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Abstract

In recent years, parallel processing technology has become remarkably popular

for enterprise big data analytics. However, the traditional IT infrastructure sets a

barrier to enterprise big data analytics because of its limitations on scalability and

high total cost of ownership. Migrating the parallel database system to the cloud

platform offers enterprises scale up or down on demand without consideration

of on-site hardware investment (e.g., on-site hardware maintenance and repair).

Besides, the multi-tenancy property in a cloud platform can minimise total cost

of ownership by sharing the parallel database system among multiple tenants.

This thesis presents Vault, an open source cloud-based service which aims

to provide parallel database-as-a-service (PDaaS) at a low operational cost

with the service level agreement, SLA (i.e., a commitment governing the minimal

level of service agreed between a service provider and tenants). Vault is built on

top of the cloud platform, OpenStack, which is an open-source software that offers

a cloud infrastructure for the parallel database system to carry out data analytics.

With the advent of resource sharing in the multi-tenant environment, the service

provider gains advantages of maximising resource utilisation and minimising the

operational cost. Our experiments present that Vault serves tenants with only

55.2% of the requested nodes in OpenStack cloud while a 99% query-latency SLA

is still guaranteed with high availability.
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Chapter 1

Introduction

In recent years, parallel processing technology has become remarkably pop-

ular for enterprise big data analytics [1, 2]. However, the traditional IT infras-

tructure sets a barrier to enterprise big data analytics because of its limitations

on scalability and high total cost of ownership. In fact, there are 80% of enter-

prises intended to move big data analytics to the cloud platform [3]. Migrating

the parallel database system to the cloud platform offers enterprises scale up or

down on demand without consideration of on-site hardware investment (e.g., on-

site hardware maintenance and repair) [4]. Besides, the multi-tenancy property

in a cloud platform can minimise total cost of ownership by sharing the parallel

database system among multiple tenants [5]. As a result, the rise of cloud com-

puting can deliver an efficient scalable and cost-effective solution for big data

analytics.

This thesis presents Vault, an open source cloud-based service which aims

to provide parallel database-as-a-service (PDaaS) at a low operational cost
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with the service level agreement, SLA (i.e., a commitment governing the minimal

level of service agreed between a service provider and tenants). Vault is built

on top of the cloud platform, OpenStack, which is an open-source software that

offers a cloud infrastructure for the parallel database system to carry out data

analytics [6]. We deploy the multi-tenancy model to provision Vertica instances

(i.e., the virtual machines installing Vertica parallel database system) in Open-

Stack cloud. By consolidating tenants onto the shared Vertica instances in the

cloud, multiple co-located tenants can share the virtual computing, storage and

networking resources. With the advent of resource sharing in the multi-tenant

environment, the service provider gains advantages of maximising resource util-

isation and minimising the operational cost.

Despite the benefits offered by the multi-tenancy model, it unavoidably poses

a challenge of satisfying the SLA guarantee for every tenant [7]. Vault is designed

for analytical purposes specialising in online analytical processing (OLAP) en-

vironment. The concurrent analytical workloads posed by multiple co-located

tenants would result in rigorous resource competition or even resource shortage,

especially when most of the analytical workloads are I/O intensive or memory-

intensive. In other words, the emergence of concurrent analytical query process-

ing within a shared Vertica instance is highly possible to violate the SLA. In cop-

ing with this challenge, Vault decides how tenants co-locate in the group to share

resources by identifying whose workload pattern is complementary to each other

(e.g., one is in Asia time zone, another is in US time zone). This multi-tenancy

arrangement approach avoids resource competition between the co-located ten-

ants, especially when processing concurrent analytical queries. And therefore it

helps maintain the SLA guarantee for every tenant. As an example, the tenants
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T1, T4 and T7 also have the same parallelism requirement (i.e., the number of

requested nodes per Vertica instance) with a complementary workload patterns.

According to the above mentioned example, they could be packed into the same

Vertica instance for resource sharing after consolidation. In reality, the approach

of multi-tenancy arrangement can be applied to different applications of big data

analytics like intelligent transportation and financial market trading [8]. For ex-

ample, there are frequent and large amount of financial data retrieved from the

market regularly and the automated trading systems can make effective decisions

to discover the financial opportunities and risks from those historical data. As

the automated trading systems run with a fixed behaviour pattern (i.e., run in a

fixed stock market trading session), the regular and recurrent financial activities

encourage the formation of complementary activity patterns and therefore the

multi-tenancy arrangement approach is feasible in real world.

We introduce Vault - a real implementation of PDaaS in this thesis, whereas

the theoretical foundation of Vault comes from Thrifty [9]. We first present the

architecture of Vault with the example workflow (Chapter 3) to show the interac-

tions between Vault and OpenStack in a more practical perspective. And then,

we discuss the design principle of Vault (Chapter 4) and present how this princi-

ple can be applied to reduce the operational cost and guarantee the performance

of tenants in OpenStack cloud. Meanwhile, we also explore the details about

elastic scaling approach employed by Vault which satisfies the SLA guarantee at

runtime. Last but not least, a set of experiments is carried out to mainly evalu-

ate the consolidation effectiveness (i.e., overall percentage of the requested nodes

saved) and the performance guarantee of Vault under different configurations

(Chapter 5). Our experiments present that Vault serves tenants with only 55.2%
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of the requested nodes in OpenStack cloud while a 99% query-latency SLA is

still guaranteed with high availability.



Chapter 2

Background

2.1 OpenStack

Vault is designed to run on OpenStack, an open source software for building

and managing private and public clouds. Due to the collaboration of developers

from community or enterprises, OpenStack has a fast-paced development on

providing a feature-riched, massively scalable and reliable cloud platform.

2.1.1 Core Services

To set up OpenStack environment, there are 6 OpenStack core services that

should be installed, which consist of:

(i) Nova: supports the deployment and management of Nova instances (i.e.,

virtual machines provisioned in OpenStack cloud) in the cloud.

5



6 2.1. OPENSTACK

(ii) Keystone: authenticates and authorises the service provider and tenants

to access OpenStack services in the cloud. Additionally, it also provides the

endpoints service (i.e., seeking a contact point for accessing the requested

OpenStack service) to facilitate the interactions between Vault and other

existing OpenStack services.

(iii) Glance: manages the virtual machine image (e.g., Ubuntu, Fedora) for

Nova services. Glance stores different images in the cloud, and Nova must

retrieve the requested image from Glance in order to launch a Nova in-

stance.

(iv) Neutron: manipulates the virtual network devices and services, such as

router, firewall and DHCP server. In particular, Neutron mainly interacts

with Nova to provide the network connectivity for Nova instances.

(v) Cinder: provides additional volume attachment on Nova instances. The

volume could be attached or detached from Nova instance to adjust the

disk space allocated on the instance.

(vi) Horizon: serves as a web-based user interface to ease the use of different

OpenStack services such as Nova and Cinder.

2.1.2 Trove

In addition to the core services, Vault relies on OpenStack Trove to offer

PDaaS in the cloud. Trove is an open source project with the aim of providing

highly-reliable and scalable databases-as-service (DaaS) in OpenStack cloud [10].

