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Abstract

In the past decade, visual recognition systems have witnessed major advances that led to

record performances on challenging datasets. However, designing effective recognition algo-

rithms that exhibit robustness to the sizeable extrinsic variability of visual data, particularly

when the available training data are insufficient to learn accurate models, is a significant chal-

lenge. In this thesis, we focus on designing effective models and representations for visual

recognition, via exploiting the characteristics of visual data and vision problems and taking

advantages of classic sparse models and state-of-the-art deep neural networks.

The first part of this thesis is dedicated to providing a probabilistic interpretation for gen-

eral sparse/collaborative representation based classification. With a series of probabilistic

modelling for sample-to-sample and sample-to-subspace, we present a probabilistic collab-

orative representation based classifier (ProCRC) that not only reveals the inner relationship

between the coding and classification stages in original framework, but also achieves superior

performance on a variety of challenging visual datasets when coupled with the convolutional

neural network (CNN) features.

We then facilitate the inherent difficulties in detecting parts and estimating appearance for

fine-grained visual categorization (FGVC) problem, we consider the semantic properties of

CNN activations and propose an end-to-end architecture based on kernel learning scheme to

capture the higher-order statistics of convolutional activations for modelling part interaction.

The proposed approach yields more discriminative representation and achieves competitive

results on the widely used FGVC datasets even without part annotation.

We also consider weakly-supervised learning of web videos to alleviate the data scarcity is-

sue for video summarization. This is motivated by the fact that the publicly available datasets

for video summarization remain limited in size and diversity, making most supervised ap-

proaches difficult in learning reliable summarization models. We investigate a generative

summarization model via extending the variational autoencoder framework to accept both
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the benchmark videos and a large number of web videos. A variational encoder-summarizer-

decoder (VESD) is proposed to identify the important segments of raw video using attention

mechanism and semantic matching with web video. In this way, our VESD provides a practi-

cal solution for real-world video summarization.

We further incorporate sparse models into deep architectures as structured modelling in

learning powerful representations from datasets of limited size. The proposed DCSR-Net

transforms a discriminative centralized sparse representation (DCSR) model into a learnable

feed-forward network which can automatically impose the discriminative structure in data rep-

resentations. Experiments indicate that DCSR-Net can be regarded as a general and effective

module in learning structured representations.

Keywords: Image classification, Fine-grained visual categorization, Video summariza-

tion, Supervised learning, Sparse models, Deep neural networks.
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Chapter 1

Introduction

1.1 Background

As a longstanding, fundamental and challenging problem in the fields of computer vision,

visual recognition has been a topic of intensive research due to its significance both in un-

derstanding the contents of visual data as well as in the critical role it plays in a wide variety

of applications. The last decade brought visual recognition to an advanced state, and people

realized that feature representation is at the heart of many visual recognition systems. Nev-

ertheless, representation learning is challenging, especially coping with limited-sized visual

data, captured under controlled scale, viewpoint, illumination and intra-class variations.

The driving force for feature representation learning in visual recognition research is im-

age classification, which is the main topic in this thesis. Traditionally, numerous efforts have

been made to manually propose image features that should be invariant to some degree of

variability in appearance changes, and be discriminative against other objects and background

in the scene. The widely adopted Bags-of-Words (BOW) feature [147] obtains a histogram

of local image descriptors as the image representation. Better feature representations have

been achieved by introducing new feature encoding (e.g., Vectors of Locally Aggregated De-

scriptors (VLAD) [69], Fisher Vectors (FV) [123, 136]) and pooling techniques (e.g., spatial
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pyramid [88]). Furthermore, the sparse representation, which introduces the concept of spar-

sity and represents data as a linear combination of a few elements from a basis or dictionary,

has gained great interest in various domains such as face recognition [177], scene categoriza-

tion [185] and object detection [2]. The sparse representation is expected to have high fidelity

to the observed visual content and reveals its underlying structure and semantic information.

Due to the powerful sparsity prior, the sparse representation is less likely to become overfitted

and therefore requiring much fewer samples for training. From the viewpoint of classification,

the sparse representation tends to be formed from samples from its belonging class, which

triggers numerous sparse models used in various classification tasks.

With the advent of the big data era, most of the previous engineered features and shallow

representation learning techniques become outdated for they cannot learn from the abundant

amount of readily-available training samples. Therefore, recent years have seen an explosion

of interests on developing models that can extract useful representations from large dataset

[1, 135]. Inspired by the visual recognition process in the human cortex, these representation

learning models generally follow a multi-layer architecture, also known as deep neural net-

works (DNNs). A DNN for representation learning consists of a stack of local or non-local

feature detectors where simple features (e.g., edges) are detected at lower layers and fed into

higher layers for extracting more complex representations (e.g., object parts). The exceptional

performance of DNNs can be mainly attributed to their flexibility in representing a rich set

of highly non-linear functions [32, 113], as well as the devised methods [63, 67, 91, 116] for

efficient training of these powerful networks. Furthermore, employing various regularization

techniques [7, 27, 154] ensured that deep models with vast numbers of parameters are statis-

tically desirable in the sense that they will generalize well to unseen data and different tasks.

However, DNNs are prone to overfitting problems when trained on relatively small data set-

tings, which limits their potential for representation learning in many recognition applications.

This thesis aims at utilizing sparse models, DNNs as well as modern machine learning
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techniques for visual recognition through leveraging the characteristics of visual data and vi-

sion problems. This includes a set of new models and algorithms which enable us to incorpo-

rate structured priors and domain knowledge into representation learning, therefore, enhance

the performance of different visual recognition tasks.

1.2 Visual Representations and Recognition Models

1.2.1 Sparse Models for Visual Recognition

Sparse regularization based representation. The main idea of sparse representation derives

from the assumption that a query sample can be represented as a linear combination of an

over-complete dictionary where only a few of the dictionary atoms are used in representation.

One typical example is the sparse representation based classification scheme which imposes a

`1-norm constraint on the representation coefficients and reported promising results in robust

face recognition [177]. Zhang et al. [198] further highlighted the importance of collabora-

tive representation and proposed to use `2-norm to regularize the representation coefficients

which achieves similar accuracy but with significantly less computational cost. Many other

works proposed different sparsity-related regularizations to improve the quality of the sparse

representation while maximally preserving the signal fidelity. For example, Yang et al. [185]

proposed to use robust sparse coding along with max pooling for image classification and

achieved good performance over traditional k-means clustering based method. Liu et al. [97]

added nonnegative constraint to the sparse representation coefficients. Wang et al. [170] used

locality constraints during the sparse coding process to speed up computation and coding ef-

ficiency. To maintain similarity, Gao et al. [40] introduced a Laplacian term for the sparse

representation coefficients, which was extended to an efficient algorithm in Cai et al. [14].

Besides, Ramirez et al. [130] proposed a framework of universal sparse modelling to design

sparsity regularization terms. The Bayesian methods were also used for designing the sparsity
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regularization terms [70].

Discriminative dictionary based representation. Indeed, discriminative dictionary learning

(DDL) has been intensively studied to promote the discriminative power of sparse represen-

tation and address the computational drawback for naive sample-based methods. One type of

the DDL methods dedicates to improving the discriminative capability of signal reconstruc-

tion residual. Rather than learning a dictionary for all classes, these methods exploit structural

assumption on dictionary design and impose the learned dictionary with the category-specific

property, e.g., learning a sub-dictionary for each class [41, 131, 187]. However, these dictio-

nary learning methods might not be scalable to the problems with a large number of classes.

Another type of DDL methods aims to seek the optimal dictionary to improve the discrimi-

native capability of learned representations. These methods learn a dictionary and a classifier

concurrently by incorporating some prediction loss on the representation coefficients. In this

spirit, Zhang et al. [200] extended the original K-SVD algorithm [3] by simultaneously learn-

ing a linear classifier. Jiang et al. [73, 74] introduced a label consistent regularization to

enforce the discrimination of representation coefficients. Mairal et al. [102] proposed a su-

pervised dictionary learning scheme by exploiting logistic loss function and further presented

a general task-driven dictionary learning framework [101]. Wang et al. [175] formulated

the dictionary learning problem from a max-margin perspective and learned the dictionary by

using a multi-class hinge loss function. Yang et al. [187] proposed to adopt both the category-

specific strategy for the dictionary and the Fisher discrimination criterion for representation

coefficients to enhance class discrimination.

1.2.2 Deep Neural Networks for Visual Recognition

Pre-trained architecture based representation. In recent years, visual representations learned

with deep architectures have outperformed hand-crafted or shallow ones in a variety of visual

recognition tasks. By carefully designing the network architectures, different deep models
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have emerged and lifted the performance evolutionarily. For example, in order to extract

visual representations from images, popular convolution neural networks (CNNs) for image

classification include AlexNet [84], OverFeat [140], VGGNet [146], GoogLeNet [158, 159],

ResNet [61] and DenseNet [66]. With the key differences that the CNN representations are

learned directly from data rather than hand-crafted, thus CNNs have a hierarchical architec-

ture learning increasingly abstract levels of representation. Likewise, visual representations

from the video have also been intensively studied in deep models recently. Distinct to the

image representations, video representations concern not only the spatial information in each

video frame, but also the temporal information underlying the frame sequence. To explore the

spatial-temporal information from the video data, CNNs based architectures such as 3D CNNs

[71] and C3D [163] use 3D convolution and pooling operations to form the spatial-temporal

deep representations. Two-stream CNN [145], which consists of spatial network and temporal

network for modelling appearance and temporal information respectively, is another popular

deep learning framework to extract high-level features from the video due to its good perfor-

mance and is easy to train [35, 145]. Other generic network architectures for capturing salient

features on the temporal coherence representation are Recurrent Neural Networks (RNNs) and

the modified Long Short-Term Memory (LSTM) units for long-term dependent and complex

video data. One limitation of deep architectures is the demand of a large amount of data for

training. Fortunately, studies have shown that the deep representations have good transferabil-

ity. That is to say, the models trained on a large dataset are ready for use in other related tasks

where the data is not enough for training a deep model from scratch. Given a pre-trained deep

model, the activations in layers during inference can be treated as high-level representations

since they can capture meaningful semantic concepts from visual data.

Fine-tuned architecture based representation. Inspired by the fact that fine-tuning the pa-

rameters of a deep model on the small-scale dataset for a specific task can generally improve

the performance, researchers have employed this technique to fine-tune the pre-trained deep
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models so that they can fit better to the specific data and generate better visual representa-

tions for the tasks at hand. The most straightforward to fine-tune a CNN is to modify the last

fully connected layer corresponding to the number of classes in the target dataset and generate

global representations in an end-to-end manner. In contrast, many works employ fine-tuning

on the convolutional layers of a CNN since the global fully connected representations mostly

focus on the salient content of visual data but ignore the variation information on clutter and

local. One representative kind of methods brings the traditional feature encoding techniques

such as VLAD and FV into CNNs [5, 25, 122, 132, 182]. Ruobing et al. [178] present a novel

pipeline built upon deep CNN features for harvesting discriminative visual objects and parts

for scene classification. Dmitry et al. [85] propose a DNN topology that incorporates a simple

to implement transformation-invariant pooling operator. Gatys et al. [43] show that the Gram

matrix representations extracted from various layers of VGGNet [146] can be inverted for tex-

ture synthesis. Notably, the Gram matrix representation used in their approach is identical to

the bilinear pooling of CNN features of Lin et al. [94], which is proved to be very effective

for fine-grained recognition.

1.3 Key Challenges

Despite advancements in the last decade, both sparse models and DNNs have their inherent

limitations in obtaining powerful representations, thus are not capable of performing at a level

sufficient to meet the requirements of many computer vision applications. The main difficulty

lies in the following aspects:

Interpretability: Informally, interpretability refers to the ability to understand and reason

about the model output. However, in spite of continuous research recently, progress in this

area remains limited. For example, DNNs have exhibited superior performance in various

tasks but continued to be treated mostly as black boxes which provide little human understand-

able justifications for their outputs and a large number of parameters. Sparse models exploit
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the simplicity of the underlying data and produce representations that are readily amenable

to human interpretation, while the insights about the inner workings still lack in supervised

tasks. We believe that high model interpretability may help people break several bottlenecks

for visual recognition, e.g., learning from a few annotations, learning via low-level model

parameters, and semantically understanding the representations.

Efficiency: In many real-world applications, recognizing efficiently is as critical as recogniz-

ing accurately. Over the last few years, notable progress has been made to boost the accuracy

levels of visual recognition, but existing solutions often rely on computationally expensive

feature representation and learning approaches. In addition to the opportunities they offer, the

extensive visual datasets also lead to the challenge of scaling up while retaining the efficiency

of learning approaches and representations. Furthermore, with the prevalence of social me-

dia networks and mobile/wearable devices which have limited computational capabilities and

storage space, there is a growing need for developing models and visual representations that

are fast to compute, memory efficient, and yet exhibiting good discriminability and robustness

for visual recognition.

Variability: As a large amount of variability might affect the accurate recognition in real-

world tasks, it is very challenging to learn representations of high robustness and distinctive-

ness. For example, due to the large inter-class variance in conjunction with low intra-class

variance in fine-grained visual categorization (FGVC) task, many species in FGVC can only

be separated by subtle details, e.g., black vs white colour on the top of a bird’s head, which

is easy to miss. Fig. 1.1 shows two sets of bird images, where the species of each set are

different, although the appearances are similar. Moreover, four images belonging to the same

species can have different lighting, pose, viewpoint, deformation, etc., making them look very

different.

Data insufficiency: Thanks to the availability of sufficient amount of annotated visual data in

datasets such as ImageNet [135] and YouTube-8M [1], existing deep learning representations
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Figure 1.1 The species of bird images in green dashed rectangle is Ringed beak gull, and the species

of bird images in blue dashed rectangle is California gull.

have been shown to yield high accuracy for visual recognition in recent years. However, there

are many notable applications where only limited amounts of annotated training data can be

available or collecting labelled training data is too expensive. Such applications impose great

challenges to many existing deep learning approaches. When data is scarce, one must rely

on general knowledge of the task or use auxiliary data sources, to ensure decent recognition

performance.

1.4 Contributions

This thesis explores the design of discriminative models and representations that can offer

benefits of robustness to versatility and training insufficiency in visual recognition problems.

The different models proposed in this thesis are built upon classic sparse models and state-of-

the-art DNNs, and unified by the common goal of identifying and leveraging the discriminative

structure inherent in visual data and vision problems thereof. The main contribution of this
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thesis could be summarized as follows:

Utilizing appropriate mathematical tools. Exploiting sophisticated machine learning algo-

rithms or finding mathematical properties have found useful in improving the performance

of many visual recognition tasks. We carry forward the idea to the case of representation

learning. In particular, we establish a probabilistic subspace modelling for both the sparse

representation based classification (SRC) and collaborative representation based classification

(CRC) schemes, which is very helpful to understand and design shallow representation mod-

els. We also design a deep structured network architecture to approximate the iterative solver

of the discriminative sparse model to discover the underlying class-oriented structure of vision

problem. Furthermore, we consider the FGVC problem from the perspective of kernel learn-

ing and revisit the video summarization problem from a generative standpoint, which not only

leads to performance improvements but also provide some degree of model interpretability.

Expanding the understanding of vision problems. It is often natural and meaningful to de-

sign representation learning architectures according to the characteristics of the vision problem

and domain knowledge. For instance, motivated by the higher-order co-occurrence statistics

in BOW pipeline, we bring to light this idea and propose a solution for discovering rich part

interactions within CNN architectures for FGVC. Notice that the topic-related videos pro-

vide visual context to identify the critical parts of the video being summarized, we develop

a weakly-supervised approach by exploiting information from extensive collections of web

videos to address the insufficient training issue for video summarization task.

Finding properly structured representations. Considering the lack of enough labelled train-

ing data in many visual applications, over-fitting is a severe threat for DNNs with a large

number of free parameters. In addition, it is also difficult to extract highly discriminative rep-

resentations from datasets of limited size, mainly due to the lack of cost-effective structured

modelling of networks. Motivated by these concerns, we introduced new methods for embed-

ding structures such as global class-centralized structure and the statistical structure of local
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CNN features into DNNs. Our comprehensive empirical analysis demonstrated that these

regularized networks offer better discrimination and generalization performance compared to

conventional deep architectures in representation learning.

Exploiting efficient learning frameworks. Highly efficient algorithms are necessary to ex-

tend recognition system to real-world scenarios. In this research, we present computationally

efficient techniques to handle learning and training insufficiency in various visual recognition

tasks. The primary goal of this thesis is to provide algorithms that can effectively learn dis-

criminative representations in a way without complex modelling and tremendous annotation

cost.

1.5 Organization

More specifically, the structure of this thesis is illustrated in Fig. 1.2 and the contributions for

each chapters are presented as follows:

Chapter 2 introduces the basic concepts of sparse models and DNNs, and the machine learn-

ing tools which are closely connected to the proposed approaches in this thesis.

Chapter 3 explains how the classification mechanism of SRC and CRC can be formulated as

probability classification model. Specifically, the chapter develops a probabilistic collabora-

tive representation framework that defines the probabilities of a query sample with respect to a

series of subspaces such as collaborative subspace and class-specific subspace. A probabilistic

collaborative representation based classifier (ProCRC) is then proposed based on the perspec-

tive of maximum likelihood estimation. Extensive experiments on a variety of challenging

visual datasets validate the advantages of ProCRC and demonstrate that the proposed model

achieves state-of-the-art performance when applied to CNN features. The work in the Chapter

has been published at CVPR 2016.

Chapter 4 presents a feature pooling approach in CNNs for FGVC task. FGVC is extremely

challenging as it usually needs to identify the semantic object parts to isolate the subtle differ-
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Figure 1.2 The organization of this thesis.

ences among fine-grained categories. This method is based on the observation that deeper con-

volutional activations can be regarded as the responses of weak semantic parts. In particular,

we employ a polynomial predictor to capture higher-order statistics of convolutional activa-

tions for modelling rich part interactions from a multi-layer feature fusion scheme in CNNs. In

contrast to existing approaches that rely on the modelling of appearance and part annotations,

the proposed model only requires image-level labels, yet it still can extract discriminative rep-

resentations and achieves competitive results on the widely used FGVC datasets. The work in

the Chapter has been published at ICCV 2017.

Chapter 5 expands the video summarization problem to leverage user-generated videos from

web repositories in a weakly-supervised manner. Recent state-of-the-art deep architectures

summarize videos by developing fully supervised approaches on human-crafted temporal im-

portance, which may lead to unreliable models due to the data scarcity issue of current small-

size summarization benchmark. Our main idea is to exploit the plentiful web-crawled videos
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with only video-level annotations to improve the performance of video summarization. Specif-

ically, we present a generative modelling framework for summarizing videos in the framework

of variational encoder-decoder with external web prior. The involved latent video representa-

tions maintain the semantic cues from both benchmark data and web data. Furthermore, the

overall framework is absorbed into a unified variational encoder- summarizer-decoder (VESD)

by introducing a semantic matching loss function with video-level supervision. Experiments

are carried out on two challenging and diverse summarization datasets showing that our VESD

significantly outperforms existing state-of-the-art methods. The Chapter contains the work

that has been accepted by ECCV 2018.

Chapter 6 describes a new computationally efficient framework for learning discriminative

representation from datasets of limited size. We combine the merits of both sparse models

and neural networks: the structure insights of the optimization-based method and the perfor-

mance/speed of network-based ones. Specifically, we incorporate the supervised information

into a discriminative centralized sparse representation (DCSR) model, and propose a struc-

tured network DCSR-Net that implements a truncated form for the iterative scheme of DCSR.

DCSR-Net aims to minimize the intra-class variations in the feature space and to learn dis-

criminative representations from limited-sized data. We impose DCSR-Net as a structured

regularization into existing CNNs for good discrimination and better supervised fine-tuning.

The experiments show that the DCSR-Net helps to improve the performance on classification

tasks with training insufficiency issue. The Chapter describes work undergoing review for

CVPR 2019.

Chapter 7: Conclusion Finally, we summarize our main contributions and propose the po-

tential future works.

12



Chapter 2

Preliminaries

In this section, preliminary techniques are explained that will be used in subsequent sections.

2.1 Sparse Models

2.1.1 Sparse and Collaborative Representations for Classification

Representing data as a linear combination of a set of selected known samples has led to

promising results in various machine learning applications such as dimensionality reduction.

