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ABSTRACT 

 

To alleviate fossil fuel use, mitigate traffic congestion, and reduce air 

emissions, it is necessary to find sustainable mobility alternatives and better 

adapt existing transportation modes to move people in a more 

environmentally sound and economically feasible way. In recent years, 

sustainable mobility systems have begun to emerge, encompassing a range of 

novel technologies and solutions such as high-speed railway, autonomous 

vehicles, and bike sharing. The current literature on the sustainability 

implications of transportation systems often neglect the interactions between 

these emerging mobility systems and existing transportation modes and the 

heterogeneous individual travel patterns that affect transportation 

sustainability. Therefore, to better understand these emerging transportation 

systems and inform decision making, an interdisciplinary approach tightly 

linking life-cycle analysis, agent-based modeling, and geographic 

information system are used to generate the behavioral rules of passengers 

choosing different transport modes, simulate the vehicles traveling in real-

world road networks, and evaluate the economic, social, and environmental 

impacts of the multimodal transportation system. Three case studies focusing 

on three emerging mobility systems—high-speed railway, autonomous taxis, 

and bike sharing—are proposed to demonstrate the benefits of using this 

hybrid method. 

The high-speed railway study evaluates the life-cycle environmental 

performance of the existing multi-modal transportation system with the 

newly-built high-speed railway. Geographic information and psychology 
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theory are integrated to construct the real-world intercity transportation maps 

and produce the passengers’ mode choice behaviors influenced in part by 

passengers’ social networks. Results from the high-speed railway study show 

that the occupancy rate of the high-speed rail should be maintained at 80% or 

more to lower the overall environmental impacts. The through train may need 

to be gradually shut down to mitigate the system environmental impacts by 

up to 30%.  

The autonomous taxi study evaluates the travel costs and environmental 

implications of substituting conventional personal vehicle travel with 

autonomous taxi travel. A spatial agent-based model is developed to simulate 

how commuters travel by autonomous taxi in real-world road networks. The 

autonomous taxi study demonstrates that to meet daily commute demand with 

wait times less than 3 minutes, the optimized autonomous taxi fleet size is 

only 20% of the conventional solo-commuting personal car fleet. The 

commuting cost decreases by 38%, but the environmental performance of 

autonomous taxis system is not positive, mainly due to the unoccupied 

vehicle travels and low ride sharing.  

Lastly, the bike sharing study simulates the environmental and human 

health impacts of bike sharing on travelers’ usage of other transport modes in 

a multi-modal transportation system, considering their interactions through 

the modeling of the modal split based on the heterogeneous mode choice 

behaviors of travelers. Two scenarios are proposed for the development of a 

bike-sharing system: bike infrastructure extensions, and bike-sharing 

incentives. Two scenarios are evaluated along with the corresponding 

environmental and social impacts. The simulation results indicate that free 
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use of bike-sharing to solve the first/last mile problem of the transit system 

can be most sustainable with 1.5 million US dollars in transportation damage 

cost saved per year, and 22 premature deaths further prevented per year due 

to mode shift to cycling and walking.  

In summary, these spatial agent-based life-cycle analysis models can be 

powerful tools to help policy-makers improve the environmental, economic, 

and social performances of multi-modal transportation systems. 
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Chapter 1 Introduction 

 

1.1 Overview 

Transport is an activity that immensely affects humans and the natural 

environment. Well-designed transport systems can yield comfortable, time-

saving convenience for users. On the other hand, the transportation sector has 

also introduced various problems that need great attention, such as global 

warming, air pollution, and noise pollution. In order to solve these 

transportation problems, new sustainable mobility alternatives have begun to 

emerge with novel technologies and solutions such as high-speed rail, 

autonomous vehicle, and bike sharing. Understanding the sustainability of a 

whole transportation system modified by the introduction of these new 

mobility systems is the major motivation of this work. 

The current literature on assessing the sustainability of these emerging 

systems often neglects the interactions between the new mobility systems 

with the existing transportation modes and are limited to using aggregate data 

to represent personal mobility dynamics, such as the average vehicle-miles-

traveled. But the sustainability performance of the transportation system is 

highly related to individual travel patterns. Take high-speed rail as an 

example—its environmental performance on a passenger-kilometer basis can 

be improved with a high occupancy rate. The occupancy rate of high-speed 

rail is related to its mode share in a multi-modal transportation system. Thus, 

passengers’ mode choice behaviors can affect the environmental performance 

of the transportation modes.  Or consider autonomous taxis—personal travel 

behaviors (e.g. how many vehicle miles traveled in a commute trip, and the 
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starting and end points of the commute trips) can determine the 

environmental and economic performance of autonomous taxis and 

conventional vehicles, which can be better characterized based on a real road 

network rather than a hypothetical city.  

Therefore, it is necessary to integrate the personal mobility dynamics at 

the individual level into assessments of these sustainable mobility systems. 

In the present study, an interdisciplinary approach tightly linking life-cycle 

analysis, agent-based modeling and geographic information systems is used 

to form the behavioral rules of passengers choosing different transport modes 

and simulate the vehicles traveling in real-world road networks. A multi-

criteria assessment model is embedded in this hybrid method, which was 

designed to cover the three dimensions of transportation sustainability: 

environmental, economic, and social. 

The contribution of this thesis is twofold. First, a hybrid method 

integrating individual travel patterns into sustainability assessment is 

developed. Second, each case study in this thesis also has its real-world policy 

implications. 

 

1.2 Research questions 

This thesis includes three case studies focusing on three emerging 

transportation systems: high-speed rail (HSR), autonomous taxi (aTaxi), and 

bike sharing. These systems were chosen because they present promising 

opportunities to improve transportation sustainability and have received 

increasing attention and policy support in many countries. The scope and 

specific research questions for each case are summarized below. 
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Case 1: Environmental impacts of the newly introduced high-speed 

railway (Chapter Two) 

This case investigates how the life cycle environmental performances of 

existing transport systems are affected by the introduction of HSR. Compared 

to the previous studies which only consider the life-cycle environmental 

impacts of HSR and fail to account for the influences of other transport modes 

in a dynamic transportation market (Chester & Horvath, 2010b, 2012; 

Grossrieder, 2011; Yue et al., 2015), this case not only evaluates the 

environmental performances of HSR in a multi-modal transportation system, 

but also takes into consideration passengers’ individual travel patterns. 

Specifically, I address the following research questions: 

1) With the introduction of high-speed rail, how do mode shares change 

in a multi-modal transportation system? 

2) Can the environmental performance of a multi-modal transportation 

system be improved with the newly-built high-speed rail? 

Case 2: Environmental and economic implications of using autonomous 

taxis for commute travel (Chapter Three) 

This case examines the environmental and economic benefits of using 

autonomous taxis to replace conventional personal vehicles in commute 

travel. The Current literature on autonomous vehicle simulations is based on 

highly developed grids or hypothetical cities with constant travel speeds and 

uniform travel patterns (Chen et al., 2016; Fagnant & Kockelman, 2014b; 

Levin et al., 2017; Liang et al., 2016; Martínez et al., 2016; Zhang et al., 2017). 

This case study addresses both gaps by integrating a real-world road network 
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and individual travel behaviors to better represent autonomous taxi travel. 

The specific research questions include: 

1) What is the optimized fleet size of autonomous taxis to meet the daily 

commute demand? 

2) How many vehicle-miles-traveled can be reduced by implementing 

autonomous taxis? 

3) How much can air emissions be reduced by implementing 

autonomous taxis? 

4) How much can commuting costs be reduced by implementing 

autonomous taxis? 

5) How does road occupancy change when using autonomous taxis for 

commute travel? 

Case 3: Environmental and social benefits of bike sharing (Chapter Four) 

The environmental and social impacts of bike sharing on travelers’ usage 

of other transport modes in a multi-modal transportation system have not yet 

been quantified. Bike-sharing research focusing on Asian urban areas is also 

limited (Pai & Pai, 2015). This case evaluates the environmental and social 

benefits of bike sharing in Taipei City. Some bike sharing operation strategies 

are proposed to improve the environmental and social performances of the 

integrated transportation system with bike sharing. The specific research 

questions include: 

1) How does bike-sharing change the travel behaviors of users in Asian 

cities? 

2) Are the environmental benefits of bike-sharing overstated when 

taking into consideration the whole passenger transportation system? 
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3) Can bike-sharing can contribute to improving human-health even in a 

polluted air environment? 

4) What bike-sharing operation strategy can yield the largest 

environmental and social benefits? 

 

1.3 Research methodology 

The methodology of this thesis is depicted in Figure 1-1. A spatial 

agent-based life-cycle analysis approach is used in all cases. But the three 

methods, i.e., agent-based modeling (ABM), geographic information system 

(GIS), and life-cycle analysis (LCA), have a different degree of emphasis 

across the following case studies. Each method was improved and optimized 

to fit the respective research topic as the studies progressed.  

 

Figure 1-1. Methodology of the thesis 
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In the case of high-speed rail, an ABM platform named Netlogo is used 

(Wilensky 1999), NetLogo has an intuitive language with a comprehensive 

library, which is very user-friendly to the programming beginner. The built-

in GIS extension supported by NetLogo provides the ability to load Pearl 

River Delta-Hong Kong spatial data into the model. The specific routes 

including the airline, HSR link, train rail link, and highway are represented 

in the model. 1,000 passenger agents and 5 cross-boundary transport modes 

interact with each other in this transportation world. The mode choice 

behavior is the main focus in the HSR case, with the small world theory 

applied to construct passengers’ social network, which can partly influence 

the passenger’s mode choice behavior. The logit model is enhanced with this 

psychology theory to define the mode choice behavior. The life cycle 

environmental performances of the transport modes are estimated by 

adjusting the emission factors of reference modes from the literature. 

In the case of autonomous taxis, the real-world transportation 

application is emphasized. GAMA (GAMA, 2016), a large-scale ABM 

platform is applied in this case, which aims at building spatially grounded 

multi-agent simulations. The transportation map is made up of the real-world 

road network with different types of buildings (such as residential and office 

buildings) rather than a highly-developed grid city with traffic zones. The 

vehicles and passengers travel on this road network with heterogeneous 

behaviors. The vehicles travel at different speeds based on the road capacity. 

The passenger chooses different modes (here refers to the autonomous taxi or 

private car) based on his/her waiting time limit and expected time of 
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autonomous taxi arrival. Passenger’s car sharing behavior depends on his/her 

willingness to share and the vehicle sharing algorithm. 20,000 passenger 

agents, 6,194 road agents, and more than 2,000 vehicle agents interact with 

each other in this transportation system. The travel costs and environmental 

impacts of the transport modes are considered in this case, with the emission 

factor of conventional gasoline sedans used as a reference. 

The case of bike sharing is also developed based on the GAMA platform 

(GAMA, 2016). The Taipei city, specifically with the city’s roads, buildings, 

and district areas are loaded to realistically represent the real-world 

transportation system. Two kinds of behavior theories, namely random utility 

maximization and bounded rationality, are applied to construct passengers’ 

mode choice behaviors. Not only the environmental damage costs but also 

the human health benefits from engaging in physical activity including 

cycling and walking are calculated. In addition, recommendations for healthy 

cycling and walking durations in an air pollution region are presented. 

 

1.4 Structure of the dissertation 

The remainder of the dissertation is organized as follows. Chapters two 

to four present three cases of applying a spatial agent-based life-cycle 

analysis approach to evaluate the economic, social, and environmental 

performances of the multi-modal transportation system. The last chapter 

concludes with key insights drawn from the findings and directions that can 

be pursued in future research. 

Chapter two evaluates the environmental impacts of the multi-modal 

transportation system with a newly-built HSR. There are two kinds of agents 
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in this transportation world: transportation modes and passengers. Passengers’ 

mode choice behaviors can change the market shares of the transport modes, 

and the operational and life-cycle environmental performances of this 

transportation “world” also will be influenced accordingly. Several scenarios 

at the operation stage are simulated to minimize the environmental impacts 

based on predicted mode shares. The simulation results suggest that the 

occupancy rate of the HSR should be maintained—more than 80% to lower 

the overall environmental impacts. The through train may need to be shut 

down to mitigate the system environmental impacts by up to 30%. The HSR 

case study has been published in ASCE Journal of Urban Planning and 

Development (Vol. 143, Issue 4) (Lu & Hsu, 2017). 

Chapter three simulates the economic and environmental implications 

of substituting conventional personal vehicle travel with autonomous taxi 

travel. All the vehicles travel in real-world road networks at varying speeds, 

and all the travelers have their own trip routes and specific travel behaviors. 

The simulation results indicate that a personal car fleet can be replaced with 

an autonomous taxi fleet 20% its size to meet the daily commute demand with 

a wait time of less than 3 minutes. But the environmental impacts of 

autonomous taxis do not show significant improvement over private cars. The 

autonomous taxi case study has been published in ASCE Journal of Urban 

Planning and Development (Vol. 144, Issue 4) (Lu et al., 2018b). 

Chapter four investigates the environmental and social benefits of bike 

sharing in a multi-modal transportation system. Two operation scenarios are 

proposed for the development of a bike-sharing system: bike infrastructure 

extensions, and bike-sharing incentives. The simulation results indicate that 
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free use of bike sharing to connect the first/last mile trips of transit can be 

most sustainable with 1.5 million US dollars in transportation damage costs 

saved per year, and 22 premature deaths further prevented per year due to the 

mode shift to cycling and walking. The bike-sharing case study has been 

published in Sustainable Cities and Society (Vol. 41)(Lu et al., 2018a). 
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Chapter 2 Spatial Agent-Based Model for Environmental 

Assessment of Passenger Transportation 

 

2.1 Introduction 

In recent years, high-speed railway (HSR) has become a popular 

transport option with its fast, comfortable, and environmentally friendly 

features. High-speed rail networks have spread in France, Germany, Spain, 

Italy, Switzerland, Belgium, China, Japan, and South Korea. As HSR is 

powered by electricity, it offers potential environmental advantages (e.g. 

fewer carbon emissions) over what can be provided by other transport modes 

that are mostly powered by gasoline or diesel. However, the whole life cycle 

of the HSR system should not only include the operation of HSR but also 

consider vehicle manufacturing, infrastructure construction, and so on. In 

addition, after the opening of an HSR link, passengers may shift from other 

transportation modes (such as plane and bus) to the HSR, and their mobility 

habits may change (Feliu, 2012). For example, for trips shorter than 300 miles 

or 3.5-4 hours, the market share of railway could go up to 50% (Chester & 

Ryerson, 2014). Different levels of passenger occupancy can easily change 

the relative environmental performances of the various modes (Chester & 

Horvath, 2009b). To date, no study has yet taken into account the interactions 

between existing transport modes and a newly-built HSR, nor of the changes 

to the whole system’s environmental performances with the introduction of 

HSR. 

The motivation of this study is to investigate how the life cycle 

environmental performances of existing transport systems will be affected by 
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the introduction of HSR. To accomplish this task, we present here a spatial 

agent-based model for environmental assessment of dynamic transport 

system (ALENT). ALENT combines Agent-based modeling and Life-cycle 

analysis to explore the ENvironment impacts of an existing passenger 

Transportation system with a newly introduced HSR. There are two 

innovations in this study: First, a logit model combined with the small-world 

theory is applied to simulate the passengers’ mode choice behaviors. Second, 

a hybrid agent-based modeling (ABM)/life-cycle analysis (LCA) model, 

ALENT, was built to simulate the operational and life-cycle environmental 

performances of HSR and other competing modes with the influences of 

dynamic market behaviors incorporated, an addition beyond traditional life 

cycle thinking. Consequently, some environmental strategies can be proposed 

based on the comparative environmental performances of the transport modes. 

These environmental strategies for transport modes involve many factors, 

such as physical (fuel consumption, emissions controls, occupancy rates), 

geographic (electricity mixes with varying shares of coal-fired power, 

hydropower, nuclear power, and wind power), and temporal (vehicle age) 

factors. At this stage, only the occupancy rate is discussed as a core factor in 

ALENT, as it is more related to market behaviors.  

This study will first provide some background on the value of linking 

LCA and ABM in the context of transportation. Then a hybrid model for 

environmental assessment is proposed. Following this, a real-world case 

study is presented, describing an application of the frameworks outlined here. 

We conclude with a summary of the work and discuss further avenues of 

research. 
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2.2 Literature review 

A great deal of research has focused on the transportation environmental 

impacts of HSR. Chester and Horvath (2010a) conducted a life cycle 

environmental assessment of HSR and other alternative modes (automobile, 

bus, commuter rail, and aircraft) and compared both the direct and indirect 

effects of fuel, infrastructure, and vehicle stage. It was found that the 

California High-Speed Railway (CAHSR) had the potential to be the lowest 

energy consumer and Greenhouse Gas (GHG) emitter at high occupancy rates, 

though it produced much larger SO2 emissions than the other modes. Chester 

and Horvath (2012) also found that HSR could achieve larger amount of 

environmental benefits than other transportation modes with advanced 

vehicles with high ridership and using renewable energy. In Europe, although 

a proposed Swedish HSR track could increase GHG emissions due to new 

railway construction and maintenance, Åkerman (2011) found significant 

GHG emission reduction potential due to transportation modes shifting to 

HSR. Grossrieder (2011) also examined the life cycle environmental 

performance of Norwegian HSR and analyzed the infrastructure, rolling stock, 

and operation parts. It was found that the environmental impacts could be 

reduced by 50% in a likely future 2050 scenario by improving the production 

technology of the materials for the infrastructure and by having more 

passengers. Yue et al. (2015) studied the life-cycle assessment of HSR in 

China with a case study of the high-speed rail that links Beijing and Shanghai, 

and found the life cycle environmental impacts of China’s HSR may not be 

as desirable as the HSR systems in the developed countries because of the 
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considerable number of bridges needed and reliance on fossil fuel-based 

electricity. 

However, when used alone, LCA fails to account for the local variability 

in dynamic systems. Although in LCA several scenarios are developed to 

explore the effects of changes in HSR infrastructure planning, passenger 

occupancy, and fuel production, LCA cannot lead to comprehensive 

strategies that encompass the dynamic nature of the transportation market. 

The transportation market, like other systems in the real world, is not static 

and simple. Especially with the introduction of a new transportation mode 

like high-speed railway, the market share of the existing modes will be 

affected. It has been estimated that for trips shorter than 300 miles or 3.5-4 

hours, the market share of the railway could go up to 50% (Chester & Ryerson, 

2014). Ranges in mode share can easily change the environmental 

performance of the affected transport modes. Thus, the assessment of life-

cycle environmental performances of transport modes needs to integrate 

market behavior considerations. How to optimize the transportation mode 

shares based on such integrated analysis is a critical issue addressed in the 

following study. 

McFadden (1972) proposed a logit model based on utility theory, which 

has been widely used in previous discrete choice research. Consumers’ choice 

among alternatives is also based on the utility theory of products (Anderson 

et al., 1992). A representative passenger is assumed to choose the traveling 

mode which yields the highest utility or satisfaction (Liu & Li, 2012). The 

utility depends on the various characteristics of the alternative modes, such 

as travel time, ticket fare, and service quality. As Forinash and Koppelman 
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(1993) argued, the logit model was suitable for travel choice modeling. 

Levinson et al. (1997) apportioned the trips between high-speed rail, aircraft, 

and highway based on a multinomial logit mode choice model, with the key 

factors of travel time, fare cost, and service frequency considered. Liu and Li 

(2012) presented a nested logit/simultaneous choice model to improve the 

demand forecast for high-speed railway and confirmed that travel costs had a 

significant impact on both mode choice and trip generation. Khan (2007) 

employed various nested logit models to simulate the traveling mode choice 

behaviors in a multi-modal environment. Adler et al. (2010) used a nested 

multinomial logit model for predicting the likelihood of success of high-speed 

rail in the face of competition from airlines. Yamaguchi and Yamasaki (2009) 

constructed simulation analysis with a dynamic spatial nested logit model to 

analyze the competition of the Maglev/Shinkansen system, though only price 

factors were considered as a function parameter.  

In logit models, every agent is treated as an independent research object, 

whose social connections are ignored, and the impacts of the previous choice 

on current choice are also not considered. Omitting these dimensions in 

making mode choice forecasts can lead to less reliable results since these 

factors affect consumers’ choice to a certain extent. Thus, mode choice for an 

entirely new transportation system cannot be forecasted accurately using an 

unadjusted logit model, which could compromise the quality of 

corresponding policy-making decisions. Although there are a variety of 

alternative models for policy making, Creedy (2001) argued that direct policy 

advice requires the construction of large-scale simulation models composed 

of “low-level” units such as consumers or operators. A key principle of ABM 
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is that from simple interactions and learning among individual entities can 

emerge large-scale outcomes (Wilensky & Rand, 2015). ABM appears to be 

perfectly tailored to investigate the complex dynamics in coupled human-

natural systems such as a transportation system (Müller et al., 2014). As ABM 

is usually used for scenario exploration (Kelly et al., 2013), it is very useful 

for assisting stakeholders in weighing different options.  

This study combines utility theory and psychology theory in an ABM 

model to simulate consumer choice behaviors to more accurately reflect real-

world choices. In order to supplement the limitations of the logit model, 

namely the lack of consideration of connections between consumers, social 

networks among consumers are formalized as a Watts-Strogatz model (Watts 

& Strogatz, 1998), which describes the small-world and clustering 

characteristics of networks. The small-world effect refers to a circle of agents 

where each agent has close contact with one another, like neighbors, and the 

clustering characteristic refers to the existence of clusters in social networks, 

represented as some random non-neighbor agents. Here we use “friends” to 

represent social networks, implemented in line with the Watts-Strogatz model. 

The psychological research has found that an individual’s utility from a 

product depends not only on the product itself, but also on how popular the 

product is in individual’s large social setting (Duesenberry, 1949). Elias and 

Jephcott (1978) discussed this socialization effect in exploring the evolution 

of preferences on the civilization process. Hayakawa and Venieris (1977) 

empirically validated this argument with findings showing that people with 

equal or higher status have an effect on others’ consumption behavior. The 
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impact of fashion trends on the clothing market strongly demonstrate the 

“role-models” effects.  

The remainder of this study focuses on how LCA and ABM can be 

combined to investigate the environmental impacts caused by the 

introduction of HSR. Specifically, we focus on the case of the Hong Kong-

mainland China cross-boundary transportation market. 

 

2.3 Materials and methods 

Figure 2-1 shows the research framework of ALENT. ALENT 

comprises two kinds of entities: modes and passengers. Modes refer to the 

main intercity transport modes, including HSR, train, bus, and airplane. As 

the life cycle impacts of transportation modes can be as large as 20 times that 

of the vehicle operational stage (North et al., 2010), the infrastructure and 

fuel stages should also be considered in the life cycle assessment of a 

passenger transportation system (Chester & Horvath, 2009b). Life-cycle 

environmental assessment of these intercity modes is conducted taking into 

account resources used, fuel production, vehicle manufacturing, 

infrastructure construction, and operation. The disposal stage of each 

transport mode is not considered in this study due to the lack of data as well 

as their limited life cycle environmental impacts according to other HSR LCA 

studies. Passengers embedded in this transportation “world” have some 

“friends” who can influence their mode choices. Passengers’ mode choice 

behaviors can change the mode shares of the transport modes, and the 

operational and life-cycle environmental performances of this transportation 

“world” also will be influenced accordingly. Several scenarios at the 
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operation stage are simulated to minimize the environmental impacts based 

on predicted mode shares. 

