a 

column. From the figure, the end condition of the right joint of a beam has less effect 

on the ultimate bearing capacity of the frame. However, the joint flexibility between 

a beam and column makes a large difference in the frame capacity. The ultimate load 

of a rigid connection is 10377 kN, which is improved 13% compared with a semi-rigid 

connection. Thus, it may lead to an overestimated design if assuming the connections 

between beams and columns are assumed to be rigid in this situation. 

 

5.5.2 Sway and non-sway frame subjected to static loads 

Fig. 5.6(a) and (b) show a one-story non-sway frame and a one-story sway frame, 

which have been studied by Mageirou et al. (2006) and Ihaddoudène et al. (2017) 

respectively. In both models, the length of a beam is 20 m, and the length of a column 

is 10 m. The section of all columns is HEB360 with a moment of inertia of 4.319e-4 

m4. The section of all beams is IPE400 with a moment of inertia of 2.313 e-4 m4. The 

bottom end conditions of all columns are considered to be pinned. The joint 

connections between beams and columns are assumed to be semi-rigid with a linear 

stiffness of 150 kN*m. In model B, there is a horizontal support on the right node of 

the beam. The Young’s modulus is 2.1e8 kN/m2. All members are modeled using the 

one-member-one-element strategy by the proposed method. 

Table 5-2 shows the critical load for Model A and Model B from the prediction of the 

proposed method, as well as from Ihaddoudène et al. (2017). The beam-column 

element allowing for joint flexibility proposed by this study makes a similar prediction 

of ultimate loading capacity as the refined modeling with F.E.M-MSC-NASTRAN. 

Nevertheless, the proposed method can save much modeling time as well as 

computational time. 
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Fig. 5.7(a) and (b) show the applied force vs. displacement curves. From the figure, 

the lateral support largely improves the critical loading of the frame. Though the 

stiffness of connections can provide a lateral resisting system like moment frame, its 

contribution is limited. The sway frame becomes unstable when the applied force 

reaches 12 kN. Thus, it is important to assume the boundary conditions to determine 

whether the frame is a sway or non-sway frame. 

 

5.5.3 Multistory sway and non-sway frame under static loads 

In this example, three-story sway and non-sway frames will be adopted to study the 

influence of joint flexibility on multistory buildings, as shown in Fig. 5.8(a) and Fig. 

5.8(b). The cross-section of all columns is HEB360 with moment of inertia of 4.319e-

4 m4. The cross-section of all beams is IPE400 with a moment of inertia of 2.313e-4 

m4. The material of all members is made of steel with Young’s modulus E = 2.1e8 

kN/m2. All end connections of beams are assumed to be semi-rigid with a linear 

stiffness of 150 kN*m. Concentrated point loads are applied on each joint of beam-

column connections. In the numerical model, the material is assumed to be elastic, and 

the one-element-per-member strategy is adopted. The displacement control method 

with a constant displacement increment of the monitoring node is used to find the 

nonlinear solution. 

Table 5-3 shows the critical load for Model A and Model B from the prediction of the 

proposed method, as well as from Ihaddoudène et al. (2017). Compared with results 

from F.E.M-MSC-NASTRAN, the beam-column element with joint flexibility 

proposed by this study makes a relatively accurate prediction of ultimate loading 

capacity with a relative error within 0.6%. Nevertheless, the proposed method can save 

much modeling time, as well as computational time. 
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Fig. 5.9(a) and (b) show the curves for applied force vs. horizontal displacement. The 

sway frame is more sensitive to stability, and it is unstable when the applied force 

reaches 5.5 kN. Meanwhile, the non-sway frame is more stable when the critical load 

is more than 3500 kN. 

 

5.5.4 William’s toggle frame with semi-rigid connection under static load 

The layout and applied load of the William’s toggle frame (1964) is shown in Fig. 

5.10. This frame represents a typical roof structure. It has a special buckling mode, the 

snap-through buckling mode, and exhibits highly geometrical and material 

nonlinearity. It has attracted extensive attentions to explore its static behaviors. In this 

study, this frame will be explored by static analysis with different connection settings. 

All connections of the members are assumed to be rigid in Model 1 as shown in Fig. 

5.10 (a). Model 2 assumes that the middle top connection is semi-rigid with linear 

connection stiffness, 6877.4 lb·in as shown in Fig. 5.10 (b). Two base joint 

connections of Model 3 are set as semi-rigid with linear connection stiffness, 6877.4 

lb·in as shown in Fig. 5.10 (c). All joint connections are assumed to be semi-rigid with 

linear connection stiffness, 6877.4 lb·in as shown in Fig. 5.10 (d). For comparison, 

Model 5 and Model 6 are assumed to be pinned as shown in Fig. 5.10 (e) and Fig. 5.10 

(f). All models are applied with a concentrated point load P at the middle top point. 

 

5.5.5 William’s toggle frame with semi-rigid connection under dynamic load 

Fig. 5.13 shows the layout and pattern load of a planar frame, the famous William’s 

toggle frame (1964). The last example has explored its static properties. In this 

example, this frame will be studied by dynamic analysis with different connection 
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settings. All connections of members are assumed to be rigid in Model 1 as shown in 

Fig. 5.13 (a). Model 2 assumes two base connections are semi-rigid with linear 

connection stiffness 687.74 lb·in as shown in Fig. 5.13 (b). Two base joint connections 

of Model 3 are set as pinned in Fig. 5.13 (c). All models are applied with a concentrated 

point load F(t) at the middle top point. The density of all members is 2.54e-4 lb*sec2/in4.  

For models 1, 2 and 3, results from the proposed method agree with those from another 

scholar using several elements to model one member, as shown in Fig. 5.14(a)~(b). 

From the figures, the joint flexibility reduces the stiffness of the structural system and 

then increases the structural natural frequency. Meanwhile, the joint flexibility also 

boosts the vertical displacement under the dynamic loading. Therefore, it is necessary 

to consider the joint flexibility in the seismic design of frame structures. 

 

5.5.6 Buckling and vibration analysis of one-story frame with semi-rigid joints 

In this example, a planar frame with semi-rigid joints will be studied with buckling 

and vibration analysis. Its layout is shown in Fig. 5.15. The section of all columns is 

305x305x97 UC. The section of beams is 457x191x98 UB. The stiffness of beam-

column connections varies from pinned to rigid to assess how the natural frequency of 

a frame varies against the joint stiffness. The half mass of the beams and columns is 

concentrated into the top points respectively. The mass factor is assumed to be 

assumed to be 1 times, 5 times and 10 times to explore the influence of mass on the 

vibration behavior of the frame.  

Fig. 5.16 (a) and (b) the natural frequency of the frame under connection stiffness and 

mass. From the figure, the natural frequency increases as the stiffness of the beam-

column connections become rigid and decreases as the mass factor increases. In 

practice, the stiffness of connection types, such as extended end plate connections, the 
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flexible joint detail of angle web cleats and the flush end plate, varies between rigid 

and pinned. Therefore, it is necessary to consider joint flexibility when conducting 

vibration analysis. 

 

5.5.7 Dynamic analysis of a one-story frame with semi-rigid connection 

This example has the same layout as the last example, as shown in Fig. 5.17. Dynamic 

analysis is conducted to explore its dynamic properties. Sections of all members 

remain unchanged from the last example. All beam-column connections are assumed 

to be semi-rigid with linear stiffness, 1.17e4 kN*m. Dynamic horizontal loading, F(t) 

= 300 kN, is applied on the left top joint. To explore the influence of the second-order 

effect on the dynamic response, a constant vertical load, 0 kN, 1000 kN or 2000 kN, 

is applied on the top of columns.  

The responses for the frame under different vertical loads are plotted in Fig. 5.18. 

From the figure, the responses of the frame vary greatly. The maximum deflections 

under the dynamic loads are different. The P- effect produces a larger lateral drift. 

Meanwhile, it reduces the frame stiffness and thus the structural frequency. 

 

5.5.8 A column with semi-rigid connection under dynamic load 

Fig. 5.19 shows a column with only the vertical DOF being free. This example is 

provided on the OpenSees website (2009) to illustrate the properties of 

Pinching4Material. In this study, the column is modeled by the proposed element with 

a rigid material. The end connection between column and base is assumed to be semi-

rigid on the axial DOF. The semi-rigid model, as described in section 5.3 is adopted. 

Fig. 5.20 shows a cyclic load history applied on the free node of the column.  
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Plotted on the Fig. 5.22 shows the responses of columns under different parameters 

settings of the semi-rigid model. Fig. 5.22 (a) shows the response of the column with 

no damage to the semi-rigid connection. The unloading stiffness degradation of the 

semi-rigid connection is shown in Fig. 5.22 (b). The stiffness of the joint connection 

degrades during the unloading process. Fig. 5.22 (c) and (d) shows the response with 

re-loading stiffness degradation and yielding strength degradation. Fig. 5.22 (e) and (f) 

shows two damage types: “Energy” and “Cycle”. This example illustrates that the 

proposed element with semi-rigid joints can be used to model the complex behavior 

of semi-rigid joint connections. 

  

5.6 Concluding remarks 

The mechanical characteristics of steel structures should consider the influence of joint 

flexibility. It can be concluded that the analytical approach of semi-rigid connections 

presented in this study can provide a reasonable representation of the flexibility 

behavior of different joint systems. Several meaningful conclusions are drawn: 

(1) A second-order beam-column element allowing the flexibility of joint connections 

is proposed. 

(2) The coupling effect between the axial force and the bending moment of joint 

connections is considered in the proposed element.  

(3) The flexibility of joint connections has a significant influence on the static and 

dynamic performance of structural systems. 

(4) The properties of joint flexibility can be assumed to be linear or nonlinear to model 

different connection types, which can be integrated into the proposed element and 

then applied in the practical design. 
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FIGURES 

 

Fig. 5.1 Finite element model of the end-plate connection using solid elements 

 

 

Fig. 5.2 Finite element model of the end-plate connection using shell elements 
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Fig. 5.3 Modeling of a semi-rigid jointed member 
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(b) Model B 

 

 

(c) Model C 

Fig. 5.4 Layouts and load patterns of the frames 

 

Fig. 5.5 Loading-deflection curves of models with various connection types 
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(a) Model A 

 

 

(b) Model B 

Fig. 5.6 Layouts of sway and non-sway frames 
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(a) Applied force vs. horizontal displacement for model A 

 

(b) Applied force vs. horizontal displacement for model B 

Fig. 5.7 Applied force vs. horizontal displacement 
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(a) Model A 
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(b) Model B 

Fig. 5.8 Layouts and load patterns of three-story sway frames 
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(a) Applied force vs. horizontal displacement for model A 

 

(b) Applied force vs. horizontal displacement for model B 

Fig. 5.9 Loading-deflection curves for models of three-story sway frames 
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(a) Model 1 

 

 

(b) Model 2 

 

(c) Model 3 
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(d) Model 4 

 

(e) Model 5 

 

(f) Model 6 

Fig. 5.10 Layouts and load patterns for William’s toggle frame 
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(a) Response for Model 1 

 

(b) Response for Model 2 
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(c) Response for Model 3 

 

(d) Response for Model 4 
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(e) Response for Model 5 

 

(f) Response for Model 6 

Fig. 5.11 Loading-deflection curves of William’s toggle frame 
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Fig. 5.12 Vertical load history 
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(c) Model 3 

Fig. 5.13 Layouts and dynamic loadings for William’s toggle frame 

 

 

(a) Response for Model 1 
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(b) Response for Model 2 

 

(c) Response for Model 3 

Fig. 5.14 The transient response of William’s toggle frame 
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Fig. 5.15 Layout of one-story frame 
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(b) 2nd mode 