Trove is mainly composed of:
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(i) Message Bus: enables delivering messages between Trove components.

A RabbitMQ message system is commonly deployed in Trove to serve as a

transport mechanism.

(ii) Task Manager: listens on Trove’s Message Bus for the messages that

execute operations such as database backup or database restoration. It

performs these database-specific operations by communicating with other

existing OpenStack services. For instance, Trove’s Task Manager performs

a database expansion operation by requesting Cinder to resize the volume

attached to Vertica instance.

(iii) Guest Agent: runs a database engine (i.e., starting/stopping the database

server) inside a Vertica instance [11] and listens on Trove’s Message Bus for

the messages sent from other Trove components. As an example, Trove’s

Guest Agent receives the message sent from Trove’s Task Manager to ex-

ecute the user creation operation. The guest agent then creates a new

database user for the database server running in that Vertica instance.

(iv) API server: is the entry point of Trove which receives the external re-

quests and passes on the requests to Trove’s Task Manager or Guest Agent

for executing the corresponding database-specific operations.

2.2 Vertica

As mentioned above, Trove is important for Vault to provision Vertica in-

stances since it requests Trove to install the parallel database system inside Nova

instance(s). For this reason, the parallel database system should be supported
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by Trove. There are several parallel database systems available for OLAP, such

as Greenplum, Netezza and Vertica. But only Vertica is currently supported by

Trove.

In Vertica, it aims to improve performance through parallelism of database

operations like queries, bulk insertions or deletions [12]. Vertica supports building

multi-tenant environment in which multiple tenants can share the resources on

the same Vertica instance. Besides, the security concern posed by the multi-

tenancy model [13] can be addressed by Vertica. Vertica ensures each individual

tenant can only access to their own data in order to secure the privacy of tenants.

On the basis of the above considerations, Vertica should be the most ideal

parallel database system for Vault to provide PDaaS in OpenStack cloud.



Chapter 3

Vault

Vault is an open source project with the aim of offering PDaaS in OpenStack

cloud. In this chapter, we first introduce the fundamental services provided by

Vault from the perspective of service provider or tenant. Then, the architecture

of Vault will be discussed in detail through the example workflows.

3.1 Tenant View

Vault provides tenants PDaaS with the following main functions:

(i) Creating a Vertica Instance: tenants can create and configure their

Vertica instance. For example, a tenant creates a 2-node Vertica instance

by specifying the tenant name, node quantity and flavor (i.e., OpenStack

resources given in the instance such as memory and vCPU) as shown in

figure 3.1.

9



10 3.1. TENANT VIEW

Figure 3.1. A Tenant Requesting for a 2-node Vertica Instance

(ii) Monitoring and Managing Vertica Instances: the critical information

of a Vertica instance is shown in figure 3.2. After a tenant creates a Vertica

instance, the tenant can review the information of the instance, such as the

status of Vertica instance. A tenant can also decide to create more Vertica

instance(s) or delete the unnecessary Vertica instance(s) on demand.

(iii) Billing Tenants: the system usage of each tenant is identified such as

how much CPU, memory and storage are used. Those information could

be tracked and collected for billing.

(iv) Querying Vertica Instance: a unique JDBC connection string (see Con-

nection String part in figure 3.2) is defined for every Vertica instance. The

connection string enables tenants to establish a database connection to Ver-

tica instance for submitting queries. There are three properties of the con-

nection string including host address, database name and tenant ID which

specify the credentials to authenticate the connection to the database.
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Figure 3.2. Demonstration of a Vertica Instance Details

3.2 Service Provider View

The primary functions provisioned for the service provider in Vault are as

follows:

(i) Monitoring Query Status of a Tenant: the changes of the tenant

activity are identified continuously over time. The chart below shows the

tenant activity dynamically based on the collected query history. Figure

3.3 shows that the value of tenant activity always stayed at 0 which means

the tenant kept in idle status. After that, the activity value rose as 1 while

the tenant was submitting queries to the database.

(ii) Monitoring Status of Tenant Groups: the integrated result of the ten-

ant activities in each tenant group is measured in terms of performance. In

figure 3.4, the performance area chart shows the query finished execution
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Figure 3.3. Real-Time Analytics on the Query Activity of a Tenant

times of the tenant group when it measured in an isolation environment

with a real-time update. As the chart shows that the performance of ten-

ant group TG1 is 2.0 which indicates that the query of TG1 has finished

execution 2 times slower than when it measured in an isolated environment.

(iii) Managing Tenants and Tenant groups: the service provider could re-

view the critical information of all tenants and tenant groups in OpenStack

cloud, for example, the member list of every tenant group.

3.3 System Overview

Vault integrates with Trove and other OpenStack core services to provide

PDaaS as shown in figure 3.5. In particular, a unique endpoint is specified for

every OpenStack service. Vault is then allowed to interact with Trove and other

OpenStack services through their endpoints which avoid reimplementation of the

existing OpenStack functionalities. To illustrate how Vault interacts with Trove
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Figure 3.4. Real-Time Analytics on the Performance of a Tenant Group

and OpenStack, we first introduce seven key components of Vault:

3.3.1 API Server

Vault’s API server is the entry point to receive the requests from the tenants

and the service provider. It is also responsible to authenticate the credentials of

the tenants and the service provider against OpenStack Keystone in order to get

the permission for further access to the underlying Vault services.

3.3.2 Dashboard

Vault’s Dashboard is built on OpenStack Horizon which eases the use of

Vault services through the user-friendly graphical user interface.
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Figure 3.5. System Architecture and Interaction between OpenStack and Trove

3.3.3 Backend Database

Vault’s Backend Database stores the information displayed on Vault’s Dash-

board such as the details of Vertica instances in OpenStack cloud. The database

also stores the query history (i.e., tracking and recording all submitted SQL

queries) of each tenant that can be used for consolidation.
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3.3.4 Tenant Activity Monitor

Vault’s Tenant Activity Monitor is responsible for collecting the tenants’

query history from Vault’s Backend Database to derive the tenant activities.

The derived information is intended to support Vault’s Deployment Advisor in

further analysis.

3.3.5 Deployment Advisor

Vault’s Deployment Advisor can optimise OpenStack resource deployment

in the cloud by grouping the tenants for sharing resources on the same cluster

(i.e., a group of one or more Vertica instances). With three inputs, tenant ac-

tivities, replication factor and query-latency SLA guarantee, a deployment plan

can be devised accordingly. A deployment plan can be broken into two parts,

(1) Cluster Design and (2) Tenant Placement (Section 4.1), for example, {TG0:

([V0,V1,V2],[T1,T2,T3,T4,T7,T8]), ...}. As the cluster design defines how Vertica

instances can be arranged into clusters, the above example proposes to join Ver-

tica instances V0, V1 and V2 to the same cluster, say Cluster1. In addition, the

tenant placement specifies which tenants should be deployed on the cluster. In

this case, the tenants T1, T2, T3, T4, T7 and T8 are grouped and put on Cluster1

to share the resources among Vertica instances V0, V1 and V2.