 

Figure 2-1. Research framework of ALENT 

 

2.3.1 Hybrid logit and ABM model 

As indicated previously, the motivation of this study is to highlight how 

LCA and ABM can be combined to investigate the environmental impacts of 

a transportation system. To demonstrate this, first, we create a hybrid logit 

and ABM model that simulates individuals making mode choices in the 
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transportation system. Figure 2-2 shows the hybrid model design. The 

notation used to formulate the model is shown in the following:  

 

Sets:  

Uij The actual utility of the product j selected by agent i last time 

Unij The actual uncertainty of the product j selected by agent i last time 

EUij The expected utility of agent i choosing product j 

EUnij The expected uncertainty of agent i choosing product j 

Umin The minimum satisfaction of agent i in product selection 

Unmax The maximum uncertainty of agent i in product selection 

β𝑖 The social need weighting of agent i 

𝑥𝑖 The fraction of the “friends” of agent i who choose or evaluate 

product j  

 

In the following equations (Eqs. (1) to (10)), we denote i for 

agent/passenger, and 𝑖 ∋  𝑁∗, and we define j for product/transport mode, and 

𝑗 ∋  𝑁∗ . Compared to other discrete choice models, the utility of using a 

product in ALENT is that it not only considers the individual parts C1 related 

to alternative modes’ characteristics, but it also includes a social effect part 

C2. The following equations (Eqs.(1) to (9)) related to passengers’ mode 

choice behaviors are adjusted appropriately based on the consumer behavior 

equations in Janssen and Jager (2003). We constructed the C1 individual 

satisfaction in Eq. (3) based on the key dimensions of ticket fare, travel cost, 

service quality, and accessibility of the transport mode, and these dimensions 

are given different weightings based on passengers’ preferences. 

The total utility of passenger i choosing product j is equal to 𝑈𝑖𝑗 and the 

uncertainty of passenger i choosing product j is equal to 𝑈𝑛𝑖𝑗. The more that 
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“friends” in the consumer’s social network choose other modes, the more 

uncertain that consumer is. 𝑈𝑖𝑗 and 𝑈𝑛𝑖𝑗 are expressed in Eqs. (1) and (2): 

 

 𝑈𝑖𝑗 = (1 − 𝛽𝑖) × 𝐶1 + 𝛽𝑖 × 𝐶2 𝑓𝑜𝑟 𝑖 ∋  𝑁∗ and 𝑗 ∋  𝑁∗ (1) 

 𝑈𝑛𝑖𝑗 = 𝛽𝑖 × (1 − 𝐶2) (2) 

 

 

Figure 2-2. Model design 
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The following parameters C1 and C2 are utilized to quantify the choice 

probability of a passenger choosing a specific mode. C1 represents individual 

satisfaction, and C2 denotes social satisfaction. C1 and C2 are independent of 

each other in the mode utility equation. C1 denotes the individual satisfaction 

of consumer i, expressing the difference between the personal preferences of 

a consumer for a specific product and the product’s characteristics. Thus, C1 

is defined in Eqs. (3) and (4) as: 

 

 𝐶1 = 1 − |𝑃𝑖 − 𝑑𝑖| (3) 

= 1

− √𝑤𝑡 × (𝑝𝑡 − 𝑑𝑖,𝑡)
2

+ 𝑤𝑓 × (𝑝𝑓 − 𝑑𝑖,𝑓)
2

+ 𝑤𝑐 × (𝑝𝑐 − 𝑑𝑖,𝑐)
2

+ 𝑤𝑎 × (𝑝𝑎 − 𝑑𝑖,𝑎)
2
 

 𝑤𝑡 + 𝑤𝑓 + 𝑤𝑠 + 𝑤𝑎 = 1 (4) 

 

In Eqs.(3) and (4), wt, wf, ws, and wa are the weights of travel time, ticket 

fare, service quality, and accessibility level, respectively; pt, pf, ps and pa are 

the dimensions of travel time, ticket fare, service quality, and accessibility 

level of the transport mode chosen by the passenger i; di,t, di,f, di,s and di,a are 

the preferred characteristics for travel time, ticket fare, service quality, and 

accessibility level, respectively, of passenger i. pi is normalized by the mode’s 

travel time, ticket fare, service quality, and accessibility level from real 

operation data. di obeys normal distribution and is dimensionless, normalized 

between 0 and 1. 

In this study, the key factors that influence passenger agents in 

determining a satisfying mode include: ticket fares (De Palma & Rochat, 
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2000; Levinson et al., 1997; Liu & Li, 2012; Yamaguchi & Yamasaki, 2009), 

travel time (De Palma & Rochat, 2000; Levinson et al., 1997), accessibility 

level (Chester & Horvath, 2010a), and service quality (De Palma & Rochat, 

2000; Levinson et al., 1997). Ticket fare is the non-discounted fare of one 

transport mode. Travel time includes walking time, waiting time, onboard 

time and interchange time. Accessibility level represents a locational 

characteristic that permits a station or airport to be reached through the effort 

of those at other places using various shuttle services. It depends on the mode 

station’s geographical location (e.g., distance to urban center) and the 

conditions of road networks. Service quality is composed of car cleanness, 

neat appearance of employees, employee service attitude, the comfort of air 

conditioning, on-time performance, frequency rate, and the convenience of 

making reservations and ticketing.  C2 depends on how popular the chosen 

mode is in the consumer’s social network and is represented as xi in Eq. (5). 

 

 𝐶2 = 𝑥𝑖 =
𝑛1

𝑛𝑓
 (5) 

   

where 𝑛1 is the number of friends with the same choice made as consumer i, 

𝑛𝑓  is the number of friends in consumer i's social network. Consumer i’s 

social satisfaction increases when more friends consume the same product as 

consumer i. This social effect involves Veblen effects (Veblen, 2007) and 

bandwagons (Granovetter & Soong, 1986). 

We can calculate the actual utility and actual uncertainty based on the 

Eq (1) to Eq (5). The expected utility and expected uncertainty of an agent 
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(Eqs. (6) and (7)) are expressed as the same calculation equations with actual 

utility 𝑈𝑖𝑗 and actual uncertainty 𝑈𝑛𝑖𝑗, which reflects the expected value of 

agent i choosing product j. The only difference between them is that EU is an 

expected value while U is the experienced value at the last time step.  

 

 𝐸𝑈𝑖𝑗 = (1 − 𝛽𝑖) × (1 − |𝑝𝑖 − 𝑑𝑖𝑗|) + 𝛽𝑖 × 𝑥𝑖 (6) 

 𝐸𝑈𝑛𝑖𝑗 = 𝛽𝑖 × (1 − 𝑥𝑖) (7) 

     

Given the actual utility 𝑈𝑖𝑗  and actual uncertainty 𝑈𝑛𝑖𝑗 , agents may 

engage in different cognitive processes during subsequent selection processes 

when making comparisons with their own Umin-minimum satisfaction and 

Unmax-maximum uncertainty (or uncertainty tolerance level). These four 

types of cognitive processes defined by Janssen and Jager (2003) include: 

Repetition (satisfied and certain:𝑈𝑖𝑗 ≥ 𝑈𝑚𝑖𝑛, 𝑈𝑛𝑖𝑗 ≤ 𝑈𝑛𝑚𝑎𝑥), the agent 

i habitually chooses the product that has been chosen in the previous time 

step. In actuality, the majority of agents will engage in repetition behaviors 

when the market is relatively stable. Such a market resembles the daily 

shopping of most people, such as when buying coffee and milk, which are 

often purchased in a habitual manner. 

Deliberation (unsatisfied and certain:𝑈𝑖𝑗 < 𝑈𝑚𝑖𝑛, 𝑈𝑛𝑖𝑗 ≤ 𝑈𝑛𝑚𝑎𝑥), the 

agent i evaluates the expected utility EUij of each product and uses a logit 

function to solve the discrete problem. Agents are assumed to have perfect 

information of each product’s characteristics. So the probability Pij of agent i 

choosing product j is expressed as Eq. (8): 
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𝑃𝑖𝑗 =

𝑒𝐸𝑈𝑖𝑗

∑ 𝑒𝐸𝑈𝑖𝑗
𝑗∈𝐼

 
(8) 

     

Finally, the product with the highest Pdij is chosen by agent i. This 

appears to capture the durable goods market (such as computer and 

television), and financial services (such as insurance and loans). People in 

this market want to make full use of their money, and they are less likely 

influenced by their friends’ choices.  

Imitation (satisfied and uncertain: 𝑈𝑖𝑗 ≥ 𝑈𝑚𝑖𝑛, 𝑈𝑛𝑖𝑗 > 𝑈𝑛𝑚𝑎𝑥 ), the 

agent i evaluates the respective product share of product i among its social 

networks, or in other words, the agent i calculates the xi of each product and 

selects the product that has the highest Pij. A logit function to describe this 

discrete choice is as follows: 

 

 
𝑃𝑖𝑗 =

𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑗∈𝐼
 

(9) 

 

Because certain agents imitate their friends’ choice, a lot of agents will 

choose the same product. Their actual utility Ui will consequently be higher 

and actual uncertainty Uni lower. Thus most of the agents will engage in 

repetition behaviors in the later stages, and a lock-in market ultimately 

emerges. These lock-in markets often occur in the local domains of certain 

products, where the selection is more likely influenced by their social 

networks. 
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Social comparison (unsatisfied and uncertain: 𝑈𝑖𝑗 < 𝑈𝑚𝑖𝑛, 𝑈𝑛𝑖𝑗 >

𝑈𝑛𝑚𝑎𝑥 ), social comparison behavior is the most complicated consumer 

behavior encompassed in this study. In essence, the deliberative behavior 

occurs in agent i’s social network rather than in the overall market. The agent 

i first chooses the product j which has the highest xij in its social network, and 

the product’s expected utility EUij should not be lower than the actual utility 

Uij at the last time step. If it is lower, then the agent i will choose the product 

that has the highest EUij in its social network. This type of market typically 

resembles fashion markets, in which products such as Christmas decorations 

and hair styles more rapidly change over time compared to other consumer 

products. For example, young people often care more about their dress style 

and think it is important in their daily life, but they are often uncertain about 

their choices. Thus, they engage in social comparison behaviors in their friend 

circle to seek guidance.  

After one-cycle mode choice, the passenger’s actual utility and actual 

uncertainty will be updated. The updates reflect changes that occur in 

passenger preferences and the social environment during the cycle, which 

will affect the selection in succeeding time steps if the passenger chooses to 

continue to travel in this transportation system. 

  

2.3.2 Environmental impact simulation 

The second stage of implementing ALENT is the calculation of the 

environmental performances of HSR and its competing modes at the 

operational stage and life-cycle stage. In order to reflect the modes’ 

environmental performances with dynamic mode shares, the function unit of 
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environmental data imported into ALENT is set as per vehicle-kilometer 

traveled (VKT). The operational and life-cycle energy consumption, GHG 

emissions, and criteria air pollutant emissions of the passenger transportation 

modes—HSR, train, midsize aircraft, and urban bus—are derived from 

several studies (Chester & Horvath, 2008, 2010a, 2010b; Chester & Horvath, 

2009b; Chester et al., 2010; Grossrieder, 2011; Yue et al., 2015) with the 

function unit of VKT. The environmental impacts from the above studies 

show that energy consumption, GHG emission, and criteria air pollutant 

emissions are within the reported literature ranges.  

Table 2-1 and Table 2-2 show the operational and life-cycle 

environmental impacts of the transport modes for reference. The detailed 

parameters for these referenced modes are explained in the supplementary 

material. These environmental impacts with function unit—per vehicle-

kilometer are converted as per passenger-kilometer based on occupancy rates 

from the simulation results of ALENT.  

 

Table 2-1. Operational environmental impacts of referenced modes 

Modes Energy 

(MJ/VKT) 

GHG 

(gCO2e/VKT) 

SO2 

(g/VKT) 

CO 

(g/VKT) 

NOX 

(g/VKT) 

PM10 

(g/VKT) 

VOC 

(g/VKT) 

HSR 428 31,750 188 22 18 2.5 5 

Train 170 9,300 52 5.2 3 0.57 1.4 

Aircraft 263 17,800 5.8 23 59 0.37 2.2 

Urban bus 32 2,400 0.022 4.5 18 0.71 1.4 
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Table 2-2. Life-cycle environmental impacts of referenced modes 

Modes Energy 

(MJ/VKT) 

GHG 

(gCO2e/VKT) 

SO2 

(g/VKT) 

CO 

(g/VKT) 

NOX 

(g/VKT) 

PM10 

(g/VKT) 

VOC 

(g/VKT) 

HSR 660 43,100 225 175 90 7.6 45 

Train 310 18,000 85 63 35 7.4 25 

Aircraft 312 22,000 17 60 70 2.2 7.0 

Urban bus 43 3,300 1.9 11 22 1.4 3.8 

 

2.4 Case study of the Hong Kong-Pearl River Delta area  

2.4.1 The cross-boundary transportation  

China has built the world's largest High-Speed Rail (HSR) network (Yue 

et al. 2015). The 26-km long Hong Kong section of HSR running between 

West Kowloon and Shenzhen Boundary will connect with the 16,000-km 

National high-speed railway network in 2018. Upon the opening of the 

Express Rail Link, the journey times between Hong Kong and the Mainland 

by train will be greatly shortened. The concept of a one-hour living circle 

within the Pearl River Delta area may materialize, and cultural and academic 

exchange will also be promoted (MTR Corporation Limited, 2009). However, 

with the introduction of HSR, the mode shares of existing modes between 

Hong Kong and mainland China, including boundary train, aircraft, through 

train, and boundary bus, will be influenced. As the mode share of private 

automobiles occupies less than 5% in the Hong Kong-mainland China cross-

boundary transportation market (Planning Department, 2015), it will not be 

considered in this study. Detailed descriptions of these studied modes are 

explained in the supplementary material. Here a cross-boundary passenger 

trip is defined as a one-way direct movement of a person as a passenger 

between Hong Kong and the Mainland in either direction. In order to 
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simplified model simulation, the interchange of transport modes is not 

considered in this study. The parameters of this case (such as weightings of 

key drivers) are drawn from a cross-boundary mode choice behavior survey. 

The survey was conducted as a computer-assisted personal interview and 

included a mode choice experiment and a key driver rating experiment. 498 

potential passengers were investigated, whose basic information and key 

driver weightings are listed in supplementary material. 

Evaluating cities within the life-cycle framework can illustrate the 

interdependent environmental impacts of a particular travel choice and the 

consequences and benefits of the travel behavior (Chester et al., 2010). In this 

study, the environmental performances of the Guangzhou-Shenzhen-Hong 

Kong HSR, boundary train, through train, aircraft, and boundary bus are 

evaluated based on passengers’ different mode choices.  

Figure 2-3 shows a screenshot of ALENT. ALENT was built with 

Netlogo, an ABM software platform (Wilensky, 1999). Using functions 

provided through the NetLogo-Geographic Information Systems (GIS) 

extension, the spatial map of Pearl River Delta, Hong Kong, and their main 

stations, airports, and roadways, especially for the main roadways, including 

the airline, HSR link, train rail link, highway, and other general roads in the 

form of Environmental Systems Research Institute (ESRI) shapefiles were 

loaded and represented on the ALENT interface. The spatial analysis 

capability of GIS has helped to explore and measure the physical factors such 

as the accessibility of retail center and the walkability of the city (Southworth, 

2005; Yin, 2013; Zhu, 2016). The accessibility level of the specific transport 

mode is also measured with this spatial map, which depends on Euclidian 
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distances (Li & Liu, 2007) between the mode’s station and urban centers. The 

modes’ travel times and ticket fares are represented as min per 100 Km and 

HKD per 100 Km, respectively. Users can adjust the modes’ key driver values 

according to corresponding operation strategies. Energy consumption, GHG 

emissions and SO2 emission per passenger kilometer traveled (PKT) are used 

to represent environmental performances of HSR and its competing modes. 

The mode shares and environmental performances of the transportation 

system are simulated and different operation scenarios are tested for after the 

opening of HSR (the year 2018). 

 

Figure 2-3. The screenshot of ALENT 
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In ALENT, the modes’ key drivers are normalized with real operation 

data and are represented in Table 2-3. All key drivers are dimensionless, 

which are normalized between 0 and 1. HSR refers to Guangzhou-Shenzhen-

Hong Kong HSR. Boundary train refers to passenger train service that starts 

at Hung Hom Station in Kowloon and terminates at Lo Wu or Lok Ma Chau 

stations, both of which are all boundary crossing points into Shenzhen. 

Aircraft refers to the passenger plane service between Hong Kong 

International Airport and the Mainland. Through train refers to passenger 

train service between Hong Kong and the Mainland, which terminates at 

Hung Hom station in Hong Kong. Boundary bus includes all types of bus and 

coach services between the Mainland and Hong Kong. Travel time and ticket 

fare are negative indicators, whose normalized values are negatively 

correlated with the real values. And accessibility level and service quality are 

positive indicators, whose normalized values are positively correlated with 

the real values. For example, the shorter the travel time, the larger the travel 

time dimension of the mode. The cheaper the ticket fare, the larger the ticket 

fare dimension of the mode. As the heterogeneous feature of ALENT, 

passengers’ preferences for key drivers are different from each other and obey 

normal distribution. Passengers’ different preferences can reflect their social 

demographic characteristics, for example, lower-income people prefer 

cheaper ticket fare, which means their preferences for ticket fare are lower 

than the average level. 
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Table 2-3. Modes’ key driver dimensions 

Transport 

modes 

Travel 

time 

Ticket 

fare 

Service 

quality 

Accessibility 

level 

HSR* 0.78 0.92 0.85 0.70 

Boundary train 0.18 0.93 0.75 0.80 

Aircraft 0.72 0.26 0.85 0.65 

Through train 0.59 0.93 0.80 0.75 

Boundary bus 0.41 0.97 0.70 0.80 

 

 

2.4.2 Calibration and validation 

ABM has been widely applied in various fields. However, validation 

issues in ABM have been paid little attention (Fagiolo et al., 2007). Compared 

to traditional methods, ABM always involves a much higher degree of 

freedom to represent the complexity of real-world systems (Xu et al., 2009). 

When there are inherent complexity and diversity, ABM validation needs to 

be designed according to the characteristics of the specific model. In 

particular, historical transportation data is statistically analyzed in this study 

to measure the goodness of fit regarding both quantitative values and patterns. 

The calibration experiment was conducted by varying the combinations 

of two kinds of unknown parameters, i.e., the standard deviation of 

passengers’ preferences for key driver dimensionσ, and average passengers’ 

preferences for key driver dimensionsμ, to find the best fitting degree with 

historical mode share data from the Cross-boundary Travel Survey 2003-

2014 (Planning Department, 2015).  

Table 2-4 shows the best parameter combinations which generate 

Monte-Carlo simulation outputs (100 runs) fitting the historical data best in 
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terms of minimizing squared residuals. 100-runs are simply assumed to be 

enough for an accurate representation of the simulation results in our study. 

We ran the model with several runs, which is from 10-runs to 100-runs with 

10-runs step. We first ran two sets (10-runs and 20-runs) and checked whether 

the output of the 20-runs was within 1% of the output of the 10-runs (it 

wasn’t). We then ran a third set (30 runs) and compared the outputs of the 20-

runs and 30-runs. We continued to run sets until the output in the new sets are 

were within 1% of the previous set. The output converged within 100-runs of 

the model. The explanation also can be applied to other Monte-Carlo 

simulations in the dissertation. 

The calibration results with the best parameter combinations are shown 

in Table 2-5. The calibration experiment finds that passengers’ average 

preferences for travel time and ticket fare improve linearly over the years (see 

Table 2-4), with an 0.027 and 0.003 annual increase for travel time and ticket 

fare, respectively. This means that passengers in the cross-boundary transport 

market have been pursuing transport modes with faster speed and lower price 

from 2003 to 2014. These preference trends for travel time and ticket fare are 

used to predict the future mode share with the introduction of HSR in 2018. 

Thus, the baseline settings of passengers’ average preferences of travel time, 

ticket fare, service quality, and accessibility level dimensionμin 2018 are set 

as 0.538, 0.970, 0.750, and 0.800, respectively. The standard deviation of 

passengers' preference distribution in 2018 is set as 0.300. 
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Table 2-4. Best fitting-degree parameter combinations from 2003 to 2014 

Years 2003 2006 2007 2009 2011 2014 

Dtimeμ 0.160 0.241 0.268 0.322 0.376 0.430 

Dticketμ 0.940 0.949 0.952 0.958 0.964 0.970 

Dserviceμ  0.750 0.750 0.750 0.750 0.750 0.750 

Daccessμ 0.800 0.800 0.800 0.800 0.800 0.800 

SDσ 0.300 0.300 0.300 0.300 0.300 0.300 

Note: Dtime, Dticket, Dservice and Daccess represent the travel time, ticket fare, 

service quality and accessibility level dimensions of passengers’ average 

preferences. SD represents the standard deviation of passengers' preference 

distribution.  

 

 

Table 2-5. Historical mode share and simulated mode share from 2003 to 

2014 

Mode share 2003 2006 2007 2009 2011 2013/14 

Historical mode shares 

Boundary train 0.692 0.603 0.598 0.585 0.584 0.547 

Aircraft 0.031 0.039 0.044 0.042 0.046 0.043 

Through train 0.022 0.022 0.020 0.019 0.023 0.022 

Boundary bus 0.255 0.336 0.338 0.354 0.347 0.388 

Simulated mode shares 

Boundary train 0.678 0.639 0.618 0.587 0.561 0.529 

Aircraft 0.038 0.037 0.044 0.045 0.047 0.044 

Through train 0.021 0.017 0.022 0.019 0.016 0.021 

Boundary bus 0.264 0.307 0.317 0.349 0.376 0.406 

RSS 0.00033 0.00212 0.00084 0.00004 0.00138 0.00063 

Note: RSS represents the residual sum of squares. 

 

Passenger preferences change for service quality, and accessibility level 

is not discussed in this study due to the high heterogeneity of ALENT. These 
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are tradeoffs between the decrease of the degree of freedom and the increase 

of the model’s ability in representing real-world complexity (Xu et al., 2009). 

The simulation results for mode share in 2018 are consistent with official 

forecast data based on the above parameter combination(Transport Housing 

Bureau, 2009). 

 

2.5 Analysis of results 

Based on the calibrated configuration of the ALENT model, the future 

mode shares and environmental performances after the introduction of HSR 

can be estimated, and some operation strategies will be proposed with 

consideration of both mode shares and corresponding environment 

performances. The simulation results of the passengers’ cognitive processes 

during mode choices are shown in the supplementary material. 

2.5.1 Future mode shares and occupancy rates 

If the existing modes maintain their usual current operation strategies, 

the shares of the transport modes before and after the opening of HSR are 

projected to be as shown in Figure 2-4. The mode share of Boundary train is 

reduced by 10%, and HSR gains 13% market share in the opening year. 
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Figure 2-4. The mode shares of transport modes before and after HSR 

 

Table 2-6 shows the simulation results of cross-boundary daily ridership 

by transport mode in 2014 and 2018. Here we assume the existing transport 

operators do not adjust their operation strategies in 2018, in other words, they 

keep the daily frequencies and number of seats the same as in 2014, and their 

corresponding occupancy rates are thus estimated. Then we use the 

simulation results to propose proactive operation strategies for the 

transportation system in 2018. Each mode’s occupancy rate is calculated as 

Eq. (10): 

 

 
Occupancy rate𝑗 =

𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑟𝑒𝑗 × 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑝𝑠

𝑑𝑎𝑖𝑙𝑦 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑗 × 𝑛𝑜. 𝑜𝑓 𝑠𝑒𝑎𝑡𝑠𝑗
 

(10) 

Note: 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 here refers to the daily average number of passenger trips 

between Hong Kong and the Mainland China. According to forecasts from the Hong 

Kong Transport and Housing Bureau Report (Legislative Council Panel on 

Transport 2009), the total number will grow 3.3% per year from 2016 to 2031. 
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As Table 2-6 shows, the occupancy rates of the through train in 2018 is 

forecasted to be a bit less than in 2014, while the occupancy rate of the 

boundary train in 2018 remains the same as in 2014. The newly-introduced 

HSR’s occupancy rate is projected to expand to around 78% during the first 

year of operation. The 2018 occupancy rates for the boundary bus and aircraft 

are estimated to be higher than in 2014, especially for aircraft flying between 

Hong Kong and mainland China, with an occupancy rate predicted to increase 

to 1.24 (if their daily flights and number of seats remain unchanged). Airlines 

may need to increase daily flights to meet higher demand in the future. These 

simulation results could serve to support future plans for expanding Hong 

Kong International Airport (HKIA) into a three-runway system (HKIA, 

2015).  