For classification purpose, we have to define the properties and measures to match a query

sample against the known, labeled samples. Specifically, denote y the query sample and

X = [X1, X2, . . . , XK] the entire training set from K classes, where Xk is the subset of training

samples from the k-th class. Some popular richer representations are Sparse Representation

(SR) [177] based on solving an `1-regularized least squares problem, given by:

α̂ = arg min
α
‖y − Xα‖22 + λ‖α‖1, (2.1)

and Collaborative Representation (CR) [198] based on `2-regularized least square, solves:

α̂ = arg min
α
‖y − Xα‖22 + λ‖α‖22, (2.2)
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where λ is a scalar constant. The classification decision is then performed by assigning the

query sample y to the class label with minimum reconstruction error:

l(y) = arg min
k
‖y − Xkα̂k‖

2
2, (2.3)

where ‖y− Xkα̂k‖
2
2 is the residual error when representing y with samples in the k-th class and

α̂k is the sub-vector of SR/CR α̂ associated with the k-th class. SR/CR based classification

schema has shown interesting results in face recognition, however, the discriminative infor-

mation in the training samples is not sufficiently exploited. To address this problem, we can

learn properly a dictionary from the original training samples.

2.1.2 Dictionary Learning

The dictionary, which is proposed to represent the encoded sample faithfully, plays an impor-

tant role in the success of SR and CR. Many discriminative dictionary learning approaches

have been proposed to improve the discriminative capability of SR/CR while maintaining the

compactness for representation. A general discriminative dictionary learning model can be

considered as:

< D̂, Â >= arg min
D,A
R(X, D, A) + λ1‖A‖p

p + λ2L(A), (2.4)

where X is the training set, D is the dictionary to be learnt, A is the set of representations

over D, λ1 and λ2 are the trade-off parameters, R(X, D, A) is the reconstruction term (e.g.,

‖X − DA‖2F), p denotes the parameter of the `p-norm regularizer (e.g., `1-norm or `2-norm),

and L(A) denotes the discrimination term for A. Usually, each column d j of the dictionary is

required to satisfy ‖d j‖2 ≤ 1. Different settings of reconstruction term and discrimination term

are proposed in recent years and a common approach to minimize the above objective function

is the alternating updating framework, i.e., minimizing one and while keeping the other fixed.
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2.2 Deep Neural Networks

2.2.1 Convolutional Neural Networks

The CNN is one of the most notable neural network architectures where multiple layers can be

trained in an end-to-end manner. A CNN is ideally suitable for processing static data such as

images and can effectively learn complicated mappings from raw inputs to the target, which is

able to extract complex representations compared to handcrafted features and shallow learning

frameworks.

Figure 2.1 The general architecture of a CNN for image classification.

Fig. 2.1 shows the general architecture of a CNN for image classification. A typical

CNN structure consists of three main neural layers, which are convolutional layers, pooling

layers, and fully connected layers. The convolutional layer applies the convolution operation

to filter inputs for useful information; The pooling layer downsamples the inputs using a given

selection method; The fully connected layer combines all the outputs of the previous layer and

generates the feature representations. We present the detailed operations of these three types

of layers as below:

• Convolutional layer: Given a three-dimensional input feature map x ∈ RH×W×D, the
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convolutional layer convolves x with learned filters f ∈ RH
′
×W

′
×D×D

′′

, and outputs y ∈

RH
′′
×W

′′
×D
′′

; i.e.,

yi′′ , j′′ ,d′′ = bd′′ +

H
′∑

i′=1

W
′∑

j′=1

D
′∑

d′=1

fi′ , j′ ,d,d′′ xi′′+i′−1, j′′+ j′−1,d, (2.5)

where bd′′ denotes the bias, and H
′′

= 1 + H − H
′

and W
′′

= 1 + W −W
′

. Generally, a

convolutional layer is followed by some activation functions such as the Rectified Linear

Units (ReLUs) to impose the nonlinearity.

• Pooling layer: The goal of a pooling layer is to provide rotational/position invariance

and reduce the dimensions of feature maps and network parameters. Given a feature

map x, the pooled representation is given by

yi′′ , j′′ ,d = P({xi′′+i′−1, j′′+ j′−1,d}1≤i′≤W′ ,1≤ j′≤H′ ), (2.6)

where W
′

and H
′

denote respectively the width and heights of the pooling regions, and

P denotes the pooling operator. The most widely-adopted pooling operators are max

pooling and average pooling.

• Fully connected layer: At the end of alternating convolutional and pooling layers, there

are several fully connected layers converting the 2D feature maps into a 1D feature vec-

tor, for further feature representation in prediction of the required classification output.

To efficiently train the CNN model, the standard method is using Stochastic Gradient De-

scent (SGD) with backpropagation algorithm. That is, the prediction output is used to compute

the loss with the ground-truth labels. Then based on the loss, the backward step computes the

gradients of CNN parameter with chain rules.

Fine-tuning: One advantage of neural networks is that one can refine a pre-trained neural

network to new tasks especially when only a small number of training samples are available.

The so-called fine-tuning technique first removes the last output layer of a neural network
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and attaching a new layer with randomly initialized parameters. Then we can train these

new parameters efficiently and achieve good performance on the new task. Because the pre-

trained model has already learned comprehensive representations through millions of training

samples, the fine-tuning procedure can start by exploring useful representations for the new

task without going all the way from scratch.

2.2.2 Recurrent Neural Networks

The RNN is a popular architecture that has been widely used for processing sequential in-

puts such as video frames. The RNN model has a recurrent temporal loop that can capture

compositional representations in the time domain and is suitable for modelling the dynamics

of sequential inputs. The recurrent temporal loop creates a deep structure in the RNN model

when unfolding in the time series. Fig. 2.2 shows the structure of RNN and the unfolded

network.

Given a sequence x = {x1, x2, . . . , xT }, an RNN computes a sequence of hidden states

h = {h1, h2, . . . , hT } and output y = {y1, y2, . . . , yT } as follows:

ht = H(Wihxt + Whhht−1 + bh) (2.7)

yt = O(Whoht + bo), (2.8)

where Wih, Whh, Who denote weight matrices, bh, bo denote the biases, and H(·) and O(·) are

the activation functions of the hidden layer and the output layer, respectively. Typically, the

activation functions are defined as logistic sigmoid functions.

The traditional RNN is hard to train due to the so-called vanishing gradient problem. If the

input sequence is too long, the gradient update through backpropagation becomes inefficient.

The weight updates decrease exponentially with the number of backpropagation steps, which

makes the training extremely slow. This problem limits the maximum length of sequences that

an RNN can accept.

17



Figure 2.2 An Recurrent Neural Network and the unfolded structure.

To alleviate the vanishing gradient problem, the Long Short-Term Memory (LSTM) model

is then proposed by Hochreiter and Schmidhuber [64]. Specifically, in addition to the hidden

state ht, the LSTM also includes an input gate it, a forget gate ft, an output gate ot, and the

memory cell ct (shown in Fig. 2.3. These gates are regularized with sigmoid functions and

control the portion of information passed through the update functions. To be specific, in this

architecture it and ft are sigmoidal gating functions, and these two terms learn to control the

portions of the current input and the previous memory that the LSTM takes into consideration

for overwriting the previous state. Meanwhile, the output gate ot controls how much of the

memory should be transferred to the hidden state. These mechanisms allow LSTM networks

to learn temporal dynamics with long time constants.

The hidden layer and the additional gates and cells are updated as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2.9)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (2.10)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (2.11)

ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo) (2.12)

ht = ottanh(ct) (2.13)
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Figure 2.3 A diagram of a LSTM memory cell (adapted from Graves et al. [50]).

One shortcoming of conventional RNNs is that they are only able to make use of previous

context. To further exploit future context, bidirectional RNNs [139] are then proposed to pro-

cess the data in both directions with two separate hidden layers, which are then fed forwards

to the same output layer. As illustrated in Fig. 2.4, a bidirectional RNN computes the forward

hidden sequence
−→
h , the backward hidden sequence

←−
h and the output sequence y by iterating

the backward layer from t = T to 1, the forward layer from t = 1 to T and then updating the

output layer:

−→
h t = H(W

x
−→
h

xt + W−→
h
−→
h

−→
h t−1 + b−→

h
) (2.14)

←−
h t = H(W

x
←−
h

xt + W←−
h
←−
h

←−
h t+1 + b←−

h
) (2.15)

yt = W−→
h y

−→
h t + W←−

h y

←−
h t + by. (2.16)

Combing bidirectional RNNs with LSTM gives bidirectional LSTM [51], which can access

long-range context in both input directions.
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Figure 2.4 A diagram of bidirectional RNN (adapted from Graves et al. [50]).

2.2.3 Variational Auto-encoder

Auto-encoders are neural networks used for unsupervised representation learning. The dimen-

sion of the input is equal to the dimension of the output, and the purpose of the network is to

reconstruct the input. The representation that is learned at the bottleneck of the network, is

called the code or latent space. An auto-encoder can be divided in two distinct modules, the

encoder and the decoder. The encoder is a function that maps an input x into some latent

representation z, enc : X → Z. The decoder maps the latent representation to the input space,

dec : Z → X. The objective of the auto-encoder is to minimize some distance loss as defined:

dec∗, enc∗ = arg min
enc,dec

‖x − dec(enc(x))‖22 (2.17)

Variational Auto-encoders (VAEs) [80] assume some generative process from the latent space

z to x (depicted in Fig. 2.5. Note that the latent variable z is treated as a random variable.

By introducing a variational distribution qθ(z|x), a lower bound for p(x) can be derived

with Jensen’s inequality in Eqn. (2.18). In this equation, KL represents the Kullback-Leibler
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Figure 2.5 The graphical model of generative process for the Variational Auto-encoder.

divergence, probability distributions are parametrized by θ, and the variational distribution is

parametrized by φ. The decoder is now defined as the conditional distribution dec := pθ(x|z).

The encoder is defined as the variational distribution enc := qφ(z|x). A common assumption is

to let qφ(z|x) be a multivariate normal distribution with diagonal variances. Thus, the encoder

is defined as enc := N(z|µφ(x),σ2
φI). Then the choice of prior is often p(z) = N(0, I).

log pθ(x) = log
∫

pθ(x, z)dz

= log
∫

qφ(z|x)
pθ(x, z)
qφ(z|x)

dz

≥

∫
qφ(z|x) log

pθ(x, z)
qφ(z|x)

dz

= Eqθ(z|x)[log pθ(x|z)] + KL(qφ(z|x)||pθ(z))

(2.18)
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Chapter 3

A Probabilistic Collaborative

Representation based Approach for

Visual Classification

3.1 Introduction

Visual classification is one of the fundamental problems in computer vision and machine learn-

ing. Given a set of training samples X = [X1, X2, . . . , XK], where Xk, k = 1, 2, . . . ,K, is the

sample matrix of class k, visual classification aims to predict the class label of a query sam-

ple y. Many visual classification schemes have been proposed in the past decades. Generally

speaking, there are two categories of visual classification methods [10, 114]: parametric meth-

ods and non-parametric methods. The parametric visual classification methods (e.g., SVM)

focus on how to learn the parameters of a hypothesis classification model from the training

data. The learned parametric model is then used to predict the class labels of unknown data. In

contrast, the non-parametric visual classification methods (e.g., nearest neighbor) do not learn

a parametric model for classification but use the training samples directly to predict the class
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labels of unknown data. Though non-parametric methods bear some weaknesses in computa-

tional efficiency, recent works have revealed their advantages (e.g., avoid over-fitting) over the

parametric based methods [10, 195].

A popular type of non-parametric classifiers which are widely used in various visual recog-

nition tasks is the distance based classifiers, e.g., the nearest subspace classifier (NSC) [22].

The principle of such classifier is to assign a test sample to the class which has the short-

est distance to it. However, the distance based non-parametric classifiers rely heavily on the

pre-determined distance or similarity metrics. Though some commonly used metrics, such

as Euclidean distance, manifold distance and principal angle based correlation [59, 171], are

intuitive to describe the variations among samples, they have limitations in accurately reflect-

ing the intrinsic similarity among objects [107]. In order to better characterize the similarity,

a promising choice is to introduce the uncertainties of the outputs of a classifier for decision

making, as what has been done in probabilistic SVMs [38, 92, 125]. Probabilistic SVM esti-

mates the posterior probabilities of class labels by the calibration techniques, such as Platt’s

scaling [92, 125] which transforms the classifier’s scores into the calibrated probabilities over

classes by fitting a sigmoid posterior model.

An alternative approach to probabilistic SVM is the probabilistic subspace methods, e.g.,

probabilistic principal component analysis (PPCA) [87, 162] and probabilistic linear discrim-

inant analysis (PLDA) [128], which reformulate the subspace methods as a latent variable

model and optimize the parameters via maximum likelihood estimation. Therefore, the prob-

abilistic subspace methods can be used to better model the class-conditional densities in clas-

sification. Moghaddam and Pentland [109, 110] proposed to utilize a probabilistic similarity

measure to model the probability distribution of subspace spanned by the changes of an ob-

ject’s appearance. Wang et al. [171] further extended the probabilistic distance measure

from two images to two linear subspaces (image sets), and formulated it as a Bayesian face

recognition framework [108]. However, most probabilistic subspace methods make strong
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assumptions on the distribution of noise and do not provide a straightforward procedure for

multi-subspace cases.

How to represent the test sample is a key issue in distance based non-parametric classi-

fiers. In SRC classifier proposed by Wright et al. [177], a test sample is approximated by

a linear combination of training samples from all classes with `1-norm sparsity regulariza-

tion on the representation coefficients. In [198], Zhang et al. argued that the success of SRC

should be largely attributed to the collaborative representation of a test sample by the train-

ing samples across all classes. They further proposed an effective CRC classifier by utilizing

`2-norm regularizer. The SRC/CRC classifiers can be regarded as distance based classifiers

since they classify a test sample based on the shortest Euclidean distance from it to each

class. Many modifications of SRC/CRC have been proposed for face recognition and other

visual recognition tasks [20, 21, 28, 72, 170, 185, 192]. Chi and Porikli [20, 21] suggested a

collaborative representation optimized classifier (CROC) to combine NSC and SRC/CRC for

multi-class classification. Despite the fact that many variants, improvements and applications

of SRC/CRC have been proposed, there still lacks a substantial understanding of the classi-

fication mechanism of them. Though an inspiring geometric interpretation of CRC has been

given in [198], this interpretation is not informative enough to reveal the intrinsic reason of

CRC’s success.

Motivated by the work of probabilistic subspace methods [107, 109, 110], in this work

we analyze the classification mechanism of CRC from a probabilistic viewpoint and propose

a probabilistic collaborative representation based approach for visual classification. First, we

present a probabilistic collaborative representation framework, where the probability that a test

sample belongs to the collaborative subspace of all classes can be well defined and computed.

Very interestingly, this probabilistic collaborative representation framework explains clearly

the `2-norm regularized representation scheme used in CRC. Consequently, we present a prob-

abilistic collaborative representation based classifier, which jointly maximizes the likelihood
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that a test sample belongs to each of the multiple classes. The final classification is performed

by checking which class has the maximum likelihood. Our extensive experiments on vari-

ous visual classification tasks demonstrate that ProCRC outperforms many commonly used

classifiers, including SVM, kernel SVM, SRC, CRC and CROC.

3.2 Probabilistic Collaborative Subspace Representation

3.2.1 Probabilistic Collaborative Subspace

Suppose that we have a collection of training samples from K classes X = [X1, · · · , XK],

where Xk is the data matrix of class k and each column of Xk is a sample vector. We view X

as the data matrix of an expanded class, and denote by lX the label set of all candidate classes

in X. Denote by S the linear subspace collaboratively spanned by all samples in X. Then for

each data point x in the collaborative subspace S, it can be represented as a linear combination

of samples in X: x = Xα, where α is the representation vector.

Since X involves many samples from all classes, the collaborative subspace S is much

bigger than the subspace spanned by each individual class Xk. Therefore, though all data

points Xα fall into S, we argue that their confidences to be labeled as lX should be different,

depending on how the representation vector α is composed. Let us use an example to explain

the idea. As illustrated in Fig. 3.1, X is a collection of face images from different subjects, and

then lX is a label set of face subjects. With vector α1 = [0.24, 0.22, 0.11, 0.21, 0.13, 0.10],

a face image x1 = Xα1 is composed, and with vector α2 = [−0.65, 0.46, 0.58, 0.65, −

0.42, 0.36], another face image x2 = Xα2 is composed. Clearly, x1 is more likely to be a face

image than x2, and it should have higher confidence to be labeled as lX.

From the example in Fig. 3.1, we can see that the representation vector α determines the

confidence that x belongs to lX. With a more detailed look of vectors α1 and α2, we can see

that α1 contains smaller coefficients (in terms of magnitude), which make x1 approach to the
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Figure 3.1 Illustration of probabilistic collaborative subspace. x1 has a smaller `2-norm of its repre-

sentation vector, and is more likely to be a face image than x2.

center area of subspace S, while α2 has relatively bigger coefficients, making x2 approach

to the boundary area of S. Based on these observations, we propose to formulate S as a

probabilistic collaborative subspace; that is, different data points x have different probabilities

of l(x) ∈ lX, where l(x) means the label of x, and P(l(x) ∈ lX) should be higher if the `2-norm

of α is smaller, vice versa. One intuitive choice is to use a Gaussian function to define such a

probability:

P
(
l(x) ∈ lX

)
∝ exp(−c‖α‖22), (3.1)

where c is a constant. With Eqn. (3.1), we call the subspace S a probabilistic collaborative

subspace, whose data points are assigned different probabilities based on α.

3.2.2 Probabilistic Representation Outside the Collaborative Subspace

Eqn. (3.1) defines the probability of a data point inside the collaborative subspace S. In prac-

tice, the test sample y usually lies outside the subspace S. In order to measure the probability
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that y belongs to lX, i.e., P(l(y) ∈ lX), we could find a data point x in S, and then compute

two probabilities: P(l(x) ∈ lX) and the probability that y has the same class label as x, i.e.,

P(l(x) = l(y)). With P(l(x) ∈ lX) and P(l(x) = l(y)), we can readily have:

P
(
l(y) ∈ lX

)
= P

(
l(y) = l(x)|l(x) ∈ lX

)
· P

(
l(x) ∈ lX

)
. (3.2)

P(l(x) ∈ lX) has been defined in Eqn. (3.1). P
(
l(x) = l(y)|l(x) ∈ lX

)
can be measured by

the similarity between x and y. Here we adopt the Gaussian kernel (a.k.a heat/radial basis

function kernel) to define it:

P
(
l(y) = l(x)|l(x) ∈ lX

)
∝ exp(−κ‖y − x‖22), (3.3)

where κ is a constant. Gaussian kernel is a widely used measure to characterize the neighbor-

based similarity of two vertices in graph, and its advantages have been observed in many

real-world applications such as data reduction [58], face analysis [62] and image clustering

[203].

With Eqn. (3.1)∼Eqn. (3.3), we have

P
(
l(y) ∈ lX

)
∝ exp(−(κ‖y − Xα‖22 + c‖α‖22)). (3.4)

In order to maximize the probability P(l(y) ∈ lX), we can apply the logarithmic operator to

Eqn. (3.4). There is:

max P
(
l(y) ∈ lX

)
= max ln(P

(
l(y) ∈ lX

)
)

= minα κ‖y − Xα‖22 + c‖α‖22

= minα ‖y − Xα‖22 + λ‖α‖22 (3.5)

where λ = c/κ. The above Eqn. (3.5) gives a probabilistic representation of y over the collab-

orative subspace S. Interestingly, Eqn. (3.5) shares the same formulation of the representation

formula of CRC [198], but it has a clear probabilistic interpretation.
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3.3 Probabilistic Collaborative Representation

Our formulation in Section 3.2 provides a way to estimate the probability of l(y) ∈ lX with

the collaborative subspace S. However, it cannot indicate which specific class k the sample

y belongs. To perform classification, SRC/CRC simply uses the reconstruction error of y for

each class-specific subspace to determine the class label. This classification rule is heuristic

and lacks sufficient interpretation. Based on the proposed probabilistic collaborative subspace,

in this section we present a probabilistic collaborative representation based classification to

classify y.