Fig. 5.16 Frequency against joint stiffness 

 

 

Fig. 5.17 Layout and load pattern of one-story frame 
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(a) 0 kN 

 

 

(b) 1000 kN 
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(c) 2000 kN 

Fig. 5.18 The transient response of the frame 

 

 

Fig. 5.19 Layout and load pattern of a column 
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Fig. 5.20 Cyclic load history 

 

Fig. 5.21 Load-deformation response of the Pinch type model  

 

0 0.5 1 1.5 2 2.5 3 3.5

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

Pseudo time

D
is

p
la

ce
m

en
t 

(m
)

deformation

load

(ePd2, ePf2)

(ePd1, ePf1)

(ePd3, ePf3)

(ePd4, ePf4)

(eNd1, eNf1)

(eNd2, eNf2)

(eNd3, eNf3)

(eNd4, eNf4)

(dmax, f(dmax))

(*, uForceN×eNf3)

(*, uForceN×ePf3)

(rDispP×dmax, rForceP×f(dmax))

(rDispN×dmin, rForceN×f(dmin))

(dmin, f(dmin))



Chapter 5. Semi-rigid connections under monotonic and cyclic loads 

162 

 

 

(a) Response of the pinch type model without degradation 

 

(b) Response of the pinch type model with unloading degradation 
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(c) Response of the pinch type model with reloading degradation 

 

(d) Response of the pinch type model with strength degradation 
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(e) Response of the pinch type model with “energy” damage 

 

(f) Response of the pinch type model with “cycle” damage 

Fig. 5.22 The load-displacement histories of various pinch type models   
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TABLES 

 

Table 5-1 Comparison of the critical load values for a non-sway frame 

End Conditions Methods Used Critical load (kN) 

(a) 

F.E.M-MSC-NASTRAN 8981.58 

Proposed method 8981.67 

(b) 

F.E.M-MSC-NASTRAN 8981.02 

Proposed method 8981.01 

 

Table 5-2 Comparison of the critical load values for a sway frame 

End Conditions Methods Used Critical load (kN) 

(a) 

F.E.M-MSC-NASTRAN 14.77 

Proposed method 14.79 

(b) 

F.E.M-MSC-NASTRAN 8980.67 

Proposed method 8944.63 
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Table 5-3 Comparison of the critical load values for multistory sway frame 

End Conditions Methods Used Critical load (kN) 

(a) 

F.E.M-MSC-NASTRAN 7.34 

Proposed method 7.34 

(b) 

F.E.M-MSC-NASTRAN 3745.92 

Proposed method 3726.00 
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CHAPTER 6. DIRECT ANALYSIS OF 

NONCOMPACT AND SLENDER CFT 

MEMBERS 

 

6.1 Introduction 

Concrete-filled steel tube (CFT) members are widely designed to sustain axial 

compression, flexure, or their combination due to structural efficiency compared with 

bare steel and reinforced concrete members. The outer steel tube in rectangular or 

circular shape often serves as formworks during the concrete casting period to reduce 

labor costs. This innovative structural member makes full use of steel tubes and the 

concrete infill. The local buckling of outer steel tubes can be restricted by the concrete 

infill whose strength will be improved by the confinement effect from steel tubes in 

return. 

To account for local buckling, the steel tubes of CFT members can be classified as 

compact, noncompact, or slender section according to the limiting width-to-thickness 

ratios specified in Table I1.1a and I1.1b of AISC 360-16 (2016), which is also 

reproduced in Table 6-1 for easy reference. In AISC 360-16, the compressive strength 

𝑓𝑐
′ of the concrete infill is limited from 21 MPa to 69 MPa and 41 MPa for normal 

weight concrete and light weight concrete, respectively. The yield stress of the steel 

tube shall not exceed 525 MPa. Eurocode 4 (2004) makes no distinction between 

compact, noncompact, and slender section, but simply gives limiting width-to-

thickness ratios. For example, D/t is limited to 90√
235

𝑓𝑦
 for circular CFT members; 
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h/t and b/t are limited to 52√
235

𝑓𝑦
 for rectangular CFT members. Compared with 

AISC 360-16 (2016), the sections of CFT members are required to be more compact 

in Eurocode 4 (2004). 

Generally, the noncompact and slender CFT members experience complex behaviors 

such as yielding and local buckling of steel tube, confinement and crack of concrete, 

and slippage between the steel tube and the concrete infill. Thus, it is a challenging 

task to model a CFT member by conventional numerical methods. The three-

dimensional (3D) finite solid element analysis and the one-dimensional beam-column 

element analysis are two well-recognized methods.  

The first method can explicitly account for the effects of local buckling and hoop 

stresses in the steel tube as well as the effects of confinement on the concrete infill. 

However, as this method requires many modeling skills and involves huge computer 

time with difficult interpretation results for engineers, it is rarely adopted in routine 

design. This method is mainly used to conduct parametric studies with limited 

experimental results or calibrate new numerical modeling methods. Lai et al. (2014) 

built detailed 3D finite element models to study noncompact or slender rectangular 

CFT members and address the gaps in the experimental database. Lai and Varma 

(2015) conducted parametric studies on noncompact and slender circular CFT 

members by 3D finite element models. Lam et al. (2012) adopted 8-node solid 

elements to model the stub concrete-filled steel tubular column with tapered members, 

and similar work has been done by Hassan et al. (2016). Liew and Xiong (2009) used 

continuum solid and shell elements to study the behavior of CFT members with initial 

preload. Du et al. (2017), Ding et al. (2017), Javed et al. (2017) and Aslani et al. 

(2016) adopted 8-node brick elements with reduced integration to study the behaviors 

of CFT members.  
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The second method adopts the one-dimensional beam-column elements to explicitly 

or implicitly consider the complex behaviors of CFT members. The explicit one adds 

extra degrees of freedom (DOFs) to the end nodes of beam-column elements. Tort and 

Hajjar (2010) extended the conventional 12 DOFs beam element into 18 DOFs beam 

element to consider the slip deformation between the steel tube and the concrete infill 

of rectangular CFT members. Lee and Filippou (2015) proposed a composite frame 

element to capture the bond-slip behavior at the interface between the steel tube and 

concrete infill based on an extension of the Hu-Washizu variational principle. The 

underlying theory of this method is the exact interpolation of the total section forces. 

Noted that to solve these particular problems, additional DOFs need to be introduced 

in the special beam-column element and further condensed at the elemental level. The 

whole procedure involves complicated numerical operations. In contrast, the implicit 

approach simply adopts fiber-based beam-column elements with effective stress-strain 

relationships to indirectly simulate the complex behaviors of CFT members. The 

whole analysis and design procedure is simple without additional numerical work and 

requires less computer time. Thus, this method is more competent than other methods 

in the daily design of CFT members.  

Regarding CFT members with compact sections, several effective stress-strain 

relationships are available for the fiber-based beam-column elements, for instance, 

Tort and Hajja (2010), Sakino et al. (2004), Han et al. (2005) and Liang (2009). As 

for noncompact and slender CFT members, few effective stress-strain relationships 

can be used for design purpose. Lai and Varma (2016) proposed effective stress-strain 

relationships for noncompact and slender circular and rectangular CFT members. 

They also proposed a nonlinear fiber analysis (NFA) macro model to design CFT 

members. However, their model is only for two-dimensional problems with axial force 
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and uni-axial moment but not for spatial CFT members subjected to bi-axial moments. 

The latter is a common case, for example, the corner columns. Furthermore, their 

model needs to divide one single CFT member into several segments, which brings 

inconvenience in structural modeling and also significantly increases the computer 

time.  

AISC 360-16 (2016) firstly provides threes methods for design of noncompact and 

slender CFT members. The first two methods use interaction equations for strength 

checking with stability design by effective length method. The system stiffness is 

approximately simulated based on reduced or effective member stiffness, and 

therefore they cannot accurately capture the structural behaviors. The third method 

uses effective stress-strain relationships, which reflect the fundamental behaviors and 

strengths of CFT members with sufficient accuracy in a simple manner, for practical 

design. Noted that this method ignores the influence of slenderness effects and 

therefore the traditional effective length method is still needed for stability check. 

Alternatively, the member initial imperfections can be included in the direct analysis 

so that the effective length assumption is no longer required. However, the magnitude 

of member imperfection for noncompact/slender CFT members should be further 

studied. 

In this chapter, a second-order flexibility-based beam-column with member 

imperfections and incorporates the effective stress-strain models into the fiber section 

is proposed for direct analysis of noncompact/slender CFT members. The gradual 

change of member stiffness and the actual section capacity can be accurately reflected 

in the analysis process and as a result, the traditional effective length method is no 

longer required in the proposed direct analysis. It is also found that the initial 

imperfection of L/1000 is insufficient for CFT members.  
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The outline of this chapter is as follows. Firstly, three design methods suggested by 

ASCI 360-16 (2016) are presented and discussed. Next, a comprehensive direct 

analysis method for CFT members made of noncompact or slender sections is 

introduced. At last, several experimental tests from literatures are used to verify the 

proposed method. 

 

6.2 Design methods for CFT members with noncompact or 

slender sections in AISC360 

The design methods for compact CFT members can be found in the extensive research 

papers and design codes such as Eurocode 4 (2004) and AISC 360-16 (2016), and 

therefore they will be not repeated here. In contrast, the design methods, especially the 

effective stress-strain method, for noncompact and slender CFT members are newly 

developed and firstly specified in AISC 360-16 (2016). The practical design tools and 

the applications are limited. Thus, it is worth to conduct more research on this topic 

and provide more comprehensive solutions or recommendations for structural 

engineers to design noncompact and slender CFT members. In this section, the 

available design methods will be briefly introduced. 

6.2.1 General interaction method 

AISC 360-16 (2016) provides a general method for the design of doubly symmetric CFT 

members subjected to compression and flexure. Equations (6.1a) and (6.1b) are the 

interaction equations considering different levels of axial force, which is directly extended 

from bare steel members to compact, noncompact and slender CFT members.  
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𝑃𝑟
𝑃𝑐
+
8

9
(
𝑀𝑟𝑥

𝑀𝑐𝑥
+
𝑀𝑟𝑦

𝑀𝑐𝑦
)  ≤ 1.0, for 

𝑃𝑟
𝑃𝑐
≥ 0.2,  (6.1a) 

𝑃𝑟
2𝑃𝑐

+
8

9
(
𝑀𝑟𝑥

𝑀𝑐𝑥
+
𝑀𝑟𝑦

𝑀𝑐𝑦
)  ≤ 1.0, for 

𝑃𝑟
𝑃𝑐
< 0.2 (6.1b) 

in which, 𝑃𝑐  is the available axial strength; 𝑀𝑐𝑥  and 𝑀𝑐𝑦  are the major and minor 

flexural strengths; 𝑃𝑟 is the required axial strength; 𝑀𝑟𝑥 and 𝑀𝑟𝑦 are the major and 

minor required flexural strength.  

Clearly, although these equations can consider bi-axially bending problems, the beneficial 

effect of axial compression on the flexural strength has been ignored. It was reported by 

Lai et al. (2015) that these equations are over-conservative for checking the strength of 

noncompact and slender CFT members. Therefore, this method belongs to one of optional 

methods for the design of compact and noncompact/slender CFT members in AISC 360-

16 (2016).  

Both the direct analysis method and first-order analysis method can be used to determine 

the required strengths 𝑃𝑟, 𝑀𝑟𝑥 and 𝑀𝑟𝑦. When using the former for the ultimate limit 

state, the deduced stiffness for compression and flexure given in Equation (6.2) should be 

adopted in the second-order elastic analysis.  