 

Table 2-6. Average cross-boundary daily ridership and occupancy rates by 

transport mode  

Modes 2014 2018 

Daily 

ridership 

Occupancy 

rate 

Daily 

ridership 

Occupancy 

rate 

HSR 0 0.00 91625 0.78 

Boundary 

train 

287830 0.94 288318 0.94 

Aircraft 25965 0.82 39284 1.24 

Through train 11290 0.67 11058 0.66 

Boundary bus 215296 1.00 236617 1.11 

Total number 540381 N/A 666902 N/A 
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2.5.2 Future environmental assessment 

Nolte and Wurtenberger (2003) state that increasing a mode’s 

occupancy has the biggest potential of any measure to reduce environmental 

impacts on a passenger-kilometer basis. Achieving high occupancy rates can 

be realized through market strategies such as adjusting the ticket fare, 

reducing the travel time, increasing service quality, and increasing the 

accessibility level (adding feeder buses between the urban center and other 

stations). These market strategies are proposed based on the simulation 

results of ALENT.  

2.5.2.1 Baseline scenario-environmental performance in 2018 

The environmental performances of cross-boundary modes are 

normalized per passenger kilometer traveled (PKT) by using converted Life 

Cycle Inventory (LCI) of environmental performances per–VKT and the 

occupancy rates as described in Eqs. (11) and (12). Energy consumption, 

greenhouse gas emissions, and SO2 emissions are evaluated. Further details 

about the converted environmental performances of cross-boundary modes 

can be found in the supplementary material. 

𝐿𝐶𝐼 𝑟𝑒𝑠𝑢𝑙𝑡
𝑃𝐾𝑇⁄ =

𝐿𝐶𝐼 𝑟𝑒𝑠𝑢𝑙𝑡
𝑉𝐾𝑇⁄

 𝑜ccupancy rate × no. of seats
  

(0 < 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑟𝑎𝑡𝑒 < 1.0) 

(11) 

𝐿𝐶𝐼 𝑟𝑒𝑠𝑢𝑙𝑡
𝑃𝐾𝑇⁄ =

𝐿𝐶𝐼 𝑟𝑒𝑠𝑢𝑙𝑡
𝑉𝐾𝑇⁄

no. of seats
  (𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑟𝑎𝑡𝑒 ≥  1.0) 

(12) 

 

In Figure 2-5 the life-cycle energy consumption and GHG emissions of 

HSR are in second place, less than for aircraft. But the life-cycle SO2 
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emission of HSR is much larger than other competing cross-boundary modes. 

Compared to other modes, the boundary train and boundary bus show better 

environmental performance. In  

Table 2-7, except the through train, the environmental performances of 

other existing modes in 2018 are better than in 2014 as future daily ridership 

increases. But the average life-cycle energy consumptions, GHG emissions, 

and SO2 emissions of the cross-boundary transportation system are increased 

by 17%, 16%, and 42%, respectively after the introduction of HSR. It should 

be acknowledged that the life-cycle environmental impacts of China’s HSR 

may not have the same distinguished environmental performances as the HSR 

systems in the developed countries such as Norway (Grossrieder 2011), 

Sweden (Åkerman, 2011), and Japan (Miyauchi et al., 1999). If HSR’s mode 

share grows continually from 2018, it may have the potential to lower its 

environmental performances as the occupancy rate increases. Thus, some 

operation scenarios related to HSR are simulated as follows. 
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Figure 2-5. Operational and life-cycle environmental impacts of cross-

boundary transport modes in 2018 

 

 

Table 2-7. The environmental performances of cross-boundary 

transportation system 

Modes Energy  

(MJ/PKT) 

GHG emissions 

(gCO2e/PKT) 

SO2 emissions  

(g/PKT) 

2014 2018 2014 2018 2014 2018 

HSR 0.00 1.56 0.00 100.79 0.00 0.53 

Boundary train 0.65 0.65 37.78 37.70 0.18 0.18 

Aircraft 2.78 2.27 196.11 159.75 0.15 0.12 

Through train 1.24 1.24 71.90 72.11 0.34 0.34 

Boundary bus 0.73 0.73 55.79 55.79 0.03 0.03 

Weighted 

average 

0.78 0.91 52.18 60.43 0.12 0.17 

Changes — +17% — +16% — +42% 

Note: 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑟𝑒𝑖 × 𝐿𝐶𝐼 𝑟𝑒𝑠𝑢𝑙𝑡/𝑃𝐾𝑇𝑖 
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2.5.2.2 HSR ticket fare scenario in 2018 

As previously discussed, HSR can reduce its energy consumption, GHG 

emissions, and SO2 emissions by maintaining a high occupancy rate. As HSR 

has the shortest travel time among the cross-boundary modes, better 

environmental performance can be realized by adjusting HSR’s ticket fare. 

Figure 2-6 represents the whole life-cycle environmental performances 

changing with the HSR ticket fare (the original ticket fare is 

125HKD/100Km). All the other parameters were set to remain the same as 

the 2018 parameter settings. HSR’s occupancy rate is highest—0.833—when 

its ticket fare is set as 60HKD/100Km, but the whole life-cycle environmental 

performance is worse than the baseline scenario because of the lower 

occupancy rate of aircraft. The best combination of occupancy rate and 

environmental performance emerges in the scenario of an HSR ticket fare of 

85HKD/100Km, with a resulting occupancy rate of 0.808. This scenario leads 

to 1.60%, 1.50%, and 2.60% reduction of the average life-cycle energy 

consumptions, average life-cycle GHG emissions, and average life-cycle SO2 

emissions respectively compared with the baseline scenario (when ticket fare 

is 125HKD/100Km). Thus, it appears that adjusting the HSR ticket fare may 

not have a pronounced effect on the system’s environmental performances. 
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Figure 2-6. Changes of the average life-cycle environmental impacts of 

cross-boundary transport system 

 

2.5.2.3 2018 scenario without the through train  

As the through train shares the same line as the HSR shuttle service—

both traveling between Hong Kong, Shenzhen, and Guangzhou—and has a 

ticket fare not cheaper than HSR while having a much longer travel time, it 

is assumed that the through train would be shut down in this scenario. Table 

2-8 shows the environmental performance of the baseline scenario and the 

without through train scenario in 2018. The individual environmental 

performances of HSR, boundary train, aircraft, and boundary bus are all better 

in the without through train scenario than in the baseline scenario. More 

specifically, the average life-cycle energy consumption, GHG emissions, and 
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SO2 emissions are reduced by 25%, 25%, and 53%, respectively in the 

without through train scenario. 

 

Table 2-8. Life cycle environmental performances of without through train 

scenario compared to the baseline scenario in 2018 

Items Energy consumption 

(MJ/PKT) 

GHG emissions 

(gCO2e/PKT) 

SO2 emissions (g/PKT) 

WTTS BS WTTS BS WTTS BS 

HSR 1.45 1.56 94.52 100.79 0.49 0.53 

Boundary 

train 

0.63 0.65 37.06 37.70 0.18 0.18 

Aircraft 2.25 2.27 158.23 159.75 0.12 0.12 

Through train 0.00 1.24 0.00 72.11 0.00 0.34 

Boundary bus 0.72 0.73 55.00 55.79 0.03 0.03 

Weighted 

average 

0.72 0.90 48.52 60.43 0.11 0.17 

Changes -25% — -25% — -53% — 

 Note: WTTS means without through train scenario, BS means baseline scenario. 

 

2.6 Summary 

ALENT is a hybrid model integrating agent-based modeling and life-

cycle environmental assessment, capable of simulating relevant 

environmental performances of transport modes under different market 

scenarios. ALENT can serve as an ABM-enhanced LCA with two distinct 

advantages. First, ALENT evaluates modes’ environmental performance by 

capturing market competition and passenger interactions according to 

specific scenarios. Second, ALENT implements a simulation strategy that 

integrates the dynamic interplay of the passengers, modes, and environment 

as a complete system, enabling it to more accurately reflect the outcomes of 
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such interconnectivity in the real world compared to strategies that only target 

individual components. 

Based on the ALENT simulations generated by this study, several 

recommendations are proposed to improve the life-cycle environmental 

performances of the cross-boundary system,. First, Guangzhou-Shenzhen-

Hong Kong HSR needs to sustain a high occupancy rate—more than 80%—

to lower its environmental impacts. Second, shutting down the through train, 

which provides the same service as HSR but with longer travel times, can 

mitigate system life-cycle environmental impacts by up to 30%. Third, the 

boundary train may need to cut its daily frequency as its mode share decreases 

after 2018. In contrast, airlines will need to increase their daily flight 

frequencies or capacity by 2018. ALENT is used to examine the Hong Kong-

mainland cross-boundary transportation case here, but ALENT can be applied 

to other cities for environmental performance evaluation of transportation 

system development. Decision makers can use this modeling tool to 

determine appropriate actions within their particular jurisdictions.  

Given data availability constraints, the LCI of cross-boundary modes is 

estimated by adjusting the LCI of referencing modes from the literature. In 

future research a hybrid life-cycle analysis method integrating process-based 

LCA and Economic input-output based LCA can be applied to more 

thoroughly evaluate the life-cycle environmental performances of these 

cross-boundary modes. Liu et al. (2016) found the feeder bus connections are 

significant for commute by rail. Thus future simulation scenarios could 

include other dimensions such as fuel production (different electricity mix), 

accessibility change (with or without feeder bus), market influences 
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(passengers’ sensitivity to ticket fare may be lower during holidays), and 

mode complementarities (HSR replacing short-haul airline as a transfer mode 

for an international airline). 
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Chapter 3 Multi-Agent Spatial Simulation of Autonomous Taxis for 

Urban Commute 

 

3.1 Introduction 

Since 1969, commuters in the U.S. have primarily traveled to work in 

personally-owned vehicles, representing 90% of all commuters during the 

past two decades (Santos et al., 2011). Consequently, heavy traffic congestion 

can easily occur during commute peak hours, which can generate hefty travel 

costs and considerable environmental impacts. For example, Los Angeles 

currently experiences the most severe traffic congestion in the U.S., with a 

typical half-hour commute taking 60% longer during the morning and 81% 

longer during the evening (Jonathan, 2016). Light-duty vehicles, including 

passenger cars and light-duty trucks, are responsible for 61% of 

transportation greenhouse gas (GHG) emissions in the U.S. (EPA, 2016). 

Every year over 2,200 premature deaths and at least $18 billion in health care 

costs in 83 of the U.S.’s largest urban areas can be partly attributed to air 

pollution from traffic (Larry, 2011). Meanwhile, personal cars remain unused 

for approximately 95% of the day (OECD, 2015). The 2009 National 

Household Travel Survey (NHTS) data show that the average vehicle 

ownership per licensed driver is 0.99 (Santos et al., 2011). There are far more 

cars in the U.S. than Americans need to reach their desired destinations 

according to current travel patterns in most locations (Fagnant & Kockelman, 

2014b). 

Fully autonomous vehicles are expected to become a commercial reality 

in the next decade. Given the higher capital cost of early adoption, they are 
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likely to be introduced first in public fleets and by transportation corporations, 

such as Lyft, Uber, and Car2Go (Heard et al., 2018). Ride-sharing and car-

sharing companies are teaming up with automakers to introduce fleets of 

driverless taxis, which they see as becoming ubiquitous in urban areas. 

Autonomous taxis (aTaxis) may provide a solution to the problems presented 

above. The trajectory of technological progress suggests aTaxis will 

eventually be able to travel anywhere a conventional vehicle can go. The use 

of aTaxis in car-sharing services may compete with conventional taxis or 

even shared taxi services because this new mode can bypass the costs 

associated with drivers (Liang et al., 2016; Zachariah et al., 2014). 

Specifically, aTaxi systems have the potential to reduce the average wait time 

and enhance ride-matching experiences for passengers compared with a 

conventional car-sharing program (such as Zipcar and Car2go) with fixed 

rental and return stations, and aTaxi also can reduce the operating costs and 

provide more affordable service for low-income populations compared with 

app-based car-sharing programs (such as Uber) (Shen & Lopes, 2015; Zhang 

et al., 2015a). Compared with personal vehicles, aTaxis can transform 

transportation from an owned asset into a subscription or pay-on-demand 

service, with vehicle ownership needs to be reduced accordingly (Fagnant & 

Kockelman, 2014b). Used in this way, aTaxis can enable consumers to make 

more spontaneous trips, be more productive and/or have more time to relax 

during travel, in addition to providing more predictable and shorter travel 

times while improving rider safety (Burns et al., 2013). 

This study analyzes the potential of using aTaxis as a transport mode for 

commuting travel rather than as a full substitution of existing transportation 
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networks. The objective of this study is to optimize the aTaxi fleet size to 

meet the commuting demand, keeping the wait times below an acceptable 

threshold while minimizing the system vehicle miles traveled (VMT). Then 

the corresponding environmental performance and total travel cost of this 

system are evaluated using an Agent-Based Modeling (ABM) method. The 

commute model simulates heterogeneous travel patterns to anticipate aTaxi 

system implications for various travelers, who previously commuted in 

personal vehicles. The research contributes to the understanding of the impact 

of autonomous vehicles in three areas. First, the simulation is based on a real 

road network; Second, the hidden travel costs related to the value of 

commuters’ time are considered; And third, the environmental impacts of the 

internal combustion engine (ICE) aTaxis and electric aTaxis are both 

evaluated.  

The study is organized as follows: first, the ABM literature on 

autonomous vehicles is reviewed to inform the development of our method 

for modeling the commute with aTaxis in an urban road network. The method 

is shown and explained in detail in the subsequent section. Then the 

application to Ann Arbor, MI in the U.S. is presented, followed by the main 

results of several scenarios. The conclusions drawn from the simulation 

results, and finally, potential directions for future research are offered. 

 

3.2 Literature review 

Several modeling efforts have addressed the potential impacts of 

autonomous vehicles on traffic networks. Fagnant and Kockelman (2014b) 

designed an agent-based model for autonomous vehicle-sharing throughout a 
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grid-based urban area and concluded that one shared autonomous vehicle 

(SAV) could replace approximately eleven privately-owned vehicles, 

traveling 10% more distance than used for comparable non-shared trips, but 

also resulting in an improved environmental impact. Boesch and Ciari (2015) 

suggested agent-based transport models are suitable for modeling future 

transport scenarios that incorporate autonomous vehicles. They discussed 

some possible research questions on autonomous vehicles, such as potential 

future car fleet size, prospective demand patterns, and possible interactions 

between public transport and autonomous vehicles. Burns et al. (2013) 

applied a relatively simple analytical model to the case of Ann Arbor, 

Michigan and concluded that autonomous vehicle-sharing could enhance 

mobility at considerably lower cost than privately-owned vehicles. Zellner et 

al. (2016) used an agent-based approach to examine how interventions such 

as using autonomous shuttles and making streetscape enhancements for 

pedestrians and cyclists may mitigate the first/last mile problem of public 

transit, with consideration to other factors such as parking fees and fuel costs. 

Four Chicago neighborhoods with different densities and income levels were 

simulated, and the automated shuttle buses were assumed to have no capacity 

constraints. They concluded that a dedicated automated shuttle service could 

support significant mode shifts by increasing the utilization of public transit. 

Liang et al. (2016) simulated the use of electric automated taxis for the 

first/last mile of train trips with the objective of maximizing daily profits 

through optimizing service zone locations and which reservations were 

accepted. However, the model only considered trips are occurring in the 

service zone, thus ignoring inter-zonal trips. Additionally, it assumed all the 
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origins and destinations of passengers’ requests are coming or going to the 

center of the service zone. And the automated taxis were also treated as 

“flows” rather than as independent vehicles, which means that the battery 

recharging needs of specific vehicles were not represented. 

Zhang et al. (2015a) used agent-based modeling to study the effect of 

shared autonomous vehicles (SAV) on urban parking demand by varying the 

fleet size and passenger wait time in a hypothetical city laid out in a grid 

network. Their simulation results indicated that with a low market penetration 

rate of 2%, SAV users reduced their parking demand by 90%. Fagnant and 

Kockelman (2015a) used an agent- and network-based simulation to deliver 

a benefit-cost analysis for fleet size optimization with dynamic ride-sharing 

based on a system of SAVs in Austin, Texas. The authors concluded that 

dynamic ride-sharing could reduce overall vehicle miles traveled, thus 

avoiding new congestion problems. Chen et al. (2016) simulated the 

operation of shared autonomous electric vehicles (SAEVs) under various 

vehicle range and charging infrastructure scenarios in a gridded city modeled 

roughly on Austin, Texas, and predicted that with each SEAV replacing 5-9 

privately-owned vehicles, the unoccupied VMT could be reduced by 3-4%, 

with average wait times between 2 and 4 minutes. Martínez et al. (2016) 

developed an agent-based model to simulate a station-based one-way car 

sharing system by dividing the city of Lisbon into a homogeneous grid of 

200m by 200m cells, where trips are generated between two grid-cells at each 

hour. Martínez et al. (2014) proposed an agent-based simulation model to 

assess the market performance of newly shared taxi service in Lisbon. A set 

of rules for space- and time-matching between the shared taxis and 
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passengers was identified, but the interactions between passengers and 

vehicles (such as the waiting time limit of passengers) were ignored. Levin et 

al. (2017) used realistic flow models to make predictions about the benefits 

of replacing personal cars with SAVs and found that, without dynamic ride-

sharing, the additional unoccupied repositioning trips made by SAVs 

increased congestion and travel times., However, the model is based on a 

downtown grid network, and intra-zonal trips are not considered. Zhang et al. 

(2017) examined the influence of SAVs on urban parking demand based on 

a real transportation network with calibrated link level travel speeds, but the 

trips always start and end at the Traffic Analysis Zone (TAZ) centroid and 

the intra-zonal travel time is ignored. 

Most of the research done so far on this topic has been simulated on a 

highly developed grid or hypothetical city and is constrained by several 

assumptions, such as grid-based transportation network, constant travel speed 

across the network, and passengers with uniform travel behavior. 

Furthermore, the planning and operation of autonomous taxis on commuting 

travel have received less attention, and the present work seeks to fill these 

knowledge gaps. 

 

3.3 Proposed multi-agent model 

This study utilizes agent-based modeling to simulate the anticipated 

autonomous vehicles’ effect on commute travel. Agent-Based Models 

(ABMs) are well suited for modeling and studying the impacts of traffic 

behavior (Lu & Hsu, 2017).  Du and Wang (2012) suggested an ABM 

approach can explore explanations, testify assumptions, and predict changes 
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or emergence of individual behaviors upon urban change. ABMs enable 

representation of highly heterogeneous and behaviorally complex 

populations of agents and modeling both spatially and temporally large-scale 

interactions between the agents for the study of dynamic but coherent system 

behaviors (Eppstein et al., 2011). One of the benefits of the agent-based 

computational process approach is that no complicated mathematical 

algorithms are required. The agents are driven by rational behaviors, and 

irrelevant aspects are ignored. These features of ABMs may explain their 

increasing popularity in studies of transportation logistics and traffic flow. 

Miller and Heard (2016) suggest that agent-based models can help define 

reasonable scenarios of technology deployment and evaluate designs that can 

lower transportation-related emissions.  

The aTaxi model is implemented with GAMA, a software platform for 

constructing spatially explicit agent-based simulations (GAMA, 2016). 

Integrating a geographic information system (GIS) and traffic simulation 

leads to a more realistic representation of real-world transportation activities 

(Cai et al., 2012). Figure 3-1 shows how the research is conducted according 

to the following steps:  

 

Step 1: Collecting commute and spatial data of the study city, including road 

network, the geographic distribution of office, commercial, and residential 

buildings, commuting speed, and a number of commuting trips by trip start 

time. 

Step 2: Using agent-based modeling to understand how a system of aTaxis 

will perform in meeting the daily commute demand. 
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Step 3: Optimizing the fleet size to ensure the wait times are below an 

acceptable threshold during peak hours while simultaneously minimizing 

total VMT. 

Step 4: Once the fleet size is known, evaluating the available travel cost and 

environmental impacts of this commute system. 

Step 5: Finally, comparing the travel cost and environmental performance of 

the aTaxi scenario with the personal car scenario. 

ABM model

Commuter agent aTaxi agent

 Data collections:

 Commute data

 Spatial data

Waiting time limit

Willingness to 

sharing

Value of time

Fleet size

Ridesharing rules

Vehicle miles 

traveled

Optimized fleet size

Autonomous taxis vs personal cars

System performances 1-travel cost:

· Explicit cost

· Hidden cost

System performance 2-environmental impacts:

· Carbon emissions and energy consumption

· SO2 emissions

 

Figure 3-1. Research workflow of aTaxi model 
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3.3.1 Simulation environment and agents 

Commuting demand is concentrated in two peak periods: 6:00–9:00 am 

and 4:00–6:00 pm. Given the first possible commuting, the trip begins at 

12:00 am, and the last return commuting trip begins at 11:59 pm (Santos et 

al., 2011), 0:00:00–23:59:59 was chosen as the service period of the 

aTaxi.Twenty four hours of commute behaviors were simulated using a time 

step of 5 minutes, resulting in 288-time steps in the 24-hour service period. 

In the model, office and residential buildings are represented as the origin and 

destination of those commuting trips, and the real road networks are followed 

during the commute trips.  

There are two types of agents in this model, commuter agents, and aTaxi 

agents. Commuters who place a request to an aTaxi, and the individual aTaxis 

that set their shortest route paths serving the commuters to their destinations 

behave according to the well-known Floyd–Warshall algorithm (Aini & 

Salehipour, 2012), which is one of the most efficient algorithms for finding 

the shortest path between any two nodes in a given network (Floyd, 1962; 

Warshall, 1962). 

(a) The commuters 

Every commuter has two spatial parameters: home (a residential 

building) and workplace (an office building). Population density is based on 

the spatial distribution of commuters’ home locations at the beginning of the 

simulation. People commute between the home and workplace every 

weekday, with most starting their commute to work around 6:00–9:00 am and 

beginning their journeys home around 4:00–6:00 pm. Commuters’ time 
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leaving home and workplace obey the normal distribution. The 20,000 

commuters have their choice of transportation: personal car or aTaxi. Krueger 

et al. (2016) showed that travel cost, travel time, and waiting time might be 

decisive factors that influence the adoption of SAVs and the acceptance of 

dynamic ride-sharing. In the model used here, commuters have different 

hourly incomes that obey a lognormal distribution. Commuters’ waiting time 

limits are uniformly distributed and vary from 1 minute to 5 minutes. 

Commuters can decide whether or not to share vehicles with others. 

Commuters that choose not to share will bear a higher travel cost. Zhang et 

al. (2015b) showed that the average hourly income for ride-sharing 

commuters is 13% lower than the national average. Hence, commuters’ 

willingness to share is negatively correlated to their hourly income in the 

model.  

(b) The autonomous taxis (aTaxis) 

Based on commuters’ willingness to share, there are two types of aTaxis: 

one that can be simultaneously shared by multiple passengers; one that can 

pick up and drop off a single passenger. The second condition occurs when: 

1) the passenger is not willing to share an aTaxi with others, or 2) an aTaxi 

does not show up before reaching the waiting time limit of the potential 

second passenger. Idle aTaxis are randomly distributed in the city at the 

beginning of the simulation. During the simulation, aTaxis park directly at 

the last passenger’s destination if not assigned to the next trip. It picks 

commuters up from their homes then brings them to their workplace, or it 

picks them up from their workplaces then brings them home. The maximum 

capacity of aTaxis is set as four. Only passengers on the same trip starting 
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hour have the potential to share a vehicle. The vehicles used in the model 

operate at different travel speeds by time of day. To realistically simulate 

traffic congestion during peak hours, vehicle travel speed depends on the 

number of vehicles on the road and the road capacity (see Eqs. (1) and (2)). 