3.3.6 Deployment Master

Vault’s Deployment Master put the deployment plan into practice by exe-

cuting consolidation in OpenStack cloud. During the consolidation process, it
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always involves the migration of tenants’ data and maybe involve the creation

of new cluster(s) for deploying the tenants in newly-formed group(s). Likewise,

Vault’s Deployment Master executes re-consolidation process regularly to sustain

the query-latency SLA over a long period of time.

3.3.7 Query Router

Vault’s Query Router determines to which Vertica instance in OpenStack

cloud a query should be routed. It routes queries based on the categories of the

SQL query, while there are two major categories (Section 3.4.3): IUD Queries

(i.e., Insert, Update and Delete operations) and SELECT Queries. In particular,

Vault applies the load balancing policy (Section 4.3) to SELECT queries for bal-

ancing the workload across Vertica instances in the cluster. Additionally, Vault

exploits ROWA (Read-One Write-All) protocol to guarantee a strong mutual

data consistency among Vertica instances in the cluster [14].

3.4 Example Workflows

In this section, we aim to bring a better understanding of Vault architecture

and investigate how Vault fully utilises the existing OpenStack services for pro-

viding PDaaS. Therefore, we introduce the mechanism of Vault by discussing the

scenarios when (1) a Vertica instance is created (see figure 3.6), (2) the latency

SLA guarantee of tenants is violated (see figure 3.7), (3) a tenant’s query request

is submitted.
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3.4.1 A Vertica Instance is Created

To begin with, a tenant requires to log in OpenStack Horizon with au-

thentication credentials (step 1). The provided credentials are used to request

OpenStack Keystone to obtain an authentication token as a key for accessing

Vault, Trove or other OpenStack services in the following steps (step 2). Vault’s

Dashboard is a user-interface plugin for Horizon to enable PDaaS in OpenStack

cloud, and hence the tenant can request to launch a Vertica instance through the

user-interface (step 3). Vault’s Dashboard makes an API call directly with the

authentication token to invoke Vault’s API server to create a Vertica instance

(step 4). Vault validates the authentication token against Keystone to permit

access to Vault services (step 5) and then invokes Trove’s API server to create a

Vertica instance (step 6). Trove also needs to validate the authentication token

against Keystone to permit access to Trove services (step 7), after that, Trove’s

API server posts a message of Vertica instance creation to Trove’s Message Bus

(step 8). Then, Trove’s Task Manager receives the message from the message

bus and start the instance creation procedure (step 9). The task manager first

requests OpenStack Nova to create Nova instances (step 10). After validating

the authentication token (step 11), Nova locates the virtual machine image in

OpenStack Glance to create Nova instances (step 12). Likewise, Glance needs to

validate against Keystone before delivering the virtual machine image to Nova

(step 13). Nova also requests OpenStack Neutron for the networking services

(step 14). After validating the authentication token (step 15), Neutron attaches

Nova instances to the network. In addition, the task manager also requests

OpenStack Cinder for adding persistent storage (i.e., Cinder volume) to Nova

instances (step 16). Cinder can create and mount a volume on Nova instances



18 3.4. EXAMPLE WORKFLOWS

Figure 3.6. Sequence Diagram of Creating a Vertica Instance

after validating authentication token (step 17). The task manager leaves a mes-

sage to invoke Trove’s Guest Agent to create a Vertica database in the instances

(step 18). The guest agent receives the message to install and configure the

database engine in the instances (step 19). Finally, Vertica instance is created

and Vault’s API server updates Vertica instance information in Vault’s Backend

Database (step 20).

3.4.2 Latency SLA Guarantee of Tenants is Violated

As Vault aims at maintaining the latency SLA guarantee in the system, it

executes (re-)consolidation process regularly to handle the arrival/departure of
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Figure 3.7. Sequence Diagram of Executing Consolidation

tenants or the tenants with changed activity patterns. First, Vault’s Tenant Ac-

tivity Monitor collects the query history from Vault’s Backend Database (step 1).

The monitor derives the tenant activities from the query history and transfers the

information to Vault’s Deployment Advisor for further analysis, including tenant

activities, replication factor and latency SLA guarantee (step 2). The deploy-

ment advisor generates the deployment plan based on the received information

and then passes it to Vault’s Deployment Master for executing consolidation

(step 3). During executing consolidation process, the deployment master may

create Vertica instances for the new cluster(s) to deploy the tenants in newly-

formed group(s) (step 4). In particular, the process of creating Vertica instances

is the same as described as the step 6 to step 20 in figure 3.6. Then, the deploy-

ment master consolidates the tenants into the clusters by migrating the tenants’

data to the corresponding cluster as devised by the deployment plan (step 5).

Lastly, it updates the records of tenants and Vertica instances in Vault’s Backend

Database (step 6).
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3.4.3 A Tenant’s Query Request is Submitted

(1) IUD Queries:

A tenant first establishes a connection to Vault’s Query Router for submit-

ting a SQL Insert query (step 1). With ROWA, the query router identifies

and builds database connection to all Vertica instances Vi within the cluster

(step 2). This enables the tenants to maintain the data consistency among

Vertica instances by routing the SQL Insert query to all identified Vertica

instances (i.e., Write(Vi), ∀Vi) in the corresponding cluster (step 3). After

finishing the query execution, it is recorded in Vault’s Backend Database

for keeping track of the tenant’s query history (step 4).

(2) SELECT Queries:

A tenant establishes a connection to Vault’s Query Router for submitting

a SQL Select query (step 1). With the query routing algorithm mentioned

in Section 4.3, the SQL Select query can be routed to the available Vertica

instance in the cluster by Vault’s Query Router (step 2) to ensure the

query performance under the latency SLA guarantee in OpenStack cloud.

Finally, the SQL Select query is recorded in Vault’s Backend Database

(step 3) for keeping track of the tenant’s query history and for the use of

deriving tenant activities when executing consolidation.



Chapter 4

Uniform Tenant Driven Design

On the basis of the design principle called Uniform Tenant Driven De-

sign (UTDD), it designs the way of how Vault separates tenants into groups for

resource sharing, while also considering the guarantee of query-latency SLA [9].

Besides, UTDD ensures that the co-located tenants could be served exclusively

through proper query routing. In summary, UTDD consists of the following

parts (1) Cluster Design and Tenant Placement, (2) Query Routing, (3) SLA

Maintenance and (4) Elastic Scaling:

4.1 Cluster Design and Tenant Placement

UTDD suggests utilising a high-availability cluster for serving each tenant

group, so there will be one or more Vertica instances residing in the same cluster

to provide an increased reliance on Vault. Specifically, there will be R (i.e., repli-

cation factor specified by the service provider) Vertica instances in the cluster,

21
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Tenant Group TG0 TG1 TG2 G1
4

Hosting (Loop0) ... ... ... T1 − T10

Hosting (Loop1) T2 − − T1, T3 − T10

... ... ... − ...