𝐸𝐴𝐼𝐼 = 0.8(𝐸𝑠𝐴𝑠 + 𝐸𝑠𝐴𝑠𝑟 + 𝐸𝑐𝐴𝑐) (6.2a) 

𝐸𝐼𝐼𝐼 = 0.8τ𝑏𝐸𝐼𝑒𝑓𝑓 with τ𝑏 = 0.8 (6.2b) 

𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑠𝐼𝑠 + 𝐸𝑠𝐼𝑠𝑟 + 𝐶1𝐸𝑐𝐼𝑐 (6.2c) 

𝐶1 = 0.25 +
𝐴𝑠 + 𝐴𝑠𝑟
𝐴𝑔

≤ 0.7 (6.2d) 

in which, Es and Ec are Young’s moduli of steel and concrete respectively; As, Ac 

and Asr are the total areas of the steel tube, concrete infill, and reinforcement respectively 

while Ag is the total area of all components; Is, Ic and Isr are the second moment of 

areas of the steel tube, concrete infill and reinforcement respectively.  
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Denavit et al. (2015) confirmed that the stiffness in Equation (6.2) does not always give a 

conservative design. However, AISC 360-16 (2016) does not provide detailed limitation 

its use. 

For the first-order analysis with effective length method, the stiffness given in Equation 

(6.3) should be employed in the global structural analysis.  

𝐸𝐴𝐼 = 𝐸𝑠𝐴𝑠 + 𝐸𝑠𝐴𝑠𝑟 + 𝐸𝑐𝐴𝑐  (6.3a) 

𝐸𝐼𝐼 = 𝐸𝐼𝑒𝑓𝑓 (6.3b) 

When using the effective length method to check the flexural buckling, the compressive 

strength Pc is obtained by multiplying resistance factor or dividing safety factor with 

nominal compressive strength 𝑃𝑛, which can be calculated from Equation (6.4). 

𝑃𝑛 = 𝑃𝑛𝑜0.658
𝑃𝑛𝑜/𝑃𝑒, for 

𝑃𝑛𝑜

𝑃𝑒
≤ 2.25 (6.4a) 

𝑃𝑛 = 0.877𝑃𝑛𝑜, for 
𝑃𝑛𝑜

𝑃𝑒
> 2.25 (6.4b) 

𝑃𝑒 =
𝜋2(𝐸𝐼𝑒𝑓𝑓)

(𝐾𝐿)2
 (6.4c) 

in which, 𝑃𝑛𝑜 is the nominal compressive strength without consideration of slenderness 

effect; 𝑃𝑒 is elastic critical buckling load; 𝐾𝐿 is the effective length. 

 

6.2.2 Direct interaction method 

To account for the beneficial effects due to axial compression on limiting crack of infilled 

concrete and increasing flexural strength by confinement, AISC 360-16 (2016) introduces 

two coefficients 𝑐𝑝 and 𝑐𝑚 corresponding to the balance point into Equation (6.1) and 

then can be rewritten in Equation (6.5) as 

𝑃𝑟
𝑃𝑐
+
1 − 𝑐𝑝

𝑐𝑚
(
𝑀𝑟

𝑀𝑐
)  ≤ 1.0, for 

𝑃𝑟
𝑃𝑐
≥ 𝑐𝑝 (6.5a) 
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(
1 − 𝑐𝑚
𝑐𝑝

) (
𝑃𝑟
𝑃𝑐
) +

𝑀𝑟

𝑀𝑐
 ≤ 1.0, for 

𝑃𝑟
𝑃𝑐
< 𝑐𝑝 (6.5b) 

in which, 𝑃𝑐 and 𝑀𝑐 are the available axial strength and flexural strength respectively; 

𝑃𝑟  and 𝑀𝑟  are the required axial strength and flexural strength respectively. 𝑐𝑝  and 

𝑐𝑚, as shown in Table 6-2, are coefficients determined by the relative strength ratio 𝑐𝑠𝑟 

between concrete strength and steel strength which can be calculated by Equation (6.6). 

𝑐𝑠𝑟 =
𝐴𝑠𝐹𝑦 + 𝐴𝑠𝑟𝐹𝑦𝑟

𝐴𝑐𝑓𝑐′
 (6.6) 

where 𝐹𝑦  and 𝐹𝑦𝑟  are the steel and reinforcement yield stress; 𝑓𝑐
′  is the concrete 

strength.  

It should be noted that both the direct analysis method and first-order analysis method 

should adopt the reduced stiffness in Equation (6.2). It means that unconservative design 

may be induced due to the approximation of member stiffness. 

Similar to the general interaction method, Equation (6.4) should be followed to check the 

flexural buckling if the first-order analysis method is used. 

 

6.2.3 Effective stress-strain method 

AISC 360-16 (2016) allows four methods for the calculation of the nominal strength 

of composite sections, i.e., plastic stress distribution method, strain compatibility 

method, elastic stress distribution method and effective stress-strain method. The last 

one is specially developed for the analysis and design of CFT members made of 

noncompact and slender cross sections. The fundamental behaviors such as local 

buckling, yielding, interaction and concrete confinement are accounted for through the 

effective stress-strain relationships rather than directly include them in a complex 
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analysis model. Lai and Varma (2016) proposed effective stress-strain relationships 

for analysis of noncompact and slender filled composite members.  

Generally speaking, this method is particularly suitable for the fiber-based element to 

form sectional tangent stiffness and then perform direct analysis to check the actual 

section capacity and system resistance without the use of effective length assumption. 

Most importantly, the inelastic behavior of CFT members can be well captured. The 

accurate member stiffness can be formed by fiber integration approach rather than the 

approximate effective stiffness or reduced stiffness used in the interaction methods 

aforementioned. Although the strain compatibility is required based on beam-column 

theory, the modified material stress-strain relationships have implicitly considered the 

macro effects such as local buckling, yielding, and concrete confinement and therefore 

it provides an innovative solution on structural analysis and design of frame structures 

with CFT members under the framework of direct analysis. 

 

6.2.4 Discussion on design methods 

The general interaction method ignores the beneficial effects due to the restraint of 

steel tube on the concrete infill while the other methods have been implicitly taken 

them into account. Thus, the first method generally produces a conservative design 

regarding strength checking.  

It is noted that the two P-M interaction methods need to use reduced or effective 

stiffness either in direct analysis or in the first-order analysis. It means that the change 

of member stiffness associated with its complex behaviors is approximately reflected 

in the analysis process. As a consequence, the traditional effective length should be 

further adopted for stability checking. It will bring uncertainty in stability design as 

the effective length is difficult to know due to the changing of system stiffness under 
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external loads. In the viewpoint of direct analysis, the stability design should be based 

on system behavior but not simply based on individual member response. Generally 

speaking, the two methods are only applicable for second-order elastic analysis. The 

progressive yielding behavior cannot be accurately simulated by them. 

The third method adopts effective stress-strain relationships based on the fiber section 

approach. The effective stress-strain curves are essentially based on limited 

experimental and numerical tests. As for lack of consideration of slenderness effects 

and initial geometrical imperfections, this method does not fully fulfill the 

requirements of direct analysis. However, this method can implicitly account for the 

complex behaviors of noncompact/slender CFT members, and therefore it forms the 

solid foundation for direct analysis using beam-column elements. The members with 

complex local behaviors can be modeled through this method. Thus, it has bright 

future with the combination use of direct analysis method. 

In the next section, a flexibility-based beam-column with member imperfections and 

incorporating the effective stress-strain curves is proposed for the direct analysis of 

noncompact/slender CFT members. 

 

6.3 Direct analysis method 

The spirit of direct analysis method is to integrate all factors, which may significantly 

affect the structural behaviors, into the second-order analysis process so that the 

conventional effective length method is no longer required for member and system 

stability check. In the viewpoint of finite element analysis, both the geometrical and 

material nonlinearities should be included unless the effect(s) can be ignored. Along 

with this thought, Du et al. (2017) proposed a new curved flexibility-based beam-

column element for direct analysis, which explicitly accounts for member initial 
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imperfections and distributed plasticity. However, their work was mainly concentrated 

on bare steel structures. 

In this thesis, the element proposed by Du et al. (2017) will be extended to model CFT 

members, especially for noncompact and slender sections by imposing the effective 

stress-strain relationships into the fiber sections. As a consequence, this element can 

simulate the complex behaviors of CFT members, such as local buckling, confinement 

of concrete, etc.  

In this section, the element with member imperfections will be briefly introduced. The 

magnitude of initial imperfection for CFT members will be first discussed. The 

effective stress-strain relationships proposed by Lai and Varma (2016) for CFT 

members with noncompact and slender sections will be modified for direct analysis. 

 

6.3.1 Initial geometrical imperfection of CFT members 

The member imperfections such as initial out-of-straightness and residual stress may 

come from the manufacturing process, fabrication and transportation. It affects the 

member stiffness and causes early buckling and therefore should be considered in direct 

analysis. Essentially, the member imperfection will induce P- moment and then reduce 

the member capacity and lead to moment redistributions. Relevant provisions are 

specified in many modern design codes either implicitly or explicitly.  

In AISC 360-16 (2016), both the second-order elastic analysis and second-order inelastic 

analysis shall consider member imperfection. The shape of geometrical imperfection is 

assumed as a half-sine function with an amplitude equal to 𝛿0, which is recommended 

as L/1000 and L is member length. Eurocode 4 (2004) also has particular provisions 

about member imperfections for composite columns. The magnitude of member 
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imperfection is L/300 when the reinforcement ratio is less than 3% and L/200 for the 

reinforcement ratio being more than 3% but less than 6%. 

Noted that it cannot conclude that Eurocode 4 (2004) is more conservative than AISC 

360-16 (2016), because the reduced stiffness shown in Equation (6.2b) is used in the latter 

while the effective stiffness similar to Equation (6.2c) is adopted in the former.  

It is further found that the imperfection magnitude of noncompact and slender CFT 

members does not include in both design codes. This thesis will first study the 

imperfection magnitude of noncompact and slender CFT members, and aims to 

propose a practical one for design purpose. 

 

6.3.2 Effective material representation of CFT members  

In the fiber-based beam-column element, the section stiffness of a CFT member is 

obtained by the integration of the fibers along cross section as  

𝐤𝑠(𝜉𝑖) =

[
 
 
 
 
 
 
 
 
 ∑(𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(−𝑦𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(𝑧𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

0

∑(−𝑦𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(𝑦𝑗
2𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(−𝑦𝑗𝑧𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

0

∑(𝑧𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(−𝑦𝑗𝑧𝑗𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

∑(𝑧𝑗
2𝐸𝑡𝑗𝐴𝑗)

𝑚

𝑗=1

0

0 0 0 𝐺𝐽]
 
 
 
 
 
 
 
 
 

 (6.7) 

in which, 𝜉𝑖 is the location of the monitoring section; 𝑦𝑗 and 𝑧𝑗 are the centroid 

coordinates of fiber j; 𝐸𝑡𝑗 is the tangent stiffness of fiber j; 𝐤𝑠 is the section stiffness 

matrix which is the inverse of the section flexibility matrix 𝐟𝑠 in Equation (3.39). The 

typical fiber mesh for rectangular and circular CFT sections are shown in Fig. 6.1. 

Thus, the member stiffness, section strength, and the resultant stresses can be 

determined. 
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Lai and Varma (2016) proposed the uniaxial effective stress-strain relationships for the 

steel tube and the concrete infill of noncompact and slender CFT members through an 

extensive parametric study by 3D finite element analysis regarding geometric and material 

parameters. These relationships are simple for fiber-based analysis with implicitly 

consideration of CFT members’ complex behaviors, such as yielding, local buckling, and 

concrete confinement. They will be briefly described as follows. 