The road capacity is calculated based on the maximum number of vehicles 

on the road during the peak hour.  In Eq. (2), the free-flow speed is a 

theoretical distance per time unit that a vehicle could travel without the 

presence of other vehicles (Jeerangsuwan & Kandil, 2014), which is set at 33 

miles per hour (mph) (Zhang et al., 2015a). The aTaxi can optimize its route 

to deliver all on-board commuters to their respective destinations. An 

optimized route means the shortest distance between the highest 𝛼𝑣 (speed 

coefficient) to deliver all the commuters to their destinations. The aTaxis’ 

schedule routes are first-come, first-served for commuters willing to share 

rides, as explained in detail in the next section.  

 
𝛼𝑣 = 𝑒

−𝑁𝑟𝑜𝑎𝑑
𝑅𝐶  

𝛼𝑣  ∈   [0.10, 1.00]  

(1) 

 𝑣 = 𝛼𝑣   ×  𝑣𝑓𝑓 (2) 

Where 𝑁𝑟𝑜𝑎𝑑 is the number of vehicles on the road, 𝑅𝐶 is road capacity, 𝑣 is 

vehicle speed, and  𝑣𝑓𝑓 is vehicle’s free flow speed. 

 

3.3.2 Interactions among agents 

3.3.2.1 Ride-sharing 

 Ride-sharing appears to be essential for sustainable adoption of 

autonomous vehicle use to mitigate congestion and environmental 

consequences  (Taiebat et al., 2018).  Fagnant and Kockelman (2015a) 
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showed that VMT might rise by over 8% if no ride-sharing is allowed in 

satisfying travel demand with autonomous taxis. Zhang et al. (2015b) also 

found that autonomous vehicle ride-sharing can offer superior service to a 

non-ridesharing autonomous vehicle system, through shorter trip delays, 

lower trip costs, less VMT generation, and, in the long run, better 

environmental outcomes. In this study, commuters can choose to participate 

in ride-sharing if they are willing. 

There are four operational parameters in the model: waiting time limit, 

occupancy, added distance, and in-vehicle time. Waiting time limit is the 

maximum time passenger wait between when the passenger requests the 

vehicle and when the vehicle arrives for pick-up. If the passenger cannot get 

an aTaxi within the waiting time limit, he/she will use the personal car as 

usual.  Occupancy is the number of passengers in the aTaxi, which varies 

from 0 to 4. Ride-sharing occurs when the occupancy is more than 1. 

According to Zachariah et al. (2014), to share a ride, an additional occupant 

cannot increase the distance of any direct trip by more than 20%. Thus, the 

added distance should be 20% less than the random original distances 

between passengers’ homes and workplaces. For example, consider two 

potential passengers who want to travel from their workplaces to home. 

Passenger A is the first passenger and passenger B is the potential second 

passenger. Passenger A’s home location and workplace location are set as  𝐴ℎ 

and 𝐴𝑤 and passenger B’s home location and workplace location are set as 

𝐵ℎ and 𝐵𝑤. The following equations need to be satisfied for the ride-sharing 

to occur. 𝐵𝑟𝑒𝑞𝑢𝑒𝑠𝑡 means the aTaxi location when passenger B asks to share 

a ride. The added distance algorithm is defined in Eqs. (3), (4) and (5) as: 
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 𝑑𝐵𝑟𝑒𝑞𝑢𝑒𝑠𝑡−𝐵𝑤 ≤ 𝑡𝐵 × 𝑣 (3) 

 𝑑𝐴𝑤−𝐵𝑤−𝐴ℎ−𝐵ℎ
≤ 1.2 × 𝑑𝐴𝑤−𝐴ℎ

 (4) 

 𝑑𝐴𝑤−𝐵𝑤−𝐴ℎ−𝐵ℎ
≤ 1.2 × 𝑑𝐵𝑤−𝐵ℎ

 (5) 

Where 𝑑 represents the distance, and  𝑡 is waiting time limit. 

 

The aTaxi first takes passenger A home because of the first-come, first-

served rule. The aTaxi then stops to board additional passengers if the 

maximum capacity has not been reached. This study only considers ride-

sharing in the SAV scenarios and assumes all commuters drive individually 

with their personal vehicles in the business as usual (BAU) scenario. In the 

SAV scenarios, one scenario has two kinds of mode choices—aTaxi and 

personal car (PC). The passengers choose different transport modes based on 

their waiting time limit and the waiting time for the closest aTaxi. In the BAU 

scenario, the occupancy and added distance are set to 1 and 0, respectively, 

and passengers’ wait time is 0. In-vehicle time represents the time spent in the 

traveling vehicle, which is converted into cost in economic evaluations. 

3.3.2.2 Travel cost 

Travel cost is the primary concern for people choosing among different 

transport modes. One of the objectives of this study is to minimize the total 

travel cost in this commuting system based on the passengers’ perspectives. 

Some studies used detailed cost categories to estimate the total cost for the 

operation of SAV system including vehicle costs (capital, running, and 

maintenance costs), infrastructure costs, and fleet management service costs 

based on various operational scenarios (Bösch et al., 2017; Chen & 
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Kockelman, 2016). This research only considers the service cost for 

commuters. The operational costs undoubtedly account for a large proportion 

of system’s costs for Transportation Network Companies, but travel 

economics for commuters largely influences the decision for adoption and 

utilization of system from a consumer point of view. In this study, the explicit 

financial costs of the service for commuters are considered, as well as the 

hidden costs associated with the time invested in various mobility-related 

activities. This analysis has received less attention in the literature compared 

to the operational cost of the system. 

(a) Explicit cost  

The regular fare for UberX (non-surge periods) consists of a base fare 

of US$1 and a US$1.65 booking fee, plus US$1.30 per mile plus US$0.26 

per minute. As aTaxis do not need drivers, operating costs are lower (Liang 

et al., 2016). With consideration of these costs reductions and other factors, 

Fagnant and Kockelman (2015a) set their simulated non-shared trip price to 

US$1.00 per mile (less than a third of average taxi cab rates in Austin, Texas). 

The simulation results of Burns et al. (2013) showed that the costs per trip-

mile of personal cars and SAVs were US$ 0.75 and US$ 0.41, respectively, 

without considering the decreased parking costs and the value of time. Bauer 

et al. (2018) estimated that the lowest cost of service provided by shared 

automated electric vehicles fleet could be US$0.29- US$0.61 per revenue 

mile. Spieser et al. (2014) concluded that a mobility system featuring 

autonomous vehicles could be almost half as expensive as a system based on 

conventional human-driven cars. An average US$1 per trip mile fare for non-

shared aTaxis was assumed here, and the personal car fee was assumed to be 
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US$1.4 per trip mile based on the price ratio of aTaxi and personal car 

mentioned above. In the case of sharing, the explicit cost after picking up the 

next passenger is shared by all the passengers, based on their trip distances. 

(b) Hidden cost  

Value of time (VOT) here is defined as “the monetary valuation of the 

total time invested in mobility-related activities” (Ellram, 1999; Spieser et al., 

2014). The time spent requesting, waiting for, entering, and traveling is 

monetized with passengers’ VOT based on the level of comfort.  Less 

comfortable trips incur a higher cost (Spieser et al., 2014). For example, 

personal trips on local roads during free-flowing traffic are priced at 50% of 

the median wage (Manpower-Research, 2015), while the cost of traveling 

during heavy traffic is represented at 150% of the median wage (Institute, 

2013). For aTaxis, commuters can experience a higher level of comfort, since 

they can use their travel time to perform other activities (reading, eating, 

talking, texting, sending an email or watching a movie). Zhang et al. (2015a) 

and Wadud (2017) also contend that the personal valuation of travel time may 

decline, as passengers reap productivity gains due to time free from driving.  

In contrast, Yap et al. (2016) showed that in-vehicle time in an autonomous 

vehicle is experienced more negatively than in-vehicle time in manually 

driven cars, the travelers’ negative attitudes regarding trust and sustainability 

of autonomous vehicles are major influences. After considering the above 

research results, the personal trip time in aTaxis and personal cars was priced 

at 20% and 67% of the personal wage, respectively (Spieser et al., 2014). For 

example, when the wage is $28.40 per hour (the median Ann Arbor wage), 

the corresponding VOT in aTaxis is approximately $5.68/hour, which is one-
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third of that in personal cars, at $19.03/hour. Table 3-1 summarizes the 

parameters for total travel cost evaluation.  

 

Table 3-1. The components of the total travel cost 

Travel cost Personal car aTaxi 

Explicit cost 
$1.40 per trip-mile for  

the non-shared trip 

$1.00 per trip-mile for  

the non-shared trip 

Hidden cost 
$19.03 per hour with  

median wage level 

$5.68 per hour with  

median wage level 

3.3.2.3 Environmental impacts 

According to Fagnant and Kockelman (2014a), even gasoline-powered 

SAVs could substantially reduce negative environmental impacts, consuming 

approximately 16% less energy and generating 48% less volatile organic 

compound emissions per person-trip compared to conventional vehicles. 

However, Miller and Heard (2016) argue that the GHG emissions of 

autonomous vehicles could decrease on a functional unit basis (i.e., per-

passenger-mile), while overall transport-related GHG emissions increase as 

VMT increases (Brown et al., 2014; Morrow III et al., 2014). Added VMT 

may also amplify drawbacks associated with high automobile use, such as 

increased gasoline consumption and oil dependence, and higher obesity rates 

(Fagnant & Kockelman, 2015b). Zhang et al. (2015b) indicate that although 

SAV systems tend to generate more VMT, the vehicle life cycle GHG and air 

pollutant emissions and energy consumption can still be reduced due to fewer 

cold starts and reductions in parking infrastructure requirements. Fagnant and 

Kockelman (2014b) also acknowledge that compared to personal cars, the 
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reduced parking needs of aTaxis could reduce emissions as well as traffic 

congestion. 

GHG and pollutant emissions from conventional vehicles could be 

further ameliorated through the use of low-emission and energy-efficient 

drivetrain technologies (Taiebat et al., 2018). Fully electrically-powered 

fleets could eliminate all tank-to-wheel emissions from car travel (OECD, 

2015). Chen et al. (2016) showed that SAVs and electric vehicle technology 

have natural synergies. Thus, electric aTaxis have been integrated into this 

commuting system. Hawkins et al. (2013) found that electric vehicles (EVs) 

powered by the present European electricity mix could decrease the global 

warming potential (GWP) 10% to 24% compared to conventional diesel or 

gasoline vehicles, assuming lifetimes of 150,000 km. The specific energy 

requirements to operate light-duty vehicles is around 0.30 - 0.46 kWh/mile 

(Kintner-Meyer et al., 2007), and the average emission rates of DTE Energy 

system serving Michigan electric customers are about 3.1 lbs/MWh for SO2 

and 1,950 lbs/MWh for CO2 (Parks et al., 2007), so the SO2 emissions and 

GHG emissions of electric aTaxis are straightforward to estimate. 

The vehicle life cycle inventories from Chester and Horvath (2008, 

2009a) are used, which include parking infrastructure. In our model, it is 

assumed that personal cars and aTaxis are all conventional gasoline sedans. 

Following the assumption of Fagnant and Kockelman (2015a), aTaxis are 

assumed to have a 250,000-mile service life, aligning with the expected 7-

year service life of Canadian taxis, which typically log more than 248,000 

miles over their lifetimes (Stevens & Marans, 2009), though SAVs may 

actually offer longer service due to their smoother automated driving profile. 
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Life-cycle environmental impacts of autonomous vehicles and light-duty 

vehicles (Fagnant & Kockelman, 2014b; Zhang et al., 2015b) were the basis 

for the environmental impacts of aTaxis and personal cars shown in Table 

3-2. Only energy consumption, GHG emissions, and SO2 emissions are 

considered.  

 

Table 3-2. Potential environmental impacts of aTaxis and personal cars per 

vehicle-mile traveled  

Environmental impacts Personal cars aTaxis 
Electric 

aTaxis 

Energy consumption 

(MJ/VMT) 
4.96 4.35 3.48 

GHG emissions  

(kg CO2eq/VMT) 
0.36 0.34 0.27 

SO2 emissions (g/VMT) 0.12 0.10 0.60 

 

 

3.4 Case study of the city of Ann Arbor 

3.4.1 Model experiment settings and initialization 

In this section, a detailed view of a city’s existing commuting patterns, 

topology, and other characteristics used to build a transportation model are 

presented to. Recently passed legislation in Michigan allows self-driving 

vehicles to operate on any Michigan roadway, which widens opportunities 

for autonomous vehicle development ("Senate Bill 0995," 2016). Ann Arbor 

is representative of small to medium-sized cities in the United States, based 

on the data from the 2009 NHTS. The city covers an area of 44 square miles 

with a population of 117,770 (City-data, 2013). Among the 39,095 people 
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who live and work in Ann Arbor, 50% (around 20,000) drive single-

passenger vehicles to work, 20% walk to work, 11% take the bus, and 5% 

bike to work, according to the Washtenaw Area Transportation Study's most 

recent transit profile conducted in 2009 (Biolchini, 2013). The analyses focus 

on the 20,000 people that drive alone in their commute travels, which is the 

BAU scenario in this study.  

The model is based on an area of 6.97 miles × 6.29 miles containing Ann 

Arbor. Taking advantage of Ann Arbor Open Data, the spatial information 

for buildings, roads, and the city boundary are incorporated into the model 

(City-Services, 2017). In Figure 3-2, the residential and office buildings are 

represented by different colors (grey for residential and purple for 

office/commercial), which serve as the origins and destinations of commuter 

travels within Ann Arbor. The population density in the model is based on 

the spatial distribution of residential buildings. The vehicles are shown as red 

squares. For people shown as circles, different colors depict the different 

objectives, with blue denoting “working” people traveling from home to work, 

and yellow depicting “resting” people traveling from work to home. The 

median income of Ann Arbor residents is $56,835 per year, which translates 

into $28.4/hour (40 hours/week, 50 weeks/year). Table 3-3 shows the basic 

parameters used in the Ann Arbor case study. 
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Figure 3-2. The display of Ann Arbor commute model 
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Table 3-3. Basic modeling parameters 

Parameter Value 

Service area 6.97 mi. × 6.29 mi. 

Average speed 27.6 mph 

AM peak 6:00-9:00 

PM peak 16:00-18:00 

Free-flow speed 33 mph 

Commute Period 0:00:00-23:59:59 

Commuters’ average hourly income $28.4/hour 

Maximum aTaxis occupancy 4 

 

3.4.2 Model validation 

Using real-world data to calibrate and validate the behavior model 

increases credibility and trust in this agent-based model and its results. Three 

components are used to validate the commuting model based on the BAU 

scenario: commute speed, commute time, and commute trips by time of day. 

The commute speed and commute time are collected from an Ann Arbor 

commuting survey (City-data, 2013).  From the survey data, the average 

commute speed is 27.60 mph, and the corresponding simulation result is 

27.52 mph. The average surveyed commute time within Ann Arbor is 10 

minutes, and the commute time from the simulation results is 7.44 minutes, a 

difference that can be explained by the inclusion of boarding and alighting 

time in the survey data while the commute time from the simulation results 

only considers the driving time. Data from the 2009 National Household 

Travel Survey (NHTS) is used to validate the commute trips by time of day 

(Figure 3-3). These data contain extensive information about each 
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commuting trip made by an individual living and working in small-medium 

cities, including the start times of daily trips to work and return trips home. 

In Figure 3-3, the morning peak hours of commuting travel are from 6 am to 

9 am, and the evening peak hours are from 4 pm to 6 pm. In the simulation, 

the start time of trips to work and to home both follow a normal distribution. 

The simulation data in the figure have the best fit with the NHTS data. 

Figure 3-3. Commute trips by the start time of trip on weekdays within Ann 

Arbor 

 

3.4.3 Scenario simulation 

Several scenarios were used for the evaluation of autonomous taxi 

performance in commuting trips. The same random number is used in the 

simulation runs for different scenarios to ensure that any difference in outputs 

are not caused by noise from the random number seed that starts the 

simulation. All simulation results are generated from 100-run Monte-Carlo 
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simulations.  These scenarios are generated by varying three principal 

parameters in the simulation: fleet size, vehicle types, and operation strategies. 

Fleet size: In the BAU scenario, the fleet size equals the commuting 

population (commuters who drive alone to work). In the SAV scenarios, the 

aTaxi fleet size is also related to the commuting population, which is varied 

from 10% to 90% of the BAU commuting population in 10% steps.  

Vehicle types: The BAU scenario represents the current situation—

20,000 people commuting alone by their personal cars. In the SAV scenarios, 

there are two kinds of scenarios simulated—an all aTaxi scenario and a mode 

choice scenario. In the all aTaxis scenario, all personal cars are replaced with 

aTaxis, and people can choose to share aTaxis with others or not. It means 

50% of people driving alone to work only can choose aTaxis as their 

commute mode in all aTaxi scenarios, while the other 50% of people will still 

keep their previous commute modes, such as walking or cycling, which are 

not covered in this study. In the mode choice scenario, the 50% of people 

driving alone to work can choose aTaxis or personal cars based on their 

waiting time limit and waiting time for the closest aTaxi. The electric aTaxi 

system is also simulated, with the environmental impacts compared to the 

personal car system. Full battery-electric vehicles today still have limited 

range compared to gasoline vehicles and thus need time for recharging 

(OECD, 2015). Nonetheless, Taiebat et al. (2018) indicate that it is easier to 

integrate electric propulsion vehicle into a dynamic ride-sharing system than 

into a non-ridesharing system, as the former has longer and more frequent 

chargeable breaks during the daytime. Electric aTaxis are assumed to have a 
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fast battery recharge time of 30 minutes (using Level III chargers) and a 

vehicle range of 110 miles (Chen et al., 2016). 

Operation strategies: In the optimized fleet size scenario, several 

vehicle operation strategies are tested for further performance optimization. 

At the beginning of the simulation, idle aTaxis are randomly distributed in 

the city (Zhang et al., 2015a), or the empty aTaxis are spatially clustered 

according to the population density or building density. During the simulation, 

the aTaxis park directly at the last passenger’s destination if not assigned to 

the next trip (OECD, 2015), or the aTaxis gravitate toward high-demand areas 

based on population density or building density after sending the last 

passenger to its destination (Zhang et al., 2017). 

Figure 3-4 shows the travel time of the SAV and BAU scenarios (the 

average wait time of the BAU scenario is 0 minutes as people can drive their 

car anytime they like). In the SAV scenarios when all the commute modes 

are aTaxis (all aTaxis scenario), the waiting time is reduced from 2.88 

minutes to 0.70 minutes since the fleet size is larger. In the SAV scenarios 

when passengers have mode choice, the waiting time of the aTaxi fleet size 

is relatively short, between 0.61 minutes and 0.13 minutes, as the passengers 

can choose the convenient mode. The minimized in-vehicle time in the all 

aTaxis scenario is achieved when the aTaxis fleet size is 4000. There are two 

essential elements related to the in-vehicle time: ride-sharing rate and vehicle 

speed. The in-vehicle time is reduced greatly when the fleet size is increased 

from 2000 to 4000 because the ride-sharing rate of aTaxis is reduced from 

1.94 to 1.30. However, the in-vehicle time is slightly increased when the fleet 

size is increased from 4000 to 18,000. In explaining this outcome, we might 
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first notice that the increased in-vehicle time is closely related to the ride-

sharing rate, and the ride-sharing rates are nearly equal to 1.0 in the all aTaxis 

scenarios with fleet sizes equal or greater than 6000. Thus, the ride-sharing 

rate has less of an effect on the in-vehicle time in these scenarios. However, 

the vehicle speed has significant influence on the in-vehicle time in these 

scenarios. The increased in-vehicle time is mainly due to the lower speed, and 

the lower speed of the aTaxis is due to the increased road occupancy. 

 

 

Figure 3-4. Travel time of SAV and BAU scenarios 

 

Table 3-4 shows the VMT of the SAV and BAU scenarios. Compared 

with the BAU scenario, as fleet size is increased in the SAV scenarios, the 

total VMT is increasing, and the unoccupied VMT is also increasing. This is 

a result of the cruise distances that aTaxis accumulate when commuters 

request a ride. The total cruise distance will be longer when there are more 
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aTaxis. But the total VMT is not increased drastically with the larger fleet 

size, as the service aTaxis provide overlaps with the commuting activity 

already performed without aTaxis.  

 

Table 3-4. Vehicle mile traveled (VMT) of SAV and BAU scenarios  

SAV 

Fleet 

size 

VMT-aTaxi  

(mile) 

VMT-PC  

(mile) 

Unoccupied VMT 

(mile) 

Total VMT  

(mile) 

All 

aTaxis 

Mode 

choice 

All 

aTaxis 

Mode 

choice 

All 

aTaxis 

Mode 

choice 

All 

aTaxis 

Mode 

choice 

2000 160394 123047 0 32799 3247 746 160394 155846 

4000 170246 113118 0 55822 8686 1253 170246 168940 

6000 171652 111735 0 59839 9691 1315 171652 171574 

8000 171457 111174 0 60289 9643 1264 171457 171463 

10000 171419 111650 0 59693 9666 1306 171419 171343 

12000 171334 111900 0 59455 9624 1302 171334 171355 

14000 171193 112481 0 58736 9602 1308 171193 171217 

16000 171463 112111 0 59353 9671 1292 171463 171464 

18000 171450 111735 0 59775 9670 1267 171450 171510 

BAU 0 127462 0 127462 

 
Note: VMT-aTaxi is the VMT traveled by the aTaxis. VMT-PC is the VMT traveled 

by the personal cars (PC). Unoccupied VMT is the cruise distances between car 

location at time of request and pick-up location that aTaxis accumulate when 

commuters requesting for a ride.  

 

In the SAV scenarios, the simulation results of all aTaxis and mode 

choice scenarios are compared. In the mode choice scenario, the unoccupied 

VMT is much smaller than in the all aTaxis scenarios. The total VMT in the 

all aTaxis and mode choice scenarios are very close. However, significantly 

larger fleet size (more vehicles) is needed in the mode choice scenario. For 

example, only 4,000 aTaxis are needed to serve 20,000 passengers in the all 

aTaxis scenario, while in the mode choice scenario, 10,555 personal cars and 

2539 aTaxis are needed. This is because passengers with mode choices turn 

to personal cars as the commuting mode when aTaxis cannot arrive within 
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their waiting time limit. It can be concluded that the waiting time is still a big 

challenge for aTaxis compared with the personal cars. 

 

3.5 Results and discussion 

The final ideal fleet size is determined by passengers’ wait time, in-

vehicle time and total VMT. The optimized fleet size is determined when the 

average waiting time is less than 3 minutes, the average in-vehicle time is less 

than 15 minutes per trip, and the VMT is minimized throughout the 

simulation day (Zhang et al., 2015a, 2015b). The optimized fleet size here is 

4,000, 20% of that in the BAU scenario. The average wait time is 2.74 

minutes, and the VMT is increased by 33.6% because of the unoccupied 

vehicle travel of the aTaxis. As there is little difference in total VMT for the 

all aTaxi and mode choice scenarios, and many fewer vehicles are needed in 

the all aTaxis scenario, the optimized scenario uses 4,000 aTaxis in the all 

aTaxis scenario. 