Hosting (Loop4) T2 − T5 − − T1, T6 − T10

Hosting (Loop5) T1 − T5 − − T6 − T10

Hosting (Loop6) T1 − T5 T6 − T7 − T10

... ... ... − ...

Hosting (Loop9) T1 − T5 T6, T7, T9, T10 − T8

Hosting (Loop10) T1 − T5 T6, T7, T9, T10 T8 −

Table 4.1. A Workflow Example in Separating Tenants into groups

each of them contains the data of all tenants who are members of the tenant

group. As a result, the co-located tenants can access any Vertica instances in the

cluster depending on their workload, so UTDD ensures not only high availability

but also load balancing. The cluster design defines how Vertica instances can

be arranged into clusters. The cluster is designed to best suit the workload of

tenants in each tenant group, so the tenants who have higher workloads may

need their own dedicated Vertica instance.

Tenant placement concerns which tenants should be deployed on the par-

ticular cluster [9]. First of all, the formation of tenant groups mainly depends

on their parallelism requirement and query history to separate the tenants into

groups. Different from Thrfity, it also specifies the matching between clusters

and tenant groups with the objective of minimising the frequency of tenant mi-

gration between the clusters (i.e., bulk data loading). The above arrangement

details about cluster design and tenant placement will be devised as a deployment

plan.

Let’s illustrate the concepts of cluster design and tenant placement with the
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Figure 4.1. Demonstration of Solving the Latency SLA Violation Issue in a Con-
solidation Cycle

idea of UTDD’s tenant grouping presented in Algorithm 1. In our example, there

are ten tenants T1-T10 and each of them requests a 4-node Vertica instance with

the same flavor (i.e., Flavor ID 1). The parallelism requirement of tenants T1-T10

is the same, so they will be grouped into the same initial group (i.e., G1
4) in the

beginning. As tenant T2 is the least active tenant, T2 is put into tenant group

TG0 first as shown in table 4.1. Supposing the workload patterns of T2 − T5

are complementary to each other, so they will be consolidated into TG0 without

leading to the drop of TTP while TTP indicates the time percentage of R or less

concurrent active tenants submitting queries in a group. At loop 5 in table 4.1,

supposing that it identifies T1 and T10 are the members of Tcandidate who can also

minimise the increase in time percentage of the maximum number of concurrent

active tenants in TG0. At this time, we need to pay attention to the issue of

tenant migration. Figure 4.1 presents that the previous deployment plan is de-

vised as {TG0: ([V0,V1,V2],[T1,T2,T3,T4,T7,T8]), TG1: ([V3,V4,V5],[T5,T6,T9,T10]),

...}. Since T1 is originally located in TG0, T1 should be the best tenant put into

TG0 to avoid bulk loading T1’s data from Cluster1 to Cluster0 (for 3 times) as
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shown in figure 4.1. The remaining tenants T6 − T10 can no longer be put into

TG0 because TG0’s TTP is lower than 99% after placing any of them, and a

new tenant group TG1 is created as a result. Based on the same tenant grouping

principle, T6, T7, T9 and T10 are packed into TG1. As T8 is a noisy neighbour for

TG0 or TG1, it would be excluded and formed as another tenant group TG2.

Hence, three tenant groups, TG0, TG1 and TG2, are eventually formed as shown

in figure 4.1.

Algorithm 1 UTDD Tenant Grouping Algorithm

Input: Tenants T, Replication Factor R, Query Latency SLA Guarantee P%

1: Pack all T with the same parallelism requirement N and flavor type F into the same
initial group GF

N ;

2: Let i = 1;
3: for each initial group GF

N do
4: Create a tenant group TGi;
5: Determine the potential tenant(s) Tcandidate ∈ GF

N that minimise the increase in
time percentage of the maximum number of concurrent active tenants in TGi;

6: if the number of Tcandidate >1 then
7: Identify the tenant Tbest ∈ Tcandidate who is co-located with the most tenants

among TGi before consolidation;
8: else
9: Tbest = Tcandidate

10: if TGi’s TTP is still greater than P% after placing tenant Tbest to TGi then
11: Put Tbest to TGi and exclude Tbest from GF

N ;
12: Goto Line 5;
13: else
14: i++;
15: Goto Line 4;

When deciding the corresponding cluster for each tenant group, we will

compare with the last tenant placement in the cluster. The new grouping re-

sult presents that TG0 contains the tenants T1 − T5. Compared with the new

grouping result, there is only one common tenant, T5, placed in Cluster0 (before

consolidation). By contrast, there are four common tenants, T1 − T4, placed in
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Cluster1 (before consolidation). Since Cluster1 contains the greatest number of

common tenants in TG0, TG0 should be assigned to Cluster1. Note that there

is no cluster available for TG2, therefore a new cluster Cluster2 is created for

hosting T8 in TG2.

In most cases, the cluster design exploits the replication factor R to deter-

mine the cluster size (i.e., the number of Vertica instances) where R=3 is applied

in our scenario. The existing clusters Cluster0 and Cluster1 are reserved for

serving TG1 and TG0 with three Vertica instances. However, in order to reduce

the resource redundancy, the cluster size should be equal to the size of the ten-

ant group only if the number of tenants in that tenant group is smaller than

R. By this reason, only one Vertica instance in Cluster2 is designed to serve T8

because only one tenant is put in TG2. After consolidation, Vault minimises the

total number of nodes required to build in OpenStack cloud, and therefore Vault

provides PDaaS under a low operation cost with latency SLA guarantee.

4.2 Query Routing

The principle of query routing algorithm behind UTDD is to route a tenant

to a free (or available) Vertica instance, which can balance the distribution of

workloads across Vertica instances among the group. Let’s use some examples

to illustrate the idea of query routing in Vault presented in Algorithm 2. For

the most simple case, if there is any free Vertica instance in the group, tenant

Ti can be routed to the first identified, free Vertica instance Vy. In case Vertica

instances are all busy in the group, the coming active tenants will be routed to

one of Vertica instances for concurrent query execution. Actually, it is known as
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an overactive tenant issue caused by the tenants whose activities deviate from the

query history at runtime. Like those irregular tenants whose activities become

unpredictable and they will be active as located in the time zone different from

before which results in an excessive workload for the group. In addition, those

tenants who become extremely active all the time will also give heavy workload

for the group. To reduce the query latency when processing concurrent queries,

it requires to balance the workload among Vertica instances in the group. Unlike

Thrifty, the load balancing decision depends on identifying the amount of query

processing inside each Vertica instance. The tenant will be routed to a Vertica

instance Vcandidate with the least workload to achieve load balancing in the group.

If Vcandidate is more than one, the tenant will be routed to the first identified

Vertica instance Vf identified in Vcandidate. It is noticeable that if tenant Ti has

an existing connection to a Vertica instance Vx built before, the incoming queries

submitted by tenant Ti (maybe from different users) will be routed to Vertica

instance Vx. With this query routing algorithm, each tenant can often be served

by a dedicated Vertica instance exclusively that fits their parallelism request.