 

6.3.2.1 Stress-strain relationships of the steel tube 

The effective stress-strain relationships of the steel tube for rectangular or circular 

CFT members are different because the shape of steel shapes affects the local buckling 

stress as shown in Fig. 6.2.  

Fig. 6.2 (a) shows the tensile effective stress-strain relationship curve in trilinear shape 

for the steel tube of rectangular CFT members. This curve is determined by two anchor 

points, i.e., the peak stress point and the post-peak point. Larger tube slenderness ratios 

or yield stress will lead to less peak stress on the steel tube with 𝜎𝑝 defined in Equation 

(6.8). The post stress 𝜎2 is affected by infill concrete compressive strength except for 

tube slenderness ratios and yield stress, and can be calculated by Equation (6.9). 

𝜎𝑝 = 𝐹𝑦 × (1.12 − 0.11𝜆𝑐𝑜𝑒𝑓𝑓) ≤ 𝐹𝑦 (6.8) 

𝜎2 = 𝐹𝑦 × (0.87 − 0.0055(
𝑏

𝑡
−
𝐹𝑦

𝑓𝑐′
)) (6.9) 

𝜆𝑐𝑜𝑒𝑓𝑓 =
𝑏/𝑡

√𝐸𝑠 𝐹𝑦⁄
 (6.10) 

As for circular CFT members, the post-peak deterioration is negligible, and the 

compression behavior of the steel tube is assumed to be elastic-perfectly plastic as 

shown in Fig. 6.2(b), with the peak stress 𝜎𝑝 calculated by Equation (6.11). 
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𝜎𝑝 = 0.9𝐹𝑦 (6.11) 

For both rectangular and circular CFT members, the tensile stress-strain behavior of 

the steel tube is modeled by a bilinear curve. In the elastic stage, the steel tube remains 

elastic with an elasticity modulus 𝐸𝑠 and yield stress 𝐹𝑦. In the plastic stage, the steel 

tube is assumed to be a post-yield linear hardening branch with hardening factor 0.01 as 

shown in Fig. 6.2. 

 

6.3.2.2 Stress-strain relationships of the concrete infill 

The effective stress-strain relationships for rectangular CFT members and circular 

CFT members are different because the shape of steel shapes affects the confinement 

of concrete infill as shown in Fig. 6.3. The empirical model by Popovics (1973) is 

modified to reflect the compression strength of the concrete infill of CFT members. 

The concrete compressive strength 𝑓𝑐
′ is replaced by the concrete peak stress 𝑓𝑐𝑝

′  as 

shown in Equation (6.12). The unconfined concrete peak strain 𝜀𝑐 and the compressive 

shape factor 𝑛 are calculated by Equations (6.13) and (6.14) respectively. 

𝑓𝑐 = 𝑓𝑐𝑝
′
𝜀

𝜀𝑐

𝑛

𝑛 − 1 + (𝜀/𝜀𝑐)𝑛
 (6.12) 

𝜀𝑐 =
𝑓𝑐
′

𝐸𝑐

𝑛

𝑛 − 1
 (6.13) 

𝑛 = 0.058𝑓𝑐
′ + 1.0 (6.14) 

For the rectangular CFT members, larger tube slenderness ratio or higher ratio between 

the steel yield stress and the concrete compressive strength improves the concrete peak 

stress 𝑓𝑐𝑝
′ , which is limited to 1.10𝑓𝑐

′ . Although the steel tube can provide certain 

confinement on the infill concrete and improve the post-peak ductility of concrete, the 
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confinement effect is really limited. For this reason, the post-peak behavior of the concrete 

infill is modeled as the unconfined concrete as shown in Fig. 6.3(a) for conservative. 

𝑓𝑐𝑝
′ = 𝑓𝑐

′ × (0.8 + 0.18 (
𝑏/𝑡

100
+
𝐹𝑦/𝑓𝑐

′

30
)) (6.15) 

Equation (6.16) defines the concrete peak stress. Unlike the rectangular CFT members, 

larger tube slenderness ratio degrades the concrete peak stress of the circular CFT 

members. Besides, the steel tube provides better confinement than that of the 

rectangular CFT members. Consequently, an elastic-perfectly plastic curve is used to 

model the post-peak behavior of the infill concrete as shown in Fig. 6.3(b). 

𝑓𝑐𝑝
′ = 𝑓𝑐

′ × (1.0 − 0.11 (
𝐷/𝑡

100
−
𝐹𝑦/𝑓𝑐

′

9
)) (6.16) 

AISC 360-16 (2016) suggests that the tensile strength of the concrete shall be 

neglected in the determination of the nominal strength of composite members. Thus, 

the tensile strength is not considered in tensile stress-strain relationships as shown in 

Fig. 6.3. 

 

6.4 Validation examples 

In this thesis, six experimental tests from literature, including noncompact and slender 

rectangular or circular CFT members under flexure, axial compression or their 

combination, are selected to verify the accuracy of the proposed method in line with AISC 

360-16 (2016). The strength of steel tube and concrete infill used in the tests satisfies 

the requirements in design code. The proposed element incorporating the effective 

stress-strain curves introduced in section 2 was coded into the software NIDA (2018) 

for this study. 
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6.4.1 Rectangular CFT member under axial compression 

One of the tests labeled as KOM2001 under axial compression only from Kang et al. 

(2001) is studied here. Fig. 6.4 shows the section dimensions and the material properties. 

The member length is 0.8992 m. The width-to-thickness ratio b/t is 93.75 which is greater 

than the limit 𝜆𝑟  equal to 75.25 and therefore it belongs to a slender section. One 

proposed element with seven integration fiber sections is used to model this column. The 

meshing pattern is shown in Fig. 6.1(a) with N1 and N2 equal to 4 and 8 respectively. The 

behavior of each fiber is represented by one of the effective stress-strain relationship as 

described by Equations (6.8) - (6.16) according to the material used. The initial geometric 

imperfection is set as sinusoidal shape with the magnitude of 0, L/1000, L/500, L/300.  

The axial shortening versus axial force curves obtained from the proposed direct analysis 

method are shown in Fig. 6.5. The axial load 𝑃𝑒𝑥𝑝 from experimental test is also plotted 

by solid line. 

It can be seen that when the member initial bowing is taken as 0 or L/1000, the ultimate 

loads are greater than the test result. Thus, the member imperfection of L/1000 

recommended in AISC 360-16 (2016) will overestimate the load resistance of 

noncompact/slender CFT member. On the contrary, the imperfection of L/300 given in 

Eurocode 4 (2004) is slightly on the conservative side. The imperfection of L/500 

predicts results in good agreement with the test. 

 

6.4.2 Rectangular CFT member under flexure, combined 

compression and flexure 

Jiang et al. (2013) conducted a series of tests on rectangular CFT members. The specimen 

S-150-2.0 is taken as an example and studied in this thesis. The section dimensions and 
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the material properties are shown in Fig. 6.6(a). The flexural test is conducted by four-

point loading schemes as showed in Fig. 6.7(a). The member length is 2.0 m. The width-

to-thickness ratio h/t is 75.0 which is greater than the limit 𝜆𝑝  equal to 67.34 and 

therefore it belongs to a noncompact section. One proposed element with seven 

integration fiber sections is used to simulate this CFT member. The meshing pattern is 

shown in Fig. 6.1(a) with N1 and N2 equal to 4 and 8 respectively. The effective stress-

strain relationships presented in section 3.2 will be imposed to the fibers.  

This test was also studied by Lai et al. (2014) using 3D finite solid elements for academic 

purpose. Unlike their work, one proposed flexibility-based beam-column element is used 

to simulate the CFT member in this thesis for practical application. 

The analysis results predicted by the proposed method are plotted in Fig. 6.8(a) against 

the experimental results from Jiang et al. (2013) and the numerical results from Lai et al. 

(2014). It is no doubt that the 3D finite element model produces more accurate results 

because it can consider all effects but with expensive computational cost. In contrast, the 

proposed method provides slightly conservative results with a significant saving of 

computer time. The behaviors in the elastic stage are almost identical for the two 

numerical methods. The 3D model can well predict the hardening effect due to the 

restraint from the steel tube to the concrete infill while the beam-column model can 

capture the stiffness degradation with sufficient accuracy for practical design.  

An experimental test “BRA4-2-5-02” as shown in Fig. 6.6(b) performed by Nakahara and 

Sakino (2000) is also studied here. Fig. 6.7(b) shows the section dimensions and the 

material properties. The member length is 0.6 m. The width-to-thickness ratio h/t is 98.04 

which is greater than the limit  𝜆𝑝 equal to 84.35 and therefore it belongs to a slender 

section. The axial force was kept unchanged in the loading process, while the flexure was 

increased continuously. The fiber mesh is the same as “S-150-2.0”. In this study, one 
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proposed beam-column element with the initial imperfection of L/1500 is used to model 

this CFT member. 

Similarly, the proposed method provides slightly conservative results compared with test 

results and the numerical results by Lai et al. (2014) using 3D solid elements, seen in Fig. 

6.8 (b). 

 

6.4.3 Circular CFT member under axial compression 

Yoshioka et al. (1995) conducted several circular CFT column tests under axial 

compression. The test “CC4-D-4-1” is selected to verify the proposed method. The 

column length is 1.349 m, and its section sizes, as well as materials used, are shown in 

Fig. 6.9. The diameter-to-thickness ratio D/t is 151.45 which is greater than the limit 𝜆𝑟 

equal to 134.86 and therefore it belongs to a slender section. Similarly, one proposed 

element using seven integration points is used to simulate this CFT member. The meshing 

pattern is shown in Fig. 6.1(b) with N1 and N2 equal to 4 and 8 respectively. Each fiber 

is associated with one effective stress-strain relationship presented in section 3.2. The 

initial geometric imperfection is set as a sinusoidal shape with the magnitude of 0, L/1000, 

L/500, L/300 respectively.  

The axial shortening versus axial force curves obtained from the proposed direct analysis 

method are shown in Fig. 6.10. The axial load 𝑃𝑒𝑥𝑝 from the experimental test is also 

plotted by a solid line. From Fig. 6.10, the model without consideration of initial 

imperfection will slightly overestimate the ultimate resistance of the circular CFT 

member. Both the imperfections recommended in AISC 360-16 (2016) and Eurocode 4 

(2004) are fair for design purpose. 
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6.4.4 Circular CFT member under flexure, combined 

compression and flexure 

A circular CFT column, labeled as TB002, under flexure tested by Wheeler and Bridge 

(2006) is studied here. Fig. 6.11(a) shows its section dimensions as well as material 

properties. The loading scheme is shown in Fig. 6.12(a). The diameter-to-thickness ratio 

D/t is 63.44 which is greater than the limit 𝜆𝑝 equal to 51.43 and therefore it belongs to 

a noncompact section. Only one proposed element with seven integration points is needed 

to model this CFT member. The meshing pattern is shown in Fig. 6.1(b) with N1 and N2 

equal to 4 and 8 respectively. Similarly, each fiber is simulated by one effective stress-

strain relationship presented in section 3.2. Lai and Varma (2015) modeled it by 3D solid 

elements. 

For comparison, the load-deflection curves from Lai and Varma (2015) using 3D solid 

elements and the experimental test are presented in Fig. 6.13(a) with the proposed 

results. It is found that the responses from Lai and Varma (2015) exhibits slightly 

stiffer than the test when the CFT member starts to yield and buckle. Also, the ultimate 

load from the 3D numerical simulation is higher than the test which means on the 

unsafe side. On the contrary, the present study shows good agreement in the elastic 

stage and predicts the slightly conservative result in the inelastic stage. Thus, the 

proposed method is more consistent and conservative and suitable for engineering 

design. 