In order to further minimize the total VMT and average wait time, 

several operation strategies are tested. Figure 3-5 shows the operation 

algorithm of aTaxis. The blocks highlighted by yellow represent the operation 

strategies mentioned before: the location of initial parking and the behavior 

after serving the last passenger. High-demand areas refer to the high 

population density areas or high building density areas. The green blocks 

show the ride-sharing conditions. It can be found the ride-sharing only occurs 

when all the conditions are satisfied. The low rate of ride-sharing can be 

explained. Some representative simulation results are shown in Table 3-5. 

The first column shows the origin condition: the empty aTaxis are randomly 
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distributed in the initial stage and park at the location of the last passenger’s 

destination before receiving the new request. The second column shows the 

best simulation results, the total VMT is minimized, and the average wait 

time is less than 3 minutes. Although the fourth and fifth columns show less 

wait time and higher ride-sharing rate, the total VMT is significantly large. 

Thus, the operation algorithm in the second column (the empty vehicles park 

based population density at the beginning of the simulation, and wait at the 

location of the last passenger’s destination until receiving the new request) 

are used for the following simulation. 

Figure 3-5. Operation strategies of aTaxis 
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Table 3-5. The simulation results of respective operation strategies 

No. 1 2 3 4 5 

Initial parking 

based on 

Population density N Y N Y Y 

Building density N N Y N N 

Drive toward 

areas with high 

Population density N N N Y N 

Building density N N N N Y 

Fleet size 4000 4000 4000 4000 4000 

Total VMT (mile) 170246 168233 168293 290331 290680 

Unoccupied VMT (mile) 8686 8635 8681 8246 8389 

In-vehicle time (min) 12.85 12.94 12.93 14.26 14.29 

Wait time (min) 2.74 2.68 2.69 1.54 1.54 

Total ride-sharing 4112 4195 4063 4582 4472 

Note: Y refers to Yes, and N refers to No. 

 

In the optimized fleet size scenario, the vehicle utilization for daily 

commuting is improved to 92 minutes, as opposed to the BAU scenario of 

privately-owned vehicles typically used for 14 minutes in daily commute 

travel. The average occupancy is 1.3 in the optimized fleet size scenario. This 

may reflect the low probability of matching trips that satisfy the ride-sharing 

algorithm, a phenomenon in accord with the findings of  Zhang et al. (2015a).  

The total travel cost is composed of explicit costs and hidden costs, 

which are highly sensitive to the level of VMT and VOT. The more vehicle 

miles traveled, the greater the total travel cost. The VMT in aTaxis is 

increased due to the distance that vehicles travel while unoccupied as they 

drive to pick up passengers. The lower the value of time, the lower the total 

travel cost. For aTaxis, passengers are relieved from driving, and they can use 

their time as desired. Their productivity can be improved through working in 

the aTaxis. Therefore, the VOT of the aTaxi is greatly reduced. Overall, for 
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the ride-sharing trips in the optimized SAV scenario, the average total cost 

per mile is approximately $1.29 ($1.0 for explicit cost and $0.29 for hidden 

cost), which is 38% lower than the non-sharing trips in the BAU scenario.  

In contrast, the environmental performance of the aTaxis system is not 

positive, since the environmental impacts of the transportation system are 

highly related to VMT, and the VMT is increased even in the SAV scenarios 

because of the unoccupied vehicle travels. In the optimized SAV scenario, 

the system energy consumption, GHG emissions, and SO2 emissions are 16%, 

25%, and 10% higher, respectively, than in the BAU scenario. The 

environmental results are consistent with Miller and Heard (2016): 

autonomous vehicles could become more environmental-friendly on a 

functional unit basis (i.e., per-passenger-mile), while overall transport-related 

GHG emissions increase as VMT increase. Environmental outcomes do not 

improve in the electric aTaxi scenario when the fleet size is also set to 4,000. 

While corresponding system energy consumption and GHG emissions are 7% 

and 1% lower than those in the BAU scenario, the total SO2 emissions are 

increased by 560% compared to BAU scenario. This is mainly due to the 

carbon emission intensity of Michigan’s grid mix. Thus, the environmental 

performance does not improve as expected with the introduction of 

autonomous vehicles for commuting in Michigan.  

It is also found that aTaxis require far fewer vehicles than are currently 

on the road, while the total distance traveled is greater due to the unoccupied 

aTaxi travel as they accommodate the geographical distribution of demand. 

In order to explore road conditions with the introduction of aTaxis, road 

occupancy was studied (see Figure 3-6). Road occupancy represents the total 



91 

 

number of vehicles using the specific road during one weekday. In the 

optimized SAV scenario, the average road occupancy increases by 12% 

compared with the BAU scenario, but as suggested by Zakharenko (2016), 

increased traffic would not necessarily cause a congestion increase, as the 

SAVs are expected to run efficiently. The traffic congestion should be further 

investigated with more factors, such as travel directions. This unexpected 

traffic problem is due to the low rate of ride-sharing and increased VMT in 

the SAV scenarios. This result indicates that policymakers and planners 

should not view vehicle automation through rose-colored glasses as a solution 

to traffic jams and environmental implications. 

In the case of Ann Arbor, aTaxis are only used for end-to-end trips as 

there is no transit. Using aTaxis to connect the first/last mile trips of transit 

will be explored further in ongoing work. Given the relatively small size of 

Ann Arbor, the results from this work are not representative for other cities, 

especially large metropolitan areas where average commute time is over one 

hour per day. Future study will develop similar agent-based models for large 

metropolitan areas with long, complex commute patterns. In addition, we 

consider only the income of commuters affects their willingness to share. 

Social and racial factors, in fact, play equally important roles in ride sharing, 

which will be further examined in the future. Meanwhile, more realistic 

features can be added to this modeling framework, such as the consideration 

of traffic signals and further validation of the model through vehicle trips 

crossing the main intersection. 
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Figure 3-6. Road occupancy of the optimized SAV scenarios and BAU 

scenario 

 

3.6 Summary  

This study developed a simulation model to evaluate the travel costs and 

environmental impacts of aTaxis for commuting. The major contribution of 

the model described in this study is to simulate aTaxis traveling on a real road 

network, where all vehicles start and end their trips and travel on the road. 

Moreover, hidden travel costs related to commuters’ value of time are 

considered, and the environmental impacts of aTaxis are estimated to 

compare electric aTaxis, gasoline aTaxis, and conventional gasoline cars. 

The optimized fleet size is obtained with minimized VMT and 

reasonable average wait times for passengers—which this study determined 

to be 20% of the fleet size of the BAU scenario. The results of the optimized 

fleet size scenario show that total commute costs are reduced by 38% and the 

daily vehicle utilization is increased from 14 minutes to 92 minutes, but the 
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daily road occupancy is increased by 12%. This system’s energy consumption, 

GHG emissions, and SO2 emissions increase by 16%, 25%, and 10%, 

respectively compared to the BAU scenario. This is mainly due to increased 

unoccupied VMT and less ride-sharing. The unsatisfactory environmental 

performance of aTaxis is not improved when gasoline aTaxis are converted 

to electric aTaxis: the corresponding energy consumption and GHG 

emissions can be 7 % and1% lower than those in the BAU scenario, while 

SO2 emissions increase to 560% compared to BAU scenario.  

Our simulation results show that aTaxis do not exhibit significant 

improvements in environmental performance compared to personal car use, 

until more people are willing to share aTaxis rides. Whether more aTaxi ride-

sharing will occur when aTaxis are integrated into overall daily travel (for 

recreation and shopping in addition to commuting) and what the consequent 

impacts might be are important questions for future research. A clear policy 

implication of this study is that aTaxi fleets do not naturally lead to the higher 

environmental performance of transportation system. Thus, tailored 

regulations must be in place before deployment of this technology to ensure 

that the design and operation of the aTaxi system are environmental-

compliant.  

Our model is not designed as an accurate forecasting tool but rather as 

an initial test of the potential application of aTaxis to commuting travel. The 

model can be used to evaluate other prototypes in order to inform policy 

discussions among planners and decision-makers, as well as to highlight gaps 

in existing methods that other model developers can consider improving 

future simulations. 
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Chapter 4 Improving the Sustainability of Integrated Transportation 

System with Bike-Sharing 

 

4.1 Introduction 

The rapid growth in world population and increasing demand for 

transportation is putting great pressure on the transportation and fuel sectors, 

resulting in heightened traffic congestion, increasing fuel prices, and 

degraded air quality. In response, worldwide consciousness has risen on land 

use management, environmental emissions abatement, and climate change 

alleviation. It has become essential to develop new modes of transport and 

adapt existing ones to move people in more sustainable and economically 

feasible ways (Bauman et al., 2016; DeMaio, 2009; Shaheen et al., 2010). 

Bike-sharing, or public bicycle programs, is emerging as a partial 

solution. Bike-sharing allows people to rent a bicycle from one of many 

stations that are situated throughout a city, then ride and return it at any one 

of these stations. Bike-sharing services have grown in Europe, North America, 

South America, Asia, and Australia (Liu et al., 2012). Today over 500 cities 

in 49 countries have well-established bike‑sharing programs that in aggregate 

provide more than 500,000 bicycles. Bike-sharing systems have evolved over 

time, often beginning as free-to-use bike services that later became coin-

deposit systems. Today’s bike-sharing services are typically IT-based 

systems, with some city services including demand-responsive and multi-

modal functionalities with real-time information, among other enhancements 

(Shaheen et al., 2010). Bike-sharing can be characterized as a “three-S” 

system: a Sustainable transport mode that can Substitute for short trip modes 
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and Seamlessly connect with public transit (Hu & Liu, 2014). The reported 

benefits of bike-sharing include reduced greenhouse gas (GHG) emissions; 

reduced fuel consumption; enhanced accessibility; increased public transport 

use; decreased traffic congestion and noise; lower travel cost; increased 

physical activity and consequently improved health and physical fitness; and 

improved image of the urban environment  (Bauman et al., 2016; Caulfield et 

al., 2017; DeMaio, 2009; El-Assi et al., 2017; Faghih-Imani et al., 2017b; 

Kumar et al., 2016; Pal & Zhang, 2017; Shaheen et al., 2010; Shaheen et al., 

2013)  

However, some studies show that the benefits of bike-sharing are 

overstated. The mode shift to bicycling has clear health benefits, but it also 

may lead to a reduction in walking for some short-distance trips, while 

walking has greater health benefits (Fishman et al., 2014a; Woodcock et al., 

2014). The effects of bike-sharing on public transit are not consistent; in a 

dense urban area bike-sharing may replace rather than supplement public 

transit use and offer quicker, cheaper, and more direct connections for short 

distances. In suburban areas, where public transit can be sparse, bike-sharing 

may provide better access to enhance the use of the existing public transit 

system (Martin & Shaheen, 2014). One promoted benefit of bike-sharing, 

namely reduction in carbon emissions, is often overstated given the limited 

mode share of bicycling (Ricci, 2015). Médard de Chardon et al. (2017) also 

found that bike-sharing has only a limited positive impact on health and 

modest impact on carbon dioxide emissions.  

It should be noted that every urban area has its own distinct attributes 

and thus the benefits of bike-sharing can vary from city to city. Research on 
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the impacts of bike-sharing in East Asia is particularly limited. Current 

studies also generally do not assess the interactions between bicycling and 

other modes with methods that incorporate the influence of passenger 

behaviors. Thus, it would be valuable to explore the effects of bike-sharing 

in an integrated transportation system in Asian cities.  

The objective of this study is to understand how bike-sharing changes 

user travel behaviors and minimize the environmental and social impacts of 

an integrated transportation system. This study draws upon spatial agent-

based modeling to observe how travel behaviors change in response to 

different bike-sharing strategies. Two kinds of behavior theories that are 

widely used in travel behavior modeling and prediction, which are random 

utility maximization and bounded rationality, are applied to study passenger 

mode choice behaviors. The key factors influencing passenger mode choices, 

including travel cost, travel time, accessibility level, and automobile 

ownership, are evaluated and integrated into the model. After defining travel 

behaviors, two scenarios are constructed to simulate different operation 

strategies for bike-sharing, including bike infrastructure extensions, and bike-

sharing incentives. These scenarios are evaluated by environmental and social 

impacts. The greenhouse gas (GHG) emissions, and air pollution emissions, 

such as SOx, NOx, and CO emissions of each mode are calculated to set 

benchmarks. The human health benefits from physical activity including 

cycling and walking are investigated. Figure 4-1 shows the model framework 

based on a Taipei City map. As the model responds to real parameters, the 

user may amend basic input information to generate an optimum outcome and 
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understand the required parameters, e.g., the most sustainable transportation 

scenario that has the minimum environmental impacts. 

 

Figure 4-1. Model framework 

 

4.2 Literature review 

Some studies have evaluated the environmental and cost impacts of 

bike-sharing separately. Montreal’s Bixi has claimed that its program has 

saved over 3 million pounds of GHG emissions since its launch in May 2009 

(DeMaio, 2009). Lyon (2009) stated that its program, which began in 2005, 

had cut the equivalent of 18.6 million pounds of CO2 emissions from the 

atmosphere. Meanwhile according to the Earth Policy Institute, each shared 

bike user in Washington DC saves $800 in transportation costs per year on 

average (Davis, 2014).  
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The environmental impacts of bike-sharing can instead be investigated 

more accurately when taking into consideration its mode share in an 

integrated transportation system. Some studies indicate that bike-sharing 

mainly acts as a competitor to private modes. As Martin and Shaheen (2014) 

stated, bike-sharing has been found to decrease driving. A survey conducted 

by Shaheen et al. (2013) revealed that 41% of respondents in Montreal, 

Canada reported using public transit with bike-sharing to complete a trip that 

would have previously been made by car. Faghih-Imani et al. (2017a) also 

found that during weekdays bike-sharing for over half of trips less than 3 km 

is either faster or comparable to taxi service. The impacts of bike-sharing on 

shifts in public transit have been mixed. Campbell and Brakewood (2017) 

found that for routes in Manhattan and Brooklyn, every thousand bike-

sharing docks along a bus route were associated with a 2.42% decline in daily 

unlinked bus trips.  Martin and Shaheen (2014) found that bike-share 

members living in Washington D.C.’s high population density urban core 

were more likely to report reductions in bus use as a consequence of bike-

sharing, while members living in lower-density regions in the urban periphery 

were more likely to report additional bus use. However, this pattern did not 

emerge in the results for Minneapolis, where respondents reported rising and 

falling usage in almost equal proportion regardless of residence in the urban 

core or periphery. Modal shifts identified in Hangzhou bike-sharing can act 

as both a competitor and complement to other available public transport 

options (Shaheen et al., 2011). Some studies also found that bike-sharing has 

a greater impact on transit in these competitive relationships. Fuller et al. 

(2013) found that bike-sharing was associated with a small (0.3 – 0.4%) 
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modal shift away from car use, but most of the apparent behavioral shift was 

seen from public transport, walking or private bike use. Similarly, Pai (2012) 

also reported that in Taipei, with the introduction of YouBike, 35.97% of 

YouBike trips shifted from bus traveling and 34.60% of YouBike trips shifted 

from walking. Only 8.72% of YouBike trips shifted from riding a private bike 

and 6.81% from riding a motorcycle.  In order to more accurately evaluate 

the impacts of bike-sharing, the mode shares between bike-sharing and other 

transpiration modes were explored during the first stage of the current study. 

The key factors that influence mode share choices have been 

investigated. Heinen et al. (2011); Kumar et al. (2016) found that time, price, 

and convenience were the main concerns of travelers in the mode choice 

process. Adverse weather conditions such as cold temperatures, heavy rain, 

high humidity, and stormy weather decreased bike-share activities and more 

regionally specific comfortable temperatures (close to 90°F) increased bike-

share trips (Godavarthy & Taleqani, 2017). Zhang et al. (2016) also found 

that precipitation had a significant short-term impact on trip numbers: after 

heavy rainfall, bookings declined considerably below average and would take 

around three hours before rebounding to average trip rates again. But research 

by Heinen et al. (2010); Miranda-Moreno and Nosal (2011); Nankervis (1999) 

suggested that weather does not typically deter regular cycle commuters 

unless conditions are particularly severe, i.e., temperatures below 4-5°C or 

above 35°C.  Raviv and Kolka (2013) asserted that the primary factor that 

determines the success of a bike-sharing system is the ability to meet the 

demand, which can be pursued by providing a sufficient number of available 

bicycles and vacant lockers at each station. Inadequate cycling infrastructure 
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decreased bike-sharing and private utility cycling (Goodman & Cheshire, 

2014). As Heinen et al. (2011); Stinson and Bhat (2003) found, travelers’ 

mode choice is not only influenced by the external environment, but also by 

travelers’ socio-demographic characteristics. In particular, car ownership has 

been shown to have the greatest impact on bicycle usage among all studied 

socio-demographic variables, accounting for significantly low use of a 

bicycle as a mode for commuting. The same applies to motorcycle owners. 

McFadden (1979) emphasize that it is important to identify factors whose 

values may be changed through proactive policy decisions. Passenger 

environmental awareness, attitude towards bad weather, and other 

psychological factors are not considered in this study, as these factors are 

more challenging to quantify and incorporate into this model. Thus, in this 

study, the four factors influencing mode choice include travel cost, travel time, 

accessibility level, and automobile ownership.   

 

4.3 Material and method 

4.3.1 Definition of the simulation 

This study simulates the impacts of bike-sharing under alternative 

transport policy initiatives by using agent-based modeling—a bottom-up 

approach that draws upon spatial information. Bike-sharing embedded in 

transportation systems has been studied from a top-down viewpoint, either 

for system optimization (such as optimization of station locations), or for a 

deeper statistical understanding of their working mechanisms (such as 

logistics operations to identify and remedy zones with a surplus or shortage 

of bikes). Yet bottom-up approaches to studying bike-sharing that incorporate 
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the behavior of users have not typically been applied so far (Shimizu et al., 

2014). Agent-based modeling (ABM) is used for simulating the evolution of 

passenger mode choices as influenced by different transport policies (Lu & 

Hsu, 2017). An integrated transportation model is thus generated to simulate 

the interactions between passengers and transport modes. As distinguished 

from system dynamics, ABM can reflect the heterogeneity of travelers’ 

characteristics and the complex interactions in a passenger transportation 

market (Manley et al., 2014). The behavior theories of random utility 

maximization and bounded rationality, which are widely used in travel 

behavior modeling and prediction, are applied to model passengers’ mode 

choice behaviors. A geographic information system (GIS) is also employed 

to enhance the reality of the ABM model. 

In the model, there are two types of agents: passengers and transport 

modes. The passengers commute during weekdays based on their different 

socio-economic status, which is generated from a representative distribution 

in the model (Guo, 2015). Each passenger has its preferential weights for 

choosing a mode for a commute. Six kinds of transport modes are included 

in the model. The first four modes are used for end-to-end trips, including 

bicycle, walk, motorcycle, and car. The other two modes are transit, i.e., bus 

and metro, which might need first/last mile connections to complete a trip. 

This study focuses on walk and bicycle serving as the first/last mile connect 

modes for the public transit modes.  To show the mode choice processes 

based on the interactions between passenger and mode agents, the model 

excludes other irrelevant factors that may occur in reality. 
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To calibrate the agents’ traveling behaviors, two kinds of data are 

collected. The first kind encompasses the attributes of passenger agents, 

which include income level, automobile ownership, time to travel, and the 

origin and destination of the trip. The second kind consists of the variables of 

model agents, which include travel speed; travel cost; emission factors; 

spatial distribution of bike stations, metro stations and bus stops; and the 

corresponding routes. The spatial distribution data for bikes, metro, and bus 

is especially important in accurate transportation map construction and highly 

related to the performances of transport modes. The model enables life-cycle 

impact assessments of these transport modes by using environmental 

performance data for the transport modes, including SOx, NOx, CO, and 

GHG emission factors.   

As indicated previously, the key factors that influence passengers’ mode 

choice are travel time, travel cost, accessibility level, and automobile 

ownership. Travel time in the model refers to the onboard time of the travel 

mode. The travel cost sums up all the explicit costs incurred during the 

commute trip. Accessibility level represents a locational characteristic that 

permits a station to be reached through the effort of those at other places using 

connected modes such as walking or bicycling. Automobile ownership means 

the ownership of a private car or motorcycle. For ease of comparison, the 

travel time and accessibility level are evaluated by how each agent values its 

time, defined as the value of time (VOT). Empirical studies have firmly 

established that travelers are much more sensitive to out-of-vehicle time than 

to in-vehicle time, meaning that a higher disutility is generated from a minute 

of out-of-vehicle time compared to a minute of in-vehicle time (Koppelman 
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& Bhat, 2006). In this study, the VOT in vehicle and out of vehicle are 

evaluated as 60% and 100% of the passenger’s hourly salary level. The four 

factors are defined in Eq. (1) to Eq. (4). 

 time = 𝑑𝑡𝑟𝑎𝑣𝑒𝑙/𝑣𝑡𝑟𝑎𝑣𝑒𝑙 × 𝑠 × 60% (1) 

 cost = 𝑐𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑐𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (2) 

 access = 𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡/𝑣𝑐𝑜𝑛𝑛𝑒𝑐𝑡 × 𝑠 × 100% (3) 

 
own = {

1 (ℎ𝑎𝑠 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒, 𝑒. 𝑔. 𝑐𝑎𝑟 𝑜𝑟 𝑚𝑜𝑡𝑜𝑟𝑟𝑐𝑦𝑐𝑙𝑒
0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

 
(4) 

 

Where 𝑑𝑡𝑟𝑎𝑣𝑒𝑙  and 𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡  represent the travel distance and connect 

distance, 𝑐𝑡𝑟𝑎𝑣𝑒𝑙 and 𝑐𝑐𝑜𝑛𝑛𝑒𝑐𝑡 represent the cost of travel mode and cost of 

connect mode respectively, and 𝑠 refers to the hourly salary of the passenger 

agent. 

The four factors of the transport modes vary between time periods due 

to changes in the external environment. For example, the bike accessibility 

level could change due to the redistribution of bike stations. In addition to the 

four factors, actual traffic conditions affect travelers’ choices (Orsi & 

Geneletti, 2016). Faghih-Imani et al. (2017a) found that individuals were 

unlikely to consider bike-sharing for long trips (>5 km or so). Thus, the bike 

mode is only deemed of utility if the one-way trip distance is under 5 km. 

Similarly, as stated by Pushkarev and Zupan (1977), walking is considered of 

utility when the one-way trip distance is less than 1 km. Based on statistics of 

trip information (Department of Transportation, 2016), only when the end-to-

end trip distance is longer than 500m will it be regarded as one trip. For 

example, if one traveler rides a bike to a nearby store and the cycling distance 
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is less than 500m, the bike is not considered a transport mode in this study. 

In the first/last mile trips, the connect mode is also counted when the 

connection distance is longer than 500m. For example, in the case of one 

traveler taking a public bike from home to a metro station to connect to a 

metro trip, the bike is regarded as the connect mode when the cycling distance 

is longer than 500m. Hence, 500m is taken as the minimum trip distance for 

one specific mode. 