4.3 Elastic Scaling

Since some tenants may become exceptionally active different from the past

tenant activities at runtime, there is much chance that the number of concur-

rent active tenants will be more than R at runtime. In other words, there will

be a frequent emergence of overactive tenants in the tenant group. When the

emergence of overactive tenants accumulates more than 1% of time in the past

24 hours, it causes the RT-TTP of the tenant group to drop below the SLA
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Algorithm 2 UTDD Query Routing Algorithm

Input: Tenant Ti, Query Q

1: if Ti has established a connection to a Vertica instance Vx then
2: Route Q to Vx;
3: else
4: if there is any free Vertica instances Vy then
5: Route Q to Vy;
6: else
7: Identify a Vertica instance Vcandidate that has the

minimum number of processing queries;
8: if there is more than one Vcandidate then
9: Pick the first identified Vertica instance Vf ∈ Vcandidate;

10: Vbest = Vf ;
11: else
12: Vbest = Vcandidate;
13: Route Q to Vbest for concurrent query execution;

guarantee of 99%. Continuing the example in figure 8, the idea of Vault’s Elastic

Scaling will be illustrated as the following procedures. To begin with, it first

identifies the tenants in TG0 whose activities deviate from the query history and

put them into a new group TG3. Then, it creates a new Vertica instance and

migrates the data of those tenants to the newly provisioned Vertica instance.

As those tenants are moved into TG3, they would be removed from TG0 which

implies their tenant activities would also be excluded from TG0, so the RT-TTP

of TG0 will be restored to 99% or above to meet the SLA guarantee of the tenant

group. Instead of loading the entire tenant group’s data, only the data of those

overactive tenants needs to be migrated to the new Vertica instance. This will

be a benefit to save the data loading time and thus reduce the time for restoring

the performance level of the tenant group.
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4.4 SLA Maintenance

The SLA guarantee provides transparency between the service provider and

the tenants to clearly define the required level of service in Vault. For the

query-latency SLA guarantee, more than R concurrent active tenants submit-

ting queries would lead to increased query latency. Therefore, the implication of

concurrent query execution occurring in a Vertica instance infers that the tenants

could not be exclusively served by a dedicated Vertica instance. In case the la-

tency SLA guarantee is 99%, when more than R tenants submits the concurrent

queries and last for more than 1% of time percentage in the group, the RT-TTP

(Run Time Total Time Percentage - for TTP measurement at runtime) will fall

below 99%. UTDD tries to solve the latency SLA violation issue in every (re)-

consolidation cycle to prevent recurrent resource competition between tenants in

OpenStack cloud.

Besides, Vault provides the migration SLA guarantee to ensure the perfor-

mance of data migration. In other words, the cost of data migration is guaranteed

to be minimised in order to reduce the impact on query execution. There are

two circumstances that involve data migration process in Vault which includes

executing consolidation or elastic scaling. It is guaranteed that the query exe-

cution and data migration could be processed simultaneously without downtime

during executing consolidation or elastic scaling.
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Experimental Evaluation

The purpose of this chapter is to share our experience in running Vault as

PDaaS in OpenStack cloud. For all our experiments, the tenants submit read-

only query/batch queries (i.e., a bundle of queries) to Vertica instances, and the

query history is tracked and transformed to tenant activity logs continuously. For

the sake of a better understanding of the experimental observations, we analyse

the results with the aid of tenant activity logs found in Vault’s backend database.

We present different experimental results to fully evaluate Vault performance in

real world practice.

5.1 Experimental Design and Methodology

All the experiments are performed with Nova instances (1 vCPU, 8 GB

RAM, 20 GB Root Disk) running as Vertica instances in OpenStack cloud. We

deploy OpenStack in multi-node configuration with the use of 4 physical machines

29
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(24 cores, 6.7 TB hard disk and 260 GB RAM per physical machine) comprising of

a controller node and compute nodes (also acts as storage nodes). In particular, a

single physical machine is configured as the controller node for supplying shared

services in the cloud (e.g., dashboard, identity service), while the remaining

physical machines are used for hosting Vertica instances and offering persistent

storage to them. To ensure the performance of the instances, we disable the

default overcommitting ratio in OpenStack and set the overcommitting ratio of

CPU and RAM to 1:1 which means the total number of Vertica instances created

in OpenStack cloud would not exceed the total number of physical cores in our

experimental environment.

In our experiments, there are 3 tenant types (i.e., a tenant may request

2/3/4-node Vertica instance) and each tenant holds 5 GB TPC-H data. Each

tenant picks either time offset +0, + 8 or +16 to determine the tenants who may

be located at different timezones. To imitate a real tenant behaviour, the tenants

obey the following rules to submit query/batch queries in our experiments. First

of all, each tenant has U active users where 1 ≤ U ≤ 3. And each user submits

a random TPC-H query or a batch of K random TPC-H queries regularly to a

Vertica instance where 1 ≤ K ≤ 3. After submitting a single query or batch

queries, the user becomes idle. Once the processing of query or batch queries is

completed, the user becomes active again after L seconds where 120 ≤ L ≤ 300.

Table 5.1 and 5.2 represent the experimental parameters for the assessment of

Vault performance while the default values are displayed in boldface.

The experiments are carried out to examine the idea of taking advantage of

the complementary tenant activities for consolidation. We can put the idea into

practice by carrying out each experiment for a day in order to collect 24-hour
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tenant activities throughout daytime and nighttime.

5.2 Evaluation under Different System Configurations

System Configurations

Experimental Parameter Range

Memory Size 2GB, 4GB, 8GB

Epoch Size 1s, 5s, 10s, 30s, 90s, 600s

Query Latency SLA 80%, 93%, 95%, 97%, 99%

Replication Factor 1, 2, 3, 4

Table 5.1. Experimental Parameters under Different System Configurations

Varying Memory Size: Vault pricing is determined by the instance type cho-

sen in OpenStack cloud. In numerous instance types, a memory optimised in-

stance features higher memory to vCPU ratio which gives advantage for rela-

tional database server [15], like Vertica. The experiment below finds out the

most appropriate memory to vCPU ratio that should be chosen for optimising

performance and cost in OpenStack cloud. Figure 5.1a shows the consolida-

tion effectiveness increases from 29.9% to 44.8% when the memory size increases

from 2 GB to 8 GB. Since higher memory to vCPU ratio can deliver faster per-

formance for query processing, it helps in reducing the time percentage of the

emergence of overactive tenants. For this reason, it is most likely to bring about

the result that the tenant activities are in complementary distribution for con-

solidation, so it results in a higher consolidation effectiveness. At the same time,

figure 5.1c also supports the findings that more tenants could be packed into the

same group for sharing OpenStack resources due to the growth of memory size.

On the other hand, it is relatively easy to fill up the memory and causes the

query failure when there is only 2 GB or 4 GB memory size in Vertica instance.
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The percentage of query error drops to 0% when the memory size increases to 8

GB. Hence, we adopt the memory optimised instance with 8 GB memory size in

OpenStack cloud. Figure 5.1c shows that the execution time of UTDD’s tenant

grouping keeps around 6 seconds because the tenant grouping algorithm needs

to scan through the same duration (i.e., 24 hrs) of the tenant activities to form

the resulting tenant groups even though memory size is increased.