To further verify the proposed method, a circular CFT beam-column tested by 

Nishiyama et al. (2002) is selected as an example. The CFT member is labeled as EC4-

D-4-04 and subjected to combined axial compression and flexure, seen in Fig. 6.11(b). 

The diameter-to-thickness ratio D/t is 152.03 which is greater than the limit 𝜆𝑝 equal to 
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134.28 and therefore it belongs to a slender section. Only one proposed element with 

seven integration points is needed to model this CFT member. The meshing pattern is 

shown in Fig. 6.1(b) with N1 and N2 equal to 4 and 8 respectively. The magnitude of 

initial geometric imperfection is L/1000.  

Three set results are shown in Fig. 6.13(b), i.e., numerical model from Denavit and Hajjar 

(2012), the proposed method and the test by Nishiyama et al. (2002). Clearly, the present 

study is closer to the experimental test than Denavit and Hajjar (2012), but requires fewer 

computer resources. The two numerical models give slightly conservative ultimate 

resistance. However, both of them show stiffer behavior in the post-buckling stage. 

 

6.5 Concluding remarks 

The noncompact/slender concrete-filled steel tube (CFT) members generally exhibit 

complex behaviors such as local buckling, concrete confinement, and slippage 

between the steel and concrete components. The latest AISC 360-16 firstly provides 

two types of methods for design of noncompact/slender CFT members. However, the 

reduced or effective stiffness method with P-M interaction curves only approximately 

captures the actual behavior of CFT members. The effective length assumption with 

many uncertainties is still needed in this method. For the effective stress-strain method, 

the recommended initial geometrical imperfection is insufficient and may bring 

unconservative design. In a word, the methods specified in AISC 360-16 are not fully 

met the requirements of direct analysis. For this reason, a comprehensive method is 

proposed in this thesis for a direct analysis of frame structures with 

noncompact/slender CFT members.  

The following conclusions can be drawn from this study.  
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1. The flexibility-based beam-column with member imperfections and incorporating 

the effective stress-strain curves is capable for direct analysis of noncompact/slender 

CFT members.  

2. One proposed element per CFT member is adequate with excellent accuracy and a 

significant saving of modeling and computational cost.  

3. The effective stress-strain method can implicitly account for the complex behaviors 

of noncompact/slender CFT members, and therefore it forms the solid foundation for 

direct analysis using beam-column elements. 

4. The effective length method for flexural buckling check can be completely 

abandoned in the proposed direct analysis method. 

5. The initial geometrical imperfections recommended in AISC 360-16 (2016) and 

Eurocode 4 (2004) are on the unconservative and conservative side respectively. The 

imperfection of L/500 is recommended for noncompact/slender CFT members. 

It is also noted the effective stress-strain curves are essentially based on limited 

experimental and numerical tests. Thus, more test results are recommended to improve 

the accuracy of the effective stress-strain curves. 
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FIGURES 

 

 

(a) Distributed plasticity by fiber sections 

 

  

 

(b) A-A section for rectangular CFT member  
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(c) A-A section for circular CFT member 

Fig. 6.1. Typical fiber mesh of CFT member 

 

 

 

(a) For rectangular CFT members 
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(b) For circular CFT members 

Fig. 6.2. Effective stress-strain relationships for steel tube 

 

 

 

(a) For rectangular CFT members 
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(b) For circular CFT members 

Fig. 6.3. Effective stress-strain relationships for concrete infill 

 

 

 

Fig. 6.4. Dimensions and material properties of KOM2001 
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Fig. 6.5. Load-deflection curves of KOM2001 

 

 

 

(a) S-150-2.0 
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(b) BRA4-2-5-02 

Fig. 6.6. Dimensions and material properties for two rectangular CFT members 

 

 

 

(a) 4-point loading scheme for S-150-2.0 

 

 

 

(b) Loading scheme for BRA4-2-5-02 

Fig. 6.7. Layout and loading scheme for two rectangular CFT tests 
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(a) Mid-span deflection vs. moment 

 

 

 

(b) Curvature vs. moment 

Fig. 6.8. Load-deflection curves for S-150-2.0 and BRA4-2-5-02 
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Fig. 6.9. Dimensions and material properties of CC4-D-4-1 

 

 

 

Fig. 6.10. Load-deflection curves for CC4-D-4-1 
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(a) TB002 

 

 

 

(b) EC4-D-4-04 

Fig. 6.11. Dimensions and material properties for two circular CFT members 
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(a) 4-point loading scheme for TB002 

 

 

 

(b) Loading scheme for EC4-D-4-04 

Fig. 6.12. Layout and loading scheme for two circular CFT tests 

 

 

 

(a) Mid-span deflection vs. moment 
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(b) Curvature vs. moment 

Fig. 6.13. Load-deflection curves for TB002 and EC4-D-4-0 
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TABLES 

 
Table 6-1 Classification of steel elements in composite members in AISC 360-16  

(2016) 
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Table 6-2. Definitions of 𝑐𝑝 and 𝑐𝑚 in AISC 360-16 (2016) 

Section Shape 𝑐𝑝 

𝑐𝑚 

When 𝑐𝑠𝑟 ≥ 0.5 When 𝑐𝑠𝑟 < 0.5 

Rectangular 
0.17

𝑐𝑠𝑟0.4
 

1.06

𝑐𝑠𝑟0.11
≥ 1.0 

0.90

𝑐𝑠𝑟0.36
≤ 1.67 

Circular 
0.27

𝑐𝑠𝑟0.4
 

1.10

𝑐𝑠𝑟0.08
≤ 1.0 

0.95

𝑐𝑠𝑟0.32
≤ 1.67 

 



Chapter 7. Direct analysis of special concentrically braced frames 

201 

 

CHAPTER 7. DIRECT ANALYSIS OF SPECIAL 

CONCENTRICALLY BRACED FRAMES 

 

7.1 Introduction 

Special concentrically braced frames (SCBFs) are extensively employed in high 

seismicity regions due to structural efficiency and particularly high ductility for energy 

dissipation through tensile yielding, buckling and post-buckling behaviors of braces. 

The commonly used configurations of SCBFs are shown in Fig. 2.2. The inverted V-

bracing configuration is most welcomed for easy accommodation of doors and 

windows. Generally, the bracing systems should be designed in pairs to account for 

tension and compression in both directions. The SCBFs with properly detailed 

connections can meet various performance levels for performance-based seismic 

design. The shape of steel brace could be rectangular, square or circular hollow section 

and H-shape section. 

Many experimental tests have been conducted to study the behaviors of isolated 

components such as braces and gusset plate connections, and the system performance 

of SCBFs. Fell et al. (2009) experimentally investigated the inelastic buckling and 

fracture behavior of steel braces including square hollow section, pipe and wide-flange 

H-shape section. Tremblay et al. (2003) validated the effective brace slenderness 

adopted in the design and proposed an empirical model to predict brace fracture by 

testing fourteen single braces and ten X-braces. Han et al. (2007) examined energy 

dissipation capacity of braces with different width-thickness ratios by quasi-static 

reversed cyclic experiments. Lehman et al. (2008) conducted several full-scale tests 

of one-story one-bay SCBFs to evaluate the economy and performance of gusset plate 
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connections. Palmer et al. (2012) investigated the seismic behavior of a two-story, 

one-bay by one-bay frame. Lumpkin et al. (2012) explored the seismic response of 

two three-story SCBFs and proposed several recommendations for enhancing ductility 

of SCBFs. In summary, the experimental tests provide valuable information for the 

codified design of SCBFs and motivate the researchers to develop and improve their 

analytical models so that the routine design should not merely rely on experimental 

tests which are limited to many idealized conditions. 

Extensive works have been carried out on the numerical modeling of braces as well as 

their connections linking to the framing beams and columns. The researchers attempt 

to accurately predict the cyclic strength and stiffness deterioration of structural 

components. The typical structural behavior and the potential failure locations of a 

single brace are shown in Fig. 2.3. Significant yielding and local plate buckling 

behaviors are commonly observed. There are four numerical methods proposed for 

simulation of SCBFs, i.e., phenomenological model (Nilforoushan, 1973), simplified 

phenomenological model (Soroushian, 1988), fiber-type finite element model 

(Gunnarsson, 2004) and continuum finite element model (Haddad and Tremblay, 

2006). Uriz (2005) pointed out the limitation of the traditional phenomenological 

model in predicting peak responses of steel braces and proposed a brace component 

model which can well simulate the post-buckling and fracture of steel braces under 

cyclic loading. However, his analytical model required several elements to model a 

brace and introduced a small initial camber which does not fully comply with the code 

requirement to trigger buckling. Yoo et al. (2008) used continuum finite element (FE) 

model to investigate the behavior of gusset plate connection and the interaction 

between the connection and framing elements. They pointed out that the proper 

detailing of gusset plate connection can improve the performance of SCBFs. Uriz and 
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Mahin (2008) proposed a force-based fiber element to represent the gusset plate 

connection while Hsiao et al. (2012) introduced rotational hinges attached to ends of 

the beam-column element to model the connections. Their model employed several 

different types of elements in series to model a brace with end connections which leads 

to an impractical model for daily use. Generally speaking, the previous researches 

(Hsiao, 2012, 2013; Karamanci, 2014; Krishnan, 2010; Uriz, 2005) clearly show that 

the initial curvature of steel braces should be taken into account so that the buckling 

and post-buckling behavior of steel braces can be captured in numerical analysis. 

Consequently, several elements per member are compulsively required to simulate the 

complex behavior of braces. The calibration works with experimental test results can 

be found in references (Hsiao, 2012, 2013; Karamanci, 2014; Krishnan, 2010). 

Although Krishnan (2010) has proposed a modified elasto-plastic fiber element, which 

consists of three fiber segments formed by two external nodes and four internal nodes, 

to simulate the inelastic behavior of slender columns and braces, it is essential a multi-

element per member model (MEPMM) which cannot truly reduce the computer time. 

The MEPMM not only increases the modeling effort, but also occupies more computer 

resources, especially in the nonlinear dynamic analysis (NDA, also well known as 

time history analysis). Most importantly, MEPMM becomes more prone to induce 

numerical problems when a plastic hinge is formed at the member mid-span in such 

case the stiffness matrix of the associated node approaches singular. Thus, one-

element per member model (OEPMM) is preferred in practical applications. 

Theoretically speaking, the three-dimensional solid elements or two-dimensional shell 

elements can produce more accurate responses for both the components and the SCBF 

system. However, the two types of finite elements are rarely adopted in a global 

analysis of engineering structures owing to time-consuming and inconvenience in 
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codified design. A number of displacement-based beam-column elements (Chan, 1995, 

2000; Liu et al. 2014) with concentrated plastic hinge method have been proposed for 

second-order inelastic analysis. Although the elements can account for member initial 

geometric imperfection, their application on inelastic analysis face challenges because 

of the inherent shortcomings of displacement-based elements and concentrated plastic 

hinge assumption. To obtain more accurate results, more elements for the member 

undergoing significant buckling and plastic behavior such as the braces in SCBFs are 

inevitably required. Du et al. (2017) firstly proposed a flexibility-based beam-column 

element with initial geometric imperfection for second-order inelastic analysis. 

However, their work does not take the residual stress, semi-rigid connection, and rigid 

end-offset into account and therefore their outcome cannot be directly used for the 

design of SCBFs. 