4.3.2 Behavior theories 

With the key factors influencing the passengers’ mode choices defined, 

two behavior theories constructing the passengers’ mode choice processes 

were implemented: random utility maximization (RUM) and bounded 

rationality (BR). RUM represented as perfect rationality (PR) has been 

widely applied in modeling travel behavior, assuming people assess and 

choose the best available mode of transport by considering all related factors 

such as cost, time, and the person’s socioeconomic traits. However, this 

approach is not able to explain why individuals in similar situations and with 

similar socioeconomic traits make different mode choices. As opposed to 

RUM, BR takes into account the cognitive limitations of the decision-maker, 

limitations of both knowledge and computational capacity. When one person 

with bounded-rationality “satisfices,” he seeks the alternatives that are 

satisfactory or “good enough” and not necessarily optimal. These two 

behavior theories were applied to the passengers’ travel behavior simulation 

for comparison. And based on the historical data, the theory with the best 

fitness simulation results was selected for the subsequent scenario 

simulations. 
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Random utility maximization 

Daniel Mcfadden parameterized and applied random utility 

maximization (RUM) into transportation demand in the early 1970s, work for 

which in part he later won the Nobel Prize in Economics. The utility 

maximization rule rests on two main concepts. The first is that the attribute 

vector characterizing each alternative can be reduced to a scalar utility value 

for each of those alternatives. The second concept is that the individual 

chooses the alternative with the highest utility value (McFadden, 1979). In 

the following equations (Eqs. (5) to (8)), we denote i for people, and 𝑖 ∋  𝑁∗, 

and we define j for transport mode, and 𝑗 ∋  𝑁∗. In a RUM model, the utility 

of one alternative mode is comprised of two parts: (1) the utility solely related 

to the attributes of alternatives, (2) the utility solely related to the 

characteristics of the decision maker, as shown in Eq. (5): 

 

 𝑉𝑖,𝑗 = V(𝑀𝑗) + V(𝑃𝑖,𝑗) (5) 

 

Where  𝑉𝑖,𝑗 is the utility of mode j of the people i, 𝑉(𝑃𝑖) is the utility 

associated with the characteristics of people i, and 𝑉(𝑀𝑗)  is the utility 

associated with the attributes of mode j. Based on the above four key factors, 

the mode utility is extended in Eq. (6): 

 

𝑉𝑖,𝑗 = 𝛽1 × 𝑐𝑜𝑠𝑡𝑖,𝑗 + 𝛽2 × 𝑡𝑖𝑚𝑒𝑖,𝑗 + 𝛽3 × 𝑎𝑐𝑐𝑒𝑠𝑠𝑖,𝑗 + 𝛽4 × 𝑜𝑤𝑛𝑗  (6) 

 

Where 𝛽𝑘  is the weights of corresponding attributes; 

𝑐𝑜𝑠𝑡𝑖,𝑗, 𝑡𝑖𝑚𝑒𝑖,𝑗 and 𝑎𝑐𝑐𝑒𝑠𝑠𝑖,𝑗 are the travel cost, travel time, and accessibility 
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level of mode j of people i respectively, which are normalized between zero 

and one; and 𝑜𝑤𝑛𝑗  is a dummy variable for automobile ownership 

(automobile here refers to the car or motorcycle), one if the passenger has a 

car or motorcycle and zero otherwise.  

Finally, the people choose the mode has the highest utility after 

comparing all the modes’ utilities. The RUM model is assumed to have 

uniform cross-elasticities, that is, the cross elasticity of the choice probability 

of alternative i with respect to an attribute of alternative j is the same for all 

alternatives i≠j. 

Bounded rationality  

Bounded rationality (BR) was introduced by Herbert Simon in the 1950s. 

It has recently recaptured researchers’ attention since it was first introduced 

in transportation research in the 1980s due to its ability to more realistically 

model and predict travel behavior.  Through a comparative analysis of 

commuter departure time and route choice switch behavior between 

laboratory experiments and field surveys in Dallas and Austin, Texas, 

Mahmassani and Jou (2000) were able to demonstrate that boundedly rational 

route choice modeling generates valid representations of real commuter daily 

behavior. However, there is no standard BR framework for travel behavior 

research (Di & Liu, 2016). Gifford and Checherita-Westphal (2008) indicated 

that the underlying challenge of incorporating bounded rational travel 

behavior in transportation research is that it does not seem to behave very 

well from a modeling standpoint. Manson (2006) also concluded that research 

on BR is less theoretically developed and methodologically integrated than 

research for perfect rationality.  
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In order to reflect BR-based behavior, a simple behavior procedure was 

devised for this study (see Figure 4-2). Three principle parameters were used 

in modeling the BR behavior. They are aspiration level, stress threshold, and 

activation level. The aspiration level also called an indifference band, can 

change in the process of learning and interaction with the environment 

(Gifford & Checherita-Westphal, 2008). The deviation between the 

aspirations of an agent and the utility of a mode is defined as “stress” (Habib, 

Elgar, & Miller, 2006). If stress exceeds the stress threshold, the agent selects 

the choice with the maximum expected utility and its aspiration level falls. 

As long as the stress is within the stress threshold of the agent, the alternative 

will be selected and implemented again. Memory activation level is a habit 

indicator, as the mode with the maximum activation level in the choice set 

becomes the habitual option for that individual (Psarra et al., 2015). The 

updated activation level of mode j of people i in time t is defined as follows: 
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Note: Parameters with * means the parameters of the habitual mode

 

Figure 4-2. Bounded rationality behavior framework 
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 𝐴𝐿𝑖,𝑗
𝑡 = log(𝐴𝐿𝑖,𝑗

𝑡−1 + 1 + 𝛽), 

if the model has been selected by people i at this time step 

(7) 

 𝐴𝐿𝑖,𝑗
𝑡 = log(α𝐴𝐿𝑖,𝑗

𝑡−1 + 1) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8) 

 

where β > 1 is the recency weight and 0 < α < 1 is the retention rate. 

A logarithmic transformation is used because it is assumed that when 

the mode is newly selected, its activation level rapidly increases until it 

reaches a saturation point at which the activation level surge slows down. On 

the other hand, when the mode is no longer selected, its activation level 

dramatically falls (Psarra et al., 2015).  

4.3.3 Case study of the Taipei city 

The majority of people in Taiwan rely on cars, motorcycles, and scooters 

as the preferred mode of transport. Growing populations in cities have 

resulted in increased traffic congestion, air pollution, and car accidents. To 

address the negative impacts of motorized transport, the Taipei City 

Government has started promoting sustainable transport modes since 2008. 

The Public Bike System “YouBike” was officially launched in Taipei City in 

2009. Taking advantage of Taipei Open Data, the spatial information of bike 

stations and bike lanes from 2009 to 2015 were collected. Other modes’ 

stations and corresponding traffic lines were also incorporated into the model. 

The trips simulated are mainly based on the home-based work trip. The main 

transportation modes in Taipei include bike, walk, motorcycle, car, bus, and 

metro, which account for more than 95% of market share in the Taipei 

transportation system. The operating parameters such as the speed and cost 
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of the studied modes were derived from Chang and Guo (2007); Huang 

(2016). 

4.3.4 Model calibration and validation 

The model was calibrated and validated through the comparison of two 

types of empirical data: a travel survey of respondents’ daily used transport 

modes, and findings from previous Taipei transport system research literature. 

The statistical analysis was applied to measure the goodness of fit according 

to quantitative values and patterns (Grimm et al., 2005). The travel surveys 

of daily used transport modes were collected from 2009 to 2015 in Taiwan, 

which include the mode shares of the walk, bike, motorcycle, car, bus, and 

metro (Department of Transportation, 2010, 2011, 2012, 2013, 2014, 2015, 

2016). In this survey, more than 30,000 people were interviewed by telephone 

every year. These historical mode shares were used for model calibration. 

The calibration experiment was conducted by varying the combinations of 

three parameters, the weights of travel cost, travel time, and accessibility level, 

to find parameter combination which best fit the historical mode shares. The 

weight of automobile ownership can be calculated automatically with the 

above three weights. In addition, two kinds of behavior theories were applied 

to construct the mode choice behaviors.  

Maximum likelihood estimation is a widely used method for finding the 

parameters of Multinomial Logit Model (MNL) models; it finds the value of 

the parameter β which that maximizes the log-likelihood value. However, the 

complicated formulation and estimation process is difficult for practitioners 

to use when there are more than two parameters 𝛽𝑖 . The solution to this 

difficulty is typically to use an iterative procedure such as generalized 
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iterative scaling to find 𝛽𝑖. In our study, since we have four key factors that 

comprise the mode utility, it is difficult to estimate the corresponding 

weightings of 𝛽𝑖  by the maximum likelihood method. Instead of that, 

exhaustive algorithms and heuristic algorithms were implemented to find the 

best parameter combination with the help of the computation power.  The 

historical data of mode share in 2013 and 2015 were used as representative 

data to compare with the respective simulation results. The four key factors 

of the transport modes varied between 2013 and 2015. For example, bike 

stations increased from 136 to 212. In addition, before April 2015, using 

YouBike was free for the first 30 min. Since April 1, 2015, the charge for the 

first and each subsequent 30-minute increment use was 5 NTD (New Taiwan 

Dollar) (roughly 1.66$). Thus, the travel cost, travel time, and accessibility 

level of bike and its connected transit changed accordingly. The ownership 

of motorcycles and cars also varied between these two years. Motorcycle 

ownership fell from 411 to 363 per 1,000 people from 2013 to 2015, while 

car ownership rose from 283 to 293 per 1,000 people. Table 4-1 shows the 

parameter combinations which generate from Monte-Carlo simulation 

outputs fitting the historical data best in terms of minimizing squared 

residuals. The corresponding weights of the key factors—travel cost, travel 

time, accessibility level, and automobile ownership are 0.43, 0.39, 0.08, 0.10, 

respectively. We can find commuter has the high value of travel cost and 

travel time. Figure 4-3 compares the historical mode shares and their 

corresponding simulated mode shares of these two behavior theories with the 

best fitting parameter combination 0.43/0.39/0.08 in 2013 and 2015. Based 
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on the total squared residuals, the behavior theory of bounded rationality can 

better represent the commuters’ mode choice behaviors. 

 

Table 4-1. The best 100-run Monte-Carlo simulation outputs fitting the 

historical mode shares 

Mode share Bike Walk 

Motor- 

cycle Car Bus Metro RSS 

2015H 5.40 16.40 27.30 16.90 17.20 16.90 N/A 

2015S-RUM 5.51 19.69 26.77 11.02 20.47 16.54 0.00565 

2015S-BR 5.56 20.63 25.40 10.32 19.84 18.25 0.00736 

2013H 5.50 15.40 29.10 15.90 18.90 15.30 N/A 

2013S-RUM 10.66 16.39 22.95 9.02 26.23 14.75 0.01667 

2013S-BR 5.98 14.53 29.06 10.26 23.93 16.24 0.00589 

SUM of RUM RSS 0.022330 

SUM of BR RSS 0.013260 

Note: 2015H/2013H means the historical date of the year 2015 and 2013. 

2015S/2013S means the simulated results of the year 2015 and 2013. RSS is residual 

sum of squares. 

 

 

Figure 4-3. Calibration results of mode shares in 2013 and 2015 

Note: 2015H/2013H means the historical date of the year 2015 and 2013. 

2015S/2013S means the simulated results of the year 2015 and 2013.  
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To validate the chosen parameter combination, the modes’ travel 

distances were simulated to fit the actual travel patterns. As for the research 

findings from the literature review, in Taipei City, the average trip distances 

of bike, metro, motorcycle, and car are 2  km, 8.1 km, 9 km, and 12 km, 

respectively (Huang, 2016). The studies found that the cars and motorcycles 

in Taiwan are usually used for long-distance traveling given their faster speed 

and higher accessibility level. These travel patterns are used for model 

validation (see Table 4-2). Another Monte-Carlo simulation with 100 runs 

was conducted to quantitatively validate the weight combination of 

0.43/0.39/0.08 with the respective behavior theories. 

 

Table 4-2. Validation results of average trip distance in 2015 

Average trip 

distance (km) 

Empirical study   

(Huang, 2016) 2015S-BR 2015S-RUM 

Metro 8.10 7.29 7.19 

Car 12.00 10.42 7.93 

Motorcycle 9.00 7.64 10.92 

Bike 2.00 1.72 2.31 

 

The simulation results for BR demonstrated better fitness according to 

both of the validation procedures applied in this study. Thus, the weight 

combination of 0.43/0.39/0.08 with behavior theory of bounded rationality 

was applied to the scenario simulation. 
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4.3.5 Scenarios  

Based on the calibrated configuration of the model, two scenarios related 

to the key factors were simulated. The following scenarios are represented 

quantitatively in the simulation. Table 4-3 summarizes the simulation results 

of the following scenarios. 

Table 4-3. Simulation results of the two scenarios 

Mode 2015 BAU Scenario1 Scenario2 

Infrastructure 

extensions 

 Free for transit 

connection 

2 NTD 

coupon 

Bike% 5.40 5.79 6.30 5.60 

Walk% 16.40 15.70 20.47 20.00 

Motor% 27.30 31.40 24.41 33.60 

Car% 16.90 12.40 10.24 12.80 

Bus% 17.20 21.49 19.69 14.40 

Metro% 16.90 13.22 18.90 13.60 

Notes: BAU represents business as usual, and NTD refers to the New Taiwan 

Dollar. 

 

4.3.5.1 Bike infrastructure extensions 

High bicycle modal share can be achieved through maintaining and 

continually improving safe and extensive bicycling infrastructure. Castillo-

Manzano and Sánchez-Braza (2013) described Seville’s high bicycling 

modal share as the result of the implementation of extensive new bicycling 

infrastructure. Public bicycle stations are usually located on a sidewalk near 

a transit station (Liu et al., 2012). In Taipei, most of the bike-sharing stations 

are located at nearby metro stations, with a few also located at bus stations. 

Such integration of bicycling infrastructure with other modes of public transit 
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could enable stakeholders economic and other benefits (Chow & Sayarshad, 

2014; Pucher & Buehler, 2009). Thus, 369 new bike-sharing stations were 

added close to the bus stations except for the remote mountainous areas in the 

north of Taipei.  With the spatial data-driven model, travelers (agents) can 

measure the distance between home/workplace and stations based on the real 

road network, which relates to one of the key factors—the accessibility level 

of the mode. Lin et al. (2013) showed that bicycle stations should not be 

located more than 300–500m from important origins and destinations of 

traffic. The average distance between the bike-sharing stations and users’ 

home/workplace in 2015 was calculated to be approximately 818 meters. 

After the extension of bike-sharing stations, the average distance between 

bike-sharing stations and users’ home/workplace decreased to 604 meters. 

The travel cost, travel time, and accessibility level of bikes and their 

connected transits changed accordingly. Compared to the BAU scenario in 

2015, the bike mode share increased from 5.40% to 5.79%, and bus mode 

share increased from 17.20% to 21.49%. As an alternative mode to bus, metro 

market competitiveness thus weakened. 

bike-sharing can extend the catchment area of public transit (Shaheen et 

al., 2013). Huang (2016) found that 48% of YouBike trips started or ended at 

a metro station in Taipei, which can be speculated that almost half of YouBike 

services were used in the first/last mile service of transit. In this scenario, with 

the extension of bike-sharing stations, 63% bike are used to connect the 

first/last mile of the transit. But it should be noted 85% connecting bike are 

used for the first/last mile service of metro although the strategy is focused 

on building more bike sharing stations around the bus stations. This 



116 

 

phenomenon can be explained by the spatial function of the model. It can be 

found the average distance between bus stations and users’ home/workplace 

in Taipei is 203m, which is less than 1,000m and can be connected by walk. 

While the average distance between home/place and metro is much longer, 

1,373 meters, even longer than the maximum walking distance 1,000 meters, 

that’s why most connecting trips occur around the metro stations. 

4.3.5.2 Bike-sharing incentives 

Huang (2016) found that average bike-sharing trips declined by 26%, 

and trip distances—around 1-2 km—did not significantly change, after the 

cancellation of the “free use in the first 30 min” policy in April 2015. With 

consideration of this finding, some incentive strategies to encourage people 

using bike-sharing could consist of the free use of YouBike when used to 

connect the transit with the smart travel card, or a 2NTD (roughly 0.66$) 

coupon for every completed trip that can be used on subsequent trips. With 

one or the other incentive strategies simulated in the present study, the travel 

costs of the bike and its connected transit changed accordingly.  

Compared to the BAU scenario in 2015, the simulation results show that 

the bike mode share increases from 5.40% to 6.30% with the first incentive 

strategy, and the shares of bus and metro also increase by 2.49% and 2.00%. 

Correspondingly, the motorcycle mode share decreases by 2.89% with the 

first incentive strategies. The bike mode share increases from 5.40% to 5.60% 

with the second incentive strategy. With the first bike-sharing incentive 

strategy, 75% bikes are used to connect the first/last mile trips of the transit, 

but the connecting percentage in the second bike sharing incentive strategy is 

only 45%, which has little change compared with the BAU scenario. This is 
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because bike-sharing and transit become complementary modes in the first 

incentive scenario, which can encourage more people to use bike and transit 

compared to implementing an incentive strategy that only targets cycling.  

In Taiwan, motorcycles are the primary transport mode and known to be 

the biggest single source of vehicular pollution. Despite the introduction of 

bike-sharing through YouBike in 2009, bike-sharing exhibits limited 

influence on motorcycle use based on the simulation results for the above two 

scenarios. As for the motorcycle and car, there are no first/last mile problems. 

The travel speeds of motorcycle and car are even faster than the bus. However, 

it should be noted that the transit mode shares increased by 2%-4% with the 

strategies encouraging the use of bike-sharing to connect to transit. 

 

4.4 Results and discussion 

The environmental impacts of these two scenarios were analyzed, with 

the associated SOx, NOx, CO, and GHG emissions estimated. Thus, free use 

of bike sharing to connect transit could be more environmental-friendly than 

other traffic policies that only target bike-sharing. Thus, free use of bike 

sharing to connect transit could be more environmental-friendly than other 

traffic policies that only target bike sharing. 

Table 4-4 shows the emission factors with the unit of per passenger-

kilometer-traveled (PKT) (Chester et al., 2010; Lin et al., 2011), and Table 

4-5 shows the damage cost of the respective pollutant measured in NTD (Lin 

et al., 2011). Thus, the corresponding environmental impacts are transferred 

to the total damage cost for comparison (see Eq. (9)). 
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Table 4-6 shows the daily pollutant emissions of respective scenarios in 

Taipei transportation system. Compared with the 2015 BAU scenario, the S1 

scenario (bike infrastructure extension) and S2 COUPON scenario (2NTD 

coupon for every complete trip) have less SOX emissions because of the less 

metro mode share. The S2 FREE scenario (free use of bike sharing to connect 

transit) saves 142-ton GHG emissions from daily commute trips compared 

with the BAU scenario due to less mode shares of motorcycle and car. 

 Figure 4-4 shows the damage cost of these scenarios. NOx and GHG 

emissions are the two major sources of pollutant damage cost. The minimized 

total damage cost is achieved in the scenario of free use of bike sharing to 

connect transit. The total damage cost can be reduced by 16%, equal to 1.5 

million US dollars reduction in transportation damage cost per year compared 

to the 2015 BAU scenario (see Figure 4-4). Thus, free use of bike sharing to 

connect transit could be more environmental-friendly than other traffic 

policies that only target bike-sharing.  

 

Table 4-4. Emission factors of the respective modes 

Modes Bike Walk Motorcycle Car Bus Metro 

NOx (g/PKT) 0.00 0.00 0.34 0.64 0.60 0.09 

SOx (g/PKT) 0.00 0.00 0.00 0.01 0.00 0.14 

CO (g/PKT) 0.00 0.00 6.12 7.96 0.14 0.02 

GHG(CO2eg/PKT) 0.00 0.00 138.51 231.28 78.24 77.48 
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Table 4-5. Damage cost of the respective pollutants 

Damage cost (2009NTD/g) 

NOx 0.101342 

SOx 0.252785 

CO 0.001198 

GHG 0.000590 

 

TDC = ∑ 𝐸𝐹𝑖 × 𝐷𝐶𝑖 × 𝑇𝑑𝑗  𝑓𝑜𝑟 𝑖 = 1,2,3,4 𝑎𝑛𝑑 𝑗 = 1,2, 3, … 6. (9) 

Note: Here TDC, 𝐸𝐹𝑖, and 𝐷𝐶𝑖 represent total damage cost, emission factor of the 

pollutant i, and damage cost of the pollutant i.  𝑇𝑑𝑗 means the total travel distance 

of the mode j. 

 

Table 4-6. Daily pollutant emissions of scenarios 

Emissions 2015 BAU S1 S2 FREE S2 COUPON 

NOX (ton) 2.5 2.6 2.1 2.2 

SOX (ton) 0.2 0.1 0.2 0.1 

CO (ton) 22.5 22.3 16.9 21.9 

GHG (ton) 767.7 760.1 626.0 697.3 

Note: 2015 BAU refers to the business as usual scenario in 2015, S1 represents the 

first scenario of bike infrastructure extensions. S2 FREE refers to the second 

scenario of free use of bike sharing to connect transit. S2 COUPON refers to the 

second scenario of 2NTD coupon for every complete trip. 
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Figure 4-4. The damage cost of the respective scenarios 

 

The benefits of physical activity including cycling and walking are 

compared between the minimized environmental impacts scenario (free use 

of bike sharing to connect transit) and the BAU scenario. The World Health 

Organization’s Health Economic Assessment Tool (HEAT) was used to 

estimate avoided premature deaths due to physical activity from walking or 

cycling (World Health Organization, 2017). HEAT calculations are based on 

mortality rates for the age ranges of 20-74 years for walking, and 20-64 years 

for cycling. HEAT is designed for habitual behavior, such as cycling or 

walking for commuting, which is perfectly suitable for our commuter health 

assessment. With this tool, the economic values of the health benefits that 

occurs as a result of the reduction in mortality due to their physical activity 

are explored. In the minimized environmental impacts scenario, the average 
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daily cycling and walking time for regular commuters are 16 and 36 minutes, 

respectively. Thus, the relative risk for cycling is 0.89 for regular commuter 

cycling for 16 minutes per week, that is, a population of regular cyclists are 

11% less likely to die from all causes combined than a population of non-

cyclists. In the same way, the relative risk for walking is 0.90 for regular 

walking of 180 minutes per week. Compared with the BAU scenario, 7,488 

and 33,862 people shift to cycling and walking in the minimized 

environmental impacts scenario. As a result, in the minimized environmental 

impacts scenario, 22 premature deaths can be further prevented per year 

compared with the BAU scenario. The comparisons between BAU scenario 

and minimized environmental impacts scenario (free use of bike sharing to 

connect transit) are shown in Table 4-7. 

 

Table 4-7. The health benefit comparisons between different scenarios 

Items 

2015 

BAU 

S2 

FREE 

Daily cycling population 44928 52416 

Daily walking population 136448 170310 

Daily cycling time (min) 17 16 

Daily waking time (min) 36 36 

Relative risk for cycling 0.89 0.89 

Relative risk for walking 0.90 0.90 

Prevented premature deaths (per year) 93 115 

 

The human health impacts taking into consideration both physical 

activity and ambient air pollution were also analyzed. Woodcock et al. (2014) 

concluded that the health benefits of walking and cycling outweigh the 
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negative effects on health from air pollution, even in cities with high levels 

of air pollution. Tainio et al. (2016) generated a different conclusion, finding 

that in areas with PM2.5 concentrations of 100 μg/m3, harms would exceed 

benefits after 1 h 30 min of cycling per day or more than 10 h of walking per 

day. The average annual PM2.5 concentrations in Taipei City is around 19 

µg/m3 (World Health Organization, 2016). The real-time PM2.5 

concentrations in Taipei City can rise to 50 µg/m3 (Taiwan Environmental 

Protection Administration, 2017). Table 4-8 shows the “tipping point” and 

“breakeven point” of cycling and walking in Taipei with different air qualities 

based on the findings of Tainio et al. (2016). The “tipping point” means an 

increase in physical activity (such as cycling and walking) will no longer lead 

to health benefits and the maximum benefits are reached. And the “breakeven 

point” represents no longer health benefits incurred by physical activity in 

such air polluted environment, harms higher than benefits when engaging 

more physical activity. When exposed to the average and maximum PM2.5 

level in Taipei, the maximum health benefit (tipping point) of cycling can be 

reached in 465 min and 75 min, respectively. Cycling becomes harmful 

(breakeven point) when exposed to the maximum PM2.5 environment (PM2.5 

concentrations of 50 µg/m3) for more than 5 hours. Actually, 70% people in 

Taipei ride bikes for short trips within 30 minutes; 23% of people’s riding 

time is between 30 and 60 minutes, and only 6% of people use a bike for trips 

over 60 minutes long (Pai & Pai, 2015; Pai, 2012). Thus, most bike users in 

Taipei City stay in a healthy exercise range even during a maximum PM2.5 

concentration environment.  
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Table 4-8. The “tipping point” and “breakeven point” of cycling and walking 

PM2.5(µg/m3) 

Tipping point 

(min cycling/day) 

Breakeven point 

(min cycling/day) 

Tipping point (min 

walking/day) 

Breakeven point 

(min walking/day) 

19 465 >960 >960 >960 

50 75 300 630 >960 

 

There are number of limitations in this research. To resolve current 

methodological limitations, future model development could first incorporate 

weather effects. Individuals hesitate to ride a bike when facing adverse 

weather (Faghih-Imani et al., 2017a). When there is favorable weather, the 

number of trips and travel time have both been shown to be greater (Caulfield 

et al., 2017). Several weather conditions (such as precipitation) should be 

simulated based on comprehensive historical weather data. Second, in 

addition to the commute activities modeled in this study, leisure travel also 

contributes to the usage of bike-sharing. People using bike-sharing for 

tourism also have different values for travel time, travel cost, and so on, often 

being less sensitive to travel time compared to commuting citizens. Tourists’ 

travel patterns can be modeled further in the course of bike-sharing system 

development. Third, some studies have revealed that psychological factors 

(such as comfort and perceptions of safety) have a significant influence on 

bicycling behavior and should be given further attention (Heinen et al., 2011). 