(a) Consolidation Effectiveness (b) Execution Time for Grouping
Tenants

(c) Average Tenant Group Size (d) Query Error

Figure 5.1. Varying Memory Size

Varying Epoch Size: As mentioned earlier, UTDD’s tenant grouping is based

on the tenant activities of which it is derived from the history (i.e., query logs

stored in Vault’s backend database) for a specific duration (i.e., 24 hours). The
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derivation of tenant activities is on a time basis while the adoption of different

time epochs would produce slightly different derivation results, and so it may

cause a different result for UTDD’s tenant grouping. The experiment evaluates

how long the time epoch should be used to derive tenant activities from the

history. Figure 5.2a shows that the consolidation effectiveness grows from 34.3%

to 44.8% when the time epoch drops from 600s to 10s. Figure 5.2b shows that

UTDD’s tenant grouping could be finished within 10s if the time epoch is more

than or equal to 10s and the execution time of UTDD’s tenant grouping sharply

rises when time epoch falls to 1s. Despite the fact that a larger time epoch

leads to a shorter execution time of tenant grouping, it also has its drawback if a

large time epoch is used in Vault. A larger time epoch could only roughly derive

the tenant activities while a shorter time epoch could bring tenant activities to

become more closer to the real situation. For example, a tenant only submits a

query to a Vertica instance in the past 10 minutes (i.e., 600s) and it just takes 25s

to process the query. When deriving the tenant activity with 600s time epoch, the

derivation result still indicates that the tenant is active all the time in OpenStack

cloud within the epoch range. If a shorter time epoch is used, say, 10s time epoch

derives the tenant activity to indicate the tenant is active for 30 seconds (i.e.,

three 10s time epochs) and inactive for the remaining 570 seconds. Figure 5.2c

shows that the average group size grows because a shorter time epoch can bring

about the result that the tenant activities are in complementary distribution,

and hence it will be easier to place more tenants into the same group. With

the above reasons, the ideal epoch size should be 10s to ensure the consolidation

effectiveness and the execution time of tenant grouping are at a reasonable level.
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(a) Consolidation Effectiveness (b) Execution Time for Grouping
Tenants

(c) Average Tenant Group Size

Figure 5.2. Varying Epoch Size

Varying Query Latency SLA: This experiment evaluates how the query-

latency SLA promised between the service provider and tenants will influence the

consolidation effectiveness in OpenStack cloud. Figure 5.3a shows that UTDD’s

tenant grouping ensures the consolidation effectiveness of Vault could be at least

44.8%. With a loose query-latency SLA guarantee, the consolidation effectiveness

can be higher and even be 59.7% when only 80% query-latency SLA guarantee is

promised. The reason is that a loose query-latency SLA guarantee could tolerate

a higher time percentage of emergence of overactive tenants, hence overactive

tenants will be easier to be packed into the same tenant group. Figure 5.3c
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shows the average group size grows from 5 to 8 when the query-latency SLA falls

from 99% to 80% because more tenants could be packed into the same group

with a loose query-latency SLA guarantee. Figure 5.3b shows that the execution

time of UTDD’s tenant grouping keeps around 6 seconds because the tenant

grouping process requires to scan through the same duration (i.e., 24 hrs) of the

tenant activities every time to form the resulting tenant groups, even though the

query-latency SLA is varied.

(a) Consolidation Effectiveness (b) Execution Time for Grouping
Tenants

(c) Average Tenant Group Size

Figure 5.3. Varying Query Latency SLA

Varying Replication Factor:
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This experiment evaluates the ideal replication factor R to enable load bal-

ancing in our experiment. The replication factor decides the number of Vertica

instances in each cluster, so a higher replication factor supports more concurrent

active tenants in OpenStack cloud.

(a) Consolidation Effectiveness (b) Execution Time for Grouping
Tenants

(c) Average Tenant Group Size

Figure 5.4. Varying Replication Factor

Figure 5.4a shows that the consolidation effectiveness increases dramatically

from 0% to 44.8% when R increases from 1 to 3, because more Vertica instances

are available to handle the queries from the concurrent active tenants. The

higher value of R can be more likely to guarantee that the number of concurrent

active tenants in a group would not exceed R for P% of time. Figure 5.4c shows
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the average group size grows from 2 to 5 accordingly which verify that more

tenants are consolidated into the same tenant group with more Vertica instances

provided. Although the average group size still grows to 6 when R is 4, the

consolidation effectiveness drops back to 34.3% as shown in figure 5.4a because

too many Vertica instances provided in the same group would cause resource

redundancy. In most of the time, three Vertica instances are able to handle the

queries from the concurrent active tenants, and so the extra Vertica instance

becomes idle which causes the drop of consolidation effectiveness. Figure 5.4b

shows that the execution time of UTDD’s tenant grouping keeps around 6-7

seconds because the tenant grouping algorithm need to scan through the same

duration (i.e., 24 hrs) of the tenant activities to form the resulting tenant groups

even though R is increased.

5.3 Evaluation under Different Tenant Characteris-

tics

Tenant Characteristics

Experimental Parameter Range

Tenant Distribution 0.3, 0.6, 0.9

Number of Tenants 15, 20, 25

Table 5.2. Experimental Parameters under Different Tenant Characteristics

Varying Number of Tenants:

This experiment evaluates the efficiency of resource sharing in OpenStack

cloud to meet the growing number of tenants. Figure 5.5a shows a significant

increase of consolidation effectiveness from 14.8% to 32.5% when the number of
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tenants increases from 10 to 15. Figure 5.5c shows the growth in average size of

the tenant group which supports the observation that more tenants are packed

into the group.

(a) Consolidation Effectiveness (b) Execution Time for Grouping
Tenants

(c) Average Tenant Group Size

Figure 5.5. Varying Number of Tenants

Although the consolidation effectiveness still gradually increases to 44.8%

when the number of tenants increases from 15 to 25, the average group size

remains unchanged. To investigate this reason, we checked the backend database

of Vault and found that the number of tenant group is slightly increased by 1

when the number of tenants is increased from 15 to 20 or from 20 to 25. This

finding supports the result of a gradual increase in consolidation effectiveness
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when more tenants participate in the cloud. As the average group size is greater

than R, the increasing number of tenant group is favourable for better resource

sharing in the cloud and therefore the consolidation effectiveness still increases

gradually. Figure 5.5c shows the execution time of UTDD’s tenant grouping

steadily increases because more tenants are required to be analysed for filtering

the overactive tenants and choosing the most suitable tenant group for each

tenant.