From the above, it can be seen that more efforts are needed to narrow the gap between 

the research and practical design on SCBFs. First, the previous models required multi-

elements per member as well as individual elements for gusset plate connections and 

rigid end zone. Hence, the models generally lead to more modeling and computational 

efforts and numerical convergent problem. Second, the influence of initial geometric 

imperfection and residual stress has not been properly considered in the analysis, and 

therefore the design of SCBFs may be on the unsafe side. It is also noted that the direct 

analysis method (DAM) which is well specified in the modern design codes such as 

AISC360 (2016), Eurocode-3 (2005) and COPHK (2011). However, these codes have 

not been well linked to the seismic design codes. Thus, this thesis aims to provide a 

comprehensive solution for the seismic design of SCBFs and, simultaneously, extends 

the DAM to nonlinear dynamic analysis (NDA) to achieve a consistent design practice.  
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In this thesis, the element FBMI allowing member initial bowing proposed by Du et 

al. (2017) based on Hellinger-Reissner (HR) functional is modified into a new hybrid 

element for second-order dynamic analysis of SCBFs. This innovative element 

considers member initial geometric imperfection, residual stress, finite joint stiffness 

and rigid end zone at the element level for three-dimensional frame analysis. The 

proposed element inherits the high accuracy of the original element with consideration 

of progressive yielding in cross section and along the member length. Fiber section 

approach is adopted to account for member distributed plasticity with the inclusion of 

residual stress which has not been reported in the previous SCBFs models. Moreover, 

the semi-rigid connection technique in the literature was mainly proposed to the beam 

ends dominated by bending moment and as a result, the influence of axial force on the 

connection can be ignored. Thus, this conventional method will be improved here as 

the braces in SCBFs undergo considerably large axial forces. 

The layout of this chapter is as follows: the element FBMI allowing member initial 

imperfection is briefly introduced in section 7.2; the semi-rigid connection technique 

as well as the treatment of rigid end zone is presented in section 7.3; the material model 

and residual stress pattern are shown in section 7.4; the comprehensive modeling of 

SCBFs and the verification works will be presented in section 7.5 and 7.6 respectively. 

Finally, the conclusions with highlights of this study and several recommendations for 

SCBF modeling will be made. 
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7.2 Semi-rigid connection and rigid end zone for gusset 

plate connections 

The gusset plate connection, as an important component of SCBFs connecting brace 

to beam and column, transfers the axial force and bending moments between the brace 

and the framing system. It needs to be carefully designed with proper stiffness to 

tolerate the end rotation of the brace and sustain less damage before the brace fracture. 

The change of the gusset plate stiffness affects the end conditions of the brace and 

consequently influents the buckling resistance of the brace. More importantly, the 

gusset plate connection absorbs a portion of energy from ground motion by hysteretic 

behavior. Thus, it is worth to capture these features in the analytical model of SCBFs 

to have a better prediction of SCBFs’ behaviors.  

Mathematically, a semi-rigid connection can be introduced to reflect the behavior 

between a brace and a gusset plate connection. To reflect the actual length of the gusset 

plate connection and the physical length of brace, a rigid zone will be introduced at 

the end of a brace. The former one technique has been introduced in Chapter 3. The 

latter one will be incorporated into the proposed FBMI element to form a hybrid 

element for nonlinear dynamic analysis (NDA) of SCBFs with significant 

improvement of result accuracy and enhancement of numerical efficiency. 

7.2.1 Semi-rigid behavior of gusset plate connection 

The bi-linear 𝑀-𝜃 model is widely used in frame analysis to consider semi-rigid 

behavior for simplicity. To more accurately reflect the hysteretic response of the gusset 

plates under cyclic loading or strong ground motions, more sophisticated model should 

be adopted in the design of SCBFs. In this thesis, the 𝑀-𝜃 function of gusset plate 

connection proposed by Hsiao (2012) with calibration of experimental test results and 
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the continuum finite element analysis by Yoo (2006) is adopted, as illustrated in Fig. 

7.2. The rotational stiffness in elastic stage and the associated bending moment can be 

calculated as, 

𝑅𝑒 =
𝐸

𝐿𝑎𝑣𝑒
(
𝑊𝑤𝑡𝑝

2

12
) (7.1) 

𝑀𝑦 = (
𝑊𝑤𝑡𝑝

2

6
)𝐹𝑦,𝑔 

(7.2) 

in which, E is elasticity modulus; 𝑊𝑤  is the whitmore width defined by a 45o 

projection angle; 𝐿𝑎𝑣𝑒  is the average of L1, L2, L3 as shown in Fig. 7.1; tp is the 

thickness of the gusset plate; and 𝐹𝑦,𝑔 is the yield strength. 

The beam-to-column shear tab connections are commonly adopted in SCBFs. The 

semi-rigid behavior of this type of connections can be represented by the multi-linear 

𝑀 -𝜃  functions proposed by Liu and Astaneh-Asl (2004). In their models, the 

contribution of floor slab can also be considered. More details about the semi-rigid 

models can be referred to the original reference ( Liu and Astaneh-Asl, 2004). 

7.2.2 Rigid end zone of gusset plate connection 

As indicated in Fig. 7.1, the portion of the gusset plate near to the end of the brace is 

simulated by semi-rigid connection as presented in last sub-section. The remained 

portion of the gusset plate connected to framing system, undergoing negligible in-

plane deformation compared to other deformations of the SCBF, generally exhibits 

rigid behavior. Thus, a rigid end offset from the intersection point of the beam-to-

column connection to the physical end of the brace can be assumed to reflect the gusset 

plate connection’s actual length. Consequently, the nodal displacement vectors 𝐃𝒊 of 

the intersection point of the beam-to-column connection can be transformed into the 

physical end of the brace or the other end of the rigid zone as 
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 (7.3) 

in which, 𝐃𝒑 is the displacement vector for brace and gusset plate connection; 𝑒𝑖 is 

the distance of the rigid zone between the node i and the associated physical end of 

the brace. 

From the above, the stiffness matrix of the proposed FBMI considering semi-rigid 

behavior and rigid end zone should be modified as 

𝐊𝑻 = 𝐋𝐄
𝑻(𝐓𝑻𝐊𝒄𝐓 + 𝐍)𝐄𝐋

𝑻 (7.4) 

𝐄 = [
𝐄𝒊 𝟎
𝟎 𝐄𝒋

] 
(7.5) 

in which, 𝐊𝒄 is the stiffness matrix combined with both the brace and the gusset 

plate connections; 𝐄 is the eccentricity transform matrix considering the rigid end 

zones at two ends. Thus, the stiffness matrix of the hybrid beam-column element as 

indicated in Fig. 7.1 can be calculated. 

 

7.3 Material representation and residual stress 

7.3.1 Material representation 

The material representation in the analytical model of SCBFs should be able to capture 

the typical behaviors of the braces such as buckling, tensile yielding, post-buckling, 

fracture, and post-fracture. Generally, the multi-axial materials with complex yield 

criterion are used in continuum finite element models while the uni-axial materials are 

preferred in the fiber-based frame analysis. 
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In this thesis, the distributed inelasticity method based on fiber discretization of the 

cross-section at the integration points along member length is used to simulate the 

nonlinear material behavior of SCBFs. The spread of yielding is represented through 

the integration of material responses of fibers over the cross-section. The material of 

each fiber can be modeled by a uni-axial material, for example, elastic-perfectly plastic 

material or Giuffré-Menegotto-Pinto hysteretic material (1983). The latter without a 

sudden change of stiffness is widely adopted in nonlinear analysis, and the transitional 

portion from elastic to plastic state is given in Equation (7.6) below. 

𝜎∗ = 𝑏𝜀∗ +
(1 − 𝑏)𝜀∗

(1 + 𝜀∗ 𝑅)
1
𝑅

 (7.6) 

in which, 𝜎∗ and 𝜀∗ are the normalized stress and strain respectively; 𝑏 is the strain 

hardening ratio between the post-yield tangent and initial elastic tangent; 𝑅 is the 

parameter to adjust the shape of the transition curve and should be determined by 

parameters 𝑅0 , 𝑎1  and 𝑎2  during the cyclic loading to reflect the Bauschinger 

effect. More details about this material model can be referred to Filippou et al. (1983). 

The preferred failure mode of SCBFs is brace fracture (Hsiao, 2013) as the braces are 

designed to absorb energy during the earthquake and can be replaced more easily after 

the earthquake. To capture the fracture effect, the proper fracture material should be 

selected for the braces. Several fracture material models for braces have been proposed 

to predict brace behavior. They can be classified into two types based on the response 

at global level or at local level. For the first one, Lee and Goel (1987) suggested to use 

an equivalent number of cycles for fracture evaluation. The second one is based on the 

strain or stress state of braces. Hsiao et al. (2013) pointed out that the rupture of braces 

due to fatigue is correlated to the maximum strain range. For this reason, the 
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macroscopic fatigue of braces can be simulated through the modified material 

constitutive model incorporated with fracture criterion as shown in Fig. 7.3. 

In summary, the Giuffré-Menegotto-Pinto hysteretic uni-axial material (1983) with 

consideration of brace fracture proposed by Hsiao et al. (2013) is adopted in the 

proposed analytical model of SCBFs so that the hysteretic behavior of braces can be 

well predicted. The examples in section 6 will illustrate the validation and accuracy of 

the proposed method in the design of SCBFs. 

 

7.3.2 Residual stress 

Residual stresses always exist in both hot rolled and welded steel members. Residual 

stresses are self-equilibrium in a member or a component and may come from rolling, 

cold forming and welding process. The distribution and magnitude of residual stress 

vary for different types of cross-sections. Typically, the center part of the flange of an 

I- or H-section is in tension while the remained part of the flange is in compression. 

For a rectangular hollow section (RHS), the residual stresses at the four corners are in 

tension while the other portions are in compression. The residual stress patterns for 

hot rolled square hollow section (SHS) and H-shape section shown in Fig. 7.4 are well-

recognized and will be adopted in this study. 

The residual tensile stresses at the corners of SHS or RHS will speed up premature 

fracture of braces while the residual compressive stresses at the center parts will reduce 

the brace buckling resistance. For this reason, residual stresses are vital in the accurate 

modeling and practical design of SCBFs. It is found that the influence of residual stress 

has been generally ignored in previous researches as a result the design may be 

inadequate.  
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In this thesis, the residual stresses of frame sections are explicitly modeled and directly 

incorporated in the analysis through the fiber discretization technology. Initial strain 

corresponding the residual stress following Fig. 7.4 will pre-set in each fiber. The total 

stress of each fiber is equal to the sum of the residual stress and the load-induced stress. 

The tangent stiffness and fracture behavior are determined by the total stress using 

Giuffré-Menegotto-Pinto material incorporated with the fracture criterion proposed by 

Hsiao et al. (2013). Thus, the actual highly nonlinear behavior of the braces can be 

well captured. 

 

7.4 Analytical model for SCBF system 

A SCBF system dissipates the energy from earthquake through (1) the yielding, 

buckling and fracture of brace, and (2) yielding of connections and beams. In the point 

of view of common design practices, the yielding and buckling of columns is not 

preferred so that the risk of progressive collapse could be minimized. To accurately 

predict the behavior of SCBF systems, a reliable and efficient analytical model is 

proposed as shown in Fig. 7.5(b) for practical seismic design of SCBF building, using 

the technologies described in the above sections. Clearly, the proposed model in Fig. 

7.5(b) is much simpler than the conventional one in Fig. 7.5(a). This innovative 

solution significantly narrows the gap between the academic researches and the 

engineering applications. The proposed hybrid beam-column element was 

implemented in the program NIDA (2018) for this study. This new element considers 

initial geometrical imperfections, residual stress, connection behavior and distributed 

inelasticity such that a safer and economical design can be obtained. 