3.3.1 Probability to Each Class-specific Subspace

A sample x ∈ S can be collaboratively represented as: x = Xα =
∑K

k=1 Xkαk, where α =

[α1;α2; . . . ;αK] and αk is the coding vector associated with Xk. Note that xk = Xkαk is a data

point falling into the subspace of class k. Again by using the Gaussian kernel, the probability

that x has the same class label as xk can be defined as

P
(
l(x) = k|l(x) ∈ lX

)
∝ exp(−δ‖x − Xkαk‖

2
2) (3.6)

where δ is a constant.

For a query sample y outside the space S, we can compute the probability that l(y) = k as:

P
(
l(y) = k

)
= P

(
l(y) = l(x)|l(x) = k

)
· P(l(x) = k)

= P
(
l(y) = l(x)|l(x) = k

)
· P

(
l(x) = k|l(x) ∈ lX

)
· P

(
l(x) ∈ lX

)
. (3.7)

Since the probability definition in Eqn. (3.3) is independent of k as long as k ∈ lX, we have

P
(
l(y)= l(x)|l(x

)
=k) = P

(
l(y)= l(x)|l(x) ∈ lX

)
. With Eqn. (3.5)∼Eqn. (3.7), we have

P
(
l(y) = k

)
= P

(
l(y) ∈ lX

)
· P

(
l(x) = k|l(x) ∈ lX

)
∝ exp(−(‖y − Xα‖22 + λ‖α‖22 + γ‖Xα − Xkαk‖

2
2)), (3.8)

where γ = δ/κ.
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3.3.2 The ProCRC Model

By maximizing the probability defined in Eqn. (3.8), we can find some data point x inside

S (or equivalently the representation vector α) such that P(l(y) = k) achieves its maximum.

However, if we maximize P(l(y) = k) individually for each class k, their corresponding data

point x will be different. This makes the classification by the maximal P(l(y) = k) (w.r.t. k)

unstable and less discriminative.

Alternatively, a better strategy is that we find a common data point x inside S, which could

maximize the joint probability P(l(y) = 1, . . . , l(y) = K). Once the common x is found, we

can then check which probability P(l(y) = k) is the highest to determine the class label of y.

By assuming that the events l(y) = k are independent, we have

max P(l(y) = 1, . . . , l(y) = K) = max
∏

k
P(l(y) = k)

∝ max exp(−(‖y − Xα‖22 + λ‖α‖22 +
γ

K

∑K

i=1
(‖Xα − Xiαi‖

2
2))). (3.9)

Applying the logarithmic operator to Eqn. (3.9) and ignoring the constant term, we have:

(α̂) = arg minα{‖y − Xα‖22 + λ‖α‖22 +
γ

K

∑K

k=1
‖Xα − Xkαk‖

2
2}. (3.10)

In Eqn. (3.10), the first two terms ‖y − Xα‖22 + λ‖α‖22 form a collaborative representation

term, which encourages to find a point x = Xα that is close to y in the collaborative subspace

S. The last term
∑K

k=1 ‖Xα − Xkαk‖
2
2 attempts to find inside each subspace of class k a point

Xkαk which is close to the common point x. The parameters γ and λ balance the role of

the three terms, which can be set based on the prior knowledge of the problem, or we can

use the cross-validation technique to determine γ and λ from the training data. When the

regularization parameter γ = 0, Eqn. (3.10) will degenerate to CRC, and the term ‖y− Xα‖22 +

λ‖α‖22 will play a dominant role in determining α. When the regularization parameter γ > 0,

the term ‖Xα− Xkαk‖
2
2 is introduced to further adjust αk by Xk, which results in a more robust

and stable solution to α.
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3.3.3 The ProCRC Classifier

With the model in Eqn. (3.10), a solution vector α̂ is obtained. The probability P(l(y) = k)

can be computed by:

P(l(y) = k) ∝ exp(−(‖y − Xα̂‖22 + λ‖α̂‖22 +
γ

K
‖Xα̂ − Xkα̂k‖

2
2)). (3.11)

Note that (‖y− Xα̂‖22 +λ‖α̂‖22) is the same for all classes, and thus we can omit it in computing

P(l(y) = k). Let

pk = exp(−(‖Xα̂ − Xkα̂k‖
2
2)). (3.12)

The classification rule can then be formulated as

l(y) = arg max
k
{pk}. (3.13)

We call the above classifier probabilistic collaborative representation based classifier (Pro-

CRC).

3.3.4 The Robust ProCRC Model

In visual classification, partial corruption or occlusion often degrade the performance. It is

well-known that the robustness of classification tasks can be enhanced by using `1-norm to

characterize the loss function [177]. Our proposed probabilistic collaborative representation

in Section 3.2.2 can be easily extended to its robust version. In Eqn. (3.3), we can choose to

use the Laplacian kernel, instead of the Gaussian kernel, to measure the probability:

P(l(y) = l(x)|l(x) ∈ lX) ∝ exp(−κ‖y − x‖1). (3.14)

With similar derivations to ProCRC, we can have the following robust ProCRC (R-ProCRC)

model:

(α̂) = arg minα{‖y − Xα‖1 + λ‖α‖22 +
γ

K

∑K

k=1
‖Xα − Xkαk‖

2
2}. (3.15)

The classification rule is the same as that in Eqn. (3.13).
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3.3.5 Solutions to ProCRC and R-ProCRC Models

The proposed ProCRC model has a closed form solution, while the proposed R-ProCRC

model can be easily solved by the iterative reweighted least square (IRLS) technique.

ProCRC. Refer to Eqn. (3.15), let X′k be a matrix which has the same size as X, while

only the samples of Xk will be assigned to X′k at their corresponding locations in X, i.e.,

X′k = [0, . . . , Xk, . . . , 0]. Let X
′

k = X − X′k. We can then compute the following projection

matrix offline:

T = (XT X +
γ

K

∑K

k=1
(X
′

k)
T X
′

k + λI)−1XT , (3.16)

where I denotes the identity matrix. With T, the solution to α can be obtained efficiently:

α̂ = Ty. (3.17)

R-ProCRC. Though the proposed R-ProCRC model is convex, there is no closed form

solution to it, and we adopt an IRLS algorithm to compute α.

Based on the current estimation of α, we introduce the diagonal weighting matrix WX:

WX(i, i) = 1/|X(i, :)α − yi|, (3.18)

where X(i, :) refers to the ith row of X. Given WX, the problem in Eqn. (3.15) can be reformu-

lated as:

(α̂) = arg minα{
γ

K

∑K

k=1
‖Xα − Xkαk‖

2
2 + λ‖α‖22 + (Xα − y)TWX(Xα − y)}. (3.19)

Then the coefficient vector α can be updated by:

α̂ = (XTWX X +
γ

K

∑K

k=1
(X
′

k)
T X
′

k + λI)−1XTWX y. (3.20)

We alternatively update the weighting matrices WX and the coefficient vector α, and stop until

convergence or after a fixed number of iterations.
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3.4 Experimental Results

In this section, we comprehensively evaluate the proposed method from different aspects. In

3.4.1, by using the (MNIST [65] and USPS [65]) datasets, we compare ProCRC with state-of-

the-art representation based classifiers along this line, including NSC [22], SRC [177], CRC

[198] and CROC [20, 21]. The linear support vector machine (SVM) classifier [34] is also

compared. In 3.4.2, we compare R-ProCRC with robust SRC [186] on robust face recognition

using the AR [105] and Extended Yale B [44] datasets. In 3.4.3, we evaluate the running time

of ProCRC. Finally, in 3.4.4 we evaluate ProCRC on several challenging visual classification

datasets, including Stanford 40 Actions dataset [189], Caltech-UCSD Birds-200-2011 dataset

[167], Oxford 102 Flowers dataset [118], Caltech-256 dataset [53] and ImageNet ILSVRC

2012 dataset [135].

The proposed ProCRC has two parameters, λ and γ. In the experiments, we set λ = 10−3

for handwritten digit datasets and face datasets, and λ = 10−2 for other datasets. For the

parameter γ, we set it by 5-fold cross-validation on the training set. For those competing

classifiers, their source codes are from the original authors, and we tune their parameters to

achieve their best classification accuracy in each experiment.

3.4.1 Handwritten Digit Recognition

MNIST dataset: The MNIST [65] dataset contains a training set of 60,000 samples and a

test set of 10,000 samples. There are 10 classes, and the size of each image is 28 × 28. We

randomly selected 50, 100, 300, and 500 samples from each class for training, and we used all

the samples in the test set for testing.

USPS dataset: The USPS [65] dataset also contains a training sample set and a test sample

set, and the size of each image is 16×16. We randomly selected 50, 100, 200, and 300 samples

from each class for training, and used all the samples in the test set for testing.
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Table 3.1 Classification rate (%) on the MNIST dataset.

Num. 50 100 300 500

SVM 89.35 92.10 94.88 95.93

NSC 91.06 92.86 85.29 78.26

CRC 72.21 82.22 86.54 87.46

SRC 80.12 85.63 89.30 92.70

CROC 91.06 92.86 89.93 89.37

ProCRC 91.84 94.00 95.48 95.88

Table 3.2 Classification rate (%) on the USPS dataset.

Num. 50 100 200 300

SVM 93.46 95.31 95.91 96.30

NSC 93.48 93.25 90.21 87.85

CRC 89.89 91.67 92.36 92.79

SRC 92.58 93.99 95.63 95.86

CROC 93.48 93.25 91.40 91.87

ProCRC 93.84 95.62 96.03 96.43

Table 3.1 and Table 3.2 list the classification rates on the two datasets, respectively. We can

see that ProCRC outperforms all the competing classifiers. With the increase of the number

of training samples, the classification accuracy of ProCRC increases consistently; however,

the classification rate of NSC drops with the increase of training samples, while the rate of

CRC first jumps and then increases a little. This shows that ProCRC has the good robustness

to the number of training samples by considering all the classes collaboratively while double

checking individual class. It has the smallest performance variation under the different number

of training samples.
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3.4.2 Face Recognition with Corruption

We then evaluate R-ProCRC for face recognition (FR) with partial occlusion or corruption.

The AR [105] and Extended Yale B [44] datasets are used since they are commonly used to

in the original papers to evaluate SRC, CRC and CROC. Three types of corruptions are con-

sidered: random pixel corruption, random block occlusion, and disguise. In the experiments

of random pixel corruption, for each test image, we randomly select a certain percentage of

pixels and replace them with uniformly distributed values within [0, 255]. In the experiments

of block occlusion, for each test image, we randomly select a square block and replace it with

an unrelated image. For real disguise, we use the images with sunglasses or scarf in the AR

dataset.

Since the SVM, NSC, CRC and CROC classifiers do not consider the robustness to outliers

in design, we only compare R-ProCRC with the robust version (`1-norm loss function and

regularizer) of SRC, denoted by R-SRC [186].

Random corruption: We use the Extended Yale B dataset to evaluate R-ProCRC against

random corruption. We randomly selected 30 images from each subject to construct the train-

ing dataset, and used the remaining images for testing. Random corruption is added to each

test image. Table 3.3 lists the recognition rates of R-SRC and R-ProCRCr under different

ratios of random corruption. One can see that R-ProCRC is much better than R-SRC for FR

with random corruption.

Block occlusion: We then compare R-SRC with R-ProCRC for FR with block occlusion.

The same experiment setting as in the random corruption experiment is used by changing

random corruption to random corruption. The results are listed in Table 3.4. One can see

that block occlusion will cause more significant performance degradation than random cor-

ruption, while R-ProCRC still significantly outperforms R-SRC under different ratios of block

occlusion.

Disguise: At last, we use the face images with the disguise in the AR dataset to evaluate
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R-ProCRC. We used the 700 non-occluded images in the first session for training, and used

the 600 images with sunglasses and the 600 images with the scarf for testing. Table 3.5 lists

the experimental results. Again, R-ProCRC is consistently superior to R-SRC.

Table 3.3 Recognition rate (%) on face images with random corruption on the Extended Yale B

dataset.

Corruption ratio 10% 20% 40% 60%

R-SRC [186] 97.49 95.60 90.19 76.85

R-ProCRC 98.45 98.20 93.25 82.42

Table 3.4 Recognition rate (%) on face images with block occlusion on the Extended Yale B dataset.

Corruption ratio 10% 20% 30% 40%

R-SRC [186] 90.42 85.64 78.89 70.09

R-ProCRC 98.12 92.62 86.42 77.16

Table 3.5 Recognition rate (%) on face images with disguise on the AR dataset.

Corruption ratio Sunglasses Scarf

R-SRC [186] 69.17 69.50

R-ProCRC 70.50 69.83

3.4.3 Running Time Comparison

We evaluate the running time of ProCRC and the competing representation based classifiers

by processing one test image on the MNIST dataset (5,000 samples for training), and evaluate

the running time of R-ProCRC and R-SRC by processing one image on the AR dataset (we

test the disguise problem on 600 images with scarf). All methods are implemented in Matlab,
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and run on a PC with Intel (R) Core (TM) i7-5930K 3.50 GHz CPU and 32 GB RAM. Table

3.6 lists the running time of different methods.

Since ProCRC and CRC have analytical solutions and the resolved projection matrices

have the same size, they have the same speed, which is faster than CROC and much faster

than SRC. R-ProCRC employs `1-norm only for loss function, while R-SRC employs `1-norm

for both loss and regularization. Therefore, R-ProCRC is faster than R-SRC.

Table 3.6 Running time (s) of different methods.

Method NSC CRC SRC CROC

Time (s) 0.0003 0.0005 0.22 0.0009

Method ProCRC R-SRC R-ProCRC

Time (s) 0.0005 3.57 1.81

3.4.4 Other Challenging Visual Classification Tasks

Datasets and settings. To more comprehensively assess the performance of ProCRC,

we apply it to four challenging classification datasets: Stanford 40 Actions dataset [189] for

action recognition, Caltech-UCSD Birds-200-2011 [167] and Oxford 102 Flowers datasets

[118] for fine-grained object recognition, and Caltech-256 dataset [53] for large-scale object

recognition. We do not evaluate R-ProCRC since corruption is not the main problem in these

datasets.

Stanford 40 Actions dataset [189] is composed of 40 human actions, e.g., brushing teeth,

cleaning the floor, reading book, throwing a Frisbee. It contains 9352 images, with 180∼300

images per class. We follow the training-test split settings suggested by the authors [189],

using 100 images from each class for training and the remaining for testing.

Caltech-UCSD Birds-200-2011 (CUB) dataset [167] is a widely-used benchmark for

fine-grained image recognition, which contains 11,788 images of 200 bird species. Due to
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the high degree of similarity among species, this dataset is very challenging. We used the split

setting provided in the dataset without part or bounding box annotations. There are around 30

training samples for each species.

Oxford 102 Flowers dataset [118] is another fine-grained image classification benchmark

which contains 8,189 images from 102 categories, and each category has at least 40 images.

The flowers appear at different scales, pose and lighting conditions. This dataset is challeng-

ing since there exist large variations within the category but small difference across several

categories.

Caltech-256 dataset [53] consists of 256 object categories with at least 80 images per cat-

egory. This dataset has a total number of 30,608 images. Following the common experimental

settings, we randomly selected 15, 30, 45 and 60 images from each category for training, re-

spectively, and used the remaining images for testing. For a fair comparison, we run ProCRC

10 times for each partition and report the average classification accuracy.

On the four datasets, we employ two types of features to demonstrate the effectiveness of

ProCRC. First, we use VLFeat [165] to extract the BOW feature based on SIFT (refer to BOW-

SIFT feature). The square patch size and stride are set at 16 × 16 and 8 pixels, respectively.

The codebook is trained by the k-means method, and the size is 1,024. We use a 2-level spatial

pyramid representation. The final feature dimension of each image is 5,120 for all datasets.

Second, we use VGG-verydeep-19 [146] to extract CNN features (refer to VGG19 features).

We use the activations of the penultimate layer as local features, which are extracted from 5

scales {2s, s = −1,−0.5, 0, 0.5, 1}. We pool all local features together regardless of scales and

locations. The final feature dimension of each image is 4,096 for all datasets. Both BOW-SIFT

and VGG19 features are `2 normalized.

Evaluation of different classifiers with the BOW-SIFT features and CNN feature.

To verify that ProCRC is an effective classifier, we present a detailed comparison between

ProCRC and several widely-used classifiers, including softmax, linear SVM, kernel SVM with
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Table 3.7 Accuracies (%) of different classifiers with BOW-SIFT features and VGG19 features.

Classifier
Standford 40 CUB Flower 102 Caltech 256

BOW-SIFT VGG19 BOW-SIFT VGG19 BOW-SIFT VGG19 BOW-SIFT(30) VGG19(30)

Softmax 21.1 77.2 8.2 72.1 46.5 87.3 25.8 75.3

SVM 24.0 79.0 10.2 75.4 50.1 90.9 28.5 80.1

Kernel SVM 26.3 79.8 10.5 76.6 51.0 92.2 28.7 81.3

NSC 22.1 74.7 8.4 74.5 46.7 90.1 25.8 80.2

CRC 24.6 78.2 9.4 76.2 49.9 93.0 27.4 81.1

SRC 24.2 78.7 7.7 76.0 47.2 93.2 26.9 81.3

CROC 24.5 79.1 9.1 76.2 49.4 93.1 27.9 81.7

ProCRC 28.4 80.9 9.9 78.3 51.2 94.8 29.6 83.3

χ2 kernel, CRC, SRC and CORC. The classification rates on the four datasets with BOW-SIFT

features and VGG19 features are listed in Table 3.7 (the results on the Caltech-256 dataset are

obtained by using 30 training images per category). From Table 3.7, we can see that ProCRC

almost always achieves the best accuracy with either BOW-SIFT features or VGG19 features

among all the classifiers. Specifically, with the powerful CNN features, ProCRC obtains at

least 1.5% performance gains over all the other classifiers. These results clearly demonstrate

the effectiveness of ProCRC as a visual classifier.

Comparison to state-of-the-art methods. Furthermore, we compare ProCRC (using the

VGG19 features) with the state-of-the-art methods on each dataset in Table 3.8. Note that

many of the comparison methods are CNN based methods and their features are even stronger

than VGG19.

The classification accuracies on Standford 40 Actions dataset are from SPM [185], LLC

[170], EPM [143], SparseBases [189], CF [77], SMP [78] and ASPD [141]. We see that

ProCRC achieves at least 5.5% improvement over others. As can be seen in Table 3.7, using

the same VGG19 features, kernel SVM leads to an accuracy of 79.8%, which is 1.1% lower

than ProCRC.

The classification accuracies on CUB dataset are from POOF [8], FV-CNN [25], PN-CNN

[11] and NAC [144]. Again, ProCRC outperforms all methods except for NAC. However,
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Table 3.8 Comparsions to state-of-the-arts on different datasets (Standford 40, CUB, Flower 102 and

Caltech-256).

Dataset Split Methods & Accuracies (%)

Standford 40 fixed
ProCRC ASPD SMP CF SparBases EPM LLC ScSPM

80.9 75.4 53.0 51.9 45.7 42.2 35.2 34.9

CUB fixed
ProCRC NAC PN-CNN FV-CNN POOF

78.3 81.0 75.7 66.7 56.9

Flower 102 fixed
ProCRC NAC OverFeat GMP DAS BiCos seg

94.8 95.3 86.8 84.6 80.7 79.4

Caltech-256

random ProCRC NAC VGG19 CNN-S ZF M-HMP LLC ScSPM

15 80.2 - - - 65.7 42.7 34.4 27.7

30 83.3 - - - 70.6 50.7 41.2 34.0

45 84.9 - - - 72.7 54.8 45.3 37.5

60 86.1 84.1 85.1 77.6 74.2 58.0 - -

please note that NAC further constructs a part-model based on the VGG19 feature for recog-

nition, while ProCRC performs classification directly using the VGG19 feature. Compared

with the other three methods which all use a specially designed CNN architecture for bird

species recognition, the improvement by ProCRC is obvious.

The classification accuracies on Oxford 102 Flowers dataset are from BiCos seg [17],

DAS [4], GMP [115], OverFeat [132] and NAC [144]. ProCRC improves 8% over OverFeat

and is only 0.5% lower than NAC, which uses an additional part-model VGG19 feature. The

performance gain is significant compared with BiCos seg, DAS and GMP (increase by 15.4%,

14.1% and 10.2%, respectively).