Varying Tenant Distribution: In our experiment, it comprises of 3 tenant

(a) Consolidation Effectiveness (b) Execution Time for Grouping
Tenants

(c) Average Tenant Group Size

Figure 5.6. Varying Tenant Distribution

types including the tenant who can request a 2-node, 3-node or 4-node Vertica
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instance in OpenStack cloud. Concerning the tenant distribution, the number of

tenants of each tenant type is determined by the Zipf distribution with param-

eters n and α. The parameter n is the total number of tenants in OpenStack

cloud, and the parameter 0 <α<1 which determines the shape of Zipf distri-

bution. The greater value of α results in a greater difference of the number

of tenants among different tenant types, and vice versa. Figure 5.6a shows that

there is no significant change in the consolidation effectiveness with an increasing

α (i.e., tenant distribution). It indicates that there is no relation between tenant

distribution and consolidation effectiveness in Vault. Figure 5.6c shows that the

average group size also keeps unchanged with varying tenant distribution which

supports the conclusion that tenant distribution should not be a consideration

for UTTD’s tenant grouping.

5.4 Evaluation under Different Active Tenant Ratio

In this section, the experiment exploits the same default values listed in table

5.1 and 5.2 to evaluate the capability of handling overactive tenants in OpenStack

cloud. As we concentrate the study of consolidation effectiveness under a higher

active tenant ratio, the tenants could only get either time offset +0 (i.e., tenants

are from England) or +12 (i.e., tenants are from New Zealand), and therefore

it leads to 20% active tenant ratio. To obtain a higher active tenant ratio, the

tenants could get either time offset +0 or +12 without lunch hour which results

in 25% tenant active ratio.

When the active tenant ratio is high up to 25%, the number of concurrent

active tenants should be theoretically increased from 3 to 6 on average in each
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(a) Consolidation Effectiveness (b) Execution Time for Grouping
Tenants

(c) Average Tenant Group Size

Figure 5.7. Varying Active Tenant Ratio
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time epoch. Owing that the principle of consolidation is to promise the number of

concurrent active tenants in a tenant group should not exceed R for P% of time,

more concurrent active tenants pose difficulty in packing them into the same

tenant group. Although fewer tenants can be put into the same tenant group as

shown in figure 5.7c, the consolidation effectiveness can also maintained above

40% when active tenant ratio is increased. So, we ensure that Vault can save at

least 40% of the total requested nodes in OpenStack cloud even though there is

a certain amount of overactive tenants.

5.5 Elastic Scaling Evaluation

In order to evaluate the influence of Vault’s elastic scaling approach adopted

in OpenStack cloud, it is necessary to focus on one of the tenant groups and

observe its behaviour over time. The chosen tenant group involves 6 tenants

that request 3-node Vertica instances while it is a new tenant group formed after

consolidation (with R=3). At the outset, the RT-TTP of the tenant group was

100% which means there were at most three concurrent active tenants from the

last consolidation execution time till now. At time W, three tenants started

to submit queries continuously to those three Vertica instances in the cluster.

As those three tenants were allocated to be individually served by a separate

Vertica instance, it would not lead to the drop of RT-TTP. At time X, an extra

tenant (i.e., the fourth active tenant) submitted queries concurrently with the

other three tenants. As all Vertica instances served those three active tenants,

the extra tenant was allocated to be served by Vertica Instance V0 (i.e. one of

the busy Vertica instances). As a result, the query performance on V0 was 1.3 as
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Figure 5.8. Execution Time for Tenant Migration in OpenStack Cloud

shown in figure 5.9b which means the query would be 1.3 slower than processing

the query in a free Vertica instance. The extra tenant’s query could not be

processed exclusively, hence the RT-TTP of the tenant group fell to 99.2%.

The impact of applying Vault’s elastic scaling in OpenStack cloud could be

apparently observed started from time Y. During the period from time Y to time

Z, an extra tenant became active once again and therefore four concurrent active

tenants started to submit queries constantly. As a consequence, the tenant group

accumulated more than 1% of time more than three concurrent active tenants

submitting queries from the last consolidation execution time till now. For this

reason, the RT-TTP of the tenant group further dropped over 99% which violated

latency SLA guarantee. To meet the SLA guarantee, Vault started elastic scaling

by identifying the overactive tenant(s) in the group first. Then, Vault prepared

a new Vertica instance and loaded the overactive tenant(s)’ data to the new

Vertica instance. Vault spent total execution time of 300s in elastic scaling by

this time. In fact, the total execution time required to carry out elastic scaling
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mainly depends on the tenant types. Figure 5.8 shows that the instance creation

time increases with the increasing number of requested nodes, in other words,

the total execution time taken in executing elastic scaling tends to increase when

more nodes is requested by a tenant. At time P, the new Vertica instance was

well-prepared for the overactive tenant(s), so the incoming queries submitted by

the overactive tenant(s) could be routed to the new Vertica instance. Due to

the fact that the tenant group excluded the activities of the overactive tenant(s)

after elastic scaling, the RT-TTP of the tenant group reverted to above 99%

at the same time. As the overactive tenant(s) was moved to the new group,

even though those four tenants were concurrently active from time P to time Z,

the RT-TTP of the tenant group still kept above 99%. In contrast, disabling

elastic scaling in Vault would be difficult to meet the SLA guarantee. Without

elastic scaling, the RT-TTP of the tenant group dropped over 99% to hit a low of

96.1% between time Y and time Z. After time Z, there were at most only three

concurrent active tenants submitting queries. As time elapsed, the total time

percentage of having more than three concurrent active tenants was decreased.

In consequence, the RT-TTP of the tenant group gradually reverted to 99% or

above but it took about 16 hours as shown in figure 5.9c. The significant time

difference between time P and R is the time saved after adopting elastic scaling

approach in OpenStack cloud.
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(a) RT-TTP (with elastic scaling)

(b) Query Performance (with elastic scaling)

(c) RT-TTP (without elastic scaling)

(d) Query Performance (without elastic scaling)

Figure 5.9. Elastic Scaling in a Tenant group
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Chapter 6

Related Work

Cloud Database Projects There are some existing projects which provides

database-as-a-service (DaaS) including (1) Amazon Relational Database Service

(RDS) and (2) Microsoft SQLVM:

(1) Amazon RDS is designed to run on Amazon Web Services Cloud with a goal

similar to Trove which aims to relieve the administrative burden by automating

the tasks like backup and replication, and simplifies the use of relational database

including provisioning or scaling RDS database instances in cloud. Amazon RDS

provides the data migration service with no downtime which means the source

database is still operational during the database migration process just like Vault.

However, Amazon RDS generally enables resource sharing at the infrastructure

level [4, 16]. As a consequence, the database creation request from each tenant

can only bring an individual RDS database instance which limits the possibility

of consolidation in cloud. For this reason, Amazon has developed and offered

Amazon Aurora (i.e., a relational database compatible with MySQL and Post-

47



48

greSQL) to provide DaaS [17] and enable the possibility of resource sharing at

VM level. For example, MySQL enables partitioning tables across instances by

implementing sharding solution. To reduce resource consumption in cloud, hun-

dreds or more of MySQL shards (instances) can be consolidated to a single Au-

rora instance, however, the outcome of consolidation effectiveness is determined

by the number of MySQL shards owned by the tenant. By contrast, Vault can

consolidate different tenants to a Vertica instance based on their parallelism re-

quirement, the tenants who request a Vertica instance with fewer nodes (e.g., a

2-node Vertica instance) can also result in a high consolidation effectiveness in

cloud and therefore Vault employs a more reliable and cost-effective approach to

provide database services.