The national design codes such as AISC360 (2016), Eurocode-3 (2005) and COPHK 

(2011) highly recommend the direct analysis method (DAM) which requires to 
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consider initial geometrical imperfections and residual stress so that the member 

buckling behavior can be directly reflected in the analysis stage rather than separately 

in the design stage. When using the DAM, the effective length for individual member 

check is no longer required as the second-order P-Δ and P-δ effects have been 

considered during the analysis process and as a result, only the section capacity check 

is needed. It should also be pointed out that the local joint behavior should be carefully 

captured in the analysis if the joint like the gusset plate connection of SCBFs 

significantly affects the load distribution of the structural system according to the 

requirement of DAM. However, the DAM is rarely adopted in the seismic design. To 

some extent, it is because the two design theories were developed and improved in a 

parallel manner. If the behaviors of members and connections cannot be well 

represented in the nonlinear dynamic analysis (NDA), the responses for identifying 

plastic hinges may be inaccurate, and consequently, the more realistic responses of the 

structural system cannot be predicted which lead to an unsafe design. Being aware of 

the above, this thesis aims to promote the DAM to seismic design using NDA so that 

a consistent design method linking the static and dynamic design together can be 

provided for design office. 

The modeling details for braces, gusset plate connections, beams and columns in 

SCBF system will be introduced in this section. The features and advantages of the 

proposed model will be highlighted and discussed as followings. 

 

7.4.1 Modeling of beams and columns 

In the conventional nonlinear dynamic analysis (NDA), the initial geometrical 

imperfections and residual stresses, which are inherent in the steel beams and columns, 

have generally been overlooked. It should be pointed out that the P - δ  effect 
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associated with member bowing deformation has been partly included in the NDA if 

a beam-column element with six degrees of freedom per node rather than a truss 

element is used. When using the effective length method based on undeformed 

configuration and initial elastic stiffness to check individual member stability, it will 

bring an inconsistent design. 

In this thesis, the proposed FBMI beam-column allowing for the rigid end zone as 

shown in Fig. 7.5 will be used to model beams and columns. Compared with the 

conventional NDA, the significant improvement is that one element is adequate to 

model a steel member (beam or column). Extensive verification works of the element 

can be referred to Du et al. (2017). This will highly enhance the numerical efficiency 

and greatly reduce the computational expense. By contrast, several elements were used 

for a beam and a column in Hsiao’s modeling (2012) which means more computer 

time required. 

When using the proposed element to model a beam or a column, the length of the rigid 

end zone at both ends, 𝐿𝑙 and 𝐿𝑟 can be determined by the connection type. The 

joint flexibility can also be considered if the associated connection is neither fully rigid 

nor ideally pinned. Fiber-based approach is employed to monitor the plasticity 

development of the cross sections at the integration points. The material described in 

section 4.1 will be used for both beams and columns. 

The design codes consider the initial geometrical imperfection and residual stress of 

steel members in two different ways. In Eurocode-3 (2005) and COPHK (2011), all 

sources of imperfections will be integrated into an equivalent geometrical 

imperfection. It should be noted that the amplitude of the initial bow imperfection for 

a section in a given direction is different in second-order elastic and plastic analysis. 

Larger initial bowing should be used in the second-order plastic analysis which causes 
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inconvenience as many members may remain elastic during inelastic analysis. On the 

contrary, AISC360 (2016) recommends to consider the two sources of imperfections 

separately. Generally speaking, the former is more welcomed in the stiffness-based 

beam-column elements with plastic hinge method while the latter is more suitable for 

flexibility-based beam-column elements with distributed plasticity. In this thesis, the 

latter will be adopted so that more accurate responses of SCBFs can be obtained. 

 

7.4.2 Modeling of brace and gusset plate connection 

The gusset plate connections in SCBFs should be properly designed with detailing 

requirements specified in AISC341 (2016) so that the brace fracture occurs first and 

then the connection ruptures. The failure of gusset plate connection early before brace 

fracture is undesirable as the SCBF will absorb less energy in this situation. The gusset 

plate connections play an important role in SCBF system, and therefore their behavior 

should be well represented in the analytical model.  

Like the beams and columns, the initial geometrical imperfections and residual stress 

of braces should be included in the analytical model so that the brace yielding, 

buckling, and fracture can be precisely captured.  

In this thesis, one proposed hybrid element based on FBMI beam-column with rigid 

end zone, zero-length end spring and initial imperfections is adequate to model a brace 

with two associated gusset plate connections. Rigid end zones are placed at both ends 

of the element to reflect the length of connection while two zero-length end springs 

located between the rigid end zone and the brace are used to simulate the semi-rigid 

behavior of the gusset plate connections. The associated technologies are described in 

section 3. The remaining middle part of the element is the actual length of the brace 

and the fiber-based approach is employed to trace its stability and distributed plasticity. 
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7.4.3 Highlights of the proposed analytical model 

Generally, the proposed analytical model is one of the fiber-type FE (finite element) 

models with the advantages and disadvantages against other approaches discussed in 

section 1. However, the proposed model has unique features over other fiber-type FE 

models. For example, Hsiao et al. (2012) proposed a line-element model for SCBFs 

as shown in Fig. 7.5(a). In their model, an individual link element is required to model 

the rigid end zone at the end of beam, column or brace; a one-node spring element 

should be inserted between the link element and the element for brace; several 

conventional flexibility-based elements without initial geometrical imperfections and 

residual stress are needed for each beam, column, and brace. To achieve an accurate 

prediction on brace behavior, ten or more conventional flexibility-based elements are 

generally required as their element is unable to consider local second-order P-δ effect 

as well as initial imperfections. Otherwise, the compressive buckling of the brace 

cannot be captured.  

By contrast, the proposed model requires only one element per member (beam, column, 

and brace) considering finite joint stiffness. The hybrid element with initial 

imperfection and semi-rigid connection at the element level not only significantly 

improves the computational efficiency (especially in nonlinear dynamic analysis) but 

also effectively alleviates the numerical problems due to the formation of plastic hinge 

at mid-span, in which the stiffness matrix of the associated node approaches singular 

when using multi-element per member modeling like Hsiao et al. (2012). In such case, 

an analysis may be terminated due to poor stiffness at the node with plastic hinge, and 

as a result, the engineer cannot get the whole responses of SCBF building. Also, one-

element-per-member modeling is widely accepted in daily design using linear 
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approach, and therefore the proposed method can significantly reduce modeling 

efforts but provide an accurate response. The analysis results are directly complied 

with code requirements, and therefore the individual member check is no longer 

required. Thus, this is an innovative solution for the seismic design of SCBFs in line 

with the spirit of direct analysis method (DAM). 

 

7.5 Numerical examples 

7.5.1 A single HSS brace subjected to cyclic loading 

Fell et al. (2009) conducted 18 large-scale tests of special bracing members. The 

specimen HSS1 made of HSS101.6x101.6x6.4 with a clear presentation of force-drift 

curve for comparison purpose is selected in this study to validate the proposed hybrid 

beam-column element. The setup, loading protocols, and dimensions are shown in Fig. 

7.6 and Fig. 7.7. The wall thickness of the brace is 6.4 mm while the thickness of 

gusset plate is 12.7 mm. The hysteretic material response was represented by the 

Giuffré-Menegotto-Pinto model, with elasticity modulus of 2x105 MPa, the yield 

stress of 450 MPa, and hardening ratio of 0.1%. The drift demand is in relation with 

the axial deformation of the brace and their conversion can be referred to Fell et al. 

(2009). 

As mentioned in previous sections, the end conditions due to flexible connection, 

initial geometrical imperfection and residual stress in brace should be taken into 

account for advanced design of SCBFs. Totally four models with different 

considerations given in Table 7-1 are built to study these factors affecting the brace 

behavior. For models 1 to 3 (denoted as M1 to M3), both the geometrical imperfection 

and residual stress are considered. Only the boundary conditions are different so that 
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the influence of joint flexibility can be clearly observed. For model 4 (denoted as M4), 

only the geometrical imperfection is considered so that the influence of residual stress 

can be clearly observed. For all cases, only one proposed hybrid element is used to 

simulate the single brace. All analysis results are compared with the experimental 

result from Fell et al. (2009), as seen in Fig. 7.8(a-d). 

 

7.5.2 A one story-one bay SCBF 

In this example, a one-story one-bay SCBF with chevron configuration of braces is 

studied, as seen in Fig. 7.9. The gusset plate connection is a tapered plate with 

thickness of 35 mm and depth of 1245 mm. The framing members (beam and columns) 

and braces are modeled by one proposed hybrid element per member. The initial 

geometrical imperfection of brace is assumed as L/1000, in which L is the member 

physical length. The moment-rotation curve is determined by the method proposed by 

Hsiao (2012) and reproduced in Fig. 2.2(b). For all steel members, the material is 

assumed as Giuffré-Menegotto-Pinto constitutive model, with the elasticity modulus 

equal to 2x108 kN/m2 and hardening ratio equal to 0.003. The yield stresses are taken 

as 344.74 kN/m2 and 317.16 kN/m2 for framing members and braces respectively. The 

earthquake wave Superstition Hills-01 (1987) is used as input for this study. 

For comparison, the analysis result by the model recommended in OpenSees (2000) 

using 10 displacement-based elements per member is presented here. The material 

model and the moment-rotation curve for the gusset plate connections are same as 

those in the proposed model. The rigid end zones need to explicitly model by rigid 

link element in OpenSees (2000). To consider the initial geometrical imperfection of 

L/1000, the coordinates of the nodes along the members should be modified to suit the 
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half-sine shape. Totally, there are 11 nodes for one brace in the OpenSees model while 

only 2 nodes for one brace are required in the proposed model. 

For fair comparison regarding computational efficiency, the two models will be run in 

the same personal computer with an Intel® Core™ i7-3770 CPU of 3.4 GHz and 16.0 

GB RAM. 

The computer time of the proposed model is 29 seconds, while the OpenSees model 

costs 67 seconds. The base shear versus story drift curves of the SCBF obtained from 

the two sets models are shown in Fig. 7.10. It can be seen that the result from present 

study shows good agreement with that OpenSees model which requires multi-element 

per member.  

From this example, the proposed method shows high accuracy with significant 

enhancement of computational efficiency. An important aspect to be highlighted is 

that the modeling effort has been greatly reduced as engineers need not divide a brace 

into a number of elements with modification of node coordinates to account for initial 

geometrical imperfection. 

 

7.5.3 A single-story frame with a single brace 

A full-scale test of a one-story, one-bay frame was conducted by Lehman et al. (2008) 

at the University of Washington, as seen in Fig. 7.11. The steel sections are W12x72, 

W16x45 and HSS5x5x3/8 for the columns, beams and brace respectively. The 

thickness of gusset plate is 9.53 mm. Fig. 7.12 shows the analytical model by the 

proposed method. 

A pair of 1557 kN axial loads, to simulate gravity loads from upper stories, were 

applied on the top joints of the columns. Asymmetry drift history shown on Fig. 7.13 

was applied on the top joint of left column in the horizontal direction. 
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This experiment has been studied by Yoo et al. (2008) with continuum FE models and 

Hsiao et al. (2012) with multi-line elements. Unlike their methods, only one proposed 

hybrid element per member will be used to predict the structural response of the frame 

in this thesis. In the proposed model, the square hollow structural section and the wide 

flange sections are discretized with 208 and 96 fibers respectively. The initial 

sinusoidal out-of-straightness with maximum amplitude 𝛿0 of 𝐿/1000 as well as 

residual stress is included. The 𝑀-𝜃  functions of gusset plate and beam-column 

connections are determined by method presented in section 3.1. In each element, seven 

Gauss-Lobatto integration points are used to form the flexibility matrix in Equation 

(3.39). 