The average classification accuracies (over 10 runs) on Caltech-256 dataset are from Sc-

SPM [185], LLC [170], M-HMP [9], ZF [191], CNN-S [19], VGG19 [146] and NAC [144].

The symbol “-” means that the result is not reported in the original work. ProCRC has at least

12% performance gain over ZF, and has more significant improvements over ScSPM, LLC,

M-HMP. When 60 images per class are used for training, ProCRC achieves 1% improvement

compared with VGG19 + linear SVM (85.1%), and 2% improvement compared with NAC,
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while the latter even uses an additional part-model based on the VGG19 feature.

The scalability of ProCRC. In the proposed ProCRC model, a matrix inversion operation

(see Eqn. (3.16) will be involved to obtain the projection matrix T. The dimensionality of

this matrix inverse depends on the number of training samples in the dataset. Therefore, one

potential problem of ProCRC is its scalability on very large scale datasets which have millions

of training samples (e.g., ImageNet [135]). It might not be feasible to load millions of samples

into memory and solve a matrix inverse problem with the dimensionality of millions.

Fortunately, the scalability problem of ProCRC can be solved by using the dictionary

learning (DL) techniques. More specifically, for a dataset which has a large number of samples

per class, we can learn a compact dictionary Dk, which has only a small number of atoms, from

the original samples Xk. The ProCRC classifier can then be applied by replacing Xk by Dk.

One simple DL model is min{Dk ,Ak} ‖Xk − Dk Ak‖
2
F + τ‖Ak‖

2
F , where τ is a trade-off parameter

and each column of Dk has unit length. This DL model can be easily solved by using an

alternating optimization procedure to update Dk and Ak.

With the above mentioned DL strategy, we test ProCRC (and other representation based

classifiers) on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 dataset

[135], which consists of 1.2M+ training images from 1,000 categories (about 1,300 images

per category) and 50K validation images (50 images per category). We compare ProCRC with

other classifiers using two baseline visual features: BOW-SIFT extracted by VLFeat (we use a

codebook of 1,000 visual words to perform the k-means method, and the feature dimension is

1,000 since 0-level spatial pyramid representation is adopted here for simplicity) and AlexNet

features extracted by Caffe (as described in [84], the feature dimension is 4,096). For each

category, a dictionary with 50 atoms is learned from the about 1,300 samples.

The top-1 and top-5 classification accuracies are listed in Table 3.9. With the handcraft

BOW-SIFT feature, the top-1 accuracy of ProCRC is at least 1.1% higher than all the other

competitive classifiers. With the AlexNet based CNN feature, ProCRC outperforms SVM
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Table 3.9 Accuracies (%) on ImageNet ILSVRC-2012.

Classifier
BOW-SIFT AlexNet

top-5 top-1 top-5 top-1

Softmax 28.8 7.4 80.4 57.4

SVM 29.1 7.2 79.7 55.8

NSC 27.4 6.6 77.4 53.2

CRC 28.3 7.3 78.5 54.3

SRC 28.6 6.9 78.7 54.1

CROC 28.5 7.2 78.8 54.4

ProCRC 29.7 8.5 80.1 56.3

(0.5%) and other representation based classifiers (2%), but is 1.1% and 0.3% lower than Soft-

max on top-1 and top-5 accuracies, respectively. This is mainly because of the fact that

AlexNet features are trained with the Softmax output layer. In summary, DL is capable to

solve the scalability issue of ProCRC. In the future, we will explore other methods (e.g., a

hierarchical structure) to further improve the performance and scalability of ProCRC.

3.5 Conclusion

We presented a probabilistic collaborative representation based classifier, namely ProCRC,

which employs a probabilistic collaborative representation framework to jointly maximize the

probability that a test sample belongs to each class. ProCRC effectively makes use of the

training samples from all classes to deduce the class label of a test sample. It possesses a clear

probabilistic interpretation, and is very efficient to solve. Our experiments on handwritten

digit recognition, face recognition, and other visual classification tasks validated its superior-

ity to popular representation based classifiers, including NSC, CRC, SRC and CROC, as well

as benchmark classifiers such as SVM and kernel SVM. Coupled with CNN features (e.g.,
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VGG19), ProCRC demonstrated state-of-the-art performance on challenging visual datasets

such as Stanford 40 Actions, CUB, Oxford 102 Flowers, and Caltech-256. We also demon-

strated that ProCRC could be applied to larger-scale dataset such as ImageNet ILSVRC-2012

by introducing a simple dictionary learning pre-processing stage.
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Chapter 4

Higher-order Integration of Hierarchical

Convolutional Activations for

Fine-grained Visual Categorization

4.1 Introduction

Deep CNNs have emerged as the new state-of-the-art for a wide range of visual recognition

tasks. Nevertheless, it remains quite challenging to derive the effective discriminative repre-

sentation for FGVC, primarily due to subtle semantic differences between subordinate cate-

gories. Conventional CNNs usually deploy the fully connected layers to learn global semantic

representation and may not be suitable to FGVC. Therefore, leveraging local discriminative

patterns in CNN is crucial to obtain a more powerful representation, and recently has been

intensively studied for FGVC.

Part-based representations [11, 144, 193, 199, 201] built on CNN features have been a

predominant trend in FGVC. Such methods follow a detection module consisting of part de-

tection and appearance modelling to extract regional features on deeper convolutional layers
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in R-CNN [45] based scenario. Then global appearance structure is incorporated to pool these

regional features. Although these methods have yielded rich empirical returns, they still pose

the following issues: (1) A considerable number of part-based methods [11, 193, 199] heavily

rely on the detailed part annotations to train accurate part detectors, which is costly and fur-

ther limits the scalability for large-scale datasets; moreover, identifying discriminative parts

for specific fine-grained objects is quite challenging and often requires interaction with human

or expert knowledge [12, 168]; (2) The discriminative semantic parts in images often appear at

different scales. As each spatial unit in the deeper convolutional layer corresponds to a specific

receptive field, activations from a single convolutional layer are limited in describing various

parts with different sizes; (3) Exploiting the joint configuration of individual object parts is

very important for object appearance modelling. A few works introduce additional geometric

constraints for object parts including the popular deformable parts model [199], constellation

model [144] and order-shape constraint [173]. One key disadvantage of these approaches is

that they only characterize the first-order occurrences and relationships of very few parts, how-

ever, cannot be readily applied to model objects with more parts. Consequently, our focus is to

capture the higher-order statistics of those semantic parts at different scales, and thus provide

a more flexible way for global appearance modelling without the help of part annotation.

In recent works [144, 201], the deeper convolutional filters are regarded as weak part de-

tectors and the corresponding activations as the responses of detection, as shown in Fig. 4.1.

Motivated by this observation, instead of part annotations and explicit appearance modelling,

we straightforwardly exploit the higher-order statistics from the convolutional activations. We

first provide a perspective of the matching kernel to understand the widely adopted mapping

and pooling schemes on convolutional activations in conjunction with a linear classifier. Lin-

ear mapping and direct pooling only capture the occurrence of parts. In order to capture the

higher-order relations among parts, it is better to explore local non-linear matching kernels to

characterize the higher-order part interactions (e.g., co-occurrence). However, designing an
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Figure 4.1 Visualization of several activation maps that corresponds to large responses of the sum-

pooled vectors of two activation layers relu5 2 and relu5 3 in VGG-16 model.

appropriate CNN architecture that can be plugged with non-linear local kernels in an end-to-

end manner is non-trivial. The kernel scheme is required to have explicit non-linear maps and

be differentiable to facilitate back-propagation. One representative work is convolutional ker-

nel network (CKN) [103], which provides a kernel approximation scheme to interpret CNNs.

A related polynomial network [98] is to utilize polynomial activation functions as alternatives

of ReLU in CNNs to learn non-linear interactions of feature variables. Similarly, we lever-

age the polynomial kernel to serve in modelling higher-level part interactions and derive the

polynomial modules that allow trainable structure built on CNNs.

With the kernel scheme, we extend our framework for higher-order integration of hierar-

chical convolutional activations. The effectiveness of fusing hierarchical features in CNNs has

been widely reported in visual recognition. The benefits come from both the different discrim-
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inative capacities of multiple convolutional layers and the coarse-to-fine object description.

However, the existing methods merely concatenate or sum multiple activations into a holistic

representation [60], or adopt a decision level fusion to combine side-outputs from different

layers [90, 179]. These methods, however, are limited in exploiting the intrinsic higher-order

relationships of convolutional activations in either the intra-layer level or the inter-layer level.

By using the kernel fusion on hierarchical convolutional activations, we can construct a richer

image representation for cross-layer integration. Compared with the related works that per-

form feature fusion via learning multiple networks [26, 94, 145], our framework is easy to

construct and more effective for FGVC.

4.2 Related Work

4.2.1 Feature Encoding in CNNs

Applying encoding techniques for the local convolutional activations in CNNs has shown sig-

nificant improvements compared with the fully-connected outputs [25, 182]. In this case, the

VLAD and FV as high-order statistics based representation can be readily applied. Gong et

al. [47] propose to use VLAD to encode local features extracted from multiple regions of an

image. In [25, 29, 182], the values of FV encoding on convolutional activations are discov-

ered for scene, texture and video recognition tasks. However, regarding feature encoding as

an isolated component is not the optimal choice for CNNs. Therefore, Lin et al. [94] propose

a bilinear CNN (B-CNN) as codebook-free coding that allows end-to-end training for FGVC.

The very recent work in [5] builds a weakly place recognition system by introducing a gen-

eralized VLAD layer that can be trained with off-the-shelf CNN models. An alternative for

feature mapping is to exploit kernel approximation feature embedding. Yang et al. [188] intro-

duce adaptive Fastfood transform in their deep fried convnets to replace the fully-connected

layers, which is a generalization of the Fastfood transform for approximating kernels [89].
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Gao et al. [42] implement an end-to-end structure to approximate the degree-2 homogeneous

polynomial kernel by utilizing random features and sketch techniques.

4.2.2 Feature Fusion in CNNs

Compared with the fully connected layers capturing the global semantic information, convolu-

tional layers preserve more instance-level details and exhibit diverse visual contents as well as

different discriminative capacities, which are more meaningful to the fine-grained recognition

task [6]. Recently a few works attempt to investigate the effectiveness of exploiting features

from different convolutional layers [95, 183]. Long et al. [99] combine the feature maps from

intermediate level and high level convolutional layers in their fully convolutional network to

provide both finer details and higher-level semantics for better image segmentation. Hariharan

et al. [60] introduce hypercolumns for localization and segmentation, where convolutional ac-

tivations at a pixel of different feature maps are concatenated as a vector as a pixel descriptor.

Similarly, Xie and Tu [179] present a holistically-nested edge detection scheme in which the

sideoutputs are added after several lower convolutional layers to provide deep supervision for

predicting edges at multiple scales.

4.3 Kernelized Convolutional Activations

Most part-based CNN methods for FGVC consist of two components: (i) feature extraction

for semantic parts on the last convolutional layer, and (ii) spatial configuration modelling

for those parts to produce the discriminative image representation. In this work, we treat

the convolutional filter as the part detector, and then the convolutional activations in a single

spatial position can be considered as the part descriptions. Therefore, instead of explicit part

extraction, we introduce polynomial predictor to integrate a family of local matching kernels

for modelling higher-order part interactions and derive powerful representation for FGVC.
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4.3.1 Matching Kernel and Polynomial Predictor

Suppose that an image I is passed by a plain CNN, and we denote the 3D activations X ∈

RK×M×N extracted from some specific convolutional layer as a set of K-dimensional descriptors

{xp}p∈Ω, where K is the number of feature channels, xp represents the descriptor at a particular

position p over the set Ω of valid spatial locations (|Ω| = M × N). We first consider the

matching scheme K for activation sets X and X̄ from two images, in which the set similarity

is measured via aggregating all the pairwise similarities among the local descriptors:

K(X, X̄) = Agg({k(xp, x̄p̄)}p∈Ω, p̄∈Ω̄) = ψ(X)Tψ(X̄), (4.1)

where k(·) is some kernel function between individual descriptors of two activation sets, Agg(·)

is some set-based aggregation function, ψ(X) and ψ(X̄) are the vector represetations for sets.

It is worth noting that the construction of K presented above is decomposed into two steps in

CNNs: feature mapping and feature aggregation. The mapping step maps each local descriptor

x ∈ RK as φ(x) ∈ RD in elaborated feature space. The aggregating step produces an image-

level representation ψ(X) from the set {φ(xp)}p∈Ω through some pooling function g(·).

The key for FGVC is to discover and represent those local regions which share com-

mon appearances within the same category while exhibiting distinctive difference across cat-

egories. Based on the matching scheme K in Eqn. (4.1), appropriate pooling operators have

been designed to efficiently prune non-discriminative matching subset while retaining those

highly discriminative ones into image representation. Among them, sum pooling assigns equal

weights to each position, and does not emphasize any position. Max pooling only considers

the most significant position, which results in enormous information loss and is prone to small

perturbation. Other pooling operators such as generalized max pooling [115] and `p-norm

pooling [36] may be effective in discovering informative regions, but the feasible end-to-end

schemes are unclear. Our attention is to model the higher-order relationships for discrimi-

native representation of local patch and design suitable local mapping function φ which can
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be stacked upon CNN for end-to-end training. Thus, we simply adopt g(·) as the global sum

pooling, in which case we denote it as:

ψ(X) = g({φ(xp)}p∈Ω) =
∑
p∈Ω

φ(xp). (4.2)

The above matching underpinning highlights the advantage of generating image-level repre-

sentation compatible with linear predictors, which can be interpreted as the linear combination

of all local compositions accordingly:

f (x) = 〈w, φ(x)〉, (4.3)

where w is the parameter of predictor, we omit the bias term and position subscript p here

for later convenience. As our aim is to capture more complex and higher-order relationships

among parts, to this end, we propose the following polynomial predictor:

f (x) =

K∑
k=1

wkxk +

R∑
r=2

∑
k1,...,kr

Wr
k1,...,kr

(
r∏

s=1

xks), (4.4)

where R is the maximal degree of part interactions,Wr is a r-order tensor which contains the

weights of degree-r variable combinations in x. For instance, when r = 3,Wi, j,k is the weight

of xix jxk. We discuss different polynomial predictors as well as their corresponding kernels as

follows:

1) Linear kernel: k(x, x̄) = 〈x, x̄〉 is the most simple kernel that refers to an identity map

φ : x 7→ x, which is identical to the polynomial predictor of degree-1: f (x) =
∑K

k=1 wkxk.

2) Homogeneous polynomial kernel: k(x, x̄) = 〈x, x̄〉r has shown the superiority in char-

acterizing the intrinsic manifold structure of dense local descriptors [16]. The induced non-

linear map φ : x 7→ ⊗r x, where ⊗r x is a tensor defined by the r-order self-outer product [124]

of x, is able to model all the degree-r interactions between variables. Its polynomial predictor

obeys the following form:

f (x) =
∑

k1,...,kr

Wr
k1,...,kr

(
r∏

s=1

xks). (4.5)
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Notice that the polynomial predictor of degree-2 homogeneous polynomial kernel is defined

as
∑

i, j Wi, jxix j, which captures all pairwise/second-order interactions between variables and

is an increasingly popular model in classification tasks [94].

3) Positive definite kernel: as discussed in [75], the positive definite kernel k(x, x̄) :

(x, x̄) 7→ f (〈x, x̄〉) defines an analytic function which admits a Maclaurin expansion with only

nonnegative coefficients, i.e., f (x) =
∑∞

r=0 ar xr, ar ≥ 0. For instance, a non-homogeneous

degree-2 polynomial kernel (〈x, x̄〉 + 1)2 corresponds to a polynomial predictor that captures

all single and pairwise interactions between variables. It also indicates that the positive def-

inite kernel can be approximated arbitrarily accurately by polynomial kernels in principle of

sufficiently high degree polynomial expansions for target functions.

4.3.2 Tensor Learning for Polynomial Kernels

Before deriving the end-to-end CNN architecture for learning the parameters in Eqn. (4.4),

we first reformulate the polynomial predictor into a more concise tensor form:

f (x) = 〈w, x〉 +
R∑

r=2

〈W
r,⊗rx〉, (4.6)

where 〈W,V〉 is the inner product of two same-sized tensors W,V ∈ RK1×···×Kr , which is

defined as the sum of the products of their entries. It is observed that the tensor ⊗r x comprises

all the degree-r monomials in x. Therefore, any degree-r homogeneous polynomial predictor

satisfies 〈Wr,⊗r x〉 for some r-order tensorWr; likewise, any r-order tensorWr determines

a degree-r homogenous polynomial predictor. This equivalence between polynomials and

tensors motivates us to transform the parameter learning of polynomial predictor into tensor

learning.

Rather than estimating the variable interactions in tensors independently, an alternative

method is tensor decomposition [81] which breaks the independence of interaction parameters

and estimates the reliable interaction parameters under high sparsity. Tensor decomposition
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is widely used in tensor machines [161] for sparse data based regression, which circumvents

the parameter storage issue and achieves better generalization in practice. We then embrace

the rank-one tensor decomposition [81] in our next step of tensor learning for consideration

of two aspects: the high sparsity of activations in deeper layers of CNNs and the parameter

sharing of convolutional filters.

We first briefly review the notations and definitions in the area of rank-one tensor decom-

position: the outer product of vectors u1 ∈ RK1 , . . . ,ur ∈ RKr is the K1 × · · · × Kr rank-one

tensor that satisfies (u1 ⊗ · · · ⊗ ur)k1...,kr = (u1)k1 · · · (ur)kr . The rank-one decomposition for a

tensorW is defined asW =
∑D

d=1 α
dud

1 ⊗ · · · ⊗ ud
r , where αd is the weight for d-th rank-one

tensor, D is the rank of the tensor if D is minimal. We then apply the rank-one approxima-

tion [81] for each r-order tensorWr and present the following alternative form of polynomial

predictor:

f (x) = 〈w, x〉 +
R∑

r=2

〈

Dr∑
d=1

αr,dur,d
1 ⊗ · · · ⊗ ur,d

r ,⊗r x〉. (4.7)

In order to learn w, αr,d and ur,d
s (r = 2, . . . ,R, s = 1, . . . , r, d = 1, . . . ,Dr), in next section,

we show that all the parameters can be absorbed into the conventional trainable modules in

CNNs.

4.3.3 Trainable Polynomial Modules

According to the tensor algebra, the Eqn. (4.7) can be further rewritten as:

f (x) = 〈w, x〉 +
R∑

r=2

Dr∑
d=1

αr,d
r∏

s=1

〈ur,d
s , x〉 (4.8)

= 〈w, x〉 +
R∑

r=2

〈αr, zr〉 (4.9)

where the d-th element of the vector zr ∈ RDr is
∏r

s=1〈u
r,d
s , x〉 which characterizes the degree-

r variable interactions under a single rank-one tensor basis. αr = [αr,1, . . . , αr,Dr
]T is the

associated weight vector of all Dr rank-one tensors. A key observation of Eqns. (4.8), (4.9) is
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that we are able to decouple the parameters into {w,α2, . . . ,αR} and {{ur,d
s }s=1,...,r;d=1,...Dr}r=2,...,R.

Notice that for each s, we can first deploy {ur,d
s }d=1,...Dr as a set of Dr 1 × 1 convolutional

filters on X to generate a set of feature mapsZr
s of dimension Dr × M × N. Then, the feature

maps {Zr
s}s=1,...,r from different ss are combined by element-wise product to obtain Zr

=

Z
r
1� · · · �Z

r
r. Therefore, {ur,d

s }s=1,...,r;d=1,...Dr can be treated as a polynomial module in learning

degree-r polynomial features. As for the former parameter group, it can be easily embedded

into the learning of the classifier for the concatenated polynomial features. Refering to Eqn.

(4.8), the derivatives for x and each degree-r convolutional filter ur,d
s in back propagation

process can be achieved by:

∂`

∂x
=

∂`

∂yr

Dr∑
d=1

r∑
s=1

(
∏
t,s

〈ur,d
t , x〉)u

r,d
s (4.10)

∂`

∂ur,d
s

=
∂`

∂yr (
∏
t,s

〈ur,d
t , x〉)x (4.11)

where yr = g(Zr) = g({zr}) is the pooled feature representation for degree-r polynomial

module, ` is the loss associated with yr. On this basis, we can embrace those polynomial

modules with the trainable CNN architectures and are able to model the higher-order part

statistics of any degree. Even though the dominant level of those highly-correlated parts will

be enhanced with a larger r, the high-order tensor usually needs large Dr to guarantee a good

approximation. Therefore, a relative small degree r should be considered in practice because

a high-degree polynomial module increases the computational cost in back propagation, i.e.,

Eqns. (4.10), (4.11), and the induced high dimensionality of feature would cause over-fitting.