(2) Microsoft SQLVM [18] provides a cost-effective strategy for the service provider

to offer multi-tenant DaaS in cloud. SQLVM enables sharing resources effectively

among the tenants with the promise of reservation of key resources (i.e., CPU and

memory) to guarantee sufficient resources provisioning for the co-located tenants.

Narasayya et al. [19] proposes the consolidation concern which is how to share

buffer pool memory among tenants with SLA. As buffer pool keeps the hot data

pages, it reduces frequent disk access and therefore improves the query perfor-

mance. SQLVM is designed to share buffer pool memory among the co-located

tenants after consolidation, but it guarantees the tenants can be served as if the

service provider reserves a dedicated, promised size of buffer pool memory for

each of them to maintain the query performance. Similar to the case of memory

reservation, Das et al. [20] proposes how SQLVM shares CPU effectively among

the tenants. After undergoing consolidation, each tenant is promised to be al-

located a minimum CPU utilisation. In other words, it meets tenants’ demand
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for CPU even though the tenants contend for CPU under a shared environment,

especially for executing the CPU-intensive tasks. Different from the works men-

tioned above, Vault concerns the tenant consolidation challenge of identifying

the complementary workload patterns among tenants, but not on the considera-

tions of a particular resource. Therefore, Vault promises that each tenant can be

served by dedicated resources as if they can use a Vertica instance exclusively.

Load Balancing In order to achieve a better resource utilisation, load balanc-

ing is a way to distribute the workload effectively among the nodes in cloud [21].

Load balancing could be classified as static load balancing and dynamic load

balancing [22, 23]. For static load balancing algorithm, it does not consider the

system state (e.g., live connections, server workloads) while it defines the load

allocation strategy by using prior knowledge of the system like the processors

performance and the amount of nodes in the system. Many cloud databases like

Xeround has proposed a round robin scheduling algorithm to balance the

workload among the nodes. Actually, it is a static load balancing algorithm to

select nodes within a group in sequential order. But, it cannot give an efficient

resource utilisation comparing to dynamic load balancing because the load bal-

ancing decision does not involve the current system state and so the load might

not be allocated to the lightest node in the system. In contrast, dynamic load

balancing algorithm directs load to the node with the system state consideration

in order to meet the circumstances change. Vault employs the least loaded

server policy while it is a dynamic load balancing algorithm to balance the

workload among Vertica instances by identifying the least workload among them

as discussed in section 4.2. In fact, the least connection scheduling algo-

rithm [24] is also an alternative dynamic load balancing algorithm that could
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be applied to Vault. It directs the load to the node with the least number of live

connections. However, the live connections information exchange between query

routers may lead to an extra communication delay, so the least loaded server

policy is more favourable in Vault.

Elastic Scaling Elastic scaling is one of the key features in cloud computing

to meet the workload changes at any point of time by dynamically growing or

shrinking the resources in the cloud. CloudScale [25] and PRESS [26] are some

examples of systems which automate elastic scaling in the cloud to ensure the

system performance with a minimum resource cost. Both systems adjust the

resource allocation to satisfy time-varying resource demand by predicting the

cloud resource demand based on historical data. However, they require to train

an accurate prediction model with the resource usage information for avoiding

over-estimation (which causes resource redundancy) or under-estimation (which

causes SLA violation) of the resources. Different from CloudScale and PRESS,

Vault maintains the system performance by analysing the recent tenant activities

and setting up a simple rule as discussed in section 4.4 with a specific performance

threshold (i.e., consolidation effectiveness) in the absence of building a prediction

model. Therefore, Vault does not need a series of preliminary preparations for

building and training a prediction model, but it uses a simple and reliable scaling

approach to maintain the system performance.



Chapter 7

Conclusion

In this thesis, we present Vault, an implemented system that offers paral-

lel database-as-a-service with UTDD design principle. We provide insight into

the real implementation of PDaaS, thereby revealing the system architecture of

Vault on top of OpenStack. With UTDD, a deployment plan is devised to guide

how OpenStack cloud resources are shared efficiently among the tenants. Be-

sides, the query routing algorithm is designed to achieve load balancing and high

availability in cloud. It accomplishes the goal by distributing the workload across

multiple Vertica instances in the cluster. In order to maintain the query-latency

SLA guarantee at runtime, Vault rely on the elastic scaling approach to meet the

workload changes at any point of time. The outcome of experiments are in the

context with different configurations for investigating Vault performance in real

world practice. We believe that Vault is a promising system that serves tenants

at a low cost with query latency SLA guarantee.

51



52



Bibliography

[1] Claudia Loebbecke, Joerg Bienert, and Ali Sunyaev. A parallel platform for

big data analytics : A design science approach. IJCSET, 3:152–156, May

2013.

[2] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb

Welton. Mad skills: new analysis practices for big data. Proc. VLDB En-

dow., 2(2):1481–1492, August 2009.

[3] Forrester’s Enterprise Architecture research group. Going big data? you

need a cloud strategy. Technical report, Forrester Research, Inc, January

2017.

[4] Affreen Ara and Aftab Ara. Cloud for big data analytics trends. IOSR

Journal of Computer Engineering, 18:1–6, September 2016.

[5] Rajkumar Buyya, James Broberg, and Andrzej Goscinski. Cloud Computing

Principles and Paradigms. Wiley Publishing, Mar 2011.

[6] Shui Yu and Song Guo, editors. Big Data Concepts, Theories, and Applica-

tions. Springer, 2016.

53



54 BIBLIOGRAPHY

[7] Rouven Krebs, Simon Spinner, Nadia Ahmed, and Samuel Kounev. Re-

source usage control in multi-tenant applications. In CCGrid IEEE CS,

pages 122–131, 2014.

[8] Nader Mohamed and Jameela Al-Jaroodi. Real-time big data analytics:

Applications and challenges. In The 2014 International Conference on High

Performance, Bologna, Italy, 2014.

[9] Petrie Wong, Zhian He, and Eric Lo. Parallel analytics as a service. In

Proceedings of the 2013 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’13, pages 25–36, New York, NY, USA, 2013.

ACM.

[10] Alok Shrivastwa and Sunil Sarat. OpenStack Trove Essentials. Packt Publ.,

March 2016.

[11] Amrith Kumar and Douglas Shelley. OpenStack Trove. Apress, 1 edition,

2015.

[12] Sherif Sakr and Mohamed Gaber. Large Scale and Big Data: Processing

and Management. Auerbach Publications, Boston, MA, USA, 2014.

[13] K.Venkataramana and Prof.M.Padmavathamma. Multi-tenant data storage

security in cloud using data partition encryption technique. International

Journal of Scientific Engineering Research, 4, July 2013.
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