The drift ratio versus lateral force hysteretic curve obtained from this study is plotted 

in Fig. 7.14 against experimental test result. It is evident that the result of the proposed 

method agrees well with the experimental measurement in a wide range. Both the 

compressive and tensile behaviors of the brace can match the test result except the 

brace approaching fracture, at which the brace suffered significant local buckling. This 

can be further improved if a more refined material fracture model is available. 

 

7.5.4 A three-story one-bay frame 

As shown in Fig. 7.15, a three-story one-bay SCBF was experimentally tested by 

National Center for Research on Earthquake Engineering (NCREE) in Taiwan, and 

the Universities of Washington (UW), California, and Minnesota (2012). This frame 

was designed with the balance design procedure proposed by Roeder et al. (2011). 

The configuration and layout of the frame with steel sections used are shown in Fig. 

7.16. All braces are HSS5x5x3/8 with gusset plate of 10 mm. Fig. 7.17 shows the 
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cyclic, pseudo-static, displacement-controlled loading protocol, which was applied on 

the intersection joint of braces at the top level. 

Similarly, only one proposed hybrid element per member will be used to predict the 

structural response of the frame. Seven Gauss-Lobatto integration points along each 

member are employed. The square hollow structural section of braces is discretized 

with 208 fibers, and 96 fibers for wide flange sections. The initial sinusoidal out-of-

straightness with maximum amplitude 𝛿0 of 𝐿/1000 as well as residual stress is 

considered. The 𝑀 -𝜃  functions of gusset plate connection and beam-to-column 

connection are determined by the method presented in section 7.2. Specially, there is 

a 200 mm thickness composite slab placed on the top of steel members. Thus, the 𝑀-

𝜃 curve proposed by Liu and Astaneh-Asl (2004) with consideration of composite 

slab is adopted here. 

The global drift versus lateral force hysteretic curves obtained from the proposed 

method against the measured results are plotted in Fig. 7.18. Generally, the shapes of 

the hysteretic loops from numerical simulation and experimental test are similar. The 

hysteretic areas associated with the dissipated energy are also close. The tensile, 

compressive and buckling behaviors of the braces have been well represented in 

numerical simulation by one-element per member model. This example further 

demonstrates that the proposed method is ready for practical use with a significant 

reduction of modeling expense and increase of computational efficiency. 

 

7.6 Concluding remarks 

Special concentrically braced frames (SCBFs) are widely employed in high seismicity 

regions as seismic-resistant systems due to structural and economic efficiency and 
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particularly high ductility for energy dissipation. The steel braces are the key members 

to absorb energy through tensile yield, compressive buckling, post-buckling and 

fracture behavior. As the braces exhibit highly nonlinear behavior, the precious 

modeling methods are generally required several elements to simulate a brace with 

initial curvature. Also, the influence of residual stress on the structural performance 

of SCBFs has been largely overlooked. Thus, a practical and innovative analytical 

model is proposed in this thesis for the performance-based seismic design of SCBFs. 

This new solution provides an accurate prediction with a significant saving of 

computer time, and therefore it will be extremely helpful for daily design by nonlinear 

dynamic analysis. The examples verified by experimental test results show the 

accuracy, efficiency, and validity of the proposed method.  

In summary, there are five novel aspects of the proposed model as follows:  

(1)  The initial geometrical imperfection and residual stress are explicitly considered 

at the element level.  

(2)  The joint flexibility effect as well as the rigid end zone duo to gusset plate 

connection is explicitly considered at the element level.  

(3)  The distributed plasticity with consideration of fatigue fracture allowing for 

hysteretic behavior has been included in the proposed model. 

(4)  One-element-per-member modeling is adequate, and therefore it can significantly 

reduce the computational cost. 

(5)  This thesis extends the direct analysis method (DAM) which is well specified in 

the modern design codes such as AISC360 (2016), Eurocode-3 (2005) and 

COPHK (2011) from nonlinear static analysis to dynamic analysis. Thus, a 

consistent method linking the static and dynamic design together is provided for 

practical engineering use to achieve a safer and economic design.   
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FIGURES 

 

 

Fig. 7.1 Configuration and modeling of gusset plate connection 

 

 

Fig. 7.2 Moment-rotation function of gusset plate connection 
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Fig. 7.3 Fracture model of steel material 
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(b) H-Section 

Fig. 7.4 Residual stress patterns 

 

 

(a) suggested by Hsiao (2012) 
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(b) proposed model 

Fig. 7.5 Comparison of analytical models for SCBFs 

 

 

Fig. 7.6 Configuration of a single HSS brace 
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Fig. 7.7 Symmetrical loading protocol  
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 (b) 

 

 

(c) 
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(d) 

Fig. 7.8 Brace hysteretic curves for different models: (a) M1, (b) M2, (c) M3 and 

(d) M4 
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Fig. 7.9 Finite element model of SCBF 

 

 

Fig. 7.10 Seismic performance of SCBF with different number of elements 
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Fig. 7.11 Test specimen of single-story frame 

 

 

Fig. 7.12 Analytical model 
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Fig. 7.13 Asymmetrical loading protocol 

 

 

Fig. 7.14 Response of single-story frame 
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Fig. 7.15 Test specimen of three-story one-bay frame 
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Fig. 7.16 Analytical model 

 

 

Fig. 7.17 Symmetrical loading protocol 
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Fig. 7.18 Response of three-story one-bay frame 
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TABLES 

Table 7-1 Four models for simulation of the single HSS brace 

Model End Condition 

Initial Bowing 

𝛿0 

Residual Stress 

M1 
 

L/1000 Yes 

M2 
 

L/1000 Yes 

M3 
 

L/1000 Yes 

M4 
 

L/1000 No 

Note: 𝛿0 is the magnitude of initial geometrical imperfection respectively; 𝐿 is the length of the 

member. 
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CHAPTER 8. SUMMARY AND FUTURE WORK  

 

In this chapter, the main findings of this research project will be summarized, and the 

future work is also presented. 

 

8.1 Summary 

In this thesis, a new flexibility-based beam-column element allowing for member 

imperfections, semi-rigid connections, rigid end zone and end offsets, and distributed 

plasticity is proposed for the second-order direct analysis of frame structures under static 

and dynamic loads. The work that incorporates member initial bowing into the flexibility-

based element has not been done before. The plastic zone method in conjunction with the 

fiber section approach is adopted in the proposed flexibility-based element to conduct 

second-order inelastic analysis. The geometrical initial imperfection is formulated in the 

element stiffness matrix while the residual stress is considered by fiber section, and as a 

result, the inelastic behavior of steel structures can be well predicted in accordance with 

design codes. As the second-order direct analysis requires the consideration of material 

yielding and initial imperfections, this new element provides a practical solution for 

engineering applications with higher computational efficiency and better numerical 

convergence than the conventional methods. Meanwhile, the section constitutive model 

derived from the section yield function can replace the section integration using the fiber 

section approach to represent the relationships between the internal forces and 

deformations. This technique will significantly enhance the computational efficiency of 
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both static and dynamic nonlinear analysis considering material yielding. Generally 

speaking, the proposed method can predict the actual behaviors of frame structures using 

one element per member. Finally, the proposed method is applied to design of frame 

structures with noncompact and slender CFT members under static loads and special 

concentrically braced frames (SCBFs) subjected to dynamic loads.  

The main findings and contributions of this study are summarized as follows: 

(1) The proposed flexibility-based beam-column element can consider member initial 

imperfections explicitly. Meanwhile, it inherits the advantages of flexibility-based 

elements, having high accuracy and being powerful in the inelastic analysis. The 

geometrical and material nonlinearities of frame structures under static and dynamic 

loads can be well considered. For geometrical nonlinearity, the 𝑃 -𝛿  effect is 

incorporated into the proposed method at the element level while the 𝑃-∆ effect is 

accounted for by corotational technology. In terms of material nonlinearity, the 

distributed plasticity method is adopted to capture the plastic behavior. The fiber 

section approach also makes it possible to directly consider the influence of residual 

stress. These futures make the proposed element able to simulate one member by one 

element. Therefore, it significantly reduces the engineers’ modeling workload as well 

as the computational time of static and dynamic nonlinear analysis. 

(2) A section constitutive model derived from the section yield function can replace the 

section integration using the fiber section approach to represent the relationships 

between the internal forces and deformations. This technique will further reduce 

computer time and resource with same accuracy as fiber section method and therefore 

it is ready for static and dynamic nonlinear analysis. 
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(3) Two zero-length springs are attached at the ends of the proposed element to account 

for joint flexibility required in direct analysis if the joint is not ideally pinned or fully 

rigid. The coupling effect of axial force and bending moments, which has been 

ignored by other researchers, can be taken into consideration. This hybrid element is 

able to capture the structural behaviour of a member with semi-rigid connections 

under monotonic or cyclic loading. Thus, the proposed method is applicable for static 

or dynamic nonlinear analysis of frame structures allowing semi-rigid connections. 

(4) An innovative method in line with direct analysis and satisfying the provisions in 

AISC360 (2016) is proposed for the design of noncompact and slender CFT members. 

Using the effective stress-strain relationships of the steel tube and the concrete infill, 

the proposed element with geometrical imperfections can well predict the complex 

behaviors of noncompact and slender CFT members. This approach considers all 

factors affecting member behaviors in the analysis process in accordance with code 

requirements. Both the geometrical and material nonlinearities are reflected in the 

second-order direct analysis. The effective stress-strain relationships implicitly 

account for the complex behaviors of noncompact and slender CFT members, for 

examples, local plate buckling, concrete confinement, material yielding. Furthermore, 

the proposed element has high accuracy such that one CFT member can be modeled 

by one proposed element. This method can be applied to direct analysis of compact, 

noncompact and slender CFT member. 

(5) The proposed element is extended to consider the effects of the rigid end zone and end 

offsets at the element level to simplify the model. A practical and innovative 

analytical model is proposed for the performance-based seismic design of special 



Chapter 8. Summary and future work 

239 

 

concentrically braced frames (SCBFs). The gusset plate at the end of brace in SCBFs 

is simulated by a semi-rigid connection with rigid end zone. The joint stiffness of the 

beam-to-column connections can also be simulated by the proposed model. To this 

end, the brace complex behaviors such as tensile yield, compressive buckling and 

post-buckling during second-order dynamic analysis can be accurately captured by 

one proposed element per brace. Using the fracture constitutive relations of steel 

material, the proposed model can capture the fracture behavior of braces under cyclic 

loading. This new solution provides accurate predictions with significant savings of 

computational time, and therefore it will be extremely helpful for PBSD by dynamic 

nonlinear analysis. 

 

8.2 Future work 

This study presents a high-performance flexibility-based beam-column element 

considering many practical features for daily design. It is highly recommended for use in 

direct analysis of frame structures subjected to static and dynamic loads. There are still 

many detailed works on applying the direct analysis method to performance-based 

seismic design. In the future, the following aspects are recommended so that the 

innovative second-order direct analysis can be extended to routine seismic design. 

(1) To adopt the yield surface, provided in design codes or generated by cross-sectional 

analysis software, in the distributed fiber hinge method;  

(2) To study the behavior of SCBFs by the proposed method with more experimental test 

results; 

(3) To introduce warping and shear deformation effects into the proposed element; 
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(4) To study the critical imperfection mode of frame structures under dynamic loads; 

(5) To improve the computational efficiency by employing CPU + GPU heterogeneous 

computing techniques and cloud techniques; 
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