4.4 Hierarchical Convolutional Activations

4.4.1 Higher-order Integration Using Kernel Fusion

The polynomial predictor provides a good measure for the highly-correlated parts but the

activations on individual convolutional layer are not sufficient to describe the part relations
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from different levels of abstraction and scale. Consequently, we investigate a kernel fusion

scheme to combine the hierarchical convolutional activations. Suppose that the local activation

descriptor sets from L convolutional layers at spatial correspondences for two images are

denoted as ψI : {xl}Ll=1 and ψĪ : {x̄l}Ll=1. Then we generalize φ under linear factorization to fuse

the local activations from multiple convolutional layers as below:

k(ψI,ψĪ) = 〈φ({xl}Ll=1), φ({x̄l}Ll=1)〉

=

L∑
l=1

ηl〈φ
l(xl), φl(x̄l)〉, (4.12)

where ηl is the weight for the matching scores in l-th layer. The above kernel fusion can be

re-interpreted as performing polynomial feature extraction at each layer and fusing them in

latter phase. Recently, hypercolumn [60] suggests a simple feature concatenation manner to

combine different feature maps in CNNs for pixel-level classification, which motivates us to

adopt the similar way in our polynomial kernel fusion. Thereby, we assume a holistic mapping

φ for all layers, i.e.,
∑L

l=1
√
ηlφ

l(xl)→ φ(concat(x1, . . . , xL)) with weights
√
ηls be merged into

element-wise scale layers. It should be noted that the spatial resolutions of different convo-

lutional layers need to be consistent for concatenation operation. Alternatively, we can add

pooling layers or spatial resampling layers to meet this requirement. In this sense, the expan-

sion of φ by Eqn. (4.4) yields two groups of variable interactions:
∏

kl
xl

kl
that characterizes

the interactions of parts in the l-th layer; and
∏

kl,kq
xl

kl
xq

kq
(where l , q) that captures additional

information of multi-scale part relations from the l-th layer and q-th layer.

4.4.2 Integration Architecture for Deeper Layers

Although the kernel fusion scheme enables polynomial predictor for integrating hierarchical

convolutional activations, it may not perform and scale well in the case where large numbers

of layers involved. We argue that only the convolutional activations from very deep layers re-

fer to the responses of discriminative semantic parts. That is consistent with the recent studies
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Figure 4.2 Illustration of our integration framework. The convolutional activation maps are concate-

nated as X = concat(X1, . . . ,XL) and fed into different branches. For r-th branch (r ≥ 2), the degree-r

polynomial module consisting of r groups of 1 × 1 convolutional filters is deployed to obtain r sets of

feature maps {Zr
s}s=1,...,r. Then {Zr

s}s=1,...,r are integrated as Zr by applying element-wise product �.

At last, X and allZrs are concatenated as the degree-r polynomial features, following by sum pooling

layer to obtain the pooled representation y = concat(y1, . . . , yL) with the dimension of
∑R

r=1 Dr (D1

denotes the channel number of X), and softmax layer.

[144, 201] which regard the convolutional filters in deeper layers as weak part detectors. In

our experiments, we demonstrate that the integration of the last three convolutional activation

layers (i.e., relu5 1, relu5 2, and relu5 3 in VGG-16 model [146]) is fairly effective to obtain

satisfactory performance. Even though lower layers could be involved, the effect is less obvi-

ous on the improvement but higher computational complexity in both the training and testing

phases. Fig. 4.2 presents our CNN architecture for integrating multiple convolutional layers.

Compared with the B-CNN methods [42, 94] focusing only on the degree-2 part statistics,

our approach provides a general solution to model complex part interactions from hierarchical

layers in different degrees and its superiority will be demonstrated in experiments.
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4.5 Experimental Results

In this section, we evaluate the effectiveness of our proposed integration framework on three

fine-grained categorization datasets: Caltech-UCSD Bird-200-2011 (CUB) [167], Aircraft

[104] and Cars [83]. The experimental comparisons with state-of-the-art methods indicate

that effective feature integration from CNN is a promising solution for FGVC in contrast with

the requirements of massive external data or detailed part annotation.

4.5.1 Datasets and Implementation Details

CUB dataset contains 11,788 bird images. There are altogether 200 bird species, and

the number of images per class is about 60. The significant variations in pose, viewpoint

and illumination inside each class make this dataset very challenging. We adopt the publicly

available split [167], which use nearly half of the dataset for training and the other half for

testing.

Aircraft dataset has 100 different aircraft model variants, giving 100 images for each

model. The aircrafts appear at different scales, design structures and appearances. We adopt

the training/testing split protocol provided by [104] to perform our experiments.

Cars dataset consists of 16,185 images from 196 car classes. Each class has about 80

images with different car sizes and heavy clutter background. We use the same split provided

by [83], divided with 8,144 images for training and 8,041 images for testing.

Implementation details: our networks on all datasets are fine-tuned on the VGG-16

model pre-trained on ILSVRC-2012 dataset [135] for a fair comparison with most state-of-the-

art FGVC methods. The framework can also be applied to the recently proposed network ar-

chitectures such as Inception [158] and ResNet [61]. We remove the last three fully-connected

layers and construct a directed acyclic graph (DAG) to combine all the components in our

framework. Before fed into softmax layer, we first pass pooled polynomial features through
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`2 normalization step. We then use logistic regression to initialize the parameters of classifica-

tion layer, and adopt Rademacher vectors (i.e., each of its components is chosen independently

using a fair coin toss from the set {−1, 1}) as proper initializations [75] of homogenous poly-

nomial kernels for the 1 × 1 convolutional filters. In the training phase, following [94], we

transform the input image by cropping the largest image region around its center, resizing it to

448× 448, and creating its mirrored version to double the training set. During fine-tuning, the

learning rates of those pre-trained VGG-16 layers and the newly added layers, including 1× 1

convolutional layers and classification layer, are initialized as 0.001. We train all the networks

using stochastic gradient descent with a batch size of 16, momentum of 0.9. In the testing

phase, we follow the popular CNN-SVM scheme [94], i.e., use softmax loss in training and

then perform the evaluation on the extracted features by SVM. Our code is implemented on the

open source MatConvNet framework with a single NVIDIA GeForce GTX TITAN X GPU and

can be downloaded at http://www4.comp.polyu.edu.hk/˜cslzhang/code/hihca.zip.

4.5.2 Analysis of the Proposed Framework

Effect of number of 1×1 convolutional filters. To validate the effectiveness of introducing

tensor decomposition in our polynomial predictor, we investigate the effect of different Dr for

the approximation of each r-order tensorWr. We first evaluate the classification accuracies on

the CUB dataset on a single layer relu5 3 using different homogeneous polynomial kernels for

solely modeling the degree-r variable interactions, i.e., xi, xix j, xix jxk, xix jxkxl. The number Dr

for degree-r convolutional filters varies from 512 to 32,768. The results are shown in Fig. 4.3.

As expected, increasing Dr leads higher accuracies on all degrees. Interestingly, when Dr is

small, degree-2 always leads a higher accuracy than those with higher degrees, which indicates

that modelling higher-order part interactions often yields a tensor of dense parameters. It

is observed that the performance gain is slight when the number Dr increases from 8,192

to 32,768, which infers that a relative sparse tensor Wr can comprehensively encode the

56

http://www4.comp.polyu.edu.hk/~cslzhang/code/hihca.zip


Figure 4.3 Accuracies achieved by using polynomial kernels with varied numbers of 1 × 1 convolu-

tional filters on the CUB dataset.

distinguishing part interactions of fine-grained objects from the very sparse activation features.

Therefore, we uniformly use 8,192 1× 1 convolutional filters in all the polynomial modules in

consideration of feature dimension, computational complexity as well as accuracy.

Effect of polynomial degree r. We further demonstrate the superiority of using higher-

order part interactions both with and without finetuning on the CUB dataset in Table 4.1.

We observe that the degree-2 polynomial kernel significantly outperforms the linear kernel.

It implies that the co-occurrence statistics is very effective in capturing part relations, which

is more informative in distinguishing objects with homogeneous appearance than the simple

part occurrence statistics. The accuracy degrades considerably as the degree r increases from

2 to 6, which might be explained by the fact the low-degree interactions with high counts are

more reliable. As the reliable high-degree interactions are usually a few in number, the sum

pooling will abate those scarce interactions in the pooled polynomial representation, which

weakens the discriminative ability of the final concatenated representation. Table. 4.2 lists

57



the frame-per-second (FPS) comparison in both the training and testing phases using different

polynomial kernels. Since there is high computational overhead involved in the polynomial

modules in the network, a large degree r will significantly slow the speed. Therefore, we

suggest to adopt 2 as the reasonable degree in all the experiments in Section 4.5.3 even though

degree-3 kernel can achieve slightly better results on Aircraft and Cars datasets.

Table 4.1 Accuracy comparison with different non-homogeneous polynominal kernels.

r 1 2 3 4 5 6

non-ft 75.7 78.3 76.4 74.6 72.4 71.2

ft 79.2 83.7 83.3 82.0 81.1 79.5

Table 4.2 FPS with different non-homogeneous polynomial kernels.

r 2 3 4 5 6

Training 9.7 7.4 5.5 4.2 2.8

Testing 29.8 23.7 18.3 14.5 10.4

Effect of feature integration. We then provide details of the results by using higher-

order integration for hierarchical convolutional activations. We focus on relu5 1, relu5 2 and

relu5 3 as they exhibit good capacity in capturing semantic part information compared with

lower layers. And we analyze the impact factors of layers, kernels, and finetuning on the CUB

dataset. The accuracies are obtained under five polynomial kernels including linear kernel,

degree-2 homogeneous kernel, degree-2 non-homogeneous (single + pairwise interactions),

degree-3 homogeneous kernel and degree-3 non-homogeneous kernel (single + pairwise +

triple interactions). We consider the following baselines: relu5 3 uses only relu5 3 activations.

relu5 3+relu5 2, relu5 3+relu5 1 and relu5 2+relu5 1 are integration baselines that use 2

layers. relu5 1+relu5 2+relu5 3 is the full integration of three layers. The results in Table 4.3

demonstrate that the performance gain of our framework comes from three factors: (i) higher-

order integration, (ii) finetuning, (iii) multiple layers. Notably, we observe the remarkable
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performance benefits on the baseline relu5 3+relu5 2 and the full model of three layers by

exploiting the degree-2 and degree-3 polynomial kernels, which implies that the discriminative

power can be enhanced by the complementary capacities of hierarchical convolutional layers

compared with the isolated relu5 3 layer. As the baseline relu5 3+relu5 2 already presents the

best performance, thus we set the feature integration as relu5 3+relu5 2 in all the experiments

in Section 4.5.3.

Table 4.3 Accuracy comparison with different baselines.

r5 3
r5 3+

r5 2

r5 3+

r5 1

r5 2+

r5 1

r5 3+

r5 2+

r5 1

degree-1

non-ft 75.7 77.2 75.5 68.9 77.0

ft 79.2 80.4 79.3 71.1 80.8

degree-2 homogeneous

non-ft 77.2 78.1 77.5 72.3 78.4

ft 83.5 85.0 83.3 76.0 84.9

degree-2 non-homogeneous

non-ft 78.3 78.5 77.5 72.1 78.6

ft 83.7 85.3 83.6 76.5 85.1

degree-3 homogeneous

non-ft 75.7 76.9 76.0 70.7 76.1

ft 82.3 83.8 81.5 74.1 83.3

degree-3 non-homogeneous

non-ft 76.4 78.2 77.4 72.3 78.1

ft 83.3 84.6 82.1 75.4 84.5
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We also compare our higher-order integration with hypercolumn [60] and HED [179]

based feature integrations. Since the original hypercolumn and HED are introduced for pixel-

wise classification, for fair comparison, we revise hypercolumn as the feature concatenation

of relu5 3, relu5 2 and relu5 1, following by max pooling (denoted as Hypercolumn∗); and

revise HED by training classifiers for the pooled activation features at each layer and then

fuse the predictions (denoted as HED∗). Table 4.4 shows that our integration framework is

significantly superior to Hypercolumn∗ and HED∗. This is not surprising since Hypercolumn∗

and HED∗ can be treated as degree-1 integration to some extent.

Table 4.4 Accuracy comparison with different feature integrations.

Degree-2 integration Hypercolumn∗ HED∗

85.1 80.9 82.3

4.5.3 Comparison with State-of-the-art Methods

Results on the CUB dataset. We first compare our framework along with both the

annotation-based methods (i.e., using object bounding boxes or part annotations) and annotation-

free methods (i.e., only using image-level labels) on the CUB dataset. As shown in Table

4.5, unlike the state-of-the-art result obtained from SPDA-CNN (85.1%) [193] which relies

on the additional annotations of seven parts, we can still achieve a comparable accuracy of

85.3% with only image-level labels and significant improvements over PB R-CNN [199] and

FG-Without [82]. Furthermore, our method is slightly inferior to BoostCNN [111] and out-

performs all other annotation-free methods with a modest improvement (about 1%) compared

with STN [68], B-CNN [94] and PDFS [201]. However, STN [68] uses a better baseline CNN

(Inception [158]) than our VGG-16 network and PDFS [201] cannot be trained by end-to-end

manner. B-CNN [94] attempts to achieve the feature complementary based on the outer prod-

uct of convolutional activations from two networks (i.e., VGG-M and VGG-16). However,
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Table 4.5 Accuracies (%) on the CUB dataset. “bbox” and “parts” refer to object bounding box and

part annotations.

methods train anno. test anno. acc.

PB R-CNN [199] bbox+parts n/a 73.9

FG-Without [82] bbox bbox 82.0

SPDA-CNN [193] bbox+parts bbox+parts 85.1

STN [68] n/a n/a 84.1

B-CNN [94] n/a n/a 84.1

PDFS [201] n/a n/a 84.5

BoostCNN [111] n/a n/a 85.6

Ours n/a n/a 85.3

Table 4.6 Accuracies (%) on the Aircraft and Cars datasets.

methods acc. (Aircraft) acc. (Cars)

Symbiotic [18] 72.5 78.0

FV-FGC [49] 80.7 82.7

B-CNN [94] 84.1 91.3 (90.6)

Ours 88.3 91.7

our framework shows that the better complementarity can be achieved by exploiting the natu-

ral hierarchical structures of CNNs. BoostCNN uses BCNN as the base CNN and adopts an

ensemble learning method to incorporate boosting weights. Thus, a fair comparison is to use

ours as the base CNN in BoostCNN.

Results on the Aircraft and Cars datasets. The methods for the Aircraft and Cars

datasets are all annotation-free since there are no ground-truth part annotations on these two

datasets. We first evaluate our framework on the Aircraft dataset, and the related results are

shown in the second column of Table 4.6. Our network achieves significantly better classifi-
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CUB Aircraft Cars

Figure 4.4 Visualization of the learned image patches in our fine-tuned networks on the CUB, Air-

craft and Cars datasets.

cation accuracy than the state-of-the-art B-CNN which can be seemed like a specific degree-2

case in our framework. As we find that relu5 2 instead of relu5 3 achieves the best perfor-

mance in Aircraft dataset, our improvement might be due to the reasons: (1) B-CNN only

focuses on relu5 3 where the discriminative parts are highly out-numbered, thus these parts

might be overwhelmed by large non-discriminative region in pooling stage; (2) the discrimi-

native parts in this dataset may occur simultaneously in both the coarse and fine scales. There-

fore, the rich representation by incorporating multiple layers in our integration framework

mitigates the local ambiguities of single-layer representation to a large extent.

The third column of Table 4.6 provides the comparision on the Cars dataset. B-CNN [94]
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Figure 4.5 The degree-2 and degree-3 part interactions on the CUB dataset.
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Figure 4.6 The degree-2 and degree-3 part interactions on the Aircraft dataset.
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Figure 4.7 The degree-2 and degree-3 part interactions on the Cars dataset.

shows the similar accuracy behavior with ours and both present a large margin over Symbiotic

[18] and FV-FGC [49]. The accuracy of B-CNN [94] using two networks is very close to
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ours (91.3% vs. 91.7%), yet for the single network case, it still has the accuracy gap of 1.1%,

which infers that the hierarchical feature integration on a single network can also contribute

the feature complementary as done by two different networks.

Visualization for the learned image patches and part interactions. In Fig. 4.4, we

visualize some image patches with the highest activations in the deeper layers of our fine-tuned

networks, and the patches in each column come from different feature channels/maps. We

obviously observe strong semantic-related parts such as heads, legs and tails in CUB; cockpit,

tail stabilizers and engine in Aircraft; front bumpers, wheels and lights in Cars. Furthermore,

in Figs. 4.5, 4.6 and 4.7, we also visualize the degree-2 and degree-3 part interactions based on

the largest values in classifier parameters in CUB, Aircraft and Cars, respectively. The strong

part connections exactly reflect the nature of our approach which aims to improve the feature

discrimination by the effective combinations of these parts.

4.6 Conclusion

It is preferred to perform FGVC under a more realistic setting without part annotations and

any prior knowledge for explicit object appearance modelling. In this work, by considering

the weak parts in CNN itself, we present a novel higher-order integration framework of hier-

archical convolutional layers to derive a rich representation for FGVC. Based on the kernel

mapping scheme, we propose a polynomial predictor to exploit the higher-order part relations

and presented the trainable polynomial modules which can be plugged in conventional CNNs.

Furthermore, the higher-order integration framework can be naturally extended to mine the

multi-scale part relations in hierarchical layers. The results on the CUB, Aircraft and Cars

datasets manifest competitive performance and demonstrate the effectiveness of our integra-

tion framework.
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Chapter 5

Weakly-supervised Video Summarization

using Variational Encoder-Decoder and

Web Prior

5.1 Introduction

Recently, it has been attracting much interest in extracting the representative visual elements

from a video for sharing on social media, which aims to effectively express the semantics

of the original lengthy video. However, this task, often referred to as video summarization,

is laborious, subjective and challenging since videos usually exhibit very complex semantic

structures, including diverse scenes, objects, actions and their complex interactions.

A noticeable trend appeared in recent years is to use the deep neural networks (DNNs)

[57, 197] for video summarization since DNNs have made significant progress in various

video understanding tasks [30, 76, 117]. However, annotations used in the video summariza-

tion task are in the form of frame-wise labels or importance scores, collecting a large num-

ber of annotated videos demands tremendous effort and cost. Consequently, the widely-used
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benchmark datasets [23, 151] only cover dozens of well-annotated videos, which becomes

a prominent stumbling block that hinders the further improvement of DNNs based summa-

rization techniques. Meanwhile, annotations for summarization task are subjective and not

consistent across different annotators, potentially leading to overfitting and biased models.

Therefore, the advanced studies toward taking advantage of augmented data sources such as

web images [79], GIFs [57] and texts [126], which are complimentary for the summarization

purpose.

To drive the techniques along with this direction, we consider an efficient weakly-supervised

setting of learning summarization models from a vast number of web videos. Compared with

other types of auxiliary source domain data for video summarization, the temporal dynam-

ics in these user-edited “templates” offer rich information to locate the diverse but semantic-

consistent visual contents which can be used to alleviate the ambiguities in small-size summa-

rization. These short-form videos are readily available from web repositories (e.g., YouTube)

and can be easily collected using a set of topic labels as search keywords. Additionally, these

web videos have been edited by a large community of users, the risk of building a biased

summarization model is significantly reduced. Several existing works [23, 120] have explored

different strategies to exploit the semantic relatedness between web videos and benchmark

videos. So motivated, we aim to effectively utilize the large collection of weakly-labelled web

videos in learning more accurate and informative video representations which: (i) preserve

essential information within the raw videos; (ii) contain discriminative information regarding

the semantic consistency with web videos. Therefore, the desired deep generative models are

necessitated to capture the underlying latent variables and make practical use of web data and

benchmark data to learn abstract and high-level representations.