In future research, agent decision-making should also incorporate these 

psychological factors.   
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4.5 Summary 

In this study, a multidisciplinary approach of spatial multi-agent 

simulation for improving the sustainability of an integrated transportation 

system with bike-sharing was developed using real spatial information and 

modeling disaggregated passenger behaviors. An ABM type model was 

developed to examine the usage of bike-sharing in a city’s integrated 

transportation system by simulating the interactions between passengers and 

transport modes. The model can dynamically display how passengers’ mode 

choices evolve under the influences of different transport policy strategies. In 

this model, all the modes operate in their traffic lines based on real road 

network data, and all the potential passengers commute by starting their trips 

from home and finishing at the workplace. The inclusions of these spatial 

behaviors enable the model to more accurately reflect the real transportation 

system.  

Comparative analysis of the simulation results for two scenarios provide 

insights into the application of three traffic system measures, namely building 

more dockings near bus stations, free use of bike sharing to connect transit, 

and 2NTD coupon for every completed trip. The results indicate that the 

second strategy is the most sustainable one, with the corresponding total 

damage cost of commute pollution reduced by 1.5 million US dollars per year 

compared to the 2015 BAU scenario, and 22 premature deaths further 

prevented per year due to the mode shift to cycling and walking. However, 

bike-sharing has limited influence on the use of private modes in Taipei, 

especially for motorcycle owners. Discouraging motorcycle use may produce 

the most immediate positive effects from an environmental perspective. This 
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study provides an advanced tool to simulate bike-sharing decision making 

and understand environmental consequences under various policy scenarios. 

The model can be applied to other cities to aid in improving the sustainability 

of integrated transportation systems with bike-sharing.  
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Chapter 5 Conclusions 

Through three case studies (high-speed rail, autonomous taxi, and bike 

sharing), this thesis demonstrates that integrating individual travel patterns 

and spatial transportation maps into sustainability assessment can enhance 

our understanding of the economic, social, and environmental implications of 

these emerging transportation systems and better support decision making. 

Based on the results of this thesis, the following major conclusions can be 

drawn. 

 

Taking into consideration the interactions between transportation modes 

can improve understanding of the life-cycle environmental performances 

of a multimodal transportation system.  

Previous studies related to the environmental impacts of transportation 

systems mostly use LCA alone. For the case of HSR, market behaviors are 

integrated into the assessment of environmental performances of transport 

modes, with due attention to interactions between existing transportation 

modes and newly-built HSR. The results of the case study indicate that the 

Guangzhou-Shenzhen-Hong Kong HSR can gain 13% market share in the 

opening year. With the introduction of Guangzhou-Shenzhen-Hong Kong 

HSR, the system life-cycle energy consumptions, GHG emissions, and SO2 

emissions of the cross-boundary transportation system are increased by 17%, 

16%, and 42%. In order to minimize the environmental impacts, HSR needs 

to sustain a high occupancy rate—more than 80%; the through train may need 

to be gradually closed, which would reduce the system life-cycle 

environmental impacts by 30%; and the boundary train may need to cut its 
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daily frequency as its mode share decreases with the introduction of HSR. In 

contrast, airlines will need to increase their daily flight frequencies or 

capacity as it provides a different service than HSR. 

 

Vehicle operation in traffic lines based on real road network data can 

lead to a more realistic representation of real-world transportation 

activities. 

Most autonomous vehicle simulations are based on a highly-developed 

grid or hypothetical city with constant vehicle travel speed and uniform 

passenger behavior. In the autonomous taxi case, all the vehicles travel on the 

real road network at various speeds, and all the passengers have their own trip 

characteristics such as commuting from home to office at a specific time. The 

simulation results of the autonomous taxi study demonstrate that the 

optimized fleet size obtained with minimized VMT and reasonable average 

wait times for passengers is only 20% of the fleet size in the BAU scenario. 

The optimized fleet size scenario shows that total commute costs are reduced 

by 38%, and the daily vehicle utilization is increased from 14 minutes to 92 

minutes, though daily road occupancy also increases by 12%. This system’s 

energy consumption, GHG emissions, and SO2 emissions increase by 16%, 

25%, and 10%, respectively compared to the BAU scenario, which is mainly 

due to increased unoccupied VMT and less ride-sharing. These phenomena 

cannot be captured using aggregate travel patterns based on a hypothetical 

city. 
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Individual travel behavior information can guide bike sharing system 

development. 

Evaluating the environmental and social performances of different bike 

sharing operation strategies requires detailed travel behavior information, 

which includes social-economic information on the passengers, and the 

origins and destinations of their commute trips. This information was 

generated from travel surveys and literature reviews. In the case of bike 

sharing, the interactions between bicycling and other modes that incorporate 

the influence of passenger behaviors were simulated. Results from this case 

study show that free use of bike sharing to connect the first/last mile trip of 

the transit is the most effective operation strategy, with cycling mode share 

increases from 5.6% to 6.3%, and the corresponding total damage costs of 

commute pollution reduced by 1.5 million US dollars per year, and 22 

premature deaths further prevented per year due to the mode shifts to cycling 

and walking. As for the human-health aspect, most bike users in Taipei City 

stay in a healthy exercise range even during a maximum PM2.5 concentration 

environment. These parameters can be directly calculated from the individual 

travel pattern data in this research. 

 

Future research  

In the HSR case study, given data availability constraints, the LCI of 

cross-boundary modes was estimated by adjusting the LCI of reference 

modes from the literature. In future research, a hybrid life-cycle analysis 

method integrating process-based LCA and economic input-output based 

LCA could be applied to more thoroughly evaluate the life-cycle 
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environmental performances of these cross-boundary modes. At the current 

stage, only the occupancy rate is discussed as one dimension in scenario 

simulation. Future simulation scenarios could include other dimensions such 

as fuel production (different electricity mix), accessibility change (with or 

without feeder bus), market influences (passengers’ sensitivity to ticket fare 

may be lower during holidays), and mode complementarities (HSR replacing 

short-haul airline as a transfer mode to an international airline). 

In the autonomous vehicle case study, the autonomous taxi is only 

applied to commute travel. Whether more aTaxi ride-sharing would occur 

when aTaxis are integrated into overall daily travel (for recreation and 

shopping in addition to commuting) and what the consequent impacts might 

be are important questions for future research. In the present study the aTaxis 

are only used for end-to-end trips. Using aTaxis to connect the first/last mile 

trips of transit will be explored further in ongoing work. Meanwhile, more 

realistic features can be added to this modeling framework, such as 

consideration of traffic signals and further validation of the model through 

vehicle trips crossing the main intersection. 

As for the bike sharing case study, weather effects will be incorporated 

in our future research, with several weather conditions (such as precipitation) 

simulated based on comprehensive historical weather data. Not only 

commute travel but also leisure trips will be simulated as passengers have 

different weights for the travel cost and travel time with different trip 

purposes. And some psychological factors (such as safety concerns) will be 

considered as one of the key factors influencing passengers’ behaviors.  
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The three emerging sustainable transportation systems consisting of 

high-speed rail, autonomous taxis, and bike sharing are discussed separately 

in the research that we have so far performed. In our future work, these 

emerging transportation systems are integrated in the case of the Hong Kong 

Transportation system. The theory of system of systems is applied to develop 

the model. It is important to note that the theory of system of systems does 

not yet have a standard, widely accepted definition. One definition (Popper 

et al., 2004) is “a collection of task-oriented or dedicated systems that pool 

their resources and capabilities together to obtain a new, more complex 

‘meta-system’ which offers more functionality and performance than simply 

the sum of the constituent systems.” In the case of Hong Kong, several 

transportation systems including high-speed rail, bike sharing, mass transit 

railway (MTR), and other transportation systems operate independently but 

have to compete and cooperate to gain the passenger market shares. Based on 

the findings of the second case of autonomous taxis, we will not discuss 

driverless vehicles or electric vehicles in the case of Hong Kong, given their 

inefficient space utilization in operation and parking, and their unsatisfactory 

environmental performances. With double the space for pedestrians and 

cyclists and half the space for cars, Stockholm’s vision can be used as a 

reference for Hong Kong to build a compact, green, and connected city. 

Development of efficient mass public transport, along with promotion 

of non-mechanized modes like walking and cycling, is widely suggested as a 

sustainable solution to improve mobility in big cities (Dimitriou & 

Gakenheimer, 2011; Vuchic, 2005). People in Hong Kong are highly 

dependent on the MTR and bus system, with 90% of journeys ridden on 
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public transport. First-/last-mile connectivity is one of the major issues in the 

current system of Hong Kong. These first and last mile journeys are mostly 

completed by walking, which is significant as an active mode of 

transportation used in the City of Hong Kong. However, the use of bicycling 

to connect the first/last mile trips of transit is below expectations. Figure 5-1 

shows the transit and bicycle network in Hong Kong. 

 

Figure 5-1. Hong Kong transit and bicycling network 

Note: BS here means bike sharing 

 

Public bike sharing was originally established as a means to facilitate 

better first- and last-mile connections between public transit stations and 

desired destinations (DeMaio & Gifford, 2004; Liu et al., 2012; Midgley, 

2009; Shaheen et al., 2013). Nowadays there are more than four private bike 
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sharing companies operating in Hong Kong, and all of them are free-floating 

bike sharing systems (FFBSs).   

FFBS is different from station-based bike sharing (SBBS), in that bikes 

in the former system can be locked to an ordinary bicycle rack (or any solid 

frame or standalone), thus eliminating the need for specific stations. The users 

of FFBS can drop off the bike wherever they want. In practice, this has led to 

complaints from Amsterdam citizens, who are annoyed by the sheer number 

of bicycles taking up space in the city. In response, Amsterdam decided to 

impose a ban on rental free-floating bike sharing systems (Joris, 2017). Hong 

Kong has experienced the same problem as Amsterdam. Given the 

spontaneity characteristics of FFBS, some FFBS bikes are illegally parked 

and affect the townscape (Ye, 2017). Specifically designed parking spots for 

bike-sharing could address the issues described above. The location of the 

FFBS parking spots in relation to the public transport network is one of the 

keys to the success of such complementary programs (García-Palomares et 

al., 2012; Lin & Yang Ta-Hui, 2011; Martens, 2007). FFBS can act as a better 

seamless feeder service to public transit throughout Hong Kong City with 

such optimized parking spots. Thus, understanding the actual usage patterns 

of bike sharing and designing parking spots for FFBSs are the major 

objectives of this study. This study will propose a GIS-based ABM model to 

investigate the spatial distribution of the potential demand for first/last mile 

trips, locate parking lots in relation to the existing transit networks, and 

determine the station capacity based on real demand. Based on this model, 

the parking lots that are relatively isolated with low demand will also be 

eliminated in the system. Lin et al. (2013) used an iterative greedy-drop 
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heuristic for locating bicycle stations based on a hypothetical transport 

network. García-Palomares et al. (2012) optimized the location of bike 

sharing stations with a GIS approach, but the passengers’ behaviors not 

considered. To the best of our knowledge, there is relatively little literature 

integrating free-floating bikes into a public transportation system with 

consideration of the spatial structure of the transport network and users’ 

interaction and adaptation behaviors at the same time, especially in the case 

of Hong Kong. 

Free-floating bike services offer scholars unprecedented access to large-

scale ridership data by tracking bikes in real-time with built-in Global 

Positioning System (GPS). Ridership data of free-floating bikes provide 

accurate origins and destinations of bike trips. The ridership data of free-

floating bikes are collected via web-mining techniques from bike sharing 

websites.  

A program has been built to simulate the requests from the client-side 

program and collect the server’s response, containing a list of nearby 

available bikes. The hired bike will disappear from the pool, and if the trip 

terminates, it will reappear with a new coordinate. Therefore, after cyclical 

collection, the origin and destination of a bike trip can be obtained by 

searching for the geolocation change of each bike. We have collected 

ridership data with a total of approximately 8848 bikes from February 8th to 

28th, 2018, except for the 14th when renewal of the service subscription 

caused a temporary suspension of data collection and access. Data-mining 

bike collocation with metro stations or bus stops can deepen our 

understanding about the extent to which bikes facilitate first- or last-mile 
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connections to public transportation. The hotspots of bike usage located less 

than 300m from transit stations are identified as potential parking lots. 

Household Interview Survey (HIS) data are used to assign trip sequences to 

individuals and define the social-demographic characteristics of individuals. 

Each individual has a travel diary which consists of a sequence of trips that 

the person makes in a weekday (such as from home to transit station at 7 a.m. 

or from transit station to workplace at 8 p.m.). As the frequency of bus and 

MTR services are high (less than 10 min headway), the model assumes that 

passenger arrival time is independent of the bus and MTR schedule. 

More recently, computation developments in seamless integration of 

GIS into ABM and the possibility of simulation of geospatial features have 

significantly improved the capacity of ABM to portray more realistic 

processes and patterns of urban environments (Taillandier et al., 2012). The 

agents in this model includes biker, walker, and parking lot. Biker agents 

move with a speed randomly set between 8 and 14 km/h. Walker agents move 

at a speed less than 5 km/h. While moving the agents, the model can draw the 

paths for visualization, and also save all paths as shapefiles for further 

analysis. There is the possibility of ‘bike share programs showing some social 

contagion, spreading within social groups to increase their use’ (Schoner et 

al., 2016). The small-world theory will be used to construct the passengers’ 

social network (Watts & Strogatz, 1998). Passengers’ mode choices will be 

influenced by each other according to their social networks. 

The model will be developed to optimize the distribution and capacity 

of parking lots in the free-floating bike sharing system, to achieve a transport 

system as efficient and sustainable as economically and socially possible. The 
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origin-destination first/last mile trips of the users consists of three links: (1) a 

user walks to pick up a bicycle at a parking lot near his/her origin; (2) the user 

rides the bicycle to another parking lot near his/her destination and locks the 

bike; and (3) the user walks from the check-in parking lot to the destination. 

The origin and destination here refer to the users’ home and 

inbound/outbound transit stations. Figure 5-2 illustrates the first/last mile 

trips between the transit stations and homes. 

 

Figure 5-2. First/last mile trips connected by bike 

 

The accessibility of FFBS parking lots is a crucial factor in encouraging 

bike sharing use. Shorter access time from origin to parking lots may 

persuade more people to use bike sharing to connect to transit, consequently 

making public transit more competitive than private transport modes. Lin et 

al. (2013) showed that bicycle stations should not be located more than 300–

500 m from important origins and destinations of traffic. A preference survey 

conducted by the Melbourne and Brisbane bike sharing systems also 
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indicated that users are more likely to use bike-sharing if a station is within 

250 meters of their workplace (Fishman et al., 2014b). Compared with SBBS, 

FFBS is more convenient and the average walking distance of FFBS is shorter 

(Pal & Zhang, 2017). In Hong Kong, the main factors affecting the choice of 

transport mode are travel time and walking distance between location for 

getting on/off the mechanized transport and the locations of trip 

origin/destination. Owing to the heat and humidity in Hong Kong, the outdoor 

walking time and the waiting time are of high importance to service quality. 

The objective is to minimize the sum of the travel costs incurred in the 

first/last mile trips (including the explicit cost of cycling charge and the 

hidden cost related to passengers’ value of time), capital costs of public 

bicycles, and the operating cost of the FFBS system. Thus, there is a basic 

tradeoff in determining the number and locations of bicycle stations. In 

comparison to the prevailing SBBS, FFBS saves on start-up cost by avoiding 

the construction of expensive docking stations and kiosk machines. Thus, the 

construction cost of parking lots is not considered in this study. The total cost 

is expressed in Eq. (1). 

 Min TC = 𝑤1 × (𝐸𝐶 + 𝐻𝐶) + 𝑤2 × (𝐶𝐶 + 𝑂𝐶) (1) 

Where TC refers to the total cost, and EC, HC, CC, and OC represent the 

explicit cost, hidden cost, capital cost of bike, and operating cost of the system, 

respectively. And w1 and w2 are the weights of user’s cost and system’s cost. 

The capital cost of Mobike system is estimated at $466 per bicycle, and 

OfO is estimated to be $78 per bicycle. But OfO bikes do not have GPS 

tracking systems nor power generation systems. As for the operating costs, 

the cost of maintenance, distribution, staff, insurance, office space, storage 
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facilities, website hosting, and maintenance are taken into consideration. The 

average operating cost of the bike sharing systems in New York and 

Minneapolis is around $1,600 per bicycle (New York City Department of 

City Planning, 2009; Twin Cities Bike Share, 2008). DeMaio (2009) and 

Midgley (2009) estimated that the annual operating costs per bike vary from 

$250 to $1,600, depending on the used technology. 

The model will be calibrated with the real-time free-floating bike 

movements. Except for the business as usual scenario, some scenarios also 

will be simulated based on different operation strategies. Three different 

scenarios are considered: 1) Different demand scenarios during peak and non-

peak hours. In this scenario, the busiest parking lots will be identified, and 

isolated parking lots with less utilization will be closed. Some suggestions 

will be proposed for better utilization of each lots. 2) Limited budget 

scenarios with different total numbers of parking lots will be explored to 

determine the most cost-effective scenarios. 3) Different incentive scenarios. 

This scenario will be conducted to introduce a subsidy to encourage the use 

of certain parking lots and stop bicycle from over-accumulating. Figure 5-3 

shows the first/last mile trip network with potential parking lots in Sha Tin, 

Hong Kong. 
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Figure 5-3. First/last mile trip network in Sha Tin, Hong Kong 

 

The public transit usage before and after deployment of FFBS services 

will be evaluated, which is also consistent with the objective—to enhance the 

bicycle and transit connections and promote the usage of public transit. 

Understanding how bike sharing and public transit systems are 

interrelated is vital for planning a mutually reinforcing sustainable transport 

network (Campbell & Brakewood, 2017). We hope that a better 

understanding of the relationship between these two different modes can 

improve the first/last mile access to mass transit in Hong Kong. 
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Appendices 

 

1. ALENT methodology overview 

The process of the model simulation contains the following steps (see 

Figure S1). First, a cross-boundary mode choice behavior survey is 

conducted. Four most influenced key drivers for passenger mode choice are 

identified. There are travel time, ticket fare, service quality, and accessibility 

level. Specifically, the accessibility level of specific transport mode is 

calculated with this GIS map, which depends on Euclidian distances (Li & 

Liu, 2007) between the mode’s station and urban centers. GIS map is used 

for mapping of Pearl River Delta and its main routes, especially for the airline, 

high-speed rail link, train link and highway systems in this case.     

Second, a transport market is created including passengers and modes, 

in this case of different ways to choose their satisfied modes. Each passenger 

has social connections with other passengers who are called the “friends” of 

the passenger. The social networks we present here is from the model 

proposed by Watts and Strogatz (1998), which fits very well on both small-

world and clustering characteristics. This “small-world phenomenon” was 

confirmed by a study of Milgram (1967). It is indicated that most people are 

separated by on average only six degrees. Social networks constructed in such 

a way can make the information spread much faster, then people can make 

decisions in a more holistic way.   

Each mode has specific values of four dimensions, travel time, ticket 

fare, service quality, and accessibility level. While each passenger owns two 

specific parameters, Uij and Unij. Uij is the total utility of passenger i choosing 
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mode j and Unij reflects how certain a consumer i is when choosing mode j. 

At the initial condition, each passenger is assigned one of the available modes. 

In the next step choice, Uij and Unij are calculated based on the passenger’s 

current choice and friends ’  choice. The values of total utility Uij and 

uncertainty Unij are then compared with the passengers’ own Umin-minimum 

satisfaction and Unmax-maximum uncertainty. One of the four cognitive 

processes is performed and a choice is accordingly made. These choice 

behaviors will continue until the model run is terminated, then the mode 

shares among transport modes are presented. Third, the corresponding 

operational and life-cycle environmental performances of transport modes 

are calculated based on passengers’ mode choices. For example, passengers’ 

choices may change as the opening of HSR, the following environmental 

impacts should be investigated. Finally, in order to minimize the 

environmental impacts, several scenarios at the operation stage are simulated 

based on simulated mode shares. Modes’ environmental performance then 

get better by these environment-friendly actions. The ALENT model will lead 

to a virtuous cycle for the environmental performances of the transport 

system. 
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Figure S1. Process overview of the study 

 

2. Introduction of referenced and studied modes in ALENT model 

The basic information of the referenced and studied modes is listed in 

Table S1 (MTR Corporation Limited, 2007; Wang & Ding, 2012). The 

Guangzhou-Shenzhen-Hong Kong HSR (GSH HSR), boundary train, and 

through train each have their own specific vehicle type. As for aircraft and 

boundary bus, Air A320 and urban transit bus are chosen as representatives 

based on sales data for the aircraft and buses that are the most commonly 

purchased vehicle types in China (China Association of Automobile 

Manufacturers, 2016; Fang, 2011). As for HSR, Inter-City Express 3 (ICE 3) 

or Intercity Express 3 is a family of Germany's Inter-City Express HSR 

vehicles. The LCI of GSH HSR vehicles is estimated by adjusting the LCI of 

ICE3, since GSH HSR vehicle CRH3 uses Siemens Velaro, or Germany’s 

ICE 3, as a prototype with mostly the same structure and vehicle material 

(Siemens, 2005). The range in mode energy consumption is based on serval 
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factors including the age of the modes and physical size (Givoni, 2007; Van 

Wee, Van Den Brink, & Nijland, 2003). Thus, the LCI for China’s CRH3 

vehicle is estimated by multiplying the LCI of Germany’s ICE-3 vehicle with 

the weight ratio of China’s CRH3 vehicle to the ICE-3 vehicle (Yue et al., 

2015). 