To this end, we present a generative framework for summarizing videos in this paper,

which is illustrated in Fig. 5.1. The basic architecture consists of two components: a varia-

tional autoencoder (VAE) [80] model for learning the latent semantics from web videos; and
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Figure 5.1 An illustration of the proposed generative framework for video summarization. A VAE

model is pre-trained on web videos (purple dashed rectangle area); And the summarization is imple-

mented within an encoder-decoder paradigm by using both the attention vector and the sampled latent

variable from VAE (red dashed rectangle area).

a sequence encoder-decoder with attention mechanism for summarization. The role of VAE

is to map the videos into a continuous latent variable, via an inference network (encoder),

and then use the generative network (decoder) to reconstruct the input videos conditioned on

samples from the latent variable. For the summarization component, the association is tempo-

rally ambiguous since only a subset of fragments in the raw video is relevant to its summary

semantics. To filter out the irrelevant fragments and identify informative temporal regions

for the better summary generation, we exploit the soft attention mechanism where the atten-

tion vectors (i.e., context representations) of raw videos are obtained by integrating the latent

semantics trained from web videos. Furthermore, we provide a weakly-supervised semantic

matching loss instead of reconstruction loss to learn the topic-associated summaries in our

generative framework. In this sense, we take advantage of potentially accurate and flexible
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latent variable distribution from external data thus strengthen the expressiveness of generated

summary in the encoder-decoder based summarization model. To evaluate the effectiveness

of the proposed method, we comprehensively conduct experiments using different training

settings and demonstrate that our method with web videos achieves significantly better perfor-

mance than competitive video summarization approaches.

5.2 Related Work

5.2.1 Video Summarization

Video summarization is a challenging task which has been explored for many years [112, 164]

and can be grouped into two broad categories: unsupervised and supervised learning methods.

Unsupervised summarization methods focus on low-level visual cues to locate the important

segments of a video. Various strategies have been investigated, including clustering [54, 55],

sparse optimizations [33, 121], and energy minimization [37, 129]. A majority of recent

works mainly study the summarization solutions based on the supervised learning from human

annotations. For instance, to make a large-margin structured prediction, submodular functions

are trained with human-annotated summaries [56]. Gygli et al. [55] propose a linear regression

model to estimate the interestingness score of shots. Gong et al. [46] and Sharghi et al.

[142] learn from user-created summaries for selecting informative video subsets. Zhang et

al. [196] show summary structures can be transferred between videos that are semantically

consistent. More recently, DNNs based methods have been applied for video summarization

with the help of pairwise deep ranking model [190] or recurrent neural networks (RNNs)

[197]. However, these approaches assume the availability of a large number of human-created

video-summary pairs or fine-grained temporal annotations, which are in practice difficult and

expensive to acquire. Alternatively, there have been attempts to leverage information from

other data sources such as web images, GIFs and texts [57, 79, 126]. Chu et al. [23] propose

70



to summarize shots that co-occur among multiple videos of the same topic. Panda et al.

[119] present an end-to-end 3D convolutional neural network (CNN) architecture to learn

summarization model with web videos. In this paper, we also consider to use the topic-specific

cues in web videos for better summarization, but adopt a generative summarization framework

to exploit the complementary benefits in web videos.

5.2.2 Video Highlight Detection

Video highlight detection is highly related to video summarization and many earlier approaches

have primarily been focused on specific data scenarios such as broadcast sport videos [134,

160]. Traditional methods usually adopt the mid-level and high-level audio-visual features

due to the well-defined structures. For general highlight detection, Sun et al. [156] employ

a latent SVM model detect highlights by learning from pairs of raw and edited videos. The

DNNs also have achieved big performance improvement and shown great promise in high-

light detection [184]. However, most of these methods treat highlight detection as a binary

classification problem, while highlight labelling is usually ambiguous for humans. This also

imposes heavy burden for humans to collect a huge amount of labelled data for training DNN

based models.

5.2.3 Deep Generative Models

Deep generative models are very powerful in learning complex data distribution and low-

dimensional latent representations. Besides, the generative modelling for video summariza-

tion might provide an effective way to bring scalability and stability in training a large amount

of web data. Two of the most effective approaches are VAE [80] and generative adversarial

network (GAN) [48]. VAE aims at maximizing the variational lower bound of the observa-

tion while encouraging the variational posterior distribution of the latent variables to be close

to the prior distribution. A GAN is composed of a generative model and a discriminative
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model and trained in a min-max game framework. Both VAE and GAN have already shown

promising results in image/frame generation tasks [106, 133, 166]. To embrace the tempo-

ral structures into generative modelling, we propose a new variational sequence-to-sequence

encoder-decoder framework for video summarization by capturing both the video-level top-

ics and web semantic prior. The attention mechanism embedded in our framework can be

naturally used as key shots selection for summarization. Most related to our generative sum-

marization is the work of Mahasseni et al. [100], who present an unsupervised summarization

in the framework of GAN. However, the attention mechanism in their approach depends solely

on the raw video itself thus has the limitation in delivering diverse contents in video-summary

reconstruction.

5.3 VESD Model

As an intermediate step to leverage abundant user-edited videos on the Web to assist the

training of our generative video summarization framework, in this section, we first introduce

the basic building blocks of the proposed framework, called variational encoder-summarizer-

decoder (VESD). The VESD consists of three components: (i) an encoder RNN for raw video;

(ii) an attention-based summarizer for raw video; (iii) a decoder RNN for summary video.

Following the video summarization pipelines in previous methods [127, 197], we first

perform temporal segmentation and shot-level feature extraction for raw videos using CNNs.

Each video X is then treated as a sequential set of multiple non-uniform shots, where xt is

the feature vector of the t-th shot in video representation X. Most supervised summarization

approaches aim to predict labels/scores which indicate whether the shots should be included in

the summary, however, suffering from the drawbacks of selection of redundant visual contents.

For this reason, we formulate video summarization as video generation task which allows

the summary representation Y does not necessarily be restricted to a subset of X. In this

manner, our method centres on the semantic essence of a video and can exhibit the high
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tolerance for summaries with visual differences. Following the encoder-decoder paradigm

[157], our summarization framework is composed of two parts: the encoder-summarizer is an

inference network qφ(a|X, z) that takes both the video representation X and the latent variable

z (sampled from the VAE module pre-trained on web videos) as inputs. Moreover, the encoder-

summarizer is supposed to generate the video content representation a that captures all the

information about Y. The summarizer-decoder is a generative network pθ(Y|a, z) that outputs

the summary representation Y based on the attention vector a and the latent representation z.

5.3.1 Encoder-Summarizer

To date, modelling sequence data with RNNs has been proven successful in video summa-

rization [197]. Therefore, for the encoder-summarizer component, we employ a pointer RNN,

e.g., a bidirectional Long Short-Term Memory (LSTM), as an encoder that processes the raw

videos, and a summarizer aims to select the shots of most probably containing salient infor-

mation. The summarizer is exactly the attention-based model that generates the video context

representation by attending to the encoded video features.

In time step t, we denote xt as the feature vector for the t-th shot and he
t as the state output

of the encoder. It is known that he
t is obtained by concatenating the hidden states from each

direction:

he
t = [RNN−−→enc(

−−→
ht−1, xt); RNN←−−enc(

←−−
ht+1, xt)]. (5.1)

The attention mechanism is proposed to compute an attention vector a of input sequence by

summing the sequence information {he
t , t = 1, . . . , |X|} with the location variable α as follows:

a =

|X|∑
t=1

αthe
t , (5.2)

where αt denotes the t-th value of α and indicates whether the t-th shot is included in summary

or not. As mentioned in [181], when using the generative modelling on the log-likelihood of

the conditional distribution p(Y|X), one approach is to sample attention vector a by assigning
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the Bernoulli distribution to α. However, the resultant Monte Carlo gradient estimator of

the variational lower-bound objective requires complicated variance reduction techniques and

may lead to unstable training. Instead, we adopt a deterministic approximation to obtain a.

That is, we produce an attentive probability distribution based on X and z, which is defined as

αt := p(αt|he
t , z) = softmax(ϕt([he

t ; z])), where ϕ is a parameterized potential typically based

on a neural network, e.g., multilayer perceptron (MLP). Accordingly, the attention vector in

Eqn. (5.2) turns to:

a =

N∑
t=1

p(αt|he
t , z)he

t , (5.3)

which is fed to the decoder RNN for summary generation. The attention mechanism extracts

an attention vector a by iteratively attending to the raw video features based on the latent vari-

able z learned from web data. In doing so the model is able to adapt to the ambiguity inherent

in summaries and obtain salient information of raw video through attention. Intuitively, the

attention scores αts are used to perform shot selection for summarization.

5.3.2 Summarizer-Decoder

We specify the summary generation process as pθ(Y|a, z) which is the conditional likelihood

of the summary given the attention vector a and the latent variable z. Different with the

standard Gaussian prior distribution adopted in VAE, p(z) in our framework is pre-trained

on web videos to regularize the latent semantic representations of summaries. Therefore, the

summaries generated via pθ(Y|a, z) are likely to possess diverse contents. In this manner,

pθ(Y|a, z) is then reconstructed via a RNN decoder at each time step t: pθ(yt|a, [µz,σ
2
z]),

where µz and σz are nonlinear functions of the latent variables specified by two learnable

neural networks (detailed in Section 5.4).
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5.3.3 Variational Inference

Given the proposed VESD model, the network parameters {φ, θ} need to be updated during

inference. We marginalize over the latent variables a and z by maximizing the following

variational lower-bound L(φ, θ)

L(φ, θ) = Eqφ(a,z|X,Y)[log pθ(Y|a, z) − KL(qφ(a, z|X,Y)|p(a, z))], (5.4)

where KL(·) is the Kullback-Leibler divergence. We assume the joint distribution of the latent

variables a and z has a factorized form, i.e., qφ(a, z|X,Y) = qφ(z)(z|X,Y)qφ(a)(a|X,Y), and no-

tice that p(a) = qφ(a)(a|X,Y) is defined with a deterministic manner in Section 5.3.1. Therefore

the variational objective in Eqn. (5.4) can be derived as:

L(φ, θ) = Eqφ(z) (z|X,Y)[Eqφ(a) (a|X,Y) log pθ(Y|a, z)

−KL(qφ(a)(a|X,Y)||p(a))] + KL(qφ(z)(z|X,Y)||p(z))

= Eqφ(z|X,Y)[log pθ(Y|a, z)] + KL(qφ(z|X,Y)||p(z)). (5.5)

The above variational lower-bound offers a new perspective for exploiting the reciprocal na-

ture of raw video and its summary. Maximizing Eqn. (5.5) strikes a balance between minimiz-

ing generation error and minimizing the KL divergence between the approximated posterior

qφ(z)(z|X,Y) and the prior p(z).

5.4 Weakly-supervised VESD

In practice, as only a few video-summary pairs are available, the latent variable z cannot char-

acterize the inherent semantic in video and summary accurately. Motivated by the VAE/GAN

model [86], we explore a weakly-supervised learning framework and endow our VESD the

ability to make use of rich web videos for the latent semantic inference. The VAE/GAN

model extends VAE with the discriminator network in GAN, which provides a method that
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constructs the latent space from inference network of data rather than random noises and im-

plicitly learns a rich similarity metric for data. The similar idea has also been investigated in

[100] for unsupervised video summarization. Recall that the discriminator in GAN tries to

distinguish the generated examples from real examples; Following the same spirit, we apply

the discriminator in the proposed VESD which naturally results in minimizing the following

adversarial loss function:

L(φ, θ,ψ) = −EŶ[log Dψ(Ŷ)] − EX,z[log(1 − Dψ(Y))], (5.6)

where Ŷ refers to the representation of web video. Unfortunately, the above loss function

suffers from the unstable training in standard GAN models and cannot be directly extended

into supervised scenario. To address these problems, we propose to employ a semantic feature

matching loss for the weakly-supervised setting of VESD framework. The objective requires

the representation of generated summary to match the representation of web videos under a

similarity function. For the prediction of the semantic similarity, we replace pθ(Y|a, z) with

the following sigmoid function:

pθ(c|a, hd(Ŷ)) = σ(aT Mhd(Ŷ)), (5.7)

where hd(Ŷ) is the last output state of Ŷ in the decoder RNN and M is the sigmoid parameter.

We randomly pick Ŷ in web videos and c is the pair relatedness label, i.e., c = 1 if Y and Ŷ

are semantically matched. We can also generalize the above matching loss to multi-label case

by replacing c with one-hot vector c whose nonzero position corresponds the matched label.

Therefore, the objective (5.5) can be rewritten as:

L(φ, θ,ψ) = Eqφ(z)[log pθ(c|a, hd(Ŷ))] + KL(qφ(z)||p(z|Ŷ)). (5.8)

It is found that the above variational objective shares the similarity with conditional VAE

(CVAE) [150] which is able to produce diverse outputs for a single input. For example, Walker

et al. [169] use a fully convolutional CVAE for diverse motion prediction from a static im-

age. Zhou and Berg [204] generate diverse time-lapse videos by incorporating conditional,
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twostack and recurrent architecture modifications to standard generative models. Therefore,

our weakly-supervised VESD naturally embeds the diversity in video summary generation.

5.4.1 Learnable Prior and Posterior

In contrast to the standard VAE prior that assumes the latent variable z to be drawn from latent

Gaussian (e.g., p(z) = N(0, I)), we impose the prior distribution learned from web videos

which infers the topic-specific semantics more accurately. Thus we impose z to be drawn

from the Gaussian with p(z|Ŷ) = N(z|µ(Ŷ),σ2(Ŷ)I) whose mean and variance are defined as:

µ(Ŷ) = fµ(Ŷ), logσ2(Ŷ) = fσ(Ŷ), (5.9)

where fµ(·) and fσ(·) denote any type of neural networks that are suitable for the observed

data. We adopt two-layer MLPs with ReLU activation in our implementation.

Likewise, we model the posterior of qφ(z|·) := qφ(z|X, Ŷ, c) with the Gaussian distribu-

tion N(z|µ(X, Ŷ, c),σ2(X, Ŷ, c) whose mean and variance are also characterized by two-layer

MLPs with ReLU activation:

µ = fµ([a; hd(Ŷ); c]), logσ2 = fσ([a; hd(Ŷ); c]). (5.10)

5.4.2 Mixed Training Objective Function

One potential issue of purely weakly-supervised VESD training objective (5.8) is that the se-

mantic matching loss usually results in summaries focusing on very few shots in raw video. To

ensure the diversity and fidelity of the generated summaries, we can also make use of the im-

portance scores on partially finely-annotated benchmark datasets to consistently improves per-

formance. For those detailed annotations in benchmark datasets, we adopt the same keyframe

regularizer in [100] to measure the cross-entropy loss between the normalized ground-truth

importance scores αgt
X and the output attention scores αX as below:

Lscore = cross-entropy(αgt
X ,αX). (5.11)
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Figure 5.2 The variational formulation of our weakly-supervised VESD framework.

Accordingly, we train the regularized VESD using the following objective function to utilize

different levels of annotations:

Lmixed = L(φ, θ,ψ,ω) + λLscore. (5.12)

The overall objective can be trained using back-propagation efficiently and is illustrated in Fig.

5.2. After training, we calculate the salience score α for each new video by forward passing

the summarization model in VESD.

5.5 Experimental Results

Datasets and Evaluation. We test our VESD framework on two publicly available video

summarization benchmark datasets CoSum [23] and TVSum [151]. The CoSum [23] dataset

consists of 51 videos covering 10 topics including Base Jumping (BJ), Bike Polo (BP), Eiffel

Tower (ET), Excavators River Cross (ERC), Kids Playing in leaves (KP), MLB, NFL, Notre

Dame Cathedral (NDC), Statue of Liberty (SL) and SurFing (SF). The TVSum [151] dataset

contains 50 videos organized into 10 topics from the TRECVid Multimedia Event Detection

task [148], including changing Vehicle Tire (VT), getting Vehicle Unstuck (VU), Grooming
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an Animal (GA), Making Sandwich (MS), ParKour (PK), PaRade (PR), Flash Mob gathering

(FM), BeeKeeping (BK), attempting Bike Tricks (BT), and Dog Show (DS). Following the

literature [56, 197], we randomly choose 80% of the videos for training and use the remaining

20% for testing on both datasets. As recommended by [23, 119, 120], we evaluate the quality

of a generated summary by comparing it to multiple user-annotated summaries provided in

benchmarks. Specifically, we compute the pairwise average precision (AP) for a proposed

summary and all its corresponding human-annotated summaries, and then report the mean

value. Furthermore, we average over the number of videos to achieve the overall performance

on a dataset. For the CoSum dataset, we follow [119, 120] and compare each generated

summary with three human-created summaries. For the TVSum dataset, we first average the

frame-level importance scores to compute the shot-level scores, and then select the top 50%

shots for each video as the human-created summary. Finally, each generated summary is

compared with twenty human-created summaries. The top-5 and top-15 mAP performances

on both datasets are presented in evaluation.

Web Video Collection. This section describes the details of web video collection for our ap-

proach. We treat the topic labels in both datasets as the query keywords and retrieve videos

from YouTube for all the twenty topic categories. We limit the videos by time duration (less

than 4 minutes) and rank by relevance to constructing a set of weakly-annotated videos. How-

ever, these downloaded videos are still very lengthy and noisy in general since they contain a

proportion of frames that are irrelevant to search keywords. Therefore, we introduce a simple

but efficient strategy to filter out the noisy parts of these web videos: (1) we first adopt the

existing temporal segmentation technique KTS [127] to segment both the benchmark videos

and web videos into non-overlapping shots, and utilize CNNs to extract feature within each

shot; (2) the corresponding features in benchmark videos are then used to train a MLP with

their topic labels (the shots do not belong to any topic label are set with background label) and

perform prediction for the shots in web videos; (3) we further truncate web videos based on
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the relevant shots whose topic-related probability is larger than a threshold. In this way, we

observe that the trimmed videos are sufficiently clean and informative for learning the latent

semantics in our VAE module.

Architecture and Implementation Details. For the fair comparison with state-of-the-art

methods [100, 197], we choose to use the output of pool5 layer of the GoogLeNet [158] for the

frame-level feature. The shot-level feature is then obtained by averaging all the frame features

within a shot. We first use the features of segmented shots on web videos to pre-train a VAE

module whose dimension of the latent variable is set to 256. To build encoder-summarizer-

decoder, we use a two-layer bidirectional LSTM with 1024 hidden units, a two-layer MLP

with [256, 256] hidden units and a two-layer LSTM with 1024 hidden units for the encoder

RNN, attention MLP and decoder RNNs, respectively. For the parameter initialization, we

train our framework from scratch using stochastic gradient descent with a minibatch size of

20, a momentum of 0.9, and a weight decay of 0.005. The learning rate is initialized to 0.01

and is reduced to its 1/10 after every 20 epochs (100 epochs in total). The trade-off parameter

λ is set to 0.2 in the mixed training objective.

5.5.1 Quantitative Results

Exploration Study. To better understand the impact of using web videos and different types

of annotations in our method, we analyzed the performances under the following six training

settings: (1) benchmark datasets with weak supervision (topic labels); (2) benchmark datasets

with weak supervision and extra 30 downloaded videos per topic; (3) benchmark datasets

with weak supervision and extra 60 downloaded videos per topic; (4) benchmark datasets with

strong supervision (topic labels and importance scores); (5) benchmark datasets with strong

supervision and extra 30 downloaded videos per topic; and (6) benchmark datasets with strong

supervision and extra 60 downloaded videos per topic. We have the following key observations

from Table 5.1: (1) Training on the benchmark data with only weak topic labels in our VESD
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Table 5.1 Exploration study on training settings. Numbers show top-5 mAP scores.

Training Settings CoSum TVSum

benchmark with weak supervision 0.616 0.352

benchmark with weak supervision + 30 web videos/topic 0.684 0.407

benchmark with weak supervision + 60 web videos/topic 0.701 0.423

benchmark with strong supervision 0.712 0.437

benchmark with strong supervision + 30 web videos/topic 0.755 0.481

benchmark with strong supervision + 60 web videos/topic 0.764 0.498

Table 5.2 Performance comparison using different types of features on CoSum dataset. Numbers

show top-5 mAP scores averaged over all the videos of the same topic.

Features BJ BK ET ERC KP MLB NFL NDC SL SF Top-5

GoogLeNet 0.715 0.746 0.813 0.756 0.772 0.727 0.737 0.782 0.794 0.709 0.755

ResNet101 0.727 0.755 0.827 0.766 0.783 0.741 0.752 0.790 0.807 0.722 0.767

C3D 0.729 0.754 0.831 0.761 0.779 0.740 0.747 0.785 0.805 0.718 0.765

framework performs much worse than either that of training using extra web videos or that of

training using detailed importance scores, which demonstrates our generative summarization

model demands a larger amount of annotated data to perform well. (2) We notice that the

more web videos give better results, which clearly demonstrates the benefits of using web

videos and proves the scalability of our generative framework. (3) This big improvements

with strong supervision illustrate the positive impact of incorporating available importance

scores for mixed training of our VESD. That is not surprising since the attention scores should

be imposed to focus on different fragments of raw videos in order to be consistent with ground-

truths, resulting in the summarizer with the diverse property which is an important metric in

generating good summaries. We use the training setting (5) in the following experimental

comparisons.

Effect of Deep Features. We also investigate the effect of using different types of deep fea-
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Table 5.3 Experimental results on CoSum dataset. Numbers show top-5/15 mAP scores averaged

over all the videos of the same topic.

Topic
Unsupervised Methods Supervised Methods

VESD
SMRS Quasi MBF CVS SG KVS DPP sLstm SM DSN

BJ 0.504 0.561 0.631 0.658 0.698 0.662 0.672 0.683 0.692 0.685 0.715

BP 0.492 0.625 0.592 0.675 0.713 0.674 0.682 0.701 0.722 0.714 0.746

ET 0.556 0.575 0.618 0.722 0.759 0.731 0.744 0.749 0.789 0.783 0.813

ERC 0.525 0.563 0.575 0.693 0.729 0.685 0.694 0.717 0.728 0.721 0.756

KP 0.521 0.557 0.594 0.707 0.729 0.701 0.705 0.714 0.745 0.742 0.772

MLB 0.543 0.563 0.624 0.679 0.721 0.668 0.677 0.714 0.693 0.687 0.727

NFL 0.558 0.587 0.603 0.674 0.693 0.671 0.681 0.681 0.727 0.724 0.737

NDC 0.496 0.617 0.595 0.702 0.738 0.698 0.704 0.722 0.759 0.751 0.782

SL 0.525 0.551 0.602 0.715 0.743 0.713 0.722 0.721 0.766 0.763 0.794

SF 0.533 0.562 0.594 0.647 0.681 0.642 0.648 0.653 0.683 0.674 0.709

Top-5 0.525 0.576 0.602 0.687 0.720 0.684 0.692 0.705 0.735 0.721 0.755

Top-15 0.547 0.591 0.617 0.699 0.731 0.702 0.711 0.717 0.746 0.736 0.764

tures as shot representation in VESD framework, including 2D deep features extracted from

GoogLeNet [158] and ResNet101 [61], and 3D deep features extracted from C3D [163]. In Ta-

ble 5.2, we have following observations: (1) ResNet produces better results than GoogLeNet,

with a top-5 mAP score improvement of 0.012 on the CoSum dataset, which indicates more

powerful visual features still lead improvement for our method. We also compare 2D GoogLeNet

features with C3D features. Results show that the C3D features achieve better performance

over GoogLeNet features (0.765 vs 0.755) and comparable performance with ResNet101 fea-

tures. We believe this is because C3D features exploit the temporal information of videos thus

are also suitable for summarization.

Comparison with Unsupervised Methods. We first compare VESD with several unsuper-

vised methods including SMRS [33], Quasi [79], MBF [23], CVS [120] and SG [100]. Table.

5.3 shows the mean AP on both top 5 and 15 shots included in the summaries for the Co-
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Table 5.4 Experimental results on TVSum dataset. Numbers show top-5/15 mAP scores averaged

over all the videos of the same topic.

Topic
Unsupervised Methods Supervised Methods

VESD
SMRS Quasi MBF CVS SG KVS DPP sLstm SM DSN

VT 0.272 0.336 0.295 0.328 0.423 0.353 0.399 0.411 0.415 0.373 0.447

VU 0.324 0.369 0.357 0.413 0.472 0.441 0.453 0.462 0.467 0.441 0.493

GA 0.331 0.342 0.325 0.379 0.475 0.402 0.457 0.463 0.469 0.428 0.496

MS 0.362 0.375 0.412 0.398 0.489 0.417 0.462 0.477 0.478 0.436 0.503

PK 0.289 0.324 0.318 0.354 0.456 0.382 0.437 0.448 0.445 0.411 0.478

PR 0.276 0.301 0.334 0.381 0.473 0.403 0.446 0.461 0.458 0.417 0.485

FM 0.302 0.318 0.365 0.365 0.464 0.397 0.442 0.452 0.451 0.412 0.487

BK 0.297 0.295 0.313 0.326 0.417 0.342 0.395 0.406 0.407 0.368 0.441

BT 0.314 0.327 0.365 0.402 0.483 0.419 0.464 0.471 0.473 0.435 0.492

DS 0.295 0.309 0.357 0.378 0.466 0.394 0.449 0.455 0.453 0.416 0.488

Top-5 0.306 0.329 0.345 0.372 0.462 0.398 0.447 0.451 0.461 0.424 0.481

Top-15 0.328 0.347 0.361 0.385 0.475 0.412 0.462 0.464 0.483 0.438 0.503

Sum dataset, whereas Table 5.4 shows the results on TVSum dataset. We can observe that:

(1) Our weakly supervised approach obtains the highest overall mAP and outperforms tra-

ditional non-DNN based methods SMRS, Quasi, MBF and CVS by large margins. (2) The

most competing DNN based method, SG [100] gives top-5 mAP that is 3.5% and 1.9% less

than ours on the CoSum and TVSum dataset, respectively. Note that with web videos only is

better than training with multiple handcrafted regularizations proposed in SG. This confirms

the effectiveness of incorporating a large number of web videos in our framework and learning

the topic-specific semantics using a weakly-supervised matching loss function. (3) Since the

CoSum dataset contains videos that have visual concepts shared with other videos from differ-

ent topics, our approach using generative modelling naturally yields better results than that on

the TVSum dataset. (4) It’s worth noticing that TVSum is a quite challenging summarization

dataset because topics on this dataset are very ambiguous and difficult to understand well with
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very few videos. By accessing the similar web videos to eliminate ambiguity for a specific

topic, our approach works much better than all the unsupervised methods by achieving a top-5

mAP of 48.1%, showing that the accurate and user-interested video contents can be directly

learned from more diverse data rather than complex summarization criteria.

Comparison with Supervised Methods. We then conduct comparison with some supervised

alternatives including KVS [127], DPP [46], sLstm [197], SM [56] and DSN [119] (weakly-

supervised), we have the following key observations from Table. 5.3 and Table. 5.4: (1) VESD

outperforms KVS on both datasets by a big margin (maximum improvement of 7.1% in top-5

mAP on CoSum), showing the advantage of our generative modelling and more powerful rep-

resentation learning with web videos. (2) On the Cosum dataset, VESD outperforms SM [56]

and DSN [119] by a margin of 2.0% and 3.4% in top-5 mAP, respectively. The results suggest

that our method is still better than the fully-supervised methods and the weakly-supervised

method. (3) On the TVSum dataset, a similar performance gain of 2.0% can be achieved

compared with all other supervised methods.

5.5.2 Qualitative results

To get some intuition about the different training settings for VESD and their effects on the

temporal selection pattern, we visualize some selected frames on an example video in Fig.

5.3. The cyan background shows the frame-level importance scores. The coloured regions are

the selected subset of frames using the specific training setting. The visualized keyframes for

different setting supports the results presented in Table 5.1. We notice that all four settings

cover the temporal regions with the high frame-level score. In the last subfigure, we can easily

see that weakly-supervised VESD with web videos and available importance scores produces

more reliable summaries than training on benchmark videos with only weak labels. That is,

by leveraging both the web videos and importance scores in datasets, VESD framework will

shift towards the highly topic-specific temporal regions.
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(a) Sample frames from video 15 [151]

(b) Training on benchmark with weak supervision

(c) Training on benchmark with weak supervision and extra web videos

(d) Training on benchmark with strong supervision

(e) Training on benchmark with strong supervision and extra web videos

Figure 5.3 Qualitative comparison of video summaries using different training settings, along with

the ground-truth importance scores (cyan background). (Best viewed in colors)
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5.6 Conclusion

One key problem in video summarization is how to model the latent semantic representation,

which has not been adequately resolved under the ”single video understanding” framework

in prior works. To address this issue, we introduced a generative summarization framework

called VESD to leverage the web videos for better latent semantic modelling and to reduce

the ambiguity of video summarization in a principled way. We incorporated flexible web

prior distribution into a variational framework and presented a simple encoder-decoder with

attention for summarization. The potentials of our VESD framework for large-scale video

summarization were validated, and extensive experiments on benchmarks showed that VESD

outperforms state-of-the-art video summarization methods significantly.
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Chapter 6

Learning A Structured Network for

Discriminative Centralized Sparse

Representations

6.1 Introduction

Recent advances on training deep architectures such as CNNs have shown leading perfor-

mance to learn discriminative feature representations in a variety of computer vision and ma-

chine learning problems. Though CNNs are very powerful to learn from large-scale datasets

[61, 135, 146], they have two limitations in visual recognition tasks with limited training data

such as FGVC and texture classification. First, the widely-used fine-tuned networks [146] for

these visual recognition tasks are usually unstructured and over-parameterized [25, 94], rais-

ing concerns on model overfitting and effectiveness. Second, the availability of training data

in existing benchmarks of those applications is often very scarce to reliably represent the data

distribution of each category in the feature space; therefore, the learning of distinct patterns

and group structures becomes very difficult.
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To overcome those difficulties, many works have been recently done to learn discrimina-

tive representations with deep hybrid architectures by introducing structured modules on top

of CNNs [5, 25, 25, 93, 94, 193, 199]. For example, in FGVC, various part-based approaches

[193, 199] have been proposed to capture the subtle local structure and discriminate between

neighboring classes. The progress in texture classification has been focusing on the feature

encoding techniques [25, 93] to capture local invariance of texture structure. Although these

efforts on structured modelling have achieved noticeable performance boost, they either de-

mand finer-level but costly annotations (i.e., part bounding boxes in fine-grained classification)

or depend on redundant encoding networks with a large number of parameters.

Different from previous structured modelling approaches which are mostly customized to

specific tasks and involve expensive/complex inference, we propose to embed the classical

sparse models [177, 185] into CNNs to build a structured network. Our idea is motivated by

the following facts. First, sparse models are appealing structured techniques because of their

ability to learn discriminative subspaces with strong interpretability. Second, sparse models

are preferable in medium-sized recognition regime as they need much less training data than

modern CNNs with significantly fewer model parameters. Third, sparse models usually rely

on iterative approximation algorithms, whose inherently sequential structure and complexity

constitute a major bottleneck in the computational efficiency. Fortunately, from the viewpoint

of recurrent neural networks, sparse models can be approximated by unfolding and truncating

the iterative optimization algorithms so that end-to-end training with efficiently computational

blocks can be enabled in a weight-sharing manner [52, 153].

By exploring the above merits of sparse models, we propose a structured network that ex-

hibits desired properties of class-discriminative feature representation, compact network archi-

tecture and learning efficiency. Specifically, we enforce the sparse model to have small intra-

class variation so that discriminative centralized sparse representations (DCSR) will be gener-

ated, and further reformulate the sparse model as a feed-forward network, namely DCSR-Net,

88



which involves only a small number of parameters. The DCSR-Net can be easily embedded

on top of many existing CNN architectures, acting as a structured regularization network to

improve the generalization performance of CNNs, particularly for those recognition tasks with

limited training data. Our technical merits can be summarized as follows: First, we propose a

structured network that can be plugged into CNNs as an effective structure-aware regulariza-

tion. It allows producing reliable discriminative deep representations for limited-sized visual

tasks. Second, the proposed DCSR-Net is derived from the learning framework of sparse

models. It is able to provide an efficient inference process with negligible parameter complex-

ity and thus can be regarded as costless structured modelling. Third, extensive experiments

on FGVC and texture classification benchmarks demonstrate that, coupling DCSR-Net with

CNNs achieves the significant performance boost.

6.2 Related Work

6.2.1 Deep Structured Unrolling Models

Deep structured models aim to model structured patterns within off-the-shelf building blocks

in DNNs. Among the many attempts, a noticeable portion of efforts has been devoted to

unrolling the traditional optimization and inference algorithms into a deep feed-forward struc-

ture, which enables end-to-end training. In the pioneer work [52], a learning framework of the

iterative shrinkage-thresholding algorithm (LISTA) is proposed to efficiently approximate the

desired sparse codes by incorporating the problem/data structure into the design of deep ar-

chitectures, demonstrating benefits in both performance and interpretability. It is also demon-

strated in [180] that a DNN can recover `0-norm sparse representations [174] under mild

theoretical conditions. In [172], the proximal methods are introduced to deep models with

continuous output variables. More examples include shrinkage fields [137], CRF-RNN [202],

and ADMM-net [155]. By turning optimization algorithms into DNNs, one may expect faster
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inference, better scalability and most importantly, more elaborate structures. Different from

the aforementioned works in the scenario of unsupervised learning, in this work we attempt to

learn discriminative structures from data via supervised sparse models.

6.2.2 Structured Representation Learning with Loss Functions

There have been blooming interests in training DNNs jointly with new loss functions to im-

prove the model generalization performance. The idea is to regard loss functions as structured

regularizations and learn feature representations to meet the pre-defined structural priors. In

[31], the linear discriminant analysis is directly translated as a training criterion for DNNs.

In [138], the triplet loss is employed to minimize distances of sample features from the same

class while maximizing distances of samples of different classes. Other loss functions include

center loss [176] that embeds the class-oriented clustering structure, and angular softmax loss

[96] that exploits the large-margin separate structure.

Our approach differs from the aforementioned methods in that we employ a structured

network instead of loss functions to encode latent features and train the network in a supervised

end-to-end fashion. Our approach allows a much broader choice for structured modelling in

network architecture and further improves the performance.

6.3 DCSR Model

6.3.1 From Loss Function to Structured Module

To improve the model generalization performance for recognition tasks with limited training

data, many previous works equipped with deep architectures employ a joint objective function

consisting of both the softmax classifier and some structured loss function. Denoting by hΘ(x)

the deep feature of input sample x via feature extractor hΘ(·) (e.g., CNNs) parameterized by
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Θ. The general objective function to be minimized in network training can be written as:

L f =
1
|X|

∑
(x,y)

`so(y, hΘ(x);Ψ)︸                       ︷︷                       ︸
softmax loss Lso

+
λ

|X|

∑
(x,y)

`st(y, hΘ(x);Φ)︸                       ︷︷                       ︸
structured loss Lst

, (6.1)

where (x, y) ∈ (X,Y) refers to the training sample and its label, Θ, Ψ and Φ denote the

parameter sets of feature extractor h(·) (e.g., CNNs), softmax regressor `so(·) and structured

term `st(·), respectively, while parameter λ is to balance softmax loss Lso and structured loss

Lst. Some recent structured losses have been introduced to reduce the intra-class variations. In

[149], prototypical networks are developed to take a class prototype as the mean of its support

set in the embedding space in order to address the overfitting issue in few-shot learning. In

[176], the center loss is proposed to decrease the distances between samples and their class

centers to make the learned face representations more discriminative.

Different from previous approaches which usually minimize a structured loss as given in

Eqn. (6.1), we propose to reformulate the structured loss as a feed-forward structured module

built upon the hidden variables in high-level layer of DNNs. Instead of joint training with

softmax loss and some structured loss, we construct a hierarchical architecture by passing

hΘ(·) through a learnable structured module, denoted by gst
Φ

(·) (parameterized by Φ), ahead

of the softmax classifier. Mathematically, our proposed network architecture can be described

as:

L f =
1
|X|

∑
(x,y)

`so(y, gst
Φ(hΘ(x));Ψ). (6.2)

Compared with the conventional structured loss based network training in Eqn. (6.1), the

learning in our proposed architecture is mainly accomplished via the structured module gst
Φ

(·),

with which the network could adaptively exploit the potential inter/intra-class data structure,

and consequently make the learned representations discriminative. Denote by Γ = {Θ,Ψ,Φ}

the set of parameters in Eqn. (6.2). Note that the learning of our module requires the com-

putation of gradient ∇Γ`so(·), which in turn relies on the gradient of zΦ := gst
Φ

(·) with respect
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to Φ. Therefore, one key issue is how to construct a well-defined gst
Φ

(·) that enables elaborate

structure, fast inference and end-to-end learning. Considering that sparse coding or sparse

representation is an effective and flexible technique for structured modeling, in the following

sections we present a discriminative sparse coding model as the structured module gst
Φ

(·) to

encourage more discriminative and clustered representations, and then present how to embed

it in DNNs.

6.3.2 Discriminative Sparse Model as Structured Module

As discussed above, our hierarchical architecture aims to implement a discriminative sparse

model as the structured module gst
Φ

(·) to more discriminatively encode the high-level features

for classification. The parameter set Φ of the structured module can be understood as the

dictionary in sparse models. However, typical sparse models are generative architectures that

generate the sparse representations from the perspective of reconstruction, while they have

limited capability in grouping label-consistent samples to share similar representations. To

endow the sparse model class-aware structures in supervised learning tasks, we propose a dis-

criminative centralized sparse representation (DCSR) model. Refer to Eqn. (6.2), we denote

by h := hΘ(x) the high level features output by the previous layers of a network. The DCSR

model is formulated as follows:

zΦ = arg min
z,Φ
‖h − Dz‖22 + δ‖z − my‖

2
2 + τ‖z‖1, (6.3)

where D denotes the dictionary with ‖D‖2 = 1 by default; my is the mean vector of all sparse

codes z for class k if y = k; Φ := {D, M}, where M = {m1, . . . ,mK}, is the set of parameters

for the structured module; δ and τ are trade-off weights.

Based on the above DCSR model, the feature representations zΦ are optimized to push

examples from the same class closer to its class center. Notice that when δ, τ > 0, Eqn. (6.3) is

strictly convex givenΦ, and consequently, zΦ defines an unambiguous deterministic map from

the data space to the space of the class centralized sparse representations. More specifically,
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the optimal representation can be derived as the fixed point of the following equation:

z = s τ
β
(z −

1
β

[2DT (Dz − h) + 2δ(z − my)]), (6.4)

where sθ = sign(z)(|z| − θ)+ denotes the element-wise soft thresholding and β is a constant that

defines an upper bound on the largest eigenvalue of DT D. One can also compute explicitly the

gradient with respect to Φ := {D, M}, and zΦ provides a desired form of structured module

gst
Φ

(·).

Though sparse modelling provides a sophisticated and analytical way to build structured

data models, the exact gradient computation in Eqn. (6.3) is usually complex and has relatively

high computational complexity and latency. The iterative optimization scheme of Eqn. (6.4)

greatly depends on the given problem and usually provides worst-case (data-independent)

convergence rate to explore the intrinsic property, e.g., low-dimensional manifold, of data.

Such a discrepancy hinders the computational efficiency improvement in deep architectures.

In the following, therefore, we present a fast trainable framework that implements the DCSR

model very effectively and efficiently.

6.4 DCSR Driven Network

6.4.1 Trainable DCSR Model

From the perspective of iterative optimization, Eqn. (6.3) is merely a proxy to obtain a non-

linear mapping between the feature h and the discriminative centralized representation zΦ.

The mapping (6.4) can be expressed by unrolling a sufficient number T of iterations into a

feed-forward network comprising T (identical) layers. However, in practice the complexity

budget may require T to be a small fixed number, leading to an unsatisfactory representation

zΦ. We define the following parameters H,W, {cy}, θ for Eqn. (6.3):

H =
β − 2δ
β

I −
2
β

DT D,W =
2
β

DT , cy =
2δ
β

my, θ =
τ

β
. (6.5)
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Algorithm 6.4.1: Backpropagation process for the computation of the sub-gradients of `(z).

δ∗ denotes the gradient of ` with respect to ∗ as customary in neural network literature.