As for train, BART is San Francisco’s Bay Area Rapid Transit System, 

whose environmental data comes from a heavy rail long distance system in 

the Ecoinvent 3.0 database (SimaPro, 2006). It is used to represent the 

boundary train and through train in this study. The differences between 

boundary train and through train are their different operate routes between 

Hong Kong and Mainland China. Boeing 737 is assumed as the representative 

of the Airbus A300s, Boeing 717, 727, 757, 777 (Chester, 2008). Urban buses 

are represented by a typical diesel-powered 40-foot vehicle (Federal Transit 

Administration, 2011). The referencing modes are selected to represent the 

studied modes as they have a similar size and speed to studied modes. So the 

LCIs of the studied modes—boundary train, through train, aircraft, and 

boundary bus are estimated in a similar way as far HSR. 
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Table S1. Basic information on referenced modes and studied modes 

Modes Vehicle 

type 

Vehicle 

weight 

(Empty/full

)/t 

Operating 

speed 

(Km/h) 

Total seats Vehicle 

fuel 

HSR* ICE3 405/420 330 441 Electricity 

GSH HSR CRH3 433/473 300-350 556 Electricity 

Train* Rapid 

Transit 

(BART) 

360/220 53 530 Electricity 

Boundary 

train 

SP1900 444/494 120 626 Electricity 

Through 

Train 

Lok 2000 564/617 120-160 648 Electricity 

Midsize 

aircraft* 

Boeing 737 37/48 780 140 Aviation 

kerosene 

Midsized 

aircraft 

A320 42 885 158 Aviation 

kerosene 

Urban bus* Urban 

transit bus 

11/16 70-80 60 Diesel 

Boundary 

bus 

Urban 

transit bus 

14/19 70-80 60 Diesel 

*Modes for references 

 

Table S2 and Table S3 represent the operational and life-cycle 

environmental impacts of studied modes. These LCI results were estimated 

by adjusting the LCI of referenced modes (Chester & Horvath, 2010a, 2010b; 

Chester & Horvath, 2009; Chester, Horvath, & Madanat, 2010; Chester & 

Ryerson, 2014; Grossrieder, 2011; Yue et al., 2015). These LCI results per-

VKT combined with dynamic mode shares were used for the environmental 

performance evaluation of the modes on a passenger-kilometer basis. 
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Table S2. Operational environmental impacts of studied modes 

Modes 

Energy GHG SO2 

(MJ/VKT) (gCO2e/VKT) (g/VKT) 

HSR 428 31,750 188 

Boundary Train 210 11,470 64 

Through Train 266 14,570 80 

Aircraft 300 20,200 6.5 

Boundary bus 32 2,400 0.022 

 

Table S3. Life-cycle environmental impacts of studied modes 

Modes 

Energy GHG SO2 

(MJ/VKT) (gCO2e/VKT) (g/VKT) 

HSR 660 43,100 225 

Boundary Train 380 22,200 105 

Through Train 486 28,200 133 

Aircraft 355 25,000 19 

Boundary bus 43 3,300 1.9 

 

3. Cross-boundary mode choice behavior investigation results 

Table S4 presents a profile of the survey respondents. It shows that 55.0% 

of respondents are male and 45% are female. 16.9% of respondents are 20 

years old or younger, 48.2% between 21 and 40 years old, 28.9% between 41 

and 60, and 6.0% are 61 years old or older. The largest group indicated that 

the purpose of their trips is for leisure (57.2%=285), followed by commercial 

trips (20.5%=102), study (10.6%=53), visiting relatives (9.2%=46), and 

commuting (2.4%=12). The results are not surprising, given the growing 

tourism industry in Hong Kong. Respondents were asked how frequently they 

travel between Hong Kong and mainland China per month. More than 80% 

(80.9%) said once or less than once per month, 8.0% stated twice, 1.8% 

indicated three to five times, and 9.2% travel more than five times between 

Hong Kong and mainland China per month. Respondents were also asked to 

indicate their occupation. Almost a third (44.0%) are students, 17.1% work 
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in the service sector, 13.3% work in the manufacturing sector, 9.6% are 

government employees, and 16.1% are other. When asked about their travel 

destination, 25.3%, 18.3%, 17.5%, 10.0%, 9.4%, and 19.5% report going to 

Shenzhen, Guangzhou, Hong Kong, Zhongshan, Dongguan, and other places 

respectively. As for their monthly income, nearly 50% (50.6%) of 

respondents report that it is HKD10,000 or less, 20.9% are between 

HKD10,000 to 2,5000, 17.7% are between HKD25,000 to 40,000, 10.4% are 

between HKD40,000 to 60,000, and 0.4% are more than HKD60,000. The 

weighting of four key drivers—travel time, ticket fare, service quality, and 

accessibility level are set as 0.3054, 0.4896, 0.0786, and 0.1264, respectively 

among the 498 respondents. Ticket fare is more important than other key 

drivers in mode choice consideration. A limitation of the online survey is that 

the surveyed people are not a representative sample of the total population of 

Hong Kong. For example, only 6% of the respondents are 61 years old or 

older, while in Hong Kong, people who are older than 60 make up 21% of 

the total population. This is because certain populations like the elderly are 

less likely to have internet access and to respond to online questionnaires.  

 

4. Passengers’ cognitive processes 

Figure S2 shows the simulation results of the ALENT model—

passengers’ cognitive processes from 2003 to 2031. In the scenario 

simulation for 2003 to 2031, the mode choice of most passengers is primarily 

driven by repetition and deliberation behaviors. More than half of the 

passengers engage in repetition from 2003 to 2018, hence the market is stable 

(Janssen & Jager, 2001, 2003), as passengers choose transportation modes in 
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a habitual manner. But since the opening of HSR in 2018, the fraction of 

passengers engaging in repetition is decreasing, with more and more 

passengers engaging in deliberation. The market consequently became 

unstable with the introduction of HSR. A certain number of passengers have 

become harder to satisfy but very certain to choose the most satisfied mode. 

They are making their own decisions without consideration of their friends’ 

choices. From 2018 to 2031, this increase of passengers engaging in 

deliberation behaviors will cause growth in HSR mode share. 

 

Table S4. Profiles of respondents (N=498) 

Items Number Percent 

Gender 

Male 274 55.0% 

Female 224 45.0% 

Age 

20 or less 84 16.9% 

21-40 240 48.2% 

41-60 144 28.9% 

61 or above 30 6.0% 

Trip Purpose 

Commercial trip 102 20.5% 

Commute 12 2.4% 

Study 53 10.6% 

Leisure 285 57.2% 

Visiting relatives 46 9.2% 

Frequency travels per month 

Less than once or once 403 80.9% 

Twice 40 8.0% 

Three times - Five times 9 1.8% 

Above five times 46 9.2% 

Occupation 

Student 219 44.0% 

Manufacturing sector 66 13.3% 

Service sector 85 17.1% 

Government employee 48 9.6% 

Other - Write In 80 16.1% 

Destination 

Hong Kong 87 17.5% 

Guangzhou 91 18.3% 
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Shenzhen 126 25.3% 

Zhongshan 50 10.0% 

Dongguan 47 9.4% 

Other places from 

Mainland 97 19.5% 

Monthly incomes (HKD) 

Below $10000 252 50.6% 

$10001-$25000 104 20.9% 

$25001-$40000 88 17.7% 

$40001-$60000 52 10.4% 

Above $60000 2 0.4% 

Relative weightings of key drivers 

Ticket fare 0.4896 

Travel time 0.3054 

Service quality 0.0786 

Accessibility level 0.1264 
(Monthly income reported in RMB is changed to HKD) 

 

Figure S2. Fraction of cognitive processes from 2003 to 2018 

Note: As there are 1000 agents exist in ALENT model, here uses ‰ per thousand to 

describe the simulation results rather than % percent. 
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5. Sensitivity analysis of ALENT model 

Empirically based ABMs models often involve numerous parameters 

(Janssen & Ostrom, 2006). Sensitivity analysis is conducted to document the 

effectiveness of the parameters and increase the usability of the model (Ratto, 

Castelletti, & Pagano, 2012). Passengers’ preferences for travel time and 

ticket fare are two significant parameters in this study. Each parameter is 

tested separately while leaving the other parameter in the calibrated 

configuration as described for the 2018 parameter settings. The perturbations 

imposed on the parameters are meant to consider the maximum realistic 

variations of modes’ travel time and ticket fare in the cross-boundary 

transportation system. Then all the possible combinations of high and low 

values of the two parameters that mostly affect the mode shares are tested 

(Table S5 and Table S6). 

 

Table S5. Sensitivity analysis of passengers’ travel time preference 

Travel 

time 

dimensio

n μ 

Travel 

time σ 

Correspo

nding 

mean 

travel 

time 

(min/100

Km) 

Mode share changes 

HSR Boundar

y train 

Aircraft Through 

train 

Boundar

y bus 

0.160 0.300 134 —  —  —  —  —  

0.187 0.300 130 19.3% -3.8% 4.2% 10.2% 6.7% 

0.214 0.300 126 18.9% -3.5% 6.3% 14.6% 5.1% 

0.241 0.300 121 49.6% -7.6% 4.5% 4.6% 14.1% 

0.268 0.300 117 61.3% -11.1% 15.8% 10.8% 19.9% 

0.295 0.300 113 65.7% -11.2% 10.7% 10.3% 20.6% 

0.322 0.300 108 71.3% -15.8% 12.2% 4.6% 33.4% 

0.349 0.300 104 94.5% -16.4% 21.4% 10.2% 29.9% 

0.376 0.300 100 148.7% -21.5% 10.1% 9.8% 39.1% 

0.403 0.300 96 154.7% -22.5% 24.7% -10.4% 40.4% 

0.430 0.300 91 199.0% -27.3% 27.9% -9.2% 47.3% 

0.457 0.300 87 209.0% -27.7% 21.7% 3.2% 47.2% 
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0.484 0.300 83 254.7% -30.9% 38.4% -12.1% 48.4% 

0.511 0.300 78 263.9% -33.8% 20.7% -1.2% 57.9% 

0.538 0.300 74 325.2% -37.0% 27.8% -6.1% 58.0% 

 

Table S6. Sensitivity analysis of passengers’ ticket fare preference 

Ticket 

fare 

dimensio

n μ 

Ticket 

fare σ 

Correspo

nding 

mean 

ticket 

fare 

(HKD/1

00Km) 

Mode share changes 

HSR Boundar

y train 

Aircraft Through 

train 

Boundar

y bus 

0.886 0.300 171 — — — — — 

0.892 0.300 162 0.8% -1.2% -4.9% -2.4% 2.8% 

0.898 0.300 153 -3.9% -1.2% -4.1% -8.7% 4.9% 

0.904 0.300 144 -3.6% -0.9% -6.5% 11.0% 4.0% 

0.910 0.300 135 -6.0% 2.1% -10.6% 2.9% 2.6% 

0.916 0.300 126 3.4% -2.7% -11.7% -0.7% 5.4% 

0.922 0.300 117 3.2% -2.2% -13.0% 8.1% 4.7% 

0.928 0.300 108 -5.2% -1.6% -5.4% 4.8% 5.7% 

0.934 0.300 99 -8.0% 0.5% -18.3% -12.2% 8.3% 

0.940 0.300 90 -1.8% -1.7% -22.3% 7.8% 8.8% 

0.946 0.300 81 -12.8% 3.3% -27.0% 5.2% 8.3% 

0.952 0.300 72 -4.3% 0.8% -27.1% -12.3% 8.8% 

0.958 0.300 63 -7.9% 1.0% -25.5% -14.3% 9.7% 

0.964 0.300 54 -3.3% -2.2% -30.5% 19.8% 11.6% 

0.970 0.300 45 -3.8% 1.3% -36.2% 5.6% 9.4% 

 

First, Monte-Carlo simulations were conducted by varying the 

passengers’ travel time preference dimension (from 0.160 to 0.538) based on 

calibrated preference trends, while keeping the ticket fare preference 

dimension the same as for 2018 setting—0.970. Owing to the faster travel 

time demand (from 134min/100Km to 74min/100Km), the mode shares of 

HSR, aircraft and boundary bus are increased by 325.2%, 27.8%, and 58.0%. 

Other competing modes may need to reduce their travel time by accelerating 

the transport vehicles, increasing daily frequencies, and/or improving the 

convenience of interchange. 
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Similar Monte-Carlo simulations were conducted by varying the 

passengers’ ticket fare preference dimension (from 0.886 to 0.970) while 

keeping its travel time preference dimension the same as the 2018 setting—

0.538. As the ticket fare varies among cross-boundary transport modes (from 

0.260 to 0.970), the sensitivity of passengers’ ticket fare preferences is not as 

obvious as travel time. Aircraft is the most affected mode with lower ticket 

fare preference of passengers (from 171 HKD/100Km to 45 HKD/100Km)-

the market share is reduced by 36.2%, with HSR as the second most 

negatively affected mode. While cheaper ticket fare demand has positive 

effects for boundary bus’s mode share.  

Social networks also will influence the modes’ market share in ALENT. 

The size of passengers’ social networks, represented by the social connecting 

probability is also discussed to see the effect on model outputs. Social 

connecting probability set to 1%, meaning each passenger’s social network is 

composed of its neighbors and 1% of non-neighbors. In general, the larger 

the social network, the faster information spreads, which implies that 

consumers will make more informed choices. Table S7 shows the mode share 

results based on different social connecting probabilities with 2018 parameter 

settings. As social connecting probability increases, more and more 

passengers choose HSR with the comprehensive consideration of four key 

indicators. But based on 2003-2014 historical mode share data, a small-world 

network with 1% connecting probability, also studied by Janssen and Jager 

(2001), proves best able to accurately represent actual social networks in 

ALENT. This social connecting probability also can be applied simulations 

for future years. 



164 

 

 

Table S7. The effect of social networks on transport mode share in 2018 

Social 

connecting 

pro 

Mode shares (‰) 

HSR 

Boundary 

train Aircraft 

Through 

train Bus 

0.01 136 436 54 16 358 

0.02 142 420 71 19 348 

0.03 154 425 68 20 333 

0.04 152 423 72 23 330 

0.05 137 423 70 22 348 

0.06 152 412 74 25 337 

0.07 148 405 74 26 347 

0.08 151 402 79 29 339 

0.09 150 414 78 24 334 

0.10 148 404 74 30 344 

0.11 154 401 78 29 338 

0.12 153 392 78 26 351 

0.13 153 405 78 30 334 

0.14 153 402 76 27 342 

0.15 154 398 70 29 349 

0.16 154 403 77 29 337 

0.17 160 405 71 26 338 

0.18 155 401 71 31 342 

0.19 155 396 78 30 341 

0.20 163 389 73 33 342 

 

6. Other simulation results of ALENT model 

Based on passenger preference trends, the mode shares of cross-

boundary transportation systems from 2018 to 2031 also can be estimated 

(Figure S3). Here we assume the Passengers’ expectations for the ticket fare 

dimension for the boundary bus is assumed to remain the same as in 2018—

0.970 (45HKD/100Km), as it is the cheapest fare among cross-boundary 

modes, and the travel time dimension is expected to continue to grow by 0.01 

per annual from 2018 to 2031 which is a bit slower than the annual growth of 

0.027 was from 2003 to 2018. For example, the passengers’ expectation 

preferences for travel time and ticket fare dimensions in 2031 are set as 0.668 
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(53mins/100Km) and 0.970 (45HKD/100Km). It should be acknowledged 

that the travel time, ticket fare, service quality, and accessibility level of the 

transport modes are assumed unchanged during these years as the high degree 

of freedom of the model. 

Figure S4 shows that the mode share of HSR would grow continually 

from 2018 to 2031, reaching the largest mode share in 2031, at 20.7%. At the 

same time the mode share of the boundary train shrinks from 43.1% to 34.1%, 

a 21% reduction. Similarly, the mode share of the through train, which is 

influenced by HSR, decreases by 31%. These variations could in part be 

explained by the shuttle service that HSR provides, which is a similar service 

as the boundary train and through train in this cross-boundary transportation 

market. The HSR shuttle service linking Hong Kong to Shenzhen and 

Guangzhou, may grab boundary train and through train market shares due to 

the shuttle’s faster speed. Meanwhile, the long-haul service of HSR may 

attract more passengers with the yearly increase of daily cross-boundary 

passenger trips. Compared to the through train and boundary train, the 

boundary bus and aircraft market shares are projected to experience a slight 

increase—6% and 5% respectively from 2018 to 2031. This shows that there 

are two different kinds of passengers existing in this market, bus passengers 

that are much more price sensitive, as HSR fares are two times greater than 

bus fares, and aircraft passengers that are much less concerned about ticket 

fares. 
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Figure S3. The mode shares of cross-boundary transport 

 

Figure S3 shows the daily ridership forecasts of cross-boundary modes 

from 2018 to 2031 based on passengers’ preference trends. The daily 

ridership of the boundary bus catches up with the boundary train after 2030. 

This is because the boundary bus has cheaper ticket fares compared to the 

boundary train. HSR also will become increasingly popular from the target 

opening year, whose daily ridership is projected to increase by 130% between 

2018 and 2031. Thus, overall environmental performance will improve after 

2018 with the high occupancy of HSR. Aircraft’s daily ridership is also 

forecasted to increase by 60% from 2018 to 2031. However the through 

train’s daily ridership has no obvious change during this time period. 
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Figure S4. Daily ridership forecast of cross-boundary modes from 2018 to 

2031 

 

The following example analyzing of the impact of boundary bus travel 

time highlights the importance of considering passenger-mode-environment 

interactions. The boundary bus has the second longest travel time in this 

cross-boundary transportation system, following only the boundary train. 

This experiment is aimed at finding the relationships between the bus’s travel 

time, the bus’s occupancy rate, and system life-cycle environmental 

performance. When the bus’s travel time is 70mins/100Km (the original 

travel time is 95mins/100Km), the occupancy rate of the bus is highest, 

increasing to 1.29. However, overall life cycle environmental performances 
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worsen with the increase of the bus’s occupancy rate, as well as specifically 

for HSR. The average life-cycle energy consumption, life-cycle GHG 

emissions and life-cycle SO2 emissions are increased by 3%, 3%, and 1%, 

respectively based on the original scenarios. 

These results thus may challenge the general assumption that a higher 

occupancy rate inevitably generates lower environmental impacts. These 

particular results can be explained by the reduced HSR market share with the 

acceleration of the boundary bus, as more and more passengers with cheaper 

ticket preference choose the boundary bus over HSR, consequently also 

reducing HSR’s occupancy rate. The behavior of one mode not only 

influences its own environmental performance but can also affect overall 

conditions. Revealing such outcomes of passenger-mode-environment 

interaction is one of the distinctive features of ALENT. Thus, in this case 

maintaining the original, slower speed of the boundary bus may be more 

beneficial to the whole environment. 
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7. Cross-boundary passenger mode choice behavior survey 

Background 

In recent years, the Hong Kong government is becoming active in 

establishing the high-speed rail (HSR) to meet the increasing travel demand 

between Hong Kong and Guangzhou Pearl River Delta area.This survey is 

conducted to investigate the weighting of key drivers including run time, 

ticket fare, accessibility level and service quality which could affect 

passengers’ travel mode choice travelling between Hong Kong and Pearl 

River Delta so as to estimate the passenger sharing of transport modes 

including high-speed rail, Guangdong through train, bus, airplane and East 

rail. 

Key Drivers: 

1. Run time: 

The operation time of one transport mode travelling from starting point to 

destination with the unit of minute. 

2. Ticket fare: 

The non-discounted fare of one transport mode with the unit of HKD. 

3. Service quality: 

This includes car cleanness, neat appearance of employee, employee service 

attitude, comfort of air conditioning, on-time performance, and the 

convenience of reservation and ticketing. 

4. Accessibility level: 

This represents a locational characteristic that permits station or airport to be 

reached by the efforts of those at other places using various transport modes. 
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It is related to its geographical location (e.g. distance to urban center and other 

transfer station or airport) and the conditions of road networks. 

 

The objective of this survey: 

1. To identify the key drivers for passengers’ choices and the respective 

weights of key drivers 

2. To predict the basic passenger occupancy trend in the future so as to plan 

future transport service in Hong Kong 

 

It is pleased if you could spend around 5 minutes to complete the 

questionnaire. 

 

Statement of purposes 

1. All data will only be used for research purpose. The confidentiality of 

information you provide will be carefully protected. 

2. The personal data collected in this survey are only for uses stated above. 

Only aggregate information but not individual’s details will be released to 

other parties or authorities. 

 

Part A: Background Information 

Please ✓ your information in the following. You should only ✓ one option 

unless specified. 

1. Gender 

O Male 

O Female 
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2. Age 

O 20 or less 

O 21-30 

O 31-40 

O 41-50 

O 51-60 

O 61 or above 

 

3. Usual Trip Purpose 

O Commercial trip 

O Commute 

O Study 

O Leisure 

O Other - Write In__________ 

 

4. Income per month (choose either one of HKD and RMB) 

   Hong Kong Area (HKD) 

O Below $10000 

O $10001-$25000 

O $25001-$40000 

O $40001-$60000 

O Above $60000 

   Pearl River Delta Area (RMB) 

O Below ¥4000 

O ¥4001- ¥8000 

O ¥8001- ¥15000 

O ¥15001- ¥20000 
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O Above ¥20000 

 

5. How often do you travel between Guangzhou and Hong Kong per month? 

O Less than once or once 

O Twice 

O Three times - Five times 

O Above five times 

 

6. Occupation 

O Student 

O Manufacturing sector 

O Service sector 

O Government employee 

O Other - Write In__________ 

 

7. Destination 

O Hong Kong 

O Guangzhou 

O Shenzhen 

O Zhongshan 

O Dongguan 

O Other places from PRD area 

 

8. Transport mode chosen for your usual trip 

O Guangdong through train 

O Bus 
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O Airplane 

O East rail (Lo Wu/Lok Ma Chau) 

 

9. Reasons to choose the transport mode you selected in Question 8 (You may 

choose more than one option) 

 Shorter travel time 

 Lower ticket fare 

 Higher accessibility level (e.g. convenience of reservation and ticketing, 

 stations accessibility) 

 Service quality (e.g. staff service attitude, on-time performance, neat 

 appearance of employee, car cleanness, comfort of air conditioning, 

 convenience of reservation and ticketing) 

 

Part B: Scenarios 

For Question 10, please compare each pair of key driver according to our 

degree of concern when choosing a transport mode. (e.g. If you choose "0", 

this means you think the two key drivers are equally concerned. If you think 

that the key driver on the left is more important than the one on the right, 

please select a number between 1 and 8 on left side, and vice versa.) 

0= equally concerned 

2= moderately concerned 

4= strongly concerned 

6= very strongly concerned 

8= extremely concerned 
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10. (a) Run time vs Ticket fare 

Run time 

 

Ticket fare 

 

10. (b) Run time vs Service quality 

Run time 

 

Service 

quality 

 

10. (c) Run time vs Accessibility level 

Run time 

 

Accessibility 

level 

 

10. (d)Ticket fare vs Service quality 

Ticket fare 

 

Service 

quality 

 

10. (e) Ticket fare vs Accessibility level 

Ticket fare 

 

Accessibility 

level 

 

10. (f) Service quality vs Accessibility level 

Service 

quality 
 

Accessibility 

level 
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Part C: Suggestions 

11. Please give a reasonable range for ticket fare about travelling between 

Hong Kong and PRD area (such as Guangzhou). 

O Less than 120 HKD 

O 120 HKD-180 HKD 

O 181 HKD-250 HKD 

O More than 250 HKD 

 

12. Please give a reasonable range for travel time about travelling between 

Hong Kong and PRD area (such as Guangzhou). (Travel time includes 

walking time, waiting time, on-board time and interchange time) 

O Less than 100 min 

O 100 min - 150 min 

O 151 min - 200 min 

O More than 200 min 

 

13. The Hong Kong High-Speed Rail will be operated in 2017. The travel 

time between Guangzhou and Hong Kong is estimated to be 48 minutes, the 

corresponding reasonable fare (one-way) will be: 

O $50-$150 

O $151-$300 

O $301-$500 

O $501-$800 

O Above $800 
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14. Do you think there will still be a need to construct the Hong Kong Airport 

3rd runway after the operation of the Hong Kong High-Speed Rail? 

O Yes 

O No 

O Not sure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thank You! 

End of Questionnaire 

Thank you for your participation! 
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