� denotes element-wise product. s
′

θ denotes the jacobian of s with respect to its input.

input: Sub-gradient δz of ` with respect to network output; intermediate layer outputs

output: Sub-gradients of ` with respect to the parameters, δH, δW, {δck}, δθ.

Initialize δH = 0; δW = 0; δθ = 0, δzT = 0

for t = T down to 1 do

δat = s
′

θ(at) � δzt

δθ = δθ − sign(at) � δat

δW = δW + δat zT
t−1

δH = δH + δat zT
t−1

δck =
∑

(x,y) 1{y=k}�(ck−h)
1+

∑
(x,y) 1{y=k}

δzt−1 = HTδat

end

The above newly defined parameters can be collectively denoted as another form of Φ which

has larger model capacity and easier training in terms of neural network.

Within the family of identical inference layers producing representation ẑT,Φ, which refers

to the step-T truncating of zΦ, there might exist better parameters with which ẑT,Φ performs

better on the given data. Such parameters can be obtained via learning from data. In this

manner, we can obtain a complexity fixed DCSR model ẑT,Φ as the structured module gst
Φ

(·).

Similar idea was first advocated in [52], where Gregor and LeCun unrolled the standard itera-

tive shrinkage-thresholding algorithm (ISTA) into a fixed-depth DNNs and learned a new set

of parameters to approximate the optimal sparse codes with small computational cost. This

approach was later extended to more elaborated structured sparse and low-rank models [153].
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Then the inference process in ẑT,Φ is reformulated as the following iterative rule:

zt+1 = sθ(Hzt + Wh + cyx). (6.6)

The forward propagation of ẑT,Φ is straightforward and it is depicted as the block diagram

in the upper rectangle box in Fig. 6.1. The learning of parameters Φ requires computing

the sub-gradients d`(z)/dΦ, which is accomplished by the back-propagation procedure by

applying the chain rule. Back-propagation starts with differentiating `(z) with respect to the

output of the last network layer, and propagating the sub-gradients down to the input layer.

The complete back-propagation procedure is summarized in Algorithm 6.4.1.

6.4.2 Siamese Architecture of DCSR Network

Note that the inference process of the trainable DCSR model in Eqn. (6.6) requires input (x, y)

in the training stage. However, the label y is unavailable in the testing phase, making it not

directly applicable to prediction. This problem can be easily solved by learning a siamese

architecture simultaneously for the trainable DCSR model, resulting in our final DCSR driven

network, called DCSR-Net.

Specifically, DCSR-Net jointly learns an unsupervised network branch which approxi-

mates the discriminative representations obtained by the trainable DCSR model. The overall

architecture of DCSR-Net is illustrated in Fig. 6.1, where we adopt the alternative inference

process of zt+1 = ReLU(Hzt + Wh + cyx − θ) by imposing the non-negativity on ẑT,Φ. The

generated features from the unsupervised branch of DCSR-Net can be used for class label

prediction in testing stage. Accordingly, the objective function in 6.2 is transformed into:

L f =
1
|X|

∑
(x,y)

`so(y, gst
Φ(hΘ(x));Ψ) + ω‖gst

Φ(hΘ(x)) − uΩ(hΘ(x))‖22, (6.7)

where we specify uΩ as the trainable sparse model without the centralized term in Eqn. (6.3),

and use the same truncated number of iterations, parameter notation Ω := {Ĥ, Ŵ, θ̂} for struc-

tural consistency, where Ĥ, Ŵ and θ̂ are defined by setting δ = 0 in Eqn. (6.5) and ẑt takes
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Figure 6.1 DCSR-Net comprises 3 identical layers. The network learns both the DCSR sparse model

(purple rectangle box) and standard sparse model (red rectangle box) with a siamese architecture.

the iterative form of Eqn. (6.6) without cyx . The newly-added loss term in Eqn. (6.7) im-

poses the output of unsupervised sparse model to be identical to that of DCSR model, which

can be easily trained and used for classification. The balance weight is set to 0.1 in all our

experiments.

In addition, the computation of DCSR-Net is very efficient. It involves only a few matrix

multiplications with the inference time complexity of O(mn+Tm2) (a small T = 3 is sufficient

in our experiments), where n,m and T is the dimension of h, dimension of z and the number

of iterations, respectively.

6.5 Experimental Results

In this section, we first perform a comprehensive exploratory study for DCSR-Net, and then

evaluate our approach in comparison with state-of-the-art results on the texture classification

and FGVC benchmarks.

Network settings. We use the 16-layer VGG network (VGG-16) [146] trained on Ima-

geNet [135] as the base CNN for all our classification experiments. We deploy our DCSR-Net

after performing the global average pooling operation on the last convolutional activation layer

(i.e.,relu5 3) of the VGG-16 network. We set T = 3 which corresponds a 3-layer DCSR-Net,
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and set the dimension of DCSR representation to 4096.

Training implementations. Following [13, 94], we pre-process the input image by crop-

ping the largest image region around its center, resizing it to 448 × 448, and creating its mir-

rored version to double the size of the training set. The parameters in DCSR-Net are randomly

initialized, and the learning rates of the layers in VGG-16 and DCSR-Net are set as 0.001 and

0.01, respectively. We train all the networks using SGD-Momentum with a batch size of 16

and momentum of 0.9. The training stops at 40 iterations. In the testing phase, we follow the

popular CNN-SVM scheme [94].

Datasets and evaluations. For texture classification, we experiment on two benchmarks

- the Describable Texture Dataset (DTD) [24] and KTH-TISP2-b (KTH-T2b) [15]. DTD

consists of 5,640 real-world texture images labelled with 47 describable texture attributes.

KTH-T2b includes 4,752 images of 11 materials captured under controlled scale, pose, and

illumination. On DTD, we use the default training/testing splits, and within each split, 2/3

of the images are used for training and 1/3 for testing. On KTH-T2b, each class has four

samples. We follow the standard protocol by training on one sample per class and test on the

remaining three samples. On both datasets, four splits of training and testing are conducted,

and the average accuracy is used as the performance metric.

For FGVC, we also experiment on two popular benchmarks - Caltech-UCSD Bird-200-

2011 (CUB) [167] and Aircraft [104]. CUB dataset contains 11,788 bird images of 200

species. We adopt the publicly available split [167], which uses 5,994 images for training

and 5,794 for testing. The Aircraft dataset has 100 different aircraft model variants. We adopt

the training/testing split protocol provided by [104].

6.5.1 Exploratory Study

Comparison with unstructured networks. To investigate the merit of DCSR as a struc-

tured module, we apply DCSR-Net on the MNIST dataset [65] which contains 60,000 training
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Table 6.1 MNIST digit classification results of different networks.

Network Configuration #Parameters Error rate (%)

MLP

3-layer(300+100) 266,200 3.03

3-layer(500+150) 468,500 2.91

3-layer(500+300) 545,000 1.45

LISTA

1-iter 65,536 1.63

5-iter 65,536 1.49

10-iter 65,536 1.36

DCSR-Net

T=2 132,572 1.94

T=3 132,572 1.23

T=4 132,572 1.19

and 10,000 test images. Please note that our goal here is not to obtain state-of-the-art results

on MNIST digit classification, but rather to provide a fair analysis of the effectiveness of learn-

ing class-aware structures in the context of neural networks, compared with the unstructured

networks such as multi-layer perceptron (MLP) with ReLU nonlinearity and LISTA [52]. We

adopt DCSR-Net as a feature extractor and then use logistic regression to classify the features.

The dimension of the original images is reduced to 128-dim by PCA, and the feature for clas-

sification is set to 150-dim vector. We use SGD with weight decay of 0.0002, a momentum

of 0.9 and a mini-batch size of 100. The initial learning rate of DCSR-Net is 0.1, decayed to

0.01 at 100 epochs. We augment DCSR-Net with a softmax layer that is randomly initialized.

The results are shown in Table 6.1. We observe that DCSR-Net achieves lower error rate than

the others. Especially, it takes 10 iterations for LISTA to achieve an error rate of 1.36, but

only 3 equivalent layers for DCSR-Net to achieve an error rate of 1.23. Fig. 6.2 presents

visualization of the learned features during the interations for DCSR-Net. The images in the

first and second row indicate the feature learning process on the training and testing set, re-

spectively. We observe that DCSR-Net results in class-aware feature space and the structured
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Figure 6.2 Visualizations of feature learning process on the training (first row) and testing set (second

row), respectively.

representation is able to avoid overfitting.

Coupled with different base CNNs. We are also interested in how our DCSR-Net works

in couple with different CNN architectures. We evaluate MLP, LISTA and DCSR-Net on

VGG-16 and another popular yet deeper architecture ResNet-101 [61]. We use the pool5 of

ResNet-101 as the input to DCSR-Net. The results are shown in Table 6.2. One can see that

DCSR-Net greatly outperforms MLP and LISTA with more than 3% improvement on DTD

and 5% improvement on KTH-T2b, CUB and Aircraft. On the other hand, coupling DCSR-

Net with ResNet-101 performs better than coupling with VGG-16. This is not a surprise since

ResNet-101 is much deeper than VGG-16.

Comparison with structured loss functions. It is necessary to compare DCSR-Net with

those structured loss functions, such as center loss [176] and angular softmax loss [96], under

the same VGG-16 base network to explore the performance of learned feature representation.

The center loss aims to minimize the distances between the image features (network output)

and their class centers in the embedding space, while the angular softmax loss is indeed a large-

margin loss function that attains the separated structure with good generalization. The results

are shown in Table 6.3. One can observe that the center loss is comparable to angular softmax
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Table 6.2 (Mean) Classification accuracy (%) with different CNN architectures and network base-

lines.

CNNs Networks DTD KTH-T2b CUB Aircraft

VGG-16

MLP 68.3 72.3 79.2 79.5

LISTA 68.5 71.1 78.2 78.7

DCSR-Net 71.7 76.6 83.5 83.4

ResNet-101

MLP 71.8 73.6 80.7 81.9

LISTA 69.7 72.4 79.5 82.1

DCSR-Net 73.3 77.2 85.4 85.3

Table 6.3 (Mean) Classification accuracy (%) with different loss functions.

Loss DTD KTH-T2b CUB Aircraft

Center loss [176] 69.5 74.5 82.1 81.9

Angular softmax loss [96] 70.0 75.6 82.6 82.2

DCSR-Net 71.7 76.6 83.5 83.4

loss, while DCSR-Net consistently outperforms both structured loss functions in all the used

datasets, validating the superior performance of DCSR-Net for learning discriminative feature

representations from data.

6.5.2 Experiments on Texture Classification

Effectiveness of DCSR-Net. We consider another two embedding baselines under VGG-

16 to verify the effectiveness of DCSR-Net: FC-CNN and Compact Bilinear Pooling (CBP)

[42]. The former is the standard fine-tuning setting with three fully-connected (FC) layers.

To effectively exploit the rich statistics of convolutional features, we can use CBP [42] as the

pooling step instead of global average pooling on relu5 3 layer, then pass the features into

DCSR-Net. As shown in Table 6.4(a), by deploying DCSR-Net as the structured modelling,
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Table 6.4 DCSR-Net obtains state-of-the-art performance on two texture classification datasets (a),(b) and

two fine-grained classification datasets (c),(d). Improvement over the baseline model is reported as (∆).

(a) DTD

Method Accuracy ∆

FV-CNN [25] 70.6 (±0.9) -

BCNN [94] 71.5 (±0.8) -

LFV [152] 72.7 (±1.0) -

Deep-TEN [194] 72.9 (±0.9) -

FC-CNN 68.3 (±1.2)
(3.4)

DCSR-CNN 71.7 (±1.1)

CBP [42] 71.2 (±0.9)
(3.1)

DCSR-CBP 74.3 (±1.0)

(b) KTH-T2b

Method Accuracy ∆

FV-CNN [25] 75.9 (±2.4) -

BCNN [94] 76.4 (±3.5) -

LFV [152] 77.1 (±3.1) -

Deep-TEN [194] 78.5 (±3.3) -

FC-CNN 72.3 (±3.4)
(4.3)

DCSR-CNN 76.6 (±3.0)

CBP [42] 75.8 (±2.9)
(3.0)

DCSR-CBP 78.8 (±3.1)

(c) CUB

Method Accuracy ∆

BCNN [94] 84.1 -

PDFS [201] 84.5 -

RA-CNN [39] 85.3 -

HIHCA [13] 85.3 -

FC-CNN 79.2
(4.3)

DCSR-CNN 83.5

CBP [42] 83.7
(2.2)

DCSR-CBP 85.9

(d) Aircraft

Method Accuracy ∆

Symbiotic [18] 72.5 -

FV-FGC [49] 80.7 -

BCNN [94] 84.1 -

HIHCA [13] 88.3 -

FC-CNN 79.5
(3.9)

DCSR-CNN 83.4

CBP [42] 83.6
(3.7)

DCSR-CBP 87.3
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we obtain substantial improvements of 3.4% and 3.1% (on the DTD dataset) over FC-CNN

and CBP, respectively. The similar phenomenon can be observed on the KTH-T2b dataset

with the accuracy improvements of 4.3% and 3.0% (see Table 6.4(b)).

Comparison with state-of-the-arts. We compare DCSR-Net with the following state-

of-the-art feature encoding based approaches: FV-CNN [25], BCNN [94], LFV [152] and

Deep-TEN [194]. FV-CNN and LFV perform Fisher Vector (FV) encoding on a particular

layer of the CNN, and the latter further designs locally-transferred FV descriptors via a multi-

layer neural network. BCNN and Deep-TEN can be regarded as order-less pooling methods

that integrate an encoding layer on the convolutional activations. By simply applying DCSR-

Net on the last conv layer of VGG-16, our DCSR-CNN delivers highly competitive perfor-

mance, possibly because it is designed to favor class-aware structure, which works for texture

classification. Furthermore, our DCSR-CBP provides consistent improvements over the state-

of-the-art Deep-TEN by achieving an average classification rate of 74.3% on DTD and 78.8%

on KTH-T2b.

6.5.3 Experiments on Fine-grained Visual Categorization

Effectiveness of DCSR-Net. We use the same baselines as adopted in Section 6.5.2 for

FGVC. As shown in Table 6.4(c) and Table 6.4(d), compared with FC-CNN and CBP base-

lines, the accuracy improvements are also promising: 4.3% and 2.2% on the CUB dataset, and

3.9% and 3.7% on the Aircraft dataset.

Comparison with state-of-the-arts. For fair comparison, we compare DCSR-Net with

several state-of-the-art methods that use only image-level labels, including BCNN [94], PDFS

[201], RA-CNN [39], HIHCA [13] on the CUB dataset, and Symbiotic [18], FV-FGC [49],

BCNN [94], HIHCA [13] on the Aircraft dataset. On the CUB dataset, DCSR-CNN achieves

a competitive accuracy of 83.5% compared to BCNN and PDFS. By using a stronger base

network, DCSR-CBP reaches 85.9% and outperforms RA-CNN and HIHCA (85.3%). On
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the Aircraft dataset, DCSR-CNN obtains a similar result to BCNN (83.4% vs 84.1%). The

accuracy can be significantly improved by using CBP baseline (87.3%), which is competitive

with HIHCA (88.3%). However, please note that HIHCA adopts a multi-layer fusion scheme

while DCSR-CBP only uses the one-layer feature.

6.6 Conclusion

We proposed a structured and compact network, namely DCSR-Net, whose architecture was

carefully designed by referring to a class-aware sparse model that learns discriminative cen-

tralized sparse representations with small intra-class variances. DCSR-Net provides a flexible

and structured modelling built upon existing CNNs to make use of the merits of the structure

insights of optimization-based methods, which are particularly helpful for recognition tasks

with limited training data. Experiments on texture and fine-grained classification showed that

DCSR-Net is very cost-effective for learning highly discriminative representations.
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Chapter 7

Conclusion

7.1 Summary and Contributions

In this thesis, we explored classic sparse models and powerful deep learning tools (CNNs and

RNNs) for better visual recognition. The discriminative models and representation learning

approaches presented in this research enabled us to address some of the innate challenges in

several vision tasks, and the main contributions can be summarized as follows:

We first provide a clear probabilistic interpretation for conventional representation based

classifiers used in the era of shallow learning architectures such as SRC and CRC. We pro-

pose a probabilistic collaborative representation framework, where the probability that a test

sample belongs to the collaborative subspace of all classes can be well defined and computed.

Consequently, we present ProCRC to jointly maximize the likelihood that a test sample be-

longs to each of the multiple classes. The proposed ProCRC shows superior performance to

many popular classifiers, including SRC, CRC and SVM. Coupled with the CNN features, it

also leads to state-of-the-art classification results on a variety of challenging visual datasets.

We then investigate the rich statistics of CNN activations for FGVC. The success of FGVC

extremely relies on the modeling of appearance and interactions of various semantic parts,

which makes it very challenging because: (i) part annotation and detection require expert
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guidance and are very expensive; (ii) parts are of different sizes; and (iii) the part interac-

tions are complex and of higher-order. To address these issues, we propose an end-to-end

framework based on the higher-order integration of hierarchical convolutional activations for

FGVC. A polynomial kernel based predictor is proposed to capture higher-order statistics of

convolutional activations for modelling part interaction. To model inter-layer part interac-

tions, we extend polynomial predictor to integrate hierarchical activations via kernel fusion.

The proposed framework yields more discriminative representation and achieves competitive

results on the widely used FGVC datasets.

We also consider weakly-supervised learning of external data for video summarization.

Video summarization is a challenging under-constrained problem because the underlying sum-

mary of a single video strongly depends on users’ subjective understandings. To leverage the

plentiful web-crawled videos to improve the performance of video summarization, we present

a generative modelling framework VESD to learn the latent semantic video representations

which act as a bridge between benchmark data and web data. Specifically, our VESD cou-

ples two important components: a variational autoencoder for learning the latent semantics

from web videos, and an encoder-attention-decoder for saliency estimation of raw video and

summary generation. A loss term to learn the semantic matching between the generated sum-

maries and web videos is presented, and the overall framework is further formulated into a

unified conditional variational encoder-decoder. Experiments conducted on the challenging

and diverse summarization datasets demonstrate the superior performance of our approach to

existing state-of-the-art methods

We further consider how to combine classic sparse models with DNNs for representa-

tion learning. Despite the remarkable success of deep architectures such as CNNs for image

classification in recent years, it still remains a challenging task to learn highly discriminative

representations from datasets of limited size, mainly due to the lack of cost-effective structured

modelling of networks. Inspired by the merits of the trainable architecture of sparse models,
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we propose a novel structured network, which could produce discriminative centralized sparse

representations to exploit the discriminative structure of small intra-class variance. The so-

called DCSR-Net implements a truncated module of sparse optimization and can be cascaded

to existing deep architectures with negligible additional parameter complexity. Experiments

demonstrate that coupling DCSR-Net with CNNs greatly facilitates the classification tasks

with limited training data size.

7.2 Future Works

Visual recognition still lag far behind what human vision is capable of. The standard way of

going about is to start from the task’s goals and requirements, to design the proper models and

efficient algorithms to learn good representations. In the future, we will expand our research

in the following directions:

Learning prior knowledge. Prior assumptions are widely used by the proposed models in

this thesis as they can help reduce data consumption and model complexity during learning

and improve performance. However, just like the Gaussian prior adopted in both ProCRC

and VESD, most of the prior knowledge is based on the human common sense or pre-defined

setting but might not be suitable for different tasks or datasets. Therefore, adaptively learning

prior knowledge from data or task at hand is an exciting direction to explore.

Using less supervision. In Chapters 4 and 5, we have proposed the cost-efficient frameworks

for addressing FGVC and video summarization tasks. However, many real-world applica-

tions using DNNs still require extensive human annotations to obtain satisfactory performance,

which motivates us to investigate effective models with less supervision, and combine more

learning paradigms such as transfer learning, weakly-supervised learning, unsupervised learn-

ing and one/few-shot learning. This is inspired by the fact that humans do not use massive of

annotations when they learn to understand the visual environment.

Studying interpretable models and representations. Although deep learning approaches
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have achieved tremendous success in recent years, they are usually treated as black boxes and

therefore less preferred in many applications where interpretation is needed. In this thesis,

we manage to incorporate sophisticated sparse models and machine learning methods into

DNNs, which is just a starting point for the interpretability goal. We believe that high model

interpretability is of significant value in both theory and practice and studying interpretable

models and representations is a prospective trend in the future.
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